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xv

How to Use This Book
This book can help you learn basic geometry without taking a formal course. It 
can also serve as a supplemental text in a classroom, tutored, or homeschooling 
environment.

None of the mathematics in this book goes beyond the high-school level. If 
you need a “refresher,” you can select from several Demystified books dedicated 
to mathematics topics. If you want to build yourself a “rock-solid” mathematics 
foundation before you start this course, I recommend that you go through 
Pre-Algebra Demystified, Algebra Demystified, and Algebra Know-It-All.

This book contains abundant multiple-choice questions written in stan-
dardized test format. You’ll find an “open-book” quiz at the end of every 
chapter. You may (and should) refer to the chapter texts when taking these 
quizzes. Write down your answers, and then give your list of answers to a friend. 
Have your friend tell you your score, but not which questions you missed. 
The correct answers appear in the back of the book. Stick with a chapter until 
you get most of the quiz answers correct.

Two major sections constitute this course. Each section ends with a multiple-
choice test. Take these tests when you’re done with the respective sections and 
have taken all the chapter quizzes. Don’t look back at the text when taking the 
section tests. They’re easier than the chapter-ending quizzes, and they don’t 
require you to memorize trivial things. A satisfactory score is three-quarters 
correct. Answers appear in the back of the book.

The course concludes with a 100-question final exam. Take it when you’ve 
finished all the sections, all the section tests, and all of the chapter quizzes. A 
satisfactory score is at least 75 percent correct answers.
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With the section tests and the final exam, as with the quizzes, have a friend 
divulge your score without letting you know which questions you missed. That 
way, you won’t subconsciously memorize the answers. You might want to take 
each test, and the final exam, two or three times. When you get a score that 
makes you happy, you can (and should) check to see where your strengths and 
weaknesses lie.

You won’t find any proofs here. Instead of taking up a lot of space with 
theorem demonstrations, this course concentrates on fundamental facts and a 
diversity of topics found in few, if any, other introductory geometry texts. If 
you’re interested in learning how to do proofs, I recommend Math Proofs 
Demystified. If you want to delve further into analytic geometry and vectors, 
I recommend Pre-Calculus Know-It All.

Strive to complete one chapter of this book every 10 days or 2 weeks. Don’t 
rush, but don’t go too slowly either. Proceed at a steady pace and keep it up. 
That way, you’ll complete the course in a few months. (As much as we all wish 
otherwise, nothing can substitute for “good study habits.”) When you’re done 
with the course, you can use this book as a permanent reference.

I welcome your ideas and suggestions for future editions.

Stan Gibilisco
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 3

c h a p t e r  1
Rules of the Game

The fundamental rules of geometry date back to the time of the ancient Egyp-
tians and Greeks, who used geometry to calculate the diameter of the earth and 
the distance to the moon. These mathematicians employed the laws of Euclidean 
geometry (named after Euclid of Alexandria, a Greek mathematician who lived 
around the third century B.C.). Two-dimensional Euclidean geometry, also called 
plane geometry, involves points, lines, and shapes confined to flat surfaces.

C H A P T e r O B J e C T i V e S
In this chapter, you will

envision “mathematically perfect” points and straight lines.• 
Break lines up into rays and segments.• 
Define angles and distances.• 
measure and compare angles.• 
add and subtract angles.• 
learn how lines and angles relate.• 
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Points and Lines
In plane geometry we regard certain concepts as intuitively obvious without 
the need for formal definitions. We call these “mathematically perfect things” 
elementary objects: the point, the line, and the plane. We can imagine a point as 
an infinitely tiny sphere having height, width, and depth all equal to zero, but 
nevertheless possessing a specific location. We can think of a line as an infinitely 
thin, perfectly straight, infinitely long wire or thread. We can imagine a plane 
as an infinitely thin, perfectly flat surface having an infinite expanse.

Naming Points and Lines
Geometers name points and lines using uppercase, italicized letters of the alphabet. 
The most common name for a point is P (for “point”), and the most common name 
for a line is L (for “line”). If we have multiple points in a situation, we can use the 
letters P, Q, R, S, and so on all the way to Z if needed. If two or more lines exist in 
a scenario, we can use the letters immediately following L, all the way up to N. (We 
should try to avoid using the uppercase O because it looks a lot like the numeral 
0!) Alternatively, we can use numeric subscripts with the uppercase, italic letters P 
and L, naming points P1, P2, P3, ..., Pn, and naming lines L1, L2, L3, ..., Ln (where n 
represents an arbitrary positive whole number that’s as large as we need).

Two-Point Principle
Suppose that P and Q represent different geometric points. These points define 
one and only one line L (i.e., a unique line L). The following two statements 
always hold true in a situation like this, as shown in Fig. 1-1:

Points •	 P and Q lie on a common line L.

Line •	 L is the only line on which both points lie.

Distance Notation
We can symbolize the distance between any two points P and Q, as we express 
it going from P toward Q along the straight line connecting them, by writing 

P Q
L

Figure 1-1  • The two-point principle.
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PQ. Units of measurement such as meters, feet, millimeters, inches, miles, or 
kilometers have no relevance in pure mathematics, but they’re important in 
physics and engineering. As an alternative notation, we can use a lowercase let-
ter such as d to represent the distance between two points.

Line Segments
The portion of a line between two different points P and Q constitutes a line 
segment. We call the points P and Q the end points. A line segment can theo-
retically include both of the end points, only one of them, or neither of them. 
Therefore, three possibilities exist, as follows:

If a line segment contains both end points, we call it a •	 closed line segment. 
We indicate the fact that the end points are included by drawing them 
both as solid black dots.

If a line segment contains one of the end points but not the other, we call •	

it a half-open line segment. We draw the included end point as a solid black 
dot and the excluded end point as a small open circle.

If a line segment contains neither end point, we call it an •	 open line segment. 
We draw both end points as small open circles.

TIP  Any particular line segment has the same length, regardless of whether it’s 
closed, half-open, or open. Adding or taking away a single point makes no differ-
ence, mathematically, in the length, because points have zero size in all 
dimensions!

Rays (Half Lines) 
Sometimes, mathematicians talk about the portion of a geometric line that lies 
“on one side” of a certain point. In the situation of Fig. 1-1, imagine the set of 
points that starts at P, then passes through Q, and extends onward past Q for-
ever. We call the resulting object a ray or half line. The ray defined by P and Q 
might include the end point P, in which case we have a closed-ended ray. If we 
leave the end point out, we get an open-ended ray. Either way, we say that the 
ray or half line begins or originates at point P.

Midpoint Principle
Imagine a line segment connecting two points P and R. There exists one and only 
one point Q on the line segment such that PQ = QR, as shown in Fig. 1-2.
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PROBLEM 1-1
Suppose that, in the scenario of Fig. 1-2, we find the midpoint Q2 between 
P and Q, then the midpoint Q3 between P and Q2, then the midpoint Q4 
between P and Q3, and so on. In mathematical language, we say that we 
keep finding midpoints Q(n+1) between P and Qn, where n represents a pos-
itive whole number. How long can we continue this process?

SOLUTION 
The process can continue forever. In theoretical geometry, no limit exists 
as to the number of times we can cut a line segment in half, because a line 
segment contains infinitely many points.

PROBLEM 1-2
Imagine a line segment with end points P and Q. What’s the difference 
between the distance PQ and the distance QP?

SOLUTION 
If we consider distance without paying attention to the direction in which 
we express or measure it, then PQ = QP. But if the direction does make a 
difference to us, we can define PQ = –QP. Then we use the term displace-
ment instead of direction.
 In geometry diagrams, we can specify displacements (instead of simple 
distances) if we want to induce our readers to move their eyes from right 
to left instead of from left to right, or from bottom to top rather than from 
top to bottom.

PROBLEM 
Suppose that, in the scenario of Fig. 1-2, we find the midpoint 
P and P and  and P Q
between 

PROBLEM 
Suppose that, in the scenario of Fig. 1-2, we find the midpoint 

SOLUTION 
The process can continue forever. In theoretical geometry, no limit exists 
as to the number of times we can cut a line segment in half, because a line 
segment contains infinitely many points.

SOLUTION 
The process can continue forever. In theoretical geometry, no limit exists 

✔

PROBLEM 
Imagine a line segment with end points 
between the distance 

PROBLEM 
Imagine a line segment with end points 

SOLUTION 
If we consider distance without paying attention to the direction in which 
we express or measure it, then 
difference to us, we can define 

SOLUTION 
If we consider distance without paying attention to the direction in which 

✔

P R

PQ = QR

Q

Figure 1-2  • The midpoint principle.
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Angles and Distances
When two lines intersect, we get four distinct angles at the point of intersection. 
In most cases, we’ll find that two of the angles are “sharp” and two are “dull.” If 
all four of the angles happen to turn out identical, then they all constitute right 
angles, and we say that the lines run perpendicular, orthogonal, or normal to each 
other at the point of intersection. We can also define an angle using three points 
connected by two line segments; the angle appears at the point where the line 
segments meet.

Measuring Angles
To express the extent or measure of an angle, we can use either of two units: 
the degree and the radian. The degree (°) is the unit familiar to lay people, while 
the radian is more often used by mathematicians and engineers.

One degree (1°) equals 1/360 of a full circle. Therefore, 90° represents 1/4 
of a circle, 180° represents a half circle, 270° represents 3/4 of a circle, and 360° 
represents a full circle. A right angle has a measure of 90°, an acute angle has a 
measure of more than 0° but less than 90°, and an obtuse angle has an angle 
more than 90° but less than 180°. A straight angle has a measure of 180°. A 
reflex angle has a measure of more than 180° but less than 360°.

We can define the radian (rad) as follows. Imagine two rays emanating out-
ward from the center point of a circle. Each of the two rays intersects the circle 
at a point; call these points P and Q. Suppose that the distance between P and 
Q, as expressed along the arc of the circle, equals the radius of the circle. Then 
the measure of the angle between the rays equals 1 radian (1 rad).

A full circle contains 2π rad, where π (the lowercase Greek letter pi, 
pronounced “pie”) stands for the ratio of a circle’s circumference to its diameter. 
The value of π is approximately 3.14159265359, often rounded off to 3.14159 
or 3.14. A right angle has a measure of π/2 rad, an acute angle has a measure of 
more than 0 rad but less than π/2 rad, and an obtuse angle has an angle more 
than π/2 rad but less than π rad. A straight angle has a measure of π rad, and a 
reflex angle has a measure larger than π rad but less than 2π rad.

TIP   Mathematicians often delete the unit reference when they express or write 
about angles in radians. Therefore, instead of “o /3 rad,” you might encounter 
an angle denoted as “o /3.” Whenever you see a reference to an angle and no 
unit goes along with it, you can assume that the author is working with 
radians.
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P

R

Q

L
M

RQP

PQR

Figure 1-3  • Angle notation.

Angle Notation
Imagine that P, Q, and R represent three distinct points. Let L represent the line seg-
ment connecting P and Q, and let M represent the line segment connecting R and Q. 
We can denote the angle between L and M, as measured at point Q in the plane 
defined by the three points, by writing ∠PQR or ∠RQP as shown in Fig. 1-3.

If we want to specify the rotational sense of the angle (either counterclockwise
or clockwise), then ∠RQP indicates the angle as we turn counterclockwise from 
M to L, and ∠PQR indicates the angle as we turn clockwise from L to M. We 
consider counterclockwise-going angles as having positive values and clockwise-
going angles as having negative values.

In the situation of Fig. 1-3, ∠RQP is positive while ∠PQR is negative. If we make 
an approximate guess as to the measures of the angles in Fig. 1-3, we might say that 
∠RQP ≈ +60° while ∠PQR ≈ –60°. The “wavy” equals sign translates literally to the 
phrase “approximately equals” or the phrase “is approximately equal to.”

still struggling
rotational sense doesn’t matter in basic geometry. however, it does matter 
when we work in coordinate geometry (geometry involving graphs). We’ll get 
into coordinate geometry, also known as analytic geometry, later in this book. 
For now, let’s not worry about the rotational sense in which we express or mea-
sure an angle. We can consider all angles as having positive measures.

?
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P

R

Q

S

M

x
y

x = y

Angles have
equal measure:

Figure 1-4  • The angle bisection principle.

Angle Bisection Principle
Consider an angle ∠PQR measuring less than 180° and defined by three 
points P, Q, and R as shown in Fig. 1-4. There exists exactly one ray M that 
bisects (divides in half) the angle ∠PQR. If S represents any point on M other 
than point Q, then ∠PQS = ∠SQR. Every angle has one and only one ray that 
bisects it.

Perpendicular Principle
Consider a line L that passes through points P and Q. Let R represent a point 
that does not lie on L. There exists exactly one line M through point R, inter-
secting line L at some point S, such that M runs perpendicular to L (M and L 
intersect at a right angle) at point S. Figure 1-5 illustrates this situation.

Perpendicular Bisector Principle
Suppose that L represents a line segment connecting two points P and R. There 
exists one and only one line M that runs perpendicular to L and that intersects 
L at a point Q, such that the distance from P to Q equals the distance from Q 
to R. In other words, every line segment has exactly one perpendicular bisector. 
Figure 1-6 illustrates this situation.
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P R

PQ = QR

Q

90o

M

Figure 1-6  • The perpendicular bisector principle.

Distance Addition and Subtraction
Let P, Q, and R represent points on a line L, such that Q lies between P and R. 
The following equations hold concerning distances as measured along L 
(Fig. 1-7):

PQ + QR = PR

PR – PQ = QR

PR – QR = PQ

P Q
L

R

S

M

90o

Figure 1-5  • The perpendicular principle.
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P Q R

PQ QR

PR

Figure 1-7  • Distance addition and subtraction.

Angular Addition and Subtraction
Suppose that P, Q, R, and S represent points that all lie in the same plane. In 
other words, all four points lie on a single, perfectly flat surface. Let Q represent 
the vertex of three angles ∠PQR, ∠PQS, and ∠SQR, with ray QS between rays 
QP and QR as shown in Fig. 1-8. The following equations hold concerning the 
angular measures:

∠PQS + ∠SQR = ∠PQR

∠PQR – ∠PQS = ∠SQR

∠PQR – ∠SQR = ∠PQS

P

R

Q

S

Figure 1-8  • Angular addition and subtraction.
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PROBLEM 1-3
Examine Fig. 1-6 once again. Imagine some point S, other than point Q, that 
lies on line M (the perpendicular bisector of the line segment connecting 
P and R). What can you say about the lengths of line segments PS and SR?

SOLUTION 
You can “streamline” the solutions to problems like this by making your 
own drawings. As the language gets more complicated (geometry prob-
lems can sometimes read like “legalese”), such drawings become increas-
ingly helpful. With the aid of your own sketch, you should see that for 
every point S on line M (other than point Q), the distance PS exceeds the 
distance PQ (i.e., PS > PQ), and the distance SR exceeds the distance QR
(i.e., SR > QR).

PROBLEM 1-4
Look again at Fig. 1-8. Suppose that you move point S either straight to-
ward yourself (out of the page) or straight away from yourself (back behind 
the page), so S no longer lies in the same plane as points P, Q, and R. What 
can you say about the measures of ≠PQR, ≠PQS, and ≠SQR?

SOLUTION 
In either of these situations, the sum of the measures of ≠PQS and ≠SQR
exceeds the measure of ≠PQR, because the measures of ≠PQS and ≠SQR 
both increase if point S departs perpendicularly from the plane containing 
points P, Q, and R. 

More about Lines and Angles
If we remain within a single geometric plane, lines and angles behave according 
to various rules. Some of the best-known principles follow.

Parallel Lines
We say that two lines run parallel to each other if and only if they lie in the 
same plane and they don’t intersect at any point. Two line segments or rays run 

PROBLEM 
Examine Fig. 1-6 once again. Imagine some point 
lies on line 
P and P and P R

PROBLEM 
Examine Fig. 1-6 once again. Imagine some point 

SOLUTION 
You can “streamline” the solutions to problems like this by making your 
own drawings. As the language gets more complicated (geometry prob-
lems can sometimes read like “legalese”), such drawings become increas-

SOLUTION 
You can “streamline” the solutions to problems like this by making your 

✔

PROBLEM 
Look again at Fig. 1-8. Suppose that you move point 
ward yourself (out of the page) or straight away from yourself (back behind 
the page), so 

PROBLEM 
Look again at Fig. 1-8. Suppose that you move point 

SOLUTION 
In either of these situations, the sum of the measures of 
exceeds the measure of 
both increase if point 

SOLUTION 
In either of these situations, the sum of the measures of 

✔
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parallel to each other if and only if, when extended infinitely in both directions 
to form complete lines, those lines don’t intersect at any point.

Complementary and Supplementary Angles
We say that two angles in the same plane constitute complementary angles (they 
“complement” each other) if and only if the sum of their measures equals 90° 
(π/2 rad). We say that two angles in the same plane constitute supplementary 
angles (they “supplement” each other) if and only if the sum of their measures 
equals 180° (π rad).

Adjacent Angles
Consider two lines L and M that intersect at a point P. Any two adjacent angles 
(i.e., any two angles that lie next to each other) between lines L and M are 
supplementary. We can illustrate this fact by drawing two intersecting lines and 
noting that pairs of adjacent angles always form a straight angle, that is, an angle 
of 180° (π rad) determined by the intersection point and either of the two lines.

Vertical Angles
Again consider two lines L and M that intersect at a point P. We call the oppos-
ing pairs of angles, denoted as x and y in Fig. 1-9, vertical angles. In any situation 
of this sort, the vertical angles have equal measure.

P
L

M

x

x

y

y

Figure 1-9 • Vertical angles between two intersecting 
lines.
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still struggling
The term “vertical” to describe angles such as those shown in Fig. 1-9 baffles 
some people. they don’t look “vertical,” do they? We might do better to call such 
angles “opposite” or “opposing.” But a long time ago, somebody decided that the 
term “vertical” was good enough, and no one has ever changed it.

?

Transversals and Interior Angles
Imagine two lines L and M that lie in the same plane. Let N represent a line 
that intersects L and M at points P and Q, respectively. We call line N a trans-
versal to the lines L and M. In Fig. 1-10, the angles labeled x and z constitute a 
pair of alternate interior angles. The same holds true for the pair of angles labeled 
w and y.

When we confine our attention to a single geometric plane, pairs of alternate 
interior angles formed by a transversal line have equal measure if and only if 
the two lines crossed by the transversal run parallel to each other. The pairs of 
alternate interior angles do not have equal measure if and only if the two lines 
crossed by the transversal do not run parallel to each other.

P
L

M

N

Q

x

y

w

z

Figure 1-10  • Alternate interior angles formed by a 
transversal line.
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P
L

N

M
Q

x

y

w

z

Figure 1-11  • Alternate exterior angles formed by a 
transversal line.

Transversals and Exterior Angles
Again, imagine two lines L and M that lie in the same plane, and that are both 
crossed by a transversal line N at points P and Q. In Fig. 1-11, the two angles 
labeled x and z are alternate exterior angles, so are the two angles labeled w and y.

Within a single geometric plane, pairs of alternate exterior angles formed by 
a transversal line have equal measure if and only if the two lines crossed by the 
transversal run parallel to each other. The pairs of alternate exterior angles do 
not have equal measure if and only if the two lines crossed by the transversal do 
not run parallel to each other.

Corresponding Angles
Now consider two lines L and M that lie in the same plane, and that also hap-
pen to run parallel to each other. Let N represent a transversal that intersects L 
and M at points P and Q, respectively. We’ve learned that in this special situa-
tion both pairs of alternate interior angles have equal measure, and both pairs 
of alternate exterior angles have equal measure. But we can say more! In the 
situation of Fig. 1-12, each of the four pairs of angles “facing in the same direc-
tion” constitutes corresponding angles, as follows:

The two angles •	 w correspond.

The two angles •	 x correspond.

The two angles •	 y correspond.

The two angles •	 z correspond.
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L

N

M

P
Q

w

x

y

z

w
x

y
z

Figure 1-12  • Corresponding angles have equal mea-
sure if and only if a transversal crosses two parallel lines.

Whenever a transversal crosses two parallel lines, each individual pair of 
corresponding angles has equal measure.

Perpendicular Transversal
Given two parallel lines L and M along with a transversal N that crosses them 
both, we can be certain that N runs perpendicular to both L and M (i.e., N is a 
perpendicular transversal to the parallel lines L and M) if and only if any single 
pair of adjacent angles has equal measure.

Parallel Principle
Suppose that L represents a line and P represents a point that doesn’t lie on L. 
In any situation of this sort, there exists one and only one line M through P, 
such that M runs parallel to L (Fig. 1-13). We call this fact the parallel principle 
or parallel postulate. It constitutes one of the most important postulates in 
Euclidean geometry.

L

P
M

Figure 1-13  • The parallel principle.
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tIP   In certain variants of geometry, the parallel postulate does not hold true. 
The denial of the parallel postulate forms the cornerstone of non-Euclidean 
geometry. We’ll delve into that subject in Chap. 11.

The Parallel Principle Repeated
Let L and M represent two different lines that lie in the same plane. Suppose 
that both L and M intersect a transversal line N and both L and M run perpen-
dicular to N. Then lines L and M are parallel to each other (Fig. 1-14). We can 
call this fact the principle of mutual perpendicularity. In Fig. 1-14, we illustrate 
the fact that two lines run perpendicular to each other by marking the intersec-
tion point with a small square. Geometers commonly use this trick to show that 
lines, line segments, or rays intersect at right angles.

PROBLEM 1-5
Imagine that you stand on the edge of a highway. The road is perfectly straight 
and flat, and the pavement is 20 meters wide everywhere. Suppose that you 
lay a string across the road so that it intersects one edge of the pavement at 
a 70ç angle, measured with respect to the edge itself. If you stretch the string 
out perfectly straight and then you reel out enough string so it crosses the 
other edge of the road, at what angle will the string intersect the other edge 
of the pavement, measured relative to that edge? At what angle will the string 
intersect the centerline of the road, measured relative to the centerline?

PROBLEM 
Imagine that you stand on the edge of a highway. The road is perfectly straight 
and flat, and the pavement is 20 meters wide everywhere. Suppose that you 
lay a string across the road so that it intersects one edge of the pavement at 

PROBLEM 
Imagine that you stand on the edge of a highway. The road is perfectly straight 

L

N

M

90o

90o

Figure 1-14  • Mutual perpendicularity
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SOLUTION 
This problem involves a double case of alternate interior angles, illustrated 
in Fig. 1-10. Alternatively, you can employ the principle for corresponding 
angles (Fig. 1-12). The edges of the pavement run parallel to each other, 
and both edges run parallel to the centerline. Therefore, the string will in-
tersect the other edge of the road at a 70ç angle; it will also cross the cen-
terline at a 70ç angle. Note that these angles are expressed between the 
string and the pavement edges and centerline themselves, not with re-
spect to the lines that run normal to the pavement edge or the centerline 
(as is often done in physics).

still struggling
In the foregoing solution, we specify the smaller of two intersection angles between 
the string and the road edges, and between the string and the centerline. We could 
also use the larger angle of 110°, which represents the supplement of 70°.

?
PROBLEM 1-6
What are the measures of the angles described in Problem 1-5 and its solu-
tion with respect to normals to the pavement edges and centerline?

SOLUTION 
A normal to any line always subtends an angle of 90ç relative to that line. 
Therefore, the string will cross both edges of the pavement at an angle of 
90ç – 70ç, or 20ç, relative to the normal. We know this fact from the princi-
ple of angle addition and subtraction. The string will also cross the center-
line at an angle of 20ç with respect to the normal. We get the same 20ç
result if we use the larger angle, because 110ç – 90ç = 20ç.

tIP  Obviously, no one should conduct experiments like those of Problems 1-5 and 
1-6 on real roads. If you want to check out the foregoing facts on a big scale, draw 
“fake roads” with chalk on your own driveway, or draw lines in the sand at the 
beach! Leave irresponsible road experiments to wild animals!

SOLUTION 
This problem involves a double case of alternate interior angles, illustrated 
in Fig. 1-10. Alternatively, you can employ the principle for corresponding 
angles (Fig. 1-12). The edges of the pavement run parallel to each other, 
and both edges run parallel to the centerline. Therefore, the string will in-

SOLUTION 
This problem involves a double case of alternate interior angles, illustrated 
in Fig. 1-10. Alternatively, you can employ the principle for corresponding 

✔

PROBLEM 
What are the measures of the angles described in Problem 1-5 and its solu-
tion with respect to normals to the pavement edges and centerline?

PROBLEM 
What are the measures of the angles described in Problem 1-5 and its solu-

SOLUTION 
A normal to any line always subtends an angle of 90
Therefore, the string will cross both edges of the pavement at an angle of 
90ç – 70

SOLUTION 
A normal to any line always subtends an angle of 90

✔
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 What distinction, if any, exists between the meanings of distance and  
displacement?

	A.	 None! The two terms have identical meanings.
	 B.	 Displacement refers to distance in a specified direction.
	C.	 Distance refers to displacement in a specified direction.
	D.	 Displacement refers to the speed of physical motion from one point  

to another, while distance refers only to the separation between  
two points.

	 2.	 An angle having a measure of 315ç constitutes
	A.	 3/8 of a full circle.
	 B.	 5/8 of a full circle.
	C.	 7/8 of a full circle.
	D.	 more than full circle.

	 3.	 An angle having a measure of o/3 constitutes
	A.	 an acute angle.
	 B.	 an obtuse angle.
	C.	 a reflex angle.
	D.	 more than a full circle.

	 4.	 Imagine that you encounter a straight, infinitely long line. You choose a point 
that doesn’t lie on that line. (Any point will do.) Then you attempt to draw 
a new line that runs through the point you’ve just chosen, and that also 
runs through the original line at a right angle. How many such lines can you 
find?

	A.	 None
	 B.	O ne
	C.	T wo
	D.	 Infinitely many

	 5.	 Imagine that you encounter a straight line segment having finite length. You 
attempt to draw an infinitely long, straight line that passes through the original 
line segment at a right angle, and that also divides the original line segment into 
two identical halves. How many such lines can you find?

	A.	 None
	 B.	O ne
	C.	T wo
	D.	 Infinitely many
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	 6.	 Figure 1-15 illustrates a transversal line that passes through two parallel lines. 
The two intersection points produce eight angles, labeled as shown. Which of 
the following pairs of angles do not necessarily have equal measure?

	A.	 w and s
	 B.	 w and u
	C.	 v and y
	D.	 v and z

	 7.	 Suppose that, in the situation of Fig. 1-15, we “adjust” the transversal line so that 
angles s and v have equal measure. In that case, we know that the transversal 
line

	A.	 runs perpendicular to both parallel lines.
	 B.	 can’t possibly run perpendicular to either of the parallel lines.
	C.	 can run perpendicular to only one of the parallel lines.
	D.	 lies outside of the plane formed by the parallel lines.

	 8.	 Between a pair of intersecting lines, the sum of the measures of two adjacent 
angles is always

	A.	 less than π.
	 B.	 equal to π.
	C.	 more than π.
	D.	 equal to 2π.

	 9.	 Imagine that you encounter a straight, infinitely long line. You choose a point 
that doesn’t lie on that line. (Any point will do.) Then you attempt to draw a new 

w

x

y
z

s

t

u

v

These two
lines
are parallel

Transversal
intersects both
parallel lines

Figure 1-15  • Illustration for Quiz Questions 6 and 7.
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line that runs through the point you’ve just chosen, and that also intersects the 
original line. How many such lines can you find?

	A.	 None
	 B.	O ne
	C.	T wo
	D.	 Infinitely many

	 10.	 When we have a transversal line that crosses two parallel lines, we get eight 
angles at the two points where the three lines intersect. Which of the following 
types of angle pairs always have equal measure?

	A.	 Corresponding angles
	 B.	A lternate interior angles
	C.	A lternate exterior angles
	D.	A ll of the above
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c h a p t e r  2
Triangles

If you ever took a course in plane geometry, you remember triangles. Do you 
recall dragging your mind through formal proofs about them? You won’t have 
to scrutinize any proofs here, but you should know some basic facts about 
triangles. Even if you’ve never worked with triangles before, you should find 
the information in this chapter easy to grasp.

C H A P T e r O B J e C T i V e S
In this chapter, you will

Define, name, and analyze triangles.• 
learn about similarity and congruence.• 
learn how to uniquely determine the sides and angles of any triangle.• 
Classify triangles according to shape.• 
Discover the theorem of Pythagoras.• 
Calculate the perimeters and interior areas of triangles.• 
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Triangle Definitions
In mathematics, we should always have a firm grasp of what we’re talking about, 
without any vagueness or ambiguity. That’s why we need formal definitions for 
everything except elementary concepts such as the point, line, and plane.

What’s a Triangle?
A triangle comprises three line segments, joined pairwise at their end points, 
and including those end points. The three points must not be collinear. That is, 
they must not all lie on the same straight line. For our purposes, we assume that 
the universe in which we define the triangle is Euclidean or “flat,” not “curved” 
like the surface of the earth or “warped” like the space around a black hole. In 
such an ideal universe, we can always define the shortest distance between two 
different points by finding the straight line segment connecting those two 
points and then measuring the length of that segment.

Vertices
Figure 2-1 shows three points called A, B, and C, connected by line segments 
to form a triangle. We call these points the vertices of the triangle. We can use 
almost any uppercase, italicized alphabetic letter to denote the vertices of a 
triangle. The letters P, Q, and R are common alternatives to A, B, and C.

Naming
We can call the triangle in Fig. 2-1 “triangle ABC.” Geometers sometimes write 
a little triangle symbol (Δ) in place of the word “triangle.” This symbol is the 
uppercase Greek letter delta. Figure 2-1 therefore portrays an arbitrary ΔABC. 

A

B

C

x

y

z

Vertex
(a point)

Side
(a line segment)

Figure 2-1  • Vertices, sides, and angles of a triangle.
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We can list the vertices in any other order if we want, so we can call the tri-
angle of Fig. 2-1 by any of the following names:

∆ABC

∆BCA

∆CAB

∆CBA

∆BAC

∆ACB

Sides
We can name the sides of the triangle in Fig. 2-1 according to their end points. 
Thus, ΔABC has three sides: line segment AB, line segment BC, and line seg-
ment CA. There are other ways of naming the sides; as long as we don’t confuse 
anybody, we can call them anything we want.

Interior Angles
Each vertex of a triangle corresponds to a specific interior angle, which always 
measures more than 0º (0 rad) but less than 180º (π rad). In Fig. 2-1, we denote 
the interior angles with the lowercase italicized English letters x, y, and z. Some 
mathematicians prefer to use italic lowercase Greek letters to symbolize angles. 
Theta (pronounced THAY-tuh) is a popular choice. It looks like a leaning 
numeral zero with a dash across it (q). Subscripts can help us denote the interior 
angles of a triangle, for example, qa, qb, and qc for the interior angles at vertices 
A, B, and C, respectively. As with the sides, we can give the angles any names 
we want, as long as each angle gets its own name.

Similar Triangles
Two triangles are directly similar if and only if they have the same proportions 
in the same rotational sense, that is, as we go around them both in the same 
direction (either clockwise or counterclockwise). Therefore, one triangle con-
stitutes an enlarged, reduced, and/or rotated copy of the other. They can also 
have identical size, shape, and orientation by coincidence.

Figure 2-2 shows some examples of directly similar triangles. If you take any 
one of the triangles, enlarge it or reduce it uniformly, and rotate it (if necessary) 
to the correct extent, you can place the resulting triangle exactly over any of the 
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other triangles. However, two triangles are not directly similar if we must flip 
one of them over, in addition to changing its size and rotating it, in order to 
place it exactly over the other one.

We call two triangles inversely similar if and only if they’re directly similar 
when considered in the opposite rotational sense, or if they’re directly similar 
after we flip one of them over. In other words, two triangles are inversely 
similar if and only if the “mirror image” of one is directly similar to the other.

Consider two directly similar triangles ∆ABC and ∆DEF. We can symbolize 
the fact that they’re directly similar by writing

∆ABC ∼ ∆DEF

The direct similarity symbol looks like a wavy minus sign. If the triangles ∆ABC 
and ∆DEF are inversely similar, we have a more complicated situation, because 
it can arise in any of three different ways, as follows:

Points •	 D and E are transposed so ∆ABC ∼ ∆EDF.

Points •	 E and F are transposed so ∆ABC ∼ ∆DFE.

Points •	 D and F are transposed so ∆ABC ∼ ∆FED.

Congruent Triangles
Disagreement exists in mathematics literature concerning the meanings of the 
terms congruence and congruent for geometric figures in a plane. Some texts will 
tell you that two objects in a plane are congruent if and only if you can place one 
of them exactly over the other after a rigid transformation (rotating it or moving 
it around, but not flipping it over). Other texts define congruence to allow 

Various orientations

Various sizes

Identical proportions

Figure 2-2  • Directly similar triangles.
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flipping-over, as well as rotation and motion. Let’s stay away from that confusion 
and formulate two separate definitions, one to account for either case.

Two triangles exhibit direct congruence (they’re directly congruent) if and only 
if they’re directly similar, and the corresponding sides have identical lengths. 
Figure 2-3 shows some examples. If you take one of the triangles and rotate it 
clockwise or counterclockwise to the correct extent, you can “paste” it precisely 
over any of the other triangles. Rotation and motion are allowed, but flipping-
over, also called mirroring, is forbidden.

Two triangles exhibit inverse congruence (they’re inversely congruent) if and 
only if they’re inversely similar, and they also happen to be the same size. 
Rotation and motion are allowed, and mirroring is mandatory.

If we have two triangles ∆ABC and ∆DEF that are directly congruent, we can 
symbolize this fact by writing

∆ABC ≅ ∆DEF

The direct congruence symbol looks like an equals sign with a direct similarity 
symbol on top. For two inversely congruent triangles ∆ABC and ∆DEF, three 
possibilities exist, as follows:

Points •	 D and E are transposed so ∆ABC ≅ ∆EDF.

Points •	 E and F are transposed so ∆ABC ≅ ∆DFE.

Points •	 D and F are transposed so ∆ABC ≅ ∆FED.

Identical proportions
and sizes

Various orientations

Figure 2-3  • Directly congruent triangles.
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still struggling
Here are four fundamental facts that you should remember about directly con-
gruent triangles and inversely congruent triangles.

• if two triangles are directly congruent, then their corresponding sides have 
equal lengths as you proceed around both triangles in the same direction. 
the converse also holds true. if two triangles have corresponding sides with 
equal lengths as you proceed around them both in the same direction, then 
the two triangles are directly congruent.

• if two triangles are directly congruent, then their corresponding interior 
angles (the interior angles opposite the corresponding sides) have equal 
measures as you proceed around both triangles in the same direction. the 
converse does not necessarily hold true. two triangles can have correspond-
ing interior angles with equal measures when you proceed around them 
both in the same direction, and yet not be directly congruent.

• if two triangles are inversely congruent, then their corresponding sides 
have equal lengths as you proceed around the triangles in opposite direc-
tions. the converse also holds true. if two triangles have corresponding 
sides with equal lengths as you proceed around them in opposite direc-
tions, then the two triangles are inversely congruent.

• if two triangles are inversely congruent, then their corresponding interior 
angles have equal measures as you proceed around the triangles in opposite 
directions. the converse does not necessarily hold true. two triangles can 
have corresponding interior angles with equal measures as you proceed 
around them in opposite directions, and yet not be inversely congruent.

?

Three-Point Principle
Let P, Q, and R represent three distinct and specific noncollinear points (meaning 
that we know exactly where they are, and they don’t all lie on the same straight 
line, as shown in Fig. 2-4). The following statements hold true:

P•	 , Q, and R lie at the vertices of some triangle; let’s call it W.

W•	  constitutes the only triangle having vertices P, Q, and R.
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PROBLEM 2-1
Imagine a perfectly flat field completely enclosed by four straight lengths of 
fence. At their end points, the fences (which you can imagine as line seg-
ments as seen from high above the field) intersect at right angles. You build 
a straight fence diagonally across the field, dividing the field into two trian-
gles. Are these triangles directly congruent? If not, are they directly similar?

SOLUTION 
If you draw a diagram of this situation and examine it carefully, you’ll see 
that the two triangles are directly congruent. Consider the theoretical im-
ages of the triangles (which, unlike the fences, you can move around in 
your imagination). You can rotate one of these theoretical triangles exactly 
180ç (o rad), either clockwise or counterclockwise, move it a little, and fit it 
exactly over the other one.

PROBLEM 2-2
Suppose that you have a telescope equipped with a camera. You focus on 
a distant, triangle-shaped road sign and take a photograph of it. Then you 
double the magnification of the telescope and, making sure the whole sign 
fits into the field of view of the camera, you take another photograph. 
When you look at the photographs on your computer screen, you see 
triangles in each photograph, of course. Are these triangles directly 
congruent? If not, are they directly similar?

SOLUTION 
In the photos, one triangle looks larger than the other. But unless there’s some-
thing wrong with the telescope, or you use a star diagonal when taking one 

PROBLEM 
Imagine a perfectly flat field completely enclosed by four straight lengths of 
fence. At their end points, the fences (which you can imagine as line seg-
ments as seen from high above the field) intersect at right angles. You build 

PROBLEM 
Imagine a perfectly flat field completely enclosed by four straight lengths of 

SOLUTION 
If you draw a diagram of this situation and examine it carefully, you’ll see 
that the two triangles are directly congruent. Consider the theoretical im-
ages of the triangles (which, unlike the fences, you can move around in 

SOLUTION 
If you draw a diagram of this situation and examine it carefully, you’ll see 

✔

PROBLEM 
Suppose that you have a telescope equipped with a camera. You focus on 
a distant, triangle-shaped road sign and take a photograph of it. Then you 
double the magnification of the telescope and, making sure the whole sign 

PROBLEM 
Suppose that you have a telescope equipped with a camera. You focus on 

SOLUTION 
In the photos, one triangle looks larger than the other. But unless there’s some-
thing wrong with the telescope, or you use a 

SOLUTION 
In the photos, one triangle looks larger than the other. But unless there’s some-

✔

P

QR
S

TU

Figure 2-4 • The three-point principle and side-side-side  triangles.
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photograph and not when taking the other (a star diagonal renders an image 
laterally inverted), the two triangle images have the same shape in the same 
rotational sense. They aren’t directly congruent, but they’re directly similar.

Criteria for Congruence and Similarity
We can use four criteria to define sets of directly congruent triangles. Geometers 
call these notions the side-side-side (SSS), side-angle-side (SAS), angle-side-angle 
(ASA), and angle-angle-side (AAS) principles. The last of these can also be called 
side-angle-angle (SAA). A fifth principle, called angle-angle-angle (AAA), can define 
sets of triangles that exhibit direct similarity, although they don’t necessarily exhibit 
direct congruence.

Side-Side-Side (SSS)
Let S, T, and U represent defined, specific line segments. Let s, t, and u repre-
sent the lengths of S, T, and U, respectively. Suppose that S, T, and U meet at 
their end points P, Q, and R as shown in Fig. 2-4. In this situation, the following 
statements all hold true:

Line segments •	 S, T, and U determine a triangle W.

W•	  constitutes the only triangle with sides S, T, and U in this order, as you 
proceed around the triangle in the same rotational sense.

All triangles having sides of lengths •	 s, t, and u in this order, as you proceed 
around the triangles in the same rotational sense, are directly congruent.

Side-Angle-Side (SAS)
Let S and T represent defined, specific line segments. Let P represent a point 
that lies at the ends of both of these line segments. Denote the lengths of S and 
T by their lowercase counterparts s and t, respectively. Suppose that S and T 
form an angle x, expressed in the counterclockwise sense, at point P as shown 
in Fig. 2-5. In this case, the following statements all hold true:

S•	 , T, and x determine a triangle W.

W•	  constitutes the only triangle with sides S and T that form an angle x, 
measured counterclockwise from S to T, at point P.

All triangles containing two sides of lengths •	 s and t that form an angle x, 
measured counterclockwise from the side of length s to the side of length 
t, are directly congruent.
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Angle-Side-Angle (ASA)
Let S represent a line segment having length s, and whose end points are P and 
Q. Let x and y represent the angles formed relative to S by two lines L and M 
that run through P and Q, respectively (Fig. 2-6), such that we express both 
angles going counterclockwise. Then the following statements all hold true:

x•	 , S, and y determine a triangle W.

W•	  constitutes the only triangle determined by x, S, and y, proceeding from 
left to right.

All triangles containing one side of length •	 s, and whose other two sides 
form angles of x and y relative to the side whose length is s, with x on the 
left and y on the right and both angles expressed counterclockwise, are 
directly congruent.

P
x

S

T

Figure 2-5  • Side-angle-side triangles.

P Q
x y

L M

S

Figure 2-6  • Angle-side-angle triangles.
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Angle-Angle-Side (AAS) or Side-Angle-Angle (SAA)
Let S represent a line segment having length s, and whose end points are P and 
Q. Let x and y represent angles, one adjacent to S and one opposite S, and both 
expressed in the counterclockwise sense (Fig. 2-7). The following statements all 
hold true:

S•	 , x, and y determine a triangle W.

W•	  constitutes the only triangle determined by S, x, and y in the counter-
clockwise sense.

All triangles containing one side of length •	 s, and two angles x and y, one 
adjacent and one opposite, expressed and proceeding in the counterclock-
wise sense, are directly congruent.

Angle-Angle-Angle (AAA)
Let L, M, and N represent lines that lie in a common plane and intersect in 
three points as illustrated in Fig. 2-8. Let x, y, and z represent the angles at these 
points, all expressed in the counterclockwise sense. The following statements 
all hold true:

Infinitely many triangles exist having interior angles •	 x, y, and z, in this 
order and proceeding in the counterclockwise sense.

All triangles with interior angles •	 x, y, and z, in this order, expressed and 
proceeding in the counterclockwise sense, are directly similar.

P Q
x

y

S

Figure 2-7  • Angle-angle-side triangles.
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still struggling
Do you wonder why we use the word “let” so often? For example, “let P, Q, and 
R represent distinct points.” mathematicians write statements like this all the 
time. When an author suggests that you “let” things be a certain way, she asks 
you to imagine things that way, setting the scene for statements or problems 
that follow.

?

PROBLEM 2-3
Refer to Fig. 2-6 again. Suppose that the angles x and y both measure 60º. 
If we reverse the resulting triangle from left to right (we “flip it over” around 
a vertical axis), will the resulting triangle be directly similar to the original? 
Will it be directly congruent to the original?

SOLUTION 
This problem illustrates a special case in which we can “flip over” a triangle 
and get another triangle that’s not only inversely congruent, but also 
directly congruent, to the original. This coincidence occurs because the 
original triangle exhibits bilateral symmetry, meaning that it’s symmetrical 
on either side of some defined straight-line axis.

PROBLEM 
Refer to Fig. 2-6 again. Suppose that the angles 
If we reverse the resulting triangle from left to right (we “flip it over” around 
a vertical axis), will the resulting triangle be directly similar to the original? 

PROBLEM 
Refer to Fig. 2-6 again. Suppose that the angles 

SOLUTION 
This problem illustrates a special case in which we can “flip over” a triangle 
and get another triangle that’s not only inversely congruent, but also 
directly congruent, to the original. This coincidence occurs because the 

SOLUTION 
This problem illustrates a special case in which we can “flip over” a triangle 

✔

z

x y

LM

N

Figure 2-8  • Angle-angle-angle triangles.
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 To clarify this situation, you can draw a diagram after the fashion of 
Fig. 2-6, but using a protractor to generate 60º angles for both x and y. (As 
drawn in this book, the figure is obviously not symmetrical, and the angles 
x and y obviously measure less than 60º.) Then look at the image you have 
drawn, both directly and while standing in front of a mirror. You’ll see that 
the two “mirror-image” triangles are directly congruent.

PROBLEM 2-4
Suppose that, in the situation of Problem 2-3, you split the triangle, whose 
angles x and y both measure 60º, down the middle by dropping a vertical line 
from the top vertex to the midpoint of line segment PQ. Are the resulting two 
triangles, each comprising half of the original, directly similar? Are they 
directly congruent? Are they inversely similar? Are they inversely congruent?

SOLUTION 
These triangles constitute “mirror images” of each other, but you cannot mag-
nify, reduce, and/or rotate one of them to make it fix exactly over the other one. 
The triangles are not directly similar, nor are they directly congruent, even 
though, in a sense, they have the same size and shape. They’re inversely congru-
ent, however, because they constitute equal-sized “mirror images” of each other. 
Because they’re inversely congruent, we know that they’re inversely similar.

tIP   For two triangles to exhibit direct similarity, the lengths of their sides must 
exist in the same proportion, in order, as you proceed in the same rotational sense 
(counterclockwise or clockwise) around both triangles. In order to be directly con-
gruent, their sides must have identical lengths, in order, as you proceed in the 
same rotational sense around both triangles.

Types of Triangles
Let’s categorize triangles broadly in a qualitative sense, that is, according to 
their qualities or characteristics.

Acute Triangle
We have an acute triangle if and only if each of the three interior angles is acute. 
In such a triangle, none of the angles measure as much as a right angle (90º or 
π/2 rad); they’re all smaller than that. Figure 2-9 shows some examples. 

PROBLEM 
Suppose that, in the situation of Problem 2-3, you split the triangle, whose 
angles x
from the top vertex to the midpoint of line segment 

PROBLEM 
Suppose that, in the situation of Problem 2-3, you split the triangle, whose 

SOLUTION 
These triangles constitute “mirror images” of each other, but you cannot mag-
nify, reduce, and/or rotate one of them to make it fix exactly over the other one. 
The triangles are not directly similar, nor are they directly congruent, even 

SOLUTION 
These triangles constitute “mirror images” of each other, but you cannot mag-

✔
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Obtuse Triangle
We have an obtuse triangle if and only if one of the three interior angles is 
obtuse, measuring more than a right angle (90º or π/2 rad) but less than a straight 
angle (180º or π rad). In a triangle of this type, the two nonobtuse angles are 
both acute. Figure 2-10 shows some examples. 

One interior angle measures
more than 90o

Figure 2-10  • In an obtuse triangle, 
one angle measures more than a 
right angle (90º or π/2 rad).

All interior angles measure
less than 90o

Figure 2-9  • In an acute triangle, all 
angles measure less than a right 
angle (90º or π/2 rad).
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Isosceles Triangle
Imagine a triangle with sides called S, T, and U that have lengths s, t, and u 
respectively. Let x represent the angle opposite S, let y represent the angle 
opposite T, and let z represent the angle opposite U. Suppose that at least one 
of the following equations holds true:

s = t

t = u

s = u

x = y

y = z

x = z

Figure 2-11 shows an example of such a situation, where s = t. Whenever we 
find a triangle that has two sides of identical length, we call it an isosceles triangle, 
and the following statements all hold true:

s = t ↔ x = y

t = u ↔ y = z

s = u ↔ x = z

z

x y

st

u

s = t
x = y

Figure 2-11 • An isosceles triangle.
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still struggling
in a logical statement, a double-headed arrow (↔) stands for the expression “if 
and only if,” and a single-headed arrow pointing to the right (→) stands for the 
expression “logically implies.” For example, when we write

s = t ↔ x = y

we assert that

s = t → x = y

and also that

x = y → s = t

mathematicians sometimes abbreviate “if and only if” as “iff,” meaning that the 
logical implication works both ways. in mathematics and logic, when we claim 
that “a implies B,” we mean “if a holds true, then B always holds true,” or “if 
a, then B.”

?

Equilateral Triangle
Imagine a triangle with sides called S, T, and U that have lengths s, t, and u
respectively. Let x represent the angle opposite S, let y represent the angle 
opposite T, and let z represent the angle opposite U. Suppose that either of the 
following equations holds true:

s = t = u

or

x = y = z

In this case we have an equilateral triangle (Fig. 2-12), and we can make the 
logical statement

s = t = u ↔ x = y = z

Any two equilateral triangles chosen “at random” have precisely the same shape; 
they’re directly similar. (As a matter of coincidence, they’re inversely similar 
as well.)
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Right Triangle
Imagine a triangle ∆PQR with sides S, T, and U, having lengths s, t, and u, 
respectively. This triangle constitutes a right triangle if and only if one of the 
interior angles is a right angle (90º or π/2 rad). Figure 2-13 illustrates a right 
triangle in which ∠QRP forms the right angle. The side opposite the right angle 
has the longest length; we call it the hypotenuse of the right triangle. In Fig. 2-13, 
the hypotenuse has length u.

z

x y

st

u

s = t = u
x = y = z

Figure 2-12  • An equilateral triangle.

P

QR
s

t
u

90o

Figure 2-13  • A right triangle. The theorem of Pythagoras holds 
true for all such triangles.
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Special Facts
Triangles have some special properties. These characteristics have applications 
in various branches of the physical sciences. You can expect to encounter these 
applications in science or engineering courses.

A Triangle Determines a Unique Plane
The vertex points of a specific triangle define one, and only one, Euclidean 
(flat) geometric plane. This fact should strike you as intuitively obvious when 
you give it a little thought. Try to imagine three points that don’t all lie in the 
same plane! A specific Euclidean plane can contain infinitely many different 
triangles, but in such a case, all of the triangles, all of their sides, and all of their 
vertices are coplanar (meaning that they all lie in the same plane).

Sum of Angle Measures
In any triangle, the measures of the interior angles add up to a straight angle 
(180º or π rad). This fact holds true regardless of whether we have an acute, 
right, or obtuse triangle, as long as we express and measure all of the angles in 
the plane defined by the three vertices of the triangle.

Theorem of Pythagoras
Consider a right triangle defined by points P, Q, and R whose sides are S, T, and 
U having lengths s, t, and u, respectively. Let u represent the hypotenuse, as 
shown in Fig. 2-13. In this situation, the following equation, known as the theorem 
of Pythagoras or the Pythagorean theorem (named after the Greek philosopher 
who supposedly discovered it around the sixth century B.C.) always holds true:

s2 + t2 = u2

TIP   Any triangle whose sides have lengths s, t, and u such that the foregoing 
equation holds true constitutes a right triangle.

Perimeter of Triangle
Imagine a triangle defined by points P, Q, and R, and having sides S, T, and U 
of lengths s, t, and u, respectively, as shown in Fig. 2-14. We can calculate the 
perimeter B of the triangle with the formula

B = s + t + u
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Interior Area of Triangle
Consider the same triangle as defined above; refer again to Fig. 2-14. Let s
represent the triangle’s base length, and let h represent the triangle’s height 
(the length of a perpendicular line segment between point P and side S). We 
can calculate the interior area A with the formula

A = sh/2

PROBLEM 2-5
Suppose that DPQR in Fig. 2-14 has sides of lengths s = 10 meters, t = 7 
meters, and u = 8 meters. What’s the perimeter B of this triangle?

SOLUTION 
We simply add up the lengths of the sides, obtaining

 B = s + t + u
= (10 + 7 + 8) meters

 = 25 meters

PROBLEM 2-6
Do any triangles exist having sides of lengths 10 meters, 7 meters, and 
8 meters, in that order proceeding clockwise that fail to exhibit direct con-
gruence with DPQR as described in Problem 2-5?

SOLUTION 
No. According to the side-side-side (SSS) principle, all triangles having 
sides of lengths 10 meters, 7 meters, and 8 meters, in this order as we pro-
ceed in the same rotational sense, are directly congruent.

PROBLEM 
Suppose that 
meters, and 

PROBLEM 
Suppose that 

SOLUTION 
We simply add up the lengths of the sides, obtaining

 B

SOLUTION 
We simply add up the lengths of the sides, obtaining

✔

PROBLEM 
Do any triangles exist having sides of lengths 10 meters, 7 meters, and 
8 meters, in that order proceeding clockwise that 

PROBLEM 
Do any triangles exist having sides of lengths 10 meters, 7 meters, and 

SOLUTION 
No. According to the side-side-side (SSS) principle, all triangles having 
sides of lengths 10 meters, 7 meters, and 8 meters, in this order as we pro-

SOLUTION 
No. According to the side-side-side (SSS) principle, all triangles having 

✔

P

QR

h

s

t u

90o

Figure 2-14  • Perimeter and area of a triangle.
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P

Q

R

Figure 2-15  • Illustration for Quiz Questions 2 and 3.

Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 Which of the following statements does not always hold true?
	A.	I f two triangles have corresponding sides with equal lengths as we go around 

them both in the same direction, then the triangles are directly congruent.
	 B.	I f two triangles are directly congruent, then their corresponding sides have 

equal lengths as we go around them both in the same direction.
	 C.	I f two triangles are directly congruent, then their corresponding interior angles 

have equal measures as we go around them both in the same direction.
	D.	I f two triangles have corresponding interior angles with equal measures as we 

go around them both in the same direction, then the triangles are directly 
congruent.

	 2.	 Upon casual observation, the triangle in Fig. 2-15 looks like
	A.	 an acute triangle.
	 B.	 an obtuse triangle.
	C.	 a reflex triangle.
	D.	 a right triangle.

	 3.	 To find the area enclosed by the triangle shown in Fig. 2-15, we must multiply 
the length of line segment RP by

	A.	 half of the length of line segment RQ.
	 B.	 half of the length of line segment QP.
	C.	 half of the sum of the lengths of line segments RQ and QP.
	D.	 half of the shortest distance between point Q and line segment RP.

	 4.	 All equilateral triangles are
	A.	 directly congruent.
	 B.	 inversely congruent.
	C.	 inversely similar.
	D.	A ll of the above
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	 5.	 We can use all of the following criteria to establish the direct congruence of two 
triangles, except for one. Which one?

	A.	SAS
	 B.	SSS
	C.	AAA
	D.	ASA

	 6.	 In the situation of Fig. 2-16, we can have complete confidence that the triangle 
with sides measuring s, h, and v is

	A.	 an acute triangle.
	 B.	 a right triangle.
	C.	 an equilateral triangle.
	D.	 an isosceles triangle.

	 7.	 We can mathematically determine the interior area A of the large triangle DQRP 
in Fig. 2-16 with one of the following equations. Which one?

	A.	 A = hs
	 B.	 A = ht
	C.	 A = (hu + hv)/2
	D.	 A = (hs + ht)/2

	 8.	 We can mathematically determine the perimeter B of the large triangle DQRP in 
Fig. 2-16 with one of the following equations. Which one?

	A.	 B = st + u + v
	 B.	 B = s + t + u + v
	C.	 B = h(u + v)
	D.	 B = h + u + v

P

QR

h

st

u

90o

v

Figure 2-16  • Illustration for Quiz Questions 6 through 10.
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	 9.	 Which of the following equations holds true for the situation of Fig. 2-16, based 
only on the information specifically given?

	A.	 v 2 = s 2 + h 2

	 B.	 (t + s) 2 = u 2 + v 2

	C.	 ts = u 2 + v 2

	D.	 h 2 = t 2 + u 2

	 10.	 Which of the following equations holds true for the situation of Fig. 2-16, based 
only on the information specifically given?

	A.	 uv = ts
	 B.	 htu = hvs
	C.	 h 2 = u 2 − t 2

	D.	 t + s = u 2 − v 2
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c h a p t e r  3
Quadrilaterals

Within the confines of a Euclidean plane, we can call any four-sided geometric 
figure a quadrilateral. Inside a triangle, any given interior angle must measure 
more than 0° (0 rad) but less than 180° (π rad); with a quadrilateral, any given 
interior angle must measure more than 0° (0 rad) but less than 360° (2π rad).

C H A P T e r O B J e C T i V e S
In this chapter, you will

define and name quadrilaterals.• 
Classify quadrilaterals according to general shape.• 
learn the relationships between sides and angles of quadrilaterals.• 
Break quadrilaterals into triangles.• 
Calculate quadrilateral perimeters.• 
Calculate the areas enclosed by quadrilaterals.• 
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Types of Quadrilaterals
We can categorize any four-sided plane figure as a square, a rhombus, a rectangle, 
a parallelogram, a trapezoid, or a general quadrilateral. Let’s define these terms 
and the look at some examples.

Requirements
A four-sided geometric object must have four properties to “qualify” as a 
Euclidean plane quadrilateral:

All four vertices must lie in the same plane.•	

All four sides must constitute straight line segments of finite length.•	

No side can have zero length or negative length.•	

No two sides can intersect except at their end points.•	

We can’t let a quadrilateral “stray” out of a single plane. We can’t allow sides to 
have any curvature whatsoever. We can’t “stretch” a side to infinite length or 
“crush” it down to a point having no length at all. A true plane quadrilateral 
cannot have any side whose length we define as negative.

The vertices of a triangle must inevitably lie in a single geometric plane, 
because any three points, no matter which ones we choose, define a unique 
geometric plane. But when we choose four points “at random” in space, they 
don’t all necessarily lie in the same plane.

TIP   Any three points in space lie in a single plane, but a fourth one can get “out of 
alignment.” That’s why a four-legged stool or table often wobbles, and why it’s so 
difficult to trim the lengths of the legs so the wobbling stops. Once the ends of the 
legs lie in a single plane so that they define the vertices of a plane quadrilateral, 
the stool or table won’t wobble as long as the floor remains perfectly flat. (If the 
floor isn’t flat, you have a real prescription for frustration with four-legged stools, 
but a three-legged stool will stand firm even on irregular terrain.)

Square
A square has four sides, all measuring the same length. In addition, all of the 
interior angles measure 90° (π/2 rad). Figure 3-1 shows the general situation. 
The length of each side equals s units. There exists no limit as to how large s 
can become, but it must always have a positive, nonzero value.
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s

s

s

s

Square

90o 90o

90o 90o

All four sides have equal length;
all four angles are right angles

Figure 3-1  • Example of a square. Sides have 
length s, and the interior angles all constitute 
right angles (90° or π/2 rad).

Rhombus
In a rhombus, all four sides have the same length, but the angles don’t all have 
to measure 90°. A “generic” rhombus looks something like the polygon shown 
in Fig. 3-2. All four sides have length s. Opposite pairs of angles have equal 
measure, but adjacent pairs of angles can (and usually do) differ. In this illustration, 
the two angles labeled x have equal measure, as do the two angles labeled y. In 
a rhombus, both pairs of opposite sides are parallel.

TIP   A square constitutes a special type of rhombus in which all four angles hap-
pen to have the same measure.

Rectangle
In a rectangle, all four angles have equal measure, but the sides don’t necessarily 
all have equal lengths. A “generic” rectangle looks something like the polygon 
shown in Fig. 3-3. All four angles measure 90° (π/2 rad). Opposite pairs of sides 
are equally long, but adjacent pairs of sides usually differ in length. In the case of 
Fig. 3-3, the two sides labeled s have equal lengths, as do the two sides labeled t.

