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Introduction

f you’ve already bought this book, then you have my undying respect and admiration (not to

mention — cha ching — that with my royalty from the sale of this book, I can now afford,

oh, say, half a cup of coffee). And if you're just thinking about buying it, well, what are you
waiting for? Buying this book (and its excellent companion volume, Geometry For Dummies)
can be an important first step on the road to gaining a solid grasp of a subject — and now I’'m
being serious — that is full of mathematical richness and beauty. By studying geometry, you
take part in a long tradition going back at least as far as Pythagoras (one of the early, well-
known mathematicians to study geometry, but certainly not the first). There is no mathemati-
cian, great or otherwise, who has not spent some time studying geometry.

I spend a great deal of time in this book explaining how to do geometry proofs. Many students
have a lot of difficulty when they attempt their first proofs. I can think of a few reasons for this.
First, geometry proofs, like the rest of geometry, have a spatial aspect that many students find
challenging. Second, proofs lack the cut-and-dried nature of most of the math that students
are accustomed to (in other words, with geometry proofs there are way more instances where
there are many correct ways to proceed, and this takes some getting used to). And third, proofs
are, in a sense, only half math. The other half is deductive logic — something new for most
students, and something that has a significant verbal component. The good news is that if you
practice the dozen or so strategies and tips for doing proofs presented in this book, you should
have little difficulty getting the hang of it. These strategies and tips work like a charm and
make many proofs much easier than they initially seem.

About This Book

Geometry Workbook For Dummies, like Geometry For Dummies, is intended for three groups of
readers:

¥ High school students (and possibly junior high students) taking a standard geometry course
with the traditional emphasis on geometry proofs

¥ The parents of geometry students

3 Anyone of any age who is curious about this interesting subject, which has fascinated both
mathematicians and laypeople for well over two thousand years

Whenever possible, I explain geometry concepts and problem solutions with a minimum of
technical jargon. I take a common-sense, street-smart approach when explaining mathemat-
ics, and I try to avoid the often stiff and formal style used in too many textbooks. You get
answer explanations for every practice problem. And with proofs, in addition to giving you the
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steps of the solutions, I show you the thought process behind the solutions. I supplement the
problem explanations with tips, shortcuts, and mnemonic devices. Often, a simple tip or mem-
ory trick can make learning and retaining a new, difficult concept much easier. The pages here
should contain enough blank space to allow you to write out your solutions right in the book.

Conventions Used in This Book

This book uses certain conventions:

¥ Variables are in italics.

¥ Important math terms are often in jtalics and are defined when necessary. These terms may
be bolded when they appear as keywords within a bulleted list. Italics are also used
for emphasis.

¥ Asin most geometry books, figures are not necessarily drawn to scale.

¥ Extra-hard problems are marked with an asterisk. Don't try these problems on an empty
stomach!

For all proof problems, don’t assume that the number of blank lines (where you’ll put your
solutions) corresponds exactly to the number of steps needed for the proof.

How to Use This Book

2

Like all For Dummies books, you can use this book as a reference. You don’t need to read it cover
to cover or work through all problems in order. You may need more practice in some areas than
others, so you may choose to do only half of the practice problems in some sections, or none
at all.

However, as you’d expect, the order of the topics in Geometry Workbook For Dummies roughly
follows the order of a traditional high school geometry course. You can, therefore, go through
the book in order, using it to supplement your coursework. If I do say so myself, I expect you’ll
find that many of the explanations, methods, strategies, and tips in this book will make prob-
lems you found difficult or confusing in class seem much easier.

I give hints for many problems, but if you want to challenge yourself, you may want to cover
them up and attempt the problem without the hint.

And if you get stuck while doing a proof, you can try reading a little bit of the “game plan” or
the solution to the proof. These aids are in the solutions section at the end of every chapter. But
don’t read too much at first. Read a small amount and see whether it gives you any ideas. Then,
if you’re still having trouble, read a little more.

Geometry Workbook For Dummies



Foolish Assumptions

As William Shakespeare said, “A fool thinks himself to be wise, but a wise man knows himself
to be a fool.” Here’s what I’'m assuming about you — fool that I am.

¥ You're no slouch — and therefore, you have at least some faint glimmer of curiosity about
geometry (or maybe you're totally, stark raving mad with desire to learn the subject?). How
could people possibly have no curiosity at all about geometry, assuming they're notin a
coma? You are literally surrounded by shapes, and every shape involves geometry.

¥ You haven't forgotten basic algebra. You need very little algebra for geometry, but you
do need some. Even if your algebra is a bit rusty, | doubt you'll have any trouble with the
algebra in this book: solving simple equations, using simple formulas, doing square roots,
and so on.

¥ You're willing to invest some time and effort in doing these practice problems. With
geometry — as with anything — practice makes perfect, and practice sometimes involves
struggle. But that's a good thing. Ideally, you should give these problems your best shot
before you turn to the solutions. Reading through the solutions can be a good way to learn,
but you'll usually remember more if you first push yourself to solve the problems on your
own — even if that means going down a few dead ends.

Icons Used in This Book

Look for the following icons to quickly spot important information:

Next to this icon are definitions of geometry terms, explanations of geometry principles, and
a few things you should know from algebra. You often use geometry definitions in the reason

column of two-column proofs.
REMEMBER

This icon is next to all example problems — duh.

@

EXAMPLE

This icon gives you shortcuts, memory devices, strategies, and so on.

©)

TIP

Ignore these icons, and you may end up doing lots of extra work and maybe getting the wrong
answer — and then you could fail geometry, become unpopular, and lose any hope of becoming
homecoming queen or king. Better safe than sorry, right?

®

WARNING

This icon identifies the theorems and postulates that you'll use to form the chain of logic in
geometry proofs. You use them in the reason column of two-column proofs. A theorem is an if-
then statement, like “if angles are supplementary to the same angle, then they are congruent.”
THEOREMs & YOU USe postulates basically the same way that you use theorems. The difference between them
POSTULATES is sort of a mathematical technicality (which I wouldn’t sweat if I were you).
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Beyond the Book

You have online access to hundreds of geometry practice problems to supplement what’s cov-
ered in the book. To gain access to this online practice material, all you have to do is register.
Just follow these simple steps:

1. Register your book or e-book at Dummies . com to get your personal identification
number (PIN).

GO to www.dummies . com/go/getaccess.
2. Choose your product from the drop-down list on that page.
Follow the prompts to validate your product.

4. Check your email for a confirmation message that includes your PIN and instructions
forlogging in.

If you don’t receive this email within two hours, please check your spam folder before
contacting us through our support website at http: //support.wiley.com or by phone
at +1 (877) 762-2974.

Where to Go from Here

You can go

3 To Chapter 1

¥ To whatever chapter contains the concepts you need to practice
3 To Geometry For Dummies for more in-depth explanations

¥ To the movies

¥ To the beach

¥ Into your geometry final to kick some @#%$!

3 Then on to bigger and better things

4 Geometry Workbook For Dummies
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IN THIS PART . ..

Get familiar with two-column geometry proofs.
Discover points, segments, lines, rays, and angles.

Practice your skills on lots of proof problems.



IN THIS CHAPTER

» Defining geometry

» Examining theorems and if-then
logic

» Geometry proofs: The formal and
the not-so-formal

Chapter 1
Introducing Geometry
and Geometry Proofs

n this chapter, you get started with some basics about geometry and shapes, a couple points
about deductive logic, and a few introductory comments about the structure of geometry
proofs. Time to get started!

What Is Geometry?

What is geometry?! C'mon, everyone knows what geometry is, right? Geometry is the study of
shapes: circles, triangles, rectangles, pyramids, and so on. Shapes are all around you. The desk
or table where you’re reading this book has a shape. You can probably see a window from where
you are, and it’s probably a rectangle. The pages of this book are also rectangles. Your pen or
pencil is roughly a cylinder (or maybe a right hexagonal prism — see Part 5 for more on solid
figures). Your shirt may have circular buttons. The bricks of a brick house are right rectangular
prisms. Shapes are ubiquitous — in our world, anyway.

For the philosophically inclined, here’s an exercise that goes way beyond the scope of this book:

Try to imagine a world — some sort of different universe — where there aren’t various objects
with different shapes. (If you’re into this sort of thing, check out Philosophy For Dummies.)

CHAPTER 1 Introducing Geometry and Geometry Proofs 7



Making the Right Assumptions

8

A

WARNING

Okay, so geometry is the study of shapes. And how can you tell one shape from another? From
the way it looks, of course. But — this may seem a bit bizarre — when you’re studying geom-
etry, you're sort of not supposed to rely on the way shapes look. The point of this strange
treatment of geometric figures is to prohibit you from claiming that something is true about a
figure merely because it looks true, and to force you, instead, to prove that it’s true by airtight,
mathematical logic.

When you’re working with shapes in any other area of math, or in science, or in, say, archi-
tecture or design, paying attention to the way shapes look is very important: their proportions,
their angles, their orientation, how steep their sides are, and so on. Only in a geometry course
are you supposed to ignore to some degree the appearance of the shapes you study. (I say “to
some degree” because, in reality, even in a geometry course — or when using this book — it’s
still quite useful most of the time to pay attention to the appearance of shapes.)

When you look at a diagram in this or any geometry book, you cannot assume any of the
following just from the appearance of the figure.

¥ Right angles: Just because an angle looks like an exact 90° angle, that doesn't necessarily
mean it is one.

3 Congruent angles: Just because two angles look the same size, that doesn't mean they
really are. (As you probably know, congruent [symbolized by =] is a fancy word for “equal” or
“same size.")

¥ Congruent segments: Just like with angles, you can’t assume segments are the same length
just because they appear to be.

¥ Relative sizes of segments and angles: Just because, say, one segment is drawn to look
longer than another in some diagram, it doesn't follow that the segment really is longer.

Sometimes size relationships are marked on the diagram. For instance, a small L-shaped mark
in a corner means that you have a right angle. Tick marks can indicate congruent parts. Basi-
cally, if the tick marks match, you know the segments or angles are the same size.

You can assume pretty much anything not on this list; for example, if a line looks straight, it
really is straight.

Before doing the following problems, you may want to peek ahead to Chapters 4 and 6 if you’ve
forgotten or don’t know the names of various triangles and quadrilaterals.

PART 1 Getting Started with Geometry



<L

EXAMPLE

What can you assume and what can’t you assume ¢ I
about SIMON?

You can assume that

MN (line segment MN) is straight; in other words, there’s no bend at point 0.

Another way of saying the same thing is that ZMON is a straight angle or a 180°
angle.

NS, SI,and IM are also straight as opposed to curvy.
Therefore, SIMON is a quadrilateral because it has four straight sides.

(If you couldn’t assume that MN is straight, there could actually be a bend at point
0 and then SIMON would be a pentagon, but that’s not possible.)

That’s about it for what you can assume. If this figure were anywhere else other
than a geometry book, you could safely assume all sorts of other things — including
that SIMON is a trapezoid. But this is a geometry book, so you can’t assume that. You
also can’t assume that

S and £N are right angles.

/I is an obtuse angle (an angle greater than 90°).

ZM is an acute angle (an angle less than 90°).

/I is greater than ZM or £S or ZN, and ditto for the relative sizes of other angles.

NS is shorter than S/ or MN, and ditto for the relative lengths of the other
segments.

0 is the midpoint of MN.
SI is parallel to MN.

The “real” SIMON — weird as it seems — could actually look like this:

S

CHAPTER 1 Introducing Geometry and Geometry Proofs



What type of quadrilateral is AMER? Note: See ° What type of quadrilateral is IDOL?
Chapter 6 for types of quadrilaterals.

D ) 0
M E
J O
0 ] I ) L
A R

a Use the figure to answer the following ques- 0 Can you assume or conclude
tions (Chapter 4 can fill you in on triangles): 2. AABC = AWXY?

a. Can you assume that the triangles are

b. AABD = ACBD?
congruent?
. AABD = AWXZ?
b. Can you conclude that AABC is acute? ¢
Obtuse? Right? Isosceles (with at least two d. AABC is isosceles?

equal sides)? Equilateral (with three equal

. D is the midpoint of AC?
sides)?

e

-

. Z is the midpoint of WY?
c. Can you conclude that ADEF is acute?

Obtuse? Right? Isosceles? Equilateral? g. BD is an altitude (height) of AABC?
d. What can you conclude about the length h. ZADB is supplementary to

of EF? ZCDB (that is: ZADB + ZCDB =180°)?
e. Might ZD be a right angle? i. AXYZ is aright triangle?
f. Might Z/F be aright angle? B X

B E
e el ,
A "¢ b T F

10 PART 1 Getting Started with Geometry



If-Then Logic: If You Bought This Book,
Then You Must Love Geometry!

WARNING

Geometry theorems (and their cousins, postulates) are basically statements of geometrical truth,
like “All radii of a circle are congruent.” As you can see in this section and in the rest of the
book, theorems (and postulates) are the building blocks of proofs. (I may get hauled over by
the geometry police for saying this, but if I were you, I'd just glom theorems and postulates
together into a single group because, for the purposes of doing proofs, they work the same way.
Whenever I refer to theorems, you can safely read it as “theorems and postulates.”)

Geometry theorems can all be expressed in the form, “If blah blah blah, then blah blah blah,”
like “If two angles are right angles, then they are congruent” (although theorems are often
written in some shorter way, like “All right angles are congruent”). You may want to flip
through the book looking for theorem icons to get a feel for what theorems look like.

An important thing to note here is that the reverse of a theorem is not necessarily true. For
example, the statement, “If two angles are congruent, then they are right angles,” is false.
When a theorem does work in both directions, you get two separate theorems, one the reverse
of the other.

The fact that theorems are not generally reversible should come as no surprise. Many ordinary
statements in if-then form are, like theorems, not reversible: “If something’s a ship, then it’s a
boat” is true, but “If something’s a boat, then it’s a ship” is false, right? (It might be a canoe.)

Geometry definitions (like all definitions), however, are reversible. Consider the definition of
perpendicular: perpendicular lines are lines that intersect at right angles. Both if-then state-
ments are true: 1) “If lines are perpendicular, then they intersect at right angles,” and 2) “If
lines intersect at right angles, then they are perpendicular.” When doing proofs, you’ll have the
occasion to use both forms of many definitions.

Q. Read through some theorems.

EXAMPLE

a. Give an example of a theorem that’s not reversible and explain why the reverse
is false.

b. Give an example of a theorem whose reverse is another true theorem.

A. Anumber of responses work, but here’s how you could answer:

a. “If two angles are vertical angles, then they are congruent.” The reverse of this
theorem is obviously false. Just because two angles are the same size, it does not
follow that they must be vertical angles. (When two lines intersect and form an X,
vertical angles are the angles straight across from each other — turn to Chapter 2
for more info.)

b. Two of the most important geometry theorems are a reversible pair: “If two sides of
a triangle are congruent, then the angles opposite those sides are congruent” and
“If two angles of a triangle are congruent, then the sides opposite those angles are
congruent.” (For more on these isosceles triangle theorems, check out Chapter 5.)

CHAPTER 1 Introducing Geometry and Geometry Proofs 11



o Give two examples of theorems that are not a Give two examples of theorems that work
reversible and explain why the reverse of each in both directions. Hint: See the hint for
is false. Hint: Flip through this book or your question 5.

geometry textbook and look at various theo-
rems. Try reversing them and ask yourself
whether they still work.

What's a Geometry Proof?

12

Many students find two-column geometry proofs difficult, but they’re really no big deal once
you get the hang of them. Basically, they’re just arguments like the following, in which you
brilliantly establish that your Labradoodle, Fifi, will not lay any eggs on the Fourth of July:

1.

2.

Fifi is a Labradoodle.
Therefore, Fifi is a dog, because all Labradoodles are dogs.
Therefore, Fifi is a mammal, because all dogs are mammals.

Therefore, Fifi will never lay any eggs, because mammals don’t lay eggs (okay,
okay . . . except for platypuses and spiny anteaters, for you monotreme-loving
nitpickers out there).

Therefore, Fifi will not lay any eggs on the Fourth of July, because if she will never lay
any eggs, she can’t lay eggs on the Fourth of July.

In a nutshell: Labradoodle — dog — mammal — no eggs — no eggs on July 4. It’s sort of a
domino effect. Each statement knocks over the next till you get to your final conclusion.

Gb Check out Figure 1-1 to see what this argument or proof looks like in the standard two-column
geometry proof format.

EXAMPLE
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Given: Fifi is a Labradoodle.
Prove: Fifi will not lay eggs on the Fourth of July.

Statements (or Conclusions) Reasons (or Justifications)
These are the specific claims you make. These are the general rules you
use to justify your claims. If after
each claim you made, I said, “How do
you know?” your response to
me goes in this column.
I claim... How do I know?
1) Fifiis a Labradoodle. 1) Because it was given as a fact.
2) Fifiis a dog. 2) Because all Labradoodles are dogs.
3) Fifi is a mammal. 3) Because all dogs are mammals.
FIGURE 1-1:
A standard 4) Fifi doesn’t lay eggs. 4) Because mammals don’t lay eggs.
two-column
 listi 5) Fifi will not lay eggs on the 5) Because something that doesn’t lay
proorlisting Fourth of July. eggs can’t lay eggs on the Fourth
statements of July.
and reasons.

Note that the left-hand column contains specific facts (about one particular dog, Fifi), while the
right-hand column contains general principles (about dogs in general or mammals in general).
This format is true of all geometry proofs.

Now look at the very same proof in Figure 1-2; this time, the reasons appear in if-then form.
When reasons are written this way, you can see how the chain of logic flows.

In a two-column proof, the idea or ideas in the if part of each reason must come from the

statement column somewhere above the reason; and the single idea in the then part of the

reason must match the idea in the statement on the same line as the reason. This incredibly
rememser important flow-of-logic structure is shown with arrows in the following proof.

Statements (or Conclusions) Reasons (or Justifications)

1) (Fifi is a Labradoodle. 1) Given.
2) |Fifi is a dog. 2

¥

If (something is a Labradoodle,)

then(it is a dog)

3) (Fifi is a mammal. 3) If|something is a dog,

7

I*

<_|

4) (Fifi doesn’t lay eggs. 4

7

If (something isa mammal,)

then (it doesn’t lay eggs.
FIGURE 1-2:

A proof with 5) [Fifi will not lay eggs on the 5 If(something doesn’t lay eggs) then
the reasons Fourth of July.

written in (it won't lay eggs on the Fourth of July‘)

if-then form.

<_I

o
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In the preceding proof, each if clause uses only a single idea from the statement column. How-
ever, as you can see in the following practice problem, you often have to use more than one idea
from the statement column in an if clause.

In the following facetious and somewhat fishy proof, fill in the missing reasons in if-then
form and show the flow of logic as I illustrate in Figure 1-2.

Given:  You forgot to set your alarm last night.

You’ve already been late for school twice this term.
Prove:  You will get a detention at school today.

Note: To complete this “proof,” you need to know the school’s late policy: A student who
is late for school three times in one term will be given a detention.

Statements (or Conclusions) Reasons (or Justifications)
1) I forgot to set my alarm last night. 1) Given.

2) | will wake up late. 2)

3) | will miss the bus. 3)

4) | will be late for school. 4)

5) I've already been late for school twice this term. 5) Given.

6) This will be the third time this term I'll have been late. | 6)

7) I'll get a detention at school today. 7)
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Solutions

AMER looks like a square, but you can’t conclude that because you can’t assume the sides are
equal. You do know, however, that the figure is a rectangle because it has four sides and four
right angles.

IDOL also looks like a square, and again, like with question 1, you can’t conclude that, but this
time you can’t conclude that because you can’t assume that the angles are right angles. But
because you do know that IDOL has four equal sides, you know that it’s a rhombus.

@ Here are the answers (flip to Chapter 4 if you need to go over triangle classification):
a. No. The triangles look congruent, but you’re not allowed to assume that.

b. The tick marks tell you that AABC is equilateral. It is, therefore, an acute triangle and an
isosceles triangle. It is neither a right triangle nor an obtuse triangle.

c. The tick marks tell you that ADEF is isosceles and that, therefore, it is not scalene. That’s
all you can conclude. It may or may not be any of the other types of triangles.

d. Nothing. EF could be the longest side of the triangle, or the shortest, or equal to the other
two sides. And it may or may not have the same length as BC.

e. Yes. /D might be a right angle, though you can’t assume that it is.

f. No. (If you got this question right, give yourself a pat on the back.) If ZF were a right
angle, ADEF would be a right triangle with DE its hypotenuse. But DE is the same length
as DF, and the hypotenuse of a right triangle has to be the triangle’s longest side.

@ Here are the answers:

a. No. The triangles might not be congruent in any number of ways. For example, you know
nothing about the length of ZY, and if ZY were, say, a mile long, the triangles would obvi-
ously not be congruent.

b. No. The triangles would be congruent only if ZADB and ~CDB were right angles, but you
don’t know that. Point B is free to move left or right, changing the measures of ZADB and

ZCDB.
c. No. You don’t know that ZADB is a right angle.
d. No. The figure looks isosceles, but you’re not allowed to assume that AB = CB.
e. Yes. The tick marks show it.
f. No. Like with part a, you know nothing about the length of ZY.
g. No. You can’t assume that BD L AC (the upside-down T means “is perpendicular to”).
h. Yes. You can assume that AC is straight and that ZADC is 180°; therefore, Z/ADB and ~CDB

must add up to 180°.
i. Yes. ZWZY is 180° and ZWZX is 90°, so £YZX must also be 90°.

Answers vary. One example is “If angles are complementary to the same angle, then they’re
congruent.” The reverse of this is false because many angles, like obtuse angles, do not have
complements (obtuse angles are already bigger than 90°, so you can’t add another angle to
them to get a right angle).
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@ Answers vary. Any of the parallel line theorems in Chapter 2 makes a good answer. For
example, “If two parallel lines are cut by a transversal, then alternate interior angles are
congruent.” Both this theorem and its reverse are true. To wit (in abbreviated form): “If lines
are parallel, then alternate interior angles are congruent,” and “If alternate interior angles
are congruent, then lines are parallel.”

@ Statements (or Conclusions) Reasons (or Justifications)

1) (I forgot to set my alarm last night.) 1) Given.
I

Y
2) \I will wake up late. 2) If (someone forgets to set his alarm,)

then(he will wake up late.
¥

3) |l will miss the bus. 3) If(someone wakes up late,)
then( he will miss the bus.

4) (I will be late for school.) 4) If(someone misses the bus,)

then(he will be late for school.)

5) |I've already been late for school 5) Given.
twice this term.

!

6) |This will be the third time this 6) If |someone has already been late for
term I'll have been late. school twice in one term and then
he is late another time in the
same term,

times in one term.

then [he will have been late three]

Note: This reason basically amounts to
saying that 2 + 1 = 3. Many steps in
geometry proofs, like this step, are
about incredibly obvious, well-duh
things.

¥

7) Tll get a detention at school today. D If [ someone is late for school three

times in one term,

then(he will get a detention.)

I hope it goes without saying that this is not an airtight, mathematical proof.
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IN THIS CHAPTER

» Walking a fine line: Semi-precise
definitions of geometry terms

» Working with union and
intersection problems

» Looking at supplementary and
complementary angles (free stuff!)

» Turning to right angles

» Spotting vertical angles

Chapterz
Points, Segments, Lines,
Rays, and Angles

n this chapter, you first review the building blocks of geometry: points, segments, lines,

rays, and angles. Then I go over some terms related to those objects: midpoint, bisection,

and trisection; parallel and perpendicular lines; right, acute, and obtuse angles; comple-
mentary and supplementary angles; and vertical angles. You'll get the hang of these things
working through the practice problems.

Hammering Out Basic Definitions

You probably already know what the following things are, but here are their definitions and
undefinitions anyway. That’s right — I said undefinitions. Technically, point and line are unde-

fined terms, so the first two “definitions” that follow aren’t technically definitions. But if I
rememeer ' Were you, I wouldn’t sweat this technicality.

3 Point: You know, like a dot except that it actually has no size at all. Or, you could say that
it's infinitely small. (That's pretty small, eh? But even “infinitely small” makes a point sound
larger than it really is.)

3 Line: Aline’s like a thin, straight wire. (Actually, it's infinitely thin or, even better, it has no
width at all — nada.) Don't forget that it goes on forever in both directions, which is why
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you use the little double-headed arrow as in AB (read as “line AB”; this is the line that goes
through points A and B). Because lines go on forever, no matter how you tilt them or how
good your shoehorn is, you can't fit them in the universe.

3 Line segment or just segment: A segment is a section of a line that has two endpoints.
If it goes from Cto D, you call it “segment CD” and write it like CD. (You can also call it and
write it DC.)

Note: CD without the segment bar over it indicates the length of the segment as opposed to
the segment itself.

¥ Ray: Aray is a section of a line (sort of half a line) that has one endpoint and goes on forever
in the other direction. If its endpoint is point M and the ray goes through point N and then
past it forever, you call the half-line “ray MN" and write MN. The endpoint always comes first.

3 Angle: Two rays with the same endpoint form an angle. The common endpoint is called
the vertex of the angle. An acute angle is less than 90°; a right angle is, of course, a 90° angle;
an obtuse angle has a measure greater than 90°; and a straight angle has a measure of 180°
(which is kinda weird, because a 180° angle looks just like a line or a segment like ZACE in
the example in the next section).

Note: Technically, angles go on forever, and their sides are rays that go on forever. This is
the case even when an angle in a figure has segments for its sides instead of rays. (It's like
the rays are really there even though they're not drawn.)

Looking at Union and Intersection Problems

where they overlap or touch. The union (U) of two objects contains all of each object including

the overlapping portion (if any).
REMEMBER

db Q. For the figure on the right, determine the B
following and write your answer in as many
ways as possible.

AF ~CA e

a.
b. AE UCA
c. /BDE ~ED

d. /BDE U DE

@ And now for something completely different. The intersection (") of two geometric objects is

EXAMPLE

A. Here's how this problem shapes up:
a. AENCA = ACorCA
b. AE UCA = AC or CA or AE or EA or CE or EC
Tip: If you find some of these union and intersection problems tricky, you’re not alone.

Here’s a great way to do them or to think about them. Imagine that the first object is
colored blue and the second, yellow (or you can actually color them). Blue and yellow
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make green, right? So, wherever you see (or imagine) green, that’s the intersection. And
the union contains anything that’s blue or yellow or green. Another way to do these
problems is to trace over each object. Wherever you traced twice, that’s the intersection.
And wherever you did any tracing (once or twice), that’s the union.

Remember: However you do these problems, lines, rays, and angles go on forever even if
the diagram makes it look like they end.
c. /BDENED = DE
If /BDE is blue and ED is yellow, then DE will be green.
d. /BDE UDE = /BDE or ZEDB or ZCDE or ZEDC

Note that sometimes the answer to a union or intersection problem is one of the origi-
nal objects.

Use the following figure to answer problems 1 to 6.

Q
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Uncovering More Definitions

In the sections that follow, I give you roughly ten more definitions of important geometry
terms. You’ll get practice using these terms in this chapter’s problems, and then you’ll use
these terms throughout the rest of the book.

Division in the Ranks: Bisection and Trisection

In this section, you practice something you’ve understood almost since you first rode a bicycle
or tricycle: cutting things in half or in thirds. This geometry is kids’ stuff. Check out the fol-
lowing definitions.

REMEMBER
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3 Segment bisection and midpoint: A point, segment, ray, or line that divides a segment into
two congruent segments bisects the segment. The point of bisection is called the midpoint of
the segment. The midpoint, obviously, cuts the segment in half.

3 Segment trisection: Two things (points, segments, rays, lines, or any combination of these)
that divide a segment into three congruent segments trisect the segment. The points of
trisection are called — get this — the trisection points of the segment.

3 Angle bisection: A ray that cuts an angle into two congruent angles bisects the angle. It's
called the bisector of the angle, or the angle bisector.

¥ Angle trisection: Two rays that divide an angle into three congruent angles trisect the angle.
They're called trisectors of the angle, or angle trisectors.

Q. For the triangle on the right, given that CD C
bisects ZACB:

EXAMPLE

a. Find the measure of ZBCD. b+ 205|304

b. Other than the fact that LZACD = ZBCD, can you
conclude anything else about this figure?

A. Given that CD bisects ZACB:

a. You can find the measure of /BCD in two steps. First, because CD bisects ZACB,
/ACD = /BCD, so you can set them equal to each other and solve for x:

x+20=3x-4
—2x =-24
=12

Now plug 12 into the measure of ZBCD to get your answer:

/BCD=3x-4
=3-12-4
=32°

b. Other than the fact that LZACD = ZBCD, you can conclude nothing else.

Don’t jump to conclusions based on the appearance of figures. For this problem, you
know only that CD bisects an angle (ZACB). You cannot conclude that CD bisects the
base of the triangle, and therefore you don’t know whether D is the midpoint of AB.
You also can’t conclude that AABC has been cut in half. And you can’t say that

AC = BC or that ZA = /B. Finally, you can’t conclude that ~ADC and ~BDC

are right angles.
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On this number line, Q and R trisect PS. What
are the coordinates of Q and R?

P Q R S
-12 30

Given that Z/1=4x, /2=x+9,and £3=5x -7,
is ZSTU trisected?

NP and NQ divide right #MNO into MNP,
Z/PNQ, and ZQNO, whose measures are in the
ratio 4:5: 6. Determine the measure of ZPNO.

Given: BD and BE trisect AC; AD and DE have
lengths as shown.

a. Determine DC (the length of the segment).

b. Can you conclude that £1= £2? That
L1=/3?

3x 5x—14
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Perfect Hilarity for Perpendicularity

REMEMBER

REMEMBER

EXAMPLE

You’re surrounded by perpendicular things: floors are perpendicular to walls, sides of rectan-
gular shapes are perpendicular, the majority of streets that cross are perpendicular, and so on.
In this section, you practice problems involving perpendicular lines (and rays and segments).
I’m also going to give you the definition of parallel. Like perpendicular things, you also see
parallel things every day: a ceiling is parallel to the floor, the top and bottom edges of this book
are parallel, two lines of words on this page are parallel, and so on. I thought I’d give you this
definition now mainly because perpendicular and parallel make a nice pair of geometry terms,
but you won’t use parallel lines till Chapter 6.

Lines, rays, or segments that form a right angle are perpendicular. The symbol for perpendicu-
larity is L. (Note that you say that lines, rays, or segments are perpendicular and that an angle
is a right angle; you do not say that an angle is perpendicular.)

Lines, rays, or segments that run along in the same direction and never cross — like two rail-
road tracks — are parallel. The symbol for parallel is ||. If lines AB and CD are parallel, you’d
write AB |l CD.

Q. In the figure on the right, BA | BC, Z/1= /3, and /2 is three
times as big as /1. Find the measure of /2. A

A. Because the rays are perpendicular, ZABC is a right angle and thus measures 90°. /1
and /3 are equal, so you can set them both equal to x. £2 is three times as big as /1, so
its measure is 3x. Now you have three angles, /1, #2, and £3, whose measures
(x, 3%, and x) must add up to 90. Thus,

x+3x+x=90
5x=90
x=18

Now, plugging 18 into 3x gives you the measure of £2:

3(18)=54°

CHAPTER 2 Points, Segments, Lines, Rays, and Angles 23



a In the following figure:

a. Find ZBFC given that ZDFE measures 25°,
that AE | FC, and that FB 1 FD.

b. What two objects form the sides of Z/BFC?

25°

Q Given that AD | BE, /DGC measures 10°, and
ZBGC is four times as large as ZAGF, find the
measure of Z/FGE.

B
C
A 1
G D
F
E

Given that AF 1 EH, that BG bisects ~FIH, and
that IC and ID trisect ~BIE, find the measure
of ZBID.

In the following figure, RG L RY, RG L GA,
and RY | LN.

a. Name the angles you know are right
angles.

b. Can you conclude that ZANL is a right
angle?

What’s ZGRY nYL?
d. What’s ZGRY NLY?

G N A
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You Complete Me: Complementary
and Supplementary Angles

REMEMBER

EXAMPLE

Here are the definitions of two terms I have a feeling you’ve seen before. For those of you who
(like me) like mnemonic devices, here’s one for these terms. It’s a bit lame, but better than
nothing: In the following definitions, note that the terms are in alphabetical order and the
numbers are in numerical order (“right” and “straight” are also in alphabetical order).

3 Complementary angles: Two angles whose sum is 90° (or a right angle)

3 Supplementary angles: Two angles whose sum is 180° (or a straight angle)

Q. /BQC is complementary to ZCQD
/BQC is supplementary to ZAQE
m/CQD + m/AQE = 200°

Find: ms/BQC

A. set m/BQC equal to x. Then, because Z/BQC and ZCQD are complementary,
m£CQD =90 - x, and, because ZBQC and ZAQE are supplementary,
mZAQE =180 - x. These angles add to 200°. Thus,

(90 —x)+(180-x)=200
—2x=-70
x=35

That’s it. m/BQC = 35°

@ Given:

Find:

£1=25°
£2=90°

/4 is complementary to £/6 2 |3

The measures of angles 3 through 9 /5 9I\8
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The supplement of an angle is 20° greater than twice the angle’s complement. Find the angle’s
measure.

X Marks the Spot: Vertical Angles

Don’t ask me how they came up with the term vertical angles, because these angles have nothing
to do with the ordinary meaning of vertical (you know, as in vertical and horizontal). Go figure.
When two lines cross to make an X, the two angles on opposite sides of the X are called vertical
angles. They’re automatically equal. As you can see, every X has two pairs of vertical angles. If
it had been up to me, I would’ve called them x-angles or cross angles.

« Given: Al=x°+7
@ e 2
2

_ 2 _
EXAMPLE £3=3x"-1 1 3

Find: /2

A. _1and 3 are vertical angles and are thus equal, so
set them equal to each other and solve for x:

3x2-1=x%+7

2x%=8
x2=4
x=%2
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Plug x =2 into the measure of /1:

Z1=x%+7
=247
=11

Figure the measure of £2:

£2=180- /1
=180-11
=169

Ordinarily, you’d now want to plug x = -2 into the measure of /1, repeat the last two
steps, and maybe get a second answer for £2. But in this particular problem, you don’t
have to do that, because regardless of whether x =2 or -2, everything comes out the
same (squaring a negative gives you a positive). In general, however, you have to plug
in each solution for x separately.

Remember: Segments and angles must, of course, have positive lengths or measures. So,
if you plug an x-value into a segment or angle and your answer is zero or negative,
reject that x-value.

Warning: Be careful, however, not to reject x-values simply because they are zero or
negative. The segments and angles, not x, must be positive. There are plenty of prob-
lems in which a negative solution for x gives you a positive answer for a segment or
angle, and vice versa.

Use the figures to answer the following @ Solve for ZAQB and #DQC.

questions.

a. Is this possible?

b. Is this possible?

(-3x) (~4x - 10y

Gy ><(3x - 10y
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Solutions

@ﬁm% = point T
@S_Tuﬁ =7?

Did you have #STP for this one? Nope! That incorrect answer would mean an angle made up
of two rays that go on forever. But this problem involves segments, not rays. Technically, this
union is not an angle. And there is no nice, simple name for this thing. You can’t really write
it any more simply than you see it in the original problem: ST U PT.

@ /RTS nPR = TR

If you trace over /RTS (remembering that it goes out past R forever) and then over PR, you
trace twice over TR, the ray that begins at T and goes out forever past R.

(4) RT TP = TP
@ PS NOR = & (the empty set)
They don’t overlap anywhere.
@ﬁuﬁ = SO or QS or ST or TS or TO or QT
@ You can solve this problem in two steps:
PS is trisected, so determine PS and then divide that by 3:

PS=30-(-12)=42
PS+3=42+3=14

Add 14 to -12 to get Q, and then add 14 more to get R:

-12+14=2-0Q
2+14=16 >R

For ZSTU to be trisected, all three angles must be equal. So first set any two angles equal to
each other and solve for x. (Any two work, but I use /1 and £2.)

m/l=m/2

4x=x+9
3x=9
x=3

Plugging x = 3 into the measure of Z/1 or Z2 determines both of their measures, because you

can assume that they’re congruent:

m/sl=4x
=4.3
=12
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Thus, if /1 and £2 are congruent, they’re both 12°. Finally, check whether /3 is also 12°

when x = 3:
ms£3=5x-17
=5.-3-7
=8

Nope. Thus, ZSTU is not trisected.

The three angles are in the ratio 4:5: 6, so you first set their measures equal to 4x, 5x, and 6x.
Together, the three angles make up a right angle, so set their sum equal to 90° and solve:

4x +5x +6x =90
15x =90
x=6

Use x = 6 to determine the measure of Z/PNO :

m/PNO = m/PNQ + mZQNO
=5x+6x
=11x
=11-6
=66

Of course, you could use x = 6 to determine that ZPNQ is 30° and ZQNO is 36° and then add
them to get 66°.

Check out the answers:

a. Because AC is trisected, AD must equal DE. So set them equal to each other, solve for x,
and then plug the answer in to get AD and DE:

3x=5x-14
2x=-14

x=1

Therefore, AD = 3x =3-7=21. DE is also, of course, 21, and because AC is trisected, EC is
also 21. DC = DE + EC, so DC =42.

b. No, you can’t conclude that /1= /2 or that /1= /3. Despite the fact that we typically
think of rays as angle bisectors or trisectors, the given in this problem is that BD and BE
trisect a segment, AC. This statement tells you only the location of points D and E; it tells
you nothing about how the rays divide up ZABC. ZABC might look trisected, but you can’t
conclude that it is. As it turns out, it’s impossible for ZABC to be trisected given that AC
is trisected. £1 would be congruent to £2 only if AABE were isosceles (which you can’t
conclude). And 1 would be congruent to £3 only if AABC were isosceles (which you also
can’t conclude despite the fact that it looks like it is).
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@ And here’s another fine solution:

a. Because of the given perpendicularity, you know that ZCFE and ZBFD are both 90° angles.
Now, /CFD and /DFF have to add up to 90°, right? So, because /DFE is 25°, /CFD must be
90° - 25°, or 65°. Then, using the same logic, Z/BFC must be 90° - 65°, which is 25°.

b. The sides of ZBFC are rays FB and FC. If you said segment FB, you’re close. Angles go on
forever, and their sides are rays that go on forever. Whether or not you can actually see
the rays in the figure is irrelevant.

Because AD | BE, you know that the measures of both /BGD and ZAGE are 90°. You see that
the measure of Z/BGD = /BGC + #DGC (which is 10°). Thus, ZBGC =90° —10° = 80°. Then,
because ZBGC (80°) is four times as big as ZAGF, ZAGF =20°. Finally, ZFGE =90° - 20°,
which is 70°.

@ The given perpendicularity tells you that the four big angles are each 90°. (This loose,
nontechnical use of “big” may get me pulled over by the math police; don’t try it with your
geometry teacher.) Because IG bisects right ZHIF, ZGIF must be 45°. ZEIF measures 90°, so
add these two up to get 135° for ZEIG. Straight /BIG (another “big” angle — don’t you just
love these geometry puns?) is, of course, 180°, so /BIE must be 180° - 135°, or 45°. Now,
trisect that 45° to get 15° for the three small angles. And finally, two of these 15° angles
make up #ZBID, so /BID measures 30°.

@ Here’s how you do this gnarly problem:

a. The three given pairs of perpendicular segments tell you, by the definition of perpendicu-
lar, that the following are right angles: /R, ZG, ZRLN,and £YLN. Despite the fact that
2Y and £A look like right angles, you can’t conclude that. (But you can conclude that
ZANL and ZGNL are right angles — see part b.)

b. Yes, you can conclude that ZANL is a right angle, though I haven’t covered the necessary
concepts yet. What? Is it against the law for me to challenge you with a problem before
I've presented the relevant ideas? Well, excuse me! Really, though, you probably could’ve
reached this conclusion if you’re familiar with rectangles. Because ZR, ZG, and ZRLN are
right angles, the fourth angle in quadrilateral RGNL, ZGNL, must also be a right angle;
that’s because the angles in a quadrilateral have to add up to 360°. (The official explana-
tion of the sum of angles in a polygon is in Chapter 6.) Because ZGNL is a right angle,
the angle’s supplement, ZANL, must also be a right angle.

c. ZGRY YL = RY
d. ZGRY NLY = LY

@ /1 and /5 are supplementary; /1 is 25°, so £5 is 155°. Then /5 and Z4 work the same way,
so /4 is 25°. Because £2 is 90°, £3 and £4 together have to make up another 90° (because
/2, £3,and £4 add up to a straight angle, or 180°). Thus, because £4 is 25°, /3 is 65°. £4
and £6 are complementary, so £6 is also 65°. Finally, going clockwise around the point to
£7, #8,and /9, each adjacent pair of angles is supplementary, so /7 is 115°, /8 is 65°, and
/9 is 115°.
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Tip: You can often come up with the correct equation for a word problem like this one by
reading through the sentence and translating each word or phrase into its mathematical
equivalent.

For this problem, first let x equal the measure of the angle you’re trying to find. Then,
because you obtain any angle’s complement by subtracting the angle’s measure from 90°
and obtain any angle’s supplement by subtracting the angle’s measure from 180°, the mea-
sure of the complement of the unknown angle is 90 — x, and the measure of its supplement is
180 — x. Now you can do the translation:

The supplement of an angle  is 20 greater than  twice  the angle’s complement.
180 - x = 20+ 2 90 - x

Write this problem like an ordinary equation and solve for x. (But first note that in the
following equation, I move the “20 +” to the end of the equation, where it becomes “+ 20.”
Adding the 20 at the end is more natural. Say you hear someone say, “That’s twenty greater
than one hundred forty-five.” You think 145 + 20, not 20 + 145, right? Either works, of course,
but now consider the expression, “twenty less than one hundred forty-five.” For that, you
have to subtract the 20 from the 145, not the other way around. Being consistent and putting
the 20 at the end is best, regardless of whether you’re adding or subtracting.)

Finish the problem:
180 - x=2(90-x)+20

180 — x =180 —2x + 20
x=20

As Sherlock Holmes says in The Adventure of the Beryl Coronet, “When you have excluded the
impossible, whatever remains, however improbable, must be the truth.” So go on and solve
this problem just like the great detective would:

a. Yes, it’s possible:
-3x=-4x-10
x=-10
Plug x =-10 into the angles, and you see that each angle is 30°.

b. Not possible:

5x=3x-10
2x=-10
x=-5

Plug x = -5 into the angles, and you get negative measures for each angle, which is
impossible.
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Set the vertical angles equal to each other and solve for x:

x?2—6x=10-3x
x2-3x-10=0
(x-5)(x+2)=0

x=5 or x=-2

Now plug each of these two solutions into the original angles. The solution x =5 gives you
negative angles, so you reject x = 5. The solution x = -2 gives you angles of 16°. Because
ZAQB and £DQC are the supplements of these angles, they each equal 164°.
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IN THIS CHAPTER

» Your starter kit of short geometry
proofs

» Looking at the right angle and
vertical angle theorems

» Scoping out the complementary
and supplementary angle
theorems

» Using angle and segment
arithmetic

» Standing in: Substitution and
transitivity

Chapter 3
Your First Geometry
Proofs

n this chapter, you get your first taste of the meat of this course: geometry proofs. Do the
practice problems carefully, and make sure you understand their solutions. Everything in
the subsequent chapters builds on the important proof concepts presented here.

Ready to Try Some Proofs?

Proofs can be quite difficult at first, even the fairly short and straightforward ones in this first
section. If you feel a bit lost at the beginning, don’t sweat it. Go over the example proof and
practice proofs in this section and their solutions as many times as you need for the basic idea
of a proof to sink in. And make sure you understand how the flow of logic works (the “bubble-
and-arrow” logic I show you in the solutions). If you master the logic and method of doing
these first short proofs, you should be able to handle the longer, harder ones later in the book.
(If you get stuck, you can check out Chapter 16 for some tips.)
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REMEMBER

For the proofs in this chapter, you’ll need to use several theorems and definitions. I’ll give you
the theorems as you need them. I gave you the 15 or so definitions you’ll need in Chapter 2,
so you may want to go back and review them. You might also want to go back to Chapter 1
and reread the section, “What’s a Geometry Proof?” Look again at the Fifi the Labradoodle
proof and how the bubble-and-arrow logic works. Lastly, here again is the critically impor-
tant concept about the structure of proofs that appears in that same section of Chapter 1. ’'m
repeating it verbatim. There may be nothing as important as this idea for understanding how
proofs work.

In a two-column proof, the idea or ideas in the if part of each reason must come from the
statement column somewhere above the reason; and the single idea in the then part of the
reason must match the idea in the statement on the same line as the reason.

Proofs Involving Complementary
and Supplementary Angles

34

THEOREMS &
POSTULATES

THEOREMS &
POSTULATES

THEOREMS &
POSTULATES

These short proofs involve the simple ideas of complementary angles (two angles that add up
to 90°) and supplementary angles (two angles that add up to 180°). But before I give you the
complementary and supplementary angle theorems, here are two very simple theorems you’ll
need later in this chapter and for the rest of the book.

All right angles are congruent: If two angles are right angles, then they are congruent (they
have the same number of degrees).

Many geometry theorems are statements of obvious things. You'll see more of them later in
this chapter. But this one about congruent right angles takes the cake in the well-duh category.
(Put this theorem in your back pocket; you’ll use it soon but not in this section.)

Vertical angles are congruent: If two angles are vertical angles, then they are congruent. (I'm
sure you remember vertical angles from Chapter 2: They’re angles across from each other
when two lines cross to form an X.) You’ll use this theorem later in this chapter, but not in this
section.

And now for the complementary and supplementary angle theorems.

Here are four easy theorems about pairs of angles that add up to either 90° or 180°.

3 Complements of the same angle are congruent: If two angles are each complementary
to a third angle, then they're congruent to each other (you have three total angles here).

For example, say you have a 70° angle, ZC. If ZA is complementary to ZC and /B is also
complementary to ZC, then ZA = /B (both have to be 20°, right?). Like so many theorems,
the idea behind this one is a totally well-duh concept.
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3 Complements of congruent angles are congruent: If two angles are complementary to
two other congruent angles, then they're congruent (you're working with four total angles).

For example, if ZB = ZC (say they're both 40°), and £A is complementary to /B and ZD is
complementary to ZC, then ZA = ZD (both have to be 50°).

3 Supplements of the same angle are congruent: If two angles are each supplementary
to a third angle, then they're congruent to each other (three total angles are involved). This
theorem works exactly like the first theorem in this list.

3 Supplements of congruent angles are congruent: If two angles are supplementary to two
other congruent angles, then they're congruent (this theorem uses four total angles). This
theorem works exactly like the second theorem.

either three or four segments or angles. So, when doing a proof, pay attention to whether the
proof diagram involves three or four segments or angles. Doing so can help you select the
TP appropriate theorem.

Q. Given: KkSLSY K R U
YU LUK

EXAMPLE /RST = /TUR

; Three or Four Things? Several theorems (the four preceding and many you’ll see later) involve

Prove: /KSR = £ YUT

S T Y

A. Tip: Before trying to write down the formal statements and reasons in a two-column
proof, it’s often a good idea to think through the proof using your own common sense.
In other words, try to see why the prove statement is true without worrying about how
to prove it or worrying about which theorems to use. When you can see why the prove
statement has to be true, all that remains to be done is to translate your Joe/Jane-six-
pack argument into the formal language of a proof.

For example, in this proof, you might say to yourself, “Can I see why angle KSR should
be congruent to angle YUT?” And you could respond, “Sure. Because the segments

are perpendicular, angles KSY and YUK are 90°, and because angle RST is congruent to
angle TUR (say they’re both 50°), angle KSR has to equal angle YUT (they’d both have
to equal 40°). Bingo.” If you can understand the proof in this commonsense way, then
all you have to do is put formalwear on this casual line of reasoning.
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Statements (or Conclusions)

Reasons (or Justifications)

3) | £KSY is aright £

1) Given.

2) Given.

3) If(segments are perpendicular)

ZYUK is aright £

then(they form right /s

(definition of perpendicular).

4)| ZKSR is complementary to ZRST

ZYUT is complementary to ZTUR |<—

5) (ZRST= ZTUR

6) (LKSR= 2YUT )

4) If(two angles form a right 1,)

—l then(they are complementary)
T

(definition of complementary).

5) Given.

