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Introduction

If you’ve already bought this book, then you have my undying respect and admiration (not to 
mention — cha ching — that with my royalty from the sale of this book, I can now afford, 
oh, say, half a cup of coffee). And if you’re just thinking about buying it, well, what are you 

waiting for? Buying this book (and its excellent companion volume, Geometry For Dummies) 
can be an important first step on the road to gaining a solid grasp of a subject — and now I’m 
being serious — that is full of mathematical richness and beauty. By studying geometry, you 
take part in a long tradition going back at least as far as Pythagoras (one of the early, well-
known mathematicians to study geometry, but certainly not the first). There is no mathemati-
cian, great or otherwise, who has not spent some time studying geometry.

I spend a great deal of time in this book explaining how to do geometry proofs. Many students 
have a lot of difficulty when they attempt their first proofs. I can think of a few reasons for this. 
First, geometry proofs, like the rest of geometry, have a spatial aspect that many students find 
challenging. Second, proofs lack the cut-and-dried nature of most of the math that students 
are accustomed to (in other words, with geometry proofs there are way more instances where 
there are many correct ways to proceed, and this takes some getting used to). And third, proofs 
are, in a sense, only half math. The other half is deductive logic — something new for most 
students, and something that has a significant verbal component. The good news is that if you 
practice the dozen or so strategies and tips for doing proofs presented in this book, you should 
have little difficulty getting the hang of it. These strategies and tips work like a charm and 
make many proofs much easier than they initially seem.

About This Book
Geometry Workbook For Dummies, like Geometry For Dummies, is intended for three groups of 
readers:

»» High school students (and possibly junior high students) taking a standard geometry course 
with the traditional emphasis on geometry proofs

»» The parents of geometry students

»» Anyone of any age who is curious about this interesting subject, which has fascinated both 
mathematicians and laypeople for well over two thousand years

Whenever possible, I explain geometry concepts and problem solutions with a minimum of 
technical jargon. I take a common-sense, street-smart approach when explaining mathemat-
ics, and I try to avoid the often stiff and formal style used in too many textbooks. You get 
answer explanations for every practice problem. And with proofs, in addition to giving you the 
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steps of the solutions, I show you the thought process behind the solutions. I supplement the 
problem explanations with tips, shortcuts, and mnemonic devices. Often, a simple tip or mem-
ory trick can make learning and retaining a new, difficult concept much easier. The pages here 
should contain enough blank space to allow you to write out your solutions right in the book.

Conventions Used in This Book
This book uses certain conventions:

»» Variables are in italics.

»» Important math terms are often in italics and are defined when necessary. These terms may 
be bolded when they appear as keywords within a bulleted list. Italics are also used  
for emphasis.

»» As in most geometry books, figures are not necessarily drawn to scale.

»» Extra-hard problems are marked with an asterisk. Don’t try these problems on an empty 
stomach!

For all proof problems, don’t assume that the number of blank lines (where you’ll put your 
solutions) corresponds exactly to the number of steps needed for the proof.

How to Use This Book
Like all For Dummies books, you can use this book as a reference. You don’t need to read it cover 
to cover or work through all problems in order. You may need more practice in some areas than 
others, so you may choose to do only half of the practice problems in some sections, or none 
at all.

However, as you’d expect, the order of the topics in Geometry Workbook For Dummies roughly 
follows the order of a traditional high school geometry course. You can, therefore, go through 
the book in order, using it to supplement your coursework. If I do say so myself, I expect you’ll 
find that many of the explanations, methods, strategies, and tips in this book will make prob-
lems you found difficult or confusing in class seem much easier.

I give hints for many problems, but if you want to challenge yourself, you may want to cover 
them up and attempt the problem without the hint.

And if you get stuck while doing a proof, you can try reading a little bit of the “game plan” or 
the solution to the proof. These aids are in the solutions section at the end of every chapter. But 
don’t read too much at first. Read a small amount and see whether it gives you any ideas. Then, 
if you’re still having trouble, read a little more.
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Foolish Assumptions
As William Shakespeare said, “A fool thinks himself to be wise, but a wise man knows himself 
to be a fool.” Here’s what I’m assuming about you — fool that I am.

»» You’re no slouch — and therefore, you have at least some faint glimmer of curiosity about 
geometry (or maybe you’re totally, stark raving mad with desire to learn the subject?). How 
could people possibly have no curiosity at all about geometry, assuming they’re not in a 
coma? You are literally surrounded by shapes, and every shape involves geometry.

»» You haven’t forgotten basic algebra. You need very little algebra for geometry, but you  
do need some. Even if your algebra is a bit rusty, I doubt you’ll have any trouble with the 
algebra in this book: solving simple equations, using simple formulas, doing square roots, 
and so on.

»» You’re willing to invest some time and effort in doing these practice problems. With  
geometry — as with anything — practice makes perfect, and practice sometimes involves 
struggle. But that’s a good thing. Ideally, you should give these problems your best shot 
before you turn to the solutions. Reading through the solutions can be a good way to learn, 
but you’ll usually remember more if you first push yourself to solve the problems on your 
own — even if that means going down a few dead ends.

Icons Used in This Book
Look for the following icons to quickly spot important information:

Next to this icon are definitions of geometry terms, explanations of geometry principles, and 
a few things you should know from algebra. You often use geometry definitions in the reason 
column of two-column proofs.

This icon is next to all example problems — duh.

This icon gives you shortcuts, memory devices, strategies, and so on.

Ignore these icons, and you may end up doing lots of extra work and maybe getting the wrong 
answer — and then you could fail geometry, become unpopular, and lose any hope of becoming 
homecoming queen or king. Better safe than sorry, right?

This icon identifies the theorems and postulates that you’ll use to form the chain of logic in 
geometry proofs. You use them in the reason column of two-column proofs. A theorem is an if-
then statement, like “if angles are supplementary to the same angle, then they are congruent.” 
You use postulates basically the same way that you use theorems. The difference between them 
is sort of a mathematical technicality (which I wouldn’t sweat if I were you).
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Beyond the Book
You have online access to hundreds of geometry practice problems to supplement what’s cov-
ered in the book. To gain access to this online practice material, all you have to do is register. 
Just follow these simple steps:

1.	 Register your book or e-book at Dummies.com to get your personal identification 
number (PIN).

Go to www.dummies.com/go/getaccess.

2.	 Choose your product from the drop-down list on that page.

3.	 Follow the prompts to validate your product.

4.	 Check your email for a confirmation message that includes your PIN and instructions 
for logging in.

If you don’t receive this email within two hours, please check your spam folder before 
contacting us through our support website at http://support.wiley.com or by phone 
at +1 (877) 762-2974.

Where to Go from Here
You can go

»» To Chapter 1

»» To whatever chapter contains the concepts you need to practice

»» To Geometry For Dummies for more in-depth explanations

»» To the movies

»» To the beach

»» Into your geometry final to kick some @#%$!

»» Then on to bigger and better things

http://Dummies.com
http://www.dummies.com/go/getaccess
http://support.wiley.com


1Getting Started 
with Geometry



IN THIS PART . . .

Get familiar with two-column geometry proofs.

Discover points, segments, lines, rays, and angles.

Practice your skills on lots of proof problems.
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Introducing Geometry 
and Geometry Proofs

In this chapter, you get started with some basics about geometry and shapes, a couple points 
about deductive logic, and a few introductory comments about the structure of geometry 
proofs. Time to get started!

What Is Geometry?
What is geometry?! C’mon, everyone knows what geometry is, right? Geometry is the study of 
shapes: circles, triangles, rectangles, pyramids, and so on. Shapes are all around you. The desk 
or table where you’re reading this book has a shape. You can probably see a window from where 
you are, and it’s probably a rectangle. The pages of this book are also rectangles. Your pen or 
pencil is roughly a cylinder (or maybe a right hexagonal prism — see Part 5 for more on solid 
figures). Your shirt may have circular buttons. The bricks of a brick house are right rectangular 
prisms. Shapes are ubiquitous — in our world, anyway.

For the philosophically inclined, here’s an exercise that goes way beyond the scope of this book: 
Try to imagine a world — some sort of different universe — where there aren’t various objects 
with different shapes. (If you’re into this sort of thing, check out Philosophy For Dummies.)

Chapter 1

IN THIS CHAPTER

»» Defining geometry

»» Examining theorems and if-then 
logic

»» Geometry proofs: The formal and 
the not-so-formal
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Making the Right Assumptions
Okay, so geometry is the study of shapes. And how can you tell one shape from another? From 
the way it looks, of course. But — this may seem a bit bizarre — when you’re studying geom-
etry, you’re sort of not supposed to rely on the way shapes look. The point of this strange 
treatment of geometric figures is to prohibit you from claiming that something is true about a 
figure merely because it looks true, and to force you, instead, to prove that it’s true by airtight, 
mathematical logic.

When you’re working with shapes in any other area of math, or in science, or in, say, archi-
tecture or design, paying attention to the way shapes look is very important: their proportions, 
their angles, their orientation, how steep their sides are, and so on. Only in a geometry course 
are you supposed to ignore to some degree the appearance of the shapes you study. (I say “to 
some degree” because, in reality, even in a geometry course — or when using this book — it’s 
still quite useful most of the time to pay attention to the appearance of shapes.)

When you look at a diagram in this or any geometry book, you cannot assume any of the 
­following just from the appearance of the figure.

»» Right angles: Just because an angle looks like an exact 90  angle, that doesn’t necessarily 
mean it is one.

»» Congruent angles: Just because two angles look the same size, that doesn’t mean they 
really are. (As you probably know, congruent [symbolized by ] is a fancy word for “equal” or 
“same size.”)

»» Congruent segments: Just like with angles, you can’t assume segments are the same length 
just because they appear to be.

»» Relative sizes of segments and angles: Just because, say, one segment is drawn to look 
longer than another in some diagram, it doesn’t follow that the segment really is longer.

Sometimes size relationships are marked on the diagram. For instance, a small L-shaped mark 
in a corner means that you have a right angle. Tick marks can indicate congruent parts. Basi-
cally, if the tick marks match, you know the segments or angles are the same size.

You can assume pretty much anything not on this list; for example, if a line looks straight, it 
really is straight.

Before doing the following problems, you may want to peek ahead to Chapters 4 and 6 if you’ve 
forgotten or don’t know the names of various triangles and quadrilaterals.
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Q.	 What can you assume and what can’t you assume 
about SIMON?

A.	 You can assume that

•	 MN  (line segment MN) is straight; in other words, there’s no bend at point O.

Another way of saying the same thing is that MON  is a straight angle or a 180  
angle.

•	 NS SI, ,  and IM  are also straight as opposed to curvy.

•	 Therefore, SIMON is a quadrilateral because it has four straight sides.

(If you couldn’t assume that MN  is straight, there could actually be a bend at point 
O and then SIMON would be a pentagon, but that’s not possible.)

That’s about it for what you can assume. If this figure were anywhere else other 
than a geometry book, you could safely assume all sorts of other things — including 
that SIMON is a trapezoid. But this is a geometry book, so you can’t assume that. You 
also can’t assume that

•	 S and N  are right angles.

•	 I  is an obtuse angle (an angle greater than 90 ).

•	 M  is an acute angle (an angle less than 90 ).

•	 I  is greater than M  or S or N , and ditto for the relative sizes of other angles.

•	 NS  is shorter than SI  or MN , and ditto for the relative lengths of the other 
segments.

•	 O is the midpoint of MN .

•	 SI  is parallel to MN .

The “real” SIMON — weird as it seems — could actually look like this:
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1	 What type of quadrilateral is AMER? Note: See 
Chapter 6 for types of quadrilaterals.

2	 What type of quadrilateral is IDOL?

3	 Use the figure to answer the following ques-
tions (Chapter 4 can fill you in on triangles):

a.	 Can you assume that the triangles are 
congruent?

b.	 Can you conclude that ABC  is acute? 
Obtuse? Right? Isosceles (with at least two 
equal sides)? Equilateral (with three equal 
sides)?

c.	 Can you conclude that DEF  is acute? 
Obtuse? Right? Isosceles? Equilateral?

d.	 What can you conclude about the length  
of EF ?

e.	 Might D be a right angle?

f.	 Might F  be a right angle?

4	 Can you assume or conclude

a.	 ABC WXY ?

b.	 ABD CBD?

c.	 ABD WXZ ?

d.	 ABC  is isosceles?

e.	 D is the midpoint of AC?

f.	 Z is the midpoint of WY ?

g.	 BD  is an altitude (height) of ABC ?

h.	 ADB is supplementary to 
CDB ADB CDB that is: 180 ?

i.	 XYZ  is a right triangle?



CHAPTER 1  Introducing Geometry and Geometry Proofs      11

If-Then Logic: If You Bought This Book,  
Then You Must Love Geometry!

Geometry theorems (and their cousins, postulates) are basically statements of geometrical truth, 
like “All radii of a circle are congruent.” As you can see in this section and in the rest of the 
book, theorems (and postulates) are the building blocks of proofs. (I may get hauled over by 
the geometry police for saying this, but if I were you, I’d just glom theorems and postulates 
together into a single group because, for the purposes of doing proofs, they work the same way. 
Whenever I refer to theorems, you can safely read it as “theorems and postulates.”)

Geometry theorems can all be expressed in the form, “If blah blah blah, then blah blah blah,” 
like “If two angles are right angles, then they are congruent” (although theorems are often 
written in some shorter way, like “All right angles are congruent”). You may want to flip 
through the book looking for theorem icons to get a feel for what theorems look like.

An important thing to note here is that the reverse of a theorem is not necessarily true. For 
example, the statement, “If two angles are congruent, then they are right angles,” is false. 
When a theorem does work in both directions, you get two separate theorems, one the reverse 
of the other.

The fact that theorems are not generally reversible should come as no surprise. Many ordinary 
statements in if-then form are, like theorems, not reversible: “If something’s a ship, then it’s a 
boat” is true, but “If something’s a boat, then it’s a ship” is false, right? (It might be a canoe.)

Geometry definitions (like all definitions), however, are reversible. Consider the definition of 
perpendicular: perpendicular lines are lines that intersect at right angles. Both if-then state-
ments are true: 1) “If lines are perpendicular, then they intersect at right angles,” and 2) “If 
lines intersect at right angles, then they are perpendicular.” When doing proofs, you’ll have the 
occasion to use both forms of many definitions.

Q.	 Read through some theorems.

a.	 Give an example of a theorem that’s not reversible and explain why the reverse  
is false.

b.	 Give an example of a theorem whose reverse is another true theorem.

A.	 A number of responses work, but here’s how you could answer:

a.	 “If two angles are vertical angles, then they are congruent.” The reverse of this  
theorem is obviously false. Just because two angles are the same size, it does not 
follow that they must be vertical angles. (When two lines intersect and form an X, 
vertical angles are the angles straight across from each other — turn to Chapter 2 
for more info.)

b.	 Two of the most important geometry theorems are a reversible pair: “If two sides of 
a triangle are congruent, then the angles opposite those sides are congruent” and  
“If two angles of a triangle are congruent, then the sides opposite those angles are 
congruent.” (For more on these isosceles triangle theorems, check out Chapter 5.)
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5	 Give two examples of theorems that are not 
reversible and explain why the reverse of each 
is false. Hint: Flip through this book or your 
geometry textbook and look at various theo-
rems. Try reversing them and ask yourself 
whether they still work.

6	 Give two examples of theorems that work  
in both directions. Hint: See the hint for  
question 5.

What’s a Geometry Proof?
Many students find two-column geometry proofs difficult, but they’re really no big deal once 
you get the hang of them. Basically, they’re just arguments like the following, in which you 
brilliantly establish that your Labradoodle, Fifi, will not lay any eggs on the Fourth of July:

1.	 Fifi is a Labradoodle.

2.	 Therefore, Fifi is a dog, because all Labradoodles are dogs.

3.	 Therefore, Fifi is a mammal, because all dogs are mammals.

4.	 Therefore, Fifi will never lay any eggs, because mammals don’t lay eggs (okay, 
okay . . . except for platypuses and spiny anteaters, for you monotreme-loving  
nitpickers out there).

5.	 Therefore, Fifi will not lay any eggs on the Fourth of July, because if she will never lay 
any eggs, she can’t lay eggs on the Fourth of July.

In a nutshell: Labradoodle → dog → mammal → no eggs → no eggs on July 4. It’s sort of a 
domino effect. Each statement knocks over the next till you get to your final conclusion.

Check out Figure 1-1 to see what this argument or proof looks like in the standard two-column 
geometry proof format.
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Note that the left-hand column contains specific facts (about one particular dog, Fifi), while the 
right-hand column contains general principles (about dogs in general or mammals in general). 
This format is true of all geometry proofs.

Now look at the very same proof in Figure 1-2; this time, the reasons appear in if-then form. 
When reasons are written this way, you can see how the chain of logic flows.

In a two-column proof, the idea or ideas in the if part of each reason must come from the 
statement column somewhere above the reason; and the single idea in the then part of the 
reason must match the idea in the statement on the same line as the reason. This incredibly 
important flow-of-logic structure is shown with arrows in the following proof.

FIGURE 1-1: 
A standard 

two-column 
proof listing 
statements 

and reasons.

FIGURE 1-2: 
A proof with 
the reasons 

written in 
if-then form.
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In the preceding proof, each if clause uses only a single idea from the statement column. How-
ever, as you can see in the following practice problem, you often have to use more than one idea 
from the statement column in an if clause.

7	 In the following facetious and somewhat fishy proof, fill in the missing reasons in if-then 
form and show the flow of logic as I illustrate in Figure 1-2.

Given:    You forgot to set your alarm last night.

You’ve already been late for school twice this term.

Prove:    You will get a detention at school today.

Note: To complete this “proof,” you need to know the school’s late policy: A student who 
is late for school three times in one term will be given a detention.

Statements (or Conclusions) Reasons (or Justifications)

1) I forgot to set my alarm last night. 1) Given.

2) I will wake up late. 2)

3) I will miss the bus. 3)

4) I will be late for school. 4)

5) �I’ve already been late for school twice this term. 5) Given.

6) �This will be the third time this term I’ll have been late. 6)

7) I’ll get a detention at school today. 7)
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Solutions
1	 AMER looks like a square, but you can’t conclude that because you can’t assume the sides are 

equal. You do know, however, that the figure is a rectangle because it has four sides and four 
right angles.

2	 IDOL also looks like a square, and again, like with question 1, you can’t conclude that, but this 
time you can’t conclude that because you can’t assume that the angles are right angles. But 
because you do know that IDOL has four equal sides, you know that it’s a rhombus.

3	 Here are the answers (flip to Chapter 4 if you need to go over triangle classification):

a.	 No. The triangles look congruent, but you’re not allowed to assume that.

b.	 The tick marks tell you that ABC  is equilateral. It is, therefore, an acute triangle and an 
isosceles triangle. It is neither a right triangle nor an obtuse triangle.

c.	 The tick marks tell you that DEF  is isosceles and that, therefore, it is not scalene. That’s 
all you can conclude. It may or may not be any of the other types of triangles.

d.	 Nothing. EF  could be the longest side of the triangle, or the shortest, or equal to the other 
two sides. And it may or may not have the same length as BC .

e.	 Yes. D might be a right angle, though you can’t assume that it is.

f.	 No. (If you got this question right, give yourself a pat on the back.) If F  were a right 
angle, DEF  would be a right triangle with DE  its hypotenuse. But DE  is the same length 
as DF , and the hypotenuse of a right triangle has to be the triangle’s longest side.

4	 Here are the answers:

a.	 No. The triangles might not be congruent in any number of ways. For example, you know 
nothing about the length of ZY , and if ZY  were, say, a mile long, the triangles would obvi-
ously not be congruent.

b.	 No. The triangles would be congruent only if ADB and CDB were right angles, but you 
don’t know that. Point B is free to move left or right, changing the measures of ADB and 

CDB.

c.	 No. You don’t know that ADB is a right angle.

d.	 No. The figure looks isosceles, but you’re not allowed to assume that AB CB.

e.	 Yes. The tick marks show it.

f.	 No. Like with part a, you know nothing about the length of ZY .

g.	 No. You can’t assume that BD AC  (the upside-down T means “is perpendicular to”).

h.	 Yes. You can assume that AC  is straight and that ADC  is 180 ; therefore, ADB and CDB 
must add up to 180 .

i.	 Yes. WZY  is 180  and WZX  is 90 , so YZX  must also be 90 .

5	 Answers vary. One example is “If angles are complementary to the same angle, then they’re 
congruent.” The reverse of this is false because many angles, like obtuse angles, do not have 
complements (obtuse angles are already bigger than 90 , so you can’t add another angle to 
them to get a right angle).
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6	 Answers vary. Any of the parallel line theorems in Chapter 2 makes a good answer. For 
example, “If two parallel lines are cut by a transversal, then alternate interior angles are 
congruent.” Both this theorem and its reverse are true. To wit (in abbreviated form): “If lines 
are parallel, then alternate interior angles are congruent,” and “If alternate interior angles 
are congruent, then lines are parallel.”

7	

I hope it goes without saying that this is not an airtight, mathematical proof.
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Points, Segments, Lines, 
Rays, and Angles

In this chapter, you first review the building blocks of geometry: points, segments, lines, 
rays, and angles. Then I go over some terms related to those objects: midpoint, bisection, 
and trisection; parallel and perpendicular lines; right, acute, and obtuse angles; comple-

mentary and supplementary angles; and vertical angles. You’ll get the hang of these things 
working through the practice problems.

Hammering Out Basic Definitions
You probably already know what the following things are, but here are their definitions and 
undefinitions anyway. That’s right — I said undefinitions. Technically, point and line are unde-
fined terms, so the first two “definitions” that follow aren’t technically definitions. But if I 
were you, I wouldn’t sweat this technicality.

»» Point: You know, like a dot except that it actually has no size at all. Or, you could say that 
it’s infinitely small. (That’s pretty small, eh? But even “infinitely small” makes a point sound 
larger than it really is.)

»» Line: A line’s like a thin, straight wire. (Actually, it’s infinitely thin or, even better, it has no 
width at all — nada.) Don’t forget that it goes on forever in both directions, which is why 

Chapter 2

IN THIS CHAPTER

»» Walking a fine line: Semi-precise 
definitions of geometry terms

»» Working with union and 
intersection problems

»» Looking at supplementary and 
complementary angles (free stuff!)

»» Turning to right angles

»» Spotting vertical angles
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you use the little double-headed arrow as in AB
� ���

 (read as “line AB”; this is the line that goes 
through points A and B). Because lines go on forever, no matter how you tilt them or how 
good your shoehorn is, you can’t fit them in the universe.

»» Line segment or just segment: A segment is a section of a line that has two endpoints.  
If it goes from C to D, you call it “segment CD” and write it like CD. (You can also call it and 
write it DC .)

Note: CD without the segment bar over it indicates the length of the segment as opposed to 
the segment itself.

»» Ray: A ray is a section of a line (sort of half a line) that has one endpoint and goes on forever 
in the other direction. If its endpoint is point M and the ray goes through point N and then 
past it forever, you call the half-line “ray MN” and write MN

� ����
. The endpoint always comes first.

»» Angle: Two rays with the same endpoint form an angle. The common endpoint is called 
the vertex of the angle. An acute angle is less than 90 ; a right angle is, of course, a 90  angle; 
an obtuse angle has a measure greater than 90 ; and a straight angle has a measure of 180  
(which is kinda weird, because a 180  angle looks just like a line or a segment like ACE  in 
the example in the next section).

Note: Technically, angles go on forever, and their sides are rays that go on forever. This is 
the case even when an angle in a figure has segments for its sides instead of rays. (It’s like 
the rays are really there even though they’re not drawn.)

Looking at Union and Intersection Problems
And now for something completely different. The intersection ( ) of two geometric objects is 
where they overlap or touch. The union ( ) of two objects contains all of each object including 
the overlapping portion (if any).

Q.	 For the figure on the right, determine the 
following and write your answer in as many 
ways as possible.

a.	 AE CA
� ��� � ���

b.	 AE CA
� ��� � ���

c.	 BDE ED
� ���

d.	 BDE DE
� ���

A.	 Here’s how this problem shapes up:

a.	 AE CA AC
� ��� � ���

   or CA

b.	 AE CA AC
� ��� � ��� � ���

   or CA
� ���

 or AE
� ���

 or EA
� ���

 or CE
� ���

 or EC
� ���

Tip: If you find some of these union and intersection problems tricky, you’re not alone. 
Here’s a great way to do them or to think about them. Imagine that the first object is 
colored blue and the second, yellow (or you can actually color them). Blue and yellow 
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make green, right? So, wherever you see (or imagine) green, that’s the intersection. And 
the union contains anything that’s blue or yellow or green. Another way to do these 
problems is to trace over each object. Wherever you traced twice, that’s the intersection. 
And wherever you did any tracing (once or twice), that’s the union.

Remember: However you do these problems, lines, rays, and angles go on forever even if 
the diagram makes it look like they end.

c.	 BDE ED DE
� ��� � ���

  

If BDE  is blue and ED
� ���

 is yellow, then DE
� ���

 will be green.

d.	 BDE DE BDE
� ���

   or EDB or CDE or EDC

Note that sometimes the answer to a union or intersection problem is one of the origi-
nal objects.

Use the following figure to answer problems 1 to 6.

1	 ST TQ 2	 ST PT
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3	 RTS PR
� ���

4	 RT TP
� ��� � ���

5	 PS QR
� ���

6	 ST QT
� ��� � ���

Uncovering More Definitions
In the sections that follow, I give you roughly ten more definitions of important geometry 
terms. You’ll get practice using these terms in this chapter’s problems, and then you’ll use 
these terms throughout the rest of the book.

Division in the Ranks: Bisection and Trisection
In this section, you practice something you’ve understood almost since you first rode a bicycle 
or tricycle: cutting things in half or in thirds. This geometry is kids’ stuff. Check out the fol-
lowing definitions.
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»» Segment bisection and midpoint: A point, segment, ray, or line that divides a segment into 
two congruent segments bisects the segment. The point of bisection is called the midpoint of 
the segment. The midpoint, obviously, cuts the segment in half.

»» Segment trisection: Two things (points, segments, rays, lines, or any combination of these) 
that divide a segment into three congruent segments trisect the segment. The points of 
trisection are called — get this — the trisection points of the segment.

»» Angle bisection: A ray that cuts an angle into two congruent angles bisects the angle. It’s 
called the bisector of the angle, or the angle bisector.

»» Angle trisection: Two rays that divide an angle into three congruent angles trisect the angle. 
They’re called trisectors of the angle, or angle trisectors.

Q.	 For the triangle on the right, given that CD
� ���

  
bisects ACB :

a.	 Find the measure of BCD.

b.	 Other than the fact that ACD BCD, can you 
conclude anything else about this figure?

A.	 Given that CD
� ���

 bisects ACB :

a.	 You can find the measure of BCD in two steps. First, because CD
� ���

 bisects ACB, 
ACD BCD, so you can set them equal to each other and solve for x:

x x

x

20 3 4

2 24

12

Now plug 12 into the measure of BCD to get your answer:

BCD x3 4

3 12 4

32

b.	 Other than the fact that ACD BCD, you can conclude nothing else.

Don’t jump to conclusions based on the appearance of figures. For this problem, you 
know only that CD

� ���
 bisects an angle ( ACB). You cannot conclude that CD

� ���
 bisects the 

base of the triangle, and therefore you don’t know whether D is the midpoint of AB. 
You also can’t conclude that ΔABC has been cut in half. And you can’t say that 
AC BC  or that A B. Finally, you can’t conclude that ADC and BDC   
are right angles.
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7	 On this number line, Q and R trisect PS. What 
are the coordinates of Q and R?

8	 Given that 1 4x, 2 9x , and 3 5 7x , 
is STU  trisected?

9	 NP
� ���

 and NQ
� ���

 divide right MNO into MNP , 
PNQ, and QNO, whose measures are in the 

ratio 4 5 6: : . Determine the measure of PNO.

*10	 Given: BD
� ���

 and BE
� ���

 trisect AC ; AD and DE  have 
lengths as shown.

a.	 Determine DC (the length of the segment).

b.	 Can you conclude that 1 2? That 
1 3?



CHAPTER 2  Points, Segments, Lines, Rays, and Angles      23

Perfect Hilarity for Perpendicularity
You’re surrounded by perpendicular things: floors are perpendicular to walls, sides of rectan-
gular shapes are perpendicular, the majority of streets that cross are perpendicular, and so on. 
In this section, you practice problems involving perpendicular lines (and rays and segments). 
I’m also going to give you the definition of parallel. Like perpendicular things, you also see 
parallel things every day: a ceiling is parallel to the floor, the top and bottom edges of this book 
are parallel, two lines of words on this page are parallel, and so on. I thought I’d give you this 
definition now mainly because perpendicular and parallel make a nice pair of geometry terms, 
but you won’t use parallel lines till Chapter 6.

Lines, rays, or segments that form a right angle are perpendicular. The symbol for perpendicu-
larity is . (Note that you say that lines, rays, or segments are perpendicular and that an angle 
is a right angle; you do not say that an angle is perpendicular.)

Lines, rays, or segments that run along in the same direction and never cross — like two rail-
road tracks — are parallel. The symbol for parallel is . If lines AB

� ���
 and CD

� ���
 are parallel, you’d 

write AB CD
� ���
�
� ���

  .

Q.	 In the figure on the right, BA BC
� ��� � ���

, 1 3, and 2 is three 
times as big as 1. Find the measure of 2.

A.	 Because the rays are perpendicular, ABC  is a right angle and thus measures 90 . 1 
and 3 are equal, so you can set them both equal to x. 2 is three times as big as 1, so 
its measure is 3x. Now you have three angles, 1 2, ,  and 3, whose measures  
(x, 3x, and x) must add up to 90. Thus,

x x x

x

x

3 90

5 90

18

Now, plugging 18 into 3x gives you the measure of 2:

3 18 54
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11	 In the following figure:

a.	 Find BFC  given that DFE  measures 25 , 
that AE FC

� ��� � ���
, and that FB FD.

b.	 What two objects form the sides of BFC ?

12	 Given that AD BE
� ��� � ���

, DGC  measures 10 , and 
BGC  is four times as large as AGF , find the 

measure of FGE.

13	 Given that AF EH
� ��� � ���

, that BG
� ���

 bisects FIH , and 
that IC

� ��
 and ID

� ��
 trisect BIE, find the measure 

of BID.

14	 In the following figure, RG RY ,  RG GA,  
and RY LN .

a.	 Name the angles you know are right 
angles.

b.	 Can you conclude that ANL is a right 
angle?

c.	 What’s GRY YL
� ��

?

d.	 What’s GRY LY
� ���

?
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You Complete Me: Complementary  
and Supplementary Angles

Here are the definitions of two terms I have a feeling you’ve seen before. For those of you who 
(like me) like mnemonic devices, here’s one for these terms. It’s a bit lame, but better than 
nothing: In the following definitions, note that the terms are in alphabetical order and the 
numbers are in numerical order (“right” and “straight” are also in alphabetical order).

»» Complementary angles: Two angles whose sum is 90  (or a right angle)

»» Supplementary angles: Two angles whose sum is 180  (or a straight angle)

Q.	 BQC CQD is complementary to 

BQC AQE

m CQD m AQE

 is supplementary to 

200

Find: m BQC

A.	 Set m BQC  equal to x. Then, because BQC CQD and  are complementary, 
m CQD x90 , and, because BQC AQE and  are supplementary,  
m AQE x180 . These angles add to 200 . Thus,

90 180 200

2 70

35

x x

x

x

That’s it. m BQC 35

15	 Given:  1 25

2 90

4 is complementary to 6

Find:	 The measures of angles 3 through 9
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16	 The supplement of an angle is 20  greater than twice the angle’s complement. Find the angle’s 
measure.

X Marks the Spot: Vertical Angles
Don’t ask me how they came up with the term vertical angles, because these angles have nothing 
to do with the ordinary meaning of vertical (you know, as in vertical and horizontal). Go figure. 
When two lines cross to make an X, the two angles on opposite sides of the X are called vertical 
angles. They’re automatically equal. As you can see, every X has two pairs of vertical angles. If 
it had been up to me, I would’ve called them x-angles or cross angles.

Q.	 Given:    1 72x

3 3 12x

Find:	 2

A.	 1 and 3 are vertical angles and are thus equal, so 
set them equal to each other and solve for x:

3 1 7

2 8

4

2

2 2

2

2

x x

x

x

x
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Plug x 2 into the measure of 1:

1 7

2 7

11

2

2

x

Figure the measure of 2:

2 180 1

180 11

169

Ordinarily, you’d now want to plug x 2 into the measure of 1, repeat the last two 
steps, and maybe get a second answer for 2. But in this particular problem, you don’t 
have to do that, because regardless of whether x 2 or 2, everything comes out the 
same (squaring a negative gives you a positive). In general, however, you have to plug 
in each solution for x separately.

Remember: Segments and angles must, of course, have positive lengths or measures. So, 
if you plug an x-value into a segment or angle and your answer is zero or negative, 
reject that x-value.

Warning: Be careful, however, not to reject x-values simply because they are zero or 
negative. The segments and angles, not x, must be positive. There are plenty of prob-
lems in which a negative solution for x gives you a positive answer for a segment or 
angle, and vice versa.

17	 Use the figures to answer the following 
questions.

a.	 Is this possible?

b.	 Is this possible?

18	 Solve for AQB and DQC .
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Solutions
1	 ST TQ T  point

2	 ST PT   ?

Did you have STP  for this one? Nope! That incorrect answer would mean an angle made up 
of two rays that go on forever. But this problem involves segments, not rays. Technically, this 
union is not an angle. And there is no nice, simple name for this thing. You can’t really write 
it any more simply than you see it in the original problem: ST PT .

3	 RTS PR TR
� ��� � ���

  

If you trace over RTS (remembering that it goes out past R forever) and then over PR
� ���

, you 
trace twice over TR

� ���
, the ray that begins at T and goes out forever past R.

4	 RT TP TP
� ��� � ��� � ���

  

5	 PS QR
� ���

   (the empty set)

They don’t overlap anywhere.

6	 ST QT SQ
� ��� � ��� � ���

   or  QS
� ���

 or  ST
� ���

 or  TS
� ��

 or  TQ
� ���

 or  QT
� ���

7	 You can solve this problem in two steps:

PS  is trisected, so determine PS and then divide that by 3:

PS

PS

30 12 42

3 42 3 14

Add 14 to 12 to get Q, and then add 14 more to get R:

12 14 2

2 14 16

Q

R

8	 For STU  to be trisected, all three angles must be equal. So first set any two angles equal to 
each other and solve for x. (Any two work, but I use 1 and 2.)

m m

x x

x

x

1 2

4 9

3 9

3

Plugging x 3 into the measure of 1 or 2 determines both of their measures, because you 
can assume that they’re congruent:

m x1 4

4 3

12
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Thus, if 1 and 2 are congruent, they’re both 12 . Finally, check whether 3 is also 12   
when x 3:

m x3 5 7

5 3 7

8

Nope. Thus, STU  is not trisected.

9	 The three angles are in the ratio 4 5 6: : , so you first set their measures equal to 4x, 5x, and 6x. 
Together, the three angles make up a right angle, so set their sum equal to 90° and solve:

4 5 6 90

15 90

6

x x x

x

x

Use x 6 to determine the measure of PNO :

m PNO m PNQ m QNO

x x

x

5 6

11

11 6

66

Of course, you could use x 6 to determine that PNQ  is 30  and QNO is 36  and then add 
them to get 66 .

*10	 Check out the answers:

a.	 Because AC  is trisected, AD must equal DE. So set them equal to each other, solve for x, 
and then plug the answer in to get AD and DE:

3 5 14

2 14

7

x x

x

x

Therefore, AD x3 3 7 21. DE is also, of course, 21, and because AC  is trisected, EC is 
also 21. DC DE EC , so DC 42.

b.	 No, you can’t conclude that 1 2 or that 1 3. Despite the fact that we typically 
think of rays as angle bisectors or trisectors, the given in this problem is that BD

� ���
 and BE

� ���
 

trisect a segment, AC . This statement tells you only the location of points D and E; it tells 
you nothing about how the rays divide up ABC . ABC  might look trisected, but you can’t 
conclude that it is. As it turns out, it’s impossible for ABC  to be trisected given that AC  
is trisected. 1 would be congruent to 2 only if ABE  were isosceles (which you can’t 
conclude). And 1 would be congruent to 3 only if ABC  were isosceles (which you also 
can’t conclude despite the fact that it looks like it is).
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11	 And here’s another fine solution:

a.	 Because of the given perpendicularity, you know that CFE  and BFD are both 90  angles. 
Now, CFD and DFE  have to add up to 90 , right? So, because DFE  is 25 , CFD must be 
90 25– , or 65 . Then, using the same logic, BFC  must be 90 65– , which is 25 .

b.	 The sides of BFC  are rays FB
� ���

 and FC
� ���

. If you said segment FB, you’re close. Angles go on 
forever, and their sides are rays that go on forever. Whether or not you can actually see 
the rays in the figure is irrelevant.

12	 Because AD BE
� ��� � ���

, you know that the measures of both BGD and AGE  are 90 . You see that 
the measure of BGD BGC DGC  (which is 10 ). Thus, BGC 90 10 80 . Then, 
because BGC   ( )80  is four times as big as AGF AGF,  20 . Finally, FGE 90 20 , 
which is 70 .

13	 The given perpendicularity tells you that the four big angles are each 90 . (This loose,  
nontechnical use of “big” may get me pulled over by the math police; don’t try it with your 
geometry teacher.) Because IG

� ��
 bisects right HIF GIF,   must be 45 . EIF  measures 90 , so 

add these two up to get 135  for EIG. Straight BIG  (another “big” angle — don’t you just 
love these geometry puns?) is, of course, 180 , so BIE  must be 180 135– , or 45 . Now,  
trisect that 45  to get 15  for the three small angles. And finally, two of these 15  angles  
make up BID, so BID  measures 30 .

14	 Here’s how you do this gnarly problem:

a.	 The three given pairs of perpendicular segments tell you, by the definition of perpendicu-
lar, that the following are right angles: R G RLN,  ,  , and YLN . Despite the fact that

Y  and A look like right angles, you can’t conclude that. (But you can conclude that 
ANL and GNL are right angles — see part b.)

b.	 Yes, you can conclude that ANL is a right angle, though I haven’t covered the necessary 
concepts yet. What? Is it against the law for me to challenge you with a problem before 
I’ve presented the relevant ideas? Well, excuse me! Really, though, you probably could’ve 
reached this conclusion if you’re familiar with rectangles. Because R G,  , and RLN  are 
right angles, the fourth angle in quadrilateral RGNL, GNL, must also be a right angle; 
that’s because the angles in a quadrilateral have to add up to 360 . (The official explana-
tion of the sum of angles in a polygon is in Chapter 6.) Because GNL is a right angle,  
the angle’s supplement, ANL, must also be a right angle.

c.	 GRY YL RY
� ��

  

d.	 GRY LY LY
� ��� � ���

  

15	 1 and 5 are supplementary; 1 25 is , so 5 155 is . Then 5 and 4 work the same way,  
so 4 25 is . Because 2    is 90 , 3 and 4 together have to make up another 90  (because 

2 3,  , and 4 add up to a straight angle, or 180 ). Thus, because 4 25 3 is ,    is 65 . 4 
and 6 are complementary, so 6 is also 65 . Finally, going clockwise around the point to 

7 8,  , and 9, each adjacent pair of angles is supplementary, so 7 5  is 11 , 8 5  is 6 , and 
9 5  is 11 .
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16	 Tip: You can often come up with the correct equation for a word problem like this one by 
reading through the sentence and translating each word or phrase into its mathematical 
equivalent.

For this problem, first let x equal the measure of the angle you’re trying to find. Then, 
because you obtain any angle’s complement by subtracting the angle’s measure from 90   
and obtain any angle’s supplement by subtracting the angle’s measure from 180 , the mea-
sure of the complement of the unknown angle is 90 x, and the measure of its supplement is 
180 x. Now you can do the translation:

 The supplement of an angle is  greater than  tw
180

20
20x

iice 
 

the angle s complement
2 90

’ .
x

Write this problem like an ordinary equation and solve for x. (But first note that in the  
following equation, I move the “20 +” to the end of the equation, where it becomes “+ 20.” 
Adding the 20 at the end is more natural. Say you hear someone say, “That’s twenty greater 
than one hundred forty-five.” You think 145 20, not 20 145, right? Either works, of course, 
but now consider the expression, “twenty less than one hundred forty-five.” For that, you 
have to subtract the 20 from the 145, not the other way around. Being consistent and putting 
the 20 at the end is best, regardless of whether you’re adding or subtracting.)

Finish the problem:

180 2 90 20

180 180 2 20

20

x x

x x

x

17	 As Sherlock Holmes says in The Adventure of the Beryl Coronet, “When you have excluded the 
impossible, whatever remains, however improbable, must be the truth.” So go on and solve 
this problem just like the great detective would:

a.	 Yes, it’s possible:

3 4 10

10

x x

x

Plug x 10 into the angles, and you see that each angle is 30 .

b.	 Not possible:

5 3 10

2 10

5

x x

x

x

Plug x 5 into the angles, and you get negative measures for each angle, which is 
impossible.
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18	 Set the vertical angles equal to each other and solve for x:

x x x

x x

x x

2

2

6 10 3

3 10 0

5 2 0

x x5 2   or   

Now plug each of these two solutions into the original angles. The solution x 5 gives you 
negative angles, so you reject x 5. The solution x 2 gives you angles of 16 . Because 

AQB and DQC  are the supplements of these angles, they each equal 164 .
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Your First Geometry 
Proofs

In this chapter, you get your first taste of the meat of this course: geometry proofs. Do the 
practice problems carefully, and make sure you understand their solutions. Everything in 
the subsequent chapters builds on the important proof concepts presented here.

Ready to Try Some Proofs?
Proofs can be quite difficult at first, even the fairly short and straightforward ones in this first 
section. If you feel a bit lost at the beginning, don’t sweat it. Go over the example proof and 
practice proofs in this section and their solutions as many times as you need for the basic idea 
of a proof to sink in. And make sure you understand how the flow of logic works (the “bubble-
and-arrow” logic I show you in the solutions). If you master the logic and method of doing 
these first short proofs, you should be able to handle the longer, harder ones later in the book. 
(If you get stuck, you can check out Chapter 16 for some tips.)

Chapter 3

IN THIS CHAPTER

»» Your starter kit of short geometry 
proofs

»» Looking at the right angle and 
vertical angle theorems

»» Scoping out the complementary 
and supplementary angle 
theorems

»» Using angle and segment 
arithmetic

»» Standing in: Substitution and 
transitivity
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For the proofs in this chapter, you’ll need to use several theorems and definitions. I’ll give you 
the theorems as you need them. I gave you the 15 or so definitions you’ll need in Chapter 2, 
so you may want to go back and review them. You might also want to go back to Chapter 1 
and reread the section, “What’s a Geometry Proof?” Look again at the Fifi the Labradoodle 
proof and how the bubble-and-arrow logic works. Lastly, here again is the critically impor-
tant concept about the structure of proofs that appears in that same section of Chapter 1. I’m  
repeating it verbatim. There may be nothing as important as this idea for understanding how 
proofs work.

In a two-column proof, the idea or ideas in the if part of each reason must come from the 
statement column somewhere above the reason; and the single idea in the then part of the 
reason must match the idea in the statement on the same line as the reason.

Proofs Involving Complementary  
and Supplementary Angles

These short proofs involve the simple ideas of complementary angles (two angles that add up 
to 90 ) and supplementary angles (two angles that add up to 180 ). But before I give you the 
complementary and supplementary angle theorems, here are two very simple theorems you’ll 
need later in this chapter and for the rest of the book.

All right angles are congruent: If two angles are right angles, then they are congruent (they 
have the same number of degrees).

Many geometry theorems are statements of obvious things. You’ll see more of them later in 
this chapter. But this one about congruent right angles takes the cake in the well-duh category. 
(Put this theorem in your back pocket; you’ll use it soon but not in this section.)

Vertical angles are congruent: If two angles are vertical angles, then they are congruent. (I’m 
sure you remember vertical angles from Chapter  2: They’re angles across from each other 
when two lines cross to form an X.) You’ll use this theorem later in this chapter, but not in this 
section.

And now for the complementary and supplementary angle theorems.

Here are four easy theorems about pairs of angles that add up to either 90  or 180 .

»» Complements of the same angle are congruent: If two angles are each complementary 
to a third angle, then they’re congruent to each other (you have three total angles here).

For example, say you have a 70  angle, C . If A is complementary to C  and B is also 
complementary to C , then A B (both have to be 20 , right?). Like so many theorems, 
the idea behind this one is a totally well-duh concept.
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»» Complements of congruent angles are congruent: If two angles are complementary to 
two other congruent angles, then they’re congruent (you’re working with four total angles).

For example, if B C  (say they’re both 40 ), and A is complementary to B and D is 
complementary to C , then A D (both have to be 50 ).

»» Supplements of the same angle are congruent: If two angles are each supplementary 
to a third angle, then they’re congruent to each other (three total angles are involved). This 
theorem works exactly like the first theorem in this list.

»» Supplements of congruent angles are congruent: If two angles are supplementary to two 
other congruent angles, then they’re congruent (this theorem uses four total angles). This 
theorem works exactly like the second theorem.

Three or Four Things? Several theorems (the four preceding and many you’ll see later) involve 
either three or four segments or angles. So, when doing a proof, pay attention to whether the 
proof diagram involves three or four segments or angles. Doing so can help you select the 
appropriate theorem.

Q.	 Given:    KS SY

YU UK

RST TUR

Prove:    KSR YUT

A.	 Tip: Before trying to write down the formal statements and reasons in a two-column 
proof, it’s often a good idea to think through the proof using your own common sense. 
In other words, try to see why the prove statement is true without worrying about how 
to prove it or worrying about which theorems to use. When you can see why the prove 
statement has to be true, all that remains to be done is to translate your Joe/Jane-six- 
pack argument into the formal language of a proof.

For example, in this proof, you might say to yourself, “Can I see why angle KSR should 
be congruent to angle YUT?” And you could respond, “Sure. Because the segments  
are perpendicular, angles KSY and YUK are 90 , and because angle RST is congruent to 
angle TUR (say they’re both 50 ), angle KSR has to equal angle YUT (they’d both have  
to equal 40 ). Bingo.” If you can understand the proof in this commonsense way, then 
all you have to do is put formalwear on this casual line of reasoning.
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1	 Given:    1 4

Prove:    2 3

Note: For this and all proof problems, you should not assume 
that the number of blank lines is the same as the number of 
steps needed for the proof.

Statements Reasons
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2	 Given:    ST SA
� ��� � ���

SR SB
� ��� � ���

Prove:    TSR BSA

Hint: If you get stuck, go to the solution and copy only 
Statement 5 and Reason 3 onto this page and then try the  
proof again.

Statements Reasons

Proofs Involving Adding and Subtracting 
Segments and Angles

You get eight more theorems in this section — all of them based on incredibly simple ideas. But 
despite the fact that the ideas are simple, having to memorize all this mumbo-jumbo lingo may 
still seem like a pain. If so, I have a tip for you.

Focus on the ideas behind the theorems. Doing so can help you remember how they’re worded. 
And here’s another benefit: If you’re doing a proof on a quiz or test and you can’t remember 
exactly how to write some theorem, you can just write the idea of the theorem in your own 
words. If you get the idea right, you may get partial or even full credit, depending on your 
teacher’s grading style. (And if you’re just doing the proof for fun — and who wouldn’t? — you 
can get through the proof using some of your own words. After you’re done, you can look up 
the proper wording of the theorem or theorems you couldn’t remember.)