TIP   A square constitutes a special type of rectangle in which all four sides happen 
to have equal lengths.
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Parallelogram
We can define a parallelogram according to its outstanding characteristic: Both 
pairs of opposite sides are parallel. That’s it! That quality alone allows a plane 
quadrilateral to qualify as a parallelogram. Whenever both pairs of opposite 
sides in a Euclidean plane quadrilateral are parallel, those pairs also have the 

ss

t

t

Rectangle

90o

90o

90o

90o

Opposite sides have equal length;
all four angles are right angles

Figure 3-3  • Example of a rectangle. Sides have 
lengths s and t, while the interior angles all constitute 
right angles (90° or π/2 rad).

s

s

s

s

All four sides have equal length;
opposite angles have equal measure

x

x

y

y

Rhombus

Figure 3-2 • Example of a rhombus. Sides have length s, 
while x and y denote interior angle measures.
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same length. In addition, pairs of opposite angles have equal measure. Figure 3-4 
shows an example of a parallelogram in which both angles labeled x have equal 
measure, both angles labeled y have equal measure, both sides labeled s have 
the same length, and both sides labeled t have the same length.

TIP   A rectangle constitutes a special sort of parallelogram. So does a rhombus, 
and so does a square.

Trapezoid
We can define a trapezoid as a plane quadrilateral in which one pair of opposite 
sides is parallel. Otherwise, no restrictions exist (other than the ones necessary 
to ensure that we have a “legitimate” Euclidean plane quadrilateral). Figure 3-5 

ss

x

x

y

y

Parallelogram

t

t

Opposite sides have equal length;
opposite angles have equal measure

Figure 3-4 • Example of a parallelogram. Sides have lengths s 
and t, while x and y denote interior angle measures.

Trapezoid
These lines
are parallel

Two opposite sides are parallel;
no other constraints exist

Figure 3-5  • In a trapezoid, one pair of opposite sides is parallel.
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shows an example of a trapezoid. The dashed lines represent the parallel lines 
in which the two parallel sides of the trapezoid lie.

General Quadrilaterals
In a general quadrilateral, we don’t have to impose any restrictions on the lengths 
of the sides, although no interior angle’s measure can stray outside of the range 
0° (0 rad) to 360° (2π rad), noninclusive. As long as all four vertices lie in the 
same plane, no two sides intersect except at their end points, and all four sides 
of the figure are straight line segments of finite and positive length, we’re okay.

Irregular Quadrilaterals
We can consider any quadrilateral “general.” A rectangle, for example, is a spe-
cific type of general quadrilateral. So is a rhombus; so is a trapezoid. But we can 
find plenty of general quadrilaterals that don’t fall into any of the foregoing 
categories. They don’t exhibit any symmetry or apparent orderliness. We call 
four-sided polygons of the “maverick type” irregular quadrilaterals. Figure 3-6 
shows some examples.

All figures have four sides
that lie in a single plane

Figure 3-6  • Examples of irregular quadrilaterals. The sides can all 
have different lengths, and the angles can all have different measures.
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PROBLEM 3-1
What type of quadrilateral constitutes the boundaries (end lines and side-
lines) of a football field?

SOLUTION 
Assuming the groundskeepers do their job correctly, a football field has 
the shape of a rectangle. All four corners form right angles (90ç). In addi-
tion, both pairs of opposite sides are equally long. That is to say, the two 
sidelines have the same length, as do the two end lines.

PROBLEM 3-2
Suppose that we define a quadrilateral ABCD so that we encounter the 
vertex points D, C, B, and A in that order going clockwise around the figure. 
Suppose further that we have

≠CBA = ≠ADC

and

≠BAD = ≠DCB

What specific things can we say about this quadrilateral?

SOLUTION 
I recommend that you draw a diagram to illustrate this situation, 
because most people can’t directly envision these constraints “in their 
mind’s eyes.” You’ll see that ≠CBA lies opposite ≠ADC, and ≠BAD lies 
opposite ≠DCB. The fact that opposite pairs of angles have equal 
measure tells you that the quadrilateral constitutes a parallelogram. It 
might be a special type of parallelogram such as a rhombus, rectangle, 
or square, but you can have absolute confidence that it’s a parallelo-
gram no matter what.

Facts about Quadrilaterals
Every quadrilateral has certain properties, depending on the “species.” Following 
are some useful facts concerning four-sided Euclidean plane figures.

PROBLEM 
What type of quadrilateral constitutes the boundaries (end lines and side-
lines) of a football field?

PROBLEM 
What type of quadrilateral constitutes the boundaries (end lines and side-

SOLUTION 
Assuming the groundskeepers do their job correctly, a football field has 
the shape of a rectangle. All four corners form right angles (90

SOLUTION 
Assuming the groundskeepers do their job correctly, a football field has 

✔

PROBLEM 
Suppose that we define a quadrilateral 
vertex points 

PROBLEM 
Suppose that we define a quadrilateral 

SOLUTION 
I recommend that you draw a diagram to illustrate this situation, 
because most people can’t directly envision these constraints “in their 

SOLUTION 
I recommend that you draw a diagram to illustrate this situation, 

✔
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Sum of Measures of Interior Angles
As long as all four sides of a quadrilateral are straight line segments of positive 
and finite length and as long as all four vertices lie in the same plane, the mea-
sures of the four interior angles always add up to 360° (2π rad). Figure 3-7 
shows an example of an irregular quadrilateral. We denote the interior angles 
as w, x, y, and z. In this particular example, angle w measures more than 180°
(π rad). The other three angles are all acute. If you enlarge Fig. 3-7 and use a 
protractor to measure the interior angles and if you then add up all four angle 
measures, you should obtain 360° (within the margin of observation error).

still struggling
you might call the irregular quadrilateral in Fig. 3-7 a “boomerang” or a “distorted 
arrowhead,” although neither of these is an “official” geometry term. you might 
also call this object a “reflex quadrilateral” because angle w is a reflex angle or a 
“concave quadrilateral” because the figure has a “dent.” Feel free to make up your 
own terms in geometry once in awhile, but use caution! your readers might not 
know what you mean unless you explain it to them.

?

w

x

y

z

w x y z = + ++ 360o

F i g u r e 3-7  • In any plane quadrilateral, the sum of the mea-
sures of the interior angles w, x, y, and z equals a full circle 
(360° or 2π rad).
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Parallelogram Diagonals
Consider a parallelogram defined by four vertex points P, Q, R, and S, which 
we encounter in that order as we proceed clockwise around the figure. Let D 
represent a line segment connecting the “nearer pair” of vertices P and R as 
shown in Fig. 3-8A. In this situation, the line segment D constitutes the minor 
diagonal of the parallelogram, and

∆PQR ≅ ∆RSP

Let E represent a line segment connecting the “farther pair” of vertices Q and 
S as shown in Fig. 3-8B. In this case, the line segment E constitutes the major 
diagonal of the parallelogram, and

∆QRS ≅ ∆SPQ

Remember that the equals sign with the wavy line above it translates to the 
phrase “is directly congruent to”!

P Q

RS

A

P Q

RS

B

D

E

Figure 3-8  • Triangles defined by the minor diago-
nal (A) or the major diagonal (B) of a parallelogram 
are congruent.
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Bisection of Parallelogram Diagonals
Suppose that we have a parallelogram defined by four vertex points P, Q, R, 
and S, which we encounter in that order as we proceed clockwise around the 
figure. Let D represent the minor diagonal connecting P and R; let E represent 
the major diagonal connecting Q and S (Fig. 3-9). In this scenario, the two line 
segments D and E bisect each other at their intersection point T. In addition, 
we have

∆PQT ≅ ∆RST
and

∆QRT ≅ ∆SPT

The converse of the foregoing statement also holds true: If we have a plane 
quadrilateral whose diagonals bisect each other, then that quadrilateral consti-
tutes a parallelogram.

Rectangle
Consider a parallelogram defined by four points P, Q, R, and S, which we 
encounter in that order as we go clockwise around the figure. Suppose that any 
of the following statements holds true for angles in degrees:

∠SRQ = 90° = π/2 rad

∠PSR = 90° = π/2 rad

∠QPS = 90° = π/2 rad

∠RQP = 90° = π/2 rad

P Q

RS

D

E

T

Figure 3-9  • The diagonals of a parallelogram bisect each other.



Chapter 3  Q u a d r i l at e r a l s         55

In this situation, all four interior angles are right angles, and the parallelogram 
is therefore a rectangle (a four-sided plane polygon whose interior angles all 
have equal measures). The converse of this statement also holds true: If a quad-
rilateral is a rectangle, then any given interior angle is a right angle. Figure 3-10 
shows an example of a parallelogram PQRS in which ∠SRQ = 90° = π/2 rad. 
Because one angle is a right angle and opposite pairs of sides are parallel, all four 
of the angles must measure 90° (π/2 rad).

Rectangle Diagonals
Imagine a parallelogram defined by four points P, Q, R, and S, which we 
encounter in that order as we go clockwise around the figure. Let D represent 
the diagonal connecting P and R; let E represent the diagonal connecting Q and 
S. Suppose that D and E are equally long, as shown in Fig. 3-11. In that case, 

P Q

S R

90o

Figure 3-10  • If a parallelogram has one right 
interior angle, then the parallelogram consti-
tutes a rectangle.

P Q

RS

D

E 90o

Figure 3-11  • The diagonals of a rectangle 
have equal length.
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the parallelogram is a rectangle. The converse of this statement also holds true: 
If a parallelogram is a rectangle, then its two diagonals are equally long.

TIP   A parallelogram constitutes a rectangle if and only if its diagonals have 
equal lengths.

Rhombus Diagonals
Suppose we have a parallelogram defined by four points P, Q, R, and S, which 
we encounter in that order as we go clockwise around the figure. Let D repre-
sent the diagonal connecting P and R; let E represent the diagonal connecting 
Q and S. If D runs perpendicular to E as shown in Fig. 3-12, then the parallelo-
gram is a rhombus. The converse of this statement also holds true: If a paral-
lelogram is a rhombus, then its major and minor diagonals run perpendicular to 
each other.

TIP   A parallelogram constitutes a rhombus if and only if its diagonals are 
perpendicular.

P

Q

R

S

D

E

90o

Figure 3-12 • The diagonals of a rhombus 
intersect at right angles.
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Trapezoid within a Triangle
Consider a triangle defined by three points P, Q, and R, which we encounter in that 
order as we go clockwise around the figure. Let S represent the midpoint of side PR, 
and let T represent the midpoint of side PQ as shown in Fig. 3-13. In this case, line 
segments ST and RQ run parallel to each other, and the figure STQR defined by the 
four vertex points S, T, Q, and R (in order going clockwise) constitutes a trapezoid. In 
addition, the length of line segment ST equals half the length of line segment RQ.

Median of a Trapezoid
Consider a trapezoid defined by four points P, Q, R, and S, which we encounter 
in that order as we go clockwise around the figure. Let T represent the midpoint 
of side PS, and let U represent the midpoint of side QR as shown in Fig. 3-14. 
We call line segment TU the median of trapezoid PQRS.

P

QR

S T

Figure 3-13  • A trapezoid is formed by “chopping off” the 
top of a triangle.

P Q

S R

T U

L

A

B

C

Figure 3-14  • The median of a trapezoid, 
also showing a transversal line.
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The median of a trapezoid always runs parallel to both the base (in this case 
line segment SR) and the top (in this case line segment PQ). Also, the median 
splits the trapezoid into two other trapezoids. In this scenario, polygons PQUT
and TURS are both trapezoids. Additionally, the length of line segment TU
equals half the sum of the lengths of line segments PQ and SR. In more general 
terms, the length of a trapezoid’s median is the average of the lengths of the 
base and the top.

still struggling
Recall from your pre-algebra course that you can find the average, also called 
the arithmetic mean, of two numbers by adding them and then dividing the 
result by 2.

?
Median with Transversal
Look again at Fig. 3-14. Suppose that L represents a transversal line that crosses 
both the top of the large trapezoid (line segment PQ) and its base (line segment 
SR). The transversal line L also crosses the large trapezoid’s median, line seg-
ment TU. Let A represent the point at which L crosses PQ, let B represent the 
point at which L crosses TU, and let C represent the point at which L crosses 
SR. In this case, line segments AB and BC have equal length.

Still referring to Fig. 3-14, suppose that PQRS is a trapezoid, with sides PQ
and RS parallel. Let TU represent a line segment parallel to both PQ and RS, 
and that intersects both of the nonparallel sides of the trapezoid (sides PS and 
QR). Let L represent a transversal line that crosses all three parallel line seg-
ments PQ, TU, and RS, at the points A, B, and C, respectively, as shown. In this 
scenario, line segment TU is the median of the large trapezoid PQRS if and only 
if line segments AB and BC have equal length.

PROBLEM 3-3
Suppose that a four-sided plane figure has diagonals that both measure 
the same length, and, in addition, they intersect at a right angle. What can 
we say about this polygon?

PROBLEM 
Suppose that a four-sided plane figure has diagonals that both measure 
the same length, and, in addition, they intersect at a right angle. What can 

PROBLEM 
Suppose that a four-sided plane figure has diagonals that both measure 
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SOLUTION 
Based on the rules that we’ve learned so far, the figure must constitute a 
rectangle, because its diagonals have equal lengths. It must also be a rhom-
bus, because its diagonals run perpendicular to each other. Only one type 
of polygon—a square—can exist as a rectangle and a rhombus “at the 
same time.”

tIP   A square is a special type of rhombus in which both pairs of opposite interior 
angles have the same measure. A square is also a special type of rectangle in 
which both pairs of opposite sides have equal lengths.

PROBLEM 3-4
Suppose that a sign manufacturing company gets tired of making rectan-
gular billboards and decides to put up a trapezoidal billboard instead. The 
top and the bottom of the billboard run horizontally, but neither of the 
other sides runs vertically. The big sign measures 20 meters across the top 
edge and 30 meters across the bottom edge. Two different corporations 
want to advertise on the billboard, and their chief executives both insist on 
having portions of equal height. What’s the length of the line that divides 
the spaces allotted to the two advertisements? Does this compromise rep-
resent a “fair” or “equitable” division of the sign?

SOLUTION 
The line segment that divides the two portions constitutes the median of 
the sign. Its length, therefore, equals 25 meters, which is the average of 
20 meters and 30 meters. We can debate whether or not this particular 
division represents a “fair” or “equitable” apportionment of the sign. The 
advertiser on the bottom receives more sign surface area than the adver-
tiser on the top gets, but casual passersby might more easily notice the 
advertisement on the top.

Perimeters and interior Areas
The perimeter of a polygon equals the sum of the lengths of all its sides. We can 
also define a polygon’s perimeter as the distance going exactly once around the 
whole edge of the figure, starting at some point on one of its sides and proceeding 

PROBLEM 
Suppose that a sign manufacturing company gets tired of making rectan-
gular billboards and decides to put up a trapezoidal billboard instead. The 

PROBLEM 
Suppose that a sign manufacturing company gets tired of making rectan-

SOLUTION 
The line segment that divides the two portions constitutes the median of 
the sign. Its length, therefore, equals 25 meters, which is the average of 

SOLUTION 
The line segment that divides the two portions constitutes the median of 

✔

SOLUTION 
Based on the rules that we’ve learned so far, the figure must constitute a 

✔
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clockwise or counterclockwise until we reach that point again. The interior area 
of a plane polygon quantifies of the size of the region enclosed by the figure in 
the same plane as its vertices and sides.

TIP   We must always express perimeter values in linear units (or, if you prefer, 
“plain old units”), and interior-area values in square units (or “units squared”).

Perimeter of Parallelogram
Consider a parallelogram defined by points P, Q, R, and S, which we encounter 
in that order as we go clockwise around the figure. Suppose that the opposite 
pairs of sides have lengths d and e as shown in Fig. 3-15. The two angles labeled 
x have equal measure. Let d represent the base length, and let h represent the 
height. We can calculate the perimeter B of the parallelogram with the formula

B = 2d + 2e

Interior Area of Parallelogram
Suppose that we have a parallelogram as defined earlier and in Fig. 3-15. The 
interior area A equals the product of the base length and the height. We can 
calculate it using the simple formula

A = dh

Perimeter of Rhombus
Imagine a rhombus defined by points P, Q, R, and S, which we encounter in 
that order as we go clockwise around the figure. The rhombus constitutes a 

P Q

RS

h
e

d

x

x

90o

Figure 3-15  • Perimeter and area of a parallelogram. The parallelo-
gram constitutes a rhombus if and only if d = e.
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special case of the parallelogram (Fig. 3-15) in which all four sides are equal  
(so, in the case of Fig. 3-15, we have d = e). Let d equal the length of any one 
side. We can calculate the perimeter B of the rhombus using the formula

B = 4d

Interior Area of Rhombus
Consider a rhombus as defined earlier and in Fig. 3-15, where d = e. Let’s 
denote the length of any one side as d. The interior area A of the rhombus 
equals the product of the side length and the height. We can calculate it with 
the formula

A = dh

Perimeter of Rectangle
Consider a rectangle defined by points P, Q, R, and S, which we encounter in 
that order as we go clockwise around the figure. Imagine that the sides measure 
d and e as shown in Fig. 3-16. Let d represent the base length, and let e represent 
the height. We can calculate the rectangle’s perimeter B with the formula

B = 2d + 2e

Interior Area of Rectangle
Consider a rectangle as defined earlier and in Fig. 3-16. We can calculate the 
rectangle’s interior area A with the formula

A = de

P Q

RS d

e

90o

Figure 3-16  • Perimeter and area of a rectangle. 
The figure constitutes a square if and only if d = e.
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Perimeter of Square
Imagine a square defined by points P, Q, R, and S, and having sides all of the 
same length. The square constitutes a special case of the rectangle (Fig. 3-16) 
in which d = e. Let’s denote the lengths of all four sides as d. We can calculate 
the square’s perimeter B with the formula

B = 4d

Interior Area of Square
Consider a square as defined earlier and in Fig. 3-16, where d = e. Let’s denote 
the lengths of all four sides as d. We can calculate the square’s interior area A 
by squaring the length of any side. We have the formula

A = d 2

Perimeter of Trapezoid
Imagine a trapezoid defined by points P, Q, R, and S, which we encounter in 
that order as we go clockwise around the figure. Imagine that the sides have 
lengths d, e, f, and g as shown in Fig. 3-17. Let d represent the base length, let h 
represent the height, let x represent the angle between the sides having lengths 
d and e, and let y represent the angle between the sides having lengths d and g. 
Suppose that the sides having lengths d and f (line segments RS and PQ) are 
parallel. We can calculate the trapezoid’s perimeter B with the formula

B = d + e + f + g

P Q

S R

h

x y

d

e

f

g
m

90o

Figure 3-17  • Perimeter and area of a trape-
zoid based on its various dimensions.
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Interior Area of Trapezoid
Consider a trapezoid as defined earlier and in Fig. 3-17. The interior area A
equals the average of the lengths of the base and the top, multiplied by the 
height. We can calculate A using the formula

 A = [(d + f)/2] h 

 = (dh + fh)/2  

Now suppose that m represents the length of the median of the trapezoid, that is, 
a line segment parallel to the base and the top, and midway between them. The 
interior area A equals the product of the length of the median and the height. 
We can use the formula 

A = mh

PROBLEM 3-5
Refer back to Problem 3-4. Suppose that the whole billboard measures 
15 meters high. It’s a trapezoidal billboard, measuring 20 meters along the 
top edge and 30 meters along the bottom. We divide the sign by placing a 
horizontal median midway between the top and the bottom. What fraction 
of the total billboard surface area, as a percentage, does the advertiser 
with the top half get?

SOLUTION 
The length of the median, as determined in Problem 3-4, equals 25 meters, 
the average of the lengths of the bottom and the top. Therefore m = 25. 
We’re told that h = 15. We can calculate the total interior area of the sign—
call it Atotal—as follows:

 Atotal = 25 meters × 15 meters

 = 375 meters squared

We calculate the area of the top half by considering the trapezoid for which 
m constitutes the base. Let’s use the more complicated formula—the one 
involving the arithmetic mean, above—in order to find the interior area of 
this smaller trapezoid. We can call its area Atop. The base length of this trap-
ezoid equals 25 meters, while the top measures 20 meters long. The height 

PROBLEM 
Refer back to Problem 3-4. Suppose that the whole billboard measures 
15 meters high. It’s a trapezoidal billboard, measuring 20 meters along the 

PROBLEM 
Refer back to Problem 3-4. Suppose that the whole billboard measures 

SOLUTION 
The length of the median, as determined in Problem 3-4, equals 25 meters, 
the average of the lengths of the bottom and the top. Therefore 

SOLUTION 
The length of the median, as determined in Problem 3-4, equals 25 meters, 

✔
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equals 7.5 meters, half the height of the whole sign. We calculate Atop as 
follows:

 Atop = [(25 meters + 20 meters)/2] × 7.5 meters

 = (45 meters/2) × 7.5 meters

 = 22.5 meters × 7.5 meters

 = 168.75 meters squared

The fraction of the total area represented by the top portion of the sign 
equals the ratio of Atop to Atotal. That’s 168.75 meters squared divided by 375 
meters squared, or 0.45. The top advertiser gets 45/100, or 45%, of the total 
sign area. 

PROBLEM 3-6
Suppose that the billboard constitutes a rectangle rather than a trapezoid, 
measuring 25 meters across both the top and the bottom. Suppose the 
sign is 15 meters tall, and we want to split it into upper and lower portions, 
one for each of two different advertisers, Top Inc. and Bottom Inc. Suppose 
that the executives of Bottom Inc. demand that the Top Inc. only get 45% 
of the total area of the sign because of Top Inc.’s more favorable viewing 
position. How far from the bottom of the sign should we place the dividing 
line?

SOLUTION 
The total area of the sign, Atotal, equals the product of the base (or top) 
length and the height, as follows:

Atotal = 25 meters × 15 meters

 = 375 meters squared

This figure equals the total area that we found in Solution 3-5. Therefore, 
45% of this, Atop, is the same as it was then: 168.75 meters squared. We can 
now calculate the area of the bottom portion, Abottom, as follows:

 Abottom = Atotal – Atop

 = (375 – 168.75) meters squared

 = 206.25 meters squared

PROBLEM 
Suppose that the billboard constitutes a rectangle rather than a trapezoid, 
measuring 25 meters across both the top and the bottom. Suppose the 

PROBLEM 
Suppose that the billboard constitutes a rectangle rather than a trapezoid, 

SOLUTION 
The total area of the sign, 
length and the height, as follows:

SOLUTION 
The total area of the sign, 

✔
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Let x represent the distance, in meters, of the dividing line from the sign’s 
bottom edge. In that case, x represents the lengths of the two vertical sides 
of the bottom rectangle. We already know that the dividing line (which 
constitutes the top edge of the bottom rectangle) measures 25 meters 
long, as does the base. According to all this information, we can use the 
following formula to define the area of the bottom portion:

 Abottom = 25x

We know that Abottom = 206.25 meters squared. We can plug this value into 
the above equation to get

 206.25 = 25x

When we divide each side of this equation by 25 meters, we obtain

 x = (206.25 meters squared)/(25 meters)

 = 8.25 meters

We should place the dividing line 8.25 meters above the bottom edge of 
the billboard.

 

still struggling
Does the previously-determined placement represent a fair division of the sign’s 
total area? the lawyers for top inc. and Bottom inc. could decide the matter in 
court, doubtless at shareholder expense. As mathematicians, we’d better stay 
out of the dispute!

?
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 Figure 3-18 illustrates a trapezoid PQRS whose top edge measures 7 units wide, 
bottom edge measures 9 units wide, and height equals 6 units. Based on this 
information, what’s the perimeter of trapezoid PQRS?

	A.	 22 units
	 B.	 24 units
	C.	 48 units
	D.	 We need more information to answer this question.

	 2.	 Based on the information shown in Fig. 3-18, what’s the interior area of trapezoid 
PQRS?

	A.	 54 units squared
	 B.	 48 units squared
	C.	 42 units squared
	D.	 We need more information to answer this question.

	 3.	 Based on the information shown in Fig. 3-18, what’s the interior area of triangle 
SQR?

	A.	 27 units squared
	 B.	 24 units squared
	C.	 21 units squared
	D.	 We need more information to answer this question.

	 4.	 Based on the information shown in Fig. 3-18, what’s the interior area of triangle 
PQS?

	A.	 27 units squared
	 B.	 24 units squared

P Q

RS 9 units

6 units

7 units

Figure 3-18  • Illustration for Quiz Questions 1 through 4.
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	C.	 21 units squared
	D.	 We need more information to answer this question.

	 5.	 A square is a special type of
	A.	 rhombus.
	 B.	 parallelogram.
	C.	 rectangle.
	D.	 All of the above

	 6.	 Suppose that in the situation of Fig. 3-19, angle x measures o/2 rad. In that case, 
we can be certain that

	A.	 all four sides of polygon PQRS are equally long.
	 B.	 angle SPQ measures 45°.
	C.	 angle RSP measures 135°.
	D.	 All of the above

	 7.	 We can find the interior area of a rectangle by
	A.	 multiplying the lengths of any two adjacent sides.
	 B.	 multiplying the lengths of any two opposite sides.
	C.	 adding up the lengths of all four sides.
	D.	 multiplying the lengths of all four sides and then dividing by 2.

P

Q

R

S

T

x

F i g u r e  3 - 19  • Illustration for Quiz 
Question 6.
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	 8.	 When we encounter a trapezoid, we can have complete confidence that the sum 
of the measures of the interior angles

	A.	 exceeds 2π rad.
	 B.	 is less than 2π rad.
	C.	 equals 2π rad.
	D.	 depends on the relative lengths of the edges.

	 9.	 When we encounter a parallelogram, we can have complete confidence that the 
measures of either pair of opposite interior angles

	A.	 adds up to π rad.
	 B.	 adds up to 2π rad.
	C.	 adds up to π/2 rad.
	D.	 None of the above

	 10.	 In a plane quadrilateral, the measure x of any particular interior angle must lie 
within a certain range. How can we express that range?

	A.	 0 rad < x < π/2 rad
	 B.	 0 rad < x < 2π rad
	C.	 0 rad < x < π rad
	D.	 0 rad < x < 3π/2 rad
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c h a p t e r  4
Other Plane Figures

There exists no limit to the number of straight sides (also called edges) and 
vertices (points where the sides join at their ends) that a plane polygon can 
possess. More complicated objects can have curved sides or edges. Let’s explore 
the properties of general Euclidean plane figures.

C H A P T e r O B J e C T i V e S
In this chapter, you will

Define and classify diverse plane figures.• 
Learn the relationships among the sides and angles of regular polygons.• 
Calculate the perimeters and interior areas of regular polygons.• 
evaluate the characteristics of circles and ellipses.• 
observe a regular polygon as the number of sides grows without limit.• 
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Five Sides and Up
For a geometric object to “qualify” as a Euclidean plane polygon, it must have 
several characteristics, as follows:

All of its vertices must lie in the same plane.•	

No two sides may cross over each other.•	

No two vertices may coincide.•	

No three vertices may lie on the same straight line.•	

The sides must all constitute straight line segments having finite, positive •	

length.

The Regular Pentagon
Figure 4-1 shows a five-sided plane polygon, all of whose sides have the same 
length, and all of whose interior angles have the same measure. We call this 
figure a regular pentagon. It constitutes a convex figure because its exterior never 
“bends inward.” In a convex plane polygon, every interior angle has a measure 
of less than 180° (π rad).

The Regular Hexagon
A convex plane polygon with six sides, all of which have equal length, is called a 
regular hexagon (Fig. 4-2). If we take a large number of equal-sized regular hexa-
gons, we can place them neatly together without any gaps. (Have you ever visited 
an old-fashioned barbershop where the floor comprised thousands of hexagonal 
tiles that fit snugly up against each other?) This property makes the regular hexagon 

s

s

s s

s

z

z z

z

z

Figure 4-1  • A regular pen-
tagon. Each side has length s, 
and each interior angle has 
measure z. 
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a special sort of figure, along with the equilateral triangle, the square, and the 
regular octagon. Certain crystalline solids form regular hexagonal shapes when 
they fracture. Snowflakes, for example, have components with this shape.

The Regular Octagon
Figure 4-3 shows a regular octagon. It’s a convex plane polygon with eight sides, 
all equally long, and eight interior angles, all of equal measure. We can fit large 
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z y= 180 -o

Figure 4-2  • A regular hexagon. Each side has 
length s, and each interior angle has measure z. The 
extensions of sides (dashed lines) are the subject of 
Problem 4-1. 
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Figure 4-3  • A regular octagon. Each 
side has length s, and each interior angle 
has measure z. 
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numbers of regular octagons tightly together to form a “honeycomb matrix,” 
just as we can do with equilateral triangles, squares, and regular hexagons. 
We should not find it surprising that nature takes advantage of this property, 
building octagonal crystals and other physical structures in the material 
universe.

Regular Polygons in General
For every whole number n greater than or equal to 3, we can construct a regu-
lar polygon with n sides. So far we’ve seen the equilateral triangle (n = 3), the 
square (n = 4), the regular pentagon (n = 5), the regular hexagon (n = 6), and 
the regular octagon (n = 8). If we’re in the mood, we can easily imagine a regu-
lar polygon with 1,000 sides (a “regular kilogon”), 1,000,000 sides (a “regular 
megagon”), or 1,000,000,000 sides (a “regular gigagon”). In a regular plane 
polygon, no matter how many sides it has, the measure of any given individual 
interior angle must always be less than 180° (π  rad).

TIP   As the number of sides in a regular polygon increases without limit, the 
measures of the individual interior angles approach 180ç (o rad), and the figure 
approaches a circle. In fact, a “regular gigagon” (as defined above) would look 
like a perfect circle, even if we examined it under a microscope! All the sides, 
vertices, and angles would seem to “merge” into a continuous, symmetrical, 
convex curve.

General, Many-Sided Polygons
Once we remove the restrictions concerning the relationship among the sides 
of a polygon having four sides or more, the potential for variety increases with-
out limit. In a general Euclidean plane polygon, the sides can have all different 
lengths, and the measure of each interior angle can range anywhere from 0° 
(0 rad) to 360° (2π rad), noninclusive.

Figure 4-4 shows some examples of general, many-sided polygons. The 
object at the top left is a regular nonconvex octagon whose sides all have 
equal length, but that obviously differs from the regular octagon we usually 
imagine. Four of the interior angles are acute; four are reflex. The other two 
objects in Fig. 4-4 constitute irregular, nonconvex polygons. All three of 
these objects nevertheless share the essential characteristics of a Euclidean 
plane polygon.
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PROBLEM 4-1
What’s the measure of each interior angle of a regular hexagon?

SOLUTION 
Draw a horizontal line segment to start. All the other sides must form 
exact duplicates of this initial side, but rotated with respect to the first 
line segment by whole-number multiples of a certain angle. The rotation 
angle from side to side equals 360ç divided by 6 (a full rotation divided 
by the number of sides), or 60ç. Imagine the lines on which two adjacent 
sides lie. Look back at Fig. 4-2. These lines subtend a 60ç angle with 
respect to each other, if you look at the acute angle y between the 
dashed lines. But if you look at the obtuse angle z, you’ll find that it mea-
sures 120ç, which equals 180ç − y. This obtuse angle z constitutes an 
interior angle of the hexagon. Therefore, each interior angle of a regular 
hexagon measures 120ç.

PROBLEM 
What’s the measure of each interior angle of a regular hexagon?
PROBLEM 
What’s the measure of each interior angle of a regular hexagon?

SOLUTION 
Draw a horizontal line segment to start. All the other sides must form 
exact duplicates of this initial side, but rotated with respect to the first 

SOLUTION 
Draw a horizontal line segment to start. All the other sides must form 

✔

FigUre 4-4  • general, many-sided polygons. the object 
with the shaded interior is the subject of Problem 4-2. 
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PROBLEM 4-2
Briefly glance at the lowermost polygon in Fig. 4-4 (the one with the shaded 
interior). Don’t look at it for more than 2 seconds. How many sides do you 
suppose that it has?

SOLUTION 
Most people underestimate the number of sides in complicated plane fig-
ures like this. After you’ve made your guess, count the sides. How far off 
were you?

Some rules for Polygons
All plane polygons share certain characteristics. We can calculate the perimeter 
or area of any polygon, no matter how complicated (although we might appre-
ciate a computer’s power to help us solve a particularly messy problem of this 
sort). Specific rules and definitions apply to the interior and exterior angles, and 
also to the relationships among the angles and the sides.

It’s Greek to Us
Mathematicians, scientists, and engineers often use Greek letters to represent 
geometric angles. The most common symbol for this purpose is an italicized, 
lowercase Greek letter theta (q), as we learned in Chap. 2.

When we want to write about two different angles, we can use a second 
Greek letter along with q. Mathematicians often choose the italicized, low-
ercase letter phi (pronounced “fie” or “fee”), which looks like a lowercase 
English letter “o” leaning to the right, with a forward slash through it (f). 
You should get used to seeing these symbols. If you have much to do with 
mathematics, engineering, or science in the future, you’re going to encounter 
them a lot.

Sometimes the italic, lowercase Greek alpha (“AL-fuh”), beta (BAY-tuh”), 
and gamma (“GAM-uh”) are used to represent angles. These letters, respec-
tively, look like this: a, b, g. When things get messy and we have many angles 
to talk about, we might use numeric subscripts with a single Greek letter. As 
you carry on in mathematics and science, you’ll occasionally see angles denoted 
in a form such as q1, q2, q3, and so on.

PROBLEM 
Briefly glance at the lowermost polygon in Fig. 4-4 (the one with the shaded 
interior). Don’t look at it for more than 2 seconds. How many sides do you 

PROBLEM 
Briefly glance at the lowermost polygon in Fig. 4-4 (the one with the shaded 

SOLUTION 
Most people underestimate the number of sides in complicated plane fig-
ures like this. After you’ve made your guess, count the sides. How far off 

SOLUTION 
Most people underestimate the number of sides in complicated plane fig-

✔
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Sum of Interior Angles
Consider a plane polygon having n sides. Let q1, q2, q3, ..., qn represent the 
interior angles, as shown in Fig. 4-5. The following equation holds for angular 
measures expressed in degrees:

q1 + q2 + q3 + ... + qn = 180n – 360

= 180(n – 2)

If we express the angular measures in radians, then

q1 + q2 + q3 + ... + qn = πn – 2π

= π(n – 2)

 

still struggling
in the previous two examples, we’ve left out the degree symbol (°) and the 
radian abbreviation (rad) for simplicity. We can get away with this shortcut as 
long as we ensure that we (and our readers) know which angular units apply in 
any given situation.

?

θ1
θ 2

θ3

θn

FigUre 4-5  • Adding up the measures of 
the interior angles of a general, many-sided 
polygon. 
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Individual Interior Angles of Regular Polygon
Consider a plane polygon having n sides, whose interior angles all have equal 
measure given by q, and whose sides all have equal length given by s (Fig. 4-6). 
This figure constitutes a regular Euclidean plane polygon, and we can calculate 
the measure of each interior angle q in degrees with the formula

q = (180n – 360)/n

If we express the angular measures in radians, then

q = (πn – 2π)/n

Exterior Angles
We can express or measure an exterior angle of a polygon going counterclock-
wise from a specific side to the extension of the side immediately to the left. 
Figure 4-7 shows an example of this process. If the arc of the angle lies outside 

θ
θ

θ

s
s

s

s

Figure 4-6  • Interior angles of a regular, 
many-sided polygon. 

θ

Figure 4-7  • Exterior angle of an irreg-
ular polygon. We express the angle q 
going counterclockwise from a given 
side to the line containing the adjacent 
side on the left. 
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the polygon, then the resulting angle q has a measure between, but not 
including, 0° and 180°. The angle has positive measure because we express it 
while rotating in the “positively counterclockwise” sense. Symbolically, we can 
say that

0° < q < 180°

Perimeter of Regular Polygon
Consider a regular plane polygon having n sides of length s, with vertices P1, P2, 
P3, ..., Pn as shown in Fig. 4-8. We can calculate the perimeter B of the polygon 
using the formula

B = ns

TIP   Some of the following rules involve trigonometry. Six trigonometric func-
tions, also known as circular functions, exist: the sine (sin), cosine (cos), tangent 
(tan), cosecant (csc), secant (sec), and cotangent (cot). All six of these functions 
produce specific “output” numbers when you “feed” them specific angular “input” 
numbers. You can find the sine of an angle by entering the angle’s measure in 
degrees or radians into a calculator and then hitting the “sine” or “sin” function 
key. You can find the cosine by entering the angle’s measure in degrees or radians 
and then hitting “cosine” or “cos.” Some calculators have a “tangent” or “tan” 
function key, and others don’t. If your calculator doesn’t have a tangent key, you 
can find the tangent of an angle by dividing its sine by its cosine. Many calculators 

P1 P2

P3
Pn

s
s

s

s

s

s

s

Figure 4-8.  • Perimeter and area of a regular,  
n-sided polygon. Points P1, P2, P3, …, Pn constitute 
the vertices. Each side has length s. 



78        g e o m e t r y   DemystifieD

lack a “cotangent” or “cot” key, but the cotangent of an angle equals the recipro-
cal of its tangent, or the cosine divided by the sine. The cosecant equals the recip-
rocal of the sine. The secant equals the reciprocal of the cosine.

Interior Area of Regular Polygon
Consider a regular, n-sided polygon, each of whose sides have length s as defined 
earlier and in Fig. 4-8. If we express the interior angles in degrees, then we can 
calculate the polygon’s interior area A with the formula

A = (ns2/4) cot (180/n)

If we express the interior angles in radians, then

A = (ns2/4) cot (π /n)

PROBLEM 4-3
What’s the interior area of a regular, 10-sided polygon, each of whose sides 
measures exactly 2 units long? Express the answer to two decimal places.

SOLUTION 
In this case, n = 10 and s = 2. Let’s use degrees for the angles, so that we can 
plug our values of n and s into the first formula, above, and proceed as 
follows:

 A = (10 × 22/4) cot (180/10)

= (10 × 4/4) cot 18

= 10 cot 18

= 10 cos 18 / sin 18

= 10 × 0.951057/0.309017

= 10 × 3.07769

= 30.78 square units (rounded off to two decimal places)

In order to obtain an answer to two decimal places, we can use five or six 
decimal places throughout the calculation, rounding off only at the end. 
This precaution will ensure that we avoid (or at least minimize) cumulative 
rounding errors.

PROBLEM 
What’s the interior area of a regular, 10-sided polygon, each of whose sides 
measures exactly 2 units long? Express the answer to two decimal places.

PROBLEM 
What’s the interior area of a regular, 10-sided polygon, each of whose sides 

SOLUTION 
In this case, 
plug our values of 

SOLUTION 
In this case, 

✔
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PROBLEM 4-4
What’s the interior area of a regular, 100-sided polygon, each of whose 
sides measures exactly 0.20 units long? Express the answer to two decimal 
places.

SOLUTION 
In this example, n = 100 and s = 0.20. If you’re astute, you’ll notice that the 
perimeter of this polygon equals 100 × 0.20 = 20 units, the same as the 
perimeter of the 10-sided polygon of Problem 4-3, which is 10 × 2.0 = 
20 units. Imagine these two regular polygons sitting side by side. Draw 
approximations of them if you like. It seems reasonable to suppose that the 
area of the 100-sided polygon should slightly exceed that of the 10-sided 
figure. Let’s find out, using radians instead of degrees this time. Let 
o = 3.14159.
 Set your calculator to work with radians, not degrees, before each and 
every use of a trigonometric function key. Here we go:

 A = (100 × 0.202/4) cot (o / 100)

= (100 × 0.04 / 4) cot 0.0314159

 = cot 0.0314159

= cos 0.0314159 / sin 0.0314159

 = 0.999507/ 0.031411

= 31.82 square units (rounded off to two decimal places)

t I P   Whenever you execute calculations such as the two foregoing, you 
should go through the entire process twice or more. It’s amazing how many 
errors people make when using calculators to do plain arithmetic. The most 
common mistakes occur as a result of pressing one or more function keys in 
the wrong order. However, once in awhile something else happens; a speck 
of dirt might get into one of the calculator keys, for example, causing that 
key to “think” you’ve hit it two or three times when in fact you’ve hit it only 
once!

PROBLEM 
What’s the interior area of a regular, 100-sided polygon, each of whose 
sides measures exactly 0.20 units long? Express the answer to two decimal 

PROBLEM 
What’s the interior area of a regular, 100-sided polygon, each of whose 

SOLUTION 
In this example, 
perimeter of this polygon equals 100 

SOLUTION 
In this example, 

✔
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Circles and Ellipses
We can define a circle as a geometric figure consisting of all points in a plane 
that lie equidistant (i.e., equally far away) from a specified center point. Imagine 
a flashlight with a round lens that produces a brilliant central beam surrounded 
by a dim cone of light. Suppose that you switch this flashlight on and then 
point it straight down at the floor in a dark room. The outline of the dim light 
cone constitutes a circle. If you turn the flashlight so that the entire dim light 
cone lands on the floor but the brilliant central light ray does not point straight 
down, the outline of the dim light cone forms an ellipse. All circles and ellipses 
represent examples of conic sections. This term arises from the fact that we can 
define both the circle and the ellipse as sets of points resulting from the inter-
section of a flat, two-dimensional plane with a three-dimensional cone.

A Special Number
The perimeter (more often called the circumference) of a circle, divided by its 
diameter in the same units, equals a constant independent of the size of the 
circle, as long as we remain in a single geometric plane when we make our 
measurements. Mathematicians first noticed this fact thousands of years ago. 
They spent centuries trying to determine the exact value of this constant, set-
tling for some time on the approximate value of 22/7. Today, we know that we 
can’t express this constant precisely as a ratio of whole numbers. For this rea-
son, we call it an irrational number. (In this context, the term “irrational” means 
“having no ratio.”) If we try to write this constant as a decimal expression, we 
get a nonterminating, nonrepeating sequence of digits after the decimal point. 
We call the constant pi, and symbolize it using the lowercase Greek letter 
having that name (π). It’s the same constant π that we encountered when we 
defined the radian as a unit of angular measure.

TIP   Supercomputers have calculated the value of o  to millions of decimal places. 
It equals approximately 3.14159. If you need more accuracy, you can use the cal-
culator function in a personal computer. Set the program for radians, not degrees, 
and then find the Arccosine (also known as the inverse cosine and sometimes 
symbolized cos-1) of the integer −1. You’ll get a display of o to all the digits your 
computer’s calculator program can handle. In theory, o rad equals precisely the 
Arccosine of −1. You might want to memorize this fact, so that you can always 
“bring up” an accurate value of o  on your calculator (unless, of course, it has a 
“pi” key built in!).
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Circumference of Circle
Consider a circle having radius r as shown in Fig. 4-9. We can calculate the 
circle’s circumference B with the formula

B = 2πr

Interior Area of Circle
Once again, consider the circle defined earlier and illustrated in Fig. 4-9. We can 
calculate the interior area A of the circle with the formula

A = πr2

Approximate Circumference of Ellipse
Imagine an ellipse whose “long radius” (technically called the major semiaxis or 
the semimajor axis) measures r1 units and whose “short radius” (called the minor 
semiaxis or the semiminor axis) measures r2 units as shown in Fig. 4-10. We can 
approximate the circumference B of this figure using the formula 

B = 2π [(r1
2 + r2

2)/2]1/2

where the 1/2 power of a quantity represents the positive square root of that 
quantity. The above formula provides the best accuracy when the lengths of the 
semiaxes don’t differ by much. As the semiaxis lengths grow more different 
from each other, the formula gets less precise.

r

Center
point

Figure 4-9  • Dimensions of a circle. The 
radius measures r units. 
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t IP   We need calculus to determine the circumference of an ellipse exactly. That 
mathematical discipline lies beyond the scope of this course.

Interior Area of Ellipse
Once again, imagine an ellipse whose major semiaxis measures r1 units and 
minor semiaxis measures r2 units (Fig. 4-10). We can calculate the ellipse’s 
interior area A with the formula

A = πr1r2

Ellipticity
The ratio of the length of an ellipse’s major semiaxis to the length of its minor 
semiaxis tells us how much the ellipse is elongated, or “out of round.” We call 
the ratio r1/r2 the ellipticity, often symbolized by the lowercase, italic Greek let-
ter epsilon (ε). Symbolically, we have

ε = r1/r2

 

still struggling
When ε = 1, we have a special case where an ellipse constitutes a perfect circle. 
Because we define r1 as the major (longer) semiaxis, ε is always greater than or 
equal to 1. Don’t confuse ellipticity with eccentricity, an entirely different mea-
sure of the extent to which a curve deviates from a perfect circle.

?

r1

r 2

Center
point

FigUre 4-10  • Dimensions of an ellipse. the 
major semiaxis measures r1 units, and the minor 
semiaxis measures r2 units. 



Chapter 4  O t h e r  P l a n e  F i g u r e s         83

P1 P2

P3
Pn

r
Center of
circle

Figure 4-11  • Perimeter and area of inscribed 
regular polygon. The radius of the circle measures 
r units. Vertices of the polygon, all of which lie on 
the circle, are P1, P2, P3, …, Pn. 

Perimeter of Inscribed Regular Polygon
Consider a regular plane polygon having n sides, and whose vertices P1, P2, 
P3, ..., Pn lie on a circle of radius r (Fig. 4-11). If we specify angles in degrees, 
then we can calculate the perimeter B of the polygon with the formula

B = 2nr sin (180/n)
If we express angles in radians, then

B = 2nr sin (π/n)

Interior Area of Inscribed Regular Polygon
Consider a regular polygon as defined earlier and in Fig. 4-11. If we express 
angles in degrees, then we can calculate the interior area A of the polygon as

A = (nr2/2) sin (360/n)

If we express the angles in radians, then

A = (nr2/2) sin (2π/n)

Perimeter of Circumscribed Regular Polygon
Imagine a regular plane polygon having n sides whose center points P1, P2, 
P3, ..., Pn lie on a circle of radius r (Fig. 4-12). If we express angles in degrees, 
then we can calculate the perimeter B of the polygon as

B = 2nr tan (180/n)
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If angles are given in radians, then

B = 2nr tan (π/n)

Interior Area of Circumscribed Regular Polygon
Consider a regular polygon as defined earlier and in Fig. 4-12. If we specify 
angles in degrees, then we can calculate the interior area A of the polygon with 
the formula

A = nr2 tan (180/n)

If angles are specified in radians, then

A = nr2 tan (π /n)

Perimeter of Circular Sector
Imagine a certain sector of a circle of radius r, shown by the heavy outlined 
“pizza-pie slice” in Fig. 4-13. Let q represent the apex angle, as shown, in 
radians. We can calculate the perimeter B of the sector in linear units using the 
formula

B = 2r + rq

If we specify q in degrees, then the perimeter B of the sector in linear units is

B = 2r (1 + 90q)/π

P1
P2

P3

Pn

r
Center of
circle

Figure 4-12  • Perimeter and area of circum-
scribed regular polygon. The radius of the circle 
measures r units. Center points of the sides of the 
polygon, all of which lie on the circle, are P1, P2, 
P3, …, Pn. 
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Interior Area of Circular Sector
Once again, imagine a sector of a circle as defined earlier and in Fig. 4-13. Let 
q represent the apex angle in radians. We can calculate the sector’s interior area 
A in square units with the formula

A = r2q /2

If we specify q in degrees, then the interior area A of the sector in square units is

A = 90 r2q /π

PROBLEM 4-5
What’s the area of a regular octagon inscribed within a circle whose radius 
equals precisely 10 units?

SOLUTION 
Let’s use the formula for the area of an inscribed regular polygon, where 
angles are expressed in degrees:

 A = (nr2/2) sin (360/n)

In this formula, A represents the area in square units, n represents the 
number of sides in the polygon, and r represents the radius of the circle. 
We know that n = 8 (because we have a regular octagon, or eight-sided 

PROBLEM 
What’s the area of a regular octagon inscribed within a circle whose radius 
equals precisely 10 units?

PROBLEM 
What’s the area of a regular octagon inscribed within a circle whose radius 

SOLUTION 
Let’s use the formula for the area of an inscribed regular polygon, where 
angles are expressed in degrees:

SOLUTION 
Let’s use the formula for the area of an inscribed regular polygon, where 

✔

r

θ Center
of arc

FigUre 4-13  • Perimeter and area of cir-
cular sector. the radius of the circle mea-
sures r units, and the arc subtends an 
angle q. 
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polygon) and r = 10, so we can plug in the numbers and use a calculator 
to obtain

 A = (8 × 102/2) sin (360/8)

= 400 sin 45

= 400 × 0.7071

 = 283 square units (approximately)

PROBLEM 4-6
What’s the perimeter of a regular 12-sided polygon circumscribed around 
a circle whose radius is exactly 4 units?

SOLUTION 
Let’s use the formula for the perimeter of a circumscribed regular polygon, 
where angles are expressed in radians:

 B = 2nr tan (π/n)

Here, B represents the perimeter, n represents the number of sides in the 
polygon, and r represents the radius of the circle. Consider o = 3.14159. We 
know that n = 12 and r = 4. We plug in the numbers and use a calculator, 
making sure to set the angle function for radians (not degrees). We get

 B = 2 × 12 × 4 tan (o/12)

 = 96 tan 0.261799

 = 96 × 0.26795

 = 25.72 units (approximately)

PROBLEM 4-7
How should we expect the perimeter of the circumscribed polygon in 
Problem 4-6 to compare with the circumference of the circle around which 
it’s circumscribed?

SOLUTION 
We can reasonably imagine that the perimeter of the polygon slightly 
exceeds the circle’s circumference. Let’s calculate the circumference to 

PROBLEM 
What’s the perimeter of a regular 12-sided polygon circumscribed around 
a circle whose radius is exactly 4 units?

PROBLEM 
What’s the perimeter of a regular 12-sided polygon circumscribed around 

SOLUTION 
Let’s use the formula for the perimeter of a circumscribed regular polygon, 
where angles are expressed in radians:

SOLUTION 
Let’s use the formula for the perimeter of a circumscribed regular polygon, 

✔

PROBLEM 
How should we expect the perimeter of the circumscribed polygon in 
Problem 4-6 to compare with the circumference of the circle around which 
it’s circumscribed?

PROBLEM 
How should we expect the perimeter of the circumscribed polygon in 

SOLUTION 
We can reasonably imagine that the perimeter of the polygon slightly 
exceeds the circle’s circumference. Let’s calculate the circumference to 

SOLUTION 
We can reasonably imagine that the perimeter of the polygon slightly 

✔
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test this hunch using the formula for the circumference of a circle, as 
follows:

	 B = 2or

where B represents the circumference and r represents the radius. We know 
that r = 4, and we consider o = 3.14159. Therefore

	 B = 2 × 3.14159 × 4

	 = 25.13 units (approximately)

That’s a little less than the perimeter of the circumscribed polygon, just as 
we thought.

TIP   Suppose that we circumscribe a circle with a regular polygon Pc having n 
sides (where n represents a positive integer larger than 3), and then we increase 
n without limit. Also suppose that we inscribe the same circle with another regu-
lar polygon Pi having the same number of sides as Pc at all times. As n grows larger 
indefinitely, Pc and Pi become more and more nearly the same and they both 
approach the circle in terms of perimeter and interior area. The measures of the 
interior angles approach 180ç (o  rad). The lengths of the sides approach zero.
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 Consider a regular septagon (a regular plane polygon having seven sides of equal 
length and seven interior angles of equal measure). What’s the measure of each 
individual interior angle?

	A.	 3π/4 rad
	 B.	 5π/7 rad
	C.	 7π/8 rad
	D.	 13π/14 rad

	 2.	 An individual interior angle in a regular plane polygon always measures less than
	A.	 π/2 rad.
	 B.	 π rad.
	C.	 π/4 rad.
	D.	 3π/4 rad.

	 3.	 An individual angle in any plane polygon always measures less than 
	A.	 π/2 rad.
	 B.	 π rad.
	C.	 3π/2 rad.
	D.	 2π rad.

	 4.	 Consider a regular plane polygon having n sides of equal length and interior 
angles all of equal measure. As we’ve learned, we can calculate the measure p  of 
each individual interior angle with the formula

p  = (180n - 360)/n

Based on this information, we can see that as we increase the number of sides in a 
regular plane polygon indefinitely, the sum of the measures of all the interior angles

	A.	 approaches 360°.
	 B.	 approaches (3602)° or 129,600°.
	C.	 increases without limit.
	D.	 approaches zero.

	 5.	 Which of the following characteristics tells us that a given figure does not consti-
tute a plane polygon?

	A.	N o three vertices lie along a single line.
	 B.	 All of the vertices lie in a single plane.
	C.	 All of the sides constitute line segments of finite, nonzero length.
	D.	T wo of the sides cross over each other.

	 6.	 Figure 4-14 illustrates an ellipse. Suppose that the indicated dimensions are 
exact. What’s the area of the ellipse, rounded off to three decimal places? Con-
sider π = 3.14159.
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	A.	 43.982 square units
	 B.	 150.796 square units
	C.	 153.938 square units
	D.	 We need calculus to figure it out.

	 7.	 What’s the approximate circumference of the ellipse of Fig. 4-14, rounded off to 
one decimal place?

	A.	 37.7 units
	 B.	 41.4 units
	C.	 50.3 units
	D.	 44.4 units

	 8.	 Figure 4-15 illustrates a circular sector (heavy solid lines and curve). Suppose 
that the indicated dimensions are exact. What’s the interior area of the sector?

	A.	 12 square units
	 B. 	 4 square units
	C.	 16 square units
	D.	 20 square units

Center
point

6 units

8 units

Figure 4-14 • Illustration for Quiz Questions 
6 and 7.

Center
of arc

2 rad

4 units

Figure 4-15  • Illustration for Quiz 
Questions 8 through 10.
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	 9.	 What’s the perimeter of the circular sector shown in Fig. 4-15?
	A.	 12 units
	 B.	 14 units
	C.	 16 units
	D.	 20 units

	 10.	 What proportion of the circle’s entire interior area does the sector shown in 
Fig. 4-15 represent?

	A.	 1/π
	 B.	 π/10
	C.	 3/(7π)
	D.	 2/(3π)
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c h a p t e r  5
Compass and 
Straight Edge

In geometry, the term construction refers to a drawing that we can make using 
simple tools, with the intent of demonstrating a certain principle. Constructions 
can serve as a powerful learning technique, because they force you to think 
about the properties of geometric objects, independent of numerical lengths 
and angle measures. Constructions can also provide some challenging games!

C H A P T e R O B J e C T i V e S
In this chapter, you will

draw generic circles, lines, rays, and line segments.• 
Construct angles and arcs.• 
Bisect line segments and angles.• 
Construct perpendicular and parallel line segments.• 
duplicate line segments and angles.• 
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Tools and Rules
The most common type of geometric construction requires two instruments, 
both of which you can purchase at any office supply store. One instrument lets 
you draw circles, and the other lets you draw straight line segments. Once you 
have these tools, you can use them only according to certain “rules of the 
game.”

Drafting Compass
The drafting compass allows you to draw circles of various sizes based on spe-
cific center points. It has two straight shafts joined by a hinge. One shaft ends 
in a sharp point that can’t mark anything, but that you can “stick” into a piece 
of paper to serve as an “anchor.” The other shaft has brackets in which you 
mount a pencil. When you want to draw a circle, you press the sharp point 
down on a piece of paper (with some cardboard underneath to protect the 
table or desk top), open the hinge to get the desired radius, bring the pencil to 
the paper, and draw the circle by rotating the whole assembly at least once 
around. You can draw arcs by rotating the compass partway around.

TIP   For geometric constructions, the compass must not have an angle measure-
ment scale at its hinge. If it has a scale that indicates angle measures or otherwise 
quantifies the extent of its spread, you must ignore that scale.

Straight Edge
A straight edge helps you to draw line segments by placing a pencil against the 
object and running it alongside. A conventional ruler will work for this purpose, 
but it’s not the best tool for formal geometric constructions because it has a 
calibrated scale. You’re better off using a drafting triangle. Use any edge of the 
triangle as the straight edge. You can even use a stiff piece of cardboard with a 
known straight side, such as the back of a writing tablet after you’ve used up 
the paper.

TIP   Ignore the angles at the apexes of a drafting triangle. Some drafting triangles 
have two 45ç angles and one 90ç angle; others have one 30ç angle, one 60ç angle, 
and one 90ç  angle. You mustn’t take advantage of these standard angle 
measures when performing geometric constructions, so it doesn’t matter which 
type of drafting triangle you use.
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What’s Allowed
With a compass, you can draw circles or arcs having any radius you want (up to 
the maximum that the device will create, of course). You can choose the center 
point “at random,” or you can place the sharp tip of the compass down on a pre-
determined, existing point and define that point as the center of the circle or arc.

You can adjust a compass to replicate the distance between any two defined 
points by setting the nonmarking tip down on one point and the end of the pencil 
down on the other point, and then holding the compass setting constant.

With the straight edge, you can draw line segments of any length, up to the 
entire length of the tool. You can draw a “random” line segment, choose a spe-
cific point through which the line segment passes, or connect any two specific 
points with a line segment.

What’s Not Allowed
Whatever sort of circle or line segment you draw, you must never try to mea-
sure the radius or the length against a calibrated scale of any kind. You may not 
measure angles using a calibrated device. You may not make any reference 
marks on either the compass or the straight edge. Marking on a straight edge 
constitutes “cheating,” but referencing a distance using a compass is okay, even 
though the two acts might seem qualitatively identical.

still struggling
As you do a geometric construction, you might wonder if you can “legally” 
imagine the result of infinitely many operations or infinitely many repetitions of 
a single operation. the answer is no, you may not do that! you mustn’t repeat a 
maneuver, or any set of maneuvers, “forever” to geometrically approach a 
desired result, and then claim that result as a valid construction. you must 
physically complete the whole operation in a finite number of steps.

?

Creating Points
To define an arbitrary point, you can simply draw a dot on the paper anywhere 
you want. Alternatively, you can set the nonmarking point of the compass down 
on the paper, in preparation for drawing an arc or circle centered at an arbitrary 
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point. You can also define points wherever two line segments intersect, wherever 
an arc or circle intersects a line segment, or wherever an arc or circle intersects 
another arc or circle.

Drawing Line Segments
You can construct line segments “at random,” through any point, starting at any 
point, through any two points, or connecting any two points. 

When you want to draw an arbitrary line segment, place the straight edge 
down on the paper and run a pencil along the edge as shown in Fig. 5-1A. You 
can make the line segment as long or as short as you want but never longer than 
the length of the straight edge. If you want to draw a line segment longer than 
the straight edge, don’t align the straight edge with part of the line segment and 
then try to extend it. Use a longer straight edge, so that you can create the 
entire segment in one “swipe.”

P

P

Q

A B

C

Figure 5-1  • At A, construction of an arbitrary line segment. At B, construction 
of a line segment starting at a single predetermined point. At C, construction of 
a line segment connecting two predetermined points.  
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When you want to draw a line segment through, or starting at, a single 
defined point, place the tip of the pencil on that point (call it point P), place 
the straight edge down against the point of the pencil, and then run the pencil 
back and forth along the edge. If you want the point to constitute an end point 
of the line segment, run the pencil away from the point in one direction as 
shown in Fig. 5-1B.