6) If(two /s are complementary)to two

other(congruent /s,

then(they are congruent.

(Because this proof and its diagram involve
four /s, excluding irrelevant /s, you use the

four-/ theorem.)

a Given: 1= /4

36

Prove: £2=/3

Note: For this and all proof problems, you should not assume
that the number of blank lines is the same as the number of

steps needed for the proof.

Statements Reasons
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a Given:

Prove:

Hint: If you get stuck, go to the solution and copy only
Statement 5 and Reason 3 onto this page and then try the

ST 1LSA
SR L SB

ZTSR = ZBSA

proof again.

Statements Reasons

Proofs Involving Adding and Subtracting
Segments and Angles

TIP

You get eight more theorems in this section — all of them based on incredibly simple ideas. But
despite the fact that the ideas are simple, having to memorize all this mumbo-jumbo lingo may
still seem like a pain. If so, I have a tip for you.

Focus on the ideas behind the theorems. Doing so can help you remember how they’re worded.
And here’s another benefit: If you're doing a proof on a quiz or test and you can’t remember
exactly how to write some theorem, you can just write the idea of the theorem in your own
words. If you get the idea right, you may get partial or even full credit, depending on your
teacher’s grading style. (And if you’re just doing the proof for fun — and who wouldn’t? — you
can get through the proof using some of your own words. After you’re done, you can look up
the proper wording of the theorem or theorems you couldn’t remember.)

For example, one of the following theorems is based on the incredibly simple notion that if you
take two sticks of equal length (say 3 inches and 3 inches) and add them end-to-end to two
other equal sticks (say 5 inches and 5 inches), you end up with two equal totals (8 inches and
8 inches, of course). If you understand that idea, you’ve got the theorem in the bag. Adding
equal things to equal things produces equal totals.
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Without further ado, here are four theorems to use when adding line segments or angles (when
writing a proof, students sometimes abbreviate these theorems as “addition”).

THEOREMS &
POSTULATES

¥ Segment addition (three total segments): If a segment is added to two congruent seg-
ments, then the sums are congruent.

3 Angle addition (three total angles): If an angle is added to two congruent angles, then the
sums are congruent.

¥ Segment addition (four total segments): If two congruent segments are added to two
other congruent segments, then the sums are congruent.

3 Angle addition (four total angles): If two congruent angles are added to two other congru-
ent angles, then the sums are congruent.

If you’re subtracting segments or angles, here are four more theorems to choose from (after
you get a handle on these theorems, you may simply write “subtraction”).

THEOREMS &
POSTULATES ))

Segment subtraction (three total segments): If a segment is subtracted from two congru-
ent segments, then the differences are congruent.

3 Angle subtraction (three total angles): If an angle is subtracted from two congruent
angles, then the differences are congruent.

¥ Segment subtraction (four total segments): If two congruent segments are subtracted
from two other congruent segments, then the differences are congruent.

3 Angle subtraction (four total angles): If two congruent angles are subtracted from two
other congruent angles, then the differences are congruent.

Here are a couple huge tips that you can use when working on any proof. You can see them in
action in the first example in this section.

TIP
3 Use every given. You have to do something with every given in a proof. So, if you're not

sure how to do a proof, don't give up until you've at least asked yourself, “Why did they give
me this given? And why did they give me that given?” If you then write down what follows
from each given (even if you don't know how that information can help you), you might see
how to proceed. You may have a geometry teacher (or mathematician friend) who likes to
throw you the occasional curveball, but in every geometry text that | know, the authors don't
give you irrelevant givens. And that means that every given is a built-in hint.

3 Work backwards. Thinking about how a proof will end — what the last and second-to-last
lines will look like — is often very helpful. In some proofs, you may be able to work back-
wards from the final statement to the second-to-last statement and then to the third-to-last
statement and maybe even to the fourth-to-last. Doing proofs this way is a little like doing
one of those mazes you see in a newspaper or magazine. You can begin by working on a
path from the Start point. Then, if you get stuck, you can work on a path from the Finish
point, taking that as far as you can. And then you can go back to where you left off and try
to connect the ends of the two paths.
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Q. Given:  Iis the midpoint of RN G R I N D

EXAMPLE

R and N trisect GD
Prove: I is the midpoint of GD

Use every given. In this example proof, pretend that you have no idea how to begin. Just
do something with the two givens. Ask yourself why someone would tell you about a
midpoint. Well, because that tells you that you have two congruent segments, of course.
And why would someone give you the trisection points? Because that given tells you
that you have three congruent segments (though you use only two of them).

Statements Reasons

1) Iis the midpoint of RN 1) Given.

2) Rand N trisect GD 2) Given.

3) RIzIN 3) If a point is the midpoint of a segment, then it divides it
into two congruent segments.

4) GR = ND 4) If two points trisect a segment, then they divide it into
three congruent segments.

5) GI = ID 5) If two congruent segments are added to two other
congruent segments, then the sums are congruent.

6) /is the midpoint of GD 6) If a point divides a segment into two congruent segments,
then it is the midpoint of the segment (reverse of definition
of midpoint).

Okay, here’s where working backwards can help: Say you can figure out lines 3 and 4

in the preceding proof but aren’t sure where to go next. No worries. Jump to the end of
the proof. You know the final statement has to be the prove statement (I is the midpoint
of GD). Now ask yourself what you’d need to know to draw that conclusion. Well, to
conclude that a point is a midpoint, you need a segment that’s been cut into two con-
gruent segments, right? So, you don’t have to be a mathematical genius to see that the
second-to-last statement has to be GI = ID.

After you see that point, all you have to do is figure out why that would be true. So, you

then go back to where you left off (line 4), and hopefully you then see that you can add
two pairs of congruent segments to get G/ = ID.
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e Given: ZGBU = £/SBM

Prove: /GBM = /SBU

Statements Reasons
e Given: R is the midpoint of BS B U R N S
U and N trisect BS

Prove: R is the midpoint of UN

Hint: If you have a hard time with this one, take Statements 4 and 6 and Reason 3 from the solutions
section and copy them here. But don’t do this unless you absolutely have to.

Statements Reasons
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o Given: QY bisects £ZZOX z W Y J X

LZQW = £XQJ

Prove: QY bisects ZWQJ

Hint: Don’t forget to use all the givens in your proof (you might
want to make them your first two steps). If you’re really stumped,

go to the solution and copy just the if part of Reason 3 onto Q
this page.
Statement Reason

e You can do the following proof in four different ways,
using four different sets of theorems. Don’t write out
four two-column proofs (unless you feel like it). Just
write your game plans for the four alternatives. Hint:
Two of the versions use vertical angles, two use ZACT
instead, two use angle subtraction, and two use comple-
mentary angles.

Given: CA LGH

CT L NI

Prove: = /NCA = £/HCT (paragraph proof)
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Proofs Involving Multiplying and Dividing
Angles and Segments

The preceding section lets you work on addition and subtraction of segments and angles.
Now you graduate to multiplication and division of segments and angles. The two new theo-

rems in this section can be a bit tricky to use correctly, so study these proofs carefully and heed
the tips.

¥ Like Multiples: If two segments (or angles) are congruent, then their like multiples are
congruent. This statement just means that if you have, say, two congruent segments, then
3 times one segment equals 3 times the other, or 4 times one equals 4 times the other —

THEOREMS & another well-duh idea.
POSTULATES

¥ Like Divisions: If two segments (or angles) are congruent, then their like divisions are
congruent. All this statement tells you is that if you have, say, two congruent angles, then
1/2 of one equals 1/2 the other, or 1/3 of one equals 1/3 of the other.

(or something else that amounts to the same thing), then there’s a pretty good chance that

Do you see something twice? If the givens in a proof mention midpoint, bisect, or trisect twice
you’ll want to use the Like Multiples Theorem or the Like Divisions Theorem in the proof.

TIP

Notice that this tip applies to both example problems and the three practice problems.

Q. Given:  AC=VX
A B C/ ])/4 E

EXAMPLE AB=VW

CX and DY trisect both BE and WZ

Prove: BE=WZ

v W/X/YZ

A. GamePlan: Say AC and VX both had a length of 10, and AB and VW were both 6. Then,
obviously, BC and WX would both be 4. Then, since BE and WZ are both trisected, each
would have a length of 3 -4, or 12. That’s all there is to this proof. And here’s how you write
out this simple argument in the formal way:
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EXAMPLE

Statements Reasons

1) AC =VX 1) Given.
2) AB=VW 2) Given.
3) BC=WX 3) If two congruent segments are subtracted

from two other congruent segments, then the
differences are congruent (segment subtraction;
four-segment version).

4) CX and DY trisect both BC and WZ 4) Given.

5) BE =WZ 5) If segments are congruent, then their like multiples
are congruent.

When, like in the proof here, you go from a statement about small things (like BC and
WX) to a statement about big things (like BE and WZ), use the Like Multiples Theorem.

It can be very helpful to make up lengths of segments (or sizes of angles) like I just did
in the game plan of this example proof. Look back to where I said, “Say AC and VX both
had a length of 10, and AB and VW were both 6.” You don’t know the lengths of those
four segments, but making up their lengths like this will often help you see the logic of
the proof. After making up sizes of things, you can see how the proof works by doing
some simple arithmetic (like I did when I determined that BC and WX would both be 4
and that, therefore, BE and WZ would both be 3-4, or 12). When you use this strategy,
you can make up lengths for segments (and sizes for angles) that are listed in the giv-
ens and sometimes for unnamed segments and angles. But DO NOT make up lengths
for segments and sizes for angles listed in the prove statement. (Note that in the game
plan for this example proof, I ended up concluding that BE and WZ were both 12, but that
was the result of the simple arithmetic I did. I did not start by making up their lengths.)

Given: L1=/2 R
QU bisects ZRQS
ST bisects ZRSQ p N
Prove: ZRQU = Z/RST ] 9
Q S
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A. GamePlan: Okay. You have /1 equal to /2 (say they’re both 120°). Their supplements
would then have to be equal (they’d both be 60°). Each of those is bisected, so ZRQU
and ZRST would both be 30°. Piece of cake.

Statements Reasons

1) L1=22 1) Given.

2) ZRQS is supplementary to £1 2) If two angles form a straight angle (assumed from
diagram), then they are supplementary (reverse of

ZRSQ s supplementary to £2 definition of supplementary).

3) ZRQS = ZRSQ 3) If two angles are supplementary to two other congru-
ent angles, then they are congruent (supplements of
congruent angles) (Statements 1 and 2).

4) QU bisects ZRQS 4) Given.
5) ST bisects ZRSQ 5) Given.
6) ZLRQU = ZRST 6) If angles are congruent, then their like divisions are

congruent (Like Divisions) (Statements 3, 4, and 5).

When, like in this last proof, you go from a statement about big things (Z/RQS and
ZRSQ) to a statement about small things (like /RQU and ZRST), you use the Like
Divisions Theorem.

When you’re new to proofs, it’s easy to get confused about when to use the definitions
of midpoint, bisect, or trisect and when to use the Like Divisions Theorem. So, take
heed: Use the definitions when you want to show that two or three parts of the same
TIP segment or same angle are equal to each other. Use Like Divisions, in contrast, when
you want to show that a part of one segment (or angle) is equal to a part of a different
segment (or angle).

@ Given: NO L NI N 0
NO 1 OE
L= /2
NI bisects ZDNG
OE bisects ZTOG

Prove: ZDNG = £LTOG

Hint: Want a little help? Check out Statements 1, 2, and 3 on
the solution page.
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Statements Reasons

e Given: SD=UE g M U D G E

M is the midpoint of SU
G is the midpoint of DE
Prove: SM = GE

Statements Reasons
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o Given: EALED

VW LVZ

EB and EC trisect ZAED

D
C
o B E v
VX and VY trisect ZWVZ Y
A

Prove: /AEV = /WVE Z

Hint: If this problem seems a bit tough, copy only
Statement 9 and Reason 9 from the solution and
try to work backwards from there.

Statements Reasons

Proofs Involving the Transitive and
Substitution Properties

46

used the idea of transitivity in this way: If a=b and b=c, then a=c; or if a > b and b > c, then
a > c. Transitivity works the same in geometry: You use it like with those algebra examples but
teorems & t0 Show congruence instead of equality (you almost never, however, use the inequality version).
POSTULATES - And you’ve certainly used substitution in algebra — like if x =2y -5 and 4x - 3y =10, you can
switch the x with the 2y — 5 (because they’re equal, of course) and write 4(2y — 5) - 3y =10. This
property works the same in geometry: When two objects are congruent, you can switch ’em.

‘ The transitive and substitution properties should be familiar to you from algebra. You may have

¥ Transitive Property (for three segments or angles): If two segments (or angles) are each
congruent to a third segment (or angle), then they're congruent to each other. For example,
if ZA= /B and /B = ZC,then LA= ZC (£A and ZC are each congruent to ZB, so they're
congruent to each other).
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¥ Transitive Property (for four segments or angles): If two segments (or angles) are
congruent to congruent segments (or angles), then they're congruent to each other. For
example, if AB = C_D, CD= E_F, and EF = G_H, then AB = GH. (A_B and GH are congruent to
the congruent segments CD and EF, so they're congruent to each other.)

3 Substitution Property: If two geometric objects (segments, angles, triangles, and so on) are
congruent and you have a statement involving one of them, you can pull the switcheroo and
replace the one with the other. For example, if ZA = /B and ZB is supplementary to ZC,
then £A is supplementary to ZC.

You use the Transitive Property as the reason when the statement says things are congruent;
you use the Substitution Property for the reason when the statement says anything else.

And one more thing: You’ll be less likely to mix up substitution with other theorems if you note
that like with transitivity, other theorems (addition, subtraction, complements and supple-

ments of congruent angles, and so on) go with statements about congruent things; substitu-
tion does not.

Q. Given:  /2=/3

Prove: /1= /3

/ N

A. Here’s how this one unfolds:

Statements Reasons

1) £2=/3 1) Given.

2) L1=/2 2) Vertical angles are congruent.

3) £L1=/3 3) If two angles are each congruent to a third angle, then they are
congruent to each other (Transitive Property).

Did it occur to you that you could use substitution instead of transitivity for Reason 3?
That’s correct — sort of. You could use substitution in Step 3 because you can essen-
tially put «3 where /2 is. The switch works this way because transitivity is a special
case of substitution. However, you probably want to use the property as I do (rebels
excepted), because that’s probably what your geometry teacher and mathematician
buddies want. (For info on how to keep the properties straight, see the preceding tips in
this section.)
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Q. Given: /2=/3

EXAMPLE Prove: /1 is supplementary to £3
2 3
/ : \
A. The proof, dear reader:
Statements Reasons

1) Zlis supplementaryto #2 | 1) If two angles form a straight angle (assumed from diagram),
then they are supplementary.

2) L2=/3 2) Given.
3) /1is supplementary to £3 | 3) Substitution (putting £3 where /2 was).

@ Given: AC bisects ZBAD /
: Z1=/3 2

Statements Reasons

a Given:  MB bisects ZAMC
MC bisects /BMD

Prove: /4= /6

Hint: If you get stuck, copy Statements 1 and 3 and Reason 5 from the
solution page and then take it from the top.
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Statements Reasons
g Given: TO LGO
T
Prove: /I is complementary to £2
2 3
/ 0 G
Statements Reasons
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Solutions

@ Statements (or Conclusions) Reasons (or Justifications)
1) /1= ,4 1) Given.
2) /LIS is a straight angle 2) Assumed from diagram.
ZASI is a straight angle (The vast majority of reasons you'll use in proofs will come

from your handy lists of definitions, theorems, postulates,
and properties. This is one of the few odd exceptions.
Some geometry teachers let you skip this step and go
right to Step 3.)

3) £2is supplementary to £1 3) If two angles form a straight angle, then they are supple-

mentary (definition of supplementary).
/3 is supplementary to Z4 v PP Y)

4) £2=/3 4) If two angles are supplementary to two other congruent angles,
then they are congruent.

@ Statements (or Conclusions) Reasons (or Justifications)
1) ST LSA 1) Given.
2) SR L SB 2) Given.
3) £TSAis aright angle 3) If two rays are perpendicular, then they form a right angle.

(If you understand the if-then rule for reasons that | explain
in Chapter 1, then this reason just about writes itself. The if
part of this reason must come from a statement above it,
namely Statement 1 or 2. The only fact in those statements
concerns perpendicularity. So basically, this reason has to
begin with “If perpendicular”. And the only thing that can
follow “If perpendicular,” is “then right angle.”)

4) ZBSR is aright angle 4) Same as Reason 3.

5) £TSR is complementary to ZRSA | 5) If two angles form a right angle, then they are

/BSAis complementary to ZRSA complementary (definition of complementary).

6) £TSR = /BSA 6) If two angles are each complementary to a third angle, then
they are congruent to each other. (This proof and its diagram
involve three angles, so you use the three-angle theorem.)

Reasons

@ Statements

1) £GBU = £SBM 1) Given.

2) /GBM = £/SBU 2) If an angle (£UBM) is added to two congruent angles (£GBU and £SBM), then

the sums are congruent (addition of angles; three-angle version).

This proof brings me to my next tip:

If the angles (or segments) in the prove statement are larger than the given angles
(or segments), the proof may call for one of the addition theorems.

TIP
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@ Statements Reasons

Q

TIP

1) Ris the midpoint of BS 1) Given.

2) Uand N trisect BS 2) Given.

3) BR=RS 3) A midpoint divides a segment into two congruent segments
(definition of midpoint).

4) BU = NS 4) Trisection points divide a segment into three congruent segments
(definition of trisection).

5) UR = RN 5) If two congruent segments are subtracted from two other
congruent segments, then the differences are congruent
(subtraction of segments; four-segment version).

6) R is the midpoint of UN 6) If a point divides a segment into two congruent segments, then it's the
midpoint of the segment (reverse of definition of midpoint).

Note that in contrast to the preceding problem, in this proof, the things you’re trying to
prove something about (UR and RN) are smaller than the things in the given (BR and RS
are sort of in the given).

If the segments (or angles) in the prove statement are smaller than the ones in the given, one
of the subtraction theorems may be the ticket.

@ Statements ‘ Reasons

1) QY bisects ZZQX 1) Given.
2) LZQW = £XQJ 2) Given.
3) LZQY = £XQY 3) If aray bisects an angle, then it divides it into two congruent angles

(definition of bisect).

4) LWQY = £JQY 4) If two congruent angles are subtracted from two other congruent
angles, then the differences are congruent (subtraction of angles;
four-angle version).

5) QY bisects ZWQJ 5) If a ray divides an angle into two congruent angles, then the ray bisects
the angle (reverse of definition of bisect).

@ All four game plans use, of course, the two right angles.

Game Plan 1: You have the two congruent vertical angles. One is the complement of ZNCA;
the other is the complement of ZHCT. Therefore, you finish with the complements of con-
gruent angles theorem. (Assuming each statement contains only a single fact, this method
takes eight steps. Try it.)

Game Plan 2: This method is the same as Game Plan 1 except that you subtract the congruent
vertical angles from the congruent right angles. The final reason is, therefore, the four-angle
version of angle subtraction. (This strategy takes seven steps. Give it a go.)

Game Plan 3: Use ZACT. Z/NCA and ZHCT are both complements of ZACT. You’re done,
because complements of the same angle are congruent. (This method also takes seven steps.
Go for it.)
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Game Plan 4: This time, you just subtract ZACT from the two congruent right angles. The
final reason is the three-angle version of angle subtraction. (The winner! — only six steps.)

Game Plan: You have the right angles and /1= /2 (say they’re both 70°). So, their comple-
ments (£ING and ZEOG) would both measure 20°. Then because of the bisections, the angles
you’re trying to prove equal to each other would both be 2 - 20, or 40°. That’s it.

Statements ‘ Reasons
1)N_OJ_171 1) Given.
NO L OF
2) ZINO is aright angle 2) Definition of perpendicular (Statement 1).

ZEON is aright angle

3) L1= /2 3) Given.

4) ZING is complementary to /1 4) Definition of complementary angles (Statement 2).

ZEOG is complementary to £2

5) ZING = ZEOG 5) Complements of congruent angles are congruent
(Statements 3 and 4).
6) NI bisects ZDNG 6) Given.
OF bisects /TOG
7) £DNG = ZTOG 7) If angles are congruent (£ING and ZEOG), then their like

multiples are congruent (Statements 5 and 6).

Game Plan: SD equals UE (say they’re both 10). If UD is 2, then both SU and DE would be 8.
Then the midpoints cut each of those in half, so that makes SM and GE both 4. Bingo.

Statements ‘ Reasons
1) SD = UE 1) Given.
2) SU = DE 2) If a segment is subtracted from two congruent segments, then

the differences are congruent (segment subtraction; three-seg-
ment version) (Statement 1 and diagram).

3) M is the midpoint of SU 3) Given.
4) G is the midpoint of DE 4) Given.
5) SM =GE 5) If segments are congruent (@ and ﬁ), then their like

divisions are congruent (half of one equals half of the other)
(Statements 2, 3, and 4).
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Game Plan: You have the two 90° angles. Each is trisected, so all the small angles measure 30°.
Because /BEA and ZXVW measure 30°, ZAEV and ZWVE each have to be 150°. Sweet.

Statements Reasons
1) EALED 1) Given.
2) VW LVZ 2) Given.

3) ZAED is aright angle
ZWVZ is a right angle

3) Definition of perpendicular (1, 2).

4) LAED = /WVZ 4) All right angles are congruent (3).

5) EB and EC trisect ZAED 5) Given.

6) VX and VY trisect ZWVZ 6) Given.

7) LAEB = ZWVX 7) If angles are congruent (the two right angles), then their

like divisions are congruent (a third of one equals a third
of the other) (4, 5, 6).

8) LAEV is supplementary to LAEB
ZWVE is supplementary to ZWVX

8) If two angles form a straight angle (assumed from dia-
gram), then they are supplementary (definition of
supplementary).

9) LAEV = /ZWVE

9) Supplements of congruent angles are congruent (7, 8).

Statements Reasons

1) AC bisects ZBAD 1) Given.

2) L2=/3 2) Definition of bisect.

3) L1=./2 3) Vertical angles are congruent.
4) L1=/3 4) Transitive Property.

Game Plan: Think backwards — how can you get /4 = Z/6? Well, £4 and /3 are congruent
vertical angles, as are £6 and /1. Thus, if you can get £1= /3, you have it. The two bisectors
make /1= /2 and £2 = /3. Thus, £1 = /3 by the Transitive Property. Bingo.

Statements Reasons

1) MB bisects ZAMC 1) Given.

2) L1=./2 2) Definition of bisect.

3) MC bisects ZBMD 3) Given.

4) /2=/3 4) Definition of bisect.

5) £2=/3 5) Transitive Property (for three angles).

6) L1= /6 6) Vertical angles are congruent.

7) £3= /4 7) Vertical angles are congruent.

8) L4=,6 8) Transitive Property (for four angles). If angles (4 and 6) are congruent
to congruent angles (1 and 3), then they (4 and 6) are congruent to
each other.
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PART 1

Statements

1) TO L GO

Reasons

1) Given.

)
2) £ZTOG is aright angle
3) £3is complementary to £2

)
2) Definition of perpendicular.
3) Definition of complementary.

4) /1= .3

4) Vertical angles are congruent.

5) £1is complementary to £2

5) Angle substitution.



Triangles, Proof
and Non-Proof
Problems



IN THIS PART . ..

Start off your love affair with triangles by working out
non-proof problems that cover concepts such as area,
altitudes, medians, angle bisectors, perpendicular
bisectors, the Pythagorean Theorem, families of right
triangles, and more.

Get lots of practice proving that triangles are congruent
and then using CPCTC (Congruent Parts of Congruent
Triangles are Congruent).



IN THIS CHAPTER

» Naming triangles by their sides
and angles

» Measuring area and height

» Finding a triangle’s center of
balance

» Spotting the “centers” of
attention: Orthocenter, incenter,
and circumcenter

» Checking out the Pythagorean
Theorem

» Identifying triangles whose sides
are whole numbers (and their kin)

» Looking at 45° — 45° — 90° and
30°-60°—90° triangles

Chapter4

Triangle Fundamentals
and Other Cool Stuff
(No Proofs)

here’s no upper limit to how many sides a polygon can have, but the lower limit is

three — and that makes the triangle sort of a special shape. And for some reason, the

number three seems to have a certain universal appeal: the Three Stooges, the Three
Wise Men, three blind mice, Goldilocks and the three bears, Three Dog Night, three strikes
and you’re out, and so on. So, I give you the triangles: three angles, three sides, three medians,
three altitudes, three angle bisectors, three perpendicular bisectors, and three “centers” (plus
the centroid).
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Triangle Types and Triangle Basics
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Six basic terms describe different types of triangles. Here’s a great way to remember them:
A triangle has three sides and three angles. Well, three of the following terms are about sides,
and three are about angles.

Every triangle belongs to one of these three categories about sides.

REMEMBER 33 Scalene: A scalene triangle has no equal sides.

¥ Isosceles: An isosceles triangle has at least two equal sides. The two equal sides are called
legs; the third side is the base. The two angles touching the base, called base angles, are
equal. The angle between the two legs is the vertex angle.

¥ Equilateral: An equilateral triangle has three equal sides (thus, every equilateral triangle
is also isosceles). Note that an equilateral triangle is also equiangular because it has three
equal angles (each is 60°). For polygons with four or more sides, the distinction between
equilateral and equiangular is important. Not so for triangles, because both terms refer to
the very same triangle.

Every triangle also belongs to one of these three groups concerning angles.

REMEMBER 3% Acute: An acute triangle has three acute angles (angles less than 90°, of course).

¥ Right: A right triangle has one right angle and two acute angles (the two short sides
touching the right angle are the /egs; the longest side across from the right angle is
called the hypotenuse).

3 Obtuse: An obtuse triangle has a single obtuse angle (more than 90°); the other two
angles are acute. And here’s one more thing about the angles in a triangle that you may
already know:

The sum of the measures of the three angles in a triangle is always 180°.

THEOREMS & . . .
rostuLates  Whenever possible, don’t just memorize math formulas, concepts, and so on as raw facts that

can only be learned by rote. Instead, look for some reason why they’re true or find a connec-

@ tion between the new idea and something you already know. For instance, to remember the

sum of the angles in a triangle, picture the triangle you get when you cut a square in half along

TIP its diagonal: You can easily see that the three angles of such a triangle are 45°, 45°, and 90° —
which add up to 180°.
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EXAMPLE

Classify this triangle as scalene, isosceles, or
equilateral.

25 10x — x2
Hint: Don’t forget that the sides of a triangle can’t be
negative or zero (or imaginary, like v-10) and that
each pair of sides of a triangle must add up to more
than the third side. 75— 5x

This problem isn’t simple. Here’s how your argument should go: The triangle is scalene
unless at least two of the sides are equal. So, try the three different pairs of sides and
see what happens if you set them equal to each other.
25=75-5x
5x =50
x =10

No good: Plugging x =10 into 10x — x” gives you a side with a length of zero. Next, if

75 —5x =10x — x?2
x2-15x+75=0

Now solve for x with the quadratic formula. “What?” you say. “You expect me to
remember the quadratic formula?” Yeah, sure, I know this is a geometry book, but I
don’t think reviewing some algebra as important as the quadratic formula will kill you.
Do you have your helmet on?

ax?+bx+c=0

e —b+b% - 4ac

2a

15+4(-15)" —4(1)(75)
N 2

15+ /225-300
=22 EBo

_15+775
DR

No good. A negative under the square root means you have no real solutions. Finally, if

25=10x — x*
x2-10x+25=0
(x-5)(x-5)=0

x=5

Plugging 5 into the third side (75 — 5x) gives you 75 -5 - 5, or 50, so when x =5, you
might think the three sides could be 25, 25, and 50. “But wait!” you should say.
“No triangle can have sides of 25, 25, and 50!”
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Remember: Any two sides of a triangle must add up to more than the third side. Think
about it this way: If you walk, say, from vertex A to vertex B in a triangle, the trip has to
be shorter if you walk straight along AB than if you go out of your way and walk along

the two other sides.

So, back to the problem. Setting the three pairs of sides equal to each other doesn’t work,
so none of the sides are equal. Therefore, the triangle is scalene. And that’s a wrap.

e Classify these triangles as scalene, isosceles, or equilateral. a)

b)
x+1 X+2
x
If AISO is isosceles and its perimeter is more than 10, which side is the S
base, and how long are the three sides?
2x 4x -4
I 3x-5 (0]

The angles of a triangle are in the ratio of 4:5:6. Is it an acute, right, or obtuse triangle? Is it scalene,

isosceles, or equilateral?

Classify the following triangles as acute, a)
obtuse, or right.

140°

25°

130°,
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e Are the following statements true always, sometimes, or never?

P AP T B

)
h

= @

An equilateral triangle is isosceles.

An isosceles triangle is equilateral.

A right triangle is isosceles.

If two of the angles in a triangle are 70° and 55°, the triangle is isosceles.
The base angles of an obtuse isosceles triangle are each 40°.

The base angles of an acute isosceles triangle are each 40°.

Two of the angles in an obtuse triangle are supplementary (add up to 180°).

Two of the angles in an acute triangle are complementary (add up to 90°).

Altitudes, Area, and the Super Hero Formula

REMEMBER

TIP

In this section, I cover some concepts that you’ve probably known for a long time, like how to
find the area or the height of a triangle. But you will find here some other ideas that I bet you
don’t know, like why Hero is a real geometry superhero (and that there’s a second way to find
a triangle’s area).

First, take a look at the formula for the area of triangle:

1 .
Area, = Ebase - height
Area, of course, is usually measured in some kind of units?, like square feet, square meters, or
square centimeters.

A triangle’s height is the distance from its peak straight down. The height, or altitude, of a
triangle is just what you’d expect it to be — you know, its height. Think of altitude this way:
If you have an actual, physical triangle — say, cut out of cardboard — and you stand it up on a
table, its height or altitude is the distance from its peak straight down to the table. Check out
the two triangles in Figure 4-1.
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FIGURE 4-1:
An altitude
inside a

triangle and

62

outside a
triangle.

O

REMEMBER

©

REMEMBER

©

REMEMBER

a) b)

You can stand a triangle up three different ways depending on which side you put flat on the
table, so every triangle has three separate altitudes. Depending on which type of triangle you
have, the altitudes can have the same or different lengths.

¥ Scalene triangles: The three altitudes have different lengths.
¥ Isosceles triangles: Two of the altitudes have the same length.

¥ Equilateral triangles: All three altitudes have the same length.

Also, as you can see in Figure 4-1b, sometimes an altitude is outside the triangle. This situa-
tion occurs when the triangle is obtuse. Two of the three altitudes in every obtuse triangle are
outside the triangle; the third altitude is inside the triangle. And for every right triangle, the
two legs are also altitudes, and the third altitude is inside the triangle. All three altitudes of an
acute triangle are inside the triangle.

Alternate triangle area formula. The most common way of figuring a triangle’s area is by plug-
ging the triangle’s base and height into the regular area formula. But if all you know are the
triangle’s three sides, you can use the following nifty alternate formula attributed to Hero of
Alexandria (who lived from 10 to 70 AD — or CE if you prefer).

Area, =/S(S-a)(S-b)(S-c)

In this formula, g, b, and ¢ are the length of the triangle’s sides, and S is the triangle’s
a+b+ c)

semiperimeter (half the perimeter: .S = 5
And here’s one more triangle area formula for you:

s’\3
4

The area of an equilateral triangle with side s is
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Q. Given: AB=10 C

EXAMPLE

D is the midpoint of AB
M is the midpoint of CD M
AB 1 CD

ABDM is isosceles

Find: Area of AACM A D B

To use the ordinary area formula, you need a base and a height of AACM. A base and its
corresponding height are always perpendicular, so the 90° angle at D is the place to look.
Take this book and rotate it 90° clockwise. Now, picture AACM standing up on a table,
where the tabletop runs along CD. Side CM is on the table, so that’s the base. And the
height goes from the peak (A) straight down to the table at D, so the height is AD. To
use the area formula, you need the lengths of CM and AD.

AB =10 and D is the midpoint of AB, so AD =5. One down, one to go. ABDM is isosceles,
so two of its sides are equal. It’s also a right triangle with hypotenuse MB, so the two
equal sides have to be DM and DB (the hypotenuse is always longer than the legs). DB
equals AD, which is 5, so DB is 5; thus, so is DM. Because M is the midpoint of CD, CM

is 5 as well. So, the base and height are both 5.

Now just use the formula:

Area oy = % base - height

1
_5.5.5
=125

The area is 12.5 units?.

Recalling that some altitudes may be outside the triangle (like in Figure 4-1b shown earlier in the
chapter), draw in the three altitudes of the following triangle.
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o Figure the area of the big triangle in four different ways.

»—Alm
wio

Compute the area of rectangle ABDE and then the areas of AACE, AAGE, and AAPE. What two conclu-
sions can you draw about these areas?

B C D G P
10
________ []
A F E
—6—A

Il
(=)

e Given: MT

Find: NS
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Balancing Things Out with Medians
and Centroids

Because triangles aren’t as symmetrical as, say, circles or rectangles (except for the equilateral
triangle), they don’t have an obvious center point like circles and rectangles do. In this and the
next section, you look at four different “centers” that every triangle has. Of the four, the cen-
troid is probably the best candidate for a triangle’s true center.

know about medians but were afraid to ask.

@ A triangle’s medians point the way to its centroid. Here’s everything you’ve always wanted to

REMEMBER

»
»

»

5

EXAMPLE

Median: A median of a triangle is a segment joining a vertex (corner point) with the midpoint
of the opposite side. Every triangle has three medians.

Centroid: The three medians of a triangle intersect at a single point called the centroid. (The
centroid is the triangle’s center of gravity, or balance point.)

Position of centroid on median: Along every median, the distance from the vertex to the
centroid is twice as long as the distance from the centroid to the midpoint.

Given ABSF with medians BH, SU, and FA and S
centroid L

If FL is 12, what’s FA?

p

b. If BH is 12, what’s HL? A H
c. If SLis 12, what’s UL?

d. If the area of ABSF is 20 units?, what’s the area
of ABSU? U

The centroid, L, cuts each median into a % part and a % part. Notice that it’s obvious
from the figure which is the short part and which is the long part. (Try measuring the

parts with your fingers.)

a. FLis % of FA, so if FL is 12, FA=18.
b. HLis % of BH, so if BH is 12, HL = 4.

c. A centroid is twice as far from a vertex as it is from the midpoint of the opposite side,
so SL is twice as long as UL. SL =12, so UL =6.

d. ABSF and ABSU have the same altitude (it goes from point S straight down to BF,
hitting BF somewhere between U and F). SU is a median, so U is the midpoint
of BF. Thus, BU, the base of ABSU, is half as long as BF, the base of ABSF. Therefore,
because their altitudes are the same, and because ABSU has a base that’s half of the
base of ABSF, the area of ABSU must be half of the area of ABSF. The answer is
10 units?.
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Draw in the medians of AABC. Do they appear @ NT and HO are medians of ANRH. If the area
to bisect the vertex angles? of ANOH is 13, what’s the area of ANRT?

B R

Locating Three More “Centers” of a Triangle

The orthocenter, incenter, and circumcenter are three points associated with every triangle.
Don’t be fooled by the term “center,” though. You can see in a minute why they’re called
centers, but it’s not because these points are near the center of the triangle.

@ Here’s a brief description of each “center.”

REMEMBER 3% Orthocenter: Where a triangle’s three altitudes intersect.

¥ Incenter: Where a triangle’s three angle bisectors intersect; it's the center of a circle inscribed
in (drawn inside) the triangle.

¥ Circumcenter: Where the three perpendicular bisectors of the sides intersect; it's the center
of a circle circumscribed about (drawn around) the triangle.
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Well, I guess you only get to see why the incenter and the circumcenter are called centers. I
don’t know why the orthocenter is called a center, but two out of three ain’t bad.

If you sketch a few differently shaped triangles, you can see that there isn’t always an obvious
place where you’d say the center is, like there would be with, for example, a rectangle. I think
a triangle’s centroid is the best choice for a triangle’s center — better than the so-called “cen-
ters” just mentioned. Here’s why: The centroid is the triangle’s center of gravity, and it always
seems to be near what common sense would say is the center.

Location of the centroid and the three “centers.” Of the three “centers” described in this

section, two of them (the orthocenter and circumcenter) are sometimes outside of the triangle.

The third one (the incenter) is sometimes way at one end of the triangle. Here’s the lowdown
rememser  fOT the three “centers” plus the centroid:

¥ For all types of triangles, the centroid and incenter are inside the triangle.
¥ In an acute triangle, the orthocenter and circumcenter are inside the triangle as well.
¥ In aright triangle, the orthocenter and circumcenter are on the triangle.

3 In an obtuse triangle, the orthocenter and circumcenter are outside the triangle.

Here’s a mnemonic device to help you keep the four “centers” straight. It’s admittedly not one
of my better mnemonics, but it’ll probably work just fine, and it’s certainly better than nothing.

First, pair up the four “centers” with the lines, rays, or segments that intersect:
TIP

¥ Centroid — Medians
¥ Circumcenter — Perpendicular bisectors
¥ Incenter — Angle bisectors

¥ Orthocenter — Altitudes

Notice that the two terms on the left that begin with consonants pair up with terms on the right
that begin with consonants. Ditto for the terms that begin with vowels. The only two terms that
contain double vowels (oi and ia) are paired up. And the two terms with two t’s (orthocenter and
altitude) go together. Easy, right?
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EXAMPLE

A.

In the following triangles, identify all marked centroids, orthocenters, incenters, and
circumcenters. Try this exercise on your own before reading the solution.

a) b)
W% M
O ] M I E
Y (0]
: N — — 1
H N A T D S

In AHWA, the tick marks tell you that M, N, and O are midpoints; therefore, HM, WN,

and AO are medians. Y is thus the centroid. The right-angle marks at the midpoints tell
you that OMand NM are perpendicular bisectors of sides HW and HA. They cross at M,
so M is the triangle’s circumcenter. (Note that you don’t need the third perpendicular
bisector; you know that all three intersect at the same point, so any two can show you
where the circumcenter is.) Finally, (this one’s a bit tricky), you identify point H as the
orthocenter. Missing this point is easy because H is part of the triangle. But you can see
that HW and HA are altitudes of AHWA (the two legs of a right triangle are always alti-
tudes), and because HW and HA intersect at H, H has to be the orthocenter. The incenter
of AHWA does not appear on this figure.

Points E, D, and I in ATMS are marked as midpoints, and thus, 7E, MD, and SI are
medians. They cross at O, so O is the centroid. The right angle marks on the figure and
the tick marks on the angles tell you that TE, MD, and SI are also altitudes and angle
bisectors and perpendicular bisectors. So, yup, point O is all four points wrapped up
into one: the centroid, the orthocenter, the incenter, and the circumcenter. By the way,
this overlap happens only in an equilateral triangle. In fact, the four points are always
four distinct points except when they all come together in an equilateral triangle.

For AIAE, the two circles should make this a no-brainer. Point O, the center of the
inscribed circle, is, by definition, the incenter. And point X, the center of the circum-
scribed circle, is, by definition, the circumcenter. Neither the orthocenter nor the cen-
troid of AIAE appears on this figure.
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Pick and choose: Identify the centroid, the
orthocenter, the incenter, and the circumcen-
ter in AXYZ. This figure is drawn to scale.

Y

Pick and choose: Identify the centroid, the
orthocenter, the incenter, and the circumcen-
ter in AABC. This figure is drawn to scale.

.Y

Pick and choose: Identify the centroid, the
orthocenter, the incenter, and the circumcen-
ter in ASTU. This figure is drawn to scale.

T

What does the fact that Y and R are outside the
triangle tell you (this is the same figure as in
problem 13)?
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For the following triangle, locate (approximately) and draw in its centroid, orthocenter, incenter, and
circumcenter. Hint for problems 16 to 19: Just sketch two medians to find the centroid, two perpendicu-
lar bisectors to find the circumcenter, and so on.

For the following triangle, locate (approximately) and draw in its centroid, orthocenter, incenter, and
circumcenter.

1 }
For the following triangle, locate (approxi- @ For the following triangle, locate (approxi-
mately) and draw in its centroid, orthocenter, mately) and draw in its centroid, orthocenter,
incenter, and circumcenter. incenter, and circumcenter.

70
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The Pythagorean Theorem

THEOREMS &
POSTULATES

FIGURE 4-2:
Nine little
squares plus
16 little
squares equals
25 little
squares.
Pythagoras,
Pyschmagoras—
what's all the
fuss about?

Drum roll, please. Ladieeeees and gentlemen, in the center ring, for your enjoyment and
amazement, all the way from Samos, Greece, from over 2600 years ago, I bring you . . . the
Pythagorean Theorem! Pretty thrilling, eh?

The Pythagorean Theorem is certainly one of the most famous theorems in all of mathemat-
ics. Mathematicians and lay people alike have studied it for centuries. People have proved it in
many different ways. Even President James Garfield was credited with a new, original proof.
Well, here you go. As the Scarecrow in The Wizard of Oz tried to say after he got his Doctor of
Thinkology diploma (a “Th.D.”) to prove he had brains. . .

The Pythagorean Theorem: The sum of the squares of the legs of a right triangle is equal to the
square of the hypotenuse.

(Actually, the Scarecrow misstated it as, “The sum of the square roots of any two sides of an
isosceles triangle is equal to the square root of the remaining side.”)

Figure 4-2 contains the well-known 3 -4 -5 triangle to visually show you the meaning of the
Pythagorean Theorem.

25
5 3 )
4 ]
az+br=c2
324 42-5
16 9+16=25
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Q. Calculate the length of the unknown sides in  a) B b)
the triangles to the right. v

EXAMPLE X 7 13
: y
A 8 C X 12 Z

A. MBC:?+b*=¢?

72 +82=x2

49 + 64 = x?

113=x"
x=+/113
~10.6

AXYZ: a® + b? =c?

122 + y? =137

144 + y* =169

y2=25
y=5

Find the length of the unknown side in the
following triangle. If the answer is irrational,
give your answer in exact, radical (square
root) form and in decimal form rounded to
two decimal places.

Find the length of the unknown side in the
following triangle. If the answer is irrational,
give your answer in exact, radical (square
root) form and in decimal form rounded to
two decimal places.

y
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Find the length of the unknown side in the
following triangle. If the answer is irrational,
give your answer in exact, radical (square
root) form and in decimal form rounded to
two decimal places.

10 11

Find the length of the unknown side in the
following triangle. If the answer is irrational,
give your answer in exact, radical (square
root) form and in decimal form rounded to
two decimal places.

@ Find the length of the unknown side in the
following triangle. If the answer is irrational,
give your answer in exact, radical (square
root) form and in decimal form rounded to

two decimal places.
p
11

@ Find the length of the unknown side in the

following triangle. If the answer is irrational,
give your answer in exact, radical (square
root) form and in decimal form rounded to
two decimal places.

e

20
60
@ Find x @ Find PS, SR, PR, and the area of APQR.
1 1 Q
1
1
) 15 13
* 12
1
3 S R
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Answer the following questions using this @ Find the area of AMOJ without using Hero’s

figure:

A
a. Express AC (the length of AC) in terms of p
and q.
b. Express AB in terms of g and r.

c. Express BC in terms of p and r.

formula.

r C

Solving Pythagorean Triple Triangles

74

REMEMBER

If you pick any old numbers for two of the sides of a right triangle, the third side usually ends
up being irrational — you know, the square root of something. For example, if the legs are 5

and 8, the hypotenuse ends up being /5% + 8% =89 ~ 9.43398... (the decimal goes on forever
without repeating). And if you pick whole numbers for the hypotenuse and one of the legs, the
other leg usually winds up being the square root of something.

When this doesn’t happen — namely, when all three sides are whole numbers — you’ve got a
Pythagorean triple.

Pythagorean triple: A Pythagorean triple (like 3—4 —5) is a set of three whole numbers that work
in the Pythagorean Theorem (a” + b® = ¢*) and can thus be used for the three sides of a right
triangle.

In this section, you study the four smallest Pythagorean triple triangles: the 3 -4 -5 triangle;
the 5—12-13 triangle; the 7—24 — 25 triangle; and the 8 —15-17 triangle. But infinitely more of
them exist. If you're interested, one simple way to find more of them is to take any odd number,
say 11, and square it — that’s 121. The two consecutive numbers that add up to 121 (60 and 61)
give you the two other numbers (to go with the 11). So, another Pythagorean triple is11-60—61.
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EXAMPLE

A family of right triangles is associated with each Pythagorean triple. For example, the 5:12:13
family consists of the 5-12-13 triangle and all other triangles of the same shape that you’d
get by shrinking or blowing up the 5-12-13 triangle. If you shrink it 100 times, you get a
5/100-12/100-13/100 triangle. Or you can quadruple each side and get a 20 — 48 — 52 triangle
or multiply each side by V17 to get a 5v17 —12v17 1317 triangle.

A.

Find the lengths of the unknown sides in the following triangles by looking for triangle
families. (Don’t use the Pythagorean Theorem.)

26 75 q
p
0\
24 4
100
60 s 95
r 3

For the p triangle, you want to first notice that 26 is twice 13. That should ring
the 5:12:13 bell. Then you check that 24 is twice 12, which, of course, it is. Thus,
you have a 5-12-13 triangle blown up to twice its size; therefore, p is 2 - 5, or 10.

For the g triangle, you recognize the triangle family if you get rid of that pesky decimal.
You can do that by multiplying the 7.5 and the 4 by 2, which gives you 15 and 8.
Bingo — you have an 8 —15-17 triangle shrunk in half. So, g is half of 17, or 8.5.

For the r triangle, first divide the 60 and 100 by 10 — that’s 6 and 10. This should ring
the 3:4:5 bell. Doubling 3, 4, and 5 gives you 6, 8, and 10, and then multiplying by 10
gives you 60, 80, and 100, so r is 80.

Finally, for the s triangle, multiply the 3 and the 9/5 by the denominator, 5, to get

15 and 9. Then reduce these terms by dividing each by 3: That gives you 5 and 3, and,
voila, you have a triangle in the 3:4:5 family. One neat way to find s is to now take the 4
(because the two given sides became the 5 and 3) and reverse the process: multiply

by 3 (that’s 12) and then divide by 5: s is 12/5.
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Without using the Pythagorean Theorem,
find the length of the unknown side in the
following triangle.

24
51

Without using the Pythagorean Theorem,
find the length of the unknown side in the
following triangle.

0.13 0.12

76

Without using the Pythagorean Theorem,
find the length of the unknown side in the
following triangle.

35

28
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Without using the Pythagorean Theorem,
find the length of the unknown side in the
following triangle.

24

45



Without using the Pythagorean Theorem, @ Without using the Pythagorean Theorem,

find the length of the unknown side in the find the length of the unknown side in the
following triangle. following triangle.
e V18 f 28
V50 10

@ Find q, b, ¢, and d. @ Find x.

CHAPTER 4 Triangle Fundamentals and Other Cool Stuff (No Proofs)

77



Unique Degrees: Two Special Right Triangles

rig

78

REMEMBER

FIGURE 4-3:
Two special
ht triangles.

WARNING

TIP

The Pythagorean triple families of triangles you find in the last section are nice to know because
they come up in so many right triangle problems. But mathematically speaking, the two right
triangles in this section — the 45°-45°-90° triangle and the 30°-60°—-90° triangle — are
really more important. The first is exactly half of a square, and the second is exactly half of an
equilateral triangle, and this connection to those elemental shapes makes the two special right
triangles ubiquitous in the geometry landscape. Check these triangles out in Figure 4-3:

¥ The 45° - 45° - 90° triangle has angles of 45°, 45°, and 90° (duh) and sides in the ratio of

1:1:+2. This triangle is the shape of half a square, cut along its diagonal.

3 The 30° - 60° - 90° triangle has angles of 30°, 60°, and 90° and sides in the ratio of
1:+/3 : 2. This triangle is the shape of half an equilateral triangle cut down the middle
along its altitude.

a) b)

X\IE 450 . 2X 600

45° 30°
X x3

The 45°-45°-90° and 30°-60°-90° triangles are very important in trigonometry and to a
lesser extent in calculus. Get to know them forwards, backwards, upside-down, and sideways.

