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How to Use This Book

This book can help you learn basic geometry without taking a formal course. It
can also serve as a supplemental text in a classroom, tutored, or homeschooling
environment.

None of the mathematics in this book goes beyond the high-school level. If
you need a “refresher,” you can select from several Demystified books dedicated
to mathematics topics. If you want to build yourself a “rock-solid” mathematics
foundation before you start this course, I recommend that you go through
Pre-Algebra Demystified, Algebra Demystified, and Algebra Know-It-All.

This book contains abundant multiple-choice questions written in stan-
dardized test format. You'll find an “open-book” quiz at the end of every
chapter. You may (and should) refer to the chapter texts when taking these
quizzes. Write down your answers, and then give your list of answers to a friend.
Have your friend tell you your score, but not which questions you missed.
The correct answers appear in the back of the book. Stick with a chapter until
you get most of the quiz answers correct.

Two major sections constitute this course. Each section ends with a multiple-
choice test. Take these tests when you're done with the respective sections and
have taken all the chapter quizzes. Don’t look back at the text when taking the
section tests. They're easier than the chapter-ending quizzes, and they don’t
require you to memorize trivial things. A satisfactory score is three-quarters
correct. Answers appear in the back of the book.

The course concludes with a 100-question final exam. Take it when you've
finished all the sections, all the section tests, and all of the chapter quizzes. A
satisfactory score is at least 75 percent correct answers.

XV
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With the section tests and the final exam, as with the quizzes, have a friend
divulge your score without letting you know which questions you missed. That
way, you won't subconsciously memorize the answers. You might want to take
each test, and the final exam, two or three times. When you get a score that
makes you happy, you can (and should) check to see where your strengths and
weaknesses lie.

You won't find any proofs here. Instead of taking up a lot of space with
theorem demonstrations, this course concentrates on fundamental facts and a
diversity of topics found in few, if any, other introductory geometry texts. If
you're interested in learning how to do proofs, I recommend Math Proofs
Demystified. If you want to delve further into analytic geometry and vectors,
I recommend Pre-Calculus Know-It All.

Strive to complete one chapter of this book every 10 days or 2 weeks. Don’t
rush, but don’t go too slowly either. Proceed at a steady pace and keep it up.
That way, you'll complete the course in a few months. (As much as we all wish
otherwise, nothing can substitute for “good study habits.”) When you're done
with the course, you can use this book as a permanent reference.

[ welcome your ideas and suggestions for future editions.

Stan Gibilisco
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chapter 1

Rules of the Game

The fundamental rules of geometry date back to the time of the ancient Egyp-

tians and Greeks, who used geometry to calculate the diameter of the earth and
the distance to the moon. These mathematicians employed the laws of Euclidean
geometry (named after Euclid of Alexandria, a Greek mathematician who lived
around the third century B.C.). Two-dimensional Euclidean geometry, also called
plane geometry, involves points, lines, and shapes confined to flat surfaces.

CHAPTER OBJECTIVES

In this chapter, you will

« Envision “mathematically perfect” points and straight lines.
« Break lines up into rays and segments.

« Define angles and distances.

o Measure and compare angles.

Add and subtract angles.

Learn how lines and angles relate.
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Points and Lines

In plane geometry we regard certain concepts as intuitively obvious without
the need for formal definitions. We call these “mathematically perfect things”
elementary objects: the point, the line, and the plane. We can imagine a point as
an infinitely tiny sphere having height, width, and depth all equal to zero, but
nevertheless possessing a specific location. We can think of a line as an infinitely
thin, perfectly straight, infinitely long wire or thread. We can imagine a plane

as an infinitely thin, perfectly flat surface having an infinite expanse.

Naming Points and Lines

Geometers name points and lines using uppercase, italicized letters of the alphabet.
The most common name for a point is P (for “point”), and the most common name
for a line is L (for “line”). If we have multiple points in a situation, we can use the
letters P, Q, R, S, and so on all the way to Z if needed. If two or more lines exist in
a scenario, we can use the letters immediately following L, all the way up to N. (We
should try to avoid using the uppercase O because it looks a lot like the numeral
07) Alternatively, we can use numeric subscripts with the uppercase, italic letters P
and L, naming points P, P,, P,, ..., P , and naming lines L, L,, L,, ..., L (where n
represents an arbitrary positive whole number that’s as large as we need).

Two-Point Principle

Suppose that P and Q represent different geometric points. These points define
one and only one line L (i.e., a unique line L). The following two statements
always hold true in a situation like this, as shown in Fig. 1-1:

e Points P and Q lie on a common line L.

e Line L is the only line on which both points lie.

Distance Notation

We can symbolize the distance between any two points P and Q, as we express
it going from P toward Q along the straight line connecting them, by writing

P Q
L < ® *

A\ 4

FIGURE 1-1 - The two-point principle.
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PQ. Units of measurement such as meters, feet, millimeters, inches, miles, or
kilometers have no relevance in pure mathematics, but they’re important in
physics and engineering. As an alternative notation, we can use a lowercase let-
ter such as d to represent the distance between two points.

Line Segments

The portion of a line between two different points P and Q constitutes a line
segment. We call the points P and Q the end points. A line segment can theo-
retically include both of the end points, only one of them, or neither of them.
Therefore, three possibilities exist, as follows:

e If a line segment contains both end points, we call it a closed line segment.

We indicate the fact that the end points are included by drawing them
both as solid black dots.

 If aline segment contains one of the end points but not the other, we call
it a half-open line segment. We draw the included end point as a solid black
dot and the excluded end point as a small open circle.

e If aline segment contains neither end point, we call it an open line segment.
We draw both end points as small open circles.

TIP Any particular line segment has the same length, regardless of whether it’s
closed, half-open, or open. Adding or taking away a single point makes no differ-
ence, mathematically, in the length, because points have zero size in all
dimensions!

Rays (Half Lines)

Sometimes, mathematicians talk about the portion of a geometric line that lies
“on one side” of a certain point. In the situation of Fig. 1-1, imagine the set of
points that starts at P, then passes through Q, and extends onward past Q for-
ever. We call the resulting object a ray or half line. The ray defined by P and Q
might include the end point P, in which case we have a closed-ended ray. If we
leave the end point out, we get an open-ended ray. Either way, we say that the
ray or half line begins or originates at point P.

Midpoint Principle
Imagine a line segment connecting two points P and R. There exists one and only
one point Q on the line segment such that PQ = QR, as shown in Fig. 1-2.

5
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PQ=QR

/

Q

FIGURE 1-2 - The midpoint principle.

PROBLEM 1-1
Suppose that, in the scenario of Fig. 1-2, we find the midpoint Q, between
P and Q, then the midpoint Q, between P and Q,, then the midpoint Q,
between P and Q,, and so on. In mathematical language, we say that we
keep finding midpoints Q ,,, between P and Q,, where n represents a pos-
itive whole number. How long can we continue this process?

SOLUTION
The process can continue forever. In theoretical geometry, no limit exists
as to the number of times we can cut a line segment in half, because a line
segment contains infinitely many points.

PROBLEM 1-2
Imagine a line segment with end points P and Q. What's the difference
between the distance PQ and the distance QP?

SOLUTION
If we consider distance without paying attention to the direction in which
we express or measure it, then PQ = QP. But if the direction does make a
difference to us, we can define PQ = -QP. Then we use the term displace-
ment instead of direction.

In geometry diagrams, we can specify displacements (instead of simple
distances) if we want to induce our readers to move their eyes from right
to left instead of from left to right, or from bottom to top rather than from
top to bottom.
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Angles and Distances

When two lines intersect, we get four distinct angles at the point of intersection.
In most cases, we'll find that two of the angles are “sharp” and two are “dull.” If
all four of the angles happen to turn out identical, then they all constitute right
angles, and we say that the lines run perpendicular, orthogonal, or normal to each
other at the point of intersection. We can also define an angle using three points
connected by two line segments; the angle appears at the point where the line
segments meet.

Measuring Angles

To express the extent or measure of an angle, we can use either of two units:
the degree and the radian. The degree (°) is the unit familiar to lay people, while
the radian is more often used by mathematicians and engineers.

One degree (1°) equals 1/360 of a full circle. Therefore, 90° represents 1/4
of a circle, 180° represents a half circle, 270° represents 3/4 of a circle, and 360°
represents a full circle. A right angle has a measure of 90°, an acute angle has a
measure of more than 0° but less than 90°, and an obtuse angle has an angle
more than 90° but less than 180°. A straight angle has a measure of 180°. A
reflex angle has a measure of more than 180° but less than 360°.

We can define the radian (rad) as follows. Imagine two rays emanating out-
ward from the center point of a circle. Each of the two rays intersects the circle
at a point; call these points P and Q. Suppose that the distance between P and
Q, as expressed along the arc of the circle, equals the radius of the circle. Then
the measure of the angle between the rays equals 1 radian (1 rad).

A full circle contains 21 rad, where 1 (the lowercase Greek letter pi,
pronounced “pie”) stands for the ratio of a circle’s circumference to its diameter.
The value of 7 is approximately 3.14159265359, often rounded off to 3.14159
or 3.14. A right angle has a measure of ©/2 rad, an acute angle has a measure of
more than O rad but less than /2 rad, and an obtuse angle has an angle more
than /2 rad but less than 1t rad. A straight angle has a measure of 7t rad, and a
reflex angle has a measure larger than ©t rad but less than 27 rad.

TIP Mathematicians often delete the unit reference when they express or write
about angles in radians. Therefore, instead of “7/3 rad,” you might encounter
an angle denoted as “7/3.” Whenever you see a reference to an angle and no
unit goes along with it, you can assume that the author is working with
radians.
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£ RQP

Q
FIGURE 1-3 - Angle notation.

Angle Notation

Imagine that P, Q, and R represent three distinct points. Let L represent the line seg-
ment connecting P and Q, and let M represent the line segment connecting R and Q.
We can denote the angle between L and M, as measured at point Q in the plane
defined by the three points, by writing ZPQR or ZRQP as shown in Fig. 1-3.

If we want to specify the rotational sense of the angle (either counterclockwise
or clockwise), then ZRQP indicates the angle as we turn counterclockwise from
M to L, and ZPQR indicates the angle as we turn clockwise from L to M. We
consider counterclockwise-going angles as having positive values and clockwise-
going angles as having negative values.

In the situation of Fig. 1-3, ZRQPis positive while ZPQR is negative. If we make
an approximate guess as to the measures of the angles in Fig. 1-3, we might say that
ZRQP = +60° while ZPQR = -60°. The “wavy” equals sign translates literally to the
phrase “approximately equals” or the phrase “is approximately equal to.”

' Y

= Still Struggling

Rotational sense doesn’t matter in basic geometry. However, it does matter
when we work in coordinate geometry (geometry involving graphs). We'll get
into coordinate geometry, also known as analytic geometry, later in this book.
For now, let’s not worry about the rotational sense in which we express or mea-
sure an angle. We can consider all angles as having positive measures.
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Angles have
equal measure:

X=y

FIGURE 1-4 - The angle bisection principle.

Angle Bisection Principle

Consider an angle ZPQR measuring less than 180° and defined by three
points P, Q, and R as shown in Fig. 1-4. There exists exactly one ray M that
bisects (divides in half) the angle ZPQR. If S represents any point on M other
than point Q, then ZPQS = ZSQR. Every angle has one and only one ray that
bisects it.

Perpendicular Principle

Consider a line L that passes through points P and Q. Let R represent a point
that does not lie on L. There exists exactly one line M through point R, inter-
secting line L at some point S, such that M runs perpendicular to L (M and L
intersect at a right angle) at point S. Figure 1-5 illustrates this situation.

Perpendicular Bisector Principle

Suppose that L represents a line segment connecting two points P and R. There
exists one and only one line M that runs perpendicular to L and that intersects
L at a point Q, such that the distance from P to Q equals the distance from Q
to R. In other words, every line segment has exactly one perpendicular bisector.
Figure 1-6 illustrates this situation.
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P 90°

®O

\ 4

%) X
-————-—-——-——-—-—-—----=

FIGURE 1-5 - The perpendicular principle.
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PQ = QR

FIGURE 1-6 - The perpendicular bisector principle.

Distance Addition and Subtraction

Let P, Q, and R represent points on a line L, such that Q lies between P and R.
The following equations hold concerning distances as measured along L
(Fig. 1-7):

PQ + QR = PR
PR-PQ=QR
PR- QR =PQ
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P Q R
0 ® —>
(—PQ%{%QR—)
< PR >

FIGURE 1-7 - Distance addition and subtraction.

Angular Addition and Subtraction

Suppose that P, Q, R, and S represent points that all lie in the same plane. In
other words, all four points lie on a single, perfectly flat surface. Let Q represent
the vertex of three angles ZPQR, ZPQS, and ZSQR, with ray QS between rays
QP and QR as shown in Fig. 1-8. The following equations hold concerning the
angular measures:

ZPQS + ZSQR = /PQR
ZPQR - ZPQS = ZSQR
ZPQR - Z/SQR = ZPQS

Q

FIGURE 1-8 - Angular addition and subtraction.

1l
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PROBLEM 1-3
Examine Fig. 1-6 once again. Imagine some point S, other than point Q, that

lies on line M (the perpendicular bisector of the line segment connecting
P and R). What can you say about the lengths of line segments PS and SR?

SOLUTION
You can “streamline” the solutions to problems like this by making your
own drawings. As the language gets more complicated (geometry prob-

lems can sometimes read like “legalese”), such drawings become increas-
ingly helpful. With the aid of your own sketch, you should see that for
every point S on line M (other than point Q), the distance PS exceeds the
distance PQ (i.e., PS > PQ), and the distance SR exceeds the distance QR
(i.e., SR > QR).

PROBLEM 1-4
Look again at Fig. 1-8. Suppose that you move point S either straight to-
ward yourself (out of the page) or straight away from yourself (back behind
the page), so S no longer lies in the same plane as points P, Q, and R. What
can you say about the measures of ZPQR, ZPQS, and £SQR?

SOLUTION
In either of these situations, the sum of the measures of ZPQS and ZSQR
exceeds the measure of ZPQR, because the measures of ZPQS and £ZSQR
both increase if point S departs perpendicularly from the plane containing
points P, Q, and R.

More about Lines and Angles

If we remain within a single geometric plane, lines and angles behave according
to various rules. Some of the best-known principles follow.

Parallel Lines

We say that two lines run parallel to each other if and only if they lie in the
same plane and they don’t intersect at any point. Two line segments or rays run
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parallel to each other if and only if, when extended infinitely in both directions
to form complete lines, those lines don’t intersect at any point.

Complementary and Supplementary Angles

We say that two angles in the same plane constitute complementary angles (they
“complement” each other) if and only if the sum of their measures equals 90°
(/2 rad). We say that two angles in the same plane constitute supplementary
angles (they “supplement” each other) if and only if the sum of their measures
equals 180° (xt rad).

Adjacent Angles

Consider two lines L and M that intersect at a point P. Any two adjacent angles
(i.e., any two angles that lie next to each other) between lines L and M are
supplementary. We can illustrate this fact by drawing two intersecting lines and
noting that pairs of adjacent angles always form a straight angle, that is, an angle
of 180° (r rad) determined by the intersection point and either of the two lines.

Vertical Angles

Again consider two lines L and M that intersect at a point P. We call the oppos-
ing pairs of angles, denoted as x and y in Fig. 1-9, vertical angles. In any situation
of this sort, the vertical angles have equal measure.

A 4

FIGURE 1-9 . Vertical angles between two intersecting
lines.

13
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' Y

= Still Struggling

The term “vertical” to describe angles such as those shown in Fig. 1-9 baffles
some people. They don't look “vertical,”do they? We might do better to call such
angles“opposite” or“opposing.”But a long time ago, somebody decided that the
term “vertical” was good enough, and no one has ever changed it.

Transversals and Interior Angles

Imagine two lines L and M that lie in the same plane. Let N represent a line
that intersects L and M at points P and Q, respectively. We call line N a trans-
versal to the lines L and M. In Fig. 1-10, the angles labeled x and z constitute a
pair of alternate interior angles. The same holds true for the pair of angles labeled
w and y.

When we confine our attention to a single geometric plane, pairs of alternate
interior angles formed by a transversal line have equal measure if and only if
the two lines crossed by the transversal run parallel to each other. The pairs of
alternate interior angles do not have equal measure if and only if the two lines
crossed by the transversal do not run parallel to each other.

\ 4

~
A

\ 4

FIGURE 1-10 - Alternate interior angles formed by a
transversal line.
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\ 4

FIGURE 1-11 . Alternate exterior angles formed by a
transversal line.

Transversals and Exterior Angles

Again, imagine two lines L and M that lie in the same plane, and that are both
crossed by a transversal line N at points P and Q. In Fig. 1-11, the two angles
labeled x and z are alternate exterior angles, so are the two angles labeled w and y.

Within a single geometric plane, pairs of alternate exterior angles formed by
a transversal line have equal measure if and only if the two lines crossed by the
transversal run parallel to each other. The pairs of alternate exterior angles do
not have equal measure if and only if the two lines crossed by the transversal do
not run parallel to each other.

Corresponding Angles

Now consider two lines L and M that lie in the same plane, and that also hap-
pen to run parallel to each other. Let N represent a transversal that intersects L
and M at points P and Q, respectively. We've learned that in this special situa-
tion both pairs of alternate interior angles have equal measure, and both pairs
of alternate exterior angles have equal measure. But we can say more! In the
situation of Fig. 1-12, each of the four pairs of angles “facing in the same direc-
tion” constitutes corresponding angles, as follows:

e The two angles w correspond.

e The two angles x correspond.

The two angles y correspond.

The two angles z correspond.

15
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\ 4

\ 4

FIGURE 1-12 - Corresponding angles have equal mea-
sure if and only if a transversal crosses two parallel lines.

Whenever a transversal crosses two parallel lines, each individual pair of
corresponding angles has equal measure.

Perpendicular Transversal

Given two parallel lines L and M along with a transversal N that crosses them
both, we can be certain that N runs perpendicular to both L and M (i.e., Nis a
perpendicular transversal to the parallel lines L and M) if and only if any single
pair of adjacent angles has equal measure.

Parallel Principle

Suppose that L represents a line and P represents a point that doesn’t lie on L.
In any situation of this sort, there exists one and only one line M through P,
such that M runs parallel to L (Fig. 1-13). We call this fact the parallel principle
or parallel postulate. It constitutes one of the most important postulates in
Euclidean geometry.

FIGURE 1-13 - The parallel principle.
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TIP In certain variants of geometry, the parallel postulate does not hold true.
The denial of the parallel postulate forms the cornerstone of non-Euclidean
geometry. We'll delve into that subject in Chap. 11.

The Parallel Principle Repeated

Let L and M represent two different lines that lie in the same plane. Suppose
that both L and M intersect a transversal line N and both L and M run perpen-
dicular to N. Then lines L and M are parallel to each other (Fig. 1-14). We can
call this fact the principle of mutual perpendicularity. In Fig. 1-14, we illustrate
the fact that two lines run perpendicular to each other by marking the intersec-
tion point with a small square. Geometers commonly use this trick to show that
lines, line segments, or rays intersect at right angles.

[:] PROBLEM 1-5

Imagine that you stand on the edge of a highway. The road is perfectly straight
and flat, and the pavement is 20 meters wide everywhere. Suppose that you
lay a string across the road so that it intersects one edge of the pavement at
a 70° angle, measured with respect to the edge itself. If you stretch the string
out perfectly straight and then you reel out enough string so it crosses the
other edge of the road, at what angle will the string intersect the other edge
of the pavement, measured relative to that edge? At what angle will the string
intersect the centerline of the road, measured relative to the centerline?

\ 4

\ 4

FIGURE 1-14 . Mutual perpendicularity
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OLUTION

@his problem involves a double case of alternate interior angles, illustrated
in Fig. 1-10. Alternatively, you can employ the principle for corresponding
angles {Fig. 1-12). The edges of the pavement run parallel to each other,
and both edges run parallel to the centerline. Therefore, the string will in-
tersect the other edge of the road at a 70° angle; it will also cross the cen-
terline at a 70° angle. Note that these angles are expressed between the
string and the pavement edges and centerline themselves, not with re-
spect to the lines that run normal to the pavement edge or the centerline
(as is often done in physics).

Still Struggling

In the foregoing solution, we specify the smaller of two intersection angles between
the string and the road edges, and between the string and the centerline. We could
also use the larger angle of 110°, which represents the supplement of 70°.

PROBLEM 1-6
What are the measures of the angles described in Problem 1-5 and its solu-

tion with respect to normals to the pavement edges and centerline?

SOLUTION
A normal to any line always subtends an angle of 90° relative to that line.
Therefore, the string will cross both edges of the pavement at an angle of
90° - 70°, or 20°, relative to the normal. We know this fact from the princi-
ple of angle addition and subtraction. The string will also cross the center-

line at an angle of 20° with respect to the normal. We get the same 20°
result if we use the larger angle, because 110° - 90° = 20°.

TIP Obviously, no one should conduct experiments like those of Problems 1-5 and
1-6 on real roads. If you want to check out the foregoing facts on a big scale, draw
“fake roads” with chalk on your own driveway, or draw lines in the sand at the
beach! Leave irresponsible road experiments to wild animals!



QuiIZ

Chapter T RULES OF THE GAME

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. What distinction, if any, exists between the meanings of distance and
displacement?

A.

None! The two terms have identical meanings.

B. Displacement refers to distance in a specified direction.
C
D. Displacement refers to the speed of physical motion from one point

Distance refers to displacement in a specified direction.

to another, while distance refers only to the separation between
two points.

2. An angle having a measure of 315° constitutes

A.

3/8 of a full circle.

B. 5/8 of a full circle.
C.
D. more than full circle.

7/8 of a full circle.

3. Anangle having a measure of /3 constitutes

A.

an acute angle.

B. an obtuse angle.
C.
D. more than a full circle.

areflex angle.

4. Imagine that you encounter a straight, infinitely long line. You choose a point
that doesn’t lie on that line. (Any point will do.) Then you attempt to draw
a new line that runs through the point you’ve just chosen, and that also
runs through the original line at a right angle. How many such lines can you
find?

A.
B.
C
D.

None

One

Two

Infinitely many

5. Imagine that you encounter a straight line segment having finite length. You
attempt to draw an infinitely long, straight line that passes through the original
line segment at a right angle, and that also divides the original line segment into
two identical halves. How many such lines can you find?

A.
B.
C
D.

None

One

Two

Infinitely many
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Transversal
intersects both
parallel lines

\ 4

These two
lines
are parallel

AN
\ 4

FIGURE 1-15 - lllustration for Quiz Questions 6 and 7.

. Figure 1-15 illustrates a transversal line that passes through two parallel lines.

The two intersection points produce eight angles, labeled as shown. Which of
the following pairs of angles do not necessarily have equal measure?

A. wands

B. wandu

C. vandy

D. vandz

. Suppose that, in the situation of Fig. 1-15, we “adjust” the transversal line so that

angles s and v have equal measure. In that case, we know that the transversal
line

A. runs perpendicular to both parallel lines.

B. can't possibly run perpendicular to either of the parallel lines.

C. can run perpendicular to only one of the parallel lines.

D. lies outside of the plane formed by the parallel lines.

. Between a pair of intersecting lines, the sum of the measures of two adjacent

angles is always
A. less than .
B. equaltom.
C. more than .
D. equal to 2.

. Imagine that you encounter a straight, infinitely long line. You choose a point

that doesn't lie on that line. (Any point will do.) Then you attempt to draw a new
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line that runs through the point you've just chosen, and that also intersects the
original line. How many such lines can you find?

A. None

B. One

C. Two

D. Infinitely many

When we have a transversal line that crosses two parallel lines, we get eight
angles at the two points where the three lines intersect. Which of the following
types of angle pairs always have equal measure?

. Corresponding angles

B. Alternate interior angles

C. Alternate exterior angles

D. All of the above

>
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chapter 2

Triangles

If you ever took a course in plane geometry, you remember triangles. Do you

recall dragging your mind through formal proofs about them? You won’t have
to scrutinize any proofs here, but you should know some basic facts about
triangles. Even if you've never worked with triangles before, you should find
the information in this chapter easy to grasp.

CHAPTER OBJECTIVES

In this chapter, you will

o Define, name, and analyze triangles.

o Learn about similarity and congruence.

o Learn how to uniquely determine the sides and angles of any triangle.
» Classify triangles according to shape.

 Discover the Theorem of Pythagoras.

o Calculate the perimeters and interior areas of triangles.

23
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Triangle Definitions

In mathematics, we should always have a firm grasp of what we’re talking about,
without any vagueness or ambiguity. That’s why we need formal definitions for
everything except elementary concepts such as the point, line, and plane.

What’s a Triangle?

A triangle comprises three line segments, joined pairwise at their end points,
and including those end points. The three points must not be collinear. That is,
they must not all lie on the same straight line. For our purposes, we assume that
the universe in which we define the triangle is Euclidean or “flat,” not “curved”
like the surface of the earth or “warped” like the space around a black hole. In
such an ideal universe, we can always define the shortest distance between two
different points by finding the straight line segment connecting those two
points and then measuring the length of that segment.

Vertices

Figure 2-1 shows three points called A, B, and C, connected by line segments
to form a triangle. We call these points the vertices of the triangle. We can use
almost any uppercase, italicized alphabetic letter to denote the vertices of a
triangle. The letters P, Q, and R are common alternatives to A, B, and C.

Naming
We can call the triangle in Fig. 2-1 “triangle ABC.” Geometers sometimes write

a little triangle symbol (A) in place of the word “triangle.” This symbol is the
uppercase Greek letter delta. Figure 2-1 therefore portrays an arbitrary AABC.

Side

Vertex (a line segment)

(a point)

FIGURE 2-1 . vertices, sides, and angles of a triangle.
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We can list the vertices in any other order if we want, so we can call the tri-
angle of Fig. 2-1 by any of the following names:

AABC
ABCA
ACAB
ACBA
ABAC
AACB

Sides

We can name the sides of the triangle in Fig. 2-1 according to their end points.
Thus, AABC has three sides: line segment AB, line segment BC, and line seg-
ment CA. There are other ways of naming the sides; as long as we don’t confuse
anybody, we can call them anything we want.

Interior Angles

Each vertex of a triangle corresponds to a specific interior angle, which always
measures more than 0° (0 rad) but less than 180° (x rad). In Fig. 2-1, we denote
the interior angles with the lowercase italicized English letters x, y, and z. Some
mathematicians prefer to use italic lowercase Greek letters to symbolize angles.
Theta (pronounced THAY-tuh) is a popular choice. It looks like a leaning
numeral zero with a dash across it (6). Subscripts can help us denote the interior
angles of a triangle, for example, 6, 6, and 6_for the interior angles at vertices
A, B, and C, respectively. As with the sides, we can give the angles any names
we want, as long as each angle gets its own name.

Similar Triangles

Two triangles are directly similar if and only if they have the same proportions
in the same rotational sense, that is, as we go around them both in the same
direction (either clockwise or counterclockwise). Therefore, one triangle con-
stitutes an enlarged, reduced, and/or rotated copy of the other. They can also
have identical size, shape, and orientation by coincidence.

Figure 2-2 shows some examples of directly similar triangles. If you take any
one of the triangles, enlarge it or reduce it uniformly, and rotate it (if necessary)
to the correct extent, you can place the resulting triangle exactly over any of the

25
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Identical proportions

>

Various sizes

Various orientations
FIGURE 2-2 . Directly similar triangles.

other triangles. However, two triangles are not directly similar if we must flip
one of them over, in addition to changing its size and rotating it, in order to
place it exactly over the other one.

We call two triangles inversely similar if and only if they're directly similar
when considered in the opposite rotational sense, or if they're directly similar
after we flip one of them over. In other words, two triangles are inversely
similar if and only if the “mirror image” of one is directly similar to the other.

Consider two directly similar triangles AABC and ADEF. We can symbolize
the fact that they’re directly similar by writing

AABC ~ ADEF

The direct similarity symbol looks like a wavy minus sign. If the triangles AABC
and ADEF are inversely similar, we have a more complicated situation, because
it can arise in any of three different ways, as follows:

 Points D and E are transposed so AABC ~ AEDF.
e Points E and F are transposed so AABC ~ ADFE.
e Points D and F are transposed so AABC ~ AFED.

Congruent Triangles

Disagreement exists in mathematics literature concerning the meanings of the
terms congruence and congruent for geometric figures in a plane. Some texts will
tell you that two objects in a plane are congruent if and only if you can place one
of them exactly over the other after a rigid transformation (rotating it or moving
it around, but not flipping it over). Other texts define congruence to allow
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Identical proportions
and sizes

< Various orientations

FIGURE 2-3 . Directly congruent triangles.

flipping-over, as well as rotation and motion. Let’s stay away from that confusion
and formulate two separate definitions, one to account for either case.

Two triangles exhibit direct congruence (they're directly congruent) if and only
if they’re directly similar, and the corresponding sides have identical lengths.
Figure 2-3 shows some examples. If you take one of the triangles and rotate it
clockwise or counterclockwise to the correct extent, you can “paste” it precisely
over any of the other triangles. Rotation and motion are allowed, but flipping-
over, also called mirroring, is forbidden.

Two triangles exhibit inverse congruence (they're inversely congruent) if and
only if they’re inversely similar, and they also happen to be the same size.
Rotation and motion are allowed, and mirroring is mandatory.

If we have two triangles AABC and ADEF that are directly congruent, we can
symbolize this fact by writing

AABC = ADEF

The direct congruence symbol looks like an equals sign with a direct similarity
symbol on top. For two inversely congruent triangles AABC and ADEF, three
possibilities exist, as follows:

e Points D and E are transposed so AABC = AEDF.
e Points E and F are transposed so AABC = ADFE.
e Points D and F are transposed so AABC = AFED.

27
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' Y

= Still Struggling

Here are four fundamental facts that you should remember about directly con-
gruent triangles and inversely congruent triangles.

« Iftwo triangles are directly congruent, then their corresponding sides have
equal lengths as you proceed around both triangles in the same direction.
The converse also holds true. If two triangles have corresponding sides with
equal lengths as you proceed around them both in the same direction, then
the two triangles are directly congruent.

« If two triangles are directly congruent, then their corresponding interior
angles (the interior angles opposite the corresponding sides) have equal
measures as you proceed around both triangles in the same direction. The
converse does not necessarily hold true. Two triangles can have correspond-
ing interior angles with equal measures when you proceed around them
both in the same direction, and yet not be directly congruent.

« If two triangles are inversely congruent, then their corresponding sides
have equal lengths as you proceed around the triangles in opposite direc-
tions. The converse also holds true. If two triangles have corresponding
sides with equal lengths as you proceed around them in opposite direc-
tions, then the two triangles are inversely congruent.

« If two triangles are inversely congruent, then their corresponding interior
angles have equal measures as you proceed around the triangles in opposite
directions. The converse does not necessarily hold true. Two triangles can
have corresponding interior angles with equal measures as you proceed

around them in opposite directions, and yet not be inversely congruent.

Three-Point Principle

Let P, Q, and R represent three distinct and specific noncollinear points (meaning
that we know exactly where they are, and they don’t all lie on the same straight
line, as shown in Fig. 2-4). The following statements hold true:

e P, Q, and R lie at the vertices of some triangle; let’s call it W.
o W constitutes the only triangle having vertices P, Q, and R.
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R Q
S

FIGURE 2-4 . The three-point principle and side-side-side triangles.

PROBLEM 2-1
Imagine a perfectly flat field completely enclosed by four straight lengths of
fence. At their end points, the fences (which you can imagine as line seg-
ments as seen from high above the field) intersect at right angles. You build
a straight fence diagonally across the field, dividing the field into two trian-

gles. Are these triangles directly congruent? If not, are they directly similar?

SOLUTION
If you draw a diagram of this situation and examine it carefully, you'll see
that the two triangles are directly congruent. Consider the theoretical im-
ages of the triangles (which, unlike the fences, you can move around in
your imagination). You can rotate one of these theoretical triangles exactly
180° (mw rad), either clockwise or counterclockwise, move it a little, and fit it

exactly over the other one.

PROBLEM 2-2
Suppose that you have a telescope equipped with a camera. You focus on
a distant, triangle-shaped road sign and take a photograph of it. Then you
double the magnification of the telescope and, making sure the whole sign

fits into the field of view of the camera, you take another photograph.
When you look at the photographs on your computer screen, you see
triangles in each photograph, of course. Are these triangles directly
congruent? If not, are they directly similar?

SOLUTION
Inthe photos, one triangle looks larger than the other. But unless there’s some-
thing wrong with the telescope, or you use a star diagonal when taking one
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photograph and not when taking the other (a star diagonal renders an image
laterally inverted), the two triangle images have the same shape in the same
rotational sense. They aren't directly congruent, but they’re directly similar.

Criteria for Congruence and Similarity

We can use four criteria to define sets of directly congruent triangles. Geometers
call these notions the side-side-side (SSS), side-angle-side (SAS), angle-side-angle
(ASA), and angle-angle-side (AAS) principles. The last of these can also be called
side-angle-angle (SAA). A fifth principle, called angle-angle-angle (AAA), can define
sets of triangles that exhibit direct similarity, although they don’t necessarily exhibit
direct congruence.

Side-Side-Side (SSS)

Let S, T, and U represent defined, specific line segments. Let s, t, and u repre-
sent the lengths of S, T, and U, respectively. Suppose that S, T, and U meet at
their end points P, Q, and R as shown in Fig. 2-4. In this situation, the following
statements all hold true:

e Line segments S, T, and U determine a triangle W.

o W constitutes the only triangle with sides S, T, and U in this order, as you
proceed around the triangle in the same rotational sense.

o All triangles having sides of lengths s, 7, and u in this order, as you proceed
around the triangles in the same rotational sense, are directly congruent.

Side-Angle-Side (SAS)

Let S and T represent defined, specific line segments. Let P represent a point
that lies at the ends of both of these line segments. Denote the lengths of S and
T by their lowercase counterparts s and t, respectively. Suppose that S and T
form an angle x, expressed in the counterclockwise sense, at point P as shown
in Fig. 2-5. In this case, the following statements all hold true:

e S, T, and x determine a triangle W.

o W constitutes the only triangle with sides S and T that form an angle x,
measured counterclockwise from S to T, at point P.

o All triangles containing two sides of lengths s and t that form an angle x,
measured counterclockwise from the side of length s to the side of length
t, are directly congruent.
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P e,
S AN

FIGURE 2-5 . Side-angle-side triangles.

Angle-Side-Angle (ASA)

Let S represent a line segment having length s, and whose end points are P and
Q. Let x and y represent the angles formed relative to S by two lines L and M
that run through P and Q, respectively (Fig. 2-6), such that we express both
angles going counterclockwise. Then the following statements all hold true:

e x, S, and y determine a triangle W.

o W constitutes the only triangle determined by x, S, and y, proceeding from
left to right.

e All triangles containing one side of length s, and whose other two sides
form angles of x and y relative to the side whose length is s, with x on the
left and y on the right and both angles expressed counterclockwise, are
directly congruent.

< ’
N ’
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/ N
L // A M
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N
4 N
’
, N
< N
/
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P # ®Q
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’ N

FIGURE 2-6 - Angle-side-angle triangles.
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FIGURE 2-7 - Angle-angle-side triangles.

Angle-Angle-Side (AAS) or Side-Angle-Angle (SAA)

Let S represent a line segment having length s, and whose end points are P and
Q. Let x and y represent angles, one adjacent to S and one opposite S, and both
expressed in the counterclockwise sense (Fig. 2-7). The following statements all
hold true:

e S, x, and y determine a triangle W.

e W constitutes the only triangle determined by S, x, and y in the counter-
clockwise sense.

 All triangles containing one side of length s, and two angles x and y, one
adjacent and one opposite, expressed and proceeding in the counterclock-
wise sense, are directly congruent.

Angle-Angle-Angle (AAA)

Let L, M, and N represent lines that lie in a common plane and intersect in
three points as illustrated in Fig. 2-8. Let x, y, and z represent the angles at these
points, all expressed in the counterclockwise sense. The following statements

all hold true:

e Infinitely many triangles exist having interior angles x, y, and z, in this
order and proceeding in the counterclockwise sense.

o All triangles with interior angles x, y, and z, in this order, expressed and
proceeding in the counterclockwise sense, are directly similar.
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FIGURE 2-8 - Angle-angle-angle triangles.

Still Struggling

Do you wonder why we use the word “let” so often? For example, “Let P, Q, and
R represent distinct points.” Mathematicians write statements like this all the
time. When an author suggests that you “let” things be a certain way, she asks
you to imagine things that way, setting the scene for statements or problems
that follow.

PROBLEM 2-3
Refer to Fig. 2-6 again. Suppose that the angles x and y both measure 60°.
If we reverse the resulting triangle from left to right (we “flip it over” around
a vertical axis), will the resulting triangle be directly similar to the original?
Will it be directly congruent to the original?

SOLUTION
This problem illustrates a special case in which we can“flip over” a triangle
and get another triangle that’s not only inversely congruent, but also
directly congruent, to the original. This coincidence occurs because the
original triangle exhibits bilateral symmetry, meaning that it's symmetrical
on either side of some defined straight-line axis.
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To clarify this situation, you can draw a diagram after the fashion of
Fig. 2-6, but using a protractor to generate 60° angles for both x and y. (As
drawn in this book, the figure is obviously not symmetrical, and the angles
x and y obviously measure less than 60°.) Then look at the image you have
drawn, both directly and while standing in front of a mirror. You'll see that
the two “mirror-image” triangles are directly congruent.

PROBLEM 2-4
Suppose that, in the situation of Problem 2-3, you split the triangle, whose
angles x and y both measure 60°, down the middle by dropping a vertical line
from the top vertex to the midpoint of line segment PQ. Are the resulting two
triangles, each comprising half of the original, directly similar? Are they
directly congruent? Are they inversely similar? Are they inversely congruent?

SOLUTION
These triangles constitute “mirror images” of each other, but you cannot mag-
nify, reduce, and/or rotate one of them to make it fix exactly over the other one.
The triangles are not directly similar, nor are they directly congruent, even
though, in a sense, they have the same size and shape. They're inversely congru-
ent, however, because they constitute equal-sized “mirror images” of each other.
Because they're inversely congruent, we know that they're inversely similar.

TIP For two triangles to exhibit direct similarity, the lengths of their sides must

exist in the same proportion, in order, as you proceed in the same rotational sense
(counterclockwise or clockwise) around both triangles. In order to be directly con-
gruent, their sides must have identical lengths, in order, as you proceed in the
same rotational sense around both triangles.

Types of Triangles

Let’s categorize triangles broadly in a qualitative sense, that is, according to
their qualities or characteristics.

Acute Triangle

We have an acute triangle if and only if each of the three interior angles is acute.
In such a triangle, none of the angles measure as much as a right angle (90° or
7/2 rad); they’re all smaller than that. Figure 2-9 shows some examples.
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All interior angles measure
less than 90°

/

FIGURE 2-9 - In an acute triangle, all
angles measure less than a right
angle (90° or 11/2 rad).

Obtuse Triangle

We have an obtuse triangle if and only if one of the three interior angles is
obtuse, measuring more than a right angle (90° or /2 rad) but less than a straight
angle (180° or &t rad). In a triangle of this type, the two nonobtuse angles are
both acute. Figure 2-10 shows some examples.