For example, one of the following theorems is based on the incredibly simple notion that if you 
take two sticks of equal length (say 3 inches and 3 inches) and add them end-to-end to two 
other equal sticks (say 5 inches and 5 inches), you end up with two equal totals (8 inches and  
8 inches, of course). If you understand that idea, you’ve got the theorem in the bag. Adding 
equal things to equal things produces equal totals.
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Without further ado, here are four theorems to use when adding line segments or angles (when 
writing a proof, students sometimes abbreviate these theorems as “addition”).

»» Segment addition (three total segments): If a segment is added to two congruent seg-
ments, then the sums are congruent.

»» Angle addition (three total angles): If an angle is added to two congruent angles, then the 
sums are congruent.

»» Segment addition (four total segments): If two congruent segments are added to two 
other congruent segments, then the sums are congruent.

»» Angle addition (four total angles): If two congruent angles are added to two other congru-
ent angles, then the sums are congruent.

If you’re subtracting segments or angles, here are four more theorems to choose from (after 
you get a handle on these theorems, you may simply write “subtraction”).

»» Segment subtraction (three total segments): If a segment is subtracted from two congru-
ent segments, then the differences are congruent.

»» Angle subtraction (three total angles): If an angle is subtracted from two congruent 
angles, then the differences are congruent.

»» Segment subtraction (four total segments): If two congruent segments are subtracted 
from two other congruent segments, then the differences are congruent.

»» Angle subtraction (four total angles): If two congruent angles are subtracted from two 
other congruent angles, then the differences are congruent.

Here are a couple huge tips that you can use when working on any proof. You can see them in 
action in the first example in this section.

»» Use every given. You have to do something with every given in a proof. So, if you’re not 
sure how to do a proof, don’t give up until you’ve at least asked yourself, “Why did they give 
me this given? And why did they give me that given?” If you then write down what follows 
from each given (even if you don’t know how that information can help you), you might see 
how to proceed. You may have a geometry teacher (or mathematician friend) who likes to 
throw you the occasional curveball, but in every geometry text that I know, the authors don’t 
give you irrelevant givens. And that means that every given is a built-in hint.

»» Work backwards. Thinking about how a proof will end — what the last and second-to-last 
lines will look like — is often very helpful. In some proofs, you may be able to work back-
wards from the final statement to the second-to-last statement and then to the third-to-last 
statement and maybe even to the fourth-to-last. Doing proofs this way is a little like doing 
one of those mazes you see in a newspaper or magazine. You can begin by working on a 
path from the Start point. Then, if you get stuck, you can work on a path from the Finish 
point, taking that as far as you can. And then you can go back to where you left off and try 
to connect the ends of the two paths.
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Q.	 Given:    I is the midpoint of RN

R and N trisect GD

Prove:    I is the midpoint of GD

A.	 Use every given. In this example proof, pretend that you have no idea how to begin. Just 
do something with the two givens. Ask yourself why someone would tell you about a 
midpoint. Well, because that tells you that you have two congruent segments, of course. 
And why would someone give you the trisection points? Because that given tells you 
that you have three congruent segments (though you use only two of them).

Statements Reasons

1) I is the midpoint of RN 1) Given.

2) R and N trisect GD 2) Given.

3) RI IN 3) �If a point is the midpoint of a segment, then it divides it 
into two congruent segments.

4) GR ND 4) �If two points trisect a segment, then they divide it into 
three congruent segments.

5) GI ID 5) �If two congruent segments are added to two other  
congruent segments, then the sums are congruent.

6) I is the midpoint of GD 6) �If a point divides a segment into two congruent segments, 
�then it is the midpoint of the segment (reverse of definition 
of midpoint).

Okay, here’s where working backwards can help: Say you can figure out lines 3 and 4  
in the preceding proof but aren’t sure where to go next. No worries. Jump to the end of 
the proof. You know the final statement has to be the prove statement (I is the midpoint 
of GD). Now ask yourself what you’d need to know to draw that conclusion. Well, to 
conclude that a point is a midpoint, you need a segment that’s been cut into two con-
gruent segments, right? So, you don’t have to be a mathematical genius to see that the 
second-to-last statement has to be GI ID.

After you see that point, all you have to do is figure out why that would be true. So, you 
then go back to where you left off (line 4), and hopefully you then see that you can add 
two pairs of congruent segments to get GI ID.
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3	 Given:    GBU SBM

Prove:    GBM SBU

Statements Reasons

4	 Given:    R is the midpoint of BS

U and N trisect BS

Prove:    R is the midpoint of UN

Hint: If you have a hard time with this one, take Statements 4 and 6 and Reason 3 from the solutions 
section and copy them here. But don’t do this unless you absolutely have to.

Statements Reasons
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5	 Given:    QY
� ���

 bisects ∠ZQX

ZQW XQJ

Prove:    QY
� ���

 bisects WQJ

Hint: Don’t forget to use all the givens in your proof (you might 
want to make them your first two steps). If you’re really stumped, 
go to the solution and copy just the if part of Reason 3 onto  
this page.

Statement Reason

6	 You can do the following proof in four different ways, 
using four different sets of theorems. Don’t write out 
four two-column proofs (unless you feel like it). Just 
write your game plans for the four alternatives. Hint:  
Two of the versions use vertical angles, two use ACT  
instead, two use angle subtraction, and two use comple-
mentary angles.

Given:    CA GH
� ��� � ���

CT NI
� ��� � ��

Prove:    NCA HCT  (paragraph proof)
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Proofs Involving Multiplying and Dividing 
Angles and Segments

The preceding section lets you work on addition and subtraction of segments and angles.  
Now you graduate to multiplication and division of segments and angles. The two new theo-
rems in this section can be a bit tricky to use correctly, so study these proofs carefully and heed 
the tips.

»» Like Multiples: If two segments (or angles) are congruent, then their like multiples are  
congruent. This statement just means that if you have, say, two congruent segments, then  
3 times one segment equals 3 times the other, or 4 times one equals 4 times the other —  
another well-duh idea.

»» Like Divisions: If two segments (or angles) are congruent, then their like divisions are  
congruent. All this statement tells you is that if you have, say, two congruent angles, then 
1/2 of one equals 1/2 the other, or 1/3 of one equals 1/3 of the other.

Do you see something twice? If the givens in a proof mention midpoint, bisect, or trisect twice 
(or something else that amounts to the same thing), then there’s a pretty good chance that 
you’ll want to use the Like Multiples Theorem or the Like Divisions Theorem in the proof.

Notice that this tip applies to both example problems and the three practice problems.

Q.	 Given:    AC VX

AB VW

CX
� ���

 and DY
� ����

 trisect both BE  and WZ

Prove:    BE WZ

A.	 Game Plan: Say AC  and VX  both had a length of 10, and AB and VW  were both 6. Then, 
obviously, BC  and WX  would both be 4. Then, since BE  and WZ  are both trisected, each 
would have a length of 3 4, or 12. That’s all there is to this proof. And here’s how you write 
out this simple argument in the formal way:
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Statements Reasons

1) AC VX 1) Given.

2) AB VW 2) Given.

3) BC WX 3) �If two congruent segments are subtracted  
from two other congruent segments, then the  
differences are congruent (segment subtraction; 
four-segment version).

4) CX
� ���

 and DY
� ����

 trisect both BC  and WZ 4) Given.

5) BE WZ 5) �If segments are congruent, then their like multiples 
are congruent.

When, like in the proof here, you go from a statement about small things (like BC  and 
WX ) to a statement about big things (like BE  and WZ), use the Like Multiples Theorem.

It can be very helpful to make up lengths of segments (or sizes of angles) like I just did 
in the game plan of this example proof. Look back to where I said, “Say AC  and VX  both 
had a length of 10, and AB  and VW  were both 6.” You don’t know the lengths of those 
four segments, but making up their lengths like this will often help you see the logic of 
the proof. After making up sizes of things, you can see how the proof works by doing 
some simple arithmetic (like I did when I determined that BC  and WX  would both be 4 
and that, therefore, BE  and WZ  would both be 3 4, or 12). When you use this strategy, 
you can make up lengths for segments (and sizes for angles) that are listed in the giv-
ens and sometimes for unnamed segments and angles. But DO NOT make up lengths 
for segments and sizes for angles listed in the prove statement. (Note that in the game 
plan for this example proof, I ended up concluding that BE  and WZ  were both 12, but that 
was the result of the simple arithmetic I did. I did not start by making up their lengths.)

Q.	 Given:    1 2

QU
� ���

 bisects RQS

ST
� ���

 bisects RSQ

Prove:    RQU RST
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A.	 Game Plan: Okay. You have 1 equal to 2 (say they’re both 120 ). Their supplements 
would then have to be equal (they’d both be 60 ). Each of those is bisected, so RQU  
and RST  would both be 30 . Piece of cake.

Statements Reasons

1)  1 2 1) Given.

2)  RQS  is supplementary to 1

RSQ is supplementary to 2

2) �If two angles form a straight angle (assumed from  
diagram), then they are supplementary (reverse of  
definition of supplementary).

3)  RQS RSQ 3) �If two angles are supplementary to two other congru-
ent angles, then they are congruent (supplements of 
congruent angles) (Statements 1 and 2).

4) QU
� ���

 bisects RQS 4) Given.

5) ST
� ���

 bisects RSQ 5) Given.

6)  RQU RST 6) �If angles are congruent, then their like divisions are 
congruent (Like Divisions) (Statements 3, 4, and 5).

When, like in this last proof, you go from a statement about big things ( RQS  and 
RSQ) to a statement about small things (like RQU  and RST ), you use the Like 

Divisions Theorem.

When you’re new to proofs, it’s easy to get confused about when to use the definitions 
of midpoint, bisect, or trisect and when to use the Like Divisions Theorem. So, take 
heed: Use the definitions when you want to show that two or three parts of the same 
segment or same angle are equal to each other. Use Like Divisions, in contrast, when 
you want to show that a part of one segment (or angle) is equal to a part of a different 
segment (or angle).

*7	 Given:    NO NI

NO OE

1 2

NI
� ��

 bisects DNG

OE
� ���

 bisects TOG

Prove:    DNG TOG

Hint: Want a little help? Check out Statements 1, 2, and 3 on 
the solution page.
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Statements Reasons

8	 Given:    SD UE

M is the midpoint of SU

G is the midpoint of DE

Prove:    SM GE

Statements Reasons
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9	 Given:    EA ED
� ��� � ���

VW VZ
� ���� � ���

EB
� ���

 and EC
� ���

 trisect AED

VX
� ���

 and VY
� ���

 trisect WVZ

Prove:    AEV WVE

Hint: If this problem seems a bit tough, copy only 
Statement 9 and Reason 9 from the solution and  
try to work backwards from there.

Statements Reasons

Proofs Involving the Transitive and 
Substitution Properties

The transitive and substitution properties should be familiar to you from algebra. You may have 
used the idea of transitivity in this way: If a b and b c, then a c; or if a b and b c, then 
a c. Transitivity works the same in geometry: You use it like with those algebra examples but 
to show congruence instead of equality (you almost never, however, use the inequality version). 
And you’ve certainly used substitution in algebra — like if x y2 5–  and 4 3 10x y– , you can 
switch the x with the 2 5y –  (because they’re equal, of course) and write 4 2 5 3 10y y– – . This 
property works the same in geometry: When two objects are congruent, you can switch ’em.

»» Transitive Property (for three segments or angles): If two segments (or angles) are each 
congruent to a third segment (or angle), then they’re congruent to each other. For example, 
if A B and B C , then A C   ( A and C  are each congruent to B, so they’re 
congruent to each other).



CHAPTER 3  Your First Geometry Proofs      47

»» Transitive Property (for four segments or angles): If two segments (or angles) are 
congruent to congruent segments (or angles), then they’re congruent to each other. For 
example, if AB CD,   CD EF , and EF GH , then AB GH . (AB and GH  are congruent to 
the congruent segments CD and EF , so they’re congruent to each other.)

»» Substitution Property: If two geometric objects (segments, angles, triangles, and so on) are 
congruent and you have a statement involving one of them, you can pull the switcheroo and 
replace the one with the other. For example, if A B and B is supplementary to C , 
then A is supplementary to C .

You use the Transitive Property as the reason when the statement says things are congruent; 
you use the Substitution Property for the reason when the statement says anything else.

And one more thing: You’ll be less likely to mix up substitution with other theorems if you note 
that like with transitivity, other theorems (addition, subtraction, complements and supple-
ments of congruent angles, and so on) go with statements about congruent things; substitu-
tion does not.

Q.	 Given:    2 3

Prove:    1 3

A.	 Here’s how this one unfolds:

Statements Reasons

1)  2 3 1) Given.

2)  1 2 2) Vertical angles are congruent.

3)  1 3 3) �If two angles are each congruent to a third angle, then they are 
congruent to each other (Transitive Property).

Did it occur to you that you could use substitution instead of transitivity for Reason 3? 
That’s correct — sort of. You could use substitution in Step 3 because you can essen-
tially put 3 where 2 is. The switch works this way because transitivity is a special 
case of substitution. However, you probably want to use the property as I do (rebels 
excepted), because that’s probably what your geometry teacher and mathematician 
buddies want. (For info on how to keep the properties straight, see the preceding tips in 
this section.)
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Q.	 Given:    2 3

Prove:    1 is supplementary to 3

A.	 The proof, dear reader:

Statements Reasons

1)  1 is supplementary to 2 1) �If two angles form a straight angle (assumed from diagram), 
then they are supplementary.

2)  2 3 2) Given.

3)  1 is supplementary to 3 3) Substitution (putting 3 where 2 was).

10	 Given:    AC
� ���

 bisects BAD

Prove:    1 3

Statements Reasons

11	 Given:    MB
� ���

 bisects AMC

MC
� ����

 bisects BMD

Prove:    4 6

Hint: If you get stuck, copy Statements 1 and 3 and Reason 5 from the 
solution page and then take it from the top.
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Statements Reasons

12	 Given:    TO GO
� ��� � ���

Prove:    1 is complementary to 2

Statements Reasons
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Solutions
1	 Statements (or Conclusions) Reasons (or Justifications)

1)  1 4 1) Given.

2)  LIS is a straight angle

ASI  is a straight angle

2) Assumed from diagram.

(The vast majority of reasons you’ll use in proofs will come 
from your handy lists of definitions, theorems, postulates, 
and properties. This is one of the few odd exceptions.  
Some geometry teachers let you skip this step and go  
right to Step 3.)

3)  2 is supplementary to 1

3 is supplementary to 4

3) �If two angles form a straight angle, then they are supple-
mentary (definition of supplementary).

4)  2 3 4) �If two angles are supplementary to two other congruent angles, 
then they are congruent.

2	 Statements (or Conclusions) Reasons (or Justifications)

1) ST SA
� ��� � ���

1) Given.

2) SR SB
� ��� � ���

2) Given.

3)  TSA is a right angle 3) �If two rays are perpendicular, then they form a right angle. 
(If you understand the if-then rule for reasons that I explain 
in Chapter 1, then this reason just about writes itself. The if 
part of this reason must come from a statement above it, 
namely Statement 1 or 2. The only fact in those statements 
concerns perpendicularity. So basically, this reason has to 
begin with “If perpendicular”. And the only thing that can 
follow “If perpendicular,” is “then right angle.”)

4)  BSR  is a right angle 4) Same as Reason 3.

5)  TSR is complementary to RSA

BSA is complementary to RSA

5) �If two angles form a right angle, then they are  
complementary (definition of complementary).

6)  TSR BSA 6) �If two angles are each complementary to a third angle, then 
they are congruent to each other. (This proof and its diagram 
involve three angles, so you use the three-angle theorem.)

3	 Statements Reasons

1)  GBU SBM 1) Given.

2)  GBM SBU 2) �If an angle ( )UBM  is added to two congruent angles ( GBU  and SBM ), then 
the sums are congruent (addition of angles; three-angle version).

This proof brings me to my next tip:

If the angles (or segments) in the prove statement are larger than the given angles  
(or segments), the proof may call for one of the addition theorems.
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4	
 

Statements Reasons

1) R is the midpoint of BS 1) Given.

2) U and N trisect BS 2) Given.

3) BR RS 3) �A midpoint divides a segment into two congruent segments  
(definition of midpoint).

4) BU NS 4) �Trisection points divide a segment into three congruent segments 
(definition of trisection).

5) UR RN 5) �If two congruent segments are subtracted from two other  
congruent segments, then the differences are congruent  
(subtraction of segments; four-segment version).

6) R is the midpoint of UN 6) �If a point divides a segment into two congruent segments, then it’s the 
midpoint of the segment (reverse of definition of midpoint).

Note that in contrast to the preceding problem, in this proof, the things you’re trying to 

prove something about (UR and RN ) are smaller than the things in the given (BR and RS   
are sort of in the given).

If the segments (or angles) in the prove statement are smaller than the ones in the given, one 
of the subtraction theorems may be the ticket.

5	 Statements Reasons

1) QY
� ���

 bisects ZQX 1) Given.

2)  ZQW XQJ 2) Given.

3)  ZQY XQY 3) �If a ray bisects an angle, then it divides it into two congruent angles 
(definition of bisect).

4)  WQY JQY 4) �If two congruent angles are subtracted from two other congruent 
angles, then the differences are congruent (subtraction of angles; 
four-angle version).

5) QY
� ���

 bisects WQJ 5) �If a ray divides an angle into two congruent angles, then the ray bisects 
the angle (reverse of definition of bisect).

6	 All four game plans use, of course, the two right angles.

Game Plan 1: You have the two congruent vertical angles. One is the complement of NCA; 
the other is the complement of HCT . Therefore, you finish with the complements of con-
gruent angles theorem. (Assuming each statement contains only a single fact, this method 
takes eight steps. Try it.)

Game Plan 2: This method is the same as Game Plan 1 except that you subtract the congruent 
vertical angles from the congruent right angles. The final reason is, therefore, the four-angle 
version of angle subtraction. (This strategy takes seven steps. Give it a go.)

Game Plan 3: Use ACT . NCA and HCT  are both complements of ACT . You’re done, 
because complements of the same angle are congruent. (This method also takes seven steps. 
Go for it.)
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Game Plan 4: This time, you just subtract ACT  from the two congruent right angles. The 
final reason is the three-angle version of angle subtraction. (The winner! — only six steps.)

*7	 Game Plan: You have the right angles and 1 2 (say they’re both 70 ). So, their comple-
ments ( ING  and EOG) would both measure 20 . Then because of the bisections, the angles 
you’re trying to prove equal to each other would both be 2 20, or 40 . That’s it.

Statements Reasons

1) NO NI

NO OE

1) Given.

2)  INO  is a right angle

EON  is a right angle

2) Definition of perpendicular (Statement 1).

3)  1 2 3) Given.

4)  ING is complementary to 1

EOG is complementary to 2

4) Definition of complementary angles (Statement 2).

5)  ING EOG 5) �Complements of congruent angles are congruent 
(Statements 3 and 4).

6) NI
� ��

 bisects DNG

OE
� ���

 bisects TOG

6) Given.

7)  DNG TOG 7) �If angles are congruent ( ING and EOG), then their like 
multiples are congruent (Statements 5 and 6).

8	 Game Plan: SD equals UE (say they’re both 10). If UD is 2, then both SU and DE would be 8. 
Then the midpoints cut each of those in half, so that makes SM and GE both 4. Bingo.

Statements Reasons

1) SD UE 1) Given.

2) SU DE 2) �If a segment is subtracted from two congruent segments, then 
the differences are congruent (segment subtraction; three-seg-
ment version) (Statement 1 and diagram).

3) M is the midpoint of SU 3) Given.

4) G is the midpoint of DE 4) Given.

5) SM GE 5) �If segments are congruent (SU  and DE), then their like  
divisions are congruent (half of one equals half of the other) 
(Statements 2, 3, and 4).
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9	 Game Plan: You have the two 90  angles. Each is trisected, so all the small angles measure 30 . 
Because BEA and XVW  measure 30 , AEV  and WVE  each have to be 150 . Sweet.

Statements Reasons

1) EA ED
� ��� � ���

1) Given.

2) VW VZ
� ���� � ���

2) Given.

3)  AED  is a right angle

WVZ  is a right angle

3) Definition of perpendicular (1, 2).

4)  AED WVZ 4) All right angles are congruent (3).

5) EB
� ���

 and EC
� ���

 trisect AED 5) Given.

6) VX
� ���

 and VY
� ���

 trisect WVZ 6) Given.

7)  AEB WVX 7) �If angles are congruent (the two right angles), then their 
like divisions are congruent (a third of one equals a third 
of the other) (4, 5, 6).

8)  AEV
 
is supplementary to AEB

WVE  is supplementary to WVX

8) �If two angles form a straight angle (assumed from dia-
gram), then they are supplementary (definition of 
supplementary).

9)  AEV WVE 9) Supplements of congruent angles are congruent (7, 8).

10	 Statements Reasons

1) AC
� ���

 bisects BAD 1) Given.

2)  2 3 2) Definition of bisect.

3)  1 2 3) Vertical angles are congruent.

4)  1 3 4) Transitive Property.

11	 Game Plan: Think backwards — how can you get 4 6? Well, 4 and 3 are congruent 
vertical angles, as are 6 and 1. Thus, if you can get 1 3, you have it. The two bisectors 
make 1 2 and 2 3. Thus, 1 3 by the Transitive Property. Bingo.

Statements Reasons

1) MB
� ���

 bisects AMC 1) Given.

2)  1 2 2) Definition of bisect.

3) MC
� ����

 bisects BMD 3) Given.

4)  2 3 4) Definition of bisect.

5)  2 3 5) Transitive Property (for three angles).

6)  1 6 6) Vertical angles are congruent.

7)  3 4 7) Vertical angles are congruent.

8)  4 6 8) �Transitive Property (for four angles). If angles (4 and 6) are congruent  
to congruent angles (1 and 3), then they (4 and 6) are congruent to 
each other.
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12	 Statements Reasons

1) TO GO
� ��� � ���

1) Given.

2)  TOG is a right angle 2) Definition of perpendicular.

3)  3 is complementary to 2 3) Definition of complementary.

4)  1 3 4) Vertical angles are congruent.

5)  1 is complementary to 2 5) Angle substitution.



2Triangles, Proof 
and Non-Proof 
Problems



IN THIS PART . . .

Start off your love affair with triangles by working out 
non-proof problems that cover concepts such as area, 
altitudes, medians, angle bisectors, perpendicular 
bisectors, the Pythagorean Theorem, families of right 
triangles, and more.

Get lots of practice proving that triangles are congruent 
and then using CPCTC (Congruent Parts of Congruent 
Triangles are Congruent).
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Triangle Fundamentals 
and Other Cool Stuff 
(No Proofs)

There’s no upper limit to how many sides a polygon can have, but the lower limit is 
three — and that makes the triangle sort of a special shape. And for some reason, the 
number three seems to have a certain universal appeal: the Three Stooges, the Three 

Wise Men, three blind mice, Goldilocks and the three bears, Three Dog Night, three strikes 
and you’re out, and so on. So, I give you the triangles: three angles, three sides, three medians, 
three altitudes, three angle bisectors, three perpendicular bisectors, and three “centers” (plus 
the centroid).

Chapter 4

IN THIS CHAPTER

»» Naming triangles by their sides 
and angles

»» Measuring area and height

»» Finding a triangle’s center of 
balance

»» Spotting the “centers” of 
attention: Orthocenter, incenter, 
and circumcenter

»» Checking out the Pythagorean 
Theorem

»» Identifying triangles whose sides 
are whole numbers (and their kin)

»» Looking at 45 45 90  and 
30 60 90  triangles
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Triangle Types and Triangle Basics
Six basic terms describe different types of triangles. Here’s a great way to remember them:  
A triangle has three sides and three angles. Well, three of the following terms are about sides, 
and three are about angles.

Every triangle belongs to one of these three categories about sides.

»» Scalene: A scalene triangle has no equal sides.

»» Isosceles: An isosceles triangle has at least two equal sides. The two equal sides are called 
legs; the third side is the base. The two angles touching the base, called base angles, are 
equal. The angle between the two legs is the vertex angle.

»» Equilateral: An equilateral triangle has three equal sides (thus, every equilateral triangle 
is also isosceles). Note that an equilateral triangle is also equiangular because it has three 
equal angles (each is 60 ). For polygons with four or more sides, the distinction between 
equilateral and equiangular is important. Not so for triangles, because both terms refer to 
the very same triangle.

Every triangle also belongs to one of these three groups concerning angles.

»» Acute: An acute triangle has three acute angles (angles less than 90 , of course).

»» Right: A right triangle has one right angle and two acute angles (the two short sides  
touching the right angle are the legs; the longest side across from the right angle is  
called the hypotenuse).

»» Obtuse: An obtuse triangle has a single obtuse angle (more than 90 ); the other two  
angles are acute. And here’s one more thing about the angles in a triangle that you may 
already know:

The sum of the measures of the three angles in a triangle is always 180 .

Whenever possible, don’t just memorize math formulas, concepts, and so on as raw facts that 
can only be learned by rote. Instead, look for some reason why they’re true or find a connec-
tion between the new idea and something you already know. For instance, to remember the 
sum of the angles in a triangle, picture the triangle you get when you cut a square in half along 
its diagonal: You can easily see that the three angles of such a triangle are 45 45,  , and 90  — 
which add up to 180 .
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Q.	 Classify this triangle as scalene, isosceles, or  
equilateral.

Hint: Don’t forget that the sides of a triangle can’t be 
negative or zero (or imaginary, like 10 ) and that 
each pair of sides of a triangle must add up to more 
than the third side.

A.	 This problem isn’t simple. Here’s how your argument should go: The triangle is scalene 
unless at least two of the sides are equal. So, try the three different pairs of sides and 
see what happens if you set them equal to each other.

25 75 5

5 50

10

x

x

x

No good: Plugging x 10 into 10 2x x  gives you a side with a length of zero. Next, if

75 5 10

15 75 0

2

2

x x x

x x

Now solve for x with the quadratic formula. “What?” you say. “You expect me to 
remember the quadratic formula?” Yeah, sure, I know this is a geometry book, but I 
don’t think reviewing some algebra as important as the quadratic formula will kill you. 
Do you have your helmet on?

ax bx c2 0

x
b b ac

a

2

2

4
2

15 15 4 1 75
2

15 225 300
2

15 75
2

No good. A negative under the square root means you have no real solutions. Finally, if

25 10

10 25 0

5 5 0

5

2

2

x x

x

x x

x

x

Plugging 5 into the third side (75 5x) gives you 75 5 5, or 50, so when x 5, you 
might think the three sides could be 25, 25, and 50. “But wait!” you should say.  
“No triangle can have sides of 25, 25, and 50!”
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Remember: Any two sides of a triangle must add up to more than the third side. Think 
about it this way: If you walk, say, from vertex A to vertex B in a triangle, the trip has to 
be shorter if you walk straight along AB  than if you go out of your way and walk along 
the two other sides.

So, back to the problem. Setting the three pairs of sides equal to each other doesn’t work, 
so none of the sides are equal. Therefore, the triangle is scalene. And that’s a wrap.

1	 Classify these triangles as scalene, isosceles, or equilateral.

2	 If ISO  is isosceles and its perimeter is more than 10, which side is the 
base, and how long are the three sides?

3	 The angles of a triangle are in the ratio of 4 5 6: : . Is it an acute, right, or obtuse triangle? Is it scalene, 
isosceles, or equilateral?

4	 Classify the following triangles as acute,  
obtuse, or right.



CHAPTER 4  Triangle Fundamentals and Other Cool Stuff (No Proofs)      61

5	 Are the following statements true always, sometimes, or never?

a.	 An equilateral triangle is isosceles.

b.	 An isosceles triangle is equilateral.

c.	 A right triangle is isosceles.

d.	 If two of the angles in a triangle are 70  and 55 , the triangle is isosceles.

e.	 The base angles of an obtuse isosceles triangle are each 40 .

f.	 The base angles of an acute isosceles triangle are each 40 .

g.	 Two of the angles in an obtuse triangle are supplementary (add up to 180 ).

h.	 Two of the angles in an acute triangle are complementary (add up to 90 ).

Altitudes, Area, and the Super Hero Formula
In this section, I cover some concepts that you’ve probably known for a long time, like how to 
find the area or the height of a triangle. But you will find here some other ideas that I bet you 
don’t know, like why Hero is a real geometry superhero (and that there’s a second way to find 
a triangle’s area).

First, take a look at the formula for the area of triangle:

Area base height1
2

Area, of course, is usually measured in some kind of units2, like square feet, square meters, or 
square centimeters.

A triangle’s height is the distance from its peak straight down. The height, or altitude, of a 
triangle is just what you’d expect it to be — you know, its height. Think of altitude this way: 
If you have an actual, physical triangle — say, cut out of cardboard — and you stand it up on a 
table, its height or altitude is the distance from its peak straight down to the table. Check out 
the two triangles in Figure 4-1.
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You can stand a triangle up three different ways depending on which side you put flat on the 
table, so every triangle has three separate altitudes. Depending on which type of triangle you 
have, the altitudes can have the same or different lengths.

»» Scalene triangles: The three altitudes have different lengths.

»» Isosceles triangles: Two of the altitudes have the same length.

»» Equilateral triangles: All three altitudes have the same length.

Also, as you can see in Figure 4-1b, sometimes an altitude is outside the triangle. This situa-
tion occurs when the triangle is obtuse. Two of the three altitudes in every obtuse triangle are 
outside the triangle; the third altitude is inside the triangle. And for every right triangle, the 
two legs are also altitudes, and the third altitude is inside the triangle. All three altitudes of an 
acute triangle are inside the triangle.

Alternate triangle area formula. The most common way of figuring a triangle’s area is by plug-
ging the triangle’s base and height into the regular area formula. But if all you know are the 
triangle’s three sides, you can use the following nifty alternate formula attributed to Hero of 
Alexandria (who lived from 10 to 70 AD — or CE if you prefer).

Area S S a S b S c

In this formula, a, b, and c are the length of the triangle’s sides, and S is the triangle’s 

semiperimeter (half the perimeter: S
a b c

2
).

And here’s one more triangle area formula for you:

The area of an equilateral triangle with side s is 
s2 3
4

.

FIGURE 4-1: 
An altitude 

inside a 
triangle and 

outside a 
triangle.
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Q.	 Given:	 AB 10

D is the midpoint of AB

M is the midpoint of CD

AB CD

BDM  is isosceles

Find:	 Area of ACM

A.	 To use the ordinary area formula, you need a base and a height of ACM . A base and its 
corresponding height are always perpendicular, so the 90  angle at D is the place to look. 
Take this book and rotate it 90  clockwise. Now, picture ACM  standing up on a table, 
where the tabletop runs along CD. Side CM  is on the table, so that’s the base. And the 
height goes from the peak (A) straight down to the table at D, so the height is AD. To 
use the area formula, you need the lengths of CM  and AD.

AB 10 and D is the midpoint of AB, so AD 5. One down, one to go. BDM  is isosceles, 
so two of its sides are equal. It’s also a right triangle with hypotenuse MB, so the two 
equal sides have to be DM  and DB (the hypotenuse is always longer than the legs). DB 
equals AD, which is 5, so DB is 5; thus, so is DM. Because M is the midpoint of CD, CM  
is 5 as well. So, the base and height are both 5.

Now just use the formula:

Area  base heightACM
1
2
1
2

5 5

12 5.

The area is 12.5 units2.

6	 Recalling that some altitudes may be outside the triangle (like in Figure 4-1b shown earlier in the 
chapter), draw in the three altitudes of the following triangle.
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7	 Figure the area of the big triangle in four different ways.

8	 Compute the area of rectangle ABDE and then the areas of ACE, AGE, and APE. What two conclu-
sions can you draw about these areas?

9	 Given:    MT 6

Find:	 NS
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Balancing Things Out with Medians  
and Centroids

Because triangles aren’t as symmetrical as, say, circles or rectangles (except for the equilateral 
triangle), they don’t have an obvious center point like circles and rectangles do. In this and the 
next section, you look at four different “centers” that every triangle has. Of the four, the cen-
troid is probably the best candidate for a triangle’s true center.

A triangle’s medians point the way to its centroid. Here’s everything you’ve always wanted to 
know about medians but were afraid to ask.

»» Median: A median of a triangle is a segment joining a vertex (corner point) with the midpoint 
of the opposite side. Every triangle has three medians.

»» Centroid: The three medians of a triangle intersect at a single point called the centroid. (The 
centroid is the triangle’s center of gravity, or balance point.)

»» Position of centroid on median: Along every median, the distance from the vertex to the 
centroid is twice as long as the distance from the centroid to the midpoint.

Q.	 Given BSF  with medians BH , SU , and FA and  
centroid L

a.	 If FL is 12, what’s FA?

b.	 If BH is 12, what’s HL?

c.	 If SL is 12, what’s UL?

d.	 If the area of BSF  is 20 units2, what’s the area  
of BSU ?

A.	 The centroid, L, cuts each median into a 1
3

 part and a 2
3

 part. Notice that it’s obvious 

from the figure which is the short part and which is the long part. (Try measuring the 
parts with your fingers.)

a.	 FL is 2
3

 of FA, so if FL is 12, FA 18.

b.	 HL is 1
3

 of BH, so if BH is 12, HL 4.

c.	 A centroid is twice as far from a vertex as it is from the midpoint of the opposite side, 
so SL is twice as long as UL SL. ,  12  so UL 6.

d.	 BSF  and BSU  have the same altitude (it goes from point S straight down to BF , 
hitting BF  somewhere between U and F). SU  is a median, so U is the midpoint  
of BF . Thus, BU , the base of BSU , is half as long as BF , the base of BSF . Therefore, 
because their altitudes are the same, and because BSU  has a base that’s half of the 
base of BSF , the area of BSU  must be half of the area of BSF . The answer is  
10 units2.
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10	 Draw in the medians of ABC . Do they appear 
to bisect the vertex angles?

*11	 NT  and HO  are medians of NRH . If the area 
of NOH  is 13, what’s the area of NRT ?

Locating Three More “Centers” of a Triangle
The orthocenter, incenter, and circumcenter are three points associated with every triangle. 
Don’t be fooled by the term “center,” though. You can see in a minute why they’re called  
centers, but it’s not because these points are near the center of the triangle.

Here’s a brief description of each “center.”

»» Orthocenter: Where a triangle’s three altitudes intersect.

»» Incenter: Where a triangle’s three angle bisectors intersect; it’s the center of a circle inscribed 
in (drawn inside) the triangle.

»» Circumcenter: Where the three perpendicular bisectors of the sides intersect; it’s the center 
of a circle circumscribed about (drawn around) the triangle.
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Well, I guess you only get to see why the incenter and the circumcenter are called centers. I 
don’t know why the orthocenter is called a center, but two out of three ain’t bad.

If you sketch a few differently shaped triangles, you can see that there isn’t always an obvious 
place where you’d say the center is, like there would be with, for example, a rectangle. I think 
a triangle’s centroid is the best choice for a triangle’s center — better than the so-called “cen-
ters” just mentioned. Here’s why: The centroid is the triangle’s center of gravity, and it always 
seems to be near what common sense would say is the center.

Location of the centroid and the three “centers.” Of the three “centers” described in this 
section, two of them (the orthocenter and circumcenter) are sometimes outside of the triangle. 
The third one (the incenter) is sometimes way at one end of the triangle. Here’s the lowdown 
for the three “centers” plus the centroid:

»» For all types of triangles, the centroid and incenter are inside the triangle.

»» In an acute triangle, the orthocenter and circumcenter are inside the triangle as well.

»» In a right triangle, the orthocenter and circumcenter are on the triangle.

»» In an obtuse triangle, the orthocenter and circumcenter are outside the triangle.

Here’s a mnemonic device to help you keep the four “centers” straight. It’s admittedly not one 
of my better mnemonics, but it’ll probably work just fine, and it’s certainly better than nothing. 
First, pair up the four “centers” with the lines, rays, or segments that intersect:

»» Centroid — Medians

»» Circumcenter — Perpendicular bisectors

»» Incenter — Angle bisectors

»» Orthocenter — Altitudes

Notice that the two terms on the left that begin with consonants pair up with terms on the right 
that begin with consonants. Ditto for the terms that begin with vowels. The only two terms that 
contain double vowels (oi and ia) are paired up. And the two terms with two t’s (orthocenter and 
altitude) go together. Easy, right?
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Q.	 In the following triangles, identify all marked centroids, orthocenters, incenters, and 
circumcenters. Try this exercise on your own before reading the solution.

A.	 In HWA, the tick marks tell you that M, N, and O are midpoints; therefore, HM , WN ,  
and AO  are medians. Y is thus the centroid. The right-angle marks at the midpoints tell 
you that OM

� ����
and NM
� ����

 are perpendicular bisectors of sides HW  and HA. They cross at M,  
so M is the triangle’s circumcenter. (Note that you don’t need the third perpendicular 
bisector; you know that all three intersect at the same point, so any two can show you 
where the circumcenter is.) Finally, (this one’s a bit tricky), you identify point H as the 
orthocenter. Missing this point is easy because H is part of the triangle. But you can see 
that HW  and HA are altitudes of HWA (the two legs of a right triangle are always alti-
tudes), and because HW  and HA intersect at H, H has to be the orthocenter. The incenter 
of HWA does not appear on this figure.

Points E, D, and I in TMS  are marked as midpoints, and thus, TE, MD, and SI  are  
medians. They cross at O, so O is the centroid. The right angle marks on the figure and 
the tick marks on the angles tell you that TE, MD, and SI  are also altitudes and angle 
bisectors and perpendicular bisectors. So, yup, point O is all four points wrapped up  
into one: the centroid, the orthocenter, the incenter, and the circumcenter. By the way, 
this overlap happens only in an equilateral triangle. In fact, the four points are always 
four distinct points except when they all come together in an equilateral triangle.

For IAE, the two circles should make this a no-brainer. Point O, the center of the 
inscribed circle, is, by definition, the incenter. And point X, the center of the circum-
scribed circle, is, by definition, the circumcenter. Neither the orthocenter nor the cen-
troid of IAE  appears on this figure.
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12	 Pick and choose: Identify the centroid, the 
orthocenter, the incenter, and the circumcen-
ter in XYZ . This figure is drawn to scale.

13	 Pick and choose: Identify the centroid, the 
orthocenter, the incenter, and the circumcen-
ter in ABC . This figure is drawn to scale.

14	 Pick and choose: Identify the centroid, the 
orthocenter, the incenter, and the circumcen-
ter in STU . This figure is drawn to scale.

15	 What does the fact that Y and R are outside the 
triangle tell you (this is the same figure as in 
problem 13)?
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16	 For the following triangle, locate (approximately) and draw in its centroid, orthocenter, incenter, and 
circumcenter. Hint for problems 16 to 19: Just sketch two medians to find the centroid, two perpendicu-
lar bisectors to find the circumcenter, and so on.

17	 For the following triangle, locate (approximately) and draw in its centroid, orthocenter, incenter, and 
circumcenter.

18	 For the following triangle, locate (approxi-
mately) and draw in its centroid, orthocenter, 
incenter, and circumcenter.

19	 For the following triangle, locate (approxi-
mately) and draw in its centroid, orthocenter, 
incenter, and circumcenter.
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The Pythagorean Theorem
Drum roll, please. Ladieeeees and gentlemen, in the center ring, for your enjoyment and 
amazement, all the way from Samos, Greece, from over 2600 years ago, I bring you .  .  . the 
Pythagorean Theorem! Pretty thrilling, eh?

The Pythagorean Theorem is certainly one of the most famous theorems in all of mathemat-
ics. Mathematicians and lay people alike have studied it for centuries. People have proved it in 
many different ways. Even President James Garfield was credited with a new, original proof. 
Well, here you go. As the Scarecrow in The Wizard of Oz tried to say after he got his Doctor of 
Thinkology diploma (a “Th.D.”) to prove he had brains. . .

The Pythagorean Theorem: The sum of the squares of the legs of a right triangle is equal to the 
square of the hypotenuse.

(Actually, the Scarecrow misstated it as, “The sum of the square roots of any two sides of an 
isosceles triangle is equal to the square root of the remaining side.”)

Figure 4-2 contains the well-known 3 4 5 triangle to visually show you the meaning of the 
Pythagorean Theorem.

FIGURE 4-2: 
Nine little 

squares plus 
16 little 

squares equals 
25 little 

squares. 
Pythagoras, 

Pyschmagoras —  
what’s all the 

fuss about?
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Q.	 Calculate the length of the unknown sides in 
the triangles to the right.

A.	 ABC :  a b c2 2 2

7 8

49 64

113

113

10 6

2 2 2

2

2

x

x

x

x

.

XYZ a b c: 2 2 2

12 13

144 169

25

5

2 2 2

2

2

y

y

y

y

20	 Find the length of the unknown side in the 
following triangle. If the answer is irrational, 
give your answer in exact, radical (square 
root) form and in decimal form rounded to 
two decimal places.

21	 Find the length of the unknown side in the 
following triangle. If the answer is irrational, 
give your answer in exact, radical (square 
root) form and in decimal form rounded to 
two decimal places.
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22	 Find the length of the unknown side in the 
following triangle. If the answer is irrational, 
give your answer in exact, radical (square 
root) form and in decimal form rounded to 
two decimal places.

23	 Find the length of the unknown side in the 
following triangle. If the answer is irrational, 
give your answer in exact, radical (square 
root) form and in decimal form rounded to 
two decimal places.

24	 Find the length of the unknown side in the 
following triangle. If the answer is irrational, 
give your answer in exact, radical (square 
root) form and in decimal form rounded to 
two decimal places.

25	 Find the length of the unknown side in the 
following triangle. If the answer is irrational, 
give your answer in exact, radical (square 
root) form and in decimal form rounded to 
two decimal places.

26	 Find x. 27	 Find PS, SR, PR, and the area of PQR.
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28	 Answer the following questions using this 
figure:

a.	 Express AC (the length of AC ) in terms of p 
and q.

b.	 Express AB in terms of q and r.

c.	 Express BC in terms of p and r.

*29	 Find the area of MOJ  without using Hero’s 
formula.

Solving Pythagorean Triple Triangles
If you pick any old numbers for two of the sides of a right triangle, the third side usually ends 
up being irrational — you know, the square root of something. For example, if the legs are 5 

and 8, the hypotenuse ends up being 5 8 89 9 433982 2 .  (the decimal goes on forever 
without repeating). And if you pick whole numbers for the hypotenuse and one of the legs, the 
other leg usually winds up being the square root of something.

When this doesn’t happen — namely, when all three sides are whole numbers — you’ve got a 
Pythagorean triple.

Pythagorean triple: A Pythagorean triple (like 3 4 5) is a set of three whole numbers that work 
in the Pythagorean Theorem ( )a b c2 2 2  and can thus be used for the three sides of a right 
triangle.

In this section, you study the four smallest Pythagorean triple triangles: the 3 4 5 triangle; 
the 5 12 13 triangle; the 7 24 25 triangle; and the 8 15 17 triangle. But infinitely more of 
them exist. If you’re interested, one simple way to find more of them is to take any odd number, 
say 11, and square it — that’s 121. The two consecutive numbers that add up to 121 (60 and 61) 
give you the two other numbers (to go with the 11). So, another Pythagorean triple is 11 60 61.
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A family of right triangles is associated with each Pythagorean triple. For example, the 5 12 13: :  
family consists of the 5 12 13 triangle and all other triangles of the same shape that you’d 
get by shrinking or blowing up the 5 12 13 triangle. If you shrink it 100 times, you get a 
5 100 12 100 13 100/ / /  triangle. Or you can quadruple each side and get a 20 48 52 triangle 
or multiply each side by 17  to get a 5 17 12 17 13 17  triangle.

Q.	 Find the lengths of the unknown sides in the following triangles by looking for triangle 
families. (Don’t use the Pythagorean Theorem.)

A.	 For the p triangle, you want to first notice that 26 is twice 13. That should ring  
the 5 12 13: :  bell. Then you check that 24 is twice 12, which, of course, it is. Thus,  
you have a 5 12 13 triangle blown up to twice its size; therefore, p is 2 5, or 10.

For the q triangle, you recognize the triangle family if you get rid of that pesky decimal. 
You can do that by multiplying the 7.5 and the 4 by 2, which gives you 15 and 8. 
Bingo — you have an 8 15 17 triangle shrunk in half. So, q is half of 17, or 8.5.

For the r triangle, first divide the 60 and 100 by 10 — that’s 6 and 10. This should ring 
the 3 4 5: :  bell. Doubling 3, 4, and 5 gives you 6, 8, and 10, and then multiplying by 10 
gives you 60, 80, and 100, so r is 80.

Finally, for the s triangle, multiply the 3 and the 9/5 by the denominator, 5, to get  
15 and 9. Then reduce these terms by dividing each by 3: That gives you 5 and 3, and, 
voilà, you have a triangle in the 3 4 5: :  family. One neat way to find s is to now take the 4 
(because the two given sides became the 5 and 3) and reverse the process: multiply  
by 3 (that’s 12) and then divide by 5: s is 12/5.
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30	 Without using the Pythagorean Theorem,  
find the length of the unknown side in the  
following triangle.

31	 Without using the Pythagorean Theorem,  
find the length of the unknown side in the  
following triangle.

32	 Without using the Pythagorean Theorem,  
find the length of the unknown side in the  
following triangle.

33	 Without using the Pythagorean Theorem,  
find the length of the unknown side in the  
following triangle.
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*34	 Without using the Pythagorean Theorem,  
find the length of the unknown side in the  
following triangle.

*35	 Without using the Pythagorean Theorem,  
find the length of the unknown side in the  
following triangle.

*36	 Find a, b, c, and d. 37	 Find x.

38	 Find c.
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Unique Degrees: Two Special Right Triangles
The Pythagorean triple families of triangles you find in the last section are nice to know because 
they come up in so many right triangle problems. But mathematically speaking, the two right 
triangles in this section  — the 45 45 90  triangle and the 30 60 90  triangle  — are 
really more important. The first is exactly half of a square, and the second is exactly half of an 
equilateral triangle, and this connection to those elemental shapes makes the two special right 
triangles ubiquitous in the geometry landscape. Check these triangles out in Figure 4-3:

»» The 45 45 90  triangle has angles of 45 45, , and 90  (duh) and sides in the ratio of 
1 1 2: : . This triangle is the shape of half a square, cut along its diagonal.

»» The 30 60 90  triangle has angles of 30 , 60 , and 90  and sides in the ratio of 
1 3 2: : . This triangle is the shape of half an equilateral triangle cut down the middle  
along its altitude.

The 45 45 90  and 30 60 90  triangles are very important in trigonometry and to a 
lesser extent in calculus. Get to know them forwards, backwards, upside-down, and sideways.

Don’t mix up the 2x and the x 3. When you use the Pythagorean Theorem, you often end up 
with a hypotenuse with a square root in it. Because of this, students often mix up the 2x and 
the x 3  for the 30 60 90  triangle and put the x 3  on the hypotenuse. You can avoid this 
mistake if you remember that 3  is less than 2 (think for a few seconds and figure out why it 
has to be less than 2); because the hypotenuse is always the longest side of a right triangle, the 
2x has to go on the hypotenuse.

Whenever you sketch a 30 60 90  triangle, make sure you make the long leg much longer 
than the short leg (it doesn’t hurt to even exaggerate the relationship a bit). That way, it’ll be 
obvious to you that the short leg touches the 60  angle and that the long leg touches the 30  
angle. If you instead get a bit sloppy and draw a 30 60 90  triangle so that the legs look 
about equal, it’s easy to get mixed up and connect the legs to the wrong angles.

FIGURE 4-3: 
Two special 

right triangles.
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Q.	 Find the lengths of the unknown sides in  
CBA and WQX .