When you want to draw a line segment through two defined points (call 
them P and Q), place the tip of the pencil on one of the points, place the 
straight edge down against the tip of the pencil, rotate the straight edge until it 
lines up with the other point while still firmly resting against the tip of the 
pencil, and then run the pencil back and forth along the edge so that the mark 
passes through both points. If you want the points to lie at the ends of the line 
segment, make sure that the pencil makes its mark only between the points and 
not past them on either side (Fig. 5-1C).

Denoting Rays
To denote a ray, you must first locate or choose the end point of the ray (call it 
point P). Then place the tip of the pencil at the end point and place the straight 
edge against the tip of the pencil. Orient the straight edge in the direction you 
want the ray to go. Move the tip of the pencil away from the point in the direc-
tion of the ray, as far as you want without running off the end of the straight 
edge (Fig. 5-2A). Finally, draw an arrow at the end of the line segment opposite 
the starting point P (Fig. 5-2B). The arrow indicates that you want the ray to 
extend infinitely in that direction.

PP

A B

Figure 5-2  • Construction of a ray. First, construct a line segment 
ending at a point (A); then put an arrow at the end opposite the 
point (B).  
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Denoting Lines
In order to draw a line, follow the same procedure as you would to draw a line 
segment. Then place arrows at both ends (Fig. 5-3). You can construct a line “at 
random” (as shown in Fig. 5-3A and B), through a single defined point P (as 
shown in Fig. 5-3C and D) or through two defined points P and Q (as shown 
in Fig. 5-3E and F).

Drawing Circles
To draw a circle around a “random” point, place the nonmarking tip of the 
compass down on the paper, set the compass to the desired radius, and rotate 

P P

P

Q

P

Q

A B

C D

E F

Figure 5-3  • At A and B, construction of an arbitrary line. At C and 
D, construction of a line through a single predetermined point. At E 
and F, construction of a line through two predetermined points.  
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the instrument through a full circle (Fig. 5-4A). If you have a predetermined 
center point (marked by a dot), place the nonmarking tip down on the dot and 
rotate the instrument through a full circle.

Drawing Arcs
To draw an arc centered at a random point, place the nonmarking tip of the 
compass down on the paper, set the compass to the desired radius, and rotate 
the instrument through the desired arc. If you have a predetermined center 
point (marked by a dot), place the nonmarking tip down on the dot and rotate 
the instrument through the desired arc (Fig. 5-4B).

Randomly chosen
center point

Predetermined
center point

Paper

Paper
A

B

Figure 5-4  • At A, construction of a circle centered on an arbitrary point. At B, 
construction of an arc centered at a predetermined point.  
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PROBLEM 5-1
Define a specific point P by drawing a dot on a piece of paper. Then, with 
your compass, draw a small circle centered at P. Now construct a second 
circle, concentric with the first one, but having twice the radius.

SOLUTION 
Figure 5-5 illustrates the procedure. First, construct the circle with your 
compass, centering the circle at the initial point P as shown in Fig. 5-5A. 
Then construct a line segment L using your straight edge, with one end at 
point P and passing through the circle at another point, which you can call Q. 

PROBLEM 
Define a specific point 
your compass, draw a small circle centered at 

PROBLEM 
Define a specific point 

SOLUTION 
Figure 5-5 illustrates the procedure. First, construct the circle with your 
compass, centering the circle at the initial point 

SOLUTION 
Figure 5-5 illustrates the procedure. First, construct the circle with your 

✔

L

A B

P P Q

L

C

P Q
R

L

D

P Q
R

FiguRe 5-5  • Illustration for Problem 5-1.  



Chapter 5  C o m pA s s  A n d  s t r A i g h t  e d g e         99

Extend L outside the circle for a distance considerably greater than the 
circle’s radius (Fig. 5-5B). Next, construct a second circle, centering it at 
point Q and leaving the compass set for the same radius as it was when you 
drew the original circle. This new circle intersects L at point P (the center of 
the original circle) and also at a new point R (Fig. 5-5C). Next, place the 
nonmarking tip of the compass back at point P and open up the compass 
so that the pencil tip lands on point R. Finally, draw a new circle centered 
at point P, with a radius equal to the length of line segment PR (as shown 
in Fig. 5-5D).

PROBLEM 5-2
Draw three points on a piece of paper, placed in such a way that they don’t 
all lie along the same line. Label the points P, Q, and R. Construct ΔPQR 
connecting these three points. Draw a circle whose radius equals the length 
of side PQ, but that’s centered at point R.

SOLUTION 
Figure 5-6 shows the process. First, put down and label the initial points as 
shown in Fig. 5-6A. Then connect the points with line segments to con-
struct ΔPQR (Fig. 5-6B). Next, place the nonmarking tip of your compass at 
point Q and the tip of the pencil on point P. (If you want, you can construct 
a small arc through P as shown in Fig. 5-6C, demonstrating that you’ve got 
the compass opened up to the correct span.) With the compass thereby set 
to define the length of line segment PQ, place the nonmarking tip of the 
compass on point R. Finally, as shown in Fig. 5-6D, construct the full circle 
centered at point R.

PROBLEM 5-3
Can we “legally” place the nonmarking tip of the compass at point P and 
then place the pencil tip to draw an arc through point Q, in order to define 
the length of line segment PQ in Problem 5-2?

SOLUTION 
Yes, we can. This method works just as well as the procedure defined in the 
solution to Problem 5-2.

PROBLEM 
Draw three points on a piece of paper, placed in such a way that they don’t 
all lie along the same line. Label the points 

PROBLEM 
Draw three points on a piece of paper, placed in such a way that they don’t 

SOLUTION 
Figure 5-6 shows the process. First, put down and label the initial points as 
shown in Fig. 5-6A. Then connect the points with line segments to con-

SOLUTION 
Figure 5-6 shows the process. First, put down and label the initial points as 

✔

PROBLEM 
Can we “legally” place the nonmarking tip of the compass at point 
then place the pencil tip to draw an arc through point 

PROBLEM 
Can we “legally” place the nonmarking tip of the compass at point 

SOLUTION 
Yes, we can. This method works just as well as the procedure defined in the 
solution to Problem 5-2.

SOLUTION 
Yes, we can. This method works just as well as the procedure defined in the 

✔
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Linear Construction Methods
The following paragraphs describe how to perform various constructions with 
line segments. By extension, these same processes apply to rays and lines; you 
can extend line segments and add arrows however you want.

Reproducing (Duplicating) a Line Segment
Imagine a line segment with end points P and Q as shown in Fig. 5-7A. Suppose 
that you want to create another line segment having the same length as PQ. 
First, construct a “working segment” somewhat longer than PQ. Then place a 

P

Q
R

P

Q
R

P

Q
R

P

Q
R

A B

C

D

Figure 5-6  • Illustration for Problems 5-2 and 5-3.  
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point on this “working segment” and call it R, as shown in Fig. 5-7B. Next, take 
the compass and set down the nonmarking tip on point P, and adjust the com-
pass spread so that the tip of the pencil lands on point Q to define the length 
of line segment PQ. Now place the nonmarking tip of the compass down on 
point R and create a small arc that intersects your “working segment” as shown 
in Fig. 5-7C. You can define the intersection of the “working segment” and the 
arc as point S (Fig. 5-7D). The length of line segment RS equals that of line 
segment PQ.

Bisecting a Line Segment
Suppose that you have a line segment PQ (Fig. 5-8A) and you want to find the 
point at its center—that is, the point that bisects line segment PQ. First, con-
struct an arc centered at point P. Make sure that the arc comprises roughly a 
half circle, and set the compass to span somewhat more than half the length of 
PQ. Then, without altering the setting of the compass, draw an arc centered at 
point Q, such that its radius equals the radius of the first arc that you drew 

A
P Q

C

P Q

R

D

P Q

R S

B

P Q

R

Figure 5-7  • Reproduction (duplication) of a 
line segment.  
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(as shown in Fig. 5-8B). You can call the points at which the two arcs intersect 
R and S. Construct a line passing through both R and S. Under these circum-
stances, line RS intersects the original line segment PQ at a point T, which 
bisects line segment PQ (as shown in Fig. 5-8C).

Perpendicular Bisector
Imagine that you want to construct a line that bisects a specific line segment 
PQ, and that also passes through PQ at a right angle. Figure 5-8 shows how you 
can construct such a perpendicular bisector line (called RS in this example) as an 
“artifact” of the bisection process. The bisection process described in the previ-
ous paragraph “automatically” provides two points that lie along a perpendicu-
lar bisector.

Perpendicular Ray at a Known Point
Figure 5-9 illustrates how you can construct a perpendicular ray from a defined 
point P on a line or line segment. Begin with the scenario at Fig. 5-9A. Set the 
compass for a moderate span, and construct two arcs opposite each other, both 
centered at point P and both of which intersect the line or line segment. Call 
these intersection points Q and R, as shown in Fig. 5-9B. Increase the span of 
the compass, more or less doubling it (you don’t have to get it exactly double). 

A

B

P Q

P Q

C

P Q

S

R

T

Figure 5-8  • Bisection of a line segment and construction of a 
perpendicular bisector.  
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Construct an arc centered at Q and another arc centered at R, so that the two 
arcs have the same radius and intersect as shown in Fig. 5-9C. Now use your 
straight edge to draw a ray whose originating (or “back-end”) point lies at P, and 
that passes through the intersection point (call it S) of the two arcs you just 
made (Fig. 5-9D). In this situation, ray PS runs outward from P at a right angle 
from the original line or line segment.

Dropping a Perpendicular to a Line
Figure 5-10 shows how you can draw, or drop, a perpendicular from a defined 
point P to a line that doesn’t pass through that point. The term dropping a per-
pendicular means that you construct a line segment, line, or ray through a point 
in such a way that the line, line segment or ray “comes down on” a nearby line 
at a right angle.

Begin with the situation shown in Fig. 5-10A. Set the compass for a span 
somewhat greater than the distance between P and the line. Construct an arc 
that passes through the line at two points. Call these points Q and R, as shown 
in Fig. 5-10B.

A

P

B

PQ R

C

PQ R

PQ R

D

S

90o

Figure 5-9  • Construction of a ray perpendicular to a line or 
line segment.
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Now increase the span of the compass, roughly doubling it. (You don’t have 
to get it exactly double.) Construct two arcs, one centered at Q and the other 
centered at R, such that the two arcs have the same radius and intersect each 
other (Fig. 5-10C). Construct a line segment that runs through P, and that also 
passes through the intersection point between the arcs you just made (call that 
point S). Extend this line segment SP until it intersects the original line. Call 
the resulting intersection point T, as shown in Fig. 5-10D. In this scenario, line 
segment PT intersects the original line at a right angle; that is, PT constitutes a 
perpendicular from P to the original line.

Parallel to a Line through a Specific Point
You can use several different methods to construct a parallel (line, line segment, 
or ray) to a specific line through a point that does not lie on that line. One of 
these methods takes advantage of previous constructions. Figure 5-11 portrays 
the process.

D

C

P

Q R

P

Q R
T

S

A

P

B

P

Q R

90o

Figure 5-10 • Construction of a perpendicular from a point to a nearby line.  
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Suppose that you have a line segment with a point P nearby (as shown in 
Fig. 5-11A), and you want to create a line through P parallel to the original line. 
First, drop a perpendicular from P to the line using the procedure described earlier 
and shown in Fig. 5-10, generating points Q, R, S, and T (Fig. 5-11B). Then set the 
compass for the distance PT and construct a circle centered at P having a radius 
equal to the distance PT. This circle intersects line PT at a new point, which you 
can call U. Line segment UP has the same length as line segment PT (Fig. 5-11C).

Increase the span of the compass somewhat, and construct two roughly half-
circular arcs having identical radii, one centered at point T and the other centered 
at point U, so that the arcs intersect each other at two more new points. Call these 
points V and W, as shown in Fig. 5-11D. In this situation, line VW runs perpen-
dicular to line UT and also to line PT. (We know this fact because we just got done 
with the perpendicular construction described earlier.) Note that PT runs perpen-
dicular to the original line. Therefore, line VW runs parallel to the original line.

TIP   The foregoing construction provides an example in which we can correctly 
say, “Two perpendiculars make a parallel.”

A

P

B

P

Q R
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S
C

P

T

U
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Figure 5-11  • Construction of a parallel through a defined point.  



106        g e o m e t r y   DemystifieD

PROBLEM 5-4
Find and describe another way to construct a parallel to a line that runs 
through a point nearby.

SOLUTION 
The following method constitutes a scheme that can serve as a solution to 
this problem. (Other methods might also exist.)
 Figure 5-12A shows the initial situation. Drop a perpendicular from 
point P to the original line, as described earlier in this chapter. This perpen-
dicular intersects the line at point Q (Fig. 5-12B). Next, set the compass so 
that its span equals the length of line segment PQ. You can set the non-
marking point of the compass down on point Q, and draw an arc through 
P to ensure you get the compass span just right.

PROBLEM 
Find and describe another way to construct a parallel to a line that runs 
through a point nearby.

PROBLEM 
Find and describe another way to construct a parallel to a line that runs 

SOLUTION 
The following method constitutes a scheme that can serve as a solution to 
this problem. (Other methods might also exist.)
 Figure 5-12A shows the initial situation. Drop a perpendicular from 

SOLUTION 
The following method constitutes a scheme that can serve as a solution to 
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FiguRe 5-12  • Illustration for Problems 5-4 and 5-5.  
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 Choose a second point R on the original line (Fig. 5-12C). Construct a 
perpendicular at point R according to the procedure described earlier in 
this chapter (Fig. 5-12D). Set the compass to the distance PQ; then place 
the nonmarking point of the compass on R and draw an arc that intersects 
the perpendicular. Call the intersection point S. You now have two points, 
P and S, that lie equidistant from the original line. Construct line PS through 
these points. Line PS runs parallel to the original line (Fig. 5-12E).

PROBLEM 5-5
Construct a square. It doesn’t have to be any particular size, as long as all 
four sides have the same length and all four interior angles measure 90ç 
(π/2 rad).

SOLUTION 
Examine Fig. 5-12. The quadrilateral PQRS constitutes a rectangle, 
because line segments PQ and RS both run perpendicular to line QR, so 
both ≠RQP and ≠SRQ are right angles. You also know that lines QR and 
PS run parallel to each other, because that was the solution to Problem 
5-4. You can therefore conclude that ≠PSR and ≠QPS are both right 
angles, because opposite interior angles to the transversals of parallel 
lines always have equal measure; they’re congruent (≠RQP @ ≠PSR and 
≠SRQ @ ≠QPS).
 Now you can easily modify the construction process shown in Fig. 5-12 
to ensure that the resulting quadrilateral PQRS constitutes a square. 
Instead of choosing point R on the original line “at random,” use the com-
pass, set so that its span equals the distance PQ, to determine point R. Set 
the nonmarking point of the compass down on point Q and draw an arc so 
that it intersects the original line to obtain point R. This action ensures that 
the distance PQ equals the distance QR. From there, you can complete the 
construction in the same way you did when you solved Problem 5-4.

Angular Construction Methods
The following paragraphs describe how to reproduce (copy or duplicate) an 
angle that measures less than 180° (π rad). You’ll also learn how to bisect such 
an angle.

PROBLEM 
Construct a square. It doesn’t have to be any particular size, as long as all 
four sides have the same length and all four interior angles measure 90
(π/2 rad).

PROBLEM 
Construct a square. It doesn’t have to be any particular size, as long as all 

SOLUTION 
Examine Fig. 5-12. The quadrilateral 
because line segments 
both ≠RQP

SOLUTION 
Examine Fig. 5-12. The quadrilateral 

✔
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Reproducing an Angle
Figure 5-13 illustrates how you can reproduce an angle. Suppose that two rays 
intersect at point P, as shown in Fig. 5-13A. Set down the nonmarking tip of 
the compass on point P and construct an arc from one ray to the other. Let R 
and Q represent the two points where the arc intersects the rays (Fig. 5-13B). 
Call the angle in question ∠QPR, where points R and Q lie equidistant (equally 
far away) from point P.

Place a new point S somewhere on the page a considerable distance away 
from point P and construct a ray emanating outward from point S as shown in 
Fig. 5-13C. This ray can run off in any direction, but you’ll find that things work 
out best if you “send” it in approximately the same direction as ray PQ goes. 
Make the new ray at least as long as ray PQ. Without changing the compass 
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Figure 5-13  • Reproduction (duplication) of an angle.  
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span from its previous setting, place its nonmarking tip on point S and construct 
a sweeping arc that’s larger than arc QR. You can guess at a good sweep for this 
arc (Fig. 5-13D), or you can make a full circle. Let point T represent the inter-
section of the new arc and the new ray.

Return to the original arc, place the nonmarking tip of the compass down on 
point Q, and construct a small arc through point R so that the compass spans 
the distance QR (Fig. 5-13E). Then, without changing the span of the compass, 
place its nonmarking tip on point T and construct an arc that intersects the arc 
centered on point S. Call this intersection point U. Finally, construct ray SU 
(Fig. 5-13F). You now have a new angle with the same measure as the original 
angle. That is, ∠TSU ≅ ∠QPR.

Bisecting an Angle
Figure 5-14 illustrates a way that you can bisect an angle; that is, divide it in 
half. First, suppose that two rays intersect at point P, as shown in Fig. 5-14A. 
Set down the nonmarking tip of the compass on point P and construct an arc 
from one ray to the other. Let R and Q represent the two points where the arc 
intersects the rays (Fig. 5-14B). You can now call the angle in question ∠QPR, 
where points R and Q lie equidistant from P.
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Figure 5-14  • Bisection of an angle.  
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Place the nonmarking tip of the compass on point Q, increase its span some-
what from the setting that you used to generate arc QR, and construct a new 
arc. Next, without changing the span of the compass, set its nonmarking tip on 
point R and construct an arc that intersects the arc centered on Q. If the arc 
centered on point Q isn’t long enough, go back and make it longer. You can 
make it a full circle if you want. Let S represent the point at which the two arcs 
intersect (Fig. 5-14C). Finally, construct ray PS, as Fig. 5-14D illustrates. This 
ray bisects ∠QPR.

tIP   In the foregoing construction, ≠QPS @ ≠SPR, and the sum of the measures of 
≠QPS and ≠SPR equals the measure of ≠QPR.

PROBLEM 5-6
Find another way to bisect an angle that measures less than 180ç (o rad).

SOLUTION 
Refer to Fig. 5-15. The process starts in the same way as described earlier. 
Two rays intersect at point P, as shown in Fig. 5-15A. Set down the 

PROBLEM 
Find another way to bisect an angle that measures less than 180
PROBLEM 
Find another way to bisect an angle that measures less than 180

SOLUTION 
Refer to Fig. 5-15. The process starts in the same way as described earlier. 
Two rays intersect at point 

SOLUTION SOLUTION 
Refer to Fig. 5-15. The process starts in the same way as described earlier. 
SOLUTION ✔
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FiguRe 5-15  • Illustration for Problems 5-6 and 5-7.  
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nonmarking tip of the compass on point P and construct an arc from one 
ray to the other to get points R and Q (Fig. 5-15B) defining ≠QPR, where 
points R and Q lie equidistant from point P.
 Construct line segment RQ. Then bisect it, following the procedure for 
bisecting line segments described earlier in this chapter. Call the midpoint 
of the line segment point S (Fig. 5-15C). Finally, construct ray PS (Fig. 5-15D). 
This ray bisects ≠QPR.

PROBLEM 5-7
Show that the angle bisection method described in the solution to Prob-
lem 5-6 works for any angle measuring less than 180ç (o rad).

SOLUTION 
Examine Fig. 5-15D and note the two triangles DSRP and DPQS. These tri-
angles have corresponding sides of equal lengths:

• SR = QS (you bisected the line segment)
• PR = QP (you constructed them both from the same arc centered at P)

• PS = PS (any line segment has the same length as itself)

From these three facts, the side-side-side (SSS) principle from Chap. 2 
assures you that DSRP and DPQS are inversely congruent. Therefore, the 
corresponding angles (the angles opposite corresponding sides), as you 
proceed around the triangles in opposite directions, have equal measure. 
Because SR = QS, you can conclude that ≠SPR and ≠QPS have equal 
measure. Because their measures obviously add up to the measure of 
≠QPR, you know that ray PS bisects ≠QPR.

PROBLEM 
Show that the angle bisection method described in the solution to Prob-
lem 5-6 works for any angle measuring less than 180

PROBLEM 
Show that the angle bisection method described in the solution to Prob-

SOLUTION 
Examine Fig. 5-15D and note the two triangles 
angles have corresponding sides of equal lengths:

SOLUTION 
Examine Fig. 5-15D and note the two triangles 

✔
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 Suppose that we want to “record” the length of a line segment for future use, 
such as constructing another line segment of equal length along a line. Which 
of the following methods constitutes a legitimate way to carry out this task?

	A.	 We can set a straight edge along the line segment, mark off the end points on 
the straight edge, and then use those marks as future reference points.

	 B.	 We can draw circles of equal radius centered at both end points of the line 
segment, and then use the distance between either end point and the inter-
section of the circles as the “recorded” length for future reference.

	C.	 We can set the nonmarking point of a compass on one end point of the line 
segment, hold it there, and then adjust the compass span so as to place the 
tip of the compass pencil on the other end point of the line segment. Then we 
can use the two tips of the compass as future reference points.

	D.	 Any of the above

	 2.	 How can we construct a 45ç angle?
	A.	 We can construct a square and then draw its diagonal. The angle between the 

diagonal and any one of the square’s sides will equal 45°.
	 B.	 We can construct a perpendicular bisector that intersects a line segment, and 

then bisect any one of the four angles between the line segment and its 
perpendicular bisector. Either of the resulting angles will measure 45°.

	C.	 We can construct a rectangle and then bisect any one of its interior angles. 
Either of the resulting angles will measure 45°.

	D.	 Any of the above

	 3.	 We must always ensure that we can complete a geometric construction
	A.	 without having to reproduce any angles.
	 B.	 with lines and points only.
	C.	 in a finite number of steps.
	D.	 with only a drafting triangle and a pencil.

	 4.	 The ideal compass for performing a geometric construction
	A.	 has no angle-measuring scale.
	 B.	 includes distance references along its shafts.
	C.	 can draw ellipses as well as circles.
	D.	 has two pencils, one along each shaft.

	 5.	 What’s the best way to construct a line segment whose length exceeds that of 
your straight edge?

	A.	 Align the straight edge with part of the line segment and then extend the line 
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segment as far as you need.
	 B.	 Find a longer straight edge and then use it to construct the new line segment.
	C.	 Use two or more identical straight edges and align them to construct the new 

line segment.
	D.	 Use two or more identical drafting triangles and align them to construct the 

new line segment.

	 6.	 In the solution to Problem 5-1 on page 98, we learned how to construct a circle 
with twice the radius of a given circle. How can we construct a circle with half the 
radius of a given circle?

	A.	D raw a ray from the circle’s center point out past the circle itself; then bisect 
the line segment connecting the center point with the point that intersects 
the circle; then set the compass span to the length of either half of the 
bisected line segment; finally draw a new circle with that radius. 

	 B.	D raw two perpendicular rays from the circle’s center point out past the circle 
itself; then set the compass span to the distance between the points where 
the rays intersect the circle; finally draw a new circle with that radius.

	C.	D raw two perpendicular rays from the circle’s center point out past the circle 
itself; then set the compass span to half the distance between the points 
where the rays intersect the circle; finally draw a new circle with that radius.

	D.	 We can’t.

	 7.	 How can we construct an angle whose measure equals π/8 rad and have 
complete confidence in the accuracy of our result?

	A.	 We can construct a parallelogram and then draw its diagonal. Then we can 
bisect the angle between the diagonal and any one of the sides.

	 B.	 We can construct a rhombus and then draw its diagonal. Then we can bisect 
the angle between the diagonal and any one of the sides.

	C.	 We can construct a rectangle and then draw its diagonal. Then we can bisect 
the angle between the diagonal and any one of the sides.

	D.	 We can construct a square and then draw its diagonal. Then we can bisect the 
angle between the diagonal and any one of the sides.

	 8.	 How can we construct an angle whose measure equals 67.5ç and have complete 
confidence in the accuracy of our result?

	A.	 We can’t.
	 B.	 We can construct a square, trisect any one of its interior angles, and then 

duplicate the result, making the new angle adjacent to the original one. The 
sum of these two angles will equal 67.5°.

	C.	 We can construct an angle whose measure equals π/8 rad and then reproduce 
it twice, constructing the second angle adjacent to the original one and the 
third angle adjacent to the second one. The sum of all three angles will equal 
67.5°.

	D.	 We can bisect a straight angle (i.e., one of π rad) three times and then  
duplicate the result, making the new angle adjacent to any one of the  
angles that we got from the triple bisection. The sum of these two angles 
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will equal 67.5°.

	 9.	 Suppose that you want to construct a parallelogram. What should you do first?
	A.	 Construct two perpendicular lines.
	 B.	 Construct two concentric circles.
	C.	 Construct two parallel lines.
	D.	 Construct an equilateral triangle.

	 10.	 Which of the following actions violates the formal rules for geometric  
construction?

	A.	D efine the measure of an angle by laying a compass down on it and reading 
the number from a graduated scale at the compass apex.

	 B.	D raw a line segment by running a pencil’s tip along a straight edge from one 
defined point to another defined point.

	C.	 Create a “random” angle by using a straight edge to draw two line segments 
that intersect at their end points.

	D.	 Construct a “random” circle with a compass set to any desired span.
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c h a p t e r  6
The Cartesian Plane

We can define the Cartesian plane, also called the rectangular coordinate plane
or rectangular coordinates, by constructing two calibrated number lines that 
intersect at a right angle. This trick allows us to pictorially describe equations 
that relate one variable to another. You should have a knowledge of first-year 
high-school algebra before tackling this chapter.

C H A P T e r O B J e C T i V e S
In this chapter, you will

graph ordered pairs as points in a coordinate system.• 
Calculate the distance between two points.• 
Learn the difference between a relation and a function.• 
graph simple relations and functions.• 
Determine equations from graphs.• 
graphically portray solutions to pairs of equations.• 
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Two Number Lines
Figure 6-1 illustrates the simplest possible set of rectangular coordinates. Both 
number lines have equal increments. On either axis, any two points correspond-
ing to consecutive integers lie the same distance apart, no matter where on the 
axis we look. The two number lines intersect at their zero points. We call the 
horizontal number line the x axis and the vertical number line the y axis.

Ordered Pairs as Points
Figure 6-2 shows three specific points, called P, Q, and R, plotted on the Car-
tesian plane. Point P has coordinates (–5,–4), and point Q has coordinates (3,5). 
We’ll look more closely at point R in a few moments.

We can denote any given point as an ordered pair in the form (x,y), deter-
mined by the numerical values at which perpendiculars from the point intersect 
the x and y axes. In Fig. 6-2, we see the perpendiculars as horizontal and vertical 
dashed lines.

The word “ordered” means that the order or sequence in which we list the 
numbers makes a big difference! This distinction makes an ordered pair funda-
mentally different from a set of two numbers, in which the order or sequence 
doesn’t matter. The ordered pair (7,2) is not the same as the ordered pair (2,7), 
even though both pairs contain the same two numbers. However, the sets 
{7, 2} and {2, 7} are identical.

2 4 6

2

4

6

–2–4–6
–2

–4

–6

x

y

Figure 6-1  • A Cartesian plane contains two 
number lines that intersect at right angles.



Chapter 6  T h e  C A r T e s i A n  P l A n e         117

t IP   As a matter of convention, when denoting an ordered pair, we place the two 
numbers or variables together right up against the comma (leaving no space 
after the comma). When denoting a set of two numbers, we leave a space after 
the comma.

still struggling
think of a highway, which consists of a northbound lane and a southbound lane. 
if the highway never carries any traffic, it doesn’t matter which lane (the one on 
the eastern side or the one on the western side) you designate as “northbound” 
and which lane you designate as “southbound.” But once you put cars and trucks 
on that road, it makes a tremendous difference which direction you go in either 
lane! you might compare a two-element set to a two-lane road without traffic 
and an ordered pair to a two-lane road with traffic.

?

2 4 6

4

6

–4–6

–2

–6

x

y

(3,5)

(–5,–4)
P

Q

R

d

90o

Figure 6-2 • Two points P and Q, plotted in rectangular coordinates, 
and a third point R, important in finding the distance d between P and Q.
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Abscissa, Ordinate, and Origin
In any graphing scheme, we always have at least one independent variable and 
at least one dependent variable. As the name suggests, the value of the indepen-
dent variable does not “depend” on anything; it “just happens.” The value of the 
dependent variable depends on the value of the independent variable.

We call the independent-variable coordinate (usually x) of a point on 
the Cartesian plane the abscissa. We call the dependent-variable coordinate 
(usually y) the ordinate. We call the point (0,0) the origin. In Fig. 6-2, point P 
has an abscissa of –5 and an ordinate of –4, and point Q has an abscissa of 3 and 
an ordinate of 5. We can see, upon careful inspection, that point R has an 
abscissa of 3 and an ordinate of −5.

Distance between Points
Consider two different points P = (x0,y0) and Q = (x1,y1) on the Cartesian plane. 
We can calculate the distance d between these two points by determining the 
length of the hypotenuse, or longest side, of a right triangle PQR, where point 
R constitutes the intersection of a “horizontal” line through P and a “vertical” 
line through Q. In this case, “horizontal” means “parallel to the x axis,” and 
“vertical” means “parallel to the y axis.” Figure 6-2 shows an example.

Alternatively, we can use a “horizontal” line through Q and a “vertical” line 
through P to get the point R. In this case, the resulting right triangle has the same 
hypotenuse (line segment PQ) as the triangle determined as shown in Fig. 6-2.

Think back to Chap. 2 for a minute. Recall the Pythagorean theorem, which 
states that the square of the length of the hypotenuse of a right triangle equals 
the sum of the squares of the lengths of the other two sides. In this case, the 
theorem tells us that

d 2 = (x1 – x0)
2 + (y1 – y0)

2

and therefore that

d = [(x1 – x0)
2 + (y1 – y0)

2]1/2

where the 1/2 power represents the square root. In the situation of Fig. 6-2, we 
can calculate the distance d between points P = (x0,y0) = (–5,–4) and Q = (x1,y1) 
= (3,5) as follows:

	 d = {[3 – (–5)]2 + [5 – (–4)]2}1/2	

	 = [(3 + 5)2 + (5 + 4)2]1/2	
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	 = (82 + 92)1/2	

	 = (64 + 81)1/2	

	 = 1451/2	

	 = 12.0416 (approx.)	

This result is accurate to four decimal places, as determined using a standard 
digital calculator that can find square roots. (We assume that the coordinate 
values for points P and Q in Fig. 6-2 are mathematically exact.)

Relation versus Function
Let’s compare the idea of a relation and the idea of a function as they pertain to 
coordinate geometry. A relation constitutes an equation or formula that “relates” 
the value of one variable to that of another. A function is a relation that meets 
certain specific requirements. All functions constitute relations, but not all rela-
tions constitute functions.

Relations
We can denote a relation between two variables x and y so that it expresses the 
value of y in terms of the value of x. In this format, y represents the dependent 
variable and x represents the independent variable. Some examples follow:

	 y = 5	

	 y = x + 1	

	 y = 2x	

	 y = x2	

Some Simple Graphs
Figure 6-3 shows how the graphs of the above equations look on the Cartesian 
plane. Mathematicians and scientists call such a graph a curve, even if it happens 
to be a straight line.

The graph of y = 5 (curve A) appears as a horizontal line passing through the 
point (0,5) on the y axis. The graph of y = x + 1 (curve B) is a straight line that 
ramps upward at a 45° angle (from left to right) and passes through (0,1) on 
the y axis. The graph of y = 2x (curve C) shows up as a straight line that ramps 
upward more steeply, and that passes through the origin (0,0). The graph of 
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y = x2 (curve D) appears as a geometric curve called a parabola. In this case, the 
parabola rests on the origin (0,0), opens upward, and exhibits left-to-right 
(bilateral) symmetry with respect to the y axis.

TIP   In Fig. 6-3, graphs A, B, and C portray so-called linear relations because they 
appear as straight lines in the Cartesian coordinate plane. Graph D portrays a 
nonlinear relation because it does not appear as a straight line in the Cartesian 
plane.

Functions
All of the relations shown in Fig. 6-3 share a feature that we can identify by 
examining their graphs: For every abscissa, each relation contains at most one 
ordinate. Never does a curve have two or more ordinates for a single abscissa, 
although one of them (the parabola, curve D) has two abscissas for all positive 
ordinates.

2 4 6

4

6

–4–6

–2

–4

–6

x

y

A

B

C

D

Figure 6-3 • Graphs of four relations in Cartesian coordinates. Drawings 
A, B, and C show linear relations; drawing D portrays a nonlinear relation.
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We can define a function as a mathematical relation in which every 
abscissa corresponds to at most one ordinate. According to this criterion, 
all four of the curves shown in Fig. 6-3 portray functions of y in terms of 
x. In addition, curves A, B, and C show functions of x in terms of y. But 
curve D does not represent a function of x in terms of y. If we consider x 
as the dependent variable and y as the independent variable, then there 
exist some values of y (some abscissas) that “mate” with two values of x 
(ordinates).

Let’s denote functions as italicized letters of the alphabet such as f, F, g, G, 
h, or H, followed by the independent variable in parentheses. Consider these 
examples:

 f (x) = 5 

 g (x) = x + 1 

 h (x) = 2x 

 F (x) = x2 

We can read these equations out loud as “f of x equals 5,” “g of x equals x plus 1,” 
“h of x equals 2 times x,” and “F of x equals x squared,” respectively.

PROBLEM 6-1
Plot the following points on the Cartesian plane: (–2,3), (3,–1), (0,5), 
and (–3,–3).

SOLUTION 
Figure 6-4 shows these points. The dashed lines are perpendiculars, 
dropped to the axes to show the x and y coordinates of each point for refer-
ence purposes only. (The actual graphs of the points do not include these 
dashed lines.)

PROBLEM 6-2
What’s the distance between the two points (0,5) and (–3,–3) in Fig. 6-4? 
Express the answer to three decimal places. Assume that the coordinate 
values are exact.

PROBLEM 
Plot the following points on the Cartesian plane: (–2,3), (3,–1), (0,5), 
and (–3,–3).

PROBLEM 
Plot the following points on the Cartesian plane: (–2,3), (3,–1), (0,5), 

SOLUTION 
Figure 6-4 shows these points. The dashed lines are perpendiculars, 
dropped to the axes to show the 

SOLUTION 
Figure 6-4 shows these points. The dashed lines are perpendiculars, 

✔

PROBLEM 
What’s the distance between the two points (0,5) and (–3,–3) in Fig. 6-4? 
Express the answer to three decimal places. Assume that the coordinate 

PROBLEM 
What’s the distance between the two points (0,5) and (–3,–3) in Fig. 6-4? 
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SOLUTION 
Let’s say that (x0,y0) = (0,5) and (x1,y1) = (–3,–3). We calculate the distance d
between these two points as follows:

d = [(x1 – x0)2 + (y1 – y0)2]1/2

 = [(–3 – 0)2 + (–3 – 5)2]1/2

= [(–3)2 + (–8)2]1/2

 = (9 + 64)1/2

= 731/2

 = 8.544 (rounded off)

Straight Lines
We can always represent a straight line on the Cartesian plane as a linear equa-
tion. Several different forms exist for linear equations. No matter what form a 
linear equation shows up in at first, we use algebra to “morph” it into an equa-
tion where neither x nor y is raised to any power other than 0 or 1.

SOLUTION 
Let’s say that (

✔

4 6

2

4

6

–2–4–6

–2

–4

–6

x

y

(3,–1)

(–2,3)

(0,5)

(–3,–3)

Figure 6-4  • illustration for Problems 6-1 and 6-2.
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Standard Form of Linear Equation
The standard form of a linear equation in variables x and y comprises constant 
multiples of the two variables, plus another constant, all summed up to equal 
zero, as follows:

ax + by + c = 0

In this “generic” equation, we denote the constants as a, b, and c. If a constant 
happens to equal 0, then we don’t have to write it down, nor do we have to 
write its multiple (by either x or y). Examples of linear equations in the 
standard form include the following:

 2x + 5y – 3 = 0 

 5y – 3 = 0 

 2x – 3 = 0 

 2x = 0 

 5y = 0 

 

still struggling
You can divide each side of the fourth (next-to-last) of the above equations by 2, 
thereby simplifying it to x = 0. similarly, you can divide each side of the fifth (last) 
equation by 5, simplifying it to y = 0.

?
Slope-Intercept Form of Linear Equation
We can manipulate any linear equation in variables x and y to make it easy to 
plot on the Cartesian plane. We can convert a linear equation from standard 
form to slope-intercept form by going through several steps. Let’s start with the 
general equation

ax + by + c = 0

Subtracting c from each side, we get

ax + by = –c

We can subtract ax from each side to obtain

by = –ax – c
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When we divide through by b, we get

y = (–a/b)x – c/b

We can also express this equation as

y = (–a/b)x + (–c/b)

where a, b, and c represent real-number constants, and b ≠ 0. We call the quantity 
–a/b the slope of the line (also known as “rise over run”), an indicator of how 
steeply and in what sense the line slants. The quantity –c/b represents the 
ordinate (or y-value) of the point at which the line crosses the y axis; we call it 
the y-intercept.

Definition of Slope
Suppose that dx represents a small change in the value of x on the graph of a 
line. Let dy represent the change in the value of y that results from this change 
in x. We define the ratio dy/dx as the slope of the line. Let’s symbolize the slope 
as m. Now imagine that some number k represents the y-intercept for the line. 
We can derive m and k from a, b, and c in the above-defined equation as follows, 
provided that b ≠ 0:

	 m = –a/b	

and

	 k = –c/b	

We can rewrite the linear equation in slope-intercept form as

y = (–a/b)x + (–c/b)

Substituting m for −a/b and k for −c/b, we get

y = mx + k

Plotting the Line
When you want to plot the graph of a linear equation in Cartesian coordinates, 
proceed as follows:

Convert the equation to slope-intercept form.•	

Plot the point •	 y = k.
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Move to the right by •	 n units on the graph, where n is some number that 
represents some reasonable distance on the graph.

If •	 m is positive, move upward mn units.

If •	 m is negative, move downward |m|n units, where |m| equals the absolute 
value of m.

If •	 m = 0, don’t move up or down at all.

Plot the resulting point.•	

Connect the two points with a straight line.•	

Figures 6-5A and 6-5B illustrate the graphs of two different linear relations in 
slope-intercept form. At A, we see the graph of the equation

y = 5x – 3

At B, we see the graph of the equation

y = –x + 2

 

still struggling
Positive slope indicates that a line ramps upward as you move from left to right, 
and negative slope indicates that a line ramps downward as you move from left 
to right. A slope of 0 indicates a horizontal line. We can’t define the slope of a 
vertical line because, in the form we’ve learned here, a vertical line requires that 
m consist of a quotient with a denominator equal to 0.

?

Point-Slope Form of Linear Equation
We’ll sometimes have trouble plotting the graph of a line based on the 
y-intercept (the point at which the line intersects the y axis) when the part of 
the graph of interest lies far from the y axis. In this sort of situation, we can use 
the point-slope form of a linear equation to help us draw the graph. We can 
express a line in this form if we know the slope m of the line and the coordi-
nates of a known point (x0,y0), as follows:

y – y0 = m(x – x0)
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–6

x
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(0+1,–3+5)
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A
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y

k = 2
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(0+2,2–2)
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dy = –2

B

Figure 6-5  • A. Graph of the linear equation y = 5x – 3. B. Graph 
of the linear equation y = –x + 2.
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When we want to plot a graph of a linear equation using the point-slope 
method, we can follow these steps in order:

Convert the equation to point-slope form.•	

Determine a point (•	 x0,y0) by “plugging in” values.

Plot (•	 x0,y0) on the coordinate plane.

Move to the right by •	 n units on the graph, where n is some number that 
represents a reasonable distance on the graph.

If •	 m is positive, move upward mn units.

If •	 m is negative, move downward |m|n units, where |m| equals the absolute 
value of m.

If •	 m = 0, don’t move up or down at all.

Plot the resulting point (•	 x1,y1).

Connect the points (•	 x0,y0) and (x1,y1) with a straight line.

Figure 6-6A shows the graph of the following linear equation based on the 
point-slope form:

y – 104 = 3(x – 72)

Figure 6-6B portrays the graph of another linear equation based on the point-
slope form:

y + 55 = –2(x + 85)

Finding Linear Equation Based on Graph
Imagine that we’re working in the Cartesian plane, and we know the exact 
coordinates of two distinct points P and Q. These two points, no matter where 
they lie, define a unique straight line. Let’s call the line L and give the coordi-
nates of the points the names

	 P = (xp,yp)	

and

	 Q = (xq,yq)	

We can calculate the slope m of line L using either of the following formulas:

	 m = (yq – yp)/(xq – xp)	
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Figure 6-6 • A. Graph of the linear equation y – 104 = 3(x – 72).  
B. Graph of the linear equation y + 55 = –2(x + 85).
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or

	 m = (yp – yq)/(xp – xq)	

provided that xp ≠ xq. (If xp = xq, we get denominators of 0 in the formulas, pre-
venting us from defining the slope.)

We can determine the point-slope equation of the line L based on the known 
coordinates of P or Q. Either of the following formulas represent L:

	 y – yp = m(x – xp)	

or

	 y – yq = m(x – xq)	

Parabolas and Circles
The Cartesian-coordinate graph of a quadratic equation always shows up as a 
parabola. We can write down any quadratic equation in the general form

y = ax2 + bx + c

where a, b, and c represent real-number constants, and a ≠ 0. (If a = 0, then we 
have a linear equation, not a quadratic equation.)

When we want to plot a graph of an equation that appears in the above form, 
we first determine the coordinates of the following point (x0,y0), as follows:

	 x0 = –b/(2a)	

and

	 y0 = c – b2/(4a)	

The coordinates (x0,y0) define the vertex point of the parabola. That’s the point 
at which the curvature is sharpest, and at which a line tangent to (i.e., a line 
that “brushes up against”) the curve runs horizontally. For the Cartesian graph 
of a quadratic equation that tells us y in terms of x, we can have either of two 
cases:

In a parabola that opens straight upward, the vertex is the graph’s minimum.•	

In a parabola that opens straight downward, the vertex is the graph’s •	

maximum.
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Once we know the vertex, we can find four more points by “plugging in” values 
of x somewhat greater than and less than x0 and then determining the corre-
sponding y-values. Let’s call these x-values by the names x–2 , x–1, x1, and x2. We 
should space them evenly on either side of x0, such that

	 x–2 < x–1 < x0 < x1 < x2	

and

	 x–1 – x–2 = x0 – x–1 = x1 – x0 = x2 – x1	

This arrangement produces five points that lie along the parabola, and that 
exhibit symmetry relative to the axis of the curve. We can now fill in the graph 
if we’ve wisely chosen the points. If a > 0, the parabola opens upward. If a < 0, 
the parabola opens downward.

Plotting a Parabola
Consider the following equation for y in terms of x:

	 y = x2 + 2x + 1	

This equation has coefficients of a = 1, b = 2, and c = 1. Using the formula 
defined above, we can calculate the x-value of the vertex point as

	 x0 = –b/(2a)	

	 = −2/(2 × 1)	

	 = –2/2	

	 = –1	

and we can calculate the y-value of the vertex point as

	 y0 = c – b2/(4a)	

	 = 1 − 22/(4 × 1)	

	 = 1 – 4/4	

	 = 1 – 1	

	 = 0	

Therefore, we can express our first point as

 (x0,y0) = (–1,0)
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Figure 6-7 illustrates this situation. Next, let’s plot the points corresponding to 
x–2, x–1, x1, and x2, spaced at 1-unit intervals on either side of x0. First, we define 
x−2 as

	 x–2 = x0 – 2	

	 = –3	

which produces a y-value of

	 y–2 = (–3)2 + 2 × (–3) + 1	

	 = 9 – 6 + 1	

	 = 4	

so therefore

	 (x–2,y–2) = (–3,4)	

Next, we define x−1 as

x–1 = x0 – 1

= –2

–4 –2 2 4
x

y

–2

2

6

8

(–3,4) (1,4)

(–2,1) (0,1)

(–1,0)

Figure 6-7  • Graph of the quadratic equation y = x2 + 2x + 1.



132        g e o m e t r y   Demystified

which produces a y-value of

	 y–1 = (–2)2 + 2 × (–2) + 1	

	 = 4 – 4 + 1	

	 = 1	

so therefore

	 (x–1,y–1) = (–2,1)	

Next, we define x1 as

	 x1 = x0 + 1	

	 = 0	

which produces a y-value of

	 y1 = 02 + 2 × 0 + 1	

	 = 0 + 0 + 1	

	 = 1	

so therefore

	  (x1,y1) = (0,1)	

Finally, we define x2 as

	 x2 = x0 + 2	

	 = 1	

which produces a y-value of

	 y2 = 12 + 2 × 1 + 1	

	 = 1 + 2 + 1	

	 = 4	

so therefore

	 (x2,y2) = (1,4)	

When we draw these five points on the Cartesian plane, we get a good idea 
of where the parabola lies, allowing us to easily “fill in the curve” as shown in 
Fig. 6-7.
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Plotting Another Parabola
Let’s try another example, this time with a parabola that opens downward 
instead of upward. Consider the equation

	 y = –2x2 + 4x – 5	

This equation has coefficients of a = −2, b = 4, and c = −5. Using the formula 
defined a little while ago, we can calculate the x-value of the vertex point as

	 x0 = –b/(2a)	

	 = −4/[2 × (−2)]	

	 = – 4/(– 4)	

	 = 1	

and the y-value of the vertex point as

	 y0 = c – b2/(4a)	

	 = −5 − 42/[4 × (−2)]	

	 = –5 – 16/(–8)	

	 = –5 + 2	

	 = –3	

so therefore

	 (x0,y0) = (1,–3)	

We plot this point first, as shown in Fig. 6-8. Now we’re ready to plot the points 
corresponding to x–2, x–1, x1, and x2, spaced at 1-unit intervals on either side of 
x0. First, we define x−2 as

	 x–2 = x0 – 2	

	 = –1	

which produces a y-value of

	 y–2 = –2 × (–1)2 + 4 × (–1) – 5	

	 = –2 – 4 – 5	

	 = –11	

so therefore

	  (x–2,y–2) = (–1,–11)	
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Next, we define x−1 as

	 x–1 = x0 – 1	

	 = 0	

which produces a y-value of

	 y–1 = –2 × 02 + 4 × 0 – 5	

	 = –5	

so therefore

	 (x–1,y–1) = (0,–5)	

Next, we define x1 as

	 x1 = x0 + 1	

	 = 2	

x

y

–4

–12

–16

4

–4 –2 4

(1,–3)

(2,–5)(0,–5)

(–1,–11) (3,–11)

Figure 6-8  • Graph of the quadratic equation y = –2x2 + 4x – 5.
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which produces a y-value of

	 y1 = –2 × 22 + 4 × 2 – 5	

	 = –8 + 8 – 5	

	 = –5	

so therefore

	  (x1,y1) = (2,–5)	

Finally, we define x2 as

	 x2 = x0 + 2	

	 = 3	

which produces a y-value of

	 y2 = –2 × 32 + 4 × 3 – 5	

	 = –18 + 12 – 5	

	 = –11	

so therefore

	 (x2,y2) = (3,–11)	

Now that we know five distinct points that fall in “good places” on the curve, 
we can draw the parabola by “connecting the dots.”

Equation of Circle
The general form for the equation of a circle in the xy-plane shows symmetry 
with respect to both variables (just as a circle has symmetry in both the hori-
zontal sense and the vertical sense). We have

 (x – x0)
2 + (y – y0)

2 = r2

where (x0,y0) represents the coordinates of the center of the circle, and r rep-
resents the circle’s radius, or distance from the center to any point on the 
curve itself. Figure 6-9 illustrates a generic example. In the special case where 
the circle’s center lies at the origin (0,0) of the Cartesian plane, the formula 
simplifies to

x2 + y2 = r2
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Such a circle intersects the x axis at the points (r,0) and (–r,0); it intersects the 
y axis at the points (0,r) and (0,–r). An even more specific case is the unit circle. 
We can express it in terms of the formula

x2 + y2 = 1

This curve intersects the x axis at the points (1,0) and (–1,0); it intersects the 
y axis at the points (0,1) and (0,–1).

PROBLEM 6-3
Draw a Cartesian graph of the circle represented by (x – 1)2 + (y + 2)2 = 9.

SOLUTION 
Based on the general formula for a circle, we can determine that the center 
point has coordinates x0 = 1 and y0 = –2. The radius equals the square root 
of 9, which equals 3. We therefore have a circle whose center point lies at 
(1,–2) on the Cartesian plane, and whose radius equals 3 units as shown in 
Fig. 6-10.

PROBLEM 
Draw a Cartesian graph of the circle represented by (
PROBLEM 
Draw a Cartesian graph of the circle represented by (

SOLUTION 
Based on the general formula for a circle, we can determine that the center 
point has coordinates 

SOLUTION 
Based on the general formula for a circle, we can determine that the center 

✔

x

y

x y0 0,( )

r

Figure 6-9  • Circle centered at (x0,y0) with radius r.
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PROBLEM 6-4
Determine the equation of the circle graphed in Fig. 6-11.

SOLUTION 
First, let’s note that the center point has coordinates (–8,–7), so we can 
assign it the coordinate values

x0 = –8

and

y0 = –7

The radius r equals 20. When we square it, we get

 r2 = 20 ë 20

= 400

PROBLEM 
Determine the equation of the circle graphed in Fig. 6-11.
PROBLEM 
Determine the equation of the circle graphed in Fig. 6-11.

SOLUTION 
First, let’s note that the center point has coordinates (–8,–7), so we can 
assign it the coordinate values

SOLUTION 
First, let’s note that the center point has coordinates (–8,–7), so we can 

✔

x

y

(1,–2)

r = 3

Each division
equals 1 unit

Figure 6-10  • illustration for Problem 6-3.
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We recall that the general formula for a circle in Cartesian coordinates is

	 (x – x0)2 + (y – y0)2 = r2

Inputting our known values, we get

	 [x – (–8)]2 + [y – (–7)]2 = 400

which simplifies to

	 (x + 8)2 + (y + 7)2 = 400

Solving Pairs of Equations
We can envision and approximate the solutions to pairs of equations by graphing 
both of the equations on the same coordinate grid. Solutions appear as intersec-
tion points between the graphs.

x

y

Each division
equals 5 units

r = 20

(–8,–7)

Figure 6-11  • Illustration for Problem 6-4.
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A Line and a Curve
Suppose that you encounter two equations in the two variables x and y. You 
want to determine the values of x and y (if any) that satisfy both equations. In 
this scenario, you have a pair of so-called simultaneous equations. Consider the 
following example:

y = x2 + 2x + 1

and

y = –x + 1

Figure 6-12 portrays the graphs of these equations. The graph of the first equa-
tion appears as a parabola (solid curve), and the graph of the second equation 
shows up as a straight line (dashed). The line crosses the parabola at two points, 
indicating that two real-number solutions exist for this pair of simultaneous 

–4 –2 2 4
x

y

–2

2

6

8

(–3,4)

(0,1)

Figure 6-12  • Graphs of two equations, showing solutions as intersec-
tion points.
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equations. We can estimate the coordinates of the points by examining the 
graph. It appears that they’re close to, or maybe exactly,

(x1,y1) = (–3,4)

and

(x2,y2) = (0,1)

TIP   If you’ve taken an algebra course that taught you how to solve pairs of 
simultaneous equations, you can use that knowledge here and calculate the 
solutions to the above equations exactly. If your algebra course didn’t get that 
far, you can nevertheless check out the above stated solutions and verify that 
they’re exact! Just “plug in” the solutions to both equations and grind out the 
arithmetic.

Another Line and Curve
Consider another pair of two-by-two equations (two simultaneous equations in 
two variables) that we can solve approximately by graphing

y = –2x2 + 4x – 5

and

y = –2x – 5

Figure 6-13 shows the graphs. Again, the graph of the first equation constitutes 
a parabola (solid curve), and the graph of the second equation shows up as a 
straight line (dashed). The line crosses the parabola at two points, indicating 
that two real-number solutions exist. The coordinates of the points, correspond-
ing to the solutions, appear to be approximately, or perhaps exactly,

(x1,y1) = (3,–11)

and

(x2,y2) = (0,–5)

TIP   Again, if you want, go ahead and solve these equations using algebra, and 
find the values exactly. Alternatively, you can input the above stated solutions 
and use simple arithmetic to verify that they’re exact.
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Multiple Solutions
Graphing simultaneous equations can reveal general facts about them, but we 
can’t rely on graphs to provide us with exact solutions. In real-life scientific 
applications, graphs rarely show us exact solutions unless they’re so labeled and 
represent theoretical ideals.

A Cartesian-coordinate graph with real-number axes can reveal that a pair 
of equations has two or more real-number solutions, or only one real-number 
solution, or no real-number solutions at all. The real-number solutions to pairs 
of equations always show up as intersection points on their graphs. Therefore, 
if n intersection points exist between the curves representing two equations, 
then the pair of equations has n real-number solutions.

If a pair of equations is complicated, or if the graphs portray the results of 
experiments, we’ll occasionally run into situations where we can’t use algebra 
to solve them. Then graphs, with the aid of computer programs to closely 
approximate the points of intersection between graphs, offer the only practical 
means of solving simultaneous equations.

x

y

–12

–16

4

–4 2 4

(0,–5)

(3,–11)

Figure 6-13  • Another example of equation solutions shown as the 
intersection points of their graphs.
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still struggling
sometimes you’ll want to see if a set of more than two equations in x and y has 
any solutions. one or more equation pairs within a large set of equations may 
have solutions; they show up as points where two graphs intersect. however, it’s 
unusual for a set of three or more equations in x and y to have any solutions 
when considered all together (i.e., simultaneously). For that to happen, at least 
one point in the Cartesian plane must belong to all of the graphs.

?

PROBLEM 6-5
Using the Cartesian plane to plot their graphs, we can say certain things 
about the solutions to the simultaneous equations

y = x + 3

and

(x – 1)2 + (y + 2)2 = 9

What can we say, specifically?

SOLUTION 
Figure 6-14 shows the graphs of these equations. The first equation graphs 
as a straight line (dashed), ramping up toward the right with slope equal 
to 1 and intersecting the y axis at (0,3). The second equation graphs as a 
circle (solid curve) whose radius equals 3 units, and that’s centered at the 
point (1,–2). We can see that this line and circle do not intersect anywhere 
in the Cartesian plane, so we know that there exist no real-number solu-
tions to this pair of simultaneous equations.

PROBLEM 6-6
Using the Cartesian plane to plot their graphs, we can say certain things 
about the solutions to the simultaneous equations

y = 1

PROBLEM 
Using the Cartesian plane to plot their graphs, we can say certain things 
about the solutions to the simultaneous equations

PROBLEM 
Using the Cartesian plane to plot their graphs, we can say certain things 

SOLUTION 
Figure 6-14 shows the graphs of these equations. The first equation graphs 
as a straight line (dashed), ramping up toward the right with slope equal 

SOLUTION 
Figure 6-14 shows the graphs of these equations. The first equation graphs 

✔

PROBLEM 
Using the Cartesian plane to plot their graphs, we can say certain things 
about the solutions to the simultaneous equations

PROBLEM 
Using the Cartesian plane to plot their graphs, we can say certain things 



Chapter 6  T h e  C A r T e s i A n  P l A n e         143

and

(x – 1)2 + (y + 2)2 = 9

What can we say, specifically?

SOLUTION 
Figure 6-15 shows the graphs. The first equation graphs as a horizontal 
straight line (dashed) intersecting the y axis at (0,1). The second equation 
graphs as a circle (solid curve) whose radius equals 3 units, centered at the 
point (1,–2). It appears from the graph that the equations have a single com-
mon solution denoted by the point (1,1), indicating that x = 1 and y = 1.
 Let’s use algebra to solve the equations and find out if the graph tells us 
the true story. Substituting 1 for y in the equation of a circle (because one 
of the equations tells us that y = 1), we get a single equation in a single 
variable:

 (x – 1)2 + (1 + 2)2 = 9

SOLUTION 
Figure 6-15 shows the graphs. The first equation graphs as a horizontal 
straight line (dashed) intersecting the 

SOLUTION 
Figure 6-15 shows the graphs. The first equation graphs as a horizontal 

✔

x

y

(1,–2)

r = 3

Each division
equals 1 unit

Figure 6-14  • illustration for Problem 6-5.
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This equation simplifies to

	 (x – 1)2 + 32 = 9

and further to

	 (x – 1)2 + 9 = 9

Subtracting 9 from each side, we get

	 (x – 1)2 = 0

When we take the square root of both sides, we obtain

	 x – 1 = 0

Adding 1 to each side gives us the solution

	 x = 1

It checks out! Now we know that there exists only one solution to this pair 
of simultaneous equations: x = 1 and y = 1, denoted by the point (1,1).

x

y

(1,–2)

r = 3

Each division
equals 1 unit (1,1)

Figure 6-15  • Illustration for Problem 6-6.
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 How far from the origin does point P lie in Fig. 6-16?
	A.	 10 units
	 B.	 The square root of 10 units
	C.	 7 units
	D.	 The square root of 29 units

	 2.	 How far from the origin does point Q lie in Fig. 6-16?
	A.	 5 units
	 B.	 The square root of 10 units
	C.	T he square root of 50 units
	D.	 7 units

2 4 6

4

6

–4–6

–2

–6

x

y

P

Q

–2

–4

2

Figure 6-16  • Illustration for Quiz Questions 1 through 5.
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	 3.	 What’s the distance between points P and Q in Fig. 6-16?
	A.	 The square root of 17 units
	 B.	 The square root of 79 units
	C.	 The square root of 149 units
	D.	 13 units

	 4.	 Suppose that we draw a straight line passing through both points P and Q in 
Fig. 6-16. What’s the slope of that line?

	A.	 −2/5
	 B.	 −7/10
	C.	 5/2
	D.	 10/7

	 5.	 Which of the following expressions constitutes a point-slope equation for a 
straight line passing through points P and Q in Fig. 6-16?