One interior angle measures
more than 90°

FIGURE 2-10 - In an obtuse triangle,
one angle measures more than a
right angle (90° or n1/2 rad).
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Isosceles Triangle

Imagine a triangle with sides called S, T, and U that have lengths s, t, and u
respectively. Let x represent the angle opposite S, let y represent the angle
opposite T, and let z represent the angle opposite U. Suppose that at least one
of the following equations holds true:

S=t1
t=u
s=u
xX=y
=z
=z

Figure 2-11 shows an example of such a situation, where s = t. Whenever we
find a triangle that has two sides of identical length, we call it an isosceles triangle,
and the following statements all hold true:

s=tex=y

f=ucy=z

S=U>x=2

X o
< o~

u

FIGURE 2-11 . An isosceles triangle.
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= Still Struggling

In a logical statement, a double-headed arrow («<») stands for the expression “if
and only if,"and a single-headed arrow pointing to the right (—) stands for the
expression “logically implies.” For example, when we write

s=tex=y
we assert that

s=t—>x=y
and also that

xX=y—>s=t

Mathematicians sometimes abbreviate “if and only if” as “iff,” meaning that the
logical implication works both ways. In mathematics and logic, when we claim
that “A implies B,” we mean “If A holds true, then B always holds true,” or “If
A, then B”

Equilateral Triangle

Imagine a triangle with sides called S, T, and U that have lengths s, t, and u
respectively. Let x represent the angle opposite S, let y represent the angle
opposite T, and let z represent the angle opposite U. Suppose that either of the
following equations holds true:

or
xX=y=z

In this case we have an equilateral triangle (Fig. 2-12), and we can make the
logical statement

s=t=uex=y=z
Any two equilateral triangles chosen “at random” have precisely the same shape;

they're directly similar. (As a matter of coincidence, they're inversely similar
as well.)
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FIGURE 2-12 - An equilateral triangle.

Right Triangle

Imagine a triangle APQR with sides S, T, and U, having lengths s, t, and u,
respectively. This triangle constitutes a right triangle if and only if one of the
interior angles is a right angle (90° or n/2 rad). Figure 2-13 illustrates a right
triangle in which ZQRP forms the right angle. The side opposite the right angle
has the longest length; we call it the hypotenuse of the right triangle. In Fig. 2-13,
the hypotenuse has length u.

R @ Q
S

FIGURE 2-13 . Aright triangle. The theorem of Pythagoras holds
true for all such triangles.



Chapter 2 TRIANGLES 39

Special Facts

Triangles have some special properties. These characteristics have applications
in various branches of the physical sciences. You can expect to encounter these
applications in science or engineering courses.

ATriangle Determines a Unique Plane

The vertex points of a specific triangle define one, and only one, Euclidean
(flat) geometric plane. This fact should strike you as intuitively obvious when
you give it a little thought. Try to imagine three points that don’t all lie in the
same plane! A specific Euclidean plane can contain infinitely many different
triangles, but in such a case, all of the triangles, all of their sides, and all of their
vertices are coplanar (meaning that they all lie in the same plane).

Sum of Angle Measures

In any triangle, the measures of the interior angles add up to a straight angle
(180° or © rad). This fact holds true regardless of whether we have an acute,
right, or obtuse triangle, as long as we express and measure all of the angles in
the plane defined by the three vertices of the triangle.

Theorem of Pythagoras

Consider a right triangle defined by points P, Q, and R whose sides are S, T, and
U having lengths s, t, and u, respectively. Let u represent the hypotenuse, as
shown in Fig. 2-13. In this situation, the following equation, known as the theorem
of Pythagoras or the Pythagorean theorem (named after the Greek philosopher
who supposedly discovered it around the sixth century B.C.) always holds true:

S+tr=u?

TIP Any triangle whose sides have lengths s, t, and u such that the foregoing
equation holds true constitutes a right triangle.

Perimeter of Triangle

Imagine a triangle defined by points P, Q, and R, and having sides S, T, and U
of lengths s, t, and u, respectively, as shown in Fig. 2-14. We can calculate the
perimeter B of the triangle with the formula

B=s+t+u
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R

FIGURE 2-14 . Perimeter and area of a triangle.

Interior Area of Triangle

Consider the same triangle as defined above; refer again to Fig. 2-14. Let s
represent the triangle’s base length, and let h represent the triangle’s height
(the length of a perpendicular line segment between point P and side S). We
can calculate the interior area A with the formula

A=sh/2

PROBLEM 2-5
Suppose that APQR in Fig. 2-14 has sides of lengths s = 10 meters, t =7
meters, and u =8 meters. What's the perimeter B of this triangle?

SOLUTION
We simply add up the lengths of the sides, obtaining
B=s+t+u
=(10+7 + 8) meters
=25 meters

PROBLEM 2-6
Do any triangles exist having sides of lengths 10 meters, 7 meters, and
8 meters, in that order proceeding clockwise that fail to exhibit direct con-
gruence with APQR as described in Problem 2-5?

SOLUTION
No. According to the side-side-side (SSS) principle, all triangles having
sides of lengths 10 meters, 7 meters, and 8 meters, in this order as we pro-
ceed in the same rotational sense, are directly congruent.




Quiz

Chapter 2 TRIANGLES

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. Which of the following statements does not always hold true?

A.

B.

If two triangles have corresponding sides with equal lengths as we go around
them both in the same direction, then the triangles are directly congruent.

If two triangles are directly congruent, then their corresponding sides have
equal lengths as we go around them both in the same direction.

If two triangles are directly congruent, then their corresponding interior angles
have equal measures as we go around them both in the same direction.

If two triangles have corresponding interior angles with equal measures as we
go around them both in the same direction, then the triangles are directly
congruent.

2. Upon casual observation, the triangle in Fig. 2-15 looks like

A.
B.
C
D.

an acute triangle.
an obtuse triangle.
a reflex triangle.
aright triangle.

3. To find the area enclosed by the triangle shown in Fig. 2-15, we must multiply
the length of line segment RP by

A.

B.
C
D.

half of the length of line segment RQ.

half of the length of line segment QP.

half of the sum of the lengths of line segments RQ and QP.

half of the shortest distance between point Q and line segment RP.

4. All equilateral triangles are

ONw>

directly congruent.
inversely congruent.
inversely similar.

All of the above

R P

FIGURE 2-15 - lllustration for Quiz Questions 2 and 3.

4]
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FIGURE 2-16 - lllustration for Quiz Questions 6 through 10.

5. We can use all of the following criteria to establish the direct congruence of two
triangles, except for one. Which one?
A. SAS
B. SSS
C. AAA
D. ASA

6. In the situation of Fig. 2-16, we can have complete confidence that the triangle
with sides measuring s, h, and v is
A. an acute triangle.
B. aright triangle.
C. an equilateral triangle.
D. anisosceles triangle.

7. We can mathematically determine the interior area A of the large triangle AQRP
in Fig. 2-16 with one of the following equations. Which one?
A. A=hs
B. A=ht
C. A=(hu+hv)/2
D. A=(hs+ht)/2

8. We can mathematically determine the perimeter B of the large triangle AQRP in
Fig. 2-16 with one of the following equations. Which one?
A. B=st+u+v
B. B=s+t+u+v
C. B=h(u+v)
D. B=h+u+v



9.

10.

Chapter 2 TRIANGLES

Which of the following equations holds true for the situation of Fig. 2-16, based
only on the information specifically given?

A. vi=s524+h?

B. (t+5s)2=u?+v?

C. ts=u?+v?

D. h2=t2+u?

Which of the following equations holds true for the situation of Fig. 2-16, based
only on the information specifically given?

A. uv=ts

B. htu=hvs

C. h?2=u?-t?

D. t+s=u?-v?
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Quadrilaterals

Within the confines of a Euclidean plane, we can call any four-sided geometric

figure a quadrilateral. Inside a triangle, any given interior angle must measure
more than 0° (0 rad) but less than 180° (r rad); with a quadrilateral, any given
interior angle must measure more than 0° (0 rad) but less than 360° (2= rad).

CHAPTER OBJECTIVES

In this chapter, you will

« Define and name quadrilaterals.

« Classify quadrilaterals according to general shape.

o Learn the relationships between sides and angles of quadrilaterals.
o Break quadrilaterals into triangles.

o Calculate quadrilateral perimeters.

« Calculate the areas enclosed by quadrilaterals.
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Types of Quadrilaterals

We can categorize any four-sided plane figure as a square, a rhombus, a rectangle,
a parallelogram, a trapezoid, or a general quadrilateral. Let’s define these terms
and the look at some examples.

Requirements

A four-sided geometric object must have four properties to “qualify” as a
Euclidean plane quadrilateral:

 All four vertices must lie in the same plane.

All four sides must constitute straight line segments of finite length.
 No side can have zero length or negative length.

e No two sides can intersect except at their end points.

We can'’t let a quadrilateral “stray” out of a single plane. We can’t allow sides to
have any curvature whatsoever. We can’t “stretch” a side to infinite length or
“crush” it down to a point having no length at all. A true plane quadrilateral
cannot have any side whose length we define as negative.

The vertices of a triangle must inevitably lie in a single geometric plane,
because any three points, no matter which ones we choose, define a unique
geometric plane. But when we choose four points “at random” in space, they
don’t all necessarily lie in the same plane.

TIP Anythreepointsinspaceliein asingle plane, but a fourth one can get “out of
alignment.” That's why a four-legged stool or table often wobbles, and why it’s so
difficult to trim the lengths of the legs so the wobbling stops. Once the ends of the
legs lie in a single plane so that they define the vertices of a plane quadrilateral,
the stool or table won’t wobble as long as the floor remains perfectly flat. (If the
floor isn’t flat, you have a real prescription for frustration with four-legged stools,
but a three-legged stool will stand firm even on irregular terrain.)

Square

A square has four sides, all measuring the same length. In addition, all of the
interior angles measure 90° (n/2 rad). Figure 3-1 shows the general situation.
The length of each side equals s units. There exists no limit as to how large s
can become, but it must always have a positive, nonzero value.
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All four sides have equal length;
all four angles are right angles

s
90° 90°
S Square S
90° 90°
s

FIGURE 3-1 . Example of a square. Sides have
length s, and the interior angles all constitute
right angles (90° or m/2 rad).

Rhombus

In a rhombus, all four sides have the same length, but the angles don’t all have
to measure 90°. A “generic” rhombus looks something like the polygon shown
in Fig. 3-2. All four sides have length s. Opposite pairs of angles have equal
measure, but adjacent pairs of angles can (and usually do) differ. In this illustration,
the two angles labeled x have equal measure, as do the two angles labeled y. In
a thombus, both pairs of opposite sides are parallel.

TIP Asquare constitutes a special type of rhombus in which all four angles hap-
pen to have the same measure.

Rectangle

In a rectangle, all four angles have equal measure, but the sides don’t necessarily
all have equal lengths. A “generic” rectangle looks something like the polygon
shown in Fig. 3-3. All four angles measure 90° (n/2 rad). Opposite pairs of sides
are equally long, but adjacent pairs of sides usually differ in length. In the case of
Fig. 3-3, the two sides labeled s have equal lengths, as do the two sides labeled t.

TIP Asquare constitutes a special type of rectangle in which all four sides happen
to have equal lengths.
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All four sides have equal length;
opposite angles have equal measure

S

s Rhombus S

S

FIGURE 3-2 - Example of a rhombus. Sides have length s,
while x and y denote interior angle measures.

Opposite sides have equal length;
all four angles are right angles

t
90° 90°
S Rectangle S
90° 90°
t

FIGURE 3-3 . Example of a rectangle. Sides have
lengths s and t, while the interior angles all constitute
right angles (90° or 1t/2 rad).

Parallelogram

We can define a parallelogram according to its outstanding characteristic: Both
pairs of opposite sides are parallel. That's it! That quality alone allows a plane
quadrilateral to qualify as a parallelogram. Whenever both pairs of opposite
sides in a Euclidean plane quadrilateral are parallel, those pairs also have the
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Opposite sides have equal length;
opposite angles have equal measure

t

y

s Parallelogram S

t

FIGURE 3-4 - Example of a parallelogram. Sides have lengths s
and t, while x and y denote interior angle measures.

same length. In addition, pairs of opposite angles have equal measure. Figure 3-4
shows an example of a parallelogram in which both angles labeled x have equal
measure, both angles labeled y have equal measure, both sides labeled s have
the same length, and both sides labeled ¢ have the same length.

TIP Arectangle constitutes a special sort of parallelogram. So does a rhombus,
and so does a square.

Trapezoid

We can define a trapezoid as a plane quadrilateral in which one pair of opposite
sides is parallel. Otherwise, no restrictions exist (other than the ones necessary
to ensure that we have a “legitimate” Euclidean plane quadrilateral). Figure 3-5

Two opposite sides are parallel;
no other constraints exist

These lines )
are parallel Trapezoid

FIGURE 3-5 . In a trapezoid, one pair of opposite sides is parallel.
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shows an example of a trapezoid. The dashed lines represent the parallel lines
in which the two parallel sides of the trapezoid lie.

General Quadrilaterals

In a general quadrilateral, we don’t have to impose any restrictions on the lengths
of the sides, although no interior angle’s measure can stray outside of the range
0° (0 rad) to 360° (2 rad), noninclusive. As long as all four vertices lie in the
same plane, no two sides intersect except at their end points, and all four sides
of the figure are straight line segments of finite and positive length, we're okay.

Irreqular Quadrilaterals

We can consider any quadrilateral “general.” A rectangle, for example, is a spe-
cific type of general quadrilateral. So is a rhombus; so is a trapezoid. But we can
find plenty of general quadrilaterals that don’t fall into any of the foregoing
categories. They don’t exhibit any symmetry or apparent orderliness. We call
four-sided polygons of the “maverick type” irregular quadrilaterals. Figure 3-6
shows some examples.

All figures have four sides
that lie in a single plane

FIGURE 3-6 - Examples of irregular quadrilaterals. The sides can all
have different lengths, and the angles can all have different measures.
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PROBLEM 3~ 1
What type of quadrilateral constitutes the boundaries (end lines and side-
lines) of a football field?

SOLUTION

Assuming the groundskeepers do their job correctly, a football field has
the shape of a rectangle. All four corners form right angles (90°). In addi-
tion, both pairs of opposite sides are equally long. That is to say, the two
sidelines have the same length, as do the two end lines.

PROBLEM 3-2
Suppose that we define a quadrilateral ABCD so that we encounter the
vertex points D, C, B, and A in that order going clockwise around the figure.
Suppose further that we have

ZCBA = ZADC
and
ZBAD = ZDCB

What specific things can we say about this quadrilateral?

SOLUTION
| recommend that you draw a diagram to illustrate this situation,
because most people can’t directly envision these constraints “in their
mind’s eyes.” You'll see that ZCBA lies opposite ZADC, and £ZBAD lies
opposite ZDCB. The fact that opposite pairs of angles have equal
measure tells you that the quadrilateral constitutes a parallelogram. It
might be a special type of parallelogram such as a rhombus, rectangle,
or square, but you can have absolute confidence that it’s a parallelo-
gram no matter what.

Facts about Quadrilaterals

Every quadrilateral has certain properties, depending on the “species.” Following
are some useful facts concerning four-sided Euclidean plane figures.
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W+ X+ Y+ 2z =360°

FIGURE 3-7 - In any plane quadrilateral, the sum of the mea-
sures of the interior angles w, x, y, and z equals a full circle
(360° or 2m rad).

Sum of Measures of Interior Angles

As long as all four sides of a quadrilateral are straight line segments of positive
and finite length and as long as all four vertices lie in the same plane, the mea-
sures of the four interior angles always add up to 360° (2r rad). Figure 3-7
shows an example of an irregular quadrilateral. We denote the interior angles
as w, x, y, and z. In this particular example, angle w measures more than 180°
(r rad). The other three angles are all acute. If you enlarge Fig. 3-7 and use a
protractor to measure the interior angles and if you then add up all four angle
measures, you should obtain 360° (within the margin of observation error).

' Y

= Still Struggling

You might call the irregular quadrilateral in Fig. 3-7 a“boomerang” or a “distorted
arrowhead,” although neither of these is an “official” geometry term. You might
also call this object a “reflex quadrilateral” because angle w is a reflex angle or a
“concave quadrilateral” because the figure has a“dent.” Feel free to make up your
own terms in geometry once in awhile, but use caution! Your readers might not
know what you mean unless you explain it to them.
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Parallelogram Diagonals

Consider a parallelogram defined by four vertex points P, Q, R, and S, which
we encounter in that order as we proceed clockwise around the figure. Let D
represent a line segment connecting the “nearer pair” of vertices P and R as
shown in Fig. 3-8A. In this situation, the line segment D constitutes the minor
diagonal of the parallelogram, and

APQR = ARSP
Let E represent a line segment connecting the “farther pair” of vertices Q and

S as shown in Fig. 3-8B. In this case, the line segment E constitutes the major
diagonal of the parallelogram, and

AQRS = ASPQ

Remember that the equals sign with the wavy line above it translates to the
phrase “is directly congruent to”!

FIGURE 3-8 - Triangles defined by the minor diago-
nal (A) or the major diagonal (B) of a parallelogram
are congruent.
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FIGURE 3-9 - The diagonals of a parallelogram bisect each other.

Bisection of Parallelogram Diagonals

Suppose that we have a parallelogram defined by four vertex points P, Q, R,
and S, which we encounter in that order as we proceed clockwise around the
figure. Let D represent the minor diagonal connecting P and R; let E represent
the major diagonal connecting Q and S (Fig. 3-9). In this scenario, the two line
segments D and E bisect each other at their intersection point T. In addition,
we have

APQT = ARST
and

AQRT = ASPT

The converse of the foregoing statement also holds true: If we have a plane
quadrilateral whose diagonals bisect each other, then that quadrilateral consti-
tutes a parallelogram.

Rectangle

Consider a parallelogram defined by four points P, Q, R, and S, which we
encounter in that order as we go clockwise around the figure. Suppose that any
of the following statements holds true for angles in degrees:

ZSRQ =90° = nt/2 rad
ZPSR =90° = t/2 rad
ZQPS =90° = /2 rad
ZRQP =90° = 1t/2 rad
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P Q

? ?
90°

® J

S R

FIGURE 3-10 - If a parallelogram has one right
interior angle, then the parallelogram consti-
tutes a rectangle.

In this situation, all four interior angles are right angles, and the parallelogram
is therefore a rectangle (a four-sided plane polygon whose interior angles all
have equal measures). The converse of this statement also holds true: If a quad-
rilateral is a rectangle, then any given interior angle is a right angle. Figure 3-10
shows an example of a parallelogram PQRS in which ZSRQ = 90° = 1t/2 rad.
Because one angle is a right angle and opposite pairs of sides are parallel, all four
of the angles must measure 90° (n/2 rad).

Rectangle Diagonals

Imagine a parallelogram defined by four points P, Q, R, and S, which we
encounter in that order as we go clockwise around the figure. Let D represent
the diagonal connecting P and R; let E represent the diagonal connecting Q and
S. Suppose that D and E are equally long, as shown in Fig. 3-11. In that case,

P Q
o 9
SO -~
\\\ //

SO //

~
\\\\ ///
~
-
e
PR S~
E -~ AN 90°
-~ ~
-7 o
7~ \\\
<= ®
S R

FIGURE 3-11 - The diagonals of a rectangle
have equal length.
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the parallelogram is a rectangle. The converse of this statement also holds true:
If a parallelogram is a rectangle, then its two diagonals are equally long.

TIP A parallelogram constitutes a rectangle if and only if its diagonals have
equal lengths.

Rhombus Diagonals

Suppose we have a parallelogram defined by four points P, Q, R, and S, which
we encounter in that order as we go clockwise around the figure. Let D repre-
sent the diagonal connecting P and R; let E represent the diagonal connecting
Q and S. If D runs perpendicular to E as shown in Fig. 3-12, then the parallelo-
gram is a rhombus. The converse of this statement also holds true: If a paral-
lelogram is a rhombus, then its major and minor diagonals run perpendicular to
each other.

TIP A parallelogram constitutes a rhombus if and only if its diagonals are

perpendicular.

R

FIGURE 3-12 - The diagonals of a rhombus
intersect at right angles.
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R

Q

FIGURE 3-13 - A trapezoid is formed by “chopping off” the
top of a triangle.

Trapezoid within a Triangle

Consider a triangle defined by three points P, Q, and R, which we encounter in that
order as we go clockwise around the figure. Let S represent the midpoint of side PR,
and let T represent the midpoint of side PQ as shown in Fig. 3-13. In this case, line
segments ST and RQ run parallel to each other, and the figure STQR defined by the
four vertex points S, T, Q, and R (in order going clockwise) constitutes a trapezoid. In
addition, the length of line segment ST equals half the length of line segment RQ.

Median of a Trapezoid

Consider a trapezoid defined by four points P, Q, R, and S, which we encounter
in that order as we go clockwise around the figure. Let T represent the midpoint
of side PS, and let U represent the midpoint of side QR as shown in Fig. 3-14.
We call line segment TU the median of trapezoid PQRS.

FIGURE 3-14 - The median of a trapezoid,
also showing a transversal line.

57



58

GEOMETRY DeMYSTiFieD

The median of a trapezoid always runs parallel to both the base (in this case
line segment SR) and the top (in this case line segment PQ). Also, the median
splits the trapezoid into two other trapezoids. In this scenario, polygons PQUT
and TURS are both trapezoids. Additionally, the length of line segment TU
equals half the sum of the lengths of line segments PQ and SR. In more general
terms, the length of a trapezoid’s median is the average of the lengths of the
base and the top.

' Y

= Still Struggling

Recall from your pre-algebra course that you can find the average, also called
the arithmetic mean, of two numbers by adding them and then dividing the
result by 2.

Median with Transversal

Look again at Fig. 3-14. Suppose that L represents a transversal line that crosses
both the top of the large trapezoid (line segment PQ) and its base (line segment
SR). The transversal line L also crosses the large trapezoid’s median, line seg-
ment TU. Let A represent the point at which L crosses PQ, let B represent the
point at which L crosses TU, and let C represent the point at which L crosses
SR. In this case, line segments AB and BC have equal length.

Still referring to Fig. 3-14, suppose that PQRS is a trapezoid, with sides PQ
and RS parallel. Let TU represent a line segment parallel to both PQ and RS,
and that intersects both of the nonparallel sides of the trapezoid (sides PS and
QR). Let L represent a transversal line that crosses all three parallel line seg-
ments PQ, TU, and RS, at the points A, B, and C, respectively, as shown. In this
scenario, line segment TU is the median of the large trapezoid PQRS if and only
if line segments AB and BC have equal length.

PROBLEM 3-3
Suppose that a four-sided plane figure has diagonals that both measure
the same length, and, in addition, they intersect at a right angle. What can
we say about this polygon?
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[jSOLUTION

Based on the rules that we've learned so far, the figure must constitute a
rectangle, because its diagonals have equal lengths. It must also be arhom-
bus, because its diagonals run perpendicular to each other. Only one type
of polygon—a square—can exist as a rectangle and a rhombus “at the
same time.’

TIP Asquareis aspecial type of rhombus in which both pairs of opposite interior
angles have the same measure. A square is also a special type of rectangle in
which both pairs of opposite sides have equal lengths.

PROBLEM 3-4
Suppose that a sign manufacturing company gets tired of making rectan-
gular billboards and decides to put up a trapezoidal billboard instead. The
top and the bottom of the billboard run horizontally, but neither of the
other sides runs vertically. The big sign measures 20 meters across the top
edge and 30 meters across the bottom edge. Two different corporations
want to advertise on the billboard, and their chief executives both insist on
having portions of equal height. What'’s the length of the line that divides
the spaces allotted to the two advertisements? Does this compromise rep-
resent a“fair” or “equitable” division of the sign?

SOLUTION
The line segment that divides the two portions constitutes the median of
the sign. Its length, therefore, equals 25 meters, which is the average of
20 meters and 30 meters. We can debate whether or not this particular
division represents a “fair” or “equitable” apportionment of the sign. The

advertiser on the bottom receives more sign surface area than the adver-
tiser on the top gets, but casual passersby might more easily notice the
advertisement on the top.

Perimeters and Interior Areas

The perimeter of a polygon equals the sum of the lengths of all its sides. We can
also define a polygon’s perimeter as the distance going exactly once around the
whole edge of the figure, starting at some point on one of its sides and proceeding
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clockwise or counterclockwise until we reach that point again. The interior area
of a plane polygon quantifies of the size of the region enclosed by the figure in
the same plane as its vertices and sides.

TIP We must always express perimeter values in linear units (or, if you prefer,
“plain old units”), and interior-area values in square units (or “units squared”).

Perimeter of Parallelogram

Consider a parallelogram defined by points P, Q, R, and S, which we encounter
in that order as we go clockwise around the figure. Suppose that the opposite
pairs of sides have lengths d and e as shown in Fig. 3-15. The two angles labeled
x have equal measure. Let d represent the base length, and let h represent the
height. We can calculate the perimeter B of the parallelogram with the formula

B=2d+ 2e

Interior Area of Parallelogram

Suppose that we have a parallelogram as defined earlier and in Fig. 3-15. The
interior area A equals the product of the base length and the height. We can
calculate it using the simple formula

A=dh

Perimeter of Rhombus

Imagine a rhombus defined by points P, Q, R, and S, which we encounter in
that order as we go clockwise around the figure. The rhombus constitutes a

P Q

X 90°

[

S d R

1
1
]
|
e i
1
]
1
1
]
I
]

FIGURE 3-15 - Perimeter and area of a parallelogram. The parallelo-
gram constitutes a rhombus if and only if d = e.
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special case of the parallelogram (Fig. 3-15) in which all four sides are equal
(so, in the case of Fig. 3-15, we have d = ). Let d equal the length of any one
side. We can calculate the perimeter B of the rhombus using the formula

B=4d

Interior Area of Rhombus

Consider a rhombus as defined earlier and in Fig. 3-15, where d = e. Let’s
denote the length of any one side as d. The interior area A of the rhombus
equals the product of the side length and the height. We can calculate it with
the formula

A=dh

Perimeter of Rectangle

Consider a rectangle defined by points P, Q, R, and S, which we encounter in
that order as we go clockwise around the figure. Imagine that the sides measure
d and e as shown in Fig. 3-16. Let d represent the base length, and let e represent
the height. We can calculate the rectangle’s perimeter B with the formula

B=2d+2e

Interior Area of Rectangle

Consider a rectangle as defined earlier and in Fig. 3-16. We can calculate the
rectangle’s interior area A with the formula

A =de
P Q
® 'Y
e
90°
[ § 7
S d R

FIGURE 3-16 - Perimeter and area of a rectangle.
The figure constitutes a square if and only if d = e.
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Perimeter of Square

Imagine a square defined by points P, Q, R, and S, and having sides all of the
same length. The square constitutes a special case of the rectangle (Fig. 3-16)
in which d = e. Let’s denote the lengths of all four sides as d. We can calculate
the square’s perimeter B with the formula

B=4d

Interior Area of Square

Consider a square as defined earlier and in Fig. 3-16, where d = e. Let’s denote
the lengths of all four sides as d. We can calculate the square’s interior area A
by squaring the length of any side. We have the formula

A=d?

Perimeter of Trapezoid

Imagine a trapezoid defined by points P, Q, R, and S, which we encounter in
that order as we go clockwise around the figure. Imagine that the sides have
lengths d, e, f, and g as shown in Fig. 3-17. Let d represent the base length, let 1
represent the height, let x represent the angle between the sides having lengths
d and ¢, and let y represent the angle between the sides having lengths d and g.
Suppose that the sides having lengths d and f (line segments RS and PQ) are
parallel. We can calculate the trapezoid’s perimeter B with the formula

B=d+e+f+g
P f Q
|
:h
m i
ef—————— T g
|
90° 1
X = y
S d R

FIGURE 3-17 - Perimeter and area of a trape-
zoid based on its various dimensions.
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Interior Area of Trapezoid

Consider a trapezoid as defined earlier and in Fig. 3-17. The interior area A
equals the average of the lengths of the base and the top, multiplied by the
height. We can calculate A using the formula

A=[d+/2]h
= (dh + fh)/2

Now suppose that m represents the length of the median of the trapezoid, that is,
a line segment parallel to the base and the top, and midway between them. The
interior area A equals the product of the length of the median and the height.
We can use the formula

A =mh

PROBLEM 3-5
Refer back to Problem 3-4. Suppose that the whole billboard measures
15 meters high. It’s a trapezoidal billboard, measuring 20 meters along the
top edge and 30 meters along the bottom. We divide the sign by placing a
horizontal median midway between the top and the bottom. What fraction
of the total billboard surface area, as a percentage, does the advertiser
with the top half get?

SOLUTION
The length of the median, as determined in Problem 3-4, equals 25 meters,
the average of the lengths of the bottom and the top. Therefore m = 25.
We're told that h = 15. We can calculate the total interior area of the sign—
callit A, —as follows:

At = 25 meters X 15 meters
otal

= 375 meters squared

We calculate the area of the top half by considering the trapezoid for which
m constitutes the base. Let’s use the more complicated formula—the one
involving the arithmetic mean, above—in order to find the interior area of
this smaller trapezoid. We can call its area Amp. The base length of this trap-
ezoid equals 25 meters, while the top measures 20 meters long. The height
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equals 7.5 meters, half the height of the whole sign. We calculate Ap aS
follows:

AtOp =[(25 meters + 20 meters)/2] x 7.5 meters
= (45 meters/2) x 7.5 meters
= 22.5 meters x 7.5 meters

= 168.75 meters squared

The fraction of the total area represented by the top portion of the sign
equalstheratio of A, to A, .That’s 168.75 meters squared divided by 375
meters squared, or 0.45. The top advertiser gets 45/100, or 45%, of the total
sign area.

D PROBLEM 3-6

Suppose that the billboard constitutes a rectangle rather than a trapezoid,
measuring 25 meters across both the top and the bottom. Suppose the
signis 15 meters tall, and we want to split it into upper and lower portions,
one for each of two different advertisers, Top Inc. and Bottom Inc. Suppose
that the executives of Bottom Inc. demand that the Top Inc. only get 45%
of the total area of the sign because of Top Inc/s more favorable viewing
position. How far from the bottom of the sign should we place the dividing
line?

[jSOLUTION

The total area of the sign, A, , equals the product of the base (or top)
length and the height, as follows:

Atotal = 25 meters X 15 meters

= 375 meters squared

This figure equals the total area that we found in Solution 3-5. Therefore,
45% of this, A is the same as it was then: 168.75 meters squared. We can
now calculate the area of the bottom portion, A, as follows:

bottom = Atotal - Atop

= (375 - 168.75) meters squared
= 206.25 meters squared
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Let x represent the distance, in meters, of the dividing line from the sign’s
bottom edge. In that case, x represents the lengths of the two vertical sides
of the bottom rectangle. We already know that the dividing line (which
constitutes the top edge of the bottom rectangle) measures 25 meters
long, as does the base. According to all this information, we can use the
following formula to define the area of the bottom portion:

A 25x

bottom —

We know that A, =206.25 meters squared. We can plug this value into
the above equation to get

206.25 = 25x
When we divide each side of this equation by 25 meters, we obtain

X =(206.25 meters squared)/(25 meters)

= 8.25 meters

We should place the dividing line 8.25 meters above the bottom edge of
the billboard.

Still Struggling

Does the previously-determined placement represent a fair division of the sign’s
total area? The lawyers for Top Inc. and Bottom Inc. could decide the matter in
court, doubtless at shareholder expense. As mathematicians, we'd better stay
out of the dispute!
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Quiz

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1.

Figure 3-18 illustrates a trapezoid PQRS whose top edge measures 7 units wide,
bottom edge measures 9 units wide, and height equals 6 units. Based on this
information, what'’s the perimeter of trapezoid PQRS?

A

B.
C
D.

22 units
24 units
48 units
We need more information to answer this question.

Based on the information shown in Fig. 3-18, what's the interior area of trapezoid
PQRS?

A.

B.
C
D.

54 units squared
48 units squared
42 units squared
We need more information to answer this question.

Based on the information shown in Fig. 3-18, what's the interior area of triangle
SQR?

A.

B.
C
D.

27 units squared
24 units squared
21 units squared
We need more information to answer this question.

Based on the information shown in Fig. 3-18, what's the interior area of triangle
PQs?

A.
B.

27 units squared
24 units squared

7 units Q

6 units

9 units R

FIGURE 3-18 - lllustration for Quiz Questions 1 through 4.
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21 units squared
We need more information to answer this question.

. Asquare is a special type of

A.

rhombus.

B. parallelogram.
C
D. All of the above

rectangle.

. Suppose that in the situation of Fig. 3-19, angle x measures 7t/2 rad. In that case,
we can be certain that

A.

all four sides of polygon PQRS are equally long.

B. angle SPQ measures 45°.
C
D. All of the above

angle RSP measures 135°.

. We can find the interior area of a rectangle by

ONw>

multiplying the lengths of any two adjacent sides.

multiplying the lengths of any two opposite sides.

adding up the lengths of all four sides.

multiplying the lengths of all four sides and then dividing by 2.

R

FIGURE 3-19 - illustration for Quiz

Question 6.
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8.

10.

When we encounter a trapezoid, we can have complete confidence that the sum
of the measures of the interior angles

A. exceeds 2r rad.

B. isless than 2m rad.

C. equals 2mt rad.

D. depends on the relative lengths of the edges.

When we encounter a parallelogram, we can have complete confidence that the
measures of either pair of opposite interior angles

A. adds up tomrad.

B. adds up to 2w rad.

C. adds up to /2 rad.

D. None of the above

In a plane quadrilateral, the measure x of any particular interior angle must lie
within a certain range. How can we express that range?

A. Orad<x<m/2rad

B. Orad<x<2nrad

C. Orad<x<mrad

D. Orad<x<3m/2rad



Other Plane Figures

There exists no limit to the number of straight sides (also called edges) and

vertices (points where the sides join at their ends) that a plane polygon can
possess. More complicated objects can have curved sides or edges. Let’s explore
the properties of general Euclidean plane figures.

CHAPTER OBJECTIVES

In this chapter, you will

o Define and classify diverse plane figures.

Learn the relationships among the sides and angles of regular polygons.

Calculate the perimeters and interior areas of regular polygons.

Evaluate the characteristics of circles and ellipses.

Observe a regular polygon as the number of sides grows without limit.
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Five Sides and Up

For a geometric object to “qualify” as a Euclidean plane polygon, it must have
several characteristics, as follows:

o All of its vertices must lie in the same plane.

» No two sides may cross over each other.

» No two vertices may coincide.

e No three vertices may lie on the same straight line.

o The sides must all constitute straight line segments having finite, positive
length.

The Regular Pentagon

Figure 4-1 shows a five-sided plane polygon, all of whose sides have the same
length, and all of whose interior angles have the same measure. We call this
figure a regular pentagon. It constitutes a convex figure because its exterior never
“bends inward.” In a convex plane polygon, every interior angle has a measure

of less than 180° (7 rad).

The Regular Hexagon

A convex plane polygon with six sides, all of which have equal length, is called a
regular hexagon (Fig. 4-2). If we take a large number of equal-sized regular hexa-
gons, we can place them neatly together without any gaps. (Have you ever visited
an old-fashioned barbershop where the floor comprised thousands of hexagonal
tiles that fit snugly up against each other?) This property makes the regular hexagon

FIGURE 4-1 . A regular pen-
tagon. Each side has length s,
and each interior angle has
measure z.
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FIGURE 4-2 . A regular hexagon. Each side has
length s, and each interior angle has measure z. The
extensions of sides (dashed lines) are the subject of
Problem 4-1.

a special sort of figure, along with the equilateral triangle, the square, and the
regular octagon. Certain crystalline solids form regular hexagonal shapes when
they fracture. Snowflakes, for example, have components with this shape.

The Regular Octagon

Figure 4-3 shows a regular octagon. It’s a convex plane polygon with eight sides,
all equally long, and eight interior angles, all of equal measure. We can fit large

FIGURE 4-3 . A regular octagon. Each
side has length s, and each interior angle
has measure z.
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numbers of regular octagons tightly together to form a “honeycomb matrix,”
just as we can do with equilateral triangles, squares, and regular hexagons.
We should not find it surprising that nature takes advantage of this property,
building octagonal crystals and other physical structures in the material

universe.

Regular Polygons in General

For every whole number n greater than or equal to 3, we can construct a regu-
lar polygon with n sides. So far we’ve seen the equilateral triangle (n = 3), the
square (n = 4), the regular pentagon (n = 5), the regular hexagon (n = 6), and
the regular octagon (n = 8). If we're in the mood, we can easily imagine a regu-
lar polygon with 1,000 sides (a “regular kilogon”), 1,000,000 sides (a “regular
megagon”), or 1,000,000,000 sides (a “regular gigagon”). In a regular plane
polygon, no matter how many sides it has, the measure of any given individual
interior angle must always be less than 180° (n rad).

TIP As the number of sides in a regular polygon increases without limit, the
measures of the individual interior angles approach 180 °(xrad), and the figure
approaches a circle. In fact, a “regular gigagon” (as defined above) would look
like a perfect circle, even if we examined it under a microscope! All the sides,
vertices, and angles would seem to “merge” into a continuous, symmetrical,
convex curve.

General, Many-Sided Polygons

Once we remove the restrictions concerning the relationship among the sides
of a polygon having four sides or more, the potential for variety increases with-
out limit. In a general Euclidean plane polygon, the sides can have all different
lengths, and the measure of each interior angle can range anywhere from 0°
(O rad) to 360° (2r rad), noninclusive.

Figure 4-4 shows some examples of general, many-sided polygons. The
object at the top left is a regular nonconvex octagon whose sides all have
equal length, but that obviously differs from the regular octagon we usually
imagine. Four of the interior angles are acute; four are reflex. The other two
objects in Fig. 4-4 constitute irregular, nonconvex polygons. All three of
these objects nevertheless share the essential characteristics of a Euclidean
plane polygon.
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+

IV

FIGURE 4-4 . General, many-sided polygons. The object
with the shaded interior is the subject of Problem 4-2.

PROBLEM 4-1
What's the measure of each interior angle of a regular hexagon?

SOLUTION

Draw a horizontal line segment to start. All the other sides must form
exact duplicates of this initial side, but rotated with respect to the first
line segment by whole-number multiples of a certain angle. The rotation
angle from side to side equals 360° divided by 6 (a full rotation divided
by the number of sides), or 60°. Imagine the lines on which two adjacent
sides lie. Look back at Fig. 4-2. These lines subtend a 60° angle with
respect to each other, if you look at the acute angle y between the
dashed lines. But if you look at the obtuse angle z, you'll find that it mea-
sures 120°, which equals 180° — y. This obtuse angle z constitutes an
interior angle of the hexagon. Therefore, each interior angle of a regular
hexagon measures 120°.
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PROBLEM 4-2
Briefly glance at the lowermost polygon in Fig. 4-4 (the one with the shaded

interior). Don’t look at it for more than 2 seconds. How many sides do you
suppose that it has?

SOLUTION
Most people underestimate the number of sides in complicated plane fig-
ures like this. After you've made your guess, count the sides. How far off
were you?

Some Rules for Polygons

All plane polygons share certain characteristics. We can calculate the perimeter
or area of any polygon, no matter how complicated (although we might appre-
ciate a computer’s power to help us solve a particularly messy problem of this
sort). Specific rules and definitions apply to the interior and exterior angles, and
also to the relationships among the angles and the sides.

It's Greek to Us

Mathematicians, scientists, and engineers often use Greek letters to represent
geometric angles. The most common symbol for this purpose is an italicized,
lowercase Greek letter theta (6), as we learned in Chap. 2.