A.	 You have two ways to solve these problems that really amount to the same thing. First, 
you can use the ratio of the sides of the 45 45 90  triangle from Figure 4-3:

leg leg hypotenuse: :

: :x x x 2

In CBA, one of the legs is 5, so x is 5. Now just plug 5 into x x x: : 2  and you have the 
three sides: 5, 5, and 5 2 .

In WQX , the hypotenuse is 8, so you set x 2  equal to 8 and solve for x:

x

x

2 8

8
2

8 2
2

4 2

So, the three sides are 4 2 4 2, ,  and 8.

I prefer the following method: Just think of the 45 45 90  triangle as the 2  triangle 
(or “root 2 triangle”). Now, if you know the length of a leg and you want the length of 
the hypotenuse (a longer thing), you multiply by 2. And if you know the hypotenuse and 
want to figure a leg (a shorter thing), you divide by 2. That’s all there is to it.

39	 Find the area of an equilateral triangle whose 
sides are 10.

40	 Find the area of a square whose diagonal has a 
length of 10.
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Solutions
1	 The two tick marks in triangle a tell you that those two sides are equal and, thus, the triangle 

is isosceles. It looks equilateral, but you can’t assume that.

Triangle b must be scalene, because no matter what x is, x and x 1 and x 2 will always be 
three different lengths. Don’t be fooled by the fact that the triangle looks isosceles.

2	 Because LSOis isosceles, at least two of the sides must be equal. First try IS SO :

2 4 4

2 4

2

x x

x

x

Plugging x 2 into the three sides gives you sides of 4, 4, and 1; that’s not a large enough 
total because the perimeter is supposed to be more than 10. Try SO IO :

4 4 3 5

1

x x

x

No good. This setup gives you three sides of negative length.

The third pair better work, because that’s the only thing left to try:

IO IS

x x

x

3 5 2

5

Plugging x 5 into the three sides gives you sides of length 10, 10, and 16. Bingo. The base, 
SO, is 16 and the legs, IO and IS, are both 10.

3	 The angles are in the ratio of 4 5 6: : , so set the angles equal to 4x, 5x, and 6x. The angles in a 
triangle add up to 180 , so

4 5 6 180

15 180

12

x x x

x

x

Plugging x 12 into 4x, 5x, and 6x gives you three acute angles, 48 60 72,  ,  , so it’s an acute 
triangle. And because the triangle has three unequal angles, it must have three unequal sides 
as well. So, it’s scalene.

4	 For the first triangle, the supplement of the 140  angle is 40 , and the vertical angle across 
from the 50  angle is, of course, also 50 . So far, you have a 40  angle and a 50  angle. The 
third angle has to give you a total of 180 , so the third angle is 90 : You have a right triangle.

Did you think the second triangle was obtuse? Good try, but look again. This isn’t any type of 
triangle — not in our universe anyway — because the angles don’t add up to 180 .
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5	 Here are the answers.

a.	 Always: An equilateral triangle is isosceles by definition.

b.	 Sometimes: An isosceles triangle is equilateral only when its base is congruent to its legs.

c.	 Sometimes: A right triangle is isosceles when its legs are congruent (in other words, when 
it’s a 45 45 90  triangle — see the section, “Unique Degrees: Two Special Right 
Triangles,” in this chapter).

d.	 Always: 70  plus 55  is 125 . The third angle must bring the total to 180 , so it’s another 55  
angle, and therefore, the triangle is isosceles.

e.	 Sometimes: If the vertex angle of an obtuse isosceles triangle is 100 , its base angles will 
both be 40 , so the answer has to be at least sometimes. But the answer isn’t always, 
because the vertex angle of an obtuse isosceles triangle can have any measure greater than 
90  and less than 180 .

f.	 Never: 40  plus 40  is 80 , so the third angle must be 100 , which makes the triangle obtuse.

g.	 Never: A triangle can never have two supplementary angles, because they would add up to 
180  and there’d be nothing left for the third angle.

h.	 Never: If two of the angles in a triangle are complementary, they add up to 90 , and that 
leaves 90  for the third angle, because all three angles have to total 180 . Thus, the triangle 
must be a right triangle.

6	 Your answer should look roughly like this:

You may want to spin this figure around to make the dotted lines horizontal (like a tabletop) 
and the altitudes going straight up from the table. That’s a good way to picture altitudes and 
to see where they should go.

7	 The area equals 30 square units:

Area base height1
2
1
2

13 60
13

30

Now, if you instead use the 12 as the base, the altitude is 5:

Area 12 51
2
30
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If 5 is the base, the height is 12:

Area 5 121
2
30

Finally, use Hero’s formula:

S

S S a S b S c

5 12 13
2

15

15 15 5 15 12 15 13

Area

15 10 3 2

900

30

8	 The area of rectangle ABDE is, of course, 6 10, or 60 2units . The area of ACE  is 1
2

6 10, or 

30 2units . AGE  and APE  both have the same base as ACE  (namely AE ), and, like ACE, 
they both have a height of 10 (the vertical distance between the two dotted lines). Thus, the 
areas of the three triangles are the same.

You can draw these two conclusions:

•	 The area of a triangle is half of the area of a rectangle with that same base and height.  
(Do you see why this has to be true? Hint: Look at triangles ACF and CAB and triangles  
ECF and EDC.)

•	 If triangles have the same segment for their bases and their heights are the same, then 
their areas are equal. Consider this: Imagine that sides AP  and EP are made of elastic,  
and you grab point P and pull it to the right along the dotted line. You could pull it out 
1000 miles or more and the area of APE  would still be only 30 2 units .

9	 For this one, you have to use the area formula twice:

Area 1
2
1
2

8 6

24

b h

Now, because NS  is the altitude drawn to base MQ, you can figure NS by using the area for-
mula backwards:

Area 1
2

24 1
2

7

48 7

48
7

b h

h

h

h

So, NS
48
7

.



CHAPTER 4  Triangle Fundamentals and Other Cool Stuff (No Proofs)      83

10	 Here’s what your figure should look like:

Be careful with this one. Many people take a quick look at the medians and say that it does 
look like they bisect the vertex angles. I hope you didn’t jump to that conclusion. If you look 
carefully, you can see that although ABC  looks like it might be cut in half, the medians 
from A and C don’t even come close to bisecting their angles. ( ACD  in the figure looks like 
it’s somewhere around a 70  angle. But DCB, on the other hand, looks more like a 45  angle.)

It turns out that B isn’t bisected either, though it’s pretty close. Only the median to the 
base of an isosceles triangle bisects the vertex angle (and therefore, all three medians of an 
equilateral triangle bisect the vertex angles).

*11	 At first, you may feel that you’ve got nothing to go on to solve this problem. You may be 
thinking, “How can I get the area of NRT  when I don’t know anything about it?”

Well, the logic here is quite similar to the reasoning in part d of the example problem. 
Because HO  is a median, O is a midpoint, and thus NR is twice as long as HO. Now spin the 
triangle so that NR becomes the base. You can see that NRH  and NOH  have the same 
height. Because the base of NRH  is twice as long as the base of NOH , the area of NRH  is 
twice the area of NOH  — so the area of NRH  is units26 2.

With the same reasoning — this time spinning the triangle so that RH  is the base — you can 
conclude that the area of NRT  is half the area of the whole triangle. So, like NOH , the area 
of NRT  is units13 2.

12	 In XYZ , if you very roughly sketch the perpendicular bisector of XY  or ZY , you can see that 
it crosses T and doesn’t even come close to A, K, or E. So, T has to be the circumcenter.

If you sketch the median from Y straight down the middle of the triangle, it passes through 
all four points. Recalling that the centroid is at the 1/3 point of each median, you can see that 
point A has to be the centroid. (K and E are nowhere near 1/3 of the way up the median.)

Next, sketch an altitude from, say, angle X perpendicular to YZ . This segment passes through 
point E (or close to E, depending on how good your sketching skills are), so E has to be the 
orthocenter. And if that doesn’t convince you, K can’t possibly be the orthocenter, because if 
you draw a line through angle X and point K and that crosses over YZ , it’s easy to see that 
they’re not perpendicular and that, therefore, K is not on an altitude.

Now that you’ve found the first three points, you have no other choice for K — it has to be 
the incenter.
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13	 Here, I skip the lengthy explanation for ABC  (and STU  in the next problem) because the 
method for identifying the four points is the same as for XYZ  in the preceding problem. You 
just sketch a median or two, an altitude or two, and so on until, by process of elimination, 
you’ve made your picks. Here you go: Y is the orthocenter, O is the incenter, U is the centroid, 
and R is the circumcenter.

14	 Pick ’em: P is the circumcenter, I is the centroid, C is the incenter, and K is the orthocenter.

15	 You can conclude that ABC  is an obtuse triangle. Remember that the orthocenter and the 
circumcenter are outside the triangle in obtuse triangles.

16	 Your solution should look something like this:

17	 Your solution should look something like this:
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18	 Your solution should look something like this:

19	 Your solution should look something like this:

20	 You use, of course, a b c2 2 2 for all six triangles in problems 20 to 25.

x

x

x

x

2 2 2

2

2

6 8

36 64

28

28 2 7 5 298.

21	 Here you go:

y

y

y

2 2 2

2

5 10

75

75 5 3 8 66.
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22	 Take a look at the answer for the r triangle:

10 11

100 121

21

21 4 58

2 2 2

2

2

r

r

r

r .

23	 Check out the answer for this triangle:

5 5

50

50 5 2 7 07

2 2 2

2

z

z

z .

24	 Here’s the solution for the p triangle:

11 60

121 3600

3721

61

2 2 2

2

2

p

p

p

p

25	 And here’s the last one:

1 20

1 400

401 20 02

2 2 2

2

q

q

q .

26	 This is sort of a domino-effect or chain-reaction problem. You can label the hypotenuses (or 
is it hypoteni, like hippopotami?) from left to right as h1, h2, h3, h4, and x. Now the problem’s a 
walk in the park:

h

h

h

h

1
2 2 2

1

2
2 2 2

2

1 1

2

1 2

1 2

3

h

h

h

h

3
2 2 2

3

4
2 2 2

4

1 3

1 3

4 2

1 2

1 4

5

x

x

2 2 2
1 5

6 2 45.
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27	 Here are your answers:

PS

PS

PS

PS

2 2 2

2

2

12 15

144 225

9

81

SR

SR

SR

SR

2 2 2

2

2

12 13

144 169

5

25

PR PS SR

PR

9 5

14

Area base height

units

PQR
1
2
1
2

14 12

84 2

28	 You know a b c2 2 2; therefore,

a.	 AC p q

AC p q

2 2 2

2 2

b.	 AB q r

AB r q

AB r q

2 2 2

2 2 2

2 2

c.	 p BC r

BC r p

BC r p

2 2 2

2 2 2

2 2

*29	 Label the altitude h and let EJ  equal x; ME  is 21 x. Then use the Pythagorean Theorem  
for both triangles and solve the system of two equations with two unknowns.

MOE h x

h x

:             

                

2 2 2

2

21 17

441 42 xx

h x x

2

2 2

289

42 152                          

JOE h x

h x

:    

               

2 2 2

2 2

10

100

Now subtract the second equation from the first:

h x x

h x

x

x

x

2 2

2 2

42 152

42 252

252
42

6

100
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Next, plug x 6 into the equation for JOE  to get h:

h

h

h

2 2

2

6 100

64

8

Finally, finish with the area formula:

Area

units

MOJ bh
1
2
1
2

21 8

84 2

30	 For the a triangle, reduce the 24 51:  ratio — you know, just like reducing a fraction. Dividing 
each number by 3, the ratio reduces to 8 17: , so you have a triangle in the 8 15 17: :  family.  
The a is the missing 15 side, and because the triangle is an 8 15 17 triangle blown up  
3 times, a is 3 15, or 45.

31	 The b triangle should be a no-brainer, because you have a 12 (namely 0.12) and a 13  
(namely 0.13) staring you in the face. You know b is thus 0.05, and the triangle is, of course,  
a 5 12 13 triangle shrunk down 100 times.

32	 Do the c triangle just like the a triangle in problem 30. Reducing 28 35:  by 7 gives you 4 5: . 
Bingo: It’s a 3 4 5: :  triangle. You find that c is the missing 3 side. Blowing the side back up  
7 times gives you 21 for c.

33	 The d triangle is also just like the a triangle from problem 30. For the d triangle, the greatest 
common factor of 24 and 45 is 3. Reducing by 3 gives you 8 and 15, so the triangle’s in the 
8 15 17: :  family. You determine that d is 17 times 3, or 51.

*34	 I give you two ways to solve the e triangle. The first method involves simplifying the radicals:

18 9 2 9 2 3 2

50 25 2 25 2 5 2

  and

The 3 2  and 5 2  tell you that you have a 3 4 5 triangle blown up 2  times. The missing 
side, e, is thus 4 2.

The second method is to take your calculator, enter 18
50

, and hit Enter or =. You get an answer 

of 0.6. Then “fraction” that, and you get 3/5: Voilà, your triangle is a 3 4 5: :  triangle. Now 

enter 50
5

 to find the blow-up multiplier — it’s about 1.41. Your approximate answer is  

4 times 1.41, or 5.64. (For problems with square roots, this second method can give you only 
an approximate answer unless you have a super-duper calculator, like the TI-Nspire.)

*35	 Just use the calculator trick for the f triangle. Enter 2 8 10.  and hit Enter. That gives you 0.28. 
“Fraction” that and you get 7/25. Bingo. It’s a 7 24 25: :  triangle. Dividing 25 by 10 gives you a 
shrink factor of 2.5. Finally, f equals 24 divided by 2.5, which is 9.6.

*36	 I suspect you figured out that you’ve got to solve for d first, then c, and so on. You know d is, 
of course, 12. Then that 12 and the 9 are two legs of a 3 4 5 triangle blown up 3 times. 
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Thus, c is 15; b is then 8, of course. Finally, that 8 and the 6 are two legs of another triangle 
in the 3 4 5: :  family, so a is 10.

37	 The 10 and the 24 are a 5 and a 12 doubled, so that should ring a bell — the 5 12 13: :  bell. But 
don’t answer the bell! In a 5 12 13: :  triangle, the 13 represents the hypotenuse, but in this tri-
angle, the 24 (which corresponds to the 12) is the hypotenuse. So, this triangle doesn’t 
belong to any of the Pythagorean triple families. You have to solve this triangle with the 
Pythagorean Theorem:

10 24

100 576

476

476 21 82

2 2 2

2

2

x

x

x

x .

38	 Another tricky question. Did you conclude that c equals 5 ? This is not a 3 4 5: :  triangle, 
which you can check on your calculator. The ratio of the two legs in a 3 4 5: :  triangle is 3/4,  

or 0.75. But if you do 3
4

 on your calculator, you get something different (0.866), which 

shows that this triangle is not in the 3 4 5: :  family. Solve with the Pythagorean Theorem:

c

c

c

c

2 2 2

2

2

3 4

3 4

7

7

39	 Draw your equilateral triangle with its altitude like this:

You have the base, so all you need to compute the area is the height. Half of an equilateral 
triangle is a 30 60 90  triangle, and you can see that h is the long leg. The short leg is 5; 
multiply that by 3  to get h; h is 5 3 . Finish with the area formula:

Area

units

1
2
1
2

10 5 3

25 3 2

bh
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You can also, of course, solve this problem with the formula for the area of an equilateral tri-

angle from the section about altitudes and area (A
s2 3

4
). But it’s not a bad idea to know 

the preceding method using the 30 60 90  triangle because it’s useful in its own right. 
Plus, this method can really come in handy in case you forget the formula.

*40	 Half a square cut along its diagonal is a 45 45 90  triangle. The square’s diagonal is the 
hypotenuse of the 45 45 90  triangle. That’s 10, so you divide 10 by 2  to get the sides  

of the square — 10
2

. The area of a square is, of course, s2, so this square has an area of 

10
2

100
2

50
2

2units .
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Proofs Involving 
Congruent Triangles

In this chapter, you dive into proofs in a big way. The triangle proofs you do in this and 
subsequent chapters are real, full-fledged proofs. The proofs in Chapter 3 are basically just 
warm-up exercises for the longer proofs you do from here on. However, I don’t want to 

diminish the importance of the Chapter 3 material. In fact, Chapter 3 is where you practice 
using the important theorems and proof techniques that you need for longer proofs, so it’s 
critical that you understand that material before you continue. If you understand Chapter 3, 
the proofs in this and later chapters probably won’t cause you too much trouble (perhaps just 
the occasional brain hemorrhage).

Sizing Up Three Ways to Prove  
Triangles Congruent

In a proof, the point at which you prove triangles congruent is sort of like the climax in a novel: 
Everything builds up to it, and it’s the focus or main point or anchor of the proof. Some of 
the shorter proofs in this chapter end with proving triangles congruent. In longer, more typi-
cal proofs, you take things to the next level: You prove triangles congruent and then use that 
knowledge to prove other things. So, proving triangles congruent can be either the final goal of 
a proof or a stepping stone.

Chapter 5

IN THIS CHAPTER

»» Using sides and angles to prove 
triangles congruent

»» Noting that, naturally, congruent 
triangles have congruent parts

»» Trying out the isosceles triangle 
theorems: If sides, then angles 
(and vice versa)

»» Working with the equidistance 
theorems: Forget CPCTC!
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Look for congruent triangles: Proving triangles congruent is critical, and thus you should 
always check the proof diagram and find all pairs of triangles that look like they have the 
same shape and size. If you find any, you very likely will have to prove one (or more) of the 
pairs of triangles congruent. And if you can see how to do that, you’ve probably won at least 
half the battle.

Okay. So here are the first three of five ways of proving two triangles congruent. (I cover the 
other two ways in the aptly titled section, “Two More Ways to Prove Triangles Congruent,” 
later in the chapter. I don’t give you all five at once because I don’t want you to blow a geometry 
fuse from theorem overload.) You’re going to use the five triangle theorems all the time.

»» SSS (Side-Side-Side): If the three sides of one triangle are congruent to the three sides of 
another triangle, then the triangles are congruent.

»» SAS (Side-Angle-Side): If two sides and the included angle of one triangle are congruent to 
two sides and the included angle of another triangle, then the triangles are congruent. (The 
included angle is the mathematician’s fancy-pants way of saying “the angle between them.”)

»» ASA (Angle-Side-Angle): If two angles and the included side of one triangle are congruent 
to two angles and the included side of another triangle, then the triangles are congruent.

And here’s one more postulate that comes in handy when trying to prove triangles congruent 
(this wins first prize in the well-duh category).

Reflexive Property: Any segment or angle is congruent to itself. Amazing!

Q.	 Given:  �   ABC  is isosceles with base AC  and 
median BM

Prove:    ABM CBM

A.	
Statements Reasons

1)  ABC  is isosceles with base AC 1) Given.

2) AB CB 2) Definition of isosceles triangle.

3) BM  is a median 3) Given.

4) M  is the midpoint of AC 4) Definition of median.

5) AM CM 5) Definition of midpoint.

6) BM BM 6) Reflexive Property.

7)  ABM CBM 7) SSS (2, 5, 6).
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Note that after SSS in the final step, I indicate the three lines from the statement column 
where the three pairs of sides are shown to be congruent. Doing so is optional, but it’s a 
good idea, because it can help you avoid some careless mistakes. Remember: The three 
lines you list must show three congruencies of segments or angles (three pairs of con-
gruent segments in the current problem).

Q.	 Given:    B and C trisect AD

1 2

BCE  is isosceles with base BC

Prove:    ABE DCE

A.	
Statements Reasons

1) B  and C  trisect AD 1) Given.

2) AB DC 2) �If a segment is trisected, then it is divided into three  
congruent segments (definition of trisect).

3)  1 2 3) Given.

4) � ABE  is supplementary to 1  
DCE  is supplementary to 2

4) �If two angles form a straight angle (assumed from  
diagram), then they are supplementary.

5)  ABE DCE 5) �If two angles are congruent, then their supplements are 
congruent.

6) � BCE  is isosceles with base BC 6) Given.

7) BE CE 7) Definition of isosceles triangle.

8)  ABE DCE 8) SAS (2, 5, 7).

Q.	 Given:    PS  is an altitude of QPT

PS
� ���

 bisects RPT

PR
� ���

 bisects QPS

PT
� ���

 bisects UPS

Prove:    QPS UPS

A.	 Game plan: PS  is an altitude, so it’s perpendicular to the base, and the perpendicularity 
gives you congruent right angles PSQ and PSU — one congruence down, two to go. The 
two triangles share PS  — two down, one to go.
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So far, you have a pair of congruent angles and a pair of congruent sides, and all the 
rest of the givens concern the angles near P, so this is almost certainly an ASA problem. 
All that’s left is to show that QPS  is congruent to UPS. Because of the first bisection, 

2 3 (say they’re each 20 ). Finally, because of the other two bisections, QPS  is 
twice as big as 2 and UPS  is twice 3, so QPS  has to be congruent to UPS  (they’d 
both be 40 ). Seems simple, huh?

Statements Reasons

1) PS  is an altitude of QPT 1) Given.

2) PS QT 2) Definition of altitude.

3) � PSQ is a right angle PSU  is a 
right angle

3) Definition of perpendicular.

4) � PSQ PSU 4) All right angles are congruent.

Four steps probably seem like a lot just to arrive at these two congruent right angles, because as 
soon as you see an altitude of a triangle, you know you’ve got two congruent angles. But that’s the 
way proofs work. You have to put down every link in the chain of logic — even incredibly obvious 
ones. (Like Step 2, for example: You can’t just jump from Step 1 to Step 3 even though Step 3 is 
obvious when you know Step 1.) Every little step must be spelled out — sort of like if you had to 
make the logic understandable to a computer. And here’s how a computer “thinks”:

If Altitude then Perpendicular

If Perpendicular then Right angles

If Right angles then Congruent

In short, A P  P R  R C.; ;  You need this complete chain of logic. Like it or not, those are the 
rules of the game. And if you’re going to play the proof game, you’ve got to play by the rules.

5)	 PS PS 5)	� Reflexive Property. (Well, that was easy.)

6)	 PS  bisects RPT 6)	 Given.

7)	 RPS TPS 7)	 Definition of bisect.

8)	 PR bisects QPS

PR bisects UPS

8)	 Given.

9)	 QPS UPS 9)	� If two angles are congruent ( RPS  and TPS ), then 
their like multiples are congruent ( QPS is double 

RPS  and UPS  is double TPS ).

10) � QPS UPS 10)	� ASA (4, 5, 9).
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1	 Given:    AE  is an altitude and a median

Prove:    LEA MEA

Statements Reasons

2	 Given:    SQ bisects PT

1 2

Prove:    PQR TSR

Statements Reasons
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3	 Given:    TAG is isosceles with base TG

TH GN

Prove:    TAN GAH

Hint: If this proof has you flummoxed or flabbergasted, try adding just 
Statements 5 and 6 from the solution.

Statements Reasons

4	 Given:    AMN  is complementary to TAX

ATX  is complementary to MAN

A is the midpoint of TM

Prove:    TAX MAN

Statements Reasons
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*5	 Given:    IML and DRO are isosceles with bases IL and DO

A is the midpoint of IM

E is the midpoint of LM

R is the midpoint of AO  and ED

ID LO

Prove:    IAO LED

Hint: If you get stuck, copy just Statement 4 and Reason 4 from the solution and try again. If you still 
need a boost, you can copy Statement 8 and Reason 8 as well.

Statements Reasons

Corresponding Parts of Congruent  
Triangles Are Congruent

Contrary to popular belief, CPCTC does not stand for Cows Pull Carts To China; it’s the acronym 
for Corresponding Parts of Congruent Triangles are Congruent.

CPCTC: If two triangles are congruent, then their corresponding parts are congruent.

Here’s how you use CPCTC. In a proof, whenever you prove two triangles congruent, you’ll use 
CPCTC on the very next line as the justification for stating that two sides or two angles (of the 
two triangles) are congruent. Every triangle has six parts: three sides and three angles. You 
need to use three out of the six parts when you prove two triangles congruent with SSS, SAS, or 
ASA (see the preceding section for more on these methods of showing congruency). Therefore, 
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there are always three other pairs of sides or angles that you haven’t used yet, and you’ll use 
CPCTC to show that one of those pairs is congruent.

In proofs, you often prove two triangles congruent and then use CPCTC on the following line. 
This group of two consecutive lines makes up the core or heart of many, many proofs. Here’s 
what the two lines might look like:

Statements Reasons

. . . . . .

. . . . . .

. . . . . .

7) � ABC DEF 7) �SAS.

8) �BC EF 8) �CPCTC.

. . . . . .

. . . . . .

. . . . . .

In Chapter 2, I tell you to make sure you use every given. Thinking about how to use the givens 
is essential at the beginning of a proof. Then I give you a tip about working backwards from 
the end of a proof. Both are great strategies for solving proofs. The preceding tip about using 
CPCTC right after showing triangles to be congruent is sort of about working at the middle of a 
proof. The key to many proofs is a pair of lines like those two lines 7 and 8. If you attack proofs 
like this at their beginning, middle, and end, even the longest, gnarliest proofs won’t stand a 
chance.

For the upcoming CPCTC example proof, the diagram and the givens are identical to those from 
the first example in the section, “Sizing Up Three Ways to Prove Triangles Congruent.” Only 
the prove statement is different.

Q.	 Given:  �   ABC  is isosceles with base AC  and  
median BM

Prove:    BM
� ���

 bisects ABC
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A.	 This proof is not particularly long or difficult, but — especially if you haven’t seen the 
similar problem in the previous section — it may look just a bit tricky at first glance 
(you may wonder what the prove statement has to do with the givens). Look how easy 
the proof becomes when you work backwards.

Game plan: Start at the end. You have to prove that BM
� ���

 bisects ABC . The only 
way to do that is to use the definition of bisect; in other words, you have to show 

ABM CBM . Those angles are in triangles that look congruent: ABM  and CBM . 
Therefore, if you can show ABM CBM , you can get ABM CBM  with CPCTC. 
Okay — so if you can prove the triangles congruent, you’re home free. At this point, you 
would go to the beginning of the proof and try to figure out how to show that the trian-
gles are congruent. But here you can cut to the chase, because you already know how to 
get the triangles congruent from the proof in the preceding section.

Statements Reasons

1)  ABC  is isosceles with base AC 1) Given.

2) AB CB 2) Definition of isosceles triangle.

3) BM BM 3) Reflexive Property.

4) BM  is a median 4) Given.

5) M  is the midpoint of AC 5) Definition of median.

6) AM CM 6) Definition of midpoint.

7)  ABM CBM 7) SSS (2, 3, 6).

8)  ABM CBM 8) CPCTC.

9) BM
� ���

 bisects ABC 9) Definition of bisect.

Or, if you feel like practicing your if-then logic: “If a ray 
divides an angle into two congruent angles (Statement 8), 
then it bisects the angle (Statement 9).”

6	 Given:    AE  is an altitude and AE
� ���

 bisects LAM

Prove:    AE  is a median

Hint: This proof is quite similar to problem 1 in the preceding section, but 
try to do it without looking back. If you really need something to go on, 
however, copy only Statement 8 and Reason 9 from the solution.
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Statements Reasons

7	 Given:    OXE  is isosceles with base OE

XOE XEO

DXE RXO

Prove:    DO RE

You have two different ways to do this proof. Hint: The shorter 
proof goes one step beyond CPCTC; the longer proof uses CPCTC as 
the final reason. (I realize that sounds like I mixed up “shorter” 
and “longer,” but you can see in a minute that it’s correct.)

Statements Reasons
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8	 Given:    ZA XI

MZA FXI

FAZ MIX

Prove:    MI FA

Hint: If this proof freaks you out, fill in Statements 5 and 7 and Reason 5 from the solution.

Statements Reasons

*9	 Given:    TAG is isosceles with base TG

TH GN

Prove:    THX GNX

Does this thang ring a bell? This proof is the same as problem 3 except that 
it goes further. But don’t look back unless you need a hint. You could also 
copy Statements 6 and 7 from the solution page with their Reasons; and if 
that’s not enough, copy Statement 10 and its Reason as well.

Statements Reasons
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Using Isosceles Triangle Rules: If Sides,  
Then Angles; If Angles, Then Sides

In this section, you practice doing problems involving two of the most important and often-
used theorems for proofs. Both theorems are about isosceles triangles. But these theorems are 
really just a single idea that works in both directions.

»» If sides, then angles: If two sides of a triangle are congruent, then the angles opposite 
those sides are congruent.

»» If angles, then sides: If two angles of a triangle are congruent, then the sides opposite 
those angles are congruent.

Look for isosceles triangles. These two angle-side theorems come up all the time in proofs. So, 
when you begin a proof, look at the diagram and identify all triangles that look isosceles. Make 
a mental note that you may have to use one or the other of the theorems for one or more of the 
isosceles triangles. Because recognizing isosceles triangles is often a cinch — and because it’s 
so easy to use the theorems — be glad when you get these “gimmes” in a proof. On the other 
hand, if you fail to notice that the theorems should be used, the proof may become impossible. 
Forewarned is forearmed.

Q.	 Given:    OE  and OT  trisect NW

ON OW

Prove:    ONE OWT

A.	 Game plan: First, you look at the diagram and see two isosceles triangles ( NOW  and 
EOT ), so you’re rarin’ to use one of the angle-side theorems. Sure enough, one of the 

givens is ON OW , so that gives you N W. The trisection gives you NE WT , and, 
voilà, you have SAS.

Statements Reasons

1) ON OW 1) �Given.

2) � N W 2) �If sides, then angles.

3) �OE  and OT  trisect NW 3) �Given.

4) �NE WT 4) �Definition of segment trisection.

5) � ONE OWT 5) �SAS (1, 2, 4).
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Q.	 Given:    A E

GM  is a median

Prove:    MAG MEG

A.	
Statements Reasons

1)  A E 1) Given.

2) AG EG 2) �If angles, then sides. (Repeat tip: Do not fail to 
spot this!)

3) GM  is a median 3) Given.

4) M  is the midpoint of AE 4) Definition of median.

5) AM EM 5) Definition of midpoint.

6)  MAG MEG 6) SAS (2, 1, 5).

(Note that if you add one more step for GM  reflexive, you can 
finish with SSS instead of SAS. This six-step solution is a fairly 
unusual proof where you have side-by-side triangles like this 
but don’t use the Reflexive Property.)

10	 Given:    1 2

3 4

Prove:    RAY BAN

Statements Reasons
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11	 Given:    QRS is isosceles with base QS

QPT STP

Prove:    PQ TS

Statements Reasons

12	 Given:    AB ED

B is the midpoint of AC

D is the midpoint of EC

ABF EDF

Prove:    BF DF

Hint: If you have a hard time with this one, copy Statement 3 and Reason 3 from the solution. If you’re 
still stuck, copy Statement 7 and Reason 7 as well.

Statements Reasons



CHAPTER 5  Proofs Involving Congruent Triangles      105

Exploring Two More Ways to Prove  
Triangles Congruent

You have five ways of showing triangles congruent. The previous sections in this chapter let 
you practice problems with SSS, SAS, and ASA. Now you get the final two methods, AAS and HL.

»» AAS (Angle-Angle-Side): If two angles and a nonincluded side of one triangle are congruent 
to the corresponding parts of another triangle, then the triangles are congruent.

»» HL (Hypotenuse-Leg): If the hypotenuse and a leg of one right triangle are congruent to the 
hypotenuse and a leg of another right triangle, then the triangles are congruent.

AAS works in nearly the same way as SSS, SAS, and ASA. If two triangles have congruent angles, 
then congruent angles, then congruent sides (in that order, going around the triangles clock-
wise or counterclockwise), then the triangles are congruent. Like SSS, SAS, and ASA, AAS works 
with any type of triangle.

ASS or ASS-backwards is no good. You can prove triangles congruent with SSS, SAS, ASA, and 
AAS, but not with ASS or SSA. SAA would work (but you just call it AAS). In short, every three-
letter combination of As and Ss works unless it spells ass or is ass-backwards (SSA). (AAA — 
which you get to in Chapter 7 — also “works,” but not to show that triangles are congruent. 
You use it to show that triangles are similar.)

HL is a bit different from the other four theorems because it works only with right triangles. For 
this reason, if I were writing my own book, I’d add the letter R and call it HLR (for Hypotenuse, 
Leg, Right angle). Wait a minute — I am writing my own book! Okay, so contrary to other 
books, I will call it HLR. (Please go to the section intro and the theorem icon, scratch out HL, 
and replace it with HLR.) HLR is a better name because its three letters make you focus on the 
fact that when you use HLR — just like with SSS, SAS, ASA, and AAS — you need three things 
to prove two triangles congruent.

Note that, in terms of As and Ss, HLR is ass-backwards (SSA), because going around the triangle 
you use a Side (the Hypotenuse), a Side (the Leg), and an Angle (the Right angle) in that order. 
Thus, HLR is a valid, special case of SSA and an exception to the general invalidity of SSA.

Before going on to the problems, I have one more theorem for you. It’s yet another in the 
well-duh category. I don’t use it in the following example problems, but you do need it for your 
practice problems.

Congruent plus supplementary means right angles: If two angles are both congruent and sup-
plementary, then they’re right angles.
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Q.	 Given:    RTP RPT

PQR TSR

Prove:    PQR TSR

A.	 Statements Reasons

1)  RTP RPT 1) Given.

2) PR TR 2) If angles, then sides.

3)  PRQ TRS 3) Vertical angles are congruent.

4)  PQR TSR 4) Given.

5)  PQR TSR 5) AAS (4, 3, 2).

Q.	 Given:    RS RO

AE AN

OE NS

RS AE

Prove:    ROS ANE

A.	
Statements Reasons

1) �RS RO

AE AN
1) �Given.

2) � ORS  is a right angle

NAE  is a right angle

2) �Definition of perpendicular.

3) �OE NS 3) �Given.

4) �OS NE 4) �Segment addition.
(If a segment [ES ] is added to two  
congruent segments [OE  and NS], then the sums [OS and NE ] 
are congruent.)

5) �RS AE 5) �Given.

6) � ROS ANE 6) �HLR (4, 5, 2).

(Note that for HLR, you need to state only that you have two right 
angles, not that they are congruent.)
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13	 Given:    IN IO

OWN NKO

Prove:    WOZ KNZ

Hint: If you get stuck, copy just Statements 5 and 6 with their Reasons onto 
this page.

Statements Reasons

*14	 Given:    TIN  and EAR are right angles

AX  bisects TI

IZ  bisects EA

AX  and IZ  trisect TE

XI ZE

Prove:    IN AR

Statements Reasons
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*15	 Given:    AB CD

BFA BFE

DEC DEF

AB

DC

BC

AD

Prove:    FB ED

Hint: If you’re stumped, write in Statements and Reasons 5 and 6 from the solution.

Statements Reasons

Explaining the Two Equidistance Theorems
Throughout this chapter, I emphasize how important it is to pay attention to the congruent tri-
angles in proof diagrams because the key to so many proofs is showing the triangles congruent 
and then using CPCTC. Now I muddy the waters a bit by giving you two theorems that you can 
often use instead of proving triangles congruent. You may get proofs in which you see congru-
ent triangles, so it looks like you should try to show that the triangles are congruent, but you 
don’t have to — one of the equidistance theorems can give you a shortcut to the final conclusion.

Now you have to be doubly on your toes: looking for congruent triangles and thinking about 
ways to prove them congruent and, at the same time, being ready to avoid the congruent tri-
angle issue with the equidistance shortcut.
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The equidistance theorems:

»» If two points are each (one at a time) equidistant from the endpoints of a segment, then 
those points determine the perpendicular bisector of the segment. (Loose, short form: If two 
pairs of congruent segments, then perpendicular bisector.)

»» If a point is on the perpendicular bisector of a segment, then it’s equidistant from the 
endpoints of the segment. (Loose, short form: If perpendicular bisector, then one pair of 
congruent segments.)

These theorems are a royal mouthful. The best way to understand them is visually. For the first 
theorem, consider Figure 5-1.

Here’s how the theorem works. If you have one point (like A) that’s equally distant from the 
endpoints of a segment (CD) and another point (like B) that’s also equally distant from those 
endpoints, then the two points (A and B) determine (show you where to draw) the perpendicu-
lar bisector of that segment. The dashed line in the figure, AB

� ���
, is the perpendicular bisector of 

CD, which means — as I’m sure you know or can figure out — that it’s perpendicular to CD 
and cuts CD in half. I didn’t mark the perpendicularity or the bisection in the figure because I 
wanted to mark only the if part of the theorem. The figure should also make clear the mean-
ing of the loose, short form of the theorem: If two pairs of congruent segments (AC AD and 
BC BD), then perpendicular bisector (AB

� ���
 is the perpendicular bisector of CD).

For the second theorem, consider Figure 5-2.

The second theorem tells you that if you start with a segment (like PQ) and its perpendicular 
bisector (like line l), and a point is on the perpendicular bisector (like R), then R is equally dis-
tant from the endpoints of the segment. The figure also illustrates the loose, short form of the 
theorem: If perpendicular bisector (line l is the perpendicular bisector of PQ), then one pair of 
congruent segments (RP RQ).

FIGURE 5-1: 
The first 

equidistance 
theorem  

gives you the 
perpendicular 

bisector of a 
segment.
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Q.	 Given:    TA TO

PAD POD

Prove:    PT
� ���

 is the perpendicular bisector of AO

A.	
Statements Reasons

1) � PAD POD 1) �Given.

2) �PA PO 2) �If angles, then sides.

3) �TA TO 3) �Given.

4) �PT
� ���

 is the perpendicular  
bisector of AO

4) �If two points are each equidistant from the 
endpoints of a segment, then they determine the 
perpendicular bisector of that segment.

Q.	 Given:    TIC  and TOC  are isosceles triangles with base TC

Prove:    TAC  is isosceles

FIGURE 5-2: 
The second 

equidistance 
theorem lets 

you know that 
you have 

congruent 
segments.
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A.	
Statements Reasons

1)  TIC  and TOC  are isosceles 1) Given.

2)  TI CI

TO CO

2) Definition of isosceles triangle.

3) �OI
� ��

 is the perpendicular 
bisector of TC

3) �If two points are each equidistant from 
the endpoints of a segment, then they 
determine the perpendicular bisector of 
that segment.

4) TA CA 4) �If a point is on the perpendicular bisector 
of a segment, then it is equidistant from 
the endpoints of that segment.

5)  TAC  is isosceles 5) Definition of isosceles triangle.

Tip: When you see an unlabeled point in a problem, you don’t need to use that point in 
your proof. Note that in the preceding figure, no letter labels the point where the per-
pendicular bisector OI

� ��
 intersects TC . This tip doesn’t help so much in this particular 

problem, but for some proofs, this built-in hint can work wonders.

16	 Given:    TIP TOP

HIP HOP

Prove:    IP OP

Statements Reasons
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17	 Given:    SAT  and SET  are right angles

SA SE

Prove:    ANT ENT

Statements Reasons

18	 Given:    RS CS

ARS ACS

Prove:    RY CY

Hint: If you’re stuck, copy only Statement 2 and Reason 2 from the solution. And 
if that doesn’t help, copy Statement 5 and Reason 5 as well.

Statements Reasons
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Solutions
1	 Statements Reasons

1) �AE AE 1) �Reflexive.

2) �AE is an altitude 2) �Given.

3) �AE LM 3) �Definition of altitude. (Why would they tell you about an  
altitude? Because it’s perpendicular.)

4) � LEA is a right angle

MEA is a right angle

4) �Definition of perpendicular. (What does perpendicularity  
tell you? Right angles, of course.)

5) � LEA MEA 5) �All right angles are congruent.

6) �AE is a median 6) �Given.

7) �E is the midpoint of LM 7) �Definition of median. (Why would they tell you about a 
median? Because it goes to a midpoint.)

8) �LE ME 8) �Definition of midpoint. (What do you know about a midpoint? 
Congruent segments, of course.)

9) � LEA MEA 9) �SAS (1, 5, 8).

2	 Statements Reasons

1) � PRQ TRS 1) �Vertical angles are congruent. (This step should be a  
no-brainer. Always check for vertical angles.)

2) �SQ  bisects PT 2) �Given. (Now, why would they tell you this? Only one possible 
reason . . .)

3) �PR TR 3) �Definition of bisect.

(So far, you have one pair of congruent angles and one pair  
of congruent sides, so this problem has to end with either ASA 
or SAS, right? If it’s ASA, you need to show QPR STR.  
If it’s SAS, you need to show SR QR. Which seems more 
promising? It’s ASA, because the remaining given concerns 1 
and 2, which are right next to QPR  and STR. Don’t forget: 
Every given is a built-in hint.)

4) � 1 2 4) �Given.

5) � QPR STR 5) �Supplements of congruent angles are congruent.

6) � PQR TSR 6) �ASA (1, 3, 5).

3	 Statements Reasons

1) � TAG  is isosceles with base TG 1) �Given.

2) �TA GA 2) �Definition of isosceles triangle.

3) � A A 3) �Reflexive Property. (Did you notice that A is in both of 
the prove triangles? If not, open your eyes!)

4) �TH GN 4) �Given.
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If you’re not sure where to go from here, try this technique. You know TAG  is isosceles, so make up a 
length for sides TA and GA, say, 10. Then make up a length for congruent segments TH  and GN , say, 7. 
What follows? That HA and NA are both 3, of course, and therefore, that they’re congruent. And that’s all 
you need for SAS.

5) �HA NA 5) �If congruent segments are subtracted from  
congruent segments, then the differences are 
congruent.

6) � TAN GAH 6) �SAS (2, 3, 5).

4	 Statements Reasons

1) � TAX MAN 1) �Vertical angles are congruent. (Always look for  
vertical angles!)

2) � AMN  is complementary to TAX

ATX  is complementary to MAN

2) �Given.

3) � AMN ATX 3) �Complements of congruent angles are congruent. Or,  
if you prefer the long way, “If two angles are congruent 
(Statement 1), then their complements are congruent 
(Statement 3).”

4) �A is the midpoint of TM 4) �Given.

5) �TA MA 5) �Definition of midpoint.

6) � TAX MAN 6) �ASA (1, 5, 3).

*5	 Game plan: The big triangle is isosceles, so you have two equal sides. The midpoints cut 
those sides in half, so all four halves are equal and IA equals LE. The little triangle is also 
isosceles, with equal sides DR and OR. Then, because R is a midpoint (for two segments),  
DE is twice DR and OA is twice OR; thus, DE equals OA. The last given is ID LO. Say the 
segments are each 4 units long; and say DO is 8. That makes IO and LD both 12. That’s a good 
bingo — SSS.

Statements Reasons

 1)	�  IML is isosceles with base IL  1)	� Given.

 2)	� IM LM  2)	� Definition of isosceles triangle.

 3)	� A is the midpoint of IM

E  is the midpoint of LM

 3)	� Given.

 4)	� IA LE  4)	� Like Divisions.

Or, to make sure you’re following proper if-then logic,  
“If two segments are congruent (Statement 2),  
then their like divisions are congruent (Statement 4).”

 5)	�  DRO is isosceles with base DO  5)	� Given.

 6)	� OR DR  6)	� Definition of isosceles triangle.

 7)	� R  is the midpoint of AO

R  is the midpoint of ED

 7)	� Given.
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 8)	� OA DE  8)	� Like Multiples.

Basically, if two segments are congruent (OR and DR), 
then twice one (OA) equals twice the other (DE).

 9)	� ID LO  9)	� Given.

10) �IO LD 10) �If a segment is added to two congruent segment, then 
the sums are congruent (DO is added to ID and LO).

11) � IAO LED 11) �SSS (4, 8, 10).

6	 Game plan: Work backwards. To prove AE  is a median, you need to show LE ME. And you 
can probably get that with CPCTC after showing that the triangles are congruent. ’Nuff said.

Statements Reasons

 1)	� AE is an altitude  1)	� Given.

 2)	� AE LM  2)	� Definition of altitude.

 3)	�  LEA is a right angle

MEA is a right angle

 3)	� Definition of perpendicular.

 4)	�  LEA MEA  4)	� Right angles are congruent.

 5)	� AE AE  5)	� Reflexive.

 6)	� AE
� ���

 bisects LAM  6)	� Given.

 7)	�  LAE MAE  7)	� Definition of bisect.

 8)	�  LEA MEA  8)	� ASA (4, 5, 7).

 9)	� LE ME  9)	� CPCTC.

10)	� E  is the midpoint of LM 10)	� Definition of midpoint.

11)	� AE is a median 11)	� Definition of median.

7	 Game plan (shorter version): Always take a quick glance at proof diagrams and look for tri-
angles that look congruent. In this diagram, you should see two such pairs: DXO and RXE  
and DXE  and RXO. The three givens basically hand you that second pair of triangles on a 
silver platter (with ASA). You get DE RO with CPCTC; then subtract OE  and you’re done.

Statements Reasons

1) � OXE  is isosceles with base OE 1) �Given.

2) �OX EX 2) �Definition of isosceles triangle.

3) � XOE XEO 3) �Given.

4) � DXE RXO 4) �Given.

5) � DXE RXO 5) �ASA (3, 2, 4).

6) �DE RO 6) �CPCTC.

7) �DO RE 7) �Segment subtraction.

(If a segment is subtracted from two congruent segments, 
then the differences are congruent. Say DE and RO are 
both 8 and OE is 3. Then DO and RE would both be 5.)
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Stay flexible. The fact that you can do this proof (and many others) in more than one way 
shows that geometry proofs aren’t quite as cut and dried as some other types of math prob-
lems. And because of that, you should adopt a flexible approach when doing proofs. Don’t 
assume that there’s just one precise way of doing a proof and that you’re sunk if you can’t 
find it. Be flexible, use some trial and error, use your imagination. Try anything — don’t 
worry about whether it’s “right.” Be patient with yourself, and don’t expect to always solve  
a proof on your first try. You have to be willing to try something, find yourself at a dead end, 
and then go back to the drawing board to try something else. And although it’s true that, as  
a general rule, the fewer steps in your proof, the better, you shouldn’t worry too much about 
that. Most teachers don’t mind if your method is a little longer than the shortest possible 
proof. They may, however, take off a few points if your proof is way longer than it has to be.

Game plan (longer version): Say you notice the other pair of congruent triangles, DXO and 
RXE, and realize that the proof can, thus, end with CPCTC. You then have to find a way to 

show DXO RXE. You already have OX EX . Then you can say DOX REX , because 
their supplements are congruent. Finally, you can get DXO RXE  by subtracting the mid-
dle angle, OXE, from the overlapping congruent angles, DXE  and RXO. Not bad, right?

Statements Reasons

1) � OXE  is isosceles with base OE 1) �Given.

2) �OX EX 2) �Definition of isosceles triangle.

3) � XOE XEO 3) �Given.

4) � DOX REX 4) �Supplements of congruent angles are congruent.

5) � DXE RXO 5) �Given.

6) � DXO RXE 6) �Angle subtraction.

7) � DXO RXE 7) �ASA (4, 2, 6).

8) �DO RE 8) �CPCTC.

8	 Game plan: You have two pairs of congruent triangles that include ZA and XI . Which pair of 
triangles should you shoot for? Stay flexible. Look at the pair including MXI  and FZA. (If 
you can prove that pair congruent, you can finish with CPCTC.) You have XI  and MIX . Can 
you get the third element you need for SAS or ASA? To use SAS, you’d need to know that 
MI FA, but that’s what you’re trying to prove, so that won’t work. For ASA, you’d need to 
work your way to MXI FZA, but there doesn’t seem to be a way to get that. You appear to 
be at a dead end, so it’s time to go back to the drawing board. (By the way, winding up in a 
dead end like this is par for the course with geometry proofs. Trying to show MXI FZA is 
a perfectly good idea. You have two out of three triangle parts that you need for something 
like ASA, and the triangles are a natural choice because of the possibility of finishing the 
proof with CPCTC. Don’t let dead ends like this frustrate you.)