	A.	 y − 2 = (−7/10)(x + 5)
	 B.	 y + 5 = (5/2)(x − 2)
	C.	 y + 2 = (−2/5)(x + 5)
	D.	 y − 5 = (10/7)(x + 2)

	 6.	 Consider a parabola represented by the following equation in Cartesian 
coordinates:

	 y = −2x2 + 8x − 3

	 What are the coordinates of the parabola’s vertex point?
	A.	 (7,1)
	 B.	 (2,5)
	C.	 (8,−3)
	D.	 (−3/2,4)

	 7.	 Consider a circle represented by the following equation in Cartesian coordinates:

(x + 2)2 + (y − 7)2 = 196

	 What are the coordinates of the circle’s center?
	A.	 (7,−2)
	 B.	 (−7,2)
	C.	 (−2,7)
	D.	 (2,−7)

	 8.	 What’s the radius of the circle described in Question 7?
	A.	 196 units
	 B.	 56 units
	C.	 28 units
	D.	 14 units
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	 9.	 Figure 6-17 shows graphs of a linear equation (line A), a circular equation (curve B), 
and a quadratic equation (curve C). Based on the appearance of the graphs, if we 
undertake to solve the equations for line A and curve B simultaneously, we 
should expect to get

	A.	 no real-number solutions.
	 B.	 one real-number solution.
	C.	 two real-number solutions.
	D.	 infinitely many real-number solutions.

	 10.	 Based on the appearance of the graphs in Fig. 6-17, if we undertake to solve the 
equations for curves B and C simultaneously, we should expect to get

	A.	 no real-number solutions.
	 B.	 one real-number solution.
	C.	 two real-number solutions.
	D.	 infinitely many real-number solutions.

4 6

4

6

–4–6 –2

–2
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Figure 6-17  • Illustration for Quiz Questions 9 and 10.
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Test: Part I
Do not refer to the text when taking this test. You may draw diagrams or use a 
calculator if necessary. A good score is at least 38 correct. Answers are in the 
back of the book. It’s best to have a friend check your score the first time, so 
you won’t memorize the answers if you want to take the test again.
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	 1.	 When we encounter a plane polygon in which none of the vertices “bend inward” 
(i.e., where every interior angle measures less than 180º), we call the polygon

	A.	 acute.
	 B.	 amorphous.
	C.	 disjoint.
	D.	 regular.
	E .	 convex.

	 2.	 Imagine two triangles, both of which have equal base lengths and equal heights. 
Based on this information, we can have complete confidence that the two triangles

	A.	 exhibit direct similarity.
	 B.	 have equal interior areas.
	C.	 have equal perimeters.
	D.	 exhibit inverse congruence.
	E .	 None of the above

	 3.	 When we encounter a plane polygon whose sides all measure the same length 
and interior angles all have the same measure, we call the figure

	A.	 obtuse.
	 B.	 polymorphous.
	C.	 regular.
	D.	 disjoint.
	E .	 amorphous.

	 4.	 In Fig. Test I-1, line M constitutes
	A.	 a parallel bisector of line segment PR.
	 B.	 a perpendicular bisector of line segment PR.

P R

PQ = QR

Q

M

π/2 rad

Figure Test I-1 • Illustration for Part I Test Questions 4 
and 5.
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	C.	 an acute bisector of line segment PR.
	D.	 an obtuse bisector of line segment PR.
	E .	 a radial bisector of line segment PR.

	 5.	 According to the appearance of Fig. Test I-1, we can surmise that line segment PR is
	A.	 closed.
	 B.	 half-open.
	C.	 open.
	D.	 infinite.
	E .	 congruent.

	 6.	 Suppose that we circumscribe a circle with a regular polygon having n sides 
(where n represents a positive integer larger than 3), and then we increase n 
without limit, all the while making sure that the polygon keeps on “snugly” cir-
cumscribing the circle. As we carry out this action, the measures of the polygon’s 
individual interior angles approach

	A.	 π/3 rad.
	 B.	 π/2 rad.	
	C.	 2π/3 rad.
	D.	 π rad.
	E .	 2π rad.

	 7.	 A full circular revolution yields an angular measure of
	A.	 π/4 rad.
	 B.	 π/2 rad.
	C.	 π rad.
	D.	 2π rad.
	 E.	 4π rad.

	 8.	 Suppose that we inscribe a circle with a regular polygon having n sides (where n 
represents a positive integer larger than 3), and then we increase n without limit, 
all the while making sure that the polygon keeps on “snugly” inscribing the circle. 
As we carry out this action, the measures of the polygon’s individual interior 
angles approach

	A.	 π/3 rad.
	 B.	 π/2 rad. 
	C.	 2π/3 rad.
	D.	 π rad.
	E .	 2π rad.

	 9.	 When you use a drafting compass and straight edge to perform a geometric 
construction, you must never

	A.	 use either instrument more than once.
	 B.	 use your pencil all by itself to define a point.
	C.	 use calibrated scales on either instrument.
	D.	 draw circles of arbitrary radius.
	E .	 draw line segments of arbitrary length.
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	 10.	 Two angles in the same plane complement each other if and only if the sum of 
their measures equals

	A.	 180º.
	 B.	 a full circle.
	C.	 π/2 rad.
	D.	 half of a full circle.
	E .	 π rad.

	 11.	 The triangles illustrated in Fig. Test I-2 are both
	A.	 acute.
	 B.	 isosceles.
	C.	 equilateral.
	D.	 All of the above
	E .	 None of the above

	 12.	 We can have absolute confidence that the triangles shown in Fig. Test I-2 exhibit 
one, and only one, of the following properties. Which one?

	A.	 Direct congruence
	 B.	 Inverse similarity
	C.	 Inverse congruence
	D.	T he sum of all the angular measures equals π/2 rad.
	E .	T hey both have the same perimeter.

x = y = z

z

x

y

u = v = w

u v

w

Figure Test I-2 • Illustration 
for Part I Test Questions 11 
and 12.



  TEST: PA R T  I         153

	 13.	 Given any three distinct points, they cannot form a triangle if they all lie
	A.	 on the same line.
	 B.	 in a single plane.
	C.	 on a single rectangle.
	D.	 on a single circle.
	E .	 in a single coordinate system.

	 14.	 Consider the following equation that represents a straight line in Cartesian 
coordinates:

	 y = 2x − 7

	 What’s the slope of this line?
	A.	 −2/7
	 B.	 −7/2
	C.	 −7
	D.	 −14
	E .	 2

	 15.	 In order to “qualify” as a quadrilateral, a geometric plane figure must have all of 
the following characteristics except one. Which one?

	A.	T he figure must have four distinct sides.
	 B.	E ach interior angle must measure less than 180º.
	C.	T he figure must have four distinct vertex points.
	D.	 All the sides must have positive, finite length.
	E .	 All the sides must be straight line segments.

	 16.	 Imagine a triangle with interior angles measuring o/4 rad, o/4 rad, and o/2 rad. 
From this information, we can have complete confidence that the figure 
constitutes

	A.	 a concave triangle.
	 B.	 a disjoint triangle.
	C.	 an isosceles triangle.
	D.	 an equilateral triangle.
	E .	 an obtuse triangle.

	 17.	 Consider a circle represented by the following equation in Cartesian coordinates:

	 (x + 6)2 + (y + 3)2 = 124

	 What are the coordinates of the center?
	A.	 (6,3)
	 B.	 (−6,3)
	C.	 (6,−3)
	D.	 (−6,−3)
	E .	 We need more information to answer this question.
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	 18.	 What’s the radius of the circle described in Question 17?
	A.	 124 units
	 B.	 The square root of 124 units
	C.	 62 units
	D.	 31 units
	E .	 We need more information to answer this question.

	 19.	 Assuming that the entire object in Fig. Test I-3 lies in a single plane, we can 
surmise from its general appearance that it portrays a

	A.	 rhombus.
	 B.	 trapezoid.
	C.	 pentagon.
	D.	 parallelogram.
	E .	 quadrilateral.

	 20.	 Assuming that the entire object in Fig. Test I-3 lies in a single plane, we can have 
complete confidence that

	A.	 w + x + y + z = π/2 rad.
	 B.	 w + x + y + z = π rad.
	C.	 w + x + y + z = 2π rad.
	D.	 w + x + y + z = 3π rad.
	E .	 w + x + y + z = 4π rad.

w

x

y

z

Figure Test I-3  • Illustration for Part I Test 
Questions 19 through 21.
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	 21.	 Assuming that the entire object in Fig. Test I-3 lies in a single plane, we can have 
complete confidence that each and every individual angle w, x, y, or z measures 
less than

	A.	 π/4 rad.
	 B.	 π/3 rad.
	C.	 π/2 rad.
	D.	 π rad.
	E .	 2π rad.

	 22.	 We call the independent-variable coordinate (usually x) of a point on the Carte-
sian plane the

	A.	 magnitude.
	 B.	 abscissa.
	C.	 relation.
	D.	 ordinate.
	E .	 function.

	 23.	 We call the dependent-variable coordinate (usually y) of a point on the Cartesian 
plane the

	A.	 magnitude.
	 B.	 abscissa.
	C.	 relation.
	D.	 ordinate.
	E .	 function.

	 24.	 We can use an uncalibrated straight edge and a pencil alone to
	A.	 construct a line segment passing through a single defined point.
	 B.	 construct a line segment connecting two defined points.
	C.	 construct a triangle connecting three defined points.
	D.	 construct a quadrilateral connecting four defined points.
	E .	 All of the above

	 25.	 A half-open line segment
	A.	 extends infinitely far in one direction.
	 B.	 contains neither of its end points.
	C.	 extends infinitely far in both directions.
	D.	 contains both of its end points.
	E .	 contains one of its end points but not the other.

	 26.	 In order for a plane quadrilateral to constitute a trapezoid, one pair of opposite 
sides must be parallel and no sides may meet except at their end points. What 
other requirement, if any, must a quadrilateral fulfill in order to “qualify” as a 
trapezoid?

	A.	 None!
	 B.	 All four angles must have the same measure.
	C.	 All four sides must have the same length.
	D.	 Both diagonals must have the same length.
	E .	T he diagonals must intersect at a right angle.
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	 27.	 Figure Test I-4 illustrates a geometric figure that lies entirely in a single plane, 
and all four of whose sides measure the same length. Based on this knowledge, 
we can be absolutely certain that

	A.	 all four of the triangles formed by the outer sides and the half-diagonals are 
directly congruent.

	 B.	 all four of the triangles formed by the outer sides and the half-diagonals are 
directly similar.

	C.	 the two diagonals intersect at a right angle.
	D.	 the sum of the lengths of the diagonals equals the perimeter of the whole 

figure.
	E .	 All of the above

	 28.	 Consider two distinct lines L and M that lie in the same plane. Suppose that both 
L and M intersect a third line N, and both L and M run perpendicular to N. In this 
situation, we can have total confidence that L and M constitute

	A.	 skew lines.
	 B.	 perpendicular lines.
	C.	 complementary lines.
	D.	 parallel lines.
	E .	 congruent lines.

P

Q

R

S

Figure Test I-4  • Illustration for Part I 
Test Question 27.
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	 29.	 Imagine two triangles, both of which have one side measuring 10 units in length. 
In both triangles, the interior angle at either end of the 10-unit side measures 
40ç. Based on this information, we know that these triangles

	A.	 exhibit direct similarity.
	 B.	 have equal interior areas.
	C.	 have equal perimeters.
	D.	 All of the above
	E .	 None of the above

	 30.	 Two triangles are directly congruent if and only if they’re directly similar and 
	A.	 corresponding angles have equal measures, going around both triangles 

counterclockwise.
	 B.	 corresponding angles have equal measures, going around one triangle clock-

wise and the other triangle counterclockwise.
	C.	 corresponding sides have the same lengths, going around both triangles 

counterclockwise.
	D.	 corresponding sides have the same lengths, going around one triangle clock-

wise and the other triangle counterclockwise.
	E .	 Any of the above

	 31.	 Imagine a triangle with interior angles measuring 10º, 20º, and 150º. From this 
information, we can have complete confidence that the figure constitutes

	A.	 a right triangle.
	 B.	 a non-Euclidean triangle.
	C.	 an isosceles triangle.
	D.	 an equilateral triangle.
	E .	 an obtuse triangle.

	 32.	 Imagine two lines L and M that intersect at a point P. In this situation, any pair of 
adjacent angles between L and M is

	A.	 congruent.
	 B.	 acute.
	C.	 obtuse.
	D.	 supplementary.
	E .	 transverse.

	 33.	 Imagine a triangle with interior angles measuring o/6 rad, o/3 rad, and o/2 rad. 
From this information, we can have complete confidence that the figure 
constitutes

	A.	 a right triangle.
	 B.	 a non-Euclidean triangle.
	C.	 an isosceles triangle.
	D.	 an equilateral triangle.
	E .	 an obtuse triangle.
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	 34.	 What’s the interior area of the shaded region in Fig. Test I-5? Assume that the 
entire curve (including the dashed portion) is a perfect circle, and that the center 
of the arc lies at the center of the circle.

	A.	 4π square units
	 B.	 6π square units
	C.	 18 square units
	D.	 24 square units
	E .	 We need more information to calculate it.

	 35.	 What’s the perimeter of the shaded region in Fig. Test I-5? Assume that the entire 
curve (including the dashed portion) is a perfect circle, and that the center of the 
arc lies at the center of the circle.

	A.	 3π units
	 B.	 4π units
	C.	 11 units
	D.	 20 units
	E .	 We need more information to calculate it.

	 36.	 Which of the following statements accurately expresses the parallel principle as 
it applies to Euclidean geometry in a single plane?

	A.	 Suppose that L represents a line and P represents a point that doesn’t lie on L. 
There exist no lines through P that run parallel to L.

	 B.	 Suppose that L represents a line and P represents a point that doesn’t lie on L. 
There exist two lines M and N through P, such that M and N both run parallel to L.

	C.	 Suppose that L represents a line and P represents a point that doesn’t lie on L. 
There exist infinitely many lines through P that run parallel to L.

	D.	 Suppose that L represents a line and P represents a point that doesn’t lie on L. 
The number of lines through P that run parallel to L depends on the distance 
between P and L.

	E .	 Suppose that L represents a line and P represents a point that doesn’t lie on L. 
There exists one and only one line M through P, such that M runs parallel to L.

Center
of arc

4 units

3 rad

Figure Test I-5  • Illustration for Part I 
Test Questions 34 and 35.
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	 37.	 In order for a plane quadrilateral to constitute a rhombus, any two opposite 
sides must run parallel to each other. What other requirement, if any, must a 
quadrilateral fulfill in order to “qualify” as a rhombus?

	A.	 None!
	 B.	 All four angles must have the same measure.
	C.	 All four sides must have the same length.
	D.	 Both diagonals must have the same length.
	E .	T he figure must have the same interior area as a square of the same perimeter.

	 38.	 Imagine two triangles, both of which have interior angles measuring 50º, 
60º, and 70º in that order as we proceed around them counterclockwise. 
Based on this information, we can have complete confidence that the two 
triangles

	A.	 exhibit direct similarity.
	 B.	 have equal interior areas.
	C.	 have equal perimeters.
	D.	 All of the above
	E .	 None of the above

	 39.	 Consider the following equation that represents a straight line in Cartesian 
coordinates:

−4x + y = 5

	 What’s the slope of this line? (Here’s a hint: Use a little algebra to get the equa-
tion into the slope-intercept form.)

	A.	 4
	 B.	 −5
	C.	 −5/4
	D.	 4/5
	E .	 We need more information to calculate it.

	 40.	 Imagine a perfectly square, flat field surrounded by four straight lengths of 
fence. You build a straight fence diagonally across the field, dividing the field 
into two triangles, both of which are

	A.	 right triangles.
	 B.	 isosceles triangles.
	C.	 directly congruent.
	D.	 directly similar.
	E .	 All of the above

	 41.	 How far from the origin does point P lie in Fig. Test I-6?
	A.	T he square roof of 12 units
	 B.	 The square root of 14 units
	C.	 7/2 units
	D.	 5 units
	E .	 We need more information to calculate this distance.
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	 42.	 How far from the origin does point Q lie in Fig. Test I-6?
	A.	T he square root of 61 units.
	 B.	 9 units
	C.	 8 units
	D.	 11/2 units
	E .	 We need more information to calculate this distance.

	 43.	 What’s the distance between points P and Q in Fig. Test I-6?
	A.	 14 units
	 B.	T he square root of 162 units
	C.	 5 plus the square root of 61 units
	D.	 13 units
	E .	 We need more information to calculate this distance.

	 44.	 Consider a plane polygon having n sides. Let p1, p2, p3, ..., pn represent the interior 
angles. If we express the angular measures in radians, then

	 p1 + p2 + p3 + ... + pn = o (n – 2)

2 4 6

4

6

–4–6

–2

–6

x

y

P

Q

–2

–4

2

Figure Test I-6  • Illustration for Part I Test Questions 41 through 43.



  TEST: PA R T  I         161

	 Based on this formula and on our knowledge of the relation between degrees 
and radians, what’s the sum of the measures of the interior angles of a 20-sided 
plane polygon in degrees?

	A.	 1620º
	 B.	 1800º
	C.	 3240º
	D.	 3600º
	 E.	 6480º

	 45.	 Suppose you draw a line L and a point P near that line. Then you drop a per-
pendicular from point P to line L, and let Q represent the point where the 
perpendicular intersects L. Then you draw a point R on line L, different from 
point Q. You can have complete confidence that the points P, Q, and R lie at 
the vertices of

	A.	 an equilateral triangle.
	 B.	 a similar triangle.
	C.	 an isosceles triangle.
	D.	 a right triangle.
	E .	 an obtuse triangle.

	 46.	 In order for a plane quadrilateral to constitute a parallelogram, any two opposite 
sides must run parallel to each other and no two sides may meet except at their 
end points. What other requirement, if any, must a quadrilateral fulfill in order 
to “qualify” as a parallelogram?

	A.	 None!
	 B.	 All four angles must have the same measure.
	C.	 All four sides must have the same length.
	D.	 Both diagonals must have the same length.
	E .	T he figure must have the same interior area as a rectangle of the same perimeter.

	 47.	 If we consider the rotational sense important when we express an angle p, then 
clockwise angular motion means that

	A.	 q = 0 rad.
	 B.	 q < 0 rad.
	C.	 q > 0 rad.
	D.	 –π rad < q < π rad.
	E .	 −2π rad < q < 2π rad.

	 48.	 A closed-ended ray
	A.	 extends infinitely far in one direction.
	 B.	 contains neither of its end points.
	C.	 extends infinitely far in both directions.
	D.	 contains both of its end points.
	E .	 has finite length.
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	 49.	 Imagine two triangles, both of which have equal perimeters. Based on this infor-
mation, we know for certain that the two triangles

	A.	 exhibit direct similarity.
	 B.	 have equal interior areas.
	C.	 have corresponding interior angles of equal measure.
	D.	 All of the above
	E .	 None of the above

	 50.	 Imagine that we circumscribe a circle C with a regular polygon Pc having n sides 
(where n represents a positive integer larger than 3), and then we increase n 
without limit. Also suppose that we inscribe the same circle with another regular 
polygon Pi having the same number of sides as Pc at all times. As we make n grow 
larger indefinitely, all the while ensuring that Pc and Pi both fit “snugly” against 
C, the interior areas of Pc and Pi both approach

	A.	 π2/10 times the interior area of C.
	 B.	 π/4 times the interior area of C.
	C.	 π/3 times the interior area of C.
	D.	 π/2 times the interior area of C.
	E .	 the interior area of C.



Part II

Three Dimensions 
and Up
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c h a p t e r  7
An Expanded 
Set of Rules

In solid geometry, we have an extra dimension compared with plane geometry. 
We have greater freedom, but with that freedom comes complexity, reflecting 
the expanded range of maneuvers that we must learn and master.

C H A P T e r O B J e C T i V e S
In this chapter, you will

Define elementary objects in three dimensions.• 
learn how elementary objects interact in three dimensions.• 
Discover how angles and distances relate in three dimensions.• 
learn the fundamental principles of solid geometry.• 
explore the behavior of parallel and intersecting planes and lines.• 
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Points, Lines, Planes, and Space
We can imagine a point in space as an infinitely tiny ball having height, width, 
and depth all equal to zero, but nevertheless possessing a specific location. A 
point is zero-dimensional (0D). A point in space therefore constitutes the same 
sort of object as does a point in a plane or a point on a line.

We can imagine a line in space as an infinitely thin, perfectly straight, infi-
nitely long wire—the same sort of object as a line in two dimensions. A straight 
line is one-dimensional (1D). Although lines in space are just like lines in planes, 
a line in space can run in more different directions than a line confined to a 
single plane.

We can imagine a plane as an infinitely thin, perfectly flat surface having an 
infinite expanse, like an unlimited, flat sheet of paper thinner than anything 
that could ever exist in the real world. A plane is two-dimensional (2D); in effect 
it’s a “flat 2D universe” in which all the rules of Euclidean plane geometry 
apply.

Space comprises the set of points for all possible physical locations in the 
universe as we perceive it. Space is three-dimensional (3D). We ignore time, 
often called a “fourth dimension,” when we work in Euclidean 3D space. How-
ever, we can define an alternative form of 3D space (or three-space) having two 
spatial dimensions and one time dimension. We might imagine this type of 
three-space as a Euclidean plane in which we account for time past, present, 
and future.

If we allow for the passage of time, or perhaps even free time travel, along 
with Euclidean three-space, we get four-dimensional (4D) space, also known as 
four-space or hyperspace. We’ll take a look at some properties of hyperspace later 
in this course. As you can imagine, hyperspace gives us “hyperfreedom”—and 
“hypercomplexity” as well.

Naming Points, Lines, and Planes
Points, lines, and planes in solid geometry usually bear names consisting of 
uppercase, italicized letters of the alphabet, just as they do in plane geometry. 
We’ll commonly name a point P, Q, or R, and a line L, M, or N. When we want 
to name planes in 3D space, the letters X, Y, and Z make good choices.

If we encounter a situation involving a lot of points, lines, and/or planes, we 
can use a single letter for each type of object and attach numeric subscripts. 
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Therefore, we might have points called P1, P2, P3, P4, P5 and so forth, lines called 
L1, L2, L3, L4, L5 and so forth, and planes called X1, X2, X3, X4, X5 and so forth.

Three-Point Principle
Suppose that P, Q , and R represent three different geometric points, no two of 
which lie on the same line. These points define one and only one (i.e., a unique
or specific) plane X. The following two statements always hold true, as shown 
in Fig. 7-1:

P•	 , Q, and R lie in a single plane X.

X•	  constitutes the only plane in which all three points lie.

We always need at least three points to uniquely define a plane in Euclidean 
three-space. It’s possible, however, that more than three points—even infinitely 
many—can all lie in the same plane.

 

still struggling
In order to diagram the fact that a surface extends infinitely in 2D, we must use 
our imaginations. our task is more difficult than showing that a line extends 
infinitely in 1D, because we can’t conveniently draw arrows on the edges of a 
plane region the way we can draw them on the ends of a line segment. 
geometers and draftspeople sometimes draw planes as rectangles in perspec-
tive, so that they appear as parallelograms or trapezoids when rendered on a flat 
page. However, when we draw a plane in a diagram, we should always make 
sure that our readers know we don’t intend to show a quadrilateral of finite 
extent rather than a plane of infinite extent!

?

P

Q

R

X

Figure 7-1  • Three points P, Q, and R, not all on the same line, define a 
specific plane X. the plane extends infinitely in 2D.
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Intersecting Line Principle
Suppose that two distinct lines L and M intersect in a point P. In that case, the 
two lines together define a unique plane X. The following statements always 
hold true, as shown in Fig. 7-2:

L•	  and M lie in a single plane X.

X•	  constitutes the only plane in which both lines lie.

We always need at least two intersecting lines to uniquely define a plane in 
Euclidean three-space. It’s possible, however, that more than two intersecting 
lines—even infinitely many—can all lie in the same plane.

Line and Point Principle
Let L represent a line, and let P represent a point that doesn’t lie on L. In this 
situation, line L and point P define a unique plane X. The following two state-
ments always hold true:

L•	  and P lie in a single plane X.

X•	  constitutes the only plane in which both L and P lie.

Plane Regions
The 2D counterpart of the 1D line segment is a “piece of a plane” called a 
simple plane region. A simple plane region consists of all the points inside a 
polygon or enclosed curve. The points that we consider to fall inside a simple 
plane region might include all, some, or none of the points that lie on the 
enclosing polygon or curve itself.

If the region includes all of the points on the enclosing figure, we call the •	

region closed.

X

L

M

P

Figure 7-2  • Two lines L and M, intersecting at point P, define a specific 
plane X. The plane extends infinitely in 2D.
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If the region includes some but not all of the points on the enclosing •	

figure, we call the region partially closed or partially open.

If the region includes none of the points on the enclosing figure, we call •	

the region open.

Figure 7-3 shows examples of the above-described types of regions. At A, 
we see closed regions; at B, we see partially open regions; at C we see open 
regions.

When we want to include part or all of the boundary, we draw the included •	

portion as a solid line.

When we want to exclude part or all of the boundary, we draw the excluded •	

part as a dashed line.

When we want to include a particular boundary point, we draw it as a solid •	

black dot.

When we want to exclude a particular boundary point, we draw it as a small •	

open circle.

A B

C

Figure 7-3  • At A, closed plane regions. At B, partially open plane regions. 
At C, open plane regions. Black dots and solid lines indicate included bound-
ary points; small open circles and dashed lines denote nonincluded bound-
ary points.
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tIP  The corresponding regions in Figs. 7-3A, B, and C have identical shapes. They 
also have identical perimeters and identical interior areas. The inclusion of part 
(or all) of the outer boundary adds no perimeter or interior area to the region. The 
lack of part (or all) of the outer boundary takes away nothing from the perimeter 
or interior area of the region.

still struggling
the examples in fig. 7-3 show specialized scenarios in which the plane regions 
are contiguous, or “all of a piece.” Some plane regions consist of two or more 
noncontiguous subregions. If you work in mathematics long enough, you’ll 
eventually encounter a plane region with characteristics so complicated that 
you’ll have trouble figuring out how to define it, let alone manipulate it. you 
need not concern yourself with such things here, other than to acknowledge 
their existence. If you plan to become a serious student of geometry, and espe-
cially if you want to become a mathematics teacher or professor, you should 
know that somewhere in the vast expanse of euclidean space, these beasts 
await you. When you find them, you’ll have great fun!

?

Half Planes 
Mathematicians occasionally talk about the portion of a geometric plane that 
lies “on one side” of a certain line. Look at Fig. 7-4 and imagine the union (the 
geometric combination) of all possible rays that start at L, then pass through 
line M (which runs parallel to L), and extend onward past M forever in one 
direction. The region thus defined constitutes a half plane.

X
L

M

Figure 7-4  • A half plane X, defined by two parallel lines, L and M. the half 
plane extends infinitely in 2D on the “M” side of L.
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The half plane defined by L and M might include the end line L, in which 
case we call it closed-ended. Then we draw line L as a solid line, as it appears in 
Fig. 7-4. But the end line might not be part of the half plane, in which case the 
half plane is open-ended. In that case we draw L as a dashed line.

Parts of the end line might lie in the half plane while other parts don’t. 
Infinitely many situations of this kind exist! We can illustrate relatively simple 
cases by making some parts of L solid and other parts dashed, all the while 
remembering to use solid black dots to represent included points and small 
open circles to represent nonincluded points.

Intersecting Planes
Suppose that two different planes X and Y have some points in common. In 
this type of situation, we’ll always find that the two planes intersect in a 
unique straight line L. The following statements always hold true, as shown 
in Fig. 7-5:

Planes •	 X and Y share a single line L.

L•	  constitutes the only line that lies in both planes X and Y.

Parallel Lines in 3D Space
By definition, two different lines L and M in three-space are parallel lines if and 
only if both of the following statements hold true:

Lines •	 L and M do not intersect at any point.

Lines •	 L and M lie in the same plane X.

Y

X

L

Figure 7-5  • The intersection of two planes X and Y deter-
mines a unique line L. The planes extend infinitely in 2D.
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If two lines run parallel to each other and if they both lie in a given plane X, 
then X constitutes the only plane in which the two lines lie. Therefore, we can 
say that two parallel lines define a unique plane in Euclidean three-space.

Skew Lines
By definition, two lines L and M in three-space constitute skew lines (or they 
run askew) and only if both of the following statements hold true:

Lines •	 L and M do not intersect at any point.

Lines •	 L and M do not lie in the same plane (so they don’t run parallel to 
each other).

tIP  Imagine an infinitely long, straight two-lane highway and an infinitely long, 
straight electrical cable propped up on utility poles. Further imagine that the elec-
trical cable and the highway centerline are both infinitely thin, and that the elec-
trical cable doesn’t sag between the poles. Suppose that the electrical cable 
passes over the highway somewhere, but does not run parallel to the highway. In 
that case, the highway centerline and the electrical cable define skew lines.

PROBLEM 7-1
Find an example of a theoretical plane region with a finite, nonzero area 
but an infinite perimeter.

SOLUTION 
Examine Fig. 7-6. Suppose that the three lines PQ, RS, and TU (none of 
which form part of the plane region X, but are shown only for reference) 
run mutually parallel, and that the distances d1, d2, d3, … are such that d2 is 
half as long as d1, d3 is half as long as d2, d4 is half as long as d3, and, in 
general, for any positive integer n, d(n+1) is half as long as dn. Also suppose 
that the length of line segment PV exceeds that of line segment PT. In this 
rather bizarre scenario, the plane region X has an infinite number of sides, 
each of which is longer than line segment PT. Therefore, X has an infinite 
perimeter. But the interior area of X must be finite and nonzero, because 
the area of X is less than that of quadrilateral PQSR but greater than that of 
quadrilateral TUSR.

PROBLEM 
Find an example of a theoretical plane region with a finite, nonzero area 
but an infinite perimeter.

PROBLEM 
Find an example of a theoretical plane region with a finite, nonzero area 

SOLUTION 
Examine Fig. 7-6. Suppose that the three lines 
which form part of the plane region 
run mutually parallel, and that the distances 

SOLUTION 
Examine Fig. 7-6. Suppose that the three lines 

✔



Chapter 7  A n  e x pA n D e D  S e t  o f  r u l e S         173

PROBLEM 7-2
How many planes can mutually intersect in a single straight line?

SOLUTION 
In theory, an infinite number of planes can all intersect along a single line. 
Think of the line as a “Euclidean hinge,” and then imagine a plane that can 
swing freely around the hinge. Each position of the “swinging plane” rep-
resents a unique plane in space.

Angles and Distances
Let’s define the angles between intersecting planes, and then explore how these 
angles behave. Let’s do the same with the angles between an intersecting line and 
plane.

Angles between Intersecting Planes
In Fig. 7-7, two planes X and Y intersect along a specific line L. Consider line 
M in plane X and line N in plane Y, such that M runs perpendicular to L (a fact 
that we can write in “shorthand” as M ⊥ L) and N also runs perpendicular to L
(N ⊥ L). Lines M and N don’t necessarily run perpendicular to each other, 
although they might. In a case of this sort, we call the angle between the 
intersecting planes X and Y a dihedral angle. Its measure equals the measure of 
the angle between lines M and N. The jargon “dihedral” means “two-faced.”

We can represent a dihedral angle between two intersecting planes X and Y 
in two ways when we look at Fig. 7-7. We might speak of the smaller (acute or 

PROBLEM 
How many planes can mutually intersect in a single straight line?
PROBLEM 
How many planes can mutually intersect in a single straight line?

SOLUTION 
In theory, an infinite number of planes can all intersect along a single line. 
Think of the line as a “Euclidean hinge,” and then imagine a plane that can 
swing freely around the hinge. Each position of the “swinging plane” rep-

SOLUTION SOLUTION 
In theory, an infinite number of planes can all intersect along a single line. 
SOLUTION ✔

P Q

R S

T U

d1 d2 d3

dn

X

V

Figure 7-6  • Illustration for Problem 7-1.
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right) angle between lines M and N, whose measure we denote by u. Alterna-
tively, we might consider the larger (obtuse or right) angle between lines M and 
N, whose measure we denote by v.

TIP  If you see only one dihedral angle mentioned when you encounter two inter-
secting planes, the author usually wants you to think of the smaller of the two 
possible angles. Therefore, in most situations, the measure of a dihedral angle is 
always positive, but it never exceeds a right angle (0ç < u Ä 90ç or 0 < u Ä o/2).

Adjacent Dihedral Angles
Suppose that two planes intersect, and we call their angles of intersection u and 
v as defined earlier. If we specify the measures of u and v in degrees, then

u + v = 180°

and if we specify the measures of u and v in radians, then

u + v = π

Perpendicular Planes
Suppose that two planes X and Y intersect along a single line L. Consider line 
M in plane X and line N in plane Y, such that M ⊥ L and N ⊥ L, as shown in 
Fig. 7-7. We say that X and Y constitute perpendicular planes if and only if the 

Y

X

L

N

M

u
v

Figure 7-7  • Two intersecting planes, each containing a line. See text for 
discussion.
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angles between lines M and N are right angles, that is, if and only if u = v = 
90° (π/2). Actually, it suffices to say that either u = 90° (π/2) or v = 90° (π/2).

Normal Line to a Plane
Look at Fig. 7-8, and imagine that we can uniquely define a plane X on the basis of 
two lines L and M that intersect each other at a single point S. In this type of situ-
ation, the line N that passes through plane X at point S runs normal (also called 
perpendicular or orthogonal) to plane X if and only if N ⊥ L and N ⊥ M. Line N is 
the only line normal to plane X at point S. Furthermore, line N runs perpendicular 
to any line, line segment, or ray that lies in plane X and passes through point S.

Angle between an Intersecting Line and Plane
Let X represent a plane as shown in Fig. 7-9. Suppose that a line O, which does 
not necessarily run normal to plane X, intersects X at a point S. In order to 
define an angle at which line O intersects plane X, let’s construct three “scaf-
folding” objects, as follows:

Let •	 N represent a line normal to plane X, passing through point S

Let •	 Y represent the plane determined by the intersecting lines N and O

Let •	 L represent the line formed by the intersection of planes X and Y

X

L

N

M

S

Figure 7-8  • Line N through plane X at point S runs normal to X and only 
if N runs perpendicular to some line L and N also runs perpendicular to an-
other line M, where L and M both lie in plane X and intersect at point S.
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We can describe the angle between line O and plane X in two ways. The first 
angle, whose measure we denote as u, is the smaller (acute or right) angle 
between lines L and O as determined in plane Y. The second angle, whose 
measure we denote as v, is the larger (obtuse or right) angle between lines L 
and O as determined in plane Y.

TIP  If only one angle is mentioned, then we should consider the “angle between a 
line and a plane that intersect” as the smaller angle u. Therefore, the angle of inter-
section is positive but never larger than a right angle (0ç < u Ä 90ç or 0 < u Ä o/2).

Adjacent Line/Plane Angles
Suppose that a line and a plane intersect, and we call their angles of intersection 
u and v as defined earlier and as shown in Fig. 7-9. If we specify u and v in 
degrees, then

u + v = 180°

and if we specify u and v in radians, then

u + v = π

Y

X

L

u
v

O

S

N

X
Normal to
plane

Figure 7-9  • Angles u and v between a plane X and a line O that passes 
through X at point S.
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Dropping a Normal to a Plane
Let R represent a point near, but not in, some known plane X. In that case, there 
exists exactly one line N through point R, intersecting plane X at some point 
S, such that line N runs normal to plane X as shown in Fig. 7-10. Any line 
within plane X that passes through point S, such as L or M shown in the figure, 
must run perpendicular to line N.

Distance between a Point and Plane
Suppose that R represents a point near, but not in, a plane X. Let N represent 
the unique line through R that runs normal to plane X. Suppose that line N 
intersects plane X at point S. We define the distance between point R and plane 
X as the length of line segment RS as shown in Fig. 7-10.

TIP  Whenever we talk or write about “the distance between a point and a plane,” 
we mean to specify the shortest possible distance (as shown in Fig. 7-10) unless 
we explicitly define it as something else.

Plane Perpendicular to Line
Imagine a line N in space. Imagine a specific point S on line N. There exists 
exactly one plane X containing point S, such that line N runs normal to plane 

X

L

N

M

S

R

Figure 7-10  • Line N through point R is normal to plane X at point S. The 
distance between R and X equals the length of line segment RS.
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X at point S (Fig. 7-10). As before, any line in plane X that passes through point 
S, such as L or M shown in the figure, must run perpendicular to line N.

Line Parallel to Plane
We say that a line L runs parallel to a plane X in Euclidean three-space if and 
only if L shares no points in common with X. In a situation like this, we can find 
infinitely many lines M in plane X, such that L and M constitute parallel lines 
as shown in Fig. 7-11. Any line N in plane X, other than line M, constitutes a 
skew line relative to L.

Distance between Parallel Line and Plane
Suppose that a given line L runs parallel to a given plane X. Let R represent a 
point on line L. We define the distance between line L and plane X as the distance 
between point R and plane X.

TIP  Whenever we talk or write about “the distance between a line and a plane par-
allel to that line,” we mean to specify the shortest possible distance unless we 
explicitly define it as something else.

Addition and Subtraction of Angles between Intersecting Planes
Angles between intersecting planes add and subtract in the same fashion as 
angles between intersecting lines (or line segments) do. We can prove this fact, 
based on knowledge that we already have.

Suppose that three planes X, Y, and Z intersect in a single, common line L, 
as shown in Fig. 7-12. Let S represent a point on line L. Let P, Q, and R represent 
points on planes X, Y, and Z, respectively, such that each of the three line 

X

L

M

N

Figure 7-11  • A line L parallel to a plane X. There exist  
infinitely many lines M in plane X that run parallel to L; all 
other lines N in plane X are skew lines relative to L.
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segments SP, SQ, and SR runs perpendicular to line L. Let ∠XY represent the 
angle between planes X and Y, ∠YZ represent the angle between planes Y and 
Z, and ∠XZ represent the angle between planes X and Z. From the preceding 
definition of the angle between two planes, we know the following three facts:

	 ∠XY = ∠PSQ	

	 ∠YZ = ∠QSR	

	 ∠XZ = ∠PSR	

We know that line segments SP, SQ, and SR all lie in a single plane, because they 
all intersect at point S and they all run perpendicular to line L. From the rules 
for addition of angles in a plane, we also know that the following three state-
ments hold true for the measures of the angles between the line segments:

	 ∠PSQ + ∠QSR = ∠PSR	

	 ∠PSR – ∠QSR = ∠PSQ	

	 ∠PSR – ∠PSQ = ∠QSR	

Substituting the angles between the planes for the angles between the line seg-
ments, we see that the following three statements all hold true for the measures 
of the angles between the planes:

	 ∠XY + ∠YZ = ∠XZ	

	 ∠XZ – ∠YZ = ∠XY	

	 ∠XZ – ∠XY = ∠YZ	

L
S

X

Y

Z

P

Q

R

Figure 7-12  • Addition and subtraction of angles between planes.
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PROBLEM 7-3
Imagine that we string a communications cable above a freshwater lake, 
such that the cable does not sag but runs along a perfectly horizontal line. 
We’ve attached the cable to the tops of a set of utility poles. The engineer-
ing literature recommends that the cable be suspended 10 meters above 
“effective ground.” The literature also tells us that, for a body of freshwater, 
“effective ground” coincides with a horizontal plane that lies 2 meters 
below the water surface (assuming a calm surface). How tall should the 
poles be? Assume that we install them all so that they’re perfectly vertical, 
and that they’re all tall enough so that we can set them securely in the 
lake bottom.

SOLUTION 
Because the poles are perfectly vertical, they stand perpendicular to the 
surface of the lake. Therefore, the pole tops should all be 10 meters above 
“effective ground.” It follows that the poles should each extend (10 − 2) 
meters, or 8 meters, above the water surface. The overall height of each 
pole will depend on the depth of the lake at the point where we place it, 
and on the depth into the bottom to which we must set it to ensure that it 
remains standing upright.

PROBLEM 7-4
You fly a kite over a perfectly flat, horizontal field. The design of the kite 
causes it to fly at a “high angle,” meaning that the kite string runs nearly 
straight up and down. Suppose that the kite line does not sag, and the kite 
flies at an angle 10ç away from the vertical. Imagine that the sun shines 
down from exactly the zenith (straight overhead). What’s the angle 
between the kite string and its shadow on the field?

SOLUTION 
Lets say that you stand at a point called S on the surface of the field called 
plane X, as shown in Fig. 7-13. The kite line and its shadow lie along lines 
SR and ST. (Point T does not necessarily represent the shadow of the kite, 
however.) The sun shines down so that its rays run along and parallel to line 
SQ, which runs normal to plane X and passes through point S. Lines SQ, SR, 
and ST all lie in a common plane Y, which is oriented perpendicular to plane 
X. You know that the measure of ≠RSQ equals 10ç, because you’ve been 

PROBLEM 
Imagine that we string a communications cable above a freshwater lake, 
such that the cable does not sag but runs along a perfectly horizontal line. 
We’ve attached the cable to the tops of a set of utility poles. The engineer-

PROBLEM 
Imagine that we string a communications cable above a freshwater lake, 

SOLUTION 
Because the poles are perfectly vertical, they stand perpendicular to the 
surface of the lake. Therefore, the pole tops should all be 10 meters above 
“effective ground.” It follows that the poles should each extend (10 

SOLUTION 
Because the poles are perfectly vertical, they stand perpendicular to the 

✔

PROBLEM 
You fly a kite over a perfectly flat, horizontal field. The design of the kite 
causes it to fly at a “high angle,” meaning that the kite string runs nearly 
straight up and down. Suppose that the kite line does not sag, and the kite 

PROBLEM 
You fly a kite over a perfectly flat, horizontal field. The design of the kite 

SOLUTION 
Lets say that you stand at a point called 
plane X, as shown in Fig. 7-13. The kite line and its shadow lie along lines X, as shown in Fig. 7-13. The kite line and its shadow lie along lines X
SR and ST

SOLUTION 
Let

✔
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given this information. You also know that the measure of ≠TSQ equals 
90ç, because line QS runs normal to plane X, and line ST lies in plane X. 
Because lines SQ, SR, and ST all lie in the same plane Y, you can conclude 
that

	 ≠TSR + ≠RSQ = ≠TSQ

and therefore that

	 ≠TSR = ≠TSQ – ≠RSQ

The measure of ≠TSR, which represents the angle between the kite line 
and its shadow, equals 90ç – 10ç, or 80ç.

More Facts
Lines, planes, and angles behave according to specific principles in Euclidean 
three-space. Let’s briefly examine a few of these rules.

Parallel Planes
Two distinct planes run parallel to each other in three-space if and only if they 
do not intersect. Two distinct half planes run parallel to each other if and only 

Y

X

u

S

Kite

R

T

(Surface of
field)

(Angle of
elevation)

Q
10o

Figure 7-13  • Illustration for Problem 7-4.
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if the planes in which they lie do not intersect. Two distinct plane regions 
run parallel to each other if and only if the planes in which they lie do not 
intersect.

Distance between Parallel Planes
Consider two parallel planes X and Y. Let R represent an arbitrary point on 
plane X. The distance between planes X and Y equals the distance between 
point R and plane Y, as previously defined.

TIP  Whenever we talk or write about “the distance between two planes,” we mean 
to specify the shortest possible distance unless we state otherwise.

Vertical Angles for Intersecting Planes
Consider two planes Y and Z that intersect along a line L. Also consider five 
points P, Q, R, S, and T as shown in Fig. 7-14, such that all of the following 
conditions hold true:

Point •	 T lies at the intersection of lines L, PS, and QR.

Points •	 Q and R lie in plane Y.

Points •	 P and S lie in plane Z.

Lines •	 PS and QR both run perpendicular to line L.

L

SY

Z
P

Q

R

T

Figure 7-14  • Vertical angles between intersecting planes.
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In this situation, ∠QTP and ∠RTS are vertical angles. Also, ∠PTR and ∠STQ 
are vertical angles. Therefore, ∠QTP has the same measure as ∠RTS, and ∠PTR 
has the same measure as ∠STQ.

Alternate Interior Angles for Intersecting Planes
Consider a plane X that passes through two parallel planes Y and Z, intersecting 
Y and Z in lines L and M, respectively. Define points P, Q, R, S, T, U, V, and W 
as shown in Figs. 7-15A and Fig. 7-15B, such that all of the following conditions 
hold true:

Point •	 V lies at the intersection of lines L, PQ, and RS.

Point •	 W lies at the intersection of lines M, PQ, and TU.

Points •	 P and Q lie in plane X.

Points •	 R and S lie in plane Y.

Points •	 T and U lie in plane Z.

Lines •	 PQ and RS both run perpendicular to line L.

Lines •	 PQ and TU both run perpendicular to line M.

In this scenario, ∠RVP and ∠UWQ are alternate interior angles (Fig. 7-15A). 
Also, ∠QWT and ∠PVS are alternate interior angles (Fig. 7-15B). Alternate 
interior angles always have equal measures. Therefore, ∠RVP has the same 
measure as ∠UWQ, and ∠QWT has the same measure as ∠PVS. 

Alternate Exterior Angles for Intersecting Planes
Let X represent a plane that passes through two parallel planes Y and Z, inter-
secting Y and Z in lines L and M, respectively. Define points P, Q, R, S, T, U, V, 
and W as shown in Fig. 7-16, such that all of the following conditions hold 
true:

Point •	 V lies at the intersection of lines L, PQ, and RS.

Point •	 W lies at the intersection of lines M, PQ, and TU.

Points •	 P and Q lie in plane X.

Points •	 R and S lie in plane Y.

Points •	 T and U lie in plane Z.

Lines •	 PQ and RS both run perpendicular to line L.

Lines •	 PQ and TU both run perpendicular to line M.
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L
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Figure 7-15  • A. Alternate interior angles between intersecting planes. 
B. Another example of alternate interior angles between intersecting planes.
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In this case, ∠TWP and ∠SVQ are alternate exterior angles. Also, ∠PWU and 
∠QVR are alternate exterior angles. Alternate exterior angles always have equal 
measures. Therefore, ∠TWP has the same measure as ∠SVQ, and ∠PWU has 
the same measure as ∠QVR. 

Corresponding Angles for Intersecting Planes
Let X represent a plane that passes through two parallel planes Y and Z, inter-
secting Y and Z in lines L and M, respectively. Define points P, Q, R, S, T, U, V, 
and W as shown in Fig. 7-17, such that all of the following conditions hold 
true:

Point •	 V lies at the intersection of lines L, PQ, and RS.

Point •	 W lies at the intersection of lines M, PQ, and TU.

Points •	 P and Q lie in plane X.

Points •	 R and S lie in plane Y.

Points •	 T and U lie in plane Z.

Lines •	 PQ and RS both run perpendicular to line L.

Lines •	 PQ and TU both run perpendicular to line M.

L

S

Y

Z
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Q
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T

U
V

X

M

W

Figure 7-16  • Alternate exterior angles between intersecting planes.
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In this case, the following equations describe pairs of corresponding angles, 
where each pair has equal measures:

	 ∠UWQ = ∠SVQ	

	 ∠TWP = ∠RVP	

	 ∠PWU = ∠PVS	

	 ∠QWT = ∠QVR	

Parallel Principle for Planes
Consider a plane X along with some point R that does not lie on X. In Euclidean 
three-space, there exists one and only one plane Y through R such that plane Y 
runs parallel to plane X. This statement expresses the 3D counterpart of the 
parallel principle for 2D Euclidean geometry. We can deny the 3D parallel 
principle and nevertheless have a workable mathematical system, just as we can 
deny the 2D parallel principle. When we deny the parallel principle in Euclidean 
three-space, we obtain one or the other of the following situations:

There can exist •	 more than one, and perhaps infinitely many, planes Y 
through point R such that plane Y runs parallel to plane X.

There can exist •	 no plane Y through point R such that plane Y runs parallel 
to plane X.

L

S

Y

Z

P

Q
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T

U
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Figure 7-17  • Corresponding angles between intersecting planes.
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tIP  Either of the foregoing hypotheses gives rise to a form of non-Euclidean geom-
etry in which three-space has “curvature” like the 2D surface of a funnel, cylinder, 
or sphere, but with an added dimension. The German mathematicians Karl 
Friedrich Gauss (1777-1855) and Bernhard Riemann (1826-1866) developed 
detailed theories in non-Euclidean geometry. Later, Albert Einstein (1879-1955) 
dared to envision a non-Euclidean three-space universe in a literal sense. We’ll 
explore non-Euclidean geometry in Chap. 11.

Parallel Principle for Lines and Planes
Once again, consider a plane X along with some point R that does not lie on X. 
There exist an infinite number of lines through R that run parallel to plane X. 
All of these lines lie in the plane Y through R such that plane Y runs parallel to 
plane X.

 

still struggling
the denial of the parallel principle for planes, defined in the previous paragraph, 
can result in the existence of no lines through R that run parallel to plane X. In 
certain specialized instances, it can even result in the existence of exactly one 
line through R that runs parallel to plane X. If you have trouble imagining sce-
narios such as these, don’t worry. You must think in 4D—a mental trick that few 
humans can perform, even when they’ve “armed” their minds with the power of 
non-euclidean mathematics.

?

PROBLEM 7-5
Imagine that you stand inside a large warehouse. The floor is flat and 
horizontal. The ceiling is also flat and horizontal, everywhere at a uni-
form height of 5.455 meters above the floor. You have a flashlight with a 
narrow beam. You hold the flashlight so that its bulb rests 1.025 meters 
above the floor. You shine the beam at an angle upward toward the ceil-
ing. The center of the beam strikes the ceiling 9.577 meters from the 
point on the ceiling directly above the bulb. How long is the line seg-
ment representing the center of the light beam? Round your answer off 
to two decimal places.

PROBLEM 
Imagine that you stand inside a large warehouse. The floor is flat and 
horizontal. The ceiling is also flat and horizontal, everywhere at a uni-

PROBLEM 
Imagine that you stand inside a large warehouse. The floor is flat and 
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A
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5.455
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90o

Figure 7-18  • Illustration for Problem 7-5.

SOLUTION 
Figure 7-18 shows a diagram for this situation. Call the flashlight bulb 
point A, the point at which the center of the light beam strikes the ceiling 
point B, and the point directly over the flashlight bulb point C. These three 
points define a triangle ∆ABC. Now define the following three quantities 
for the sides of ∆ABC:

• Let a represent the length of the side opposite point A.
• Let b represent the length of the side opposite point B.
• Let c represent the length of the side opposite point C.

In this situation, ∆ABC constitutes a right triangle, because line segment AC
(whose length equals b) runs normal to the ceiling at point C, and therefore 
runs perpendicular to line segment BC (which lies on the ceiling). The right 
angle is ≠ACB. Based on this information, you know that the lengths of the 
sides of ∆ABC relate according to the Pythagorean equation

a2 + b2 = c2

You want to know the length of side c. With the help of a little algebra, you 
can manipulate the above equation to obtain

 c = (a2 + b2)1/2

You’ve been told that side a measures 9.577 meters in length. The length 
of side b equals the height of the ceiling above the floor, minus the height 
of the bulb above the floor, so you can calculate that

b = 5.455 – 1.025

 = 4.430 meters

SOLUTION 
Figure 7-18 shows a diagram for this situation. Call the flashlight bulb 

✔
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You can now solve for c, getting

	 c = (9.5772 + 4.4302)1/2

	 = (91.719 + 19.625)1/2

	 = 111.3441/2

	 = 10.55 meters

The distance is 10.55 meters along a straight line segment from the flash-
light bulb to the point where the light beam’s center strikes the ceiling.
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 Fill in the blank to make the following statement true: “In the situation of 
Fig. 7-19, assuming that lines L and M both lie in plane X, line N constitutes a 
________ to plane X at point S.”

	A.	 bisector
	 B.	 minor axis
	C.	 major axis
	D.	 normal

	 2.	 Imagine a triangle and its interior region in a Euclidean plane. Suppose that we 
“remove” the three line segments representing the triangle itself (i.e., the outer 
boundary of the region it encloses). How does this action affect the perimeter 
and area of the enclosed region?

	A.	 It does not affect either the perimeter or the area.
	 B.	 It reduces the perimeter to zero, but does not change the area.
	C.	 It reduces both the perimeter and the area to zero.
	D.	 It renders both the perimeter and the area meaningless.

	 3.	 Whenever we talk or write about “the distance between a point and a line,” “the 
distance between a line and a plane parallel to that line,” or “the distance 
between two planes,” we specify

	A.	 the longest possible distance unless we state otherwise.
	 B.	 the shortest possible distance unless we state otherwise.

X

L

N

M

S

π/2 rad
π/2 rad

Figure 7-19  • Illustration for Quiz Question 1.
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	C.	 any distance between the shortest possible and the longest possible.
	D.	 nothing whatsoever, unless we provide additional information.

	 4.	 Figure 7-20 shows two planes, Y and Z, which intersect along a line L. Line PS lies 
in plane Y and runs perpendicular to line L. Line QR lies in plane Z and runs per-
pendicular to line L. Point T lies at the intersection of lines L, PS, and QR. Based 
on this information, we can have absolute confidence that ≠PTR has the same 
measure as

	A.	 ∠STQ.
	 B.	 ∠RTS.
	C.	 ∠QTP.
	D.	 All of the above

	 5.	 If two planes in Euclidean three-space share no points, then we can have com-
plete confidence that the planes are

	A.	 orthogonal.
	 B.	 skew.
	C.	 parallel.
	D.	 normal.

	 6.	 What’s the smallest possible number of points that can uniquely define a plane 
in Euclidean three-space?

	A.	T wo
	 B.	 Three
	C.	F our
	D.	 Infinitely many

L

SZ

Y
P

Q

R

T

Figure 7-20  • Illustration for Quiz Question 4.
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	 7.	 What’s the largest possible number of intersecting lines that can uniquely define 
a plane in Euclidean three-space?

	A.	T wo
	 B.	 Three
	C.	F our
	D.	 Infinitely many

	 8.	 Figure 7-21 illustrates two planes X and Y that intersect along a line L. Line N, 
which lies in plane Y, runs normal to plane X. Suppose that line O lies in plane Y 
but does not run perpendicular to line L. All three lines L, N, and O intersect each 
other at point S. Consider the two angles of measures u and v with vertices at S 
shown. Based on this information, we know for sure that

	A.	 u + v = π/4.
	 B.	 u + v = π/2.
	C.	 u + v = π.
	D.	 u + v = 2π.

	 9.	 In order for two lines in space to run parallel to each other, they must
	A.	 not intersect at any point.
	 B.	 both lie in the same plane.
	C.	 not run askew relative to each other.
	D.	 All of the above

	 10.	 Consider a line in Euclidean three-space, and a point that doesn’t lie on that line. 
What’s the largest number of planes that can contain both the line and the point?

	A.	O ne
	 B.	 Two
	C.	T hree
	D.	 Infinitely many

Y

X

L

u
v

O

S

N

Figure 7-21  • Illustration for Quiz Question 8.
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c h a p t e r  8
Surface Area 
and Volume

We can calculate the surface areas and volumes of various simple geometric 
solids in Euclidean three-space when we know the linear dimensions such as 
height, width, depth, or radius.

C H A P T E r O B J E C T i V E S

In this chapter, you will

Define and enumerate the most basic polyhedron types.• 
Calculate polyhedron surface areas and volumes.• 
Define and enumerate cones and cylinders.• 
Calculate cone and cylinder surface areas and volumes.• 
Define the sphere, ellipsoid, and torus.• 
Calculate sphere, ellipsoid, and torus surface areas and volumes.• 
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Straight-Edged Objects
Geometric solids with straight edges always have flat faces, also called facets, each 
of which forms a plane polygon. We call a 3D object of this sort a polyhedron.

The Tetrahedron
A polyhedron always has at least four faces. A four-faced polyhedron is called 
a tetrahedron. Each of the four faces constitutes a triangle. The tetrahedron has 
six edges where pairs of faces meet and four vertices where groups of edges 
meet. Any four specific points, as long as they don’t all lie in a single plane, define 
a tetrahedron.

Surface Area of Tetrahedron
Figure 8-1 shows a tetrahedron whose height we call h; the shaded region por-
trays the base. We can calculate the surface area of the entire tetrahedron by 
adding up the interior areas of all four triangular faces. In the case of a regular 
tetrahedron, all six edges have the same length, so each face is an equilateral 
triangle. If the length of each edge of a regular tetrahedron equals s units, then 
we can calculate the surface area B of the whole object in square units (or units 
squared) with the formula

B = 31/2 s2

where 31/2 represents the square root of 3, or approximately 1.732.

h

Point directly
beneath apex

Base area = A

Figure 8-1  • A tetrahedron has four faces (including the base), six 
edges, and four vertices. 
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Volume of Tetrahedron
Imagine a tetrahedron whose base forms a triangle with area A, and whose 
height equals h as shown in Fig. 8-1. We can calculate the enclosed volume V 
of the solid in cubic units (or units cubed) using the formula

V = Ah/3

Pyramid
Figure 8-2 illustrates a pyramid whose height we call h. This figure has a square 
or rectangular base (shaded region) and four slanted faces above the base. In 
total the pyramid has five faces, eight edges where pairs of faces meet, and five 
vertices where groups of edges meet. If the base forms a perfect square and the 
apex (topmost vertex) lies directly above the point at the center of the base, 
then we have a right square pyramid, and each of the four of slanted faces con-
stitutes an isosceles triangle. The well-known historical pyramids in Egypt are 
all of this type.

Surface Area of Pyramid
We can calculate the surface area of a pyramid by adding up the areas of all five 
of its faces (the four slanted faces plus the base). In the case of a right square 
pyramid where the length of each slanted edge, called the slant height, equals s 
units and the length of each edge of the base equals t units, the surface area B 
in square units is given by the formula

B = t2 + 2t (s2 – t2/4)1/2

h

Point directly
beneath apex

ABase area =

Figure 8-2  • A pyramid has five faces (including the base), eight edges, 
and five vertices. 
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still struggling
In the case of a general pyramid where the base doesn’t form a square and/or 
the apex doesn’t lie directly above the center of the base, the task of finding the 
surface area can sometimes present us with a tedious problem, because we 
must individually calculate the area of the base and each slanted face and then 
add the five polygons’ areas up to get the total surface area.

?

Volume of Pyramid
Imagine a right square pyramid whose base is a square with area A, and whose 
height equals h as shown in Fig. 8-2. We can calculate the volume V of the 
pyramid in cubic units using the formula

V = Ah/3

We get cubic units when we multiply an area (in square units) by a linear 
dimension (in this case the height of the object, expressed in straight units).

tIP   The pyramid volume formula holds true even if the base of the pyramid 
doesn’t form a perfect square, and even if the apex point doesn’t lie directly above 
the center of the base. In fact, the formula works for all types of pyramids, even 
grossly distorted ones, as long as we stay in Euclidean three-space.

The Cube
Figure 8-3 illustrates a cube. This figure constitutes a regular hexahedron 
(six-sided polyhedron). It has 12 edges, all of which have identical length. Each 
of the six faces constitutes a square. The cube has eight vertices.

Surface Area of Cube
Imagine a cube whose edges each have length s, as shown in Fig. 8-3. We can 
find the surface area A of the cube in square units using the formula

A = 6s2

We simply find the area of any single face and then multiply that area by 6 to 
obtain the total surface area of the solid.
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Volume of Cube
Imagine a cube as defined above and in Fig. 8-3. We can calculate the volume 
V of the solid using the formula

V = s3

Our job consists of nothing more than cubing (taking the third power of) the 
length of any one of the edges to get the volume in cubic units.