When we want to write about two different angles, we can use a second
Greek letter along with 6. Mathematicians often choose the italicized, low-
ercase letter phi (pronounced “fie” or “fee”), which looks like a lowercase
English letter “0” leaning to the right, with a forward slash through it (¢).
You should get used to seeing these symbols. If you have much to do with
mathematics, engineering, or science in the future, you're going to encounter
them a lot.

Sometimes the italic, lowercase Greek alpha (“AL-fuh”), beta (BAY-tuh”),
and gamma (“GAM-uh”) are used to represent angles. These letters, respec-
tively, look like this: ¢, B, . When things get messy and we have many angles
to talk about, we might use numeric subscripts with a single Greek letter. As
you carry on in mathematics and science, you'll occasionally see angles denoted
in a form such as 6,, 6,, 6,, and so on.
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FIGURE 4-5 . Adding up the measures of
the interior angles of a general, many-sided

polygon.

Sum of Interior Angles

Consider a plane polygon having n sides. Let 6,, 6,, 6,, ..., 6 represent the
interior angles, as shown in Fig. 4-5. The following equation holds for angular
measures expressed in degrees:

0,+6,+6,++6 =180n-360
—180(n - 2)
If we express the angular measures in radians, then
0,+6,+0,++6 =nn-2n

=n(n-2)

' B

= Still Struggling

In the previous two examples, we've left out the degree symbol (°) and the
radian abbreviation (rad) for simplicity. We can get away with this shortcut as
long as we ensure that we (and our readers) know which angular units apply in
any given situation.
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FIGURE 4-6 - Interior angles of a regular,
many-sided polygon.

Individual Interior Angles of Regular Polygon

Consider a plane polygon having n sides, whose interior angles all have equal
measure given by 6, and whose sides all have equal length given by s (Fig. 4-6).
This figure constitutes a regular Euclidean plane polygon, and we can calculate
the measure of each interior angle 0 in degrees with the formula

0= (180n - 360)/n

If we express the angular measures in radians, then

0= (mn-2n)/n

Exterior Angles

We can express or measure an exterior angle of a polygon going counterclock-
wise from a specific side to the extension of the side immediately to the left.
Figure 4-7 shows an example of this process. If the arc of the angle lies outside

FIGURE 4-7 - Exterior angle of an irreg-
ular polygon. We express the angle 6
going counterclockwise from a given
side to the line containing the adjacent
side on the left.
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the polygon, then the resulting angle 6 has a measure between, but not
including, 0° and 180°. The angle has positive measure because we express it
while rotating in the “positively counterclockwise” sense. Symbolically, we can
say that

0° <6< 180°

Perimeter of Reqular Polygon

Consider a regular plane polygon having  sides of length s, with vertices P, P,,
P,, ..., P asshown in Fig. 4-8. We can calculate the perimeter B of the polygon
using the formula

B=mns

TIP Some of the following rules involve trigonometry. Six trigonometric func-
tions, also known as circular functions, exist: the sine (sin), cosine (cos), tangent
(tan), cosecant (csc), secant (sec), and cotangent (cot). All six of these functions
produce specific “output” numbers when you “feed” them specific angular “input”
numbers. You can find the sine of an angle by entering the angle’s measure in
degrees or radians into a calculator and then hitting the “sine” or “sin” function
key. You can find the cosine by entering the angle’s measure in degrees or radians
and then hitting “cosine” or “cos.” Some calculators have a “tangent” or “tan”
function key, and others don't. If your calculator doesn’t have a tangent key, you
can find the tangent of an angle by dividing its sine by its cosine. Many calculators

P s B
S S
P
" R
N s
s

S S

FIGURE 4-8. - Perimeter and area of a regular,
n-sided polygon. Points P, P,, P, ..., P_constitute
the vertices. Each side has length s.
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lack a “cotangent” or “cot” key, but the cotangent of an angle equals the recipro-
cal of its tangent, or the cosine divided by the sine. The cosecant equals the recip-
rocal of the sine. The secant equals the reciprocal of the cosine.

Interior Area of Regular Polygon

Consider a regular, n-sided polygon, each of whose sides have length s as defined
earlier and in Fig. 4-8. If we express the interior angles in degrees, then we can
calculate the polygon’s interior area A with the formula

A = (ns*/4) cot (180/n)
If we express the interior angles in radians, then

A = (ns?/4) cot (n/n)

PROBLEM 4-3
What's the interior area of a regular, 10-sided polygon, each of whose sides
measures exactly 2 units long? Express the answer to two decimal places.

SOLUTION
In this case, n=10and s =2. Let’s use degrees for the angles, so that we can
plug our values of n and s into the first formula, above, and proceed as

follows:

A=(10x2%/4) cot (180/10)
=(10x4/4) cot 18
=10cot 18
=10cos 18/sin 18
=10x%0.951057/0.309017
=10x3.07769

=30.78 square units (rounded off to two decimal places)

In order to obtain an answer to two decimal places, we can use five or six
decimal places throughout the calculation, rounding off only at the end.
This precaution will ensure that we avoid (or at least minimize) cumulative
rounding errors.



Chapter4 OTHER PLANE FIGURES 79

PROBLEM 4-4
What's the interior area of a regular, 100-sided polygon, each of whose

sides measures exactly 0.20 units long? Express the answer to two decimal
places.

SOLUTION
In this example, n =100 and s = 0.20. If you're astute, you'll notice that the
perimeter of this polygon equals 100 x 0.20 = 20 units, the same as the
perimeter of the 10-sided polygon of Problem 4-3, which is 10 x 2.0 =
20 units. Imagine these two regular polygons sitting side by side. Draw
approximations of them if you like. It seems reasonable to suppose that the
area of the 100-sided polygon should slightly exceed that of the 10-sided
figure. Let’s find out, using radians instead of degrees this time. Let
T = 3.14159.

Set your calculator to work with radians, not degrees, before each and
every use of a trigonometric function key. Here we go:

A=(100 % 0.20%/4) cot (/100)
=(100x0.04/4) cot 0.0314159
=cot 0.0314159
=¢0s 0.0314159/sin 0.0314159
=0.999507/0.031411

=31.82 square units (rounded off to two decimal places)

TIP Whenever you execute calculations such as the two foregoing, you
should go through the entire process twice or more. It's amazing how many
errors people make when using calculators to do plain arithmetic. The most
common mistakes occur as a result of pressing one or more function keys in
the wrong order. However, once in awhile something else happens; a speck
of dirt might get into one of the calculator keys, for example, causing that
key to “think” you’ve hit it two or three times when in fact you’ve hit it only
once!
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Circles and Ellipses

We can define a circle as a geometric figure consisting of all points in a plane
that lie equidistant (i.e., equally far away) from a specified center point. Imagine
a flashlight with a round lens that produces a brilliant central beam surrounded
by a dim cone of light. Suppose that you switch this flashlight on and then
point it straight down at the floor in a dark room. The outline of the dim light
cone constitutes a circle. If you turn the flashlight so that the entire dim light
cone lands on the floor but the brilliant central light ray does not point straight
down, the outline of the dim light cone forms an ellipse. All circles and ellipses
represent examples of conic sections. This term arises from the fact that we can
define both the circle and the ellipse as sets of points resulting from the inter-
section of a flat, two-dimensional plane with a three-dimensional cone.

A Special Number

The perimeter (more often called the circumference) of a circle, divided by its
diameter in the same units, equals a constant independent of the size of the
circle, as long as we remain in a single geometric plane when we make our
measurements. Mathematicians first noticed this fact thousands of years ago.
They spent centuries trying to determine the exact value of this constant, set-
tling for some time on the approximate value of 22/7. Today, we know that we
can’t express this constant precisely as a ratio of whole numbers. For this rea-
son, we call it an irrational number. (In this context, the term “irrational” means
“having no ratio.”) If we try to write this constant as a decimal expression, we
get a nonterminating, nonrepeating sequence of digits after the decimal point.
We call the constant pi, and symbolize it using the lowercase Greek letter
having that name (). It’s the same constant 7 that we encountered when we
defined the radian as a unit of angular measure.

TIP Supercomputers have calculated the value of 7 to millions of decimal places.
It equals approximately 3.14159. If you need more accuracy, you can use the cal-
culator function in a personal computer. Set the program for radians, not degrees,
and then find the Arccosine (also known as the inverse cosine and sometimes
symbolized cos™') of the integer —1. You'll get a display of xto all the digits your
computer’s calculator program can handle. In theory, zrad equals precisely the
Arccosine of —1. You might want to memorize this fact, so that you can always
“bring up” an accurate value of r on your calculator (unless, of course, it has a
“pi” key built in!).
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Center
point

«

r

FIGURE 4-9 . Dimensions of a circle. The
radius measures r units.

Circumference of Circle

Consider a circle having radius r as shown in Fig. 4-9. We can calculate the
circle’s circumference B with the formula

B=2nr

Interior Area of Circle

Once again, consider the circle defined earlier and illustrated in Fig. 4-9. We can
calculate the interior area A of the circle with the formula

A =mr?

Approximate Circumference of Ellipse

Imagine an ellipse whose “long radius” (technically called the major semiaxis or
the semimajor axis) measures r, units and whose “short radius” (called the minor
semiaxis or the semiminor axis) measures r, units as shown in Fig. 4-10. We can
approximate the circumference B of this figure using the formula

B=2n[(r?+1,2)/2]"

where the 1/2 power of a quantity represents the positive square root of that
quantity. The above formula provides the best accuracy when the lengths of the
semiaxes don’t differ by much. As the semiaxis lengths grow more different
from each other, the formula gets less precise.
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FIGURE 4-10 - Dimensions of an ellipse. The
major semiaxis measures r, units, and the minor
semiaxis measures r, units.

TIP We need calculus to determine the circumference of an ellipse exactly. That
mathematical discipline lies beyond the scope of this course.

Interior Area of Ellipse

Once again, imagine an ellipse whose major semiaxis measures r, units and
minor semiaxis measures 7, units (Fig. 4-10). We can calculate the ellipse’s
interior area A with the formula

A= 7,

Ellipticity

The ratio of the length of an ellipse’s major semiaxis to the length of its minor
semiaxis tells us how much the ellipse is elongated, or “out of round.” We call
the ratio r,/r, the ellipticity, often symbolized by the lowercase, italic Greek let-
ter epsilon (g). Symbolically, we have

e=r/r,

' Y

= Still Struggling

When € = 1, we have a special case where an ellipse constitutes a perfect circle.
Because we define r, as the major (longer) semiaxis, € is always greater than or
equal to 1. Don't confuse ellipticity with eccentricity, an entirely different mea-

sure of the extent to which a curve deviates from a perfect circle.
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FIGURE 4-11 . Perimeter and area of inscribed
regular polygon. The radius of the circle measures
r units. Vertices of the polygon, all of which lie on
thecircle,are P, P, P P.

g0 T Fgreees

Perimeter of Inscribed Regular Polygon

Consider a regular plane polygon having n sides, and whose vertices P, P,,
P,, ..., P lie on a circle of radius r (Fig. 4-11). If we specify angles in degrees,
then we can calculate the perimeter B of the polygon with the formula

B = 2nr sin (180/n)
If we express angles in radians, then

B = 2nr sin (n/n)

Interior Area of Inscribed Regular Polygon

Consider a regular polygon as defined earlier and in Fig. 4-11. If we express
angles in degrees, then we can calculate the interior area A of the polygon as

A = (nr*/2) sin (360/n)
If we express the angles in radians, then

A = (nr*/2) sin (2n/n)

Perimeter of Circumscribed Regular Polygon

Imagine a regular plane polygon having n sides whose center points P, P,,
P,, ..., P lie on a circle of radius r (Fig. 4-12). If we express angles in degrees,

then we can calculate the perimeter B of the polygon as

B = 2nr tan (180/n)

83



8u

GEOMETRY DeMYSTiFieD

¥ Center of

FIGURE 4-12 . Perimeter and area of circum-
scribed regular polygon. The radius of the circle
measures r units. Center points of the sides of the
polygon, all of which lie on the circle, are P, P,,
PP

37

If angles are given in radians, then

B =2nr tan (n/n)

Interior Area of Circumscribed Reqular Polygon

Consider a regular polygon as defined earlier and in Fig. 4-12. If we specify
angles in degrees, then we can calculate the interior area A of the polygon with
the formula

A =nr* tan (180/n)
If angles are specified in radians, then

A =nr’ tan (n/n)

Perimeter of Circular Sector

Imagine a certain sector of a circle of radius 7, shown by the heavy outlined
“pizza-pie slice” in Fig. 4-13. Let 0 represent the apex angle, as shown, in
radians. We can calculate the perimeter B of the sector in linear units using the

formula
B=2r+7r6
If we specify 6in degrees, then the perimeter B of the sector in linear units is

B=2r(1+906)/n
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FIGURE 4-13 . Perimeter and area of cir-
cular sector. The radius of the circle mea-
sures r units, and the arc subtends an
angle 6.

Interior Area of Circular Sector

Once again, imagine a sector of a circle as defined earlier and in Fig. 4-13. Let
O represent the apex angle in radians. We can calculate the sector’s interior area
A in square units with the formula

A=1706/2
If we specify 8 in degrees, then the interior area A of the sector in square units is

A=9076/rn

PROBLEM4-5
What's the area of a regular octagon inscribed within a circle whose radius
equals precisely 10 units?

SOLUTION
Let’s use the formula for the area of an inscribed regular polygon, where
angles are expressed in degrees:

A =(nr?/2) sin (360/n)

In this formula, A represents the area in square units, n represents the
number of sides in the polygon, and r represents the radius of the circle.
We know that n = 8 (because we have a regular octagon, or eight-sided
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polygon) and r = 10, so we can plug in the numbers and use a calculator

to obtain
A =(8x%10%2) sin (360/8)
=400sin 45
=400x0.7071
=283 square units (approximately)
PROBLEM4-6

What's the perimeter of a regular 12-sided polygon circumscribed around
a circle whose radius is exactly 4 units?

SOLUTION
Let’s use the formula for the perimeter of a circumscribed regular polygon,
where angles are expressed in radians:

B =2nrtan (rt/n)

Here, B represents the perimeter, n represents the number of sides in the
polygon, and r represents the radius of the circle. Consider t=3.14159. We
know that n =12 and r = 4. We plug in the numbers and use a calculator,
making sure to set the angle function for radians (not degrees). We get

B=2x12x4tan (w/12)
=96 tan 0.261799
=96 x0.26795
=25.72 units (approximately)

PROBLEM 4-7
How should we expect the perimeter of the circumscribed polygon in
Problem 4-6 to compare with the circumference of the circle around which
it's circumscribed?

SOLUTION
We can reasonably imagine that the perimeter of the polygon slightly
exceeds the circle’s circumference. Let’s calculate the circumference to
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test this hunch using the formula for the circumference of a circle, as
follows:

B=2mr

where B represents the circumference and r represents the radius. We know
that r=4, and we consider T=3.14159. Therefore

B=2x3.14159 x4
= 25.13 units (approximately)

That'’s a little less than the perimeter of the circumscribed polygon, just as
we thought.

TIP Suppose that we circumscribe a circle with a regular polygon P_having n
sides (where n represents a positive integer larger than 3), and then we increase
n without limit. Also suppose that we inscribe the same circle with another regu-
lar polygon P, having the same number of sides as P_at all times. As n grows larger
indefinitely, P_and P, become more and more nearly the same and they both
approach the circle in terms of perimeter and interior area. The measures of the
interior angles approach 180° (z rad). The lengths of the sides approach zero.
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Quiz

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. Consider aregular septagon (aregular plane polygon having seven sides of equal
length and seven interior angles of equal measure). What's the measure of each
individual interior angle?

A. 3m/4rad
B. 5m/7 rad
C. 7mn/8rad
D. 13n/14rad

2. Anindividual interior angle in a regular plane polygon always measures less than

A. /2 rad.
B. mrad.

C. m/4rad.
D. 3m/4rad.

3. Anindividual angle in any plane polygon always measures less than

A. m/2rad.
B. mrad.

C. 3m/2rad.
D. 2mrad.

4. Consider a regular plane polygon having n sides of equal length and interior
angles all of equal measure. As we've learned, we can calculate the measure 6 of
each individual interior angle with the formula

6 =(180n —360)/n

Based on this information, we can see that as we increase the number of sides in a
regular plane polygon indefinitely, the sum of the measures of all the interior angles
A. approaches 360°.

B. approaches (360%)° or 129,600°.

C. increases without limit.

D. approaches zero.

5. Which of the following characteristics tells us that a given figure does not consti-
tute a plane polygon?
A. No three vertices lie along a single line.
B. All of the vertices lie in a single plane.
C. All of the sides constitute line segments of finite, nonzero length.
D. Two of the sides cross over each other.

6. Figure 4-14 illustrates an ellipse. Suppose that the indicated dimensions are
exact. What's the area of the ellipse, rounded off to three decimal places? Con-
sider t=3.14159.
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6 units

i(— 8 units

Center
point

FIGURE 4-14 - Illustration for Quiz Questions
6and 7.

43.982 square units

150.796 square units

153.938 square units

We need calculus to figure it out.

ONw>

. What's the approximate circumference of the ellipse of Fig. 4-14, rounded off to
one decimal place?

A. 37.7 units
B. 41.4 units
C. 50.3 units
D. 44.4 units

Figure 4-15 illustrates a circular sector (heavy solid lines and curve). Suppose
that the indicated dimensions are exact. What's the interior area of the sector?

A. 12 square units
B. 4 square units

C. 16 square units
D. 20 square units

o

RN o
~ .

FIGURE 4-15 - lllustration for Quiz
Questions 8 through 10.
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9. What's the perimeter of the circular sector shown in Fig. 4-15?

A. 12 units
B. 14 units
C. 16 units
D. 20 units

10. What proportion of the circle’s entire interior area does the sector shown in
Fig. 4-15 represent?
A 1/n
B. m/10
C. 3/(7m)
D. 2/(3m)



chapter ;

Compass and
Straight Edge

In geometry, the term construction refers to a drawing that we can make using

simple tools, with the intent of demonstrating a certain principle. Constructions
can serve as a powerful learning technique, because they force you to think
about the properties of geometric objects, independent of numerical lengths
and angle measures. Constructions can also provide some challenging games!

CHAPTER OBJECTIVES

In this chapter, you will

» Draw generic circles, lines, rays, and line segments.

Construct angles and arcs.

Bisect line segments and angles.

Construct perpendicular and parallel line segments.

Duplicate line segments and angles.
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Tools and Rules

The most common type of geometric construction requires two instruments,
both of which you can purchase at any office supply store. One instrument lets
you draw circles, and the other lets you draw straight line segments. Once you
have these tools, you can use them only according to certain “rules of the
game.”

Drafting Compass

The drafting compass allows you to draw circles of various sizes based on spe-
cific center points. It has two straight shafts joined by a hinge. One shaft ends
in a sharp point that can’t mark anything, but that you can “stick” into a piece
of paper to serve as an “anchor.” The other shaft has brackets in which you
mount a pencil. When you want to draw a circle, you press the sharp point
down on a piece of paper (with some cardboard underneath to protect the
table or desk top), open the hinge to get the desired radius, bring the pencil to
the paper, and draw the circle by rotating the whole assembly at least once
around. You can draw arcs by rotating the compass partway around.

TIP For geometric constructions, the compass must not have an angle measure-
ment scale at its hinge. If it has a scale that indicates angle measures or otherwise
quantifies the extent of its spread, you must ignore that scale.

Straight Edge

A straight edge helps you to draw line segments by placing a pencil against the
object and running it alongside. A conventional ruler will work for this purpose,
but it’s not the best tool for formal geometric constructions because it has a
calibrated scale. You're better off using a drafting triangle. Use any edge of the
triangle as the straight edge. You can even use a stiff piece of cardboard with a
known straight side, such as the back of a writing tablet after you've used up
the paper.

TIP Ignorethe angles at the apexes of a drafting triangle. Some drafting triangles
have two 45 °angles and one 90 °angle; others have one 30 °angle, one 60 °angle,
and one 90 ° angle. You mustn’t take advantage of these standard angle
measures when performing geometric constructions, so it doesn’t matter which
type of drafting triangle you use.
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What's Allowed

With a compass, you can draw circles or arcs having any radius you want (up to
the maximum that the device will create, of course). You can choose the center
point “at random,” or you can place the sharp tip of the compass down on a pre-
determined, existing point and define that point as the center of the circle or arc.

You can adjust a compass to replicate the distance between any two defined
points by setting the nonmarking tip down on one point and the end of the pencil
down on the other point, and then holding the compass setting constant.

With the straight edge, you can draw line segments of any length, up to the
entire length of the tool. You can draw a “random” line segment, choose a spe-
cific point through which the line segment passes, or connect any two specific
points with a line segment.

What's Not Allowed

Whatever sort of circle or line segment you draw, you must never try to mea-
sure the radius or the length against a calibrated scale of any kind. You may not
measure angles using a calibrated device. You may not make any reference
marks on either the compass or the straight edge. Marking on a straight edge
constitutes “cheating,” but referencing a distance using a compass is okay, even
though the two acts might seem qualitatively identical.

' Y

= Still Struggling

”

As you do a geometric construction, you might wonder if you can “legally
imagine the result of infinitely many operations or infinitely many repetitions of
a single operation. The answer is no, you may not do that! You mustn't repeat a
maneuver, or any set of maneuvers, “forever” to geometrically approach a
desired result, and then claim that result as a valid construction. You must
physically complete the whole operation in a finite number of steps.

Creating Points

To define an arbitrary point, you can simply draw a dot on the paper anywhere
you want. Alternatively, you can set the nonmarking point of the compass down
on the paper, in preparation for drawing an arc or circle centered at an arbitrary
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point. You can also define points wherever two line segments intersect, wherever
an arc or circle intersects a line segment, or wherever an arc or circle intersects
another arc or circle.

Drawing Line Segments

You can construct line segments “at random,” through any point, starting at any
point, through any two points, or connecting any two points.

When you want to draw an arbitrary line segment, place the straight edge
down on the paper and run a pencil along the edge as shown in Fig. 5-1A. You
can make the line segment as long or as short as you want but never longer than
the length of the straight edge. If you want to draw a line segment longer than
the straight edge, don’t align the straight edge with part of the line segment and
then try to extend it. Use a longer straight edge, so that you can create the
entire segment in one “swipe.”

Cc

FIGURE 5-1 - At A, construction of an arbitrary line segment. At B, construction
of a line segment starting at a single predetermined point. At C, construction of
a line segment connecting two predetermined points.
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When you want to draw a line segment through, or starting at, a single
defined point, place the tip of the pencil on that point (call it point P), place
the straight edge down against the point of the pencil, and then run the pencil
back and forth along the edge. If you want the point to constitute an end point
of the line segment, run the pencil away from the point in one direction as
shown in Fig. 5-1B.

When you want to draw a line segment through two defined points (call
them P and Q), place the tip of the pencil on one of the points, place the
straight edge down against the tip of the pencil, rotate the straight edge until it
lines up with the other point while still firmly resting against the tip of the
pencil, and then run the pencil back and forth along the edge so that the mark
passes through both points. If you want the points to lie at the ends of the line
segment, make sure that the pencil makes its mark only between the points and
not past them on either side (Fig. 5-1C).

Denoting Rays

To denote a ray, you must first locate or choose the end point of the ray (call it
point P). Then place the tip of the pencil at the end point and place the straight
edge against the tip of the pencil. Orient the straight edge in the direction you
want the ray to go. Move the tip of the pencil away from the point in the direc-
tion of the ray, as far as you want without running off the end of the straight
edge (Fig. 5-2A). Finally, draw an arrow at the end of the line segment opposite
the starting point P (Fig. 5-2B). The arrow indicates that you want the ray to
extend infinitely in that direction.

P p\

A B

FIGURE 5-2 - Construction of a ray. First, construct a line segment
ending at a point (A); then put an arrow at the end opposite the
point (B).
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Denoting Lines

In order to draw a line, follow the same procedure as you would to draw a line
segment. Then place arrows at both ends (Fig. 5-3). You can construct a line “at
random” (as shown in Fig. 5-3A and B), through a single defined point P (as
shown in Fig. 5-3C and D) or through two defined points P and Q (as shown
in Fig. 5-3E and F).

Drawing Circles

To draw a circle around a “random” point, place the nonmarking tip of the
compass down on the paper, set the compass to the desired radius, and rotate

N

NN
Py ™

FIGURE 5-3 - At A and B, construction of an arbitrary line. At C and
D, construction of a line through a single predetermined point. At E
and F, construction of a line through two predetermined points.
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Randomly chosen

center point |
-
>
Paper
P A

Predetermined
center point -

Paper

FIGURE 5-4 . At A, construction of a circle centered on an arbitrary point. At B,
construction of an arc centered at a predetermined point.

the instrument through a full circle (Fig. 5-4A). If you have a predetermined
center point (marked by a dot), place the nonmarking tip down on the dot and
rotate the instrument through a full circle.

Drawing Arcs

To draw an arc centered at a random point, place the nonmarking tip of the
compass down on the paper, set the compass to the desired radius, and rotate
the instrument through the desired arc. If you have a predetermined center
point (marked by a dot), place the nonmarking tip down on the dot and rotate
the instrument through the desired arc (Fig. 5-4B).
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PROBLEM 5-1
Define a specific point P by drawing a dot on a piece of paper. Then, with
your compass, draw a small circle centered at P. Now construct a second
circle, concentric with the first one, but having twice the radius.

SOLUTION
Figure 5-5 illustrates the procedure. First, construct the circle with your
compass, centering the circle at the initial point P as shown in Fig. 5-5A.
Then construct a line segment L using your straight edge, with one end at
point P and passing through the circle at another point, which you can call Q.

FIGURE 5-5 - illustration for Problem 5-1.
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Extend L outside the circle for a distance considerably greater than the
circle’s radius (Fig. 5-5B). Next, construct a second circle, centering it at
point Q and leaving the compass set for the same radius as it was when you
drew the original circle. This new circle intersects L at point P (the center of
the original circle) and also at a new point R (Fig. 5-5C). Next, place the
nonmarking tip of the compass back at point P and open up the compass
so that the pencil tip lands on point R. Finally, draw a new circle centered
at point P, with a radius equal to the length of line segment PR (as shown
in Fig. 5-5D).

PROBLEM 5-2
Draw three points on a piece of paper, placed in such a way that they don’t
all lie along the same line. Label the points P, Q, and R. Construct APQR
connecting these three points. Draw a circle whose radius equals the length
of side PQ, but that’s centered at point R.

SOLUTION
Figure 5-6 shows the process. First, put down and label the initial points as
shown in Fig. 5-6A. Then connect the points with line segments to con-
struct APQR (Fig. 5-6B). Next, place the nonmarking tip of your compass at
point Q and the tip of the pencil on point P. (If you want, you can construct
a small arc through P as shown in Fig. 5-6C, demonstrating that you've got
the compass opened up to the correct span.) With the compass thereby set
to define the length of line segment PQ, place the nonmarking tip of the
compass on point R. Finally, as shown in Fig. 5-6D, construct the full circle
centered at point R.

PROBLEM 5-3
Can we “legally” place the nonmarking tip of the compass at point P and
then place the pencil tip to draw an arc through point Q, in order to define
the length of line segment PQ in Problem 5-2?

SOLUTION
Yes, we can. This method works just as well as the procedure defined in the
solution to Problem 5-2.
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D Q

FIGURE 5-6 - lllustration for Problems 5-2 and 5-3.

Linear Construction Methods

The following paragraphs describe how to perform various constructions with
line segments. By extension, these same processes apply to rays and lines; you
can extend line segments and add arrows however you want.

Reproducing (Duplicating) a Line Segment

Imagine a line segment with end points P and Q as shown in Fig. 5-7A. Suppose
that you want to create another line segment having the same length as PQ.
First, construct a “working segment” somewhat longer than PQ. Then place a
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P Q
A P——)
P Q
o———O
B R
—_
P Q
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C
R
! )
P Q
o ————0
D R >S
e
FIGURE 5-7 - Reproduction (duplication) of a
line segment.

point on this “working segment” and call it R, as shown in Fig. 5-7B. Next, take
the compass and set down the nonmarking tip on point P, and adjust the com-
pass spread so that the tip of the pencil lands on point Q to define the length
of line segment PQ. Now place the nonmarking tip of the compass down on
point R and create a small arc that intersects your “working segment” as shown
in Fig. 5-7C. You can define the intersection of the “working segment” and the
arc as point S (Fig. 5-7D). The length of line segment RS equals that of line
segment PQ.

Bisecting a Line Segment

Suppose that you have a line segment PQ (Fig. 5-8A) and you want to find the
point at its center—that is, the point that bisects line segment PQ. First, con-
struct an arc centered at point P. Make sure that the arc comprises roughly a
half circle, and set the compass to span somewhat more than half the length of
PQ. Then, without altering the setting of the compass, draw an arc centered at
point Q, such that its radius equals the radius of the first arc that you drew
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P Q
C—
A A
P Q
A 4
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B

FIGURE 5-8 - Bisection of a line segment and construction of a
perpendicular bisector.

(as shown in Fig. 5-8B). You can call the points at which the two arcs intersect
R and S. Construct a line passing through both R and S. Under these circum-
stances, line RS intersects the original line segment PQ at a point T, which
bisects line segment PQ (as shown in Fig. 5-8C).

Perpendicular Bisector

Imagine that you want to construct a line that bisects a specific line segment
PQ), and that also passes through PQ at a right angle. Figure 5-8 shows how you
can construct such a perpendicular bisector line (called RS in this example) as an
“artifact” of the bisection process. The bisection process described in the previ-
ous paragraph “automatically” provides two points that lie along a perpendicu-
lar bisector.

Perpendicular Ray at a Known Point

Figure 5-9 illustrates how you can construct a perpendicular ray from a defined
point P on a line or line segment. Begin with the scenario at Fig. 5-9A. Set the
compass for a moderate span, and construct two arcs opposite each other, both
centered at point P and both of which intersect the line or line segment. Call
these intersection points Q and R, as shown in Fig. 5-9B. Increase the span of
the compass, more or less doubling it (you don’t have to get it exactly double).
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FIGURE 5-9 . Construction of a ray perpendicular to a line or
line segment.

Construct an arc centered at Q and another arc centered at R, so that the two
arcs have the same radius and intersect as shown in Fig. 5-9C. Now use your
straight edge to draw a ray whose originating (or “back-end”) point lies at P, and
that passes through the intersection point (call it S) of the two arcs you just
made (Fig. 5-9D). In this situation, ray PS runs outward from P at a right angle
from the original line or line segment.

Dropping a Perpendicular to a Line

Figure 5-10 shows how you can draw, or drop, a perpendicular from a defined
point P to a line that doesn’t pass through that point. The term dropping a per-
pendicular means that you construct a line segment, line, or ray through a point
in such a way that the line, line segment or ray “comes down on” a nearby line
at a right angle.

Begin with the situation shown in Fig. 5-10A. Set the compass for a span
somewhat greater than the distance between P and the line. Construct an arc
that passes through the line at two points. Call these points Q and R, as shown
in Fig. 5-10B.
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FIGURE 5-10 - Construction of a perpendicular from a point to a nearby line.

Now increase the span of the compass, roughly doubling it. (You don’t have
to get it exactly double.) Construct two arcs, one centered at Q and the other
centered at R, such that the two arcs have the same radius and intersect each
other (Fig. 5-10C). Construct a line segment that runs through P, and that also
passes through the intersection point between the arcs you just made (call that
point S). Extend this line segment SP until it intersects the original line. Call
the resulting intersection point T, as shown in Fig. 5-10D. In this scenario, line
segment PT intersects the original line at a right angle; that is, PT constitutes a
perpendicular from P to the original line.

Parallel to a Line through a Specific Point

You can use several different methods to construct a parallel (line, line segment,
or ray) to a specific line through a point that does not lie on that line. One of
these methods takes advantage of previous constructions. Figure 5-11 portrays
the process.
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FIGURE 5-11 . Construction of a parallel through a defined point.

Suppose that you have a line segment with a point P nearby (as shown in
Fig. 5-11A), and you want to create a line through P parallel to the original line.
First, drop a perpendicular from P to the line using the procedure described earlier
and shown in Fig. 5-10, generating points Q, R, S, and T (Fig. 5-11B). Then set the
compass for the distance PT and construct a circle centered at P having a radius
equal to the distance PT. This circle intersects line PT at a new point, which you
can call U. Line segment UP has the same length as line segment PT (Fig. 5-11C).

Increase the span of the compass somewhat, and construct two roughly half-
circular arcs having identical radii, one centered at point T and the other centered
at point U, so that the arcs intersect each other at two more new points. Call these
points V and W, as shown in Fig. 5-11D. In this situation, line VW runs perpen-
dicular to line UT and also to line PT. (We know this fact because we just got done
with the perpendicular construction described earlier.) Note that PT runs perpen-
dicular to the original line. Therefore, line VW runs parallel to the original line.

TIP The foregoing construction provides an example in which we can correctly
say, “Two perpendiculars make a parallel.”
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PROBLEM 5-4
Find and describe another way to construct a parallel to a line that runs
through a point nearby.

SOLUTION
The following method constitutes a scheme that can serve as a solution to
this problem. (Other methods might also exist.)

Figure 5-12A shows the initial situation. Drop a perpendicular from
point P to the original line, as described earlier in this chapter. This perpen-
dicular intersects the line at point Q (Fig. 5-12B). Next, set the compass so
that its span equals the length of line segment PQ. You can set the non-
marking point of the compass down on point Q, and draw an arc through
P to ensure you get the compass span just right.

Pe A
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90° 90° 90°
Q R Q R
C E

FIGURE 5-12 - lllustration for Problems 5-4 and 5-5.
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Choose a second point R on the original line (Fig. 5-12C). Construct a
perpendicular at point R according to the procedure described earlier in
this chapter (Fig. 5-12D). Set the compass to the distance PQ; then place
the nonmarking point of the compass on R and draw an arc that intersects
the perpendicular. Call the intersection point S. You now have two points,
Pand S, that lie equidistant from the original line. Construct line PS through
these points. Line PS runs parallel to the original line (Fig. 5-12E).

PROBLEM 5-5
Construct a square. It doesn’t have to be any particular size, as long as all

four sides have the same length and all four interior angles measure 90°
(m/2 rad).

SOLUTION
Examine Fig. 5-12. The quadrilateral PQRS constitutes a rectangle,
because line segments PQ and RS both run perpendicular to line QR, so
both ZRQP and ZSRQ are right angles. You also know that lines QR and
PS run parallel to each other, because that was the solution to Problem
5-4. You can therefore conclude that ZPSR and ZQPS are both right
angles, because opposite interior angles to the transversals of parallel
lines always have equal measure; they're congruent (ZRQP = £ZPSR and
ZSRQ = £QPS).

Now you can easily modify the construction process shown in Fig. 5-12
to ensure that the resulting quadrilateral PQRS constitutes a square.

Instead of choosing point R on the original line “at random,” use the com-
pass, set so that its span equals the distance PQ, to determine point R. Set
the nonmarking point of the compass down on point Q and draw an arc so
that it intersects the original line to obtain point R. This action ensures that
the distance PQ equals the distance QR. From there, you can complete the
construction in the same way you did when you solved Problem 5-4.

Angular Construction Methods

The following paragraphs describe how to reproduce (copy or duplicate) an
angle that measures less than 180° (n rad). You'll also learn how to bisect such
an angle.
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FIGURE 5-13 - Reproduction (duplication) of an angle.

Reproducing an Angle

Figure 5-13 illustrates how you can reproduce an angle. Suppose that two rays
intersect at point P, as shown in Fig. 5-13A. Set down the nonmarking tip of
the compass on point P and construct an arc from one ray to the other. Let R
and Q represent the two points where the arc intersects the rays (Fig. 5-13B).
Call the angle in question ZQPR, where points R and Q lie equidistant (equally
far away) from point P.

Place a new point S somewhere on the page a considerable distance away
from point P and construct a ray emanating outward from point S as shown in
Fig. 5-13C. This ray can run off in any direction, but you'll find that things work
out best if you “send” it in approximately the same direction as ray PQ goes.
Make the new ray at least as long as ray PQ. Without changing the compass
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span from its previous setting, place its nonmarking tip on point S and construct
a sweeping arc that’s larger than arc QR. You can guess at a good sweep for this
arc (Fig. 5-13D), or you can make a full circle. Let point T represent the inter-
section of the new arc and the new ray.

Return to the original arc, place the nonmarking tip of the compass down on
point Q, and construct a small arc through point R so that the compass spans
the distance QR (Fig. 5-13E). Then, without changing the span of the compass,
place its nonmarking tip on point T and construct an arc that intersects the arc
centered on point S. Call this intersection point U. Finally, construct ray SU
(Fig. 5-13F). You now have a new angle with the same measure as the original

angle. That is, ZTSU = ZQPR.

Bisecting an Angle

Figure 5-14 illustrates a way that you can bisect an angle; that is, divide it in
half. First, suppose that two rays intersect at point P, as shown in Fig. 5-14A.
Set down the nonmarking tip of the compass on point P and construct an arc
from one ray to the other. Let R and Q represent the two points where the arc
intersects the rays (Fig. 5-14B). You can now call the angle in question ZQPR,
where points R and Q lie equidistant from P.

S
R
P P Q
A C
/s
R R
P Q P Q
B D

FIGURE 5-14 - Bisection of an angle.
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Place the nonmarking tip of the compass on point Q, increase its span some-
what from the setting that you used to generate arc QR, and construct a new
arc. Next, without changing the span of the compass, set its nonmarking tip on
point R and construct an arc that intersects the arc centered on Q. If the arc
centered on point Q isn’t long enough, go back and make it longer. You can
make it a full circle if you want. Let S represent the point at which the two arcs
intersect (Fig. 5-14C). Finally, construct ray PS, as Fig. 5-14D illustrates. This
ray bisects ZQPR.

TIP Intheforegoing construction, ZQPS=_/SPR, and the sum of the measures of
ZQPS and £SPR equals the measure of ZQPR.

PROBLEM 5-6
Find another way to bisect an angle that measures less than 180° (r rad).

SOLUTION
Refer to Fig. 5-15. The process starts in the same way as described earlier.
Two rays intersect at point P, as shown in Fig. 5-15A. Set down the

.=

A C

Rt 2 Rﬁ % S
P Q P Q
B D

FIGURE 5-15 - lllustration for Problems 5-6 and 5-7.
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nonmarking tip of the compass on point P and construct an arc from one
ray to the other to get points R and Q (Fig. 5-15B) defining ZQPR, where
points R and Q lie equidistant from point P.

Construct line segment RQ. Then bisect it, following the procedure for
bisecting line segments described earlier in this chapter. Call the midpoint
of the line segment point S (Fig. 5-15C). Finally, construct ray PS (Fig. 5-15D).
This ray bisects ZQPR.

PROBLEM 5-7
Show that the angle bisection method described in the solution to Prob-
lem 5-6 works for any angle measuring less than 180° (r rad).

SOLUTION
Examine Fig. 5-15D and note the two triangles ASRP and APQS. These tri-
angles have corresponding sides of equal lengths:

e SR=QS (you bisected the line segment)
e PR=QP (you constructed them both from the same arc centered at P)

e PS=PS (any line segment has the same length as itself)

From these three facts, the side-side-side (SSS) principle from Chap. 2
assures you that ASRP and APQS are inversely congruent. Therefore, the
corresponding angles (the angles opposite corresponding sides), as you
proceed around the triangles in opposite directions, have equal measure.
Because SR = QS, you can conclude that ZSPR and ZQPS have equal
measure. Because their measures obviously add up to the measure of
ZQPR, you know that ray PS bisects ZQPR.