Time to try the second pair of triangles. Look at MAZ . You have MZA and side ZA. Can you 
get MAZ  and finish with ASA? Yes. That’s it. You have FAZ MIX  (say, for instance, 
they’re both 50 ), so MAZ FIX  (they’d both be 130 ). (It’s not a bad idea to sometimes 
actually make up an angle measure like 50  and then write it on the diagram to help you see 
that the two 130  angles would be congruent.) You now finish with CPCTC and segment 
subtraction.
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Statements Reasons

1) �ZA XI 1) �Given.

2) � MZA FXI 2) �Given.

3) � FAZ MIX 3) �Given.

4) � MAZ FIX 4) �Supplements of congruent angles are congruent.

5) � MAZ FIX 5) �ASA (2, 1, 4).

6) �MA FI 6) �CPCTC.

7) �MI FA 7) �Subtraction.

*9	 Game plan (quickie version): You get TAN GAH  like you do with problem 3 in the  
first section. Then you get 3 4  CPCTC( ), their supplements, 2 5, and then 

1 6  CPCTC( ). Bingo! You have ASA.

Statements Reasons

 1)	�  TAG  is isosceles with base TG  1)	� Given.

 2)	� TA GA  2)	� Definition of an isosceles triangle.

 3)	� TH GN  3)	� Given.

 4)	� HA NA  4)	� Subtraction.

 5)	�  A A  5)	� Reflexive.

 6)	�  TAN GAH  6)	� SAS (2, 5, 4).

 7)	�  3 4  7)	� CPCTC.

 8)	�  2 5  8)	� Supplements of congruent angles are congruent.

 9)	�  1 6  9)	� CPCTC.

10)	�  THX GNX 10)	� ASA (8, 3, 9).

10	 Statements Reasons

1) � 1 2 1) �Given.

2) �RA BA 2) �If angles, then sides.

3) � 3 4 3) �Given.

4) �YA NA 4) �If angles, then sides.

5) � RAY BAN 5) �Vertical angles are congruent.

6) � RAY BAN 6) �SAS (2, 5, 4).
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11	 Game plan: As soon as you see two triangles in the diagram that look like they’re isosceles 
and then that QPT STP  is given, you should immediately realize that you have PR TR. 
The rest is in the bag.

Statements Reasons

1) � QPT STP 1) �Given.

2) �PR TR 2) �If angles, then sides.

3) � QRS  is isosceles with base QS 3) �Given.

4) �QR SR 4) �Definition of isosceles triangle.

5) �PQ TS 5) �If two congruent segments (QR and SR) are subtracted 
from two other congruent segments (PR and TR ), then the 
differences (PQ and TS ) are congruent. (If PR and TR were 
both 10, and QR and SR were both 3, then PQ and TS  
would both be 7, right?)

12	 Game plan: Maybe I sound like a broken record, but make sure you notice the three triangles 
that look isosceles and that, therefore, you likely have to use one of the angle-side theorems. 
You should also, of course, notice that the two small triangles look congruent and that the 
proof therefore probably ends with CPCTC. So, your goal is to show that the two triangles are 
congruent. You could work backwards — you already have a pair of congruent sides and a 
pair of congruent angles in those triangles. To finish with SAS, you’d need to use BF DF , 
but that’s what you’re trying to prove. Your other option is ASA, and for that to work, you’d 
need A E. Can you get that? This should be the light-bulb-going-on moment of the 
proof. You should be thinking, “I could get angle A congruent to angle E by if sides, then angles 
if I knew that AC  was congruent to EC .” Then you can go back to the givens and see that you 
can, in fact, show that congruency with the Like Multiples Theorem (see Chapter 3).

Another, equally good approach to the proof is to begin by looking at the givens. You see  
that AB  and ED are congruent and that B and D are midpoints. Now, why would they tell  
you about those midpoints? Midpoints cut segments in half, of course. So, if AB ED, then  
twice AB AC  (that s ’ ) equals twice ED EC  (that s )’ . Then, naturally, you go from AC EC   
to A E, and the rest is a cake walk.

Statements Reasons

1) �AB ED 1) �Given.

2) �B  is the midpoint of AC

D is the midpoint of EC

2) �Given.

3) �AC EC 3) �Like Multiples.

(If segments are congruent [AB and ED], then twice one [AC ] 
is congruent to twice the other [EC ].) 

4) � A E 4) �If sides, then angles.

5) � ABF EDF 5) �Given.

6) � ABF EDF 6) �ASA (4, 1, 5).

7) �BF DF 7) �CPCTC.
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13	 Statements Reasons

1) �IN IO 1) �Given.

2) � ION INO 2) �If sides, then angles.

(If you missed this, hand over your protractor! This proof 
is not totally easy, but this step should be.)

3) �ON NO 3) �Reflexive.

(Do you see why I reversed the letters?)

4) � OWN NKO 4) �Given.

5) � WON KNO 5) �AAS (4, 2, 3).

6) �OW NK 6) �CPCTC.

7) � WZO KZN 7) �Vertical angles are congruent.

8) � WOZ KNZ 8) �AAS (7, 4, 6).

*14	 Statements Reasons

1) � TIN  and EAR are right angles 1) �Given.

2) �XI ZE 2) �Given.

3) �AX  bisects TI

IZ  bisects EA

3) �Given.

4) �TI EA 4) �Like Multiples.

(If segments are congruent [XI  and ZE], then twice one  
[TI] is congruent to twice the other [EA].)

5) �AX  and IZ  trisect TE 5) �Given.

6) �TR RN NE 6) �Definition of trisect.

7) �TN ER 7) �Segment addition.

8) � TIN EAR 8) �HLR (7, 4, 1).

9) �IN AR 9) �CPCTC.

*15	 Statements Reasons

 1) �BC AB

AD DC

 1)	� Given.

 2)	�  ABC  is a right angle

CDA is a right angle

 2)	� Definition of perpendicular.

 3)	� AB CD  3)	� Given.

 4)	� AC CA  4)	� Reflexive.

 5)	�  ABC CDA  5)	� HLR (4, 3, 2).

 6)	�  BAC DCA  6)	� CPCTC.

 7)	�  BFA BFE  7)	� Given.

 8)	�  BFA and BFE  are right angles  8)	� If two angles are both congruent and supplementary, 
then they are right angles.
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 9)	�  DEC DEF  9)	� Given.

10)	 DEC  and DEF  are right angles 10)	� If two angles are both congruent and supplementary, 
then they are right angles.

11)	�  BFA DEC 11)	� All right angles are congruent.

12)	�  BFA DEC 12)	� AAS (11, 6, 3).

13)	� FB ED 13)	� CPCTC.

16	 Statements Reasons

1) � TIP TOP 1) �Given.

2) �TI TO 2) �If angles, then sides.

3) � HIP HOP 3) �Given.

4) �HI HO 4) �If angles, then sides.

5) �HT
� ���

 is the perpendicular bisector of IO 5) �If two points are each equidistant from the endpoints 
of a segment, then they determine the perpendicular 
bisector of that segment.

6) �IP OP 6) �Definition of bisect.

17	 Statements Reasons

1) � SAT  and SET  are right angles 1) �Given.

2) �SA SE 2) �Given.

3) �ST ST 3) �Reflexive.

4) � SAT SET 4) �HLR (3, 2, 1).

5) �AT ET 5) �CPCTC.

6) �ST
� ���

 is the perpendicular bisector of AE 6) �If two points are each equidistant from the endpoints 
of a segment, then they determine the perpendicular 
bisector of that segment.

7) � ANT  and ENT  are right angles 7) �Definition of perpendicular.

8) � ANT ENT 8) �All right angles are congruent.

18	 Statements Reasons

1) �RS CS 1) �Given.

2) � SRY SCY 2) �If sides, then angles.

3) � ARS ACS 3) �Given.

4) � ARY ACY 4) �Angle subtraction.

5) �RA CA 5) �If angles, then sides.

6) �SA
� ���

 is the perpendicular bisector of RC 6) �If two points are each equidistant from the endpoints 
of a segment, then they determine the perpendicular 
bisector of that segment.

7) �RY CY 7) �Definition of bisect.
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IN THIS PART . . .

Practice problems involving quadrilaterals, pentagons, 
hexagons, and more.

Study the properties of the different quadrilaterals, and 
you find out how to prove that a four-sided figure 
qualifies as a particular type of quadrilateral.

Discover how to do cool things like compute the area of 
a polygon, the number of its diagonals, and the sum of 
its interior angles.

Solve problems involving similar polygons — that is, 
polygons of the exact same shape but of different sizes.



CHAPTER 6  Quadrilaterals: Your Fine, Four-Sided Friends (Including Proofs)      123

Quadrilaterals: Your 
Fine, Four-Sided Friends 
(Including Proofs)

If you’ve mastered three-sided figures, you’re ready to move up to four-sided figures  — 
quadrilaterals. In this chapter, I tell you the defining characteristics of squares, rectan-
gles, and kites, and I give you some pretty tidy definitions of parallelograms, rhombuses,  

and trapezoids as well. I also explain the properties of these different figures. Finally, I show 
you how to use the properties to prove that a figure is a certain type of quadrilateral — sort of 
like “if it walks like a duck and it quacks like a duck. . . .”

Before moving on to quadrilaterals, take a look at some important parallel line concepts that 
come in handy for parallelogram problems among other things.

Chapter 6

IN THIS CHAPTER

»» Crossing the tracks safely — 
parallel lines with transversals

»» Classifying quadrilaterals — it’s a 
family affair

»» Checking out the properties of 
parallelograms, kites, and 
trapezoids

»» Working with squares, rhombuses, 
and rectangles
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Double-Crossers: Transversals  
and Their Parallel Lines

Take a look at Figure 6-1, which contains two parallel lines, the line that crosses over them 
(called a transversal), and the eight angles. Whenever you have such a situation, the following 
terminology applies.

Angles formed by parallel lines and a transversal:

»» The pair of angles 1 and 5 (also 2 and 6, 3 and 7, and 4 and 8) are called corresponding 
angles.

»» The pair of angles 3 and 6 (as well as 4 and 5) are alternate interior angles.

»» Angles 1 and 8 (and angles 2 and 7) are called alternate exterior angles.

»» Angles 3 and 5 (and 4 and 6) are same-side interior angles.

»» Angles 1 and 7 (and 2 and 8) are same-side exterior angles.

Now, although knowing all this fancy terminology is nice, and although you need it for the 
following theorems (not to mention that little matter of your teacher’s testing you on these 
terms), there’s a simpler way to summarize everything you need to know about Figure 6-1.

Four small angles and four big angles. When you have two parallel lines cut by a transversal, 
you get four acute angles and four obtuse angles (except when you get eight right angles). All 
the acute angles are congruent, all the obtuse angles are congruent, and every acute angle is 
supplementary to every obtuse angle.

Parallel-lines-with-transversal theorems: If two parallel lines are cut by a transversal, then

»» Corresponding angles are congruent.

»» Alternate interior angles are congruent.

»» Alternate exterior angles are congruent.

»» Same-side interior angles are supplementary.

»» Same-side exterior angles are supplementary.

FIGURE 6-1: 
Parallel lines 

and a 
transversal — 
angles, angles 

everywhere 
with lots of 

them to link.
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And now for something completely different — kind of. Say that you don’t know that the lines 
are parallel. Well, all the preceding theorems work in reverse, so you can use the following 
reverse theorems to prove that lines are parallel.

Lines-cut-by-a-transversal theorems: Two lines are parallel if they’re cut by a transversal 
such that

»» Two corresponding angles are congruent.

»» Two alternate interior angles are congruent.

»» Two alternate exterior angles are congruent.

»» Two same-side interior angles are supplementary.

»» Two same-side exterior angles are supplementary.

Q.	 Given:	 a b  

Find:	 1

A.	 The 5 3x  angle and the 3 7x  angle are same-side exterior angles, so according 
to the theorem, they’re supplementary. Supplementary angles add up to 180 , so

5 3 3 7 180

8 4 180

8 176

22

x x

x

x

x

Plugging 22 into 5 3x  gives you 107  for that angle, and because that angle and 1 
are vertical angles (see Chapter 2), 1 is also 107 .

Q.	 Given:	 1 2
G P

GI PU

Prove:	 BG WP  
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A.	

Statements Reasons

1)  1 2 1) Given.

2)  BIG WUP 2) Supplements of congruent angles are congruent.

3) GI PU 3) Given.

4)  G P 4) Given.

5)  BIG WUP 5) ASA (2, 3, 4).

6)  B W 6) CPCTC.

7) BG WP   7) If alternate interior angles are congruent, then lines are parallel.

Tip: If you have any difficulty seeing that B and W  are indeed alternate interior 
angles, rotate the figure counterclockwise till the parallel segments PW  and BG  are 
horizontal, and then extend PW , BG, and BW  in both directions, turning them into lines 
(you know, with arrows). After you do this, you’ll be looking at the familiar scheme of 
parallel lines cut by a transversal, like in Figure 6-1.

1	 List all the pairs of angles such that if you 
know they’re supplementary, you can prove 
lines m and n parallel.

2	 Are lines p and q parallel?
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*3	 Given that lines o and z are parallel, solve for 
x. Hint: You don’t need to use anywhere near 
all the angles I’ve numbered. (If I had num-
bered only the angles you need, I would’ve 
given away the solution.)

*4	 Given:    Circle Q

TP SR

m Q 110

Prove:    TS PR    (paragraph proof)

5	 Given:    BL
� ���

 bisects QBP

BL JP  

Prove:    PBJ  is isosceles

Statements Reasons
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6	 Given:    RA TI  

RA TI

DI NA

Prove:    DR TN  

Statements Reasons

Quadrilaterals: It’s a Family Affair
A quadrilateral is any shape with four straight sides. In the family tree of quadrilaterals, you’ve 
got granddaddy quadrilateral, his three kids (the kite, the parallelogram, and the trapezoid), 
three grandkids (the rhombus, the rectangle, and the isosceles trapezoid), and a single great-
grandchild (the square). Check out the family tree in Figure 6-2 and the definitions that follow.

»» Kite: A quadrilateral in which two disjoint pairs of consecutive sides are congruent (in other 
words, one side can’t be used in both pairs) — it often looks just like the kites you’re used to

»» Parallelogram: A quadrilateral that has two pairs of parallel sides

»» Rhombus: A quadrilateral with four congruent sides; a rhombus is both a kite and a 
parallelogram

»» Rectangle: A quadrilateral with four right angles; a rectangle is a parallelogram



CHAPTER 6  Quadrilaterals: Your Fine, Four-Sided Friends (Including Proofs)      129

»» Square: A quadrilateral with four congruent sides and four right angles; a square is both a 
rhombus and a rectangle

»» Trapezoid: A quadrilateral with exactly one pair of parallel sides; the parallel sides are  
called the bases, and the nonparallel sides are the legs

»» Isosceles trapezoid: A trapezoid with congruent legs

FIGURE 6-2: 
The  

quadrilateral 
family tree.
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Q.	 Given:    Rhombus PQRS

Prove:    Its diagonals are perpendicular bisectors of each other

A.	

Statements Reasons

1) PQRS  is a rhombus 1) Given.

2) PQ QR RS SP 2) Definition of rhombus.

3) �QS is the perpendicular 
bisector of PR

3) �If two points (Q and S) are each equidistant from the end-
points of a segment, then they determine the perpendicular 
bisector of that segment (one of the equidistance theorems 
from Chapter 5).

4) �PR is the perpendicular 
bisector of QS

4) �If two points (P and R) are each equidistant from the endpoints 
of a segment, then they determine the perpendicular bisector of 
that segment.

7	 Determine whether the following statements are true always, sometimes, or never:

a.	 A parallelogram is a square

b.	 A rhombus is a rectangle

c.	 A kite is a trapezoid

d.	 A rectangle is a kite

e.	 A quadrilateral is an isosceles trapezoid

f.	 A square is a kite

g.	 A kite is a rhombus

h.	 A parallelogram is a kite

i.	 An isosceles trapezoid is a rectangle
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8	 Given:    JOHN is a parallelogram

Prove:    J H

Statements Reasons

9	 Given:    MARY is a parallelogram

Prove:    MA RY

Hint: The figure is incomplete. Use your drawing skills.

Statements Reasons
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10	 Given:    TRAP is a trapezoid with bases TR and PA

TRI  is isosceles with bases TR and PA

Prove:    TRAP is isosceles

Statements Reasons

Discovering the Properties of the 
Parallelogram and the Kite

You may be wondering what these two quadrilaterals have in common and why they’re in this 
section together. I hate to disappoint you, but they have little in common, and I put them together 
because I couldn’t fit all the quadrilaterals in one section and I had to split them up somehow! 
So, without further ado, let me present to you the properties of the parallelogram and the kite.

Properties of the parallelogram (see Figure 6-3):

»» Opposite sides are parallel by definition.

»» Opposite sides are congruent.
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»» Opposite angles are congruent.

»» Consecutive angles are supplementary (for example, BCD is supplementary to CDA).

»» The diagonals bisect each other.

Properties of the kite (see Figure 6-4):

»» Two disjoint pairs of consecutive sides are congruent by definition (PQ RQ and PS RS ).

»» The diagonals are perpendicular.

»» One diagonal (QS , the main diagonal) is the perpendicular bisector of the other diagonal (PR , 
the cross diagonal). (“Main diagonal” and “cross diagonal” are good and useful terms, but you 
won’t find them in other geometry books because I made them up.)

»» The main diagonal bisects a pair of opposite angles ( Q and S).

»» The opposite angles at the endpoints of the cross diagonal are congruent ( P  and R).

These last three properties are called the half properties of the kite.

FIGURE 6-3: 
ABCD is a 

parallelogram.

FIGURE 6-4: 
PQRS is a kite.
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Q.	 Given:    MINT is a parallelogram

GILT is a square

Prove:    MIG NTL

A.	 I do this proof two different ways (I know of at least four ways to do it). Don’t forget 
that when it comes to proofs, there’s often more than one way to do them.

Method 1

Statements Reasons

1) MINT  is a parallelogram 1) Given.

2) MT IN 2) Property of a parallelogram.

3) GILT  is a square 3) Given.

4) GT LI 4) Definition of a square.

5) MG NL 5) Segment subtraction.

6)  M N 6) Property of a parallelogram.

7) MI NT 7) Property of a parallelogram.

8)  MIG NTL 8) SAS (5, 6, 7).

Method 2

Statements Reasons

1) GILT  is a square 1) Given.

2)  IGT  is a right angle
TLI  is a right angle

2) Definition of a square.

3) IG MT

TL NI

3) Definition of perpendicular.

4)  MGI  is a right angle
NLT  is a right angle

4) Definition of perpendicular.

5) IG TL 5) Definition of a square.

6) MINT  is a parallelogram 6) Given.

7) MI NT 7) Property of a parallelogram.

8)  MIG NTL 8) HLR (7, 5, 4).
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11	 Given:    PCTR is a kite

PC PR

Prove:    CAT RAT

Statements Reasons

*12	 Given:    KITE is — guess what — a kite

Find:	 The lengths of all sides
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13	 Given:    DEFG is a parallelogram

Find:	 The measures of all angles

14	 Given:    YZGH is a parallelogram

ZA HO

Prove:    YO GA

This proof can be done two ways, using two different pairs of congruent triangles.

Hint: With either method, the final reason of the proof is — as I’m sure you  
can guess — CPCTC.

Statements Reasons
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15	 Given:    NQRM is a parallelogram

NO RS

Prove:    SL OP

As with problem 14, you can do this proof two ways, again using 
two different pairs of congruent triangles.

Statements Reasons

Properties of Rhombuses, Rectangles,  
and Squares

Keep referring to the quadrilateral family tree in Figure 6-2. Knowing how the different quad-
rilaterals are related to each other can really help you remember their properties. For example, 
you can find out from the preceding section that the diagonals of a parallelogram bisect each 
other. So, because rhombuses, rectangles, and squares are all parallelograms, they automati-
cally share that property.

Properties of the rhombus (see Figure 6-5):

»» The properties of a parallelogram apply (the ones that matter here are parallel sides, oppo-
site angles congruent, and consecutive angles supplementary).

»» All sides are congruent by definition.

»» The diagonals bisect the angles.

»» The diagonals are perpendicular bisectors of each other.
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Properties of the rectangle:

»» The properties of a parallelogram apply (the ones that matter here are parallel sides, oppo-
site sides congruent, and diagonals bisect each other).

»» All angles are right angles by definition.

»» The diagonals are congruent.

Properties of the square:

»» The properties of a rhombus apply (the ones that matter here are parallel sides, diagonals 
are perpendicular bisectors of each other, and diagonals bisect the angles).

»» The properties of a rectangle apply (the only one that matters here is diagonals are 
congruent).

»» All sides are congruent by definition.

»» All angles are right angles by definition.

Q.	 If a rhombus has sides of length 10 and one diagonal 
measuring 12, what’s the length of the other diagonal?

A.	 The diagonals in a rhombus are perpendicular bisectors of each other, so if AC is 12, AQ 
must be 6. ABQ is a right triangle, so you can solve for BQ with the Pythagorean 
Theorem or by recognizing that ABQ is in the 3 4 5: :  family (see Chapter 4). Either 
way, BQ is 8, and thus, BD is 16. But BD  might be the diagonal that has a length of 12. If 
that’s the case, then AC ends up being 16.

FIGURE 6-5: 
RHOM is a 
rhombus.
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Q.	 Given:    BORE is a rectangle

OB DR 10

Find:	 The length of BE

A.	 In a rectangle, the diagonals are congruent and they bisect each other, so because DR is 
10, both diagonals are 20. You have right triangle BOE with a leg of 10 and a hypotenuse 
of 20. You should recognize this figure as a 30 60 90  right triangle (see Chapter 4) 
where OB is x and BE is x 3. BE  thus has a length of 10 3.

16	 Given:    RECT is a rectangle

Find:	 x and y

17	 Given:    MATH is a rhombus

QMA measures 60

HQ is 8

Find:	 Measures of all sides and angles in QAT
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18	 Given:    HOBU is a rhombus

MB RH

Prove:    MO RU  

Note: You can do this proof in a few different ways.

Statements Reasons

19	 Given:    ANGL is a rectangle

Find:	 x, y, z, and AL
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20	 Given:    QRVT is a rhombus

Prove:    1 2

Statements Reasons

Unearthing the Properties of Trapezoids  
and Isosceles Trapezoids

I bet you’re dying to add to your list of properties, so here you go: Last but not least, the  
trapezoid and the isosceles trapezoid.

Properties of the trapezoid:

»» The bases are parallel by definition.

»» Each lower base angle is supplementary to the adjacent upper base angle.

Properties of the isosceles trapezoid:

»» The properties of a trapezoid apply by definition (parallel bases).

»» The legs are congruent by definition.
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»» The lower base angles are congruent.

»» The upper base angles are congruent.

»» Any lower base angle is supplementary to any upper base angle.

»» The diagonals are congruent.

Q.	 Given:  �  PQRS is an isosceles trapezoid with  
bases PS  and QR

PQX  is 85

PSR  is 75

Find:	 QXR

A.	 An isosceles trapezoid has congruent legs and congruent diagonals. Using those  
congruent legs and diagonals and PS PS, you get PQS SRP  by SSS. SRX  is con-
gruent to PQX  by CPCTC, so SRX  is 85 . The angles in PRS  need to add up to 180 , 
and you have 85  and 75  ( )PSR  so far, so RPS  has to be 20 .  QSP  is congruent  
to RPS  by CPCTC, so it’s 20  as well. The angles in PXS  have to add up to 180 , so 

PXS  is 180 20 20– – , or 140 . Finally, QXR and PXS  are vertical angles, so QXR is 
also 140 .

21	 Given:    QXJW is an isosceles trapezoid with bases QW  and XJ

Prove:    QXZ WJZ

Statements Reasons
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*22	 Given:    ZOID is a trapezoid with bases ZD and OI

ZCD is isosceles with base ZD

Prove:    ZOID is isosceles

Hint: Before beginning this problem, you may want to review the 
ten strategies for proofs in Chapter 16. Three of the strategies are 
especially helpful for this problem.

Statements Reasons

Proving That a Quadrilateral Is a  
Parallelogram or a Kite

In the previous few sections, you can find the definitions of the various quadrilaterals and their 
properties. In this and the next section, “Proving That a Quadrilateral Is a Rhombus, Rectangle, 
or Square,” you move on to proving that a specific quadrilateral is of a particular type. These 
three things (definitions, properties, and methods of proof) are related, but there are important 
differences among them.

You can always use a defining characteristic of a particular quadrilateral to prove that a figure 
is that particular quadrilateral. For example, a parallelogram is defined as a quadrilateral with 
two pairs of parallel sides, and you can prove that a quadrilateral is a parallelogram by showing 
just that. With other properties, however, the process isn’t so simple.
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Some properties can be used as a proof method, but others cannot. For example, one of the 
properties of a parallelogram is that its diagonals bisect each other, and proving that the diago-
nals of a quadrilateral bisect each other is one of the five ways of proving that a quadrilateral is 
a parallelogram. On the other hand, one of the properties of a rectangle is that its diagonals are 
congruent; however, you can’t prove that a quadrilateral is a rectangle by showing its diago-
nals congruent because some kites, isosceles trapezoids, and no-name quadrilaterals also have 
congruent diagonals.

Ways to prove that a quadrilateral is a parallelogram: You have a parallelogram if

»» Both pairs of opposite sides of a quadrilateral are parallel (reverse of definition).

»» Both pairs of opposite sides of a quadrilateral are congruent (converse of property).

»» Both pairs of opposite angles of a quadrilateral are congruent (converse of property).

»» The diagonals of a quadrilateral bisect each other (converse of property).

»» One pair of opposite sides of a quadrilateral are both parallel and congruent (note that  
this is neither the reverse of the definition nor the converse of a property).

Ways to prove that a quadrilateral is a kite: You’ve got a kite if

»» Two disjoint pairs of consecutive sides of a quadrilateral are congruent (reverse of 
definition).

»» One of the diagonals of a quadrilateral is the perpendicular bisector of the other (converse 
of property).

Q.	 Given:    NOT BAD

DOA TAO

Prove:    DOTA is a parallelogram

A.	
Statements Reasons

1)  NOT BAD 1) Given.

2) OT DA   2) �If alternate exterior angles are congruent, then lines 
are parallel.

3)  DOA TAO 3) Given.

4) DO AT   4) �If alternate interior angles are congruent, then lines 
are parallel.

5) DOTA is a parallelogram 5) �If both pairs of opposite sides of a quadrilateral are parallel, then 
it is a parallelogram.
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Q.	 Given:    1 2

LY
� ���

 bisects GLF

Prove:    GOFL is a kite

A.	
Statements Reasons

1)  1 2 1) Given.

2) GL FL 2) If angles, then sides.

3) LY
� ���

 bisects GLF 3) Given.

4)  GLY FLY 4) Definition of bisect.

5) LO LO 5) Reflexive.

6)  GLO FLO 6) SAS (2, 4, 5).

7) GO FO 7) CPCTC.

8) GOFL is a kite 8) �If two disjoint pairs of consecutive sides of a quadrilateral are 
congruent, then it is a kite (Statements 2 and 7).

23	 Given:    DEAL is a parallelogram 

DEN ALO

Prove:    NEOL is a parallelogram

Statements Reasons
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24	 Given:    EMNA is a parallelogram

XE RN  and  LE IN

Prove:    LXIR is a parallelogram

Statements Reasons

25	 Do the same kite problem as the GOFLY example problem, but this time use the second kite proof 
method instead of the first.

Statements Reasons
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*26	 Given:    Diagram as shown

Prove:    JKLM is a parallelogram (paragraph proof)

Proving That a Quadrilateral Is a Rhombus, 
Rectangle, or Square

Note that when proving that a quadrilateral is a rhombus, rectangle, or square, you sometimes 
go directly from, say, quadrilateral to rhombus or quadrilateral to square — like you do when 
proving a quadrilateral to be a parallelogram or a kite. But at other times, you first have to prove 
(or be given) that the quadrilateral is a particular quadrilateral. For example, some methods 
for proving that a quadrilateral is a rhombus require that you know that the quadrilateral is a 
parallelogram.

Ways to prove that a quadrilateral is a rhombus: You have a rhombus if

»» All sides of a quadrilateral are congruent (reverse of definition).

»» The diagonals of a quadrilateral bisect all angles (converse of property).

»» The diagonals of a quadrilateral are perpendicular bisectors of each other (converse of 
property).

»» Two consecutive sides of a parallelogram are congruent.

»» Either diagonal of a parallelogram bisects two angles.

»» The diagonals of a parallelogram are perpendicular.

Ways to prove that a quadrilateral is a rectangle: You’ve got a rectangle if

»» All angles in a quadrilateral are right angles (reverse of definition).

»» A parallelogram contains a right angle.

»» The diagonals of a parallelogram are congruent.

Ways to prove that a quadrilateral is a square: You have a square if

»» A quadrilateral has four congruent sides and four right angles (reverse of definition).

»» A quadrilateral is both a rhombus and a rectangle.
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Q.	 Given:    KNOT is a parallelogram.

TOK NOK

Prove:    KNOT is a rhombus

A.	

Statements Reasons

1)  TOK NOK 1) Given.

2) KNOT  is a parallelogram 2) Given.

3) KN TO   3) Property of a parallelogram.

4)  TOK NKO 4) Alternate interior angles are congruent.

5)  NOK NKO 5) Transitivity.

6) NK NO 6) If angles, then sides.

7) KNOT  is a rhombus 7) �If one pair of consecutive sides of a parallelogram is congruent, 
then it is a rhombus.

27	 Given:    QVST is a parallelogram 

UQR USR

Prove:    QVST is a rhombus

Statements Reasons
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Solutions
1	 For the lines to be parallel, you need the same side interior angles or the same side exterior 

angles to be supplementary, according the interior- and exterior-angle theorems. Therefore, 
these theorems give you the following pairs: angles 2 and 5 and angles 4 and 7 (the same-
side interior angles) and angles 1 and 6 and angles 3 and 8 (the same-side exterior angles).

Congrats if you saw that more answers are correct. If you recognize, for example, that angles 
1 and 7 are supplementary, you can prove m parallel to n. Why? Angles 6 and 7 are congruent 
vertical angles, right? So, if angles 1 and 7 are supplementary, angles 1 and 6 have to be sup-
plementary as well. Then the theorem tells you that the lines are parallel. By the same logic, 
the following supplementary pairs also allow you to prove the lines parallel: angles 2 and 8, 
angles 3 and 5, and angles 4 and 6.

2	 The two angles on the top are vertical angles; thus, because all vertical angles are congruent,

6 40 4 10

2 50

25

x x

x

x

Plugging x 25 into 6 40x  gives you 110  for that angle.

Plugging x 25 into 4 60x  gives you 70  for that angle.

Because those two angles are same-side exterior angles, they have to be supplementary for 
the lines to be parallel. 110  and 70  sum to 180  so, yes, the lines are parallel.

*3	 Warning: When working on a problem that has more than one transversal, make sure you use 
only one transversal at a time when using the theorems to compare various angles. For exam-
ple, the theorems tell you nothing about how angles 4 and 11 compare to each other because 
those angles use two different transversals. Ditto for angles 2 and 10.

Here goes. The 50  angle and 10 are corresponding angles, so 10 is also 50 . Next, angles 10  
and 11 have to add up to 80 , because together they form an angle that’s supplementary to the 
100  angle. That makes 11 30 . Because the x x2  angle and 11 are alternate exterior 
angles, they’re congruent, so x x2 30. Now you can solve for x:

x x

x x

x x

x

2

2

30

30 0

6 5 30

6 5 or

Note that both 6 and –5 are valid answers. In geometry problems, you often reject negative 
answers because segment lengths and angle measures can’t be negative. But here, plugging 

5 into x x2  gives you a positive angle (namely 30 ), so 5 is a perfectly good answer.

*4	 The two radii are congruent, so PQR is isosceles (see Chapter 4). That makes QPR congru-
ent to QRP . Then, to make the angles in PQR add up to 180 ,  QPR and QRP  must each 
be 35 .
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Because TP  and SR are congruent, you can add them to the congruent radii, making TQ  and 
SQ congruent. Thus, the big triangle is isosceles with T S. By the same reasoning as 
before, T  and S are also 35  angles. Finally, T  and QPR are corresponding angles. 
Because they’re both 35 , the lines have to be parallel.

5	
Statements Reasons

1) BL
� ���

 bisects QBP 1) Given.

2)  QBL LBP 2) Definition of bisect.

3) BL JP   3) Given.

4)  QBL J 4) �If lines are parallel, then corresponding angles are congruent (using 
transversal QJ ).

5)  LBP BPJ 5) �If lines are parallel, then alternate interior angles are congruent 
(using transversal BP ).

6)  J BPJ 6) Transitivity (2, 4, 5).

7) BP BJ 7) If angles, then sides.

8)  PBJ  is isosceles 8) Definition of isosceles triangle.

6	
Statements Reasons

1) RA TI 1) Given.

2) RA TI   2) Given.

3)  DAR NIT 3) If lines are parallel, then alternate exterior angles are congruent.

4) DI NA 4) Given.

5) DA NI 5) Segment subtraction (subtracting AI  from both segments).

6)  DAR NIT 6) SAS (1, 3, 5).

7)  D N 7) CPCTC.

8) DR TN   8) If alternate interior angles are congruent, then the lines are parallel.

7	 One way to do these always-sometimes-never problems is to look at the quadrilateral family 
tree and follow these guidelines:

•	 If you go up from the first figure to the second, the answer is always.

•	 If you go down, the answer is sometimes.

•	 If you can make the connection by going down and then up (like from a kite to a rectangle 
or vice versa), it’s sometimes.

•	 And if the only way to make the connection is by going up and then down, the answer is 
never.
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Here are the correct answers to problem 7:

a.	 Sometimes

b.	 Sometimes (when it’s a square)

c.	 Never

d.	 Sometimes (when it’s a square)

e.	 Sometimes

f.	 Always

g.	 Sometimes

h.	 Sometimes (when it’s a rhombus)

i.	 Never

8	
Statements Reasons

1) JOHN  is a parallelogram 1) Given.

2) JO NH 2) Definition of parallelogram.

3)  J is supplementary to N 3) �If lines are parallel, then same-side interior angles are supple-
mentary (using transversal JN ).

4) JN OH 4) Definition of parallelogram.

5)  H  is supplementary to N 5) �If lines are parallel, then same-side interior angles are supple-
mentary (using transversal NH ).

6)  J H 6) Supplements of the same angle are congruent.

9	
Statements Reasons

1) MARY  is a parallelogram 1) Given.

2) �Draw AY  (MR would 
work as well)

2) Two points determine a line.

3) MA YR   3) Definition of parallelogram.

4)  MAY RYA 4) �If lines are parallel, then alternate interior angles are congruent 
(using parallel segments MA  and YR  and transversal AY ).

5) AR MY   5) Definition of parallelogram.

6)  MYA RAY 6) �If lines are parallel, then alternate interior angles are congruent 
(using parallel segments AR  and MY  with transversal AY ).

7) AY YA 7) Reflexive.

8)  MAY RYA 8) ASA (4, 7, 6).

9) MA RY 9) CPCTC.
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10	 Statements Reasons

1) � TRI  is isosceles 
with base TR

1) Given.

2) TI RI 2) Definition of isosceles triangle.

3)  ITR IRT 3) If sides, then angles.

4) �TRAP  is a trapezoid with 
bases TR  and PA

4) Given.

5) TR PA   5) Definition of trapezoid.

6)  P ITR 6) �If lines are parallel, then corresponding angles are congruent 
(using transversal IP ).

7)  A IRT 7) �If lines are parallel, then corresponding angles are congruent 
(using transversal IA).

8)  P A 8) Transitivity (3, 6, 7).

9) IP IA 9) If angles, then sides.

10) PT AR 10) Subtraction (Statements 2 and 9).

11) TRAP  is isosceles 11) Definition of isosceles trapezoid.

11	 Statements Reasons

1) PCTR is a kite 1) Given.

2) PC PR 2) Given.

3) TC TR 3) �Property of a kite (because PC PR, the other disjoint pair of sides 
must also be congruent).

4) TP
� ���

 bisects CTR 4) Property of a kite.

5)  CTP RTP 5) Definition of bisect.

6) AT AT 6) Reflexive.

7)  CAT RAT 7) SAS (3, 5, 6).

8)  CAT RAT 8) CPCTC.

*12	 Set the consecutive sides KI  and TI  equal to each other (because, by definition, two pairs of 
consecutive sides are congruent), and solve:

x x

x

x

10 4 5

3 15

5
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Plugging x 5 into the three sides gives you 5 10, or 15 for KI; 4 5 5, or 15 for TI; and 
6 5 5, or 25 for KE. TE  must be congruent to KE, so it also measures 25.

But wait! There’s another possibility. Don’t forget — figures don’t have to be drawn to scale. 
KI  and KE  could be a congruent pair of sides with TI  and TE  the other congruent pair. Thus,

x x

x

x

10 6 5

5 15

3

Doing the math with x 3 gives you the following equally valid set of lengths:

KI KE

TI TE

13

7

13	 Consecutive angles in a parallelogram are supplementary, so

x x2 130 5 180

This is a quadratic equation, so set it equal to zero and solve by factoring (you can also use 
the quadratic formula, of course).

x x

x x

x

2 5 50 0

10 5 0

10 5  or  

Plugging x 10 into angles D and E gives you 100  for D and 80  for E G.   must also be 
80 , and F  is 100 .

But don’t reject x 5 just because it’s a negative number. Plugging x 5 into angles D and 
E gives you another valid set of angles (albeit with measures way different from what the 
angles look like in the figure): D F 25  and E G 155 .

14	 Method 1

Statements Reasons

1) YZGH  is a parallelogram 1) Given.

2) ZG YH 2) Property of a parallelogram.

3) ZG YH   3) Property of a parallelogram.

4)  GZA YHO 4) Alternate interior angles are congruent (using transversal ZH
� ���

).

5) ZA HO 5) Given.

6)  GZA YHO 6) SAS (2, 4, 5).

7) YO GA 7) CPCTC.
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Method 2

Statements Reasons

1) YZGH  is a parallelogram 1) Given.

2) YZ HG 2) Property of a parallelogram.

3) YZ HG   3) Property of a parallelogram.

4)  YZO GHA 4) �Alternate interior angles are congruent (using 
transversal ZH

� ���
).

5) ZA HO 5) Given.

6) ZO HA 6) Subtraction.

7)  YZO GHA 7) SAS (2, 4, 6).

8) YO GA 8) CPCTC.

15	 Method 1 (Using NLO and RPS)

Statements Reasons

1) NQRM  is a parallelogram 1) Given.

2) NQ MR   2) Property of a parallelogram.

3)  SON OSR 3) Alternate interior angles are congruent.

4) NO RS 4) Given.

5)  N R 5) Property of a parallelogram.

6)  NLO RPS 6) ASA (3, 4, 5).

7) LO PS 7) CPCTC.

8) SL OP 8) Subtraction (subtracting OS from LO and PS ).

Method 2 (Using LMS and PQO)

Statements Reasons

1) NQRM  is a parallelogram 1) Given.

2) NM QR   2) Property of a parallelogram.

3)  L P 3) Alternate interior angles are congruent.

4) NQ MR   4) Property of a parallelogram.

5)  LSM POQ 5) Alternate exterior angles are congruent.

6) NO RS 6) Given.

7) NQ MR 7) Property of a parallelogram.

8) QO MS 8) Subtraction.

9)  LSM POQ 9) AAS (3, 5, 8).

10) SL OP 10) CPCTC.
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16	 You have a rectangle, so TEC  is a right triangle. Its angles have to add up to 180 , so because 
C  is a right angle, the other two angles add up to 90 . Thus,

x x

x

x

x

18 20 90

2 2 90

2 88

44

ETC  is thus 44 18, or 26, and because RTC  equals 90 , that leaves 64  for RTE :

y

y

3 64

4

17	 The diagonals in a rhombus are perpendicular bisectors of each other, so because HQ is 8,  
AQ is also 8. The sides of a rhombus are equal, so MAT  is isosceles with base MT . The  
base angles are congruent, so QTA, like QMA, is 60 . Because AQT  is 90 ,  QAT  is a 

30 60 90  triangle. Its long leg, AQ, measures 8, so its short leg, TQ, is 8
3

 (or 8 3
3

)  

units long. The hypotenuse, AT , is twice that, or 16 3
3

 units long. (See Chapter 4 for info on 
30 60 90  triangles.)

18	
Statements Reasons

1) HOBU  is a rhombus 1) Given.

2) BO HU 2) Property of a rhombus.

3) BO HU   3) Property of a rhombus.

4)  OBM UHR 4) Alternate exterior angles are congruent.

5) MB RH 5) Given.

6)  OBM UHR 6) SAS (2, 4, 5).

7)  M R 7) CPCTC.

8) MO RU   8) �If alternate interior angles are congruent, then lines 
are parallel.

19	 The diagonals in a rectangle are congruent, and they bisect each other, so all four half-diag-
onals are equal. You need an equation with a single variable, namely

8 14 4 6

4 20

5

x x

x

x

Plugging that into 8 14x  (or 4 6x ) gives you 26 for the length of each half-diagonal. Thus,

2 2 26

2 24

12

y

y

y

and
4 10 26

4 16

4

z

z

z
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Finally, the length of diagonal LN  is twice 26, or 52. You can then compute AL with the 
Pythagorean Theorem, or — if you’re on your toes — you recognize that ANL is in the 
5 12 13: :  family (see Chapter 4). AN is 20 (which is 4 5) and LN is 52 (which is 4 13), so AL is 
4 times 12, or 48.

20	
Statements Reasons

1) QRVT  is a rhombus 1) Given.

2) �VQ is the perpendicular 
bisector of RT

2) Property of a rhombus.

3) SR ST 3) �If a point is on the perpendicular bisector of a segment, 
then it is equidistant from the endpoints of that segment 
(equidistance theorem).

4) RV TV 4) Property of a rhombus.

5) SV SV 5) Reflexive.

6)  RSV TSV 6) SSS (3, 4, 5).

7)  1 2 7) CPCTC.

21	
Statements Reasons

1) �QXJW  is an isosceles trapezoid with 
bases QW  and XJ

1) Given.

2) QX WJ 2) The legs of an isosceles trapezoid are congruent.

3) WX QJ 3) The diagonals of an isosceles trapezoid are congruent.

4) QW WQ 4) Reflexive.

5)  QXW WJQ 5) SSS (2, 3, 4).

6)  QXW WJQ 6) CPCTC.

7)  QZX WZJ 7) Vertical angles are congruent.

8)  QXZ WJZ 8) AAS (7, 6, 2).

*22	
Statements Reasons

1)  ZCD is isosceles with base ZD 1) Given.

2) ZC DC 2) Definition of isosceles triangle.

3)  CZD CDZ 3) If sides, then angles.

4) �ZOID is a trapezoid with 
bases ZDand OI

4) Given.

5) OI ZD   5) The bases of a trapezoid are parallel.

6)  CZD OIZ 6) �Alternate interior angles are congruent (using 
transversal ZI ).

7)  CDZ IOD 7) �Alternate interior angles are congruent (using 
transversal DO).

8)  OIZ IOD 8) Transitivity (6, 3, 7).

9) OC IC 9) If angles, then sides.

10)  OCZ ICD 10) Vertical angles are congruent.

11)  OCZ ICD 11) SAS (2, 10, 9).

12) OZ ID 12) CPCTC.

13) ZOID is isosceles 13) A trapezoid with congruent legs is isosceles.
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23	
Statements Reasons

1) �DEAL  is a parallelogram 1) Given.

2) DE AL   2) Property of parallelogram.

3)  EDN LAO 3) If lines are parallel, then alternate interior angles are congruent.

4) DE AL 4) Property of parallelogram.

5)  DEN ALO 5) Given.

6)  DEN ALO 6) ASA (3, 4, 5).

7) DNE AOL 7) CPCTC.

8) EN OL   8) If alternate exterior angles are congruent, then lines are parallel.

9) EN LO 9) CPCTC.

10) �NEOL is a parallelogram 10) �If one pair of opposite sides of a quadrilateral are both parallel  
and congruent, then it is a parallelogram.

24	
Statements Reasons

1) EMNA is a parallelogram 1) Given.

2)  E N 2) Opposite angles of a parallelogram are congruent.

3) XE RN

LE IN

3) Given.

4)  LEX INR 4) SAS (3, 2, 3).

5) XL RI 5) CPCTC.

6) EM AN 6) Opposite sides of a parallelogram are congruent.

7) XM RA 7) Subtraction.

8) EA MN 8) Opposite sides of a parallelogram are congruent.

9) LA IM 9) Subtraction.

10)  A M 10) Opposite angles of a parallelogram are congruent.

11)  LAR IMX 11) SAS (7, 10, 9).

12) LR IX 12) CPCTC.

13) LXIR  is a parallelogram 13) �If both pairs of opposite sides of a quadrilateral are congruent, then 
it is a parallelogram.

25	 The first four steps of this proof are the same as in the example problem, so I pick up  
with step 5.

Statements Reasons

5)  GLY FLY 5) ASA (1, 2, 4).

6) GY FY 6) CPCTC.

7) �OL is the perpendicular 
bisector of GF

7) �If two points are each equidistant from the endpoints of a  
segment, then they determine the perpendicular bisector of 
that segment.

8) GOFL is a kite 8) �If one of the diagonals of a quadrilateral is the perpendicular bisector 
of the other, then the quadrilateral is a kite.
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*26	 I hope this odd problem didn’t give you an algebra panic attack. It’s not as bad as it looks. 

The first thing you have to realize is that you don’t have to solve for x or y. In fact, solving  
for the variables is impossible because you don’t have any information about the figure that 
would allow you to write any equations.

First, multiply x x+1 4 ; that’s x x2 3 4. This measure is the same as that of the other 
x angle, so regardless of the value of x, those angles are congruent. Then, using congruent 
vertical angles, you can show that JML is congruent to LKJ . Now for the y angles. First, 
simplify y y2 26 . That’s y y y y2 236 12 12 36. Then, because MLK  is supple-
mentary to the 216 12y  angle, the measure of MLK y y180 216 12 12 36. Thus, 

MLK  is congruent to KJM . You have two pairs of congruent opposite angles, and so you 
have a parallelogram.

27	
Statements Reasons

1)  UQR USR 1) Given.

2) QR SR 2) If angles, then sides.

3) QVST  is a parallelogram 3) Given.

4) VT  bisects QS 4) Property of a parallelogram.

5) QU SU 5) Definition of bisect.

6) �VT  is the perpendicular 
bisector of QS

6) �If two points are each equidistant from the endpoints of a 
segment, then they determine the perpendicular bisector of 
that segment.

7) QVST  is a rhombus 7) �If the diagonals of a parallelogram are perpendicular, then it is 
a rhombus.
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Area, Angles, and the 
Many Sides of Polygon 
Geometry (No Proofs)

If you’re all proofed-out, you may enjoy this proof-free chapter. Here you work on problems 
involving formulas for the area of various polygons, the sum of the interior and exterior 
angles of a polygon, and the number of diagonals of a polygon. If you’ve always wondered 

about how many diagonals an octakaidecagon has, you’ve come to the right place.

Square Units: Finding the Area  
of Quadrilaterals

You might want to look back at the family tree of quadrilaterals in Chapter 6 — assuming you 
don’t know it by heart — to remind yourself about which quadrilaterals are special cases of 
other quadrilaterals. Doing so can help you with area problems because when you know, for 
example, that a rhombus is a special case of both a parallelogram and a kite, you know that 
you can use either the parallelogram area formula or the kite area formula when computing the 
area of a rhombus.