Don’t mix up the 2x and the xv3. When you use the Pythagorean Theorem, you often end up
with a hypotenuse with a square root in it. Because of this, students often mix up the 2x and
the x~/3 for the 30°—60° —90° triangle and put the x+/3 on the hypotenuse. You can avoid this
mistake if you remember that 3 is less than 2 (think for a few seconds and figure out why it
has to be less than 2); because the hypotenuse is always the longest side of a right triangle, the
2x has to go on the hypotenuse.

Whenever you sketch a 30° — 60° — 90° triangle, make sure you make the long leg much longer
than the short leg (it doesn’t hurt to even exaggerate the relationship a bit). That way, it’ll be
obvious to you that the short leg touches the 60° angle and that the long leg touches the 30°
angle. If you instead get a bit sloppy and draw a 30°—60°—90° triangle so that the legs look
about equal, it’s easy to get mixed up and connect the legs to the wrong angles.
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EXAMPLE

Find the lengths of the unknown sides in B Q
ACBA and AWQX.
8
] ]
C 5 A W X

You have two ways to solve these problems that really amount to the same thing. First,
you can use the ratio of the sides of the 45° —45°—90° triangle from Figure 4-3:

leg : leg : hypotenuse
X ox x2

In ACBA, one of the legs is 5, so x is 5. Now just plug 5 into x: x: x~2 and you have the
three sides: 5, 5, and 5v2.

In AWQX, the hypotenuse is 8, so you set xv2 equal to 8 and solve for x:

x\2 =8

8 82
F-3 o2

X =

So, the three sides are 4v2, 4+2, and 8.

I prefer the following method: Just think of the 45° —45° —90° triangle as the v2 triangle
(or “root 2 triangle”). Now, if you know the length of a leg and you want the length of
the hypotenuse (a longer thing), you multiply by ~2. And if you know the hypotenuse and
want to figure a leg (a shorter thing), you divide by ~2. That’s all there is to it.

Find the area of an equilateral triangle whose @ Find the area of a square whose diagonal has a

sides are 10.

length of 10.
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Solutions

The two tick marks in triangle a tell you that those two sides are equal and, thus, the triangle
is isosceles. It looks equilateral, but you can’t assume that.

Triangle b must be scalene, because no matter what x is, x and x + 1 and x + 2 will always be
three different lengths. Don’t be fooled by the fact that the triangle looks isosceles.

@ Because ALSOis isosceles, at least two of the sides must be equal. First try IS = SO :
2x=4x -4
—2x=-4
x=2
Plugging x =2 into the three sides gives you sides of 4, 4, and 1; that’s not a large enough
total because the perimeter is supposed to be more than 10. Try SO = /O :
4x-4=3x-5
x=-1
No good. This setup gives you three sides of negative length.
The third pair better work, because that’s the only thing left to try:
10=1S
3x-5=2x
x=5

Plugging x =5 into the three sides gives you sides of length 10, 10, and 16. Bingo. The base,
SO0, is 16 and the legs, IO and IS, are both 10.

The angles are in the ratio of 4:5: 6, so set the angles equal to 4x, 5x, and 6x. The angles in a
triangle add up to 180°, so

4x +5x +6x =180
15x =180
x=12
Plugging x =12 into 4x, 5x, and 6x gives you three acute angles, 48°, 60°, 72°, so it’s an acute

triangle. And because the triangle has three unequal angles, it must have three unequal sides
as well. So, it’s scalene.

For the first triangle, the supplement of the 140° angle is 40°, and the vertical angle across
from the 50° angle is, of course, also 50°. So far, you have a 40° angle and a 50° angle. The
third angle has to give you a total of 180°, so the third angle is 90°: You have a right triangle.

Did you think the second triangle was obtuse? Good try, but look again. This isn’t any type of
triangle — not in our universe anyway — because the angles don’t add up to 180°.
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@ Here are the answers.
a. Always: An equilateral triangle is isosceles by definition.
b. Sometimes: An isosceles triangle is equilateral only when its base is congruent to its legs.

c. Sometimes: A right triangle is isosceles when its legs are congruent (in other words, when
it’s a 45°—45°-90° triangle — see the section, “Unique Degrees: Two Special Right
Triangles,” in this chapter).

d. Always: 70° plus 55° is 125°. The third angle must bring the total to 180°, so it’s another 55°
angle, and therefore, the triangle is isosceles.

e. Sometimes: If the vertex angle of an obtuse isosceles triangle is 100°, its base angles will
both be 40°, so the answer has to be at least sometimes. But the answer isn’t always,
because the vertex angle of an obtuse isosceles triangle can have any measure greater than
90° and less than 180°.

f. Never: 40° plus 40° is 80°, so the third angle must be 100°, which makes the triangle obtuse.

g. Never: A triangle can never have two supplementary angles, because they would add up to
180° and there’d be nothing left for the third angle.

h. Never: If two of the angles in a triangle are complementary, they add up to 90°, and that
leaves 90° for the third angle, because all three angles have to total 180°. Thus, the triangle
must be a right triangle.

@ Your answer should look roughly like this:

You may want to spin this figure around to make the dotted lines horizontal (like a tabletop)
and the altitudes going straight up from the table. That’s a good way to picture altitudes and
to see where they should go.

@ The area equals 30 square units:

Area, = % base - height

1 60
_E.lg.ﬁ
=30

Now, if you instead use the 12 as the base, the altitude is 5:

AreaA=%12-5

=30
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If 5 is the base, the height is 12:

AreaA:%S-IZ
=30

Finally, use Hero’s formula:

_5+12+13
==

Area, =/S(S-a)(S-b)(S-¢)
=15(15-5)(15-12)(15-13)
=15 (10)(3)(2)
=~/900
=30
The area of rectangle ABDE is, of course, 6 - 10, or 60 units®. The area of AACE is % -6-10, or

30 units?. AAGE and AAPE both have the same base as AACE (namely E), and, like AACE,
they both have a height of 10 (the vertical distance between the two dotted lines). Thus, the
areas of the three triangles are the same.

S 15

You can draw these two conclusions:

® The area of a triangle is half of the area of a rectangle with that same base and height.
(Do you see why this has to be true? Hint: Look at triangles ACF and CAB and triangles
ECF and EDC.)

® If triangles have the same segment for their bases and their heights are the same, then
their areas are equal. Consider this: Imagine that sides AP and EP are made of elastic,
and you grab point P and pull it to the right along the dotted line. You could pull it out
1000 miles or more and the area of AAPE would still be only 30 units?.

@ For this one, you have to use the area formula twice:

AreaAzéb-h

1
=586
=24

Now, because NS is the altitude drawn to base MQ, you can figure NS by using the area for-
mula backwards:

Area, :%~b~h
24=%~7~h
48="7-h

-4
So,NSzg.
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Here’s what your figure should look like:

A

A C

Be careful with this one. Many people take a quick look at the medians and say that it does
look like they bisect the vertex angles. I hope you didn’t jump to that conclusion. If you look
carefully, you can see that although ZABC looks like it might be cut in half, the medians
from A and C don’t even come close to bisecting their angles. (ZACD in the figure looks like
it’s somewhere around a 70° angle. But Z/DCB, on the other hand, looks more like a 45° angle.)

It turns out that /B isn’t bisected either, though it’s pretty close. Only the median to the
base of an isosceles triangle bisects the vertex angle (and therefore, all three medians of an
equilateral triangle bisect the vertex angles).

@ At first, you may feel that you’ve got nothing to go on to solve this problem. You may be
thinking, “How can I get the area of ANRT when I don’t know anything about it?”

Well, the logic here is quite similar to the reasoning in part d of the example problem.
Because HO is a median, O is a midpoint, and thus NR is twice as long as HO. Now spin the
triangle so that NR becomes the base. You can see that ANRH and ANOH have the same
height. Because the base of ANRH is twice as long as the base of ANOH, the area of ANRH is
twice the area of ANOH — so the area of ANRH is 26 units®.

With the same reasoning — this time spinning the triangle so that RH is the base — you can
conclude that the area of ANRT is half the area of the whole triangle. So, like ANOH, the area
of ANRT is 13 units®.

@ In AXYZ, if you very roughly sketch the perpendicular bisector of XY or ZY, you can see that
it crosses T and doesn’t even come close to A, K, or E. So, T has to be the circumcenter.

If you sketch the median from Y straight down the middle of the triangle, it passes through
all four points. Recalling that the centroid is at the 1/3 point of each median, you can see that
point A has to be the centroid. (K and E are nowhere near 1/3 of the way up the median.)

Next, sketch an altitude from, say, angle X perpendicular to YZ. This segment passes through
point E (or close to E, depending on how good your sketching skills are), so E has to be the
orthocenter. And if that doesn’t convince you, K can’t possibly be the orthocenter, because if
you draw a line through angle X and point K and that crosses over YZ, it’s easy to see that
they’re not perpendicular and that, therefore, K is not on an altitude.

Now that you’ve found the first three points, you have no other choice for K — it has to be
the incenter.

CHAPTER 4 Triangle Fundamentals and Other Cool Stuff (No Proofs) 83




@ Here, I skip the lengthy explanation for AABC (and ASTU in the next problem) because the
method for identifying the four points is the same as for AXYZ in the preceding problem. You
just sketch a median or two, an altitude or two, and so on until, by process of elimination,
you’ve made your picks. Here you go: Y is the orthocenter, O is the incenter, U is the centroid,
and R is the circumcenter.

@ Pick ’em: P is the circumcenter, I is the centroid, C is the incenter, and K is the orthocenter.

You can conclude that AABC is an obtuse triangle. Remember that the orthocenter and the
circumcenter are outside the triangle in obtuse triangles.

Your solution should look something like this:

CC

] CcC
]
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Your solution should look something like this:

CC

Your solution should look something like this:

CcC

OrC

You use, of course, a® + b? = ¢” for all six triangles in problems 20 to 25.

x?+6% =82
x%+36=64
x2=28
x =28 =27 = 5.298

2=75
y =75 =543 ~ 8.66
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@ Take a look at the answer for the r triangle:

10% +r? =112

100 +r% =121
r?=21
r=+21~458

@ Check out the answer for this triangle:

524+5%=232
50 =z2
z=~50 =5v2 ~7.07

@ Here’s the solution for the p triangle:

112 + 602 = p?
121 + 3600 = p?
3721=p?
p=61

@ And here’s the last one:
12 +20% = ¢*
1+400=q?
g =~401 ~20.02

This is sort of a domino-effect or chain-reaction problem. You can label the hypotenuses (or
is it hypoteni, like hippopotami?) from left to right as h,, h,, h,, h,, and x. Now the problem’s a
walk in the park:

B2 =12+1 h?=12+3" x2=12+5"
hy =2 =1+3 x =6 ~2.45
nr=12+y3'  h=VA=2
—1+2 h? =1% 422
hy =3 =1+4
hy=~5
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@ Here are your answers:
PS?+122 =152 SR? +122 =132 PR=PS + SR

PS? +144 =225 SR? +144 =169 =9+5
PS2 =81 SR2=25 PR =14
PS=9 SR=5
1 .
Area ,por :ibasehelght
1
=514-12
= 84 units?

You know a? + b? = ¢% therefore,

a. AC*=p*+q°
AC =p*+q*

b. AB? +¢*=r?
AB?=r*-¢q*
AB=r? - q2
c. p2+BC?*=r?
BC2=r2_ p2
BC =r®-p*
Label the altitude h and let EJ equal x; ME is 21 — x. Then use the Pythagorean Theorem
for both triangles and solve the system of two equations with two unknowns.
AMOE : h? +(21-x)*=17?
h? + 441 - 42x + x* = 289
h* + x* - 42x =-152
AJOE: h*+x*=10°
h? + x? =100

Now subtract the second equation from the first:

h% +x?—42x =-152
—(h*+x%=100)

—42x =-252
e -252
42

x=6
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Next, plug x =6 into the equation for AJOE to get h:

h%+6%2=100
h® =64
h=8

Finally, finish with the area formula:

Area 0 = %bh

1
—5-21~8

= 84 units?

For the a triangle, reduce the 24 : 51 ratio — you know, just like reducing a fraction. Dividing
each number by 3, the ratio reduces to 8:17, so you have a triangle in the 8:15:17 family.
The a is the missing 15 side, and because the triangle is an 8 —15—17 triangle blown up

3 times, a is 3-15, or 45.

The b triangle should be a no-brainer, because you have a 12 (namely 0.12) and a 13
(namely 0.13) staring you in the face. You know b is thus 0.05, and the triangle is, of course,
a 5-12-13 triangle shrunk down 100 times.

Do the c triangle just like the a triangle in problem 30. Reducing 28 : 35 by 7 gives you 4: 5.
Bingo: It’s a 3:4:5 triangle. You find that c is the missing 3 side. Blowing the side back up
7 times gives you 21 for c.

The d triangle is also just like the a triangle from problem 30. For the d triangle, the greatest
common factor of 24 and 45 is 3. Reducing by 3 gives you 8 and 15, so the triangle’s in the
8:15:17 family. You determine that d is 17 times 3, or 51.

@ I give you two ways to solve the e triangle. The first method involves simplifying the radicals:

VI8 =9-2=9v2=3v2 and
V50 =+/25-2 =252 =52

The 3+2 and 5v2 tell you that you have a 3 -4 -5 triangle blown up 2 times. The missing
side, e, is thus 4+/2.

The second method is to take your calculator, enter @ and hit Enter or =. You get an answer

50
of 0.6. Then “fraction” that, and you get 3/5: Voila, your triangle is a 3:4:5 triangle. Now
enter @ to find the blow-up multiplier — it’s about 1.41. Your approximate answer is

4 times 1.41, or 5.64. (For problems with square roots, this second method can give you only
an approximate answer unless you have a super-duper calculator, like the TI-Nspire.)

Just use the calculator trick for the f triangle. Enter 2.8 + 10 and hit Enter. That gives you 0.28.
“Fraction” that and you get 7/25. Bingo. It’s a 7: 24 : 25 triangle. Dividing 25 by 10 gives you a
shrink factor of 2.5. Finally, f equals 24 divided by 2.5, which is 9.6.

I suspect you figured out that you’ve got to solve for d first, then ¢, and so on. You know d is,
of course, 12. Then that 12 and the 9 are two legs of a 3—-4 -5 triangle blown up 3 times.
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Thus, c is 15; b is then 8, of course. Finally, that 8 and the 6 are two legs of another triangle
in the 3:4:5 family, so a is 10.

The 10 and the 24 are a 5 and a 12 doubled, so that should ring a bell — the 5:12:13 bell. But
don’t answer the bell! In a 5:12:13 triangle, the 13 represents the hypotenuse, but in this tri-
angle, the 24 (which corresponds to the 12) is the hypotenuse. So, this triangle doesn’t
belong to any of the Pythagorean triple families. You have to solve this triangle with the
Pythagorean Theorem:

10% + x? =242
100 + x* =576
x%? =476
x =476 ~21.82

Another tricky question. Did you conclude that ¢ equals 5 ? This is not a 3:4:5 triangle,
which you can check on your calculator. The ratio of the two legs in a 3:4:5 triangle is 3/4,

or 0.75. But if you do ﬁ on your calculator, you get something different (0.866), which

N/
shows that this triangle is not in the 3:4: 5 family. Solve with the Pythagorean Theorem:

2 =B+ V&?
c*=3+4
c?=7

c=V7

Draw your equilateral triangle with its altitude like this:

You have the base, so all you need to compute the area is the height. Half of an equilateral
triangle is a 30° - 60° - 90° triangle, and you can see that h is the long leg. The short leg is 5;
multiply that by V3 to get h; h is 5v3. Finish with the area formula:

1
2
1
5
=25+/3 units?

Area =—=bh

10-5v3
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PART 2

You can also, of course, solve this problem with the formula for the area of an equilateral tri-
2

angle from the section about altitudes and area (A = #). But it’s not a bad idea to know

the preceding method using the 30°—60°-90° triangle because it’s useful in its own right.

Plus, this method can really come in handy in case you forget the formula.

Half a square cut along its diagonal is a 45° —45° —90° triangle. The square’s diagonal is the
hypotenuse of the 45° —45°—90° triangle. That’s 10, so you divide 10 by v2 to get the sides
of the square — ﬂ The area of a square is, of course, s2, so this square has an area of

) V2
(%) = % =50 units?.



IN THIS CHAPTER

» Using sides and angles to prove
triangles congruent

» Noting that, naturally, congruent
triangles have congruent parts

» Trying out the isosceles triangle
theorems: If sides, then angles
(and vice versa)

» Working with the equidistance
theorems: Forget CPCTC!

Chapter 5
Proofs Involving
Congruent Triangles

n this chapter, you dive into proofs in a big way. The triangle proofs you do in this and

subsequent chapters are real, full-fledged proofs. The proofs in Chapter 3 are basically just

warm-up exercises for the longer proofs you do from here on. However, I don’t want to
diminish the importance of the Chapter 3 material. In fact, Chapter 3 is where you practice
using the important theorems and proof techniques that you need for longer proofs, so it’s
critical that you understand that material before you continue. If you understand Chapter 3,
the proofs in this and later chapters probably won’t cause you too much trouble (perhaps just
the occasional brain hemorrhage).

Sizing Up Three Ways to Prove
Triangles Congruent

In a proof, the point at which you prove triangles congruent is sort of like the climax in a novel:
Everything builds up to it, and it’s the focus or main point or anchor of the proof. Some of
the shorter proofs in this chapter end with proving triangles congruent. In longer, more typi-
cal proofs, you take things to the next level: You prove triangles congruent and then use that
knowledge to prove other things. So, proving triangles congruent can be either the final goal of
a proof or a stepping stone.
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always check the proof diagram and find all pairs of triangles that look like they have the
same shape and size. If you find any, you very likely will have to prove one (or more) of the

TP pairs of triangles congruent. And if you can see how to do that, you’ve probably won at least
half the battle.

Look for congruent triangles: Proving triangles congruent is critical, and thus you should

Okay. So here are the first three of five ways of proving two triangles congruent. (I cover the
other two ways in the aptly titled section, “Two More Ways to Prove Triangles Congruent,”
later in the chapter. I don’t give you all five at once because I don’t want you to blow a geometry

tHeorems & fuse from theorem overload.) You’re going to use the five triangle theorems all the time.
POSTULATES

¥ SSS (Side-Side-Side): If the three sides of one triangle are congruent to the three sides of
another triangle, then the triangles are congruent.

¥ SAS (Side-Angle-Side): If two sides and the included angle of one triangle are congruent to
two sides and the included angle of another triangle, then the triangles are congruent. (The
included angle is the mathematician’s fancy-pants way of saying “the angle between them.")

3 ASA (Angle-Side-Angle): If two angles and the included side of one triangle are congruent
to two angles and the included side of another triangle, then the triangles are congruent.

And here’s one more postulate that comes in handy when trying to prove triangles congruent
(this wins first prize in the well-duh category).

Reflexive Property: Any segment or angle is congruent to itself. Amazing!

THEOREMS &
POSTULATES

B
Q. Given:  AABC is isosceles with base AC and
median BM
EXAMPLE
Prove: AABM = ACBM
A. A M C

Statements Reasons

1) AABC is isosceles with base AC 1) Given.

2) AB=CB 2) Definition of isosceles triangle.

3) BM is a median 3) Given.

4) M is the midpoint of AC 4) Definition of median.

5) AM =CM 5) Definition of midpoint.

6) BM = BM 6) Reflexive Property.

7) AABM = ACBM 7) SSS (2,5, 6).
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EXAMPLE

Q. Given:

EXAMPLE

Note that after SSS in the final step, I indicate the three lines from the statement column
where the three pairs of sides are shown to be congruent. Doing so is optional, but it’s a
good idea, because it can help you avoid some careless mistakes. Remember: The three
lines you list must show three congruencies of segments or angles (three pairs of con-
gruent segments in the current problem).

Given: B and C trisect AD
L= /2
ABCE is isosceles with base BC
Prove: AABE = ADCE
E
Statements Reasons
1) B and C trisect AD 1) Given.

2) AB=DC 2) If a segment is trisected, then it is divided into three
congruent segments (definition of trisect).
3) L1z /2 3) Given.

4) ZABE is supplementary to /1
ZDCE is supplementary to £2

4) If two angles form a straight angle (assumed from
diagram), then they are supplementary.

5) ZABE = Z/DCE

5) If two angles are congruent, then their supplements are
congruent.

6) ABCE is isosceles with base BC

6) Given.

7) BE =CE 7) Definition of isosceles triangle.
8) AABE = ADCE 8) SAS (2,5, 7).
PS is an altitude of AQPT P
PS bisects ZRPT 1/, | \d
PR bisects ZQPS
PT bisects ZUPS
Prove: AQPS = AUPS Q R S T U

Game plan: PS is an altitude, so it’s perpendicular to the base, and the perpendicularity
gives you congruent right angles PSQ and PSU — one congruence down, two to go. The
two triangles share PS — two down, one to go.
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So far, you have a pair of congruent angles and a pair of congruent sides, and all the
rest of the givens concern the angles near P, so this is almost certainly an ASA problem.
All that’s left is to show that ZQPS is congruent to ZUPS. Because of the first bisection,
/2= /3 (say they’re each 20°). Finally, because of the other two bisections, ZQPS is
twice as big as £2 and ZUPS is twice £3, so ZQPS has to be congruent to ZUPS (they’d
both be 40°). Seems simple, huh?

Statements Reasons

1) PS is an altitude of AQPT 1) Given.

2) PS 1 QT 2) Definition of altitude.

3) ZPSQis a right angle ZPSU is a 3) Definition of perpendicular.
right angle

4) /PSQ = £PSU 4) All right angles are congruent.

Four steps probably seem like a lot just to arrive at these two congruent right angles, because as
soon as you see an altitude of a triangle, you know you've got two congruent angles. But that's the
way proofs work. You have to put down every link in the chain of logic — even incredibly obvious
ones. (Like Step 2, for example: You can't just jump from Step 1 to Step 3 even though Step 3 is
obvious when you know Step 1.) Every little step must be spelled out — sort of like if you had to
make the logic understandable to a computer. And here’s how a computer “thinks":

If Altitude then Perpendicular
If Perpendicular then Right angles
If Right angles then Congruent

Inshort, A—>P; P—>R; R— C.You need this complete chain of logic. Like it or not, those are the
rules of the game. And if you're going to play the proof game, you've got to play by the rules.

5) PS=PS 5) Reflexive Property. (Well, that was easy.)
6) PS bisects ZRPT 6) Given.

7) ZRPS = /TPS 7) Definition of bisect.

8) PR bisects ZQPS 8) Given.

PR bisects ZUPS

9) ZQPS = £UPS 9) If two angles are congruent (ZRPS and £TPS), then
their like multiples are congruent (£QPS is double
Z/RPS and ZUPS is double ZTPS).

10) AQPS = AUPS 10) ASA (4,5, 9).
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e Given:  AE is an altitude and a median A
Prove: ALEA = AMEA
L E M
Statements Reasons
e Given: SQ bisects PT P
Ll=/2 1
Prove: APQR = ATSR R
S
Statements Reasons
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e Given:  ATAG is isosceles with base 7G
TH =GN
Prove: ATAN = AGAH
Hint: If this proof has you flummoxed or flabbergasted, try adding just

Statements 5 and 6 from the solution.

Statements Reasons

e Given:  ZAMN is complementary to /TAX
/ATX is complementary to ZMAN
A is the midpoint of TM

Prove:  ATAX = AMAN T

Statements Reasons
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@ Given: AIML and ADRO are isosceles with bases /L and DO M
A is the midpoint of IM
E is the midpoint of LM

R is the midpoint of AO and ED

ID=10

Prove: AIAO = ALED

Hint: If you get stuck, copy just Statement 4 and Reason 4 from the solution and try again. If you still
need a boost, you can copy Statement 8 and Reason 8 as well.

Statements Reasons

Corresponding Parts of Congruent
Triangles Are Congruent

Contrary to popular belief, CPCTC does not stand for Cows Pull Carts To Ching; it’s the acronym
for Corresponding Parts of Congruent Triangles are Congruent.

@ CPCTC: If two triangles are congruent, then their corresponding parts are congruent.

rememser  Here’s how you use CPCTC. In a proof, whenever you prove two triangles congruent, you’ll use
CPCTC on the very next line as the justification for stating that two sides or two angles (of the
two triangles) are congruent. Every triangle has six parts: three sides and three angles. You
need to use three out of the six parts when you prove two triangles congruent with SSS, SAS, or
ASA (see the preceding section for more on these methods of showing congruency). Therefore,
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there are always three other pairs of sides or angles that you haven’t used yet, and you’ll use
CPCTC to show that one of those pairs is congruent.

This group of two consecutive lines makes up the core or heart of many, many proofs. Here’s

In proofs, you often prove two triangles congruent and then use CPCTC on the following line.
what the two lines might look like:

TIP
Statements Reasons
7) AABC = ADEF 7) SAS.
8) BC =~ EF 8) CPCTC.

In Chapter 2, I tell you to make sure you use every given. Thinking about how to use the givens
is essential at the beginning of a proof. Then I give you a tip about working backwards from
the end of a proof. Both are great strategies for solving proofs. The preceding tip about using
CPCTC right after showing triangles to be congruent is sort of about working at the middle of a
proof. The key to many proofs is a pair of lines like those two lines 7 and 8. If you attack proofs
like this at their beginning, middle, and end, even the longest, gnarliest proofs won’t stand a
chance.

For the upcoming CPCTC example proof, the diagram and the givens are identical to those from
the first example in the section, “Sizing Up Three Ways to Prove Triangles Congruent.” Only
the prove statement is different.

Q. Given: AdBCis isosceles with base AC and B
median BM

EXAMPLE

Prove:  BM bisects ZABC
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A. This proof is not particularly long or difficult, but — especially if you haven’t seen the

similar problem in the previous section — it may look just a bit tricky at first glance
(vou may wonder what the prove statement has to do with the givens). Look how easy
the proof becomes when you work backwards.

Game plan: Start at the end. You have to prove that BM bisects ZABC. The only

way to do that is to use the definition of bisect; in other words, you have to show

ZABM = ZCBM. Those angles are in triangles that look congruent: AABM and ACBM.
Therefore, if you can show AABM =~ ACBM, you can get ZABM = /CBM with CPCTC.
Okay — so if you can prove the triangles congruent, you’re home free. At this point, you
would go to the beginning of the proof and try to figure out how to show that the trian-
gles are congruent. But here you can cut to the chase, because you already know how to
get the triangles congruent from the proof in the preceding section.

Statements Reasons

1) AABC is isosceles with base AC | 1) Given.

2) AB=(B 2) Definition of isosceles triangle.

3) BM = BM 3) Reflexive Property.

4) BM is a median 4) Given.

5) M is the midpoint of AC 5) Definition of median.

6) AM =CM 6) Definition of midpoint.

7) AABM = ACBM 7) SSS (2, 3, 6).

8) ZABM = LCBM 8) CPCTC.

9) BM bisects ZABC 9) Definition of bisect.
Or, if you feel like practicing your if-then logic: “If a ray
divides an angle into two congruent angles (Statement 8),
then it bisects the angle (Statement 9).”

e Given:  AE is an altitude and AE bisects ZLAM A

Prove:

Hint: This proof is quite similar to problem 1 in the preceding section, but
try to do it without looking back. If you really need something to go on,
however, copy only Statement 8 and Reason 9 from the solution.

AE is a median
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Statements Reasons

e Given: AOXE is isosceles with base OF

100

/XOF = /XEO
/ZDXE = ZRXO
Prove: DO=RE

You have two different ways to do this proof. Hint: The shorter
proof goes one step beyond CPCTC; the longer proof uses CPCTC as
the final reason. (I realize that sounds like I mixed up “shorter”
and “longer,” but you can see in a minute that it’s correct.)

Statements Reasons

D
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e Given: ZA = XI X F

/MZA = /FXI
LFAZ = /MIX I

Prove: MI=FA M g

Hint: If this proof freaks you out, fill in Statements 5 and 7 and Reason 5 from the solution.

Statements Reasons

@ Given: ATAG is isosceles with base TG A
TH =GN
Prove: ATHX = AGNX

Does this thang ring a bell? This proof is the same as problem 3 except that

it goes further. But don’t look back unless you need a hint. You could also

copy Statements 6 and 7 from the solution page with their Reasons; and if

that’s not enough, copy Statement 10 and its Reason as well. T G

Statements Reasons
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Using Isosceles Triangle Rules: If Sides,
Then Angles; If Angles, Then Sides

102

In this section, you practice doing problems involving two of the most important and often-
used theorems for proofs. Both theorems are about isosceles triangles. But these theorems are

theorems & Feally just a single idea that works in both directions.
POSTULATES

¥ If sides, then angles: If two sides of a triangle are congruent, then the angles opposite
those sides are congruent.

¥ If angles, then sides: If two angles of a triangle are congruent, then the sides opposite
those angles are congruent.

when you begin a proof, look at the diagram and identify all triangles that look isosceles. Make
a mental note that you may have to use one or the other of the theorems for one or more of the

TIP isosceles triangles. Because recognizing isosceles triangles is often a cinch — and because it’s
so easy to use the theorems — be glad when you get these “gimmes” in a proof. On the other
hand, if you fail to notice that the theorems should be used, the proof may become impossible.
Forewarned is forearmed.

o
Q. Given:  OF and OT trisect NW

EXAMPLE ON =OW

Look for isosceles triangles. These two angle-side theorems come up all the time in proofs. So,

Prove: AONE = AOWT

N E T w

A. Game plan: First, you look at the diagram and see two isosceles triangles (ANOW and
AEQT), so you’re rarin’ to use one of the angle-side theorems. Sure enough, one of the
givens is ON = OW, so that gives you ZN = /W. The trisection gives you NE = WT, and,
voila, you have SAS.

Statements Reasons

1) ON = OW 1) Given.

2) LN = LW 2) If sides, then angles.

3) OF and OT trisect NW 3) Given.

4) NE =WT 4) Definition of segment trisection.
5) AONE = AOWT 5) SAS (1, 2, 4).
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Q. Given: ZA=/E G
EXAMPLE GM is a median
Prove: AMAG = AMEG
A M E
A.
Statements Reasons
1) LA=ZE 1) Given.
2) AG=EG 2) If angles, then sides. (Repeat tip: Do not fail to
spot this!)
3) GM is a median 3) Given.
4) M is the midpoint of AE 4) Definition of median.
5) AM = EM 5) Definition of midpoint.
6) AMAG = AMEG 6) SAS (2,1, 5).
(Note that if you add one more step for GM reflexive, you can
finish with SSS instead of SAS. This six-step solution is a fairly
unusual proof where you have side-by-side triangles like this
but don't use the Reflexive Property.)
@ Given L=/2 R B
1 2
/Z3=/4
A
Prove: ARAY = ABAN
3 4
Y N
Statements Reasons
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a Given: AQRS is isosceles with base Q_S R
ZQPT = £STP

Prove: P_Q =TS

Statements Reasons

@ Given: AB=z=ED <
B is the midpoint of AC

D is the midpoint of EC
/ABF = /EDF

Prove:  BF =~ DF A F E

Hint: If you have a hard time with this one, copy Statement 3 and Reason 3 from the solution. If you’re
still stuck, copy Statement 7 and Reason 7 as well.

Statements Reasons
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Exploring Two More Ways to Prove
Triangles Congruent

THEOREMS &
POSTULATES

WARNING

THEOREMS &
POSTULATES

You have five ways of showing triangles congruent. The previous sections in this chapter let
you practice problems with SSS, SAS, and ASA. Now you get the final two methods, AAS and HL.

3 AAS (Angle-Angle-Side): If two angles and a nonincluded side of one triangle are congruent
to the corresponding parts of another triangle, then the triangles are congruent.

3 HL (Hypotenuse-Leg): If the hypotenuse and a leg of one right triangle are congruent to the
hypotenuse and a leg of another right triangle, then the triangles are congruent.

AAS works in nearly the same way as SSS, SAS, and ASA. If two triangles have congruent angles,
then congruent angles, then congruent sides (in that order, going around the triangles clock-
wise or counterclockwise), then the triangles are congruent. Like SSS, SAS, and ASA, AAS works
with any type of triangle.

ASS or ASS-backwards is no good. You can prove triangles congruent with SSS, SAS, ASA, and
AAS, but not with ASS or SSA. SAA would work (but you just call it AAS). In short, every three-
letter combination of As and Ss works unless it spells ass or is ass-backwards (SSA). (AAA —
which you get to in Chapter 7 — also “works,” but not to show that triangles are congruent.
You use it to show that triangles are similar.)

HL is a bit different from the other four theorems because it works only with right triangles. For
this reason, if [ were writing my own book, I'd add the letter R and call it HLR (for Hypotenuse,
Leg, Right angle). Wait a minute — I am writing my own book! Okay, so contrary to other
books, I will call it HLR. (Please go to the section intro and the theorem icon, scratch out HL,
and replace it with HLR.) HLR is a better name because its three letters make you focus on the
fact that when you use HLR — just like with SSS, SAS, ASA, and AAS — you need three things
to prove two triangles congruent.

Note that, in terms of As and Ss, HLR is ass-backwards (SSA), because going around the triangle
you use a Side (the Hypotenuse), a Side (the Leg), and an Angle (the Right angle) in that order.
Thus, HLR is a valid, special case of SSA and an exception to the general invalidity of SSA.

Before going on to the problems, I have one more theorem for you. It’s yet another in the
well-duh category. I don’t use it in the following example problems, but you do need it for your

practice problems.

Congruent plus supplementary means right angles: If two angles are both congruent and sup-
plementary, then they’re right angles.
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EXAMPLE

5

EXAMPLE
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Given:  /RTP = /RPT Q S
ZPQR = /TSR R
Prove:  APQR = ATSR
P T
Statements Reasons
1) ZRTP = /RPT 1) Given.

2) PR=TR

2) If angles, then sides.

3) ZPRQ = LTRS

3) Vertical angles are congruent.

4) ZPQR = /TSR 4) Given.
5) APQR = ATSR 5) AAS (4, 3, 2).
Given: RS | RO R A
AE L AN G
OE = NS
RS = AE
(6] E S N
Prove: AROS = AANE
Statements Reasons
1) RS LRO 1) Given.
AE 1| AN

2) ZORS is aright angle
ZNAE is aright angle

2) Definition of perpendicular.

3) OE = NS 3) Given.

4) 0S = NE 4) Segment addition.
(If a segment [E_S] is added to two
congruent segments [OE and NS], then the sums [0S and NE]
are congruent.)

5) RS = AE 5) Given.

6) AROS = AANE

6) HLR (4,5, 2).

(Note that for HLR, you need to state only that you have two right
angles, not that they are congruent.)
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@ Given: N=~7O I

ZOWN = ZNKO

Prove:  AWOZ = AKNZ

Hint: If you get stuck, copy just Statements 5 and 6 with their Reasons onto
this page. Z

Statements Reasons

@ Given:  ZTIN and ZEAR are right angles A
AX bisects T/ RAZ
- = T E
IZ bisects EA N
— — _ X
AX and IZ trisect TE .

Xl =ZE

Prove: IN =~ AR

Statements Reasons
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@ Given: AB =(CD B ¢
/BFA = /BFE
/DEC = /DEF
BC L AB
AD 1. DC

. A D
Prove: FB=ED

Hint: If you’re stumped, write in Statements and Reasons 5 and 6 from the solution.

Statements Reasons

Explaining the Two Equidistance Theorems

Throughout this chapter, I emphasize how important it is to pay attention to the congruent tri-
angles in proof diagrams because the key to so many proofs is showing the triangles congruent
and then using CPCTC. Now I muddy the waters a bit by giving you two theorems that you can
often use instead of proving triangles congruent. You may get proofs in which you see congru-
ent triangles, so it looks like you should try to show that the triangles are congruent, but you
don’t have to — one of the equidistance theorems can give you a shortcut to the final conclusion.

Now you have to be doubly on your toes: looking for congruent triangles and thinking about

ways to prove them congruent and, at the same time, being ready to avoid the congruent tri-
angle issue with the equidistance shortcut.
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THEOREMS &
POSTULATES

FIGURE 5-1:
The first
equidistance
theorem
gives you the
perpendicular
bisector of a
segment.

The equidistance theorems:

¥ If two points are each (one at a time) equidistant from the endpoints of a segment, then
those points determine the perpendicular bisector of the segment. (Loose, short form: If two
pairs of congruent segments, then perpendicular bisector.)

¥ If a pointis on the perpendicular bisector of a segment, then it's equidistant from the
endpoints of the segment. (Loose, short form: If perpendicular bisector, then one pair of
congruent segments.)

These theorems are a royal mouthful. The best way to understand them is visually. For the first
theorem, consider Figure 5-1.

C

R L CE T A R T S

Here’s how the theorem works. If you have one point (like A) that’s equally distant from the
endpoints of a segment (CD) and another point (like B) that’s also equally distant from those
endpoints, then the two points (A and B) determine (show you where to draw) the perpendicu-
lar bisector of that segment. The dashed line in the figure, AB, is the perpendicular bisector of
CD, which means — as I’m sure you know or can figure out — that it’s perpendicular to CD
and cuts CD in half. I didn’t mark the perpendicularity or the bisection in the figure because I
wanted to mark only the if part of the theorem. The figure should also make clear the mean-
ing of the loose, short form of the theorem: If two pairs of congruent segments (AC = AD and
BC = BD), then perpendicular bisector (AB is the perpendicular bisector of CD).

For the second theorem, consider Figure 5-2.

The second theorem tells you that if you start with a segment (like PQ) and its perpendicular
bisector (like line [), and a point is on the perpendicular bisector (like R), then R is equally dis-
tant from the endpoints of the segment. The figure also illustrates the loose, short form of the
theorem: If perpendicular bisector (line  is the perpendicular bisector of PQ), then one pair of
congruent segments (RP = RQ).
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FIGURE 5-2:
The second
equidistance
theorem lets

PT is the perpendicular bisector of AO

Reasons

1) Given.

2) If angles, then sides.

you know that H 1 H
you have P Q
congruent [
segments.
Q. Given: TA=T0
ZPAD = /POD
EXAMPLE
Prove:
Statements
1) ZLPAD = /POD
2) PA=PO
3) TA=TO

3) Given.

4) PT is the perpendicular
bisector of AO

4) If two points are each equidistant from the
endpoints of a segment, then they determine the
perpendicular bisector of that segment.

Q. Given:  ATIC and ATOC are isosceles triangles with base TC

EXAMPLE Prove:

ATAC is isosceles
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Statements Reasons

1) ATIC and ATOC are isosceles 1) Given.

2) T =Cl 2) Definition of isosceles triangle.
TO =CO

3) Oi is the perpendicular
bisector of TC

3) If two points are each equidistant from
the endpoints of a segment, then they
determine the perpendicular bisector of
that segment.

4) TA=CA

4) If a point is on the perpendicular bisector
of a segment, then it is equidistant from
the endpoints of that segment.

5) ATAC is isosceles

5) Definition of isosceles triangle.

Tip: When you see an unlabeled point in a problem, you don’t need to use that point in
your proof. Note that in the preceding figure, no letter labels the point where the per-
pendicular bisector Of intersects TC. This tip doesn’t help so much in this particular
problem, but for some proofs, this built-in hint can work wonders.

@ Given: ZTIP = /TOP

ZHIP = Z/HOP
Prove: Jp~QOP
Statements

Reasons
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Q Given:  £SAT and £SET are right angles
SA=SE

Prove: ZANT = ZENT

Statements Reasons

@ Given: RS=CS

Z/ARS = ZACS
Prove: RY=CY

Hint: If you’re stuck, copy only Statement 2 and Reason 2 from the solution. And
if that doesn’t help, copy Statement 5 and Reason 5 as well.

Statements Reasons
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Solutions

®

Statements Reasons

1) AE =~ AE 1) Reflexive.

2) AE is an altitude 2) Given.

3) AE 1L IM 3) Definition of altitude. (Why would they tell you about an

altitude? Because it's perpendicular.)

4) ZLFEA is aright angle
ZMEA is a right angle

4) Definition of perpendicular. (What does perpendicularity
tell you? Right angles, of course.)

5) ZLEA= /MEA

5) All right angles are congruent.

6) AE is a median

6) Given.

7) Eis the midpoint of LM

7) Definition of median. (Why would they tell you about a
median? Because it goes to a midpoint.)

8) Definition of midpoint. (What do you know about a midpoint?
Congruent segments, of course.)

9) ALEA = AMEA

Statements

1) £ZPRQ = ZTRS

9) SAS (1,5, 8).

Reasons

1) Vertical angles are congruent. (This step should be a
no-brainer. Always check for vertical angles.)

2) SO bisects PT

2) Given. (Now, why would they tell you this? Only one possible
reason...)

3) PR=TR 3) Definition of bisect.
(So far, you have one pair of congruent angles and one pair
of congruent sides, so this problem has to end with either ASA
or SAS, right? If it's ASA, you need to show ZQPR = ZSTR.
If it's SAS, you need to show SR = QR. Which seems more
promising? It's ASA, because the remaining given concerns /1
and £2, which are right next to ZQPR and £STR. Don't forget:
Every given is a built-in hint.)

4) L1= /2 4) Given.

5) ZQPR = £ZSTR 5) Supplements of congruent angles are congruent.

6) APQR = ATSR 6) ASA(1,3,5).

Statements Reasons

1) ATAG is isosceles with base TG 1) Given.

2) TA=GA 2) Definition of isosceles triangle.

3) LA= /A 3) Reflexive Property. (Did you notice that ZA is in both of
the prove triangles? If not, open your eyes!)

4) TH = GN 4) Given.
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If you're not sure where to go from here, try this technique. You know ATAG is isosceles, so make up a
length for sides TA and GA, say, 10. Then make up a length for congruent segments TH and GN, say, 7.
What follows? That HA and NA are both 3, of course, and therefore, that they're congruent. And that's all
you need for SAS.

5) HA=NA 5) If congruent segments are subtracted from
congruent segments, then the differences are
congruent.

6) ATAN = AGAH 6) SAS (2, 3, 5).

@ Statements Reasons

1) LTAX = /ZMAN 1) Vertical angles are congruent. (Always look for
vertical angles!)
2) ZAMN is complementary to Z/TAX 2) Given.

ZATX is complementary to ZMAN

3) ZAMN = ZATX 3) Complements of congruent angles are congruent. Or,
if you prefer the long way, “If two angles are congruent
(Statement 1), then their complements are congruent

(Statement 3).”
4) Ais the midpoint of TM 4) Given.
5) TA = MA 5) Definition of midpoint.
6) ATAX = AMAN 6) ASA (1,5, 3).

@ Game plan: The big triangle is isosceles, so you have two equal sides. The midpoints cut
those sides in half, so all four halves are equal and IA equals LE. The little triangle is also
isosceles, with equal sides DR and OR. Then, because R is a midpoint (for two segments),

DE is twice DR and OA is twice OR; thus, DE equals OA. The last given is ID = LO. Say the
segments are each 4 units long; and say DO is 8. That makes I0 and LD both 12. That’s a good

bingo — SSS.
Statements Reasons
1) AIML is isosceles with base IL 1) Given.
2) IM=IM 2) Definition of isosceles triangle.
3) Ais the midpoint of IM 3) Given.

E is the midpoint of LM

4) IAzLE 4) Like Divisions.

Or, to make sure you're following proper if-then logic,
“If two segments are congruent (Statement 2),
then their like divisions are congruent (Statement 4).”

5) ADRO is isosceles with base DO 5) Given.

6) OR =DR 6) Definition of isosceles triangle.

S

R is the midpoint of AO 7) Given.

R is the midpoint of ED
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8) OA=DE 8) Like Multiples.

Basically, if two segments are congruent (OR and DR),
then twice one (OA) equals twice the other (DE).

9) ID=LO 9) Given.
10) 10 = LD 10) If a segment is added to two congruent segment, then
the sums are congruent (DO is added to ID and LO).
11) AIAO = ALED 11) SSS (4, 8, 10).

Game plan: Work backwards. To prove AE is a median, you need to show LE = ME. And you
can probably get that with CPCTC after showing that the triangles are congruent. 'Nuff said.

Statements Reasons
1) AE is an altitude 1) Given.
2) AE LIM 2) Definition of altitude.
3) ZLEAis aright angle 3) Definition of perpendicular.
ZMFA is a right angle
4) ZLFA = /MFA 4) Right angles are congruent.
5) AE = AE 5) Reflexive.
6) AE bisects ZLAM 6) Given.
7) ZLAE = Z/MAE 7) Definition of bisect.
8) ALFEA = AMEA 8) ASA(4,5,7).
9) IE = ME 9) CPCTC.
10) E is the midpoint of IM 10) Definition of midpoint.
11) AE is a median 11) Definition of median.

Game plan (shorter version): Always take a quick glance at proof diagrams and look for tri-
angles that look congruent. In this diagram, you should see two such pairs: ADXO and ARXE
and ADXE and ARXO. The three givens basically hand you that second pair of trlangles on a
silver platter (with ASA). You get DE = RO with CPCTC; then subtract OF and you’re done.

Statements Reasons

1) AOXE is isosceles with base OE 1) Given.

2) OX =~ EX 2) Definition of isosceles triangle.

3) £ZXOE = /XEO 3) Given.

4) «DXE = ZRXO 4) Given.

5) ADXE = ARXO 5) ASA (3, 2, 4).

6) DE = RO 6) CPCTC.

7) DO =RE 7) Segment subtraction.
(If a segment is subtracted from two congruent segments,
then the differences are congruent. Say DE and RO are
both 8 and OE is 3. Then DO and RE would both be 5.)
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shows that geometry proofs aren’t quite as cut and dried as some other types of math prob-
lems. And because of that, you should adopt a flexible approach when doing proofs. Don’t

TIP assume that there’s just one precise way of doing a proof and that you’re sunk if you can’t
find it. Be flexible, use some trial and error, use your imagination. Try anything — don’t
worry about whether it’s “right.” Be patient with yourself, and don’t expect to always solve
a proof on your first try. You have to be willing to try something, find yourself at a dead end,
and then go back to the drawing board to try something else. And although it’s true that, as
a general rule, the fewer steps in your proof, the better, you shouldn’t worry too much about
that. Most teachers don’t mind if your method is a little longer than the shortest possible
proof. They may, however, take off a few points if your proof is way longer than it has to be.

Stay flexible. The fact that you can do this proof (and many others) in more than one way

Game plan (longer version): Say you notice the other pair of congruent triangles, ADXO and
ARXE, and realize that the proof can, thus, end with CPCTC. You then have to find a way to
show ADXO = ARXE. You already have OX = EX. Then you can say #DOX = /REX, because
their supplements are congruent. Finally, you can get Z/DXO = Z/RXE by subtracting the mid-
dle angle, ~OXE, from the overlapping congruent angles, /DXE and ZRXO. Not bad, right?

Statements Reasons

1) AOXE is isosceles with base OF 1) Given.

2) OX = EX 2) Definition of isosceles triangle.

3) £ZXOE = ZXEO 3) Given.

4) £DOX = /REX 4) Supplements of congruent angles are congruent.
5) ZDXE = ZRXO 5) Given.

6) «DXO = /RXE 6) Angle subtraction.

7) ADXO = ARXE 7) ASA (4, 2, 6).

8) DO = RE 8) CPCTC.

‘ Game plan: You have two pairs of congruent triangles that include ZA and XI. Which pair of
triangles should you shoot for? Stay flexible. Look at the pair including ~MXI and ~FZA. (If
you can prove that pair congruent, you can finish with CPCTC.) You have XI and /MIX. Can
you get the third element you need for SAS or ASA? To use SAS, you’d need to know that
MI = FA, but that’s what you’re trying to prove, so that won’t work. For ASA, you’d need to
work your way to ZMXI = /FZA, but there doesn’t seem to be a way to get that. You appear to
be at a dead end, so it’s time to go back to the drawing board. (By the way, winding up in a
dead end like this is par for the course with geometry proofs. Trying to show AMXI = AFZA is
a perfectly good idea. You have two out of three triangle parts that you need for something
like ASA, and the triangles are a natural choice because of the possibility of finishing the
proof with CPCTC. Don’t let dead ends like this frustrate you.)

Time to try the second pair of triangles. Look at AMAZ. You have AMZA and side ZA. Can you
get /MAZ and finish with ASA? Yes. That’s it. You have /FAZ = /MIX (say, for instance,
they’re both 50°), so /MAZ = /FIX (they’d both be 130°). (It’s not a bad idea to sometimes
actually make up an angle measure like 50° and then write it on the diagram to help you see
that the two 130° angles would be congruent.) You now finish with CPCTC and segment
subtraction.
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Statements

Reasons

1) ZAz XI 1) Given.