The Rectangular Prism
Figure 8-4 illustrates a geometric solid known as a rectangular prism. Each of 
the six faces is a rectangle. The figure has 12 edges. The edges of the entire 
object don’t necessarily all have equal lengths, but the pair of edges at opposite 
sides of any given face does. The rectangular prism has eight vertices.

s

s

s

Figure 8-3  • A cube has six square faces and 
12 edges of identical length. 

s1

s2

s3

Figure 8-4  • A rectangular prism has six rectangular 
faces and 12 edges. 
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Surface Area of Rectangular Prism
Imagine a rectangular prism whose edges measure s1, s2, and s3 units as shown 
in Fig. 8-4. (As we look at this figure, we might want to call s1 the width, s2 the 
height, and s3 the depth.) We can calculate the surface area A of the prism in 
square units with the formula

A = 2s1s2 + 2s1s3 + 2s2s3

The process involves calculating the areas of each face and then adding the 
areas together. Note that any two opposite faces have identical areas.

Volume of Rectangular Prism
Imagine a rectangular prism as defined above and in Fig. 8-4. We can calculate 
the volume V of the enclosed solid in cubic units using the formula

V = s1s2s3

We get cubic units when we multiply a linear dimension by another linear 
dimension and then multiply that result by a third linear dimension.

The Parallelepiped
We define a parallelepiped as a six-faced polyhedron in which each face consti-
tutes a parallelogram, and opposite pairs of faces have identical size and shape 
as shown in Fig. 8-5. The figure has 12 edges and eight vertices. In this illustration, 
we call the smaller (acute or right) angles between the pairs of edges x, y, and z. 

s1

s2

s3

x
y

z
h Base

Figure 8-5  • A parallelepiped has six faces, all of which are parallelo-
grams, and 12 edges. 



Chapter 8  S u r fA c e  A r e A  A n d  V o l u m e         199

As with the rectangular prism, the edges aren’t necessarily all equally long, but 
the pair of edges at opposite sides of any given face has equal measure.

tIP  Every cube constitutes a rectangular prism whose edges all have equal length, and 
every rectangular prism constitutes a parallelepiped whose angles all measure 90ç 
(o/2 rad). So, as things work out, some parallelepipeds are cubes (but most aren’t).

Surface Area of Parallelepiped
Imagine a parallelepiped with faces of lengths s1, s2, and s3. Suppose that we call 
the angles between pairs of edges x, y, and z as shown in Fig. 8-5. We can deter-
mine the surface area A of the parallelepiped in square units using the formula

A = 2s1s2 sin x + 2s1s3 sin y + 2s2s3 sin z

where sin x represents the sine of angle x, sin y represents the sine of angle y, 
and sin z represents the sine of angle z. As with the rectangular prism, any two 
opposite faces have identical areas. We determine the areas of all the faces first 
and then add those areas up to get the total surface area for the object.

still struggling
If you’ve forgotten how the sine function (and trigonometry in general) works, 
or if it otherwise baffles you, don’t worry about the details. You can find the sine 
of any angle using a calculator, but be careful. If you express the angle in radians, 
you must set your calculator for radians. If you express the angle in degrees, you 
must set your calculator for degrees. (I’ve made that mistake more than once. It’s 
easy for me to misadjust my computer’s calculator when I work in radians, 
because the program uses degrees by default. on a few occasions, I forgot about 
that quirk until I got a result that obviously didn’t make sense.)

?

Volume of Parallelepiped
Imagine a parallelepiped whose faces have lengths s1, s2, and s3, and that has 
vertex angles of x, y, and z as shown in Fig. 8-5. Suppose that the height of the 
parallelepiped, as measured along a line normal to the base, equals h. We can 
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find the volume V of the enclosed solid in cubic units by taking the product of 
the base area and the height according to the formula

V = hs1s3 sin y

We must make sure that we take the sine of the correct angle when we use this 
formula! The variable y represents the acute angle between adjacent edges of 
the base.

PROBLEM 8-1
Suppose that we want to paint the interior walls of a room. The room has 
the shape of a rectangular prism. The ceiling lies exactly 3.0 meters above 
the floor. The floor and the ceiling both measure exactly 4.2 meters by 
5.5 meters. The room has two windows on its walls, the outer frames of 
which both measure 1.5 meters high by 1.0 meter wide. The outer frame of 
the doorway measures 2.5 meters high by 1.0 meter wide. We plan to cover 
all the walls with two coats of paint. A “paint guru” tells us that we can 
expect one liter of paint to cover exactly 20 square meters of wall area in a 
single coat. How much paint, in liters, will we need to completely do the 
job, without a single extra drop of paint to spare?

SOLUTION 
Let’s calculate our room’s wall surface area, not including the door or the 
windows. Based on the information given, we can say that the rectangular 
prism formed by the edges between walls, floor, and ceiling measures 
4.2 meters wide (dimension s1 as portrayed in Fig. 8-4) by 3.0 meters high 
(dimension s2 as portrayed in Fig. 8-4) by 5.5 meters deep (dimension s3 as 
portrayed in Fig. 8-4). To find the total surface area A of the rectangular 
prism, in square meters including the windows and doorway, we use the 
formula

A = 2s1s2 + 2s1s3 + 2s2s3

= (2 ë 4.2 ë 3.0) + (2 ë 4.2 ë 5.5) + (2 ë 3.0 ë 5.5)

= 25.2 + 46.2 + 33.0

= 104.4 square meters

Now we remember that the room has two windows, each one measuring 
1.5 meters by 1.0 meter. Each window therefore takes away 1.5 ë 1.0 = 1.5 square 

PROBLEM 
Suppose that we want to paint the interior walls of a room. The room has 
the shape of a rectangular prism. The ceiling lies exactly 3.0 meters above 
the floor. The floor and the ceiling both measure exactly 4.2 meters by 

PROBLEM 
Suppose that we want to paint the interior walls of a room. The room has 

SOLUTION 
Let’s calculate our room’s wall surface area, not including the door or the 
windows. Based on the information given, we can say that the rectangular 
prism formed by the edges between walls, floor, and ceiling measures 

SOLUTION 
Let’s calculate our room’s wall surface area, not including the door or the 

✔
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meters of area. The doorway measures 2.5 meters by 1.0 meter, so it takes 
away 2.5 ë 1.0 = 2.5 square meters. The windows and doorway combined 
take away 1.5 + 1.5 + 2.5 = 5.5 square meters of wall space. We must also 
subtract the combined areas of the floor and ceiling, neither of which we 
intend to paint. This quantity is the middle factor, 46.2, in the equation for 
the total surface area of the rectangular prism. We can now calculate the 
total wall area that we want to paint (let’s call it Aw) as 

	 Aw = (104.4 – 5.5) – 46.2

	 = 52.7 square meters

We can expect a liter of paint to cover 20 square meters in a single coat. 
Therefore, we will need 52.7/20, or 2.635, liters of paint to coat the walls 
once. We’ll need twice that much paint, or 5.27 liters, to finish the two-coat 
job without leaving any paint unused.

Circular Cones
In Euclidean three-space, a circular cone has a base that forms a perfect circle, 
and an apex point that lies outside the plane defined by that circle. The surface 
of any circular cone has the following components:

The base circle•	

All points inside the base circle that lie in its plane•	

All line segments connecting the base circle (not including its interior) and •	

the apex point

TIP  The interior of the cone consists of the set of all points enclosed by the surface. 
In theory, we can include part, all, or none of the cone’s surface when we talk 
about the solid. Usually, when we think of a solid cone, we imagine the entire 
surface (including the base) as well as the interior.

Right Circular Cone
A right circular cone has a circular base, and an apex point that lies on a line 
normal to the plane of the base and that passes through the center of the base. 
Figure 8-6 shows an example. Line PQ runs normal to the plane containing the 
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base. Its length, representing the height of the cone, equals h. The radius of the 
circular base equals r. The cylinder’s slant height is the distance s from the apex 
to any point on the edge of the base.

Surface Area of Right Circular Cone
Imagine a right circular cone as shown in Fig. 8-6. Let P represent the apex of 
the cone, and let Q represent the center of the base. Let r represent the radius 
of the base, let h represent the height, and let s represent the slant height. We 
can calculate the surface area S1 of the cone, including the base, in square units 
with the formula

	 S1 = πr2 + πrs	

Alternatively, we can use

	 S1 = πr2 + πr (r2 + h2)1/2	

The surface area S2 of the cone, not including the base, is called the lateral 
surface area and is given by the formula

	 S2 = πrs	

We can also use

	 S2 = πr (r2 + h2)1/2	

h

P

Q

r

s

Figure 8-6  • A right circular cone. 
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Volume of Right Circular Cone
Imagine a right circular cone as defined earlier and in Fig. 8-6. We can calculate 
the volume V of the entire solid in cubic units using the formula

V = πr2h/3

The quantity πr2 represents the interior area of the circular base in square units. 
When we multiply square units by the height (a linear dimension), we get cubic 
units.

Surface Area of Frustum of Right Circular Cone
Imagine a right circular cone that’s truncated (“chopped off”) by a plane paral-
lel to the base. We call the resulting object a frustum of the cone (Fig. 8-7). Let 
P represent the center of the circle defined by the truncation plane, and let Q 
represent the center of the base. Suppose that line segment PQ runs perpen-
dicular to the base. Let r1 represent the radius of the top circle (where we’ve 
“chopped” off the cone), let r2 represent the radius of the base circle, let h rep-
resent the height of the object (the length of line segment PQ), and let s rep-
resent the slant height. If we don’t know the slant height s, we can calculate the 

h

P

Q

s

r 2

r1

Figure 8-7  • Frustum of a right circular cone. 
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surface area S1 of the object (including the base and the top) in square units 
with the rather messy formula

S1 = π (r1 + r2)[s
2 + (r2 – r1)

2]1/2 + π (r1
2 + r2

2)

If we do know the slant height s, we can use the simpler formula

S1 = πs (r1 + r2) + π (r1
2 + r2

2)

If we don’t know the slant height s, we can calculate the surface area S2 of the 
object (not including the base or the top) using the formula

S2 = π(r1 + r2)[s
2 + (r2 – r1)

2]1/2

Alternatively, if we do know s, we can use

S2 = πs (r1 + r2)

Volume of Frustum of Right Circular Cone
Imagine a frustum of a right circular cone as defined earlier and as illustrated 
in Fig. 8-7. We can calculate the volume V of the enclosed solid in cubic units 
using the formula

V = πh (r1
2 + r1r2 + r2

2)/3

The Slant Circular Cone
A slant circular cone has a base that constitutes a circle, and an apex point such 
that a normal line from the apex point to the plane containing the base does 
not pass through the center of the base. In “extreme slant circular cones,” that 
line intersects the base plane on or outside the base circle. Figure 8-8 shows an 
example of a slant circular cone of the “extreme” type. Line segment PQ, which 
represents the height h, runs normal to plane X, which contains the base. The 
cone slants so much that Q lies outside the base.

Volume of Slant Circular Cone
Imagine a slant circular cone in which P represents the apex and Q represents 
a point in the plane X containing the base, such that line segment PQ runs 
perpendicular to X as shown in Fig. 8-8. Let h represent the height of the cone. 
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Let r represent the radius of the circular base. We can calculate the volume V 
of the solid in square units with the formula

V = πr2h/3

TIP   The foregoing formula duplicates the one for the volume of a right circular 
cone. We can “push” the apex point P of a circular cone “sideways” as much as we 
want—even millions of times the radius of the base!—and as long as we don’t 
alter the length of line segment PQ that runs normal to plane X, the volume of the 
enclosed solid will remain constant.

Circular Cylinders
A circular cylinder has a base that forms a perfect circle, along with a circular 
top that has the same radius as the base and that lies in a plane parallel to the 
base. The cylinder itself comprises the following components:

The base circle•	

All points inside the base circle that lie in its plane•	

The top circle•	

All points inside the top circle that lie in its plane•	

All line segments connecting the base circle and the top circle (not including •	

their interiors) that run parallel to a line passing through the centers of 
both circles

P

Q

Plane X
h

r

Center of
base

Figure 8-8  • A slant circular cone of the “extreme” type. 
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still struggling
In the foregoing definition of a circular cylinder, the last “bulleted” item specifies 
line segments parallel to the line connecting the center of the base with the center 
of the top. When we impose this restriction, we can have absolute confidence that 
every such segment lies on the cylinder’s surface, and none of the segments pass 
through the interior. When we combine all possible line segments of this sort 
(infinitely many of them exist), we get a curved surface that joins the base circle 
with the top circle. If we connect the base and top circles with any line segment 
that doesn’t run parallel to the line connecting their centers, then that line 
segment runs through the interior of the cylinder, not along its outer surface.

?

tIP  In theory, we can include part, all, or none of the surface of the cylinder when 
we define the entire solid. Normally, when we think of a solid cylinder, we think of 
the interior along with the entire surface including the base and the top.

Right Circular Cylinder
A right circular cylinder has a circular base and a circular top. The base and the 
top lie in parallel planes. The center of the base and the center of the top lie at 
the ends of a line segment PQ that runs normal to both the plane containing 
the base and the plane containing the top, as shown in Fig. 8-9. The base circle 

h

P

Q

r

FigurE 8-9  • A right circular cylinder. 
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and the top circle both have radius r. The length of line segment PQ equals the 
height h of the cylinder.

Surface Area of Right Circular Cylinder
Imagine a right circular cylinder where P represents the center of the top and 
Q represents the center of the base (Fig. 8-9). Let r represent the radii of the 
base and the top, and let h represent the height. We can calculate the surface 
area S1 of the cylinder, including the base and the top, in square units with 
the formula

	 S1 = 2πrh + 2πr2 	

	 = 2πr (h + r)	

The lateral surface area S2 of the cylinder (not including the base or the top) is 
given by the simpler formula

S2 = 2πrh

Volume of Right Circular Cylinder
Imagine a right circular cylinder as defined earlier and as shown in Fig. 8-9. We 
can calculate the volume V of the solid in cubic units with the formula

V = πr2h

The Slant Circular Cylinder
A slant circular cylinder has a circular base and a circular top. The base and the 
top lie in parallel planes. The center of the base and the center of the top lie 
along a line that does not run perpendicular to the planes that contain them 
(Fig. 8-10). The cylinder height h equals the distance between the plane con-
taining the top and the plane containing the base, as determined along a line 
that runs normal to both planes. We represent the radii of the base and top 
circles as r.

Volume of Slant Circular Cylinder
Imagine a slant circular cylinder as defined earlier and as shown in Fig. 8-10. 
We can calculate the volume V of the solid in cubic units as

V = πr2h
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t I P   The above formula duplicates the one for the volume of a right circular 
cylinder. We can “push” the top of a circular cylinder “sideways,” and as long as we don’t 
alter the cylinder’s height, the volume of the enclosed solid will remain constant.

PROBLEM 8-2
Imagine a cylindrical water tower that measures exactly 30 meters high 
and exactly 10 meters in radius. How many liters of water can it hold, 
assuming that we can fill up the entire interior with water? (One liter equals 
a cubic decimeter: the volume of a cube measuring 0.1 meter on an edge.) 
Round the answer off to the nearest liter.

SOLUTION 
Let’s use our formula to find the volume V in cubic meters in terms of the 
base or top radius r and the height h. That equation, once again, is

V = or2h

We know that r = 10 and h  = 30. If we consider o  = 3.141592654 (that’s 
more than enough decimal places for this calculation), then we can deter-
mine the interior volume of the cylinder as

 V = 3.141592654 ë 102 ë 30

 = 3.141592654 ë 100 ë 30

 = 9424.777962 cubic meters

PROBLEM 
Imagine a cylindrical water tower that measures exactly 30 meters high 
and exactly 10 meters in radius. How many liters of water can it hold, 

PROBLEM 
Imagine a cylindrical water tower that measures exactly 30 meters high 

SOLUTION 
Let’s use our formula to find the volume 
base or top radius 

SOLUTION 
Let’s use our formula to find the volume 

✔

h

Center of top

Center of baser

r

FigurE 8-10  • A slant circular cylinder. 
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One liter equals the volume of a cube that measures precisely 0.1 meter on an 
edge. That’s 0.1 ë 0.1 ë 0.1, or 0.001 (1/1000) of a cubic meter. Conversely, a cubic 
meter contains 1000 liters. We must therefore multiply the above-derived result 
by 1000 to get the answer in liters. When we do that, we get 9,424,777.962 liters. 
Rounding off to the nearest liter gives us a final answer of 9,424,778 liters.

PROBLEM 8-3
Imagine a circus tent that has the shape of a right circular cone. Suppose 
that its base diameter equals exactly 50 meters and the height at the cen-
ter equals exactly 20 meters. How much canvas does the tent contain in 
terms of surface area? Express the answer to the nearest square meter. 
Assume that inside the tent, the floor is plain earth (not canvas).

SOLUTION 
We can use the formula for the lateral surface area S of the right circular 
cone, not including the base, in terms of the radius r and the height h. Once 
again, that formula is

S = or (r2 + h2)1/2

We know that the tent’s base diameter is precisely 50 meters. The radius 
equals half that span, so r = 25. We also know that h = 20. Let’s consider 
o = 3.141592654. Then we have

 S = 3.141592654 ë 25 ë (252 + 202)1/2

 = 3.141592654 ë 25 ë (625 + 400)1/2

 = 3.141592654 ë 25 ë 10251/2

 = 3.141592654 ë 25 ë 32.01562119

 = 2514.501009

The tent contains 2515 square meters of canvas, rounded off to the nearest 
square meter.

Other Solids
The realm of Euclidean three-space contains a tremendous variety of geometric 
solids that have curved surfaces throughout. Let’s look at three of the most 
common such objects: the sphere, the ellipsoid, and the torus.

PROBLEM 
Imagine a circus tent that has the shape of a right circular cone. Suppose 
that its base diameter equals exactly 50 meters and the height at the cen-

PROBLEM 
Imagine a circus tent that has the shape of a right circular cone. Suppose 

SOLUTION 
We can use the formula for the lateral surface area 
cone, not including the base, in terms of the radius 

SOLUTION 
We can use the formula for the lateral surface area 

✔
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The Sphere
Consider a specific point P in Euclidean three-space. The surface of a sphere 
(call it S) comprises the collection of all points that lie at a specific distance 
or radius r from a defined point P. The interior of sphere S, including 
the surface, comprises the collection of all points whose distance from point 
P is less than or equal to r. The interior of sphere S, not including the 
surface, comprises the collection of all points whose distance from P is 
strictly less than r. 

Surface Area of Sphere
Imagine a sphere S having radius r as shown in Fig. 8-11. We can calculate the 
surface area A of the sphere in square units with the formula

A = 4πr2

Volume of Sphere
Imagine a sphere S as defined earlier and as illustrated in Fig. 8-11. We can 
calculate the volume V of the solid enclosed by the sphere in cubic units with 
the formula

V = 4or3/3

P

Center of
sphere

r

S

Figure 8-11  • A sphere. 
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T IP   The above formula for volume applies to the interior of sphere S, either includ-
ing the surface or not including it, because the surface has zero volume. This same 
general concept holds true for volumes of all the other solids described in this 
chapter. We can take away part, or all, of the surface from a solid; any such action 
will have no effect on the enclosed volume. Think of the surface of any object, in 
mathematical terms, as an “infinitely thin shell.” As such, it can possess no 
volume, no matter how many square units it has!

The Ellipsoid
Let E represent a set of points that forms a closed surface (meaning that it has 
no “holes”; if we could fill it with air under pressure, none of the air would leak 
out). In this situation, E constitutes an ellipsoid if and only if, for any plane X 
that intersects E, the intersection between E and X forms a single point, a circle, 
or an ellipse.

Figure 8-12 shows an ellipsoid E with center point P and radii (also called semi-
axes) r1, r2, and r3, as we might specify them in a rectangular three-space coordi-
nate system with P at the origin. If r1, r2, and r3 are all equal, then E is a sphere. All 
spheres are ellipsoids, although plenty of nonspherical ellipsoids obviously exist.

Volume of Ellipsoid
Imagine an ellipsoid whose semiaxes measure r1, r2, and r3 as shown in Fig. 8-12. We 
can calculate the volume V of the enclosed solid in cubic units with the formula

V = 4πr1r2r3/3

r2

r1
r3

P

E

Center of
ellipsoid

Figure 8-12  • An ellipsoid. 
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When we multiply three linear-unit quantities together (in this case the lengths 
of the three semiaxes of our ellipsoid), we get cubic units.

still struggling
do you wonder why we don’t mention a formula for calculating the surface area 
of an ellipsoid? There’s a good reason: It’s too complicated for this course! In order 
to precisely define the surface area of an ellipsoid in the general case where the 
three semiaxes can all differ from each other, we need to use vector calculus. non-
calculus formulas exist for approximating the surface area of a general ellipsoid, 
but they’re messy and they rarely yield an exact answer. If you’re curious about 
these approximation formulas, enter “surface area of an ellipsoid” into your 
favorite Internet search engine’s phrase box and take things from there!

?

The Torus
Imagine a ray PQ and a small circle C centered on point Q with a radius less 
than half the distance between points P and Q. Suppose that we rotate the ray 
PQ, along with the small circle C centered at point Q, around its end point P, 
so that point Q describes a circle in a plane perpendicular to the small circle C. 
When we go through these maneuvers, the resulting collection of points in 
Euclidean three-space forms a torus. Figure 8-13 shows a torus T constructed 

r2

r1

Circular
cross-section

P

Center
of torus

T

Q

C

FigurE 8-13  • A torus, also called a “donut.” 
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in this fashion, with center point P. The inside radius equals r1 and the outside 
radius equals r2.

Surface Area of Torus
Imagine a torus with an inner radius of r1 and an outer radius of r2 as shown in 
Fig. 8-13. We can calculate the surface area A of the torus in square units with 
the formula

A = π2 (r2 + r1)(r2 – r1)

Volume of Torus
Consider a torus T as defined earlier and as shown in Fig. 8-13. We can calculate 
the volume V of the enclosed solid in cubic units with the formula

V = π2 (r2 + r1)(r2 – r1)
2/4

PROBLEM 8-4
Suppose that we want to cover an American football field with an inflat-
able dome that takes the shape of a half-sphere. If the radius of the dome 
equals exactly 100 meters, what’s the volume of air enclosed by the dome 
in cubic meters? Find the result to the nearest cubic meter.

SOLUTION 
First, let’s find the volume V of a sphere whose radius equals precisely 
100 meters and then divide the result by 2. Consider o = 3.141592654. 
Using the formula with r = 100 gives us

 V = 4or3/3

 = (4 ë 3.141592654 ë 1003)/3

 = (4 ë 3.141592654 ë 1,000,000)/3

 = 4,188,790.205

The volume enclosed by the dome equals half of this value. Calculating, we get

 V/2 = 4,188,790.205/2

 = 2,094,395.103

Rounding off to the nearest whole number, we get 2,094,395 cubic meters 
as the volume of air enclosed by the dome.

PROBLEM 
Suppose that we want to cover an American football field with an inflat-
able dome that takes the shape of a half-sphere. If the radius of the dome 

PROBLEM 
Suppose that we want to cover an American football field with an inflat-

SOLUTION 
First, let’s find the volume 
100 meters and then divide the result by 2. Consider 

SOLUTION 
First, let’s find the volume 

✔
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PROBLEM 8-5
Imagine that the dome over our American football field does not form a 
half-sphere, but instead constitutes a half-ellipsoid. Imagine that the 
height of the ellipsoid equals exactly 70 meters above its center point, 
which lies exactly in the center of the field. Suppose that the distance from 
the center of the field to either “far side” of the dome equals precisely 
120 meters, and the distance from the center of the field to either “near 
side” of the dome equals precisely 90 meters. How many cubic meters of 
air does this dome enclose?

SOLUTION 
First, let’s consider the lengths of the semiaxes as r1 = 120, r2 = 90, and 
r3 = 70. We can use the formula for the volume V of an ellipsoid with these 
radii, getting

V = 4or1r2r3/3

 = (4 ë 3.141592654 ë 120 ë 90 ë 70)/3

= (4 ë 3.141592654 ë 756,000)/3

= 3,166,725.395

The volume enclosed by the dome equals half of this value. Calculating, 
we get

V/2 = 3,166,725.395/2

 = 1,583,362.698

Rounding off to the nearest whole number, we get 1,583,363 cubic meters 
as the volume of air enclosed by the dome.

SOLUTION 
First, let’s consider the lengths of the semiaxes as 
r3 = 70. We can use the formula for the volume 
radii, getting

SOLUTION 
First, let’s consider the lengths of the semiaxes as 

✔

PROBLEM 
Imagine that the dome over our American football field does not form a 
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 A cube constitutes a specific form of
	A.	 four-faced polyhedron.
	 B.	 six-faced polyhedron.
	C.	 eight-faced polyhedron.
	D.	 12-faced polyhedron.

	 2.	 If we double the lengths of two semiaxes in an ellipsoid while not changing the 
length of the third semiaxis, we increase the volume of the enclosed solid by a 
factor of

	A.	 2.
	 B.	 4.
	C.	 8.
	D.	 16.

	 3.	 Figure 8-14 illustrates a right circular cone with dimensions precisely as indi-
cated. What’s the lateral surface area of this object (the surface area of the coni-
cal portion only, not including the base), rounded off to the nearest hundredth 
of a square unit?

	A.	 11.33 square units
	 B.	 17.61 square units
	C.	 22.65 square units
	D.	 35.22 square units

Center
of base

3 units

2 units

Figure 8-14  • Illustration for Quiz Questions 3 and 4. 
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	 4.	 What’s the exact volume of the solid enclosed by the right circular cone shown 
in Fig. 8-14, assuming that the object has precisely the dimensions indicated?

	A.	 2π cubic units
	 B.	 3π cubic units
	C.	 4π cubic units
	D.	 6π cubic units

	 5.	 What’s the volume of the solid enclosed by the parallelepiped shown in Fig. 8-15, 
given a width of exactly 7 units, a slant depth of exactly 5 units, and a height of 
exactly 5 units as indicated? Round off the answer to the nearest cubic unit.

	A.	 140 cubic units
	 B.	 35 cubic units
	C.	 28 cubic units
	D.	 We need more information to answer this question.

	 6.	 Suppose that we triple the height of the parallelepiped shown in Fig. 8-15, from 
5 units to 15 units. If we do that while leaving the base dimensions at 7 by 
4 units, and we also ensure that the base retains the same shape, what happens 
to the volume of the enclosed solid? (Here’s a hint: We don’t have to know the 
actual volume of the solid, either before or after the height-tripling action.)

	A.	 It triples.
	 B.	 It increases by a factor of 9.
	C.	 It increases by a factor of 27.
	D.	 It increases by a factor equal to the square root of 27.

	 7.	 If we quadruple the surface area of a cube, what happens to its volume?
	A.	 It doubles.
	 B.	 It quadruples.
	C.	 It becomes 8 times as great.
	D.	 It becomes 16 times as great.

5 units

7 units
4 units

Figure 8-15  • Illustration for Quiz Questions 5 and 6. 
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	 8.	 If we quadruple the surface area of a sphere, what happens to its volume?
	A.	 It doubles.
	 B.	 It quadruples.
	C.	 It becomes 8 times as great.
	D.	 It becomes 16 times as great.

	 9.	 Figure 8-16 illustrates a slant circular cylinder with a radius of exactly 6 units and 
a height of exactly 10 units. What’s the volume of the enclosed solid, rounded 
off to the nearest cubic unit?

	A.	 188 cubic units
	 B.	 377 cubic units
	C.	 1131 cubic units
	D.	 We need more information to answer this question.

	 10.	 Suppose that we triple the radius of the slant circular cylinder shown in Fig. 8-16, 
from 6 to 18 units. What happens to the volume of the enclosed solid? (Here’s a 
hint: We don’t have to know the actual volume of the solid, either before or after 
the radius-tripling action.)

	A.	 It triples.
	 B.	 It increases by a factor of 9.
	C.	 It increases by a factor of 27.
	D.	 It increases by a factor of 81.

Center of top

Center of base

10 units

6 units

6 units

Figure 8-16  • Illustration for Quiz Questions 9 and 10.
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c h a p t e r  9
Vectors and Cartesian 
Three-Space

We can define Cartesian three-space, also called rectangular three-space or xyz-space, 
on the basis of three real-number lines that intersect at a common origin point. 
At the origin, each number line runs perpendicular to the other two, so we can 
graphically relate one variable to both of the others. Most three-dimensional 
(3D) graphs show up in this system as lines, curves, or surfaces.

C H A P T e r O B J e C T i V e S

In this chapter, you will

review the fundamentals of the sine, cosine, and tangent functions.• 
define vectors in Cartesian two-space.• 
Learn how to add and “multiply” vectors in two-space.• 
Construct a Cartesian three-space coordinate system.• 
define vectors in Cartesian three-space.• 
Learn how to add and “multiply” vectors in three-space.• 
define and work with planes and lines in Cartesian three-space.• 
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A Taste of Trigonometry
Before we proceed further, let’s review a few principles of basic trigonometry. 
In particular, let’s look at angle notation and the sine, cosine, and tangent 
functions.

It’s Greek to Us
Mathematicians and scientists often use Greek letters to represent angles. The 
most common symbol for an angle is an italic, lowercase Greek letter theta 
(pronounced “THAY-tuh”). It looks like an italic numeral zero with a horizon-
tal line inside (q).

When writing about two different angles, we need to use another Greek 
letter along with q. Most mathematicians prefer the italic, lowercase letter phi 
(pronounced “FIE” or “FEE”). It looks like an italic lowercase English letter o 
with a forward slash passing through (f).

TIP   Numeric or variable subscripts are sometimes used with Greek symbols for 
angles, so you can expect to occasionally encounter angles denoted as p1, p2, p3, 
and so on, or as px, py, pz , and so on.

The Unit Circle
Consider a circle in the Cartesian xy-plane with the following equation. It’s the 
simplest possible circle, expressible as

x2 + y2 = 1

This equation represents a unit circle. That means it’s centered at the origin 
point (0,0) on the coordinate plane and has a radius of 1 unit. Let q represent 
an angle whose vertex point lies at the origin, and that we express going around 
counterclockwise from the x axis as shown in Fig. 9-1. Imagine that q defines 
the direction of a ray that starts out at the origin and passes through the unit 
circle, intersecting the circle at the point P = (x0,y0). We can define three trigo-
nometric functions, called circular functions, of the angle q.

The Sine Function
In Fig. 9-1, let OP represent the ray that emerges from the origin (point O) and 
passes through point P on the unit circle. Suppose that this ray starts out pointing 
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exactly along the x axis. Then it starts to rotate counterclockwise, always keep-
ing its back-end point at the origin, as if the origin were a hinge or pivot. As the 
ray rotates, the point P, represented by coordinates (x0,y0), revolves around the 
unit circle.

Imagine what happens to the value of y0 during one complete rotation of ray 
OP, starting out along the x axis and eventually returning there:

The ray starts out such that •	 y0 = 0; then y0 increases until it attains a value 
of 1 after P has gone 90° or π/2 rad around the circle (q = 90° = π/2 rad).

After that, •	 y0 begins to decrease, getting back to a value of 0 when P has 
gone 180° or π rad around the circle (q = 180° = π rad).

As •	 P continues counterclockwise, y0 keeps decreasing until, at q = 270° = 
3π/2 rad, the value of y0 reaches its minimum of –1.

After that, •	 y0 increases again until, when P has gone completely around 
the circle, it returns to the value of 0 for q = 360° = 2π rad.

We define the value of y0, for any particular angle q, as the sine of q. The sine 
function is abbreviated sin, so we can write

sin q = y0

y

x

1.5

1.5

0.5

0.5

–0.5

–0.5

–1.5

–1.5

θ

Unit
circle

yx0 0( ),
P

O

Figure 9-1  • The unit circle constitutes the basis for the trigo-
nometric functions.
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still struggling
If you’ve always thought of the sine, cosine, and tangent functions as relating 
the relative side lengths of right triangles, now is the time to revolutionize your 
thinking! Yes, these three functions can and do describe the dimensions of right 
triangles, just as you’ve learned in other courses. However, the unit-circle model 
improves on the right-triangle model in at least two ways. First, the unit-circle 
model allows you to define negative as well as positive values for the trigono-
metric functions, and you can’t do that with triangles. Second, the unit-circle 
model allows for angles measuring less than 0° (0 rad) or more than 90° (π/2 rad), 
while the right-triangle model forces you to stay within that range.

?

The Cosine Function
Look again at Fig. 9-1. Imagine, once again, a ray OP from the origin outward 
through point P on the circle, pointing along the x axis and then rotating in a 
counterclockwise direction:

The ray starts out such that •	 x0 = 1; then x0 decreases until it attains a value 
of 0 after P has gone 90° or π/2 rad around the circle (q = 90° = π/2 rad).

After that, •	 x0 continues to decrease, reaching a minimum value of −1 
when P has gone 180° or π rad around the circle (q = 180° = π rad).

As •	 P continues counterclockwise, x0 increases until, at q = 270° = 3π/2 rad, 
it gets back up to 0.

After that, •	 x0 continues to increase until, when P has gone completely 
around the circle, it returns to the value of 1 for q = 360° = 2π rad.

We define the value of x0, for any particular angle q, as the cosine of q. The 
cosine function is abbreviated cos, so we can write

cos q = x0

The Tangent Function
Once again, refer to Fig. 9-1. We can define the tangent (abbreviated tan) of an 
angle q using the same ray OP and the same point P = (x0, y0) as we have done 
with the sine and cosine functions. The definition is

tan q = y0 /x0
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Because we already know that sin q = y0 and cos q = x0, we can express the 
tangent function in terms of the sine and the cosine with the formula

tan q = sin q  / cos q

tIP  The tangent function is interesting because, unlike the sine and cosine func-
tions, it becomes singular (“blows up” in a positive or negative direction) at cer-
tain values of p. Whenever x0 = 0, the denominator of either quotient above 
becomes zero. Mathematicians don’t allow, or even attempt to define, division 
by zero, so we cannot define the value of the tangent function for any angle p 
such that cos p = 0. Such angles include all possible odd-integer multiples of 90º 
(o /2 rad).

PROBLEM 9-1
What’s the tangent of 45ç? Don’t do any calculations. You can infer the 
result without having to write down a single numeral and without using a 
calculator.

SOLUTION 
Draw a diagram of a unit circle, such as the one in Fig. 9-1, and place ray 
OP such that it subtends an angle of 45ç with respect to the x axis. That’s 
the angle for which you want to find the tangent. Note that ray OP also 
subtends an angle of 45ç with respect to the y axis, because the x and y 
axes run perpendicular (they’re oriented at 90ç with respect to each other), 
and 45ç equals half of 90ç. Every point on the ray OP, including (x0, y0), lies 
equally distant from the x and y axes. It follows that x0 and y0 must have 
the same value, and neither of them is zero. You must conclude that the 
ratio of y0 to x0 equals 1, because any nonzero number divided by itself 
equals 1. According to the definition of the tangent function, therefore, 
tan 45ç = 1.

Vectors in the Cartesian Plane
A vector expresses a quantity with two independent properties: magnitude and 
direction. We define the direction, also called orientation, in the sense of a ray; it 
“points” somewhere. We can use vectors to represent physical variables such as 
displacement, velocity, and acceleration. Mathematicians and scientists usually 

PROBLEM 
What’s the tangent of 45
result without having to write down a single numeral and without using a 
calculator.

PROBLEM 
What’s the tangent of 45

SOLUTION 
Draw a diagram of a unit circle, such as the one in Fig. 9-1, and place ray 
OP such that it subtends an angle of 45OP such that it subtends an angle of 45OP
the angle for which you want to find the tangent. Note that ray 

SOLUTION 
Draw a diagram of a unit circle, such as the one in Fig. 9-1, and place ray 

✔
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denote vectors using boldface letters of the alphabet. For example, in the 
Cartesian xy-plane, we can portray vectors a and b as rays from the origin (0,0) 
to points (xa,ya) and (xb,yb), as shown in Fig. 9-2.

Equivalent Vectors
Occasionally, we’ll encounter a vector that begins at a point other than the 
origin (0,0). In order for the following formulas to hold, we must convert (or 
reduce) such a vector to the so-called standard form, such that it begins at the 
origin. We can carry out this task by subtracting the coordinates (x0,y0) of the 
starting point from the coordinates (x1,y1) of the end point. For example, if a 
vector a* starts at (3,–2) and ends at (1,–3), it reduces to an equivalent vector a 
in standard form as follows:

	 a = {(1 – 3),[–3 – (–2)]}	

	 = [(1 − 3),(−3 + 2)]	

	 = (–2,–1)	

We define any vector a* that runs parallel to a, and that has the same length 
and the same direction (or orientation) as a, as equal to vector a.

θa

θ b

ybxb,( )
b

xa ay,( )
a

a + b

x

y

Figure 9-2  • Two vectors in the Cartesian plane. We can add 
them geometrically using the parallelogram method.
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TIP   We can define a vector solely on the basis of its magnitude and its direction 
(or orientation). Neither of these two properties depends on the location of the 
originating point.

Magnitude
We can calculate the magnitude (also called the length, intensity, or absolute 
value) of vector a, written |a| or a, in the Cartesian plane by using a formula 
resembling the theorem of Pythagoras for right triangles:

|a| = (xa
2 + ya

2)1/2

The vector magnitude equals the distance from the originating (or back-end) 
point to the terminating (or far-end) point.

Direction
The direction of vector a, written dir a, equals the angle qa that vector a sub-
tends as expressed going around counterclockwise from the positive x axis in 
the Cartesian plane:

dir a = qa

The tangent of the angle qa equals ya/xa. Therefore, qa equals the inverse tangent, 
also called the arctangent (abbreviated arctan or tan–1) of ya/xa. We have

	 dir a = qa	

	 = arctan (ya/xa)	

	 = tan–1 (ya/xa)	

By convention, we should always reduce any angle qa to a value that’s at least 
zero, but less than one full counterclockwise revolution. That is, we should 
always have

0° ≤ qa < 360°

if we express qa in degrees, or

0 ≤ qa < 2π

if we express qa in radians.

TIP   If we ever encounter an angle that doesn’t fall within the above-defined 
range, we can reduce it to its conventional value (within that range) by adding or 
subtracting some integer multiple of 360º (2o  rad).
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Sum
We can determine the sum of two vectors a and b, where a = (xa,ya) and b =
(xb,yb), by adding their components individually using the formula

a + b = [(xa + xb),(ya + yb)]

We can also sum two vectors a and b geometrically by constructing a parallelo-
gram with a and b forming a pair of adjacent sides. When we do that, a + b lies 
along the diagonal of the parallelogram as shown in Fig. 9-2 on page 224. Some 
people call this scheme the parallelogram method of vector addition.

Multiplication by Scalar
When we want to multiply a vector by a scalar (an ordinary real number), we 
multiply the x and y components of the vector individually by that scalar. If we 
have a vector a = (xa,ya) and a scalar k, then

 ka = ak 

= k (xa,ya) 

 = (kxa,kya) 

 

still struggling
Multiplication by a scalar changes the length of a vector, but not the orientation 
of the line along which it runs. if the scalar is positive, the direction of the 
product vector is the same as that of the original vector. if the scalar is negative, 
the direction of the product vector is opposite that of the original vector. if the 
scalar is zero, the product vector vanishes altogether.

?

Dot Product
Consider two vectors a = (xa,ya) and b = (xb,yb). We define the dot product, also 
known as the scalar product and written a • b, of two vectors a and b as the real 
number (or scalar quantity) that we get when we use the formula

a • b = xaxb + yayb
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PROBLEM 9-2
What’s the sum of the two vectors a = (3,–5) and b = (2,6) in the Cartesian 
plane?

SOLUTION 
We add the x and y components independently, obtaining

 a + b = [(3 + 2),(–5 + 6)]

= (5,1)

PROBLEM 9-3
What’s the dot product of the two Cartesian-plane vectors a = (3,–5) and 
b = (2,6)?

SOLUTION 
Using the formula given above for the dot product, we get

 a • b = (3 ë 2) + (–5 ë 6)

 = 6 + (–30)

= –24

PROBLEM 9-4
What happens if we reverse the order of a dot product? Does the value 
change? If so, how?

SOLUTION 
No, the value does not change. The dot product of two vectors does not 
depend on the order in which we “dot-multiply” them. We can prove this 
fact in the general case using the formula from above. Let a = (xa,ya) and 
b = (xb,yb). First consider the dot product of a and b (pronounced “a dot b”):

 a • b = xaxb + yayb

Now consider the dot product b • a:

 b • a = xbxa + ybya

PROBLEM 
What’s the sum of the two vectors a 
plane?

PROBLEM 
What’s the sum of the two vectors a 

SOLUTION 
We add the 

 a 

SOLUTION 
We add the 

✔

PROBLEM 
What’s the dot product of the two Cartesian-plane vectors a 
b = (2,6)?= (2,6)?=

PROBLEM 
What’s the dot product of the two Cartesian-plane vectors a 

SOLUTION 
Using the formula given above for the dot product, we get

 a 

SOLUTION 
Using the formula given above for the dot product, we get

✔

PROBLEM 
What happens if we reverse the order of a dot product? Does the value 
change? If so, how?

PROBLEM 
What happens if we reverse the order of a dot product? Does the value 

SOLUTION 
No, the value does not change. The dot product of two vectors does not 
depend on the order in which we “dot-multiply” them. We can prove this 
fact in the general case using the formula from above. Let a 

SOLUTION 
No, the value does not change. The dot product of two vectors does not 

✔
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Because ordinary multiplication is commutative (the order in which we 
multiply the factors doesn’t matter), we can convert the above formula to

	 b • a = xaxb + yayb

Now we can see that the quantity xaxb + yayb represents the expansion of 
a • b. Therefore, for any two vectors a and b, we always have

	 a • b = b • a

Three Number Lines
Figure 9-3 illustrates the simplest possible set of rectangular 3D coordinates. All 
three number lines have equal increments. (This drawing is a perspective illus-
tration, so the increments on the z axis appear distorted. A true 3D rendition 

Each division equals 1 unit

z

z+

y+

x

y

x+

Figure 9-3  • Cartesian three-space, also called xyz-space.
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would have the positive z axis perpendicular to the page.) The three number 
lines intersect at their zero points. In this particular rendition:

We call the horizontal (right-and-left) axis the •	 x axis.

We call the vertical (up-and-down) axis the •	 y axis.

We call the page-perpendicular (in-and-out) axis the •	 z axis.

still struggling
in our portrayal of rectangular 3d coordinates, the positive x axis runs from 
the origin toward the viewer’s right, and the negative x axis runs toward the 
left. the positive y axis runs upward, and the negative y axis runs downward. 
the positive z axis comes “out of the page,” and the negative z axis extends 
“back behind the page.” However, you’ll find variations in some texts. You 
might see the positive x axis running from the origin toward the right, the 
negative x axis running toward the left, the positive y axis running “behind 
the page away from you,” the negative y axis running “out of the page toward 
you,” the positive z axis running vertically upward, and the negative z axis 
running vertically downward. however you see the axes portrayed, their rela-
tive orientation remains the same in all texts—unless an author or illustrator 
has made a mistake!

?

Ordered Triples as Points
Figure 9-4 shows two specific points, called P and Q, plotted in Cartesian 
three-space. The coordinates of point P are (–5,–4,3), and the coordinates 
of point Q are (3,5,–2). We denote point locations as ordered triples in the 
form (x,y,z), where the first number represents the value on the x axis, the 
second number represents the value on the y axis, and the third number 
represents the value on the z axis. The word “ordered” tells us that the 
order, or sequence, in which the numbers are listed is important. The 
ordered triple (1,2,3) is not the same as any of the ordered triples (1,3,2), 
(2,1,3), (2,3,1), (3,1,2), or (3,2,1), even though all of the triples contain 
the same three numbers.
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T IP   When you write an ordered triple, don’t put any spaces after the commas, as 
you would do in the notation of a set, sequence, or list of numbers. Run the whole 
expression together without any spaces, and always remember to enclose it in 
parentheses.

Variables and Origin
In Cartesian three-space, we usually have two independent-variable coordinate 
axes and one dependent-variable axis. The x and y axes represent independent 
variables, while the z axis represents a dependent variable whose value is 
affected by both the x and the y values.

In some scenarios, two of the variables are dependent and only one is inde-
pendent. Most often, the independent variable in such cases is x.

Rarely, you’ll come across a situation in which none of the values depends 
on either of the other two, or when a correlation without any mathematical 

Each division equals 1 unit

z

z+

y+

x

y

x+

P
(–5,–4,3)

Q
(3,5,–2)

Figure 9-4  • Two points in Cartesian three-space.
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relation exists among the values of two or all three of the variables. Plots of this 
sort usually appear as “swarms of points,” representing the results of observa-
tions, or values “predicted” by a scientific theory.

Distance between Points
Consider two different points P = (x0,y0,z0) and Q = (x1,y1,z1) in Cartesian 
three-space. We can calculate the distance d between these two points using 
the formula

d = [(x1 – x0)
2 + (y1 – y0)

2 + (z1 – z0)
2]1/2

PROBLEM 9-5
What’s the distance between the points P = (–5,–4,3) and Q = (3,5,–2) 
illustrated in Fig. 9-4? Express the answer rounded off to three decimal 
places.

SOLUTION 
Let’s plug the coordinate values into the distance equation, where

 x0 = –5

 x1 = 3

 y0 = –4

 y1 = 5

 z0 = 3

 z1 = –2

When we grind out the arithmetic and round the final result off to three 
decimal places, we get

 d = [(x1 – x0)2 + (y1 – y0)2 + (z1 – z0)2]1/2

 = {[3 – (–5)]2 + [5 – (–4)]2 + (–2 – 3)2}1/2

 = [82 + 92 + (–5)2]1/2

 = (64 + 81 + 25)1/2

 = 1701/2

 = 13.038

PROBLEM 
What’s the distance between the points 
illustrated in Fig. 9-4? Express the answer rounded off to three decimal 
places.

PROBLEM 
What’s the distance between the points 

SOLUTION 
Let’s plug the coordinate values into the distance equation, where
SOLUTION 
Let’s plug the coordinate values into the distance equation, where

✔
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Vectors in Cartesian Three-Space
A vector in Cartesian three-space resembles a vector in the Cartesian plane, 
except that a three-space vector has more “freedom” in terms of possible direc-
tions or orientations. This expanded scenario makes the expression of vector 
direction in 3D more complicated than it is in 2D. If you like vector analysis, 
you’ll also find 3D vector arithmetic more interesting than two-dimensional 
(2D) vector arithmetic.

Equivalent Vectors
In Cartesian three-space, we can denote two vectors (let’s call them a and b) as 
arrow-tipped line segments from the origin (0,0,0) to points (xa,ya,za) and 
(xb,yb,zb), as shown in Fig. 9-5. This rendition, like all of the three-space draw-
ings in this chapter, is a perspective illustration. Both vectors in this example 
point in directions on our side of the plane containing the page. In a true 3D 
model, both of them would “stick up out of the paper.”

x y z( )a aa, ,

bb bx y z( ), ,

a

b

z

z+

y+

x

y

x+

Figure 9-5  • Vectors in xyz-space. This is a perspective drawing; both vectors point in 
directions on our side of the plane containing the page.
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In Fig. 9-5, both vectors a and b have their back-end points at the origin 
(0,0,0). This situation represents the standard form of a vector in any coordi-
nate system. In order for the following formulas to hold, we must express all 
vectors in standard form. If a given vector is not in standard form, we can con-
vert it to that form by subtracting the coordinates (x0,y0,z0) of the starting point 
from the coordinates (x1,y1,z1) of the terminating point. For example, if a vector 
a* starts at (4,7,0) and ends at (1,–3,5), it reduces to an equivalent vector a in 
standard form as follows:

	 a = [(1 – 4),(–3 –7),(5 – 0)]	

	 = (–3,–10,5)	

TIP   By definition, if some vector a* runs parallel to a, has the same length as a, 
and points in the same direction as a, then a* = a. Similarly, if some vector b* runs 
parallel to b, has the same length as b, and points in the same direction as b, then 
b*  = b. As in the 2D case, we define a 3D vector solely on the basis of its magnitude 
and its direction. Neither of these two properties depends on the location of the 
originating or back-end point.

Defining the Magnitude
When the back-end point of a vector a lies at the coordinate origin, we can find 
the magnitude of a, written |a| or a, using a 3D extension of the Pythagorean 
theorem for right triangles, as follows:

	 |a| = (xa
2 + ya

2 + za
2)1/2	

The magnitude of any vector a in standard form equals the distance of the 
terminating point from the coordinate origin. Note that the above formula is 
the distance formula for the specific case of two points (0,0,0) and (xa,ya,za).

Direction Angles and Cosines
We can define the direction of a vector a in standard form by specifying the 
angles qx, qy, and qz that the vector a subtends relative to the positive x, y, 
and z axes, respectively, as shown in Fig. 9-6. We call these three angles, 
expressed in combination as the ordered triple (qx,qy,qz), the direction angles 
for the vector a.
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Sometimes, mathematicians will talk about the cosines of the direction 
angles to define the direction of a particular vector a in 3D space. We call such 
values the direction cosines of a and denote them with lower case Greek letters 
alpha (a ), beta ( b ), and gamma (g ), as follows:

	 dir a = (a,b,g )	

where

	 a = cos qx	

	 b = cos qy	

	 g = cos qz	

For any vector a in Cartesian three-space, the sum of the squares of the direc-
tion cosines always equals 1. That is,

	 a 2 + b 2 + g 2 = 1	

x y z( )a aa, ,
a

θ x

θ y

θ z

z+

y+

x

y

x+

F i g u r e 9-6  • Direction angles of a vector in xyz-space. This is another perspective 
drawing; the vector points in a direction on our side of the plane containing the page.
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We can also express this fact using the equation

	 cos2 qx + cos2 qy + cos2 qz = 1	

where the expression cos2 q  means (cos q)2. 

Sum
We can calculate the sum of two vectors a = (xa,ya,za) and b = (xb,yb,zb) in 
standard form by adding their components individually with the formula

	 a + b = [(xa + xb),(ya + yb),(za + zb)]	

This sum can, as in the 2D case, be found geometrically by constructing a par-
allelogram with a and b as adjacent sides. The sum a + b corresponds to the 
diagonal of the parallelogram. Figure 9-7 shows an example. (The parallelogram 
appears distorted because of perspective effects.)

x

y

z

x y z( )a aa, ,

bb bx y z( ), ,

a

a + b b

Figure 9-7  • We can add vectors in xyz-space using the “parallelogram method.” 
This is a perspective drawing, so the parallelogram appears distorted.
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Multiplication by Scalar
In 3D Cartesian coordinates, let’s define vector a using the coordinates 
(xa,ya,za) when reduced to standard form. Suppose that we multiply this 
vector a by a positive real scalar k. We can express the product using the 
equation

	 ka = ak	

	 = k (xa,ya,za)	

	 = (kxa,kya,kza)	

If we multiply the vector a by a negative real scalar –k, then we have

	 –ka = a(−k)	

	 = –k (xa,ya,za)	

	 = (–kxa,–kya,–kza)	

Let’s represent the direction angles for a as the ordered triple (qxa,qya,qza). The 
direction angles for vector ka coincide with those for a, that is, (qxa,qya,qza). 
However, the direction angles for –ka all differ by 180° (π rad) from those for 
a and ka, indicating that −ka points in precisely the opposite direction from a 
and ka. We can obtain the direction angles for –ka by adding or subtracting 180° 
(π rad) to or from each of the direction angles for ka, so that the resulting angles 
are all positive but less than 360° (2π rad).

Dot Product
The dot product, also known as the scalar product and written a • b, of two 
Cartesian three-space vectors a = (xa,ya,za) and b = (xb,yb,zb) in standard form 
equals a real number given by the formula

a • b = xaxb + yayb + zazb

You can also calculate the dot product from the vector magnitudes |a| and |b| 
along with the angle q between a and b as measured going counterclockwise in 
the plane containing them both. Multiply the two vector magnitudes by each 
other, and then multiply the result by the cosine of the angle between the vec-
tors. You can use the formula

a • b = |a| |b| cos q
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Cross Product
The cross product, also known as the vector product and written a ë b, of two 
vectors a = (xa,ya,za) and b = (xb,yb,zb) in standard form is a third vector that runs 
perpendicular to the plane containing both a and b. Let q represent the angle 
between vectors a and b as measured going counterclockwise in the plane con-
taining them both, as shown in Fig. 9-8. You can calculate the magnitude of the 
cross-product vector a ë b using the formula

|a ë b| = |a| |b| sin q

In the example shown, a ë b points upward at a right angle to the plane 
containing the two vectors a and b.

If 0° < q < 180° (0 rad < q < π rad), you can use a trick called the right-hand 
rule to ascertain the direction of a ë b. Curl the fingers of your right hand in the 
rotational sense that you want to express q, the angle starting in the direction 
of a and ending up in the direction of b. (Make sure that you don’t accidentally 
go in the rotational sense from b to a!) Once you’ve got your hand in the correct 
position, extend your thumb straight out as if you’re “hitchhiking.” Your thumb 
will then point in the direction of a ë b.

a

b

a x b

b x a

θ

Plane containing
both a band

Figure 9-8  • The vector b ë a has the same magnitude as vector a ë b, 
but points in the opposite direction. Both cross-product vectors point in  
directions perpendicular to the plane containing the two original vectors.
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T IP   When 180º < p < 360º (o rad < p < 2o rad), the cross-product vector reverses 
direction because its magnitude (as determined by the above formula) turns out 
negative. We can see this fact when we note that sin p > 0 when 0º < p < 180º 
(0 rad < p < o  rad), but sin p < 0 when 180º < p < 360º (o  rad < p < 2o  rad). When 
a formula gives us a negative vector magnitude going in a certain direction, we 
should think of it as an equivalent positive magnitude (i.e., −1 times the negative 
magnitude) in the opposite direction!

Unit Vectors
Any vector a, reduced to standard form so its starting point lies at the origin, 
ends up at some point (xa,ya,za). We can break any such vector a down into the 
sum of three mutually perpendicular vectors, each of which lies along one of 
the coordinate axes as shown in Fig. 9-9:

	 a = (xa,ya,za)	

	 = (xa,0,0) + (0,ya,0) + (0,0,za)	

	 = xa(1,0,0) + ya(0,1,0) + za(0,0,1)	

x y z( )a aa, ,
a

z+

y+

x

y

x+

z( )a, ,0 0

y( )a, ,0 0

x( )a, ,0 0

x y z( )a aa, , z( )a, ,0 0y( )a, ,0 0x( )a, ,0 0= + +

Figure 9-9  • In Cartesian three-space, we can break up any vector into a sum of 
three component vectors, each of which lies on one of the coordinate axes.
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The vectors (1,0,0), (0,1,0), and (0,0,1) are called unit vectors because their 
lengths all equal 1. Mathematicians and engineers name these three unit vectors 
i, j, and k, as follows:

 (1,0,0) = i 

 (0,1,0) = j 

 (0,0,1) = k 

The vector a shown in Fig. 9-9 breaks down as

 a = (xa,ya,za) 

 = xai + yaj + zak 

PROBLEM 9-6
Convert the vector b = (–2,3,–7) to a sum of multiples of the unit vectors i, 
j, and k.

SOLUTION 
Envisioning the situation might require a keen “mind’s eye,” but you don’t 
have to see the vectors to solve this problem. The vector breaks down 
neatly as

 b = (–2,3,–7)

 = –2 ë (1,0,0) + 3 ë (0,1,0) + [–7 ë (0,0,1)]

 = –2i + 3j + (–7)k

 = –2i + 3j – 7k

Planes
The equation of a flat geometric plane in Cartesian three-space resembles that 
of a straight line in the Cartesian plane. We have an extra variable to contend 
with, but the general equation format is basically the same.

Criteria for Uniqueness
We can uniquely define a geometric plane in Euclidean three-space according 
to any of the following criteria:

A point in the plane and a vector perpendicular to the plane•	

Three points that don’t all lie on the same straight line•	

PROBLEM 
Convert the vector b 
j, and k.

PROBLEM 
Convert the vector b 

SOLUTION 
Envisioning the situation might require a keen “mind’s eye,” but you don’t 
have to see the vectors to solve this problem. The vector breaks down 

SOLUTION 
Envisioning the situation might require a keen “mind’s eye,” but you don’t 

✔
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Two intersecting straight lines•	

Two parallel straight lines•	

General Equation of Plane
The simplest possible equation for a plane in Cartesian three-space derives 
from the first of the foregoing criteria: a point in the plane and a vector that 
runs normal (perpendicular) to the plane. Figure 9-10 shows a plane W in 
Cartesian three-space, a point P = (x0,y0,z0) in plane W, and a vector (a,b,c) = 
ai + bj + ck oriented normal to plane W. In this example, the vector (a,b,c) 
originates at point P, not at the coordinate origin (0,0,0), because W doesn’t 
pass through the coordinate origin at all! Nevertheless, we can base the values 
x = a, y = b, and z = c for the vector on the standard form, as if the vector did 
indeed start at the coordinate origin. Remember, all vectors having the same 
length and the same direction are in effect equal to one another, regardless of 
where their back-end (starting) points lie.

z+

y+

x

y

x+

Plane
W

W
x y z( ), ,0 00

in plane

Point P( )
normal to
at P

W

Vector
a,b,c

Figure 9-10  • We can uniquely define a plane W on the basis of a point P in the plane and a 
vector (a,b,c) normal to the plane. In this illustration, dashed portions of the coordinate axes lie 
“behind” the plane.
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Once we know all these facts about a plane in Cartesian three-space, we have 
enough information to uniquely define that plane and write its equation as

a(x – x0) + b(y – y0) + c(z – z0) = 0

We call the constants a, b, and c the coefficients. We can also write the equation as

ax + by + cz + d = 0

In this scenario, the value of d works out as

 d = –(ax0 + by0 + cz0) 

 = –ax0 – by0 – cz0 

Plotting a Plane
We can usually draw a graph of a plane in Cartesian three-space by determining 
the points where the plane crosses each of the three coordinate axes. We can 
then visualize the plane based on these points. Unfortunately, not all planes 
cross all three of the axes in Cartesian xyz-space. If a plane runs parallel to one 
of the axes, then that plane does not cross that axis. If a plane runs parallel to 
the plane formed by two of the axes, then that plane crosses only the axis to 
which it does not run parallel.

 

still struggling
any plane in Cartesian three-space must cross at least one of the coordinate axes 
somewhere. geometric planes have theoretically infinite extent. if we start at 
any point on a plane and travel around within that plane long enough, and if we 
venture far enough away from our starting point, eventually we’ll “hit” at least 
one coordinate axis. in most planes, we’ll eventually encounter two or all three 
of the coordinate axes.