Chapter 7

IN THIS CHAPTER

»» Determining the area of 
quadrilaterals and regular 
polygons

»» Enjoying fantastically fun polygon 
formulas

»» Calculating diagonals and the 
measures of angles
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Without further ado, here are the area formulas for quadrilaterals.

Quadrilateral area formulas:

»» Area base heightParallelogram

»» Area diagonal diagonalKite
1
2 1 2

»» Area side , or diagonalSquare
2 21

2

»» Area
 base base

height

median height 

Trapezoid
1 2

2

(The median of a trapezoid is the segment that connects the midpoints of the legs. Its length 
equals the average of the lengths of the bases.)

Ready for more info about quadrilateral area formulas? Here’s a handy guide for the quadrilat-
erals that don’t have an area formula in the preceding list:

»» For the area of a rectangle, use the parallelogram formula.

»» For the area of a rhombus, use either the parallelogram or the kite formula.

»» For the area of an isosceles trapezoid, use, of course, the trapezoid formula.

Q.	 What’s the area of parallelogram ABCD?

A.	 Tip: For this and many area problems, drawing in altitudes and other perpendicular 
segments on the diagram can be helpful. And — what often amounts to the same 
thing — it’s a good idea to cut up the figure into right triangles and rectangles.

Draw the altitude from B to AD, and call the length of that segment h. ∠A is supplementary 
to ∠D (a property of parallelograms; see Chapter 6), so A is 45 . Thus, the altitude you 
drew creates a 45 45 90  triangle. The hypotenuse, AB, is congruent to the opposite 

side, CD, and therefore has a length of 8. Using 45 45 90  triangle math, h equals  

8
2

 or 4 2  (see Chapter 4 for details). The area, which equals base · height, is thus 20 4 2, 

or 80 2 2units .

Q.	 Given:  �  Trapezoid ABCD with a base of 6, median 
PQ that’s 10 units long, and QD 5

Find:	 Area of ABCD
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A.	 For this problem, you can use the trapezoid area formula that uses the median. You 
know the length of the median, so all you need to compute the area is the trapezoid’s 
height. To get that, first recall that the length of the median, PQ, is the average of the 
lengths of the bases, so its length is halfway between them. Since BC is 6, or 10 4, AD 
must be 10 4, or 14. Next, draw an altitude from C to AD, creating a right triangle. The 
length of its hypotenuse, CD, is twice 5, or 10, and the triangle’s base is 14 6, or 8. You 
have a right triangle in the 3 4 5: :  family (namely a 6 8 10 triangle; see Chapter 4), so 
the altitude is 6 (this has nothing to do, by the way, with the length of BC , which is 
coincidentally also 6). Finally, the area, which equals median · height, is 10 6, or 
60 2.units

1	 Given:  �  Parallelogram PQRS with sides of 7 
and 10 and altitudes h1 and h2

Find:	 The ratio h h1 2:

2	 Given:    Parallelogram GRAM as shown

Find:	 GRAM’s area and height

3	 Given:  �  Trapezoid WXYZ with a perimeter of 
35 and an area of 55

Find:	 h

*4	 The equation of this circle of radius 8 is 
x y2 2 64. Estimate its area using the six 
trapezoids and two triangles.

Hint: Just calculate the areas of the three  
trapezoids and one triangle in quadrant I;  
then multiply your result by 4.



162      PART 3  Polygons, Proof and Non-Proof Problems

*5	 Given:  �  Trapezoid JKLM with bases 10 and 18 
and base angles of 60  and 30

Find:	 Area of JKLM

6	 Given:  �  Kite ABCD as shown, where ABC  is 
equilateral

Find:	 Area of ABCD

Hint: Use your drawing skills.

7	 Find the area of rhombus RBUS

Hint: Just connect the dots.

8	 Find the area of rhombus QRST
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The Standard Formula for the Area  
of Regular Polygons

Time to cut to the chase. Here’s the formula for the area of a regular polygon — but first, its 
definition: A regular polygon is a polygon that’s both equilateral (with equal sides) and equian-
gular (equal angles).

Area of a regular polygon:

Area Reg. Poly. perimeter apothem1
2

An apothem of a regular polygon is a segment joining the polygon’s center to the midpoint of 
any side. It’s perpendicular to the side.

This area formula, A pa
1
2

, is usually written A ap
1
2

. These formulas are equivalent, of 

course, so you can use either one, but the way I’ve written it helps you to think about what 
you’re actually doing. This polygon formula is based on the formula for the area of a triangle, 

A bh
1
2

, because when you find the area of a regular polygon, you’re essentially dividing the 

polygon into congruent triangles and finding their areas. Since a polygon’s perimeter is the 
counterpart of the triangles’ bases and a polygon’s apothem is the counterpart of the triangles’ 

heights, A pa
1
2

 is the logical way to write the formula.

Cutting up polygons can be a big help. As you can see in the following example problem, a 
regular hexagon can be cut into six equilateral triangles, and an equilateral triangle can be 
cut into two 30 60 90  triangles. For many area problems involving either a hexagon or an 
equilateral triangle (or both), it’s often useful to cut the figure up and make use of one or more 
30 60 90  triangles. If, instead, the problem involves a square or a regular octagon, adding 
the right segments to the diagram produces one or more 45 45 90  triangles that may be 
the key to the solution. In other polygon problems, cutting up the polygon into some combina-
tion of rectangles and these special triangles can help.

An equilateral triangle is a regular polygon, so to figure its area, you can use the regular poly-
gon formula; however, it also has its own area formula. To wit —

Area of an equilateral triangle:

Area s
Equil. 

2 3
4
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Q.	 What’s the area of this regular hexagon with a radius of 8? 
(Yep — that thing is called the radius.)

A.	 You can do this problem two ways, using both of the preceding area formulas.

First, draw in the other five radii, and you can see six congruent isosceles triangles.

The six angles at the center of the hexagon have to be 60  angles, because all the way 
around the center is 360 , and 360 6 is 60 . An isosceles triangle with a 60  vertex 
angle is an equilateral triangle, so you have six congruent equilateral triangles.

Method I: Now you can finish using the equilateral triangle formula:

Area Equil. 
s2

2

3
4

8 3
4

16 3

You have six triangles, so the area of the hexagon is 6 16 3, or 96 3 2.units

Method II: Draw in the apothem from the center of the hexagon straight down to 
the midpoint of the bottom side. That apothem cuts the equilateral triangle into two 
30 60 90  triangles. These triangles have sides with ratios of 1 3 2: :  (see Chapter 4 
for more on special right triangles). Each triangle has a hypotenuse of 8, and therefore, 
a short leg of 4 and a long leg (the apothem) of 4 3. The perimeter is 6 times 8, or 48, 
so you’re all set to use the polygon formula:

Area

units

Reg. Poly.
1
2
1
2

48 4 3

96 3 2

pa
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9	 The span of this regular hexagon is 32. Find  
its area.

10	 Find the area of a regular octagon with sides 
of length 10.

Hint: Cut up the octagon till you create one or 
more useful 45 45 90  triangles.

More Fantastically Fun Polygon Formulas
The formulas in the preceding section are all about the area of polygons. They’re basically 
meant to show you how much space a polygon takes up. The formulas in this section dive 
deeper into the building blocks of polygons: the angles and diagonals that give different  
polygons their unique characteristics.

Definitions of interior and exterior angles:

»» An interior angle of a polygon is an angle inside the polygon at one of its vertices.

»» An exterior angle of a polygon is an angle outside the polygon formed by one of its sides and 
the extension of an adjacent side (see Figure 7-1).

Would you believe me if I told you that regardless of whether a polygon has three sides or a 
million, the exterior angles of that polygon always add up to 360 ? You’d better, because it’s a 
fact. And that’s just the beginning of the polygon’s special properties.



166      PART 3  Polygons, Proof and Non-Proof Problems

Interior and exterior angle formulas:

»» The sum of the measures of the interior angles of a polygon with n sides is  n 2 180.

»» The measure of each interior angle of an equiangular n-gon is 
n

n
2 180

 or 180 360
n

.

»» If you count one exterior angle at each vertex, the sum of the measures of the exterior 
angles of a polygon is always 360 .

»» The measure of each exterior angle of an equiangular n-gon is 360
n

.

Number of diagonals in a polygon: The number of diagonals that you can draw in an  

n-gon is 
n n 3

2
.

Q.	 What’s the measure of one of the interior angles of a regular 22-gon, and how many 
diagonals does it have?

A.	 A regular polygon is equiangular, so you can use either equiangular formula (in the  
second bullet). The second version is probably easier to use unless you happen to 
already know the sum of the interior angles (which is the numerator in the first  
formula). Note that using the second version amounts to finding the supplement of  
one of the polygon’s exterior angles.

Interior angle 180
360

180 360
22

180 16

163

4
11

7
11

n
Diagonals

n n 3
2

22 22 3
2

209

FIGURE 7-1: 
EMI  is an 

exterior angle 
of quadrilateral 

MILY. Vertical 
angle OLM  is 
not an exterior 
angle of AJL.
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11	 Given:  �  Hexagon TAYLOR with angles as 
shown

ATR O

Find:	 1

12	 Find the number of sides in a polygon whose 
interior angles add up to

a.	 1080

b.	 7920

c.	 180 1802x   (for some whole number x)

d.	 825

13	 Find the sum of all exterior angles and, if you 
have enough information, the measure of one 
exterior angle in

a.	 An equiangular pentagon

b.	 A regular 18-gon

c.	 An icosagon (20 sides)

d.	 An equilateral 80-gon

14	 How many diagonals can be drawn in a  
triacontagon (30 sides)?

15	 How many sides does a polygon have if it has 
3 times as many diagonals as sides?

16	 What’s the measure of one of the interior 
angles of an equiangular polygon with  
54 diagonals?
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Solutions
1	 RS  is congruent to PQ (property of a parallelogram; see Chapter 6), so RS is also 7. The area 

of a parallelogram equals base · height, and, obviously, the area must come out the same 
regardless of which base you use, PS  or RS. Thus,

base height base height1 1 2 2

1 2

1

2

10 7

7
10

h h

h
h

The ratio, h h1 2:  equals 7 10: . Note that although you can determine the ratio of the heights, 
determining h1 or h2 or the area of PQRS is impossible.

2	 AM is 15, so ΔARM is in the 3 4 5: :  family of triangles. In fact, it is a 3 4 5 triangle blown up 
five times. RM  is the long leg and is thus 4 times 5, or 20 units long.

Area base height 

units

GRAM

AM RM

15 20

300 2

GM is 25, so

Area base heightGRAM

GM h

h

h

300

300 25

12

3	 To get h, you need to use the trapezoid area formula, and to use the formula, you need the 
sum of the lengths of the bases, XY  and WZ . (Note that all you need is the sum; you don’t 
need to know the lengths of the individual bases.)

XY WZ

XY WZ

6 7 35

22

AreaWXYZ
b b

h

XY WZ
h

h

h

h

1 2

2

55
2

55 22
2

55
11

5
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*4	 The heights of the three sideways trapezoids and the triangle in quadrant I are all equal to 2 
(note that the heights run along the x-axis). You need the bases of the trapezoids and the 
triangle to compute their areas, and their bases equal the y-coordinates at x 0 2 4, , ,   and 6. 
When x is 0, y is 8, so that left-most base is 8. To find the other bases, plug the x-coordinates 
into the equation of the circle. Thus, you find that

x y

y

y

y

2 2

2 2

2

64

2 64

60

2 15

4 64

4 3

2 2y

y

6

2 7

642 2y

y

So the first trapezoid (between x 0 and x 2) has bases of 8 and 2 15, the second trapezoid 
has bases of 2 15  and 4 3, and the third has bases of 4 3  and 2 7. The single triangle’s base 
is 2 7. Compute their areas, add them up, and then multiply that result by 4 (for the four 
quadrants):

Area

Area

st Trap

nd Trap

1
1 2

2

2
8 2 15

2
2

8 2 15

2 15 4 3
2

2

b b
h

2 15 4 3

Area

Area base height 

rd Trap3
4 3 2 7

2
2

4 3 2 7

1
2
1
2

2 7 2

2 77

Total of four areas

Es

8 2 15 2 15 4 3 4 3 2 7 2 7

8 4 15 8 3 4 7

ttimate of circle s area’ 4 8 4 15 8 3 4 7

32 16 15 32 3 16 7

191 7. uunits2

In case you’re curious, the area of the circle is

Area

 units

Circle r 2

2

2

8

64

201 1.

The estimate was a little less than 5 percent off.
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*5	 A good plan of attack here — like with so many polygon problems — is to cut the figure up 
into right triangles and rectangles. Draw altitudes from K to JM  and from L to JM , and call 
their length h. On the left, you have a 30 60 90  triangle with h as the long leg, so the 

short leg (along JM ) is h
3

 (because in a 30 60 90  triangle, the ratio of short leg to long 

leg is 1 3:  — see Chapter 4 for details). On the right, you have another 30 60 90  
triangle, but this time h is the short leg. The long leg (along JM ) is thus h 3. KL is 10, so the 
distance between the two altitudes along JM  is also 10. So, you have three pieces along JM  
that add up to 18. Now you can find h:

h
h

h
h

h h

h

h

3
10 3 18

3
3

10 3 18 3

10 3 3 18 3

4 8 3

2 3

Now that you know h, simply plug it into the trapezoid area formula along with the given 
bases:

Area

units

JKLM
b b

h1 2

2

2
10 18

2
2 3

28 3

6	 Draw diagonal BD, which is the perpendicular bisector of AC , and label the intersection of the 
diagonals X. Triangle ABC is equilateral, so AC is 10; thus, AX and XC are each 5. Triangle ABX 
is a 30 60 90  triangle with a short leg of 5, so its long leg, BX , has a length of 5 3. 
Triangle XCD is a 5 12 13 right triangle with XD equal to 12 (see Chapter 4 for more on 
Pythagorean triples). Thus, BD  has a length of 12 5 3. Finally,

Area

units

ABCD d d

AC BD

1
2
1
2
1
2

10 12 5 3

60 25 3

1 2

2

7	 Draw diagonal RU , which is the perpendicular bisector of BS, and label the intersection of the 
diagonals X. That step creates a right triangle with a leg of 8 and a hypotenuse of 15. Careful 
now — this is not an 8 15 17 right triangle (remember, the hypotenuse is the longest side). 
Use the Pythagorean Theorem to get XU:

XU XS US

XU

XU

XU

2 2 2

2 2 2

2

8 15

161

161



CHAPTER 7  Area, Angles, and the Many Sides of Polygon Geometry (No Proofs)      171

RU is twice XU because the diagonals in a rhombus bisect each other, so RU is 2 161; using the 
kite formula,

Area RBUS d d
1
2
1
2

16 2 161

16 161

1 2

8	 S and T  are supplementary (property of a parallelogram — see Chapter 6), so S  is 60 , 
and RSZ  is thus a 30 60 90  triangle with a long leg of 4. The short leg, SZ , therefore 

measures 4
3

, and the hypotenuse, RS, is twice that, or 8
3

 units long. All sides of a rhombus 

are equal, so ST is also 8
3

. This time, you use the parallelogram formula to get the desired 
area:

Area base height

units

QRST

ST RZ

8
3

4

32
3

18 5 2.

9	 If you slide the span up and to the right till it hits the center, you can see that the span is 
twice the apothem, so the apothem is 16. And as you can see in the example problem, a 
regular hexagon consists of six equilateral triangles, and its apothem is the altitude of one  
of these equilateral triangles. See the following figure:

This apothem is the long leg of a 30 60 90  triangle, so the short leg is 16
3

, and the 

hypotenuse is twice that, or 32
3

 (the ratio of sides in a 30 60 90  triangle is 1 23: : , see 

Chapter 4 for details). And that hypotenuse is a side of the equilateral triangle. Each side of 

the hexagon is, therefore, 32
3

, and the perimeter is six times that, or 192
3

. You’re finally 

ready to use the area formula:
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Area

units

Reg. Poly.
1
2
1
2

192
3

16

1536
3

512 3 2

pa

10	 Find the right lines to draw? Here they are:

The four triangles are 45 45 90  triangles with a hypotenuse of 10. These triangles have 
sides with lengths in the ratio 1 1 2: :  (see Chapter 4 for more information). The legs of the 

45 45 90  triangles are thus 10
2

, or 5 2. So now you have

Now add up all the pieces for your total area:

Area 1 square 4 rectangles 4 trianglesOctagon

10 4 10 5 2 42 11
2

5 2 5 2

100 4 50 2 4 25

200 200 2 2 units

11	 TAYLOR is a hexagon, so the sum of its interior angles is n 2 180 6 2 180 720 . 
Subtract the four known angles from this value: 720 170 95 161 100 194 . Then, 
because the two remaining angles, ATR and O, are congruent, each must be half of 194 , or 
97 . Finally, because 1 is the supplement of ATR,  1 180 97 83 .
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12	 Here you go:

a.	 180 2 1080

2 6

8

n

n

n  sides

b.	 180 2 7920

2 44

46

n

n

n  sides

c.	 180 2 180 180

2 1

3

2

2

2

n x

n x

n x

 

 

  sides 
d.	 180 2 825

2 4 58

6 58

n

n

n

.

.  sides 

There’s no such thing as a polygon with 6.58 sides.

13	 Here are the angle measures:

a.	 The total is 360 . One exterior angle is 360 5 72 .

b.	 The total is 360 . One exterior angle is 360 18 20 .

c.	 The total is 360 . You can’t compute the measure of a single exterior angle because you 
don’t know whether the icosagon is equiangular.

d.	 The total is 360 . The fact that the 80-gon is equilateral does not tell you whether it’s 
equiangular, so you can’t figure the measure of a single exterior angle.

14	 Number of diagonals
n n 3

2
30 30 3

2
405

15	 Number of diagonals number of sides3

3
2

3

3 6

9

2

2

( )

n n
n

n n n

n n 0

9 0

0 9

n n

n

( )

 or 

16	 There’s no such thing as a polygon with zero sides, so the answer is 9.

n n

n n

n n

n n

n

3
2

54

3 108

3 108 0

12 9 0

12 9

2

2

 or 

So, you have an equiangular 12-gon; therefore,

One interior angle 180 360

180 360
12

150

n
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Similarity: Size Doesn’t 
Matter (Including 
Proofs)

When two triangles, two rectangles, two pentagons, or two of any type of polygon 
have the same shape (regardless of whether they have the same size), you say that 
they’re similar —like if you take a figure and blow it up or shrink it down in a pho-

tocopy machine, the new image will be the same shape as (and thus similar to) the original. 
Congruent figures are automatically similar, but when you do problems involving two similar 
figures, you’re usually dealing with two things of different sizes that have the same shape. The 
squiggle symbol, ~, means is similar to.

In this chapter, you do problems involving similar triangles and similar polygons of more than 
three sides. Similar polygons have proportional sides, so you also do many problems involving 
proportions. Finally, you practice using theorems — some of which have nothing to do with 
similarity — that, like similarity theorems, also involve proportions.

Chapter 8

IN THIS CHAPTER

»» Exploring similar polygons

»» Proving triangles similar

»» Looking at the corresponding 
parts of similar triangles

»» Breaking it down: Creating similar 
triangles from a right triangle

»» Using theorems about proportions
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Defining Similarity
When you’re talking about similarity, you have to talk about the two defining characteristics 
of similar figures.

Similar polygons: In similar polygons, both of the following are true.

»» Corresponding angles are congruent. If objects of different sizes have the same shape, 
their angles have to be equal. This idea is kinda obvious if you think about it. Imagine you 
see something like a yield sign on the side of the road. It’s a downward-pointing equilat-
eral triangle with three 60  angles. As you get closer, it looks bigger, of course, but regard-
less of how big or small it looks, the three angles are always 60  angles. If the angles were 
to change to something other than 60 , the sign would no longer look like a yield sign. It 
would’ve morphed into a different shape.

»» The ratios of the lengths of corresponding sides are equal. Say the front door of a house 
is 7 feet tall and 3 feet wide and that the blueprint for the design of the house contains a 
door measuring 2.1 inches tall by 0.9 inches wide. Because these two doors are similar rect-
angles, the ratio of their heights equals the ratio of their widths, and you get the following 
proportion:

height
height

width
widt

real door

blueprint door

real door

hh

feet
inches

feet
 inch

blueprint door

7
2 1

3
0 9. .

Both sides of the second equation equal 40, which tells you that the real door is 40 times as 
tall and 40 times as wide as the door shown in the blueprint (you have to convert all units to 
inches or feet before calculating this). Such ratios or quotients represent the blow-up or 
shrink factor, depending on which way you look at it.

Perimeters of similar polygons: The ratio of the perimeters of two similar polygons equals the 
ratio of any pair of corresponding sides.

Q.	 Given:    Pentagon pentagonABCDE VWXYZ~

Perimeter of ABCDE is 18

Find:	

a.	 VW

b.	 XY

c.	 Perimeter of VWXYZ
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A.	 In the diagram, the two pentagons have the same orientation; in other words, A matches 
up with V, B matches up with W, and so on. If you were to expand ABCDE a bit and slide 
it over to the right, it would fit perfectly on top of VWXYZ. You wouldn’t have to rotate  
it or flip it upside down to make it fit. But this isn’t always the case, so to make sure 
you’re pairing up the correct vertices and sides, pay attention to the way the similarity 
is written. When someone says ABCDE VWXYZ~ , it means that A pairs up with V, B pairs 
up with W, and so on, and that CD (the third and fourth letters) pairs up with XY  (also 
the third and fourth letters). Got it? Fantastic!

a.	 left side
left side

top
top

VWXYZ

ABCDE

VWXYZ

ABCDE

VW

VW

2
8
5
16
5

3.22

b.	 right side
right side

top
top

VWXYZ

ABCDE

VWXYZ

ABCDE

XY

XY

2
8
5
32
5

66 4.

(Or you could just notice that the right side of ABCDE is twice as long as the left side, so 
you can simply multiply VW by 2 to get XY.)

c.	 perimeter
perimeter

side
side

perimeter

VWXYZ

ABCDE

VWXYZ

ABCDE

VWXXYZ

VWXYZ

18
8
5
144

5
28 8perimeter .

1	 Given:    ABCD EFGH~

Find:	 a.  All missing angles

b.  All missing sides
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2	 Given:    PQR ZXY~

Find:	 a.  All missing angles

b.  All missing sides

3	 Given:    ABCDE LMNOP~

Perimeter of ABCDE is 30

Find:	 Perimeter of LMNOP

4	 Given:    ABD ACD~

Find:	 a.  AD

b.  DB
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Proving Triangles Similar
You have five ways to prove triangles congruent: SSS, SAS, ASA, AAS, and HLR (see Chapter 5). 
Now you get three ways to prove triangles similar: SSS~, SAS~, and AA. The most frequently 
used and by far the easiest to use is AA.

Proving triangles similar:

»» AA. If two angles of one triangle are congruent to two angles of another triangle, then the 
triangles are similar.

»» SSS~. If the ratios of the three pairs of corresponding sides of two triangles are equal, then 
the triangles are similar.

»» SAS~. If the ratios of two pairs of corresponding sides of two triangles are equal and the 
included angles are congruent, then the triangles are similar.

Q.	 Given:    1 3

2 4

Prove:    BLO WUP~

Find:	 WU

A.	
Statements Reasons

1)  1 3 1) Given.

2)  LBO UWP 2) Supplements of congruent angles are congruent.

3)  2 4 3) Given.

4)  LOB UPW 4) Supplements of congruent angles are congruent.

5)  BLO WUP~ 5) �AA (if two angles of one triangle are congruent to two angles of 
another triangle, then the triangles are similar).

Now find WU. Piece o’ cake:

top
top

base
base

       

         

WUP

BLO

WUP

BLO

WU

WU

8
8
5
64
55

12 8.
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Q.	 Given:    Diagram as shown

Prove:    MAR BLE~  (paragraph proof)

A.	 No reason to bother with a two-column proof here. All you have to do is to show that all 

three ratios of corresponding sides are equal, like this: 12 14 16
86 7

. Check.

Thus, by SSS~, the triangles are similar. But you still have to show that the right verti-
ces pair up. One way to do this is to pick a vertex, like A, and note that it’s across from 
the longest side of MAR  (16). So, it corresponds to L, which is across from the longest 
side of BLE  (8). Then R and E correspond because both are across from the shortest 
sides. Lastly, you have no choice, of course, but to pair M with B. Thus, MAR BLE~ .

Q.	 Given:    U is the midpoint of RA

G is the midpoint of RT

Prove:    RUG RAT~  (paragraph proof)

A.	 Let’s skip the two-column mumbo jumbo again. (You can do this proof in two-column 
format, but that involves all sorts of rigamarole like 1) U is a midpoint; then 2) RU UA; 
then 3) RU UA; then 4) RU UA RA; then 5) RU RU RA; then 6) 2 RU RA;  

then 7) RA
RU

2; and so on, and so on.) So, just use common sense instead. Because U  

is the midpoint of RA, you know that RU
RA

1
2

. G works the same way, so RG
RT

1
2

. Thus, 
RU
RA

RG
RT

. Then, because R R, RUG RAT~  by SAS~.
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5	 Given:	 Diagram as shown

Prove:	 PQR STU~  (paragraph proof)

6	 Given:	�  XRT  is isosceles with base XT  and  
altitude RN

1 2

Prove:	 WGN TRN~

Statements Reasons
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7	 Given:    Diagram as shown

a.	 Prove the triangles similar (paragraph proof)

b.	 Fill in the name of the triangle:  
BCD ~  _________.

8	 Given:    AT OY  

Prove:    BOY  is isosceles (paragraph proof)
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9	 Given:    ELP IPL 

EPL ILP

V is the midpoint of LI

S is the midpoint of PI

Prove:    VIS PEL~

Statements Reasons

Corresponding Sides and CSSTP — Cats Stalk 
Silently Then Pounce

Actually, CSSTP stands for Corresponding Sides of Similar Triangles are Proportional. You can tell 
this statement is true from the definition of similar polygons. And if you’ve done the preceding 
problems, you’ve used this concept already when you had to calculate the lengths of the sides 
of similar triangles and other polygons. What’s new here is using CSSTP in formal, two-column 
proofs.

You use CSSTP on the line immediately after showing triangles similar, just like you use 
CPCTC on the line after you show triangles congruent (for more on congruent parts of congru-
ent triangles, see Chapter 5).
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Q.	 Given:    T  is supplementary to UAC

Prove:    TP AU AP TC

A.	 Tip: When you’re asked to prove that a product equals another product (like 
TP AU AP TC  in this example proof), the proof likely involves similar triangles  
(or perhaps — though less likely — one of the three theorems in the upcoming  
section). So, look for similar-looking triangles that contain the four segments in  
the prove statement.

Statements Reasons

1)  T  is supplementary to UAC 1) Given.

2)  PAU  is supplementary to UAC 2) �Two angles that form a straight angle are 
supplementary.

3)  T PAU 3) Supplements of the same angle are congruent.

4)  P P 4) Reflexive Property.

5)  TPC APU~ 5) AA (Statements 3 and 4).

6)  TP
AP

TC
AU

6) CSSTP.

7) TP AU AP TC 7) �Means-Extremes Products Theorem (a fancy name for 
cross-multiplication).

10	 Given:    JKL NML

Perimeter of JKL is 27

Prove:    MN JL (paragraph proof)
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11	 Given:    1 CBD

Prove:    AD AB AC2  with a paragraph proof

*12	 Given:    E and O trisect AS

O bisects RM

S MTI

Prove:    RO IT MI OE

Statements Reasons
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13	 Given:    The triangles are similar

Find:	 Measures of all angles

Note: Problems 13 and 14 are not CSSTP prob-
lems — just more similar-triangle problems.

14	 Indicate whether statements a through f are 
always true, sometimes true, or never true.

a.	 If ABC CBA~ , then AB CB.

b.	 If ABC DEF , then ABC DEF~ .

c.	 If ABC DEF , then ABC DEF~ .

d.	 If ABC DEF~ , then ABC DEF .

e.	 If ABC  is a right triangle and DEF  is an 
acute triangle, then ABC DEF~ .

f.	 If ABC  and DEF  are both isosceles and 
B E, then ABC DEF~ .

Similar Rights: The Altitude-on-Hypotenuse 
Theorem

If you use the hypotenuse of a right triangle as its base and draw an altitude to it — creating 
two more, smaller right triangles — all three triangles are similar. Here’s the handy-dandy 
theorem.
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Altitude-on-Hypotenuse Theorem: If an altitude is drawn to the hypotenuse of a right triangle 
as shown in Figure 8-1, then

»» The two triangles formed are similar to the given triangle and to each other:

ACB ADC CDB~ ~

»» h xy2

»» a yc2  and b xc2  (note that this is really just one formula or relationship, not two. It 
works exactly the same on both sides of the big triangle):

leg of big part of hypotenuse next to leg whole hypotenuse2

There’s more than one way to peel an orange. When doing a problem involving an altitude-on-
hypotenuse diagram (like Figure 8-1), don’t assume that the problem must be solved with the 
second or third part of the Altitude-on-Hypotenuse Theorem. Sometimes, the easiest way to 
solve the problem is with the Pythagorean Theorem. And at other times, you can use ordinary 
similar-triangle proportions to solve the problem.

Q.	 Use the figure to answer the following questions.

a.	 If PQ 12 and QR 3, find QS, PS, and RS

b.	 If PR 13 and RS 5, find PS, PQ, QR, and QS

A.	 Here’s how this problem plays out:

a.	 From the second part of the theorem, h xy2 , so

QS PQ QR

QS

2

12 3

36

6

FIGURE 8-1: 
Three similar 

right triangles 
in one: Triple 
the pleasure, 
triple the fun.
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From the third part of the theorem, a yc2  and b xc2 , so

PS PQ PR

PS

2

12 15

180

180

6 5

and

RS QR PR

RS

2

3 15

45

45

3 5

Of course, you could also get PS and RS with the Pythagorean Theorem.

b.	 PS is 12 (you have a 5 12 13 triangle — see Chapter 4 for info on triangle families). 
You can get PQ and QR using part three of the theorem:

PS PQ PR

PQ

PQ

2

212 13

144
13

and

RS QR PR

QR

QR

2

25 13

25
13

Of course, you can just calculate one of these two lengths and then subtract it  
from 13 (PR) to get the other.

Finally, you get QS with the second part of the Altitude-on-Hypotenuse Theorem  
(or the Pythagorean Theorem):

QS PQ QR2

2 2

2

144
13

25
13

12 5
13

         

         

     QS
12 5

13
60
13
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15	 Use the figure to calculate these lengths:

a.	 If JA 4 and AY 9, find JZ and AZ

b.	 If JA 3 and JZ 5, find AY

c.	 If JA 2 and JY 8, find YZ

d.	 If AZ 8 and AY 10, find JY

e.	 If JZ 8 and JY 12, find AY

16	 If RQ 5 and RS 10, find RT

Hint: You can solve this by using the last  
two parts of the theorem, but there’s an  
easier way.

*17	 Find FL
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Discovering Three More Theorems  
Involving Proportions

In this last section, you practice using three more theorems that involve a proportion. The first 
two are related to similar triangles.

Side-Splitter Theorem: If a line is parallel to a side of a triangle and it intersects the other two 
sides, it divides those sides proportionally.

You can use the Side-Splitter Theorem only for the four segments on the split sides of the tri-
angle. Do not use it for the parallel sides. For the parallel sides, use similar triangle proportions. 
(Whenever a triangle is divided by a line parallel to one of its sides, the small triangle created 
is similar to the original, large triangle. This idea follows from the if two parallel lines are cut by a 
transversal, then corresponding angles are congruent theorem [see Chapter 6] and AA.)

The theorem that shall not be named: If three or more parallel lines are intersected by two or 
more transversals, the parallel lines divide the transversals proportionally. Consider Figure 8-2. 
Given that the horizontal lines are parallel, the following proportions (among others), follow 
from the theorem:

AB
CD

PQ
RS

AC
CD

WY
YZ

PQ
QS

WX
XZ

RS
QR

YZ
XY

, , ,            

FIGURE 8-2: 
Multiple 
parallel  

lines with 
transversals.
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The third theorem has nothing to do with similar figures. It’s in this section because it involves 
a proportion.

Angle-Bisector Theorem: If a ray bisects an angle of a triangle, it divides the opposite side into 
segments that are proportional to the adjacent sides.

When you bisect an angle in a triangle, you never get similar triangles (except when you bisect 
the vertex angle of an isosceles triangle, in which case the resulting triangles are congruent 
as well as similar). The fact that the Angle-Bisector Theorem is usually in the similar triangle 
chapter in geometry books despite its having nothing to do with similar triangles may be one 
reason students often fail to remember the theorem.

Don’t forget the Angle-Bisector Theorem. Whenever you see a triangle with one of its angles 
bisected, you either have an isosceles triangle cut into two congruent triangles or a problem in 
which you probably have to use the Angle-Bisector Theorem.

Q.	 Given that YA DN   , find LA

A.	 By the Side-Splitter Theorem,

LY
YD

LA
AN
LA

LA

LA

2
3 5

3 10

10
3

3 1
3
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Q.	 Given that AC 25 and FH 36, find  
BC, AB, IJ, GH, FG, and EF

A.	 First, set up a proportion to find BC:

BC
CD

JK
KL

BC

BC
10

28
14
20

Now, because AC is 25 (given), AB must be 5.

IJ
JK

AB
BC

IJ

IJ
28

5
20
7

To get FG and GH, note that because the ratio KL JK:  is 14 28:  or 1 2: , GH FG:  must also 
equal 1 2: . So let GH x  and FG x2 . Then, because FH 36 (given),

x x

x

2 36

12

Therefore, GH is 12 and FG is 24. Finally,

EF
FG

AB
BC

EF

EF
24

5
20
6
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Q.	 Given:    AH
� ����

 bisects CAS

Find:	 CH and HS

A.	 By the Angle-Bisector Theorem, CH
HS

AC
AS

.

If you set CH equal to x, HS is 4 x. (You saw that CS is 4, right?) Now substitute:

x
x

x x

x

x

4
3
5

5 12 3

8 12

12
8

1 5.

Thus, CH is 1.5 and HS is 2.5.

Warning: Don’t make the mistake of thinking that when an angle in a triangle is 
bisected, the opposite side will also be cut exactly in half. You can see in this example 
that side CS is not bisected. The opposite side often comes very close to being bisected 
and it often looks bisected, but as a matter of fact, the opposite side is divided in half 
only when you bisect the vertex angle of an isosceles triangle.

18	 Given:    OI GN  

a.	 Prove:    RIO RNG~  (paragraph proof)

b.	 Find:	 IN and GN
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*19	 Given:    All avenues are parallel to one another.

Along Washington Blvd., it’s 1
2

 of a mile from First Avenue to Fifth and 1
10

 of a mile from 
Third to Fourth.

Along Adams, it’s 3
8

 of a mile from First to Third and from Third to Fifth.

Along Jefferson, it’s 4
5

 of a mile from First to Fifth and 1
4

 of a mile from First to Second.

Find:	� All unknown distances between the avenues along Washington, Adams, and Jefferson,  
and fill in the distances in the following figure. (I’ve started it for you on Washington and 
Jefferson.) You need only the distances from one avenue to the next. In other words, you 
don’t have to calculate the distance from Second to Fourth unless you need it to find one  
of the smaller distances.
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Solutions
1	 Here are your answers:

a.	 Corresponding angles of similar polygons are congruent, so finding the angles should be a 
cinch:

•	 FEH  is 80  and thus, so is A

•	 F B120

•	 C G85

•	 GHE D75

•	 GHD 105

b.	 The ratio of the bases is 5
11

, so all the other ratios must also equal 5
11

:

FE

FE

6
5

11
30
11

Then, 
4 5

11
44
5

BC

BC

Finally, 

GH

GH

10
5

11
50
11

2	 Here are the missing angles and lengths:

a.	 The angles in PQR must add up to 180 , so Q  is 64 4. . Now just pair up corresponding 
vertices: P with Z, Q with X, and R with Y. Thus, Z  is 60 , X  is 64 4. , and Y  is 55 6. .

b.	 QR (second and third letters) corresponds to XY  (second and third letters) and PQ  
corresponds to ZX , so

QR
XY

PQ
ZX

ZX

ZX

21
26 25

20

20 26 25
21

25

.
.

PR  corresponds to ZY , so

PR

PR

27 5
21

26 25
27 5 21

26 25
22

. .
.

.

3	 Did you notice the trick? The base AB  does not correspond to the base LP . Base AB   

corresponds to LM . So, the expansion factor is 60
5

12, not 50 10
5

. Thus,

perimeter
perimeter

perimeter

pe

LMNOP

ABCDE

LMNOP

LM
AB

30
60
5

rrimeterLMNOP 30 12 360
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4	 And this is how problem 4 plays out:

a.	 From the way the similarity is written, you can see that AC  (first and third letters in 
ABC ) pairs up with AD (first and third letters in ACD) and that BC  pairs up with CD. 

This gives you the desired proportion:

AD
AC

CD
BC

AD

AD

12
6
9
72
9

8

b.	 Another way to see how things pair up is to redraw the triangles so they’re side by side 
and in the same orientation. Like this:

You can see that ACD had to be flipped over to put it in the same orientation as ABC .

To get DB, you first need AB:

top
top

right side
right side

ABC

ACD

ABC

ACD

AB
AC

CB
DC

AB
12

9
6
108

6
18AB

Finally, you can see in the original figure that DB AB AD– , so DB 18 8 10– .

5	 You know that R P  by if sides, then angles (Chapter 5), so R is 70 . The angles in a  
triangle add up to 180 , so Q  is 40 . You know S and T  are also equal by if sides, then 
angles, and together they must sum to 140 , so each is 70 . Because both triangles contain  
a 40  angle and a 70  angle, PQR STU~  by AA.

After finding that Q  is 40 , you could also finish by setting PQ and RQ equal to x and setting 

ST and UT equal to y. That gives you PQ
ST

RQ
UT

 (because x
y

x
y

).

And because Q T , PQR STU~  by SAS~.
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6	 Statements Reasons

 1)  XRT  is isosceles with base XT  1) Given.

 2) XR TR  2) Definition of an isosceles triangle.

 3)  NXR NTR  3) If sides, then angles.

 4)  1 2  4) Given.

 5)  NXR NWG  5) Supplements of congruent angles are congruent.

 6)  NWG NTR  6) Transitive Property (Statements 3 and 5).

 7) RN  is an altitude  7) Given.

 8) RN XT  8) Definition of altitude.

 9)  GNW  is a right angle

RNT  is a right angle

 9) Definition of perpendicular.

10)  GNW RNT 10) Right angles are congruent.

11)  WGN TRN~ 11) AA (Statements 6 and 10).

7	 Here’s how this problem unfolds:

a.	 All you have to check is whether

short side
short side

medium side
medium side

long side1

2

1

2

? ?
1

2long side

                       36
9

52
13

56
14

? ?

4 4 4. Check.

b.	 B and H correspond because each is across from a medium-length side. C and F correspond 
because each is across from a long side. D and G are stuck with each other. Therefore, 

BCD HFG~ .

8	 Because AT  is parallel to OY , BAT BOY  by if parallel lines are cut by a transversal, then  
corresponding angles are congruent (Chapter 6). Then, because both triangles contain B, 

BAT BOY~  by AA. Similar triangles have proportional sides, so

BA
BO

BT
BY

BO BY
BY BO

BY BO

BY BO

5 5

5 5

Thus,  
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And, therefore, BOY  is isosceles.

After showing the triangles similar, you can also reason that any triangle similar to an isos-
celes triangle must also be isosceles, because if you take an isosceles triangle and shrink it or 
expand it by some factor, the two equal sides remain equal sides.

9	 Statements Reasons

 1) V  is the midpoint of LI

S is the midpoint of PI

 1) Given.

 2) VI LI
1
2

SI PI
1
2

 2) �A midpoint divides a segment into two segments that are each 
half as long as the original segment. (This reason is true, of 
course, but I created this theorem to avoid having to go through 
the rigamarole I referred to in the last example in this section.)

 3) VI
LI

SI
PI

1
2

1
2

;    3) Algebra.

 4) VI
LI

SI
PI

 4) Substitution.

 5)  I I  5) Reflexive Property.

 6)  VIS LIP~  6) SAS~ (Statements 4 and 5).

 7)  ELP IPL  7) Given.

 8)  EPL ILP  8) Given.

 9)  PEL LIP~  9) AA (Statements 7 and 8).

10)  VIS PEL~ 10) Transitive Property for similar triangles.

10	 The vertical angles are congruent and JKL NML, so JKL NML~  by AA. Their sides are 
proportional; thus,

JL
NL

KL
ML

JL

JL

16
6
8
96
8

12

Next, JK has to be 9 to make the perimeter of JKL add up to 27. Finally,

MN
JK

ML
KL

MN

MN

9
8
6
72
6

12

MN and JL are both 12, so of course, MN JL.
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11	 You have to prove that a product equals another product — AD 2 is a product — so the tip in 
the example problem about looking for similar triangles applies. Thus, you look for triangles 
that contain AD, AB, and AC — namely ABD and ACD — and try to prove that they’re simi-
lar. You know that 1 CBD, so their supplements, ADC  and ABD, are congruent. Both 
triangles contain A, so ABD ADC~  by AA. (Note the order of the vertices.) Now find a pro-
portion that contains AB and AC and that uses AD twice, and you’re done. Here it is:

medium side
medium side

long side
long side

ABD

ADC

ABD

ADC

AB
AD

AAD
AC

AD AB AC2

*12	 Statements Reasons

 1) E  and O trisect AS  1) Given.

 2) EO SO  2) Definition of trisect.

 3) O bisects RM  3) Given.

 4) RO MO  4) Definition of bisect.

 5)  ROE MOS  5) Vertical angles are congruent.

 6)  ROE MOS  6) SAS (2, 5, 4).

 7)  S MTI  7) Given.

 8)  SMO TMI  8) Vertical angles are congruent.

 9)  MOS MIT~  9) AA (Statements 7 and 8).

10)  ROE MIT~ 10) Substitution of ROE for MOS  (Statements 6 and 9).

11)  RO
MI

OE
IT

11) CSSTP.

12) RO IT MI OE 12) Means-extremes (cross-multiplication).

13	 The triangles are similar, so they must have three pairs of congruent angles according to the 
definition of similar polygons. Thus, each triangle must contain angles with measures x, 
x 40, and x 50. These must add up to 180 , so

x x x

x

x

x

40 50 180

3 90 180

3 90

30

Thus, both triangles contain 30 70,  , and 80  angles.

14	 Here are the answers:

a.	 Always: You have only one triangle, so if ABC CBA~ , ABC  must be congruent to CBA 
as well. (Otherwise, ABC  and CBA would be different sizes, which is impossible.) Vertex 
A (in ABC ) corresponds to C (in CBA) and B corresponds to B, so AB CB.

b.	 Sometimes: With only one pair of congruent angles, the triangles might be similar, but 
they don’t have to be.
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c.	 Always: Congruent triangles are automatically similar as well.

d.	 Sometimes: Similar triangles can be congruent, but they certainly don’t have to be.

e.	 Never: ABC  contains a right angle. DEF  is acute, so it can’t contain a right angle. Thus, 
the two triangles can’t have three pairs of congruent angles, and therefore, they’re not 
similar. (For more info on types of triangles, see Chapter 4.)

f.	 Sometimes: The answer would be always if you were told that AC  and DF  are the bases of 
these isosceles triangles, but the statement is only sometimes true because the triangles 
could look like this:

Don’t forget: You can’t rely on the appearance of the triangles in the figure and conclude, for 
example, that AB CB and DE FE.

15	 Here are the lengths:

a.	 Using the third part of the Altitude-on-Hypotenuse Theorem,

JZ JA JY

JZ

2

4 13

52

52 2 13 7 2.

Then, using the second part of the theorem,

AZ JA AY

AZ

2

4 9

36

6

b.	 Using the third part of the theorem,

JZ JA JY

JY

JY

2

25 3

25
3

8 1
3
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Thus,

AY JY JA

25
3

3

16
3

5 1
3

Or, alternatively, first note that AZ 4 because JAZ  is a 3 4 5 right triangle. Then fin-
ish with the second part of the theorem.

c.	 Using the third part of the theorem,

YZ AY JY

YZ

2

6 8

48

48 4 3 6 9.

d.	 Using the second part of the theorem,

AZ JA AY

JA

JA

2

28 10

64
10

6 4.

JY JA AY

6 4 10

16 4

.

.

e.	 Using the third part of the theorem,

JZ JA JY

JA

JA

2

28 12

64
12

5 1
3

AY JY JA

12 5

6

1
3

2
3

16	 The Pythagorean Theorem gives you QS:

QS RQ RS

QS

2 2 2

2 25 10

125

125 5 5 11 2.
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You can now get QT with the third part of the Altitude-on-Hypotenuse Theorem — 
RQ QT QS2  — and then get RT with the Pythagorean Theorem. But you don’t  

have to do all that. You can get RT directly with a proportion from similar triangles:

long leg
long leg

hypotenuse
hypotenuse

QRT

QSR

QRT

QSR

RT
RSS

RQ
QS

RT

RT

10
5

5 5
10

5
2 5 4 5.

*17	 Set FL equal to x, and then use the last part of the Altitude-on-Hypotenuse Theorem:

FG FL FA

x x

x x

x x

2

2

2

2

6 5 3

180 3

3 180 0

Finish by factoring — x x+15 12 = 0 — or with the quadratic formula. (If you forgot the 
quadratic formula, I don’t want to hear about it. But you can refresh your memory right 
here.) Here’s what the quadratic formula looks like in action:

For an equation in the form ax bx c2 0,

x
b b ac

a

2

2

4
2

3 3 4 1 180
2 1

3 729
2

3 27
2

15 1 or 22

FL can’t be negative, so FL is 12.

18	 Here are the answers:

a.	 Because OI GN   , ROI RGN  and RIO RNG by if parallel lines are cut by a transversal, 
then corresponding angles are congruent. Thus, RIO RNG~  by AA. (You can also use 

R R for one of the two pairs of congruent angles.)

Keep your eyes peeled for parallel lines. Whenever you see parallel lines in a problem 
involving two or more triangles, the odds are good that some of the triangles are similar 
(or maybe congruent).
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b.	 The Side-Splitter Theorem gives you IN:

RO
OG

RI
IN

IN
IN

IN

4
12

6

4 72

18

For GN, did you fall for my trap? GN is not 12, though it sure looks like it should be. The 
ratio of OI GN:  doesn’t equal the 4 12:  ratio of RO OG: . Remember, the Side-Splitter 
Theorem doesn’t work for the parallel sides. To get GN, you have to use the proportional 
sides of similar triangles RIO and RNG (RG RO OG, or 4 12):

right side
right side

base
base

RNG

RIO

RNG

RIO

GN
OI

RG
RO

GN
44

16
4

16GN

*19	 Along Adams, the distance from First to Third equals the distance from Third to Fifth.  
That’s a 1 1:  ratio. According to the transversals theorem, that 1 1:  ratio must also hold for 
Washington and Jefferson.

The whole trip on Washington is half a mile, so you’d have to go 0.25 miles from First to 
Third and from Third to Fifth. Because it’s 0.1 miles from Third to Fourth, Washington runs 
0 25 0 1. . , or 0.15 miles, from Fourth to Fifth. The whole trip on Jefferson is 0.8 miles, so each 
half trip is 0.4 miles. Subtracting the 0.25 miles along First to Second from 0.4 gives you 0.15 
miles for the distance from Second to Third.