11
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Quiz

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. Suppose that we want to “record” the length of a line segment for future use,
such as constructing another line segment of equal length along a line. Which
of the following methods constitutes a legitimate way to carry out this task?

A.

B.

D.

We can set a straight edge along the line segment, mark off the end points on
the straight edge, and then use those marks as future reference points.

We can draw circles of equal radius centered at both end points of the line
segment, and then use the distance between either end point and the inter-
section of the circles as the “recorded” length for future reference.

We can set the nonmarking point of a compass on one end point of the line
segment, hold it there, and then adjust the compass span so as to place the
tip of the compass pencil on the other end point of the line segment. Then we
can use the two tips of the compass as future reference points.

Any of the above

2. How can we construct a 45° angle?

A.

B.

C.

D.

We can construct a square and then draw its diagonal. The angle between the
diagonal and any one of the square’s sides will equal 45°.

We can construct a perpendicular bisector that intersects a line segment, and
then bisect any one of the four angles between the line segment and its
perpendicular bisector. Either of the resulting angles will measure 45°.

We can construct a rectangle and then bisect any one of its interior angles.
Either of the resulting angles will measure 45°.

Any of the above

3. We must always ensure that we can complete a geometric construction

A.

without having to reproduce any angles.

B. with lines and points only.
C.
D. with only a drafting triangle and a pencil.

in a finite number of steps.

4. The ideal compass for performing a geometric construction

ONw>

has no angle-measuring scale.

includes distance references along its shafts.
can draw ellipses as well as circles.

has two pencils, one along each shaft.

5. What's the best way to construct a line segment whose length exceeds that of
your straight edge?

A.

Align the straight edge with part of the line segment and then extend the line
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segment as far as you need.

Find a longer straight edge and then use it to construct the new line segment.
Use two or more identical straight edges and align them to construct the new
line segment.

Use two or more identical drafting triangles and align them to construct the
new line segment.

In the solution to Problem 5-1 on page 98, we learned how to construct a circle
with twice the radius of a given circle. How can we construct a circle with half the
radius of a given circle?

A.

D.

Draw a ray from the circle’s center point out past the circle itself; then bisect
the line segment connecting the center point with the point that intersects
the circle; then set the compass span to the length of either half of the
bisected line segment; finally draw a new circle with that radius.

Draw two perpendicular rays from the circle’s center point out past the circle
itself; then set the compass span to the distance between the points where
the rays intersect the circle; finally draw a new circle with that radius.

Draw two perpendicular rays from the circle’s center point out past the circle
itself; then set the compass span to half the distance between the points
where the rays intersect the circle; finally draw a new circle with that radius.
We can't.

How can we construct an angle whose measure equals ©/8 rad and have
complete confidence in the accuracy of our result?

A.

B.

We can construct a parallelogram and then draw its diagonal. Then we can
bisect the angle between the diagonal and any one of the sides.

We can construct a rhombus and then draw its diagonal. Then we can bisect
the angle between the diagonal and any one of the sides.

We can construct a rectangle and then draw its diagonal. Then we can bisect
the angle between the diagonal and any one of the sides.

We can construct a square and then draw its diagonal. Then we can bisect the
angle between the diagonal and any one of the sides.

How can we construct an angle whose measure equals 67.5° and have complete
confidence in the accuracy of our result?

A.
B.

We can't.

We can construct a square, trisect any one of its interior angles, and then
duplicate the result, making the new angle adjacent to the original one. The
sum of these two angles will equal 67.5°.

We can construct an angle whose measure equals 7/8 rad and then reproduce
it twice, constructing the second angle adjacent to the original one and the
third angle adjacent to the second one. The sum of all three angles will equal
67.5°.

We can bisect a straight angle (i.e., one of  rad) three times and then
duplicate the result, making the new angle adjacent to any one of the
angles that we got from the triple bisection. The sum of these two angles
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will equal 67.5°.

9. Suppose that you want to construct a parallelogram. What should you do first?

10.

A.
B.
C
D.

Construct two perpendicular lines.
Construct two concentric circles.
Construct two parallel lines.
Construct an equilateral triangle.

Which of the following actions violates the formal rules for geometric
construction?

A.

B.

Define the measure of an angle by laying a compass down on it and reading

the number from a graduated scale at the compass apex.

Draw a line segment by running a pencil’s tip along a straight edge from one
defined point to another defined point.

Create a“random” angle by using a straight edge to draw two line segments

that intersect at their end points.

Construct a “random” circle with a compass set to any desired span.



chapter 6

The Cartesian Plane

We can define the Cartesian plane, also called the rectangular coordinate plane

or rectangular coordinates, by constructing two calibrated number lines that
intersect at a right angle. This trick allows us to pictorially describe equations
that relate one variable to another. You should have a knowledge of first-year
high-school algebra before tackling this chapter.

CHAPTER OBJECTIVES

In this chapter, you will

o Graph ordered pairs as points in a coordinate system.

o Calculate the distance between two points.

o Learn the difference between a relation and a function.
o Graph simple relations and functions.

o Determine equations from graphs.

» Graphically portray solutions to pairs of equations.

15
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Two Number Lines

Figure 6-1 illustrates the simplest possible set of rectangular coordinates. Both
number lines have equal increments. On either axis, any two points correspond-
ing to consecutive integers lie the same distance apart, no matter where on the
axis we look. The two number lines intersect at their zero points. We call the
horizontal number line the x axis and the vertical number line the y axis.

Ordered Pairs as Points

Figure 6-2 shows three specific points, called P, Q, and R, plotted on the Car-
tesian plane. Point P has coordinates (-5,-4), and point Q has coordinates (3,5).
We'll look more closely at point R in a few moments.

We can denote any given point as an ordered pair in the form (x,y), deter-
mined by the numerical values at which perpendiculars from the point intersect
the x and y axes. In Fig. 6-2, we see the perpendiculars as horizontal and vertical
dashed lines.

The word “ordered” means that the order or sequence in which we list the
numbers makes a big difference! This distinction makes an ordered pair funda-
mentally different from a set of two numbers, in which the order or sequence
doesn’t matter. The ordered pair (7,2) is not the same as the ordered pair (2,7),
even though both pairs contain the same two numbers. However, the sets
{7, 2} and {2, 7} are identical.

FIGURE 6-1 - A Cartesian plane contains two
number lines that intersect at right angles.
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FIGURE 6-2 - Two points Pand Q, plotted in rectangular coordinates,
and a third point R, important in finding the distance d between P and Q.

TIP Asamatter of convention, when denoting an ordered pair, we place the two
numbers or variables together right up against the comma (leaving no space
after the comma). When denoting a set of two numbers, we leave a space after
the comma.

' Y

= Still Struggling

Think of a highway, which consists of a northbound lane and a southbound lane.
If the highway never carries any traffic, it doesn't matter which lane (the one on
the eastern side or the one on the western side) you designate as “northbound”
and which lane you designate as “southbound.”But once you put cars and trucks
on that road, it makes a tremendous difference which direction you go in either
lane! You might compare a two-element set to a two-lane road without traffic
and an ordered pair to a two-lane road with traffic.
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Abscissa, Ordinate, and Origin

In any graphing scheme, we always have at least one independent variable and
at least one dependent variable. As the name suggests, the value of the indepen-
dent variable does not “depend” on anything; it “just happens.” The value of the
dependent variable depends on the value of the independent variable.

We call the independent-variable coordinate (usually x) of a point on
the Cartesian plane the abscissa. We call the dependent-variable coordinate
(usually y) the ordinate. We call the point (0,0) the origin. In Fig. 6-2, point P
has an abscissa of -5 and an ordinate of —4, and point Q has an abscissa of 3 and
an ordinate of 5. We can see, upon careful inspection, that point R has an
abscissa of 3 and an ordinate of 5.

Distance between Points

Consider two different points P= (x,,y,) and Q = (x,,y,) on the Cartesian plane.
We can calculate the distance d between these two points by determining the
length of the hypotenuse, or longest side, of a right triangle PQR, where point
R constitutes the intersection of a “horizontal” line through P and a “vertical”
line through Q. In this case, “horizontal” means “parallel to the x axis,” and
“vertical” means “parallel to the y axis.” Figure 6-2 shows an example.

Alternatively, we can use a “horizontal” line through Q and a “vertical” line
through P to get the point R. In this case, the resulting right triangle has the same
hypotenuse (line segment PQ) as the triangle determined as shown in Fig. 6-2.

Think back to Chap. 2 for a minute. Recall the Pythagorean theorem, which
states that the square of the length of the hypotenuse of a right triangle equals
the sum of the squares of the lengths of the other two sides. In this case, the
theorem tells us that

d?= (x1 _xo)z + (y1 _yo)z
and therefore that
d = [(xl - xo)z + (y] _yO)Z]l/Z

where the 1/2 power represents the square root. In the situation of Fig. 6-2, we
can calculate the distance d between points P= (x,,y,) = (-5,-4) and Q = (x,,y,)
=(3,5) as follows:

d={[3-(5)]2+[5- (43~
“[(3+5)+ (5 + 4]
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= (82 + 92)1”2
= (64 + 81)'2

= 1452

=12.0416 (approx.)

This result is accurate to four decimal places, as determined using a standard
digital calculator that can find square roots. (We assume that the coordinate
values for points P and Q in Fig. 6-2 are mathematically exact.)

Relation versus Function

Let's compare the idea of a relation and the idea of a function as they pertain to
coordinate geometry. A relation constitutes an equation or formula that “relates”
the value of one variable to that of another. A function is a relation that meets
certain specific requirements. All functions constitute relations, but not all rela-
tions constitute functions.

Relations

We can denote a relation between two variables x and y so that it expresses the
value of y in terms of the value of x. In this format, y represents the dependent
variable and x represents the independent variable. Some examples follow:

y=5
y=x+1
y=2x
y=x

Some Simple Graphs

Figure 6-3 shows how the graphs of the above equations look on the Cartesian
plane. Mathematicians and scientists call such a graph a curve, even if it happens
to be a straight line.

The graph of y =5 (curve A) appears as a horizontal line passing through the
point (0,5) on the y axis. The graph of y = x + 1 (curve B) is a straight line that
ramps upward at a 45° angle (from left to right) and passes through (0,1) on
the y axis. The graph of y = 2x (curve C) shows up as a straight line that ramps
upward more steeply, and that passes through the origin (0,0). The graph of
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R / - -6

/ \4

FIGURE 6-3 - Graphs of four relations in Cartesian coordinates. Drawings
A, B, and C show linear relations; drawing D portrays a nonlinear relation.

y =7 (curve D) appears as a geometric curve called a parabola. In this case, the
parabola rests on the origin (0,0), opens upward, and exhibits left-to-right
(bilateral) symmetry with respect to the y axis.

TIP InFig. 6-3, graphs A, B, and C portray so-called linear relations because they
appear as straight lines in the Cartesian coordinate plane. Graph D portrays a
nonlinear relation because it does not appear as a straight line in the Cartesian
plane.

Functions

All of the relations shown in Fig. 6-3 share a feature that we can identify by
examining their graphs: For every abscissa, each relation contains at most one
ordinate. Never does a curve have two or more ordinates for a single abscissa,
although one of them (the parabola, curve D) has two abscissas for all positive
ordinates.
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We can define a function as a mathematical relation in which every
abscissa corresponds to at most one ordinate. According to this criterion,
all four of the curves shown in Fig. 6-3 portray functions of y in terms of
x. In addition, curves A, B, and C show functions of x in terms of y. But
curve D does not represent a function of x in terms of y. If we consider x
as the dependent variable and y as the independent variable, then there
exist some values of y (some abscissas) that “mate” with two values of x
(ordinates).

Let’s denote functions as italicized letters of the alphabet such as f, F, g, G,
h, or H, followed by the independent variable in parentheses. Consider these

examples:
flx)=5
gx)=x+1
h(x) = 2x
F(x)=x?

” «

We can read these equations out loud as “f of x equals 5,”“g of x equals x plus 1,

“h of x equals 2 times x,” and “F of x equals x squared,” respectively.

PROBLEM 6-1
Plot the following points on the Cartesian plane: (-2,3), (3,-1), (0,5),
and (-3,-3).

SOLUTION
Figure 6-4 shows these points. The dashed lines are perpendiculars,
dropped to the axes to show the x and y coordinates of each point for refer-
ence purposes only. (The actual graphs of the points do not include these
dashed lines.)

PROBLEM 6-2
What's the distance between the two points (0,5) and (-3,-3) in Fig. 6-4?
Express the answer to three decimal places. Assume that the coordinate
values are exact.
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FIGURE 6-4 - lllustration for Problems 6-1 and 6-2.

SOLUTION
Let’s say that (x,,y ) = (0,5) and (x,,y,) = (-3,-3). We calculate the distance d
between these two points as follows:
d=1[x, - x)*+(y, -y,

=[(-3-0)2+(-3-5)7"2

= [(-3)+ (81"

=(9 +64)"2

= 731/2

=8.544 (rounded off)

Straight Lines

We can always represent a straight line on the Cartesian plane as a linear equa-
tion. Several different forms exist for linear equations. No matter what form a
linear equation shows up in at first, we use algebra to “morph” it into an equa-
tion where neither x nor y is raised to any power other than 0 or 1.
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Standard Form of Linear Equation

The standard form of a linear equation in variables x and y comprises constant
multiples of the two variables, plus another constant, all summed up to equal
zero, as follows:

ax+by+c=0

In this “generic” equation, we denote the constants as a, b, and c. If a constant
happens to equal O, then we don’t have to write it down, nor do we have to
write its multiple (by either x or y). Examples of linear equations in the
standard form include the following:

2x+5y-3=0
5y-3=0
2x-3=0
2x=0
S5y=0
ﬁ N

= Still Struggling

You can divide each side of the fourth (next-to-last) of the above equations by 2,
thereby simplifying it to x = 0. Similarly, you can divide each side of the fifth (last)
equation by 5, simplifying it to y = 0.

Slope-Intercept Form of Linear Equation

We can manipulate any linear equation in variables x and y to make it easy to
plot on the Cartesian plane. We can convert a linear equation from standard
form to slope-intercept form by going through several steps. Let’s start with the
general equation

ax+by+c=0
Subtracting ¢ from each side, we get
ax+by=-c
We can subtract ax from each side to obtain

by=-ax-c
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When we divide through by b, we get
y = (~a/b)x - c/b
We can also express this equation as
y = (~a/b)x + (—c/b)

where a, b, and ¢ represent real-number constants, and b # 0. We call the quantity
—a/b the slope of the line (also known as “rise over run”), an indicator of how
steeply and in what sense the line slants. The quantity —c/b represents the
ordinate (or y-value) of the point at which the line crosses the y axis; we call it
the y-intercept.

Definition of Slope

Suppose that dx represents a small change in the value of x on the graph of a
line. Let dy represent the change in the value of y that results from this change
in x. We define the ratio dy/dx as the slope of the line. Let’s symbolize the slope
as m. Now imagine that some number k represents the y-intercept for the line.
We can derive m and k from a, b, and ¢ in the above-defined equation as follows,
provided that b # O:

m=-alb
and
k=—c/b
We can rewrite the linear equation in slope-intercept form as
y = (-a/b)x + (—c/b)
Substituting m for —a/b and k for —c/b, we get

y=mx+k

Plotting the Line

When you want to plot the graph of a linear equation in Cartesian coordinates,
proceed as follows:

» Convert the equation to slope-intercept form.

 Plot the pointy = k.
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* Move to the right by n units on the graph, where n is some number that
represents some reasonable distance on the graph.

e If m is positive, move upward mn units.

e If m is negative, move downward Imln units, where lml equals the absolute
value of m.

e If m=0, don’t move up or down at all.
 Plot the resulting point.

e Connect the two points with a straight line.

Figures 6-5A and 6-5B illustrate the graphs of two different linear relations in
slope-intercept form. At A, we see the graph of the equation

y=5x-3
At B, we see the graph of the equation

y=-x+2

' Y

= Still Struggling

Positive slope indicates that a line ramps upward as you move from left to right,
and negative slope indicates that a line ramps downward as you move from left
to right. A slope of 0 indicates a horizontal line. We can’t define the slope of a
vertical line because, in the form we've learned here, a vertical line requires that
m consist of a quotient with a denominator equal to 0.

Point-Slope Form of Linear Equation

We'll sometimes have trouble plotting the graph of a line based on the
y-intercept (the point at which the line intersects the y axis) when the part of
the graph of interest lies far from the y axis. In this sort of situation, we can use
the point-slope form of a linear equation to help us draw the graph. We can
express a line in this form if we know the slope m of the line and the coordi-
nates of a known point (x,,y,), as follows:

y=y,=mlx-x,)
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FIGURE 6-5 - A. Graph of the linear equation y = 5x - 3. B. Graph
of the linear equation y = -x + 2.
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When we want to plot a graph of a linear equation using the point-slope

method, we can follow these steps in order:

Convert the equation to point-slope form.
Determine a point (x,,y,) by “plugging in” values.
Plot (x,,y,) on the coordinate plane.

Move to the right by n units on the graph, where n is some number that
represents a reasonable distance on the graph.

If m is positive, move upward mn units.

If m is negative, move downward Imln units, where lml equals the absolute
value of m.

If m =0, don’t move up or down at all.
Plot the resulting point (x,,y,).
Connect the points (x,,y,) and (x,,y,) with a straight line.

Figure 6-6A shows the graph of the following linear equation based on the

point-slope form:

y— 104 =3(x - 72)

Figure 6-6B portrays the graph of another linear equation based on the point-

slope form:

y+55=-2(x+85)

Finding Linear Equation Based on Graph

Imagine that we're working in the Cartesian plane, and we know the exact

coordinates of two distinct points P and Q. These two points, no matter where

they lie, define a unique straight line. Let’s call the line L and give the coordi-

nates of the points the names

and

P=(x,y,

Q=(x,y,)

We can calculate the slope m of line L using either of the following formulas:

m=(y,-y,)/(x,-x)
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FIGURE 6-6 - A. Graph of the linear equation y — 104 = 3(x - 72).
B. Graph of the linear equation y + 55 = -2(x + 85).
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or
m=(y,-y)/(x,-x)

provided that x #x, . (If x, = x, we get denominators of 0 in the formulas, pre-
venting us from defining the slope.)

We can determine the point-slope equation of the line L based on the known
coordinates of P or Q. Either of the following formulas represent L:

y-y,=m(x-x)
or

y-y,=m(x-x)

Parabolas and Circles

The Cartesian-coordinate graph of a quadratic equation always shows up as a
parabola. We can write down any quadratic equation in the general form

y=ax’+bx+c

where a, b, and ¢ represent real-number constants, and a # 0. (If a = 0, then we
have a linear equation, not a quadratic equation.)

When we want to plot a graph of an equation that appears in the above form,
we first determine the coordinates of the following point (x,,y,), as follows:

x, =-b/(2a)
and
y, = ¢ — b*/(4a)

The coordinates (x,,y,) define the vertex point of the parabola. That’s the point
at which the curvature is sharpest, and at which a line tangent to (i.e., a line
that “brushes up against”) the curve runs horizontally. For the Cartesian graph
of a quadratic equation that tells us y in terms of x, we can have either of two
cases:

e In a parabola that opens straight upward, the vertex is the graph’s minimum.

e In a parabola that opens straight downward, the vertex is the graph’s
maximum.
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Once we know the vertex, we can find four more points by “plugging in” values
of x somewhat greater than and less than x;, and then determining the corre-
sponding y-values. Let’s call these x-values by the names x , , x_, x,, and x,. We
should space them evenly on either side of x,, such that

X, <X, <X, <x <X,
and

X mX T Xy =X =X — X=X X

This arrangement produces five points that lie along the parabola, and that
exhibit symmetry relative to the axis of the curve. We can now fill in the graph
if we’ve wisely chosen the points. If a > 0, the parabola opens upward. If a < 0,
the parabola opens downward.

Plotting a Parabola

Consider the following equation for y in terms of x:
y=x+2x+1

This equation has coefficients of a = 1, b = 2, and ¢ = 1. Using the formula
defined above, we can calculate the x-value of the vertex point as

x, =—b/(2a)
=-2/2x1)
=-2/2
=-1

and we can calculate the y-value of the vertex point as

v, = ¢ — b*/(4a)

= 1-22/(4x1)
=1-4/4
=1-1

=0

Therefore, we can express our first point as

(xofyo) = (_1 /O)
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(-1,0) 2 L

FIGURE 6-7 - Graph of the quadratic equation y =x?+ 2x + 1.

Figure 6-7 illustrates this situation. Next, let’s plot the points corresponding to

%, %, %,, and x,, spaced at 1-unit intervals on either side of x,. First, we define

X, as

X,=%x,—2

=-3

which produces a y-value of

so therefore

v,=(3)2+2x(-3)+1
=9-60+1
=4

(x_zry_z) = (—3,4)

Next, we define x | as

x,=x,-1

=2
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which produces a y-value of

y,=(2)+2x(-2)+1

=4-4+1
=1
so therefore
(x,]ﬂy,l) = (—2,1)
Next, we define x, as
x, =x,+1
=0

which produces a y-value of

v, =07+2x0+1

=0+0+1
=1
so therefore
(x,v) = (0,1)
Finally, we define x, as
xX,=x,+2

which produces a y-value of
v,=17+2x1+1
=1+2+1
=4
so therefore

(xzryz) = (1;4)

When we draw these five points on the Cartesian plane, we get a good idea
of where the parabola lies, allowing us to easily “fill in the curve” as shown in
Fig. 6-7.
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Plotting Another Parabola

Let’s try another example, this time with a parabola that opens downward
instead of upward. Consider the equation

y=-2x"+4x-5

This equation has coefficients of a = -2, b = 4, and ¢ = —5. Using the formula
defined a little while ago, we can calculate the x-value of the vertex point as

x, =-b/(2a)
=—4/[2 x (-2)]
—_4/(-4)
=1
and the y-value of the vertex point as
y, = ¢ - b*/(4a)
=5 - 4/[4 % (-2)]

=-5-16/(-8)
=-5+2
=-3

so therefore
(x()!y()) = (11_3)

We plot this point first, as shown in Fig. 6-8. Now we’re ready to plot the points
corresponding to x,, x|, x,, and x,, spaced at 1-unit intervals on either side of
x,. First, we define x , as

X,=x,—2
—_1
which produces a y-value of
y,=-2x(-1)>+4x(-1)-5
—2_4_5
=-11

so therefore

(x_zfy_z) = (—1,—] 1)
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(O!_S)

(-1,-11) ——

FIGURE 6-8 - Graph of the quadratic equation y = —2x2 + 4x - 5.

Next, we define x_| as

which produces a y-value of
y,=-2x0°+4x0-5
=-5
so therefore
(x,y,)=(0,-5)
Next, we define x, as

x1=x0+l
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which produces a y-value of

y,=2x22+4x2-5

=-8+8-5
-5
so therefore
(xpyl) = (2;_5)
Finally, we define x, as
xX,=x,+2
=3

which produces a y-value of
y,=-2x32+4x3-5
=-18+12-5
=-11

so therefore
(leyz) = (3’_1 1)

Now that we know five distinct points that fall in “good places” on the curve,
we can draw the parabola by “connecting the dots.”

Equation of Circle

The general form for the equation of a circle in the xy-plane shows symmetry
with respect to both variables (just as a circle has symmetry in both the hori-
zontal sense and the vertical sense). We have

(X—XO)Z'l' (y_yo)z =7

where (x,,y,) represents the coordinates of the center of the circle, and 7 rep-
resents the circle’s radius, or distance from the center to any point on the
curve itself. Figure 6-9 illustrates a generic example. In the special case where
the circle’s center lies at the origin (0,0) of the Cartesian plane, the formula
simplifies to

X +y: =7
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(X0:Y0)
r /
Ny

1 |||I/IIIIII>X

\4

FIGURE 6-9 - Circle centered at (x,y,) with radius r.

Such a circle intersects the x axis at the points (,0) and (-r,0); it intersects the
y axis at the points (0,7) and (0,—). An even more specific case is the unit circle.
We can express it in terms of the formula

x> +y?=1

This curve intersects the x axis at the points (1,0) and (~1,0); it intersects the
y axis at the points (0,1) and (0,-1).

PROBLEM 6-3
Draw a Cartesian graph of the circle represented by (x - 1)2+ (y + 2)2=9.

SOLUTION
Based on the general formula for a circle, we can determine that the center
point has coordinates x, = 1 and y, = -2. The radius equals the square root
of 9, which equals 3. We therefore have a circle whose center point lies at
(1,-2) on the Cartesian plane, and whose radius equals 3 units as shown in
Fig. 6-10.




Each division
equals 1 unit
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Y
P

FIGURE 6-10 - lllustration for Problem 6-3.

PROBLEM 6-4

(1.-2)

Determine the equation of the circle graphed in Fig. 6-11.

SOLUTION

First, let’s note that the center point has coordinates (-8,-7), so we can

assign it the coordinate values

and

yo=_7

The radius r equals 20. When we square it, we get

r’=20x20

=400
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—+ Each division
equals 5 units

FIGURE 6-11 - lllustration for Problem 6-4.

We recall that the general formula for a circle in Cartesian coordinates is
x=x)+(y-y)=r
Inputting our known values, we get
[x - (-8)1*+[y - (-7)]*=400
which simplifies to

(x+8)*+(y+7)*=400

Solving Pairs of Equations

We can envision and approximate the solutions to pairs of equations by graphing
both of the equations on the same coordinate grid. Solutions appear as intersec-
tion points between the graphs.
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A Line and a Curve

Suppose that you encounter two equations in the two variables x and y. You
want to determine the values of x and y (if any) that satisfy both equations. In
this scenario, you have a pair of so-called simultaneous equations. Consider the
following example:

y=x>+2x+1
and
y=-x+1

Figure 6-12 portrays the graphs of these equations. The graph of the first equa-
tion appears as a parabola (solid curve), and the graph of the second equation
shows up as a straight line (dashed). The line crosses the parabola at two points,
indicating that two real-number solutions exist for this pair of simultaneous

FIGURE 6-12 - Graphs of two equations, showing solutions as intersec-
tion points.
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equations. We can estimate the coordinates of the points by examining the
graph. It appears that they’re close to, or maybe exactly,

(xpyl) = (_3/4)
and

(x,,,) = (0,1)

TIP If you've taken an algebra course that taught you how to solve pairs of
simultaneous equations, you can use that knowledge here and calculate the
solutions to the above equations exactly. If your algebra course didn't get that
far, you can nevertheless check out the above stated solutions and verify that
they’re exact! Just “plug in” the solutions to both equations and grind out the
arithmetic.

Another Line and Curve

Consider another pair of two-by-two equations (two simultaneous equations in
two variables) that we can solve approximately by graphing

y=-2x>+4x-5
and
y=-2x-15

Figure 6-13 shows the graphs. Again, the graph of the first equation constitutes
a parabola (solid curve), and the graph of the second equation shows up as a
straight line (dashed). The line crosses the parabola at two points, indicating
that two real-number solutions exist. The coordinates of the points, correspond-
ing to the solutions, appear to be approximately, or perhaps exactly,

(xpyl) = (31_1 1)
and
(x2)y2) = (01_5)
TIP Again, if you want, go ahead and solve these equations using algebra, and

find the values exactly. Alternatively, you can input the above stated solutions
and use simple arithmetic to verify that they're exact.
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(3,-11)

-16 -

FIGURE 6-13 - Another example of equation solutions shown as the
intersection points of their graphs.

Multiple Solutions

Graphing simultaneous equations can reveal general facts about them, but we
can’t rely on graphs to provide us with exact solutions. In real-life scientific
applications, graphs rarely show us exact solutions unless they're so labeled and
represent theoretical ideals.

A Cartesian-coordinate graph with real-number axes can reveal that a pair
of equations has two or more real-number solutions, or only one real-number
solution, or no real-number solutions at all. The real-number solutions to pairs
of equations always show up as intersection points on their graphs. Therefore,
if n intersection points exist between the curves representing two equations,
then the pair of equations has n real-number solutions.

If a pair of equations is complicated, or if the graphs portray the results of
experiments, we'll occasionally run into situations where we can’t use algebra
to solve them. Then graphs, with the aid of computer programs to closely
approximate the points of intersection between graphs, offer the only practical
means of solving simultaneous equations.
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Still Struggling

Sometimes you'll want to see if a set of more than two equations in x and y has
any solutions. One or more equation pairs within a large set of equations may
have solutions; they show up as points where two graphs intersect. However, it's
unusual for a set of three or more equations in x and y to have any solutions
when considered all together (i.e., simultaneously). For that to happen, at least

one point in the Cartesian plane must belong to all of the graphs.

PROBLEM 6-5
Using the Cartesian plane to plot their graphs, we can say certain things
about the solutions to the simultaneous equations

y=x+3
and
(x-12+(y+2)?=9

What can we say, specifically?

SOLUTION
Figure 6-14 shows the graphs of these equations. The first equation graphs
as a straight line (dashed), ramping up toward the right with slope equal
to 1 and intersecting the y axis at (0,3). The second equation graphs as a
circle (solid curve) whose radius equals 3 units, and that’s centered at the
point (1,-2). We can see that this line and circle do not intersect anywhere
in the Cartesian plane, so we know that there exist no real-number solu-
tions to this pair of simultaneous equations.

PROBLEM 6-6
Using the Cartesian plane to plot their graphs, we can say certain things
about the solutions to the simultaneous equations

y=1
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Each division /7
equals 1 unit /

FIGURE 6-14 - lllustration for Problem 6-5.

and
(x=1)2+(y+2)2=9

What can we say, specifically?

SOLUTION
Figure 6-15 shows the graphs. The first equation graphs as a horizontal
straight line (dashed) intersecting the y axis at (0,1). The second equation
graphs as a circle (solid curve) whose radius equals 3 units, centered at the
point (1,-2). It appears from the graph that the equations have a single com-
mon solution denoted by the point (1,1), indicating thatx=1and y=1.

Let’s use algebra to solve the equations and find out if the graph tells us
the true story. Substituting 1 for y in the equation of a circle (because one
of the equations tells us that y = 1), we get a single equation in a single
variable:

(x-12+(1+2)*=9
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Each division
equals 1 unit B (1,1

T (1.-2)

FIGURE 6-15 - lllustration for Problem 6-6.

This equation simplifies to

(x-1)*+32=9
and further to

(x-12+9=9
Subtracting 9 from each side, we get

x-1)2=0
When we take the square root of both sides, we obtain
x-1=0
Adding 1 to each side gives us the solution
x=1

It checks out! Now we know that there exists only one solution to this pair
of simultaneous equations: x=1 and y =1, denoted by the point (1,1).



QuIz

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
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are in the back of the book.

1.

How far from the origin does point P lie in Fig. 6-16?
A. 10 units

B. The square root of 10 units

C. 7 units

D. The square root of 29 units

How far from the origin does point Q lie in Fig. 6-16?
A. 5units

B. The square root of 10 units

C. The square root of 50 units

D. 7 units
y
A
+6
+4
N
L — +2
P R R I R >
<111 T 11 I N >
-6 —4 -2 | 2 4 i
+ 2 i
"4 Q\i
B N ®
+ -6
v

FIGURE 6-16 - lllustration for Quiz Questions 1 through 5.
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. What's the distance between points P and Q in Fig. 6-16?

A. The square root of 17 units
B. The square root of 79 units
C. The square root of 149 units
D. 13 units

. Suppose that we draw a straight line passing through both points Pand Q in

Fig. 6-16. What's the slope of that line?
A. =2/5

B. —7/10

C. 5/2

D. 10/7

. Which of the following expressions constitutes a point-slope equation for a

straight line passing through points Pand Q in Fig. 6-16?
A. y—2=(-7/10)(x+5)

B. y+5=(5/2)(x-2)

C. y+2=(-2/5)(x+5)

D. y—5=(10/7)(x+2)

. Consider a parabola represented by the following equation in Cartesian

coordinates:
y=-2x*+8x-3

What are the coordinates of the parabola’s vertex point?
A (7,1)

B. (2,5

C. (8-3)
D. (-3/2,4)

. Consider a circle represented by the following equation in Cartesian coordinates:

(x+2)2+(y—7)>=196

What are the coordinates of the circle’s center?

. What's the radius of the circle described in Question 7?

A. 196 units
B. 56 units
C. 28 units
D. 14 units



o.

10.
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—+ -6
\4

FIGURE 6-17 - lllustration for Quiz Questions 9 and 10.

Figure 6-17 shows graphs of a linear equation (line A), a circular equation (curve B),
and a quadratic equation (curve C). Based on the appearance of the graphs, if we
undertake to solve the equations for line A and curve B simultaneously, we
should expect to get

A. no real-number solutions.

B. one real-number solution.

C. two real-number solutions.

D. infinitely many real-number solutions.

Based on the appearance of the graphs in Fig. 6-17, if we undertake to solve the
equations for curves B and C simultaneously, we should expect to get

A. no real-number solutions.

B. one real-number solution.

C. two real-number solutions.

D. infinitely many real-number solutions.
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Test: Part 1

Do not refer to the text when taking this test. You may draw diagrams or use a
calculator if necessary. A good score is at least 38 correct. Answers are in the
back of the book. It’s best to have a friend check your score the first time, so
you won't memorize the answers if you want to take the test again.
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1. When we encounter a plane polygon in which none of the vertices“bend inward”
(i.e., where every interior angle measures less than 180°), we call the polygon

acute.

amorphous.

disjoint.

regular.

convex.

mONwm>»

2. Imagine two triangles, both of which have equal base lengths and equal heights.
Based on this information, we can have complete confidence that the two triangles

exhibit direct similarity.

have equal interior areas.

have equal perimeters.

exhibit inverse congruence.

None of the above

mONwm>»

3. When we encounter a plane polygon whose sides all measure the same length
and interior angles all have the same measure, we call the figure

obtuse.

polymorphous.

regular.

disjoint.

amorphous.

mONwm>»

4. In Fig.Test -1, line M constitutes

A. a parallel bisector of line segment PR.
B. a perpendicular bisector of line segment PR.

® T
a
<
N
-
Q
\l

®

PQ=QR

FIGURE TEST I-1 - lllustration for Part | Test Questions 4
and 5.
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C. an acute bisector of line segment PR.
D. an obtuse bisector of line segment PR.
E. aradial bisector of line segment PR.

. According to the appearance of Fig. Test I-1, we can surmise that line segment PR is

closed.
half-open.
open.
infinite.
congruent.

moOw>

. Suppose that we circumscribe a circle with a regular polygon having n sides
(where n represents a positive integer larger than 3), and then we increase n
without limit, all the while making sure that the polygon keeps on “snugly” cir-
cumscribing the circle. As we carry out this action, the measures of the polygon’s
individual interior angles approach

/3 rad.

/2 rad.

2m/3 rad.

7 rad.

2m rad.

mON®m>

. Afull circular revolution yields an angular measure of
/4 rad.

/2 rad.

T rad.

2m rad.

4m rad.

mONw>

. Suppose that we inscribe a circle with a regular polygon having n sides (where n
represents a positive integer larger than 3), and then we increase n without limit,
all the while making sure that the polygon keeps on“snugly”inscribing the circle.
As we carry out this action, the measures of the polygon’s individual interior
angles approach

/3 rad.

/2 rad.

2m/3 rad.

7 rad.

2m rad.

mON®m>

. When you use a drafting compass and straight edge to perform a geometric
construction, you must never

use either instrument more than once.

use your pencil all by itself to define a point.

use calibrated scales on either instrument.

draw circles of arbitrary radius.

draw line segments of arbitrary length.

mONw>

151



152 GEOMETRY DeMYSTiFieD

10.

11.

12.

Two angles in the same plane complement each other if and only if the sum of
their measures equals

180e.

a full circle.

/2 rad.

half of a full circle.

T rad.

mONwm>»

The triangles illustrated in Fig. Test I-2 are both

acute.

isosceles.
equilateral.

All of the above
None of the above

mONwm>»

We can have absolute confidence that the triangles shown in Fig. Test I-2 exhibit
one, and only one, of the following properties. Which one?

Direct congruence

Inverse similarity

Inverse congruence

The sum of all the angular measures equals 7/2 rad.

They both have the same perimeter.

mONwm>»

u=sv=w
w
u v
X=y=z
[
z
y
X
¢

FIGURETEST I-2 - Illustration
for Part | Test Questions 11
and 12.



13.

14.

15.

16.

17.

TEST: PART |

Given any three distinct points, they cannot form a triangle if they all lie

on the same line.

in a single plane.

on a single rectangle.

on a single circle.

in a single coordinate system.

mON®m>

Consider the following equation that represents a straight line in Cartesian
coordinates:

y=2x-7

What's the slope of this line?
A =2/7
B. -7/2
C -7
D. -14
E. 2

In order to “qualify” as a quadrilateral, a geometric plane figure must have all of
the following characteristics except one. Which one?

The figure must have four distinct sides.

Each interior angle must measure less than 180°.

The figure must have four distinct vertex points.

All the sides must have positive, finite length.

All the sides must be straight line segments.

mONw>

Imagine a triangle with interior angles measuring ©t/4 rad, ©t/4 rad, and ©/2 rad.
From this information, we can have complete confidence that the figure
constitutes

a concave triangle.

a disjoint triangle.

an isosceles triangle.

an equilateral triangle.

an obtuse triangle.

mONw>

Consider a circle represented by the following equation in Cartesian coordinates:
(x+6)2+(y+3)2=124

What are the coordinates of the center?
A. (6,3)

B. (-6,3)

C. (6-3)

D. (-6,-3)

E. We need more information to answer this question.
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18.

19.

20.

FIGURE TEST I-3 - lllustration for Part | Test
Questions 19 through 21.

What's the radius of the circle described in Question 17?
124 units

The square root of 124 units

62 units

31 units

We need more information to answer this question.

mONw>

Assuming that the entire object in Fig. Test I-3 lies in a single plane, we can
surmise from its general appearance that it portrays a

rhombus.

trapezoid.

pentagon.

parallelogram.

quadrilateral.

mONw>

Assuming that the entire object in Fig. Test I-3 lies in a single plane, we can have
complete confidence that

W+ Xx+y+z=m/2rad.

W+Xx+y+z=mrad.

W+Xx+y+z=2nrad.

W+ Xx+y+z=3nrad.

W+Xx+y+z=4nrad.

mONw>



21.

22.

23.

24,

25.

26.
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Assuming that the entire object in Fig. Test I-3 lies in a single plane, we can have
complete confidence that each and every individual angle w, x, y, or z measures
less than

/4 rad.

/3 rad.

/2 rad.

T rad.

21 rad.

mONw>

We call the independent-variable coordinate (usually x) of a point on the Carte-
sian plane the

magnitude.

abscissa.

relation.

ordinate.

function.

mON®m>

We call the dependent-variable coordinate (usually y) of a point on the Cartesian
plane the

magnitude.

abscissa.

relation.

ordinate.

function.

mONw>

We can use an uncalibrated straight edge and a pencil alone to

construct a line segment passing through a single defined point.
construct a line segment connecting two defined points.
construct a triangle connecting three defined points.

construct a quadrilateral connecting four defined points.

All of the above

mONw>

A half-open line segment

A. extends infinitely far in one direction.

B. contains neither of its end points.

C. extends infinitely far in both directions.

D. contains both of its end points.

E. contains one of its end points but not the other.

In order for a plane quadrilateral to constitute a trapezoid, one pair of opposite
sides must be parallel and no sides may meet except at their end points. What
other requirement, if any, must a quadrilateral fulfill in order to “qualify” as a
trapezoid?