?

PROBLEM 9-7
Draw a graph of the plane W represented by the equation

 –2x – 4y + 3z – 12 = 0

PROBLEM 
Draw a graph of the plane 
PROBLEM 
Draw a graph of the plane 
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SOLUTION 
To solve this problem, let’s see if we can find the points where the plane 
crosses each of the coordinate axes. If we can find three such points, then 
we can use those points to define the plane. (If we can’t find three such 
points, we’ll have to try some other scheme, but let’s not worry about that 
conundrum unless it comes up!)
 We can find the x-intercept, or the point where the plane W intersects 
the x axis, by setting y = 0 and z = 0 and then solving for x as follows:

 –2x – 4 ë 0 + 3 ë 0 – 12 = 0

Eliminating the “zero factors,” we get

 –2x – 12 = 0

When we add 12 to each side, we obtain

 –2x = 12

Finally, we divide through by −2, getting

 x = 12/(–2)

= –6

If we call the x-intercept point P, then

P = (–6,0,0)

We can find the y-intercept, or the point where the plane W intersects the 
y axis, by setting x = 0 and z = 0 in the original equation and then solving 
for y as follows:

 –2 ë 0 – 4y + 3 ë 0 – 12 = 0

Eliminating the “zero factors” gives us

 –4y – 12 = 0

Adding 12 to each side, we get

 –4y = 12

SOLUTION 
To solve this problem, let’s see if we can find the points where the plane 

✔
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Dividing through by −4 gives us the solution as

	 y = 12/(–4)

	 = –3

If we call the y-intercept point Q, then

	 Q = (0,–3,0)

We can determine the z-intercept, or the point where the plane W inter-
sects the z axis, by setting x = 0 and y = 0 in the original equation and then 
solving for z as follows:

	 –2 ë 0 – 4 ë 0 + 3z – 12 = 0

When we get rid of the “zero factors,” we have

	 3z – 12 = 0

We can add 12 to each side to obtain

	 3z = 12

Finally, we can derive the solution when we divide through by 3 to get

	 z = 12/3

	 = 4

If we call the z-intercept point R, then

	 R = (0,0,4)

The plot of Fig. 9-11 shows the three points P, Q, and R as we’ve derived 
them here:

	 P = (–6,0,0)

	 Q = (0,–3,0)

	 R = (0,0,4)

We can envision the position and orientation of the plane W on the 
basis of these three points, because they don’t all lie along a single 
line.
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PROBLEM 9-8
Suppose that a plane contains the point (2,–7,0), and the vector 3i + 3j + 2k 
runs normal to the plane. What’s the equation of the plane?

SOLUTION 
The vector 3i + 3j + 2k is equivalent to (a,b,c) = (3,3,2). We know the coordi-
nates of one point in the plane; they are (x0,y0,z0) = (2,–7,0). Recall the gen-
eral formula for the equation of a plane in Cartesian three-space:

 a(x – x0) + b(y – y0) + c(z – z0) = 0

Plugging our known values a = 3, b = 3, c = 2, x0 = 2, y0 = −7, and z0 = 0 into 
this formula, we get

 3(x – 2) + 3[y – (–7)] + 2(z – 0) = 0

Simplifying, we obtain

 3(x – 2) + 3(y + 7) + 2z = 0

PROBLEM 
Suppose that a plane contains the point (2,–7,0), and the vector 3i 
runs normal to the plane. What’s the equation of the plane?

PROBLEM 
Suppose that a plane contains the point (2,–7,0), and the vector 3i 

SOLUTION 
The vector 3i 
nates of one point in the plane; they are (

SOLUTION 
The vector 3i 

✔

Each division equals 1 unit

+y

+x

–z

+z

–x

P

Q

R

–y

Plane W

Figure 9-11  • Illustration for Problem 9-7. Dashed portions of the coordi-
nate axes lie “behind” the plane.
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When we multiply out the terms in full, we have

	 3x – 6 + 3y + 21 + 2z = 0

which streamlines to

	 3x + 3y + 2z = –15

Straight Lines
Straight lines in Cartesian three-space present a more complicated picture than 
those in the Cartesian coordinate plane because we have an added dimension, 
making the expression of the direction more complicated. But all linear equa-
tions, no matter what the number of dimensions, have one thing in common: 
We can reduce any such equation to a form where no variable is raised to any 
power other than 0 or 1.

Symmetric-Form Equation
We can represent a straight line in Cartesian three-space using a “three-way” 
equation in three variables. Mathematicians call this type of expression a 
symmetric-form equation. It takes the following form, where x, y, and z represent 
the variables, (x0,y0,z0) represents the coordinates of a specific point on the line, 
and a, b, and c represent real-number constants:

 (x – x0)/a = (y – y0)/b = (z – z0)/c

If we want this equation to make sense, none of the three constants a, b, or c 
can equal zero. If a = 0 or b = 0 or c = 0, then we end up with a zero denominator 
in one of the expressions, making it meaningless.

Direction Numbers
In the symmetric-form equation of a straight line, the constants a, b, and c are 
known as the direction numbers for that line. If we consider a vector m with its 
back-end point at the origin and its “arrowed end” at the point (x,y,z) = (a,b,c), 
then the vector m runs parallel to the line denoted by the symmetric-form 
equation. We have

m = ai + bj + ck

where m constitutes the 3D equivalent of the slope of a line in the 2D Cartesian 
plane. Figure 9-12 illustrates a situation of this sort for a line L containing a 
point P = (x0,y0,z0) in Cartesian three-space.



246        g e o m e t r y   Demystified

Parametric Equations
As you might suspect, infinitely many vectors can satisfy the requirement for 
m as we defined it earlier. If we let t represent any nonzero real number, then 
the vector

	 tm = (ta,tb,tc)	

	 = tai + tbj + tck	

will work every bit as well as m for the purpose of defining the direction of a 
line L. This handy fact leads to an alternative form for the equation of a line in 
Cartesian three-space in the form of three equations:

	 x = x0 + at	

	 y = y0 + bt	

	 z = z0 + ct	

We call the nonzero real number t a parameter, and the above three expressions 
a set of parametric equations for a straight line in Cartesian xyz-space.

z

z+

y+

x

y

x+

L m

a,b,c= ( )

Line and vector
are parallel

P x y z( ), ,0 00=

Figure 9-12  • We can uniquely define a line L on the basis of a point P on the line and 
a vector m = (a,b,c) that runs parallel to the line.
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tIP   If we want to define an entire geometric line (perfectly straight and infinitely 
long) on the basis of parametric equations, we must allow the parameter t to 
range over the entire set of real numbers, including zero.

tIP   If any of the direction numbers for a line in Cartesian three-space happens to 
equal 0, then we must use parametric equations to describe the line. We can’t use 
the symmetric form because it produces a denominator of 0 in one of the sym-
metric expressions.

PROBLEM 9-9
Find the symmetric-form equation for the line L shown in Fig. 9-13. Assume 
that the vector m, as shown, runs parallel to L.

SOLUTION 
The figure shows us that line L passes through the point

P = (–5,–4,3)

PROBLEM 
Find the symmetric-form equation for the line 
that the vector m, as shown, runs parallel to 

PROBLEM 
Find the symmetric-form equation for the line 

SOLUTION 
The figure shows us that line 
SOLUTION 
The figure shows us that line 

✔

Each division equals 1 unit

z

z+

y+

x

y

x+

(–5,–4,3)

L

m = 3i + 5j – 2k

P =

Figure 9-13  • Illustration for Problems 9-9 and 9-10.
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We’ve been assured that line L runs parallel to the vector

 m = 3i + 5j – 2k

The direction numbers for L equal the coefficients of m, as follows:

 a = 3

 b = 5

 c = –2

We’re given a specific point P on line L. If we say that P = (x0,y0,z0), then

 x0 = –5

 y0 = –4

 z0 = 3

We recall the general symmetric-form equation for a line in Cartesian three 
space as

 (x – x0)/a = (y – y0)/b = (z – z0)/c

Plugging the above coordinates for P into this equation, we get

 [x – (–5)]/3 = [y – (–4)]/5 = (z – 3)/(–2)

which simplifies to

 (x + 5)/3 = (y + 4)/5 = (z – 3)/(–2)

PROBLEM 9-10
Find a set of parametric equations for the line L shown in Fig. 9-13.

SOLUTION 
Solving this problem involves merely rearranging the values of the six 
known values for x0, y0, z0, a, b, and c in the symmetric-form equation, and 
then rewriting the data in the form of parametric equations. When we do 
that, we get

 x = –5 + 3t

 y = –4 + 5t

 z = 3 – 2t

PROBLEM 
Find a set of parametric equations for the line 
PROBLEM 
Find a set of parametric equations for the line 

SOLUTION 
Solving this problem involves merely rearranging the values of the six 
known values for 

SOLUTION 
Solving this problem involves merely rearranging the values of the six 

✔
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book. Use a calculator if you need one.

	 1.	 Imagine a unit circle in the Cartesian plane, and a ray that runs from the origin 
(0,0) outward and downward toward the right at an angle with respect to the x 
axis, so that we have to turn 60ç clockwise to get from the x axis to the ray. What’s 
the x-value of the point where the ray passes through the unit circle, accurate to 
three decimal places?

	A.	 0.500
	 B.	 −0.500
	C.	 0.866
	D.	 −0.866

	 2.	 In the situation of Question 1, what’s the y-value of the point where the ray 
passes through the unit circle?

	A.	 0.500
	 B.	 −0.500
	C.	 0.866
	D.	 −0.866

	 3.	 Suppose that a vector in the Cartesian plane originates at the point (3,−7) and 
ends at the point (−7,3). What’s the equivalent vector in standard form?

	A.	 (10,10)
	 B.	 (−10,10)
	C.	 (10,−10)
	D.	 (−10,−10)

	 4.	 Figure 9-14 shows two vectors called a and b, both of which share a common 
back-end (originating) point, and which lie exactly perpendicular to each other. 
The cross-product vector a ë b runs

	A.	 straight up.
	 B.	 straight down.
	C.	 in the plane containing a and b, somewhere between them.
	D.	 nowhere, because it’s the zero vector.

a

b

Plane containing
both a band

90o

Figure 9-14  • Illustration for Quiz Questions 4 through 6.
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	 5.	 In the situation of Fig. 9-14, suppose that vector a measures exactly 1.2 units 
long while vector b measures exactly 0.8 unit long. What’s the exact value of 
a • b?

	A.	 0
	 B.	 0.96
	C.	 1.5
	D.	 2

	 6.	 In the situation of Fig. 9-14, the sum vector a + b runs
	A.	 straight up.
	 B.	 straight down.
	C.	 in the plane containing a and b, somewhere between them.
	D.	 nowhere, because it’s the zero vector.

	 7.	 What’s the sum of the Cartesian xy-plane vectors (3,−7) and (6,2)?
	A.	 (9,−5)
	 B.	 (−9,5)
	C.	 (−4,8)
	D.	T he sum vector does not lie in the Cartesian xy-plane.

	 8.	 What’s the dot product of the Cartesian xy-plane vectors (3,−7) and (6,2)?
	A.	 0
	 B.	 4
	C.	 −10
	D.	 −126

	 9.	 What’s the dot product of the vectors 4i + 2j − 3k and −2i + 4j + 7k?
	A.	 −8i + 8j − 21k
	 B.	 14
	C.	 −21
	D.	 We need more information to answer this question.

	 10.	 In Cartesian three-space, the equation 3x − 4y − 17z = 10 represents a
	A.	 straight line that passes through the origin.
	 B.	 straight line that does not pass through the origin.
	C.	 plane that passes through the origin.
	D.	 plane that does not pass through the origin.
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c h a p t e r  10
Alternative 
Coordinates

Cartesian coordinates aren’t the only way that we can locate and define points 
in Euclidean two-space or three-space. Let’s learn how some other coordinate 
systems work in two and three dimensions.

C H A P T e r O B J e C T i V e S

In this chapter, you will

Define two-space coordinates in terms of distance and direction.• 
examine simple geometric objects in polar coordinates.• 
“Compress” an infinite coordinate plane into a finite region.• 
Convert between Cartesian two-space and polar coordinates.• 
Learn how to define spatial orientation in terms of latitude and longitude.• 
See how astronomers and navigators define directions and locate points in the • 
heavens.

Define three-space coordinates in cylindrical and spherical terms.• 
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Polar Coordinates
Figures 10-1 and 10-2 show two versions of the polar coordinate plane. We plot 
increasing values of the independent variable as angles q going counterclock-
wise from a reference axis pointing to the right (or “east”). We plot increasing 
values of the dependent variable as a distance r (called the radius) going straight 
outward from the origin in any direction. Therefore, we can denote the coordi-
nates of a point on the plane as an ordered pair (q,r).

The Radius
In the polar coordinate plane, the radius increments appear as concentric circles. 
As the size of the circle increases, so does the value of r. In Figs. 10-1 and 10-2, 
we haven’t labeled the concentric circles in radial units. You can do that to fit 
your own needs. Imagine each concentric circle, working outward, as increasing 
by any number of units that you want. For example, when you move from a 
given radial division (circle) outward to the next larger one, it might represent 
a radius increase of 1, 5, 10, or 100 units.

θ

r

180o

90o

270o

0o

F i g u r e  1 0 - 1  • The polar coordinate plane. In this rendition, 
we specify the angle q in degrees and the radius r in uniform  
increments.
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T IP   No matter what increment “rate” you choose, the change in radius value 
between any two concentric circles should always equal the change in radius 
value between any two other adjacent concentric circles. In more technical terms, 
the radial axis should be linear.

The Direction
We can express the direction in the polar plane in degrees or radians counter-
clockwise from a reference axis pointing to the right or “east.” In Fig. 10-1, the 
direction q appears in degrees. Figure 10-2 shows the same polar plane, using 
radians to express the direction. We don’t need to use the “rad” abbreviation 
here; it’s obvious that radians are intended from the fact that the angles all 
constitute multiples of π.

TIP  Regardless of whether you express angles in degrees or radians, you should make 
certain that the angular scale in the polar plane proceeds in a linear fashion. In other 
words, the physical angle on the graph should always vary in direct proportion to the 
value of the angle p as you turn counterclockwise from the reference axis.

0π

π/2

π/23

θ

r

Figure 10-2  • Another form of the polar coordinate plane. 
In this case, we specify the angle q in radians and the radius r 
in uniform increments.
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Negative Radii
In polar coordinates, we can specify a negative value for radius and nevertheless 
define the position of a point as long as we have an expression for its angle as 
well. If we encounter a point for which r is given as a negative value, we can 
multiply r by –1 so that it becomes positive, and then add or subtract 180º 
(π rad) to or from the direction angle. That’s like saying, “Travel 10 kilometers 
east” instead of “Travel −10 kilometers west.” We must allow negative radius 
values in our polar system if we want to fully render graphs for mathematical 
functions whose ranges can attain negative values.

Nonstandard Directions
It’s okay to have nonstandard direction angles in polar coordinates: angles that 
represent rotation through more than a full circle, or angles that represent 
clockwise rotation rather than counterclockwise rotation. If the value of q
equals 360º (2π rad) or more, it represents at least one, and likely more than 
one, complete counterclockwise rotation from the 0º (0 rad) reference axis. If 
the direction angle is less than 0º (0 rad), it represents clockwise rotation from 
the reference axis instead of counterclockwise rotation.

tIP   We must allow nonstandard direction angles in order to graph figures that 
represent functions whose domains stray outside the standard span of angular 
values (i.e., outside the span 0ç Ä p < 360ç  or 0 Ä p < 2o).

PROBLEM 10-1
Provide an example of a geometric object that represents a true mathe-
matical function when we draw it on a polar coordinate plane, but not 
when we draw it on a Cartesian coordinate plane.

SOLUTION 
Let’s recall the definitions of the terms relation and function from Chap. 6. 
When we talk about a function f in polar coordinates, we can write r = f (p ). 
A simple function of p in polar coordinates is a constant function such as

f (p ) = 3

In polar coordinates, f (p ) constitutes an alternative way to denote r, the 
radius. Therefore, the above-defined function f tells us that r = 3. When we 
graph it in polar coordinates, we obtain a circle with a radius of 3 units, 
centered at the origin.

PROBLEM 
Provide an example of a geometric object that represents a true mathe-
matical function when we draw it on a polar coordinate plane, but not 

PROBLEM 
Provide an example of a geometric object that represents a true mathe-

SOLUTION 
Let’s recall the definitions of the terms
When we talk about a function 

SOLUTION 
Let’s recall the definitions of the terms

✔
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 In Cartesian coordinates, the equation of the circle with radius of 3 units 
is more complicated than the polar equation. We have

x2 + y2 = 9

where 9 = 32, the square of the radius. If we let y represent the dependent 
variable and x represent the independent variable in this situation, we can 
rearrange the equation of the circle to get

 y = ± (9 – x2)1/2

The circle having a radius of 3 units, and centered at the origin, represents 
a true mathematical function in polar coordinates, but not in Cartesian 
coordinates.

 

still struggling
If we say that y = g (x) and then go on to claim that g constitutes a Cartesian 
coordinate function of x in the foregoing case, we’re mistaken. There exist values 
of x (the independent variable) that produce two values of y (the dependent 
variable). For example, when we set x = 0, we end up with y = ±3. If we want to 
say that g is a relation in Cartesian coordinates, that’s okay, but we can’t call it a 
true mathematical function.

?

Some examples
Circles, ellipses, spirals, and other figures with complicated equations in Cartesian 
coordinates can sometimes be portrayed more simply in polar coordinates. In the 
following examples, let’s express the polar direction q in radians by default.

Circle Centered at Origin
We can portray the equation of a circle centered at the origin in the polar coor-
dinate plane with the general formula

r = a

where a represents a positive real-number constant. Figure 10-3 illustrates this 
situation.
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Circle Passing through Origin
The general form for the equation of a circle passing through the origin and 
centered at the point (q0,r0) in the polar plane (Fig. 10-4) is

r = 2r0 cos (q – q0)

Remember that the abbreviation “cos” refers to the trigonometric cosine function. 
In this case, we must find the cosine of the difference between two angles.

Ellipse Centered at Origin
We can determine the equation of an ellipse centered at the origin in the polar 
plane using the formula

r = ab/(a2 sin2 q + b2 cos2 q)1/2

where a and b are positive real-number constants. Remember that the abbre-
viation “sin2” means the square of the sine of the indicated angle, while the 
abbreviation “cos2” means the square of the cosine of the indicated angle.

On an ellipse that we express in the foregoing manner, the constant a repre-
sents the distance from the origin to the curve as measured along the “horizon-
tal” ray q = 0, and the constant b represents the distance from the origin to the 
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a

F i g u r e 10-3  • Polar graph of a circle centered at the 
origin.
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curve as measured along the “vertical” ray q = π/2. Figure 10-5 illustrates this 
arrangement.

TIP  The values a and b represent the lengths of the semiaxes of the ellipse. We call 
the greater of these two values the length of the major semiaxis. We call the lesser 
of these two values the length of the minor semiaxis.

Hyperbola Centered at Origin
The general form of the equation of a hyperbola centered at the origin in the 
polar plane is

r = ab/(a2 sin2 q – b2 cos2 q)1/2

where a and b represent positive real-number constants. This equation closely 
resembles the equation for the ellipse. However, instead of having a plus sign 
in the denominator, the hyperbola’s equation has a minus sign there.

Imagine a rectangle D whose center lies at the coordinate origin, whose vertical 
edges lie tangent to the hyperbola, and whose vertices (corners) lie on the asymp-
totes of the hyperbola as shown in Fig. 10-6. (The asymptotes are the dashed lines 
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Figure 10-4  • Polar graph of a circle passing through 
the origin.



258        g e o m e t r y   Demystified

0π

π/4

π/2

3π/4

5π/4

3π/2

7π/4

a

b

Figure 10-5  • Polar graph of an ellipse centered at the 
origin.
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Figure 10-6  • Polar graph of a hyperbola centered at 
the origin.
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that, combined, form a large “X” centered at the origin. The curves approach the 
asymptote lines as we move outward along them, but the curves never actually 
reach the asymptotes.) In the above general equation, a represents the distance 
from the origin to either vertical side of rectangle D as measured along the “hori-
zontal” ray q = 0, and b represents the distance from the origin to either horizontal 
side of rectangle D as measured along the “vertical” ray q = π/2.

TIP   The values a and b represent the lengths of the semiaxes of the hyperbola. 
We call greater of these two values the length of the major semiaxis. We call 
the lesser of these two values the length of the minor semiaxis.

Lemniscate
The general form of the equation of a lemniscate (also called a figure-eight) cen-
tered at the origin in the polar plane is

r = a (cos 2q)1/2

where a represents a positive real-number constant. Figure 10-7 shows a generic 
situation of this sort. We can calculate the interior area A of each loop of the 
figure using the formula

A = a2
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Figure 10-7  • Polar graph of a lemniscate centered 
at the origin.
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Three-Leafed Rose
We can express the general form of the equation for a three-leafed rose centered 
at the origin in the polar plane as

r = a cos 3q

or as

r = a sin 3q

where a represents a positive a real-number constant. Figure 10-8A shows a 
generic cosine version of the curve. Figure 10-8B shows a generic sine version.

Four-Leafed Rose
The general form of the equation of a four-leafed rose centered at the origin in 
the polar plane is given by either of the following two formulas:

r = a cos 2q

or

r = a sin 2q

where a represents a positive a real-number constant. Figure 10-9A shows a 
generic cosine version of the curve. Figure 10-9B shows a generic sine version.

Spiral
The general form of the equation of a spiral centered at the origin in the polar 
plane is

r = aq

where a represents a positive a real-number constant. Figure 10-10 shows a 
generic example of this type of spiral, called the spiral of Archimedes because of 
the uniform manner in which its radius increases as the angle increases.

Cardioid
The general form of the equation for a cardioid centered at the origin in the 
polar plane is

r = 2a (1 + cos q)
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Figure 10-8  • A. Polar graph of a three-leafed rose with 
equation r = a cos 3q. B. Polar graph of a three-leafed rose 
with equation r = a sin 3q.
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Figure 10-9  • A. Polar graph of a four-leafed rose with 
equation r = a cos 2q. B. Polar graph of a four-leafed rose 
with equation r = a sin 2q.
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where a represents a positive real-number constant. Figure 10-11 provides 
a generic example of this type of curve, also informally called a “heart” or 
“valentine.”

PROBLEM 10-2
If we let each radial division in Fig. 10-10 represent 1 unit, what’s the equa-
tion of the spiral as shown?

SOLUTION 
Let’s follow the curve outward, starting at the origin and proceeding coun-
terclockwise, and then look at the radii for several specific angles:

• When p  = o/2, we have r = 1
• When p  = o, we have r  = 2
• When p  = 3o/2, we have r = 3
• When p  = 2o, we have r = 4
• When p  = 5o/2, we have r = 5

PROBLEM 
If we let each radial division in Fig. 10-10 represent 1 unit, what’s the equa-
tion of the spiral as shown?

PROBLEM 
If we let each radial division in Fig. 10-10 represent 1 unit, what’s the equa-

SOLUTION 
Let’s follow the curve outward, starting at the origin and proceeding coun-
terclockwise, and then look at the radii for several specific angles:

SOLUTION 
Let’s follow the curve outward, starting at the origin and proceeding coun-

✔

Figure 10-10  • Polar graph of a spiral; illustration for 
Problem 10-2.
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We can solve for a by substituting the foregoing number pairs in the gen-
eral equation for the spiral. Actually, one point will suffice! We know that 
the point (p ,r) = (o,2) lies on the spiral, and that’s all we need. We have

r = ap

Substituting 2 in place of r and o in place p, we obtain

 2 = ao

When we divide through by o, we get

 2/o = a

Now we know that a = 2/o, so the equation of the spiral must be

 r = (2/o)p

or, without parentheses,

r = 2p /o

PROBLEM 10-3
If we let each radial division in Fig. 10-11 represent 1 unit, what’s the equa-
tion for the cardioid as shown?

PROBLEM 
If we let each radial division in Fig. 10-11 represent 1 unit, what’s the equa-
tion for the cardioid as shown?

PROBLEM 
If we let each radial division in Fig. 10-11 represent 1 unit, what’s the equa-

Figure 10-11  • Polar graph of a cardioid; illustration for 
Problem 10-3.
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SOLUTION 
Note that if p  = 0, then r = 4. Let’s solve for the constant in the general equa-
tion by “plugging” this number pair into that equation. Once again, the 
general equation is

 r = 2a (1 + cos p )

We know that (p,r) = (0,4), so we have

 4 = 2a (1 + cos 0)

Because cos 0 = 1, we can simplify the above equation to

 4 = 2a (1 + 1)

and further to

 4 = 4a

Dividing through by 4, we get

 1 = a

Now we know that a = 1, so the equation of the cardioid of Fig. 10-11 is

 r = 2 (1 + cos p )

or, without parentheses,

 r = 2 + 2 cos p

Compression and Conversion
Let’s briefly examine a nonstandard coordinate system that can (at least) 
stimulate the imagination. Then we’ll learn how to convert coordinate values 
between the polar plane and the Cartesian plane.

Geometric Polar Plane
Figure 10-12 shows a polar plane with a peculiar nonlinear radial scale: It’s 
graduated geometrically instead of arithmetically (the usual case). The point 

SOLUTION 
Note that if 

✔



266        g e o m e t r y   Demystified

corresponding to 1 on the r axis lies halfway between the origin and the outer 
periphery, which we label as ∞ (the “infinity” symbol). We place the points for 
radii of 2, 3, 4, and so on halfway between previous positive integer points and 
the outer periphery. In this way, we can portray the entire polar coordinate 
plane within an open circle of finite radius. The dashed circle at the outer 
extreme tells us that we do not actually define the value r = ∞.

We can expand or compress the radial scale of our infinite polar coordinate 
(IPC) system if we multiply or divide all the values on the r axis by a constant. 
This sort of modification allows us to plot a wide variety of relations and func-
tions, minimizing distortion in particular regions of interest. All versions of the 
IPC introduce distortion into graphs that we draw. We observe the greatest 
distortion (relative to the conventional polar coordinate plane) near the periph-
ery, and we observe the least distortion near the origin.

When we create an IPC system, we can use the same angular scale as we do with 
the ordinary polar coordinate plane. In Fig. 10-12, these angles appear in radians.

TIP   The foregoing “geometric axis compression” scheme also works with the axes 
of rectangular coordinates in two or three dimensions. You’ll rarely (if ever) 
encounter schemes such as these in common mathematical literature, but they 
can provide “views to infinity” that other coordinate systems cannot do.

F i g u r e 10-12  • A polar coordinate plane with a  
“geometrically compressed” radial axis.
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Coordinate Conversions
Now that we’ve had a “glimpse of infinity,” let’s return to ordinary polar coordi-
nates. Figure 10-13 shows a point P = (x0,y0) = (q0,r0) graphed on superimposed 
Cartesian and polar coordinate planes. If we know the Cartesian coordinates, we 
can convert to polar coordinates using the following formulas:

	 q0 = arctan (y0/x0) if x0 > 0	

	 q0 = 180º + arctan (y0/x0) if x0 < 0 (for q0 in degrees)	

	 q0 = π + arctan (y0/x0) if x0 < 0 (for q0 in radians)	

	 r0 = (x0
2 + y0

2)1/2	

We can’t have x0 = 0 because that value produces an undefined quotient. If 
a value of q0 thus determined happens to be negative, we can add 360º or 2π 
rad to get the “legitimate” value.

Figure 10-13  • Conversion between polar and Cartesian (rectangular) 
coordinates. Each radial division represents 1 unit. Each division on the  
x and y axes also represents 1 unit.
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We can convert polar coordinates to Cartesian coordinates using the simpler 
formulas

 x0 = r0 cos q0 

and

 y0 = r0 sin q0 

Relation Conversions
We can use the foregoing formulas, in more generalized forms, to convert 
Cartesian-coordinate relations to polar-coordinate relations and vice versa. The 
generalized Cartesian-to-polar relation-conversion formulas appear as follows:

 q = arctan (y/x) if x > 0 `

 q = 180º + arctan (y/x) if x < 0 (for q in degrees) 

 q = π + arctan (y/x) if x < 0 (for q in radians) 

 r = (x2 + y2)1/2 

The generalized polar-to-Cartesian relation-conversion formulas are

 x = r cos q	

and

 y = r sin q	

tIP   When you convert from polar to Cartesian coordinates or vice versa, a rela-
tion that’s a function in one system might constitute a function in the other 
system as well—but not always. Make up a few examples and see what happens 
in each case.

PROBLEM 10-4
Consider the point (p0,r0) = (135ç,2) in polar coordinates. What’s the 
ordered-pair (x0,y0) representation of this point in Cartesian coordi-
nates, accurate to three decimal places?

SOLUTION 
Use the conversion formulas above for specific coordinate values. Once 
again, they are

 x0 = r0 cos p0

PROBLEM 
Consider the point (
ordered-pair (
nates, accurate to three decimal places?

PROBLEM 
Consider the point (

SOLUTION 
Use the conversion formulas above for specific coordinate values. Once 
again, they are

SOLUTION 
Use the conversion formulas above for specific coordinate values. Once 

✔
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and

	 y0 = r0 sin p0

Plugging in the numbers produces the following values, rounded off to 
three decimal places:

	 x0 = 2 cos 135ç

	 = 2 ë (–0.707)

	 = –1.414

and

	 y0 = 2 sin 135ç

	 = 2 ë 0.707

	 = 1.414

Therefore, the coordinates of the point in the Cartesian plane are

	 (x0,y0) = (–1.414,1.414)

The Navigator’s Way
Navigators and military people use a form of polar coordinate plane similar to 
the one that mathematicians favor, except that the angle expression goes in the 
opposite direction. The radius is usually called the range, and real-world units 
are commonly specified, such as meters (m) or kilometers (km). The angle, or 
direction, is usually called the azimuth, bearing, or heading. We express this angle 
in degrees clockwise from north. Figure 10-14 shows the basic system. We sym-
bolize the azimuth as a (the lowercase Greek alpha), and the range as r.

What Does “North” Mean?
At any point on the earth’s surface, we have two distinct ways of defining 
“north,” or 0º. The more accurate, preferred, and generally accepted stan-
dard uses geographic north, also known as true north. That’s the direction in 
which we must travel over the surface if we want to follow the shortest 
possible route to the north geographic pole. The less accurate standard uses 
magnetic north, the direction indicated by the needle in a hiker’s or mariner’s 
magnetic compass.
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still struggling
For most locations on the earth’s surface, some difference exists between 
geographic north and magnetic north. This difference, measured in degrees, is 
called the magnetic declination, or sometimes simply the declination. Navigators 
in “the olden days” had to know the magnetic declination for their location 
whenever they couldn’t use the stars to determine geographic north. nowadays, 
most navigators have access to electronic navigation systems such as the Global 
Positioning System (GPs) that render the magnetic compass irrelevant—provided 
that all the hardware and software work properly! even today, oceangoing 
vessels still have magnetic compasses on board in case of a failure of the more 
sophisticated equipment.

?

Figure 10-14  • The navigator’s polar coordinate plane. We express the bear-
ing a in degrees and the range r in real-world units.
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Strict Restrictions
In so-called navigator’s polar coordinates (NPC), we can never have a negative 
value for the range. This constraint reflects the fact that in the “real world,” 
nothing can lie any closer to us than the point where we stand! No navigator 
talks about traveling –20 kilometers on a heading of 270º, for example, when 
they really mean that they want to go 20 kilometers on a heading of 90º.

When we work out complicated navigational problems, we’ll sometimes 
derive a negative value for the range. In a case of that sort, we should multiply 
the derived negative value of r by –1 (thereby making it positive with the same 
absolute value), and we should increase or decrease the value of a by 180º so 
that the azimuth remains at least 0º but less than 360º.

The azimuth, bearing, or heading in NPC must likewise conform to certain 
values. The smallest possible value of a is 0º, representing north. As we turn 
clockwise (as a bird might see it from some vantage point high above us), the 
values of a increase through 90º (east), 180º (south), 270º (west), and ulti-
mately approach, but never reach, 360º (north again).

We can put the above restrictions into equation form quite simply: When-
ever we use the NPC system of point location, we must have

0º ≤ a < 360º

and

	 r ≥ 0	

Mathematician’s Polar versus Navigator’s Polar
Once in awhile, we’ll want to convert from mathematician’s polar coordinates 
(MPC), which constitutes our default system, to NPC, or vice versa. The radius 
of a particular point, r0, has exactly the same meaning in both systems, so that 
conversion process is trivial! However, the angle definitions differ between the 
two systems.

If we know the direction angle q0 of a point in MPC and we want to find the 
equivalent azimuth angle a0 in NPC, we must make sure that we express q0 in 
degrees, not radians. Then, depending on the value of q0, we can use the conver-
sion formulas

	 a0 = 90º – q0 if 0º ≤ q0 ≤ 90º	

or

	 a0 = 450º – q0 if 90º < q0 < 360º	
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If we know the azimuth a0 of a point in NPC and we want to find the 
equivalent direction angle q0 in MPC, then we can use one or the other of the 
following conversion formulas, depending on the value of a0:

	 q0 = 90º – a0 if 0º ≤ a0 ≤ 90º 

or

	 q0 = 450º – a0 if 90º < a0 < 360º 

Navigator’s Polar versus Cartesian
Suppose that we want to convert the position of a particular point from NPC 
to Cartesian coordinates. Here are the conversion formulas for translating the 
coordinates for a point (a0,r0) in NPC to a point (x0,y0) in the Cartesian 
xy-plane:

 x0 = r0 sin a0 

and

 y0 = r0 cos a0 

These formulas resemble the ones that we would use to convert MPC to 
Cartesian coordinates, except that the sine and cosine functions apply to dif-
ferent angles.

In order to convert the coordinates of a point (x0,y0) in Cartesian coordinates 
to a point (a0,r0) in NPC, we can use the following formulas:

 a0 = arctan (x0/y0) if y0 > 0 

 a0 = 180º + arctan (x0/y0) if y0 < 0 

 r0 = (x0
2 + y0

2)1/2 

 

still struggling
We can’t have y0 = 0 in the foregoing situation, because that would produce an 
undefined quotient. If a value of a0 thereby determined turns out negative, we 
can add 360º to get the “legitimate” value.

?
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PROBLEM 10-5
Imagine that a radar display uses NPC to indicate the presence of a hover-
ing object at a bearing of 300ç and a range of 40 kilometers. If we say that 
a kilometer equals a “unit” by default, what are the coordinates (p0,r0) of 
this object in MPC? Express p0 in both degrees and radians.

SOLUTION 
We know the NPC coordinates as (`0,r0) = (300ç,40). The value of r0, the 
radius, equals the range, in this case 40 kilometers. As for the angle p0, we 
can recall the conversion formulas given above. In this case, because `0 is 
greater than 90ç and less than 360ç, we have

p0 = 450ç – `0

 = 450ç – 300ç

= 150ç

It follows that

 (p0,r0) = (150ç,40)

To express p0 in radians, recall that there are 2o rad in a full 360ç circle or o 
rad in a 180ç angle. Note that 150ç equals exactly 5/6 of 180ç. Therefore

 p0 = 5o/6 rad 

so we can say that

 (p0,r0) = (150ç,40)

= (5o/6,40)

tIP   We can leave the “rad” off the angle designator in the foregoing situation. 
When we see no units specified for the measure of an angle, and if the figure 
contains some multiple or fraction of o , we can assume that radians are intended 
by default.

PROBLEM 10-6
Imagine that you’re traveling on an archeological expedition, and you 
unearth a stone tablet with a treasure map chiseled on its face. The map 
says “You are here” next to an X, and then says, “Go north 40 paces and then 

PROBLEM 
Imagine that a radar display uses NPC to indicate the presence of a hover-
ing object at a bearing of 300
a kilometer equals a “unit” by default, what are the coordinates (

PROBLEM 
Imagine that a radar display uses NPC to indicate the presence of a hover-

SOLUTION 
We know the NPC coordinates as (
radius, equals the range, in this case 40 kilometers. As for the angle 
can recall the conversion formulas given above. In this case, because 

SOLUTION 
We know the NPC coordinates as (

✔

PROBLEM 
Imagine that you’re traveling on an archeological expedition, and you 
unearth a stone tablet with a treasure map chiseled on its face. The map 
says “You are here” next to an X, and then says, “Go north 40 paces and then 

PROBLEM 
Imagine that you’re traveling on an archeological expedition, and you 
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west 30 paces.” Let the westerly compass direction correspond to the 
negative x axis of a Cartesian coordinate system. Let east correspond 
to the positive x axis, south correspond to the negative y axis, and 
north correspond to the positive y axis. Also suppose that you let one 
“pace” represent 1 “unit” of radius in the NPC system and also 1 “unit” 
on either axis in the Cartesian system. If you’re ambitious enough to 
look for the treasure and lazy enough so you insist on walking in a 
straight line to reach it, how many paces should you travel, and in what 
direction, in NPC? Determine your answer to the nearest degree and to 
the nearest pace.

SOLUTION 
Determine the ordered pair in Cartesian coordinates that corresponds to 
the imagined treasure site. Define the origin as the spot where you 
unearthed the map. If you let (x0,y0) represent the point on the earth’s 
surface beneath which the treasure supposedly exists, then “40 paces 
north” translates to y0 = 40, and “30 paces west” translates to x0 = –30. 
Therefore

 (x0,y0) = (–30,40)

Because y0 > 0, you can use the following formula to determine the 
heading `0:

 `0 = arctan (x0/y0)

= arctan (–30/40)

 = arctan –0.75

 = –37ç

To get this angle into the standard form, you must add 360ç, obtaining

`0 = –37ç + 360ç

 = 360ç – 37ç

 = 323ç

To find the value of the range r0, you can use the distance formula

 r0 = (x0
2 + y0

2)1/2

SOLUTION 
Determine the ordered pair in Cartesian coordinates that corresponds to 
the imagined treasure site. Define the origin as the spot where you 
unearthed the map. If you let (

SOLUTION 
Determine the ordered pair in Cartesian coordinates that corresponds to 

✔
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Plugging in x0 = –30 and y0 = 40, you get

	 r0 = [(–302) + 402]1/2

	 = (900 + 1600)1/2

	 = 25001/2

	 = 50

You have now determined the NPC coordinates as

	 (`0,r0) = (323ç,50)

You should walk 50 paces, approximately north by northwest. Then, if you 
have a shovel, you can go ahead and dig. Good luck!

Alternative 3D Coordinates
Let’s look briefly at the basics of the most common coordinate systems that 
scientists, navigators, and mathematicians use when working on the surface of 
the earth or in “real-world” three-space.

Latitude and Longitude
We can use latitude and longitude angles to uniquely define the position of any 
point on the surface of a sphere. Figure 10-15A illustrates the system for defin-
ing or locating geographic points on the earth’s surface. The polar axis connects 
two specified points that lie at antipodes (opposing surface locations) on 
the sphere. We assign these points latitude values of q = 90º (north pole) and 
q = –90º (south pole). The equatorial axis runs outward from the center of the 
sphere at a right angle to the polar axis. We assign this axis the longitude value 
of f = 0º.

We can express latitude q in the positive sense (north) or the negative sense 
(south) with respect to the plane containing the equator. Longitude f is mea-
sured counterclockwise (positively) and clockwise (negatively) relative to the 
equatorial axis. We restrict the ranges of the angle values to

–90º ≤ q ≤ 90º

for latitude, and

–180º < f ≤ 180º
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Figure 10-15  • A. Latitude and longitude coordinates for locating points on 
the earth’s surface. B. Declination and right ascension coordinates for locating 
points in the sky.
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for longitude. The latitude range includes the positive and negative extremes, 
but the longitude range includes only the positive extreme.

TIP   On the earth’s surface, the half-circle connecting the 0ç  longitude line with 
the poles passes through the town of Greenwich, England (not Greenwich Village 
in New York!) and is known as the Greenwich meridian or the prime meridian. 
Longitude angles are defined going east (positive) and west (negative) from the 
prime meridian.

Celestial Coordinates
Celestial latitude and celestial longitude coordinates comprise extensions of the 
earth’s latitude and longitude into the heavens. The set of coordinates that we 
use for geographic latitude and longitude applies to this system as well. An 
object with celestial latitude and longitude coordinates (q,f ) appears at the 
zenith in the sky (directly overhead) from the point on the earth’s surface with 
latitude and longitude coordinates (q,f ).

Declination and right ascension define the positions of objects in the sky rela-
tive to the stars. Figure 10-15B portrays the essence of this system. The declina-
tion angle q is identical to the celestial latitude. (Don’t get celestial declination 
confused with magnetic declination, which we defined earlier in this chapter. 
The two parameters represent entirely different things!) We express the right 
ascension angle f eastward along the celestial equator (a vast, imaginary circle in 
the sky, with the earth at its center, that lies in the same plane as the earth’s 
equator) from the vernal equinox (the position of the sun in the heavens at the 
moment spring begins in the northern hemisphere, usually on March 20 or 21). 
We restrict the angle values to

	 –90º ≤ q ≤ 90º	

and

0º ≤ f < 360º

Note that the declination range includes the positive extreme and the negative 
extreme, but the right ascension range includes only the positive extreme. 
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still struggling
Astronomers sometimes use a specialized, rather peculiar scheme to define and 
measure the values of right ascension. Instead of expressing the angles in 
degrees or radians, they specify units of hours, minutes, and seconds based on 
24 hours in a complete circle (corresponding to the 24 hours in a day). In that 
system, each hour of right ascension equals 15º (1/24 of a full circle). If that isn’t 
confusing enough, minutes and seconds of right ascension differ from the 
chronological minutes and seconds that we encounter in everyday life, and also 
from the minutes and seconds of arc in the conventional geometric sense. one 
minute of right ascension equals 1/60 of an hour or 1/4 of a degree. one second 
of right ascension equals 1/60 of a minute or 1/240 of a degree. nevertheless, in 
the case of declination angles, 1 minute equals 1/60 of an angular degree and 
1 second equals 1/60 of a minute, or 1/3600 of a degree, the same as minutes 
and seconds of arc in the conventional geometric sense.

?

Cylindrical Coordinates
Figure 10-16 shows two systems of cylindrical coordinates for specifying the 
positions of points in three-space.

In the system of Fig. 10-16A, we start with Cartesian xyz-space. Then we 
define an angle q in the xy-plane, in degrees or radians (but usually radians) turn-
ing counterclockwise from the positive x axis, which we call the reference axis. 
Given a point P in space, we consider its projection P′ onto the xy-plane. We 
specify the position of P with the ordered triple (q,r,h), defined as follows:

The value of •	 q tells us the measure of the angle going counterclockwise 
from the reference axis to P ′ in the xy-plane.

The value of •	 r represents the distance or radius from the origin straight 
out to P′.

The value of •	 h represents the distance, called the altitude or height, of P 
above the xy-plane. (The point P lies below the xy-plane if and only if 
h < 0.)

Mathematicians, as well as some engineers and scientists, use this system of 
cylindrical coordinates.
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Figure 10-16  • A. Mathematician’s cylindrical coordi-
nates for defining points in three-space. B. Astronomer’s 
and navigator’s cylindrical coordinates for defining 
points in three-space.

In the system shown by Fig. 10-16B, we again start with Cartesian xyz-space. 
The xy-plane corresponds to the surface of the earth in the vicinity of the 
origin, and the z axis runs straight up (positive z values) and straight down 
(negative z values). The angle q is defined in the xy-plane in degrees (but never 
radians) turning clockwise from the positive y axis, which corresponds to 



280        g e o m e t r y   Demystified

geographic north. Given a point P in space, we consider its projection P′ onto 
the xy-plane. We specify the position of P with the ordered triple (q,r,h), defined 
as follows:

The value of •	 q tells us the measure of the angle going clockwise from 
geographic north to P′ in the xy-plane.

The value of •	 r represents the distance (called the range) from the origin 
to P′.

The value of •	 h represents the altitude of P above the xy-plane. (The point 
P lies below the xy-plane if and only if h < 0.)

Navigators and aviators use this system of cylindrical coordinates to define or 
locate points in space over a limited region of the earth’s surface. The system 
only works over a geographic region small enough so that the earth’s curvature 
does not significantly affect the values.

Spherical Coordinates
Figure 10-17 shows three systems of spherical coordinates for defining points in 
space. The first two are used by astronomers and aerospace scientists, while the 
third one is of use to navigators and surveyors.

In the scheme of Fig. 10-17A, we specify the location of a point P with the 
ordered triple (q,f,r), defined as follows:

The value of •	 q tells us the declination of P.

The value of •	 f tells us the right ascension of P.

The value of •	 r tells us the distance (called the radius) from the origin 
to P.

In this example, we express the angles in degrees (except in the case of the 
astronomer’s version of right ascension, which is expressed in hours, min-
utes, and seconds as defined earlier). Alternatively, we can express the angles 
in radians. This system remains fixed relative to the stars, even as the earth 
rotates.

Instead of declination and right ascension, the variables q and f can represent 
celestial latitude and celestial longitude, respectively, as shown in Fig. 10-17B. 
This system remains fixed relative to the earth. Therefore, the positions of 
celestial objects constantly change with time as the earth “turns underneath the 
heavens.”
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Figure 10-17  • A. Spherical coordinates for defining points in three-space, 
where the angles represent declination and right ascension. B. Spherical coordi-
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tude and longitude. 

r

P

North celestial pole

South celestial pole

B

Plane
of equator

Greenwich
meridian

φ = 90o90o

θ = 90o

φ = 0o

θ = 90o–

φ = –90o

φ
= 180o



282        g e o m e t r y   DemystifieD

There’s yet another alternative: q can represent elevation (the angle above 
the horizon) and f can represent the azimuth (bearing or heading), measured 
clockwise from geographic north for a specific location on the earth’s surface. 
In this case, the reference plane corresponds to the horizon, not the equator, 
and the elevation can range between, and including, –90º (the nadir, or the 
point directly underfoot) and +90º (the zenith, or the point directly overhead). 
Figure 10-17C illustrates this system. Some people prefer to express the angle 
q with respect to the zenith, rather than with respect to the horizon. In that 
case, the angular range becomes 0º ≤ q ≤ 180º.

PROBLEM 10-7
What are the celestial latitude and longitude of the sun on the first day of 
spring in the northern hemisphere, when the sun lies at the vernal equinox 
in the plane of the earth’s equator?

SOLUTION 
The celestial latitude of the sun at the vernal equinox equals 0ç, which 
equals the latitude of the earth’s equator. The celestial longitude depends 
on the time of day. It’s 0ç (the Greenwich meridian) at high noon in 

PROBLEM 
What are the celestial latitude and longitude of the sun on the first day of 
spring in the northern hemisphere, when the sun lies at the vernal equinox 

PROBLEM 
What are the celestial latitude and longitude of the sun on the first day of 

SOLUTION 
The celestial latitude of the sun at the vernal equinox equals 0
equals the latitude of the earth’s equator. The celestial longitude depends 

SOLUTION 
The celestial latitude of the sun at the vernal equinox equals 0

✔
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Figure 10-17  • C. spherical coordinates for defining points in three-space, 
where the angles represent elevation (angle above the horizon) and 
azimuth (also called bearing or heading).
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Greenwich, England or any other location at 0ç longitude. From there, the 
celestial longitude of the sun proceeds west at the rate of 15ç per hour of 
time (360ç per 24-hour solar day).

PROBLEM 10-8
Imagine that you stand in a huge, perfectly flat field and fly a kite on a 
string 500 meters long. The wind blows directly from the east. The kite hov-
ers at an altitude of 400 meters above the ground. If your body represents 
the coordinate origin and if you let the distance units of your system equal 
1 meter, what’s the position of the kite in the cylindrical coordinate 
scheme preferred by navigators and aviators?

SOLUTION 
You can define the position of the kite with the ordered triple (p,r,h), where 
p represents the angle measured clockwise from geographic north to a 
point directly under the kite, r represents the distance from the origin to a 
point on the ground directly under the kite, and h represents the altitude 
of the kite above the ground. Because the wind blows from the east, you 
know that a point on the surface directly under the kite must lie west of the 
origin (represented by your body). Therefore p  = 270ç. The kite hovers at 
an altitude of 400 meters, so h = 400. You can find the value of r using the 
theorem of Pythagoras. You know that h = 400 units and the kite string 
measures 500 units in length, so 

 r 2 + 4002 = 5002

Expanding the squares of the numbers, you get

 r 2 + 160,000 = 250,000

You can subtract 160,000 from each side to obtain

 r2 = 250,000 – 160,000

which simplifies to

 r2 = 90,000

PROBLEM 
Imagine that you stand in a huge, perfectly flat field and fly a kite on a 
string 500 meters long. The wind blows directly from the east. The kite hov-

PROBLEM 
Imagine that you stand in a huge, perfectly flat field and fly a kite on a 

SOLUTION 
You can define the position of the kite with the ordered triple (
p represents the angle measured clockwise from geographic north to a p represents the angle measured clockwise from geographic north to a p

SOLUTION 
You can define the position of the kite with the ordered triple (

✔
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and finally to

	 r = (90,000)1/2

	 = 300

Therefore, in the system of cylindrical coordinates preferred by navigators 
and aviators, you can express the position of the kite in three-space as

	 (p,r,h) = (270ç,300,400)
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 Figure 10-18 is a polar-coordinate graph showing a particular point P. What’s the 
x coordinate of P in the Cartesian xy-plane?

	A.	 −4
	 B.	 −2
	C.	 −81/2

	D.	 −π/2

	 2.	 In the situation of Fig. 10-18, what’s the y coordinate of point P in the Cartesian 
xy-plane?

	A.	 −4
	 B.	 −2
	C.	 −81/2

	D.	 −π/2

0π

π/2

π/23

(5π/4,4)P =

Figure 10-18  • Illustration for Quiz Questions 1 through 4.
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	 3.	 In the graph of Fig. 10-18, suppose that we call the coordinate origin point Q. 
What’s the equation of the open-ended ray QR in the polar coordinate system 
indicated here?

	A.	 q = 5π/4
	 B.	 q = rπ/4
	C.	 r = −π/2
	D.	 r = 4π/q

	 4.	 Suppose that you draw a Cartesian xy-plane coordinate grid directly on top of 
the polar coordinate grid in Fig. 10-18. Then you connect points Q and R with a 
straight line PQ that runs off forever in both directions. What’s the equation of 
line PQ in the Cartesian xy-plane? Here’s a hint: You’ll need some of the knowl-
edge that you gained in Chap. 6, along with what you learned in this chapter.

	A.	 x = 4
	 B.	 y = 5π/4
	C.	 y = 4x
	D.	 y = x

	 5.	 Which of the following graphical objects portrays a true mathematical function 
of x in the Cartesian xy-plane but does not represent a true mathematical func-
tion of p in MPC? Here’s a hint: You’ll need some of the knowledge that you 
gained in Chap. 6, along with what you learned in this chapter.

	A.	 A straight, vertical line that passes through the coordinate origin
	 B.	 A straight, horizontal line that passes through the coordinate origin
	C.	 A circle that does not contain the coordinate origin
	D.	 A straight, horizontal line that does not pass through the coordinate origin

	 6.	 Figure 10-19 shows a point P in a cylindrical three-space coordinate system. The 
angle coordinate p equals 140ç, the radius coordinate r equals 6 units, and the 

x

y

P

P'

z

6 units
Q
Origin

8 units

140o

Figure 10-19  • Illustration for Quiz Questions 6 and 7.
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altitude or height coordinate h equals 8 units as shown. We call the origin point 
Q. What’s the length of line segment PQ, representing the direct distance in 
three-space between point P and the origin?

	A.	T he square root of 48 units
	 B.	 10 units
	C.	 12 units
	D.	 14 units

	 7.	 Suppose that in the situation of Question 6 and Fig. 10-19, we add 90ç to the 
direction angle, thereby obtaining the coordinates (p,r,h) = (230ç,6,8) for point 
P. What happens to the length of line segment PQ in this case? 

	A.	 It becomes 230/140 as great.
	 B.	 It becomes 140/230 as great.
	C.	 It does not change.
	D.	 We need more information to answer this question.

	 8.	 One minute of right ascension, as an astronomer would define it, represents an 
angle equivalent to

	A.	 1/1440 of a full circle.
	 B.	 1/720 of a full circle.
	C.	 1/(4π) of a full circle.
	D.	 1/π of a full circle.

	 9.	 Figure 10-20 shows a point P in a spherical three-space coordinate system where 
the angle p represents celestial latitude, the angle e represents right ascension 
(in degrees), and the radius r represents the distance from the origin, where you 
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Plane W
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Figure 10-20  • Illustration for Quiz Questions 9 and 10.
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stand as you observe the heavens. What does “Direction V” represent, as 
shown?

	A.	T he zenith as you see it
	 B.	T he north geographic pole
	C.	T he celestial equator
	D.	T he north celestial pole

	 10.	 In the situation of Question 9 and Fig. 10-20, what does W represent?
	A.	 The plane containing the earth’s equator
	 B.	 The plane containing the earth’s axis
	C.	T he plane representing the horizon
	D.	 The plane representing the earth’s orbit around the sun
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c h a p t e r  11
Hyperspace and 
Warped Space

Some people can easily envision hyperspace (space of more than three dimen-
sions) and warped space; others can’t. Nevertheless, we can define them in 
geometric terms whether we can “see” them in our “mind’s eyes” or not. Let’s 
explore these esoteric concepts.

C H A P T e r O B J e C T i V e S

In this chapter, you will

define Cartesian space of more than three dimensions (hyperspace).• 
Learn how time-space “works.”• 
Quantify the relationship between time and distance.• 
envision simple four-dimensional objects.• 
Calculate distances in hyperspace.• 
modify euclid’s fifth postulate.• 
take imaginary journeys in warped space.• 
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Cartesian n-Space
As we have seen, the rectangular (or Cartesian) coordinate plane derives from 
two perpendicular number lines that intersect at their zero points. The lines 
form the coordinate axes, often called the x axis and the y axis. We can name 
or identify any point in this system as an ordered pair of the form (x,y). We 
call (0,0) the origin. We can define Cartesian three-space using three number 
lines that intersect at a single point corresponding to the zero point of each 
line, and such that each line runs perpendicular to the plane determined by 
the other two lines. The lines form axes, representing variables such as x, y, and 
z. Points are defined by ordered triples of the form (x,y,z). The origin is (0,0,0). 
Let’s extrapolate the Cartesian-coordinate concept into more than three 
dimensions.

Four Spatial Dimensions
We can set up a system of rectangular coordinates in four dimensions—Cartesian 
four-space or 4D space—using four number lines that intersect at a single 
point corresponding to the zero point of each line, and such that each of the 
lines runs perpendicular to the other three. The lines form axes, representing 
variables such as w, x, y, and z. Alternatively, we can label the axes x1, x2, x3, and 
x4. We can name or identify individual points as ordered quadruples of the form 
(w,x,y,z) or (x1,x2,x3,x4), defining the origin as the point represented by 
(0,0,0,0).

TIP   As with the variables or numbers in ordered pairs and triples, we never put 
any spaces after the commas when we write an ordered quadruple.

At first you might think, “Cartesian four-space is easy to imagine,” and draw 
a diagram such as Fig. 11-1 to illustrate it. But when we try to plot points in this 
system, we encounter a problem. We can’t define points in this rendition of 
four-space without ambiguity. There aren’t enough points in 3D space to pair 
off one-to-one with all possible values of the ordered quadruple (w,x,y,z). In 
three-space as we know it, we can’t arrange four number lines such as those 
shown in Fig. 11-1 so that they intersect at a single point with each line running 
perpendicular to all three of the others.

Imagine one of the points in a room where two adjacent walls meet the floor. 
Unless the building has an unusual architecture or has begun to settle (sag) 
because of earth movement, this intersection defines three straight line segments. 
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One of the segments runs up and down between the two walls, and the other two 
run horizontally between the two walls and the floor. The line segments are all 
mutually perpendicular at the point where they come together (where the walls 
meet the floor). The lines containing the three line segments can represent the x, 
y, and z axes in Cartesian three-space coordinate system.

Now try to envision a fourth line segment that has one end at the intersection 
point of the existing three line segments, and that runs perpendicular to them 
all. Such a line segment can’t exist in ordinary space! But in four dimensions, or 
hyperspace, it can exist.

TIP   Mathematically, we can work with Cartesian four-space, even though most 
of us can’t directly envision it. As things work out, we need four dimensions to 
completely describe points, objects, and events in the “real universe.” Albert 
Einstein was one of the first scientists to put forth the idea that the “fourth dimen-
sion” exists in physical reality (as opposed to residing as abstract notions in 
mathematicians’ minds).

z

z+

y+

x

y

x+

w+

w–

All four axes
are mutually
perpendicular

Origin
(0,0,0,0)

Figure 11-1  • Concept of Cartesian four-space. The w, x, y, and z axes are all mutually 
perpendicular at the origin point (0,0,0,0).
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Time-Space
You’ve seen time lines in history books. You’ve seen them in graphs of quantities 
such as temperature, barometric pressure, or stock market prices plotted as 
functions of time. Isaac Newton, one of the most renowned mathematicians in 
the history of the Western world, imagined time as “flowing smoothly and unal-
terably.” Time, according to so-called classical physics or Newtonian physics, does 
not depend on space, nor does space depend on time.

Wherever you are, however fast or slow you travel, and no matter what else 
you do, the “cosmic clock” (according to classical physics) keeps ticking at the 
same absolute rate. In everyday scenarios, this model works well; its imperfec-
tions are not evident to nonscientists. However, Newton’s paradigm represents 
an oversimplification. It can’t completely describe what really happens in the 
cosmos on a large scale, at high relative speeds, or in intense gravitational fields.

Let’s imagine a time line passing through 3D space, “perpendicular” to all 
three spatial axes such as the intersections between two walls and the floor of 
a room. The time axis passes through three-space at some chosen origin point, 
such as the point where two walls meet the floor in a room, or the center of the 
earth, or the center of the sun, or the center of our galaxy.

In four-dimensional (4D) Cartesian time-space (or simply time-space), 
each point follows its own time line. Assuming that none of the points 
moves with respect to the origin, all the points follow time lines that run 
“parallel” to all the other time lines, and all the time lines run “perpendicular” 
to three-space. Figure 11-2 illustrates this concept in dimensionally reduced 
form (with one of the spatial dimensions taken away, so that three-space 
shows up as a Euclidean plane).

Position versus Motion
Imagine that we choose the sun as the origin point for a vast Cartesian three-
space coordinate system. Suppose that the x and y axes lie in the plane of the 
earth’s orbit around the sun. Also, suppose that the positive x axis runs from 
the sun through the earth’s position in space on March 21 and thence onward 
into deep space (roughly toward the constellation Virgo). In this scenario

The negative •	 x axis runs from the sun through the earth’s position on 
September 21 (roughly toward the constellation Pisces).