Now use the distances along Washington from Third to Fourth (0.1 miles) and from Fourth to 
Fifth (0.15 miles) to get the corresponding distances along Adams and Jefferson. Along 
Washington, you have a ratio of 0 1 0 15. : . , which equals 10 15: , or 2 3: . Using that ratio on 
Adams gives you

2 3 3
8

5 3
8
3
40

x x

x

x

So, the distance along Adams from Third to Fourth 2x  is 2 3
40

, or 6
40

, or 0.15 miles (that’s 

three times in a row for 0.15 — what a bizarre coincidence! — I didn’t plan it that way). 

From Fourth to Fifth 3x  is 3 3
40

, or 9
40

, or 0.225 miles.

The calculation works the same along Jefferson, so

2 3 0 4

5 0 4

0 08

x x

x

x

.

.

.



204      PART 3  Polygons, Proof and Non-Proof Problems

So, the distance along Jefferson is 2 0 08. , or 0.16 miles, from Third to Fourth, and 3 0 08. , 
or 0.24 miles, from Fourth to Fifth.

Finally, use the same method with the distances along Jefferson from First to Second (0.25 
miles) and from Second to Third (0.15 miles) to get the corresponding distances along 
Washington and Adams. The ratio along Jefferson is 0 25 0 15. : . , which equals 5 3: . So, for 
Washington, you have

5 3 1
4

8 1
4
1
32

x x

x

x

mile

mile

mile

Thus, it’s 5 1
32

 or 5
32

 miles from First to Second and 3 1
32

 or 3
32

 miles from Second to 

Third. For Adams, you have

5 3 3
8
3

64

x x

x

miles

miles

So, the distance along Adams is 15
64

 miles from First to Second and 9
64

 miles from Second to 
Third. That’s it. Finito!

Street Washington Adams Jefferson

Fourth to Fifth
3
20   (0.15)

9
40   (0.225) 6

25   (0.24)

Third to Fourth
1

10  (0.1)
3
20   (0.15) 4

25   (0.16)

Second to Third
3
32   (0.09375)

9
64   (0.140625) 3

20   (0.15)

First to Second
5
32   (0.15625)

15
64   (0.234375) 1

4   (0.25)

Total (miles)
1
2   (0.5)

3
4   (0.75)

4
5   (0.8)
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IN THIS PART . . .

Graduate to the infinity-gon (more commonly known as 
the circle, which is really like a polygon with an infinite 
number of sides).

Practice dozens of problems involving all sorts of nifty 
circle concepts: the angle-arc theorems, the power 
theorems, formulas for sectors, arc length, area, 
circumference, and so on.
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Circular Reasoning 
(Including Proofs)

The circle is a paradox of sorts. In one sense, it’s the simplest of all shapes, but at the 
same time, it’s rich in complexity and difficult, advanced ideas. Mathematicians have 
been fascinated by its properties for well over 2000 years. For example, the ratio of a 

circle’s circumference to its diameter — 3 14.  — is one of the most important and often-
used numbers in all of mathematics.

In this chapter, you study several circle properties by doing proofs. All the proofs here involve 
circles, but you also see many of the same ideas from earlier chapters like if angles, then sides 
and CPCTC (both in Chapter 5).

The Segments Within: Radii and Chords

In this section, you do proofs involving radii and chords (including diameters).

»» Radius: Nothing about a circle is more fundamental than its radius. A circle’s radius — the 
distance from its center to a point on the circle — tells you its size. In addition to being a 
measure of distance, a radius is also a segment from a circle’s center to a point on the circle.

Chapter 9

IN THIS CHAPTER

»» Circle theorems that involve radii 
and chords

»» Finding congruent arcs, chords, 
and central angles

»» Going off on a tangent
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»» Chord: A segment that connects two points on a circle is called a chord.

»» Diameter: A chord passing through a circle’s center is a diameter of the circle. A circle’s 
diameter, as I’m sure you know, is twice as long as its radius.

Here are five circle theorems for your mathematical pleasure (some are the converses of each 
other).

»» Radii size: All radii of a circle are congruent (yet another well-duh theorem).

»» Perpendicularity and bisected chords:

•	 If a radius is perpendicular to a chord, then it bisects the chord.

•	 If a radius bisects a chord (that’s not a diameter), then it’s perpendicular to the chord.

»» Distance and chord size:

•	 If two chords of a circle are equidistant from the center of the circle, then they’re 
congruent.

•	 If two chords of a circle are congruent, then they’re equidistant from its center.

If you’re looking for tips for completing circle proofs, you’ve come to the right place. Here are 
a few that you can put to use in this section:

1.	 Draw additional radii on the figure.

You should draw radii to points where something else intersects or touches the circle, 
as opposed to just any old point on the circle.

2.	 Open your eyes and notice all the radii — including new ones you’ve drawn — and 
mark them all congruent.

For some strange reason — despite the fact that all radii are congruent is one of the 
simplest of all theorems — it’s very common for people to either fail to notice all the 
radii in a problem or fail to note that they’re all congruent.

3.	 Draw in the segment (part of a radius) that goes from the center of the circle to a 
chord and that’s perpendicular to the chord (and which, according to the previous 
theorem, bisects the chord).

The purpose of adding radii and partial radii is usually to create right triangles or isosceles 
triangles that you can then use to solve the problem.
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Q.	 Given:    Circle O

XY ZY

Prove:     YO
� ���

 bisects XYZ

A.	
Statements Reasons

1) Circle O 1) Given.

2) Draw OX OZ and 2) Two points determine a segment.

3) OX OZ 3) All radii are congruent.

4) XY ZY 4) Given.

5) YO YO 5) Reflexive.

6)  YOX YOZ 6) SSS (3, 4, 5).

7)  XYO ZYO 7) CPCTC.

8) YO
� ���

 bisects XYZ 8) Definition of bisect.

1	 Given:    Circle S

P R

Prove:    PX RX

Statements Reasons
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2	 Use the figure from problem 1, but this time with the following information.

Given:    Circle S

QS PR

Prove:    QS
� ���

 bisects PQR

Statements Reasons

3	 Given:    Isosceles trapezoid ISTR with bases ST  and IR is inscribed in circle Q
Circle Q has a radius of 5

Find:       The area of ISTR
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*4	 Given:    Circle K

FLT AYT

KI FY  and KE AL

Prove:    KITE is a kite

Hint: Use two of the five theorems from this section.

Statements Reasons

Introducing Arcs and Central Angles
Arcs, chords, and central angles are three peas in a pod.

»» Arc: An arc, as you may know, is simply a curved piece of a circle. Every chord cuts a circle 
into two arcs: a minor arc (the smaller piece) and a major arc (the larger), unless the chord is 
a diameter, in which case both arcs are semicircles.

»» Central angle: A central angle is an angle whose vertex is at the center of a circle. The two 
sides of a central angle are radii that hit the circle at the opposite ends of an arc or, as math-
ematicians say, the sides intercept an arc. The measure of an arc is the same as the degree 
measure of the central angle that intercepts it. (For more on arcs, chords, and angles that 
intercept an arc, see Chapter 10.)

Congruent circles. Before I get into theorems, here’s one more (somewhat unrelated) defini-
tion: Congruent circles are circles with congruent radii.



212      PART 4  Circles, Proof and Non-Proof Problems

I know how much you love theorems, so here are six more. But don’t sweat it — these six 
theorems are really just six variations on one simple idea about arcs, chords, and central angles.

»» Central angles and arcs:

•	 If two central angles of a circle (or of congruent circles) are congruent, then their 
intercepted arcs are congruent. (Short form: If central angles, then arcs.)

•	 If two arcs of a circle (or of congruent circles) are congruent, then the corresponding 
central angles are congruent. (Short form: If arcs, then central angles.)

»» Central angles and chords:

•	 If two central angles of a circle (or of congruent circles) are congruent, then the 
corresponding chords are congruent. (Short form: If central angles, then chords.)

•	 If two chords of a circle (or of congruent circles) are congruent, then the corresponding 
central angles are congruent. (Short form: If chords, then central angles.)

»» Arcs and chords:

•	 If two arcs of a circle (or of congruent circles) are congruent, then the corresponding 
chords are congruent. (Short form: If arcs, then chords.)

•	 If two chords of a circle (or of congruent circles) are congruent, then the corresponding 
arcs are congruent. (Short form: If chords, then arcs.)

Q.	 Given:    Circle S

P R

Prove:    PSQ RSQ

A.	
Statements Reasons

1) Circle S 1) Given.

2)  P R 2) Given.

3) PQ RQ 3) If angles, then sides.

4)  PSQ RSQ 4) If chords, then central angles.

Short and sweet. Try doing this proof with congruent triangles instead. It should take 
you three extra steps.
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5	 Given:    Circle Q

AC RS

Prove:    AR CS

Warning: Note that the first four theorems in this section 
involve central angles (angles with a vertex at the center 
of a circle) and that, therefore, they do not apply to the 
angles in the figure to the right. (I cover angles like these in 
Chapter 10.)

Statements Reasons

6	 Given:    Circle Z

BA CD

Prove:    B C

Statements Reasons
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7	 Given:    Circle Circle F U

MO IR� �

Prove:    MIUF is a parallelogram

Statements Reasons

8	 Given:    Circle CircleI L

S is the midpoint of CK

Prove:    CR EK

Statements Reasons
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Touching on Radii and Tangents
One of the important ideas in this section is related to something you’ve seen since you were a 
little kid. Look at either wheel in the bicycle in Figure 9-1.

A line is tangent to a circle if it touches the circle at a single point. The important point for this 
section is that the spoke that goes straight down from the hub in each wheel is perpendicular to 
the ground. Geometrically speaking, the bicycle wheels are, of course, circles, the spokes are 
radii, the single points where the wheels touch the ground are called points of tangency, and the 
ground is a tangent or tangent line.

Tangent and radius perpendicularity: A tangent line is perpendicular to the radius drawn to 
the point of tangency.

Don’t forget this important fact! You already know how important it is to notice that all radii in 
a circle are congruent (and to sometimes draw in more radii). Now you can add this point about 
radii (and tangents) to your list of critical things to remember: The right angle at the point of 
tangency often becomes part of a right triangle.

Here’s one more fact about tangents before I go through a couple of example problems.

Dunce Cap Theorem: Two tangent segments drawn to a circle from the same point are 
congruent. This is known (by me) as the Dunce Cap Theorem. See Figure 9-2.

FIGURE 9-1: 
Two wheels 

that are 
tangent to  

the ground — 
take a break 

from geometry 
and go  

for a ride.

FIGURE 9-2: 
Both sides  
of a dunce  

cap are the 
same length.
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The first example and the first practice problem are called common-tangent problems, which 
means a single line is tangent to both circles. The example involves a common external tangent 
(the tangent lies on the same side of both circles). The practice problem involves a common 
internal tangent (the tangent line goes between the two circles). The solution method is the 
same for both.

1.	 First: Draw both the segment connecting the centers of the two circles and the two 
radii to the points of tangency (if these segments haven’t already been drawn for you).

2.	 This is the critical step: From the center of the smaller circle, draw a segment parallel to 
the common tangent till it hits the radius of the larger circle (or the extension of the 
radius in a common internal tangent problem).

3.	 Finish: You now have a right triangle and a rectangle and can finish the problem with the 
Pythagorean Theorem and the simple fact that opposite sides of a rectangle are congruent.

In a common-tangent problem, the segment connecting the centers of the circles is always 
the hypotenuse of a right triangle and the common tangent is always the side of a rectangle.

In a common-tangent problem, the segment connecting the centers of the circles is never one 
side of a right angle.

Q.	 Given: ET  is tangent to circle L and circle B  
with radii as shown

The distance between the centers of the circles 
is 25

Find: The length of the common tangent, ET

A.	 The segment connecting the centers of the two circles, as well as the two radii to the 
points of tangency (step 1 in solving common-tangent problems), are already drawn for 
you here. Draw the segment described in step 2 of the solution method (from the center 
of the smaller circle, parallel to the common tangent). See the following:
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You can see that this new segment creates a rectangle and a right triangle. The opposite 
sides of a rectangle are congruent, so the radius of 6 on the left gives you the 6 on the right. 
The larger radius is 13, and 13 6 is 7, so you get 7 for the short leg of the right triangle. Its 
hypotenuse is 25, so you have a 7 24 25 right triangle, and thus the long leg is 24 (see 
info on Pythagorean triples in Chapter 3). Finally, the long leg of the triangle is also a side 
of the rectangle, which is congruent to the opposite side, ET . ET is thus 24 as well.

9	 Given: IT  is a common internal tangent of 
circles S and L with radii as shown

A distance of 5 separates the circles

Find: IT (Get it?)

10	 Given: Diagram as shown

WR WL TL TR, , ,   and  are tangent to circle O

Find: TR
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Solutions
1	 Game plan: You see a circle, so think radii, radii, radii! Draw in congruent radii SPand SR. You 

also see an isosceles triangle, and, voilà, you can use if angles, then sides to get PQ RQ. Then 
you can finish with the equidistance theorem (which first appears in Chapter 5).

Statements Reasons

1) Circle S 1) Given.

2) Draw SP  and SR 2) Two points determine a segment.

3) SP SR 3) All radii are congruent.

4)  P R 4) Given.

5) PQ RQ 5) If angles, then sides.

6) �QS is the perpendicular 
bisector of PR

6) �If two points are each equidistant from the endpoint s of a 
segment, then they determine the perpendicular bisector of 
that segment.

7) PX RX 7) Definition of bisect.

2	 Game plan: You see a circle, so what should you think? Yep, you got it: radii, radii, radii! Well, 
sorry to disappoint you, but this is one circle problem where you don’t need to use extra radii 
or congruent radii. But don’t let up with the radii mantra. It’ll serve you well.

You have a radius perpendicular to a chord, so the theorem tells you the chord is bisected. 
You can use that fact, the right angles, and the Reflexive Property to get the triangles 
congruent with SAS. Then you finish with — what else? — CPCTC (for more on congruent 
triangles, see Chapter 5).

Statements Reasons

1) Circle S  with QS PR 1) Given.

2) QS bisects PR 2) �If a radius is perpendicular to a chord, then it bisects 
the chord.

3) PX RX 3) Definition of bisect.

4)  PXQ  is a right angle

RXQ is a right angle

4) Definition of perpendicular.

5)  PXQ RXQ 5) All right angles are congruent.

6) QX QX 6) Reflexive.

7)  PQX RQX 7) SAS (3, 5, 6).

8)  PQX RQX 8) CPCTC.

9) QS
� ���

 bisects PQR 9) Definition of bisect.
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3	 Game plan: Radii, radii, radii, radii! That’s right — draw in four of ’em to I, S, T, and R (actually, 
you need only two, but it’s probably easier to see how the problem works if you draw all four 
of them; and in any event, when it comes to drawing radii, too many is better than too few). 
Now you have two isosceles triangles, IQR  and SQT  (plus the two on the sides you’ll use 
later). Next, draw in the altitudes of these triangles. See the following figure:

If a radius is perpendicular to a chord, it bisects the chord, so these altitudes bisect the bases 
of the triangles. That makes IM equal to 4 and SN equal to 3. And that makes both IMQ and 

SNQ  3 4 5 triangles (check out Chapter 4 for Pythagorean triples). Pretty sweet, eh? QM 
is thus 3 and QN is 4, so NM is 7, and that’s the height of the trapezoid ISTR. You’re all set to 
use the area formula (Chapter 7 provides info on calculating the area of quadrilaterals):

Area

units

Trap. 
b b

h1 2

2

2
8 6

2
7

7 7

49

Extra credit (well, maybe not exactly credit): Show that SQI  and TQR  are 45 45 90  
triangles. You have two totally different ways of doing this. (This sure is a cool isosceles 
trapezoid, isn’t it — the way it’s made up of four congruent 3 4 5 triangles and two 
congruent 45 45 90  triangles.)

	 *4	 Abbreviated game plan: Why would you be given congruent triangles? It’s got to be so you 
can use CPCTC. You should notice the perpendicular segments drawn to the chords and think 
about how you could show the chords to be congruent. And you should, as always, also think 
about what you need at the end of the proof (namely, the two pairs of congruent sides that 
make a kite) and what you need to do to get there.

Statements Reasons

 1)  FLT AYT  1) Given.

 2) FT AT  2) CPCTC.

 3) LT YT  3) CPCTC.

 4) FY AL  4) Segment addition.

 5) KI FY

KE AL

 5) Given.
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 6) KI KE  6) �If chords of a circle (FY  and AL) are congruent, then they 
are equidistant from its center.

 7) KI  bisects FY

 KE  bisects AL

 7) �If a radius is perpendicular to a chord, then it bisects 
the chord.

 8) IY EL  8) �Like divisions. (Remember that? I knew you would. It’s from 
Chapter 3.)

 9) IT ET  9) Segment subtraction (Statements 3 and 8).

10) KITE  is a kite 10) Definition of kite.

5	 Statements Reasons

1) Circle Q

AC RS

1) Given.

2) AC RS  2) If chords, then arcs.

3) AR CS  3) Subtraction (subtracting RC from both AC  and RS).

4) AR CS 4) If arcs, then chords.

6	 Statements Reasons

1) Circle Z

BA CD

1) Given.

2) BA CD  2) If chords, then arcs.

3) BD CA  3) Addition (of AD ).

4) BD CA 4) If arcs, then chords.

5) AD DA 5) Reflexive.

6)  ABD DCA 6) SSS (1, 4, 5).
7)  B C 7) CPCTC.

7	 Statements Reasons

1) Circle CircleF U

MO IR� �
1) Given.

2)  MFO IUR 2) If arcs, then central angles.

3) MF IU   3) If corresponding angles are congruent, then lines are parallel.

4) MF IU 4) �Congruent circles have congruent radii (definition of 
congruent circles).

5) MIUF  is a parallelogram 5) �If a quadrilateral has a pair of sides that are both parallel and 
congruent, then the quadrilateral is a parallelogram.



CHAPTER 9  Circular Reasoning (Including Proofs)      221

8	 Statements Reasons

 1) Circle CircleI L

S is the midpoint of CK

 1) Given.

 2) CS KS  2) Definition of midpoint.

 3) CS KS   3) If chords, then arcs.

 4)  CIR KLE  4) Straight angles are congruent.

 5) CSR KSE   5) If central angles, then arcs.

 6) SR SE   6) �Arc subtraction (subtracting congruent arcs from 
congruent arcs).

 7) SR SE  7) If arcs, then chords.

 8)  CSR KSE  8) Vertical angles are congruent.

 9)  CSR KSE  9) SAS (2, 8, 7).

10)  C K 10) CPCTC.

11) CR EK   11) �If alternate interior angles are congruent, then lines 
are parallel.

Egad! I just saw a much better and easier way of doing this proof. Despite all my years of 
teaching geometry, I failed to follow my own advice about drawing in more radii. The 
preceding proof is a good illustration of some of the theorems in this section, but when it 
comes to proofs, the shorter the better. To wit —

Statements Reasons

1) �Circle CircleI L, S  is the 
midpoint of CK

1) Given.

2) CS KS 2) Definition of midpoint.

3) Draw IS  and LS 3) Two points determine a segment.

4) IS LS 4) Congruent circles have congruent radii.

5) IC LK 5) Congruent circles have congruent radii.

6)  ICS LKS 6) SSS (2, 4, 5).

7)  C K 7) CPCTC.

8) CR EK   8) �If alternate interior angles are congruent, then lines 
are parallel.

I guess you’re never too old to learn.
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9	 First, draw SL. The middle portion of SL is the distance between the circles, and you were 
given that that distance is 5 units; therefore, SL is 8 5 12, or 25. Next, from the center of 
the smaller circle, S, draw a segment parallel to IT  till it hits the extension of radius TL. Your 
diagram should now look like this:

The segment you just drew, SR, creates a rectangle and a large right triangle. The rectangle 
has opposite sides of 8. The right triangle has a leg of 8 12 20 and a hypotenuse of 25. 
That’s in the 3 4 5: :  family of triangles, so SR is 15, and that makes IT 15. That’s it.

10	 Set HT equal to x, and walk around clockwise. Both sides of a dunce cap are equal, so KT is 
also x. KL is then 14 x, as is AL. Next, AW is 24 14 x , which is x 10. UW is also x 10, 
and that makes UR equal to 18 10x , or 8 x. Finally, HR is also 8 x, and because HT is x, 
TR is 8 x x, which is 8. That does it.
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Scintillating Circle 
Formulas (No Proofs)

If you’re fully up-to-date on circle proofs, you’re ready to move on to some handy circle for-
mulas that help you calculate everything from area to arc length. In this chapter, you find 
the area and the perimeter of various sections of a circle. You also discover the relationships 

between angles whose vertices lie on, inside, and outside a circle and the intercepted arcs of 
these types of angles.

Pizzas, Slices, and Crusts: Finding Area and 
“Perimeter” of Circles, Sectors, and Segments

In this section, you work on problems involving the area and the circumference/perimeter of 
circles and parts of circles. (By the way, if the word segment in the heading is throwing you, 
you’re not alone. Segment is the name of a particular section of a circle, which I show you in a 
minute. Don’t ask me why the bozo who coined this term had to confuse matters by reusing a 
math term with another meaning.)

Chapter 10

IN THIS CHAPTER

»» Coming full circle (not!): sectors 
and segments

»» Dealing with angles and their 
intercepted arcs

»» Powering up with power theorems
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To start things off, here are two theorems — one about the area of a sector and a related theo-
rem about the length of an arc. Don’t worry: Both theorems are based on a very simple idea 
and are easier than they look. The mathematical examples following each of these theorems 
correspond to Figure 10-1.

»» Arc length: The length of an arc (part of the circumference, like AB ) is equal to the 
circumference of the circle (πd) times the fraction of the circle represented by the arc. 
mAB  is 30 , so

Length AB

mAB
d





360

30
360

18

1
12

18

1 5.

»» Sector area: The area of a sector (a wedge shape, like sector AOB in Figure 10-1) is equal to 
the area of the circle times the fraction of the circle represented by the sector.

Area

units

Sector AOB
mAB

r


360

1
12

9

6 75

2

2

2.

Common sense suffices. These two theorems are so simple, you may want to do what I do — 
ignore them. I don’t mean ignore the ideas; I mean you don’t need to memorize the theorems. 
Your common sense should tell you that the length of AB  in this example is one-twelfth of the 
circumference of circle O because 30  goes into 360  twelve times. Likewise, the area of sector 
AOB is one-twelfth of the area of circle O. When common sense suffices, why clutter your mind 
with more formulas? Formulae, schmormulae.

FIGURE 10-1: 
A sector and 

an arc that 
make up 

one-twelfth of 
the circle.
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Q.	 What’s the area and perimeter of the shaded region? (This shape is the one that the 
aforementioned bozo decided to call a segment.)

A.	 The area of the segment, as you can see, equals the area of the sector minus the area of 
the triangle. The sector measures 90 , so it’s one-fourth of the circle. Thus,

Area

 units

Sector 
1
4

10

25

2

2

The area of the triangle is a no-brainer because its base and height are both radii:

Area 1
2
1
2

10 10

50

bh

Thus,

Area area area

 units

Segment sector 

25 50 2

The perimeter equals the hypotenuse of the 45 45 90  triangle (which you can figure 
out in your head, right? — if not, turn to Chapter 4) plus one-fourth of the circle’s cir-
cumference. To wit —

Perimeter hypotenuse arcSegment 

10 2 1
4

20

10 2 5
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Angles, Circles, and Their Connections: 
The Angle-Arc Theorems and Formulas

Look at the circle in Figure 10-2 with AC  and ABC .

Imagine that BA and BC  are taut, elastic strings and that B is moveable. If you grab B and slide 
it around the edge of the circle (not crossing over A or C), B always stays the same size even 

1	 Compute the area and perimeter of these 
shaded segments made from chords of 
length 6.

2	 Compute the shaded areas in the following 
figures. The inscribed polygons are regular, 
and each circle has a radius of 10.

3	 Compute the shaded areas in the figures. The 
circumscribed polygons are regular, and each 
circle has a radius of 10.

4	 Compute the shaded area in the figure. The 
equilateral triangle is inscribed in a circle, 
and the three outer arcs are semicircles.

*
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though the distances from B to A and from B to C change. Isn’t that cool? This and related ideas 
are the subjects of this section.

Angle on a circle: The measure of an inscribed angle (Figure 10-3a) or a tangent-chord angle 
(Figure 10-3b) is one-half of the measure of its intercepted arc.

For example, in the circles from Figure 10-3, Q mPR
1
2

  and Y mXY
1
2

.

Angle inside a circle: The measure of a chord-chord angle is one-half the sum of the measures 
of the arcs intercepted by the angle and its vertical angle.

For example, check out Figure 10-4: CED mAB mCD
1
2

  .

FIGURE 10-2: 
For a given arc 

(like AC ), no 
matter where 
you move the 

vertex of an 
inscribed angle, 

the angle 
measure 

doesn’t change.

FIGURE 10-3: 
Angles with a 

vertex on 
a circle.

FIGURE 10-4: 
An angle with a 

vertex inside 
a circle.
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Angle outside a circle: The measure of a secant-secant angle (Figure 10-5a), a secant-tangent 
angle (Figure 10-5b), or a tangent-tangent angle (Figure 10-5c) is one-half the difference of the 
measures of the intercepted arcs.

For example, in the circles in Figure  10-5, C mAE mBD
1
2

  , R mPS mQS
1
2

  , and 

X mWZY mWY
1
2

  .

Q.	 Given circle Q and secant-secant ACE  as shown, find mAE and mBD.

A.	 Because the measures of the four arcs AE AB BD ED   , , ,     and   must add up to 360 , and 
because mAB and mED  add up to 210 , mAE and mBD must add up to 360 210 , or 150 . 
Now, set mAE equal to x. That makes mBD equal to 150 x. C  is outside the circle, so it 
equals half the difference of the arcs:

C mAE mBD

x x

x

x

x

1
2

40 1
2

150

80 2 150

230 2

115

 

Thus, mAE is 115  and mBD is 150 115 , or 35 .

FIGURE 10-5: 
Angles with a 
vertex outside 

a circle.
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5	 Given the circle and angles as shown, find 
the measures of angles 1, 2, and 3.

6	 Given:  �  Diagram as shown, with AE  tan-
gent to circle Q

Find:	 B

7	 Given:    Circle C with a radius of 5

Find:	 XZ

Hint: You need to use one of the quadrilateral 
area formulas.

8	 Given:    Circle Q

MTE

AMT

80

70

Find:	 R

*
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The Power Theorems That Be
The figures here look a lot like those from the preceding section because both sections involve 
angles drawn on the inside and outside of circles. But in this section, you’re not investigating 
the size of the angles; you’re looking at the lengths of segments that make up the angles.

Chord-Chord Power Theorem: If two chords of a circle intersect, then the product of the 
measures of the segments of one chord is equal to the product of the measures of the segments 
of the other chord.

For example, in Figure 10-6,

4 6 3 8

Tangent-Secant Power Theorem: If a tangent and a secant are drawn from an external point to 
a circle, then the square of the measure of the tangent is equal to the product of the measures 
of the secant’s external part and the entire secant.

In Figure 10-7,

6 4 92

Secant-Secant Power Theorem: If two secants are drawn from an external point to a circle, 
then the product of the measures of one secant’s external part and that entire secant is equal to 
the product of the measures of the other secant’s external part and that entire secant.

For instance, in Figure 10-8,

3 12 4 9

FIGURE 10-6: 
The Chord-

Chord Power 
Theorem.

FIGURE 10-7: 
The Tangent-
Secant Power 

Theorem.
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All three of these theorems use the same mathematical idea. On both sides of each equation is 
a product of two lengths (or one length squared). Each of the four lengths is the distance from 
the vertex of an angle to the edge of the circle. Therefore, you can think of all three theorems 
like this:

vertex to circle vertex to circle vertex to circle vertex too circle

Pretty nifty, eh? It’s because of ideas like this that they pay me the big bucks.

Q.	 Given:    Diagram as shown

Circle Q has a radius of 7

Find:	 AB and RD

Note: It’s difficult to see, but DE  is a chord of circle 
Q; RE  is not tangent to the circle at D or E.

A.	 First, extend radius CQ into a diameter that hits the opposite side of the circle at a point 
I call X. The diameter has a length of 14. Now use the Secant-Secant Power Theorem to 
get AB:

RB RA RC RX

RA

RA

RA

6 4 18

6 72

12

AB is RA minus RB, so AB is 6.

FIGURE 10-8: 
The Secant-

Secant Power 
Theorem.
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Finding RD is a bit trickier, but it’s no big deal. First, set RD equal to y. Then

RD RE RC RX

y y

y y

y y

y y

y

1 4 18

72

72 0

9 8 0

9

2

2

 or 88

You can reject –9, so RD has to be 8.

9	 Given:    Circle O has a radius of 5 1x

OR x

NR x

RY x

3 1

2 8

2 4

Find:	 x

10	 Given:    Diagram as shown

EA is tangent to circle Q, which 
has a radius of 1

Find:	 EA, EB, and the area of EQD
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Solutions
1	 To tackle these problems, you may need to review some triangle formulas from Chapter 4.

a.	 You need the radius. Draw the altitude of the triangle to the base of 6. The altitude bisects 
the 120  vertex angle and thus creates two 30 60 90  triangles, each with a long leg 
of 3. See the following figure:

The short leg is 3
3

, or 3, and the hypotenuse, therefore, is 2 3  — that’s the radius. 
You’re all set:

Area area areaSegment Sector

120
360

2 3 1
2

6 3

1
3

2

112 3 3

4 3 3 2 units

You already have the base of the triangle, so the perimeter is a snap:

Perimeter arc6 120

6 1
3

6 1
3

4 3

6 4 3
3

d

b.	 You have a 45 45 90  triangle with a hypotenuse of 6, so the leg (which is the radius) 

is 6
2

, or 3 2. You’re ready to go:

Area area areaSegment Sector

90
360

3 2 1
2

1
4

2
leg leg

118 1
2

3 2 3 2

4 5 9 2.  units
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Perimeter arc6 90

6 1
4

6 1
4

6 2

6 3 2
2

d

c.	 The easiest of the three. You have an equilateral triangle, so the radius is 6 and the sector 

takes up 1
6

 of the circle:

Area area area

 units

Segment Sector

1
6

6 6 3
4

6 9 3

2
2

2

Perimeter arc6 60

6 1 12

6 2
6

2	 Here’s how this problem plays out.

a.	 Draw the apothem straight down to the base of the triangle (an apothem goes from the 
center of a regular polygon to the midpoint of a side — see Chapter 7). Then draw the cir-
cle’s radius to one of the triangle’s lower vertices. You now have a 30 60 90  triangle. 
The hypotenuse is the radius, so that’s 10, and the apothem is the short leg, so that’s 5. 
The long leg is, therefore, 5 3, and because that’s half the base of the triangle, the base is 
10 3  (see Chapter 4 for more on 30 60 90  triangles). You know all you need to solve 
the problem:

Shaded area circle equilateral triangle

r
s2

2

2

3
4

10
10 3

2

2

3
4

100 75 3  units

b.	 The radius is 10, and that’s half of the square’s diagonal, right? A square’s a kite, so use 
the kite formula (Chapter 7):

Shaded area circle square

r d d2
1 2

2

1
2

10 1
2

20 20

1000 200 2 units
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c.	 A regular hexagon is made up of six equilateral triangles (which you can read all about in 
Chapter 7). The radius here is 10, so the legs of the six triangles are also 10.

Shaded area circle hexagon

area equil. r

s

2

2
2

6

10 6 3
4

100 6 10 3
4

100 150 3

2

2 units

3	 Check out these solutions.

a.	 Because this problem is so similar to problem 2a, I’ll cut to the chase (though note that in 
this problem, in contrast to 2a, the radius is now the short leg of a 30 60 90  triangle).

Shaded area triangle circle

s2
2

2

3
4

10

20 3 3
4

100

300 3 1000 2 units

b.	 This one should be a no-brainer:

Shaded area square circle

 units

20 10

400 100

2 2

2

c.	 Draw the apothem straight down, and draw a radius of the hexagon to one of its lower ver-
tices. You have yet another 30 60 90  triangle. The apothem is the circle’s radius, so 

it’s 10. That’s the long leg of the 30 60 90  triangle, so the short leg is 10
3

. The short 

leg is half the length of one of the hexagon’s sides, so those sides are 20
3

, and multiplying 

that by 6 gives you the hexagon’s perimeter: 120
3

, or 40 3. Use the formula for the area of 

a regular polygon (Chapter 6) for the hexagon.

Shaded area hexagon circle

1
2

100

1
2

40 3 10 100

200 3

pa

1100 2 units

*4	 The shaded area is everything minus the circle. And everything is the equilateral triangle plus 
the three semicircles. Thus,

Shaded area triangle 3 semicircles circle
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The triangle has sides of 12, and the radius ( )r1  of each semicircle is 6, so you have everything 
you need to finish except for the radius ( )r2  of the circle. You should be an expert at figuring 
this out by now. Draw the apothem straight down and draw a radius to one of the triangle’s 
lower vertices. That gives you a 30 60 90  triangle. You can take it from there. You should 
get a radius (hypotenuse) of 4 3.

Shaded area s
r r

2

1
2

2
2

2
2 2

3
4

3 1
2

12 3
4

3 1
2

6 4 3

336 3 54 48

36 3 6 2 units

Piece o’ cake.

5	 Here’s how to find the angle measures.

1 1
2
35

mAE

One down, two to go. You have a few ways to finish from this point. Here’s one of them: 
GLA is the supplement of 1, so it’s 145 . Then, because the angles of GLA have to add up 

to 180 , 3 is 15 . Two down, one to go.

mNL  is twice 3, so it’s 30 . And so

2 1
2
1
2

30 70

50

mNL mAE 

6	 Right ΔADE has a hypotenuse of 20 and a leg of 10. That makes it a 30 60 90  triangle (see 
Chapter 4 for more on special right triangles). You find that CAE  is thus 30 . The measure of 
tangent-chord CAE  is half of its intercepted arc, AC, so mAC  is 60 . Finally, the measure of 
inscribed B is also half of mAC, so that makes it 30 .

I have a feeling that this problem may have been trickier than this short solution suggests.

*7	 JXQ and JZQ both intercept half the circle (a 180  arc), so each angle measures half of 
180  — that’s 90  of course — giving you right JXQ and right JZQ. The diameter is 
10 — that’s the hypotenuse — so legs XQ and ZQ are both 8 (the triangles are in the 3 4 5: :  
family; see Chapter 4). Therefore, you have a 6 6 8 8 kite.

The area of the kite is twice the area of JXQ, which is 1
2

6 8, or 24. So the area of the kite is 

48 2units . Now, finish with the kite area formula (from Chapter 7) and solve for the length of 

diagonal XZ :
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Area

 or 

Kite
1
2

48 1
2

10

48 5

48
5

9 6

1 2d d

XZ

XZ

XZ , .

Note: After you get the 6 8 10 right triangles, you could also finish with the Altitude-on- 
Hypotenuse Theorem (see Chapter 7, which discusses similar triangles).

8	 ∠AMF is inscribed in the circle, so mAF is twice ∠AMF; thus, mAF is 140 . Then to get R you 
just need the measure of ME :

MTE mME mAF

mME

mME

mME

1
2

80 1
2

140

80 1
2

70

20

� �

�

�

�

And then

R mAF mME
1
2
1
2

140 20

60

� �

9	 You want to use the Chord-Chord Power Theorem:

vertex to circle vertex to circle vertex to circle vertex too circle

For that, you need expressions in x for the lengths of the four segments. You have two of 
them: NR and RY. To get IR, you add 3 1x  to the radius of 5 1x . That’s 8x. And RE is the 
radius minus 3 1x . That’s 2 2x . Now you have what you need to use the theorem:

2 8 2 4 8 2 2

4 8 16 32 16 16

12 8 32 0

2 2

2

x x x x

x x x x x

x x             Now divide both sides by ( )4

3 2 8 0

3 4 2

2x x

x x 0

4
3

2x  or 

You can reject 4
3

, so x is 2.

10	 CQD is an isosceles right triangle, which makes it a 45 45 90  triangle (see Chapter 4 for 
more information). The legs are 1, so the hypotenuse, CD, is 2  units long. Now do the last 
problem first. To get the area of EQD, you need its height. So, draw the altitude of CQD to 
base CD. (This altitude of CQD is also the altitude of EQD.) This altitude cuts CQD into 
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two smaller 45 45 90  triangles. Each has a hypotenuse of 1 (the radius) and thus legs 

(including the altitude) of 1
2

. The rest is child’s play:

Area

 unit

EQD bh
1
2
1
2

2 2 1
2

1 2

To get EA, use the Tangent-Secant Power Theorem:

vertex to circle vertex to circle vertex to circle vertex too circle

                                         EA EA EC ED

                                               EEA 2 2 2 2

                                                

                                               

EA 2 4

       EA 2

You use the Tangent-Secant Power Theorem again to get EB. First, set EB equal to x. Don’t 
forget that you always go from vertex to circle (not from vertex to center of circle), so you 
need to use the whole diameter with a length of 2 that goes from B through Q to the other 
side of the circle:

vertex to circle vertex to circle vertex to circle vertex too circle

diameter

                      

EB EB EA EA

                  

                         

x x 2 2 2

             

                     

x x2 2 4 0

Finish up with the quadratic formula (which I first use in Chapter 4):

x
2 2 4 1 4

2
2 20

2
2 2 5

2
1 5

2

Reject the negative answer, so EB is 1 5. Wasn’t that fun?
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IN THIS PART . . .

Practice problems involving the volume and surface 
area of spheres, pointy-top figures (cones and 
pyramids), and flat-top figures (cylinders and prisms).

Work with parallel planes and intersecting planes, and 
revisit some of the triangle topics from Chapter 4, but, 
this time, the triangles are standing up in the third 
dimension.

Look at geometry from the practical viewpoint of where 
things are, how far they are from other things, what 
their orientation is, and so on.

Consider what happens to shapes when you spin them 
around, slide them, or flip them over.
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2-D Stuff Standing Up 
(Including Proofs)

Many of the ideas in this chapter should be familiar to you: congruent triangles, CPCTC, 
parallel lines, quadrilaterals, and so on. (If they’re not, take a look at Chapters  1 
through 10.) What’s new about Chapter  11 is that some of the lines, triangles, and 

quadrilaterals, instead of lying in a plane, are now standing up in three-dimensional space.

Lines Perpendicular to Planes: They’re All Right
This section involves problems about lines that are perpendicular to planes. Lines like this can 
come in handy, because they create right angles that are just begging for you to use them in 
a proof.

Remember to look for all the right angles in the following problems; doing so can make the 
proofs much easier.

»» Plane: A plane is a flat, two-dimensional shape — you know, like a piece of paper — except 
that it’s infinitely thin and it goes on forever in all directions.

»» Perpendicularity of Line to Plane: A line is perpendicular to a plane if it’s perpendicular to 
every line in the plane that passes through its foot. (A foot is the point where a line intersects 
a plane.)

Chapter 11

IN THIS CHAPTER

»» Finding your feet: Where lines 
meet planes

»» Flying through space in a 
geometric plane

»» Parallel pairings: And never the 
twain shall meet

»» Speeding through the intersection 
of lines and planes
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If a line is perpendicular to two lines that lie in a plane and pass through its foot, then it is 
perpendicular to the plane.

In short, when writing proofs, you use the definition to say if a line is perpendicular to a plane, 
then it’s perpendicular to a line in the plane (that passes through its foot), and you use the theorem to 
say if a line is perpendicular to two lines in a plane, then it’s perpendicular to the plane.

Q.	 Given:    AB k

BEDC is a kite with BE BC

Prove:    AED ACD

A.	
Statements Reasons

 1) �AB k  1) �Given.

 2) �AB BE

AB BC

 2) �If a line is perpendicular to a plane, then it is perpendicular 
to every line in the plane that passes through its foot 
(definition of perpendicularity of a line to a plane).

 3) � ABE  is a right angle

ABC  is a right angle

 3) �Definition of perpendicular.

 4) � ABE ABC  4) �All right angles are congruent.

 5) �BE BC  5) �Given.

 6) �AB AB  6) �Reflexive.

 7) � ABE ABC  7) �SAS (5, 4, 6).

 8) �AE AC  8) �CPCTC.

 9) �ED CD  9) �Property of a kite.

10) �AD AD 10) �Reflexive.

11) � AED ACD 11) �SSS (8, 9, 10).



CHAPTER 11  2-D Stuff Standing Up (Including Proofs)      243

1	 Given:    BD p

AC
� ���

 bisects BAD

Prove:    C is the midpoint of BD

Statements Reasons

2	 Given:    VX q

VYZ  is isosceles with base YZ

Prove:    XYZ  is isosceles

Statements Reasons
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3	 Given:    ST r

TVU TUV

Prove:    SVU SUV

Statements Reasons

*4	 Given:    Circle O in plane p

AOZ  and BOZ  are right angles

AB BC 

Prove:    AZB CZB

Statements Reasons
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Parallel, Perpendicular, and Intersecting 
Lines and Planes

In the preceding section, all the figures contain a single line perpendicular to a single plane. 
In this section, you move on to figures that involve multiple perpendicularity and/or multiple 
planes and parallel lines. But first take a look at the four ways to determine a plane.

Determining a plane: Four different sets of geometric objects determine a plane:

»» Three noncollinear points

In plain English, this statement just means that if you have three points not on one line, 
then only one specific plane contains those points. The plane is determined by the 
three points because they show you exactly where this plane is.

»» A line and a point not on the line

»» Two intersecting lines

»» Two parallel lines

Check out the following properties about perpendicularity and parallelism of lines and planes. 
For the most part, these are well-duh properties after you picture what the lines and planes 
would look like.

»» Three parallel planes: If two planes are parallel to the same plane, they’re parallel to 
each other.

»» Two parallel lines and a plane:

•	 If two lines are perpendicular to the same plane, they’re parallel to each other.

•	 If a plane is perpendicular to one of two parallel lines, it’s perpendicular to the other.

»» Two parallel planes and a line:

•	 If two planes are perpendicular to the same line, they’re parallel to each other.

•	 If a line is perpendicular to one of two parallel planes, it’s perpendicular to the other.

And here’s one more point before getting to the problems:

Intersecting planes: If a plane intersects two parallel planes, the lines of intersection are 
parallel.
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Q.	 Given:    GN p

LE p

GN LE

Prove:    NGLE is a rectangle

A.	
Statements Reasons

1) �GN p

LE p

1) �Given.

2) �GN LE   2) �If two lines are perpendicular to the same plane, then they are 
parallel to each other.

3) �GN
� ���

 and LE
� ���

 determine 
a plane, NGLE

3) �Two parallel lines determine a plane.
(You need this odd-looking step to ensure that NGLE is a planar 
quadrilateral. Otherwise, it could be a weird, bent, four-sided 
figure like a “rectangle” bent along one of its diagonals. It could 
also be a “rectangle” with a curvy surface. Can you picture 
these shapes?)

4) �GN LE 4) �Given.

5) �NGLE  is a 
parallelogram

5) �If a quadrilateral contains a pair of sides that are both parallel 
and congruent, then the quadrilateral is a parallelogram.

6) �GN NE 6) �If a line is perpendicular to a plane, then it is perpendicular to 
every line in the plane that passes through its foot.

7) � GNE  is a right angle 7) �Definition of perpendicular.

8) �NGLE  is a rectangle 8) �A parallelogram with a right angle is a rectangle.

Q.	 Given:    p q  

RT SU  

Prove:    RS TU

A.	
Statements Reasons

1) �p q   1) �Given.

2) �RT SU   2) �Given.

3) �RT
� ���

 and SU
� ���

 determine 
a plane, RSUT

3) �Two parallel lines determine a plane. (You need this step before 
you can use the theorem in Reason 4.)

4) �RS TU
� ���
�
� ���

  4) �If a plane intersects two parallel planes, then the lines of 
intersection are parallel.

5) �RSUT  is a 
parallelogram

5) �If both pairs of opposite sides of a quadrilateral are parallel, then 
the quadrilateral is a parallelogram (definition of parallelogram).

6) �RS TU 6) �Opposite sides of a parallelogram are congruent.
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5	 Given:    s y  

EIO is isosceles with base EO

Prove:    AIU  is isosceles

Statements Reasons

6	 Give this problem a go:

a.	 Given:	 x y

MR ED

MR MD



Prove:	 MRED is a rectangle

Yes or No: Is MR y ?

Is MR x ?

b.	 Given:	 x y

MR ED

MR y

  

Prove:	 ED x
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a.	

Statements Reasons

b.	

Statements Reasons

**7	 Given:    GN p

LE p

GL NE

Prove:    NGLE is a rectangle (paragraph proof)

(Note the similarity of this problem to the first example. The one minor difference here makes this 
problem much harder.)
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Solutions
1	 Statements Reasons

 1) �BD p  1) �Given.

 2) �BD AC  2) �If a line is perpendicular to a plane, then it’s 
perpendicular to every line in the plane that passes 
through its foot.

 3) � BCA is a right angle

DCA is a right angle

 3) �Definition of perpendicular.

 4) � BCA DCA  4) �All right angles are congruent.

 5) �AC
� ���

 bisects BAD  5) �Given.

 6) � BAC DAC  6) �Definition of bisect.

 7) �AC AC  7) �Reflexive.

 8) � BAC DAC  8) �ASA (4, 7, 6).

 9) �BC DC  9) �CPCTC.

10) �C is the midpoint of BD 10) �Definition of midpoint.

2	 Statements Reasons

 1) �VX q  1) �Given.

 2) �VX WZ

VX WY

 2) �If a line is perpendicular to a plane, then it’s 
perpendicular to every line in the plane that passes 
through its foot.

 3) � VWZ  is a right angle

VWY  is a right angle

 3) �Definition of perpendicular.

 4) � VYZ  is isosceles with base YZ  4) �Given.

 5) �VZ VY  5) �Definition of isosceles triangle.

 6) �VW VW  6) �Reflexive.

 7) � VWZ VWY  7) �HLR (5, 6, 3).

 8) � ZVW YVW  8) �CPCTC.

 9) �VX VX  9) �Reflexive.

10) � ZVX YVX 10) �SAS (5, 8, 9).

11) �ZX YX 11) �CPCTC.

12) � XYZ  is isosceles 12) �Definition of isosceles triangle.
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3	 Statements Reasons

 1) �ST r  1) �Given.

 2) �ST TV

ST TU

 2) �If a line is perpendicular to a plane, then it’s perpendicular 
to every line in the plane that passes through its foot.

 3) � STV  is a right angle
STU  is a right angle

 3) �Definition of perpendicular.

 4) � STV STU  4) �All right angles are congruent.

 5) � TVU TUV  5) �Given.

 6) �TV TU  6) �If angles, then sides.

 7) �ST ST  7) �Reflexive.

 8) � STV STU  8) �SAS (6, 4, 7).

 9) �SV SU  9) �CPCTC.

10) � SVU SUV 10) �If sides, then angles.

*4	 Statements Reasons

 1) �Circle O in plane p
AOZ  and BOZ  are 

right angles

 1) �Given.

 2) �OZ p  2) �If a line is perpendicular to two lines that lie in a plane and 
pass through its foot, then it is perpendicular to the plane.

 3) �Draw radius OC  3) �Two points determine a segment.

 4) �OZ OC  4) �If a line is perpendicular to a plane, then it’s perpendicular 
to every line in the plane that passes through its foot.

 5) � COZ  is a right angle  5) �Definition of perpendicular.

 6) � AOZ COZ  6) �All right angles are congruent.

 7) �OA OC  7) �All radii are congruent.

 8) �ZO ZO  8) �Reflexive.

 9) � AOZ COZ  9) �SAS (7, 6, 8).

10) �ZA ZC 10) �CPCTC.

11) �Draw chords AB  and BC 11) �Two points determine a segment.

12) �AB BC  12) �Given.

13) �AB BC 13) �If arcs, then chords.

14) �ZB ZB 14) �Reflexive.