2) LMZA = /FXI 2) Given.

3) LFAZ = ZMIX 3) Given.

4) LMAZ = £FIX 4) Supplements of congruent angles are congruent.
5) AMAZ = AFIX 5) ASA (2, 1, 4).

6) MA=FI 6) CPCTC.

7) MI = FA 7) Subtraction.

Game plan (quickie version): You get ATAN = AGAH like you do with problem 3 in the
first section. Then you get £3 = Z4 (CPCTC), their supplements, /2 = /5, and then
/1= /6 (CPCTC). Bingo! You have ASA.

Statements ‘ Reasons
1) ATAG is isosceles with base TG 1) Given.
2) TA=GA 2) Definition of an isosceles triangle.
3) TH =GN 3) Given.
4) HA=NA 4) Subtraction.
5) ZA=/A 5) Reflexive.
6) ATAN = AGAH 6) SAS (2,5, 4).
7) L3=/4 7) CPCTC.
8) £2=/5 8) Supplements of congruent angles are congruent.
9) L1=/6 9) CPCTC.
10) ATHX = AGNX 10) ASA (8, 3,9).
Statements Reasons
1) L1= 22 1) Given.
2) RA=BA 2) If angles, then sides.
3) L3=/4 3) Given.
4) YA=NA 4) If angles, then sides.
5) ZRAY = /BAN 5) Vertical angles are congruent.
6) ARAY = ABAN 6) SAS (2,5, 4).
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Game plan: As soon as you see two triangles in the diagram that look like they’re isosceles
and then that ZQPT = £STP is given, you should immediately realize that you have PR=TR.
The rest is in the bag.

Statements Reasons

1) ZQPT = £STP 1) Given.

2) PR=TR 2) If angles, then sides.

3) AQRS is isosceles with base 0S 3) Given.

4) OR = SR 4) Definition of isosceles triangle.

5) PQ=TS 5) If two congruent segments (QR and SR) are subtracted

from two other congruent segments (PR and TR), then the
differences ( PQ and TS) are congruent. (If PR and TR were
both 10, and QR and SR were both 3, then PQ and TS
would both be 7, right?)

@ Game plan: Maybe I sound like a broken record, but make sure you notice the three triangles
that look isosceles and that, therefore, you likely have to use one of the angle-side theorems.
You should also, of course, notice that the two small triangles look congruent and that the
proof therefore probably ends with CPCTC. So, your goal is to show that the two triangles are
congruent. You could work backwards — you already have a pair of congruent sides and a
pair of congruent angles in those triangles. To finish with SAS, you’d need to use BF = DF,
but that’s what you’re trying to prove. Your other option is ASA, and for that to work, you’d
need /A = ZF. Can you get that? This should be the light-bulb-going-on moment of the
proof. You should be thinking, “I could get angle A congruent to angle E by if sides, then angles
if I knew that AC was congruent to EC.” Then you can go back to the givens and see that you
can, in fact, show that congruency with the Like Multiples Theorem (see Chapter 3).

Another, equally good approach to the proof is to begin by looking at the givens. You see
that AB and ED are congruent and that B and D are midpoints. Now, why would they tell
you about those mldpomts? Midpoints cut segments in half, of course. So, if AB = ED, then
twice AB (that's AC) equals twice ED (that’s EC). Then, naturally, you go from AC=EC
to LA = ZE, and the rest is a cake walk.

Statements ‘ Reasons
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1) AB=ED

1) Given.

2) B is the midpoint of AC
D is the midpoint of EC

2) Given.

3) AC=EC

3) Like Multiples.

(If segments are congruent [E and E)], then twice one [R]
is congruent to twice the other [EC].)

4) LA=LE 4) If sides, then angles.
5) ZABF = Z/EDF 5) Given.

6) AABF = AEDF 6) ASA (4, 1, 5).

7) BF = DF 7) CPCTC.
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@ Statements

1) IN =10

Reasons

1) Given.

2) ZION = ZINO

2) If sides, then angles.

(If you missed this, hand over your protractor! This proof
is not totally easy, but this step should be.)

3) ON = NO 3) Reflexive.
(Do you see why | reversed the letters?)
4) LOWN = ZNKO 4) Given.
5) AWON = AKNO 5) AAS (4, 2, 3).
6) OW = NK 6) CPCTC.
7) L WZO = /KZN 7) Vertical angles are congruent.
8) AWOZ = AKNZ 8) AAS (7, 4, 6).
@ Statements Reasons
1) ZTIN and ZEAR are right angles 1) Given.
2) XI = ZE 2) Given.
3) AX bisects T/ 3) Given.

1Z bisects EA

4) TI = FA 4) Like Multiples.
(If segments are congruent [X7 and ZE], then twice one
[T1] is congruent to twice the other [EA].)
5) AX and IZ trisect TE 5) Given.
6) TR = RN = NE 6) Definition of trisect.
7) TN = ER 7) Segment addition.
8) ATIN = AEAR 8) HLR (7, 4, 1).
9) IN = AR 9) CPCTC.
@ Statements Reasons
1) BC L AB 1) Given.
AD 1 DC

2) ZABC is aright angle
ZCDA is a right angle

2) Definition of perpendicular.

3) AB=(D 3) Given.

4) AC=CA 4) Reflexive.

5) AABC = ACDA 5) HLR (4, 3, 2).

6) Z/BAC = /DCA 6) CPCTC.

7) /BFA = /BFE 7) Given.

8) «BFA and ZBFE are right angles 8) If two angles are both congruent and supplementary,

then they are right angles.
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9) 4DEC = ZDEF

9) Given.

10) £DEC and £DEF are right angles

10) If two angles are both congruent and supplementary,
then they are right angles.

11) 4BFA = ZDEC

11) All right angles are congruent.

12) ABFA = ADEC

12) AAS (11, 6, 3).

13) FB=ED 13) CPCTC.
Statements Reasons
1) £TIP = ZLTOP 1) Given.
2) T=TO 2) If angles, then sides.
3) ZHIP = ZHOP 3) Given.
4) HI = HO 4) If angles, then sides.
5) HT is the perpendicular bisector of 10 | 5) If two points are each equidistant from the endpoints

of a segment, then they determine the perpendicular
bisector of that segment.

6) Definition of bisect.

Reasons
1) £SAT and £SET are right angles 1) Given.
2) SA=SE 2) Given.
3) ST = ST 3) Reflexive.
4) ASAT = ASET 4) HLR (3, 2, 1).
5) AT =ET 5) CPCTC.
) )

6) ST is the perpendicular bisector of AE | 6) If two points are each equidistant from the endpoints

of a segment, then they determine the perpendicular
bisector of that segment.

7) ZANT and ZENT are right angles

7) Definition of perpendicular.

8) LANT = LENT

Statements

8) All right angles are congruent.

Reasons

1) RS=CS 1) Given.

2) ZSRY = /SCY 2) If sides, then angles.
3) ZARS = ZACS 3) Given.

4) ZARY = LZACY 4) Angle subtraction.
5) RA=CA 5) If angles, then sides.

6) SA is the perpendicular bisector of RC 6) If two points are each equidistant from the endpoints

of a segment, then they determine the perpendicular
bisector of that segment.

7) RY =CY

7) Definition of bisect.
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Problems



IN THIS PART . ..

Practice problems involving quadrilaterals, pentagons,
hexagons, and more.

Study the properties of the different quadrilaterals, and
you find out how to prove that a four-sided figure
qualifies as a particular type of quadrilateral.

Discover how to do cool things like compute the area of
a polygon, the number of its diagonals, and the sum of
its interior angles.

Solve problems involving similar polygons — that is,
polygons of the exact same shape but of different sizes.



IN THIS CHAPTER

» Crossing the tracks safely —
parallel lines with transversals

» Classifying quadrilaterals — it's a
family affair

» Checking out the properties of
parallelograms, kites, and
trapezoids

» Working with squares, rhombuses,
and rectangles

Chapter 6

Quadrilaterals: Your
Fine, Four-Sided Friends
(Including Proofs)

f you’ve mastered three-sided figures, you’re ready to move up to four-sided figures —
quadrilaterals. In this chapter, I tell you the defining characteristics of squares, rectan-
gles, and kites, and I give you some pretty tidy definitions of parallelograms, rhombuses,
and trapezoids as well. I also explain the properties of these different figures. Finally, I show

you how to use the properties to prove that a figure is a certain type of quadrilateral — sort of
like “if it walks like a duck and it quacks like a duck. . ..”

Before moving on to quadrilaterals, take a look at some important parallel line concepts that
come in handy for parallelogram problems among other things.
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Double-Crossers: Transversals
and Their Parallel Lines

Take a look at Figure 6-1, which contains two parallel lines, the line that crosses over them
(called a transversal), and the eight angles. Whenever you have such a situation, the following
terminology applies.

@ Angles formed by parallel lines and a transversal:

REMEMBER 3% The pair of angles 1 and 5 (also 2 and 6, 3 and 7, and 4 and 8) are called corresponding
angles.

¥ The pair of angles 3 and 6 (as well as 4 and 5) are alternate interior angles.
¥ Angles 1 and 8 (and angles 2 and 7) are called alternate exterior angles.
¥ Angles 3 and 5 (and 4 and 6) are same-side interior angles.

¥ Angles 1 and 7 (and 2 and 8) are same-side exterior angles.

Now, although knowing all this fancy terminology is nice, and although you need it for the
following theorems (not to mention that little matter of your teacher’s testing you on these
terms), there’s a simpler way to summarize everything you need to know about Figure 6-1.

FIGURE 6-1: ] /

Parallel lines
and a
transversal —
angles, angles 5 76

everywhere 7.8
with lots of
them to link.

@ Four small angles and four big angles. When you have two parallel lines cut by a transversal,

you get four acute angles and four obtuse angles (except when you get eight right angles). All
the acute angles are congruent, all the obtuse angles are congruent, and every acute angle is
REMEMBER Supplementary to every obtuse angle.

Parallel-lines-with-transversal theorems: If two parallel lines are cut by a transversal, then

THEOREMs & 3 Corresponding angles are congruent.
POSTULATES

¥ Alternate interior angles are congruent.

¥ Alternate exterior angles are congruent.

¥ Same-side interior angles are supplementary.

¥ Same-side exterior angles are supplementary.
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And now for something completely different — kind of. Say that you don’t know that the lines
are parallel. Well, all the preceding theorems work in reverse, so you can use the following
reverse theorems to prove that lines are parallel.

Lines-cut-by-a-transversal theorems: Two lines are parallel if they’re cut by a transversal
such that

THEOREMS &
POSTULATES

¥ Two corresponding angles are congruent.

¥ Two alternate interior angles are congruent.

¥ Two alternate exterior angles are congruent.

¥ Two same-side interior angles are supplementary.

¥ Two same-side exterior angles are supplementary.

Q. Given: all b

EXAMPLE Find: /1 (5x - 3)°

Bx+7)°

A. The (5x —3)° angle and the (3x + 7)° angle are same-side exterior angles, so according
to the theorem, they’re supplementary. Supplementary angles add up to 180°, so

(5x-3)+(3x+7)=180
8x +4=180

8x =176

x=22

Plugging 22 into (5x — 3)° gives you 107° for that angle, and because that angle and /1
are vertical angles (see Chapter 2), /1 is also 107°.

Q. Given: L1=/2 P
£G=/P

EXAMPLE G_[ ~ ﬁ]

Prove: BG Il WP I

[\
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Statements Reasons

1) L1=22 1) Given.

2) 4BIG = LWUP 2) Supplements of congruent angles are congruent.

3) Gl =PU 3) Given.

4) LG =P 4) Given.

5) ABIG = AWUP 5) ASA (2, 3, 4).

6) /B=/W 6) CPCTC.

7) BG || WP 7) If alternate interior angles are congruent, then lines are parallel.

Tip: If you have any difficulty seeing that /B and ZW are indeed alternate interior
angles, rotate the figure counterclockwise till the parallel segments PW and BG are
horizontal, and then extend PW, BG, and BW in both directions, turning them into lines
(you know, with arrows). After you do this, you’ll be looking at the familiar scheme of
parallel lines cut by a transversal, like in Figure 6-1.

List all the pairs of angles such that if you e Are lines p and q parallel?
know they’re supplementary, you can prove
lines m and n parallel.

m n (6x — 40)°
(4x + 10)°

p

3\ 4 7\8 (V4x + 60)°
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e Given that lines o and z are parallel, solve for
x. Hint: You don’t need to use anywhere near
all the angles I’ve numbered. (If I had num-
bered only the angles you need, I would’ve
given away the solution.)

4 / 50°
3 2 5/6

8910

z
71N

Prove:

Circle Q

TP = SR
m/ZQ =110

7S |l PR (paragraph proof)

BL bisects ZQBP

e Given:

BL Il JP
Prove: APBJ is isosceles
Statements Reasons
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e Given: RA Il TI R

RA=TI
DI = NA I N
Prove: DR Il TN D A
T
Statements Reasons

Quadrilaterals: It's a Family Affair

A quadrilateral is any shape with four straight sides. In the family tree of quadrilaterals, you’ve
got granddaddy quadrilateral, his three kids (the kite, the parallelogram, and the trapezoid),
three grandkids (the rhombus, the rectangle, and the isosceles trapezoid), and a single great-
rememeer  grandchild (the square). Check out the family tree in Figure 6-2 and the definitions that follow.

¥ Kite: A quadrilateral in which two disjoint pairs of consecutive sides are congruent (in other
words, one side can't be used in both pairs) — it often looks just like the kites you're used to

¥ Parallelogram: A quadrilateral that has two pairs of parallel sides

3 Rhombus: A quadrilateral with four congruent sides; a rhombus is both a kite and a
parallelogram

¥ Rectangle: A quadrilateral with four right angles; a rectangle is a parallelogram
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¥ Square: A quadrilateral with four congruent sides and four right angles; a square is both a
rhombus and a rectangle

¥ Trapezoid: A quadrilateral with exactly one pair of parallel sides; the parallel sides are
called the bases, and the nonparallel sides are the legs

¥ lIsosceles trapezoid: A trapezoid with congruent legs

Quadrilateral

Trapezoid
\ Parallelogram
Kite \
Rectangle
Isosceles
Trapezoid

Rhombus

FIGURE 6-2:
The
quadrilateral
family tree. Square
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Gb Q. Given: =~ Rhombus PQRS Q
EXAMPLE Prove:  Its diagonals are perpendicular bisectors of each other
P X R
S
A.
Statements Reasons

1) PQRS is a rhombus

1) Given.

2) %;@;R_S;S_P

2) Definition of rhombus.

3) QS is the perpendicular
bisector of PR

3) If two points (Q and S) are each equidistant from the end-
points of a segment, then they determine the perpendicular
bisector of that segment (one of the equidistance theorems
from Chapter 5).

4) PR is the perpendicular
bisector of QS

4) If two points (P and R) are each equidistant from the endpoints
of a segment, then they determine the perpendicular bisector of
that segment.

e Determine whether the following statements are true always, sometimes, or never:

a. A parallelogram is a square

b. Arhombus is a rectangle

c. AKkite is a trapezoid

d. Arectangle is a kite

e. A quadrilateral is an isosceles trapezoid
f. Asquare is a kite

g. AkXkite is a rhombus

h. A parallelogram is a kite

e

An isosceles trapezoid is a rectangle
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e Given: JOHN is a parallelogram J O

Prove: ] =/H

N H
Statements Reasons
o Given: = MARY is a parallelogram A R
Prove: MA=RY
Hint: The figure is incomplete. Use your drawing skills.
M Y

Statements Reasons
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@ Given:  TRAP is a trapezoid with bases 7R and PA I
ATRI is isosceles with bases 7R and PA

Prove: TRAP is isosceles

Statements Reasons

Discovering the Properties of the
Parallelogram and the Kite

You may be wondering what these two quadrilaterals have in common and why they’re in this
section together. I hate to disappoint you, but they have little in common, and I put them together
because I couldn’t fit all the quadrilaterals in one section and I had to split them up somehow!
So, without further ado, let me present to you the properties of the parallelogram and the kite.

Properties of the parallelogram (see Figure 6-3):

REMEMBER 3% Opposite sides are parallel by definition.

¥ Opposite sides are congruent.

132  PART 3 Polygons, Proof and Non-Proof Problems



¥ Opposite angles are congruent.
3 Consecutive angles are supplementary (for example, ZBCD is supplementary to ZCDA).

¥ The diagonals bisect each other.

FIGURE 6-3: ; -7 AN
ABCDis a - .
parallelogram. A D

@ Properties of the kite (see Figure 6-4):

REMEMBER 33 Tywo disjoint pairs of consecutive sides are congruent by definition (PQ = RQ and PS = RS).

¥ The diagonals are perpendicular.

3 One diagonal (@, the main diagonal) is the perpendicular bisector of the other diagonal (PR,
the cross diagonal). (“Main diagonal” and “cross diagonal” are good and useful terms, but you
won't find them in other geometry books because | made them up.)

3 The main diagonal bisects a pair of opposite angles (£Q and £5S).

3 The opposite angles at the endpoints of the cross diagonal are congruent (ZP and ZR).

These last three properties are called the half properties of the kite.

FIGURE 6-4:
PQRS is a kite.
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Q. Given: ~ MINT is a parallelogram

GILT is a square

Prove: AMIG = ANTL

EXAMPLE

T

A. 1dothis proof two different ways (I know of at least four ways to do it). Don’t forget
that when it comes to proofs, there’s often more than one way to do them.

Method 1

Statements

Reasons

1) Given.

) )
2) MT =IN 2) Property of a parallelogram.
3) GILT is a square 3) Given.
4) GT = LI 4) Definition of a square.
5) MG = NL 5) Segment subtraction.
6) LM = LN 6) Property of a parallelogram.
7) Ml = NT 7) Property of a parallelogram.
8) AMIG = ANTL 8) SAS (5, 6, 7).
Method 2
Statements Reasons
1) GILT is a square 1) Given.

2) ZIGT is aright angle
ZTLI is aright angle

2) Definition of a square.

3) IG L MT
TL L NI

3) Definition of perpendicular.

4) ZMGI is a right angle
ZNLT is a right angle

4) Definition of perpendicular.

5) IG=TL 5) Definition of a square.

6) MINT is a parallelogram 6) Given.

7) MI = NT 7) Property of a parallelogram.
8) AMIG = ANTL 8) HLR (7,5, 4).
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e Given:  PCTR is a kite C

PC = PR
A
Prove:  /CAT = /RAT p T
R
Statements Reasons

@ Given:  KITE is — guess what — a kite

Find: The lengths of all sides
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@ Given:  DEFG is a parallelogram D E

x®° (130 - 5x)°
Find: The measures of all angles
G F
@ Given:  YZGH is a parallelogram Y Z

Prove: YO =GA

This proof can be done two ways, using two different pairs of congruent triangles. .
Hint: With either method, the final reason of the proof is — as I’m sure you
can guess — CPCTC.

Statements Reasons
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9 Given:

Prove:

NQRM is a parallelogram P
W=7 o],
NO =RS N Q
SL=OP

two different pairs of congruent triangles.

As with problem 14, you can do this proof two ways, again using M VS

Statements Reasons

Properties of Rhombuses, Rectangles,
and Squares

REMEMBER

Keep referring to the quadrilateral family tree in Figure 6-2. Knowing how the different quad-
rilaterals are related to each other can really help you remember their properties. For example,
you can find out from the preceding section that the diagonals of a parallelogram bisect each
other. So, because rhombuses, rectangles, and squares are all parallelograms, they automati-
cally share that property.

Properties of the rhombus (see Figure 6-5):

¥ The properties of a parallelogram apply (the ones that matter here are parallel sides, oppo-
site angles congruent, and consecutive angles supplementary).

¥ All sides are congruent by definition.
¥ The diagonals bisect the angles.

¥ The diagonals are perpendicular bisectors of each other.
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@ Properties of the rectangle:

REMEMBER

¥ The properties of a parallelogram apply (the ones that matter here are parallel sides, oppo-
site sides congruent, and diagonals bisect each other).

¥ All angles are right angles by definition.

3 The diagonals are congruent.

@ Properties of the square:

REMEMBER

¥ The properties of a rhombus apply (the ones that matter here are parallel sides, diagonals
are perpendicular bisectors of each other, and diagonals bisect the angles).

¥ The properties of a rectangle apply (the only one that matters here is diagonals are

congruent).

¥ All sides are congruent by definition.

¥ All angles are right angles by definition.

FIGURE 6-5:
RHOM is a
rhombus.

ch

EXAMPLE

H
0
M
If a rhombus has sides of length 10 and one diagonal C
measuring 12, what’s the length of the other diagonal? 10 10
B Q D
10 10
A

The diagonals in a rhombus are perpendicular bisectors of each other, so if AC is 12, AQ
must be 6. AABQ is a right triangle, so you can solve for BQ with the Pythagorean
Theorem or by recognizing that AABQ is in the 3:4:5 family (see Chapter 4). Either
way, BQ is 8, and thus, BD is 16. But BD might be the diagonal that has a length of 12. If
that’s the case, then AC ends up being 16.
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Q. Given:  BORE is a rectangle
OB=DR=10

Find: The length of BE

B

E

A. na rectangle, the diagonals are congruent and they bisect each other, so because DR is
10, both diagonals are 20. You have right triangle BOE with a leg of 10 and a hypotenuse
of 20. You should recognize this figure as a 30°—60° - 90° right triangle (see Chapter 4)
where OB is x and BE is xv/3. BE thus has a length of 10v/3.

@ Given:  RECT is a rectangle R E
Find: xand y (x +20)°
) 18y
T C
Q Given: = MATH is a rhombus M A
Z(QMA measures 60°
HQis 8
Find: Measures of all sides and angles in AQAT
H T
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@ Given: HOBU is a rhombus

MB =RH
Prove: MO || RU

Note: You can do this proof in a few different ways.

Statements Reasons

@ Given:  ANGL is a rectangle

Find: X, Y, z, and AL
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@ Given: QRVT is a rhombus S

Prove: L= /2

Statements Reasons

Unearthing the Properties of Trapezoids
and Isosceles Trapezoids

I bet you’re dying to add to your list of properties, so here you go: Last but not least, the
trapezoid and the isosceles trapezoid.

Properties of the trapezoid:

REMEMBER 3 The bases are parallel by definition.

3 Each lower base angle is supplementary to the adjacent upper base angle.

Properties of the isosceles trapezoid:

REMEMBER 33 The properties of a trapezoid apply by definition (parallel bases).

¥ The legs are congruent by definition.
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¥ The lower base angles are congruent.
3 The upper base angles are congruent.
¥ Any lower base angle is supplementary to any upper base angle.

¥ The diagonals are congruent.

Q R
Q. Given: ~ PQRS is an isosceles trapezoid with
bases PS and QR

EXAMPLE X

ZPQX is 85°
ZPSR is 75°

Find: ZQXR

A. Anisosceles trapezoid has congruent legs and congruent diagonals. Using those
congruent legs and diagonals and PS = PS, you get APQS = ASRP by SSS. /SRX is con-
gruent to Z/PQX by CPCTC, so ZSRX is 85°. The angles in APRS need to add up to 180°,
and you have 85° and 75° (£PSR) so far, so ZRPS has to be 20°. ZQSP is congruent
to ZRPS by CPCTC, so it’s 20° as well. The angles in APXS have to add up to 180°, so
ZPXS is 180 - 20 - 20, or 140°. Finally, ZQXR and £PXS are vertical angles, so ZQXR is
also 140°.

142

Given: QXJW is an isosceles trapezoid with bases Q_W and XJ X J

Prove: AQXZ = AWJZ

Statements Reasons
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@ Given:  ZOID is a trapezoid with bases ZD and Of (0] I

AZCD is isosceles with base ZD
Prove: ZOID is isosceles
Hint: Before beginning this problem, you may want to review the

ten strategies for proofs in Chapter 16. Three of the strategies are Z D
especially helpful for this problem.

Statements Reasons

Proving That a Quadrilateral Is a
Parallelogram or a Kite

In the previous few sections, you can find the definitions of the various quadrilaterals and their
properties. In this and the next section, “Proving That a Quadrilateral Is a Rhombus, Rectangle,
or Square,” you move on to proving that a specific quadrilateral is of a particular type. These
three things (definitions, properties, and methods of proof) are related, but there are important
differences among them.

You can always use a defining characteristic of a particular quadrilateral to prove that a figure
is that particular quadrilateral. For example, a parallelogram is defined as a quadrilateral with
two pairs of parallel sides, and you can prove that a quadrilateral is a parallelogram by showing
just that. With other properties, however, the process isn’t so simple.
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properties of a parallelogram is that its diagonals bisect each other, and proving that the diago-
nals of a quadrilateral bisect each other is one of the five ways of proving that a quadrilateral is

warning @ parallelogram. On the other hand, one of the properties of a rectangle is that its diagonals are
congruent; however, you can’t prove that a quadrilateral is a rectangle by showing its diago-
nals congruent because some Kkites, isosceles trapezoids, and no-name quadrilaterals also have
congruent diagonals.

‘ Some properties can be used as a proof method, but others cannot. For example, one of the

@ Ways to prove that a quadrilateral is a parallelogram: You have a parallelogram if

REMEMBER 33 Both pairs of opposite sides of a quadrilateral are parallel (reverse of definition).
¥ Both pairs of opposite sides of a quadrilateral are congruent (converse of property).
¥ Both pairs of opposite angles of a quadrilateral are congruent (converse of property).
¥ The diagonals of a quadrilateral bisect each other (converse of property).

¥ One pair of opposite sides of a quadrilateral are both parallel and congruent (note that
this is neither the reverse of the definition nor the converse of a property).

@ Ways to prove that a quadrilateral is a kite: You’ve got a kite if

REMEMBER 3% Two disjoint pairs of consecutive sides of a quadrilateral are congruent (reverse of
definition).

¥ One of the diagonals of a quadrilateral is the perpendicular bisector of the other (converse
of property).

N
Q. Given:  «ZNOT = ZBAD

\ 0 T
Z/DOA = LTAO
EXAMPLE
Prove:  DOTA is a parallelogram
D A\

B
Statements Reasons
1) «NOT = «BAD 1) Given.
2) OT || DA 2) If alternate exterior angles are congruent, then lines
are parallel.
3) ZDOA = Z/TAO 3) Given.
4) DO || AT 4) If alternate interior angles are congruent, then lines
are parallel.
5) DOTA is a parallelogram | 5) If both pairs of opposite sides of a quadrilateral are parallel, then
it is a parallelogram.
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Q. Given: Zl=./2 0
EXAMPLE LY bisects /GLF G F
1 Y 2
Prove: GOFL is a kite
A.
Statements Reasons
1) L1z 22 1) Given.
2) GL=FL 2) If angles, then sides.
3) LY bisects Z/GLF 3) Given.
4) LGLY = Z/FLY 4) Definition of bisect.
5) LO=10 5) Reflexive.
6) AGLO = AFLO 6) SAS (2,4, 5).
7) GO = FO 7) CPCTC.
8) GOFL is a kite 8) If two disjoint pairs of consecutive sides of a quadrilateral are
congruent, then it is a kite (Statements 2 and 7).
a Given:  DEAL is a parallelogram E A
0
/DEN = Z/ALO
Prove:  NEOL is a parallelogram
N
D L
Statements Reasons
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Given:  EMNA is a parallelogram E X
XE =RN and LE = IN y
Prove:  LXIR is a parallelogram
A R N

Statements Reasons

146

Do the same kite problem as the GOFLY example problem, but this time use the second kite proof
method instead of the first.

Statements Reasons
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@ Given:

Prove:

Diagram as shown
2 -3x-4)°

JKLM is a parallelogram (paragraph proof) - (6-y2°
(216 - 12y)°

[Ge+ D — 4)]°

Proving That a Quadrilateral Is a Rhombus,
Rectangle, or Square

©

REMEMBER

©

REMEMBER

REMEMBER

Note that when proving that a quadrilateral is a rhombus, rectangle, or square, you sometimes
go directly from, say, quadrilateral to rhombus or quadrilateral to square — like you do when
proving a quadrilateral to be a parallelogram or a kite. But at other times, you first have to prove
(or be given) that the quadrilateral is a particular quadrilateral. For example, some methods
for proving that a quadrilateral is a rhombus require that you know that the quadrilateral is a
parallelogram.

Ways to prove that a quadrilateral is a rhombus: You have a rhombus if

¥ All sides of a quadrilateral are congruent (reverse of definition).
¥ The diagonals of a quadrilateral bisect all angles (converse of property).

¥ The diagonals of a quadrilateral are perpendicular bisectors of each other (converse of
property).

¥ Two consecutive sides of a parallelogram are congruent.
¥ Either diagonal of a parallelogram bisects two angles.

¥ The diagonals of a parallelogram are perpendicular.
Ways to prove that a quadrilateral is a rectangle: You’ve got a rectangle if

¥ All angles in a quadrilateral are right angles (reverse of definition).
¥ A parallelogram contains a right angle.

¥ The diagonals of a parallelogram are congruent.
Ways to prove that a quadrilateral is a square: You have a square if

¥ A quadrilateral has four congruent sides and four right angles (reverse of definition).

¥ A quadrilateral is both a rhombus and a rectangle.
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Q. Given: ~ KNOT is a parallelogram. K N

ZTOK = ZNOK

EXAMPLE

Prove: KNOT is a rhombus

A T (0]
Statements Reasons
1) LTOK = ZNOK 1) Given.
2) KNOT is a parallelogram 2) Given.
3) KN Il TO 3) Property of a parallelogram.
4) LTOK = «NKO 4) Alternate interior angles are congruent.

5) £NOK = ZNKO

5) Transitivity.

6) NK = NO

6) If angles, then sides.

7) KNOT is a rhombus

7) If one pair of consecutive sides of a parallelogram is congruent,
then it is a rhombus.
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Given: QVST is a parallelogram
ZUQR = LUSR

Prove: QVST is a rhombus

Statements Reasons
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Solutions

@ For the lines to be parallel, you need the same side interior angles or the same side exterior
angles to be supplementary, according the interior- and exterior-angle theorems. Therefore,
these theorems give you the following pairs: angles 2 and 5 and angles 4 and 7 (the same-
side interior angles) and angles 1 and 6 and angles 3 and 8 (the same-side exterior angles).

Congrats if you saw that more answers are correct. If you recognize, for example, that angles
1and 7 are supplementary, you can prove m parallel to n. Why? Angles 6 and 7 are congruent
vertical angles, right? So, if angles 1 and 7 are supplementary, angles 1 and 6 have to be sup-
plementary as well. Then the theorem tells you that the lines are parallel. By the same logic,
the following supplementary pairs also allow you to prove the lines parallel: angles 2 and 8,
angles 3 and 5, and angles 4 and 6.

@ The two angles on the top are vertical angles; thus, because all vertical angles are congruent,

6x—-40=4x+10
2x =50
x=25

Plugging x =25 into (6x — 40)° gives you 110° for that angle.
Plugging x = 25 into (V4x +60)° gives you 70° for that angle.

Because those two angles are same-side exterior angles, they have to be supplementary for
the lines to be parallel. 110° and 70° sum to 180° so, yes, the lines are parallel.

Warning: When working on a problem that has more than one transversal, make sure you use
only one transversal at a time when using the theorems to compare various angles. For exam-
ple, the theorems tell you nothing about how angles 4 and 11 compare to each other because
those angles use two different transversals. Ditto for angles 2 and 10.

Here goes. The 50° angle and £10 are corresponding angles, so 10 is also 50°. Next, angles 10
and 11 have to add up to 80°, because together they form an angle that’s supplementary to the
100° angle. That makes ~11=30°. Because the x* — x angle and /11 are alternate exterior
angles, they’re congruent, so x> — x = 30. Now you can solve for x:

x?-x=30

x?2-x-30=0

(x-6)(x+5)=30
x=6 or -5

Note that both 6 and -5 are valid answers. In geometry problems, you often reject negative
answers because segment lengths and angle measures can’t be negative. But here, plugging
-5 into (x2 - x)° gives you a positive angle (namely 30°), so -5 is a perfectly good answer.

The two radii are congruent, so APQR is isosceles (see Chapter 4). That makes ZQPR congru-
ent to ZQRP. Then, to make the angles in APQR add up to 180°, ZQPR and ZQRP must each
be 35°.
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Because 7P and SR are congruent, you can add them to the congruent radii, making 7Q and
SQ congruent. Thus, the big triangle is isosceles with /T = £S. By the same reasoning as
before, /T and S are also 35° angles. Finally, #T and ZQPR are corresponding angles.
Because they’re both 35°, the lines have to be parallel.

@ Statements

1) BL bisects ZQBP

Reasons

1) Given.

2) ZQBL = ZLBP

2) Definition of bisect.

3)BL Il JP

3) Given.

4) ZQBL= 2]

4) If lines are parallel, then corresponding angles are congruent (using
transversal Q/J).

5) ZLBP = /BPJ

5) Iflines are parallel, then alternate interior angles are congruent
(using transversal BP).

6) «J = /BPJ

6) Transitivity (2, 4, 5).

7) BP=BJ

7) If angles, then sides.

8) APBJ is isosceles

8) Definition of isosceles triangle.

Statements Reasons
1) RA=TI 1) Given.
2)RA I TI 2) Given.

3) ZDAR = /NIT

3) If lines are parallel, then alternate exterior angles are congruent.

4) DI = NA 4) Given.

5) DA=NI 5) Segment subtraction (subtracting Al from both segments).

6) ADAR = ANIT 6) SAS (1, 3,5).

7) £D = ZN 7) CPCTC.

8) DR Il TN 8) If alternate interior angles are congruent, then the lines are parallel.

@ One way to do these always-sometimes-never problems is to look at the quadrilateral family
tree and follow these guidelines:

@ .

TIP

If you go up from the first figure to the second, the answer is always.

® If you go down, the answer is sometimes.

® If you can make the connection by going down and then up (like from a kite to a rectangle
or vice versa), it’s sometimes.

® And if the only way to make the connection is by going up and then down, the answer is

never.
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Here are the correct answers to problem 7:
. Sometimes

a
b. Sometimes (when it’s a square)

c. Never
d. Sometimes (when it’s a square)
e. Sometimes
f. Always
g. Sometimes
h. Sometimes (when it’s a rhombus)
i. Never
Statements ‘ Reasons
1) JOHN is a parallelogram 1) Given.
2) JO=NH 2) Definition of parallelogram.

3) «Jis supplementary to ZN 3

-

If lines are parallel, then same-side interior angles are supple-
mentary (using transversal JN).

4) JN =OH 4
5) ZH is supplementary to ZN 5

=

Definition of parallelogram.

-

If lines are parallel, then same-side interior angles are supple-
mentary (using transversal NH).

6) £J=/H 6) Supplements of the same angle are congruent.
@ Statements Reasons
1) MARY is a parallelogram 1) Given.
2) Draw AY (W would 2) Two points determine a line.
work as well)

3) MA | YR 3) Definition of parallelogram.

4) LMAY = ZRYA 4) If lines are parallel, then alternate interior angles are congruent
(using parallel segments MA and YR and transversal AY ).

5) AR || MY 5) Definition of parallelogram.

6) LMYA = ZRAY 6) If lines are parallel, then alternate interior angles are congruent
(using parallel segments AR and MY with transversal AY ).

7) AY =YA 7) Reflexive.

8) AMAY = ARYA 8) ASA (4,7, 6).

9) MA=RY 9) CPCTC.
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Statements Reasons

1) ATRI is isosceles 1) Given.

with base TR
2) TI=RI 2) Definition of isosceles triangle.
3) ZITR = ZIRT 3) If sides, then angles.

4) TRAP is a trapezoid with | 4) Given.
bases TR and PA

5)TR || PA 5) Definition of trapezoid.
6) £P = ZITR 6) If lines are parallel, then corresponding angles are congruent
(using transversal IP).
7) LA = ZIRT 7) Iflines are parallel, then corresponding angles are congruent
(using transversal IA).
8) LP=/A 8) Transitivity (3, 6, 7).
9) IP=1IA 9) If angles, then sides.
10) PT = AR 10) Subtraction (Statements 2 and 9).
11) TRAP is isosceles 11) Definition of isosceles trapezoid.

@ Statements Reasons

1) PCTR is a kite 1) Given.

2) PC =PR 2) Given.

3) TC=TR 3) Property of a kite (because PC = PR, the other disjoint pair of sides
must also be congruent).

4) TP bisects ZCTR 4) Property of a kite.

5) ZCTP = /RTP 5) Definition of bisect.

6) AT = AT 6) Reflexive.

7) ACAT = ARAT 7) SAS (3,5, 6).

8) LCAT = ZRAT 8) CPCTC.

Set the consecutive sides KI and 77 equal to each other (because, by definition, two pairs of
consecutive sides are congruent), and solve:

x+10=4x-5
-3x=-15
x=5
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Plugging x =5 into the three sides gives you 5 + 10, or 15 for KI; 4(5) — 5, or 15 for TI; and
6(5) -5, or 25 for KE. TE must be congruent to KE so it also measures 25.

But wait! There’s another possibility. Don’t forget — figures don’t have to be drawn to scale.
KI and KE could be a congruent pair of sides with 77 and 7TE the other congruent pair. Thus,

x+10=6x-5
-5x=-15
x=3

Doing the math with x = 3 gives you the following equally valid set of lengths:

KI =KE =13
TT1=TE =7

@ Consecutive angles in a parallelogram are supplementary, so
x%+(130 -5x)=180

This is a quadratic equation, so set it equal to zero and solve by factoring (you can also use
the quadratic formula, of course).

x2-5x-50=0
(x-10)(x+5)=0
x=10 or -5

Plugging x =10 into angles D and E gives you 100° for D and 80° for /E. ZG must also be
80°, and ZF is 100°.

But don’t reject x = —5 just because it’s a negative number. Plugging x = -5 into angles D and
E gives you another valid set of angles (albeit with measures way different from what the
angles look like in the figure): #D = /F =25° and ZE = ZG =155°.

@ Method 1

Statements ‘ Reasons

1) YZGH is a parallelogram 1) Given.

2) ZG =YH 2) Property of a parallelogram.

3) ZG || YH 3) Property of a parallelogram.

4) £GZA = Z/YHO 4) Alternate interior angles are congruent (using transversal ZH).
5) ZA= 5) Given.

6) AGZA = AYHO 6) SAS (2,4, 5).

7) YO =GA 7) CPCTC.
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Method 2

Statements Reasons
1) YZGH is a parallelogram 1) Given.
2) YZ = HG 2) Property of a parallelogram.
3)YZ Il HG 3) Property of a parallelogram.
4) £YZO = LGHA 4) Alternate interior angles are congruent (using
transversal ZH).
5) ZA = HO 5) Given.
6) ZO =~ HA 6) Subtraction.
7) AYZO = AGHA 7) SAS (2, 4, 6).
8) YO = GA 8) CPCTC.
@ Method 1 (Using ANLO and ARPS)
Statements ‘ Reasons
1) NQRM is a parallelogram 1) Given.

2) Property of a parallelogram.

3) Alternate interior angles are congruent.

4) Given.

5) Property of a parallelogram.

6) ASA (3,4, 5).

7) CPCTC.

)
)
)
4) NO=RS
)
)
)
)

Method 2 (Using ALMS and APQO)
Statements

1) NQRM is a parallelogram

8) Subtraction (subtracting OS from LO and PS).

‘ Reasons

1) Given.

2) NM || QR 2) Property of a parallelogram.
3) LL= /P 3) Alternate interior angles are congruent.
4) NQ | MR 4) Property of a parallelogram.
5) ZLSM = ZPOQ 5) Alternate exterior angles are congruent.
6) NO=RS 6) Given.
7) NO = MR 7) Property of a parallelogram.
8) Q0 = MS 8) Subtraction.
9) ALSM = APOQ 9) AAS (3,5, 8).
10) SL=OP 10) CPCTC.
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You have a rectangle, so ATEC is a right triangle. Its angles have to add up to 180°, so because
ZC is aright angle, the other two angles add up to 90°. Thus,

(x=18)+(x+20)=90
2x+2=90

2x =88

x =44

ZETC is thus 44 — 18, or 26, and because ZRTC equals 90°, that leaves 64° for /RTE:

y* =64
y=4
The diagonals in a rhombus are perpendicular bisectors of each other, so because HQ is 8,

AQ is also 8. The sides of a rhombus are equal, so AMAT is isosceles with base MT. The
base angles are congruent, so ZQTA, like ZQMA, is 60°. Because ZAQT is 90°, AQAT is a

30° - 60°—90° triangle. Its long leg, AQ, measures 8, so its short leg, TQ, is % (or %)
units long. The hypotenuse, AT, is twice that, or 16:;5 units long. (See Chapter 4 for info on

30°-60°—90° triangles.)

Statements Reasons

1) HOBU is a rhombus 1) Given.

2) BO = HU 2) Property of a rhombus.

3) BO | HU 3) Property of a rhombus.

4) LOBM = LUHR 4) Alternate exterior angles are congruent.

5) MB = RH 5) Given.

6) AOBM = AUHR 6) SAS (2, 4, 5).

7) LM = /R 7) CPCTC.

8) MO || RU 8) If alternate interior angles are congruent, then lines
are parallel.

The diagonals in a rectangle are congruent, and they bisect each other, so all four half-diag-
onals are equal. You need an equation with a single variable, namely

8x-14=4x+6
4x =20
x=5

Plugging that into 8x —14 (or 4x + 6) gives you 26 for the length of each half-diagonal. Thus,

2y +2=26 4z +10=26
2y =24 and 4z=16
y:12 z=4
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Finally, the length of diagonal LN is twice 26, or 52. You can then compute AL with the
Pythagorean Theorem, or — if you’re on your toes — you recognize that AANL is in the
5:12:13 family (see Chapter 4). AN is 20 (which is 4-5) and LN is 52 (which is 4-13), so AL is

4 times 12, or 48.

Statements

1) QRVT is a rhombus

‘ Reasons

1) Given.

2) 17) is the per_pendicular
bisector of RT

2) Property of a rhombus.

3) SR= ST 3) If a point is on the perpendicular bisector of a segment,
then it is equidistant from the endpoints of that segment
(equidistance theorem).

4) RV =TV 4) Property of a rhombus.

5) SV =SV 5) Reflexive.

6) ARSV = ATSV 6) SSS (3,4, 5).

7) L1= /2 7) CPCTC.

Statements Reasons

1) QXJW is an isosceles trapezoid with | 1) Given.

bases QW and XJ

2 Q_X;VITJ

2) The legs of an isosceles trapezoid are congruent.

) WX=QJ

3) The diagonals of an isosceles trapezoid are congruent.

4 Q_W;W_Q

4) Reflexive.

6) LOXW = LWJQ

6) CPCTC.

7) LQZX = LWZJ

7) Vertical angles are congruent.

)
)
)
5) AQXW = AWJQ
)
)
)

8) AQXZ = AWIJZ

Statements

1) AZCD is isosceles with base ZD

)
)
)
5) SSS (2, 3, 4).
)
)
)

8) AAS (7,6, 2).

Reasons

1) Given.

2) ZC =DC

2) Definition of isosceles triangle.

3) If sides, then angles.

)
)

3) £CZD = £CDZ
)

4) ZOID is a trapezoid with
bases ZDand O

4) Given.

5) oI | ZD

5) The bases of a trapezoid are parallel.

6) £CZD = £0IZ

6) Alternate interior angles are congruent (using
transversal ZI).

7) £CDZ = ZI0D

7) Alternate interior angles are congruent (using
transversal DO).

8) £0IZ = £IOD

8) Transitivity (6, 3, 7).

9) OC = 1IC

9) If angles, then sides.

10) £OCZ = zZICD

10) Vertical angles are congruent.

)
11) AOCZ = AICD 11) SAS (2,10, 9).
12) OZ = ID 12) CPCTC.
13) ZOID is isosceles 13) Atrapezoid with congruent legs is isosceles.
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@ Statements Reasons

1) DEAL is a parallelogram 1) Given.
2) DE |l AL 2) Property of parallelogram.
3) ZEDN = ZLAO 3) If lines are parallel, then alternate interior angles are congruent.
4) DE = AL 4) Property of parallelogram.
5) ZDEN = ZALO 5) Given.
6) ADEN = AALO 6) ASA (3, 4, 5).
7) £4DNE = ZAOL 7) CPCTC.
8) EN |l OL 8) If alternate exterior angles are congruent, then lines are parallel.
9) EN = LO 9) CPCTC.
10) NEOL is a parallelogram | 10) If one pair of opposite sides of a quadrilateral are both parallel
and congruent, then it is a parallelogram.

@ Statements Reasons

1) EMNA is a parallelogram 1) Given.
2) LE=«N 2) Opposite angles of a parallelogram are congruent.
3) XE = RN 3) Given.
LE = IN
4) ALEX = AINR 4) SAS(3,2,3).
5) XL=RI 5) CPCTC.
6) EM = AN 6) Opposite sides of a parallelogram are congruent.
7) XM = RA 7) Subtraction.
8) EA = MN 8) Opposite sides of a parallelogram are congruent.
9) LA=IM 9) Subtraction.
10) /A= /M 10) Opposite angles of a parallelogram are congruent.
11) ALAR = AIMX 11) SAS (7,10, 9).
12) LR = IX 12) CPCTC.
13) LXIR is a parallelogram | 13) If both pairs of opposite sides of a quadrilateral are congruent, then
it is a parallelogram.

The first four steps of this proof are the same as in the example problem, so I pick up

with step 5.

Statements Reasons

5) AGLY = AFLY 5) ASA (1, 2, 4).

6) GY = FY 6) CPCTC.

7) OL is the perpendicular 7) If two points are each equidistant from the endpoints of a

bisector of GF segment, then they determine the perpendicular bisector of

that segment.

8) GOFL is a kite 8) If one of the diagonals of a quadrilateral is the perpendicular bisector
of the other, then the quadrilateral is a kite.
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I hope this odd problem didn’t give you an algebra panic attack. It’s not as bad as it looks.
The first thing you have to realize is that you don’t have to solve for x or y. In fact, solving
for the variables is impossible because you don’t have any information about the figure that
would allow you to write any equations.

First, multiply (x +1)(x —4); that’s x* — 3x — 4. This measure is the same as that of the other
x angle, so regardless of the value of x, those angles are congruent. Then, using congruent
vertical angles, you can show that ~JML is congruent to ZLKJ. Now for the y angles. First,
simplify y* - (6 — y)*. That’s y* - (36 — 12y + y*) =12y - 36. Then, because /MILK is supple-
mentary to the (216 —12y)° angle, the measure of ZMLK =180 - (216 —12y)=12y — 36. Thus,
Z/MLK is congruent to /KJM. You have two pairs of congruent opposite angles, and so you

have a parallelogram.

@ Statements

1) ZUQR = ZUSR

‘ Reasons

1) Given.

2) QR = SR

2) If angles, then sides.

4) VT bisects OS

4) Property of a parallelogram.

5 Q_U;@

5) Definition of bisect.

)
)
3) QVST is a parallelogram
)
)
)

6) VT is the perpendicular
bisector of QS

)
)
3) Given.
)
)
)

6) If two points are each equidistant from the endpoints of a
segment, then they determine the perpendicular bisector of
that segment.

7) QVST is arhombus

7) If the diagonals of a parallelogram are perpendicular, then it is
arhombus.
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IN THIS CHAPTER

» Determining the area of
quadrilaterals and regular

polygons

» Enjoying fantastically fun polygon
formulas

» Calculating diagonals and the
measures of angles

Chapter 7

Area, Angles, and the
Many Sides of Polygon
Geometry (No Proofs)

f you’re all proofed-out, you may enjoy this proof-free chapter. Here you work on problems

involving formulas for the area of various polygons, the sum of the interior and exterior

angles of a polygon, and the number of diagonals of a polygon. If you’ve always wondered
about how many diagonals an octakaidecagon has, you’ve come to the right place.