The positive •	 y axis runs from the sun through the earth’s position on 
June 21 (roughly toward the constellation Sagittarius).
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The negative •	 y axis runs from the sun through the earth’s position on 
December 21 (roughly toward the constellation Gemini).

The positive •	 z axis runs from the sun toward the north celestial pole (in the 
direction of Polaris, the North Star).

The negative •	 z axis runs from the sun toward the south celestial pole 
(where there’s no prominent constellation).

Let’s say that each division on the coordinate axes represent 1/4 of an astro-
nomical unit (AU), where 1 AU equals the mean distance of the earth from the 
sun (about 150,000,000 kilometers). Figure 11-3A shows our new “deep-space 
coordinate” system, with the earth on the positive x axis, at a distance of 1 AU. 
The coordinates of the earth at this time are (1,0,0).

Time axis

Toward future

Toward past

Space

Figure 11-2  • Time as a fourth dimension. We illustrate three-space 
in dimensionally reduced form as a plane. Each stationary point in 
space follows a time line “perpendicular” to 3D space and “parallel” to 
the time axis.
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Figure 11-3  • A. A Cartesian coordinate system for the position of the earth in 3D 
space. B. A dimensionally reduced Cartesian system for rendering the path of the 
earth through 4D time-space.
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Of course, the earth doesn’t remain fixed in space. It orbits the sun. Let’s 
take away the z axis in Fig. 11-3A and replace it with a time axis called t. Now 
let’s think hard: What does the earth’s path look like in xyt-space if we let 
each increment on the t axis represent 1/4 of a year (90º of revolution around 
the sun)?

The earth’s path through this dimensionally reduced time-space contin-
uum does not constitute a straight line. Instead, when we follow the earth 
over time, we get a helix as shown in Fig. 11-3B. The earth’s distance from 
the t axis remains nearly constant (it varies slightly because the earth’s orbit 
around the sun does not form a perfect circle, but let’s neglect that little 
detail). Every 1/4 of a year, the earth advances 90º, or one-quarter of a revo-
lution, around the helix, and also moves forward by one increment along the 
time axis.

Some Hyper Objects
Now that we’re no longer confined to 3D space, let’s put our newly empowered 
imaginations to work. What characteristics do 4D objects and events have? 
How about objects and events in five dimensions (5D) and beyond?

Time as Displacement
When we consider time as a dimension, we need a standard—some sort of 
conversion factor—that relates time to spatial displacement. How many kilo-
meters does 1 second of time comprise? At first, this question seems rather silly, 
akin to asking how many apples equal a gallon of water. But the more we ponder 
the notion, the more sensible it gets: We can relate time and displacement in 
terms of some known, constant speed.

Suppose that someone tells us, “The town of Jimsville is an hour away from 
the town of Joesville.” We’ve all heard people talk like this, and we understand 
what they mean; the statement implies that we travel from one town to the 
other at a certain rate of speed. How fast must we drive a car to get from 
Jimsville to Joesville in an hour? If Jimsville and Joesville lie 50 kilometers from 
each other as measured along a stretch of highway, then we must travel at an 
average speed of 50 kilometers per hour in order to claim that Jimsville is an 
hour away from Joesville. If Jimsville lies 20 kilometers from Janesville, then we 
need only travel at an average speed of 20 kilometers per hour to say that 
Jimsville lies an hour away from Janesville.
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still struggling
do you remember the basic formula in classical physics that relates distance, 
speed, and time? In case you’ve forgotten, it’s

 d = st

where d represents the distance in kilometers that an object travels, s represents 
the object’s speed in kilometers per hour, and t represents the number of hours 
that the object takes to traverse the specified distance. Using this formula, we 
can define time in terms of displacement and vice versa.

?

Universal Speed
The foregoing scheme allows us to convert time to distance in a relative way, 
depending on the speed at which we travel between two points. It’s reasonable 
to ask, “Does any speed exist, some universal conversion factor, with which 
we can relate time and distance in an absolute sense?” According to Albert 
Einstein’s theory of special relativity, the answer is a qualified “Yes.”

The speed of light in a vacuum, commonly denoted c, remains constant 
regardless of the viewpoint (or reference frame) of any observer, as long as that 
observer does not accelerate at an extreme rate or sit in an extreme gravita-
tional field. The constancy of c forms a fundamental principle of the theory of 
special relativity. The value of c lies close to 299,792 kilometers per second; let’s 
round it off to 300,000 kilometers per second.

If d represents the distance between two points in kilometers and t repre-
sents the time in seconds that it takes for a ray of light to travel from one point 
to the other through empty space, then

 d = ct 

= 300,000 t 

According to this model, the moon, which orbits the earth at a distance of 
about 400,000 kilometers, is 1.33 second-equivalents distant from us. The sun is 
about 8.3 minute-equivalents away. The Milky Way galaxy is 100,000 year-
equivalents in diameter. Astronomers call these units light-seconds, light-minutes, 
and light-years. We can also say that any two points in time separated by 1 second, 
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but that occupy the same xyz coordinates in Cartesian three-space, lie 300,000 
kilometer-equivalents apart as defined along the t axis.

At this moment yesterday, if you were in the same location as you now sit, 
your location in time-space was 24 (hours per day) times 60 (minutes per hour) 
times 60 (seconds per minute) times 300,000 (kilometers per second), or 
25,920,000,000 kilometer-equivalents, away from where you are now.

 

still struggling
the above-described way of thinking takes quite a bit of getting-used-to! But 
after awhile, it starts to make a strange sort of sense. Consider this example: you 
might as well try to jump 25,920,000,000 kilometers in a single leap as try to 
change what happened in your own house 24 hours ago. you can no more alter 
history than you can fly through space like a light beam.

?

We can modify the foregoing conversion formula for smaller distances, more 
typical of everyday life. If d represents the distance in kilometers and t repre-
sents the time in milliseconds (units of 0.001 second), then

d = 300 t 

tIP   The above formula also holds for d in meters and t in microseconds (units 
of 0.000001, or 10–6, second), and for d in millimeters (units of 0.001 meter) and 
t in nanoseconds (units of 0.000000001, or 10–9, second), so we can speak of 
meter-equivalents, millimeter-equivalents, microsecond-equivalents, or 
nanosecond-equivalents.

The Four-Cube
Imagine some of the simple, regular polyhedra in Cartesian four-space. What 
are their properties? Think about a four-cube, also known as a tesseract. This is 
an object with several identical 3D hyperfaces, all of which comprise cubes. 
How many vertices does a tesseract have? How many edges? How many 2D 
faces? How many 3D hyperfaces? How can we envision such an object to figure 
out the answers to these questions?
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We can’t make a 4D model of a tesseract out of toothpicks to examine its 
properties, and most people (if any) can’t “see” a tesseract in their “mind’s eyes” 
at all. But we can imagine a cube that appears from nothing, exists for awhile, 
and then disappears, such that it “lives” for a length of time equivalent to the 
length of any of its spatial edges and does not move during its existence. Because 
we’ve defined an absolute relation between time and displacement (the speed 
of light in a vacuum), we can graph a tesseract in which each edge has a length 
of, say, 300,000 kilometer-equivalents. This object is an ordinary 3D cube that 
measures 300,000 kilometers along each edge. It appears at a certain time t0 and 
then disappears precisely 1 second later, at t0 + 1. The sides of the cube each 
measure 1 second-equivalent in length, and the cube “lives” for 300,000 kilometer-
equivalents of time.

Figure 11-4A shows a tesseract in dimensionally reduced form. Each division 
along the x and y axes represents 100,000 kilometers (the equivalent of 1/3 
second), and each division along the t axis represents 1/3 second (the equiva-
lent of 100,000 kilometers). Figure 11-4B portrays the tesseract in another way, 
as two 3D cubes (in perspective) connected by dashed lines representing the 
passage of time.

The Rectangular Four-Prism
A tesseract is a special form of the more general figure, known as a rectangular 
four-prism or rectangular hyperprism. Such an object consists of a 3D rectangular 
prism that abruptly comes into existence, lasts a certain length of time, disap-
pears all at once, and does not move during its “lifetime.” Figure 11-5 shows two 
examples of rectangular four-prisms in dimensionally reduced time-space.

Suppose the height, width, depth, and lifetime of a rectangular hyperprism, 
all measured in kilometer-equivalents, equal h, w, d, and t, respectively. We can 
calculate the 4D hypervolume of this object (call it V4D), in quartic kilometer-
equivalents, as the product

	 V4D = hwdt	

The mathematics works in the same way if we express the height, width, depth, 
and lifetime of the object in second-equivalents. In that case, the 4D hypervolume 
equals the product hwdt in quartic second-equivalents.

Impossible Paths
Certain paths are impossible to follow in Cartesian 4D time-space as we’ve 
defined it here. According to Einstein’s special theory of relativity, nothing can 
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travel faster than the speed of light in free space (a vacuum). This physical law 
restricts the directions in which line segments, lines, and rays can run when they 
represent the trajectories of real objects in motion.

Consider what happens in 4D Cartesian time-space when we switch on a light 
bulb. Imagine that the bulb rests at the origin of a Cartesian coordinate system, 
and nothing but empty space surrounds the bulb for millions of kilometers in 
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+ t

t

A

B

Toward the future

Each spatial division
equals 100,000 kilometers

Each time division
equals 1/3 second

F i g u r e 11-4  • At A, a dimensionally reduced plot of a time-space tesseract. At B,  
another rendition of a tesseract, portraying time as lateral motion.
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every direction. At the instant we close the switch, thereby powering up the light 
bulb, photons (particles of light) emerge from the bulb. In the first few moments, 
the initial, or leading, light travels outward from the bulb in expanding spherical 
paths or fronts. If we dimensionally reduce this situation and graph it, we get an 
expanding circle centered on the time axis, which, as time passes, generates a 
cone as shown in Fig. 11-6. In true 4D space, the actual geometric figure consti-
tutes a hypercone or four-cone. The surface of the four-cone has two spatial dimen-
sions (which portray the surface of a sphere) and one time dimension (which 
portrays the expansion of the sphere). Physicists call it a light cone.

Imagine an object that starts out at the location of the light bulb, and then 
moves away from the bulb immediately when we apply power to the bulb. In 
any real-life physical situation, the object must follow a path that remains 
entirely within the light cone defined by the initial photons from the bulb. 
Figure 11-6 shows one plausible path and one implausible path. If an object 
could travel outside the light cone, that object would move faster than the 
speed of light relative to the bulb—but that’s impossible according to the the-
ory of special relativity.
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F i g u r e  11 - 5  • Dimensionally reduced plots of two rectangular hyperprisms in 
time-space.
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General Time-Space Hypervolume
Imagine an object—any object—in 3D space. Suppose that its spatial volume in 
cubic kilometer-equivalents equals a fixed quantity; let’s call it V3D. Suppose that 
such an object appears from nowhere, lasts a certain length of time t in kilometer-
equivalents, and then ceases to exist. Further imagine that this object does not 
move with respect to us, the observers, at any time during its “lifetime.” In this case, 
we can calculate the object’s 4D time-space hypervolume V4D using the formula

	 V4D = V3D t	

The 4D time-space hypervolume of any object equals its spatial volume mul-
tiplied by its lifetime, provided that we express the time and displacement in 
equivalent units, and as long as the object never moves relative to us.
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when first
switched on

Each spatial division
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Plausible path
(less than the
speed of light)

Implausible path
(greater than the
speed of light)

Figure 11-6  • Dimensionally reduced plot of the leading photons from a light bulb. 
Paths inside the cone represent relative speeds less than c (the speed of light); paths out-
side the cone represent relative speeds greater than c.
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If an object moves, then we must incorporate a “correction factor” in the 
above formula. This factor does not affect things very much as long as the speed 
of the object (call it s) remains small compared with the speed of light c. But if 
s represents a considerable fraction of c, we must modify the above formula to

V4D = V3Dt (1 – s2/c2)1/2 

The correction factor, (1 – s2/c2)1/2, is close to 1 when s equals a small fraction 
of c and approaches 0 as s approaches c. This correction factor derives from the 
special theory of relativity.

In this context, the speed s always represents a relative quantity. It depends 
on the point of view from which an observer witnesses or measures it. If we 
want the term “speed” to have meaning, we must always add the qualifying 
phrase “relative to a certain observer.” In these examples, we envision motion as 
taking place relative to the origin of a 3D Cartesian system, which translates 
into lines, line segments, or rays pitched at various angles with respect to the 
time axis in a 4D time-space Cartesian system.

 

still struggling
If you’re still confused about kilometer-equivalents and second-equivalents, you 
can refer to table 11-1 for reference. Keep in mind that time and displacement 
relate according to the equation

 d = ct

where d represents the displacement (in linear units), t represents the time (in 
time units), and c represents the speed of light in linear units per unit time, as it 
travels through free space. Using this conversion formula, you can “morph” any 
displacement unit into an equivalent time interval and any time interval into an 
equivalent displacement unit.

?

PROBLEM 11-1
How many second-equivalents compose a distance of 1 kilometer?

SOLUTION 
We know that the speed of light equals 300,000 kilometers per second 
(accurate to three significant figures) in free space, so it takes 1/300,000 of 

PROBLEM 
How many second-equivalents compose a distance of 1 kilometer?
PROBLEM 
How many second-equivalents compose a distance of 1 kilometer?

SOLUTION 
We know that the speed of light equals 300,000 kilometers per second 
(accurate to three significant figures) in free space, so it takes 1/300,000 of 

SOLUTION SOLUTION 
We know that the speed of light equals 300,000 kilometers per second 
SOLUTION ✔
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a second for a ray of light to travel 1 kilometer. That’s approximately 
0.00000333 second or 3.33 microseconds. One kilometer therefore repre-
sents 0.00000333 second-equivalent, or 3.33 microsecond-equivalents.

Beyond Four Dimensions
No limit exists as to the number of dimensions that we can define using the 
Cartesian coordinate paradigm. We can “create” spaces having any positive 
whole number of dimensions—10, 20, 100, 200, or whatever! We can incorpo-
rate time as a dimension if we want, but we don’t have to include it.

Cartesian Extrapolations
A system of rectangular coordinates in five dimensions defines Cartesian five-
space. This system has five number lines that serve as coordinate axes, all of 
which intersect at a point corresponding to the zero point of each line, and such 
that each of the lines runs perpendicular to the other four. We can call the 

TABLE 11-1  displacement and time equivalents in free space (a vacuum) where the 
speed of light equals approximately 300,000 kilometers per second. Con-
sider the displacement equivalents accurate to three significant figures.

Displacement Equivalent  Time Equivalent

9,460,000,000,000 kilometers 1 year
25,900,000,000 kilometers 1 solar day
1,079,000,000 kilometers 1 hour
18,000,000 kilometers 1 minute
300,000 kilometers 1 second
300 kilometers 0.001 second
1 kilometer 0.00000333 second
300 meters 0.000001 second
1 meter 0.00000000333 second
300 millimeters 0.000000001 second

1 millimeter 0.00000000000333 second
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variables for the resulting axes v, w, x, y, and z. Alternatively, we might call 
them x1, x2, x3, x4, and x5. Points are named or identified by ordered quintuples 
such as (v,w,x,y,z) or (x1,x2,x3,x4,x5). The origin point has the coordinates 
(0,0,0,0,0). As you can guess, it doesn’t matter what we call the variables, as 
long as we allow each one to change value independently from the other four.

A system of rectangular coordinates in Cartesian n-space (where n represents 
any positive integer, as large as we want) consists of n number lines, all of which 
intersect at their zero points, such that each of the lines runs perpendicular to 
all the others. The axes can be named x1, x2, x3, ..., and so on up to xn. Points in 
Cartesian n-space can be uniquely defined by ordered n-tuples of the form 
(x1,x2,x3,...,xn).

A Five-Prism
Imagine a tesseract or a rectangular four-prism that appears at a certain time, does 
not move, and then disappears some time later. This object constitutes a rectan-
gular five-prism. If x1, x2, x3, and x4 represent four spatial dimensions (in kilometer-
equivalents or second-equivalents) for a rectangular four-prism in Cartesian 
four-space, and if t represents the five-prism’s “lifetime” in the same units, then 
the 5D hypervolume (call it V5D) equals the product of them all. We have

V5D = x1x2x3x4t

This formula holds only as long as the five-prism doesn’t move relative to us at 
a significant speed. If the prism moves at a fast enough speed, then we must 
incorporate the relativistic correction factor (1 – s2/c2)1/2, where s represents the 
object’s relative speed.

Dimensional Chaos
In pure mathematics, nothing can stop us from dreaming up hyperspace universes 
containing as many dimensions as we desire. Imagine, for example, Cartesian 
25-space in which coordinates take the form of ordered 25-tuples (x1,x2,x3,...,x25), 
none of which represent time. Alternatively, we might allow Cartesian 25-space 
to contain 24 spatial dimensions and one time dimension. Then we would define 
the coordinates of a point as an ordered 25-tuple of the form (x1,x2,x3,...,x24,t).

Some cosmologists—scientists who explore the origin, structure, and evolu-
tion of the cosmos—have suggested that our universe contained many more 
than three spatial dimensions in its first few moments of existence, billions of 
years ago. According to this hypothesis, we cannot represent all of these dimen-
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sions using Cartesian coordinates. Some of the axes are “curled up” as if wrapped 
around tiny bubbles.

A few intrepid mathematicians play with objects that seem to occupy two 
dimensions when imagined in a certain way, yet occupy three dimensions when 
imagined in a different way. Some inquisitive people ask questions such as, 
“How many dimensions exist in the complicated surface of a theoretical foam, 
assuming that each individual bubble constitutes a sphere of arbitrarily tiny size 
and with an infinitely thin 2D surface? Two dimensions? Three? How about 
two and a half dimensions?”

tIP   As you can doubtlessly imagine by now, dimensional scenarios can get a lot 
more complicated than anything we’ve dealt with here. Think about the possible 
ways in which a 4D parallelepiped might exist, or a 4D sphere. How about a 5D
sphere or a 7D ellipsoid? Let your mind roam free.

Distance Formulas
In n-dimensional Cartesian space, we can calculate the shortest distance 
between any two known points using a formula similar to the distance formu-
las for Cartesian two-space and three-space. The outcome of our arithmetic 
represents the length of a straight line segment connecting the two points. 
Consider two points P and Q in Cartesian n-space whose coordinates are

P = (x1,x2,x3,...,xn)

and

Q = (y1,y2,y3,...,yn)

We can find the length of the shortest possible path between P and Q, written 
|PQ|, with the formula

|PQ| = [(y1 – x1)
2 + (y2 – x2)

2 + (y3 – x3)
2 + ... + (yn – xn )

2]1/2

or the alternative

|PQ| = [(x1 – y1)
2 + (x2 – y2)

2 + (x3 – y3)
2 + ... + (xn – yn)

2]1/2

PROBLEM 11-2
Find the distance |PQ| between the points P = (4,–6,–3,0) and Q = (–3,5,0,8) 
in Cartesian four-space. Assume the coordinate values to be exact. Round 
off the answer to two decimal places. 

PROBLEM 
Find the distance |
in Cartesian four-space. Assume the coordinate values to be exact. Round 
off the answer to two decimal places. 

PROBLEM 
Find the distance |
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SOLUTION 
Let’s assign the numbers in the ordered quadruples the following values 
according to the formatting of the above formulas. For P, we have

x1 = 4

 x2 = –6

 x3 = –3

 x4 = 0

For Q, we have

 y1 = –3

 y2 = 5

 y3 = 0

 y4 = 8

Now, we can plug these values into either of the above two distance 
formulas. If we use the first one, we obtain

 |PQ| = {(–3 – 4)2 + [5 – (–6)]2 + [0 – (–3)]2 + (8 – 0)2}1/2

= [(–7)2 + 112 + 32 + 82]1/2

 = (49 + 121 + 9 + 64)1/2

= 2431/2

 = 15.59

PROBLEM 11-3
How many vertices does a tesseract have?

SOLUTION 
Imagine a tesseract as a 3D cube that lasts for a length of time equivalent 
to the linear span of each edge. When we think of a tesseract this way, and 
if we think of time as “flowing upward” from the past toward the future, the 
tesseract has a “bottom” that represents the instant that it appears and a 
“top” that represents the instant that it vanishes. The “bottom” and the 
“top” of the tesseract, thereby defined, form two separate cubes. We know 
that a cube has eight vertices. In the tesseract, we observe twice as many 

PROBLEM 
How many vertices does a tesseract have?
PROBLEM 
How many vertices does a tesseract have?

SOLUTION 
Imagine a tesseract as a 3D cube that lasts for a length of time equivalent 
to the linear span of each edge. When we think of a tesseract this way, and 
if we think of time as “flowing upward” from the past toward the future, the 

SOLUTION SOLUTION 
Imagine a tesseract as a 3D cube that lasts for a length of time equivalent 
SOLUTION ✔

SOLUTION 
Let’s assign the numbers in the ordered quadruples the following values 

✔
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vertices as we do in a cube, because we join two cubes with line segments 
between corresponding pairs of vertices. The eight vertices of the “bottom” 
cube and the eight vertices of the “top” cube connect pairwise with line 
segments that run through time.

tIP   We can think of a “dimensionally reduced” tesseract as a cube-within-a-cube 
as shown in Fig. 11-7. Illustrators sometimes use this trick in a 3D attempt to portray 
a 4D tesseract. We don’t get a true picture this way, of course, because the “inner” 
and the “outer” cubes in a real tesseract are the same size. But this rendition dem-
onstrates the fact that a tesseract has 16 vertices. We can simply count them!

PROBLEM 11-4
What’s the 4D hypervolume, V4D, of a rectangular four-prism consisting of 
a 3D cube measuring exactly 1 meter on each edge, that “lives” for exactly 
1 second, and that does not move? Express the answer in quartic kilometer-
equivalents and in quartic microsecond-equivalents.

SOLUTION 
We must find the 4D hypervolume of a 3D cube measuring 1 ë 1 ë 1 meter 
(whose 3D volume therefore equals 1 cubic meter) that exists for precisely 
1 second.

PROBLEM 
What’s the 4D hypervolume, 
a 3D cube measuring exactly 1 meter on each edge, that “lives” for exactly 
1 second, and that does not move? Express the answer in quartic kilometer-

PROBLEM 
What’s the 4D hypervolume, 

SOLUTION 
We must find the 4D hypervolume of a 3D cube measuring 1 
(whose 3D volume therefore equals 1 cubic meter) that exists for precisely 
1 second.

SOLUTION 
We must find the 4D hypervolume of a 3D cube measuring 1 

✔

F i g u r e  11 - 7  • The cube-within-a-cube portrayal of a 
tesseract clarifies the fact that the figure has 16 vertices.
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 To solve the first half of this problem, we remember that light travels 
300,000 kilometers per second, so the four-prism “lives” for 300,000, or 105, 
kilometer-equivalents. We can consider that value as the length of the four-
prism. Its cross section is a cube measuring 1 meter, or 0.001 kilometer, on 
each edge, so the 3D volume of this cube equals

 0.001 ë 0.001 ë 0.001 = 0.000000001

= 10–9 cubic kilometer

Therefore, the 4D hypervolume (V4D) of the rectangular four-prism in 
quartic kilometer-equivalents is

V4D = 300,000 ë 0.000000001

= 3 ë 105 ë 10–9

= 3 ë 10–4

= 0.0003 quartic kilometer-equivalent

 To solve the second half of the problem, let’s note that in 1 microsecond 
(0.000001 second), a ray of light travels 300 meters, so it takes light 1/300 
of a microsecond to travel 1 meter. The 3D volume of the cube is 
therefore

 (1/300)3 = 1/27,000,000

=0.00000003704

= 3.704 ë 10–8 cubic microsecond-equivalent

The cube exists for 1 second, which equals 1,000,000, or 106, microseconds. 
Therefore, the 4D hypervolume V4D of the rectangular four-prism in quartic 
microsecond-equivalents is

V4D = 0.00000003704 ë 1,000,000

= 3.704 ë 10–8 ë 106

= 3.704 ë 10–2

= 0.03704 quartic microsecond-equivalent

PROBLEM 11-5
Suppose that the four-prism described in Problem 11-4 moves, during its 
brief existence, at a speed of 270,000 kilometers per second relative to 

PROBLEM 
Suppose that the four-prism described in Problem 11-4 moves, during its 
brief existence, at a speed of 270,000 kilometers per second relative to 

PROBLEM 
Suppose that the four-prism described in Problem 11-4 moves, during its 
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an observer. What is its 4D hypervolume (V4D) as seen by that observer? 
Express the answer in quartic kilometer-equivalents and in quartic 
microsecond-equivalents.

SOLUTION 
The object moves at 270,000/300,000, or 9/10, of the speed of light relative 
to the observer. If we let s represent its speed, then s/c = 0.9 and s2/c2 = 0.81. 
We must multiply the answers to the previous problem by the factor

 (1 – s2/c2)1/2 = (1 – 0.81)1/2 

 = 0.191/2

 = 0.436

When we apply this conversion factor to the solutions we got for 
Problem 11-4, we obtain the 4D hypervolume values

 V4D = 0.0003 ë 0.436

= 0.000131 quartic kilometer-equivalent

and

 V4D = 0.03704 ë 0.436

 = 0.0161 quartic microsecond-equivalent

Parallel Principle revisited
All of the theorems in conventional geometry derive from five axioms, also 
called postulates, originally formalized by the Greek mathematician Euclid 
of Alexandria who lived in the third century B.C. Everything that we’ve 
done in this book so far—even the theoretical problems involving four 
dimensions—has evolved and worked out according to Euclid’s five axioms. 
We’ve dealt exclusively with so-called Euclidean geometry. However, other 
“flavors” of geometry exist, in which Euclid’s axioms do not necessarily 
all hold true. Mathematicians call any such discipline non-Euclidean 
geometry.

SOLUTION 
The object moves at 270,000/300,000, or 9/10, of the speed of light relative 
to the observer. If we let 
We must multiply the answers to the previous problem by the factor

SOLUTION 
The object moves at 270,000/300,000, or 9/10, of the speed of light relative 

✔
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Euclid’s Axioms
Let’s examine the statements that Euclid regarded as self-evident truths. We’ll 
modify Euclid’s original wording slightly, so as to make the passages sound 
sensible in today’s language. Figure 11-8 shows examples of each postulate.

We can connect any two points •	 P and Q with a straight line segment 
(Fig. 11-8A).

We can extend any straight line segment indefinitely and continuously to •	

form a straight line (Fig. 11-8B).

Given any point •	 P, we can define a circle having a specific radius r with P 
at its center (Fig. 11-8C).
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Figure 11-8  • Euclid’s original five axioms. See text for discussion.
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All right angles are congruent to one another; that is, all right angles have •	

equal measures (Fig. 11-8D).

Consider two lines •	 L and M that lie in the same plane, and a transversal 
line N that crosses them both. Suppose that the measure of the acute or 
right angle between M and N (x as shown in Fig. 11-8E) and the measure 
of the obtuse or right angle between L and N (y as shown in Fig. 11-8E) 
add up to something less than 180º (π rad). In that case, lines L and M 
intersect at some point on the same side of line N as the adjacent angles 
x and y lie.

The Fifth Postulate
The last axiom stated above has become known as Euclid’s fifth postulate. It’s 
logically equivalent to the following statement called the parallel postulate:

Let •	 L represent a straight line. Let P represent a point that does not lie on 
L. There exists one and only one straight line M, in the plane defined by 
line L and point P, that passes through P and runs parallel to L.

This axiom—and in particular its truth or untruth—has received enormous 
attention from geometers over the last few hundred years. If we deny the parallel 
postulate, we end up with a system of geometry that “works” just as well as 
traditional plane geometry does. Some people find such “geometries” strange, 
but they’re logically sound in the sense that contradictions don’t arise. We can 
deny the truth of the parallel postulate in either of two ways:

There exists no line •	 M through point P that runs parallel to line L.

There exist two or more lines •	 M1, M2, M3, ... through point P that run 
parallel to line L.

When we replace Euclid’s original parallel postulate with either of the forego-
ing two variants, we get a system of non-Euclidean geometry. In the 2D case, 
we find ourselves confined to a non-Euclidean surface. Visually, such a surface 
looks warped or curved.

Geodesics
In a non-Euclidean universe, we must modify the concept of “straightness” and, 
in particular, the notion of what constitutes a “line.” Instead of thinking about 
“straight lines” or “straight line segments,” we must think about geodesics.
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Imagine two distinct points P and Q on a non-Euclidean surface. The 
geodesic segment or geodesic arc connecting P and Q is the set of points 
representing the shortest possible path between P and Q that lies entirely 
on the surface. If we extend a geodesic arc indefinitely in either direction 
on the surface beyond P and Q, we obtain the complete geodesic within 
which the arc lies.

still struggling
do you have trouble imagining a geodesic arc in your “mind’s eye”? think about 
the path that a thin ray of light would follow between two points if confined to 
a certain 2d universe. the extended geodesic conforms to the path that the ray 
would take if allowed to travel over the surface forever without striking any 
obstructions. on the surface of the earth, a geodesic arc is the path that an 
airline pilot takes when flying from one place to another far away, such as from 
moscow, russia to tokyo, Japan (neglecting takeoff and landing patterns and 
assuming that the pilot doesn’t have to adjust the course to avoid storms or 
hostile air space).

?

Modified Parallel Postulate
When we restate the parallel postulate as it applies to both Euclidean and 
non-Euclidean surfaces, we must replace the term “line” with “geodesic.” 
When two geodesics G and H lie on the same surface X but fail to intersect 
at any point on X, we say that G and H constitute a pair of parallel geodesics 
on X. Let G represent a geodesic, let X represent a surface, and let P repre-
sent a point that does not lie on G. Then one of the following three situations 
holds true:

There exists exactly one geodesic •	 H on X that passes through P and runs 
parallel to G.

There exists no geodesic •	 H on X that passes through P and runs parallel 
to G.

There exist two or more geodesics •	 H1, H2, H3, ... on X that pass through 
P and run parallel to G.
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No Parallel Geodesics
Now imagine a universe U in which no two geodesics ever run parallel to each 
other. In the universe U, if we extend two geodesic arcs that “look” parallel on 
a local scale far enough in both directions off their ends, they’ll eventually 
intersect at some point in U. In a universe of this sort, we must employ a system 
of elliptic geometry, also known as Riemannian geometry (named after Bernhard 
Riemann, a nineteenth-century German mathematician). When there exist no 
pairs of parallel geodesics in a particular universe U, we say that U has positive 
curvature. Two-space universes with positive curvature include the surfaces of 
spheres, oblate (flattened) spheres, and ellipsoids.

Figure 11-9 illustrates a sphere with a triangle and a quadrilateral on its 
surface. The sides of polygons in non-Euclidean geometry always constitute 
geodesic arcs, just as, in Euclidean geometry, they always constitute straight line 
segments. The interior angles of the triangle and the quadrilateral in Fig. 11-9 
add up to more than 180º (π rad) and more than 360º (2π rad), respectively. 
The measures of the interior angles of an n-sided polygon on a Riemannian 
surface always sum up to something more than the sum of the measures of the 
interior angles of an n-sided polygon on a Euclidean (flat) plane.

Figure 11-9  • A surface with positive curvature, in this case a 
sphere, showing a triangle and a quadrilateral whose sides 
constitute geodesics.
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T IP   On the surface of the earth, all the lines of longitude, called meridians, are 
geodesics. So is the equator. But latitude circles other than the equator, called 
parallels, are not geodesics. For example, the equator and the parallel representing 
10º north latitude don’t intersect at any point, but they aren’t both geodesics.

More Than One Parallel Geodesic
Consider a surface on which we can have two or more geodesics that pass 
through a point and run parallel to a given geodesic. This form of non-Euclidean 
geometry is known as hyperbolic geometry. Some mathematicians call it 
Lobachevskian geometry (named after Nikolai Lobachevsky, a nineteenth-
century Russian mathematician). A Lobachevskian universe exhibits so-called 
negative curvature. Two-space universes with negative curvature include 
extended saddle-shaped and funnel-shaped surfaces.

Figure 11-10 shows a negatively curved surface containing a triangle and a 
quadrilateral. On this surface, the interior angles of the triangle and the 

F i g u r e 11-10  • An example of a surface with negative 
curvature, showing a triangle and a quadrilateral whose 
sides constitute geodesics.
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quadrilateral add up to less than 180º (π rad) and 360º (2π rad), respectively. 
The measures of the interior angles of a polygon on a Lobachevskian surface 
always sum up to something less than the sum of the measures of the interior 
angles of a similar polygon on a Euclidean plane.

Warped Space
The observable universe seems Euclidean to all casual observers. If we use lasers 
to “construct” polygons and then measure their interior angles with precision 
lab equipment, we’ll always find that the angle measures add up according to 
the rules of Euclidean geometry. The conventional formulas for the volumes of 
solids such as the pyramid, cube, and sphere hold perfectly, as far as we can tell. 
Now imagine a 3D space in which these rules fail! If we could find such a con-
tinuum, we would call it curved 3D space, warped 3D space, or non-Euclidean 
3D space.

Gravity Warps Space
In the 1900s, shortly after Einstein published the details of his general theory of 
relativity, astronomers and cosmologists began to look for evidence that the three-
space in which we live is not perfectly Euclidean. Their efforts reaped fascinating 
results. Gravitational fields produce effects on light beams that suggest 
Lobachevskian warping—negative curvature—of three-space. Under ordinary 
circumstances, the departure from Euclidean perfection is too small to notice, so 
we never suspect it. However, astronomers have observed the effects of such 
curvature using sensitive equipment when looking at certain celestial objects.

Astronomers conducted several experiments in the years following the publi-
cation of Einstein’s general theory, scrutinizing the behavior of light rays from 
distant stars as the rays passed close to the sun during solar eclipses. The goal: 
Find out whether or not the sun’s gravitational field, which attains considerable 
intensity near the sun’s surface, bends light rays in the way that we should 
expect if space has negative curvature near the sun. Early in the twentieth cen-
tury, Albert Einstein predicted that such bending could be observed and mea-
sured. He calculated the expected angular changes that astronomers would see 
in the positions of distant stars as the sun passes almost directly in front of them. 
Repeated observations verified Einstein’s predictions, not only as to the exis-
tence of the spatial curvature, but also as to its extent. As the distance from the 
sun increases, the spatial warping decreases. The greatest amount of light-beam 
bending occurs when the rays from a distant star graze the sun’s surface.
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In another experiment, astronomers have observed the light rays from a 
distant, brilliant object called a quasar as a compact, dark, intense source of 
gravitation (known as a black hole) passes between the quasar and our solar 
system. The light-bending is much greater near this type of object than is the 
case near the sun. The apparent black hole bends the rays from the distant 
quasar to the extent that multiple images of the quasar appear (with the black 
hole presumably at the center). One peculiar example, in which four images of 
the quasar appear, has been called a gravitational light cross.

The “Hyperfunnel”
We can compare curvature of space in the presence of a strong gravitational 
field to the shape of a funnel (Fig. 11-11), except that the surface of the funnel 
has three dimensions rather than two, and the entire object exists in four-space 

Three-dimensional
space

Source of
extreme
gravitation

Figure 11-11  • An intense source of gravitation produces negative curva-
ture, or warping, of space in its immediate vicinity.
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rather than three-space. When we define the fourth dimension as time, we find 
that time “flows” more slowly in a gravitational field than it does in interplan-
etary space, far removed from significant sources of gravitation. This effect, like 
the Lobachevskian curvature of space, has been experimentally observed.

The shortest path in physical three-space between any two points near a 
gravitational source lies along a geodesic, not along a straight line. Curvature of 
space caused by gravitational fields increases the distances between points in 
the vicinity of the source of the gravitation, compared with the situation if the 
gravitational source were not there. The shortest path between any two points 
in non-Euclidean space invariably exceeds the path length that we would 
observe if the space between the points were Euclidean.

As the intensity of the gravitation increases, the extent of the spatial curva-
ture also increases. However, some effect theoretically occurs no matter how 
weak the gravitation. Some cosmic warping occurs in the space around the 
earth, in the space around your body, and even in the space around each atom 
in your body.

still struggling
does the entire universe, containing all the stars, galaxies, quasars, and other 
stuff that exists, possess a geometric shape that results from the combined gravi-
tational effect of all matter? If so, is the general contour of space riemannian, 
Lobachevskian, or euclidean? I don’t think anybody knows for sure. do you?

?
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct. Answers 
are in the back of the book.

	 1.	 Using the speed of light in free space as the basis for conversion, what’s the 
distance equivalent of 1 minute?

	A.	 5000 kilometers
	 B.	 500,000 kilometers
	C.	 1,800,000 kilometers
	D.	 18,000,000 kilometers

	 2.	 Using the speed of light in free space as the basis for conversion, what’s the time 
equivalent of 150 meters?

	A.	 500 nanoseconds (0.0000005 second)
	 B.	 200 nanoseconds (0.0000002 second)
	C.	 500 microseconds (0.0005 second)
	D.	 200 microseconds (0.0002 second)

	 3.	 Figure 11-12 illustrates a light cone in dimensionally reduced time-space, 
along with four hypothetical paths P, Q, R, and S for objects traveling in 
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Figure 11-12  • Illustration for Quiz Question 3.
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Radius
= 200 units

Circle C

Figure 11-13  • Illustration for Quiz Question 5.

that space. Which, if any, of these paths could a physical object actually 
follow?

	A.	 P and Q
	 B.	 Q and R
	C.	 P and S
	D.	N one of the above

	 4.	 On the surface of a sphere, the measure of each interior angle of a regular hexagon 
would

	A.	 be less than 120º.
	 B.	 equal 120º.
	C.	 exceed 120º.
	D.	 be impossible to define.

	 5.	 Figure 11-13 shows a sphere, along with a specific circle called C (heavy solid 
curve) on its surface. The radius of C equals 200 units as measured over the sur-
face of the sphere along a geodesic arc. Based on this information, we know that 
the circumference of C must

	A.	 exceed 400π units.
	 B.	 be less than 400π units.
	C.	 equal 400π units.
	D.	 be impossible to define.
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	 6.	 What’s the distance between the origin and the point (1,1,1,1) in Cartesian four-
space? Assume the coordinate values to be exact.

	A.	T he cube root of 8 units
	 B.	T he square root of 2 units
	C.	 2 units
	D.	T he square root of 8 units

	 7.	 Imagine a rectangular prism that measures exactly 60 meters high, 120 meters 
wide, and 300 meters deep. Suppose that it forms from nothing, exists in free 
space for exactly 0.01 second, and then vanishes. What’s its hypervolume in 
quartic kilometer-equivalents? Assume that the free-space speed of light equals 
exactly 3 ë 105 kilometers per second.

	A.	 6.48 quartic kilometer-equivalents
	 B.	 2.40 quartic kilometer-equivalents
	C.	 1.80 quartic kilometer-equivalents
	D.	 2.16 quartic kilometer-equivalents

	 8.	 Imagine a rectangular prism that measures exactly 60 meters high, 120 meters 
wide, and 300 meters deep. Suppose that it forms from nothing, exists in free 
space for exactly 0.01 second, and then vanishes. What’s its hypervolume in 
quartic microsecond-equivalents? Assume that the free-space speed of light 
equals exactly 3 ë 105 kilometers per second.

	A.	 200 quartic microsecond-equivalents
	 B.	 333 quartic microsecond-equivalents
	C.	 667 quartic microsecond-equivalents
	D.	 800 quartic microsecond-equivalents

	 9.	 Figure 11-14 portrays a tesseract in “dimensionally reduced” form. As we’ve 
already learned, this 4D figure has 16 vertices. How many line-segment edges 
does the figure have?

Edge

Edge

Edge

Figure 11-14 • Illustration for Quiz Questions 9 and 10.
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	A.	 16
	 B.	 24
	C.	 32
	D.	 40

	 10.	 Imagine that the tesseract of Fig. 11-14 has a hypervolume of exactly 4096 
quartic units. How long is each edge? Remember that in a true tesseract, all the 
edges have equal length (despite the distorted appearance of this illustration).

	A.	 16 units
	 B.	T he square root of 128 units
	C.	T he cube root of 2048 units
	D.	 8 units
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Test: Part II
Do not refer to the text when taking this test. You may draw diagrams or use a 
calculator if necessary. A good score is at least 38 correct. Answers are in the 
back of the book. It’s best to have a friend check your score the first time, so 
you won’t memorize the answers if you want to take the test again.
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	 1.	 Imagine that two planes intersect in a straight line. We can express the angle at 
which the planes intersect in two ways: as an acute angle u or as an obtuse angle 
v. If we measure both angles in degrees, then

	A.	 u = 90° − v.
	 B.	 u = 120° − v.
	C.	 u = 180° − v.
	D.	 u = 270° − v.
	E .	 u = 300° − v.

	 2.	 The equation of the line x = 0, as expressed in the Cartesian plane, translates to 
the polar-coordinate equation

	A.	 q = π/8.
	 B.	 q = π/4.
	C.	 q = π/2.
	D.	 q = 2π/3.
	E .	 q = 3π/4.

	 3.	 The equation of the line y = −x, as expressed in the Cartesian plane, translates to 
the polar-coordinate equation

	A.	 q = π/8.
	 B.	 q = π/4.
	C.	 q = π/2.
	D.	 q = 2π/3.
	E .	 q = 3π/4.

	 4.	 What’s the sum of the Cartesian three-space vectors u =  (2,3,4) and v = 
(−4,−3,−2)?

	A.	 u + v = (−2,0,2)
	 B.	 u + v = (2,0,−2)
	C.	 u + v = (6,6,6)
	D.	 u + v = (−6,−6,−6)
	E .	 u + v = (0,0,0)

	 5.	 Figure Test II-1 illustrates various geometric shapes in a Euclidean plane. The 
only difference among the versions shown in Figs. Test II-1A, B, and C involves 
the extent to which the figures include their boundaries. Based on this informa-
tion, what can we say about the three different scenarios shown in Figs. Test II-1A, 
B, and C?

	A.	T he figures in Fig. Test II-1A have greater perimeters than their counterparts in 
Fig. Test II-1B, which in turn have greater perimeters than their counterparts in 
Fig. Test II-1C. However, the figures in Fig. Test II-1A have the same interior 
areas as their counterparts in Fig. Test II-1B, which in turn have the same inte-
rior areas as their counterparts in Fig. Test II-1C.

	 B.	T he figures in Fig. Test II-1A have greater perimeters than their counterparts in 
Fig. Test II-1B, which in turn have greater perimeters than their counterparts in 
Fig. Test II-1C. Also, the figures in Fig. Test II-1A have greater interior areas than 
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their counterparts in Fig. Test II-1B, which in turn have greater interior areas 
than their counterparts in Fig. Test II-1C.

	C.	T he figures in Fig. Test II-1A have greater interior areas than their counterparts 
in Fig. Test II-1B, which in turn have greater interior areas than their counter-
parts in Fig. Test II-1C. However, the figures in Fig. Test II-1A have the same 
perimeters as their counterparts in Fig. Test II-1B, which in turn have the same 
perimeters as their counterparts in Fig. Test II-1C.

	D.	T he figures in Fig. Test II-1A have the same interior areas as their counterparts 
in Fig. Test II-1B, which in turn have the same interior areas as their counter-
parts in Fig. Test II-1C. Also, the figures in Fig. Test II-1A have the same perime-
ters as their counterparts in Fig. Test II-1B, which in turn have the same 
perimeters as their counterparts in Fig. Test II-1C.

	E .	 We cannot make any of the above general statements.

	 6.	 In three-space, whenever two flat planes intersect but do not actually coincide, 
their intersection can take the form of a

	A.	 point or a straight line.
	 B.	 point or a straight ray.
	C.	 straight ray or a straight line.
	D.	 point, a straight ray, or a straight line.
	E .	 straight line only.

	 7.	 Figure Test II-2 illustrates three planes X, Y, and Z. Planes X and Y intersect in a 
straight line L. Planes X and Z intersect in a straight line M. Lines L and M run 
parallel to each other. Line PQ lies in plane X and runs perpendicular to both 

A B

C

Figure Test II-1  • Illustration for Part II Test Question 5.
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lines L and M. Line RS lies in plane Y and runs perpendicular to both lines L and 
PQ. Line TU lies in plane Z and runs parallel to line RS. Angle TWP has the same 
measure as angle RVP (both angles are denoted by dashed arcs). Based on all 
this information, what can we say about planes Y and Z?

	A.	T hey’re parallel to each other.
	 B.	T hey’re skew to each other.
	C.	T hey’re normal to each other.
	D.	T hey must intersect at some point not shown here.
	E .	T hey must intersect at some line not shown here.

	 8.	 What’s the surface area of a rectangular prism that measures 4 inches high, 
5 inches wide, and 7 inches deep?

	A.	 32 square inches
	 B.	T he square root of 140 square inches
	C.	T he square root of 166 square inches
	D.	 140 square inches
	E .	 166 square inches

	 9.	 What’s the volume of a rectangular prism that measures 4 inches high, 5 inches 
wide, and 7 inches deep?

	A.	 32 cubic inches
	 B.	T he square root of 140 cubic inches
	C.	T he square root of 166 cubic inches
	D.	 140 cubic inches
	E .	 166 cubic inches
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Figure Test II-2  • Illustration for Part II Test Question 7.
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	 10.	 In celestial coordinates, declination is the equivalent of
	A.	 right ascension.
	 B.	 celestial latitude.
	C.	 celestial longitude.
	D.	 elevation.
	E .	 azimuth.

	 11.	 In the context of terrestrial (earth-based) navigation, the term declination can 
refer to something entirely different than its meaning in the context of celestial 
coordinates: the angular difference between

	A.	 magnetic north and geographic north.
	 B.	 azimuth and elevation.
	C.	 right ascension and celestial longitude.
	D.	 the vernal equinox and the zenith.
	E .	 the zenith and the celestial latitude.

	 12.	 Consider a flat plane in three-space, and a straight line that does not intersect 
the plane at any point. In this situation, the line and the plane are

	A.	 orthogonal.
	 B.	 perpendicular.
	C.	 non-Euclidean.
	D.	 normal.
	E .	 parallel.

	 13.	 Suppose that in the Cartesian coordinate plane, a certain vector u begins (origi-
nates) at the point (–5,8) and ends (terminates) at the point (3,1). Which of the 
following ordered pairs represents u in standard form?

	A.	 u = (–8,7)
	 B.	 u = (8,–7) 
	C.	 u = (–2,9)
	D.	 u = (8,9)
	E .	 u = (−15,8)

	 14.	 Suppose that in the Cartesian plane, a certain vector v begins at the point (3,1) 
and ends at the point (–5,8), exactly the opposite state of affairs from the situa-
tion described in Question 13. What’s v in standard form?

	A.	 v = (–8,7)
	 B.	 v = (8,–7) 
	C.	 v = (–2,9)
	D.	 v = (8,9)
	E .	 v = (−15,8)

	 15.	 What’s the four-dimensional (4D) hypervolume, in quartic units, of a tesseract 
that measures exactly 5 units on each edge?

	A.	 1024 quartic units
	 B.	 625 quartic units
	C.	 125 quartic units
	D.	 25 quartic units
	E .	 20 quartic units
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	 16.	 What’s the 4D hypervolume, in quartic meter-equivalents, of a rectangular four-
prism consisting of a three-dimensional (3D) cube measuring exactly 2 meters 
on each edge, that “lives” for exactly 2 seconds, and that does not move? Assume 
that the speed of light in free space equals 3.00 ë 108 meters per second.

	A.	 4.8 × 109 quartic meter-equivalents
	 B.	 2.4 × 109 quartic meter-equivalents
	C.	 1.2 × 109 quartic meter-equivalents
	D.	 9.6 × 108 quartic meter-equivalents
	E .	 4.8 × 108 quartic meter-equivalents

	 17.	 The point (−1,−1) in the Cartesian xy-plane corresponds to one of the following 
points in mathematician’s (p,r) polar coordinates (MPC). Which point? Remember 
that the 1/2 power of a number equals the positive square root of that number.

	A.	 (π/4,21/2)
	 B.	 (π/2,21/2)
	C.	 (3π/4,21/2)
	D.	 (5π/4,21/2)
	E .	 (7π/4,21/2)

	 18.	 Figure Test II-3 illustrates a slant circular cylinder. What’s the volume of the 
enclosed solid? Assume that the base radius, the top radius, and the height have 
exactly the values shown. Here’s a hint: The area enclosed by a circle equals o 
times the square of its radius. Here’s another hint: To find the area of a cylinder 
(whether it’s slanted or not), multiply its height by the enclosed area of its base.

	A.	 84 cubic units
	 B.	 168 cubic units
	C.	 336 cubic units
	D.	 475 cubic units
	E .	 672 cubic units

Center of top

Center of base

21/π units

4 units

4 units

Figure Test II-3  • Illustration for Part II Test Question 18.
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	 19.	 Considered with respect to the speed of light in free space (3.00 ë 108 meters per 
second), the distance from the earth to the sun (1.50 ë 108 kilometers) represents 
a time differential of

	A.	 33 minutes and 20 seconds
	 B.	 16 minutes and 40 seconds.
	C.	 8 minutes and 20 seconds.
	D.	 4 minutes and 10 seconds.
	 E.	 2 minutes and 5 seconds.

	 20.	 If we double the radius of a slant circular cone’s base but do not change the 
cone’s height, the volume of the enclosed solid increases by a factor of

	A.	 the fourth root of 2.
	 B.	 the cube root of 2.
	C.	 the square root of 2.
	D.	 2.
	E .	 4.

	 21.	 If we double the height of a slant circular cone but do not change the cone’s base 
radius, the volume of the enclosed increases by a factor of

	A.	 the fourth root of 2.
	 B.	 the cube root of 2.
	C.	 the square root of 2.
	D.	 2.
	E .	 4.

	 22.	 What’s the distance between (0,0,0,0,0,0,0,0) and (−1,−1,−1,−1,−1,−1,−1,−1) in 
Cartesian eight-space?

	A.	 1 unit
	 B.	T he eighth root of 2 units
	C.	T he eighth root of −1 unit
	D.	T he square root of 8 units
	E .	 We can’t define it.

	 23.	 If we increase the volume of a perfect cube by a factor of 4, its surface area 
increases by a factor of the

	A.	 cube root of 16.
	 B.	 cube root of 32.
	C.	 cube root of 64.
	D.	 square root of 8.
	E .	 square root of 32.

	 24.	 What’s the six-dimensional (6D) hypervolume, in hexic meters, of a six-cube 
measuring 1 meter on each edge?

	A.	 1 hexic meter
	 B.	 6 hexic meters
	C.	 36 hexic meters
	D.	 216 hexic meters
	E .	 1296 hexic meters
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	 25.	 If we triple the radius of a sphere, its surface area increases by a factor of
	A.	 27.
	 B.	 9.
	C.	 3.
	D.	 the square root of 3.
	E .	 the cube root of 3.

	 26.	 If we triple the radius of a sphere, its enclosed volume increases by a factor of
	A.	 27.
	 B.	 9.
	C.	 3.
	D.	 the square root of 3.
	E .	 the cube root of 3.

	 27.	 Figure Test II-4 shows two vectors g and h in Cartesian three-space. Which of the 
following statements holds true for them?

	A.	 g • h = (0,−10,25)
	 B.	 g • h = (−1,3,10)
	C.	 g • h = 0 (the scalar 0)
	D.	 g • h = 15 (the scalar 15)
	E .	 g • h = 0 (the zero vector)
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g = (–1,5,5)

Each axis division
equals 1 unit

Figure Test II-4  • Illustration for Part II Test Questions 27 through 29. 
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	 28.	 Which of the following statements holds true for the vectors of Fig. Test II-4?
	A.	 g + h = (0,−10,25)
	 B.	 g + h = (−1,3,10)
	C.	 g + h = 0 (the scalar zero)
	D.	 g + h = 15
	E .	 g + h = 0 (the zero vector)

	 29.	 We can represent any straight line in Cartesian xyz-space as a symmetric equa-
tion of the form

	 (x – x0)/a = (y – y0)/b = (z – z0)/c

		  where x, y, and z represent the variables; the ordered triple (x0,y0,z0) tells us the 
coordinates of a specific point on the line; and a, b, and c represent the line’s 
direction numbers. Consider a line L connecting the two points at the nonorigin 
(terminating) ends of the vectors g and h shown in Fig. Test II-4. What are the 
direction numbers of L in the form of an ordered triple (a,b,c)? Here’s a hint: 
Determine the standard form of a vector that originates at the nonorigin end of 
h and terminates at the nonorigin end of g.

	A.	 (a,b,c) = (−1,7,0)
	 B.	 (a,b,c) = (0,−10,25)
	C.	 (a,b,c) = (−1,3,10)
	D.	 (a,b,c) = (0,0,0)
	E .	 We can’t define them.

	 30.	 The faces (including the base) of a tetrahedron are all
	A.	 triangles.
	 B.	 squares.
	C.	 rectangles.
	D.	 rhombuses.
	E .	 parallelograms.

	 31.	 Two distinct, flat half planes in three-space run parallel to each other if and only 
if the complete planes in which they lie intersect

	A.	 nowhere.
	 B.	 in a single point.
	C.	 in a straight ray.
	D.	 in a straight line.
	E .	 in either a straight ray or a straight line.

	 32.	 In Fig. Test II-5, suppose that we let each radial division (distance outward from 
one of the concentric circles to the next one) represent exactly 1 unit. In that 
case, what’s the equation of the spiral?

	A.	 r = 2q
	 B.	 r = 2q/3
	C.	 r = 2q/π
	D.	 r = q/3
	E .	 r = q/π
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	 33.	 In Fig. Test II-5, suppose that we let each radial division represent exactly o units. 
In that case, what’s the equation of the spiral?

	A.	 r = 2q
	 B.	 r = 2q/3
	C.	 r = 2q/π
	D.	 r = q/3
	E .	 r = q/π

	 34.	 Figure Test II-6 illustrates a 3D set of
	A.	 Cartesian coordinates.
	 B.	 cylindrical coordinates.
	C.	 terrestrial coordinates.
	D.	 spherical coordinates.
	E .	 elliptical coordinates.

	 35.	 What’s the dot product of the Cartesian-plane vectors q = (0,5) and r = (–5,0)?
	A.	T he zero vector
	 B.	 The vector (–5,5)
	C.	 The scalar quantity 25
	D.	T he scalar quantity 0
	E .	 A vector that lies outside the plane containing q and r

0π

π/4

π/2

3π/4

5π/4

3π/2

7π/4

Figure Test II-5  • Illustration for Part II Test Questions 
32 and 33.
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	 36.	 What’s the cross product of the Cartesian-plane vectors q = (0,5) and r = (–5,0)?
	A.	T he zero vector
	 B.	 The vector (–5,5)
	C.	 The scalar quantity 25
	D.	T he scalar quantity 0
	E .	 A vector that lies outside the plane containing q and r

	 37.	 Imagine that two planes intersect at an angle of 60ç, representing the more 
common of two ways in which we can express the intersection angle. What’s a 
less common, but still technically valid, expression for the intersection angle in 
the same situation?

	A.	 −70°
	 B.	 –30°
	C.	 100°
	D.	 120°
	 E.	 150°

	 38.	 If we double the length of one semiaxis in an ellipsoid while not changing the 
lengths of the other two semiaxes, we increase the volume of the enclosed solid 
by a factor of

	A.	 the square root of 2.
	 B.	 2.
	C.	 the square root of 8.
	D.	 4.
	E .	 8.
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h = height (or altitude)
coordinate

Figure Test II-6  • Illustration for Part II Test Question 34.
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	 39.	 Imagine that in the scenario of Fig. Test II-7, we construct line segment PQ. What’s 
its length to the nearest tenth of a unit?

	A.	 5.6 units
	 B.	 6.2 units
	C.	 7.0 units
	D.	 7.9 units
	E .	 We need more information to answer this question.

	 40.	 By convention, we can express the distance between two flat, parallel planes 
along any line that

	A.	 runs parallel to both planes.
	 B.	 runs parallel to only one of the planes.
	C.	 runs normal to both planes.
	D.	 intersects both planes.
	E .	 intersects only one of the planes.

	 41.	 At a minimum, how many distinct points do we need to uniquely define a flat 
plane in three-space?

	A.	 None
	 B.	O ne
	C.	T wo
	D.	T hree
	E .	 Four

	 42.	 Figure Test II-8 is a time-space graph of the earth (small black dot) as it revolves 
around the sun. What’s the time-space value of dt in second-equivalents, assuming 

x

y

P
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3.7 units

4.2 units

13π/16

Figure Test II-7  • Illustration for Part II Test Question 39.
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that we consider the earth’s orbit as a perfect circle and the sun as an abso-
lutely stationary point of reference? Assume that the speed of light in free space 
is 3.00 ë 108 meters per second. Also assume that 1 year equals exactly 365 days, 
each of which contains exactly 24 hours.

	A.	 6.31 × 107 second-equivalents
	 B.	 3.15 × 107 second-equivalents
	C.	 8.64 × 106 second-equivalents
	D.	 4.32 × 106 second-equivalents
	E .	 2.16 × 106 second-equivalents

	 43.	 In the scenario of Fig. Test II-8, what’s the time-space value of dt in meter-
equivalents? Consider the speed of light and the length of the year to have the 
values stated in Question 47. As before, consider the earth’s orbit as a perfect 
circle and the sun as a stationary point of reference.

	A.	 1.30 × 1015 meter-equivalents
	 B.	 2.36 × 1015 meter-equivalents
	C.	 2.59 × 1015 meter-equivalents
	D.	 4.73 × 1015 meter-equivalents
	 E.	 9.45 × 1015 meter-equivalents
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Sun

Toward the
future

+ t

t

d t

Each increment
on the t axis
represents 1/4 year
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on the x axis
represents
37,500,000 kilometers

Figure Test II-8  • Illustration for Part II Test Questions 42 and 43.
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	 44.	 The larger of the two definable angles between a line and a plane has a measure 
that can range anywhere between

	A.	 0° and 360°.
	 B.	 90° and 180°.
	C.	 180° and 270°.
	D.	 270° and 360°.
	E .	 180° and 360°.

	 45.	 If we double the lengths of all the edges of a perfect tesseract, its four-space 
hypervolume increases by a factor of

	A.	 2.
	 B.	 4.
	C.	 8.
	D.	 16.
	E .	 32.

	 46.	 Figure Test II-9 shows a hypothetical set of coordinates for Cartesian four-space. 
What, if any, problem exists with this rendition?

	A.	 It contains one too many lines (axes); we need, and should have, only three 
lines (axes) here.

	 B.	 It can’t uniquely portray points in four-space in our “real world,” because we 
can’t, in practice, make four lines intersect at a common point and remain 
mutually perpendicular.

z
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y+

x

y
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w-

Origin
(0,0,0,0)

Cartesian
four-space

Each increment
represents
1 distance unit

Figure Test II-9  • Illustration for Part II Test Questions 46 and 47.
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	C.	 It does not contain enough axes; we must add an axis to represent time, so 
that we end up with five axes in total.