Nonel

All four angles must have the same measure.

All four sides must have the same length.

Both diagonals must have the same length.

The diagonals must intersect at a right angle.

mONw>
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27.

28.

R

FIGURE TEST I-4 - Illustration for Part |
Test Question 27.

Figure Test I-4 illustrates a geometric figure that lies entirely in a single plane,

and all four of whose sides measure the same length. Based on this knowledge,

we can be absolutely certain that

A. all four of the triangles formed by the outer sides and the half-diagonals are
directly congruent.

B. all four of the triangles formed by the outer sides and the half-diagonals are
directly similar.

C. the two diagonals intersect at a right angle.

D. the sum of the lengths of the diagonals equals the perimeter of the whole
figure.

E. All of the above

Consider two distinct lines L and M that lie in the same plane. Suppose that both
L and M intersect a third line N, and both L and M run perpendicular to N. In this
situation, we can have total confidence that L and M constitute

skew lines.

perpendicular lines.

complementary lines.

parallel lines.

congruent lines.

mONw>



29,

30.

31.

32.

33.
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Imagine two triangles, both of which have one side measuring 10 units in length.
In both triangles, the interior angle at either end of the 10-unit side measures
40°. Based on this information, we know that these triangles

mONw>

exhibit direct similarity.
have equal interior areas.
have equal perimeters.
All of the above

None of the above

Two triangles are directly congruent if and only if they’re directly similar and

A.

B.

corresponding angles have equal measures, going around both triangles
counterclockwise.

corresponding angles have equal measures, going around one triangle clock-
wise and the other triangle counterclockwise.

. corresponding sides have the same lengths, going around both triangles

counterclockwise.

corresponding sides have the same lengths, going around one triangle clock-
wise and the other triangle counterclockwise.

Any of the above

Imagine a triangle with interior angles measuring 10°, 20°, and 150°. From this
information, we can have complete confidence that the figure constitutes

mONw>

aright triangle.

a non-Euclidean triangle.
an isosceles triangle.

an equilateral triangle.
an obtuse triangle.

Imagine two lines L and M that intersect at a point P. In this situation, any pair of
adjacent angles between L and M is

mONw>

congruent.
acute.

obtuse.
supplementary.
transverse.

Imagine a triangle with interior angles measuring ©t/6 rad, /3 rad, and 7/2 rad.
From this information, we can have complete confidence that the figure
constitutes

mONw>

aright triangle.

a non-Euclidean triangle.
an isosceles triangle.

an equilateral triangle.
an obtuse triangle.

157



158

GEOMETRY DeMYSTiFieD

Seel -

’

FIGURE TEST I-5 - Illustration for Part |
Test Questions 34 and 35.

34. What's the interior area of the shaded region in Fig. Test I-5? Assume that the
entire curve (including the dashed portion) is a perfect circle, and that the center
of the arc lies at the center of the circle.

35.

36.

mONwm>»

47 square units
6T square units
18 square units
24 square units
We need more information to calculate it.

What's the perimeter of the shaded region in Fig. Test I-5? Assume that the entire
curve (including the dashed portion) is a perfect circle, and that the center of the
arc lies at the center of the circle.

mONwm>»

37 units
41 units
11 units
20 units
We need more information to calculate it.

Which of the following statements accurately expresses the parallel principle as
it applies to Euclidean geometry in a single plane?

A.

B.

Suppose that L represents a line and P represents a point that doesn't lie on L.
There exist no lines through P that run parallel to L.

Suppose that L represents a line and P represents a point that doesn't lie on L.
There exist two lines M and N through P, such that M and N both run parallel to L.
Suppose that L represents a line and P represents a point that doesn't lie on L.
There exist infinitely many lines through P that run parallel to L.

Suppose that L represents a line and P represents a point that doesn't lie on L.
The number of lines through P that run parallel to L depends on the distance
between Pand L.

Suppose that L represents a line and P represents a point that doesn't lie on L.
There exists one and only one line M through P, such that M runs parallel to L.



37.

38.

39.

40.

41.

TEST: PART |

In order for a plane quadrilateral to constitute a rhombus, any two opposite
sides must run parallel to each other. What other requirement, if any, must a
quadrilateral fulfill in order to “qualify” as a rhombus?

None!

All four angles must have the same measure.

All four sides must have the same length.

Both diagonals must have the same length.

The figure must have the same interior area as a square of the same perimeter.

mONw>

Imagine two triangles, both of which have interior angles measuring 50°,
60°, and 70° in that order as we proceed around them counterclockwise.
Based on this information, we can have complete confidence that the two
triangles

exhibit direct similarity.

have equal interior areas.

have equal perimeters.

All of the above

None of the above

mONw>

Consider the following equation that represents a straight line in Cartesian
coordinates:

—4x+y=5

What's the slope of this line? (Here’s a hint: Use a little algebra to get the equa-
tion into the slope-intercept form.)

4

-5

-5/4

4/5

We need more information to calculate it.

mON®m>

Imagine a perfectly square, flat field surrounded by four straight lengths of
fence. You build a straight fence diagonally across the field, dividing the field
into two triangles, both of which are

right triangles.

isosceles triangles.

directly congruent.

directly similar.

All of the above

mONw>

How far from the origin does point P lie in Fig. Test |-6?

A. The square roof of 12 units

B. The square root of 14 units

C. 7/2 units

D. 5 units

E. We need more information to calculate this distance.
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FIGURE TEST I-6 - lllustration for Part | Test Questions 41 through 43.

42. How far from the origin does point Q lie in Fig. Test I-6?
The square root of 61 units.

9 units

8 units

11/2 units

We need more information to calculate this distance.

mONwm>»

43. What's the distance between points P and Q in Fig. Test I-6?
14 units

The square root of 162 units

5 plus the square root of 61 units

13 units

We need more information to calculate this distance.

mONw>

44. Consider a plane polygon having n sides. Let 01, 92, 6’3, ey 9" represent the interior
angles. If we express the angular measures in radians, then

+6,+6,+..+0=mn(n-2)



45.

46.

47.

48.

TEST: PART |

Based on this formula and on our knowledge of the relation between degrees
and radians, what’s the sum of the measures of the interior angles of a 20-sided
plane polygon in degrees?

1620°

1800°

32400

36000

6480°

mONw>

Suppose you draw a line L and a point P near that line. Then you drop a per-
pendicular from point P to line L, and let Q represent the point where the
perpendicular intersects L. Then you draw a point R on line L, different from
point Q. You can have complete confidence that the points P, Q, and R lie at
the vertices of

an equilateral triangle.

a similar triangle.

an isosceles triangle.

aright triangle.

an obtuse triangle.

mONw>

In order for a plane quadrilateral to constitute a parallelogram, any two opposite
sides must run parallel to each other and no two sides may meet except at their
end points. What other requirement, if any, must a quadrilateral fulfill in order
to “qualify” as a parallelogram?

None!

All four angles must have the same measure.

All four sides must have the same length.

Both diagonals must have the same length.

The figure must have the same interior area as a rectangle of the same perimeter.

mONw>

If we consider the rotational sense important when we express an angle 6, then
clockwise angular motion means that

6=0rad.

6<0rad.

6> 0rad.

-trad < O< mrad.

—2nrad < < 2mrad.

mONwm>

A closed-ended ray

extends infinitely far in one direction.
contains neither of its end points.
extends infinitely far in both directions.
contains both of its end points.

has finite length.

mON®m>
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49.

50.

Imagine two triangles, both of which have equal perimeters. Based on this infor-
mation, we know for certain that the two triangles

exhibit direct similarity.

have equal interior areas.

have corresponding interior angles of equal measure.

All of the above

None of the above

mONwm>»

Imagine that we circumscribe a circle C with a regular polygon P, havmg n sides
(where n represents a positive integer larger than 3), and then we increase n
without limit. Also suppose that we inscribe the same circle with another regular
polygon P, having the same number of sides as P_at all times. As we make n grow
larger |ndef|n|tely, all the while ensuring that P, ‘and P, both fit “snugly” against
C, the interior areas of P_and P, both approach

1?/10 times the interior area of C.
Tt/4 times the interior area of C.
1t/3 times the interior area of C.
1t/2 times the interior area of C.
the interior area of C.

.m.U.ﬁFBP
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Three Dimensions
and Up
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chapter ;

An Expanded
Set of Rules

In solid geometry, we have an extra dimension compared with plane geometry.

We have greater freedom, but with that freedom comes complexity, reflecting
the expanded range of maneuvers that we must learn and master.

CHAPTER OBJECTIVES

In this chapter, you will
« Define elementary objects in three dimensions.

o Learn how elementary objects interact in three dimensions.

Discover how angles and distances relate in three dimensions.

Learn the fundamental principles of solid geometry.

Explore the behavior of parallel and intersecting planes and lines.
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Points, Lines, Planes, and Space

We can imagine a point in space as an infinitely tiny ball having height, width,
and depth all equal to zero, but nevertheless possessing a specific location. A
point is zero-dimensional (0OD). A point in space therefore constitutes the same
sort of object as does a point in a plane or a point on a line.

We can imagine a line in space as an infinitely thin, perfectly straight, infi-
nitely long wire—the same sort of object as a line in two dimensions. A straight
line is one-dimensional (1D). Although lines in space are just like lines in planes,
a line in space can run in more different directions than a line confined to a
single plane.

We can imagine a plane as an infinitely thin, perfectly flat surface having an
infinite expanse, like an unlimited, flat sheet of paper thinner than anything
that could ever exist in the real world. A plane is two-dimensional (2D); in effect
it'’s a “flat 2D universe” in which all the rules of Euclidean plane geometry
apply.

Space comprises the set of points for all possible physical locations in the
universe as we perceive it. Space is three-dimensional (3D). We ignore time,
often called a “fourth dimension,” when we work in Euclidean 3D space. How-
ever, we can define an alternative form of 3D space (or three-space) having two
spatial dimensions and one time dimension. We might imagine this type of
three-space as a Euclidean plane in which we account for time past, present,
and future.

If we allow for the passage of time, or perhaps even free time travel, along
with Euclidean three-space, we get four-dimensional (4D) space, also known as
four-space or hyperspace. We'll take a look at some properties of hyperspace later
in this course. As you can imagine, hyperspace gives us “hyperfreedom”—and
“hypercomplexity” as well.

Naming Points, Lines, and Planes

Points, lines, and planes in solid geometry usually bear names consisting of
uppercase, italicized letters of the alphabet, just as they do in plane geometry.
We'll commonly name a point P, Q, or R, and a line L, M, or N. When we want
to name planes in 3D space, the letters X, Y, and Z make good choices.

If we encounter a situation involving a lot of points, lines, and/or planes, we
can use a single letter for each type of object and attach numeric subscripts.
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P R =

FIGURE 7-1 - Three points P, Q, and R, not all on the same line, define a
specific plane X. The plane extends infinitely in 2D.

Therefore, we might have points called P, P,, P,, P,, P, and so forth, lines called
L,L, L, L, L andso forth, and planes called X, X,, X,, X,, X, and so forth.

Three-Point Principle

Suppose that P, Q , and R represent three different geometric points, no two of
which lie on the same line. These points define one and only one (i.e., a unique
or specific) plane X. The following two statements always hold true, as shown
in Fig. 7-1:

e P Q, and R lie in a single plane X.

e X constitutes the only plane in which all three points lie.

We always need at least three points to uniquely define a plane in Euclidean
three-space. It’s possible, however, that more than three points—even infinitely
many—can all lie in the same plane.

' Y

= Still Struggling

In order to diagram the fact that a surface extends infinitely in 2D, we must use
our imaginations. Our task is more difficult than showing that a line extends
infinitely in 1D, because we can't conveniently draw arrows on the edges of a
plane region the way we can draw them on the ends of a line segment.
Geometers and draftspeople sometimes draw planes as rectangles in perspec-
tive, so that they appear as parallelograms or trapezoids when rendered on a flat
page. However, when we draw a plane in a diagram, we should always make
sure that our readers know we don't intend to show a quadrilateral of finite
extent rather than a plane of infinite extent!
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FIGURE 7-2 - Two lines L and M, intersecting at point P, define a specific
plane X. The plane extends infinitely in 2D.

Intersecting Line Principle

Suppose that two distinct lines L and M intersect in a point P. In that case, the
two lines together define a unique plane X. The following statements always
hold true, as shown in Fig. 7-2:

e L and M lie in a single plane X.

» X constitutes the only plane in which both lines lie.

We always need at least two intersecting lines to uniquely define a plane in
Euclidean three-space. It's possible, however, that more than two intersecting
lines—even infinitely many—can all lie in the same plane.

Line and Point Principle

Let L represent a line, and let P represent a point that doesn’t lie on L. In this
situation, line L and point P define a unique plane X. The following two state-
ments always hold true:

e L and P lie in a single plane X.
» X constitutes the only plane in which both L and P lie.

Plane Regions

The 2D counterpart of the 1D line segment is a “piece of a plane” called a
simple plane region. A simple plane region consists of all the points inside a
polygon or enclosed curve. The points that we consider to fall inside a simple
plane region might include all, some, or none of the points that lie on the
enclosing polygon or curve itself.

o If the region includes all of the points on the enclosing figure, we call the
region closed.
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o If the region includes some but not all of the points on the enclosing
figure, we call the region partially closed or partially open.

e If the region includes none of the points on the enclosing figure, we call
the region open.

Figure 7-3 shows examples of the above-described types of regions. At A,
we see closed regions; at B, we see partially open regions; at C we see open
regions.

e When we want to include part or all of the boundary, we draw the included
portion as a solid line.

e When we want to exclude part or all of the boundary, we draw the excluded
part as a dashed line.

e When we want to include a particular boundary point, we draw it as a solid

black dot.

e When we want to exclude a particular boundary point, we draw it as a small
open circle.

O
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FIGURE 7-3 . At A, closed plane regions. At B, partially open plane regions.
At C, open plane regions. Black dots and solid lines indicate included bound-
ary points; small open circles and dashed lines denote nonincluded bound-
ary points.
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TIP The corresponding regions in Figs. 7-3A, B, and C have identical shapes. They
also have identical perimeters and identical interior areas. The inclusion of part
(or all) of the outer boundary adds no perimeter or interior area to the region. The
lack of part (or all) of the outer boundary takes away nothing from the perimeter
or interior area of the region.

Still Struggling

The examples in Fig. 7-3 show specialized scenarios in which the plane regions
are contiguous, or “all of a piece.” Some plane regions consist of two or more
noncontiguous subregions. If you work in mathematics long enough, you'll
eventually encounter a plane region with characteristics so complicated that
you'll have trouble figuring out how to define it, let alone manipulate it. You
need not concern yourself with such things here, other than to acknowledge
their existence. If you plan to become a serious student of geometry, and espe-
cially if you want to become a mathematics teacher or professor, you should
know that somewhere in the vast expanse of Euclidean space, these beasts
await you. When you find them, you'll have great fun!

Half Planes

Mathematicians occasionally talk about the portion of a geometric plane that
lies “on one side” of a certain line. Look at Fig. 7-4 and imagine the union (the
geometric combination) of all possible rays that start at L, then pass through
line M (which runs parallel to L), and extend onward past M forever in one
direction. The region thus defined constitutes a half plane.

X

— - |

FIGURE 7-4 . A half plane X, defined by two parallel lines, L and M. The half
plane extends infinitely in 2D on the “M” side of L.
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The half plane defined by L and M might include the end line L, in which
case we call it closed-ended. Then we draw line L as a solid line, as it appears in
Fig. 7-4. But the end line might not be part of the half plane, in which case the
half plane is open-ended. In that case we draw L as a dashed line.

Parts of the end line might lie in the half plane while other parts don’t.
Infinitely many situations of this kind exist! We can illustrate relatively simple
cases by making some parts of L solid and other parts dashed, all the while
remembering to use solid black dots to represent included points and small
open circles to represent nonincluded points.

Intersecting Planes

Suppose that two different planes X and Y have some points in common. In
this type of situation, we’ll always find that the two planes intersect in a
unique straight line L. The following statements always hold true, as shown
in Fig. 7-5:

e Planes X and Y share a single line L.

L constitutes the only line that lies in both planes X and Y.

Parallel Lines in 3D Space

By definition, two different lines L and M in three-space are parallel lines if and
only if both of the following statements hold true:

e Lines L and M do not intersect at any point.

e Lines L and M lie in the same plane X.

X

FIGURE 7-5 - The intersection of two planes X and Y deter-
mines a unique line L. The planes extend infinitely in 2D.
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If two lines run parallel to each other and if they both lie in a given plane X,
then X constitutes the only plane in which the two lines lie. Therefore, we can
say that two parallel lines define a unique plane in Euclidean three-space.

Skew Lines

By definition, two lines L and M in three-space constitute skew lines (or they
run askew) and only if both of the following statements hold true:

e Lines L and M do not intersect at any point.

e Lines L and M do not lie in the same plane (so they don’t run parallel to
each other).

TIP Imagine an infinitely long, straight two-lane highway and an infinitely long,
straight electrical cable propped up on utility poles. Furtherimagine that the elec-
trical cable and the highway centerline are both infinitely thin, and that the elec-
trical cable doesn’t sag between the poles. Suppose that the electrical cable
passes over the highway somewhere, but does not run parallel to the highway. In
that case, the highway centerline and the electrical cable define skew lines.

PROBLEM 7 -1
Find an example of a theoretical plane region with a finite, nonzero area
but an infinite perimeter.

SOLUTION

Examine Fig. 7-6. Suppose that the three lines PQ, RS, and TU (none of
which form part of the plane region X, but are shown only for reference)
run mutually parallel, and that the distances d,, d,, d,, ... are such that d, is
half as long as d,, d, is half as long as d,, d, is half as long as d,, and, in
general, for any positive integer n, d__, is half as long as d . Also suppose
that the length of line segment PV exceeds that of line segment PT. In this
rather bizarre scenario, the plane region X has an infinite number of sides,

each of which is longer than line segment PT. Therefore, X has an infinite

perimeter. But the interior area of X must be finite and nonzero, because
the area of X is less than that of quadrilateral PQSR but greater than that of
quadrilateral TUSR.
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FIGURE 7-6 - lllustration for Problem 7-1.

PROBLEM 7 -2
How many planes can mutually intersect in a single straight line?

SOLUTION

In theory, an infinite number of planes can all intersect along a single line.
Think of the line as a “Euclidean hinge,” and then imagine a plane that can
swing freely around the hinge. Each position of the “swinging plane” rep-
resents a unique plane in space.

Angles and Distances

Let’s define the angles between intersecting planes, and then explore how these
angles behave. Let’s do the same with the angles between an intersecting line and
plane.

Angles between Intersecting Planes

In Fig. 7-7, two planes X and Y intersect along a specific line L. Consider line
M in plane X and line N in plane Y, such that M runs perpendicular to L (a fact
that we can write in “shorthand” as M L L) and N also runs perpendicular to L
(N L L). Lines M and N don’t necessarily run perpendicular to each other,
although they might. In a case of this sort, we call the angle between the
intersecting planes X and Y a dihedral angle. Its measure equals the measure of
the angle between lines M and N. The jargon “dihedral” means “two-faced.”
We can represent a dihedral angle between two intersecting planes X and Y
in two ways when we look at Fig. 7-7. We might speak of the smaller (acute or
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FIGURE 7-7 - Two intersecting planes, each containing a line. See text for
discussion.

right) angle between lines M and N, whose measure we denote by u. Alterna-
tively, we might consider the larger (obtuse or right) angle between lines M and
N, whose measure we denote by v.

TIP Ifyou see only one dihedral angle mentioned when you encounter two inter-
secting planes, the author usually wants you to think of the smaller of the two
possible angles. Therefore, in most situations, the measure of a dihedral angle is
always positive, but it never exceeds a right angle (0°< u <90°or 0 < u <7/2).

Adjacent Dihedral Angles

Suppose that two planes intersect, and we call their angles of intersection u and
v as defined earlier. If we specify the measures of u and v in degrees, then

u+v=180°
and if we specify the measures of u and v in radians, then

U+v=T"

Perpendicular Planes

Suppose that two planes X and Y intersect along a single line L. Consider line
M in plane X and line N in plane Y, such that M L L and N L L, as shown in
Fig. 7-7. We say that X and Y constitute perpendicular planes if and only if the
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FIGURE 7-8 - Line N through plane X at point S runs normal to X and only
if N runs perpendicular to some line L and N also runs perpendicular to an-
other line M, where L and M both lie in plane X and intersect at point S.

angles between lines M and N are right angles, that is, if and only if u = v =
90° (n/2). Actually, it suffices to say that either u = 90° (n/2) or v = 90° (n/2).

Normal Line to a Plane

Look at Fig. 7-8, and imagine that we can uniquely define a plane X on the basis of
two lines L and M that intersect each other at a single point S. In this type of situ-
ation, the line N that passes through plane X at point S runs normal (also called
perpendicular or orthogonal) to plane X if and only if N L L and N L M. Line N is
the only line normal to plane X at point S. Furthermore, line N runs perpendicular
to any line, line segment, or ray that lies in plane X and passes through point S.

Angle between an Intersecting Line and Plane

Let X represent a plane as shown in Fig. 7-9. Suppose that a line O, which does
not necessarily run normal to plane X, intersects X at a point S. In order to
define an angle at which line O intersects plane X, let’s construct three “scaf-
folding” objects, as follows:

e Let N represent a line normal to plane X, passing through point S
o Let Yrepresent the plane determined by the intersecting lines N and O
e Let L represent the line formed by the intersection of planes X and Y
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FIGURE 7-9 - Angles u and v between a plane X and a line O that passes
through X at point S.

We can describe the angle between line O and plane X in two ways. The first
angle, whose measure we denote as u, is the smaller (acute or right) angle
between lines L and O as determined in plane Y. The second angle, whose
measure we denote as v, is the larger (obtuse or right) angle between lines L
and O as determined in plane Y.

TIP If only one angle is mentioned, then we should consider the “angle between a
line and a plane that intersect” as the smaller angle u. Therefore, the angle of inter-
section is positive but never larger than a right angle (0°< u <90°or 0 < u <7/2).

Adjacent Line/Plane Angles

Suppose that a line and a plane intersect, and we call their angles of intersection
u and v as defined earlier and as shown in Fig. 7-9. If we specify u and v in
degrees, then

u+v=180°
and if we specify u and v in radians, then

UuU+v=m
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FIGURE 7-10 - Line N through point R is normal to plane X at point S. The
distance between R and X equals the length of line segment RS.

Dropping a Normal to a Plane

Let R represent a point near, but not in, some known plane X. In that case, there
exists exactly one line N through point R, intersecting plane X at some point
S, such that line N runs normal to plane X as shown in Fig. 7-10. Any line
within plane X that passes through point S, such as L or M shown in the figure,
must run perpendicular to line N.

Distance between a Point and Plane

Suppose that R represents a point near, but not in, a plane X. Let N represent
the unique line through R that runs normal to plane X. Suppose that line N
intersects plane X at point S. We define the distance between point R and plane
X as the length of line segment RS as shown in Fig. 7-10.

TIP Whenever we talk or write about “the distance between a point and a plane,”
we mean to specify the shortest possible distance (as shown in Fig. 7-10) unless
we explicitly define it as something else.

Plane Perpendicular to Line

Imagine a line N in space. Imagine a specific point S on line N. There exists
exactly one plane X containing point S, such that line N runs normal to plane
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X

FIGURE 7-11 - Aline L parallel to a plane X. There exist
infinitely many lines M in plane X that run parallel to L; all
other lines N in plane X are skew lines relative to L.

X at point S (Fig. 7-10). As before, any line in plane X that passes through point
S, such as L or M shown in the figure, must run perpendicular to line N.

Line Parallel to Plane

We say that a line L runs parallel to a plane X in Euclidean three-space if and
only if L shares no points in common with X. In a situation like this, we can find
infinitely many lines M in plane X, such that L and M constitute parallel lines
as shown in Fig. 7-11. Any line N in plane X, other than line M, constitutes a
skew line relative to L.

Distance between Parallel Line and Plane

Suppose that a given line L runs parallel to a given plane X. Let R represent a
point on line L. We define the distance between line L and plane X as the distance
between point R and plane X.

TIP Whenever we talk or write about “the distance between a line and a plane par-
allel to that line,” we mean to specify the shortest possible distance unless we
explicitly define it as something else.

Addition and Subtraction of Angles between Intersecting Planes

Angles between intersecting planes add and subtract in the same fashion as
angles between intersecting lines (or line segments) do. We can prove this fact,
based on knowledge that we already have.

Suppose that three planes X, Y, and Z intersect in a single, common line L,
as shown in Fig. 7-12. Let S represent a point on line L. Let P, Q, and R represent
points on planes X, Y, and Z, respectively, such that each of the three line
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FIGURE 7-12 - Addition and subtraction of angles between planes.

segments SP, SQ, and SR runs perpendicular to line L. Let ZXY represent the
angle between planes X and Y, ZYZ represent the angle between planes Y and
Z, and £XZ represent the angle between planes X and Z. From the preceding
definition of the angle between two planes, we know the following three facts:

/XY = /PSQ
/YZ = Z/QSR
/X7 = /PSR

We know that line segments SP, SQ, and SR all lie in a single plane, because they
all intersect at point S and they all run perpendicular to line L. From the rules
for addition of angles in a plane, we also know that the following three state-
ments hold true for the measures of the angles between the line segments:

/PSQ + Z/QSR = /PSR
/PSR — Z/QSR = /PSQ
/PSR — /PSQ = ZQSR

Substituting the angles between the planes for the angles between the line seg-

ments, we see that the following three statements all hold true for the measures
of the angles between the planes:

LXY + LYZ = £XZ
LXZ - LY = /XY
LXZ - £LXY =/LYZ
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PROBLEM 7-3
Imagine that we string a communications cable above a freshwater lake,
such that the cable does not sag but runs along a perfectly horizontal line.
We've attached the cable to the tops of a set of utility poles. The engineer-
ing literature recommends that the cable be suspended 10 meters above
“effective ground.”The literature also tells us that, for a body of freshwater,
“effective ground” coincides with a horizontal plane that lies 2 meters
below the water surface (assuming a calm surface). How tall should the
poles be? Assume that we install them all so that they’re perfectly vertical,
and that they're all tall enough so that we can set them securely in the
lake bottom.

SOLUTION
Because the poles are perfectly vertical, they stand perpendicular to the
surface of the lake. Therefore, the pole tops should all be 10 meters above
“effective ground.” It follows that the poles should each extend (10 — 2)
meters, or 8 meters, above the water surface. The overall height of each
pole will depend on the depth of the lake at the point where we place it,
and on the depth into the bottom to which we must set it to ensure that it
remains standing upright.

You fly a kite over a perfectly flat, horizontal field. The design of the kite
causes it to fly at a “high angle,” meaning that the kite string runs nearly
straight up and down. Suppose that the kite line does not sag, and the kite
flies at an angle 10° away from the vertical. Imagine that the sun shines
down from exactly the zenith (straight overhead). What’s the angle
between the kite string and its shadow on the field?

Let’s say that you stand at a point called S on the surface of the field called
plane X, as shown in Fig. 7-13. The kite line and its shadow lie along lines
SR and ST. (Point T does not necessarily represent the shadow of the kite,
however.) The sun shines down so that its rays run along and parallel to line
SQ, which runs normal to plane X and passes through point S. Lines SQ, SR,
and ST all liein a common plane Y, which is oriented perpendicular to plane
X. You know that the measure of ZRSQ equals 10°, because you've been
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FIGURE 7-13 - lllustration for Problem 7-4.

given this information. You also know that the measure of ZT5Q equals
90°, because line QS runs normal to plane X, and line ST lies in plane X.
Because lines SQ, SR, and ST all lie in the same plane Y, you can conclude
that

ZLTSR+ ZRSQ=ZTSQ

and therefore that
ZTSR=/TSQ - ZRSQ

The measure of ZTSR, which represents the angle between the kite line
and its shadow, equals 90° - 10°, or 80°.

More Facts

Lines, planes, and angles behave according to specific principles in Euclidean
three-space. Let’s briefly examine a few of these rules.

Parallel Planes

Two distinct planes run parallel to each other in three-space if and only if they
do not intersect. Two distinct half planes run parallel to each other if and only
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if the planes in which they lie do not intersect. Two distinct plane regions
run parallel to each other if and only if the planes in which they lie do not
intersect.

Distance between Parallel Planes

Consider two parallel planes X and Y. Let R represent an arbitrary point on
plane X. The distance between planes X and Y equals the distance between
point R and plane Y, as previously defined.

TIP Whenever we talk or write about “the distance between two planes,” we mean
to specify the shortest possible distance unless we state otherwise.

Vertical Angles for Intersecting Planes

Consider two planes Y and Z that intersect along a line L. Also consider five
points P, Q, R, S, and T as shown in Fig. 7-14, such that all of the following
conditions hold true:

e Point T lies at the intersection of lines L, PS, and QR.
e Points Q and R lie in plane Y.

e Points P and S lie in plane Z.
e Lines PS and QR both run perpendicular to line L.

AN

Y

FIGURE 7-14 - Vertical angles between intersecting planes.
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In this situation, ZQTP and ZRTS are vertical angles. Also, ZPTR and ZSTQ
are vertical angles. Therefore, ZQTP has the same measure as Z/RTS, and ZPTR
has the same measure as ZSTQ.

Alternate Interior Angles for Intersecting Planes

Consider a plane X that passes through two parallel planes Y and Z, intersecting
Y and Z in lines L and M, respectively. Define points P, Q, R, S, T, U, V, and W
as shown in Figs. 7-15A and Fig. 7-15B, such that all of the following conditions
hold true:

e Point V lies at the intersection of lines L, PQ, and RS.

e Point W lies at the intersection of lines M, PQ, and TU.
e Points P and Q lie in plane X.

e Points R and S lie in plane Y.

e Points T and U lie in plane Z.

e Lines PQ and RS both run perpendicular to line L.

e Lines PQ and TU both run perpendicular to line M.

In this scenario, ZRVP and ZUWQ are alternate interior angles (Fig. 7-15A).
Also, ZQWT and ZPVS are alternate interior angles (Fig. 7-15B). Alternate

interior angles always have equal measures. Therefore, ZRVP has the same
measure as ZUWQ, and ZQWT has the same measure as ZPVS.

Alternate Exterior Angles for Intersecting Planes

Let X represent a plane that passes through two parallel planes Y and Z, inter-
secting Y and Z in lines L and M, respectively. Define points P, Q,R, S, T, U, V,
and W as shown in Fig. 7-16, such that all of the following conditions hold
true:

o Point V lies at the intersection of lines L, PQ, and RS.

o Point W lies at the intersection of lines M, PQ, and TU.
e Points P and Q lie in plane X.

e Points R and S lie in plane Y.

e Points T and U lie in plane Z.

e Lines PQ and RS both run perpendicular to line L.

e Lines PQ and TU both run perpendicular to line M.
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FIGURE 7-15 - A. Alternate interior angles between intersecting planes.
B. Another example of alternate interior angles between intersecting planes.
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<
A

FIGURE 7-16 - Alternate exterior angles between intersecting planes.

In this case, ZTWP and ZSVQ are alternate exterior angles. Also, ZPWU and
ZQVR are alternate exterior angles. Alternate exterior angles always have equal
measures. Therefore, ZTWP has the same measure as ZSVQ, and ZPWU has
the same measure as ZQVR.

Corresponding Angles for Intersecting Planes

Let X represent a plane that passes through two parallel planes Y and Z, inter-
secting Y and Z in lines L and M, respectively. Define points P, Q,R, S, T, U, V,
and W as shown in Fig. 7-17, such that all of the following conditions hold
true:

o Point V lies at the intersection of lines L, PQ, and RS.

o Point W lies at the intersection of lines M, PQ, and TU.
e Points P and Q lie in plane X.

e Points R and S lie in plane Y.

e Points T and U lie in plane Z.

e Lines PQ and RS both run perpendicular to line L.

e Lines PQ and TU both run perpendicular to line M.
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FIGURE 7-17 - Corresponding angles between intersecting planes.

In this case, the following equations describe pairs of corresponding angles,
where each pair has equal measures:

ZUWQ = £SVQ

ZTWP= ZRVP
ZPWU= 2PVS
ZQWT=2QVR

Parallel Principle for Planes

Consider a plane X along with some point R that does not lie on X. In Euclidean
three-space, there exists one and only one plane Y through R such that plane Y
runs parallel to plane X. This statement expresses the 3D counterpart of the
parallel principle for 2D Euclidean geometry. We can deny the 3D parallel
principle and nevertheless have a workable mathematical system, just as we can
deny the 2D parallel principle. When we deny the parallel principle in Euclidean
three-space, we obtain one or the other of the following situations:

o There can exist more than one, and perhaps infinitely many, planes Y
through point R such that plane Y runs parallel to plane X.

o There can exist no plane Y through point R such that plane Y runs parallel
to plane X.
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TIP Either of the foregoing hypotheses gives rise to a form of non-Euclidean geom-
etry in which three-space has “curvature” like the 2D surface of a funnel, cylinder,
or sphere, but with an added dimension. The German mathematicians Karl
Friedrich Gauss (71777-1855) and Bernhard Riemann (1826-1866) developed
detailed theories in non-Euclidean geometry. Later, Albert Einstein (1879-1955)
dared to envision a non-Euclidean three-space universe in a literal sense. We’'ll
explore non-Euclidean geometry in Chap. 11.

Parallel Principle for Lines and Planes

Once again, consider a plane X along with some point R that does not lie on X.
There exist an infinite number of lines through R that run parallel to plane X.
All of these lines lie in the plane Y through R such that plane Y runs parallel to
plane X.

Still Struggling

The denial of the parallel principle for planes, defined in the previous paragraph,
can result in the existence of no lines through R that run parallel to plane X. In
certain specialized instances, it can even result in the existence of exactly one
line through R that runs parallel to plane X. If you have trouble imagining sce-
narios such as these, don't worry. You must think in 4D—a mental trick that few
humans can perform, even when they’ve “armed” their minds with the power of
non-Euclidean mathematics.

[:] PROBLEM 7-5

Imagine that you stand inside a large warehouse. The floor is flat and
horizontal. The ceiling is also flat and horizontal, everywhere at a uni-
form height of 5.455 meters above the floor. You have a flashlight with a
narrow beam. You hold the flashlight so that its bulb rests 1.025 meters
above the floor. You shine the beam at an angle upward toward the ceil-
ing. The center of the beam strikes the ceiling 9.577 meters from the
point on the ceiling directly above the bulb. How long is the line seg-
ment representing the center of the light beam? Round your answer off
to two decimal places.
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FIGURE 7-18 - lllustration for Problem 7-5.

Figure 7-18 shows a diagram for this situation. Call the flashlight bulb
point A, the point at which the center of the light beam strikes the ceiling
point B, and the point directly over the flashlight bulb point C. These three
points define a triangle AABC. Now define the following three quantities
for the sides of AABC:

e Let arepresent the length of the side opposite point A.
o Let b represent the length of the side opposite point B.
e Let c represent the length of the side opposite point C.

In this situation, AABC constitutes a right triangle, because line segment AC
(whose length equals b) runs normal to the ceiling at point C, and therefore
runs perpendicular to line segment BC (which lies on the ceiling). The right
angle is ZACB. Based on this information, you know that the lengths of the
sides of AABC relate according to the Pythagorean equation

a*+b*=¢?
You want to know the length of side c. With the help of a little algebra, you
can manipulate the above equation to obtain
c=(a*+b?)'"?
You've been told that side a measures 9.577 meters in length. The length

of side b equals the height of the ceiling above the floor, minus the height
of the bulb above the floor, so you can calculate that

b=5.455-1.025
=4.430 meters
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You can now solve for ¢, getting

c=(9.577%*+4.430?%)"2
=(91.719+19.625)"?
=111.344"2

=10.55 meters

The distance is 10.55 meters along a straight line segment from the flash-
light bulb to the point where the light beam’s center strikes the ceiling.
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Quiz

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1.

Fill in the blank to make the following statement true: “In the situation of

Fig. 7-19, assuming that lines L and M both lie in plane X, line N constitutes a
to plane X at point S.”

bisector

minor axis

major axis

normal

ONw>

Imagine a triangle and its interior region in a Euclidean plane. Suppose that we
“remove” the three line segments representing the triangle itself (i.e., the outer
boundary of the region it encloses). How does this action affect the perimeter
and area of the enclosed region?

A. It does not affect either the perimeter or the area.

B. It reduces the perimeter to zero, but does not change the area.

C. It reduces both the perimeter and the area to zero.

D. It renders both the perimeter and the area meaningless.

Whenever we talk or write about “the distance between a point and a line,”“the
distance between a line and a plane parallel to that line,” or “the distance
between two planes,” we specify

A. the longest possible distance unless we state otherwise.

B. the shortest possible distance unless we state otherwise.

N
A
/2 rad
/2 rad
M
/
~— N o
S L
———
X
Y

FIGURE 7-19 - lllustration for Quiz Question 1.
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5.

6.

Chapter7 AN EXPANDED SET OF RULES

A

Z
FIGURE 7-20 - lllustration for Quiz Question 4.

C. any distance between the shortest possible and the longest possible.
D. nothing whatsoever, unless we provide additional information.

Figure 7-20 shows two planes, Y and Z, which intersect along a line L. Line PS lies
in plane Y and runs perpendicular to line L. Line QR lies in plane Z and runs per-
pendicular to line L. Point T lies at the intersection of lines L, PS, and QR. Based
on this information, we can have absolute confidence that ZPTR has the same
measure as

A. ZSTQ.

B. ZRTS.

C. «QTP.

D. All of the above

If two planes in Euclidean three-space share no points, then we can have com-
plete confidence that the planes are

A. orthogonal.

B. skew.

C. parallel.

D. normal.

What's the smallest possible number of points that can uniquely define a plane
in Euclidean three-space?

A. Two

B. Three

C. Four

D. Infinitely many
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7.

10.

~

FIGURE 7-21 - lllustration for Quiz Question 8.

What's the largest possible number of intersecting lines that can uniquely define
a plane in Euclidean three-space?

A. Two

B. Three

C. Four

D. Infinitely many

Figure 7-21 illustrates two planes X and Y that intersect along a line L. Line N,
which lies in plane Y, runs normal to plane X. Suppose that line O lies in plane Y
but does not run perpendicular to line L. All three lines L, N, and O intersect each
other at point S. Consider the two angles of measures u and v with vertices at S
shown. Based on this information, we know for sure that

A. u+v=m/4.

B. u+v=m/2.

C u+v=m

D. u+v=2m.

In order for two lines in space to run parallel to each other, they must

A. notintersect at any point.

B. both lie in the same plane.

C. not run askew relative to each other.
D. All of the above

Consider a line in Euclidean three-space, and a point that doesn't lie on that line.
What's the largest number of planes that can contain both the line and the point?
A. One

B. Two

C. Three

D. Infinitely many



chapter 8

Surface Area
and Volume

We can calculate the surface areas and volumes of various simple geometric

solids in Euclidean three-space when we know the linear dimensions such as
height, width, depth, or radius.

CHAPTER OBJECTIVES

In this chapter, you will

Define and enumerate the most basic polyhedron types.
Calculate polyhedron surface areas and volumes.

Define and enumerate cones and cylinders.

Calculate cone and cylinder surface areas and volumes.
Define the sphere, ellipsoid, and torus.

Calculate sphere, ellipsoid, and torus surface areas and volumes.
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Straight-Edged Objects

Geometric solids with straight edges always have flat faces, also called facets, each
of which forms a plane polygon. We call a 3D object of this sort a polyhedron.