Square Units: Finding the Area
of Quadrilaterals

You might want to look back at the family tree of quadrilaterals in Chapter 6 — assuming you
don’t know it by heart — to remind yourself about which quadrilaterals are special cases of
other quadrilaterals. Doing so can help you with area problems because when you know, for
example, that a rhombus is a special case of both a parallelogram and a kite, you know that
you can use either the parallelogram area formula or the kite area formula when computing the
area of a rhombus.
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Without further ado, here are the area formulas for quadrilaterals.

@ Quadrilateral area formulas:

REMEMBER » Area Parallelogram — base - helght

1

» Areay;, = 5 diagonal, - diagonal,

1

5 diagonal?

» Areagqare = side?, or

base; + base,
2
=median - height

» Arear,apesoid = height

(The median of a trapezoid is the segment that connects the midpoints of the legs. Its length
equals the average of the lengths of the bases.)

Ready for more info about quadrilateral area formulas? Here’s a handy guide for the quadrilat-
erals that don’t have an area formula in the preceding list:

¥ For the area of a rectangle, use the parallelogram formula.
¥ For the area of a rhombus, use either the parallelogram or the kite formula.

¥ For the area of an isosceles trapezoid, use, of course, the trapezoid formula.

Q. What’s the area of parallelogram ABCD? B C

EXAMPLE 8

1355
A 20 D

A. Tip: For this and many area problems, drawing in altitudes and other perpendicular
segments on the diagram can be helpful. And — what often amounts to the same
thing — it’s a good idea to cut up the figure into right triangles and rectangles.

Draw the altitude from B to AD, and call the length of that segment h. ZA is supplementary
to «D (a property of parallelograms; see Chapter 6), so ZA is 45°. Thus, the altitude you
drew creates a 45° —45° —90° triangle. The hypotenuse, AB, is congruent to the opposite

side, CD, and therefore has a length of 8. Using 45° — 45° — 90° triangle math, h equals

% or 442 (see Chapter 4 for details). The area, which equals base - height, is thus 20 - 42,

or 80+2 units?.
B 6 C
m Q. Given:  Trapezoid ABCD with a base of 6, median -
PQ that’s 10 units long, and QD =5
10
EXAMPLE P Q
Find: Area of ABCD 5
A D
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A.

For this problem, you can use the trapezoid area formula that uses the median. You
know the length of the median, so all you need to compute the area is the trapezoid’s
height. To get that, first recall that the length of the median, PQ, is the average of the
lengths of the bases, so its length is halfway between them. Since BC is 6, or 10 —4, AD
must be 10 + 4, or 14. Next, draw an altitude from C to AD, creating a right triangle. The
length of its hypotenuse, CD, is twice 5, or 10, and the triangle’s base is 14 — 6, or 8. You
have a right triangle in the 3:4:5 family (namely a 6 — 8 - 10 triangle; see Chapter 4), so
the altitude is 6 (this has nothing to do, by the way, with the length of BC, which is
coincidentally also 6). Finally, the area, which equals median - height, is 10 -6, or

60 units®.

a Given:  Parallelogram PQRS with sides of 7 e Given:  Parallelogram GRAM as shown

Find:

and 10 and altitudes h, and h,

Find: GRAM’s area and height

The ratio h; : hy
R
AN
h )
'rl
10 S

Trapezoid WXYZ with a perimeter of @ The equation of this circle of radius 8 is
35 and an area of 55 x* + y? = 64. Estimate its area using the six

trapezoids and two triangles.

Find: h
Hint: Just calculate the areas of the three
X Y trapezoids and one triangle in quadrant I;
then multiply your result by 4.
6 'h 7

: 0.8 (2,7
1 Il /’Ai 4,7) I
| 61 6.7

W 4 41

2 4

80N |64 2] 2 4 6 /5.0

Il ~
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@ Given: Trapezoid JKLM with bases 10 and 18
and base angles of 60° and 30°

Find: Area of JKLM
K 10 L
60° 30°
J 13 M

e Given: Kite ABCD as shown, where AABC is
equilateral

Find: Area of ABCD

Hint: Use your drawing skills.

B
10
A C
13
D

o Find the area of rhombus RBUS

Hint: Just connect the dots.

B U

e Find the area of rhombus QRST

R S
z
Q T
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The Standard Formula for the Area
of Regular Polygons

REMEMBER

TIP

REMEMBER

Time to cut to the chase. Here’s the formula for the area of a regular polygon — but first, its
definition: A regular polygon is a polygon that’s both equilateral (with equal sides) and equian-
gular (equal angles).

Area of a regular polygon:

1 .
Areageg pory. = 5 perimeter - apothem

An apothem of a regular polygon is a segment joining the polygon’s center to the midpoint of
any side. It’s perpendicular to the side.

This area formula, A:%pa, is usually written A:%ap. These formulas are equivalent, of

course, so you can use either one, but the way I’ve written it helps you to think about what
you’re actually doing. This polygon formula is based on the formula for the area of a triangle,

1
A=3

polygon into congruent triangles and finding their areas. Since a polygon’s perimeter is the
counterpart of the triangles’ bases and a polygon’s apothem is the counterpart of the triangles’

bh, because when you find the area of a regular polygon, you’re essentially dividing the

heights, A= % pa is the logical way to write the formula.

Cutting up polygons can be a big help. As you can see in the following example problem, a
regular hexagon can be cut into six equilateral triangles, and an equilateral triangle can be
cut into two 30°-60° —90° triangles. For many area problems involving either a hexagon or an
equilateral triangle (or both), it’s often useful to cut the figure up and make use of one or more
30°-60°—90° triangles. If, instead, the problem involves a square or a regular octagon, adding
the right segments to the diagram produces one or more 45°—45°-90° triangles that may be
the key to the solution. In other polygon problems, cutting up the polygon into some combina-
tion of rectangles and these special triangles can help.

An equilateral triangle is a regular polygon, so to figure its area, you can use the regular poly-
gon formula; however, it also has its own area formula. To wit —

Area of an equilateral triangle:

s2V3
4

Area Equil. A =
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db Q. What’s the area of this regular hexagon with a radius of 8?
(Yep — that thing is called the radius.)

EXAMPLE

A. You can do this problem two ways, using both of the preceding area formulas.

First, draw in the other five radii, and you can see six congruent isosceles triangles.

The six angles at the center of the hexagon have to be 60° angles, because all the way
around the center is 360°, and 360° + 6 is 60°. An isosceles triangle with a 60° vertex
angle is an equilateral triangle, so you have six congruent equilateral triangles.

Method I: Now you can finish using the equilateral triangle formula:

58
4
823
4
=163

Area Equil. A =

You have six triangles, so the area of the hexagon is 6 - 16+/3, or 96+/3 units?.

Method II: Draw in the apothem from the center of the hexagon straight down to

the midpoint of the bottom side. That apothem cuts the equilateral triangle into two
30° - 60° — 90° triangles. These triangles have sides with ratios of 1:+/3 : 2 (see Chapter 4
for more on special right triangles). Each triangle has a hypotenuse of 8, and therefore,
a short leg of 4 and a long leg (the apothem) of 4v/3. The perimeter is 6 times 8, or 48,
so you’re all set to use the polygon formula:

1
Area Reg. Poly. = Epa

:%-48 43
=96~/3 units®

164 PART 3 Polygons, Proof and Non-Proof Problems



The span of this regular hexagon is 32. Find @ Find the area of a regular octagon with sides
its area. of length 10.

Hint: Cut up the octagon till you create one or
more useful 45° —45°-90° triangles.

10

More Fantastically Fun Polygon Formulas

The formulas in the preceding section are all about the area of polygons. They’re basically
meant to show you how much space a polygon takes up. The formulas in this section dive
deeper into the building blocks of polygons: the angles and diagonals that give different
polygons their unique characteristics.

Definitions of interior and exterior angles:

REMEMBER 33 An interior angle of a polygon is an angle inside the polygon at one of its vertices.

¥ An exterior angle of a polygon is an angle outside the polygon formed by one of its sides and
the extension of an adjacent side (see Figure 7-1).

Would you believe me if I told you that regardless of whether a polygon has three sides or a
million, the exterior angles of that polygon always add up to 360°? You’d better, because it’s a
fact. And that’s just the beginning of the polygon’s special properties.
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FIGURE 7-1:
ZEMI is an L
exterior angle
of quadrilateral
MILY. Vertical L

O
angle ZzOLM is E M Y A
not an exterior
angle of AAJL.
@ Interior and exterior angle formulas:

REMEMBER

¥ The sum of the measures of the interior angles of a polygon with n sides is (n—2)180.

(n-2)180 o 360
n n’

3 The measure of each interior angle of an equiangular n-gon is r 180 —

3 If you count one exterior angle at each vertex, the sum of the measures of the exterior
angles of a polygon is always 360°.

¥ The measure of each exterior angle of an equiangular n-gon is #

@ Number of diagonals in a polygon: The number of diagonals that you can draw in an
n(n-3)

n-gon is ——

REMEMBER

‘ Q. What’s the measure of one of the interior angles of a regular 22-gon, and how many

diagonals does it have?

A. » regular polygon is equiangular, so you can use either equiangular formula (in the
second bullet). The second version is probably easier to use unless you happen to
already know the sum of the interior angles (which is the numerator in the first
formula). Note that using the second version amounts to finding the supplement of
one of the polygon’s exterior angles.

EXAMPLE

Interior angle =180 — # Diagonals = n(n-3) n2— 3)
_1g0_ 360 ~22(22-3)
=180 9 - 5
~180-16-% =209
_163.7°
—16311
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e Given: = Hexagon TAYLOR with angles as
shown

ZATR =20

Find:

Find the number of sides in a polygon whose
interior angles add up to

a. 1080°
b. 7920°
c. (180x*+ 180)° (for some whole number x)

d. 825°

Find the sum of all exterior angles and, if you
have enough information, the measure of one
exterior angle in

a. An equiangular pentagon
b. Aregular 18-gon
c. Anicosagon (20 sides)

d. An equilateral 80-gon

How many diagonals can be drawn in a
triacontagon (30 sides)?

How many sides does a polygon have if it has
3 times as many diagonals as sides?

What’s the measure of one of the interior
angles of an equiangular polygon with
54 diagonals?
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Solutions

@ RS is congruent to PQ (property of a parallelogram; see Chapter 6), so RS is also 7. The area
of a parallelogram equals base - height, and, obviously, the area must come out the same
regardless of which base you use, PS or RS. Thus,

base, - height, = base, - height,

10h1:7h2
M _ T
h, 10

The ratio, h; : h, equals 7:10. Note that although you can determine the ratio of the heights,
determining h; or h, or the area of PQRS is impossible.

AM is 15, s0 AARM is in the 3:4:5 family of triangles. In fact, it is a 3—4 -5 triangle blown up
five times. RM is the long leg and is thus 4 times 5, or 20 units long.

Area 4y =base - height

=AM -RM
=15-20
=300 units?
GM is 25, so
Area sy = base - height
300=GM -h
300=25-h
12=nh

To get h, you need to use the trapezoid area formula, and to use the formula, you need the
sum of the lengths of the bases, XY and WZ. (Note that all you need is the sum; you don’t
need to know the lengths of the individual bases.)

XY +WZ+6+7=35

XY +WZ =22
Areayyy; = b ;bz -h
55:XY+WZ h
2
22
5522
55
ﬁ—h
5=h
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The heights of the three sideways trapezoids and the triangle in quadrant I are all equal to 2
(note that the heights run along the x-axis). You need the bases of the trapezoids and the
triangle to compute their areas, and their bases equal the y-coordinates at x =0, 2, 4, and 6.
When x is 0, y is 8, so that left-most base is 8. To find the other bases, plug the x-coordinates
into the equation of the circle. Thus, you find that

x*+y?=64 4%+ y* =64 6% +y*=64
22 +y? =64 y=43 y =27
y2=60
y=2v15

So the first trapezoid (between x = 0 and x = 2) has bases of 8 and 215, the second trapezoid
has bases of 2v/15 and 4+/3, and the third has bases of 43 and 2+7. The single triangle’s base
is 2+/7. Compute their areas, add them up, and then multiply that result by 4 (for the four
quadrants):

b +b
ArealstTrap: 12 2 -h AreaSrdTrap:w.z
78+2x/1_5.2 =43 + 247
- 2
=8+2V15 1
Area, = 5 base - height
2415 + 443 _1
AreaanTrap:T'z _52\/’72
=2JI5 + 443 =27

Total of four areas = (8 + 2v15 ) + (2v15 + 4v/3 ) + (4v3 + 247 ) + 247
=8 +4-15 + 83 + 47

Estimate of circle’s area =4(8 + 415 + 83 + 47)
=32+16V15 + 32v3 +16+7
~191.7 units®

In case you’re curious, the area of the circle is

Areacyqe =71’
=782
=64r
~201.1 units®

The estimate was a little less than 5 percent off.
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A good plan of attack here — like with so many polygon problems — is to cut the figure up
into right triangles and rectangles. Draw altitudes from K to JM and from L to JM, and call
their length h. On the left, you have a 30° - 60° —90° triangle with h as the long leg, so the

short leg (along JM) is % (because in a 30°-60° - 90° triangle, the ratio of short leg to long

leg is 1:v/3 — see Chapter 4 for details). On the right, you have another 30° - 60° —90°
triangle, but this time h is the short leg. The long leg (along JM) is thus h+3. KL is 10, so the
distance between the two altitudes along JM is also 10. So, you have three pieces along JM/
that add up to 18. Now you can find h:

Mo 10+nB =18

V3
B[ 104 nv3)=18-43
V3
h+10v3 +3h =183
4h=8V3
h=2v3
Now that you know h, simply plug it into the trapezoid area formula along with the given
bases:
Area./KLM = bl ;bz . h
_10 ; 18 983
= 28+/3 units?

@ Draw diagonal BD, which is the perpendicular bisector of AC, and label the intersection of the
diagonals X. Triangle ABC is equilateral, so AC is 10; thus, AX and XC are each 5. Triangle ABX
is a 30° - 60° — 90° triangle with a short leg of 5, so its long leg, BX, has a length of 53.
Triangle XCD is a 5-12-13 right triangle with XD equal to 12 (see Chapter 4 for more on
Pythagorean triples). Thus, BD has a length of 12 + 5v3. Finally,

1
2

1
—EAC~BD

AreaABCD = dldz

1
=510(12+5V3)
=60 + 25+/3 units?

Draw diagonal RU, which is the perpendicular bisector of BS, and label the intersection of the
diagonals X. That step creates a right triangle with a leg of 8 and a hypotenuse of 15. Careful
now — this is not an 8 —15-17 right triangle (remember, the hypotenuse is the longest side).
Use the Pythagorean Theorem to get XU:

XU? + XS? =US?

XU? + 8% =152
XU? =161
XU =161
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RU is twice XU because the diagonals in a rhombus bisect each other, so RU is 2v161; using the
kite formula,

1

AreaRBUS = Edldz
= 3162161
=16v161

£S and £T are supplementary (property of a parallelogram — see Chapter 6), so £S is 60°,
and ARSZ is thus a 30°—60° - 90° triangle with a long leg of 4. The short leg, SZ, therefore
measures i and the hypotenuse, ITS, is twice that, or & units long. All sides of a rhombus

V3 V3

are equal, so ST is also Nk This time, you use the parallelogram formula to get the desired
area:

Area g1 = base - height
=ST-RZ
8
=>4
V3
32
V3

~18.5 units?

If you slide the span up and to the right till it hits the center, you can see that the span is
twice the apothem, so the apothem is 16. And as you can see in the example problem, a
regular hexagon consists of six equilateral triangles, and its apothem is the altitude of one
of these equilateral triangles. See the following figure:

16
VAR I BV

This apothem is the long leg of a 30°—60°—90° triangle, so the short leg is %, and the
hypotenuse is twice that, or % (the ratio of sides in a 30°—60° — 90° triangle is 1: 3 : 2, see

Chapter 4 for details). And that hypotenuse is a side of the equilateral triangle. Each side of
the hexagon is, therefore, % and the perimeter is six times that, or E You’re finally

V3

ready to use the area formula:
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1
Area Reg. Poly. = Epa
1 192
L 12 46
2’5
_ 1536
V3

=512~/3 units?

Find the right lines to draw? Here they are:

10

10

The four triangles are 45°—45°-90° triangles with a hypotenuse of 10. These triangles have
sides with lengths in the ratio 1:1: V2 (see Chapter 4 for more information). The legs of the

45° —45°—90° triangles are thus %, or 5+2. So now you have
10
10
52
V2
10 >
10

Now add up all the pieces for your total area:
Area gcragon = 1 square + 4 rectangles + 4 triangles
2 1
~10° +4(10)(5v2) + 4( 5 |(5+2)(5+2)
=100 +4(50v2 ) +4(25)
=200 + 200~2 units®

TAYLOR is a hexagon, so the sum of its interior angles is (n—2)180=(6 —2)180 =720°.
Subtract the four known angles from this value: 720 — (170 + 95 + 161 + 100 ) = 194°. Then,
because the two remaining angles, ZATR and £O, are congruent, each must be half of 194°, or
97°. Finally, because /1 is the supplement of Z/ATR, /1=180-97 =83°.
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@ Here you go:

a. 180(n—2)=1080 c. 180(n—-2)=180x" + 180
n-2=6 n-2=x2+1
n=38 sides n=x%+ 3 sides
b. 180(n—2)=7920 d. 180(n-2)=825
n—-2=44 n—-2=4.58
n =46 sides n=6.58 sides

There’s no such thing as a polygon with 6.58 sides.
@ Here are the angle measures:

a. The total is 360°. One exterior angle is 360 + 5 =72°.

b. The total is 360°. One exterior angle is 360 + 18 = 20°.

c. The total is 360°. You can’t compute the measure of a single exterior angle because you
don’t know whether the icosagon is equiangular.

d. The total is 360°. The fact that the 80-gon is equilateral does not tell you whether it’s
equiangular, so you can’t figure the measure of a single exterior angle.

@ Number of diagonals = @

30(30-3)
T2
= 405

@ Number of diagonals = 3 - (number of sides)

n(n-3)
T_Bn

n?-3n=6n

n?-9n=0

n(n-9)=0
n=0or 9

There’s no such thing as a polygon with zero sides, so the answer is 9.

n(n-3
(2 ) _54
n*-3n=108
n*-3n-108=0
(n-12)(n+9)=0
n=12 or -9

So, you have an equiangular 12-gon; therefore,

One interior angle = 180° — %
. 360°
=180° -5~

=150°
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IN THIS CHAPTER

» Exploring similar polygons

» Proving triangles similar

» Looking at the corresponding
parts of similar triangles

» Breaking it down: Creating similar
triangles from a right triangle

» Using theorems about proportions

Chapter 8

Similarity: Size Doesn't
Matter (Including
Proofs)

hen two triangles, two rectangles, two pentagons, or two of any type of polygon

have the same shape (regardless of whether they have the same size), you say that

they’re similar —like if you take a figure and blow it up or shrink it down in a pho-
tocopy machine, the new image will be the same shape as (and thus similar to) the original.
Congruent figures are automatically similar, but when you do problems involving two similar
figures, you're usually dealing with two things of different sizes that have the same shape. The
squiggle symbol, ~, means is similar to.

In this chapter, you do problems involving similar triangles and similar polygons of more than
three sides. Similar polygons have proportional sides, so you also do many problems involving
proportions. Finally, you practice using theorems — some of which have nothing to do with
similarity — that, like similarity theorems, also involve proportions.
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Defining Similarity
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When you’re talking about similarity, you have to talk about the two defining characteristics
of similar figures.

@ Similar polygons: In similar polygons, both of the following are true.

REMEMBER 3% Corresponding angles are congruent. If objects of different sizes have the same shape,

their angles have to be equal. This idea is kinda obvious if you think about it. Imagine you
see something like a yield sign on the side of the road. It's a downward-pointing equilat-
eral triangle with three 60° angles. As you get closer, it looks bigger, of course, but regard-
less of how big or small it looks, the three angles are always 60° angles. If the angles were
to change to something other than 60°, the sign would no longer look like a yield sign. It
would've morphed into a different shape.

3 The ratios of the lengths of corresponding sides are equal. Say the front door of a house
is 7 feet tall and 3 feet wide and that the blueprint for the design of the house contains a
door measuring 2.1 inches tall by 0.9 inches wide. Because these two doors are similar rect-
angles, the ratio of their heights equals the ratio of their widths, and you get the following
proportion:

height real door width real door

helght blueprint door width blueprint door

7Tfeet  3feet
2.linches ~ 0.9 inch

Both sides of the second equation equal 40, which tells you that the real door is 40 times as
tall and 40 times as wide as the door shown in the blueprint (you have to convert all units to
inches or feet before calculating this). Such ratios or quotients represent the blow-up or
shrink factor, depending on which way you look at it.

Perimeters of similar polygons: The ratio of the perimeters of two similar polygons equals the
ratio of any pair of corresponding sides.

THEOREMS &

OSTULATES . iven: entagon ~ pentagon
P Gi p ABCDE VWXYZ

Perimeter of ABCDE is 18

EXAMPLE Find: 8 \
a. \Ww W
b. XY
c. Perimeter of VWXYZ v Z y
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A. 1nthe diagram, the two pentagons have the same orientation; in other words, A matches
up with V, B matches up with W, and so on. If you were to expand ABCDE a bit and slide
it over to the right, it would fit perfectly on top of VWXYZ. You wouldn’t have to rotate
it or flip it upside down to make it fit. But this isn’t always the case, so to make sure
you’re pairing up the correct vertices and sides, pay attention to the way the similarity
is written. When someone says ABCDE ~ VWXYZ, it means that A pairs up with V, B pairs
up with W, and so on, and that CD (the third and fourth letters) pairs up with XY (also
the third and fourth letters). Got it? Fantastic!

left SidevwxyZ _ tOpVWXYZ
left side ABCDE tOp ABCDE

w8
2 75

16
VW—€—3.2

right sideyyxyz _ topywxyz
rlght side ABCDE topABCDE

Xy _8
2 75

32
XY =5 =64

(Or you could just notice that the right side of ABCDE is twice as long as the left side, so
you can simply multiply VW by 2 to get XY.)

c. pel’imeteryw)(yz _ SideVWXyz

perimeterABCDE side ABCDE
perimeteryyxy; 8

18 5
perimeteryyyy; = % =28.8
° Given: ABCD ~ EFGH
Find: a. All missing angles

b. All missing sides
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e Given APQR ~ AZXY Y
Find: a. All missing angles
issi i 26.25 275
b. All missing sides 20 21
60° 55.6°
R X
e Given ABCDE ~ LMNOP
N
Perimeter of ABCDE is 30
Find: Perimeter of LMNOP M
E
60
B A L 50 P
e Given AABD ~ AACD
Find a. AD
b. DB
9
A 12 C
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Proving Triangles Similar

You have five ways to prove triangles congruent: SSS, SAS, ASA, AAS, and HLR (see Chapter 5).
Now you get three ways to prove triangles similar: SSS~, SAS~, and AA. The most frequently
used and by far the easiest to use is AA.

Proving triangles similar:

THEOREMSE 3% AA. If two angles of one triangle are congruent to two angles of another triangle, then the

triangles are similar.

¥ SSS~. If the ratios of the three pairs of corresponding sides of two triangles are equal, then
the triangles are similar.

¥ SAS-~. If the ratios of two pairs of corresponding sides of two triangles are equal and the
included angles are congruent, then the triangles are similar.

Q. Given:  /1=/3 U

EXAMPLE L2=24 L
Prove:  ABLO ~ AWUP 8
Find: wu 1 9 3 4
B 5 (0] w 8 P
A.
Statements Reasons
1) L1= /3 1) Given.
2) ZLBO = LZUWP 2) Supplements of congruent angles are congruent.
3) L2= /4 3) Given.
4) ZLOB = LUPW 4) Supplements of congruent angles are congruent.
5) ABLO ~ AWUP 5) AA (if two angles of one triangle are congruent to two angles of
another triangle, then the triangles are similar).

Now find WU. Piece o’ cake:

topawup _ base awup

topaso  basespo

wu_8
8 5
WU:%:IZ.S
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e

EXAMPLE

e

EXAMPLE

Given: = Diagram as shown M
Prove:  AMAR ~ ABLE (paragraph proof) f

No reason to bother with a two-column proof here. All you have to do is to show that all

three ratios of corresponding sides are equal, like this: % = % = % Check.

Thus, by SSS~, the triangles are similar. But you still have to show that the right verti-
ces pair up. One way to do this is to pick a vertex, like A, and note that it’s across from
the longest side of AMAR (16). So, it corresponds to L, which is across from the longest
side of ABLE (8). Then R and E correspond because both are across from the shortest
sides. Lastly, you have no choice, of course, but to pair M with B. Thus, AMAR ~ ABLE.

Given: U is the midpoint of RA R
G is the midpoint of RT

Prove:  ARUG ~ ARAT (paragraph proof)

T

Let’s skip the two-column mumbo jumbo again. (You can do this proof in two-column

format, but that involves all sorts of rigamarole like 1) U is a midpoint; then 2) RU = UA;

then 3) RU =UA; then 4) RU + UA = RA; then 5) RU + RU = RA; then 6) 2- RU = RA,;

then 7) % =2; and so on, and so on.) So, just use common sense instead. Because U
RU 1 RG 1

RA T G works the same way, so RT-% Thus,

Then, because /R = ZR, ARUG ~ ARAT by SAS~.

is the midpoint of RA, you know that
RU _RG
RA ~ RT
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e Given: Diagram as shown Q

Prove: APQR ~ ASTU (paragraph proof) S U
70° T
P R
e Given: AXRT is E)sceles with base XT and R
altitude RN
L= /2
G

Prove: AWGN ~ ATRN

Ju—
N

Statements Reasons

CHAPTER 8 Similarity: Size Doesn’t Matter (Including Proofs) 181



e Given:  Diagram as shown B F

a. Prove the triangles similar (paragraph proof) 13 9
b. Fill in the name of the triangle: 36 56
ABCD ~ A . H
G 14
C
52 D

Q Given: AT Il OY

Prove:  ABOY is isosceles (paragraph proof)
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e Given: ZFELP = /IPL L \Y% I
ZEPL = ZILP

V is the midpoint of L/

S is the midpoint of P

Prove: AVIS ~ APEL

Statements Reasons

Corresponding Sides and CSSTP — Cats Stalk
Silently Then Pounce

Actually, CSSTP stands for Corresponding Sides of Similar Triangles are Proportional. You can tell
this statement is true from the definition of similar polygons. And if you’ve done the preceding
problems, you’ve used this concept already when you had to calculate the lengths of the sides
of similar triangles and other polygons. What’s new here is using CSSTP in formal, two-column
proofs.

You use CSSTP on the line immediately after showing triangles similar, just like you use
CPCTC on the line after you show triangles congruent (for more on congruent parts of congru-
ent triangles, see Chapter 5).

TIP
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Q. Given: /T is supplementary to ZUAC P

EXAMPLE Prove: TP-AU = AP -TC

A. Tip: When you’re asked to prove that a product equals another product (like
TP - AU = AP - TC in this example proof), the proof likely involves similar triangles
(or perhaps — though less likely — one of the three theorems in the upcoming
section). So, look for similar-looking triangles that contain the four segments in
the prove statement.

Statements Reasons
1) ZT is supplementary to ZUAC 1) Given.
2) ZPAU is supplementary to ZUAC | 2) Two angles that form a straight angle are
supplementary.
3) LT = LPAU 3) Supplements of the same angle are congruent.
4) /P=/P 4) Reflexive Property.
5) ATPC ~ AAPU 5) AA (Statements 3 and 4).
6) 1P _TC 6) CSSTP.
AP AU
7) TP - AU = AP - TC 7) Means-Extremes Products Theorem (a fancy name for
cross-multiplication).
@ Given: ZJKL = Z/NML J K
Perimeter of AJKL is 27 6
- L
Prove:  MN = JL (paragraph proof)
16
8
M
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e Given: Z1= ZCBD C

Prove: (AD)*=(AB)(AC) with a paragraph proof

B
1
A D
@ Given: E and O trisect AS S
0 bisects RM
R o M I
/S = /ZMTI
Prove: RO -IT =MI -OF E
T
A H

Statements Reasons
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@ Given:  The triangles are similar @ Indicate whether statements a through f are
always true, sometimes true, or never true.

a. If AABC -~ ACBA, then AB = CB.
Note: Problems 13 and 14 are not CSSTP prob- b. If ZABC =~ /DEF, then AABC ~ ADEF.
lems — just more similar-triangle problems. c. 1f AMBC = ADEF, then AABC - ADEF.
If AABC ~ ADEF, then AABC = ADEF.

e. If AABC is aright triangle and ADEF is an
acute triangle, then AABC ~ ADEF.

f. If AABC and ADEF are both isosceles and
/B = /F, then AABC ~ ADEF .

Find: Measures of all angles

&

(x + 40)° x°

B E

Similar Rights: The Altitude-on-Hypotenuse
Theorem

If you use the hypotenuse of a right triangle as its base and draw an altitude to it — creating
two more, smaller right triangles — all three triangles are similar. Here’s the handy-dandy
theorem.
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Altitude-on-Hypotenuse Theorem: If an altitude is drawn to the hypotenuse of a right triangle
as shown in Figure 8-1, then

THEOREMS &
POSTULATES

¥ The two triangles formed are similar to the given triangle and to each other:
AACB ~ AADC ~ ACDB

» h®=xy

% a®=yc and b? = xc (note that this is really just one formula or relationship, not two. It
works exactly the same on both sides of the big triangle):

(leg of big A)* = (part of hypotenuse next to leg) - (whole hypotenuse )

C
b a
FIGURE 8-1: h
Three similar
right triangles X 171 Y
inone: Triple A D B
the pleasure, |
triple the fun. ! c I

hypotenuse diagram (like Figure 8-1), don’t assume that the problem must be solved with the
second or third part of the Altitude-on-Hypotenuse Theorem. Sometimes, the easiest way to

TP solve the problem is with the Pythagorean Theorem. And at other times, you can use ordinary
similar-triangle proportions to solve the problem.

Q. Use the figure to answer the following questions. R

a. 1f PQ=12 and QR =3, find QS, PS, and RS Q
b. If PR=13and RS =5, find PS, PQ, QR, and QS

There’s more than one way to peel an orange. When doing a problem involving an altitude-on-

EXAMPLE

A. Here's how this problem plays out:
a. From the second part of the theorem, h? = xy, so
(QS)*=(PQ)(QR)
=12-3
=36
QS =6
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From the third part of the theorem, a® = yc and b* = xc, so

(PS)*=(PQ)(PR)
=12-15
=180

PS =180
=65

and

(RS)*=(QR)(PR)
=3.15
=45
RS =45
=35

Of course, you could also get PS and RS with the Pythagorean Theorem.

b. PSis12 (you have a 5-12-13 triangle — see Chapter 4 for info on triangle families).
You can get PQ and QR using part three of the theorem:

(PS)* =(PQ)(PR)
122=pPQ-13
144
PQ:W

and

(RS)*=(QR)(PR)
52=0R-13
25
OR=13

Of course, you can just calculate one of these two lengths and then subtract it
from 13 (PR) to get the other.

Finally, you get QS with the second part of the Altitude-on-Hypotenuse Theorem
(or the Pythagorean Theorem):

(0S)*=(PQ)(QR)
-(13)(53)

_12%.57
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@ Use the figure to calculate these lengths: v
a. If JA=4and AY =9, find JZ and AZ
b. If JA=3 and JZ =5, find AY
c. IfJA=2andJY =8, find YZ

If AZ=8 and AY =10, find JY

e. If JZ=8andJY =12, find AY A

]

@ If RQ =5 and RS =10, find RT @ Find FL

Hint: You can solve this by using the last

two parts of the theorem, but there’s an 3
easier way. L G
R S
6\5
T F
Q
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Discovering Three More Theorems
Involving Proportions

v,
THEOREMS &
POSTULATES

WARNING

v,
THEOREMS &
POSTULATES

FIGURE 8-2:
Multiple
parallel

lines with
transversals.

In this last section, you practice using three more theorems that involve a proportion. The first
two are related to similar triangles.

Side-Splitter Theorem: If a line is parallel to a side of a triangle and it intersects the other two
sides, it divides those sides proportionally.

You can use the Side-Splitter Theorem only for the four segments on the split sides of the tri-
angle. Do not use it for the parallel sides. For the parallel sides, use similar triangle proportions.
(Whenever a triangle is divided by a line parallel to one of its sides, the small triangle created
is similar to the original, large triangle. This idea follows from the if two parallel lines are cut by a
transversal, then corresponding angles are congruent theorem [see Chapter 6] and AA.)

The theorem that shall not be named: If three or more parallel lines are intersected by two or
more transversals, the parallel lines divide the transversals proportionally. Consider Figure 8-2.

Given that the horizontal lines are parallel, the following proportions (among others), follow
from the theorem:

AB_PQ AC_WY PQ WX RS_¥Z
CD RS’ CD YZ' QS XZ' QR XY

A/ \P\w
o \s

./
C/ \R Y
D/ \s z
/ AN
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POSTULATES

EXAMPLE

The third theorem has nothing to do with similar figures. It’s in this section because it involves
a proportion.

Angle-Bisector Theorem: If a ray bisects an angle of a triangle, it divides the opposite side into
segments that are proportional to the adjacent sides.

When you bisect an angle in a triangle, you never get similar triangles (except when you bisect
the vertex angle of an isosceles triangle, in which case the resulting triangles are congruent
as well as similar). The fact that the Angle-Bisector Theorem is usually in the similar triangle
chapter in geometry books despite its having nothing to do with similar triangles may be one
reason students often fail to remember the theorem.

Don’t forget the Angle-Bisector Theorem. Whenever you see a triangle with one of its angles

bisected, you either have an isosceles triangle cut into two congruent triangles or a problem in
which you probably have to use the Angle-Bisector Theorem.

Q. Given that YA || DN, find LA L

A. By the Side-Splitter Theorem,

LY IA
YD ~ AN
2 LA
375
3.LA=10
10 1
LAZ?:gg
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EXAMPLE

Q. Given that AC =25 and FH = 36, find
BC, AB, IJ, GH, FG, and EF \ A E f I /

A. First, set up a proportion to find BC:

BC _JK
CD KL
BC 28

10

14

BC =20

Now, because AC is 25 (given), AB must be 5.

v
JK

I

58 =

AB

BC

5

20

=1

To get FG and GH, note that because the ratio KL : JK is 14:28 or 1:2, GH : FG must also
equal 1:2. So let GH = x and FG = 2x. Then, because FH =36 (given),

x+2x=36

x=12

Therefore, GH is 12 and FG is 24. Finally,

B _
G~

EF

24"

AB

BC

5

20

EF =6
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Q. Given:  AA bisects ZCAS A

EXAMPLE

Find: CH and HS

3 5
1
C H
. CH AC
A. By the Angle-Bisector Theorem, 7S = AS

If you set CH equal to x, HS is 4 — x. (You saw that CS is 4, right?) Now substitute:

x 3

4-x"5
S5x=12-3x
8x =12
12
X = ? =15
Thus, CH is 1.5 and HS is 2.5.
Warning: Don’t make the mistake of thinking that when an angle in a triangle is
bisected, the opposite side will also be cut exactly in half. You can see in this example
that side CS is not bisected. The opposite side often comes very close to being bisected
and it often looks bisected, but as a matter of fact, the opposite side is divided in half
only when you bisect the vertex angle of an isosceles triangle.
@ Given:  OI Il GN
a. Prove ARIO ~ ARNG (paragraph proof) N
b. Find IN and GN
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Find:

All avenues are parallel to one another.

1 of a mile from First Avenue to Fifth and 1 of a mile from

Along Washington Blvd., it’s 5 0

Third to Fourth.

Along Adams, it’s % of a mile from First to Third and from Third to Fifth.

Along Jefferson, it’s % of a mile from First to Fifth and % of a mile from First to Second.
All unknown distances between the avenues along Washington, Adams, and Jefferson,
and fill in the distances in the following figure. (I’ve started it for you on Washington and
Jefferson.) You need only the distances from one avenue to the next. In other words, you
don’t have to calculate the distance from Second to Fourth unless you need it to find one
of the smaller distances.

\ Fifth Ave.

Fourth Ave.
1 .
= mil

10 ™" \ Third Ave,

\ Second Ave.

% mile
First Ave.
Washington Blvd. Adams St. Jefferson St.
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Solutions

@ Here are your answers:

a. Corresponding angles of similar polygons are congruent, so finding the angles should be a
cinch:

® /FEH is 80° and thus, so is ZA
® /F=120°=4B

® /C=85=/G

® /GHE =75°=«D

® /GHD =105°
b. The ratio of the bases is %, so all the other ratios must also equal %:
FE_ S5 4 _5 GH _ 5
6 11 Then, BC 11 Finally 1011
_30 ’ 44 T 50
FE = I BC = = GH = 1

@ Here are the missing angles and lengths:

a. The angles in APQR must add up to 180°, so £Q is 64.4°. Now just pair up corresponding
vertices: P with Z, Q with X, and R with Y. Thus, /7 is 60°, /X is 64.4°,and /Y is 55.6°.

b. OR (second and t_hird letters) corresponds to XY (second and third letters) and PQ
corresponds to ZX, so

QR _PQ
XY 7ZX
21 _20
26.25  ZX
20-26.25
ZX—T—ZS

PR corresponds to ZY, so

PR 21
275 26.25
27.5-21
PR="9635 ~*
@ Did you notice the trick? The base AB does not correspond to the base LP. Base AB
corresponds to LM. So, the expansion factor is % =12, not % =10. Thus,

perimeter;,wop LM
perimeter popr  AB

perimeter yyop _ 60
30 5

perimetel’LMNOp =30-12=360
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@ And this is how problem 4 plays out:

a. From the way the similarity is written, you can see that AC (first and third letters in
AABC) pairs up with AD (first and third letters in AACD) and that BC pairs up with CD.
This gives you the desired proportion:

AD_
AC  BC
AD _6
12 9

72
AD7?78

b. Another way to see how things pair up is to redraw the triangles so they’re side by side
and in the same orientation. Like this:

A D A 12 C

You can see that AACD had to be flipped over to put it in the same orientation as AABC.

To get DB, you first need AB:

topaspe _ right side gupc

tOp AACD rlght side AACD

AB_CB
AC ~ DC
AB_9
12 " 6
108

Finally, you can see in the original figure that DB = AB - AD, so DB =18 - 8 =10.

@ You know that /R = /P by if sides, then angles (Chapter 5), so ZR is 70°. The angles in a
triangle add up to 180°, so £Q is 40°. You know /S and £T are also equal by if sides, then
angles, and together they must sum to 140°, so each is 70°. Because both triangles contain
a40° angle and a 70° angle, APQR ~ ASTU by AA.

After finding that ZQ is 40°, you could also finish by setting PQ and RQ equal to x and setting

PQ _RQ
ST —UT
And because ZQ = /T, APQR ~ ASTU by SAS-~.

ST and UT equal to y. That gives you (because % = %).
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@ Statements Reasons

1) AXRT is isosceles with base XT 1) Given.
2) XR=TR 2) Definition of an isosceles triangle.
3) ZNXR = ZNTR 3) If sides, then angles.
4) L1= /2 4) Given.
5) ZNXR = ZNWG 5) Supplements of congruent angles are congruent.
6) ZNWG = ZNTR 6) Transitive Property (Statements 3 and 5).
7) RN is an altitude 7) Given.
8) RN L XT 8) Definition of altitude.
9) ZGNW is a right angle 9) Definition of perpendicular.
ZRNT is a right angle
10) £GNW = ZRNT 10) Right angles are congruent.
11) AWGN ~ ATRN 11) AA (Statements 6 and 10).

@ Here’s how this problem unfolds:

a. All you have to check is whether

shortside,;, ' mediumside,; ’ longside,,

shortside,, =~ mediumside,, = long side,,
w2 o2 15
9 - 13 - 14
4 =4 =4. Check.

b. B and H correspond because each is across from a medium-length side. C and F correspond
because each is across from a long side. D and G are stuck with each other. Therefore,
ABCD ~ AHFG.

Because AT is parallel to OY, /BAT = /BOY by if parallel lines are cut by a transversal, then
corresponding angles are congruent (Chapter 6). Then, because both triangles contain /B,
ABAT ~ ABOY by AA. Similar triangles have proportional sides, so

BA _BT
BO  BY
S5 .5
BO  BY
5-BY =5-BO
BY =BO
Thus, BY =BO
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And, therefore, ABOY is isosceles.

After showing the triangles similar, you can also reason that any triangle similar to an isos-
celes triangle must also be isosceles, because if you take an isosceles triangle and shrink it or
expand it by some factor, the two equal sides remain equal sides.

@ Statements Reasons

1) V is the midpoint of LI 1) Given.
S is the midpoint of PI
2) yr= 1 LI 2) A midpoint divides a segment into two segments that are each
2 half as long as the original segment. (This reason is true, of
S/ = 1 Pl course, but | created this theorem to avoid having to go through
2 the rigamarole | referred to in the last example in this section.)
3y _1. S 1 3) Algebra.
LI 2 Pl 2
4) VI _SI 4) Substitution.
LI Pl
5) A=/ 5) Reflexive Property.
6) AVIS ~ ALIP 6) SAS~ (Statements 4 and 5).
7) ZLELP = ZIPL 7) Given.
8) LEPL = ZILP 8) Given.
9) APEL ~ ALIP 9) AA (Statements 7 and 8).
10) AVIS ~ APEL 10) Transitive Property for similar triangles.

The vertical angles are congruent and £JKL = Z/NML, so AJKL ~ ANML by AA. Their sides are
proportional; thus,

JL_KL
NL ~ ML
JL_6
16 8

96
JL—§—12

Next, JK has to be 9 to make the perimeter of AJKL add up to 27. Finally,

MY _ ML
JK KL
My _8
9 6
72
MN—F—IZ

MN and JL are both 12, so of course, MN = JL.
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@ You have to prove that a product equals another product — (AD)? is a product — so the tip in
the example problem about looking for similar triangles applies. Thus, you look for triangles
that contain AD, AB, and AC — namely AABD and AACD — and try to prove that they’re simi-
lar. You know that £1= ZCBD, so their supplements, ZADC and ZABD, are congruent. Both
triangles contain ZA, so AABD ~ AADC by AA. (Note the order of the vertices.) Now find a pro-
portion that contains AB and AC and that uses AD twice, and you’re done. Here it is:

medium side y4pp  long side \upp
medium side ,,pr long side \upc
AB _AD
AD AC
(AD)* =(AB)(AC)

@ Statements ‘ Reasons

1) E and O trisect AS 1) Given.

2) EO= SO 2) Definition of trisect.

3) O bisects RM 3) Given.

4) RO = MO 4) Definition of bisect.

5) ZROE = ZMOS 5) Vertical angles are congruent.

6) AROE = AMOS 6) SAS (2,5, 4).

7) £S = £ZMTI 7) Given.

8) LSMO = /TMI 8) Vertical angles are congruent.

9) AMOS ~ AMIT 9) AA (Statements 7 and 8).
10) AROE ~ AMIT 10) Substitution of AROE for AMOS (Statements 6 and 9).
11) RO _ OE 11) CSSTP.

Ml IT

12) RO -IT =MI - OF 12) Means-extremes (cross-multiplication).

The triangles are similar, so they must have three pairs of congruent angles according to the
definition of similar polygons. Thus, each triangle must contain angles with measures x,
x +40, and x + 50. These must add up to 180°, so

Xx+(x+40)+(x+50)=180
3x+90=180

3x=90

x=30

Thus, both triangles contain 30°, 70°, and 80° angles.

@ Here are the answers:

a. Always: You have only one triangle, so if AABC ~ ACBA, AABC must be congruent to ACBA
as well. (Otherwise, AABC and ACBA would be different sizes, which_is irn_possible.) Vertex
A (in AABC) corresponds to C (in ACBA) and B corresponds to B, so AB = CB.

b. Sometimes: With only one pair of congruent angles, the triangles might be similar, but
they don’t have to be.
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c. Always: Congruent triangles are automatically similar as well.
d. Sometimes: Similar triangles can be congruent, but they certainly don’t have to be.

e. Never: AABC contains a right angle. ADEF is acute, so it can’t contain a right angle. Thus,
the two triangles can’t have three pairs of congruent angles, and therefore, they’re not
similar. (For more info on types of triangles, see Chapter 4.)

f. Sometimes: The answer would be always if you were told that AC and DF are the bases of
these isosceles triangles, but the statement is only sometimes true because the triangles

could look like this:
B E
50° 50°
50° 80° 65° 65°
A C D F
& Don’t forget: You can’t rely on the appearance of the triangles in the figure and conclude, for
example, that AB = CB and DE = FE.

WARNING

@ Here are the lengths:
a. Using the third part of the Altitude-on-Hypotenuse Theorem,

(JZ)* =(JA)(JY)
=4-13
=52
JZ =52 =213 ~7.2

Then, using the second part of the theorem,

(AZ)? =(JA)(AY)
=4.9
=36
AZ =6

b. Using the third part of the theorem,

(J2)* = (JAY(JY )

52=3.JY
25 o1
JY:-B—:S§
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Thus,

AY =JY -JA
25
=3 -3
_16_

3 5

[SUE

Or, alternatively, first note that AZ =4 because AJAZ is a 3—4 -5 right triangle. Then fin-

ish with the second part of the theorem.

c. Using the third part of the theorem,

(YZ)? =(AY)(JY)
=6-8
=48
YZ =48 =43 ~6.9

d. Using the second part of the theorem,

(AZ)* =(JA)(AY)
82=JA-10

64

JA:E

=6.4

JY =JA+ AY
=6.4+10
=164

e. Using the third part of the theorem,

(JZ)* =(JA)(JY)
82=JA-12

JA:64

64 _c1

12_53

AY =JY -JA
12 51
~12-51

62
_63

The Pythagorean Theorem gives you QS:

(QS)*=(RQ)* +(RS)?
=5%+102
=125
QS =125 =55 ~11.2
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You can now get QT with the third part of the Altitude-on-Hypotenuse Theorem —
(RQ)*=(QT)(QS) — and then get RT with the Pythagorean Theorem. But you don’t
have to do all that. You can get RT directly with a proportion from similar triangles:

long leg,orr  hypotenuse oy

longleg,osr ~ hypotenuse ygsz

RT _RQ
RS~ 0OS
RT _ 5
10 545
10
RT=—==2J5~45
J5

@ Set FL equal to x, and then use the last part of the Altitude-on-Hypotenuse Theorem:

(FG)* =(FL)(FA)
(6v5)" = (x)(x +3)
180 = x% + 3x
x*+3x-180=0

Finish by factoring — (x +15)(x —12)=0 — or with the quadratic formula. (If you forgot the
quadratic formula, I don’t want to hear about it. But you can refresh your memory right
here.) Here’s what the quadratic formula looks like in action:

For an equation in the form ax” + bx + ¢ =0,

x_—bi\/b2—4ac

B 2a

_ -3+4/3% - 4(1)(-180)
- 2(1)

_ -3+/729

)

_-3+27

T2

=-15 or 12

FL can’t be negative, so FL is 12.

Here are the answers:

a. Because O/ || GN, ZROI = /RGN and /RIO = /RNG by if parallel lines are cut by a transversal,
then corresponding angles are congruent. Thus, ARIO ~ ARNG by AA. (You can also use
ZR = /R for one of the two pairs of congruent angles.)

Keep your eyes peeled for parallel lines. Whenever you see parallel lines in a problem
involving two or more triangles, the odds are good that some of the triangles are similar
(or maybe congruent).

TIP
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b. The Side-Splitter Theorem gives you IN:

RO _RI
0G ~IN
4 6
12°IN
4.IN =72
IN=18

For GN, did you fall for my trap? GN is not 12, though it sure looks like it should be. The
ratio of O : GN doesn’t equal the 4 :12 ratio of RO : OG. Remember, the Side-Splitter
Theorem doesn’t work for the parallel sides. To get GN, you have to use the proportional
sides of similar triangles RIO and RNG (RG = RO + OG, or 4 +12):

right side gy~ base ypyg

right side \gz0 base \zio

GN RG
0 ~ RO
GN 16
4 4
GN =16

Along Adams, the distance from First to Third equals the distance from Third to Fifth.
That’s a 1:1 ratio. According to the transversals theorem, that 1:1 ratio must also hold for
Washington and Jefferson.