15) � AZB CZB 15) �SSS (10, 13, 14).

16) � AZB CZB 16) �CPCTC.

To find out more about arcs and circles, read up on them in Chapter 9.
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5	 Statements Reasons

 1) �s y    1) �Given.

 2) �IA
���

 and IU
� ��

 determine a plane, AEIOU  2) �Two intersecting lines determine a plane.

 3) �EO AU
� ���
�
� ����

   3) �If a plane intersects two parallel planes, then the lines 
of intersection are parallel.

 4) � EIO is isosceles with base EO  4) �Given.

 5) �IE IO  5) �Definition of isosceles triangle.

 6) � IEO IOE  6) �If sides, then angles.

 7) � IEO IAU

IOE IUA

 7) �If lines are parallel, then corresponding angles are 
congruent.

 8) � IAU IUA  8) �Transitivity.

 9) �IA IU  9) �If angles, then sides.

10) � AIU  is isosceles 10) �Definition of isosceles triangle.

6	 Here are the answers.

a.	 Statements Reasons

1) �x y   1) �Given.

2) �MR ED   2) �Given.

3) �MR
� ���

 and ED
� ���

 determine  
plane MRED

3) �Two parallel lines determine a plane.

4) �RE MD
� ���
�
� ����

  4) �If a plane intersects two parallel planes, then the lines 
of intersection are parallel.

5) �MRED is a parallelogram 5) �Definition of parallelogram.

6) �MR MD 6) �Given.

7) � RMD is a right angle 7) �Definition of perpendicular.

8) �MRED is a rectangle 8) �A parallelogram with a right angle is a rectangle.

Answer to the Yes or No question: MR  may or may not be perpendicular to plane y. 
(Remember, to know that a line is perpendicular to a plane, you must know that it is 
perpendicular to two lines in the plane that pass through its foot, not just one line. It’s 
possible that MRED is slanting toward or away from you.) If MR  is perpendicular to plane y, 
it’s perpendicular to plane x as well. If it’s not perpendicular to y, it’s also not 
perpendicular to x.
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b.	 Statements Reasons

1) �x y  

MR ED

MR y

  

1) �Given.

2) �ED y 2) �If a plane is perpendicular to one of two parallel lines, 
then it is perpendicular to the other.

3) �ED x 3) �If a line is perpendicular to one of two parallel planes, 
then it is perpendicular to the other.

**7	 This proof begins just like the first three lines of the example proof: GN  and LE  are perpen-
dicular to p (given), GN  is parallel to LE  (the two lines are perpendicular to the same plane), 
and GN
� ���

 and LE
� ���

 determine plane NGLE.

Then you state that LE NE, because if a line is perpendicular to a plane, the line is perpen-
dicular to any line in the plane that passes through its foot. And then you have that E  is a 
right angle (you can show that N  is a right angle the same way, but it doesn’t help). Okay, 
so now you have a quadrilateral with two parallel sides (GN  and LE) — call them bases —  
where the other two sides are congruent and where one base angle is a right angle:

Now comes the tricky part.

Even though it’s obvious that NGLE must be a rectangle, I couldn’t find a way to prove it with 
ordinary techniques. I drew in diagonals GE  and NL, and I tried to use things like alternate 
interior angles are congruent to get congruent triangles (see Chapter 6). I wanted to show that 
GL NE    or that L is a right angle. Nothing worked. (If anyone out there finds a way to fin-
ish this proof with ordinary methods, please let me know about it.)

Here’s how I finished the proof. The only quadrilaterals with parallel bases in which the 
other two sides are congruent are parallelograms and isosceles trapezoids (see Chapter 7). 
Assume NGLE is an isosceles trapezoid. Its base angles would therefore be congruent, and 
that would make L a right angle. But if E  and L were right angles, then NGLE would be a 
rectangle, which contradicts the assumption (because a rectangle is not an isosceles trape-
zoid). Therefore, NGLE must be a parallelogram. This parallelogram has a right angle, and 
therefore it’s a rectangle (one of the ways of proving that a parallelogram is a rectangle; see 
Chapter 6). Bingo. That’s it.
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Solid Geometry: Digging 
into Volume and Surface 
Area (No Proofs)

When working in flat, 2-D space previously in this book, I introduce lines and angles 
and then move on to planar shapes like triangles and parallelograms. Now I delve 
into more than just flat things. In this chapter, you can take a look at all kinds of 

new and fun figures in the next dimension — cylinders, prisms, cones, pyramids, and spheres 
(got your 3-D glasses handy?).

Starting with Flat-Top Figures
Flat-top figure is my nontechnical name for a cylinder or a prism. Both figures have — guess 
what? — a flat top. This flat top is called a base, and it’s congruent to and parallel to the other 
base at the bottom of the figure. I group prisms (whose bases are polygons) and cylinders together 
because computing their volume basically works the same way; ditto for computing surface area:

»» Volume of flat-top figures. The volume of a prism or cylinder is given by the following formula:

Vol area heightFlat-Top base

Chapter 12

IN THIS CHAPTER

»» Finding the surface area and 
volume of cylinders and prisms

»» Calculating the area and volume of 
cones and pyramids

»» Having a ball with spheres
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»» Surface area of flat-top figures. To find the surface area of a prism or a cylinder, use the 
following formula:

SA area lateral areaFlat-Top base rectangle(s)2

The lateral area (that’s the area of the sides of the figure — namely, everything but the bases) 
of a right prism is made up of rectangles. The lateral area of a right cylinder is basically one 
rectangle rolled into a tube-shape — like one paper towel that rolls exactly once around a paper 
towel roll. The base of this rectangle (you know, its length) is thus the circumference of the 
cylinder.

Q.	 A cylinder with a volume of 125  units3 has a height equal  
to its radius. Find its surface area.

A.	 First, use the volume formula:

Vol area height

 because

Flat-Top base

125

125

2

3

r h

r h r( )

rr h5 5  and, therefore  ( , )

Now you can compute the surface area:

SA area lateral areaFlat-Top base rectangle2

2 2

2 5

2r r h
22

2

2 5 5

50 50

100 units

1	 Find the volume and surface area of this 
prism.

2	 Find the volume and surface area of this 
prism, whose bases are equilateral triangles.
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*3	 Find the volume and surface area of a box 
(technically a prism) with a height of 2, a 
width of 2 3, and a diagonal of 8.

4	 Answer the following:

a.	 What’s the volume and surface area of a 
cylinder with height and diameter both 
equal to 4?

*b.	 An ant crawls along the outside of the  
cylinder from A to C. If the ant goes 
straight across the top to B and then 
straight down to C, it goes a distance of 8. 
Is there a shorter route? If so, what’s the 
shortest possible route, and how long is it?

5	 A cylinder has a diameter of 6 and a lateral 
area of 60 . Find its volume and surface area.

*6	 A cylinder with a height of 6 has a surface area 
of 54 . Find its volume.
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Sharpening Your Skills with Pointy-Top Figures
Something tells me that you’ve already figured out that pointy-top figures are figures with 
pointy tops. This is my nontechnical name for pyramids and cones. And just like with prisms 
and cylinders, I group pyramids and cones together because computing volume basically works 
the same for both — as does computing surface area:

»» Volume of pointy-top figures. The volume of a pyramid or cone is given by the following 
formula:

VolPointy-Top basearea height 1
3

»» Surface area of pointy-top figures. The following formula gives you the surface area of a 
pyramid or cone:

SA area lateral area  Pointy-Top base triangle(s)

The lateral area of a pyramid is made up of triangles whose areas work just like the area of any 

triangle: 1
2

base height. But note that the height of a triangle is perpendicular to its base, so 

you can’t use the height of the pyramid for the height of one of its triangular faces. Instead, you 
use the slant height, which is just the ordinary height of the triangular face — if you look at the 
face like an ordinary flat, two-dimensional triangle. (The cursive letter ℓ is used to indicate 
slant height.)

Just like the lateral area of a cylinder is one rectangle rolled around into a tube-shape, the lat-
eral area of a cone is one triangle (sort of — its bottom is curved) rolled around into a shape like 
a snow-cone cup. Its area works exactly like the area of one of the triangular faces of a pyramid, 
1
2

base slant height , where the base of this “triangle” (just like the base of the lateral rect-

angle in a cylinder) equals the circumference of the cone.

Q.	 Find the volume and surface area of these  
similar cones (that’s similar in the  
technical sense — see Chapter 8 for  
more on similarity), one of which has  
dimensions that are double the other.  
What do you notice about the answers?
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A.	 Doing volume first,

Vol area height

 units

V

Small Cone base
1
3
1
3
1
3

3 4

12

2

2

3

r h

ool

 units

Large Cone
1
3
1
3

6 8

96

2

2

3

r h

The volume of the large cone is eight times the volume of the small one.

To find the cones’ surface areas, you need their slant heights. If you use the height of 
a cone and one of its radii to form the legs of a right triangle, then the hypotenuse of the 
triangle is the cone’s slant height. For the small cone in this problem, you have a 3 4 5 
right triangle, so the slant height is 5 (see Chapter 4 for more on Pythagorean triples). 
In the large cone, the slant height is 10. Now you can compute their surface areas:

SA area lateral triangle              

     
 

Small Cone base

            base  height 

                          

1
2

            

circumference slant height



r

r r

2

2

1
2
1
2

2 5

9 1
2

2 3 5

9 15

24

1
2

2

2

 units

SA Large Cone r 22

6 1
2

2 6 10

36 60

96

2

2

r slant height

 units

The large cone has four times the surface area of the small cone. So, the large cone, 
which is twice the size of the small cone, has eight 23  times as much volume and  
four 22  times as much surface area.
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See the rule? Here it is:

The squaring and cubing rule for similar 3-D shapes. If you enlarge a 3-D figure by a 
factor of k, its surface area grows k2 times and its volume grows k3 times.

A good way to remember this rule is to note the connection between the rule and the 
fact that surface area is two-dimensional and is measured in units2 and that volume is 
three-dimensional and is measured in units3.

7	 Find the volume and surface area of this 
rectangular, right pyramid.

*8	 Find the volume and surface area of a regular 
tetrahedron with edges of 6. (A regular tetra-
hedron is a pyramid with four equilateral 
triangle faces.)
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9	 The circumference of the base of a cone is 16 , 
and the cone’s height is 6. Find the cone’s 
volume and surface area.

10	 Try this one on for size:

*a.	 Find the volume of this double cone, which 
has a radius of 8 and a total height of 21.

b.	 If the lateral surface area of the left-side 
cone is 80 , what’s the lateral surface area 
of the right-side cone?

Rounding Out Your Understanding  
with Spheres

I’m running short on space, so I better cut to the chase:

»» Volume of a sphere. The volume of a sphere is given by the following formula:

VolSphere
4
3

3r

»» Surface area of a sphere. Yada, yada, yada:

SA Sphere 4 2r
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Q.	 How do the volumes of a cube and an inscribed sphere  
compare? How do their surface areas compare?

A.	 Check it out:

Vol

Vol

Sphere

Cube

4
3

2

8

3

3

3

r

r

r

Vol
Vol

Sphere 

Cube 

4
3
8

6
0 52

3

3

r

r

.

Thus, if you buy, say, a basketball that comes in a box, the basketball takes up about 
52 percent of the volume of a box. (I’m sure you’ve been dying to know this.)

SA

SA sides

Sphere

Cube

4

24

6 2

2

2

2

r

r

r

SA
SA

or about  

Sphere

Cube

4
24

6
52

2

2
r
r

%

The very same percentage.

11	 A cylinder with a radius of 5  and a height of 
4 is inscribed in a sphere. Find the volume 
and surface area of the sphere.

12	 The hemispherical (half-sphere) top of a 
50-foot-tall grain silo has a surface area of 
200  square feet. How many cubic feet of 
grain can the silo hold?
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Solutions
1	 For both the volume and surface area, you need the sides of the 30 60 90  triangle. Its 

short leg is 6, so its long leg is 6 3  and its hypotenuse is 12. You’re all set to go.

Vol area height

 units

SA are

base

1
2

6 6 3 10

18 3 10

180 3

2

3

aa three lateral rectanglesbase

2 18 3 6 10 6 3 10 12 10

336 3 60 60 3 120

180 96 3 2 units

2	 All you need is the length of the base of the equilateral triangle. The triangle’s altitude is 6, 

and that’s the long leg of a 30 60 90  triangle. The short leg is therefore 6
3

, or 2 3, and 

the hypotenuse is twice that, or 4 3  (see Chapter 4 for more on making this calculation). And 
that’s the length, of course, of the sides of the equilateral triangle. Thus,

Vol area height

 units

SA area

base

base

1
2

4 3 6 12

144 3

2

3

tthree lateral rectangles

 un

2 12 3 3 12 4 3

24 3 144 3

168 3 iits2

*3	 Draw CH ; that’s the hypotenuse of yet another 30 60 90  triangle ( CGH). The length of 
the short leg, CG, is 2, so CH is 4.

Now, note that BCH  is a right triangle with its right angle at C. One of its legs is 4 and its 
hypotenuse is 8, so — hold onto your hat — BCH  is another 30 60 90  triangle. The 
length of its long leg, BC , is the length of the short leg, CH , times 3, so BC is 4 3. You have 
what you need to finish:

Vol the same thing as 

 u

 ( )l w h area heightbase

4 3 2 3 2

48 nnits

SA base front right side the same thing a(

3

2 2 2 ss  )2

2 4 3 2 3 2 4 3 2 2 2 3 2

area lateral rectanglesbase 

2 24 2 8 3 2 4 3

48 24 3 2 units
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4	 Here are the answers:

a.	 The diameter is 4, so the radius is 2; thus,

Vol area height

 units

SA area

base

r h2

2

3

2 4

16

2 bbase lateral area  (which equals )circumference height

2 rr r h2

2

2

2

2 2 2 2 4

8 16

24  units

*b.	 This question is a great think-outside-the-box problem. Here’s the trick: Imagine divid-
ing the cylinder in half by cutting it along a plane that goes through A, B, and C and cuts 
the base along the dotted diameter. Now take the front half of the lateral area, uncurl it, 
and lay it flat. Here’s what you get:

AB  (in this rectangle, not across the top of the cylinder) has a length of half the circum-
ference of the cylinder. That’s 2 . The shortest path from A to C is straight, of course — 
that’s AC , which is the hypotenuse of right ABC . Its length is

c a b

c

2 2 2

2 2

2

2 2

4 2

16 4

16 4 2 4

7 4.

That’s the shortest route; it curves along the outside of the cylinder, going diagonally down 
from A to C.

5	 You need the cylinder’s radius and height. The diameter is 6, so the radius is 3. To get the 
height, you use the fact that the lateral area is a rectangle with an area of circumference · 
height. So

60

60 6

10

diameter height

h

h
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Thus,

Vol area height

 units

base

r h2

3

3

3 10

90

And

SA area lateral area

  (this was given)

base2

2 60

2 3

2r
22

2

60

78  units

*6	 You’re given the surface area, so you have to begin with that formula:

SA area lateral rectangle

SA

base2

2 22r rh

Now plug in the given information:

54 2 2 6

54 2 6

27 6

6 27 0

9 3 0

2

2

2

2

r r

r r

r r

r r

r r

r 9 3 or 

You can reject –9, so r is 3. The rest is a walk in the park:

Vol area height

 units

base

r h2

2

3

3 6

54

This cylinder is unusual and interesting because both the surface area and the volume are 54 . 
(For extra credit: Do you see why I didn’t say that the surface area and the volume are equal?)

7	 To get the surface area, you need the slant heights, the lengths of ZS  and ZT . (Note that 
because this is not a regular pyramid — a pyramid with a regular polygon as its base and 
congruent lateral edges — these slant heights are not equal.) Then you use one of the slant 
heights to get the pyramid’s height.

Keep looking for right triangles — that’s the key to problems like this. ASZ  is a right trian-
gle with a leg of 5 (half of AB) and hypotenuse of 5 10, so

ZS AS ZA

ZS

ZS

ZS

2 2 2

2 2 2

2

5 5 10

225

15
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BTZ  is another right triangle, with a leg of 9 (half the length of BC ):

ZT

ZT

ZT

2 2 2

2

9 5 10

169

13

You’re all set to do the surface area:

SA area four lateral trianglesPointy-Top base

10 18 1
2

10 15
  left face front right same as left

1
2

18 13 1
2

10 15 1
2

18 13

564 2

back same as front

=180 + 75 +117 + 75 +117

 units

For the volume, you need the height, ZN. Well, ZNS  is a right triangle with a leg, SN , that 
measures half of BC (so SN is 9) and a hypotenuse, ZS, that’s 15 units long. You can finish 
with the Pythagorean Theorem, or if you’re on your toes, you’ll notice that this triangle is in 
the 3 4 5: :  family and that ZN is thus 12.

Volume area height

 units

Pointy-Top base
1
3
1
3

10 18 12

720 3

*8	 You can get the slant height, AE, fairly easily because AEC  is a 30 60 90  triangle. The 
short leg, CE, is 3 units long, so AE is 3 3.

To get the height, AF, imagine looking down on the base, BCD, like this:

EFD is, naturally, another 30 60 90  triangle. (You were expecting, maybe, a 29 57 94   

triangle?) ED is half of edge CD, so ED is 3, and that makes FE  3
3

, or 3, and FD  2 3.

Now you can use either FE  with AE  or FD  with AD to get the height. I use FE. Look back at 
the 3-D figure. AFE  is a right triangle, so you get AF with the Pythagorean Theorem:

AF FE AE

AF

AF

AF

2 2 2

2 2 2

2

3 3 3

3 27

24 2 6
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Time for the formulas, schmormulas:

Vol area heightPointy-Top base
1
3
1
3

3
4

1
3

6 3
4

2 6

6 18

1

2

2

s
h

88 2 3 units

For surface area, I just realized that you don’t need to use the formula. Instead, you can just 
use the fact that a regular tetrahedron is four equilateral triangles. Thus,

SA

 units

4 6 3
4

36 3

2

2

9	 Circumference equals 2 r, so

16 2

8

r

r

Now, the height of 6 and radius of 8 form the legs of a right triangle with the slant height as 
its hypotenuse. You have a triangle in the 3 4 5: :  family, so the slant height is 10. Thus,

Pointy-Top base

2

2

3

Pointy-Top base

2

2

2

1Vol area height
3
1
3
1 8 6
3
128  units

SA area one lateral “triangle”

1 circumference slant height
2

1 2 slant height
2

18 2 8 10
2

64 80

144  units

r h

r

r r
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10	 Here are the answers:

*a.	 Call the height of the left-side cone x; then the height of the right-side cone is 21 x.

Total volume vol vol

area

left-side cone right-side cone

b
1
3 aase baseheight area height1

3
1
3

8 1
3

8 212 2x x

664
3

64
3

21

64
3

21

64
3

21

448 3

x x

x x

 units

The way the x drops out tells you that the x is irrelevant and, therefore, that the volume of 
this shape will be the same regardless of how far to the left or right the circular “base” is. 
Pretty nifty, eh?

b.	 The surface area, on the other hand, does depend on where the “base” is. The lateral area 

of a cone equals 1
2

circumference slant height , so for the left-side cone

            slant height

            sla

80 1
2

2 8

80 8 nnt height

slant height 10

Will wonders never cease! You have another 3 4 5: :  triangle here. So, the height of the left-
side cone is 6. Then, 21 6 gives you 15, the height of the right-side cone. And then you 
notice, of course, that you have an 8 15 17 triangle on the right, so the right-side slant 
height is 17.

SA circumference slant height

units 

1
2
1
2

2 8 17

136 22

11	 In many sphere problems (like with many circle problems), the key is finding the right 
radius or radii. Often, a radius becomes the hypotenuse of a right triangle. Find the right 
one? Here it is:

r

r

r

2 2 2

2

2 5

9

3 
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Thus,

Vol

 units

SA

 u

Sphere

Sphere

4
3
4
3

3

36

4

4 3

36

3

3

3

2

2

r

r

nnits2

Only a sphere with a radius of 3 has a volume (in cubic units) equal to its surface area 
(in square units).

12	 The surface area of a sphere equals 4 2r , so, obviously, a hemisphere has a surface area of 
half that, or 2 2r :

SA Hemisphere 2

200 2

100

10

2

2

2

r

r

r

r

The radius of the cylinder is also 10, of course.

The “height” of the hemisphere (from its “peak” straight down to the center of its circular 
base) is just one of its radii, so that’s 10. Because the total height is 50, the height of the 
cylinder is 50 10, or 40. Now you have what you need to finish:

Total volume

area height

cylinder hemisphere

base

vol vol

vo1
2

ll

,

,

sphere

10 40 1
2

4
3

10

4000 2000
3

14 000
3

14 661

2 3

  feet3
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Loci, and 
Constructions: 
Proof and Non-
Proof Problems



IN THIS PART . . .

Look at geometry from the practical viewpoint of where 
things are, how far they are from other things, what 
their orientation is, and so on.

Consider what happens to shapes when you spin them 
around, slide them, or flip them over.

Solve locus problems, where you’re given certain 
conditions that the shape must satisfy, and you have to 
figure out what the shape is.
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Coordinate Geometry, 
Courtesy of Descartes 
(Including Proofs)

For someone who is said to have slept till 11 a.m. every day, René Descartes (1596–1650) — 
not pronounced “Dess-cart-eez” — sure achieved a lot: world-famous philosopher, music 
theorist, physicist, and, of course, mathematician. Not too shabby, eh? Of interest here 

is the fact that he played a significant role in the evolution of geometry: He made the move 
from analyzing geometric shapes that exist independently of any location or orientation (the 
way the Greeks did geometry, and the way I’ve done problems up to this point in this book) 
to placing geometric shapes in the x-y coordinate system and using algebra to analyze them.

Chapter 13

IN THIS CHAPTER

»» Line and segment formulas you 
may (or may not) fondly 
remember

»» Completing coordinate proofs 
algebraically

»» Working with handy equations for 
circles and lines
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Formulas, Schmormulas: Slope,  
Distance, and Midpoint

Here are a few formulas you probably know (have a faint recollection of?) from Algebra I. You’ll 
use these formulas to do the same sort of problems you have done in earlier chapters but in a 
completely different way.

»» Slope formula: The slope of a line containing two points — x y1 1,   and x y2 2,   — is 
given by the following formula (don’t ask me why, but the letter m is typically used for  
the slope):

Slope rise
run

m
y y
x x

2 1

2 1

»» Slope of horizontal lines: The slope of a horizontal line is zero. Think about driving on a 
horizontal, flat road — the road has no steepness or slope.

»» Slope of vertical lines: The slope of a vertical line is undefined (because the run is zero and 
you can’t divide by zero). Think about driving up a vertical road — you can’t do it; it’s impos-
sible. And it’s impossible to compute the slope of a vertical line.

»» Slope of parallel lines: The slopes of parallel lines are equal (unless both lines are vertical, 
in which case both of their slopes are undefined).

»» Slope of perpendicular lines: The slopes of perpendicular lines are opposite reciprocals of 

each other, like 3 and  1
3

 or  2
5

  and  5
2

 (unless one line is horizontal slope 0  and the 

other line is vertical [slope is undefined]).

»» Midpoint formula: The midpoint of the segment with endpoints at x y1 1,   and x y2 2,   is 
given by the formula

Midpoint  
x x y y1 2 1 2

2 2
,

Just remember, the midpoint is the average of the x’s and the average of the y’s.

»» Distance formula: The distance from x y1 1,   to x y2 2,   is given by the following formula:

Distance x x y y2 1
2

2 1
2

The distance formula is simply the Pythagorean Theorem solved for c, the hypotenuse. The 
legs of the right triangle have lengths equal to the change in the x-coordinates and the 
change in the y-coordinates. If you just remember this connection, you can always solve a 
distance problem with the Pythagorean Theorem even if you forget the distance formula.
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Q.	 Show that ISOT is an isosceles trapezoid.

A.	 To prove that ISOT is an isosceles trapezoid, you must show that IS    TO  (definition of 
a trapezoid; see Chapter 5) and that IT SO (the meaning of isosceles). (And for stick-
lers, there’s one more thing to show: It’s totally obvious from the diagram, but you 
have to show that IT  is not parallel to SO — otherwise, ISOT would be a parallelogram 
and thus not a trapezoid.)

First, check the slopes:

Slope
IS

15 3
11 2

12
9

4
3

Slope
TO

10 2 3
12 4 7

7 2
5 4

4
3

.

.
.
.

Check; IS is parallel to TO .

Now check the lengths of IT  and SO with the distance formula. Actually, although the 
distance formula works fine for IT, you don’t need it. For vertical and horizontal seg-
ments, the distance is obvious. From I to T, you go straight across from 2 to 7, so the 
length is 5. For SO, you have

SO 12 4 11 10 2 15

1 4 4 8

1 96 23 04

25

5

2 2

2 2

. .

. .

. .

Check; IT SO.

You can easily check for yourself that IT  is not parallel to SO, so that does it: ISOT is an 
isosceles trapezoid.
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1	 Show that ABCD is a rhombus

a.	 By showing the four sides congruent

b.	 Without using the lengths of the sides

Hint: Consider the other properties of a 
rhombus.

2	 Using the diagram,

a.	 Show that PLOG is a parallelogram

b.	 Find its area and perimeter

3	 Take a look at ABC .

a.	 What type of triangle is ABC : acute, 
obtuse, or right? Equilateral, isosceles,  
or scalene?

b.	 Find its area and perimeter

4	 Use the diagram and its labeled coordinates to

a.	 Show that KITE is a kite

b.	 Find its area

c.	 Find the point where its diagonals intersect
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Mastering Coordinate Proofs with Algebra
In this section, you get to see the power of doing geometry analytically, that is, with algebra. 
You prove the same types of things you proved in the chapter on quadrilaterals, but this time 
without any of the methods you used there (like congruent triangles, CPCTC, alternate interior 
angles, and so on). Sometimes proving something analytically is easier than with two-column 
proof methods. The second practice problem (#6) is a case in point. If you happen to see the 
trick, doing the proof the regular two-column way isn’t that hard. But if you don’t, you may 
not be able to do the proof the regular way. Doing it analytically, however, works like a charm.

Q.	 Use the isosceles trapezoid in the figure to prove 
that the diagonals in an isosceles trapezoid are 
congruent.

Note: I can’t explain it fully here, so you have to take my word for it that this figure 
covers all conceivable isosceles trapezoids. You can place one vertex at the origin and 
another on the x-axis at a,  0  and put the whole trapezoid in the first quadrant “with 
no loss of generality,” as mathematicians say. (Caution: It’s probably not the best idea 
to use this phrase when you’re out on a date.)

A.	 The proof is sort of one step long (or one idea long): You simply use the distance for-
mula to show that the diagonals are congruent (for this property of isosceles trapezoids 
and more, check out Chapter 7):

SA NP

a b c a b c

a b c a b c

?

?

?

0 0 02 2 2 2

2 2 2 22

You know that c 2 is the same as c 2, so these values are equal. That does it.
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5	 Given that the quadrilateral in the figure is  
a parallelogram, prove analytically that  
the diagonals of a parallelogram bisect  
each other.

6	 Use the figure to prove that if you connect the 
midpoints of the sides of any quadrilateral, 
you create a parallelogram. (For an extra 
challenge, try to prove this with ordinary two-
column proof methods.)

Using the Equations of Lines and Circles
Lines and circles don’t seem to have much in common at first glance; after all, lines are one-
dimensional objects that go one forever in both directions, while circles are two-dimensional 
objects (if you count their interiors) that cover a definite amount of space. The major thing that 
lines and circles do have in common is that they become very important in subsequent math 
classes, like trigonometry and calculus. These equations will keep popping up in your classes 
over and over again, so you might as well get used to ’em now and get ahead of the game.

Line equations. Here are the basic forms for equations of lines.

»» Slope-intercept form:

y mx b

where m is the slope and b is the y-intercept 0, b .

»» Point-slope form:

y y m x x1 1

where m is the slope and x y1 1,   is a point on the line.
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»» Horizontal line:

y b

where b is the y-intercept.

»» Vertical line:

x a

where a is the x-intercept.

Circle equation. And here’s the equation of a circle:

x h y k r2 2 2

where (h, k) is the center of the circle and r is its radius.

Q.	 A circle whose center is at 6 5,  is tangent to a line 
at 2, 7 . What are the equations of the circle and 
the line, and what is the line’s y-intercept?

A.	 You have the circle’s center, so all you need for the circle’s equation is its radius.  
Use the distance formula:

r 6 2 5 7

4 2

20

2 5

2 2

2 2

Thus, the equation of the circle is

x y6 5 2 52 2 2
, or

x y6 5 202 2

For the equation of the line, you have a point, so all you need is the slope. A line tangent 
to a circle is perpendicular to the radius drawn to the point of tangency, so first you 
need the slope of this particular radius:

SlopeRadius
7 5
2 6

1
2
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Because the line is perpendicular to the radius, their slopes are opposite reciprocals. The 

opposite reciprocal of 1
2

 is 2, so that’s the line’s slope, and now you have everything 

you need to plug into the point-slope form:

y y m x x1 1

y x7 2 2

Finally, to get the y-intercept, just transform this equation into slope-intercept form:

y x

y x

y x

7 2 2

7 2 4

2 3     

The y-intercept is (0, 3).

*7	 A circle with equation x y r7 2 2 2 is tangent to lines at 4, 4  and 11 3, . Find r and a b,  .
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Solutions
1	 Here’s what you do:

a.	 From A to B, you go straight across from 12 to 1, so AB is 13. And DC is obviously also 13. 
Now use the distance formula for AD and BC (though you don’t need to if you recognize 
the 5 12 13 triangles — see Chapter 4):

AD

BC

0 12 0 5

12 5

13

13 1 0 5

12 5

2 2

2 2

2 2

2 2

13

That’s it. All four sides have a length of 13, so ABCD is a rhombus.

b.	 You can show that ABCD is a rhombus without using the lengths of the sides by first 
showing that ABCD is a parallelogram and then that its diagonals are perpendicular (check 
out Chapter 7 for the properties of a rhombus).

AB  and DC  have slopes of 0, so they’re parallel. Now check the slopes of AD and BC :

Slope

Slope

AD

BC

0 5
0 12

5
12

0 5
13 1

5
12

With two pairs of parallel sides, ABCD must be a parallelogram.

Now check the slopes of the diagonals:

Slope

Slope

AC

DB

0 5
13 12

1
5

5 0
1 0

5

Because 5 and 1
5

 are opposite reciprocals, AC DB.  ABCD is thus a rhombus, because a 

parallelogram with perpendicular diagonals is a rhombus.

2	 Here’s how this one unfolds:

a.	 PG and LO are both vertical, so they’re parallel. Now check the other sides:

Slope

Slope

PL

GO

6 1
4 1

5
3

3 2
4 1

5
3

That’s all there is to it. PLOG is a parallelogram.
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b.	 You can use PG for the base of the parallelogram; its length is 3. The height of PLOG is 
thus horizontal because it’s perpendicular to the base, PG; it goes straight to the right 
from x 1 to x 4. So, the height is also 3, and the area of PLOG is thus 3 times 3 (base 
times height), or 9 units2 (see Chapter 7 for more on calculating the area of quadrilaterals).

The perimeter is a snap. PG and LO both have a length of 3. And

PL 4 1 6 1

3 5

34

2 2

2 2

Because you already know that PLOG is a parallelogram, GO has to be congruent to PL, so 
it’s also 34  units long. Thus, the perimeter of PLOG is 3 3 34 34 , or 6 2 34 .

3	 To solve these problems, you use the triangle basics I cover in Chapter 4.

a.	 A looks like a right angle, so cross your fingers and check the slopes of AB  and AC   
(if A is a right angle, this problem becomes much easier).

Slope

Slope

AB

AC

10 1
5 2

3

2 1
11 2

1
3

These answers are opposite reciprocals, so AB AC , and thus A is a right angle; ABC  is 
a right triangle.

Now compute the lengths of legs AB  and AC :

AB

AC

5 2 10 1

3 9

90

3 10

11 2 2 1

9 3

2 2

2 2

2 2

2 2

33 10

AB AC , so voilà, you have a 45 45 90  triangle, or, in other words, an isosceles right 
triangle.

b.	 The area of a right triangle equals one half the product of its legs, so

Area

units

ABC
1
2

3 10 3 10

45 2

The legs are 3 10 , so the hypotenuse is 2 3 10, or 6 5 , and thus the perimeter of ABC  
is 3 10 3 10 6 5 , or 6 10 6 5 .
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4	 If you need a review, Chapter 6 explains the properties of kites.

a.	 By definition, a kite must have two pairs of adjacent congruent sides. Use the distance 
formula:

KI

KE

2 1 10 3

1 7

5 2

8 1 2 3

5 2

2 2

2 2

2 2

So far, so good.

IT

ET

13 2 12 10

11 2

5 5

13 8 12 2

5 10

5 5

2 2

2 2

2 2

2 2

Bingo. KITE is a kite.

b.	 The area of a kite equals half the product of its diagonals (see Chapter 7), so you need 
their lengths:

KT

IE

13 1 12 3

12 9

15

8 2 2 10

6 8

10

2 2

2 2

2 2

2 2

Area

 units

KITE d d
1
2
1
2

15 10

75

1 2

2
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c.	 KT  is the perpendicular bisector of IE  (property of a kite; see Chapter 6), so all you need is 
IE’s midpoint:

Midpoint  

 

 

IE

x x y y1 2 1 2

2 2

2 8
2

10 2
2

5 6

,

,

,

5	 The proof here is odd in a way, but it works. You might think that you have to first find 
where the diagonals cross and then show that this point bisects each diagonal. Instead, you 
simply show that the midpoints of the two diagonals are at the same point:

Midpoint  

 

Midpoint

JL

IK

b a c

b a c

a

2
0

2

2 2

0

,

,

bb c

a b c

2
0

2

2 2

,

,

 

 

You’re done. This simple procedure does, in fact, prove that the diagonals of any parallelo-
gram bisect each other.

6	 You need to get the coordinates of the midpoints using — hold onto your hat — the midpoint 
formula. Then use them to find the slopes of the sides of MNOP.

M
a g b h

N
a c b d

O
c e d f

P
g

2 2

2 2

2 2

,

,

,

 

 

 

ee h f
2 2

, 

Slope

      (mu

MN

b d b h

a c a g

b d b h
a c a g

2 2

2 2

lltiplying top and bottom by 2

Slope

)

d h
c g

d f h f

c ePO

2 2

22 2
g e

d h
c g
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One pair of parallel sides down, one to go:

Slope

Slope

MP

NO

h f b h

g e a g

f b
e a

d f b d

c e a c

2 2

2 2

2 2

2 22
f b
e a

Bingo. It’s a parallelogram. Pretty cool, eh? No matter what weird quadrilateral you begin 
with, you always get a parallelogram.

*7	 The circle’s equation gives you its center: 7, 0 . Now use the distance formula to get the 
radius:

r 4 7 4 0

3 4

25 5

2 2

2 2

Well, bust my britches and bless my soul — another 3-4-5 triangle! What are the odds of 
that? To find (a, b), you need the equations of the tangent lines, and for that you need the 
slopes of the lines:

SlopeRadius to  ( , )4 4
4 0
4 7

4
3

The tangent line is perpendicular to this radius, so its slope is the opposite reciprocal of 4
3

, 

namely 3
4

. And now you have what you need for the point-slope form:

y x4 3
4

4

Use the same process for the other tangent line:

SlopeRadius to 11, 3
3 0

11 7
3
4

The tangent line’s slope is the opposite reciprocal of that, namely 4
3

, and thus its equation is

y x3 4
3

11
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Now find the point of intersection of the two lines by solving the system of equations with 
two unknowns. First solve each equation for y:

y x y x

y x

4 3
4

4 3 4
3

11

3
4

4 4

     

                       y x
4
3

11 3

Now set the equations equal to each other and solve:

3
4

4 4 4
3

11 3

9 4 48 16 11 36

9 36 48 16 176

x x

x x

x x 336

9 12 16 212

224 7

32

x x

x

x

Plugging this answer into either tangent line gives you a y-value of 25. Thus a b,   is 32, 25 .
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Transforming the 
(Geometric) World: 
Reflections, Rotations, 
and Translations (No 
Proofs)

You can take any figure, say a triangle, and use a transformation to move it or change it 
in some way. You can slide it, flip it over, shrink it or blow it up, warp it into a differ-
ent shape, and so on. In this chapter, you practice problems involving transformations 

that don’t change the size or shape of a figure. Such transformations — called isometries — 
take a figure and move it, or map it, onto a congruent figure. The “before” figure is called the 
pre-image, and the “after” figure is called the image.

Chapter 14

IN THIS CHAPTER

»» A few reflections on reflections

»» Shifting shapes with translations

»» You spin me right round, Polly: 
Rotating polygons

»» Reflecting thrice: Glide reflections
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Reflections on Mirror Images
I begin this isometries journey with reflections, not because they’re the simplest subject you 
need to tackle here but because they’re the building blocks of all other isometries. In fact, you 
can use a series of reflections to perform all the other transformations I discuss later in this 
chapter. For example, in the next section, I show you that you can translate a figure in any 
direction (which you could do by just sliding it) by instead reflecting the figure over one line 
and then reflecting it again over another line. In fact, if you take, say, two congruent triangles 
and place them anywhere in the x y-  coordinate system — one flipped over, if you like, and 
rotated to any angle — and you want to map one of the triangles onto the other by a series of 
transformations, you never have to rotate or slide the triangle. In one, two, or three reflections 
(you never need more than three), you can make the “before” triangle land exactly on the 
“after” triangle. I find this result interesting and somewhat surprising.

A couple more things before working through an example. (Egad! A sentence fragment!) First, 
check out Figure 14-1. ABC  has been reflected over line l. The result is congruent PQR. ABC  
has also been slid to the right (that move is a translation, if you were wondering), producing 
congruent XYZ . PQR and XYZ  are congruent, but there’s a basic difference between them: 
their orientation. Figures like ABC  and XYZ  have the same orientation because you can make 
one stack perfectly on top of the other by sliding and/or rotating it onto the other. Figures like 

ABC  and PQR, on the other hand, have opposite orientations because you can’t possibly get 
ABC  to line up with PQR without flipping ABC  over. Read on for some theorems.

Reflections and orientation:

»» Reflecting a figure switches its orientation.

»» If you reflect a figure and then reflect it again over the same line or a different line, the 
figure returns to its original orientation. More generally, if you reflect a figure an even 
number of times, the final result is a figure with the same orientation.

»» Reflecting a figure an odd number of times produces a figure with the opposite orientation.

FIGURE 14-1: 
A triangle  

and its 
transformations.
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And here’s one more thing about Figure 14-1. If you form AP  by connecting pre-image A with 
its image point P (or B with Q or C with R), the reflecting line, l, is the perpendicular bisector of 
AP . Pretty cool, huh?

Reflecting lines and connecting segments: When a figure is reflected, the reflecting line is the 
perpendicular bisector of all segments connecting points of the pre-image to corresponding 
points of the image.

After each transformation, you can label the image points with the prime symbol (′). If A is the 
pre-image, the image point is A′.

Q.	 A transformation T maps (or sends) all points 
x y,   to y x,  . Symbolically, T   x y y x, , . 

This transformation is a reflection. Given the 
coordinates of the vertices of ABC , find the 
coordinates of the reflection of ABC , which is 

A B C , and find the equation of the reflecting 
line.

A.	 For vertex A, T   5 3 53, , ; that’s A′

For B, T   7 5 75, , ; that’s B′

For C, T   6 2 62, , ; that’s C′

Now sketch ABC A B C,  , and the reflecting line.

The reflecting line is the perpendicular bisector of AA  (and BB  and CC ). To find this 

line, you first need the midpoint of AA ; that’s 
5 3

2
3 5

2
,  or 4, 4 . Next, compute 

the slope of AA  (see Chapter 13 for more on slope and midpoints); that’s 
5 3

1
3 5

.  
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The perpendicular bisector is, of course, perpendicular to AA , so its slope is the 
opposite reciprocal of –1, which is 1. You have a point, 4, 4 , and the slope, 1, of the 
perpendicular bisector, so you’re all set to plug into the point-slope form (see 
Chapter 13 for more on line equations):

y y m x x

y x

y x

y x

1 1

4 1 4

4 4

That’s it.

1	 Do the following pairs of figures have the 
same or opposite orientations?

2	 Reflect QRST over the line y x.

a.	 Sketch Q′R′S′T′, and give the coordinates of 
Q′ and R′.

b.	 What shape is QQ′R′R?

c.	 What’s the area and perimeter of QQ′R′R?
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3	 Sketch the reflected images and give the  
coordinates of the following triangles.

a.	 ABC  reflected over y x to A B C

b.	 A B C  reflected over y x to A B C

c.	 A B C  reflected over the y-axis to 
A B C

4	 Reflect TUV  over the line y x3 2.

a.	 Find the coordinates of T U V .

Hint: You need the equations of TT , UU  
and VV .

b.	 Show that T U V TUV .

Lost in Translation
Translating or sliding a figure is probably the simplest transformation to picture. It’s so simple, 
in fact, that there wouldn’t be much to say about it if it weren’t for the fact that you can pro-
duce a translation with two reflections. You can picture how this works by imagining that you 
have a playing card — say, the ace of spades — face up in front of you on a table. Now, grab 
the bottom edge of the card and flip the card over (going up, away from you), leaving the top 
edge of the card where it is. You should now see a face-down card whose bottom edge (the one 
close to you) is where the top edge was before you flipped it. Got it? If you repeat this flipping 
procedure, you should see the face-up ace again, pointing the same direction, and the card is 
now farther away from you by a distance equal to twice the height of the card. Thus, you see 
how two reflections (or flips) equals a slide.



290      PART 6  Coordinate Geometry, Loci, and Constructions: Proof and Non-Proof Problems

A translation equals two reflections. A translation of a given distance along a given line is 
equivalent to two reflections over parallel lines that are perpendicular to the given line and sep-
arated by a distance equal to half the distance of the translation. As long as the parallel reflecting 
lines are separated by this distance, they can be located anywhere along the given line.

Q.	 The translation x y x y, ,  12 6  
maps TRI  to T R I .

a.	 Find the distance the triangle has moved.

b.	 Give the equations of two reflecting lines, l1 and l2, which — by reflecting TRI  first 
over l1 and then over l2 — will achieve the same result as the translation.

A.	 Here’s how it all goes down:

a.	 Piece o’ cake. Just use the distance formula from Chapter 13 for II  (or TT  or RR ):

II 8 4 0 6

144 36

6 5

2 2

You can use a slight shortcut here if you realize that the translation instructions tell 
you that you’re moving the figure 12 left and 6 down. If you see that, you just do 
distance 12 62 2 , and so on.

b.	 You need two parallel lines perpendicular to II
���

 and separated by half the length of II . 
There are, literally, an infinite number of correct answers. Here’s an easy way to find 
a pair of lines that work:

The pair of lines must be perpendicular to II
���

, which has a slope of 
6 0

4 8
, or 1

2
, so 

the slope of the parallel lines is the opposite reciprocal of that, namely –2. The first 
line, l1, can go through point I at 4, 6 . Its equation is thus

y x

y x

6 2 4

2 14

Make the second line, l2, parallel to l1 (so its slope is also 2) and have it go through 
the midpoint of II . With this choice, you make the distance between l1 and l2 the 

required distance — half the length of II . The midpoint of II  is 
4 8

2
6 0

2
,  or 
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2, 3 . And thus, when you plug those numbers into the point-slope form of a line 
(see Chapter 13), the equation of l2 is

y x

y x

3 2 2

2 1

Finito.

5	 The translation x y x y, ,  5  maps ISOC 
onto TRAP. Find the equations of two 
reflecting lines that achieve the same result. 
Give three answers (in other words, three 
possible pairs of reflecting lines).

6	 The translation x y x y, ,  9 2  maps 
ABC  onto A B C . Find a pair of parallel 

reflecting lines that achieves the same result.
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So You Say You Want a . . . Rotation?
I can’t give you a revolution, but I have a bunch of rotations waiting for you in this section. You 
know what rotation means, of course, but one thing you may not realize about rotation trans-
formations is that they include not only spinning a figure where it is, but also making it sort 
of move along an orbit centered at a point away from the figure (as in Figure 14-2). It might be 
more accurate to call this type of transformation a revolution instead of a rotation, but who am 
I to question the age-old terminology of geometry?

A rotation, just like a translation, can be achieved by a pair of reflections. Look at Figure 14-2.

You can see that ABC  has been rotated 80  to A B C . Point O is called the center of rotation. It 
turns out that this same transformation can be achieved by reflecting ABC  over l1 to A B C  
and then reflecting A B C  over l2 to A B C . The reflecting lines must pass through the center 
of rotation, and the angle between them must be half the angle of rotation. Pretty nifty, eh?

A rotation equals two reflections. A rotation through a given angle around a center of rotation 
is equivalent to two reflections over lines passing through the center of rotation and forming 
an angle half the measure of the angle of rotation.

FIGURE 14-2: 
A rotation is 

equivalent to 
two reflections.
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Q.	 DEF  has been rotated counterclockwise 
onto D E F . Find the center of rotation.

A.	 I haven’t mentioned this process yet, so here I show you how to find a center of rotation. 
The trick is to use perpendicular bisectors. For this problem, the center of rotation lies 
at the intersection of the perpendicular bisectors of DD , EE , and FF . You need only two 
of these perpendicular bisectors, so use DD  and EE . (If you love working with fractions 

like 17 26
29

, FF  would work as well.) The perpendicular bisector of DD  goes through its 

midpoint, which is 
11 5

2
6 12

2
,  or 8, 9 . The slope of DD  is 

12 6
5 11

, or –1, so the 

slope of the perpendicular bisector is the opposite reciprocal of that, which is 1. Write 
the equation of the line in point-slope form and convert it to slope-intercept form (see 

Chapter 13). Thus, the equation of the perpendicular bisector of DD  is

y x

y x

9 1 8

1

Now do the same thing with EE . Its midpoint is 
15 15

2
4 8
2

, , or 15, 2 . EE  is 

vertical, so its perpendicular bisector is horizontal. The perpendicular bisector goes 
through 15, 2 , so its equation is simply y 2.

Finally, find the intersection of y 2 and y x 1. That’s 1, 2 , the center of rotation. If 
you feel like it, locate 1, 2  on the figure, and then take a compass and place its point 
on 1, 2 . You should be able to trace the circular arcs from D to D′, E to E′, and F to F′.
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Working with Glide Reflections
A glide reflection is, as its name suggests, a glide (that’s a translation) followed by a reflection 
(or vice versa). It’s also referred to as a walk. See Figure 14-3.

7	 A clockwise rotation maps ABC  onto A B C . 
Find the center of rotation.

Tip: The math is a bit easier if you use AA  and 
CC .

8	 ΔGHI has been rotated 90  counterclockwise 
onto G H I . The origin is the center of 
rotation. Give the equations of three pairs of 
reflecting lines that would achieve the same 
result.

FIGURE 14-3: 
The third 

time’s the 
charm: With 

only three 
reflections, 
your figure 

takes a walk.
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How can you map the right foot onto the left? Well, you can’t do it with a translation or a rota-
tion, because translations and rotations don’t change orientation, and you can see that these 
feet have opposite orientations. Reflections do reverse orientation, but there’s no reflecting line 
that you can use to map the right foot onto the left. As you may suspect from the title of this 
section, the answer is that only a glide reflection can accomplish the mapping. You can map the 
right foot onto the left foot by reflecting the right foot over the line and then sliding it to the 
right (or by sliding it first, then reflecting it).