The Tetrahedron

A polyhedron always has at least four faces. A four-faced polyhedron is called
a tetrahedron. Each of the four faces constitutes a triangle. The tetrahedron has
six edges where pairs of faces meet and four vertices where groups of edges
meet. Any four specific points, as long as they don’t all lie in a single plane, define
a tetrahedron.

Surface Area of Tetrahedron

Figure 8-1 shows a tetrahedron whose height we call k; the shaded region por-
trays the base. We can calculate the surface area of the entire tetrahedron by
adding up the interior areas of all four triangular faces. In the case of a regular
tetrahedron, all six edges have the same length, so each face is an equilateral
triangle. If the length of each edge of a regular tetrahedron equals s units, then
we can calculate the surface area B of the whole object in square units (or units
squared) with the formula

B=312¢

where 312 represents the square root of 3, or approximately 1.732.

Point directly
beneath apex

Base area = A

FIGURE 8-1 - A tetrahedron has four faces (including the base), six
edges, and four vertices.
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Volume of Tetrahedron

Imagine a tetrahedron whose base forms a triangle with area A, and whose
height equals h as shown in Fig. 8-1. We can calculate the enclosed volume V'
of the solid in cubic units (or units cubed) using the formula

V=Ah/3

Pyramid

Figure 8-2 illustrates a pyramid whose height we call h. This figure has a square
or rectangular base (shaded region) and four slanted faces above the base. In
total the pyramid has five faces, eight edges where pairs of faces meet, and five
vertices where groups of edges meet. If the base forms a perfect square and the
apex (topmost vertex) lies directly above the point at the center of the base,
then we have a right square pyramid, and each of the four of slanted faces con-
stitutes an isosceles triangle. The well-known historical pyramids in Egypt are
all of this type.

Surface Area of Pyramid

We can calculate the surface area of a pyramid by adding up the areas of all five
of its faces (the four slanted faces plus the base). In the case of a right square
pyramid where the length of each slanted edge, called the slant height, equals s
units and the length of each edge of the base equals 7 units, the surface area B
in square units is given by the formula

B =1+ 2t (s* - t?/4)"?

Point directly
beneath apex

Base area = A

FIGURE 8-2 - A pyramid has five faces (including the base), eight edges,
and five vertices.
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Still Struggling

In the case of a general pyramid where the base doesn’t form a square and/or
the apex doesn't lie directly above the center of the base, the task of finding the
surface area can sometimes present us with a tedious problem, because we
must individually calculate the area of the base and each slanted face and then
add the five polygons’areas up to get the total surface area.

Volume of Pyramid

Imagine a right square pyramid whose base is a square with area A, and whose
height equals & as shown in Fig. 8-2. We can calculate the volume V of the
pyramid in cubic units using the formula

V=Ah/3

We get cubic units when we multiply an area (in square units) by a linear
dimension (in this case the height of the object, expressed in straight units).

TIP The pyramid volume formula holds true even if the base of the pyramid
doesn’t form a perfect square, and even if the apex point doesn’t lie directly above
the center of the base. In fact, the formula works for all types of pyramids, even
grossly distorted ones, as long as we stay in Euclidean three-space.

The Cube

Figure 8-3 illustrates a cube. This figure constitutes a regular hexahedron
(six-sided polyhedron). It has 12 edges, all of which have identical length. Each
of the six faces constitutes a square. The cube has eight vertices.

Surface Area of Cube

Imagine a cube whose edges each have length s, as shown in Fig. 8-3. We can
find the surface area A of the cube in square units using the formula

A =065

We simply find the area of any single face and then multiply that area by 6 to
obtain the total surface area of the solid.
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A

~

FIGURE 8-3 - A cube has six square faces and
12 edges of identical length.

Volume of Cube

Imagine a cube as defined above and in Fig. 8-3. We can calculate the volume

V of the solid using the formula

V=g

Our job consists of nothing more than cubing (taking the third power of) the

length of any one of the edges to get the volume in cubic units.

The Rectangular Prism

Figure 8-4 illustrates a geometric solid known as a rectangular prism. Each of

the six faces is a rectangle. The figure has 12 edges. The edges of the entire

object don’t necessarily all have equal lengths, but the pair of edges at opposite

sides of any given face does. The rectangular prism has eight vertices.

FIGURE 8-4 - A rectangular prism has six rectangular

A

faces and 12 edges.
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Surface Area of Rectanqular Prism

Imagine a rectangular prism whose edges measure s, s,, and s, units as shown
in Fig. 8-4. (As we look at this figure, we might want to call 5, the width, s, the
height, and s, the depth.) We can calculate the surface area A of the prism in

square units with the formula
A =255, + 25,5, + 25,5,

The process involves calculating the areas of each face and then adding the
areas together. Note that any two opposite faces have identical areas.

Volume of Rectangular Prism

Imagine a rectangular prism as defined above and in Fig. 8-4. We can calculate
the volume V of the enclosed solid in cubic units using the formula

V=55,

We get cubic units when we multiply a linear dimension by another linear
dimension and then multiply that result by a third linear dimension.

The Parallelepiped

We define a parallelepiped as a six-faced polyhedron in which each face consti-
tutes a parallelogram, and opposite pairs of faces have identical size and shape
as shown in Fig. 8-5. The figure has 12 edges and eight vertices. In this illustration,
we call the smaller (acute or right) angles between the pairs of edges x, y, and z.

FIGURE 8-5 - A parallelepiped has six faces, all of which are parallelo-
grams, and 12 edges.



Chapter 8 SURFACE AREA AND VOLUME

As with the rectangular prism, the edges aren’t necessarily all equally long, but
the pair of edges at opposite sides of any given face has equal measure.

TIP Every cube constitutes arectangular prism whose edges all have equal length, and
every rectangular prism constitutes a parallelepiped whose angles all measure 90°
(/2 rad). So, as things work out, some parallelepipeds are cubes (but most aren't).

Surface Area of Parallelepiped

Imagine a parallelepiped with faces of lengths s, 5,, and s,. Suppose that we call
the angles between pairs of edges x, y, and z as shown in Fig. 8-5. We can deter-
mine the surface area A of the parallelepiped in square units using the formula

A =2ss,sinx + 255, siny + 25,5, sin z

where sin x represents the sine of angle x, sin y represents the sine of angle y,
and sin z represents the sine of angle z. As with the rectangular prism, any two
opposite faces have identical areas. We determine the areas of all the faces first
and then add those areas up to get the total surface area for the object.

Still Struggling

If you've forgotten how the sine function (and trigonometry in general) works,
or if it otherwise baffles you, don’t worry about the details. You can find the sine
of any angle using a calculator, but be careful. If you express the angle in radians,
you must set your calculator for radians. If you express the angle in degrees, you
must set your calculator for degrees. (I've made that mistake more than once. It's
easy for me to misadjust my computer’s calculator when | work in radians,
because the program uses degrees by default. On a few occasions, | forgot about
that quirk until | got a result that obviously didn't make sense.)

Volume of Parallelepiped

Imagine a parallelepiped whose faces have lengths s, s,, and s,, and that has

vertex angles of x, y, and z as shown in Fig. 8-5. Suppose that the height of the
parallelepiped, as measured along a line normal to the base, equals h. We can
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find the volume V of the enclosed solid in cubic units by taking the product of
the base area and the height according to the formula

V=hss, siny

We must make sure that we take the sine of the correct angle when we use this
formula! The variable y represents the acute angle between adjacent edges of
the base.

PROBLEM 8-1
Suppose that we want to paint the interior walls of a room. The room has
the shape of a rectangular prism. The ceiling lies exactly 3.0 meters above
the floor. The floor and the ceiling both measure exactly 4.2 meters by
5.5 meters. The room has two windows on its walls, the outer frames of
which both measure 1.5 meters high by 1.0 meter wide. The outer frame of
the doorway measures 2.5 meters high by 1.0 meter wide. We plan to cover
all the walls with two coats of paint. A “paint guru” tells us that we can
expect one liter of paint to cover exactly 20 square meters of wall area in a
single coat. How much paint, in liters, will we need to completely do the
job, without a single extra drop of paint to spare?

SOLUTION
Let’s calculate our room’s wall surface area, not including the door or the
windows. Based on the information given, we can say that the rectangular
prism formed by the edges between walls, floor, and ceiling measures
4.2 meters wide (dimension s, as portrayed in Fig. 8-4) by 3.0 meters high
(dimension s, as portrayed in Fig. 8-4) by 5.5 meters deep (dimension s, as
portrayed in Fig. 8-4). To find the total surface area A of the rectangular
prism, in square meters including the windows and doorway, we use the
formula

A=2ss,+2s5.+25,5,
=(2x4.2%x3.0)+(2%x4.2x5.5)+(2x3.0x5.5)
=25.2+46.2+33.0

= 104.4 square meters

Now we remember that the room has two windows, each one measuring
1.5 meters by 1.0 meter. Each window therefore takes away 1.5 x 1.0=1.5 square
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meters of area. The doorway measures 2.5 meters by 1.0 meter, so it takes
away 2.5 x 1.0 = 2.5 square meters. The windows and doorway combined
take away 1.5 + 1.5 + 2.5 = 5.5 square meters of wall space. We must also
subtract the combined areas of the floor and ceiling, neither of which we
intend to paint. This quantity is the middle factor, 46.2, in the equation for
the total surface area of the rectangular prism. We can now calculate the
total wall area that we want to paint (let’s call it A ) as

A, =(104.4-5.5)-46.2

=52.7 square meters

We can expect a liter of paint to cover 20 square meters in a single coat.
Therefore, we will need 52.7/20, or 2.635, liters of paint to coat the walls
once. We'll need twice that much paint, or 5.27 liters, to finish the two-coat
job without leaving any paint unused.

Circular Cones

In Euclidean three-space, a circular cone has a base that forms a perfect circle,
and an apex point that lies outside the plane defined by that circle. The surface
of any circular cone has the following components:

» The base circle
 All points inside the base circle that lie in its plane

» Allline segments connecting the base circle (not including its interior) and
the apex point

TIP Theinterior of the cone consists of the set of all points enclosed by the surface.
In theory, we can include part, all, or none of the cone’s surface when we talk
about the solid. Usually, when we think of a solid cone, we imagine the entire
surface (including the base) as well as the interior.

Right Circular Cone

A right circular cone has a circular base, and an apex point that lies on a line
normal to the plane of the base and that passes through the center of the base.
Figure 8-6 shows an example. Line PQ runs normal to the plane containing the
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FIGURE 8-6 - Aright circular cone.

base. Its length, representing the height of the cone, equals h. The radius of the
circular base equals 7. The cylinder’s slant height is the distance s from the apex
to any point on the edge of the base.

Surface Area of Right Circular Cone

Imagine a right circular cone as shown in Fig. 8-6. Let P represent the apex of
the cone, and let Q represent the center of the base. Let r represent the radius
of the base, let h represent the height, and let s represent the slant height. We
can calculate the surface area S, of the cone, including the base, in square units
with the formula

S, =nr’ +mrs

Alternatively, we can use
S, =nr? + mr(r* + h?)!”?

The surface area S, of the cone, not including the base, is called the lateral
surface area and is given by the formula

S,=mrs
We can also use

S, = (r + h?)1
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Volume of Right Circular Cone

Imagine a right circular cone as defined earlier and in Fig. 8-6. We can calculate
the volume V of the entire solid in cubic units using the formula

V =nrth/3

The quantity 7 represents the interior area of the circular base in square units.
When we multiply square units by the height (a linear dimension), we get cubic
units.

Surface Area of Frustum of Right Circular Cone

Imagine a right circular cone that’s truncated (“chopped off”) by a plane paral-
lel to the base. We call the resulting object a frustum of the cone (Fig. 8-7). Let
P represent the center of the circle defined by the truncation plane, and let Q
represent the center of the base. Suppose that line segment PQ runs perpen-
dicular to the base. Let r, represent the radius of the top circle (where we’ve
“chopped” off the cone), let 7, represent the radius of the base circle, let h rep-
resent the height of the object (the length of line segment PQ), and let s rep-
resent the slant height. If we don’t know the slant height s, we can calculate the

—>

P

L

—.

FIGURE 8-7 - Frustum of a right circular cone.
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surface area S, of the object (including the base and the top) in square units
with the rather messy formula

S, =mn(r+ r)[s*+(r, - 1’1)2]1/z +7T [rlz +1,7%)
If we do know the slant height s, we can use the simpler formula
S =mns(r,+r,)+n(r?+r7?)

If we don’t know the slant height s, we can calculate the surface area S, of the
object (not including the base or the top) using the formula

S,=n(r, +r)[s*+ (r,—r)*]"?
Alternatively, if we do know s, we can use

S,=mns(r, +1,)

Volume of Frustum of Right Circular Cone

Imagine a frustum of a right circular cone as defined earlier and as illustrated
in Fig. 8-7. We can calculate the volume V of the enclosed solid in cubic units
using the formula

V=mnh(r?+nr,+1,°)/3

The Slant Circular Cone

A slant circular cone has a base that constitutes a circle, and an apex point such
that a normal line from the apex point to the plane containing the base does
not pass through the center of the base. In “extreme slant circular cones,” that
line intersects the base plane on or outside the base circle. Figure 8-8 shows an
example of a slant circular cone of the “extreme” type. Line segment PQ, which
represents the height &, runs normal to plane X, which contains the base. The
cone slants so much that Q lies outside the base.

Volume of Slant Circular Cone

Imagine a slant circular cone in which P represents the apex and Q represents
a point in the plane X containing the base, such that line segment PQ runs
perpendicular to X as shown in Fig. 8-8. Let h represent the height of the cone.
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FIGURE 8-8 - A slant circular cone of the “extreme” type.

Let r represent the radius of the circular base. We can
of the solid in square units with the formula

V =nr*h/3

calculate the volume V

TIP The foregoing formula duplicates the one for the volume of a right circular

cone. We can “push” the apex point P of a circular cone “sideways” as much as we

want—even millions of times the radius of the base!—and as long as we don’t

alter the length of line segment PQ that runs normal to plane X, the volume of the

enclosed solid will remain constant.

Circular Cylinders

A circular cylinder has a base that forms a perfect circle, along with a circular

top that has the same radius as the base and that lies in a plane parallel to the

base. The cylinder itself comprises the following components:

¢ The base circle

 All points inside the base circle that lie in its plane

e The top circle

 All points inside the top circle that lie in its plane

 All line segments connecting the base circle and the top circle (not including

their interiors) that run parallel to a line passing through the centers of

both circles
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Still Struggling

In the foregoing definition of a circular cylinder, the last “bulleted” item specifies
line segments parallel to the line connecting the center of the base with the center
of the top. When we impose this restriction, we can have absolute confidence that
every such segment lies on the cylinder’s surface, and none of the segments pass
through the interior. When we combine all possible line segments of this sort
(infinitely many of them exist), we get a curved surface that joins the base circle
with the top circle. If we connect the base and top circles with any line segment
that doesn’t run parallel to the line connecting their centers, then that line
segment runs through the interior of the cylinder, not along its outer surface.

TIP In theory, we can include part, all, or none of the surface of the cylinder when
we define the entire solid. Normally, when we think of a solid cylinder, we think of
the interior along with the entire surface including the base and the top.

Right Circular Cylinder

A right circular cylinder has a circular base and a circular top. The base and the
top lie in parallel planes. The center of the base and the center of the top lie at
the ends of a line segment PQ that runs normal to both the plane containing
the base and the plane containing the top, as shown in Fig. 8-9. The base circle

FIGURE 8-9 - Aright circular cylinder.
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and the top circle both have radius . The length of line segment PQ equals the
height h of the cylinder.

Surface Area of Right Circular Cylinder

Imagine a right circular cylinder where P represents the center of the top and
Q represents the center of the base (Fig. 8-9). Let r represent the radii of the
base and the top, and let h represent the height. We can calculate the surface
area S, of the cylinder, including the base and the top, in square units with
the formula

S, =2mnrh + 2nr?
=2nr(h+7)

The lateral surface area S, of the cylinder (not including the base or the top) is
given by the simpler formula

S, =2nrh

Volume of Right Circular Cylinder

Imagine a right circular cylinder as defined earlier and as shown in Fig. 8-9. We
can calculate the volume V of the solid in cubic units with the formula

V=mnrth

The Slant Circular Cylinder

A slant circular cylinder has a circular base and a circular top. The base and the
top lie in parallel planes. The center of the base and the center of the top lie
along a line that does not run perpendicular to the planes that contain them
(Fig. 8-10). The cylinder height h equals the distance between the plane con-
taining the top and the plane containing the base, as determined along a line
that runs normal to both planes. We represent the radii of the base and top
circles as 7.

Volume of Slant Circular Cylinder

Imagine a slant circular cylinder as defined earlier and as shown in Fig. 8-10.
We can calculate the volume V of the solid in cubic units as

V=mnrh
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Center of top < r
A -
h
N
« r —>‘ Center of base

FIGURE 8-10 - A slant circular cylinder.

TIP The above formula duplicates the one for the volume of a right circular
cylinder. We can “push”the top of a circular cylinder “sideways,” and as long as we don’t
alter the cylinder’s height, the volume of the enclosed solid will remain constant.

D PROBLEM 8-2

Imagine a cylindrical water tower that measures exactly 30 meters high
and exactly 10 meters in radius. How many liters of water can it hold,
assuming that we can fill up the entire interior with water? (One liter equals
a cubic decimeter: the volume of a cube measuring 0.1 meter on an edge.)
Round the answer off to the nearest liter.

SOLUTION
Let’s use our formula to find the volume V in cubic meters in terms of the
base or top radius r and the height h. That equation, once again, is

V=nr’h
We know that r = 10 and h = 30. If we consider T = 3.141592654 (that'’s
more than enough decimal places for this calculation), then we can deter-
mine the interior volume of the cylinder as
V=3.141592654 x 10%> x 30
=3.141592654 x 100 x 30
=9424.777962 cubic meters
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One liter equals the volume of a cube that measures precisely 0.1 meter on an
edge.That’s 0.1x0.1x0.1,0r 0.001 (1/1000) of a cubic meter. Conversely, a cubic
meter contains 1000 liters. We must therefore multiply the above-derived result
by 1000 to get the answer in liters. When we do that, we get 9,424,777.962 liters.
Rounding off to the nearest liter gives us a final answer of 9,424,778 liters.

PROBLEM 8-3
Imagine a circus tent that has the shape of a right circular cone. Suppose
that its base diameter equals exactly 50 meters and the height at the cen-
ter equals exactly 20 meters. How much canvas does the tent contain in
terms of surface area? Express the answer to the nearest square meter.
Assume that inside the tent, the floor is plain earth (not canvas).

SOLUTION
We can use the formula for the lateral surface area S of the right circular
cone, not including the base, in terms of the radius r and the height h. Once
again, that formula is

S=mr(r + h?)"2

We know that the tent’s base diameter is precisely 50 meters. The radius
equals half that span, so r=25. We also know that h = 20. Let’s consider
Tt =3.141592654. Then we have

$=3.141592654 X 25 X (252 + 20%)"2
=3.141592654 X 25 X (625 + 400)"/2
=3.141592654 X 25 X 10252
=3.141592654 x 25 x 32.01562119
=2514.501009

The tent contains 2515 square meters of canvas, rounded off to the nearest
square meter.

Other Solids

The realm of Euclidean three-space contains a tremendous variety of geometric
solids that have curved surfaces throughout. Let’s look at three of the most
common such objects: the sphere, the ellipsoid, and the torus.
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The Sphere

Consider a specific point P in Euclidean three-space. The surface of a sphere
(call it S) comprises the collection of all points that lie at a specific distance
or radius r from a defined point P. The interior of sphere S, including
the surface, comprises the collection of all points whose distance from point
P is less than or equal to r. The interior of sphere S, not including the
surface, comprises the collection of all points whose distance from P is
strictly less than 7.

Surface Area of Sphere

Imagine a sphere S having radius r as shown in Fig. 8-11. We can calculate the
surface area A of the sphere in square units with the formula

A = 4nr?

Volume of Sphere

Imagine a sphere S as defined earlier and as illustrated in Fig. 8-11. We can
calculate the volume V of the solid enclosed by the sphere in cubic units with
the formula

V =4rr/3

Center of
sphere

FIGURE 8-11 - A sphere.
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TIP Theabove formula for volume applies to the interior of sphere S, either includ-
ing the surface or not including it, because the surface has zero volume. This same
general concept holds true for volumes of all the other solids described in this
chapter. We can take away part, or all, of the surface from a solid; any such action
will have no effect on the enclosed volume. Think of the surface of any object, in
mathematical terms, as an “infinitely thin shell.” As such, it can possess no
volume, no matter how many square units it has!

The Ellipsoid

Let E represent a set of points that forms a closed surface (meaning that it has
no “holes”; if we could fill it with air under pressure, none of the air would leak
out). In this situation, E constitutes an ellipsoid if and only if, for any plane X
that intersects E, the intersection between E and X forms a single point, a circle,
or an ellipse.

Figure 8-12 shows an ellipsoid E with center point P and radii (also called semi-
axes) r,, 1,, and r,, as we might specify them in a rectangular three-space coordi-
nate system with P at the origin. If ,, ,, and r, are all equal, then E is a sphere. All
spheres are ellipsoids, although plenty of nonspherical ellipsoids obviously exist.

Volume of Ellipsoid

Imagine an ellipsoid whose semiaxes measure 7, 7,, and , as shown in Fig. 8-12. We
can calculate the volume V of the enclosed solid in cubic units with the formula

V =A4nrrr/3

Center of
ellipsoid

FIGURE 8-12 - An ellipsoid.
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When we multiply three linear-unit quantities together (in this case the lengths
of the three semiaxes of our ellipsoid), we get cubic units.

' Y

= Still Struggling

Do you wonder why we don’t mention a formula for calculating the surface area
of an ellipsoid? There's a good reason: It's too complicated for this course! In order
to precisely define the surface area of an ellipsoid in the general case where the
three semiaxes can all differ from each other, we need to use vector calculus. Non-
calculus formulas exist for approximating the surface area of a general ellipsoid,
but they’re messy and they rarely yield an exact answer. If you're curious about
these approximation formulas, enter “surface area of an ellipsoid” into your
favorite Internet search engine’s phrase box and take things from there!

The Torus

Imagine a ray PQ and a small circle C centered on point Q with a radius less
than half the distance between points P and Q. Suppose that we rotate the ray
PQ), along with the small circle C centered at point Q, around its end point P,
so that point Q describes a circle in a plane perpendicular to the small circle C.
When we go through these maneuvers, the resulting collection of points in
Euclidean three-space forms a torus. Figure 8-13 shows a torus T constructed

Circular
cross-section

Center
of torus

FIGURE 8-13 - A torus, also called a“donut.”
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in this fashion, with center point P. The inside radius equals 7, and the outside
radius equals 7,.

Surface Area of Torus

Imagine a torus with an inner radius of 7, and an outer radius of 7, as shown in
Fig. 8-13. We can calculate the surface area A of the torus in square units with
the formula

A=m(r,+1r)(r,—r)

Volume of Torus

Consider a torus T as defined earlier and as shown in Fig. 8-13. We can calculate
the volume V of the enclosed solid in cubic units with the formula

V=n?(r,+r)(r,-1)"/4

PROBLEM 8-4
Suppose that we want to cover an American football field with an inflat-
able dome that takes the shape of a half-sphere. If the radius of the dome
equals exactly 100 meters, what’s the volume of air enclosed by the dome
in cubic meters? Find the result to the nearest cubic meter.

SOLUTION

First, let’s find the volume V of a sphere whose radius equals precisely
100 meters and then divide the result by 2. Consider T = 3.141592654.
Using the formula with r=100 gives us

V=4nr3/3
=(4x3.141592654 x 100%)/3
=(4x%3.141592654 % 1,000,000)/3
=4,188,790.205

The volume enclosed by the dome equals half of this value. Calculating, we get

V/2=4,188,790.205/2
=2,094,395.103

Rounding off to the nearest whole number, we get 2,094,395 cubic meters
as the volume of air enclosed by the dome.
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Imagine that the dome over our American football field does not form a
half-sphere, but instead constitutes a half-ellipsoid. Imagine that the
height of the ellipsoid equals exactly 70 meters above its center point,
which lies exactly in the center of the field. Suppose that the distance from
the center of the field to either “far side” of the dome equals precisely
120 meters, and the distance from the center of the field to either “near
side” of the dome equals precisely 90 meters. How many cubic meters of
air does this dome enclose?

SOLUTION
First, let’s consider the lengths of the semiaxes as r, =120, r, =90, and
r,=70.We can use the formula for the volume V of an ellipsoid with these
radii, getting

V=A4nr.rr,/3
=(4%3.141592654 x 120 X 90 x 70)/3
=(4x3.141592654 x 756,000)/3

=3,166,725.395

The volume enclosed by the dome equals half of this value. Calculating,
we get

V/2=3,166,725.395/2
=1,583,362.698

Rounding off to the nearest whole number, we get 1,583,363 cubic meters
as the volume of air enclosed by the dome.
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QuiIz

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. A cube constitutes a specific form of

A. four-faced polyhedron.
B. six-faced polyhedron.
C. eight-faced polyhedron.
D. 12-faced polyhedron.

2. If we double the lengths of two semiaxes in an ellipsoid while not changing the
length of the third semiaxis, we increase the volume of the enclosed solid by a
factor of

A 2.
B. 4.
C. 8.
D. 16.

3. Figure 8-14 illustrates a right circular cone with dimensions precisely as indi-
cated. What's the lateral surface area of this object (the surface area of the coni-
cal portion only, not including the base), rounded off to the nearest hundredth
of a square unit?

11.33 square units

B. 17.61 square units

C. 22.65 square units

D. 35.22 square units

>

Center
of base

<— 2 units

FIGURE 8-14 . lllustration for Quiz Questions 3 and 4.



216 GEOMETRY DeMYSTiFieD

4
}(— 7 units —)‘%

FIGURE 8-15 - lllustration for Quiz Questions 5 and 6.

units

4. What's the exact volume of the solid enclosed by the right circular cone shown
in Fig. 8-14, assuming that the object has precisely the dimensions indicated?
A. 21 cubic units
B. 37 cubic units
C. 4z cubic units
D. 6m cubic units

5. What's the volume of the solid enclosed by the parallelepiped shown in Fig. 8-15,
given a width of exactly 7 units, a slant depth of exactly 5 units, and a height of
exactly 5 units as indicated? Round off the answer to the nearest cubic unit.

A. 140 cubic units

B. 35 cubic units

C. 28 cubic units

D. We need more information to answer this question.

6. Suppose that we triple the height of the parallelepiped shown in Fig. 8-15, from
5 units to 15 units. If we do that while leaving the base dimensions at 7 by
4 units, and we also ensure that the base retains the same shape, what happens
to the volume of the enclosed solid? (Here’s a hint: We don’t have to know the
actual volume of the solid, either before or after the height-tripling action.)
A. Ittriples.
B. Itincreases by a factor of 9.
C. Itincreases by a factor of 27.
D. Itincreases by a factor equal to the square root of 27.

7. If we quadruple the surface area of a cube, what happens to its volume?
A. It doubles.
B. It quadruples.
C. Itbecomes 8 times as great.
D. It becomes 16 times as great.
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Center of top

10 units

<— 6 units —>‘ Center of base

FIGURE 8-16 - lllustration for Quiz Questions 9 and 10.

If we quadruple the surface area of a sphere, what happens to its volume?

A. ltdoubles.

B. It quadruples.

C. It becomes 8 times as great.
D. It becomes 16 times as great.

Figure 8-16 illustrates a slant circular cylinder with a radius of exactly 6 units and
a height of exactly 10 units. What'’s the volume of the enclosed solid, rounded
off to the nearest cubic unit?

A. 188 cubic units

B. 377 cubic units

C. 1131 cubic units

D. We need more information to answer this question.

Suppose that we triple the radius of the slant circular cylinder shown in Fig. 8-16,
from 6 to 18 units. What happens to the volume of the enclosed solid? (Here’s a
hint: We don’t have to know the actual volume of the solid, either before or after
the radius-tripling action.)

A. lttriples.

B. Itincreases by a factor of 9.

C. Itincreases by a factor of 27.

D. Itincreases by a factor of 81.
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chapter

Vectors and Cartesian
Three-Space

We can define Cartesian three-space, also called rectangular three-space or xyz-space,

on the basis of three real-number lines that intersect at a common origin point.

At the origin, each number line runs perpendicular to the other two, so we can

graphically relate one variable to both of the others. Most three-dimensional

(3D) graphs show up in this system as lines, curves, or surfaces.

CHAPTER OBJECTIVES

In this chapter, you will

Review the fundamentals of the sine, cosine, and tangent functions.
Define vectors in Cartesian two-space.

Learn how to add and “multiply” vectors in two-space.

Construct a Cartesian three-space coordinate system.

Define vectors in Cartesian three-space.

Learn how to add and “multiply” vectors in three-space.

Define and work with planes and lines in Cartesian three-space.
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ATaste of Trigonometry

Before we proceed further, let’s review a few principles of basic trigonometry.
In particular, let’s look at angle notation and the sine, cosine, and tangent
functions.

It's Greek to Us

Mathematicians and scientists often use Greek letters to represent angles. The
most common symbol for an angle is an italic, lowercase Greek letter theta
(pronounced “THAY-tuh”). It looks like an italic numeral zero with a horizon-
tal line inside (6).

When writing about two different angles, we need to use another Greek
letter along with 6. Most mathematicians prefer the italic, lowercase letter phi
(pronounced “FIE” or “FEE”). It looks like an italic lowercase English letter o
with a forward slash passing through (¢).

TIP Numeric or variable subscripts are sometimes used with Greek symbols for
angles, so you can expect to occasionally encounter angles denoted as 6, 6,, 6,,
andsoon,oras 6, 6;/, 8, and so on.

The Unit Circle

Consider a circle in the Cartesian xy-plane with the following equation. It’s the
simplest possible circle, expressible as

xX*+yr=1

This equation represents a unit circle. That means it’s centered at the origin
point (0,0) on the coordinate plane and has a radius of 1 unit. Let 0 represent
an angle whose vertex point lies at the origin, and that we express going around
counterclockwise from the x axis as shown in Fig. 9-1. Imagine that 6 defines
the direction of a ray that starts out at the origin and passes through the unit
circle, intersecting the circle at the point P = (x,,y,). We can define three trigo-
nometric functions, called circular functions, of the angle 6.

The Sine Function

In Fig. 9-1, let OP represent the ray that emerges from the origin (point O) and
passes through point P on the unit circle. Suppose that this ray starts out pointing
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Unit _..,.......--“'
circle L

FIGURE 9-1 - The unit circle constitutes the basis for the trigo-
nometric functions.

exactly along the x axis. Then it starts to rotate counterclockwise, always keep-
ing its back-end point at the origin, as if the origin were a hinge or pivot. As the
ray rotates, the point P, represented by coordinates (x,,y,), revolves around the
unit circle.

Imagine what happens to the value of y, during one complete rotation of ray
OP, starting out along the x axis and eventually returning there:

¢ The ray starts out such that y, = 0; then y, increases until it attains a value
of 1 after P has gone 90° or 7/2 rad around the circle (6 = 90° = /2 rad).

o After that, y, begins to decrease, getting back to a value of O when P has
gone 180° or ©t rad around the circle (6= 180° =1t rad).

¢ As P continues counterclockwise, y, keeps decreasing until, at 6= 270° =
3m/2 rad, the value of y, reaches its minimum of -1.

o After that, y, increases again until, when P has gone completely around
the circle, it returns to the value of 0 for = 360° = 27 rad.

We define the value of y,, for any particular angle 6, as the sine of 6. The sine
function is abbreviated sin, so we can write

sin 0=y,
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= Still Struggling

If you've always thought of the sine, cosine, and tangent functions as relating
the relative side lengths of right triangles, now is the time to revolutionize your
thinking! Yes, these three functions can and do describe the dimensions of right
triangles, just as you've learned in other courses. However, the unit-circle model
improves on the right-triangle model in at least two ways. First, the unit-circle
model allows you to define negative as well as positive values for the trigono-
metric functions, and you can’t do that with triangles. Second, the unit-circle
model allows for angles measuring less than 0° (0 rad) or more than 90° (/2 rad),

while the right-triangle model forces you to stay within that range.

The Cosine Function

Look again at Fig. 9-1. Imagine, once again, a ray OP from the origin outward
through point P on the circle, pointing along the x axis and then rotating in a
counterclockwise direction:

o The ray starts out such that x, = 1; then x, decreases until it attains a value

of 0 after P has gone 90° or 7/2 rad around the circle (6= 90° = /2 rad).

o After that, x, continues to decrease, reaching a minimum value of -1
when P has gone 180° or &t rad around the circle (6 = 180° = &t rad).

¢ As P continues counterclockwise, x, increases until, at 6=270° = 3n/2 rad,
it gets back up to 0.

o After that, x, continues to increase until, when P has gone completely
around the circle, it returns to the value of 1 for 6=360° = 27 rad.

We define the value of x, for any particular angle 6, as the cosine of 6. The
cosine function is abbreviated cos, so we can write

cos B=x,

The Tangent Function

Once again, refer to Fig. 9-1. We can define the tangent (abbreviated tan) of an
angle 6 using the same ray OP and the same point P = (x,, y,) as we have done
with the sine and cosine functions. The definition is

tan 6=y,/x,



Chapter 9 VECTORS AND CARTESIAN THREE-SPACE 223

Because we already know that sin 6 =y, and cos 6 = x,, we can express the
tangent function in terms of the sine and the cosine with the formula

tan 6@ =sin 6/cos 0

TIP The tangent function is interesting because, unlike the sine and cosine func-
tions, it becomes singular (“blows up” in a positive or negative direction) at cer-
tain values of 6. Whenever x, = 0, the denominator of either quotient above
becomes zero. Mathematicians don’t allow, or even attempt to define, division
by zero, so we cannot define the value of the tangent function for any angle 6
such that cos 8= 0. Such angles include all possible odd-integer multiples of 90°
(7/2 rad).

PROBLEM 9-1
What's the tangent of 45°? Don’t do any calculations. You can infer the
result without having to write down a single numeral and without using a
calculator.

SOLUTION
Draw a diagram of a unit circle, such as the one in Fig. 9-1, and place ray
OP such that it subtends an angle of 45° with respect to the x axis. That’s
the angle for which you want to find the tangent. Note that ray OP also
subtends an angle of 45° with respect to the y axis, because the x and y
axes run perpendicular (they’re oriented at 90° with respect to each other),
and 45° equals half of 90°. Every point on the ray OP, including (x,, y, ), lies
equally distant from the x and y axes. It follows that x, and y, must have
the same value, and neither of them is zero. You must conclude that the
ratio of y_to x, equals 1, because any nonzero number divided by itself
equals 1. According to the definition of the tangent function, therefore,
tan 45°=1.

Vectors in the Cartesian Plane

A vector expresses a quantity with two independent properties: magnitude and
direction. We define the direction, also called orientation, in the sense of a ray; it
“points” somewhere. We can use vectors to represent physical variables such as
displacement, velocity, and acceleration. Mathematicians and scientists usually
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FIGURE 9-2 - Two vectors in the Cartesian plane. We can add
them geometrically using the parallelogram method.

denote vectors using boldface letters of the alphabet. For example, in the
Cartesian xy-plane, we can portray vectors a and b as rays from the origin (0,0)
to points (x,y,) and (x,,y,), as shown in Fig. 9-2.

Equivalent Vectors

Occasionally, we'll encounter a vector that begins at a point other than the
origin (0,0). In order for the following formulas to hold, we must convert (or
reduce) such a vector to the so-called standard form, such that it begins at the
origin. We can carry out this task by subtracting the coordinates (x,,y,) of the
starting point from the coordinates (x,y,) of the end point. For example, if a
vector a* starts at (3,-2) and ends at (1,-3), it reduces to an equivalent vector a
in standard form as follows:

a={(1-3),[-3-(-2)]1}
=[(1-3),(-3+2)]
= (_21_1)

We define any vector a* that runs parallel to a, and that has the same length
and the same direction (or orientation) as a, as equal to vector a.
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TIP We can define a vector solely on the basis of its magnitude and its direction
(or orientation). Neither of these two properties depends on the location of the
originating point.

Magnitude

We can calculate the magnitude (also called the length, intensity, or absolute
value) of vector a, written lal or a, in the Cartesian plane by using a formula
resembling the theorem of Pythagoras for right triangles:

_ /
lal = (x2+y2)"

The vector magnitude equals the distance from the originating (or back-end)
point to the terminating (or far-end) point.

Direction

The direction of vector a, written dir a, equals the angle 6, that vector a sub-
tends as expressed going around counterclockwise from the positive x axis in
the Cartesian plane:

dira=6,

The tangent of the angle 6, equalsy /x . Therefore, 6, equals the inverse tangent,
also called the arctangent (abbreviated arctan or tan™') of y /x,. We have

dira=6,
= arctan (y,/x )
=tan™' (v /x)

By convention, we should always reduce any angle 6, to a value that’s at least
zero, but less than one full counterclockwise revolution. That is, we should
always have

0° < 6, < 360°
if we express 6, in degrees, or
0<6 <2n
if we express 6, in radians.
TIP If we ever encounter an angle that doesn’t fall within the above-defined

range, we can reduce it to its conventional value (within that range) by adding or
subtracting some integer multiple of 360° (27 rad).
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Sum

We can determine the sum of two vectors a and b, where a = (x,y) and b =

(x,,5,), by adding their components individually using the formula
a+b=[(x,+x),0,+y)]

We can also sum two vectors a and b geometrically by constructing a parallelo-
gram with a and b forming a pair of adjacent sides. When we do that, a + b lies
along the diagonal of the parallelogram as shown in Fig. 9-2 on page 224. Some
people call this scheme the parallelogram method of vector addition.

Multiplication by Scalar

When we want to multiply a vector by a scalar (an ordinary real number), we
multiply the x and y components of the vector individually by that scalar. If we
have a vector a = (x_y ) and a scalar k, then

ka = ak
=k (x,y,)
= (kx,,ky,)

' N

= Still Struggling

Multiplication by a scalar changes the length of a vector, but not the orientation
of the line along which it runs. If the scalar is positive, the direction of the
product vector is the same as that of the original vector. If the scalar is negative,
the direction of the product vector is opposite that of the original vector. If the
scalar is zero, the product vector vanishes altogether.

Dot Product

Consider two vectors a = (x,,y,) and b = (x,,). We define the dot product, also
known as the scalar product and written a e b, of two vectors a and b as the real
number (or scalar quantity) that we get when we use the formula

aeb=xx +yy,
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PROBLEM 9-2
What's the sum of the two vectors a =(3,-5) and b =(2,6) in the Cartesian
plane?

SOLUTION
We add the x and y components independently, obtaining

a+b=[(3+2),(-5+6)]
=(51)

PROBLEM 9-3
What’s the dot product of the two Cartesian-plane vectors a =(3,-5) and
b=(2,6)?

SOLUTION
Using the formula given above for the dot product, we get

aeb=(3x%x2)+(-5%6)
=6+ (-30)
=-24

PROBLEM 9-4
What happens if we reverse the order of a dot product? Does the value
change? If so, how?