The whole trip on Washington is half a mile, so you’d have to go 0.25 miles from First to
Third and from Third to Fifth. Because it’s 0.1 miles from Third to Fourth, Washington runs
0.25-0.1, or 0.15 miles, from Fourth to Fifth. The whole trip on Jefferson is 0.8 miles, so each

half trip is 0.4 miles. Subtracting the 0.25 miles along First to Second from 0.4 gives you 0.15
miles for the distance from Second to Third.

Now use the distances along Washington from Third to Fourth (0.1 miles) and from Fourth to
Fifth (0.15 miles) to get the corresponding distances along Adams and Jefferson. Along

Washington, you have a ratio of 0.1: 0.15, which equals 10:15, or 2: 3. Using that ratio on
Adams gives you

3
2x+3x7§
3

5X—§
w3

T 40

So, the distance along Adams from Third to Fourth (2x) is 2(4%) or f—o or 0.15 miles (that’s

three times in a row for 0.15 — what a bizarre coincidence! — I didn’t plan it that way).

From Fourth to Fifth (3x) is 3(4%), or 4%, or 0.225 miles.

The calculation works the same along Jefferson, so

2x+3x=04
5x=0.4
x=0.08
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So, the distance along Jefferson is 2(0.08), or 0.16 miles, from Third to Fourth, and 3(0.08),
or 0.24 miles, from Fourth to Fifth.

Finally, use the same method with the distances along Jefferson from First to Second (0.25
miles) and from Second to Third (0.15 miles) to get the corresponding distances along
Washington and Adams. The ratio along Jefferson is 0.25:0.15, which equals 5: 3. So, for
Washington, you have

5x +3x :%mile
8x —l mile
T4
X —i mile
32

32 32 32
Third. For Adams, you have

Thus, it’s 5(%) or > miles from First to Second and S(L) or 3 miles from Second to

5x +3x= % miles

X = 1 miles
T 64

So, the distance along Adams is é—i miles from First to Second and 6% miles from Second to
Third. That’s it. Finito!

Street Washington Adams Jefferson
Fourth to Fifth 3 015 3 0.225 6 (024
ourth to Fift 20(.) 40(. ) %(.)
Thirdto F h i01 i015 4 0.16
ird to Fourt 10(.) 20(.) %(.)
S d to Third 3 0.09375 9 0.140625 3 0.15
econd to Thir 32(. ) 64(' ) E(')
i S d 2 0.15625 15 0.234375 1 0.25
First to Secon 39 (0. ) 62 (0. ) Z( .25)
. 1 3 4
Total (miles) 3 (0.5) 7 (0.75) 5 (0.8)
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Circles, Proof and
Non-Proof
Problems



IN THIS PART . ..

Graduate to the infinity-gon (more commonly known as
the circle, which is really like a polygon with an infinite
number of sides).

Practice dozens of problems involving all sorts of nifty
circle concepts: the angle-arc theorems, the power
theorems, formulas for sectors, arc length, area,
circumference, and so on.



IN THIS CHAPTER

» Circle theorems that involve radii
and chords

» Finding congruent arcs, chords,
and central angles

» Going off on a tangent

Chapter 9

Circular Reasoning
(Including Proofs)

he circle is a paradox of sorts. In one sense, it’s the simplest of all shapes, but at the

same time, it’s rich in complexity and difficult, advanced ideas. Mathematicians have

been fascinated by its properties for well over 2000 years. For example, the ratio of a
circle’s circumference to its diameter — 7 ~ 3.14 — is one of the most important and often-
used numbers in all of mathematics.

In this chapter, you study several circle properties by doing proofs. All the proofs here involve
circles, but you also see many of the same ideas from earlier chapters like if angles, then sides
and CPCTC (both in Chapter 5).

The Segments Within: Radii and Chords

@ In this section, you do proofs involving radii and chords (including diameters).

REMEMBER 33 Radius: Nothing about a circle is more fundamental than its radius. A circle’s radius — the
distance from its center to a point on the circle — tells you its size. In addition to being a
measure of distance, a radius is also a segment from a circle’s center to a point on the circle.
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3 Chord: A segment that connects two points on a circle is called a chord.

3 Diameter: A chord passing through a circle’s center is a diameter of the circle. A circle’s
diameter, as I'm sure you know, is twice as long as its radius.

Here are five circle theorems for your mathematical pleasure (some are the converses of each
other).

THEOREMS &
POSTULATES

¥ Radii size: All radii of a circle are congruent (yet another well-duh theorem).
3 Perpendicularity and bisected chords:

If a radius is perpendicular to a chord, then it bisects the chord.

If a radius bisects a chord (that's not a diameter), then it's perpendicular to the chord.
3 Distance and chord size:

If two chords of a circle are equidistant from the center of the circle, then they're
congruent.

If two chords of a circle are congruent, then they're equidistant from its center.

If you’re looking for tips for completing circle proofs, you’ve come to the right place. Here are
a few that you can put to use in this section:

™ 1. Draw additional radii on the figure.

You should draw radii to points where something else intersects or touches the circle,
as opposed to just any old point on the circle.

2. Open your eyes and notice all the radii — including new ones you’ve drawn — and
mark them all congruent.

For some strange reason — despite the fact that all radii are congruent is one of the
simplest of all theorems — it’s very common for people to either fail to notice all the
radii in a problem or fail to note that they’re all congruent.

3. Drawin the segment (part of a radius) that goes from the center of the circle toa
chord and that’s perpendicular to the chord (and which, according to the previous
theorem, bisects the chord).

The purpose of adding radii and partial radii is usually to create right triangles or isosceles
triangles that you can then use to solve the problem.
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Q. Given:  Circle O X
EXAMPLE ﬁ = ﬁ
Prove: YO bisects /XYZ
X z
A.
Statements Reasons
1) CircleO 1) Given.
2) Draw OX and OZ 2) Two points determine a segment.
3) 0X =0Z 3) All radii are congruent.
4) XY =ZY 4) Given.
5) YO=YO 5) Reflexive.
6) AYOX = AYOZ 6) SSS (3,4, 5).
7) £LXYO = £LZYO 7) CPCTC.
8) YO bisects £XYZ 8) Definition of bisect.
0 Given:  Circle S Q
P R
Prove: PX =RX lX
S

Statements

Reasons
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a Use the figure from problem 1, but this time with the following information.
Given:  Circle S
OS LPR
Prove:  OS bisects ZPOR

Statements Reasons

e Given:  Isosceles trapezoid ISTR with bases ST and IR is inscribed in circle Q s~ T
Circle Q has a radius of 5

Find: The area of ISTR

IR
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@ Given: Circle K

AFLT = AAYT
KI 1L FY and KE | AL
Prove: KITE is a kite

Hint: Use two of the five theorems from this section.

Statements

Reasons

Introducing Arcs and Central Angles

@ Arcs, chords, and central angles are three peas in a pod.

REMEMBER »

»

Arc: An arc, as you may know, is simply a curved piece of a circle. Every chord cuts a circle
into two arcs: a minor arc (the smaller piece) and a major arc (the larger), unless the chord is
a diameter, in which case both arcs are semicircles.

Central angle: A central angle is an angle whose vertex is at the center of a circle. The two
sides of a central angle are radii that hit the circle at the opposite ends of an arc or, as math-
ematicians say, the sides intercept an arc. The measure of an arc is the same as the degree
measure of the central angle that intercepts it. (For more on arcs, chords, and angles that
intercept an arc, see Chapter 10.)

Congruent circles. Before I get into theorems, here’s one more (somewhat unrelated) defini-
tion: Congruent circles are circles with congruent radii.

REMEMBER
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I know how much you love theorems, so here are six more. But don’t sweat it — these six
theorems are really just six variations on one simple idea about arcs, chords, and central angles.

THEOREMS &
POSTULATES

3 Central angles and arcs:

If two central angles of a circle (or of congruent circles) are congruent, then their
intercepted arcs are congruent. (Short form: If central angles, then arcs.)

If two arcs of a circle (or of congruent circles) are congruent, then the corresponding
central angles are congruent. (Short form: If arcs, then central angles.)

3 Central angles and chords:

If two central angles of a circle (or of congruent circles) are congruent, then the
corresponding chords are congruent. (Short form: If central angles, then chords.)

If two chords of a circle (or of congruent circles) are congruent, then the corresponding
central angles are congruent. (Short form: If chords, then central angles.)

¥ Arcs and chords:

If two arcs of a circle (or of congruent circles) are congruent, then the corresponding
chords are congruent. (Short form: If arcs, then chords.)

If two chords of a circle (or of congruent circles) are congruent, then the corresponding
arcs are congruent. (Short form: If chords, then arcs.)

@ Q. Given: Circle S Q

/P=/R
EXAMPLE

Prove: ZPSQ = Z/RSQ

P ‘ R
S
A.

Statements Reasons

1) Circle S 1) Given.

2) ZP= /R 2) Given.

3) PQ=RQ 3) If angles, then sides.

4) £PSQ = ZRSQ 4) If chords, then central angles.

Short and sweet. Try doing this proof with congruent triangles instead. It should take
you three extra steps.
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e Given: Circle Q
AC =RS
Prove: AR =CS

Warning: Note that the first four theorems in this section
involve central angles (angles with a vertex at the center

of a circle) and that, therefore, they do not apply to the
angles in the figure to the right. (I cover angles like these in
Chapter 10.)

Statements Reasons

e Given: Circle Z
BA=CD

Prove: /B=/C

Statements Reasons
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o Given: Circle F = Circle U
MO = IR

Prove:  MIUF is a parallelogram

Statements Reasons

e Given: Circle I = Circle L
S is the midpoint of CK

Prove: CR Il EK

Statements Reasons
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Touching on Radii and Tangents

FIGURE 9-1:
Two wheels
that are
tangent to

the ground —
take a break
from geometry
and go

for aride.

THEOREMS &
POSTULATES

THEOREMS &
POSTULATES

FIGURE 9-2:
Both sides
of a dunce

cap are the

same length.

One of the important ideas in this section is related to something you’ve seen since you were a
little kid. Look at either wheel in the bicycle in Figure 9-1.

A line is tangent to a circle if it touches the circle at a single point. The important point for this
section is that the spoke that goes straight down from the hub in each wheel is perpendicular to
the ground. Geometrically speaking, the bicycle wheels are, of course, circles, the spokes are
radii, the single points where the wheels touch the ground are called points of tangency, and the
ground is a tangent or tangent line.

Tangent and radius perpendicularity: A tangent line is perpendicular to the radius drawn to
the point of tangency.

Don’t forget this important fact! You already know how important it is to notice that all radii in
a circle are congruent (and to sometimes draw in more radii). Now you can add this point about
radii (and tangents) to your list of critical things to remember: The right angle at the point of
tangency often becomes part of a right triangle.

Here’s one more fact about tangents before I go through a couple of example problems.

Dunce Cap Theorem: Two tangent segments drawn to a circle from the same point are
congruent. This is known (by me) as the Dunce Cap Theorem. See Figure 9-2.
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©

REMEMBER

WARNING

EXAMPLE

The first example and the first practice problem are called common-tangent problems, which
means a single line is tangent to both circles. The example involves a common external tangent
(the tangent lies on the same side of both circles). The practice problem involves a common
internal tangent (the tangent line goes between the two circles). The solution method is the
same for both.

First: Draw both the segment connecting the centers of the two circles and the two
radii to the points of tangency (if these segments haven’t already been drawn for you).

This is the critical step: From the center of the smaller circle, draw a segment parallel to
the common tangent till it hits the radius of the larger circle (or the extension of the
radius in a common internal tangent problem).

Finish: You now have a right triangle and a rectangle and can finish the problem with the
Pythagorean Theorem and the simple fact that opposite sides of a rectangle are congruent.

In a common-tangent problem, the segment connecting the centers of the circles is always
the hypotenuse of a right triangle and the common tangent is always the side of a rectangle.

In a common-tangent problem, the segment connecting the centers of the circles is never one
side of a right angle.

Q.

Given: ET is tangent to circle L and circle B
with radii as shown

The distance between the centers of the circles
is 25

Find: The length of the common tangent, ET

The segment connecting the centers of the two circles, as well as the two radii to the
points of tangency (step 1 in solving common-tangent problems), are already drawn for
you here. Draw the segment described in step 2 of the solution method (from the center
of the smaller circle, parallel to the common tangent). See the following:
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You can see that this new segment creates a rectangle and a right triangle. The opposite
sides of a rectangle are congruent, so the radius of 6 on the left gives you the 6 on the right.
The larger radius is 13, and 13 - 6 is 7, so you get 7 for the short leg of the right triangle. Its
hypotenuse is 25, so you have a 7 — 24 — 25 right triangle, and thus the long leg is 24 (see
info on Pythagorean triples in Chapter 3). Finally, the long leg of the triangle is also a side
of the rectangle, which is congruent to the opposite side, ET. ET is thus 24 as well.

e Given: IT is a common internal tangent of @ Given: Diagram as shown

circles S and L with radii as shown - e
WR, WL, TL, and TR are tangent to circle O
A distance of 5 separates the circles
Find: TR
Find: IT (Get it?)

O
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Game plan: You see a circle, so think radii, radii, radii! Draw in congruent radii Eand_ﬁ. You
also see an isosceles triangle, and, voila, you can use if angles, then sides to get PQ = RQ. Then
you can finish with the equidistance theorem (which first appears in Chapter 5).

Statements Reasons

1) Circle S 1) Given.

2) Draw SP and SR 2) Two points determine a segment.

3) SP= SR 3) All radii are congruent.

4) /P = /R 4) Given.

5) P_Q = R_Q 5) If angles, then sides.

6) QS is the perpendicular 6) If two points are each equidistant from the endpoint s of a

bisector of PR

segment, then they determine the perpendicular bisector of
that segment.

7) PX = RX

7) Definition of bisect.

@ Game plan: You see a circle, so what should you think? Yep, you got it: radii, radii, radii! Well,

sorry to disappoint you, but this is one circle problem where you don’t need to use extra radii
or congruent radii. But don’t let up with the radii mantra. It’ll serve you well.

You have a radius perpendicular to a chord, so the theorem tells you the chord is bisected.
You can use that fact, the right angles, and the Reflexive Property to get the triangles
congruent with SAS. Then you finish with — what else? — CPCTC (for more on congruent

triangles, see Chapter 5).

Statements
1) Circle S with QS L PR

Reasons

1) Given.

2) OS bisects PR

2) If aradius is perpendicular to a chord, then it bisects
the chord.

3) PX=RX

3) Definition of bisect.

4) ZPXQ is a right angle
ZRXQ is aright angle

4) Definition of perpendicular.

5) ZPXQ = /RXQ

5) All right angles are congruent.

6) OX = QX 6) Reflexive.
7) SAS (3, 5, 6).
8) ZPOX = /RQX 8) CPCTC.

)
)
7) APQX = ARQX
)
)

9) QS bisects ZPQR

9) Definition of bisect.
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Game plan: Radii, radii, radii, radii! That’s right — draw in four of em to I, S, T, and R (actually,
you need only two, but it’s probably easier to see how the problem works if you draw all four
of them; and in any event, when it comes to drawing radii, too many is better than too few).
Now you have two isosceles triangles, AIQR and ASQT (plus the two on the sides you’ll use
later). Next, draw in the altitudes of these triangles. See the following figure:

— 6 —

If a radius is perpendicular to a chord, it bisects the chord, so these altitudes bisect the bases
of the triangles. That makes IM equal to 4 and SN equal to 3. And that makes both AIMQ and
ASNQ 3 -4 -5 triangles (check out Chapter 4 for Pythagorean triples). Pretty sweet, eh? QM
is thus 3 and QN is 4, so NM is 7, and that’s the height of the trapezoid ISTR. You’re all set to
use the area formula (Chapter 7 provides info on calculating the area of quadrilaterals):
Areary,, = by ;bz -h
8+6
==
=77

=49 units?

7

Extra credit (well, maybe not exactly credit): Show that ASQI and ATQR are 45° — 45° —90°
triangles. You have two totally different ways of doing this. (This sure is a cool isosceles
trapezoid, isn’t it — the way it’s made up of four congruent 3 -4 -5 triangles and two
congruent 45°—45°—90° triangles.)

@ Abbreviated game plan: Why would you be given congruent triangles? It’s got to be so you
can use CPCTC. You should notice the perpendicular segments drawn to the chords and think
about how you could show the chords to be congruent. And you should, as always, also think
about what you need at the end of the proof (namely, the two pairs of congruent sides that
make a kite) and what you need to do to get there.

Statements Reasons
1) AFLT = AAYT 1) Given.
2) FT = AT 2) CPCTC.
3) LT =YT 3) CPCTC.
4) FY = AL 4) Segment addition.
5) KI LFY 5) Given.
KE 1 AL
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6) If chords of a circle (FY and AL) are congruent, then they
are equidistant from its center.

7) KI bisects FY
KE bisects AL

7) If aradius is perpendicular to a chord, then it bisects
the chord.

8) 1Y = EL 8) Like divisions. (Remember that? | knew you would. It's from
Chapter 3.)
9) IT ~ET 9) Segment subtraction (Statements 3 and 8).

10) KITE is a kite

@ Statements

10) Definition of kite.

Reasons
1) CircleQ 1) Given.
AC = RS
2) AC=RS 2) If chords, then arcs.
3) AR=CS 3) Subtraction (subtracting RC from both AC and I/R’TS‘).
4) AR =CS 4) If arcs, then chords.
@ Statements Reasons
1) Circle Z 1) Given.
BA =(CD
2) BA=CD 2) If chords, then arcs.
3) BD=CA 3) Addition (of AD).
4) BD=CA 4) If arcs, then chords.
5) AD = DA 5) Reflexive.
6) AABD = ADCA 6) SSS (1, 4, 5).
7) /B=/C 7) CPCTC.
@ Statements Reasons
1) Circle F = Circle U 1) Given.
MO=IR
2) ZMFO = ZIUR 2) If arcs, then central angles.
)y MF Il U 3) If corresponding angles are congruent, then lines are parallel.
4) MF =1U 4) Congruent circles have congruent radii (definition of

congruent circles).

5) MIUF is a parallelogram

5) If a quadrilateral has a pair of sides that are both parallel and
congruent, then the quadrilateral is a parallelogram.
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Statements Reasons

1) Circle I = Circle L 1) Given.
S is the midpoint of CK
2) CS=KS 2) Definition of midpoint.
3) CS = KS 3) If chords, then arcs.
4) ZCIR = ZKLE 4) Straight angles are congruent.
5) CSR = KSE 5) If central angles, then arcs.
6) SR=SE 6) Arc subtraction (subtracting congruent arcs from
congruent arcs).
7) SR=SE 7) If arcs, then chords.
8) ZCSR = ZKSE 8) Vertical angles are congruent.
9) ACSR = AKSE 9) SAS (2, 8, 7).
10) £C = ZK 10) CPCTC.
1M R I EK 11) If alternate interior angles are congruent, then lines
are parallel.

Egad! I just saw a much better and easier way of doing this proof. Despite all my years of
teaching geometry, I failed to follow my own advice about drawing in more radii. The
preceding proof is a good illustration of some of the theorems in this section, but when it
comes to proofs, the shorter the better. To wit —

Statements Reasons
1) Circle I = Circle L, S is the 1) Given.
midpoint of CK

2) CS=KS 2) Definition of midpoint.

3) Draw IS and LS 3) Two points determine a segment.

4) IS=1S 4) Congruent circles have congruent radii.

5) IC= 1K 5) Congruent circles have congruent radii.

6) AICS = ALKS 6) SSS (2, 4, 5).

7) £C = ZK 7) CPCTC.

8) CR Il EK 8) If alternate interior angles are congruent, then lines
are parallel.

I guess you’re never too old to learn.
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@ First, draw SL. The middle portion of SL is the distance between the circles, and you were
given that that distance is 5 units; therefore, SL is 8 + 5 + 12, or 25. Next, from the center of
the smaller circle, S, draw a segment parallel to IT till it hits the extension of radius 7L. Your
diagram should now look like this:

The segment you just drew, SR, creates a rectangle and a large right triangle. The rectangle
has opposite sides of 8. The right triangle has a leg of 8 + 12 = 20 and a hypotenuse of 25.
That’s in the 3:4:5 family of triangles, so SR is 15, and that makes IT 15. That’s it.

Set HT equal to x, and walk around clockwise. Both sides of a dunce cap are equal, so KT is
also x. KL is then 14 — x, as is AL. Next, AW is 24 — (14 — x), which is x + 10. UW is also x + 10,
and that makes UR equal to 18 — (x +10), or 8 — x. Finally, HR is also 8 — x, and because HT is x,
TR is (8 — x) + x, which is 8. That does it.

222 PART 4 Circles, Proof and Non-Proof Problems




IN THIS CHAPTER

» Coming full circle (not!): sectors
and segments

» Dealing with angles and their
intercepted arcs

» Powering up with power theorems

Chapter 10
Scintillating Circle
Formulas (No Proofs)

f you’re fully up-to-date on circle proofs, you’re ready to move on to some handy circle for-
mulas that help you calculate everything from area to arc length. In this chapter, you find
the area and the perimeter of various sections of a circle. You also discover the relationships

between angles whose vertices lie on, inside, and outside a circle and the intercepted arcs of
these types of angles.

Pizzas, Slices, and Crusts: Finding Area and
“Perimeter” of Circles, Sectors, and Segments

In this section, you work on problems involving the area and the circumference/perimeter of
circles and parts of circles. (By the way, if the word segment in the heading is throwing you,
you’re not alone. Segment is the name of a particular section of a circle, which I show you in a
minute. Don’t ask me why the bozo who coined this term had to confuse matters by reusing a
math term with another meaning.)
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To start things off, here are two theorems — one about the area of a sector and a related theo-
rem about the length of an arc. Don’t worry: Both theorems are based on a very simple idea
and are easier than they look. The mathematical examples following each of these theorems

theorems & correspond to Figure 10-1.
POSTULATES

¥ Arc length: The length of an arc (part of the circumference, like ;\T?) is equal to the
circumference of the circle (rrd) times the fraction of the circle represented by the arc.

mAB is 30°, so
Length -, = [%’?]ﬂd
30
= % “TT 18
1
=137 .18
=1.57

¥ Sector area: The area of a sector (a wedge shape, like sector AOB in Figure 10-1) is equal to
the area of the circle times the fraction of the circle represented by the sector.

360
:%.n.gz

= 6.757 units?

A _ mAB 2
I€asector AOB = nr

>

FIGURE 10-1:
A sector and
an arc that
make up
one-twelfth of
the circle.

ignore them. I don’t mean ignore the ideas; I mean you don’t need to memorize the theorems.
Your common sense should tell you that the length of AB in this example is one-twelfth of the

TIP circumference of circle O because 30° goes into 360° twelve times. Likewise, the area of sector
AOB is one-twelfth of the area of circle 0. When common sense suffices, why clutter your mind
with more formulas? Formulae, schmormulae.

; Common sense suffices. These two theorems are so simple, you may want to do what I do —
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Q. What’s the area and perimeter of the shaded region? (This shape is the one that the

aforementioned bozo decided to call a segment.)

EXAMPLE

A. The area of the segment, as you can see, equals the area of the sector minus the area of
the triangle. The sector measures 90°, so it’s one-fourth of the circle. Thus,

Areageor = %n’ -102

= 257 units?

The area of the triangle is a no-brainer because its base and height are both radii:

1
Area, = Ebh
1
= 5-10~10
=50
Thus,

Area Segment = AIl€Agector — Ar€A
= 257 — 50 units®

The perimeter equals the hypotenuse of the 45°—45°-90° triangle (which you can figure
out in your head, right? — if not, turn to Chapter 4) plus one-fourth of the circle’s cir-
cumference. To wit —

Perimetersegmens = hypotenuse + arc
=102 + % <207
=102 + 57
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Compute the area and perimeter of these
shaded segments made from chords of
length 6.

120° 90° 60°

a) b) c)

Compute the shaded areas in the following
figures. The inscribed polygons are regular,
and each circle has a radius of 10.

a) b) ©)

Compute the shaded areas in the figures. The
circumscribed polygons are regular, and each
circle has a radius of 10.

2
N/

a) ) 9

Compute the shaded area in the figure. The
equilateral triangle is inscribed in a circle,
and the three outer arcs are semicircles.

Angles, Circles, and Their Connections:
The Angle-Arc Theorems and Formulas

Look at the circle in Figure 10-2 with AC and ZABC.

Imagine that BA and BC are taut, elastic strings and that B is moveable. If you grab B and slide
it around the edge of the circle (not crossing over A or C), ZB always stays the same size even
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FIGURE 10-2:
For a given arc
(like ZE), no
matter where
you move the
vertex of an
inscribed angle,
the angle
measure
doesn't change.

THEOREMS &
POSTULATES

FIGURE 10-3:
Angles with a
vertex on
acircle.

THEOREMS &
POSTULATES

FIGURE 10-4:
An angle with a
vertex inside

a circle.

though the distances from B to A and from B to C change. Isn’t that cool? This and related ideas
are the subjects of this section.

B'

Angle on a circle: The measure of an inscribed angle (Figure 10-3a) or a tangent-chord angle
(Figure 10-3b) is one-half of the measure of its intercepted arc.

For example, in the circles from Figure 10-3, ZQ = % mPR and /Y = % mXY.

a) b)

70°

35°

Q 120°

60°

Angle inside a circle: The measure of a chord-chord angle is one-half the sum of the measures
of the arcs intercepted by the angle and its vertical angle.

For example, check out Figure 10-4: ZCED = %( AB + m@).

c
B
159 =< 65°
A
D
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Angle outside a circle: The measure of a secant-secant angle (Figure 10-5a), a secant-tangent
angle (Figure 10-5b), or a tangent-tangent angle (Figure 10-5c) is one-half the difference of the

tHeorems & IMeasures of the intercepted arcs.
POSTULATES

For example, in the circles in Figure 10-5, 4C=l(mXE—mBT)), LRzé( PAS—mQAS), and

2
X =5 (mWZY - mWY ).

A

a) b)
125°
B P
45°

40° Q

C D E o o
50° 60 100
R S

PN

W 250°
FIGURE 10-5:
Angles with a
vertex outside
acircle. X Y
Q. Given circle Q and secant-secant ZACE as shown, find mAE and mBD.

130°

EXAMPLE

A. Because the measures of the four arcs AE , ;\E, BB, and ED must add up to 360°, and
because mAB and mED add up to 210°, mAE and mBD must add up to 360°—210°, or 150°.
Now, set mAE equal to x. That makes mBD equal to 150 — x. ZC is outside the circle, so it
equals half the difference of the arcs:

1, — —
40:5( AE—mBD)
40=3x - (150 - x)]
80 = 2x — 150
230=2x
x=115

Thus, mAE is 115° and mBD is 150° — 115°, or 35°.
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Given the circle and angles as shown, find
the measures of angles 1, 2, and 3.

Diagram as shown, with AE tan-
gent to circle Q

/4B

@ Given: Circle C with a radius of 5
Find: XZ

Hint: You need to use one of the quadrilateral
area formulas.

Find:

Circle Q
ZMTE =80°
ZAMT =70°
/R
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The Power Theorems That Be

The figures here look a lot like those from the preceding section because both sections involve
angles drawn on the inside and outside of circles. But in this section, you’re not investigating
the size of the angles; you’re looking at the lengths of segments that make up the angles.

Chord-Chord Power Theorem: If two chords of a circle intersect, then the product of the
measures of the segments of one chord is equal to the product of the measures of the segments

mneorems e Of the other chord.
POSTULATES

For example, in Figure 10-6,

4.6=3-8

\/

FIGURE 10-6:
The Chord-
Chord Power
Theorem.

Tangent-Secant Power Theorem: If a tangent and a secant are drawn from an external point to
a circle, then the square of the measure of the tangent is equal to the product of the measures

theorems & Of the secant’s external part and the entire secant.
POSTULATES

In Figure 10-7,

62=4.9
5
FIGURE 10-7: 4
The Tangent-
Secant Power
Theorem. 6

Secant-Secant Power Theorem: If two secants are drawn from an external point to a circle,
then the product of the measures of one secant’s external part and that entire secant is equal to

tHeorems & the product of the measures of the other secant’s external part and that entire secant.
POSTULATES

For instance, in Figure 10-8,

3:-12=4.9
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3

FIGURE 10-8:
The Secant-
Secant Power
Theorem.

a product of two lengths (or one length squared). Each of the four lengths is the distance from
the vertex of an angle to the edge of the circle. Therefore, you can think of all three theorems
TP like this:

; All three of these theorems use the same mathematical idea. On both sides of each equation is

(vertex to circle) - (vertex to circle ) = ( vertex to circle)- (vertex to circle)

Pretty nifty, eh? It’s because of ideas like this that they pay me the big bucks.

Q. Given: = Diagram as shown

EXAMPLE Circle Q has a radius of 7
Find: AB and RD

Note: It’s difficult to see, but DE is a chord of circle
Q; RE is not tangent to the circle at D or E.

A. First, extend radius CQ into a diameter that hits the opposite side of the circle at a point
I call X. The diameter has a length of 14. Now use the Secant-Secant Power Theorem to
get AB:

RB-RA=RC-RX
6-RA=4-18
6-RA=T2

RA=12

AB is RA minus RB, so AB is 6.
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Finding RD is a bit trickier, but it’s no big deal. First, set RD equal to y. Then

RD -RE =RC - RX
y(y+1)=4-18
yi+y=172
yi+y-72=0
(y+9)(y-8)=0
y=-9 or 8

You can reject —9, so RD has to be 8.

o Given: Circle O has a radius of 5x +1 @ Given: Diagram as shown
OR=3x-1 EA is tangent to circle Q, which
NR=2x+8 has a radius of 1
RY =2x+4
Find: EA, EB, and the area of AEQD
Find: X
A
I
O 9
Y
N R
E \2 C D
E
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Solutions

@ To tackle these problems, you may need to review some triangle formulas from Chapter 4.

a. You need the radius. Draw the altitude of the triangle to the base of 6. The altitude bisects
the 120° vertex angle and thus creates two 30° — 60° — 90° triangles, each with a long leg
of 3. See the following figure:

60°

The short leg is % or V3, and the hypotenuse, therefore, is 2v3 — that’s the radius.
You’re all set:

AreaSegment = al€agector —area,
120° 2 1
:W'E(Zﬁ) —5(6)(6)
1

:577:12—3\/5

=47 — 3+/3 units?

You already have the base of the triangle, so the perimeter is a snap:
Perimeter =6 + 120° arc

1
—6+§7Td

1
=6+57(4V3)

473

=6+ 3

b. You have a 45°—45°—-90° triangle with a hypotenuse of 6, so the leg (which is the radius)
is i or 3+2. You're ready to go:

V2
AreaSegment = ar€asgecror — area,
90" 2 1
= 7(3v2) -5 -leg-le
360 ( ) 3 e87e8

:%n.ls—%(sﬁ)(:a«/i)

=457 — 9 units?
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Perimeter =6 + 90° arc
1
—6+Zﬂd
1
=6+57(62)

372

=6+ 5

c. The easiest of the three. You have an equilateral triangle, so the radius is 6 and the sector

takes up % of the circle:

AreaSegment = ar€agector — aAr€a
1 2y 6°V3

)58

=67 — 93 units?

Perimeter =6 + 60° arc
:6+é(7r 12)
=6+21

@ Here’s how this problem plays out.

a. Draw the apothem straight down to the base of the triangle (an apothem goes from the
center of a regular polygon to the midpoint of a side — see Chapter 7). Then draw the cir-
cle’s radius to one of the triangle’s lower vertices. You now have a 30°-60° —90° triangle.
The hypotenuse is the radius, so that’s 10, and the apothem is the short leg, so that’s 5.
The long leg is, therefore, 5+/3, and because that’s half the base of the triangle, the base is
10+/3 (see Chapter 4 for more on 30° —60° — 90° triangles). You know all you need to solve
the problem:

Shaded area = circle — equilateral triangle
2 32\/§
4
2
, (10v3)°V3
4

=r-10
=100z — 75+/3 units?

b. The radius is 10, and that’s half of the square’s diagonal, right? A square’s a kite, so use
the kite formula (Chapter 7):

Shaded area = circle — square

=nr’ _%(dl)(dZ)

T —%(20)(20)
=100z — 200 units®
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c. A regular hexagon is made up of six equilateral triangles (which you can read all about in
Chapter 7). The radius here is 10, so the legs of the six triangles are also 10.

Shaded area = circle — hexagon

=7r? - 6(area qui » )

102 g £
1
2
:100;1—6[1045]

=100z —150+/3 units?

@ Check out these solutions.

a. Because this problem is so similar to problem 2a, I’ll cut to the chase (though note that in
this problem, in contrast to 2a, the radius is now the short leg of a 30°—60° - 90° triangle).

Shaded area = triangle — circle

s°3
4

(2043)°V3

=) 70 1007

4
=300+/3 — 1007 units?

7 -10%

b. This one should be a no-brainer:
Shaded area = square — circle
=20% - 10
=400 — 1007 units®
c. Draw the apothem straight down, and draw a radius of the hexagon to one of its lower ver-
tices. You have yet another 30°—60° - 90° triangle. The apothem is the circle’s radius, so

it’s 10. That’s the long leg of the 30°—60° —90° triangle, so the short leg is & The short

V3
leg is half the length of one of the hexagon’s sides, so those sides are Nk and multiplying
that by 6 gives you the hexagon’s perimeter: @ or 40+/3. Use the formula for the area of

V3
a regular polygon (Chapter 6) for the hexagon.

Shaded area = hexagon — circle
1
=3 pa—1007x
1
=5(403)(10) - 100z
=200+/3 — 1007 units?

The shaded area is everything minus the circle. And everything is the equilateral triangle plus
the three semicircles. Thus,

Shaded area = triangle + 3 semicircles — circle
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The triangle has sides of 12, and the radius (r;) of each semicircle is 6, so you have everything
you need to finish except for the radius (r;) of the circle. You should be an expert at figuring
this out by now. Draw the apothem straight down and draw a radius to one of the triangle’s
lower vertices. That gives you a 30°-60° - 90° triangle. You can take it from there. You should
get a radius (hypotenuse) of 4+/3.

2
Shaded area = > f

+3(37()? )~ ()"
1223 1 2
== +3(§n-6)—n(4\/§)
=363 + 547 —48n
=36+/3 + 67 units?

Piece o’ cake.

@ Here’s how to find the angle measures.

1 —_—
=35°
One down, two to go. You have a few ways to finish from this point. Here’s one of them:

ZGLA is the supplement of /1, so it’s 145°. Then, because the angles of AGLA have to add up
to 180°, £3 is 15°. Two down, one to go.

mNL is twice /3, so it’s 30°. And so
1 — —_
£2=5(mNL+mAE
1
= 5(30 +70)
=50°
@ Right AADE has a hypotenuse of 20 and a leg of 10. That makes it a 30° - 60° - 90° triangle (see
Chapter 4 for more on special right triangles). You find that ZCAE is thus 30°. The measure of

tangent-chord ZCAE is half of its intercepted arc, AC, so mAC is 60°. Finally, the measure of
inscribed £B is also half of mAC, so that makes it 30°.

I have a feeling that this problem may have been trickier than this short solution suggests.

@ ZJXQ and £JZQ both intercept half the circle (a 180° arc), so each angle measures half of
180° — that’s 90° of course — giving you right £JXQ and right £J/ZQ. The diameter is
10 — that’s the hypotenuse — so legs XQ and ZQ are both 8 (the triangles are in the 3:4:5
family; see Chapter 4). Therefore, you have a 6 — 6 — 8 — 8 kite.

The area of the kite is twice the area of AJXQ, which is % -6-8, or 24. So the area of the kite is

48 units®. Now, finish with the kite area formula (from Chapter 7) and solve for the length of
diagonal XZ :
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1

Areag = 2d1d2
48:%(10)(XZ)
48=5(X2)
XZ:%, or 9.6

Note: After you get the 6 — 8 —10 right triangles, you could also finish with the Altitude-on-
Hypotenuse Theorem (see Chapter 7, which discusses similar triangles).

+AMF is inscribed in the circle, so mAF is twice LAMF ; thus, mAF is 140°. Then to get ZR you
just need the measure of ME:
ZMTE = 3 (mME + mAF )
1 —
80 = E(mME +140)

80=%m]l7E+70

mME = 20°
And then
1 —_ —_—
/R= E(mAF - mME)

1
= (140 -20)
=60°

@ You want to use the Chord-Chord Power Theorem:

(vertex to circle)- (vertex to circle ) = (vertex to circle) - (vertex to circle)

For that, you need expressions in x for the lengths of the four segments. You have two of
them: NR and RY. To get IR, you add 3x —1 to the radius of 5x + 1. That’s 8x. And RE is the
radius minus 3x — 1. That’s 2x + 2. Now you have what you need to use the theorem:
(2x+8)(2x+4)=(8x)(2x+2)
4x% +8x +16x + 32 =16x* + 16x
—12x%+8x+32=0 (Now divide both sides by —4)
3x*-2x-8=0
(3x+4)(x-2)=0

xzfg or 2

. 4 .
You can reject —3,S0XIs 2.

ACQD is an isosceles right triangle, which makes it a 45°—45°-90° triangle (see Chapter 4 for
more information). The legs are 1, so the hypotenuse, CD, is v2 units long. Now do the last
problem first. To get the area of AEQD, you need its height. So, draw the altitude of ACQD to
base CD. (This altitude of ACQD is also the altitude of AEQD.) This altitude cuts ACOD into
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two smaller 45°—45°-90° triangles. Each has a hypotenuse of 1 (the radius) and thus legs

(including the altitude) of % The rest is child’s play:

AreaAEQD = lbh

2
~2(2)(g)
=1 unit?

To get EA, use the Tangent-Secant Power Theorem:

(vertex to circle) - (vertex to circle ) = (vertex to circle)- (vertex to circle)
(EA)(EA)=(EC)(ED)
(EA)* =(V2)(2v2)
(EA)* =4
FA=2

You use the Tangent-Secant Power Theorem again to get EB. First, set EB equal to x. Don’t
forget that you always go from vertex to circle (not from vertex to center of circle), so you
need to use the whole diameter with a length of 2 that goes from B through Q to the other
side of the circle:

(vertex to circle ) - (vertex to circle ) = (vertex to circle ) - (vertex to circle)
(EB)(EB +diameter)=(EA)(EA)
(x)(x+2)=(2)(2)

x?+2x-4=0

Finish up with the quadratic formula (which I first use in Chapter 4):

24,22 -4(1)(-4)
N 2

X

Reject the negative answer, so EB is -1+ /5. Wasn’t that fun?
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3-D Geometry:
Proof and Non-
Proof Problems



IN THIS PART . ..

Practice problems involving the volume and surface
area of spheres, pointy-top figures (cones and
pyramids), and flat-top figures (cylinders and prisms).

Work with parallel planes and intersecting planes, and
revisit some of the triangle topics from Chapter 4, but,
this time, the triangles are standing up in the third
dimension.

Look at geometry from the practical viewpoint of where
things are, how far they are from other things, what
their orientation is, and so on.

Consider what happens to shapes when you spin them
around, slide them, or flip them over.



IN THIS CHAPTER

» Finding your feet: Where lines
meet planes

» Flying through spacein a
geometric plane

» Parallel pairings: And never the
twain shall meet

» Speeding through the intersection
of lines and planes

Chapter 11

2-D Stuff Standing Up
(Including Proofs)

any of the ideas in this chapter should be familiar to you: congruent triangles, CPCTC,

parallel lines, quadrilaterals, and so on. (If they’re not, take a look at Chapters 1

through 10.) What’s new about Chapter 11 is that some of the lines, triangles, and
quadrilaterals, instead of lying in a plane, are now standing up in three-dimensional space.

Lines Perpendicular to Planes: They're All Right

This section involves problems about lines that are perpendicular to planes. Lines like this can
come in handy, because they create right angles that are just begging for you to use them in
a proof.

Remember to look for all the right angles in the following problems; doing so can make the
proofs much easier.

REMEMBER
3 Plane: A plane is a flat, two-dimensional shape — you know, like a piece of paper — except

that it's infinitely thin and it goes on forever in all directions.

3 Perpendicularity of Line to Plane: A line is perpendicular to a plane if it's perpendicular to
every line in the plane that passes through its foot. (A foot is the point where a line intersects
a plane.)
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perpendicular to the plane.

THEOREMS &
POSTULATES

If a line is perpendicular to two lines that lie in a plane and pass through its foot, then it is

In short, when writing proofs, you use the definition to say if a line is perpendicular to a plane,

then it’s perpendicular to a line in the plane (that passes through its foot), and you use the theorem to
say if a line is perpendicular to two lines in a plane, then it’s perpendicular to the plane.

Q. Given: AB 1k

BEDC is a kite with BE = BC

EXAMPLE
Prove: AAED = AACD
R
Statements Reasons
1) AB Lk 1) Given.
2) AB 1L BE 2) If aline is perpendicular to a plane, then it is perpendicular
4B L BC to every line in the plane that passes through its foot

(definition of perpendicularity of a line to a plane).

3) ZABE is aright angle
ZABC is aright angle

3) Definition of perpendicular.

4) /ABE = /ABC

4) All right angles are congruent.

5) BE = BC

5) Given.

6) AB=AB

6) Reflexive.

7) AABE = AABC

7) SAS (5, 4, 6).

8) AE = AC 8) CPCTC.
9) ED=CD 9) Property of a kite.
10) AD = AD 10) Reflexive.

11) AAED = AACD

11) SSS (8,9, 10).
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e Given: BDLp B

AC bisects /BAD
Prove:  C is the midpoint of BD A{ C
D
D
Statements Reasons
e Given: VX L q
AVYZ is isosceles with base YZ
Prove: AXYZ is isosceles Z

Statements Reasons
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e Given: ST 1r

LTVU = ZTUV

Prove: £ZSVU = £SUV

Statements Reasons

@ Given:  Circle O in plane p
/AOZ and £ZBOZ are right angles
AB=BC

Prove: LAZB = /CZB

Statements Reasons
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Parallel, Perpendicular, and Intersecting
Lines and Planes

In the preceding section, all the figures contain a single line perpendicular to a single plane.
In this section, you move on to figures that involve multiple perpendicularity and/or multiple
planes and parallel lines. But first take a look at the four ways to determine a plane.

Determining a plane: Four different sets of geometric objects determine a plane:

THEOREMS & i i
THEOREMSS Three noncollinear points

In plain English, this statement just means that if you have three points not on one line,
then only one specific plane contains those points. The plane is determined by the
three points because they show you exactly where this plane is.

¥ Aline and a point not on the line
¥ Two intersecting lines

¥ Two parallel lines

For the most part, these are well-duh properties after you picture what the lines and planes

@ Check out the following properties about perpendicularity and parallelism of lines and planes.
would look like.

REMEMBER

3 Three parallel planes: If two planes are parallel to the same plane, they're parallel to
each other.

3 Two parallel lines and a plane:

If two lines are perpendicular to the same plane, they're parallel to each other.

If a plane is perpendicular to one of two parallel lines, it's perpendicular to the other.
3 Two parallel planes and a line:

If two planes are perpendicular to the same line, they're parallel to each other.

If a line is perpendicular to one of two parallel planes, it's perpendicular to the other.

And here’s one more point before getting to the problems:

Intersecting planes: If a plane intersects two parallel planes, the lines of intersection are
parallel.

THEOREMS &
POSTULATES
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@ Q. Given: GNLp G .

LE 1 p
EXAMPLE PR —

GN = LE p
N
Prove: NGLE is a rectangle E
A.
Statements Reasons
1) GN Lp 1) Given.
IE 1 p
2) GN |l LE 2) If two lines are perpendicular to the same plane, then they are

parallel to each other.

3) GN and LE determine

3) Two parallel lines determine a plane.

a plane, NGLE (You need this odd-looking step to ensure that NGLE is a planar
quadrilateral. Otherwise, it could be a weird, bent, four-sided
figure like a “rectangle” bent along one of its diagonals. It could
also be a “rectangle” with a curvy surface. Can you picture
these shapes?)

4) GN = LE 4) Given.

5) NGLE is a 5) If a quadrilateral contains a pair of sides that are both parallel
parallelogram and congruent, then the quadrilateral is a parallelogram.

6) GN L NE 6) If a line is perpendicular to a plane, then it is perpendicular to

every line in the plane that passes through its foot.

7) ZGNE is a right angle

7) Definition of perpendicular.

8) NGLE is a rectangle

8) A parallelogram with a right angle is a rectangle.

p
@ Q. Given: p |l g Re———35
EXAMPLE RT ” SU
Prove: RS=TU
q
T U
Statements Reasons
neilaqg 1) Given.
2)RT || SU 2) Given.
3) RT and SU determine | 3) Two parallel lines determine a plane. (You need this step before
a plane, RSUT you can use the theorem in Reason 4.)
4) RS I TU 4) If a plane intersects two parallel planes, then the lines of
intersection are parallel.
5) RSUT is a 5) If both pairs of opposite sides of a quadrilateral are parallel, then
parallelogram the quadrilateral is a parallelogram (definition of parallelogram).
6) RS =TU 6) Opposite sides of a parallelogram are congruent.
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e Given: sy /\I
AEIO is isosceles with base EO E q

Prove: AAIU is isosceles s \

Statements Reasons

e Give this problem a go:
a. Given: x|y %

MR || ED

MR LMD

Prove: MRED is a rectangle

Yes or No: IsﬁLy? y

Is MR 1 x?

b. Given: x|y
MR || ED
le

Prove: ED 1 x
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a.

Statements Reasons

b.

Statements Reasons

@ Given: GNLlp G L

EJ_p

GL=NE

Prove:  NGLE is a rectangle (paragraph proof) E

(Note the similarity of this problem to the first example. The one minor difference here makes this
problem much harder.)
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Solutions

@ Statements Reasons

1YBDLp 1) Given.

2) BD L AC 2) If aline is perpendicular to a plane, then it's
perpendicular to every line in the plane that passes
through its foot.

3) £BCA is aright angle 3) Definition of perpendicular.

«/DCA is aright angle

4) /BCA= /DCA 4) All right angles are congruent.

5) AC bisects ZBAD 5) Given.

6) /BAC = Z/DAC 6) Definition of bisect.

7) AC = AC 7) Reflexive.

8) ABAC = ADAC 8) ASA (4,7, 6).

9) BC = DC 9) CPCTC.

10) Cis the midpoint of BD 10) Definition of midpoint.

@ Statements Reasons

NVXLlg 1) Given.

2) VX LWZ 2) If aline is perpendicular to a plane, then it's
VX LWY perpendllcular to every line in the plane that passes
through its foot.

3) LVWZ is a right angle 3) Definition of perpendicular.
ZVWY is aright angle
4) AVYZ is isosceles with base Yz 4) Given.

5) VZ =VY 5) Definition of isosceles triangle.
6) VW = VW 6) Reflexive.
7) AVWZ = AVWY 7) HLR (5, 6, 3).
8) LZVW = LYVW 8) CPCTC.
9) VX =2VX 9) Reflexive.
10) AZVX = AYVX 10) SAS (5, 8, 9).
1) ZX =YX 11) CPCTC.
12) AXYZ is isosceles 12) Definition of isosceles triangle.
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@ Statements Reasons
1) ST Lr 1) Given.
2) ST LTV 2) If aline is perpendicular to a plane, then it's perpendicular
ST LTU to every line in the plane that passes through its foot.

3) £STV is aright angle
ZS8TU is aright angle

3) Definition of perpendicular.

4) £STV = £STU

4) All right angles are congruent.

5) LTVU = LTUV

5) Given.

6) TV =TU 6) If angles, then sides.
7) ST = ST 7) Reflexive.

8) ASTV = ASTU 8) SAS (6, 4, 7).

9) SV =SU 9) CPCTC.

10) £SVU = £SUV

10) If sides, then angles.

Statements Reasons
1) Circle O in plane p 1) Given.
ZAOZ and £BOZ are
right angles
2)0Z L p 2) If aline is perpendicular to two lines that lie in a plane and

pass through its foot, then it is perpendicular to the plane.

3) Draw radius oc

3) Two points determine a segment.

4) 0Z LOC

4) If a line is perpendicular to a plane, then it's perpendicular
to every line in the plane that passes through its foot.

5) LCOZ is aright angle

5) Definition of perpendicular.

6) LAOZ = LCOZ

6) All right angles are congruent.

7) OA=0C 7) All radii are congruent.