As you can see in the previous section on translations, you can achieve a translation or slide 
with two reflections. Thus, the glide part of a glide reflection can be done with two reflections. 
And that means that you can do a glide reflection — like the right foot to left foot mapping in 
Figure 14-3 — with only three reflections. And three reflections is the most you ever need to 
map a figure to another congruent figure. To sum up, any two congruent figures are always one 
reflection, two reflections (a translation or a rotation), or three reflections (a glide reflection) 
away from each other.

After you find the reflecting line for a glide reflection, the transformation is a cinch, because 
it’s just a reflection (which you should already know how to do) followed by a translation in the 
direction of the reflecting line (which you also already know how to do). The following theorem 
tells you the key to finding the reflecting line.

Location of reflecting line in a glide reflection. In a glide reflection, the midpoints of all 
segments that connect pre-image points with their image points lie on the reflecting line.

Q.	 Find the reflecting line for the glide 
reflection.

A.	 Pick any two point-image pairs, and make a segment out of each pair. Then, find the 
midpoints of these two segments. Next, find the slope of the line that goes through the 
two midpoints. (See Chapter 13 for info on slopes and midpoints.)

Using AA  and BB ,

Midpoint   

Midpoint  

AA

BB

5 27
2

12 16
2

11 2

15 19
2

1

, ,

, 22 10
2

2 1

1 2
2 11

1
3

, 

Slope
Reflecting Line
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Finally, just plug this slope and the point 2, 1  into the point-slope form for your 
equation:

y x1 1
3

2

That’s all, folks.

*9	 Use the transformation T , ,x y x y  3 .

a.	 Transform LEG using T  x y, . What are the new coordinates of L″, E″, and G″?

b.	 Find the equation of the reflecting line.

c.	 What are the coordinates of the image points (L′, E′, and G′) obtained by reflecting L, E, and G over 
the line you found in part b, and what transformation, T  Reflect x y, , achieves this reflection?

d.	 After the reflection from part c is completed, what transformation, T  Glide x y, , completes the glide 
reflection?
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Solutions
1	 Here are the answers concerning orientation:

a.	 Opposite — you can’t pair ’em up without a flip

b.	 Same

c.	 Same

d.	 These figures have neither the same nor opposite orientations because they’re not 
congruent

e.	 Opposite

f.	 Opposite

2	 For Q′R′S′T′, here’s what you get:

a.	

As you can see in the example problem, reflecting a figure over the line y x reverses the 
x- and y-coordinates of each point in the figure. Also note that S and S′ are one and the 
same point. Ditto for T and T′. Any point that lies on the reflecting line stays put during a 
reflection.

b.	 QQ′R′R is an isosceles trapezoid.

c.	 For the area of QQ′R′R, you could use the trapezoid area formula, but there’s a much easier 
way. Call the origin point O. Now just subtract the area of right OQ Q from right OR R :

Area area areaQQ R R OR R OQ Q

bh bh
1
2

1
2

1
2

6 6 1
2

3 3

188 4 5

13 5 2

.

. units

d.	 OQ Q and OR R are 45 45 90  right triangles, so that makes figuring the perimeter 
of QQ′R′R a snap:

PerimeterQQ R R QQ Q R R R RQ

3 2 3 6 2 3

6 9 2
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3	

4	 Here’s what happens when you reflect TUV :

a.	 TT  must be perpendicular to the reflecting line y x3 2, which has a slope of 3. Thus, 

TT  has a slope of 1
3

, as do UU  and VV  (for more on finding slope, see Chapter 13). 

Plugging 1
3

 and 8 4,  into the point-slope form gives you the equation of TT :

y x

y x

4 1
3

8

1
3

4
3

Next, find where this line, TT , crosses y x3 2:

1
3

4
3

3 2

4 9 6

10 10

1

x x

x x

x

x

And plugging this answer into y x3 2 gives you y 1. So, TT  crosses y x3 2 at 
– , –1 1 . To get the coordinates of T′, note that the reflecting line y x3 2 must bisect  

TT , and thus – , –1 1  must be the midpoint of TT . Going from T at 8 4, –  to – , –1 1 , you 
go left 9 and up 3. Do that again from – , –1 1 , and you get to T′. Left 9 from –1 brings you 
to –10, and up 3 from –1 brings you to 2. Thus, T′ is at – ,10  2 .

In the interests of space, I’ll skip the math for U′ and V′. The procedure is identical to the 
one in the preceding paragraph. For the coordinates of U′, you should get – ,5  7 , and for 
V′, – ,6  14 .

b.	 You prove the triangles congruent with SSS, and to do that you just use the distance for-
mula. Using the given coordinates of T, U, and V, you should get 5 2 , 5 2 , and 4 10  for the 
lengths of the sides of TUV . And using the coordinates of T′, U′, and V′ (which you calcu-
lated in part a), you should get the same three lengths for T U V . That does it.

5	 Answers vary. The translation is vertical, so the reflecting lines must be horizontal. And the 
lines have to be separated by half the length of IT  (or SR, OA, or CP ), which is 5. Thus, any 
pair of horizontal lines separated by a distance of 2.5 will suffice. Note: The direction from l1 
to l2 must be the same as the direction from the pre-image to the image.
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Three possible answers are

•	 l y l y1 21 1 5: : .and

•	 l y l y1 22 4 5: : .and

•	 Or something crazy like l y l y1 21002 5 1000: . :and

6	 Find the slope and midpoint of CC  (AA  and BB  would work just as well):

Slope

Midpoint  

CC

CC

0 2
9 0

2
9

0 9
2

2 0
2

4 5 1, . ,

You know l1 and l2 must be perpendicular to CC , so both lines have a slope of 9
2

, or –4.5.

The first reflecting line, l1, can go through C at 0, 2 :

y x

y x

2 4 5 0

4 5 2

.

.

Then, l2 would go through the midpoint of CC :

y x

y x

1 4 5 4 5

4 5 19 25

. .

. .

You’re done.

7	 You want to find the intersection of the perpendicular bisectors of AA  and CC . First, use the 
midpoint formula and the slope formula to compute the midpoint and slope of AA . You 
should get the following results:

Midpoint  

Slope

AA

AA

36 12

2
9

,

The slope of the perpendicular bisector of AA  is the opposite reciprocal of the slope of AA , so 

its slope is 9
2

, or –4.5. And thus, its equation is

y x

y x

12 4 5 36

4 5 150

.

.

Using the same method, you obtain the following for the equation of the perpendicular bisec-
tor of CC :

y x1 8 96.

The center of rotation lies at the intersection of these two perpendicular bisectors, so set the 
right sides of the equations equal to each other:

4 5 150 1 8 96

45 1 500 18 960

27 540

20

. .

,

x x

x x

x

x
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Plugging x 20 into either equation gives you a y value of 60, so the center of rotation is  
at 20 60, .

8	 The rotation is 90  counterclockwise about the origin, so the reflecting lines must pass 
through the origin and form a 45  angle (half of 90 ). Three possible answers are

•	 l y1 0:  (the x-axis) and l y x2 :

•	 l y x1 :  and l x2 0:  (the y-axis)

•	 l x1 0:  and l y x2 :

But any two lines work as long as they go through the origin and form a 45  angle. For 
example:

l y x l y x1 2
3
4

7: :   and   

*9	 Here’s what happens with LEG :

a.	 T   x y x y, , 3  sends points L, E, and G to the following image points:

L

E

G

T   

T   

T   

4 4 4 7

1 1 1 4

2 6 2 9

, ,

, ,

, ,

b.	 You can use any two point-image pairs to find the reflecting line. How about EE  and GG ?

Midpoint   

Midpoint

EE

GG

1 1
2

1 4
2

0 2 5

2 2

, , .

2
6 9

2
0 7 5, , .  

Both midpoints are on the y-axis (if you realized that they would be before doing the 
math, you’re a geometry natural), so the reflecting line must be the y-axis; its equation, 
of course, is x 0.

c.	 Reflecting L, E, and G gives you

L

E

G

4 4

1 1

2 6

,

,

,

 

 

 

The transformation that flips a figure over the y-axis is T   Reflect x y x y, , .

d.	 The transformation is just a slide straight up a distance of 3. That’s achieved by 
T    Glide x y x y, , 3 .
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Laboring Over Loci 
and Constructions 
(No Proofs)

Up to this point in the book, you’ve been working on problems where you’re given some 
shape (or shapes) — say, some lines, a triangle, a parallelogram, a circle — and you’re 
asked to prove something about it, calculate something about it, or do something to it. 

But in this chapter, you have to come up with the geometric shape yourself. With locus prob-
lems, you’re given certain conditions that the shape must satisfy, and you have to figure out 
what the shape is. And with construction problems, your task is to create the geometric object 
using only a compass and straightedge.

Tackling Locus Problems
Locus: A locus (plural loci) is a set of points (usually some sort of geometric object) consisting 
of all the points that satisfy certain conditions.

Here’s a simple example. What’s the locus of all points 10 inches from a given point? The 
answer is a circle with a radius of 10 inches whose center is the given point.

Chapter 15

IN THIS CHAPTER

»» Locating loci

»» Locus hocus pocus

»» Constructions: You’ll need your 
compass and straightedge (and a 
hard hat)
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When tackling a locus problem, it’s a good idea to go through the following four-step process. 
This will help you avoid a couple of common mistakes: including too few points in your solution 
(see Step 2) and including too many points (see Step 3).

When working on locus problems, always follow this four-step method:

1.	 Identify a pattern.

Sometimes you’ll spot the key pattern right away. If so, you’re done with Step 1. If not, 
find a single point that satisfies the given conditions; then find a second point, then a 
third, and so on until you recognize the pattern.

2.	 Look outside the pattern for points to add.

Check for points outside the pattern you recognized in Step 1 that satisfy the given 
conditions. There might be isolated points or a significant geometric shape that you 
need to add to your locus solution.

3.	 Look inside the pattern for points to exclude.

Check within the pattern you found in Step 1 to make sure that all the points within the 
pattern satisfy the conditions. If there are points you need to exclude, they’re usually 
isolated points.

4.	 Draw a diagram and write a description of the locus solution.

Q.	 What’s the locus of all points that are equidistant from two given points?

A.	 Check out the following four-step solution. 

1.	 Identify a pattern.

Figure 15-1 shows the two given points, A and B, along with four new points that are 
each equidistant from the given points.

See the pattern made by those four points? It’s the vertical line that goes through the 
midpoint of the segment joining A and B. In other words, it’s the perpendicular 
bisector of the segment.

FIGURE 15-1: 
Identifying 

points  
that work.
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2.	 Look outside the pattern for points to add.

Check for points outside the pattern you found in Step 1. You come up empty here. 
There’s nothing to add.

3.	 Look inside the pattern for points to exclude.

Ditto. No points need to be excluded.

4.	 Draw a diagram and write a description of the locus solution.

Figure 15-2 shows the locus, and the caption gives its description.

Q.	 What’s the locus of all points that are equidistant from the following given intersecting 
lines?

A.	 Do the four-step process.

1.	 Identify a pattern.

Figure 15-3 shows four points that are equidistant from the two lines. Do you see the 
pattern? Right: Those four points lie on the ray shooting out to the right from X that 
bisects AXB. The same thing works on the left side of X: That’s the angle bisector of 

PXQ. So, that gives you the line going through point X that bisects AXB and PXQ. 
See Figure 15-4.

2.	 Look outside the pattern for points to add.

You might have thought you were done, but this important Step 2 helps you see that 
you missed an entire second set of points. Do you see what you missed? It’s the line 
through X that’s perpendicular to the first line you identified. This second line bisects 

PXA and QXB. See Figure 15-5.

FIGURE 15-2: 
The locus of 

points 
equidistant 

from two given 
points is the 

perpendicular 
bisector of the 

segment that 
joins the two 

points.
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3.	 Look inside the pattern for points to exclude.

Nothing to exclude.

4.	 Draw the locus and describe it in words.

Figure 15-6 shows the locus solution.

The locus is the perpendicular lines that intersect at X and that bisect the four angles 
made by the two given lines.

FIGURE 15-3: 
Four points 
equidistant 

from two given 
lines.

FIGURE 15-4: 
All points on 

the horizontal 
line are 

equidistant 
from the two 

given lines.

FIGURE 15-5: 
Five more 

points 
equidistant 

from the two 
given lines.

FIGURE 15-6: 
The locus 
solution.
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1	 What’s the locus of the vertices of isosceles 
triangles having a given segment for a base?

2	 What’s the locus of all points 1 inch from a 
1-inch-long segment, and what’s the perime-
ter of this locus?

3	 What’s the locus of all points closer to the 
center of a given square than to any of the 
vertices of the square?

4	 What’s the locus of all the points in the x-y 
coordinate plane closer to the x-axis than  
the y-axis?
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5	 What’s the locus of all points in the coordinate plane equidistant from the x-axis and the point 3 1, ?

Compass and Straightedge Constructions
As you may remember from a math class in middle school or junior high, the idea with con-
struction problems is to construct geometric shapes using only a compass and a straightedge. 
I’m sure you know what a compass is, and a straightedge is  — are you sitting down?  — a 
straight edge. It’s basically a ruler (and you can use a ruler for these problems), but a straight-
edge has no length marks on it. So, if you use a ruler, you’re not allowed to use any of its mark-
ings to measure anything.

In the example problems and in the solutions to the practice problems, I use the following 
notation. To indicate where to draw an arc with your compass, I first name the point where 
you put the point of the compass (this is the center of the circular arc), and then I write how 
wide you should open the compass (this is the radius of the arc). The radius could be listed as 
the length of a segment or with a single letter. For example, arc (Q, QP) is the arc with center 
at point Q and a radius that’s the length of segment QP, and arc (X, r) is the arc with center at 
point X with a radius of r. 

Q.	 Given: A.

Construct: B that’s congruent to A.

A.	 Refer to Figure 15-7 as you go through the following steps.

1.	 Draw a working line, l, with point B on it.

2.	 Open your compass to any radius r, and construct arc (A, r) intersecting the two sides 
of A at points S and T.

3.	 Construct arc (B, r) intersecting line l at some point V.

4.	 Construct arc (S, ST).

5.	 Construct arc (V, ST) intersecting arc (B, r) at point W.

6.	 Draw BW
� ����

. That does it. (Note: I didn’t show Step 6 in the figure because it would 
make the figure a bit confusing.)
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Q.	 Given: K .

Construct: KZ
� ���

, the bisector of K .

A.	 Refer to Figure 15-8 as you go through this construction.

1.	 Open your compass to any radius r, and construct arc (K, r) intersecting the two sides 
of K  at A and B.

2.	 Use any radius s to construct arc (A, s) and arc (B, s) that intersect each other at point Z.

Note that you must choose a radius s that’s long enough for the two arcs to 
intersect.

3.	 Draw KZ
� ���

. That’s a wrap.

FIGURE 15-7: 
Copying an 

angle.

FIGURE 15-8: 
Bisecting  
an angle.
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Q.	 Given: CD.

Construct: GH
� ���

, the perpendicular bisector of CD.

A.	 Refer to Figure 15-9 as you go through the steps of this construction.

1.	 Open your compass to any radius r that’s more than half the length of CD, and  
construct arc (C, r).

2.	 Construct arc (D, r) intersecting arc (C, r) at points G and H.

3.	 Draw GH
� ���

.

You’re done. GH
� ���

 is the perpendicular bisector of CD.

Q.	 Given: EF
� ���

 and point W on EF
� ���

.

Construct: WZ
� ���

 such that WZ EF
� ��� � ���

.

A.	 Figure 15-10 shows the steps of this construction.

1.	 Using any radius r, construct arc (W, r) that intersects EF
� ���

 at X and Y.

2.	 Using any radius s that’s greater than r, construct arc (X, s) and arc (Y, s) intersecting 
each other at point Z.

3.	 Draw WZ
� ���

.

That’s it. WZ
� ���

 is perpendicular to EF
� ���

 at point W.

FIGURE 15-10: 
Constructing a 
perpendicular 
line through a 

point on a line.

FIGURE 15-9: 
Constructing a 
perpendicular 

bisector.
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Q.	 Given: AZ
� ���

 and point J not on AZ
� ���

.

Construct: JM
� ���

 such that JM AZ
� ��� � ���

.

A.	 Refer to Figure 15-11.

1.	 Open your compass to a radius r that’s greater than the distance from J to AZ
� ���

, and 
construct arc (J, r) intersecting AZ

� ���
 at K and L.

2.	 Leaving your compass open to radius r, construct arc (K, r) and arc (L, r) — on the 
side of AZ

� ���
 that’s opposite point J — intersecting each other at point M.

3.	 Draw JM
� ���

. You’re done.

FIGURE 15-11: 
Constructing a 
perpendicular 
line through a 

point not  
on a line.

FIGURE 15-12: 
Use this 

triangle for 
problems 7 

and 8.

6	 Construct a triangle whose sides are in the ratio of 2 1 2 8 3 5. : . : . . (Hint: What type of triangle is that?)

For problems 7 and 8, use ABC  shown in Figure 15-12.
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7	 Construct XYZ  that’s congruent to ABC . 8	 Construct the incenter of ABC .
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Solutions
1	 Here’s the four-step solution.

1.	 Identify a pattern.

Look back at Figure 15-1 that goes with the first example problem. You can see three isos-
celes triangles with base AB . So, you might think this locus problem has the very same 
solution as example problem 1, namely, the perpendicular bisector of AB . However. . .

2.	 Look outside the pattern for points to add.

This is a bit tricky. This locus problem asks for all points that are vertices of the isosceles 
triangles with base AB . Well, all triangles have three vertices. Points A and B are two of 
the vertices of the three triangles you see in Figure 15-1; and they are, of course, vertices 
of all isosceles triangles with base AB . Thus, you must add points A and B to the perpen-
dicular bisector of AB  identified in Step 1. And. . .

3.	 Look inside the pattern for points to exclude.

Warning: Don’t neglect Steps 2 and 3! In this particular locus problem, both of these steps 
are critical.

There’s a single point that must be excluded from the solution. Did you find it? It’s the 
midpoint of AB . Except for this midpoint, all points along the perpendicular bisector  
of AB  form a triangle with points A and B. But the midpoint of AB  is on the same line  
as points A and B, and three collinear points cannot be the vertices of a triangle.

4.	 Draw the locus and describe it in words.

The locus is the perpendicular bisector of AB  plus points A and B minus the  
midpoint of AB .

The diagram of the locus is the same as Figure 15-1 with the addition of a hollow dot 
where the perpendicular bisector intersects AB; and it would have to be made clear that 
points A and B are included in the locus solution.

	 2a	 I think you know what to do: Four steps, naturally.

1.	 Identify a pattern.

Look at Figure 15-13.

You can see that points one inch above and one inch below JK  satisfy the locus condition. 
Those points are one inch straight down to JK  or one inch straight up to JK . But for a 
point to the left of point J, its distance to JK  is the distance to endpoint J. Such points 
form a semicircle with center at J and a radius of one inch. See Figure 15-14.

The same thing applies, of course, to the right of point K.

	 2, 3.	 Look inside and outside the pattern.

Steps 2 and 3 yield no changes to the pattern found in Step 1.

4.	 Draw the locus and describe it in words.

The locus is an oval path consisting of two segments and two semicircles. See 
Figure 15-15.
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	 2b	 The perimeter is made up of two one-inch segments and two semicircles with a one-inch 
radius. That gives you a perimeter of 2 2 .

3	 Four steps as usual:

1.	 Identify a pattern.

Consider the perpendicular bisector of AX . See Figure 15-16.

Points on this perpendicular bisector are equidistant from A and X. Thus, to be closer to X 
than to A, a point must be on the lower-right side of the perpendicular bisector. The same 
argument applies to the perpendicular bisectors of BX , CX , and DX . See Figure 15-17.

FIGURE 15-13: 
Points an inch 
above and an 

inch below JK .

FIGURE 15-14: 
Points making 

a semi-circle to 
the left of  

point J.

FIGURE 15-15: 
The locus 
solution.
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	 2, 3.	 Look inside and outside the pattern.

Steps 2 and 3 yield no changes to the pattern found in Step 1.

4.	 Draw the locus and describe it in words.

The locus is the interior of a square with vertices at the midpoints of the sides of the  
original square. Note that the sides of this square are dotted line segments, which  
indicates that the sides of this square are not part of the locus solution. See Figure 15-18.

FIGURE 15-16: 
Points on the 

line are 
equidistant 

from A and X.

FIGURE 15-17: 
Four 

perpendicular 
bisectors.
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4	 Can you guess? It’s a four-step solution.

1.	 Identify a pattern.

First, consider quadrant I and the angle bisector of the angle made by the positive x- and 
y-axes. See Figure 15-19.

Points on that angle bisector are equidistant from the x- and y-axes. Thus, for a point in 
the first quadrant to be closer to the x-axis than to the y-axis, the point would have to be 
below the dotted line. The same argument applies to the other three quadrants. And note 
that any point on the x-axis (except for the origin) also satisfies the locus condition. The 
result is the shaded region shown in Figure 15-20.

FIGURE 15-18: 
The final result.

FIGURE 15-19: 
A 45  ray in 
quadrant I.

FIGURE 15-20: 
A bow tie  

of sorts.
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	 2, 3.	 Look inside and outside the pattern.

Steps 2 and 3 yield no changes to the pattern found in Step 1.

4.	 Draw the locus and describe it in words.

The bow-tie-shaped shaded area shown in Figure 15-18 goes forever to the right and  
to the left. And note that the borders are dotted lines because points on the lines are  
equidistant from the axes and, thus, are not part of the locus solution. (Also note that  
the equations of the dotted border lines are y x and y x .)

5	 The four-step process isn’t necessary or particularly helpful for this problem.

Identifying a pattern doesn’t work as well here as with the other problems because the 
answer isn’t some simple shape like a line or a circle or a square. But you might recognize 
the shape after putting down five points that satisfy the locus condition at 3 1

2, ,  2, , 1  

4, , 1  0, , 5  and 6, . 5  (For these last two points, do you see how you can use a 3 4 5  
triangle to locate them?) See Figure 15-21.

Do you recognize this shape? That’s it — it’s a parabola. But to determine the precise locus 
solution, you need to solve the problem algebraically.

Consider a general point in the coordinate plane, x y,  . (Note that to satisfy the locus  
condition, this point must be above the x-axis.) Its distance from the x-axis is simply y,  
and its distance from 3, 1  is given by the distance formula:

d x y3 12 2

FIGURE 15-21: 
Five points 
equidistant 

from the x-axis 
and the point 

at 3 1, . 
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Set that equal to y and solve:

y x y

y x y

y x x y y

y x x

3 1

3 1

6 9 2 1

2 6

2 2

2 2 2

2 2 2

2 110

3 51
2

2y x x

Points on that parabola satisfy the locus condition. Figure 15-22 shows the final solution.

6	 Did you realize that a triangle whose sides are in a 2 1 2 8 3 5. : . : .  ratio is a 3 4 5: :  right triangle? 
To see that, first multiply each side by 10 — that’s 21 28 35: :  — then divide each side by 7 — 
3 4 5: : . So, all you need to do is to construct a right triangle whose sides are in a 3 4 5: :  ratio. 
Piece o’ cake.

First, construct a right angle at point A using the technique explained in the fourth example 
problem. That will give you the perpendicular lines shown in Figure 15-23.

Next, simply use your compass to mark off four arcs along the horizontal line and three arcs 
along the vertical line. The fourth arc on the horizontal line gives you vertex B, and the third 
arc on the vertical line gives you vertex C. Connect B and C and you’re done. ABC  is a 
3 4 5 right triangle whose sides are in a ratio of 2 1 2 8 3 5. : . : . .

FIGURE 15-22: 
The parabola 

y x x1
2

2 3 5.
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7	 Refer to Figure 15-24 as you go through the following steps.

1.	 Draw a working line, l, with a point X on it.

2.	 Open your compass to the length of AC , and then construct XZ  on line l that’s the same 
length as AC .

3.	 Construct the following:

a.	 arc (A, AB)

b.	 arc (X, AB)

4.	 Construct the following:

a.	 arc (C, CB)

b.	 arc (Z, CB) intersecting arc (X, AB) at point Y

5.	 Draw XY  and ZY  and you’re done.

FIGURE 15-23: 
A right angle 
constructed  
at A and AB   

and AC  
constructed to 
have a ratio of 

4 to 3.

FIGURE 15-24: 
Copying a 

triangle.
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8	 Refer to Figure 15-25 as you work through this solution.

To locate the incenter of ABC  (see Chapter 4), you need to construct two angle bisectors. Let’s 
bisect angles A and C. Use the technique shown in the second example problem to bisect A. 

1.	 Open your compass to any radius r, and construct arc (A, r) intersecting AB and AC  at 
points P and Q.

2.	 Construct the following:

a.	 arc (P, r) and

b.	 arc (Q, r)

3.	 Construct these arcs so that they intersect each other at point X (not labeled).

4.	 Draw AX
� ���

. That’s the bisector of A.

Repeat this process to construct the angle bisector of C . The two angle bisectors intersect at 
the incenter of ABC .

FIGURE 15-25: 
The first steps 

in constructing 
the incenter  

of ABC .
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Ten Things You Better 
Know (for Geometry), or 
Your Name Is Mudd

I actually don’t have any problem with people named Mudd (for all you Mudds out there who 
are reading this book), but if you don’t know these things, you really should go back and 
look through this book again! You need all the formulas and theorems in this chapter if you 

really want to be an expert in “the study of shapes.”

The Pythagorean Theorem (the Queen of All 
Geometry Theorems)

The sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse, or

a b c2 2 2+ = (See Chapter 4.)

Chapter 16

IN THIS CHAPTER

»» Revisiting triangle top hits

»» Checking out area formulas

»» Using volume and surface area 
formulas
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Special Right Triangles
The first four triangles in this section are so-called Pythagorean triple triangles. They’re spe-
cial because the lengths of all three sides are integers, which doesn’t happen often with the 
Pythagorean Theorem (usually you get a square root of something for at least one of the sides):

»» The  3 4 5  triangle

»» The  5 12 13  triangle

»» The  7 24 25  triangle

»» The  8 15 17  triangle

The next two triangles are special because they’re related to two of the most basic shapes in 
geometry: The first is half of a square, and the second is half of an equilateral triangle. They 
come up all the time in problems, so make sure you know them! (See Chapter 4 for details.)

»» The  45 45 90   triangle, whose sides are in the ratio of x x x: : 2

»» The  30 60 90   triangle, whose sides are in the ratio of x x x: :3 2

Area Formulas
The following formulas give you the area of triangles and special quadrilaterals (see Chapter 7):

»» Area base heightTriangle
1
2

»» Area base heightParallelogram

(This formula also works for rectangles and squares because they’re parallelograms.)

»» Area diagonal diagonalKite
1
2 1 2

(This formula also works for rhombuses and squares because they’re kites.)

»» Area
base base

heightTrapezoid
1 2

2

Sum of Angles
The sum of the interior angles of a polygon with n sides is n 2 180 . The sum of the exterior 
angles of any polygon is 360 . (See Chapter 7 for more information.)
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Circle Formulas
Try these equations (which you can find in Chapter  10) when you work with circumference  
and area:

»» Circumference 2 r d

»» Area Circle r 2

Angle-Arc Theorems
In some circle problems, you can have an angle whose vertex is on the circle or whose vertex 
is outside the circle or whose vertex is inside the circle. The following formulas give you the 
connection between the size of the angle and the arc it intercepts (see Chapter 10). Figure 16-1 
gives examples of the types of angles these formulas apply to:

»» Angle a circleon arc
1
2 1

»» Angle a circleoutside arc arc
1
2 2 3

»» Angle a circleinside arc arc
1
2 4 5

Note: You get an angle inside a circle when two chords cross each other, forming an X; for this 
formula, you use the arcs intercepted by the angle you want and its vertical angle.

Power Theorems
Memorize the following theorems and become a geometry powerhouse (see Chapter 10):

»» Chord-chord:  part part = part part

»» Secant-secant:  whole outside = whole outside

»» Secant-tangent:  whole outside = tangent2

FIGURE 16-1: 
Angles (a) on, 

(b) outside, (c) 
inside a circle.
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All three of these theorems follow the same simple rule:

vertex to circle vertex to circle = vertex to circle vertex too circle

Coordinate Geometry Formulas
Given two points in the coordinate plane, x y1 1,   and x y2 2,  , you can compute the slope 
between the two points, the halfway point between the points, and the distance from one point 
to the other with the following formulas (see Chapter 13):

»» Slope
y y
x x

2 1

2 1

»» Midpoint  
x x y y1 2 1 2

2 2
,

»» Distance x x y y2 1
2

2 1
2

Volume Formulas
Here’s how to find the volume of spheres, flat-top solids like cylinders and prisms, and pointy-
top solids like pyramids and cones (see Chapter 12):

»» VolSphere
4
3

3r

»» Vol area heightFlat-Top solids base

»» Vol area heightPointy-Top solids base
1
3

Surface Area Formulas
And here’s how to find the surface area of spheres, flat-top solids, and pointy-top solids (see 
Chapter 12):

»» SA Sphere 4 2r

»» SA area  lateral areaFlat-Top solids base rectangle(s)2

»» SA area  lateral areaPointy-Top solids base triangle(s)
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Index
A
AA (Angle-Angle) method, 179–183, 196–198
AAS (Angle-Angle-Side) method, 105–108, 

119–120
acute angles, 18, 124
acute triangles

altitude of, 62
orthocenter and circumcenter in, 67
overview, 58–61, 80–81

adding segments and angles, 37–41, 50–52
algebra, mastering coordinate proofs with, 

275–276, 282–283
alternate exterior angles, 124, 125
alternate interior angles, 124, 125
altitude of triangles, 61–64, 81–82
Altitude-on-Hypotenuse Theorem, 186–189, 

200–202
angle bisection, 21–22, 28–29
angle trisection, 21–22, 28–29
Angle-Angle (AA) method, 179–183, 196–198
Angle-Angle-Side (AAS) method, 105–108, 

119–120
angle-arc theorems, 321
Angle-Bisector Theorem, 191, 193, 204
angles

AA method, 179–183, 196–198
AAS method, 105–108, 119–120
adding and subtracting, 37–41, 50–52
alternate interior and exterior, 124, 125
base, in triangles, 58
central, 211–214, 220–221
circles and, 226–229, 236–237, 321
complementary, 25–26, 30–31, 34–37, 50
congruent

adding and subtracting angles and 
segments, 38

formed by parallel lines and 
transversals, 124, 149–150

lines-cut-by-a-transversal theorems, 125
making right assumptions about, 8
multiplying and dividing angles and 

segments, 42
in similar polygons, 176, 195
theorems related to, 34–35
Transitive and Substitution properties, 

46–49
corresponding, 124, 125, 176, 195
defined, 18
formed by parallel lines and transversals, 

124
interior and exterior, in polygons, 

165–167, 172–173
isosceles triangle rules, 102–104, 117–118

making right assumptions about, 8–10
multiplying and dividing, 42–46, 52–53
obtuse, 18
right

congruent, proving, 105–108, 119–120
defined, 18
making right assumptions about, 8, 9
theorems related to, 34

same-side interior and exterior, 124, 125, 
149

SAS method, 91–97, 105, 113–115
SAS~ method, 179–183, 196–198
straight, 9, 18
sum of in polygon, 320
supplementary

formed by parallel lines and 
transversals, 124, 149

lines-cut-by-a-transversal theorems, 125
overview, 25–26, 30–31
proofs involving, 34–37, 50
when proving congruent triangles, 105

theorems related to, 34–35
Transitive and Substitution properties, 

46–49
in triangles, 58
vertex, in triangles, 58
vertical, 26–27, 31–32, 34

Angle-Side-Angle (ASA) method, 91–97, 105, 
113–115

apothem, of regular polygon, 163
arcs, 211–214, 220–221, 224
area

of circles, 223–226, 233–236, 321
formulas for, 320
of quadrilaterals, 159–162, 168–171
of regular polygons, 163–165, 171–172
of triangles, 61–64, 79, 81–82, 89–90

ASA (Angle-Side-Angle) method, 91–97, 105, 
113–115

B
base, 58, 253
base angles, in triangles, 58
bisected chords, 208
bisections, 21–22, 28–29, 191

C
center of rotation, 292–294, 300
central angles, 211–214, 220–221
centroids of triangles, 65–70, 83–85
Chord-Chord Power Theorem, 230, 231, 

237, 238, 321–322

chords, 207–212, 218–220
circles

angles and, 226–229, 236–237, 321
arcs and central angles, 211–214, 220–221
area and perimeter, 223–226, 233–236
congruent, 211, 212
equations of, 276–278, 283–284, 321
overview, 207, 223
power theorems, 230–232, 237–238
radii and chords, 207–211, 218–220
radii and tangents, 215–222

circumcenter of triangles, 66–70, 83–85
circumference, 223–226, 233–236, 321
common-tangent problems, 216, 222
compass constructions, 306–310, 316–318
complementary angles, 25–26, 30–31, 

34–37, 50
cones, 256–259, 263–266
congruent angles

adding and subtracting angles and 
segments, 38

formed by parallel lines and transversals, 
124, 149–150

lines-cut-by-a-transversal theorems, 125
making right assumptions about, 8
multiplying and dividing angles and 

segments, 42
in similar polygons, 176, 195
theorems related to, 34–35
Transitive and Substitution properties, 

46–49
congruent circles, 211, 212
congruent radii, 208
congruent segments, 8, 38, 42, 46–49
congruent triangles

AAS and HL methods, 105–108, 119–120
CPCTC, 97–101, 115–117
equidistance theorems, 108–112, 120
isosceles triangle rules, 102–104, 117–118
overview, 91
three ways to prove, 91–97, 113–115

construction problems, 306–310, 316–318
coordinate geometry. See also isometries

construction problems, 306–310, 316–318
equations of lines and circles, 276–278, 

283–284
locus problems, 301–306, 311–316
mastering coordinate proofs with 

algebra, 275–276, 282–283
overview, 271, 301
slope, distance, and midpoint formulas, 

272–274, 279–282, 322
corresponding angles, 124, 125, 176, 195
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Corresponding Parts of Congruent 
Triangles are Congruent (CPCTC), 
97–101, 115–117

Corresponding Sides of Similar Triangles 
are Proportional (CSSTP), 183–186, 
198–200

cylinders, 253–255, 261–263

D
Descartes, René, 271
diagonals, in polygons, 166
diameter, 208
distance, and chord size, 208
distance formula, 272–274, 279–282, 322
dividing angles and segments, 42–46, 52–53
Dunce Cap Theorem, 215, 222

E
equations of lines and circles, 276–278, 

283–284
equiangular polygons, 166
equiangular triangles, 58
equidistance theorems, 108–112, 120
equilateral triangles, 58–62, 80–81, 163–164
Example icon, explained, 3
exterior angles in polygons, 165–167, 

172–173, 320
external tangent, 216

F
families, triangle, 75
flat-top figures, 253–255, 261–263, 322
flexible approach to proofs, 116
flow-of-logic structure in proofs, 13–14, 33
45°-45°-90° triangles, 78–79, 88–90, 320

G
general principles, in proofs, 13
geometry

defined, 7
essentials, 319–322
making right assumptions in, 8–10
overview, 1–4
proofs overview, 12–14
solutions to practice problems, 15–16
theorems and postulates in, 11–12

givens in proofs, importance of using, 38, 
39, 98

glide reflections, 294–296, 300

H
height

slant, 256, 257, 263
of triangles, 61–64, 81–82

Hero’s formula, 62, 82
horizontal lines, 272, 277

hypotenuse
Altitude-on-Hypotenuse Theorem, 

186–189, 200–202
defined, 58
in 45°-45°-90° triangles, 78, 79

Hypotenuse-Leg (HL) method, 105–108, 
119–120

I
icons, explained, 3
if angles, then sides, 102–104, 117–118
if sides, then angles, 102–104, 117–118, 196
if-then logic, in proofs, 12–14, 34
incenter, of triangles, 66–70, 83–85
interior angles, in polygons, 165–167, 

172–173, 320
internal tangent, 216
intersecting lines and planes, 245–248, 

251–252
intersection problems, 18–20, 28
isometries

glide reflections, 294–296, 300
overview, 285
reflections, 286–289, 297–298
rotations, 292–294, 299–300
translations, 289–291, 298–299

isosceles trapezoids, 129, 141–143, 156
isosceles triangles

altitude of, 62
overview, 58–61, 80–81
rules for, using to prove congruent 

triangles, 102–104, 117–118

K
kites

area formula for, 160, 171, 320
overview, 128
properties of, 132–137, 152–154
proving, 143–147, 157–158

L
lateral area, 254, 256
legs, in triangles, 58
Like Divisions Theorem, 42, 44
Like Multiples Theorem, 42, 43, 118
line segments. See segments
lines

defined, 17–18
equations of, 276–278, 283–284
horizontal, 272, 277
intersecting, 245–248, 251–252
parallel

and planes, 245–248, 251–252
slope of, 272
theorems involving proportions, 190, 202
transversals and, 124–128, 149–150

perpendicular
multiple, 245–248, 251–252
to planes, 241–244, 249–250
slope of, 272

slope formulas, 272–274, 279–282
vertical, 272, 277

lines-cut-by-a-transversal theorems, 125
locus problems, 301–306, 311–316

M
major arc, 211
medians

of trapezoids, 160
of triangles, 65–66, 83

midpoint, defined, 21–22, 28–29
midpoint formula, 272–274, 279–282, 322
minor arc, 211
multiplying angles and segments, 42–46, 

52–53

O
obtuse angles, 18
obtuse triangles

altitude of, 62
formed by parallel lines and transversals, 

124
orthocenter and circumcenter in, 67
overview, 58–61, 80–81

online practice material, accessing, 4
orientation, reflections and, 286, 288, 297
orthocenter, of triangles, 66–70, 83–85

P
parallel, defined, 23
parallel lines

and planes, 245–248, 251–252
slope of, 272
theorems involving proportions,  

190, 202
transversals and, 124–128, 149–150

parallelograms
area formula for, 160, 168, 171, 320
overview, 128
properties of, 132–137, 152–154
proving, 143–147, 157–158

patterns, in locus problems, 302–304, 
311–315

perimeter
of circles, 223–226, 233–236
of similar polygons, 176–177

perpendicular bisectors, 109–111, 287–288, 
293, 308

perpendicular lines
multiple, 245–248, 251–252
to planes, 241–244, 249–250
slope of, 272
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perpendicularity
in circles, 208
overview, 23–24, 30
tangent and radius, 215

planes
defined, 241
determining, 245
lines perpendicular to, 241–244, 249–250
parallel, perpendicular, and intersecting, 

245–248, 251–252
points, defined, 17
point-slope form, 276, 278
pointy-top figures, 256–259, 263–266, 322
polygons

interior and exterior angles in, 165–167, 
172–173

overview, 159
quadrilateral area formulas, 159–162, 

168–171
regular polygon area formula, 163–165, 

171–172
similar, defining characteristics of, 

176–178, 195–196
postulates, 3, 11–12. See also theorems
power theorems, 230–232, 237–238, 

321–322
prisms, 253–255, 261–263
proofs

coordinate, mastering with algebra, 
275–276, 282–283

corresponding sides of similar triangles 
in, 183–186, 198–200

flexible approach to, 116
involving adding and subtracting 

segments and angles, 37–41, 50–52
involving arcs and central angles, 

212–214, 220–221
involving complementary and 

supplementary angles, 34–37, 50
involving congruent triangles

AAS and HL methods, 105–108, 119–120
CPCTC, 97–101, 115–117
equidistance theorems, 108–112, 120
isosceles triangle rules, 102–104, 117–118
overview, 91
SSS, SAS, and ASA methods, 91–97, 

113–115
involving lines perpendicular to planes, 

241–244, 249–250
involving multiplying and dividing angles 

and segments, 42–46, 52–53
involving parallel, perpendicular, and 

intersecting lines and planes, 
245–248, 251–252

involving parallelograms and kites, 
143–147

involving radii and chords, 207–211, 
218–220

involving radii and tangents, 216, 222
involving rhombuses, rectangles, and 

squares, 147–148

involving similar triangles, 179–183, 
196–198

involving transitive and substitution 
properties, 46–49, 53–54

overview, 1–2, 12–14, 33–34
proportions, theorems involving, 190–194, 

202–204
pyramids, 256–259, 263–266
Pythagorean Theorem, 71–74, 85–89, 319
Pythagorean triple triangles, 74–77, 89, 320

Q
quadratic formula, 59, 202
quadrilaterals

area formulas for, 159–162, 168–171
overview, 123
parallel lines and transversals, 124–128, 

149–150
properties of parallelograms and kites, 

132–137, 152–154
properties of rhombuses, rectangles, and 

squares, 137–141, 155–156
properties of trapezoids and isosceles 

trapezoids, 141–143, 156
proving parallelograms and kites, 

143–147, 157–158
proving rhombuses, rectangles, and 

squares, 147–148, 158
types of, 128–132, 150–152

R
radii

chords and, 207–211, 218–220
congruent, 208
and tangents, 215, 222

ratios of lengths of corresponding sides, 
176

rays, defined, 18
rectangles

overview, 128
properties of, 137–141, 155–156
proving, 147–148, 158

reflecting line, 287, 295–296, 300
reflections

glide, 294–296, 300
overview, 286–289, 297–298

reflexive property, 92
regular polygons, area of, 163–165, 171–172
relative sizes of segments and angles, 

assumptions about, 8
Remember icon, explained, 3
rhombuses

overview, 128
properties of, 137–141, 155–156
proving, 147–148, 158

right angles
congruent, proving, 105–108, 119–120
defined, 18

making right assumptions about, 8, 9
theorems related to, 34

right triangles
altitude of, 62
45°-45°-90° and 30°-60°-90°, 78–79, 

88–90, 320
orthocenter and circumcenter in, 67
overview, 58–61, 80–81
Pythagorean triple triangles, 74–77, 89, 

320
similar, 186–189, 200–202

rotations, 292–294, 299–300

S
same-side exterior angles, 124, 125, 149
same-side interior angles, 124, 125, 149
SAS (Side-Angle-Side) method, 91–97, 105, 

113–115
SAS~ (Side-Angle-Side~) method, 179–183, 

196–198
scalene triangles, 58–62, 80–81
Secant-Secant Power Theorem, 230–231, 

321–322
sectors, circle, area of, 224
segment bisection, 21–22, 28–29
segment trisection, 21–22, 28–29
segments

of circles, 223, 225, 230–232
congruent, 8, 38, 42, 46–49
defined, 18
making right assumptions about, 8
proofs involving adding and subtracting, 

37–41, 50–52
proofs involving multiplying and dividing, 

42–46, 52–53
proofs involving Transitive and 

Substitution properties, 46–49
reflecting lines and connecting, 287

shapes
geometry as study of, 7
making right assumptions about, 8–10

Side-Angle-Side (SAS) method, 91–97, 105, 
113–115

Side-Angle-Side~ (SAS~) method, 179–183, 
196–198

Side-Side-Side (SSS) method, 91–97, 105, 
113–115

Side-Side-Side~ (SSS~) method, 179–183, 
196–198

Side-Splitter Theorem, 190, 191, 203
similarity

Altitude-on-Hypotenuse Theorem, 
186–189, 200–202

corresponding sides of similar triangles, 
183–186, 198–200

defining characteristics, 176–178, 195–196
overview, 175
proving triangles similar, 179–183, 196–198
theorems involving proportions, 190–194, 

202–204
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size relationships, making right 
assumptions about, 8

slant height, 256, 257, 263
slope formulas, 272–274, 279–282, 322
slope-intercept form, 276, 278
solid geometry

flat-top figures, 253–255, 261–263
overview, 253
pointy-top figures, 256–259, 263–266
spheres, 259–260, 266–267

specific facts, in proofs, 13
spheres, 259–260, 266–267, 322
squares

area formula for, 160
overview, 129
properties of, 137–141, 155–156
proving, 147–148, 158

SSS (Side-Side-Side) method, 91–97, 105, 
113–115

SSS~ (Side-Side-Side~) method, 179–183, 
196–198

straight angles, 9, 18
straightedge constructions, 306–310, 

316–318
Substitution Property, 46–49, 53–54
subtracting segments and angles, 37–41, 

50–52
sum of angles in polygon, 320
supplementary angles

formed by parallel lines and transversals, 
124, 149

lines-cut-by-a-transversal theorems, 125
overview, 25–26, 30–31
proofs involving, 34–37, 50
when proving congruent triangles, 105

surface area
of flat-top figures, 254–255, 261–263
formulas for, 322
of pointy-top figures, 256–259, 263–266
of spheres, 259–260, 266–267

T
tangents, 215, 222
Tangent-Secant Power Theorem, 230, 231, 

238, 321–322
theorems

about isosceles triangles, 102
adding and subtracting segments and 

angles, 37–38
Altitude-on-Hypotenuse, 186–189, 

200–202
angle-arc, 321
circle, 208, 212, 215, 224, 227, 230–231
complementary and supplementary 

angles, 34–35

congruent angles, 34
defined, 3
determining planes, 245
equidistance, 108–112, 120
glide reflections, 295
involving proportions, 190–194, 202–204
lines-cut-by-a-transversal, 125
multiplying and dividing angles and 

segments, 42
needed for proofs, 34
overview, 11–12
parallel-lines-with-transversal, 124
power, 230–232, 237–238, 321–322
for proving congruent triangles, 92, 105
reflections, 286, 287
related to planes, 245
rotations, 292
Transitive and Substitution properties, 

46–47
translations, 290

Theorems & Postulates icon, explained, 3
30°-60°-90° triangles, 78–79, 88–90, 320
three-dimensional (3-D) geometry

flat-top figures, 253–255, 261–263
lines perpendicular to planes, 241–244, 

249–250
overview, 241, 253
parallel, perpendicular, and intersecting 

lines and planes, 245–248, 251–252
pointy-top figures, 256–259, 263–266
spheres, 259–260, 266–267

Tip icon, explained, 3
transformations. See isometries
Transitive Property, proofs involving, 

46–49, 53–54
translations, 286, 289–291, 298–299
transversals, 124–128, 149–150, 190
trapezoids

area formula for, 160, 161, 168–170, 320
overview, 129
properties of, 141–143, 156

triangles
acute, 58–62, 67, 80–81
area and altitude, 61–64, 81–82
area formula for, 320
congruent

AAS and HL methods, 105–108, 
119–120

CPCTC, 97–101, 115–117
equidistance theorems, 108–112, 120
isosceles triangle rules, 102–104, 

117–118
overview, 91
three ways to prove, 91–97, 113–115

corresponding sides of similar, 183–186, 
198–200

equiangular, 58
equilateral, 58–62, 80–81, 163–164
families, 75
isosceles

altitude of, 62
overview, 58–61, 80–81
rules for, using to prove congruent 

triangles, 102–104, 117–118
medians and centroids, 83
obtuse, 58–62, 67, 80–81, 124
orthocenter, incenter, and circumcenter, 

66–70, 83–85
overview, 57
proving similar, 179–183, 196–198
Pythagorean Theorem, 71–74,  

85–88, 319
right

altitude of, 62
45°-45°-90° and 30°-60°-90°, 78–79, 

88–90, 320
orthocenter and circumcenter in, 67
overview, 58–61, 80–81
Pythagorean triple triangles, 74–77, 

89, 320
similar, 186–189, 200–202

scalene, 58–62, 80–81
theorems involving proportions, 190–194, 

202–204
types of, 58–61, 80–81

trisections, 21–22, 28–29
two-column proofs. See proofs

U
union problems, 18–20, 28

V
vertex angle, in triangles, 58
vertical angles, 26–27, 31–32, 34
vertical lines, 272, 277
volume

of flat-top figures, 253–255, 261–263
formulas for, 322
of pointy-top figures, 256–259, 263–266
of spheres, 259–260, 266–267

W
walk-around problems, 222
walks, 294–296, 300
Warning icon, explained, 3
working backwards in proofs, 38, 39, 98
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