SOLUTION
No, the value does not change. The dot product of two vectors does not
depend on the order in which we “dot-multiply” them. We can prove this
fact in the general case using the formula from above. Let a = (x_y,) and
b =(x,,y,). First consider the dot product of a and b (pronounced “a dot b”):

aeb=xx,+yy,
Now consider the dot product b e a:

bea =xX,+Y.Y,
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Because ordinary multiplication is commutative (the order in which we
multiply the factors doesn’t matter), we can convert the above formula to

bea=xx +yy,

Now we can see that the quantity x x, +y_y, represents the expansion of
a ¢ b. Therefore, for any two vectors a and b, we always have

aeb=Dbea

Three Number Lines

Figure 9-3 illustrates the simplest possible set of rectangular 3D coordinates. All
three number lines have equal increments. (This drawing is a perspective illus-
tration, so the increments on the z axis appear distorted. A true 3D rendition

Each division equals 1 unit

+Z T
A\

-y

FIGURE 9-3 . Cartesian three-space, also called xyz-space.
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would have the positive z axis perpendicular to the page.) The three number
lines intersect at their zero points. In this particular rendition:

o We call the horizontal (right-and-left) axis the x axis.
o We call the vertical (up-and-down) axis the y axis.

e We call the page-perpendicular (in-and-out) axis the z axis.

' B

= Still Struggling

In our portrayal of rectangular 3D coordinates, the positive x axis runs from
the origin toward the viewer’s right, and the negative x axis runs toward the
left. The positive y axis runs upward, and the negative y axis runs downward.
The positive z axis comes “out of the page,” and the negative z axis extends
“back behind the page.” However, you'll find variations in some texts. You
might see the positive x axis running from the origin toward the right, the
negative x axis running toward the left, the positive y axis running “behind
the page away from you,” the negative y axis running “out of the page toward
you,” the positive z axis running vertically upward, and the negative z axis
running vertically downward. However you see the axes portrayed, their rela-
tive orientation remains the same in all texts—unless an author or illustrator
has made a mistake!

Ordered Triples as Points

Figure 9-4 shows two specific points, called P and Q, plotted in Cartesian
three-space. The coordinates of point P are (-5,-4,3), and the coordinates
of point Q are (3,5,-2). We denote point locations as ordered triples in the
form (x,y,z), where the first number represents the value on the x axis, the
second number represents the value on the y axis, and the third number
represents the value on the z axis. The word “ordered” tells us that the
order, or sequence, in which the numbers are listed is important. The
ordered triple (1,2,3) is not the same as any of the ordered triples (1,3,2),
(2,1,3), (2,3,1), (3,1,2), or (3,2,1), even though all of the triples contain
the same three numbers.
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R N,

[ S

—_

i ek e o

FIGURE 9-4 - Two points in Cartesian three-space.

TIP When you write an ordered triple, don’t put any spaces after the commas, as
you would do in the notation of a set, sequence, or list of numbers. Run the whole
expression together without any spaces, and always remember to enclose it in
parentheses.

Variables and Origin

In Cartesian three-space, we usually have two independent-variable coordinate
axes and one dependent-variable axis. The x and y axes represent independent
variables, while the z axis represents a dependent variable whose value is
affected by both the x and the y values.

In some scenarios, two of the variables are dependent and only one is inde-
pendent. Most often, the independent variable in such cases is x.

Rarely, you'll come across a situation in which none of the values depends
on either of the other two, or when a correlation without any mathematical
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relation exists among the values of two or all three of the variables. Plots of this
sort usually appear as “swarms of points,” representing the results of observa-
tions, or values “predicted” by a scientific theory.

Distance between Points

Consider two different points P = (x,,y,,z,) and Q = (x,,y,,z,) in Cartesian
three-space. We can calculate the distance d between these two points using
the formula

d=1[(x, —x)*+ v, - ¥,)*+ (z, — z,)*]"”?

PROBLEM 9-5
What's the distance between the points P = (-5,-4,3) and Q = (3,5,-2)
illustrated in Fig. 9-4? Express the answer rounded off to three decimal
places.

SOLUTION
Let’s plug the coordinate values into the distance equation, where

X,=-5
x,=3
y,=—4
y,=5
z,=3
z=-2

When we grind out the arithmetic and round the final result off to three
decimal places, we get

d=1[(x, - x>+ (y, -y )+ (z, - z,)'?
={[3-(-5)P+[5-(-4P+(-2-3)%}"
=[82+ 92 + (-5)%]"2
=(64+81 +25)'
=170"2
=13.038
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Vectors in Cartesian Three-Space

A wvector in Cartesian three-space resembles a vector in the Cartesian plane,
except that a three-space vector has more “freedom” in terms of possible direc-
tions or orientations. This expanded scenario makes the expression of vector
direction in 3D more complicated than it is in 2D. If you like vector analysis,
you'll also find 3D vector arithmetic more interesting than two-dimensional
(2D) vector arithmetic.

Equivalent Vectors

In Cartesian three-space, we can denote two vectors (let’s call them a and b) as
arrow-tipped line segments from the origin (0,0,0) to points (x,y,,z) and
(x,,¥,,2,), as shown in Fig. 9-5. This rendition, like all of the three-space draw-
ings in this chapter, is a perspective illustration. Both vectors in this example
point in directions on our side of the plane containing the page. In a true 3D
model, both of them would “stick up out of the paper.”

a —t
(Xayyafza) T

b v
(Xb’ybvzb) _y

FIGURE 9-5 - Vectors in xyz-space. This is a perspective drawing; both vectors point in
directions on our side of the plane containing the page.
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In Fig. 9-5, both vectors a and b have their back-end points at the origin
(0,0,0). This situation represents the standard form of a vector in any coordi-
nate system. In order for the following formulas to hold, we must express all
vectors in standard form. If a given vector is not in standard form, we can con-
vert it to that form by subtracting the coordinates (x,,y,,z,) of the starting point
from the coordinates (x,,y,,z,) of the terminating point. For example, if a vector
a* starts at (4,7,0) and ends at (1,-3,5), it reduces to an equivalent vector a in
standard form as follows:

a=[(1-4),(3-7),(5-0)]
= (-3,-10,5)

TIP By definition, if some vector a* runs parallel to a, has the same length as a,
and points in the same direction as a, then a* = a. Similarly, if some vector b* runs
parallel to b, has the same length as b, and points in the same direction as b, then
b*=b. Asin the 2D case, we define a 3D vector solely on the basis of its magnitude
and its direction. Neither of these two properties depends on the location of the
originating or back-end point.

Defining the Magnitude

When the back-end point of a vector a lies at the coordinate origin, we can find
the magnitude of a, written lal or a, using a 3D extension of the Pythagorean
theorem for right triangles, as follows:

lal = (x 2 +y 7% +2z2)"?

The magnitude of any vector a in standard form equals the distance of the
terminating point from the coordinate origin. Note that the above formula is
the distance formula for the specific case of two points (0,0,0) and (x_,y,,z,).

Direction Angles and Cosines

We can define the direction of a vector a in standard form by specifying the
angles 6, 0, and 6, that the vector a subtends relative to the positive x, y,
and z axes, respectively, as shown in Fig. 9-6. We call these three angles,
expressed in combination as the ordered triple (6,,6,,6), the direction angles
for the vector a.
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a
(Xasyaaza)

+Z

FIGURE 9-6 - Direction angles of a vector in xyz-space. This is another perspective

A
-y

drawing; the vector points in a direction on our side of the plane containing the page.

Sometimes, mathematicians will talk about the cosines of the direction

angles to define the direction of a particular vector a in 3D space. We call such
values the direction cosines of a and denote them with lower case Greek letters

alpha (&), beta (), and gamma (y), as follows:

where

dira=(a,,7)

o= cos 6
B=cos 6,
y=cos 6,

For any vector a in Cartesian three-space, the sum of the squares of the direc-

tion cosines always equals 1. That is,

o’ + pr+y’=1
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We can also express this fact using the equation
cos’ 0+ cos” 6 + cos® 6, =1

where the expression cos? 6 means (cos 6)°.

Sum

We can calculate the sum of two vectors a = (x,y,,z) and b = (x,,y,,z,) in
standard form by adding their components individually with the formula

a+b=[(x,+x),0, +y)(z +z)]

This sum can, as in the 2D case, be found geometrically by constructing a par-
allelogram with a and b as adjacent sides. The sum a + b corresponds to the
diagonal of the parallelogram. Figure 9-7 shows an example. (The parallelogram
appears distorted because of perspective effects.)

a
(Xa,Ya:Za)

(Xb,yb,zb)

FIGURE 9-7 - We can add vectors in xyz-space using the “parallelogram method”
This is a perspective drawing, so the parallelogram appears distorted.
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Multiplication by Scalar

In 3D Cartesian coordinates, let’s define vector a using the coordinates
(x,,¥,,z,) when reduced to standard form. Suppose that we multiply this
vector a by a positive real scalar k. We can express the product using the

equation
ka = ak
=k (x,y,2)
= (kx, ky, kz )
If we multiply the vector a by a negative real scalar —k, then we have
—ka = a(—k)
= _k (xa;ya;za)

= (hx,~ky,—kz)

Let’s represent the direction angles for a as the ordered triple (6, ,6,,6,). The
direction angles for vector ka coincide with those for a, that is, (6, 6,,6.)
However, the direction angles for —ka all differ by 180° (n rad) from those for
a and ka, indicating that —ka points in precisely the opposite direction from a
and ka. We can obtain the direction angles for —ka by adding or subtracting 180°
(m rad) to or from each of the direction angles for ka, so that the resulting angles

are all positive but less than 360° (27 rad).

Dot Product

The dot product, also known as the scalar product and written a e b, of two
Cartesian three-space vectors a = (x,y,,z) and b = (x,,y,,z,) in standard form
equals a real number given by the formula

aeb=xx +yy +zz

You can also calculate the dot product from the vector magnitudes lal and Ibl
along with the angle 6 between a and b as measured going counterclockwise in
the plane containing them both. Multiply the two vector magnitudes by each
other, and then multiply the result by the cosine of the angle between the vec-
tors. You can use the formula

aeb=lallbl cos 0
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Cross Product

The cross product, also known as the vector product and written a X b, of two
vectorsa = (x,y,z ) and b= (x,,y,,z,) in standard form is a third vector that runs
perpendicular to the plane containing both a and b. Let 6 represent the angle
between vectors a and b as measured going counterclockwise in the plane con-
taining them both, as shown in Fig. 9-8. You can calculate the magnitude of the
cross-product vector a X b using the formula

la x bl = lal Ibl sin 6

In the example shown, a X b points upward at a right angle to the plane
containing the two vectors a and b.

If 0° < 6 < 180° (0 rad < 6 < w rad), you can use a trick called the right-hand
rule to ascertain the direction of a x b. Curl the fingers of your right hand in the
rotational sense that you want to express 0, the angle starting in the direction
of a and ending up in the direction of b. (Make sure that you don’t accidentally
go in the rotational sense from b to a!) Once you've got your hand in the correct
position, extend your thumb straight out as if you're “hitchhiking.” Your thumb
will then point in the direction of a x b.

axb
. A
Plane containing
both a and b
b 0
| >
( a
1
1
i
1
1
1
1
1
1
1
1
1
\4
bxa

FIGURE 9-8 - The vector b x a has the same magnitude as vector a x b,
but points in the opposite direction. Both cross-product vectors point in
directions perpendicular to the plane containing the two original vectors.
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TIP When 180° < 0< 360° (wrad < 8< 2xrad), the cross-product vector reverses
direction because its magnitude (as determined by the above formula) turns out
negative. We can see this fact when we note that sin 8> 0 when 0° < €< 180°
(0 rad < @< 7 rad), but sin < 0 when 180° < 8< 360° (xr rad < @< 27 rad). When
a formula gives us a negative vector magnitude going in a certain direction, we
should think of it as an equivalent positive magnitude (i.e., —1 times the negative
magnitude) in the opposite direction!

Unit Vectors

Any vector a, reduced to standard form so its starting point lies at the origin,
ends up at some point (x,,y,,z, ). We can break any such vector a down into the
sum of three mutually perpendicular vectors, each of which lies along one of
the coordinate axes as shown in Fig. 9-9:

a= (xa,ya,za)
= (x,0,0) + (0,,,0) + (0,0,z))
=x,(1,0,0) +y,(0,1,0) +2,(0,0,1)

ty

a
(Xa’yarza) (o!yavo)

+X

\4

(Xasyasza) = (XavaO)"' (O!yavo) + (O‘O!Za)

FIGURE 9-9 . In Cartesian three-space, we can break up any vector into a sum of
three component vectors, each of which lies on one of the coordinate axes.
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The vectors (1,0,0), (0,1,0), and (0,0,1) are called unit vectors because their
lengths all equal 1. Mathematicians and engineers name these three unit vectors
i, j, and k, as follows:

(1,0,0)=i
(0,1,0) =]
0,0,1)=k

The vector a shown in Fig. 9-9 breaks down as

a=(x,y,z,)

=xi+yj+zk

PROBLEM 9-6
Convert the vector b = (-2,3,~7) to a sum of multiples of the unit vectorsi,
j,and k.

SOLUTION
Envisioning the situation might require a keen “mind’s eye,” but you don’t
have to see the vectors to solve this problem. The vector breaks down
neatly as

b=(-2,3,-7)
=-2X%(1,0,0)+3x(0,1,0) +[-7 %X (0,0,1)]
=-2i+3j+(-7)k
=-2i+3j-7k

The equation of a flat geometric plane in Cartesian three-space resembles that
of a straight line in the Cartesian plane. We have an extra variable to contend
with, but the general equation format is basically the same.

Criteria for Uniqueness

We can uniquely define a geometric plane in Euclidean three-space according
to any of the following criteria:

e A point in the plane and a vector perpendicular to the plane

o Three points that don’t all lie on the same straight line



240 GEOMETRY DeMYSTiFieD

e Two intersecting straight lines

e Two parallel straight lines

General Equation of Plane

The simplest possible equation for a plane in Cartesian three-space derives
from the first of the foregoing criteria: a point in the plane and a vector that
runs normal (perpendicular) to the plane. Figure 9-10 shows a plane W in
Cartesian three-space, a point P = (x,,y,,z,) in plane W, and a vector (a,b,c) =
ai + bj + ck oriented normal to plane W. In this example, the vector (a,b,c)
originates at point P, not at the coordinate origin (0,0,0), because W doesn’t
pass through the coordinate origin at all! Nevertheless, we can base the values
x=a,y=>b, and z = ¢ for the vector on the standard form, as if the vector did
indeed start at the coordinate origin. Remember, all vectors having the same
length and the same direction are in effect equal to one another, regardless of
where their back-end (starting) points lie.

Vector .
(a,b,c) Point P
normal to W ty (X0, ¥0:20)

at P in plane W

+Z

FIGURE 9-10 - We can uniquely define a plane W on the basis of a point P in the plane and a
vector (a,b,c) normal to the plane. In this illustration, dashed portions of the coordinate axes lie
“behind” the plane.
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Once we know all these facts about a plane in Cartesian three-space, we have
enough information to uniquely define that plane and write its equation as

a(x-x,) +bly-y,) +c(z-2,)=0
We call the constants a, b, and ¢ the coefficients. We can also write the equation as

ax+by+cz+d=0

In this scenario, the value of d works out as
d =—(ax, + by, + cz,)

=—ax, - by, - cz,

Plotting a Plane

We can usually draw a graph of a plane in Cartesian three-space by determining
the points where the plane crosses each of the three coordinate axes. We can
then visualize the plane based on these points. Unfortunately, not all planes
cross all three of the axes in Cartesian xyz-space. If a plane runs parallel to one
of the axes, then that plane does not cross that axis. If a plane runs parallel to
the plane formed by two of the axes, then that plane crosses only the axis to
which it does not run parallel.

' B

= Still Struggling

Any plane in Cartesian three-space must cross at least one of the coordinate axes
somewhere. Geometric planes have theoretically infinite extent. If we start at
any point on a plane and travel around within that plane long enough, and if we
venture far enough away from our starting point, eventually we'll “hit” at least
one coordinate axis. In most planes, we'll eventually encounter two or all three
of the coordinate axes.

PROBLEM 9-7
Draw a graph of the plane W represented by the equation

—2x-4y+3z-12=0

241



242

GEOMETRY DeMYSTiFieD

[IrsomeN

To solve this problem, let’s see if we can find the points where the plane
crosses each of the coordinate axes. If we can find three such points, then
we can use those points to define the plane. (If we can’t find three such
points, we'll have to try some other scheme, but let’s not worry about that
conundrum unless it comes up!)

We can find the x-intercept, or the point where the plane W intersects
the x axis, by setting y =0 and z=0 and then solving for x as follows:

-2x-4x0+3%x0-12=0
Eliminating the “zero factors,” we get
-2x-12=0
When we add 12 to each side, we obtain
-2x=12
Finally, we divide through by -2, getting

x=12/(-2)
=-6

If we call the x-intercept point P, then
P=(_6I0I0)

We can find the y-intercept, or the point where the plane W intersects the
y axis, by setting x=0 and z=0 in the original equation and then solving
for y as follows:

-2X0-4y+3x0-12=0
Eliminating the “zero factors” gives us
-4y -12=0
Adding 12 to each side, we get

—4y=12
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Dividing through by —4 gives us the solution as

y=12/(-4)
=-3

If we call the y-intercept point Q, then
Q = (01_310)

We can determine the z-intercept, or the point where the plane W inter-
sects the z axis, by setting x=0 and y =0 in the original equation and then
solving for z as follows:

-2Xx0-4x0+3z-12=0
When we get rid of the “zero factors,” we have
3z-12=0
We can add 12 to each side to obtain
3z=12
Finally, we can derive the solution when we divide through by 3 to get

z=12/3
=4

If we call the z-intercept point R, then
R=1(0,0,4)

The plot of Fig. 9-11 shows the three points P, Q, and R as we’ve derived
them here:

P= (_61010)
Q= (01_310)
R=(0,0,4)
We can envision the position and orientation of the plane W on the

basis of these three points, because they don’t all lie along a single
line.
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Each division equals 1 unit

ty

Plane W

FIGURE 9-11 - lllustration for Problem 9-7. Dashed portions of the coordi-
nate axes lie “behind” the plane.

PROBLEM 9-8
Suppose that a plane contains the point (2,-7,0), and the vector 3i + 3j + 2k
runs normal to the plane. What's the equation of the plane?

SOLUTION
The vector 3i + 3j+ 2k is equivalent to (a,b,c) =(3,3,2). We know the coordi-
nates of one point in the plane; they are (x,y,z,) = (2,-7,0). Recall the gen-
eral formula for the equation of a plane in Cartesian three-space:

alx-x)+bly-y)+cz-z)=0

Plugging our known valuesa=3,b=3,c=2,x,=2,y,=-7,and z,=0 into
this formula, we get

3(x-2)+3[y-(-7)]1+2(z-0)=0
Simplifying, we obtain

3x-2)+3(y+7)+2z=0
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When we multiply out the terms in full, we have
3x-6+3y+21+2z=0
which streamlines to

3x+3y+2z=-15

Straight Lines

Straight lines in Cartesian three-space present a more complicated picture than
those in the Cartesian coordinate plane because we have an added dimension,
making the expression of the direction more complicated. But all linear equa-
tions, no matter what the number of dimensions, have one thing in common:
We can reduce any such equation to a form where no variable is raised to any
power other than 0 or 1.

Symmetric-Form Equation

We can represent a straight line in Cartesian three-space using a “three-way”
equation in three variables. Mathematicians call this type of expression a
symmetric-form equation. It takes the following form, where x, y, and z represent
the variables, (x,,y,,z,) represents the coordinates of a specific point on the line,
and a, b, and ¢ represent real-number constants:

(x-x)/a=(y-y)/b=(z-z)/c

If we want this equation to make sense, none of the three constants a, b, or ¢
can equal zero. If a=0 or b=0 or c=0, then we end up with a zero denominator
in one of the expressions, making it meaningless.

Direction Numbers

In the symmetric-form equation of a straight line, the constants a, b, and ¢ are
known as the direction numbers for that line. If we consider a vector m with its
back-end point at the origin and its “arrowed end” at the point (x,y,z) = (a,b,c),
then the vector m runs parallel to the line denoted by the symmetric-form
equation. We have

m=ai+bj+ck
where m constitutes the 3D equivalent of the slope of a line in the 2D Cartesian

plane. Figure 9-12 illustrates a situation of this sort for a line L containing a
point P = (x,,y,,z,) in Cartesian three-space.
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Line and vector
are parallel

P = (Xo.¥,20)

+Z +
A\
-y

FIGURE 9-12 - We can uniquely define a line L on the basis of a point P on the line and
a vector m = (a,b,c) that runs parallel to the line.

Parametric Equations

As you might suspect, infinitely many vectors can satisfy the requirement for
m as we defined it earlier. If we let t represent any nonzero real number, then
the vector

tm = (ta,tb,c)
= tai + tbj + tck

will work every bit as well as m for the purpose of defining the direction of a
line L. This handy fact leads to an alternative form for the equation of a line in
Cartesian three-space in the form of three equations:

x=x,+at
y=y,+bt
z=z,+ct

We call the nonzero real number t a parameter, and the above three expressions
a set of parametric equations for a straight line in Cartesian xyz-space.
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TIP Ifwewant to define an entire geometric line (perfectly straight and infinitely
long) on the basis of parametric equations, we must allow the parameter t to
range over the entire set of real numbers, including zero.

TIP Ifany of the direction numbers for a line in Cartesian three-space happens to
equal 0, then we must use parametric equations to describe the line. We can’t use
the symmetric form because it produces a denominator of 0 in one of the sym-
metric expressions.

PROBLEM 9-9

Find the symmetric-form equation for the line L shown in Fig. 9-13. Assume
that the vector m, as shown, runs parallel to L.

SOLUTION
The figure shows us that line L passes through the point

P=(-5,-4,3)

. m=3i+5)-2K

FIGURE 9-13 - lllustration for Problems 9-9 and 9-10.

2u7
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We've been assured that line L runs parallel to the vector
m=3i+5j-2k
The direction numbers for L equal the coefficients of m, as follows:

a=3
b=5

c=-2

We're given a specific point P on line L. If we say that P=(x_,y,,z ), then

X,=-5
yo=_4
z =3

0

We recall the general symmetric-form equation for a line in Cartesian three
space as

x-x)la=(y-y)b=(z-2z)/c
Plugging the above coordinates for P into this equation, we get
[x-(=5)1/3=[y-(-4)]/5=(z-3)/(-2)
which simplifies to
(x+5)/3=(y+4)/5=(z-3)/(-2)

PROBLEM9-10
Find a set of parametric equations for the line L shown in Fig. 9-13.

SOLUTION
Solving this problem involves merely rearranging the values of the six
known values for x, y,, z,, a, b, and c in the symmetric-form equation, and
then rewriting the data in the form of parametric equations. When we do
that, we get

x=-5+3t
y=-4+5t
z=3-2t



Quiz

Chapter 9 VECTORS AND CARTESIAN THREE-SPACE

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book. Use a calculator if you need one.

1.

Imagine a unit circle in the Cartesian plane, and a ray that runs from the origin
(0,0) outward and downward toward the right at an angle with respect to the x
axis, so that we have to turn 60° clockwise to get from the x axis to the ray. What’s
the x-value of the point where the ray passes through the unit circle, accurate to
three decimal places?

A. 0.500

B. —0.500

C. 0.866

D. -0.866

In the situation of Question 1, what'’s the y-value of the point where the ray
passes through the unit circle?

A. 0.500

B. —0.500

C. 0.866

D. —0.866

Suppose that a vector in the Cartesian plane originates at the point (3,-7) and
ends at the point (-7,3). What's the equivalent vector in standard form?

A. (10,10)

B. (-10,10)
C. (10-10)
D. (-10,-10)

Figure 9-14 shows two vectors called a and b, both of which share a common
back-end (originating) point, and which lie exactly perpendicular to each other.
The cross-product vector a X b runs

straight up.

B. straight down.

C. in the plane containing a and b, somewhere between them.

D. nowhere, because it’s the zero vector.

>

Plane containing
both a and b

FIGURE 9-14 - lllustration for Quiz Questions 4 through 6.
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10.

In the situation of Fig. 9-14, suppose that vector a measures exactly 1.2 units
Iong7while vector b measures exactly 0.8 unit long. What's the exact value of
aeb?

A0

B. 0.96

C. 15

D. 2

. In the situation of Fig. 9-14, the sum vector a + b runs

A. straight up.

B. straight down.

C. inthe plane containing a and b, somewhere between them.
D. nowhere, because it’s the zero vector.

What's the sum of the Cartesian xy-plane vectors (3,~7) and (6,2)?
A. (9-5)

B. (-9,5)

C. (-4,8)

D. The sum vector does not lie in the Cartesian xy-plane.

What's the dot product of the Cartesian xy-plane vectors (3,-7) and (6,2)?
A 0

B. 4

C. =10

D. —-126

What's the dot product of the vectors 4i + 2j — 3k and —2i + 4j + 7k?
A. -8i+8j—21k

B. 14

C. -21

D. We need more information to answer this question.

In Cartesian three-space, the equation 3x — 4y — 17z=10 represents a
A. straight line that passes through the origin.

B. straight line that does not pass through the origin.

C. plane that passes through the origin.

D. plane that does not pass through the origin.



chapter 1 O

Alternative
Coordinates

Cartesian coordinates aren’t the only way that we can locate and define points

in Euclidean two-space or three-space. Let’s learn how some other coordinate

systems work in two and three dimensions.

CHAPTER OBJECTIVES

In this chapter, you will

Define two-space coordinates in terms of distance and direction.
Examine simple geometric objects in polar coordinates.

“Compress” an infinite coordinate plane into a finite region.

Convert between Cartesian two-space and polar coordinates.

Learn how to define spatial orientation in terms of latitude and longitude.

See how astronomers and navigators define directions and locate points in the
heavens.

Define three-space coordinates in cylindrical and spherical terms.
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Polar Coordinates

Figures 10-1 and 10-2 show two versions of the polar coordinate plane. We plot
increasing values of the independent variable as angles 6 going counterclock-
wise from a reference axis pointing to the right (or “east”). We plot increasing
values of the dependent variable as a distance r (called the radius) going straight
outward from the origin in any direction. Therefore, we can denote the coordi-
nates of a point on the plane as an ordered pair (6,7).

The Radius

In the polar coordinate plane, the radius increments appear as concentric circles.
As the size of the circle increases, so does the value of 7. In Figs. 10-1 and 10-2,
we haven’t labeled the concentric circles in radial units. You can do that to fit
your own needs. Imagine each concentric circle, working outward, as increasing
by any number of units that you want. For example, when you move from a
given radial division (circle) outward to the next larger one, it might represent
a radius increase of 1, 5, 10, or 100 units.

270°

FIGURE 10-1 - The polar coordinate plane. In this rendition,
we specify the angle 6in degrees and the radius r in uniform
increments.
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/2

3n/2

FIGURE 10-2 - Another form of the polar coordinate plane.
In this case, we specify the angle 8in radians and the radius r
in uniform increments.

TIP No matter what increment “rate” you choose, the change in radius value
between any two concentric circles should always equal the change in radius
value between any two other adjacent concentric circles. In more technical terms,
the radial axis should be linear.

The Direction

We can express the direction in the polar plane in degrees or radians counter-
clockwise from a reference axis pointing to the right or “east.” In Fig. 10-1, the
direction 6 appears in degrees. Figure 10-2 shows the same polar plane, using
radians to express the direction. We don’t need to use the “rad” abbreviation
here; it’s obvious that radians are intended from the fact that the angles all
constitute multiples of .

TIP Regardless of whether you express angles in degrees or radians, you should make
certain that the angular scale in the polar plane proceeds in a linear fashion. In other
words, the physical angle on the graph should always vary in direct proportion to the
value of the angle @as you turn counterclockwise from the reference axis.
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Negative Radii

In polar coordinates, we can specify a negative value for radius and nevertheless
define the position of a point as long as we have an expression for its angle as
well. If we encounter a point for which 7 is given as a negative value, we can
multiply r by -1 so that it becomes positive, and then add or subtract 180°
(r rad) to or from the direction angle. That’s like saying, “Travel 10 kilometers
east” instead of “Travel —10 kilometers west.” We must allow negative radius
values in our polar system if we want to fully render graphs for mathematical
functions whose ranges can attain negative values.

Nonstandard Directions

It’s okay to have nonstandard direction angles in polar coordinates: angles that
represent rotation through more than a full circle, or angles that represent
clockwise rotation rather than counterclockwise rotation. If the value of 6
equals 360° (27 rad) or more, it represents at least one, and likely more than
one, complete counterclockwise rotation from the 0° (O rad) reference axis. If
the direction angle is less than 0° (0 rad), it represents clockwise rotation from
the reference axis instead of counterclockwise rotation.

TIP We must allow nonstandard direction angles in order to graph figures that
represent functions whose domains stray outside the standard span of angular
values (i.e., outside the span 0° <6< 360°or 0 <0< 27).

proBLEM 10-1
Provide an example of a geometric object that represents a true mathe-
matical function when we draw it on a polar coordinate plane, but not
when we draw it on a Cartesian coordinate plane.

SOLUTION
Let’s recall the definitions of the terms relation and function from Chap. 6.
When we talk about a function fin polar coordinates, we can write r=£(8).
A simple function of &in polar coordinates is a constant function such as

f(e)=3

In polar coordinates, f(6) constitutes an alternative way to denote r, the
radius. Therefore, the above-defined function ftells us that r=3. When we
graph it in polar coordinates, we obtain a circle with a radius of 3 units,
centered at the origin.
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In Cartesian coordinates, the equation of the circle with radius of 3 units
is more complicated than the polar equation. We have

xX*+y*=9

where 9 = 32, the square of the radius. If we let y represent the dependent
variable and x represent the independent variable in this situation, we can
rearrange the equation of the circle to get

y=i_ (9 _x2)1/2

The circle having a radius of 3 units, and centered at the origin, represents
a true mathematical function in polar coordinates, but not in Cartesian
coordinates.

Still Struggling

If we say that y = g (x) and then go on to claim that g constitutes a Cartesian
coordinate function of x in the foregoing case, we're mistaken. There exist values
of x (the independent variable) that produce two values of y (the dependent
variable). For example, when we set x =0, we end up with y = £3. If we want to
say that g is a relation in Cartesian coordinates, that’s okay, but we can't call it a
true mathematical function.

Some Examples

Circles, ellipses, spirals, and other figures with complicated equations in Cartesian
coordinates can sometimes be portrayed more simply in polar coordinates. In the
following examples, let’s express the polar direction 6 in radians by default.

Circle Centered at Origin

We can portray the equation of a circle centered at the origin in the polar coor-
dinate plane with the general formula

r=a

where a represents a positive real-number constant. Figure 10-3 illustrates this
situation.
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3m/4
T 0
Sm/4 Tr/4
3m/2
FIGURE 10-3 - Polar graph of a circle centered at the
origin.

Circle Passing through Origin

The general form for the equation of a circle passing through the origin and
centered at the point (6,,7,) in the polar plane (Fig. 10-4) is

r=2r,cos (6-6,))

Remember that the abbreviation “cos” refers to the trigonometric cosine function.
In this case, we must find the cosine of the difference between two angles.

Ellipse Centered at Origin

We can determine the equation of an ellipse centered at the origin in the polar
plane using the formula

r = ab/(a? sin? 0 + b? cos? 6)'?

where a and b are positive real-number constants. Remember that the abbre-
viation “sin?” means the square of the sine of the indicated angle, while the
abbreviation “cos?” means the square of the cosine of the indicated angle.

On an ellipse that we express in the foregoing manner, the constant a repre-
sents the distance from the origin to the curve as measured along the “horizon-
tal” ray 6= 0, and the constant b represents the distance from the origin to the
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FIGURE 10-4 - Polar graph of a circle passing through
the origin.

curve as measured along the “vertical” ray 6 = n/2. Figure 10-5 illustrates this
arrangement.

TIP Thevaluesaandb representthe lengths of the semiaxes of the ellipse. We call
the greater of these two values the length of the major semiaxis. We call the lesser
of these two values the length of the minor semiaxis.

Hyperbola Centered at Origin

The general form of the equation of a hyperbola centered at the origin in the
polar plane is

r = ab/(a’ sin? 6 — b? cos? 6)'

where a and b represent positive real-number constants. This equation closely
resembles the equation for the ellipse. However, instead of having a plus sign
in the denominator, the hyperbola’s equation has a minus sign there.

Imagine a rectangle D whose center lies at the coordinate origin, whose vertical
edges lie tangent to the hyperbola, and whose vertices (corners) lie on the asymp-
totes of the hyperbola as shown in Fig. 10-6. (The asymptotes are the dashed lines
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FIGURE 10-5 - Polar graph of an ellipse centered at the
origin.

3m/2

FIGURE 10-6 - Polar graph of a hyperbola centered at
the origin.
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that, combined, form a large “X” centered at the origin. The curves approach the
asymptote lines as we move outward along them, but the curves never actually
reach the asymptotes.) In the above general equation, a represents the distance
from the origin to either vertical side of rectangle D as measured along the “hori-
zontal” ray =0, and b represents the distance from the origin to either horizontal
side of rectangle D as measured along the “vertical” ray 6= 1/2.

TIP Thevalues a and b represent the lengths of the semiaxes of the hyperbola.
We call greater of these two values the length of the major semiaxis. We call
the lesser of these two values the length of the minor semiaxis.

Lemniscate

The general form of the equation of a lemniscate (also called a figure-eight) cen-
tered at the origin in the polar plane is

r=a (cos 26)"?

where a represents a positive real-number constant. Figure 10-7 shows a generic
situation of this sort. We can calculate the interior area A of each loop of the
figure using the formula

A=a?

/2

3n/4 /4

Sm/4 Tr/4

3n/2

FIGURE 10-7 - Polar graph of a lemniscate centered
at the origin.
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Three-Leafed Rose

We can express the general form of the equation for a three-leafed rose centered
at the origin in the polar plane as

r=a cos 30

or as
r=asin 30

where a represents a positive a real-number constant. Figure 10-8A shows a
generic cosine version of the curve. Figure 10-8B shows a generic sine version.

Four-Leafed Rose

The general form of the equation of a four-leafed rose centered at the origin in
the polar plane is given by either of the following two formulas:

r=acos 20
or
r=asin 20

where a represents a positive a real-number constant. Figure 10-9A shows a
generic cosine version of the curve. Figure 10-9B shows a generic sine version.

Spiral
The general form of the equation of a spiral centered at the origin in the polar
plane is

r=af

where a represents a positive a real-number constant. Figure 10-10 shows a
generic example of this type of spiral, called the spiral of Archimedes because of
the uniform manner in which its radius increases as the angle increases.

Cardioid

The general form of the equation for a cardioid centered at the origin in the
polar plane is

r=2a (1 + cos 6)
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FIGURE 10-8 - A. Polar graph of a three-leafed rose with
equation r=a cos 36. B. Polar graph of a three-leafed rose
with equation r=a sin 36.
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FIGURE 10-10 - Polar graph of a spiral; illustration for

Problem 10-2.

where a represents a positive real-number constant. Figure 10-11 provides

a generic example of this type of curve, also informally called a “heart” or

“valentine.”

prOBLEM 10-2

If we let each radial division in Fig. 10-10 represent 1 unit, what'’s the equa-

tion of the spiral as shown?

SOLUTION

Let’s follow the curve outward, starting at the origin and proceeding coun-
terclockwise, and then look at the radii for several specific angles:

e When @ =7/2, we haver=1

e When @ =7, we haver =2
When @ =37/2, we haver=3
When 6 =21, we haver=4
When @ =57/2, we haver=5
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FIGURE 10-11 - Polar graph of a cardioid; illustration for
Problem 10-3.

We can solve for a by substituting the foregoing number pairs in the gen-
eral equation for the spiral. Actually, one point will suffice! We know that
the point (6,r) = (m,2) lies on the spiral, and that’s all we need. We have

r=aé
Substituting 2 in place of rand win place 8, we obtain
2=arn
When we divide through by &, we get
2/n=a
Now we know that a = 2/m, so the equation of the spiral must be
r=(2/m)@

or, without parentheses,
r=20/n

prosLEm 10-3
If we let each radial division in Fig. 10-11 represent 1 unit, what's the equa-
tion for the cardioid as shown?




Chapter 10 ALTERNATIVE COORDINATES 265

[gsownow

Note that if #=0, then r=4. Let’s solve for the constant in the general equa-
tion by “plugging” this number pair into that equation. Once again, the
general equation is

r=2a(1+cos 0)
We know that (6r) =(0,4), so we have
4=2a(1+cos0)

Because cos 0 =1, we can simplify the above equation to

4=2a(1+1)
and further to
4=4a
Dividing through by 4, we get
1=a

Now we know that a =1, so the equation of the cardioid of Fig. 10-11 is
r=2(1+cos 6)
or, without parentheses,

r=2+2cos @

Compression and Conversion

Let’s briefly examine a nonstandard coordinate system that can (at least)
stimulate the imagination. Then we’ll learn how to convert coordinate values
between the polar plane and the Cartesian plane.

Geometric Polar Plane

Figure 10-12 shows a polar plane with a peculiar nonlinear radial scale: It's
graduated geometrically instead of arithmetically (the usual case). The point



266

GEOMETRY DeMYSTiFieD

AN
[ AN
- R AN
- ~. NI
3m/4 L7 AL AN
/, \\ \\
/ . \
7 \ \
/7 AY \
7 \
/7 \
/ \
/ \
1 \
1 \
1
! VPRI U P I
T — 1
s 1 2 3 ©
\\ '-
\ I
\ 1
\ 7’
\ 7
\ /
N p
N p
N ,
N ,
<
N .
Std s o In/a
3n/2

FIGURE 10-12 - A polar coordinate plane with a
“geometrically compressed” radial axis.

corresponding to 1 on the r axis lies halfway between the origin and the outer
periphery, which we label as e (the “infinity” symbol). We place the points for
radii of 2, 3, 4, and so on halfway between previous positive integer points and
the outer periphery. In this way, we can portray the entire polar coordinate
plane within an open circle of finite radius. The dashed circle at the outer
extreme tells us that we do not actually define the value = c.

We can expand or compress the radial scale of our infinite polar coordinate
(IPC) system if we multiply or divide all the values on the r axis by a constant.
This sort of modification allows us to plot a wide variety of relations and func-
tions, minimizing distortion in particular regions of interest. All versions of the
IPC introduce distortion into graphs that we draw. We observe the greatest
distortion (relative to the conventional polar coordinate plane) near the periph-
ery, and we observe the least distortion near the origin.

When we create an IPC system, we can use the same angular scale as we do with
the ordinary polar coordinate plane. In Fig. 10-12, these angles appear in radians.

TIP Theforegoing “geometric axis compression” scheme also works with the axes
of rectangular coordinates in two or three dimensions. You'll rarely (if ever)
encounter schemes such as these in common mathematical literature, but they
can provide “views to infinity” that other coordinate systems cannot do.
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Coordinate Conversions

Now that we've had a “glimpse of infinity,” let’s return to ordinary polar coordi-
nates. Figure 10-13 shows a point P = (x,,y,) = (6,,7,) graphed on superimposed
Cartesian and polar coordinate planes. If we know the Cartesian coordinates, we
can convert to polar coordinates using the following formulas:

0, = arctan (y,/x,) if x, > 0
6, = 180° + arctan (y,/x,) if x, < O (for 6, in degrees)
6, = 1 + arctan (y,/x,) if x, < O (for 6, in radians)
ro= (.2 + v,
We can’t have x,, = 0 because that value produces an undefined quotient. If

a value of 6, thus determined happens to be negative, we can add 360° or 2n
rad to get the “legitimate” value.