8) Z0=Z0 8) Reflexive.

9) AAOZ = ACOZ 9) SAS (7, 6, 8).

10) ZA= ZC 10) CPCTC.

11) Draw chords AB and BC 11) Two points determine a segment.
12) AB=BC 12) Given,

13) AB=BC 13) If arcs, then chords.

14) ZB=ZB 14) Reflexive.

15) AAZB = ACZB

15) SSS (10, 13, 14).

16) LAZB = ZCZB

16) CPCTC.

To find out more about arcs and circles, read up on them in Chapter 9.
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@ Statements Reasons

nsiy 1) Given.
2) IA and IU determine a plane, AEIOU | 2) Two intersecting lines determine a plane.
3) EO |l AU 3) If a plane intersects two parallel planes, then the lines
of intersection are parallel.
4) AFIO is isosceles with base EO 4) Given.
5) IE=10 5) Definition of isosceles triangle.
6) ZIEO = ZIOE 6) If sides, then angles.
7) ZIEO = ZIAU 7) If lines are parallel, then corresponding angles are
ZIOE = ZIUA congruent.
8) LIAU = ZIUA 8) Transitivity.
9) IA=IU 9) If angles, then sides.
10) AAIU is isosceles 10) Definition of isosceles triangle.

@ Here are the answers.

a. Statements Reasons
Nx |y 1) Given.
2) MR || ED 2) Given.
3) MR and ED determine 3) Two parallel lines determine a plane.
plane MRED
4) RE || MD 4) If a plane intersects two parallel planes, then the lines
of intersection are parallel.
5) MRED is a parallelogram 5) Definition of parallelogram.
6) MR 1. MD 6) Given.
7) ZRMD is a right angle 7) Definition of perpendicular.
8) MRED is a rectangle 8) A parallelogram with a right angle is a rectangle.

Answer to the Yes or No question: MR may or may not be perpendicular to plane y.
(Remember, to know that a line is perpendicular to a plane, you must know that it is
perpendicular to two lines in the plane that pass through its foot, not just one line. It’s
possible that MRED is slanting toward or away from you.) If MR is perpendicular to plane y,
it’s perpendicular to plane x as well. If it’s not perpendicular to y, it’s also not
perpendicular to x.
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b. Statements Reasons

x|y 1) Given.
MR || ED
MR ly
2)ED L y 2) If a plane is perpendicular to one of two parallel lines,

then it is perpendicular to the other.

3) ED 1 x 3) If aline is perpendicular to one of two parallel planes,
then it is perpendicular to the other.

‘ This proof begins just like the first three lines of the example proof: GN and LE are perpen-
dicular to p (glven) GN is parallel to LE (the two lines are perpendicular to the same plane),
and GN and LE determine plane NGLE.

Then you state that LE | NE, because if a line is perpendicular to a plane, the line is perpen-
dicular to any line in the plane that passes through its foot. And then you have that ZF is a
right angle (you can show that /N is a right angle the same way, but it doesn’t help). Okay,
so now you have a quadrilateral with two parallel sides (GN and LE) — call them bases —
where the other two sides are congruent and where one base angle is a right angle:

N

Now comes the tricky part.

Even though it’s obvious that NGLE must be a rectangle, I couldn’t find a way to prove it with
ordinary techniques. I drew in diagonals GE and NL, and I tried to use things like alternate
interior angles are congruent to get congruent triangles (see Chapter 6). I wanted to show that
GL |l NE or that /L is a right angle. Nothing worked. (If anyone out there finds a way to fin-
ish this proof with ordinary methods, please let me know about it.)

Here’s how I finished the proof. The only quadrilaterals with parallel bases in which the
other two sides are congruent are parallelograms and isosceles trapezoids (see Chapter 7).
Assume NGLE is an isosceles trapezoid. Its base angles would therefore be congruent, and
that would make /L a right angle. But if /F and /L were right angles, then NGLE would be a
rectangle, which contradicts the assumption (because a rectangle is not an isosceles trape-
zoid). Therefore, NGLE must be a parallelogram. This parallelogram has a right angle, and
therefore it’s a rectangle (one of the ways of proving that a parallelogram is a rectangle; see
Chapter 6). Bingo. That’s it.
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IN THIS CHAPTER

» Finding the surface area and
volume of cylinders and prisms

» Calculating the area and volume of
cones and pyramids

» Having a ball with spheres

Chapter 12

Solid Geometry: Digging
into Volume and Surface
Area (No Proofs)

hen working in flat, 2-D space previously in this book, I introduce lines and angles

and then move on to planar shapes like triangles and parallelograms. Now I delve

into more than just flat things. In this chapter, you can take a look at all kinds of
new and fun figures in the next dimension — cylinders, prisms, cones, pyramids, and spheres
(got your 3-D glasses handy?).

Starting with Flat-Top Figures

Flat-top figure is my nontechnical name for a cylinder or a prism. Both figures have — guess
what? — a flat top. This flat top is called a base, and it’s congruent to and parallel to the other
base at the bottom of the figure. I group prisms (whose bases are polygons) and cylinders together
rememeer because computing their volume basically works the same way; ditto for computing surface area:

3 Volume of flat-top figures. The volume of a prism or cylinder is given by the following formula:

VOlFlat-Top = area,. - height
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¥ Surface area of flat-top figures. To find the surface area of a prism or a cylinder, use the
following formula:

SApatop =2 - ar€apy,e + lateral area ecrangiecs)

The lateral area (that’s the area of the sides of the figure — namely, everything but the bases)
of a right prism is made up of rectangles. The lateral area of a right cylinder is basically one
rectangle rolled into a tube-shape — like one paper towel that rolls exactly once around a paper
towel roll. The base of this rectangle (you know, its length) is thus the circumference of the

cylinder.
m Q. A cylinder with a volume of 1257 units® has a height equal
to its radius. Find its surface area. -
EXAMPLE - | First, use the volume formula: h
Volpirop = areay,,. - height
1257 =nr®-h
1257 = zr® (because h=r)
r=5 (and, therefore, h=5)
Now you can compute the surface area:
SAparTop = 2 - r€a g + lateral area eciange
=2zr? +27r-h
=27-52+27-5-5
=507 + 507
=100z units®
° Find the volume and surface area of this e Find the volume and surface area of this
prism. prism, whose bases are equilateral triangles.

12
[
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Find the volume and surface area of a box 0 Answer the following:
(technically a prism) with a height of 2, a

. What’s the vol d surf. f
width of 2+/3, and a diagonal of 8. a at s the voume and surtace area ot a

cylinder with height and diameter both

equal to 4°?
B C
i *b. An ant crawls along the outside of the
: 23 9 cylinder from A to C. If the ant goes
; N straight across the top to B and then
Fivmrmaannas - D.__.. straight down to C, it goes a distance of 8.
’ 8 G Is there a shorter route? If so, what’s the
R shortest possible route, and how long is it?
H
A cylinder has a diameter of 6 and a lateral @ A cylinder with a height of 6 has a surface area
area of 60z. Find its volume and surface area. of 54x. Find its volume.

CHAPTER 12 Solid Geometry: Digging into Volume and Surface Area (No Proofs) 255



Sharpening Your Skills with Pointy-Top Figures

256

©

REMEMBER

Q. Find the volume and surface area of these
similar cones (that’s similar in the

EXAMPLE

Something tells me that you’ve already figured out that pointy-top figures are figures with
pointy tops. This is my nontechnical name for pyramids and cones. And just like with prisms
and cylinders, I group pyramids and cones together because computing volume basically works
the same for both — as does computing surface area:

3 Volume of pointy-top figures. The volume of a pyramid or cone is given by the following
formula:

1 :
Vol Pointy-Top = § aréapsse helght

¥ Surface area of pointy-top figures. The following formula gives you the surface area of a
pyramid or cone:

SA Pointy-Top — areapase + lateral areatriangle(s)

The lateral area of a pyramid is made up of triangles whose areas work just like the area of any

triangle: %base - height. But note that the height of a triangle is perpendicular to its base, so

you can’t use the height of the pyramid for the height of one of its triangular faces. Instead, you
use the slant height, which is just the ordinary height of the triangular face — if you look at the
face like an ordinary flat, two-dimensional triangle. (The cursive letter £ is used to indicate
slant height.)

Just like the lateral area of a cylinder is one rectangle rolled around into a tube-shape, the lat-
eral area of a cone is one triangle (sort of — its bottom is curved) rolled around into a shape like
a snow-cone cup. Its area works exactly like the area of one of the triangular faces of a pyramid,

%(base)(slant height ), where the base of this “triangle” (just like the base of the lateral rect-

angle in a cylinder) equals the circumference of the cone.

technical sense — see Chapter 8 for
more on similarity), one of which has
dimensions that are double the other.
What do you notice about the answers?
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A. Doing volume first,

1 .
VOlSmall Cone — § aréapsge helght

=%7rr2h

=%7z-32~4

=127 units®

1 5
VOlLarge Cone =3 T h

3

1 6.
—377:6 ]

=967 units®

The volume of the large cone is eight times the volume of the small one.

To find the cones’ surface areas, you need their slant heights. If you use the height of

a cone and one of its radii to form the legs of a right triangle, then the hypotenuse of the
triangle is the cone’s slant height. For the small cone in this problem, you havea3-4-5
right triangle, so the slant height is 5 (see Chapter 4 for more on Pythagorean triples).
In the large cone, the slant height is 10. Now you can compute their surface areas:

SA small cone =areay,s. + lateral triangle
(% base - height
A N
=xr? + %(circumference )(slant height)
=r? 4 2 (27)(5)

=9n+%(2n~3)(5)
=97 +157

=247 units?

SA Large cone = 1% + %(271’)’ )(slant height)

=7r-62+%(27r6)(10)
=367 +60r

=967 units?

The large cone has four times the surface area of the small cone. So, the large cone,
which is twice the size of the small cone, has eight (23) times as much volume and
four (2°) times as much surface area.
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See the rule? Here it is:

factor of k, its surface area grows k” times and its volume grows k* times.

@ The squaring and cubing rule for similar 3-D shapes. If you enlarge a 3-D figure by a

REMEMBER

A good way to remember this rule is to note the connection between the rule and the

fact that surface area is two-dimensional and is measured in unifs? and that volume is
three-dimensional and is measured in units®.

258

Find the volume and surface area of this
rectangular, right pyramid.

@ Find the volume and surface area of a regular
tetrahedron with edges of 6. (A regular tetra-
hedron is a pyramid with four equilateral
triangle faces.)

A
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The circumference of the base of a cone is 167, @ Try this one on for size:
and the cone’s height is 6. Find the cone’s
volume and surface area.

of the right-side cone?

—— o0 —

*a. Find the volume of this double cone, which
has a radius of 8 and a total height of 21.

b. If the lateral surface area of the left-side
cone is 80x, what’s the lateral surface area

Rounding Out Your Understanding
with Spheres

I’m running short on space, so I better cut to the chase:

REMEMBER 3% Volume of a sphere. The volume of a sphere is given by the following formula:

Volgphere = %nr 3

¥ Surface area of a sphere. Yada, yada, yada:

2
SA Sphere — 47'[7'
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db Q. How do the volumes of a cube and an inscribed sphere g
compare? How do their surface areas compare? TR
R
EXAMPLE . Lo \ R
A. checkitout: [ oAmmmTTTT B A 9%

v ]

4 SR

3 L . f

Volsphere :§7rr ; Sheooo- i i

3 B P
VOlCube :(27') ,'/ T 2
‘ r
=8r3
2r
~ard
VOlSphere _ 3
Volcype 8r?
_r
"6
~(0.52

Thus, if you buy, say, a basketball that comes in a box, the basketball takes up about
52 percent of the volume of a box. (I’'m sure you’ve been dying to know this.)
SASphere = 47'”'2
SA cube = 6 sides - (2r)*
=24r?

2
SASphere _ 4rr

S‘ACube 24r2

= % or about 52%

The very same percentage.

A cylinder with a radius of v5 and a height of @ The hemispherical (half-sphere) top of a

4 is inscribed in a sphere. Find the volume 50-foot-tall grain silo has a surface area of
and surface area of the sphere. 2007 square feet. How many cubic feet of
grain can the silo hold?

50 feet

260
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Solutions

For both the volume and surface area, you need the sides of the 30°—60°-90° triangle. Its
short leg is 6, so its long leg is 6v/3 and its hypotenuse is 12. You’re all set to go.

Vol =area,,,,. - height
1
=5(6)(6v3)-10
=183 -10
=180+3 units?

SA =2(area,, )+ three lateral rectangles
=2(18v3)+6-10+6v3 -10+12-10
=363 + 60 + 603 +120

=180 + 96~+/3 units?

@ All you need is the length of the base of the equilateral triangle. The triangle’s altitude is 6,
and that’s the long leg of a 30°—60° —90° triangle. The short leg is therefore % or 2v/3, and
the hypotenuse is twice that, or 4¥3 (see Chapter 4 for more on making this calculation). And
that’s the length, of course, of the sides of the equilateral triangle. Thus,

Vol =area,,,. - height
1
=5(4v3)(6)-12
=144+/3 units?®

SA =2.area,, + three lateral rectangles
=2(12v3) +3(12-43)
=24~3 + 1443
=168+/3 units?

Draw CH; that’s the hypotenuse of yet another 30°-60° - 90° triangle (ACGH). The length of
the short leg, CG, is 2, so CH is 4.

Now, note that ABCH is a right triangle with its right angle at C. One of its legs is 4 and its
hypotenuse is 8, so — hold onto your hat — ABCH is another 30° —60° —90° triangle. The
length of its long leg, BC, is the length of the short leg, CH, times +/3, so BC is 4+3. You have
what you need to finish:

Vol=[/-w-h (the same thing as area,,. - height)
=43 -2V3 -2
=48 units®
SA =(2-base)+(2-front)+(2-right side) (the same thing as 2- area,,, + lateral rectangles)
=2(43-243)+2(443-2)+2(243 - 2)
=2-24+2-8V3+2-4V3
=48 + 243 units®
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@ Here are the answers:

a. The diameter is 4, so the radius is 2; thus,

Vol =area,,,. - height
= (wr?)(h)
=(7-2%)(4)

=167 units®

SA =2-areay,. + lateral area (which equals circumference - height)
=2(nr?)+(2zr)(h)
=2(m-2%)+(27-2)(4)
=8r + 167

=247 units?

*b. This question is a great think-outside-the-box problem. Here’s the trick: Imagine divid-
ing the cylinder in half by cutting it along a plane that goes through A, B, and C and cuts
the base along the dotted diameter. Now take the front half of the lateral area, uncurl it,
and lay it flat. Here’s what you get:

A — 2 B

c

AB (in this rectangle, not across the top of the cylinder) has a length of half the circum-
ference of the cylinder. That’s 2z. The shortest path from A to C is straight, of course —
that’s AC, which is the hypotenuse of right AABC. Its length is

ct=a’+b?
4% 4 (2n)*
=16+ 4x°

¢ =\16+472 =24+ 1°
~74

That’s the shortest route; it curves along the outside of the cylinder, going diagonally down
from A to C.

You need the cylinder’s radius and height. The diameter is 6, so the radius is 3. To get the
height, you use the fact that the lateral area is a rectangle with an area of circumference -
height. So

607 =7 -diameter - height
607 =67h
10=h
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Thus,

Vol = area,, - height
=nrh
=7-3%.10

=907 units®

And

SA =2-area,, + lateral area
=27r® + 60z (this was given)
=27-3% +60x

=787 units®

You're given the surface area, so you have to begin with that formula:

SA =2-area,, + lateral rectangle
SA =27r? + 2xrh

Now plug in the given information:

547 =27r® + 271 - 6
547 =27 (r® + 6r)

27=r%+6r
r2+6r-27=0
(r+9)(r-3)=0
r=-9 or 3

You can reject —9, so r is 3. The rest is a walk in the park:
Vol = area,, - height
=nr’h
=7-3%.6
=547 units®
This cylinder is unusual and interesting because both the surface area and the volume are 54r.
(For extra credit: Do you see why I didn’t say that the surface area and the volume are equal?)

To get the surface area, you need the slant heights, the lengths of ZS and ZT. (Note that
because this is not a regular pyramid — a pyramid with a regular polygon as its base and
congruent lateral edges — these slant heights are not equal.) Then you use one of the slant
heights to get the pyramid’s height.

Keep looking for right triangles — that’s the key to problems like this. AASZ is a right trian-
gle with a leg of 5 (half of AB) and hypotenuse of 5v10, so
(ZS)* +(AS)? =(zA)?
(Z5)* +52=(5410)°
(Z8)* =225
Z5=15
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ABTZ is another right triangle, with a leg of 9 (half the length of BC):

(ZT)? +9% = (510’
(ZT)* =169
ZT =13

You’re all set to do the surface area:
SA pointy-Top = ar€ap,se + four lateral triangles

=10‘18+%(10)(15)+%(18)(13)+ %(10)(15) N %(18)(13)
left face front right (same as left)  back (same as front)

=180+75+117+75+117
=564 units?

For the volume, you need the height, ZN. Well, AZNS is a right triangle with a leg, SN, that
measures half of BC (so SN is 9) and a hypotenuse, 7S, that’s 15 units long. You can finish
with the Pythagorean Theorem, or if you’re on your toes, you’ll notice that this triangle is in
the 3:4:5 family and that ZN is thus 12.

1 .
Volume pyinty.rop = 3 area,,,. - height

1
=3 (10-18)-12

=720 units®

You can get the slant height, AE, fairly easily because AAEC is a 30° - 60° - 90° triangle. The
short leg, CFE, is 3 units long, so AE is 3.3.

To get the height, AF, imagine looking down on the base, ABCD, like this:

B

AEFD is, naturally, another 30° —60° —90° triangle. (You were expecting, maybe, a 29° —57° —94°

triangle?) ED is half of edge CD, so ED is 3, and that makes FE i, or~/3,and FD 2+/3.

V3
Now you can use either FE with AE or FD with AD to get the height. I use FE. Look back at

the 3-D figure. AAFE is a right triangle, so you get AF with the Pythagorean Theorem:
(AF)* +(FE)* =(AE)’
(AF)* +(¥3)" =(343)°
(AF)* +3=217
AF =24 =26
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Time for the formulas, schmormulas:

s23
4

6243
T

Volpginty-top = % area,,,. - height
1

-h

w|— Wi

246

V18
=182 units®

Il
(o3}

For surface area, I just realized that you don’t need to use the formula. Instead, you can just
use the fact that a regular tetrahedron is four equilateral triangles. Thus,

623
4
= 36+/3 units?

SA=4.

@ Circumference equals 277, so

167 =2nr
r=38

Now, the height of 6 and radius of 8 form the legs of a right triangle with the slant height as
its hypotenuse. You have a triangle in the 3:4:5 family, so the slant height is 10. Thus,

1 .
VOlPointy—Top = § ar€ap,ge * helght

:%ﬂ'rzh

L8286

3
=1287 units®

SApointy-Top = ar€dp,se +one lateral “triangle”

%circumference -slant height

=ar? + % (27r)(slant height)

—7.8? +%(2ﬂ~8)(10)
=64r + 80x

=1447 units?
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Here are the answers:

*a. Call the height of the left-side cone x; then the height of the right-side cone is 21 - x.
Total volume = VOlleft-side cone t vol right-side cone

-areay,,. - height + % -area,. - height

(7-82)(x) + 5 ( 87)(21-x)

:(MT”)(x)+(6“T”)(21—x)
=00 [+ (21-2)]
641

=3 2

= 4487 units®

1
3
1
3

The way the x drops out tells you that the x is irrelevant and, therefore, that the volume of
this shape will be the same regardless of how far to the left or right the circular “base” is.
Pretty nifty, eh?

b. The surface area, on the other hand, does depend on where the “base” is. The lateral area

of a cone equals %(circumference)(slant height), so for the left-side cone

807 = %(271 -8)(slant height)
807 = 8n(slant height)
slant height =10

Will wonders never cease! You have another 3:4 :5 triangle here. So, the height of the left-
side cone is 6. Then, 21 - 6 gives you 15, the height of the right-side cone. And then you
notice, of course, that you have an 8 -15-17 triangle on the right, so the right-side slant
height is 17.

SA = % (circumference )(slant height)

:%(2718)(17)
=1367 units?

In many sphere problems (like with many circle problems), the key is finding the right
radius or radii. Often, a radius becomes the hypotenuse of a right triangle. Find the right
one? Here it is:

—22 4 5?
9

r2
r2
r

3
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:iﬂ.gf*

3
=367 units®

SASphere = 47772
=47 -3

=367 units?

Only a sphere with a radius of 3 has a volume (in cubic units) equal to its surface area
(in square units).

The surface area of a sphere equals 4717, so, obviously, a hemisphere has a surface area of
half that, or 27r%:

SA Hemisphere = 2nr®
2007 = 27r?

100 =r?

r=10

The radius of the cylinder is also 10, of course.

The “height” of the hemisphere (from its “peak” straight down to the center of its circular
base) is just one of its radii, so that’s 10. Because the total height is 50, the height of the
cylinder is 50 — 10, or 40. Now you have what you need to finish:

Total volume = VOl yinder + VOlhemisphere

= areay,. - height + % VOl phere
210240+ (25 10
=x-10 40+2(3n’ 10 )

— 40007 + @
_ 14,0007

3
~ 14,661 feet®
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Coordinate
Geometry,
Loci, and
Constructions:
Proof and Non-
Proof Problems



IN THIS PART . ..

Look at geometry from the practical viewpoint of where
things are, how far they are from other things, what
their orientation is, and so on.

Consider what happens to shapes when you spin them
around, slide them, or flip them over.

Solve locus problems, where you're given certain
conditions that the shape must satisfy, and you have to
figure out what the shape is.



IN THIS CHAPTER

» Line and segment formulas you
may (or may not) fondly
remember

» Completing coordinate proofs
algebraically

» Working with handy equations for
circles and lines

Chapter 13

Coordinate Geometry,
Courtesy of Descartes
(Including Proofs)

or someone who is said to have slept till 11 a.m. every day, René Descartes (1596-1650) —

not pronounced “Dess-cart-eez” — sure achieved a lot: world-famous philosopher, music

theorist, physicist, and, of course, mathematician. Not too shabby, eh? Of interest here
is the fact that he played a significant role in the evolution of geometry: He made the move
from analyzing geometric shapes that exist independently of any location or orientation (the
way the Greeks did geometry, and the way I've done problems up to this point in this book)
to placing geometric shapes in the x-y coordinate system and using algebra to analyze them.
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Formulas, Schmormulas: Slope,
Distance, and Midpoint

use these formulas to do the same sort of problems you have done in earlier chapters but in a

completely different way.
REMEMBER

@ Here are a few formulas you probably know (have a faint recollection of?) from Algebra I. You’ll

9 Slope formula: The slope of a line containing two points — (x;, y;)and (x,, y,)—is
given by the following formula (don't ask me why, but the letter m is typically used for
the slope):

Slope = m = 22— Y1 _ 1is€
X9 —X; run

3 Slope of horizontal lines: The slope of a horizontal line is zero. Think about driving on a

horizontal, flat road — the road has no steepness or slope.

3 Slope of vertical lines: The slope of a vertical line is undefined (because the run is zero and
you can't divide by zero). Think about driving up a vertical road — you can't do it; it's impos-
sible. And it's impossible to compute the slope of a vertical line.

3 Slope of parallel lines: The slopes of parallel lines are equal (unless both lines are vertical,
in which case both of their slopes are undefined).

3 Slope of perpendicular lines: The slopes of perpendicular lines are opposite reciprocals of

each other, like 3 and —% or % and —% (unless one line is horizontal [ slope = 0] and the

other line is vertical [slope is undefined]).

9 Midpoint formula: The midpoint of the segment with endpoints at (x;, y;)and (x,, ¥»)is
given by the formula

Midpoint = (%, %)

Just remember, the midpoint is the average of the x's and the average of the y’s.

9 Distance formula: The distance from (x;, y;)to (X3, ¥,)is given by the following formula:

Distance = \/(xQ - X )2 +(y2—n )2

The distance formula is simply the Pythagorean Theorem solved for ¢, the hypotenuse. The
legs of the right triangle have lengths equal to the change in the x-coordinates and the
change in the y-coordinates. If you just remember this connection, you can always solve a
distance problem with the Pythagorean Theorem even if you forget the distance formula.
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Q. Show that ISOT is an isosceles trapezoid. y S (11, 15)

EXAMPLE

0 (12.4,10.2)

12,3 T@3

A. 1 prove that ISOT is an isosceles trapezoid, you must show that IS || 7O (definition of
a trapezoid; see Chapter 5) and that IT = SO (the meaning of isosceles). (And for stick-
lers, there’s one more thing to show: It’s totally obvious from the diagram, but you
have to show that IT is not parallel to SO — otherwise, ISOT would be a parallelogram
and thus not a trapezoid.)

First, check the slopes:

Slope = 12=3 _12_4
Pes=11—2"9 "3

. 1 102-3 72 4
OPer5=124-7 54 3

Check; IS is parallel to TO.

Now check the lengths of IT and SO with the distance formula. Actually, although the
distance formula works fine for IT, you don’t need it. For vertical and horizontal seg-
ments, the distance is obvious. From I to T, you go straight across from 2 to 7, so the
length is 5. For SO, you have

SO = [(12.4 -11)% +(10.2 - 15)?
=(1.4)* +(-4.8)

=/1.96 + 23.04
=25

=5

Check; IT = SO.

You can easily check for yourself that IT is not parallel to SO, so that does it: ISOT is an
isosceles trapezoid.
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a Show that ABCD is a rhombus
a. By showing the four sides congruent

b. Without using the lengths of the sides

Hint: Consider the other properties of a

rhombus.
y
A (-12,5) B (1,5)
X D (0, 0) C(@13,0)

e Using the diagram,
a. Show that PLOG is a parallelogram

b. Find its area and perimeter

L (4, 6)

0, 3)

e Take a look at AABC.

a. What type of triangle is AABC': acute,
obtuse, or right? Equilateral, isosceles,
or scalene?

b. Find its area and perimeter

° Use the diagram and its labeled coordinates to

Show that KITE is a kite

b. Find its area

c. Find the point where its diagonals intersect

y| @ 10 T (13, 12)
I

SR E(82)
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Mastering Coordinate Proofs with Algebra

In this section, you get to see the power of doing geometry analytically, that is, with algebra.
You prove the same types of things you proved in the chapter on quadrilaterals, but this time
without any of the methods you used there (like congruent triangles, CPCTC, alternate interior
angles, and so on). Sometimes proving something analytically is easier than with two-column
proof methods. The second practice problem (#6) is a case in point. If you happen to see the
trick, doing the proof the regular two-column way isn’t that hard. But if you don’t, you may
not be able to do the proof the regular way. Doing it analytically, however, works like a charm.

Q. Use the isosceles trapezoid in the figure to prove
that the diagonals in an isosceles trapezoid are y
congruent.
EXAMPLE
N @, o) A(a-b 0
X S P (a, 0)

Note: I can’t explain it fully here, so you have to take my word for it that this figure
covers all conceivable isosceles trapezoids. You can place one vertex at the origin and
another on the x-axis at (a, 0) and put the whole trapezoid in the first quadrant “with
no loss of generality,” as mathematicians say. (Caution: It’s probably not the best idea
to use this phrase when you’re out on a date.)

A. The proof is sort of one step long (or one idea long): You simply use the distance for-
mula to show that the diagonals are congruent (for this property of isosceles trapezoids
and more, check out Chapter 7):

SA NP

Ja-b)?+(0-c)?
(a-b)*+(-c)?

Ja@a-b-0)?+(c-0)

Ja-b)* +c?

You know that c? is the same as (—c)? so these values are equal. That does it.

(LS 2 | B TR
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e Given that the quadrilateral in the figure is
a parallelogram, prove analytically that
the diagonals of a parallelogram bisect
each other.

J(b, 0 K(a+b, o)

X I L(a, 0)

a Use the figure to prove that if you connect the
midpoints of the sides of any quadrilateral,
you create a parallelogram. (For an extra
challenge, try to prove this with ordinary two-
column proof methods.)

U(, d)

@0 Ae )

Using the Equations of Lines and Circles

Lines and circles don’t seem to have much in common at first glance; after all, lines are one-
dimensional objects that go one forever in both directions, while circles are two-dimensional
objects (if you count their interiors) that cover a definite amount of space. The major thing that
lines and circles do have in common is that they become very important in subsequent math
classes, like trigonometry and calculus. These equations will keep popping up in your classes
over and over again, so you might as well get used to ’em now and get ahead of the game.

Line equations. Here are the basic forms for equations of lines.

REMEMBER 33 Slope-intercept form:

y=mx+b

where m is the slope and b is the y-intercept (0, b).

3 Point-slope form:

y=yi1=m(x-xy)

where m is the slope and (x;, ¥;) is a point on the line.
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¥ Horizontal line:
y=b
where b is the y-intercept.

¥ Vertical line:

X=a

where a is the x-intercept.

@ Circle equation. And here’s the equation of a circle:

REMEMBER (x—h)*+(y-k)*=r?
where (h, k) is the center of the circle and r is its radius.
m Q. A circle whose center is at (6, 5) is tangent to a line
at (2, 7). What are the equations of the circle and

the line, and what is the line’s y-intercept?
EXAMPLE

A. You have the circle’s center, so all you need for the circle’s equation is its radius.
Use the distance formula:

r=y(6-2)2+(5-7)°
= 4% +(-2)

Thus, the equation of the circle is
(x-6)*+(y-5)*=(245)" or

(x—6)*+(y-5)*=20

For the equation of the line, you have a point, so all you need is the slope. A line tangent
to a circle is perpendicular to the radius drawn to the point of tangency, so first you
need the slope of this particular radius:

7-5 1

Slope gagius = 56~ 3
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Because the line is perpendicular to the radius, their slopes are opposite reciprocals. The

opposite reciprocal of —% is 2, so that’s the line’s slope, and now you have everything
you need to plug into the point-slope form:

y=y1=m(x—-xy)

y-7=2(x-2)

Finally, to get the y-intercept, just transform this equation into slope-intercept form:

y-7=2(x-2)
y-T7= 2x-4
y= 2x+3

The y-intercept is (0, 3).

@ A circle with equation (x — 7) + y? = r? is tangent to lines at (4, 4) and (11, —3). Find r and (a, b).

(a, b)

C)

N4 )
(11,-3)
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Solutions

@ Here’s what you do:

a. From A to B, you go straight across from —12 to 1, so AB is 13. And DC is obviously also 13.
Now use the distance formula for AD and BC (though you don’t need to if you recognize
the 5-12-13 triangles — see Chapter 4):

AD = [0 - (-12)] + (0-5)?

= 122 +(-5)°

=13

BC = [(13-1)* +(0-5)*
= J12% +(-5)
=13
That’s it. All four sides have a length of 13, so ABCD is a rhombus.

b. You can show that ABCD is a rhombus without using the lengths of the sides by first
showing that ABCD is a parallelogram and then that its diagonals are perpendicular (check
out Chapter 7 for the properties of a rhombus).

AB and DC have slopes of 0, so they’re parallel. Now check the slopes of AD and BC:

. _0-5 _ 5

P T (112) 12
0-5 5

SloPch:_lg_lz_ﬁ

With two pairs of parallel sides, ABCD must be a parallelogram.

Now check the slopes of the diagonals:

. . 0-5 1
P TI3-(-12) 5
Slopeﬁ:?_;g:S

Because 5 and —% are opposite reciprocals, AC L DB. ABCD is thus a rhombus, because a

parallelogram with perpendicular diagonals is a rhombus.
@ Here’s how this one unfolds:
a. PG and LO are both vertical, so they’re parallel. Now check the other sides:

That’s all there is to it. PLOG is a parallelogram.
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b. You can use PG for the base of the parallelogram,; its length is 3. The height of PLOG is
thus horizontal because it’s perpendicular to the base, PG; it goes straight to the right
from x =1to x =4. So, the height is also 3, and the area of PLOG is thus 3 times 3 (base
times height), or 9 units? (see Chapter 7 for more on calculating the area of quadrilaterals).

The perimeter is a snap. PG and LO both have a length of 3. And

PL=\(4-1)>+(6-1)°
= 3% +5%
=34
Because you already know that PLOG is a parallelogram, GO has to be congruent to PL, so
it’s also v34 units long. Thus, the perimeter of PLOG is 3 + 3 + V34 + /34, or 6 + 2v/34.
@ To solve these problems, you use the triangle basics I cover in Chapter 4.

a. /A looks like a right angle, so cross your fingers and check the slopes of AB and AC
(if ZA is a right angle, this problem becomes much easier).

SlopeE =150+21=3
-2-1 1
SlopeE ={i-2-"3

These answers are opposite reciprocals, so AB 1 AC, and thus /A is a right angle; AABC is
a right triangle.

Now compute the lengths of legs AB and AC:

AB =[(5-2)% +(10-1)?

= 3% +9°

AC = (11-2)* + (-2-1)?

=92 +(-3)?
=310

AB = AC, so voila, you have a 45° — 45° —90° triangle, or, in other words, an isosceles right
triangle.

b. The area of a right triangle equals one half the product of its legs, so
1
AreaMBC = E (3\/1_0)(3\/1_0)
= 45 units?

The legs are 310, so the hypotenuse is v2 - 3v10, or 6v/5, and thus the perimeter of AABC
is 3v10 + 3v10 + 6+/5, or 6+/10 + 6+/5.
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@ If you need a review, Chapter 6 explains the properties of kites.

a. By definition, a kite must have two pairs of adjacent congruent sides. Use the distance
formula:

KI=(2-1)*+(10-3)°
=N12+72
=5v2

KE =\[(8-1)* +(2-3)°

=542

So far, so good.

IT =(13-2)? +(12-10)°

=55

ET = [13-8)% +(12-2)?
=5%+10°
=55
Bingo. KITE is a kite.

b. The area of a kite equals half the product of its diagonals (see Chapter 7), so you need
their lengths:

KT =\(13-1)* +(12-3)?
122 + 97
=15

IE =(8-2)%+(2-10)?

= 6% +(-8)"

=10
1
AreaK,TE = E dldz
= 2(15)(10)
= 75 units?
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c. @ is the perpendicular bisector of IE (property of a kite; see Chapter 6), so all you need is
IE’s midpoint:

mhdpmn%E:(ZLiﬁzyzliiz)

2 2
(242, 10:2)
2 2

=(5, 6)

The proof here is odd in a way, but it works. You might think that you have to first find
where the diagonals cross and then show that this point bisects each diagonal. Instead, you
simply show that the midpoints of the two diagonals are at the same point:

. (b+a c+0

Mldpomtﬁ = (T’ T)
_(b+a ¢
L2 02

. 0O+a+b O0+c

Mldpomtm = (T Tj

_(atb ¢
B 2 72

You’re done. This simple procedure does, in fact, prove that the diagonals of any parallelo-
gram bisect each other.

You need to get the coordinates of the midpoints using — hold onto your hat — the midpoint
formula. Then use them to find the slopes of the sides of MNOP.

2 2
a+c b+d
w4 )
c+e d+f
0-(5% 5
_(g+e h+f
P-4 4
b+d b+h
2 2
SloPe =ave avg
2 2
_(b+d)-(b+h) R
_(E:?S:TE:zﬂ. (multiplying top and bottom by 2)
_d-h
=g
d+f h+f
2 2
Sk>peﬁ5_c+e_g+e
2 2
_d-h
=g
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One pair of parallel sides down, one to go:

h+f b+h
Slopef:#
mp g+e a+g
2 2
_f-b
T e-a
d+f b+d
Slope__ = 2 2
NO c+e a+c
2 2
_f-b
Te-a

Bingo. It’s a parallelogram. Pretty cool, eh? No matter what weird quadrilateral you begin
with, you always get a parallelogram.

The circle’s equation gives you its center: (7, 0). Now use the distance formula to get the
radius:

r=y(4-7)*+(4-0)?
= J(-3)% + 47
=25 =5

Well, bust my britches and bless my soul — another 3-4-5 triangle! What are the odds of
that? To find (g, b), you need the equations of the tangent lines, and for that you need the
slopes of the lines:

4 —
Slope Radius to (4, 4) = T.i =— g

o
=

The tangent line is perpendicular to this radius, so its slope is the opposite reciprocal of —%,
namely % And now you have what you need for the point-slope form:

y-4=2(x-4)
Use the same process for the other tangent line:

-3-0 3

SlopeRadius to (11, -3) = ﬁ = _Z
The tangent line’s slope is the opposite reciprocal of that, namely %, and thus its equation is

y-(-3)=5 (x-11)
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Now find the point of intersection of the two lines by solving the system of equations with
two unknowns. First solve each equation for y:

3 4
y-4=3(x-4)  y-(-3)=3z(x-11)

3 4

y—Z(x74)+4 y—§(x711)73
Now set the equations equal to each other and solve:
3 4
Z(X—4)+4—§(X—11)—3
9(x-4)+48=16(x—-11)-36
9x-36+48 =16x-176-36
9x +12=16x-212

224 =T7x
x=32

Plugging this answer into either tangent line gives you a y-value of 25. Thus (a, b) is (32, 25).
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IN THIS CHAPTER

» A few reflections on reflections

» Shifting shapes with translations

» You spin me right round, Polly:
Rotating polygons

» Reflecting thrice: Glide reflections

Chapter 14

Transforming the
(Geometric) World:
Reflections, Rotations,
and Translations (No
Proofs)

ou can take any figure, say a triangle, and use a transformation to move it or change it

in some way. You can slide it, flip it over, shrink it or blow it up, warp it into a differ-

ent shape, and so on. In this chapter, you practice problems involving transformations
that don’t change the size or shape of a figure. Such transformations — called isometries —
take a figure and move it, or map it, onto a congruent figure. The “before” figure is called the
pre-image, and the “after” figure is called the image.
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Reflections on Mirror Images

FIGURE 14-1:

Atriangle
and its

transformations.

286

THEOREMS &
POSTULATES

I begin this isometries journey with reflections, not because they’re the simplest subject you
need to tackle here but because they’re the building blocks of all other isometries. In fact, you
can use a series of reflections to perform all the other transformations I discuss later in this
chapter. For example, in the next section, I show you that you can translate a figure in any
direction (which you could do by just sliding it) by instead reflecting the figure over one line
and then reflecting it again over another line. In fact, if you take, say, two congruent triangles
and place them anywhere in the x-y coordinate system — one flipped over, if you like, and
rotated to any angle — and you want to map one of the triangles onto the other by a series of
transformations, you never have to rotate or slide the triangle. In one, two, or three reflections
(vou never need more than three), you can make the “before” triangle land exactly on the
“after” triangle. I find this result interesting and somewhat surprising.

A couple more things before working through an example. (Egad! A sentence fragment!) First,
check out Figure 14-1. AABC has been reflected over line I. The result is congruent APQR. AABC
has also been slid to the right (that move is a translation, if you were wondering), producing
congruent AXYZ. APQR and AXYZ are congruent, but there’s a basic difference between them:
their orientation. Figures like AABC and AXYZ have the same orientation because you can make
one stack perfectly on top of the other by sliding and/or rotating it onto the other. Figures like
AABC and APQR, on the other hand, have opposite orientations because you can’t possibly get
AABC to line up with APQR without flipping AABC over. Read on for some theorems.

slide

reflect

Reflections and orientation:

¥ Reflecting a figure switches its orientation.

¥ If you reflect a figure and then reflect it again over the same line or a different line, the
figure returns to its original orientation. More generally, if you reflect a figure an even
number of times, the final result is a figure with the same orientation.

¥ Reflecting a figure an odd number of times produces a figure with the opposite orientation.

PART 6 Coordinate Geometry, Loci, and Constructions: Proof and Non-Proof Problems



THEOREMS &
POSTULATES

EXAMPLE

And here’s one more thing about Figure 14-1. If you form AP by connecting pre-image A with
its image point P (or B with Q or C with R), the reflecting line, ], is the perpendicular bisector of
AP. Pretty cool, huh?

Reflecting lines and connecting segments: When a figure is reflected, the reflecting line is the
perpendicular bisector of all segments connecting points of the pre-image to corresponding
points of the image.

After each transformation, you can label the image points with the prime symbol ('). If A is the
pre-image, the image point is A".

Q. A transformation T maps (or sends) all points
(x,y)to(y, x). Symbolically, T(x, y)=(y, x). y
This transformation is a reflection. Given the
coordinates of the vertices of AABC, find the

coordinates of the reflection of AABC, which is B (7,5
AA'B'C’, and find the equation of the reflecting . 3) A
line. '

C (6,2

A. For vertex A, T(5, 3)=(3, 5); that's A’
For B, T(7, 5)=(5, 7); that’s B
For C, T(6, 2)=(2, 6); that’s C'
Now sketch AABC, AA'B'C’, and the reflecting line.

P
y G.D

The reflecting line is the perpendicular bisector of AA’ (and BB’ and CC'). To find this

line, you first need the midpoint of AA’; that’s [ > ; 3 , 3 ; > ) or (4, 4). Next, compute
the slope of AA’ (see Chapter 13 for more on slope and midpoints); that’s % =-1
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The perpendicular bisector is, of course, perpendicular to AA4’, so its slope is the
opposite reciprocal of —1, which is 1. You have a point, (4, 4), and the slope, 1, of the
perpendicular bisector, so you’re all set to plug into the point-slope form (see
Chapter 13 for more on line equations):

y=yi=m(x-x)
y—-4=1(x-4)
y—-4=x-4
y=x

That’s it.

Do the following pairs of figures have the e Reflect QRST over the line y = x.

. . S
same or opposite orlentations: a. Sketch Q'R'S'T, and give the coordinates of

Q'andR'

a) d)
@ D /<%\§ \f b. What shape is QQ'R'R?
¢. What’s the area and perimeter of QQ'R'R?
b) j e)
[ y
V) \ ( \ ) [j /}\
S
T

Q@B,0) R(6,0) x
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Sketch the reflected images and give the e Reflect ATUV over the line y =3x + 2.
coordinates of the following triangles.

a. AABC reflected over y = x to AA'B'C’

a. Find the coordinates of ATU'V".
Hint: You need the equations of TT", UU’

b. AA'B'C' reflected over y =—x to AA"B"C”" and VV'.
c. AA'B"C" reflected over the y-axis to b. Show that AT'U'V' = ATUV.
AAWB'”CW

y=3x+2

y
y=—x g J=x V (12, 8)
éloy k (15, 1) (7{J3)
Ao o B
10 X

(10, D x / \/ '
G

Lost in Translation

Translating or sliding a figure is probably the simplest transformation to picture. It’s so simple,
in fact, that there wouldn’t be much to say about it if it weren’t for the fact that you can pro-
duce a translation with two reflections. You can picture how this works by imagining that you
have a playing card — say, the ace of spades — face up in front of you on a table. Now, grab
the bottom edge of the card and flip the card over (going up, away from you), leaving the top
edge of the card where it is. You should now see a face-down card whose bottom edge (the one
close to you) is where the top edge was before you flipped it. Got it? If you repeat this flipping
procedure, you should see the face-up ace again, pointing the same direction, and the card is
now farther away from you by a distance equal to twice the height of the card. Thus, you see
how two reflections (or flips) equals a slide.
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o\ A translation equals two reflections. A translation of a given distance along a given line is
equivalent to two reflections over parallel lines that are perpendicular to the given line and sep-
arated by a distance equal to half the distance of the translation. As long as the parallel reflecting

theorems & lines are separated by this distance, they can be located anywhere along the given line.
POSTULATES

Q. The translation (x, y) > (x-12, y—6) y1 4R 1,12

maps ATRI to ATR'T'.

EXAMPLE

a. Find the distance the triangle has moved.
b. Give the equations of two reflecting lines, {, and /,, which — by reflecting ATRI first
over /; and then over /, — will achieve the same result as the translation.
A. Here’s howitall goes down:

a. Piece o’ cake. Just use the distance formula from Chapter 13 for /' (or TT' or RR'):

I'=\(-8-4)% +(0-6)

= /144 + 36
=65

You can use a slight shortcut here if you realize that the translation instructions tell
you that you’re moving the figure 12 left and 6 down. If you see that, you just do

distance = /12> + 6% , and so on.

b. You need two parallel lines perpendicular to I’ and separated by half the length of I
There are, literally, an infinite number of correct answers. Here’s an easy way to find
a pair of lines that work:

60 ol

4-(-8)" " 2’

the slope of the parallel lines is the opposite reciprocal of that, namely —2. The first

line, {;, can go through point I at (4, 6). Its equation is thus

The pair of lines must be perpendicular to II’, which has a slope of

y-6=-2(x-4)
y=—-2x+14

Make the second line, /,, parallel to /; (so its slope is also -2) and have it go through
the midpoint of /I'. With this choice, you make the distance between /; and [, the
4+(-8) 6+0) or

required distance — half the length of II. The midpoint of I’ is ( 5
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(-2, 3). And thus, when you plug those numbers into the point-slope form of a line
(see Chapter 13), the equation of /, is

y-3=-2[x-(-2)]
y=-2x-1

Finito.

o The translation (x, y) — (x, y + 5) maps ISOC ° The translation (x, y) > (x+9, y + 2) maps
onto TRAP. Find the equations of two AABC onto AA'B'C’. Find a pair of parallel
reflecting lines that achieve the same result. reflecting lines that achieves the same result.
Give three answers (in other words, three
possible pairs of reflecting lines).

5,9
A

I R A, 6)
(2,:3)Tﬂ P (6, 3)

T S
TG Dy

I C
2,-2) (6,-2)
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So You Say You Want a. .. Rotation?

I can’t give you a revolution, but [ have a bunch of rotations waiting for you in this section. You
know what rotation means, of course, but one thing you may not realize about rotation trans-
formations is that they include not only spinning a figure where it is, but also making it sort
of move along an orbit centered at a point away from the figure (as in Figure 14-2). It might be
more accurate to call this type of transformation a revolution instead of a rotation, but who am
I to question the age-old terminology of geometry?

FIGURE 14-2:
A rotation is
equivalent to
two reflections.

A rotation, just like a translation, can be achieved by a pair of reflections. Look at Figure 14-2.

You can see that AABC has been rotated 80° to AA"B"C". Point O is called the center of rotation. It
turns out that this same transformation can be achieved by reflecting AABC over [, to AA'B'C’
and then reflecting AA'B'C’ over [, to AA’B"C". The reflecting lines must pass through the center
of rotation, and the angle between them must be half the angle of rotation. Pretty nifty, eh?

A rotation equals two reflections. A rotation through a given angle around a center of rotation
is equivalent to two reflections over lines passing through the center of rotation and forming
an angle half the measure of the angle of rotation.

THEOREMS &
POSTULATES
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EXAMPLE

Q.

A.

ADEF has been rotated counterclockwise F (15, 12)
onto AD'E'F'. Find the center of rotation. y D' '
61 ]
E (15,8)
D a6
X
F
(1735, -155)
(15,-4) E

I haven’t mentioned this process yet, so here I show you how to find a center of rotation.
The trick is to use perpendicular bisectors. For this problem, the center of rotation lies
at the intersection of the perpendicular bisectors of DD', EE', and FF'. You need only two
of these perpendicular bisectors, so use DD’ and EE'. (If you love working with fractions
like 17%, FF’ would work as well.) The perpendicular bisector of DD’ goes through its
11+5 6+12

2 7 2
slope of the perpendicular bisector is the opposite reciprocal of that, which is 1. Write
the equation of the line in point-slope form and convert it to slope-intercept form (see
Chapter 13). Thus, the equation of the perpendicular bisector of DD’ is

midpoint, which is ( ) or (8, 9). The slope of DD’ is 1_)27—_1?, or -1, so the

y-9=1(x-8)
y=x+1
15+15 -4+8
2 72
vertical, so its perpendicular bisector is horizontal. The perpendicular bisector goes
through (15, 2), so its equation is simply y = 2.