	D.	 A four-space coordinate system cannot exist in Cartesian form; we must either 
graduate one of the axes in nonuniform increments, or else represent it as a curve.

	E .	 No problem exists with this system.

	 47.	 How can we change the coordinate system shown in Fig. Test II-9 so that it 
represents 4D time-space?

	A.	 We can ensure that the w, x, y, and z axes remain mutually perpendicular at 
the origin and then imagine (but not attempt to draw) time as an additional t 
axis, running from the past (negative values of t), through the present (t = 0), 
and toward the future (positive values of t).

	 B.	 We can change the x axis to a t axis to represent time, running from the past 
(negative values of t), through the present (t = 0), and toward the future 
(positive values of t), and leave everything else the same.

	C.	 We can remove the w axis, ensure that the x, y, and z axes remain mutually 
perpendicular at the origin, and then imagine (but not attempt to draw) time 
as an additional t axis, running from the past (negative values of t), through 
the present (t = 0), and toward the future (positive values of t).

	D.	 We can convert the entire system to a set of celestial coordinates that portrays 
values of right ascension, declination, azimuth, and elevation.

	E .	 We can’t.

	 48.	 Imagine a unit circle in the Cartesian plane, and a ray that emanates from the origin 
(0,0) outward and upward toward the left, so that we have to turn precisely 45ç 
clockwise to get from the negative x axis to the ray. What’s the x-value of the point 
where the ray passes through the unit circle, accurate to three decimal places?

	A.	 0.707
	 B.	 −0.500
	C.	 0.866
	D.	 −0.866
	E .	 −0.707

	 49.	 In the situation of Question 48, what’s the y-value of the point where the ray 
passes through the unit circle, accurate to three decimal places?

	A.	 0.707
	 B.	 −0.500
	C.	 0.866
	D.	 −0.866
	E .	 −0.707

	 50.	 One hour of right ascension, as an astronomer would define it, represents an 
angle equivalent to

	A.	 1°.
	 B.	 10°.
	C.	 15°.
	D.	 30°.
	E .	 60°.
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Final Exam

Do not refer to the text when taking this test. You may draw diagrams or use a 
calculator if necessary. A good score is at least 75 correct. Answers are in the 
back of the book. It’s best to have a friend check your score the first time, so 
you won’t memorize the answers if you want to take the test again.
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	 1.	 Each vertex of a triangle corresponds to a specific interior angle that 
measures

	 A.	 more than 0 rad but less than π/2 rad.

	 B.	 more than π/2 rad but less than π rad.

	 C.	 more than π/2 rad but less than 2π rad.

	 D.	 more than 0 rad but less than π rad.

	 E.	 more than −π/2 rad but less than π/2 rad.

	 2.	 Which of the following statements is true?

	 A.	 All trapezoids are squares.

	 B.	 All trapezoids are rectangles.

	 C.	 All rhombuses are squares.

	 D.	 All squares are rectangles.

	 E.	 All rectangles are rhombuses.

	 3.	� In a convex Euclidean plane polygon, the measure of each interior angle 
must remain less than

	 A.	 45°.
	 B.	 90°.
	 C.	 180°.
	 D.	 270°.
	 E.	 360°.

	 4.	� We say that two lines run parallel to each other if and only if they don’t 
intersect anywhere, and also that they

	 A.	 lie in the same plane.

	 B.	 run perpendicular to each other.

	 C.	 lie infinitely far apart.

	 D.	 run askew relative to each other.

	 E.	 have undefined separation distance.

	 5.	� Suppose that we encounter a Euclidean plane triangle whose sides measure 
exactly 23, 23, and 37 meters long. We’ve found

	 A.	 a reflex triangle.

	 B.	 a right triangle.

	 C.	 an isosceles triangle.
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	 D.	 an equilateral triangle.

	 E.	 None of the above

	   6.	 When we encounter a rectangle, we can have complete confidence that 
the measures of either pair of opposite interior angles add up to

	 A.	π rad.

	 B.	 2π rad.

	 C.	 π/2 rad.

	 D.	 3π/2 rad.

	 E.	 3π rad.

	 7.	 Figure Exam-1 portrays two lines L and M that both intersect a transversal 
line N. All three lines L, M, and N lie in a single flat plane. Line N inter-
sects line L at point P. Line N intersects line M at point Q. As a result, we 
get eight angles s through z, as shown. Suppose that we scrutinize all eight 
angles and find that angle x has a slightly larger measure than angle t. 
From this information, we can have absolute confidence that

	 A.	 lines L and M intersect somewhere.

	 B.	 angles v and y have equal measure.

	 C.	 angles w and s have equal measure.

	 D.	 angles u and z have equal measure.

	 E.	 lines L and M don’t intersect anywhere.
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Figure Exam-1 .  Illustration for Final Exam Question 7.
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	 8.	 In order to “qualify” as a true Euclidean plane quadrilateral, a geometric 
figure must have all of the following characteristics except one. Which one?

	 A.	 Four vertices, all of which lie in the same plane

	 B.	 Four sides, all of which have finite, positive, nonzero length

	 C.	 Four interior angles whose measures add up to π rad

	 D.	 Four interior angles, each of which has positive measure

	 E.	 Four sides, all of which are straight line segments

	 9.	 Imagine a regular Euclidean plane polygon with interior angles that all 
measure 144°. What’s the measure of each exterior angle?

	 A.	 36°
	 B.	 54°
	 C.	 216°
	 D.	 234°
	 E.	 324°

	10.	 Figure Exam-2 portrays two lines L and M that intersect at point P. As a 
result, we get four angles w through z, as shown. We can have absolute 
confidence that

	 A.	 angles w and x complement each other.

	 B.	 angles x and y complement each other.
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F i g u r e  E x a m - 2  .  I l lustration for Final Exam  
Questions 10 and 11.
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	 C.	 angles w and y complement each other.

	 D.	 More than one of the above

	 E.	 None of the above

	11.	 In the situation shown by Fig. Exam-2, we can have absolute confidence that

	 A.	 angles w and x have equal measure.

	 B.	 angles x and y have equal measure.

	 C.	 angles w and y have equal measure.

	 D.	 More than one of the above

	 E.	 None of the above

	12.	 Consider a specific line L in Euclidean three-space. Let R represent a 
point that does not lie on L. How many different lines can we find that 
pass through point R and run parallel to L?

	 A.	 None

	 B.	 One

	 C.	 Two

	 D.	 Three

	 E.	 Infinitely many

	13.	 Consider a specific line N in Euclidean three-space. Let X represent a 
point that does not lie on N. How many different lines can we find that 
pass through point X and run askew to N?

	 A.	 None

	 B.	 One

	 C.	 Two

	 D.	 Three

	 E.	 Infinitely many

	14.	 We can have absolute confidence that all four of the triangles shown in 
Fig. Exam-3 exhibit

	 A.	 direct similarity.

	 B.	 direct congruence.

	 C.	 inverse similarity.

	 D.	 inverse congruence.

	 E.	 More than one of the above
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	15.	 We can have absolute confidence that all four of the triangles shown in 
Fig. Exam-4 exhibit

	 A.	 direct similarity.

	 B.	 direct congruence.

	 C.	 inverse similarity.
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F i g u r e  E x a m - 3  .  Illustration for Final Exam 
Question 14.
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	 D.	 inverse congruence.

	 E.	 More than one of the above

	16.	 In a Euclidean plane, the ratio of any circle’s circumference to its diam-
eter equals precisely

	 A.	 22/7.

	 B.	 3.14.

	 C.	 3.14159.

	 D.	 the Arccosine of −1.

	 E.	 None of the above

	17.	 If we have an ellipse with known dimensions and calculate its ellipticity, 
we get a number that tells us

	 A.	 the ratio of the interior area to the circumference.

	 B.	 the ratio of the circumference to the interior area.

	 C.	 the average of the lengths of the semiaxes.

	 D.	 how much the figure differs from a perfect circle.

	 E.	 how much the figure differs from an inscribed regular polygon.

	18.	 Which of the following maneuvers constitutes “cheating” in a geometric 
construction with a compass, pencil, and straight edge?

	 A.	 Drawing a “random” arc with the compass, centered at an arbitrary 
point

	 B.	 Defining a specific point by making a dot with the pencil

	 C.	 Marking the straight edge to quantify the length of a line segment

	 D.	Using the compass to draw a circle centered at the end of a line 
segment

	 E.	 Referencing a distance using the compass

	19.	 In the situation shown by Fig. Exam-5, the area enclosed by ∆QPR 
equals

	 A.	 (th + sh)/2.

	 B.	 thu + shv.

	 C.	 uv + ts.

	 D.	 2hu + 2hv.

	 E.	 [(t + s)uv]/2.
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	20.	 Imagine a circle that lies in a Euclidean plane, and that has a radius of 
exactly 1 meter. Suppose that we circumscribe this circle with a regular 
polygon having n sides, and then we increase n without limit, all the while 
making sure that the polygon fits “tightly” around the circle. As we carry 
out this process, the interior area of the polygon approaches

	 A.	π meters.

	 B.	 the square root of 2 meters.

	 C.	 the square root of π meters.

	 D.	π/2 meters.

	 E.	 1 meter.

	21.	 In the situation shown by Fig. Exam-6, suppose that line segment ST runs 
parallel to line segment RQ. In that case, we know that the Euclidean 
plane quadrilateral STQR is a
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Figure Exam-5 .  Illustration for Final Exam Question 19.
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through 23.
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	 A.	 parallelogram.

	 B.	 rhombus.

	 C.	 trapezoid.

	 D.	 reflex figure.

	 E.	 truncated rectangle.

	22.	 In the situation of Fig. Exam-6, suppose that line segment ST not only 
runs parallel to line segment RQ, but lies exactly 2 units from line segment 
RQ. How long is line segment ST ?

	 A.	 We need more information to calculate it.

	 B.	 3 units

	 C.	 The square root of 6 units

	 D.	 2 units

	 E.	 The square root of 10 units

	23.	 In the situation of Fig. Exam-6, suppose that line segment ST runs 
parallel to line segment RQ and lies exactly 2 units from line segment 
RQ. What’s the area enclosed by quadrilateral STQR?

	 A.	 We need more information to calculate it.

	 B.	 6 square units

	 C.	 The square root of 24 square units

	 D.	 9 square units

	 E.	 The square root of 48 square units

	24.	 How can we use a compass, pencil, and straight edge to construct an 
angle whose measure equals 22.5ç?

	 A.	 We can draw a line segment, construct its perpendicular bisector, 
bisect the resulting right angle to get 45°, and then bisect the 45° 
angle to get 22.5°.

	 B.	 We can construct a rhombus and then bisect one of its vertex 
angles.

	 C.	 We can construct an equilateral triangle and then bisect one of the 
vertex angles.

	 D.	 We can construct a regular hexagon and then bisect one of its vertex 
angles.

	 E.	 We can’t, unless we “cheat” and use a calibrated compass.
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	25.	 Suppose that you want to construct a rhombus with a compass and 
straight edge. What should you do first?

	 A.	 Construct two intersecting arcs.

	 B.	 Construct two parallel lines.

	 C.	 Construct two perpendicular lines.

	 D.	 Construct an equilateral triangle.

	 E.	 Construct a square.

	26.	 Imagine a trapezoid defined by points P, Q, R, and S, which we encoun-
ter in that order as we go clockwise around the figure. Imagine that the 
sides have lengths d, e, f, and g as shown in Fig. Exam-7. Let d represent 
the base length, let h represent the height (vertical dashed line), let x 
represent the angle between the sides having length d and e, and let y 
represent the angle between the sides having lengths g and d. Suppose 
that the sides having lengths d and f (line segments RS and PQ) are 
parallel. Let m represent the length of the median of the trapezoid as 
shown by the horizontal dashed line. Which of the following equations 
holds true in all possible situations of the sort portrayed by this generic 
drawing?

	 A.	 x = y

	 B.	 m = (d + f )/2

	 C.	 e = g

	 D.	 h < m

	 E.	 h = m
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Figure Exam-7 .  Illustration for Final Exam 
Questions 26 through 28.
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	27.	 Which of the following equations defines the perimeter B of trapezoid 
PQRS as shown in Fig. Exam-7? (The 1/2 power denotes the positive 
square root.)

	 A.	 B = h + m

	 B.	 B = 2h + 2m

	 C.	 B = d + e + f + g

	 D.	 B = (defg)1/2

	 E.	 B = mh

	28.	 Which of the following equations defines the area A enclosed by trape-
zoid PQRS as shown in Fig. Exam-7? (The 1/2 power denotes the posi-
tive square root.)

	 A.	 A = h + m

	 B.	 A = 2h + 2m

	 C.	 A = d + e + f + g

	 D.	 A = (defg)1/2

	 E.	 A = mh

	29.	 Consider a circle represented by the following equation in Cartesian 
coordinates:

	 (x − 4)2 + (y + 1)2 = 64

		  What are the coordinates of the circle’s center?

	 A.	 (4,−1)

	 B.	 (−4,1)

	 C.	 (−1,4)

	 D.	 (1,−4)

	 E.	 We need more information to figure it out.

	30.	 What’s the radius of the circle with the equation described in 
Question 29?

	 A.	 64 units

	 B.	 32 units

	 C.	 16 units

	 D.	 8 units

	 E.	 We need more information to figure it out.
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	31.	 Figure Exam-8 illustrates an exterior angle p for a “generic” Euclidean 
plane polygon. Which of the following inequalities describes the range of 
values, in radians, that p can have?

	 A.	 0 < q < π
	 B.	 0 < q < π/2

	 C.	 0 < q < π/4

	 D.	π/2 < q < π
	 E.	 −π/2 < q < π/2

	32.	 In Euclidean three-space, how many different lines can run perpendicular 
to a given plane through a specific point that does not lie in that plane?

	 A.	 None

	 B.	 One

	 C.	 Two

	 D.	 Three

	 E.	 Infinitely many

	33.	 In Euclidean three-space, how many different lines can run parallel to a 
given plane through a specific point that does not lie in that plane?

	 A.	 None

	 B.	 One

	 C.	 Two

	 D.	 three

	 E.	 Infinitely many
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Figure Exam-8 .  Illustration for Final 
Exam Question 31.
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	34.	 The ideal straight edge for carrying out a geometric construction

	 A.	 has an angle reference scale, preferably calibrated in degrees.

	 B.	 is calibrated for distance, preferably in metric units such as  
millimeters.

	 C.	 has little holes in it to make small circles or to define points.

	 D.	 is a drafting triangle with two 45° angles and one 90° angle.

	 E.	 is an uncalibrated, flat object with at least one straight side.

	35.	 If we want to define a specific straight line in Euclidean geometry, we 
must precisely know the

	 A.	 location of one point.

	 B.	 locations of two points.

	 C.	 locations of three points.

	 D.	 locations and orientations of three planes.

	 E.	 locations and orientations of four planes.

	36.	 Figure Exam-9 illustrates a “generic” regular Euclidean plane polygon. It 
has n sides, each of length s units. Each interior angle measures p  radians. 

Each side
measures
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F i g u r e  E x a m - 9 .  Illustration for Final Exam Questions 36 
and 37.
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Suppose that we let n increase without limit, but we also make sure that 
the total perimeter of the polygon remains constant. What happens to s 
as we do this?

	 A.	 It approaches 0.

	 B.	 It approaches 1 divided by the perimeter of the polygon.

	 C.	 It approaches π divided by the perimeter of the polygon.

	 D.	 It approaches the square root of π divided by the perimeter of the 
polygon.

	 E.	 We can’t say unless we use calculus to figure it out.

	37.	 In the situation shown by Fig. Exam-9 and described in Question 36, 
what happens to the value of p as we increase n without limit?

	 A.	 It approaches 0 rad.

	 B.	 It approaches π/4 rad.

	 C.	 It approaches π/2 rad.

	 D.	 It approaches π rad.

	 E.	 It approaches 2π rad.

	38.	 Imagine the set of all possible isosceles triangles in a specific Euclidean 
plane. We can have complete confidence that if we choose any two of 
these triangles “at random,” they’ll turn out

	 A.	 directly congruent.

	 B.	 directly similar.

	 C.	 inversely congruent.

	 D.	 inversely similar.

	 E.	 None of the above

	39.	 If we can identify at least one point that two different planes in Euclidean 
three-space share, then we know that the two planes

	 A.	 run parallel to each other.

	 B.	 intersect in a straight line.

	 C.	 run perpendicular to each other.

	 D.	 run askew relative to each other.

	 E.	 intersect in a pair of parallel lines.
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	40.	 If two different planes in Euclidean three-space share no points whatso-
ever, then we know that the two planes

	 A.	 run parallel to each other.

	 B.	 intersect in a straight line.

	 C.	 run perpendicular to each other.

	 D.	 run askew relative to each other.

	 E.	 intersect in a pair of parallel lines.

	41.	 Carefully inspect Fig. Exam-10. Suppose that you have a line segment 
containing a point P, as shown in Fig. Exam-10A. You set your draft-
ing compass for a moderate span and construct two arcs opposite each 
other, both centered at P and intersecting the line segment at points 
Q and R (Fig. Exam-10B). Next, you roughly double the span of the 
compass and then construct an arc centered at Q and another arc 
centered at R, so that the two arcs have the same radius and intersect 
each other at some point away from the line segment (Fig. Exam-10C). 

A
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PQ R

PQ R
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S

Figure Exam-10 .  Illustration for Final Exam Question 41.
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Finally, you use your straight edge to draw a ray that originates at P, 
and that passes through the intersection point S of the two arcs you 
just made (Fig. Exam-10D). In this situation, you can have absolute 
confidence that

	 A.	 line segment PS has the same length as line segment QR.

	 B.	 ray PS runs perpendicular to line segment QR.

	 C.	 line segment QP has the same length as line segment PR.

	 D.	 More than one of the above

	 E.	 None of the above

	42.	 In order for two lines in Euclidean three-space to run askew relative each 
other, they must not

	 A.	 intersect at any point.

	 B.	 lie in the same plane.

	 C.	 run parallel to each other.

	 D.	 define a pair of vertical angles.

	 E.	 All of the above

	43.	 If three lines all share exactly one point in Euclidean three-space, which 
of the following statements can we make, with absolute certainty, about 
those lines?

	 A.	 They all lie in the same plane

	 B.	 They’re all parallel to each other

	 C.	 They’re all askew relative to each other

	 D.	 They all coincide

	 E.	 None of the above

	44.	 Figure Exam-11 shows two points on the Cartesian coordinate system. 
What are the coordinates of point P, expressed as an ordered pair of the 
form (x,y)?

	 A.	 (4,−5)

	 B.	 (−5,4)

	 C.	 (−4,5)

	 D.	 (5,−4)

	 E.	 (−4,−5)
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	45.	 What are the coordinates of point Q in Fig. Exam-11, expressed as an 
ordered pair of the form (x,y)?

	 A.	 (3,5)

	 B.	 (−3,5)

	 C.	 (5,3)

	 D.	 (−5,3)

	 E.	 (3,−5)

	46.	 How far from the origin does point P lie in Fig. Exam-11? Assume that 
the coordinate values, as you’ve identified them, are mathematically 
exact. Round off the answer to three decimal places.

	 A.	 4.472 units

	 B.	 4.500 units

	 C.	 6.000 units

	 D.	 6.403 units

	 E.	 6.667 units
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Figure Exam-11 . Illustration for Final Exam Questions 44 through 48.
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	47.	 How far from the origin does point Q lie in Fig. Exam-11? Assume that 
the coordinate values, as you’ve identified them, are mathematically 
exact. Round off the answer to three decimal places.

	 A.	 6.000 units

	 B.	 5.831 units

	 C.	 5.657 units

	 D.	 5.333 units

	 E.	 5.111 units

	48.	 How far from each other do points P and Q lie in Fig. Exam-11? Assume 
that the coordinate values, as you’ve identified them, are mathematically 
exact. Round off the answer to three decimal places.

	 A.	 12.234 units

	 B.	 12.042 units

	 C.	 11.000 units

	 D.	 10.000 units

	 E.	 9.667 units

	49.	 A tetrahedron has

	 A.	 four vertices, four edges, and four faces.

	 B.	 four vertices, six edges, and four faces.

	 C.	 six vertices, six edges, and four faces.

	 D.	 six vertices, eight edges, and four faces.

	 E.	 eight vertices, eight edges, and four faces.

	50.	 In a regular tetrahedron, each face constitutes

	 A.	 an equilateral triangle.

	 B.	 a right triangle.

	 C.	 an obtuse triangle.

	 D.	 a reflex triangle.

	 E.	 a square.

	51.	 If we increase the volume of a cube by a factor of 125, then its surface area 
increases by a factor of

	 A.	 5.

	 B.	 the square root of 50.
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	 C.	 10.

	 D.	 the square root of 125.

	 E.	 25.

	52.	 Suppose that we encounter a Euclidean plane triangle whose sides mea-
sure exactly 20, 48, and 52 meters long. We’ve found

	 A.	 an acute triangle.

	 B.	 a right triangle.

	 C.	 an isosceles triangle.

	 D.	 an equilateral triangle.

	 E.	 an obtuse triangle.

	53.	 Figure Exam-12 shows the graphs of three equations in Cartesian coor-
dinates. The graphs appear as a parabola (A), a circle (B), and a straight 
line (C). Let’s call the corresponding equations “Equation A,” “Equation B,” 
and “Equation C,” even though we don’t know any numerical specifics 
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Figure Exam-12 . Illustration for Final Exam Questions 53 through 56.
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about them. Based on the visual information in Fig. Exam-12, how many 
distinct real-number solutions exist for Equations A and B as a pair?

	 A.	 None

	 B.	 One

	 C.	 Two

	 D.	 Three

	 E.	 Infinitely many

	54.	 Based on the visual information in Fig. Exam-12, how many distinct real-
number solutions exist for Equations B and C as a pair?

	 A.	 None

	 B.	 One

	 C.	 Two

	 D.	 Three

	 E.	 Infinitely many

	55.	 Based on the visual information in Fig. Exam-12, how many distinct real-
number solutions exist for Equations A and C as a pair?

	 A.	 None

	 B.	 One

	 C.	 Two

	 D.	 Three

	 E.	 Infinitely many

	56.	 Based on the visual information in Fig. Exam-12, how many distinct real-
number solutions exist for Equations A, B, and C considered all together?

	 A.	 None

	 B.	 One

	 C.	 Two

	 D.	 Three

	 E.	 Infinitely many

	57.	 If we increase the volume of a sphere by a factor of 64, its surface area 
increases by a factor of

	 A.	 4.

	 B.	 8.
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	 C.	 16.

	 D.	 the square root of 128.

	 E.	 the cube root of 2048.

	58.	 What’s the magnitude of the vector 2i + 2j − 2k in Cartesian three-
space?

	 A.	 4

	 B.	 The square root of 6

	 C.	 8

	 D.	 The square root of 8

	 E.	 The square root of 12

	59.	 Figure Exam-13 shows three plane regions with different boundary defi-
nitions. Based on the assumption that the figures all have the same gen-
eral size and shape, which of the following statements holds true?

	 A.	 The regions all have identical interior areas, and they all have identical 
perimeters.

	 B.	 Region A has greater interior area than region B, which in turn has 
greater interior area than region C; however, all three regions have 
identical perimeters.

	 C.	 Region A has greater perimeter than region B, which in turn has greater 
perimeter than region C; however, all three regions have identical 
interior areas.

A B C

Figure Exam-13 .  Illustration for Final Exam Question 59.
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	 D.	 Region A has greater perimeter than region B, which in turn has greater 
perimeter than region C. In addition, region A has greater interior area 
than region B, which in turn has greater interior area than region C.

	 E.	 We cannot define the interior areas or perimeters of any of the figures 
shown here, because the boundary specifications aren’t clear.

	60.	 In Cartesian time-space, each point follows its own time line. Assuming 
that no point moves with respect to the origin, all the points follow time 
lines that run

	 A.	 “parallel” to all the other time lines and “perpendicular” to three-space.

	 B.	 “parallel” to all the other time lines and “parallel” to three-space.

	 C.	 “perpendicular” to all the other time lines and “perpendicular” to 
three-space.

	 D.	 “perpendicular” to all the other time lines and “parallel” to three-space.

	 E.	 “on the surface” of a light cone with the origin at its apex.

	61.	 Imagine all possible right triangles in a Euclidean plane. If we choose any two 
of them “at random,” we can have absolute confidence that they’ll both

	 A.	 be inversely similar.

	 B.	 be directly similar.

	 C.	 have equal perimeters.

	 D.	 have equal interior areas.

	 E.	 conform to the theorem of Pythagoras.

	62.	 Refer to Fig. Exam-14. Let X represent a plane that passes through two 
parallel planes Y and Z, intersecting Y and Z in lines L and M. Define 
points P, Q, R, S, T, U, V, and W as shown, such that all of the following 
conditions hold true:

	 	 •	 Point V lies at the intersection of lines L, PQ, and RS

	 	 •	 Point W lies at the intersection of lines M, PQ, and TU

	 	 •	 Points P and Q lie in plane X

	 	 •	 Points R and S lie in plane Y

	 	 •	 Points T and U lie in plane Z

	 	 •	 Lines PQ and RS both run perpendicular to line L

	 	 •	 Lines PQ and TU both run perpendicular to line M
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		  Which of the following constitutes a pair of vertical angles, assuring us 
that they have equal measure?

	 A.	∠TWP and ∠RVW

	 B.	 ∠TWP and ∠UWQ

	 C.	 ∠QWT and ∠PVS 

	 D.	∠PWU and ∠QVR

	 E.	 ∠PVS and ∠WVR

	63.	 In the situation described by Question 62 and Fig. Exam-14, which of the 
following constitutes a pair of alternate interior angles, assuring us that 
they have equal measure?

	 A.	∠TWP and ∠RVW

	 B.	 ∠TWP and ∠UWQ

	 C.	 ∠QWT and ∠PVS 

	 D.	∠PWU and ∠QVR

	 E.	 ∠PVS and ∠WVR
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Figure Exam-14 .  Illustration for Final Exam Questions 62 through 66.
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	64.	 In the situation described by Question 62 and Fig. Exam-14, which of the 
following constitutes a pair of corresponding angles, assuring us that they 
have equal measure?

	 A.	∠TWP and ∠RVW

	 B.	 ∠TWP and ∠UWQ

	 C.	 ∠QWT and ∠PVS 

	 D.	∠PWU and ∠QVR

	 E.	 ∠PVS and ∠WVR

	65.	 In the situation described by Question 62 and Fig. Exam-14, which of the 
following constitutes a pair of alternate exterior angles, assuring us that 
they have equal measure?

	 A.	∠TWP and ∠RVW

	 B.	 ∠TWP and ∠UWQ

	 C.	 ∠QWT and ∠PVS 

	 D.	∠PWU and ∠QVR

	 E.	 ∠PVS and ∠WVR

	66.	 In the situation described by Question 62 and Fig. Exam-14, which of the 
following constitutes a pair of adjacent angles, assuring us that they’re 
supplementary?

	 A.	∠TWP and ∠RVW

	 B.	 ∠TWP and ∠UWQ

	 C.	 ∠QWT and ∠PVS 

	 D.	∠PWU and ∠QVR

	 E.	 ∠PVS and ∠WVR

	67.	 Which of the following geometric objects represents a true mathematical 
function when we work with it in a polar coordinate plane, but not when 
we work with it in a Cartesian coordinate plane?

	 A.	 A circle centered at the origin

	 B.	 A straight, horizontal line that passes through the origin

	 C.	 A straight, horizontal line that does not pass through the origin

	 D.	 A parabola that opens upward and whose vertex lies at the origin

	 E.	 A parabola that opens upward and whose vertex does not lie at the 
origin
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	68.	 Imagine two rays emanating outward from the center point of a circle in 
a Euclidean plane. Each of the two rays intersects the circle at a point; 
call these points P and Q. Suppose that the distance between P and Q, 
as expressed along the arc of the circle, equals the radius of the circle. In 
this scenario, the measure of the angle between the rays equals

	 A.	 1°.
	 B.	 30°.
	 C.	 45°.
	 D.	 60°.
	 E.	 None of the above

	69.	 What’s the total surface area of the rectangular prism shown in  
Fig. Exam-15?

	 A.	 763 square inches

	 B.	 1144 square inches

	 C.	 1526 square inches

	 D.	 3052 square inches

	 E.	 We need more information to calculate it.

	70.	 What’s the volume of the rectangular prism shown in Fig. Exam-15?

	 A.	 49 cubic inches

	 B.	 98 cubic inches

	 C.	 2401 cubic inches

	 D.	 3795 cubic inches

	 E.	 We need more information to calculate it.

15 inches

23 inches
11 inches

Rectangular
prism

Figure Exam-15 . Illustration for Final Exam Questions 69 and 70.
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	71.	 In polar coordinates, the equation 4r = 5p represents a

	 A.	 straight line.

	 B.	 circle.

	 C.	 spiral.

	 D.	 three-leafed rose.

	 E.	 hyperbola.

	72.	 If we quadruple the length of one semiaxis of an ellipsoid while leaving 
the other two semiaxes unchanged, the volume of the enclosed solid 
increases by a factor of

	 A.	 2.

	 B.	 the square root of 8.

	 C.	 the cube root of 32.

	 D.	 4.

	 E.	 8.

	73.	 Suppose that we want to uniquely define a geometric plane in Cartesian 
three-space. We can accomplish this task if we can determine

	 A.	 the coordinates of one point in the plane and the direction of a vector 
that runs parallel to the plane.

	 B.	 the coordinates of two points in the plane and the direction of a vector 
that runs parallel to the plane.

	 C.	 the coordinates of one point in the plane and the direction of a vector 
that runs normal to the plane.

	 D.	 the back-end points of two vectors that both run normal to the 
plane.

	 E.	 Any of the above

	74.	 Consider a slant circular cone whose base radius equals r and height 
equals h, as shown in Fig. Exam-16A. Point P represents the cone’s apex. 
Point C represents the center of the base, which lies in plane X. Point Q 
represents the projection of the apex onto plane X, so that line segment 
PQ runs perpendicular to plane X. Imagine that we move point P straight 
upward until we’ve exactly doubled the height of the cone to 2h, but we 
don’t move point C, and the transformation has no effect on the location 
of point Q. We get a taller cone, as shown in Fig. Exam-16 B. How do the 
volumes of these two cones compare?
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	 A.	 The taller cone has twice the volume of the shorter cone.

	 B.	 The taller cone has the square root of 8 times the volume of the 
shorter cone.

	 C.	 The taller cone has the cube root of 16 times the volume of the shorter 
cone.

	 D.	 The taller cone has four times the volume of the shorter cone.

	 E.	 We need more information to answer this.

	75.	 Consider the point (p0,r0) = (3π/2,16) in mathematician’s polar coordi-
nates. What’s the ordered-pair (x0,y0) representation of this point in 
Cartesian coordinates?
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Figure Exam-16 .  Illustration for Final Exam Question 74.
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	 A.	 (x0,y0) = (0,−16)

	 B.	 (x0,y0) = (0,−4)

	 C.	 (x0,y0) = (4,0)

	 D.	 (x0,y0) = (4,16)

	 E.	 (x0,y0) = (−4,−4)

	76.	 With a drafting compass alone, you can “legally” perform all of the fol-
lowing actions, according to the formal rules for geometric construction, 
except one. Which one?

	 A.	 Draw a circle centered at a defined point.

	 B.	 Replicate the distance between any two defined points.

	 C.	 Draw an arc centered at a “randomly” chosen point.

	 D.	 Determine the measure of an angle in degrees.

	 E.	 Draw a circle whose center lies on a defined line.

	77.	 What’s the sum of the vectors (1,−5,6) and (0,7,−12) in Cartesian 
three-space?

	 A.	 (0,−35,−72)

	 B.	 (1,−12,6)

	 C.	 (1,2,−6)

	 D.	 (−1,12,−18)

	 E.	 We need more information to calculate it.

	78.	 From the information shown in Figure Exam-17, we can deduce the fact that

	 A.	 the tangent of 90° is undefined.

	 B.	 the tangent of 45° equals 1.

	 C.	 the tangent of 135° equals −1.

	 D.	 the tangent of 315° equals −1.

	 E.	 All of the above

	79.	 Based on the notion that the speed of light in free space equals 300,000 
kilometers per second, we can define 1 minute of time as

	 A.	 5000 kilometer-equivalents.

	 B.	 18,000,000 kilometer-equivalents.

	 C.	 300,000 cubic kilometers.

	 D.	 60 cubic seconds.

	 E.	 None of the above
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	80.	 Imagine a rectangular prism that measures exactly 100 meters high, 
200 meters wide, and 400 meters deep. Suppose that it forms from 
nothing, exists in free space for exactly 0.01 second, and then van-
ishes. What’s its hypervolume in quartic kilometer-equivalents? Assume 
that the free-space speed of light equals exactly 3 ë 105 kilometers per 
second.

	 A.	 6 quartic kilometer-equivalents

	 B.	 12 quartic kilometer-equivalents

	 C.	 18 quartic kilometer-equivalents

	 D.	 24 quartic kilometer-equivalents

	 E.	 We need more information to calculate it.

	81.	 What’s the dot product of the two vectors shown in Fig. Exam-18?

	 A.	 c • d = 126

	 B.	 c • d = 23

	 C.	 c • d = 35

	 D.	 c • d = 0

	 E.	 We need more information to figure it out.
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Figure Exam-17 .  Illustration for Final Exam Question 78.
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	82.	 What’s the distance between the origin and the point (1,1,1,1,1,1,1,1,1,1) 
in Cartesian 10-space? Assume the coordinate values to be exact.

	 A.	 10 units

	 B.	 100 units

	 C.	 The square root of 10 units

	 D.	 The 10th root of 10 units

	 E.	 1 unit

	83.	 What’s the distance between the origin and the point (2,2,2,2,2,2,2,2,2,2) 
in Cartesian 10-space? Assume the coordinate values to be exact.

	 A.	 The square root of 40 units

	 B.	 200 units

	 C.	 The 10th root of 20 units

	 D.	 The square root of 20 units

	 E.	 2 units
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Figure Exam-18 .  Illustration for Final Exam Question 81.
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	84.	 With a straight edge alone, you can “legally” perform all of the following 
actions, according to the formal rules for geometric construction, except 
one. Which one?

	 A.	 Draw a ray that starts at a defined point.

	 B.	 Draw a line segment connecting two known points.

	 C.	 Duplicate a line segment.

	 D.	 Construct two lines that intersect at a single point.

	 E.	 Draw a line that intersects a defined circle at two “random” points.

	85.	 What’s the maximum number of dimensions that can theoretically exist 
in Cartesian hyperspace?

	 A.	 Three

	 B.	 Four

	 C.	 Five

	 D.	 It depends on whether or not we include time.

	 E.	 No maximum exists!

	86.	 Figure Exam-19 is a polar-coordinate graph showing a particular point P. 
Each radial division (where radial divisions show up as concentric circles) 
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Figure Exam-19 .  Illustration for Final Exam Questions 86 and 87.
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represents 1 unit. Based on this information, what’s the x coordinate of 
P in the Cartesian xy-plane?

	 A.	 31/2

	 B.	 61/2

	 C.	 (9/2)1/2

	 D.	 7π/4

	 E.	 −(9/2)1/2

	87.	 In the situation of Fig. Exam-19, what’s the y coordinate of point P in the 
Cartesian xy-plane?

	 A.	 31/2

	 B.	 −61/2

	 C.	 (9/2)1/2

	 D.	 7π/4

	 E.	 −(9/2)1/2

	88.	 Suppose that we want to determine the equation of a geometric line in a 
Cartesian three-space coordinate system. We can accomplish this task if 
we can find

	 A.	 the coordinates of one point on the line and the direction numbers for 
a vector that runs parallel to the line.

	 B.	 the coordinates of one point on the line and the direction numbers for 
a vector that runs normal to the line.

	 C.	 the direction numbers for two vectors that run normal to the line.

	 D.	 the direction numbers for two vectors that run parallel to the line.

	 E.	 Any of the above

	89.	 Figure Exam-20 illustrates a set of three-space coordinates commonly 
used by astronomers. What does the angular dimension p, expressed in 
degrees, represent here?

	 A.	 Celestial longitude

	 B.	 Declination

	 C.	 Azimuth

	 D.	 Right ascension

	 E.	 Elevation
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	90.	 What does the angular dimension f, expressed in hours, represent in the 
coordinate system of Fig. Exam-20?

	 A.	 Celestial longitude

	 B.	 Declination

	 C.	 Azimuth

	 D.	 Right ascension

	 E.	 Elevation

	91.	 What’s the sum of the vectors (2,5) and (−7,−10) in Cartesian two-space?

	 A.	 (−5,−5)

	 B.	 (5,−15)

	 C.	 (9,−5)

	 D.	 (−8,−2)

	 E.	 (−14,−50)

	92.	 What’s the dot product of the vectors (2,5) and (−7,−10) in Cartesian 
two-space?

	 A.	−64

	 B.	 −10

	 C.	 4
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Figure Exam-20 .  Illustration for Final Exam Questions 89 and 90.



372        g e o m e t r y   Demystified

	 D.	 6

	 E.	 36

	93.	 In Cartesian time-space that describes our “real world,” how many coor-
dinate values do we need to uniquely name or define a point that lasts 
for an “infinitely short” instant in time?

	 A.	 Two

	 B.	 Three

	 C.	 Four

	 D.	 Five

	 E.	 Infinitely many

	94.	 We can have total confidence that two triangles are inversely similar if 
they exhibit

	 A.	 inverse congruence.

	 B.	 direct similarity and the same orientation.

	 C.	 direct similarity and the same size.

	 D.	 direct congruence and different orientations.

	 E.	 Any of the above

	95.	 In so-called navigator’s polar coordinates, we don’t allow the range to 
have negative values. Why?

	 A.	 It results in an undefined quotient, rendering it impossible to define 
the position of a point.

	 B.	 It produces relations but not always true mathematical functions.

	 C.	 It requires us to define angular values going clockwise, when we should 
always define them going counterclockwise.

	 D.	 In the “real world,” nothing can lie any closer to us than the point 
representing our own location.

	 E.	 All of the above

	96.	 Imagine that S, T, and U represent three collinear points (they all fall 
along a single straight line), such that T lies between S and U. Which of 
the following four distance equations, if any, is false?

	 A.	 ST + TU = SU

	 B.	 SU – ST = TU
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	 C.	 SU – TU = ST

	 D.	 ST − TU = SU

	 E.	 All of the above equations are true.

	97.	 Which of the following actions violates the formal rules for geometric 
construction?

	 A.	 Define the length of a line segment by laying the nonmarking tip of a 
compass at one end point and the marking tip at the other end 
point.

	 B.	 Represent a line by running a pencil’s tip along a straight edge for 
some distance, and then draw arrows at each end of the pencil 
mark.

	 C.	 Create a “random” angle by using a straight edge to draw two rays that 
intersect at their back-end points.

	 D.	Construct a “random” circle with a compass set to any desired 
span.

	 E.	 Duplicate a line segment over and over, endlessly (in your imagination), 
to create an infinitely complex Euclidean plane polygon.

	98.	 Imagine two distinct points P and Q on a non-Euclidean surface. The 
shortest possible path between P and Q that lies entirely on the surface 
is known as a

	 A.	 Riemannian curve.

	 B.	 Lobachevskian curve.

	 C.	 longitudinal curve.

	 D.	 latitudinal curve.

	 E.	 None of the above

	99.	 Figure Exam-21 illustrates a non-Euclidean 2D surface containing an 
irregular polygon with five sides, all of which are geodesic arcs. The sur-
face in this illustration has

	 A.	 negative curvature.

	 B.	 positive curvature.

	 C.	 nongeodesic curvature.

	 D.	 relativistic curvature.

	 E.	 elliptical curvature.
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	100.	 If we take Fig. Exam-21 as a literal portrayal, we can have complete con-
fidence that the measures of the interior angles of the irregular pentagon 
sum up to

	 A.	 something more than 540°.
	 B.	 exactly 540°.
	 C.	 something less than 540°.
	 D.	 something more than 600°.
	 E.	 something more than 720°.

Non-Euclidean
surface
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on the warped
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Irregular pentagon,
all of whose sides
constitute geodesic arcs

Figure Exam-21 .  Illustration for Final Exam Questions 99 and 100.
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 9. C
10. A

Chapter 6
 1. D
 2. C
 3. C
 4. B
 5. A
 6. B
 7. C
 8. D
 9. A
10. B

Test: Part I
 1. E
 2. B
 3. C
 4. B
 5. A
 6. D
 7. D
 8. D
 9. C
10. C
11. D
12. B
13. A
14. E
15. B
16. C
17. D
18. B
19. E
20. C
21. E
22. B
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23. D
24. E
25. E
26. A
27. C
28. D
29. D
30. C
31. E
32. D
33. A
34. D
35. D
36. E
37. C
38. A
39. A
40. E
41. D
42. A
43. B
44. C
45. D
46. A
47. B
48. A
49. E
50. E

Chapter 7
	 1. D
	 2. A
	 3. B
	 4. A
	 5. C
	 6. B
	 7. D
	 8. C

	 9. D
10. A

Chapter 8
	 1. B
	 2. B
	 3. C
	 4. C
	 5. D
	 6. A
	 7. C
	 8. C
	 9. C
	10. B

Chapter 9
	 1. A
	 2. D
	 3. B
	 4. B
	 5. A
	 6. C
	 7. A
	 8. B
	 9. C
10. D

Chapter 10
	 1. C
	 2. C
	 3. A
	 4. D
	 5. B
	 6. B
	 7. C
	 8. A
	 9. D
	10. A

Chapter 11
	 1. D
	 2. A
	 3. B
	 4. C
	 5. B
	 6. C
	 7. A
	 8. D
	 9. C
	10. D

Test: Part II
	 1. C
	 2. C
	 3. E
	 4. A
	 5. D
	 6. E
	 7. A
	 8. E
	 9. D
10. B
11. A
12. E
13. B
14. A
15. B
16. A
17. D
18. C
19. C
20. E
21. D
22. D
23. A
24. A
25. B

26. A
27. D
28. B
29. A
30. A
31. A
32. C
33. A
34. B
35. D
36. E
37. D
38. B
39. A
40. C
41. D
42. B
43. E
44. B
45. D
46. B
47. C
48. E
49. A
50. C

Final Exam
	 1. D
	 2. D
	 3. C
	 4. A
	 5. C
	 6. A
	 7. A
	 8. C
	 9. A
	 10. E
	 11. C
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	 12. B
	 13. E
	 14. E
	 15. A
	 16. D
	 17. D
	 18. C
	 19. A
	 20. A
	 21. C
	 22. B
	 23. D
	 24. A
	 25. B
	 26. B
	 27. C
	 28. E
	 29. A
	 30. D
	 31. A
	 32. B
	 33. E

	 34. E
	 35. B
	 36. A
	 37. D
	 38. E
	 39. B
	 40. A
	 41. D
	 42. E
	 43. E
	 44. B
	 45. E
	 46. D
	 47. B
	 48. B
	 49. B
	 50. A
	 51. E
	 52. B
	 53. C
	 54. B
	 55. C

	 56. B
	 57. C
	 58. E
	 59. A
	 60. A
	 61. E
	 62. B
	 63. C
	 64. A
	 65. D
	 66. E
	 67. A
	 68. E
	 69. C
	 70. D
	 71. C
	 72. D
	 73. C
	 74. A
	 75. A
	 76. D
	 77. C

	 78. D
	 79. B
	 80. D
	 81. A
	 82. C
	 83. A
	 84. C
	 85. E
	 86. C
	 87. E
	 88. A
	 89. B
	 90. D
	 91. A
	 92. A
	 93. C
	 94. A
	 95. D
	 96. D
	 97. E
	 98. E
	 99. A
100. C
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A
abscissa, 118
acute angle, 7
acute triangle, 34–35
adjacent angles, 13
adjacent dihedral angles, 174
adjacent line/plane angles, 176
alternate exterior angles for intersecting  

lines, 15
alternate exterior angles for intersecting planes, 

183–185
alternate interior angles for intersecting  

lines, 14
alternate interior angles for intersecting planes, 

183–184
altitude in cylindrical coordinates,  

278
angle

bisection of, 9, 109–110
definition of, 9–16
dihedral, 173–174
reproduction of, 108–109

angle-angle-angle principle,  
32–33

angle-angle-side principle, 32
angle between line and plane,  

175–176
angle measurement, 7
angle notation, 8, 74
angle-side-angle principle, 31
angles between intersecting planes, 173–174, 

178–179
angular addition, 11–12
angular subtraction, 11–12
antipodes, 275
arc, construction of, 97–98
arctangent, 225
astronomical unit, 293–294
axioms, Euclid’s, 310–311
azimuth, 269

B
bearing, 269
bilateral symmetry, 33, 120
bisection

angle, 9, 109–110
line segment, 101–102

black hole, 315
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C
cardioid in polar coordinates, 262, 263–265
Cartesian extrapolations, 303–304
Cartesian five-space, 303–304
Cartesian four-space, 290–291
Cartesian n-space, 290–295, 304–305
Cartesian plane, 115–147, 219–228, 272–275
Cartesian three-space, 228–250, 292–294
Cartesian time-space, 292
celestial coordinates, 277–278, 280–283
circle

center of, 135
circumference of, 81
construction of, 96–99
definition of, 80
equation of, 135–138
interior area of, 81
radius of, 135

circle in polar coordinates, 255–257
circular cone, 201–205
circular cylinder, 205–209
circular sector

interior area of, 85
perimeter of, 84–85

circumference of circle, 81
circumference of ellipse, 81–82
circumscribed regular polygon, 83–84, 86–87
classical physics, 292
closed-ended ray, 5
closed line segment, 5
closed plane region, 168
compass, drafting, 92–114
complementary angles, 13
cone, circular, 201–205
congruent triangles, 26–34
conic section, 80
constructions, 92–114
coordinate conversions, 267–275
coplanar vertices, 39

corresponding angles for intersecting lines, 
15–16

corresponding angles for intersecting planes, 
185–186

cosine function, 221–222
cosmologist, 304
cross product of vectors, 237–238
cube

definition of, 196
surface area of, 196–197
volume of, 196–197

curved space, 315–317
cylinder, circular, 205–209
cylindrical coordinates, 278–280, 283–284

D
declination

celestial, 277
magnetic, 270

dependent variable, 118, 230–231
dihedral angle, 173–174
direction angles, 233–234
direction cosines, 234–235
direction in polar coordinates, 253–254
direction numbers, 245–246
direction of vector, 225
directly congruent triangles, 27–30,  

33–34, 40
directly similar triangles, 25–26, 29–30, 32–34
displacement as manifestation of time,  

295–296
displacement versus distance, 6
distance addition, 10–11
distance between parallel line and plane, 178
distance between parallel planes, 182
distance between point and plane, 177
distance between points, 118–119, 231
distance formulas, 305–306
distance notation, 4–5
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distance subtraction, 10–11
dot product of vectors, 226–228, 236
drafting compass, 92–114

E
eccentricity, 82
Einstein, Albert, 296
elementary objects, 4
ellipse

circumference of, 81–82
definition of, 80
interior area of, 82

ellipse in polar coordinates, 256–258
ellipsoid

definition of, 211
positive curvature of, 313
surface area of, 212
volume of, 211–212, 214

elliptic geometry, 313–314
ellipticity, 82
equation of circle, 135–138
equation of line, 122–129
equation of parabola, 129–135
equations

multiple solutions of, 141–144
simultaneous, 138–144
solutions to pairs of, 138–144
two-by-two, 140

equatorial axis, 275
equilateral triangle, 37–38
equivalent vectors, 224–225, 232–233
Euclid of Alexandria, 3, 309
Euclidean geometry

definition of, 3
as subject for this book, 309 

Euclidean plane polygon see polygon
Euclidean three-space, 166–190
Euclid’s axioms, 310–311
Euclid’s fifth postulate, 311

exterior angles, 15, 76–77
extrapolations, Cartesian, 303–304

F
five-space, Cartesian, 303–304
four-cone, 300
four-cube, 297–299
four-leafed rose in polar coordinates,  

260, 262
four-prism, rectangular, 198, 307–309
four-space, Cartesian, 290–291
free space, 299
frustum of right circular cone

definition of, 203
surface area of, 203–204
volume of, 203–204

functions, 120–122
functions versus relations, 119–122

G
general theory of relativity, 315–316
geodesic, 311–315
geodesic arc, 312
geodesic segment, 312
geographic north, 269
geometric polar plane, 265–266
gigagon, regular, 72
Global Positioning System, 270
graph of linear equation, 122–129
graph of quadratic equation, 129–135
gravitational light cross, 316

H
half line, 5
half plane, 170–171
half-open line segment, 5
heading, 265
height in cylindrical coordinates, 278
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helix, 295
hexagon, regular, 70–71
hyperbola in polar coordinates,  

257–259
hyperbolic geometry, 314–315
hypercone, 300
hyperfunnel, 316–317
hyperprism, rectangular, 298
hypervolume, 298, 301–302, 307–309

I
if and only if symbol, 37
iff symbol, 37
independent variable, 118, 230–231
inscribed regular polygon, 83, 85–86
interior angles, 14, 24–25, 75–76
interior area of circle, 81
interior area of circular sector, 85
interior area of circumscribed regular  

polygon, 84
interior area of ellipse, 82
interior area of inscribed regular  

polygon, 83
interior area of parallelogram, 60
interior area of rectangle, 61
interior area of regular polygon, 78–79
interior area of rhombus, 61
interior area of square, 62
interior area of trapezoid, 63–64
interior area of triangle, 40
intersecting line principle, 168
intersecting planes, 171–176
inverse tangent, 225
inversely congruent triangles, 27–28, 34
inversely similar triangles, 26, 34
isosceles triangle, 36

K
kilometer-equivalent, 297–298, 302

L
latitude, 275–277, 314
lemniscate in polar coordinates, 259
light cone, 300–301
light-year, 296
line

construction of, 96
construction of parallel to,  

104–107
dropping perpendicular to,  

103–104
equation of, 122–129

line and point principle, 168
line as elementary object, 4
line in Cartesian three-space, 245–248
line in Euclidean three-space,  

166–167
line on Cartesian plane, 122–129
line parallel to plane, 178
line segment

bisection of, 101–102
closed, 5
construction of, 94–95
duplication of, 100–101
half-open, 5
open, 5
perpendicular ray to, 102–103

linear equation
graph of, 122–129
point-slope form of, 125–127
slope-intercept form of, 123–124
standard form of, 123
straight line represented as, 122

lines, parallel, 12–13, 171–172
lines, skew, 172
Lobachevskian geometry, 314–315
Lobachevsky, Nikolai, 314
logical implication symbol, 37
longitude, 275–277, 314
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M
magnetic declination, 270
magnitude of vector, 225, 233
many-sided polygon, 72–74
mathematician’s polar coordinates,  

271–275
midpoint principle, 5–6
minute-equivalent, 296
multiplication of vector by scalar, 226, 236
mutual perpendicularity, 17–18

N
naming of triangle, 24–25
navigator’s polar coordinates, 269–275
negative curvature, 314
Newtonian physics, 292
noncollinear points, 28
nonconvex octagon, regular, 72–73
non-Euclidean geometry, 309
non-Euclidean space, 315–317
normal line to a plane, 175, 177
north geographic pole, 269
n-space, Cartesian, 290–295, 304–305

O
oblate sphere, 313
obtuse angle, 7
obtuse triangle, 35
octagon, nonconvex, regular, 72–73
octagon, regular, 71–73, 85–86
open line segment, 5
open plane region, 169
open-ended ray, 5
ordered pair, 116–117
ordered quadruple, 290
ordered triple, 229
ordinate, 118
origin, 118
orthogonal, 7

P
parabola

equation of, 129–135
plotting of, 130–135
vertex point of, 129

parallel defined as latitude circle, 314
parallel geodesics, 312–315
parallel line, construction of, 104–107
parallel lines, 12–13, 171–172
parallel planes, 181–182
parallel postulate, 16–17, 311–312
parallel principle for lines, 16–17
parallel principle for lines and planes, 187
parallel principle for planes, 186–187
parallel principle revisited, 309–315
parallelepiped

definition of, 198–199
surface area of, 198–199
volume of, 198–200

parallelogram
definition of, 48–49, 51
diagonals of, 53–54
interior area of, 60
perimeter of, 60
special facts about, 53–54

parallelogram method of vector addition,  
224

parametric equations, 246–248
partially closed plane region, 169
partially open plane region, 169
pentagon, regular, 70
perimeter of circular sector, 84–85
perimeter of circumscribed regular polygon, 

83–84
perimeter of inscribed regular polygon, 83
perimeter of parallelogram, 60
perimeter of rectangle, 61
perimeter of regular polygon, 77–78
perimeter of rhombus, 60–61
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perimeter of square, 62
perimeter of trapezoid, 62
perimeter of triangle, 39–40
perpendicular

definition of, 7
dropping of, to a line, 103–104

perpendicular bisector
construction of, 102
definition of, 9–10

perpendicular bisector principle, 9–10
perpendicular planes, 174–175
perpendicular principle, 9–10
perpendicular transversal, 16
perpendicularity, mutual, 17–18
photon, 300
pi, definition and value of, 80
plane

Cartesian, 115–147, 219–228, 272–275
general equation of, 240–245
plotting, 241–244

plane as elementary object, 4
plane geometry, definition of, 3
plane in Cartesian three-space, 239–245
plane in Euclidean three-space, 166–167
plane perpendicular to line, 177–178
plane polygon see polygon
plane regions, 168–170
point, construction of, 93–94
point as elementary object, 4
point in Euclidean three-space, 166–167
points, distance between, 118–119
point-slope form of linear equation, 125–127
polar axis, 275
polar coordinates, 252–275
polygon

circumscribed regular, 83–84, 86–87
definition of, 70
exterior angles of, 76–77
inscribed regular, 83, 85–86

polygon (Cont.):
interior angles of, 75–76
many-sided, 72–74
regular, definition of, 72
regular, interior area of, 78–79
regular, perimeter of, 77–78
requirements for, 70
rules for, 74–80

positive curvature, 313
prism, rectangular

definition of, 197
surface area of, 197–198, 200–201
volume of, 197–198

pyramid
definition of, 195
surface area of, 195–196
volume of, 195–196

Pythagorean theorem, 39

Q
quadratic equation, graph of,  

129–135
quadrilateral

definition of, 46
general, 50
irregular, 50
requirements for, 46
sum of angle measures, 52
types and characteristics of, 46–48

quartic kilometer-equivalent, 298
quasar, 316

R
radius in polar coordinates, 252–254
ray

closed-ended, 5
construction of, 95
open-ended, 5
perpendicular to line segment, 102–103
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rectangle
definition of, 47–48, 51
diagonals of, 54–55
interior area of, 61, 64–65
perimeter of, 61
special facts about, 54–56, 58–59

rectangular four-prism, 298, 307–309
rectangular hyperprism, 298
rectangular prism

definition of, 197
surface area of, 197–198, 200–201
volume of, 197–198

rectangular three-space, 228–250
reference frame, 296
reflex angle, 7
regular gigagon, 72
regular hexagon, 70–71
regular nonconvex octagon, 72–73
regular octagon, 71–73, 85–86
regular pentagon, 70
regular polygon

circumscribed, 83–84, 86–87
definition of, 72
inscribed, 83, 85–86
interior area of, 78–79
perimeter of, 77–78

relation, 119–120
relation conversions, 268
relation versus function, 119–122, 254–255
relativity, theory of, 296, 315–316
rhombus

definition of, 47–48
diagonals of, 56
interior area of, 61
perimeter of, 60–61
special facts about, 56, 58–59

Riemann, Bernhard, 313
Riemannian geometry, 313–314
right angle, 7

right ascension, 277
right circular cone

definition of, 201–202
surface area of, 202
volume of, 202–203

right circular cylinder
definition of, 206–207
surface area of, 206–207
volume of, 206–209

right triangle, 38
rigid transformation, 26

S
second-equivalent, 296, 302–303
side-angle-angle principle, 32
side-angle-side principle, 30–31
sides of triangle, 25
side-side-side principle, 29–30
similar triangles, 25–30, 32–34
simultaneous equations, 138–144
sine function, 220–222
skew lines, 172
slant circular cone

definition of, 204–205
volume of, 204–205

slant circular cylinder
definition of, 207–208
volume of, 207–208

slope, definition of, 124
slope-intercept form of linear equation,  

123–124
special relativity, theory of, 296
sphere

definition of, 210
oblate, 313
positive curvature of, 313
surface area of, 210
volume of, 210–211, 213

spherical coordinates, 280–282
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spiral in polar coordinates, 260, 263–264
square

definition of, 46–47
interior area of, 62
perimeter of, 62

standard form of linear equation, 123
straight angle, 7
straight edge, 92–114
sum of vectors, 226, 235
supplementary angles, 13
symmetric-form equation, 245,  

247–248
symmetry, bilateral, 33, 120

T
tangent function, 221–223
tesseract, 297–299, 306–307
tetrahedron

definition of, 194
surface area of, 194
volume of, 194–195

theorem of Pythagoras, 39
theory of general relativity, 315–316
theory of special relativity, 296
three-leafed rose in polar coordinates,  

260–261
three-point principle for triangles,  

28–29
three-point principle to define a plane, 167
three-space, Cartesian, 228–250,  

292–294
three-space, Euclidean, 166–190
time as displacement, 295–296
time line, 292
time-space, 292–295, 301–302
torus

definition of, 212–213
surface area of, 212–213
volume of, 212–213

transversal, 14–16
trapezoid

definition of, 49–50
interior area of, 63–64
median of, 57–58
perimeter of, 63
special facts about, 57–58

triangle
acute, 34–35
definition of, 24
equilateral, 37–38
interior angles of, 24–25
interior area of, 40
isosceles, 36
naming of, 24–25
obtuse, 35
perimeter of, 39–40
right, 38
sides of, 25
sum of angle measures, 39
trapezoid within, 57
vertices of, 24, 39

triangles
directly congruent, 27–30,  

33–34, 40
directly similar, 25–26, 29–30,  

32–34
inversely congruent, 27–28, 34
inversely similar, 26, 34
three-point principle for, 28–29

trigonometry, 220–223
true north, 269
two-by-two equations, 140
two-point principle, 4

U
unit circle, 220–221
unit vectors, 238–239
universal speed, 295–296
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V
vector

definition of, 223–224
multiplication of, by scalar, 226, 236

vectors
cross product of, 237–238
dot product of, 226–228, 236
sum of, 226, 235
unit, 238–239

vectors in the Cartesian plane, 223–228
vernal equinox, 277, 282–283
vertical angles for intersecting lines, 13–14
vertical angles for intersecting planes, 182–183
vertices of triangle, 24

W
warped space, 315–317

X
x axis, 116, 229
xyz-space, 228–250

Y
y axis, 116, 229
year-equivalent, 296

Z
z axis, 220
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