Now do the same thing with EE’. Its midpoint is [ j, or (15, 2). EE' is

Finally, find the intersection of y =2 and y = x + 1. That’s (1, 2), the center of rotation. If
you feel like it, locate (1, 2) on the figure, and then take a compass and place its point
on (1, 2). You should be able to trace the circular arcs from D to D', Eto E', and F to F".
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e A clockwise rotation maps AABC onto AA'B'C'. e AGHI has been rotated 90° counterclockwise

Find the center of rotation. onto AG'HT'. The origin is the center of
L rotation. Give the equations of three pairs of
Tip: The math is a bit easier if you use AA" and reflecting lines that would achieve the same
cc'. result.
y B' (90, 180) v
(180, 60)
A T
(90, 60) G H
A N (~180, -90) x
(-252, -36) C
X
(-252, -186) G I
h . |7

Working with Glide Reflections

A glide reflection is, as its name suggests, a glide (that’s a translation) followed by a reflection
(or vice versa). It’s also referred to as a walk. See Figure 14-3.

left foot

FIGURE 14-3:
The third
time's the
charm: With
only three
reflections,
your figure
takes a walk. right foot
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THEOREMS &
POSTULATES

EXAMPLE

How can you map the right foot onto the left? Well, you can’t do it with a translation or a rota-
tion, because translations and rotations don’t change orientation, and you can see that these
feet have opposite orientations. Reflections do reverse orientation, but there’s no reflecting line
that you can use to map the right foot onto the left. As you may suspect from the title of this
section, the answer is that only a glide reflection can accomplish the mapping. You can map the
right foot onto the left foot by reflecting the right foot over the line and then sliding it to the
right (or by sliding it first, then reflecting it).

As you can see in the previous section on translations, you can achieve a translation or slide
with two reflections. Thus, the glide part of a glide reflection can be done with two reflections.
And that means that you can do a glide reflection — like the right foot to left foot mapping in
Figure 14-3 — with only three reflections. And three reflections is the most you ever need to
map a figure to another congruent figure. To sum up, any two congruent figures are always one
reflection, two reflections (a translation or a rotation), or three reflections (a glide reflection)
away from each other.

After you find the reflecting line for a glide reflection, the transformation is a cinch, because
it’s just a reflection (which you should already know how to do) followed by a translation in the
direction of the reflecting line (which you also already know how to do). The following theorem
tells you the key to finding the reflecting line.

Location of reflecting line in a glide reflection. In a glide reflection, the midpoints of all
segments that connect pre-image points with their image points lie on the reflecting line.

Q. Find the reflecting line for the glide y B' (15, 12)

reflection. A
5,]12)

D' C
68 (18,8

C (-19, -5) *
(-27,-11)
D B (-19, -10)
A (-27,-16)

A. pick any two point-image pairs, and make a segment out of each pair. Then, find the
midpoints of these two segments. Next, find the slope of the line that goes through the
two midpoints. (See Chapter 13 for info on slopes and midpoints.)

Using AA’ and BB/,

Midpoint_ = (5 27, 12— 16) (-11, -2)
2 2
Midpointf':(15 19 12— 1O):(—Z, 1)
BB
Slope ) ) :M: 1

Reflecting Line ~ _9 _ ( 11 ) §
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Finally, just plug this slope and the point (-2, 1) into the point-slope form for your
equation:

1
y—l_g(x+2)

That’s all, folks.

@ Use the transformation T(x, y) > (-x, ¥y +3).
a. Transform ALEG using T(x, y). What are the new coordinates of L", E", and G"?
b. Find the equation of the reflecting line.

c. What are the coordinates of the image points (L', E', and G') obtained by reflecting L, E, and G over
the line you found in part b, and what transformation, Tgegec (X, ¥ ), achieves this reflection?

d. After the reflection from part c is completed, what transformation, Tg;q. (X, ¥ ), completes the glide
reflection?

G (2, 6)

L4, 4)

E(1, 1)
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Solutions

@ Here are the answers concerning orientation:
a. Opposite — you can’t pair ’em up without a flip
b. Same
c. Same

d. These figures have neither the same nor opposite orientations because they’re not
congruent

e. Opposite
f. Opposite
@ For Q'R'S'T’, here’s what you get:
a. R Ay
0, 6)

0,3) g

Q@B,00 R(6,0) X

As you can see in the example problem, reflecting a figure over the line y = x reverses the
x- and y-coordinates of each point in the figure. Also note that S and S’ are one and the
same point. Ditto for T and T'. Any point that lies on the reflecting line stays put during a
reflection.

b. QQ'R'R is an isosceles trapezoid.
c. For the area of QQ'R'R, you could use the trapezoid area formula, but there’s a much easier
way. Call the origin point 0. Now just subtract the area of right AOQ'Q from right AOR'R:

Area gy = areagp —areapgg

1 1
= Ebh - Ebh

1 1

= 2(6)(6) - 5(3)(3)

=18-4.5

=13.5 units?

d. AOQ'Q and AOR'R are 45° —45° - 90° right triangles, so that makes figuring the perimeter
of QQ'R'R a snap:
Perimeteryprr =QQ"+ QR + RR + RQ

=32 +3+6v2+3
=6+9v2
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@ y=-x Ao y=x
a1, 10) B(“' 10)

8
B 00,9
B

(15, 1)
(10, D A C

"m

(10, -1) (15,C—”1')
B" (10, -4)

(-15,-1)  (-10,-1)
c" il A"

(-10, -4) B"

@ Here’s what happens when you reflect ATUV :

a. TT' must be perpendicular to the reflecting line y = 3x + 2, which has a slope of 3. Thus,
1

1 3 i
Plugging 3 and (8, —4) into the point-slope form gives you the equation of 77":

TT' has a slope of —=, as do UU’ and VV' (for more on finding slope, see Chapter 13).

y-(4)=-3(x-8)

__ 1.4
Y="3%"3

Next, find where this line, T_T’, crosses y =3x +2:

1 4
—§x—§—3x+2
-x—-4=9x+6
-10x =10

x=-1

And plugging this answer into y =3x + 2 gives you y =-1. So, TT' crosses y=3x+2at
(-1,-1). To get the coordinates of T', note that the reflecting line y = 3x + 2 must bisect
TT', and thus (-1, - 1) must be the midpoint of TT". Going from T at (8,-4) to (-1,-1), you
go left 9 and up 3. Do that again from (-1, -1), and you get to T'. Left 9 from -1 brings you
to —10, and up 3 from -1 brings you to 2. Thus, T'is at (-10, 2).

In the interests of space, I'll skip the math for U’ and V'. The procedure is identical to the
one in the preceding paragraph. For the coordinates of U’, you should get (-5, 7), and for
V', (-6, 14).

b. You prove the triangles congruent with SSS, and to do that you just use the distance for-
mula. Using the given coordinates of T, U, and V, you should get 5v2, 5v2, and 410 for the
lengths of the sides of ATUV. And using the coordinates of T', U’, and V' (which you calcu-
lated in part a), you should get the same three lengths for ATU'V'. That does it.

Answers vary. The translation is vertical, so the reflecting lines must be horizontal. And the
lines have to be separated by half the length of IT (or SR, OA, or CP), which is 5. Thus, any
pair of horizontal lines separated by a distance of 2.5 will suffice. Note: The direction from /,
to [, must be the same as the direction from the pre-image to the image.
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Three possible answers are
o [:y=-land l,:y=15
® [i:y=2andl,:y=45
® Or something crazy like /, : y =—1002.5 and [, : y =-1000
@ Find the slope and midpoint of CC’ (AA’ and BB’ would work just as well):

_0-(-2) 2
Slope . = =9

L 0+9 -2+0
Midpoint _ = (T’ T) =(4.5,-1)

You know /; and /, must be perpendicular to C?’, so both lines have a slope of —%, or —4.5.
The first reflecting line, /;, can go through C at (0,-2):

y—(-2)=-4.5(x-0)
y=—45x-2

Then, [, would go through the midpoint of CC":

y—(-1)=-4.5(x-4.5)
y=-4.5x+19.25

You’re done.

You want to find the intersection of the perpendicular bisectors of AA’ and CC". First, use the
midpoint formula and the slope formula to compute the midpoint and slope of AA". You
should get the following results:

MidpointH =(-36, 12)

2
Slopem =9

The slope of the perpendicular bisector of AA' is the opposite reciprocal of the slope of AA', so

: .. 9

its slope is 5

y—-12=-4.5[x - (-36)]
y=—4.5x-150

or —4.5. And thus, its equation is

Using the same method, you obtain the following for the equation of the perpendicular bisec-
tor of CC":

y=-18x-96
The center of rotation lies at the intersection of these two perpendicular bisectors, so set the
right sides of the equations equal to each other:

—4.5x -150=-1.8x — 96
—45x —1,500 = —18x — 960
—27x =540

x=-20
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Plugging x =20 into either equation gives you a y value of —60, so the center of rotation is
at (—20,-60).

The rotation is 90° counterclockwise about the origin, so the reflecting lines must pass
through the origin and form a 45° angle (half of 90°). Three possible answers are

® [, :y=0(thex-axis)and/,:y=x
® [, :y=xandl,:x =0 (the y-axis)
e [:x=0andl:y=-x

But any two lines work as long as they go through the origin and form a 45° angle. For
example:

llzy:%x and l:y=T7x

Here’s what happens with ALEG:
a. T(x, y)=(—x, y+3) sends points L, E, and G to the following image points:

L'=T(4, 4)=(-4, 7)
E'=T(1, 1)=(-1, 4)
G'=T(2, 6)=(-2,9)

b. You can use any two point-image pairs to find the reflecting line. How about EE” and GG"?

o (1+(-1) 1+4)_
Midpoint__ —( 5 T)_(O’ 2.5)

L (2+(=2) 6+9)_
Mldpomtm —( 5 g j—(O, 7.5)

Both midpoints are on the y-axis (if you realized that they would be before doing the
math, you’re a geometry natural), so the reflecting line must be the y-axis; its equation,
of course, is x =0.

c. Reflecting L, E, and G gives you

L'=(-4, 4)
E'=(-1,1)
G'=(-2, 6)

The transformation that flips a figure over the y-axis is Treiect (X, ¥) =(—xX, ¥).

d. The transformation is just a slide straight up a distance of 3. That’s achieved by
Taiide (X, ¥)=(x, y+3).
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IN THIS CHAPTER

» Locating loci

» Locus hocus pocus

» Constructions: You'll need your
compass and straightedge (and a
hard hat)

Chapter 15

Laboring Over Loci
and Constructions
(No Proofs)

p to this point in the book, you’ve been working on problems where you’re given some

shape (or shapes) — say, some lines, a triangle, a parallelogram, a circle — and you'’re

asked to prove something about it, calculate something about it, or do something to it.
But in this chapter, you have to come up with the geometric shape yourself. With locus prob-
lems, you’re given certain conditions that the shape must satisfy, and you have to figure out
what the shape is. And with construction problems, your task is to create the geometric object
using only a compass and straightedge.

Tackling Locus Problems

Locus: A locus (plural loci) is a set of points (usually some sort of geometric object) consisting
of all the points that satisfy certain conditions.

REMEMBER . . . . .
Here’s a simple example. What’s the locus of all points 10 inches from a given point? The

answer is a circle with a radius of 10 inches whose center is the given point.
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When tackling a locus problem, it’s a good idea to go through the following four-step process.
This will help you avoid a couple of common mistakes: including too few points in your solution

(see Step 2) and including too many points (see Step 3).

When working on locus problems, always follow this four-step method:

TIP 1.

4.

Identify a pattern.

Sometimes you’ll spot the key pattern right away. If so, you’re done with Step 1. If not,
find a single point that satisfies the given conditions; then find a second point, then a

third, and so on until you recognize the pattern.
Look outside the pattern for points to add.

Check for points outside the pattern you recognized in Step 1 that satisfy the given
conditions. There might be isolated points or a significant geometric shape that you

need to add to your locus solution.
Look inside the pattern for points to exclude.

Check within the pattern you found in Step 1 to make sure that all the points within the
pattern satisfy the conditions. If there are points you need to exclude, they’re usually

isolated points.
Draw a diagram and write a description of the locus solution.

Q. What’s the locus of all points that are equidistant from two given points?

exaweie Ao Check out the following four-step solution.

FIGURE 15-1:
Identifying
points

that work.

302

1. Identify a pattern.
Figure 15-1 shows the two given points, A and B, along with four new points that are

each equidistant from the given points.
See the pattern made by those four points? It’s the vertical line that goes through the
midpoint of the segment joining A and B. In other words, it’s the perpendicular

bisector of the segment.
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2. Look outside the pattern for points to add.

Check for points outside the pattern you found in Step 1. You come up empty here.
There’s nothing to add.

3. Look inside the pattern for points to exclude.
Ditto. No points need to be excluded.
4. Draw a diagram and write a description of the locus solution.

Figure 15-2 shows the locus, and the caption gives its description.

FIGURE 15-2:
The locus of
points

equidistant mm
from two given A B
points is the
perpendicular
bisector of the
segment that
joins the two
points.

Q. What’s the locus of all points that are equidistant from the following given intersecting
lines?

EXAMPLE

A. Dothe four-step process.
1. Identify a pattern.

Figure 15-3 shows four points that are equidistant from the two lines. Do you see the
pattern? Right: Those four points lie on the ray shooting out to the right from X that
bisects ZAXB. The same thing works on the left side of X: That’s the angle bisector of
ZPXQ. So, that gives you the line going through point X that bisects ZAXB and ZPXQ.
See Figure 15-4.

2. Look outside the pattern for points to add.

You might have thought you were done, but this important Step 2 helps you see that
you missed an entire second set of points. Do you see what you missed? It’s the line
through X that’s perpendicular to the first line you identified. This second line bisects
/PXA and ZQXB. See Figure 15-5.
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FIGURE 15-3:
Four points
equidistant

from two given
lines.

FIGURE 15-4:
All points on
the horizontal
line are
equidistant
from the two
given lines.
X g%
P IR A
! ’,‘ \'\‘/\ Vo
\\‘ \Q 9’ I'I
Q VA B
FIGURE 15-5: R
Five more N
points \Y
equidistant
from the two
given lines.
3. Look inside the pattern for points to exclude.
Nothing to exclude.
4. Draw the locus and describe it in words.
Figure 15-6 shows the locus solution.
The locus is the perpendicular lines that intersect at X and that bisect the four angles
made by the two given lines.
P A
X
FIGURE 15-6:
The locus
solution. a B
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What’s the locus of the vertices of isosceles e What’s the locus of all points 1 inch from a
triangles having a given segment for a base? 1-inch-long segment, and what’s the perime-
ter of this locus?

What’s the locus of all points closer to the e What’s the locus of all the points in the x-y
center of a given square than to any of the coordinate plane closer to the x-axis than
vertices of the square? the y-axis?
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e What’s the locus of all points in the coordinate plane equidistant from the x-axis and the point (3, 1)?

Compass and Straightedge Constructions

As you may remember from a math class in middle school or junior high, the idea with con-
struction problems is to construct geometric shapes using only a compass and a straightedge.
I'm sure you know what a compass is, and a straightedge is — are you sitting down? — a
straight edge. It’s basically a ruler (and you can use a ruler for these problems), but a straight-
edge has no length marks on it. So, if you use a ruler, you’re not allowed to use any of its mark-
ings to measure anything.

In the example problems and in the solutions to the practice problems, I use the following
notation. To indicate where to draw an arc with your compass, I first name the point where
you put the point of the compass (this is the center of the circular arc), and then I write how
wide you should open the compass (this is the radius of the arc). The radius could be listed as
the length of a segment or with a single letter. For example, arc (Q, QP) is the arc with center
at point Q and a radius that’s the length of segment QP, and arc (X, r) is the arc with center at
point X with a radius of r.

Q. Given: ZA.

EXAMPLE Construct: /B that’s congruent to ZA.

A. Referto Figure 15-7 as you go through the following steps.
1. Draw a working line, I, with point B on it.

2. Open your compass to any radius r, and construct arc (4, r) intersecting the two sides
of /A at points S and T.

3. Construct arc (B, r) intersecting line [ at some point V.

4. Construct arc (S, ST).

5. Construct arc (V, ST) intersecting arc (B, r) at point W.

6. Draw BW. That does it. (Note: I didn’t show Step 6 in the figure because it would

make the figure a bit confusing.)
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Step 1

Steps2and 4

/ Given
A
B
2
/{

/s

3
W s
Steps3and 5
FIGURE 15-7: / /

Copying an B r v
angle.
Q. Given: ZK.
EXAMPLE Construct: KZ, the bisector of /K.

A. Referto Figure 15-8 as you go through this construction.

1. Open your compass to any radius r, and construct arc (K, r) intersecting the two sides
of ZK at A and B.

2. Use any radius s to construct arc (4, s) and arc (B, s) that intersect each other at point Z.
Note that you must choose a radius s that’s long enough for the two arcs to

intersect.

3. Draw KZ. That’s a wrap.

1
\)\ Given and

Steps 1and 2

FIGURE 15-8:
Bisecting K
an angle.

=
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Given: CD.

Construct: GH, the perpendicular bisector of CD.

EXAMPLE
A. Referto Figure 15-9 as you go through the steps of this construction.
1. Open your compass to any radius r that’s more than half the length of CD, and
construct arc (C, r).
2. Construct arc (D, r) intersecting arc (C, r) at points G and H.
3. Draw GH.
You’re done. GH is the perpendicular bisector of CD.
1.6 2
Given and
D Steps 1and 2
FIGURE 15-9:
Constructing a
perpendicular
bisector. H
Q. Given: EF and point W on EF.
EXAMPLE Construct: WZ such that WZ 1 EF.
A. Figure 15-10 shows the steps of this construction.
1. Using any radius r, construct arc (W, r) that intersects EF at X and Y.
2. Using any radius s that’s greater than r, construct arc (X, s) and arc (Y, s) intersecting
each other at point Z.
3. Draw WZ.
That’s it. WZ is perpendicular to EF at point W.
2 2
P
FIGURE 15-10:

Constructing a
perpendicular

Given and

line through a
pointon a line.

E x| W Y F Steps 1and 2
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5

Given: AZ and point J not on AZ.

Construct: JM such that JM 1 AZ.

EXAMPLE
A. Referto Figure 15-11.
1. Open your compass to a radius r that’s greater than the distance from J to AZ, and
construct arc (J, r) intersecting AZ at K and L.
2. Leaving your compass open to radius r, construct arc (K, r) and arc (L, r) — on the
side of AZ that’s opposite point ] — intersecting each other at point M.
3. Draw JM. You’re done.
J
1 1
FIGURE 15-11: K L Given and
Constructing a A Z Steps 1 and 2

perpendicular
line through a
point not
on a line.

o Construct a triangle whose sides are in the ratio of 2.1:2.8:3.5. (Hint: What type of triangle is that?)

For problems 7 and 8, use AABC shown in Figure 15-12.

FIGURE 15-12:
Use this
triangle for
problems 7

and 8. A
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e Construct AXYZ that’s congruent to AABC. ° Construct the incenter of AABC.
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Solutions

@ Here’s the four-step solution.

1.

Identify a pattern.

Look back at Figure 15-1 that goes with the first example problem. You can see three isos-
celes triangles with base AB. So, you might think this locus problem has the very same
solution as example problem 1, namely, the perpendicular bisector of AB. However. . .

. Look outside the pattern for points to add.

This is a bit tricky. This locus problem asks for all points that are vertices of the isosceles
triangles with base AB. Well, all triangles have three vertices. Points A and B are two of
the vertices of the three triangles you see in Figure 15-1; and they are, of course, vertices
of all isosceles triangles with base AB. Thus, you must add points A and B to the perpen-
dicular bisector of AB identified in Step 1. And. . .

. Look inside the pattern for points to exclude.

Warning: Don’t neglect Steps 2 and 3! In this particular locus problem, both of these steps
are critical.

There’s a single point that must be excluded from the solution. Did you find it? It’s the
midpoint of AB. Except for this midpoint, all points along the perpendicular bisector
of AB form a triangle with points A and B. But the midpoint of AB is on the same line
as points A and B, and three collinear points cannot be the vertices of a triangle.

. Draw the locus and describe it in words.

The locus is the perpendicular bisector of AB plus points A and B minus the
midpoint of AB.

The diagram of the locus is the same as Figure 15-1 with the addition of a hollow dot
where the perpendicular bisector intersects AB; and it would have to be made clear that
points A and B are included in the locus solution.

I think you know what to do: Four steps, naturally.

1.

2,3.

Identify a pattern.
Look at Figure 15-13.

You can see that points one inch above and one inch below JK satisfy the locus condition.
Those points are one inch straight down to JK or one inch straight up to JK. But for a
point to the left of point J, its distance to JK is the distance to endpoint J. Such points
form a semicircle with center at J and a radius of one inch. See Figure 15-14.

The same thing applies, of course, to the right of point K.
Look inside and outside the pattern.

Steps 2 and 3 yield no changes to the pattern found in Step 1.

. Draw the locus and describe it in words.

The locus is an oval path consisting of two segments and two semicircles. See
Figure 15-15.
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FIGURE 15-13:
Points an inch
above and an

inch below JK.
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Points making J
a semi-circle to v ,"
the left of J
point J. — .
r e
J K
FIGURE 15-15:
The locus
solution.

The perimeter is made up of two one-inch segments and two semicircles with a one-inch
radius. That gives you a perimeter of 2 + 27.

@ Four steps as usual:
1. Identify a pattern.
Consider the perpendicular bisector of AX. See Figure 15-16.

Points on this perpendicular bisector are equidistant from A and X. Thus, to be closer to X
than to A, a point must be on the lower-right side of the perpendicular bisector. The same
argument applies to the perpendicular bisectors of BX, CX, and DX. See Figure 15-17.
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FIGURE 15-16: X
Points on the
line are
equidistant
from A and X. D C

| nbisector of CX

J_ bisector of BX

FIGURE 15-17:
Four

perpendicular o
bisectors. | bisector of DX

2, 3. Look inside and outside the pattern.
Steps 2 and 3 yield no changes to the pattern found in Step 1.
4. Draw the locus and describe it in words.

The locus is the interior of a square with vertices at the midpoints of the sides of the
original square. Note that the sides of this square are dotted line segments, which
indicates that the sides of this square are not part of the locus solution. See Figure 15-18.
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@ Can you guess? It’s a four-step solution.
1. Identify a pattern.

First, consider quadrant I and the angle bisector of the angle made by the positive x- and
y-axes. See Figure 15-19.

FIGURE 15-19:
A45° rayin
quadrant I.
Points on that angle bisector are equidistant from the x- and y-axes. Thus, for a point in
the first quadrant to be closer to the x-axis than to the y-axis, the point would have to be
below the dotted line. The same argument applies to the other three quadrants. And note
that any point on the x-axis (except for the origin) also satisfies the locus condition. The
result is the shaded region shown in Figure 15-20.
» y P4
< >
= >
FIGURE 15-20:
A bow tie
of sorts. ¥ Y
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2, 3. Look inside and outside the pattern.

Steps 2 and 3 yield no changes to the pattern found in Step 1.

4. Draw the locus and describe it in words.

The bow-tie-shaped shaded area shown in Figure 15-18 goes forever to the right and
to the left. And note that the borders are dotted lines because points on the lines are
equidistant from the axes and, thus, are not part of the locus solution. (Also note that
the equations of the dotted border lines are y =x and y =-x.)

@ The four-step process isn’t necessary or particularly helpful for this problem.

FIGURE 15-21:
Five points
equidistant

from the x-axis
and the point
at(3, 1).

Identifying a pattern doesn’t work as well here as with the other problems because the
answer isn’t some simple shape like a line or a circle or a square. But you might recognize
the shape after putting down five points that satisfy the locus condition at (3, 1), (2, 1),

(4, 1),(0,5),and (6, 5). (For these last two points, do you see how you canusea3-4-5
triangle to locate them?) See Figure 15-21.

y
6 -
5 4 ”
4 -
3- /%‘/
2 _ ’ ’ Eiz
1 O !
o = |
T T T I T I
1 2 3 45 6 X

Do you recognize this shape? That’s it — it’s a parabola. But to determine the precise locus
solution, you need to solve the problem algebraically.

Consider a general point in the coordinate plane, (x, y). (Note that to satisfy the locus
condition, this point must be above the x-axis.) Its distance from the x-axis is simply y,
and its distance from (3, 1) is given by the distance formula:

d=(x-3)*+(y-1)
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Set that equal to y and solve:

y=A(x-3)?+(y-1)"
yi=(x-3)*+(y-1)
yi=x?—6x+9+y>-2y+1
2y =x2—6x+10

y:%x2—3x+5

Points on that parabola satisfy the locus condition. Figure 15-22 shows the final solution.

y

B -

5

4

3 -

2 -

'I -

T T T T T T
FIGURE 15-22: 1 2 3 4 5 6 X
The parabola
y:%x273x+5.

@ Did you realize that a triangle whose sides are in a 2.1:2.8: 3.5 ratio is a 3: 4 : 5 right triangle?
To see that, first multiply each side by 10 — that’s 21:28:35 — then divide each side by 7 —
3:4:5. So, all you need to do is to construct a right triangle whose sides are in a 3:4:5 ratio.
Piece o’ cake.

First, construct a right angle at point A using the technique explained in the fourth example
problem. That will give you the perpendicular lines shown in Figure 15-23.

Next, simply use your compass to mark off four arcs along the horizontal line and three arcs
along the vertical line. The fourth arc on the horizontal line gives you vertex B, and the third
arc on the vertical line gives you vertex C. Connect B and C and you’re done. AABC is a
3-4-5 right triangle whose sides are in a ratio of 2.1:2.8:3.5.
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FIGURE 15-23:
Aright angle
constructed
atAand AB
and AC
constructed to
have a ratio of
4 to 3.

e

@ Refer to Figure 15-24 as you go through the following steps.

1. Draw a working line, I, with a point X on it.
2. Open your compass to the length of AC, and then construct XZ on line I that’s the same
length as AC.
3. Construct the following:
a. arc (4, AB)
b. arc (X, AB)
4. Construct the following:
a. arc (C, CB)
b. arc (Z, CB) intersecting arc (X, AB) at point Y
5. Draw XY and ZY and you’re done.
4a
B 3a
Given and
Steps 3a and 4a
A C
/ Steps 1 and 2
X Z
4b
% 3b
FIGURE 15-24:
Copyinga / Steps 3b and 4b
triangle. X VA
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Refer to Figure 15-25 as you work through this solution.

To locate the incenter of AABC (see Chapter 4), you need to construct two angle bisectors. Let’s
bisect angles A and C. Use the technique shown in the second example problem to bisect ZA.

1. Open your compass to any radius r, and construct arc (A, r) intersecting AB and AC at
points P and Q.

2. Construct the following:
a. arc (P, r) and
b. arc(Q, r)
3. Construct these arcs so that they intersect each other at point X (not labeled).

4. Draw AX. That’s the bisector of /A.

FIGURE 15-25:
The first steps 2h
in constructing

the incenter $
of MBC. A a C

Repeat this process to construct the angle bisector of ZC. The two angle bisectors intersect at
the incenter of AABC.
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IN THIS CHAPTER

» Revisiting triangle top hits

» Checking out area formulas

» Using volume and surface area
formulas

Chapter 16

Ten Things You Better
Know (for Geometry), or
Your Name Is Mudd

actually don’t have any problem with people named Mudd (for all you Mudds out there who

are reading this book), but if you don’t know these things, you really should go back and

look through this book again! You need all the formulas and theorems in this chapter if you
really want to be an expert in “the study of shapes.”

The Pythagorean Theorem (the Queen of All
Geometry Theorems)

The sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse, or

a®+b?=c? (See Chapter 4.)
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Special Right Triangles

The first four triangles in this section are so-called Pythagorean triple triangles. They’re spe-
cial because the lengths of all three sides are integers, which doesn’t happen often with the
Pythagorean Theorem (usually you get a square root of something for at least one of the sides):

¥ The 3-4-5 triangle

¥ The 5-12-13 triangle
¥ The 7-24-25 triangle
¥ The 8 -15-17 triangle

The next two triangles are special because they’re related to two of the most basic shapes in
geometry: The first is half of a square, and the second is half of an equilateral triangle. They
come up all the time in problems, so make sure you know them! (See Chapter 4 for details.)

» The 45°—45°-90° triangle, whose sides are in the ratio of x : x : xv2

» The 30°—60° —90° triangle, whose sides are in the ratio of x : xv/3 : 2x

Area Formulas

The following formulas give you the area of triangles and special quadrilaterals (see Chapter 7):

1
2
¥ Areap,elogram = Dase - height

¥ Areary,nge =+ base - height

(This formula also works for rectangles and squares because they're parallelograms.)
1
2
(This formula also works for rhombuses and squares because they're kites.)

base,; + base,
— 5

¥ Areay;. == diagonal, - diagonal,

¥ Arearypesoiq = height

Sum of Angles

The sum of the interior angles of a polygon with n sides is (n—2)180°. The sum of the exterior
angles of any polygon is 360°. (See Chapter 7 for more information.)
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Circle Formulas

Try these equations (which you can find in Chapter 10) when you work with circumference
and area:

¥ Circumference =2zr = nd

¥ Areaciqe = 11’

Angle-Arc Theorems

In some circle problems, you can have an angle whose vertex is on the circle or whose vertex
is outside the circle or whose vertex is inside the circle. The following formulas give you the
connection between the size of the angle and the arc it intercepts (see Chapter 10). Figure 16-1
gives examples of the types of angles these formulas apply to:

¥ Angle ona circle = % arc,

3 Angle outside a circle = % (arc, —arcsy)

¥ Angle inside a circle = % (arcy + arcs)

Note: You get an angle inside a circle when two chords cross each other, forming an X; for this
formula, you use the arcs intercepted by the angle you want and its vertical angle.

FIGURE 16-1:
Angles (a) on, J
(b) outside, (c) 2

inside a circle. @) 1 b) ©) 4

Power Theorems

Memorize the following theorems and become a geometry powerhouse (see Chapter 10):

3 Chord-chord: part - part = part - part
¥ Secant-secant: whole - outside = whole - outside

9 Secant-tangent: whole - outside = tangent®
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All three of these theorems follow the same simple rule:

(vertex to circle) - (vertex to circle ) = (vertex to circle) - (vertex to circle)

Coordinate Geometry Formulas

Given two points in the coordinate plane, (x;, y;) and (x,, ¥, ), you can compute the slope
between the two points, the halfway point between the points, and the distance from one point
to the other with the following formulas (see Chapter 13):

» Slope=22"21
X2 =X

% Midpoint = (% RS2 j

¥ Distance = \/(xz —X1)2 +(y2 -0 )2

Volume Formulas

Here’s how to find the volume of spheres, flat-top solids like cylinders and prisms, and pointy-
top solids like pyramids and cones (see Chapter 12):

» Volgphere = % ar®
» VOlFlat-Top solids = Al€apage - helght

» Vol Pointy-Top solids — % ar€apyge - helght

Surface Area Formulas

And here’s how to find the surface area of spheres, flat-top solids, and pointy-top solids (see
Chapter 12):

» SASphere = 471.')"2
» SA Flat-Top solids = 2-area base 1 lateral area rectangle(s)

» SA Pointy-Top solids — ar€apyse + lateral areatriangle(s)
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adding segments and angles, 37-41, 50-52

algebra, mastering coordinate proofs with,
275-276, 282-283
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119-120

angle-arc theorems, 321
Angle-Bisector Theorem, 191, 193, 204
angles
AA method, 179-183, 196-198
AAS method, 105-108, 119-120
adding and subtracting, 37-41, 50-52
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central, 211-214, 220-221
circles and, 226-229, 236-237, 321
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adding and subtracting angles and
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transversals, 124, 149-150
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making right assumptions about, 8

multiplying and dividing angles and
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in similar polygons, 176, 195
theorems related to, 34-35

Transitive and Substitution properties,
46-49

corresponding, 124, 125, 176, 195
defined, 18

formed by parallel lines and transversals,
124

interior and exterior, in polygons,
165-167,172-173

isosceles triangle rules, 102-104, 117-118

making right assumptions about, 8-10
multiplying and dividing, 42-46, 52-53
obtuse, 18
right
congruent, proving, 105-108, 119-120
defined, 18
making right assumptions about, 8, 9
theorems related to, 34

same-side interior and exterior, 124, 125,
149

SAS method, 91-97, 105, 113-115
SAS~ method, 179-183, 196-198
straight, 9, 18

sum of in polygon, 320
supplementary

formed by parallel lines and
transversals, 124, 149

lines-cut-by-a-transversal theorems, 125

overview, 25-26, 30-31

proofs involving, 34-37, 50

when proving congruent triangles, 105
theorems related to, 34-35

Transitive and Substitution properties,
46-49

in triangles, 58
vertex, in triangles, 58
vertical, 26-27,31-32, 34

Angle-Side-Angle (ASA) method, 91-97, 105,
113-115

apothem, of regular polygon, 163

arcs, 211-214, 220-221, 224

area
of circles, 223-226, 233-236, 321
formulas for, 320
of quadrilaterals, 159-162, 168-171
of regular polygons, 163-165, 171-172
of triangles, 61-64, 79, 81-82, 89-90

ASA (Angle-Side-Angle) method, 91-97, 105,
113-115
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base, 58, 253

base angles, in triangles, 58
bisected chords, 208
bisections, 21-22, 28-29, 191

C

center of rotation, 292-294, 300
central angles, 211-214, 220-221
centroids of triangles, 65-70, 83-85

Chord-Chord Power Theorem, 230, 231,
237,238,321-322

chords, 207-212, 218-220
circles
angles and, 226-229, 236-237, 321
arcs and central angles, 211-214, 220-221
area and perimeter, 223-226, 233-236
congruent, 211, 212
equations of, 276-278, 283-284, 321
overview, 207, 223
power theorems, 230-232, 237-238
radii and chords, 207-211, 218-220
radii and tangents, 215-222
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circumference, 223-226, 233-236, 321
common-tangent problems, 216, 222
compass constructions, 306-310, 316-318

complementary angles, 25-26, 30-31,
34-37, 50

cones, 256-259, 263-266
congruent angles

adding and subtracting angles and
segments, 38

formed by parallel lines and transversals,
124, 149-150

lines-cut-by-a-transversal theorems, 125
making right assumptions about, 8

multiplying and dividing angles and
segments, 42

in similar polygons, 176, 195
theorems related to, 34-35

Transitive and Substitution properties,
46-49

congruent circles, 211, 212
congruent radii, 208
congruent segments, 8, 38, 42, 46-49
congruent triangles
AAS and HL methods, 105-108, 119-120
CPCTC, 97-101, 115-117
equidistance theorems, 108-112, 120
isosceles triangle rules, 102-104, 117-118
overview, 91
three ways to prove, 91-97, 113-115
construction problems, 306-310, 316-318
coordinate geometry. See also isometries
construction problems, 306-310, 316-318

equations of lines and circles, 276-278,
283-284

locus problems, 301-306, 311-316

mastering coordinate proofs with
algebra, 275-276, 282-283

overview, 271, 301

slope, distance, and midpoint formulas,
272-274,279-282, 322

corresponding angles, 124, 125, 176, 195
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Corresponding Parts of Congruent
Triangles are Congruent (CPCTC),
97-101, 115-117

Corresponding Sides of Similar Triangles
are Proportional (CSSTP), 183-186,
198-200

cylinders, 253-255, 261-263

D

Descartes, René, 271

diagonals, in polygons, 166

diameter, 208

distance, and chord size, 208

distance formula, 272-274, 279-282, 322
dividing angles and segments, 42-46, 52-53
Dunce Cap Theorem, 215, 222

equations of lines and circles, 276-278,
283-284

equiangular polygons, 166

equiangular triangles, 58

equidistance theorems, 108-112, 120
equilateral triangles, 58-62, 80-81, 163-164
Example icon, explained, 3

exterior angles in polygons, 165-167,
172-173, 320

external tangent, 216

F

families, triangle, 75

flat-top figures, 253-255, 261-263, 322
flexible approach to proofs, 116
flow-of-logic structure in proofs, 13-14, 33
45°-45°-90° triangles, 78-79, 88-90, 320

G

general principles, in proofs, 13
geometry
defined, 7
essentials, 319-322
making right assumptions in, 8-10
overview, 1-4
proofs overview, 12-14
solutions to practice problems, 15-16
theorems and postulates in, 11-12

givens in proofs, importance of using, 38,
39,98

glide reflections, 294-296, 300

H
height

slant, 256, 257, 263

of triangles, 61-64, 81-82
Hero's formula, 62, 82
horizontal lines, 272, 277

hypotenuse perpendicular
Altitude-on-Hypotenuse Theorem, multiple, 245-248, 251-252
186-189, 200-202 to planes, 241-244, 249-250
defined, 58 slope of, 272
in 45°-45°-90° triangles, 78, 79 slope formulas, 272-274, 279-282
Hypot1e1n9us1e2—(L)eg (HL) method, 105-108, vertical, 272, 277

lines-cut-by-a-transversal theorems, 125
| locus problems, 301-306, 311-316
icons, explained, 3 M
if angles, then sides, 102-104, 117-118
if sides, then angles, 102-104, 117-118, 196
if-then logic, in proofs, 12-14, 34
incenter, of triangles, 66-70, 83-85
interior angles, in polygons, 165-167,

major arc, 211
medians
of trapezoids, 160
of triangles, 65-66, 83

172-173, 320 midpoint, defined, 21-22, 28-29
internal tangent, 216 midpoint formula, 272-274, 279-282, 322
intersecting lines and planes, 245-248, minor arc, 211
251-252 multiplying angles and segments, 42-46,
intersection problems, 18-20, 28 52-53
isometries
glide reflections, 294-296, 300 (9]

overview, 285
reflections, 286-289, 297-298

obtuse angles, 18
obtuse triangles

rotations, 292-294, 299-300 altitude of, 62
translations, 289-291, 298-299 formed by parallel lines and transversals,
isosceles trapezoids, 129, 141-143, 156 124
isosceles triangles orthocenter and circumcenter in, 67
altitude of, 62 overview, 58-61, 80-81
overview, 58-61, 80-81 online practice material, accessing, 4
rules for, using to prove congruent orientation, reflections and, 286, 288, 297

triangles, 102-104, 117-118 orthocenter, of triangles, 66-70, 83-85

K P
kites parallel, defined, 23
area formula for, 160, 171, 320 parallel lines
overview, 128 and planes, 245-248, 251-252
properties of, 132-137, 152-154 slope of, 272
proving, 143-147, 157-158 theorems involving proportions,
190, 202
L transversals and, 124-128, 149-150

parallelograms
area formula for, 160, 168, 171, 320
overview, 128
properties of, 132-137, 152-154
proving, 143-147, 157-158
patterns, in locus problems, 302-304,

lateral area, 254, 256

legs, in triangles, 58

Like Divisions Theorem, 42, 44

Like Multiples Theorem, 42, 43, 118
line segments. See segments

lines 311-315
defined, 17-18 perimeter
equations of, 276-278, 283-284 of circles, 223-226, 233-236

horizontal, 272, 277 of similar polygons, 176-177

intersecting, 245-248, 251-252 perpendicular bisectors, 109-111, 287-288,
parallel 293,308

and planes, 245-248, 251-252 perpendicular lines

slope of, 272 multiple, 245-248, 251-252

theorems involving proportions, 190, 202 to planes, 241-244, 249-250

transversals and, 124-128, 149-150 slope of, 272
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perpendicularity
in circles, 208
overview, 23-24, 30
tangent and radius, 215
planes
defined, 241
determining, 245
lines perpendicular to, 241-244, 249-250

parallel, perpendicular, and intersecting,
245-248, 251-252

points, defined, 17

point-slope form, 276, 278

pointy-top figures, 256-259, 263-266, 322
polygons

interior and exterior angles in, 165-167,
172-173

overview, 159

quadrilateral area formulas, 159-162,
168-171

regular polygon area formula, 163-165,
171-172

similar, defining characteristics of,
176-178, 195-196

postulates, 3, 11-12. See also theorems

power theorems, 230-232, 237-238,
321-322

prisms, 253-255, 261-263
proofs

coordinate, mastering with algebra,
275-276, 282-283

corresponding sides of similar triangles
in, 183-186, 198-200

flexible approach to, 116

involving adding and subtracting
segments and angles, 37-41, 50-52

involving arcs and central angles,
212-214,220-221

involving complementary and
supplementary angles, 34-37, 50

involving congruent triangles
AAS and HL methods, 105-108, 119-120
CPCTC, 97-101, 115-117
equidistance theorems, 108-112, 120
isosceles triangle rules, 102-104, 117-118
overview, 91

SSS, SAS, and ASA methods, 91-97,

113-115

involving lines perpendicular to planes,
241-244, 249-250

involving multiplying and dividing angles
and segments, 42-46, 52-53

involving parallel, perpendicular, and
intersecting lines and planes,
245-248, 251-252

involving parallelograms and kites,
143-147

involving radii and chords, 207-211,
218-220

involving radii and tangents, 216, 222

involving rhombuses, rectangles, and
squares, 147-148

involving similar triangles, 179-183,
196-198

involving transitive and substitution
properties, 46-49, 53-54

overview, 1-2, 12-14, 33-34

proportions, theorems involving, 190-194,
202-204

pyramids, 256-259, 263-266
Pythagorean Theorem, 71-74, 85-89, 319
Pythagorean triple triangles, 74-77, 89, 320

Q

quadratic formula, 59, 202
quadrilaterals
area formulas for, 159-162, 168-171
overview, 123

parallel lines and transversals, 124-128,
149-150

properties of parallelograms and kites,
132-137, 152-154

properties of rhombuses, rectangles, and
squares, 137-141, 155-156

properties of trapezoids and isosceles
trapezoids, 141-143, 156

proving parallelograms and kites,
143-147, 157-158

proving rhombuses, rectangles, and
squares, 147-148, 158

types of, 128-132, 150-152

R

radii
chords and, 207-211, 218-220
congruent, 208
and tangents, 215, 222

ratios of lengths of corresponding sides,
176

rays, defined, 18
rectangles
overview, 128
properties of, 137-141, 155-156
proving, 147-148, 158
reflecting line, 287, 295-296, 300
reflections
glide, 294-296, 300
overview, 286-289, 297-298
reflexive property, 92
regular polygons, area of, 163-165, 171-172

relative sizes of segments and angles,
assumptions about, 8

Remember icon, explained, 3
rhombuses
overview, 128
properties of, 137-141, 155-156
proving, 147-148, 158
right angles
congruent, proving, 105-108, 119-120
defined, 18

making right assumptions about, 8, 9
theorems related to, 34

right triangles
altitude of, 62

45°-45°-90° and 30°-60°-90°, 78-79,
88-90, 320

orthocenter and circumcenter in, 67
overview, 58-61, 80-81

Pythagorean triple triangles, 74-77, 89,
320

similar, 186-189, 200-202
rotations, 292-294, 299-300

S

same-side exterior angles, 124, 125, 149
same-side interior angles, 124, 125, 149

SAS (Side-Angle-Side) method, 91-97, 105,
113-115

SAS~ (Side-Angle-Side~) method, 179-183,
196-198

scalene triangles, 58-62, 80-81

Secant-Secant Power Theorem, 230-231,
321-322

sectors, circle, area of, 224
segment bisection, 21-22, 28-29
segment trisection, 21-22, 28-29
segments
of circles, 223, 225, 230-232
congruent, 8, 38, 42, 46-49
defined, 18
making right assumptions about, 8

proofs involving adding and subtracting,
37-41, 50-52

proofs involving multiplying and dividing,
42-46, 52-53

proofs involving Transitive and
Substitution properties, 46-49

reflecting lines and connecting, 287
shapes

geometry as study of, 7

making right assumptions about, 8-10

Side-Angle-Side (SAS) method, 91-97, 105,
113-115

Side-Angle-Side~ (SAS~) method, 179-183,
196-198

Side-Side-Side (SSS) method, 91-97, 105,
113-115

Side-Side-Side~ (S55~) method, 179-183,
196-198

Side-Splitter Theorem, 190, 191, 203
similarity
Altitude-on-Hypotenuse Theorem,
186-189, 200-202
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183-186, 198-200

defining characteristics, 176-178, 195-196
overview, 175
proving triangles similar, 179-183, 196-198

theorems involving proportions, 190-194,
202-204
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size relationships, making right
assumptions about, 8

slant height, 256, 257, 263
slope formulas, 272-274, 279-282, 322
slope-intercept form, 276, 278
solid geometry
flat-top figures, 253-255, 261-263
overview, 253
pointy-top figures, 256-259, 263-266
spheres, 259-260, 266-267
specific facts, in proofs, 13
spheres, 259-260, 266-267, 322
squares
area formula for, 160
overview, 129
properties of, 137-141, 155-156
proving, 147-148, 158

SSS (Side-Side-Side) method, 91-97, 105,
113-115

SSS~ (Side-Side-Side~) method, 179-183,
196-198

straight angles, 9, 18

straightedge constructions, 306-310,
316-318

Substitution Property, 46-49, 53-54

subtracting segments and angles, 37-41,
50-52

sum of angles in polygon, 320
supplementary angles

formed by parallel lines and transversals,

124,149

lines-cut-by-a-transversal theorems, 125

overview, 25-26, 30-31

proofs involving, 34-37, 50

when proving congruent triangles, 105
surface area

of flat-top figures, 254-255, 261-263

formulas for, 322

of pointy-top figures, 256-259, 263-266

of spheres, 259-260, 266-267

T
tangents, 215, 222

Tangent-Secant Power Theorem, 230, 231,
238,321-322

theorems
about isosceles triangles, 102

adding and subtracting segments and
angles, 37-38

Altitude-on-Hypotenuse, 186-189,
200-202

congruent angles, 34

defined, 3

determining planes, 245

equidistance, 108-112, 120

glide reflections, 295

involving proportions, 190-194, 202-204
lines-cut-by-a-transversal, 125

multiplying and dividing angles and
segments, 42

needed for proofs, 34

overview, 11-12
parallel-lines-with-transversal, 124
power, 230-232, 237-238, 321-322

for proving congruent triangles, 92, 105
reflections, 286, 287

related to planes, 245

rotations, 292

Transitive and Substitution properties,
46-47

translations, 290
Theorems & Postulates icon, explained, 3
30°-60°-90° triangles, 78-79, 88-90, 320
three-dimensional (3-D) geometry
flat-top figures, 253-255, 261-263

lines perpendicular to planes, 241-244,
249-250

overview, 241, 253

parallel, perpendicular, and intersecting
lines and planes, 245-248, 251-252

pointy-top figures, 256-259, 263-266
spheres, 259-260, 266-267

Tip icon, explained, 3

transformations. See isometries

Transitive Property, proofs involving,
46-49, 53-54

translations, 286, 289-291, 298-299
transversals, 124-128, 149-150, 190
trapezoids

area formula for, 160, 161, 168-170, 320

overview, 129

properties of, 141-143, 156
triangles

acute, 58-62, 67, 80-81

area and altitude, 61-64, 81-82

area formula for, 320

congruent

AAS and HL methods, 105-108,
119-120

CPCTC, 97-101, 115-117
equidistance theorems, 108-112, 120
isosceles triangle rules, 102-104,

angle-arc, 321 117-118
circle, 208, 212, 215, 224, 227, 230-231 overview, 91
complementary and supplementary three ways to prove, 91-97, 113-115
angles, 34-35
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corresponding sides of similar, 183-186,
198-200

equiangular, 58
equilateral, 58-62, 80-81, 163-164
families, 75
isosceles
altitude of, 62
overview, 58-61, 80-81

rules for, using to prove congruent
triangles, 102-104, 117-118

medians and centroids, 83
obtuse, 58-62, 67, 80-81, 124

orthocenter, incenter, and circumcenter,
66-70, 83-85

overview, 57
proving similar, 179-183, 196-198

Pythagorean Theorem, 71-74,
85-88, 319

right
altitude of, 62
45°-45°-90° and 30°-60°-90°, 78-79,
88-90, 320

orthocenter and circumcenter in, 67
overview, 58-61, 80-81

Pythagorean triple triangles, 74-77,
89, 320

similar, 186-189, 200-202
scalene, 58-62, 80-81

theorems involving proportions, 190-194,
202-204

types of, 58-61, 80-81
trisections, 21-22, 28-29
two-column proofs. See proofs

U

union problems, 18-20, 28

vertex angle, in triangles, 58

vertical angles, 26-27, 31-32, 34

vertical lines, 272, 277

volume
of flat-top figures, 253-255, 261-263
formulas for, 322
of pointy-top figures, 256-259, 263-266
of spheres, 259-260, 266-267

W

walk-around problems, 222

walks, 294-296, 300

Warning icon, explained, 3

working backwards in proofs, 38, 39, 98
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