Cartesian
X axis

Cartesian

y axis ——<————
F——

3n/2 0

FIGURE 10-13 - Conversion between polar and Cartesian (rectangular)
coordinates. Each radial division represents 1 unit. Each division on the
x and y axes also represents 1 unit.
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We can convert polar coordinates to Cartesian coordinates using the simpler

formulas

X, =1, C0s 6,
and

Y, =1, sin 6,
Relation Conversions

We can use the foregoing formulas, in more generalized forms, to convert
Cartesian-coordinate relations to polar-coordinate relations and vice versa. The
generalized Cartesian-to-polar relation-conversion formulas appear as follows:

6 = arctan (y/x) if x >0
6=180° + arctan (y/x) if x < O (for 0in degrees)
0 =7+ arctan (y/x) if x < O (for 6 in radians)
r= (2 +y2)2
The generalized polar-to-Cartesian relation-conversion formulas are

x =rcos 6

and

y=rsin 0

TIP When you convert from polar to Cartesian coordinates or vice versa, a rela-
tion that’s a function in one system might constitute a function in the other
system as well—but not always. Make up a few examples and see what happens
in each case.

proBLEM 10-4
Consider the point (6,r)) = (135°,2) in polar coordinates. What'’s the
ordered-pair (x,y,) representation of this point in Cartesian coordi-
nates, accurate to three decimal places?

SOLUTION
Use the conversion formulas above for specific coordinate values. Once
again, they are

X,=r,cos 6,
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and
Y,=r,sin 6,

Plugging in the numbers produces the following values, rounded off to
three decimal places:

Xx,=2cos 135°
=2 X% (-0.707)
=-1.414

and

Y,=2sin 135°
=2x0.707
=1.414

Therefore, the coordinates of the point in the Cartesian plane are

Xy, =(-1.414,1.414)

The Navigator's Way

Navigators and military people use a form of polar coordinate plane similar to
the one that mathematicians favor, except that the angle expression goes in the
opposite direction. The radius is usually called the range, and real-world units
are commonly specified, such as meters (m) or kilometers (km). The angle, or
direction, is usually called the azimuth, bearing, or heading. We express this angle
in degrees clockwise from north. Figure 10-14 shows the basic system. We sym-
bolize the azimuth as & (the lowercase Greek alpha), and the range as r.

What Does “North” Mean?

At any point on the earth’s surface, we have two distinct ways of defining
“north,” or 0°. The more accurate, preferred, and generally accepted stan-
dard uses geographic north, also known as true north. That’s the direction in
which we must travel over the surface if we want to follow the shortest
possible route to the north geographic pole. The less accurate standard uses
magnetic north, the direction indicated by the needle in a hiker’s or mariner’s
magnetic compass.
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Azimuth,
bearing,
s, or heading o

~
West East
270° 90°
Range r

FIGURE 10-14 - The navigator’s polar coordinate plane. We express the bear-
ing o in degrees and the range r in real-world units.

—

= Still Struggling

For most locations on the earth’s surface, some difference exists between
geographic north and magnetic north. This difference, measured in degrees, is
called the magnetic declination, or sometimes simply the declination. Navigators
in “the olden days” had to know the magnetic declination for their location
whenever they couldn't use the stars to determine geographic north. Nowadays,
most navigators have access to electronic navigation systems such as the Global
Positioning System (GPS) that render the magnetic compass irrelevant—provided
that all the hardware and software work properly! Even today, oceangoing
vessels still have magnetic compasses on board in case of a failure of the more
sophisticated equipment.
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Strict Restrictions

In so-called navigator’s polar coordinates (NPC), we can never have a negative
value for the range. This constraint reflects the fact that in the “real world,”
nothing can lie any closer to us than the point where we stand! No navigator
talks about traveling —20 kilometers on a heading of 270°, for example, when
they really mean that they want to go 20 kilometers on a heading of 90°.

When we work out complicated navigational problems, we’'ll sometimes
derive a negative value for the range. In a case of that sort, we should multiply
the derived negative value of r by —1 (thereby making it positive with the same
absolute value), and we should increase or decrease the value of o by 180° so
that the azimuth remains at least 0° but less than 360°.

The azimuth, bearing, or heading in NPC must likewise conform to certain
values. The smallest possible value of o is 0°, representing north. As we turn
clockwise (as a bird might see it from some vantage point high above us), the
values of o increase through 90° (east), 180° (south), 270° (west), and ulti-
mately approach, but never reach, 360° (north again).

We can put the above restrictions into equation form quite simply: When-
ever we use the NPC system of point location, we must have

0°< o< 360°
and

r=>0

Mathematician’s Polar versus Navigator’s Polar

Once in awhile, we’ll want to convert from mathematician’s polar coordinates
(MPC), which constitutes our default system, to NPC, or vice versa. The radius
of a particular point, 7, has exactly the same meaning in both systems, so that
conversion process is triviall However, the angle definitions differ between the
two systems.

If we know the direction angle 6, of a point in MPC and we want to find the
equivalent azimuth angle o/ in NPC, we must make sure that we express 6, in
degrees, not radians. Then, depending on the value of §, we can use the conver-
sion formulas

o, = 90° - 6, if 0° < 6, < 90°
or

o, = 450° - 6, if 90° < 6, < 360°
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If we know the azimuth ¢ of a point in NPC and we want to find the
equivalent direction angle 6, in MPC, then we can use one or the other of the
following conversion formulas, depending on the value of o

0, =90° — o if 0° < o, < 90°
or

6, = 450° — oy, if 90° < o1, < 360°

Navigator’s Polar versus Cartesian

Suppose that we want to convert the position of a particular point from NPC
to Cartesian coordinates. Here are the conversion formulas for translating the
coordinates for a point (¢,r,) in NPC to a point (x,,y,) in the Cartesian
xy-plane:

X, =7, sin &,
and

Y, =T, COs 0
These formulas resemble the ones that we would use to convert MPC to
Cartesian coordinates, except that the sine and cosine functions apply to dif-
ferent angles.

In order to convert the coordinates of a point (x,,y,) in Cartesian coordinates
to a point (¢, 7,) in NPC, we can use the following formulas:

o, = arctan (x,/y,) if y, >0
o, = 180° + arctan (x,/y,) if y, < 0

ry = (2,2 +v,2)2

' Y

= Still Struggling

We can't have y, = 0 in the foregoing situation, because that would produce an
undefined quotient. If a value of « thereby determined turns out negative, we
can add 360° to get the “legitimate” value.
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proBLEM 10-5
Imagine that a radar display uses NPC to indicate the presence of a hover-
ing object at a bearing of 300° and a range of 40 kilometers. If we say that
a kilometer equals a “unit” by default, what are the coordinates (g,r,) of
this object in MPC? Express 6, in both degrees and radians.

SOLUTION
We know the NPC coordinates as (o,r,) = (300°,40). The value of r, the
radius, equals the range, in this case 40 kilometers. As for the angle g, we
can recall the conversion formulas given above. In this case, because ¢ is
greater than 90° and less than 360°, we have

6,=450°- q,
=450° - 300°
=150°

It follows that
(8,r,) =(150°,40)

To express 6, in radians, recall that there are 2w rad in a full 360° circle or
rad in a 180° angle. Note that 150° equals exactly 5/6 of 180°. Therefore

6,=5n/6 rad
so we can say that

(8,r,) = (150°,40)
= (57/6,40)

TIP We can leave the “rad” off the angle designator in the foregoing situation.
When we see no units specified for the measure of an angle, and if the figure
contains some multiple or fraction of 7, we can assume that radians are intended
by default.

proBLEM 10-6
Imagine that you're traveling on an archeological expedition, and you
unearth a stone tablet with a treasure map chiseled on its face. The map
says “You are here” next to an X, and then says, “Go north 40 paces and then
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west 30 paces.” Let the westerly compass direction correspond to the
negative x axis of a Cartesian coordinate system. Let east correspond
to the positive x axis, south correspond to the negative y axis, and
north correspond to the positive y axis. Also suppose that you let one
“pace” represent 1 “unit” of radius in the NPC system and also 1 “unit”
on either axis in the Cartesian system. If you're ambitious enough to
look for the treasure and lazy enough so you insist on walking in a
straight line to reach it, how many paces should you travel, and in what
direction, in NPC? Determine your answer to the nearest degree and to
the nearest pace.

SOLUTION

Determine the ordered pair in Cartesian coordinates that corresponds to
the imagined treasure site. Define the origin as the spot where you
unearthed the map. If you let (x,y,) represent the point on the earth’s
surface beneath which the treasure supposedly exists, then “40 paces
north” translates to y, = 40, and “30 paces west” translates to x, = -30.
Therefore

(Xolyo) = (_30140)

Because y, > 0, you can use the following formula to determine the
heading a;:

a,=arctan (x,/y,)
=arctan (-30/40)
=arctan -0.75
=-37°

To get this angle into the standard form, you must add 360°, obtaining

a@,=-37°+360°
=360°-37°
=323°

To find the value of the range r,, you can use the distance formula

— 2 2\1/2
r,=x2+y,?)
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Plugging in x,=-30 and y, = 40, you get

r,=[(-30%) + 4072
= (900 + 1600)"”
=2500""
=50

You have now determined the NPC coordinates as
(oy,r,) =(323°,50)

You should walk 50 paces, approximately north by northwest. Then, if you
have a shovel, you can go ahead and dig. Good luck!

Alternative 3D Coordinates

Let’s look briefly at the basics of the most common coordinate systems that
scientists, navigators, and mathematicians use when working on the surface of
the earth or in “real-world” three-space.

Latitude and Longitude

We can use latitude and longitude angles to uniquely define the position of any
point on the surface of a sphere. Figure 10-15A illustrates the system for defin-
ing or locating geographic points on the earth’s surface. The polar axis connects
two specified points that lie at antipodes (opposing surface locations) on
the sphere. We assign these points latitude values of 6 = 90° (north pole) and
0 =-90° (south pole). The equatorial axis runs outward from the center of the
sphere at a right angle to the polar axis. We assign this axis the longitude value
of ¢p=0°.

We can express latitude 6 in the positive sense (north) or the negative sense
(south) with respect to the plane containing the equator. Longitude ¢ is mea-
sured counterclockwise (positively) and clockwise (negatively) relative to the
equatorial axis. We restrict the ranges of the angle values to

-90°<6<90°
for latitude, and

~180° < ¢ < 180°
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FIGURE 10-15 . A. Latitude and longitude coordinates for locating points on
the earth’s surface. B. Declination and right ascension coordinates for locating

points in the sky.
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for longitude. The latitude range includes the positive and negative extremes,
but the longitude range includes only the positive extreme.

TIP On the earth’s surface, the half-circle connecting the 0° longitude line with
the poles passes through the town of Greenwich, England (not Greenwich Village
in New York!) and is known as the Greenwich meridian or the prime meridian.
Longitude angles are defined going east (positive) and west (negative) from the
prime meridian.

Celestial Coordinates

Celestial latitude and celestial longitude coordinates comprise extensions of the
earth’s latitude and longitude into the heavens. The set of coordinates that we
use for geographic latitude and longitude applies to this system as well. An
object with celestial latitude and longitude coordinates (6,¢ ) appears at the
zenith in the sky (directly overhead) from the point on the earth’s surface with
latitude and longitude coordinates (6,¢).

Declination and right ascension define the positions of objects in the sky rela-
tive to the stars. Figure 10-15B portrays the essence of this system. The declina-
tion angle 6 is identical to the celestial latitude. (Don’t get celestial declination
confused with magnetic declination, which we defined earlier in this chapter.
The two parameters represent entirely different things!) We express the right
ascension angle ¢ eastward along the celestial equator (a vast, imaginary circle in
the sky, with the earth at its center, that lies in the same plane as the earth’s
equator) from the vernal equinox (the position of the sun in the heavens at the
moment spring begins in the northern hemisphere, usually on March 20 or 21).
We restrict the angle values to

-90°<0<90°
and
0° < ¢ < 360°

Note that the declination range includes the positive extreme and the negative
extreme, but the right ascension range includes only the positive extreme.
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= Still Struggling

Astronomers sometimes use a specialized, rather peculiar scheme to define and
measure the values of right ascension. Instead of expressing the angles in
degrees or radians, they specify units of hours, minutes, and seconds based on
24 hours in a complete circle (corresponding to the 24 hours in a day). In that
system, each hour of right ascension equals 15° (1/24 of a full circle). If that isn't
confusing enough, minutes and seconds of right ascension differ from the
chronological minutes and seconds that we encounter in everyday life, and also
from the minutes and seconds of arc in the conventional geometric sense. One
minute of right ascension equals 1/60 of an hour or 1/4 of a degree. One second
of right ascension equals 1/60 of a minute or 1/240 of a degree. Nevertheless, in
the case of declination angles, 1T minute equals 1/60 of an angular degree and
1 second equals 1/60 of a minute, or 1/3600 of a degree, the same as minutes
and seconds of arc in the conventional geometric sense.

Cylindrical Coordinates

Figure 10-16 shows two systems of cylindrical coordinates for specifying the
positions of points in three-space.

In the system of Fig. 10-16A, we start with Cartesian xyz-space. Then we
define an angle 6in the xy-plane, in degrees or radians (but usually radians) turn-
ing counterclockwise from the positive x axis, which we call the reference axis.
Given a point P in space, we consider its projection P’ onto the xy-plane. We
specify the position of P with the ordered triple (6,r,h), defined as follows:

o The value of 0 tells us the measure of the angle going counterclockwise
from the reference axis to P’ in the xy-plane.

e The value of r represents the distance or radius from the origin straight

out to P'.

o The value of h represents the distance, called the altitude or height, of P

above the xy-plane. (The point P lies below the xy-plane if and only if
h<0)

Mathematicians, as well as some engineers and scientists, use this system of
cylindrical coordinates.
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FIGURE 10-16 - A. Mathematician’s cylindrical coordi-
nates for defining points in three-space. B. Astronomer’s
and navigator’s cylindrical coordinates for defining
points in three-space.

In the system shown by Fig. 10-16B, we again start with Cartesian xyz-space.
The xy-plane corresponds to the surface of the earth in the vicinity of the
origin, and the z axis runs straight up (positive z values) and straight down
(negative z values). The angle 6is defined in the xy-plane in degrees (but never
radians) turning clockwise from the positive y axis, which corresponds to
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geographic north. Given a point P in space, we consider its projection P’ onto
the xy-plane. We specify the position of P with the ordered triple (6,7,h), defined
as follows:

e The value of 0 tells us the measure of the angle going clockwise from
geographic north to P’ in the xy-plane.

e The value of r represents the distance (called the range) from the origin
to P.

e The value of h represents the altitude of P above the xy-plane. (The point
P lies below the xy-plane if and only if h < 0.)

Navigators and aviators use this system of cylindrical coordinates to define or
locate points in space over a limited region of the earth’s surface. The system
only works over a geographic region small enough so that the earth’s curvature
does not significantly affect the values.

Spherical Coordinates

Figure 10-17 shows three systems of spherical coordinates for defining points in
space. The first two are used by astronomers and aerospace scientists, while the
third one is of use to navigators and surveyors.

In the scheme of Fig. 10-17A, we specify the location of a point P with the
ordered triple (6,¢,7), defined as follows:

o The value of 8 tells us the declination of P.
o The value of ¢ tells us the right ascension of P.

e The value of r tells us the distance (called the radius) from the origin
to P.

In this example, we express the angles in degrees (except in the case of the
astronomer’s version of right ascension, which is expressed in hours, min-
utes, and seconds as defined earlier). Alternatively, we can express the angles
in radians. This system remains fixed relative to the stars, even as the earth
rotates.

Instead of declination and right ascension, the variables 6 and ¢ can represent
celestial latitude and celestial longitude, respectively, as shown in Fig. 10-17B.
This system remains fixed relative to the earth. Therefore, the positions of
celestial objects constantly change with time as the earth “turns underneath the
heavens.”
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FIGURE 10-17 - A. Spherical coordinates for defining points in three-space,
where the angles represent declination and right ascension. B. Spherical coordi-
nates for defining points in three-space, where the angles represent celestial lati-
tude and longitude.
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Zenith
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FIGURE 10-17 - C. Spherical coordinates for defining points in three-space,
where the angles represent elevation (angle above the horizon) and
azimuth (also called bearing or heading).

There’s yet another alternative: 6 can represent elevation (the angle above
the horizon) and ¢ can represent the azimuth (bearing or heading), measured
clockwise from geographic north for a specific location on the earth’s surface.
In this case, the reference plane corresponds to the horizon, not the equator,
and the elevation can range between, and including, -90° (the nadir, or the
point directly underfoot) and +90° (the zenith, or the point directly overhead).
Figure 10-17C illustrates this system. Some people prefer to express the angle
0 with respect to the zenith, rather than with respect to the horizon. In that
case, the angular range becomes 0° < 6 < 180°.

PROBLEM 10-7
What are the celestial latitude and longitude of the sun on the first day of
spring in the northern hemisphere, when the sun lies at the vernal equinox

in the plane of the earth’s equator?

SOLUTION

The celestial latitude of the sun at the vernal equinox equals 0°, which
equals the latitude of the earth'’s equator. The celestial longitude depends
on the time of day. It’s 0° (the Greenwich meridian) at high noon in
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Greenwich, England or any other location at 0° longitude. From there, the
celestial longitude of the sun proceeds west at the rate of 15° per hour of
time (360° per 24-hour solar day).

proBLEM 10-8
Imagine that you stand in a huge, perfectly flat field and fly a kite on a
string 500 meters long. The wind blows directly from the east. The kite hov-
ers at an altitude of 400 meters above the ground. If your body represents
the coordinate origin and if you let the distance units of your system equal
1 meter, what’s the position of the kite in the cylindrical coordinate
scheme preferred by navigators and aviators?

SOLUTION
You can define the position of the kite with the ordered triple (gr,h), where
O represents the angle measured clockwise from geographic north to a
point directly under the kite, r represents the distance from the origin to a

point on the ground directly under the kite, and h represents the altitude
of the kite above the ground. Because the wind blows from the east, you
know that a point on the surface directly under the kite must lie west of the
origin (represented by your body). Therefore @ = 270°. The kite hovers at
an altitude of 400 meters, so h =400. You can find the value of r using the
theorem of Pythagoras. You know that h = 400 units and the kite string
measures 500 units in length, so

r?+4002=500
Expanding the squares of the numbers, you get
r?+ 160,000 = 250,000
You can subtract 160,000 from each side to obtain
r*=250,000 - 160,000
which simplifies to

r*=90,000
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and finally to

r=(90,000)"2
=300

Therefore, in the system of cylindrical coordinates preferred by navigators
and aviators, you can express the position of the kite in three-space as

(@r,h)=(270°,300,400)
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QuiIz

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. Figure 10-18 s a polar-coordinate graph showing a particular point P. What's the
x coordinate of P in the Cartesian xy-plane?

A. -4
B. -2
C. -8
D. —m/2

2. In the situation of Fig. 10-18, what'’s the y coordinate of point P in the Cartesian
xy-plane?

A —4

B. -2
C. -8
D. —m/2

/2

3n/2
FIGURE 10-18 - lllustration for Quiz Questions 1 through 4.
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3.

In the graph of Fig. 10-18, suppose that we call the coordinate origin point Q.
What's the equation of the open-ended ray QR in the polar coordinate system
indicated here?

A. 6=5mn/4

B. 6=rm/4

C. r=—n/2

D. r=4n/0

Suppose that you draw a Cartesian xy-plane coordinate grid directly on top of
the polar coordinate grid in Fig. 10-18. Then you connect points Q and R with a
straight line PQ that runs off forever in both directions. What’s the equation of
line PQ in the Cartesian xy-plane? Here’s a hint: You'll need some of the knowl-
edge that you gained in Chap. 6, along with what you learned in this chapter.
A x=4

B. y=>5mn/4

C. y=4x

D. y=x

Which of the following graphical objects portrays a true mathematical function
of x in the Cartesian xy-plane but does not represent a true mathematical func-
tion of @in MPC? Here’s a hint: You'll need some of the knowledge that you
gained in Chap. 6, along with what you learned in this chapter.

A. Astraight, vertical line that passes through the coordinate origin

B. A straight, horizontal line that passes through the coordinate origin

C. Acircle that does not contain the coordinate origin

D. A straight, horizontal line that does not pass through the coordinate origin

Figure 10-19 shows a point Pin a cylindrical three-space coordinate system. The
angle coordinate #equals 140°, the radius coordinate r equals 6 units, and the

P z
2 A
8 uinits
P
\\ N
6 units

Origin

FIGURE 10-19 - lllustration for Quiz Questions 6 and 7.
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altitude or height coordinate h equals 8 units as shown. We call the origin point
Q. What's the length of line segment PQ, representing the direct distance in
three-space between point P and the origin?

. The square root of 48 units

B. 10 units

C. 12 units

D. 14 units

>

. Suppose that in the situation of Question 6 and Fig. 10-19, we add 90° to the
direction angle, thereby obtaining the coordinates (4r,h) = (230°,6,8) for point
P.What happens to the length of line segment PQ in this case?

A. It becomes 230/140 as great.

B. It becomes 140/230 as great.

C. Itdoes not change.

D. We need more information to answer this question.

. One minute of right ascension, as an astronomer would define it, represents an
angle equivalent to

A. 1/1440 of a full circle.

B. 1/720 of a full circle.

C. 1/(4m) of a full circle.

D. 1/m of a full circle.

. Figure 10-20 shows a point P in a spherical three-space coordinate system where
the angle @represents celestial latitude, the angle ¢ represents right ascension
(in degrees), and the radius r represents the distance from the origin, where you

Direction V
6 =90°
A
P
.\
o /900/'¢=900
9 il ¢=0°
=180° B
Vernal
s 270‘0/ equinox
Plane W
4
6 =-90°

FIGURE 10-20 - lllustration for Quiz Questions 9 and 10.
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stand as you observe the heavens. What does “Direction V" represent, as
shown?

A. The zenith as you see it

B. The north geographic pole

C. The celestial equator

D. The north celestial pole

10. In the situation of Question 9 and Fig. 10-20, what does W represent?
A. The plane containing the earth’s equator
B. The plane containing the earth'’s axis
C. The plane representing the horizon
D. The plane representing the earth’s orbit around the sun



chapter 1 1

Hyperspace and
Warped Space

Some people can easily envision hyperspace (space of more than three dimen-

sions) and warped space; others can’t. Nevertheless, we can define them in

geometric terms whether we can “see” them in our “mind’s eyes” or not. Let’s

explore these esoteric concepts.

CHAPTER OBJECTIVES

In this chapter, you will

Define Cartesian space of more than three dimensions (hyperspace).
Learn how time-space “works.”

Quantify the relationship between time and distance.

Envision simple four-dimensional objects.

Calculate distances in hyperspace.

Modify Euclid’s fifth postulate.

Take imaginary journeys in warped space.

289
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Cartesian n-Space

As we have seen, the rectangular (or Cartesian) coordinate plane derives from
two perpendicular number lines that intersect at their zero points. The lines
form the coordinate axes, often called the x axis and the y axis. We can name
or identify any point in this system as an ordered pair of the form (x,y). We
call (0,0) the origin. We can define Cartesian three-space using three number
lines that intersect at a single point corresponding to the zero point of each
line, and such that each line runs perpendicular to the plane determined by
the other two lines. The lines form axes, representing variables such as x, y, and
z. Points are defined by ordered triples of the form (x,y,z). The origin is (0,0,0).
Let’s extrapolate the Cartesian-coordinate concept into more than three
dimensions.

Four Spatial Dimensions

We can set up a system of rectangular coordinates in four dimensions—Cartesian
four-space or 4D space—using four number lines that intersect at a single
point corresponding to the zero point of each line, and such that each of the
lines runs perpendicular to the other three. The lines form axes, representing
variables such as w, x, y, and z. Alternatively, we can label the axes x , x,, x,, and
x,. We can name or identify individual points as ordered quadruples of the form
(w,x,y,z) or (x,x,%,,x,), defining the origin as the point represented by
(0,0,0,0).

TIP As with the variables or numbers in ordered pairs and triples, we never put
any spaces after the commas when we write an ordered quadruple.

At first you might think, “Cartesian four-space is easy to imagine,” and draw
a diagram such as Fig. 11-1 to illustrate it. But when we try to plot points in this
system, we encounter a problem. We can’t define points in this rendition of
four-space without ambiguity. There aren’t enough points in 3D space to pair
off one-to-one with all possible values of the ordered quadruple (w,x,y,z). In
three-space as we know it, we can’t arrange four number lines such as those
shown in Fig. 11-1 so that they intersect at a single point with each line running
perpendicular to all three of the others.

Imagine one of the points in a room where two adjacent walls meet the floor.
Unless the building has an unusual architecture or has begun to settle (sag)
because of earth movement, this intersection defines three straight line segments.
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All four axes
are mutually
perpendicular

+Z T
Y
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FIGURE 11-1 - Concept of Cartesian four-space. The w, x, y, and z axes are all mutually
perpendicular at the origin point (0,0,0,0).

One of the segments runs up and down between the two walls, and the other two
run horizontally between the two walls and the floor. The line segments are all
mutually perpendicular at the point where they come together (where the walls
meet the floor). The lines containing the three line segments can represent the x,
vy, and z axes in Cartesian three-space coordinate system.

Now try to envision a fourth line segment that has one end at the intersection
point of the existing three line segments, and that runs perpendicular to them
all. Such a line segment can’t exist in ordinary space! But in four dimensions, or

hyperspace, it can exist.

TIP Mathematically, we can work with Cartesian four-space, even though most
of us can’t directly envision it. As things work out, we need four dimensions to
completely describe points, objects, and events in the “real universe.” Albert
Einstein was one of the first scientists to put forth the idea that the “fourth dimen-
sion” exists in physical reality (as opposed to residing as abstract notions in
mathematicians’ minds).

201
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Time-Space

You've seen time lines in history books. You've seen them in graphs of quantities
such as temperature, barometric pressure, or stock market prices plotted as
functions of time. Isaac Newton, one of the most renowned mathematicians in
the history of the Western world, imagined time as “flowing smoothly and unal-
terably.” Time, according to so-called classical physics or Newtonian physics, does
not depend on space, nor does space depend on time.

Wherever you are, however fast or slow you travel, and no matter what else
you do, the “cosmic clock” (according to classical physics) keeps ticking at the
same absolute rate. In everyday scenarios, this model works well; its imperfec-
tions are not evident to nonscientists. However, Newton’s paradigm represents
an oversimplification. It can’t completely describe what really happens in the
cosmos on a large scale, at high relative speeds, or in intense gravitational fields.

Let’s imagine a time line passing through 3D space, “perpendicular” to all
three spatial axes such as the intersections between two walls and the floor of
a room. The time axis passes through three-space at some chosen origin point,
such as the point where two walls meet the floor in a room, or the center of the
earth, or the center of the sun, or the center of our galaxy.

In four-dimensional (4D) Cartesian time-space (or simply time-space),
each point follows its own time line. Assuming that none of the points
moves with respect to the origin, all the points follow time lines that run
“parallel” to all the other time lines, and all the time lines run “perpendicular”
to three-space. Figure 11-2 illustrates this concept in dimensionally reduced
form (with one of the spatial dimensions taken away, so that three-space
shows up as a Euclidean plane).

Position versus Motion

Imagine that we choose the sun as the origin point for a vast Cartesian three-
space coordinate system. Suppose that the x and y axes lie in the plane of the
earth’s orbit around the sun. Also, suppose that the positive x axis runs from
the sun through the earth’s position in space on March 21 and thence onward
into deep space (roughly toward the constellation Virgo). In this scenario

e The negative x axis runs from the sun through the earth’s position on
September 21 (roughly toward the constellation Pisces).

e The positive y axis runs from the sun through the earth’s position on
June 21 (roughly toward the constellation Sagittarius).
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FIGURE 11-2 - Time as a fourth dimension. We illustrate three-space
in dimensionally reduced form as a plane. Each stationary pointin
space follows a time line “perpendicular”to 3D space and “parallel” to
the time axis.

e The negative y axis runs from the sun through the earth’s position on
December 21 (roughly toward the constellation Gemini).

e The positive z axis runs from the sun toward the north celestial pole (in the
direction of Polaris, the North Star).

o The negative z axis runs from the sun toward the south celestial pole
(where there’s no prominent constellation).

Let’s say that each division on the coordinate axes represent 1/4 of an astro-
nomical unit (AU), where 1 AU equals the mean distance of the earth from the
sun (about 150,000,000 kilometers). Figure 11-3A shows our new “deep-space
coordinate” system, with the earth on the positive x axis, at a distance of 1 AU.
The coordinates of the earth at this time are (1,0,0).
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FIGURE 11-3 - A. A Cartesian coordinate system for the position of the earth in 3D
space. B. A dimensionally reduced Cartesian system for rendering the path of the
earth through 4D time-space.
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Of course, the earth doesn’t remain fixed in space. It orbits the sun. Let’s
take away the z axis in Fig. 11-3A and replace it with a time axis called t. Now
let’s think hard: What does the earth’s path look like in xys-space if we let
each increment on the t axis represent 1/4 of a year (90° of revolution around
the sun)?

The earth’s path through this dimensionally reduced time-space contin-
uum does not constitute a straight line. Instead, when we follow the earth
over time, we get a helix as shown in Fig. 11-3B. The earth’s distance from
the t axis remains nearly constant (it varies slightly because the earth’s orbit
around the sun does not form a perfect circle, but let’s neglect that little
detail). Every 1/4 of a year, the earth advances 90°, or one-quarter of a revo-
lution, around the helix, and also moves forward by one increment along the
time axis.

Some Hyper Objects

Now that we’re no longer confined to 3D space, let’s put our newly empowered
imaginations to work. What characteristics do 4D objects and events have?
How about objects and events in five dimensions (5D) and beyond?

Time as Displacement

When we consider time as a dimension, we need a standard—some sort of
conversion factor—that relates time to spatial displacement. How many kilo-
meters does 1 second of time comprise? At first, this question seems rather silly,
akin to asking how many apples equal a gallon of water. But the more we ponder
the notion, the more sensible it gets: We can relate time and displacement in
terms of some known, constant speed.

Suppose that someone tells us, “The town of Jimsville is an hour away from
the town of Joesville.” We’ve all heard people talk like this, and we understand
what they mean; the statement implies that we travel from one town to the
other at a certain rate of speed. How fast must we drive a car to get from
Jimsville to Joesville in an hour? If Jimsville and Joesville lie 50 kilometers from
each other as measured along a stretch of highway, then we must travel at an
average speed of 50 kilometers per hour in order to claim that Jimsville is an
hour away from Joesville. If Jimsville lies 20 kilometers from Janesville, then we
need only travel at an average speed of 20 kilometers per hour to say that
Jimsville lies an hour away from Janesville.
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= Still Struggling

Do you remember the basic formula in classical physics that relates distance,
speed, and time? In case you've forgotten, it’s

d=st

where d represents the distance in kilometers that an object travels, s represents
the object’s speed in kilometers per hour, and t represents the number of hours
that the object takes to traverse the specified distance. Using this formula, we
can define time in terms of displacement and vice versa.

Universal Speed

The foregoing scheme allows us to convert time to distance in a relative way,
depending on the speed at which we travel between two points. It’s reasonable
to ask, “Does any speed exist, some universal conversion factor, with which
we can relate time and distance in an absolute sense?” According to Albert
Einstein’s theory of special relativity, the answer is a qualified “Yes.”

The speed of light in a vacuum, commonly denoted ¢, remains constant
regardless of the viewpoint (or reference frame) of any observer, as long as that
observer does not accelerate at an extreme rate or sit in an extreme gravita-
tional field. The constancy of ¢ forms a fundamental principle of the theory of
special relativity. The value of ¢ lies close to 299,792 kilometers per second; let’s
round it off to 300,000 kilometers per second.

If d represents the distance between two points in kilometers and ¢ repre-
sents the time in seconds that it takes for a ray of light to travel from one point
to the other through empty space, then

d=ct
— 300,000 ¢

According to this model, the moon, which orbits the earth at a distance of
about 400,000 kilometers, is 1.33 second-equivalents distant from us. The sun is
about 8.3 minute-equivalents away. The Milky Way galaxy is 100,000 year-
equivalents in diameter. Astronomers call these units light-seconds, light-minutes,
and light-years. We can also say that any two points in time separated by 1 second,
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but that occupy the same xyz coordinates in Cartesian three-space, lie 300,000
kilometer-equivalents apart as defined along the ¢ axis.

At this moment yesterday, if you were in the same location as you now sit,
your location in time-space was 24 (hours per day) times 60 (minutes per hour)
times 60 (seconds per minute) times 300,000 (kilometers per second), or
25,920,000,000 kilometer-equivalents, away from where you are now.

Still Struggling

The above-described way of thinking takes quite a bit of getting-used-to! But
after awhile, it starts to make a strange sort of sense. Consider this example: You
might as well try to jump 25,920,000,000 kilometers in a single leap as try to
change what happened in your own house 24 hours ago. You can no more alter
history than you can fly through space like a light beam.

We can modify the foregoing conversion formula for smaller distances, more
typical of everyday life. If d represents the distance in kilometers and t repre-
sents the time in milliseconds (units of 0.001 second), then

d=300t¢

TIP The above formula also holds for d in meters and t in microseconds (units
0f0.000001, or 10°5, second), and for d in millimeters (units of 0.001 meter) and
t in nanoseconds (units of 0.000000001, or 107°, second), so we can speak of
meter-equivalents, millimeter-equivalents, microsecond-equivalents, or
nanosecond-equivalents.

The Four-Cube

Imagine some of the simple, regular polyhedra in Cartesian four-space. What
are their properties? Think about a four-cube, also known as a tesseract. This is
an object with several identical 3D hyperfaces, all of which comprise cubes.
How many vertices does a tesseract have? How many edges? How many 2D
faces? How many 3D hyperfaces? How can we envision such an object to figure
out the answers to these questions?
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We can’t make a 4D model of a tesseract out of toothpicks to examine its
properties, and most people (if any) can’t “see” a tesseract in their “mind’s eyes”
at all. But we can imagine a cube that appears from nothing, exists for awhile,
and then disappears, such that it “lives” for a length of time equivalent to the
length of any of its spatial edges and does not move during its existence. Because
we’ve defined an absolute relation between time and displacement (the speed
of light in a vacuum), we can graph a tesseract in which each edge has a length
of, say, 300,000 kilometer-equivalents. This object is an ordinary 3D cube that
measures 300,000 kilometers along each edge. It appears at a certain time ¢, and
then disappears precisely 1 second later, at t, + 1. The sides of the cube each
measure 1 second-equivalent in length, and the cube “lives” for 300,000 kilometer-
equivalents of time.

Figure 11-4A shows a tesseract in dimensionally reduced form. Each division
along the x and y axes represents 100,000 kilometers (the equivalent of 1/3
second), and each division along the t axis represents 1/3 second (the equiva-
lent of 100,000 kilometers). Figure 11-4B portrays the tesseract in another way,
as two 3D cubes (in perspective) connected by dashed lines representing the
passage of time.

The Rectangular Four-Prism

A tesseract is a special form of the more general figure, known as a rectangular
four-prism or rectangular hyperprism. Such an object consists of a 3D rectangular
prism that abruptly comes into existence, lasts a certain length of time, disap-
pears all at once, and does not move during its “lifetime.” Figure 11-5 shows two
examples of rectangular four-prisms in dimensionally reduced time-space.

Suppose the height, width, depth, and lifetime of a rectangular hyperprism,
all measured in kilometer-equivalents, equal h, w, d, and t, respectively. We can
calculate the 4D hypervolume of this object (call it V), in quartic kilometer-
equivalents, as the product

V. = hwdt

The mathematics works in the same way if we express the height, width, depth,
and lifetime of the object in second-equivalents. In that case, the 4D hypervolume
equals the product hwdt in quartic second-equivalents.

Impossible Paths

Certain paths are impossible to follow in Cartesian 4D time-space as we've
defined it here. According to Einstein’s special theory of relativity, nothing can
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Each time division
equals 1/3 second

Toward the future

FIGURE 11-4 . At A, a dimensionally reduced plot of a time-space tesseract. At B,
another rendition of a tesseract, portraying time as lateral motion.

travel faster than the speed of light in free space (a vacuum). This physical law
restricts the directions in which line segments, lines, and rays can run when they
represent the trajectories of real objects in motion.

Consider what happens in 4D Cartesian time-space when we switch on a light
bulb. Imagine that the bulb rests at the origin of a Cartesian coordinate system,
and nothing but empty space surrounds the bulb for millions of kilometers in
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FIGURE 11-5 . Dimensionally reduced plots of two rectangular hyperprisms in
time-space.

every direction. At the instant we close the switch, thereby powering up the light
bulb, photons (particles of light) emerge from the bulb. In the first few moments,
the initial, or leading, light travels outward from the bulb in expanding spherical
paths or fronts. If we dimensionally reduce this situation and graph it, we get an
expanding circle centered on the time axis, which, as time passes, generates a
cone as shown in Fig. 11-6. In true 4D space, the actual geometric figure consti-
tutes a hypercone or four-cone. The surface of the four-cone has two spatial dimen-
sions (which portray the surface of a sphere) and one time dimension (which
portrays the expansion of the sphere). Physicists call it a light cone.

Imagine an object that starts out at the location of the light bulb, and then
moves away from the bulb immediately when we apply power to the bulb. In
any real-life physical situation, the object must follow a path that remains
entirely within the light cone defined by the initial photons from the bulb.
Figure 11-6 shows one plausible path and one implausible path. If an object
could travel outside the light cone, that object would move faster than the
speed of light relative to the bulb—but that’s impossible according to the the-
ory of special relativity.
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Plausible path
(less than the
speed of light)
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when first
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Each time division
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v

FIGURE 11-6 - Dimensionally reduced plot of the leading photons from a light bulb.
Paths inside the cone represent relative speeds less than c (the speed of light); paths out-
side the cone represent relative speeds greater than c.

General Time-Space Hypervolume

Imagine an object—any object—in 3D space. Suppose that its spatial volume in
cubic kilometer-equivalents equals a fixed quantity; let’s call it V. Suppose that
such an object appears from nowhere, lasts a certain length of time t in kilometer-
equivalents, and then ceases to exist. Further imagine that this object does not
move with respect to us, the observers, at any time during its “lifetime.” In this case,
we can calculate the object’s 4D time-space hypervolume V, using the formula

Vip=Vipt
The 4D time-space hypervolume of any object equals its spatial volume mul-

tiplied by its lifetime, provided that we express the time and displacement in
equivalent units, and as long as the object never moves relative to us.
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If an object moves, then we must incorporate a “correction factor” in the
above formula. This factor does not affect things very much as long as the speed
of the object (call it s) remains small compared with the speed of light ¢. But if
s represents a considerable fraction of ¢, we must modify the above formula to

Vip = Vipt (1 —s%/c)V?

The correction factor, (1 — s?/¢?)"?, is close to 1 when s equals a small fraction
of ¢ and approaches 0 as s approaches c. This correction factor derives from the
special theory of relativity.

In this context, the speed s always represents a relative quantity. It depends
on the point of view from which an observer witnesses or measures it. If we
want the term “speed” to have meaning, we must always add the qualifying
phrase “relative to a certain observer.” In these examples, we envision motion as
taking place relative to the origin of a 3D Cartesian system, which translates
into lines, line segments, or rays pitched at various angles with respect to the
time axis in a 4D time-space Cartesian system.

' Y

= Still Struggling

If you're still confused about kilometer-equivalents and second-equivalents, you
can refer to Table 11-1 for reference. Keep in mind that time and displacement
relate according to the equation

d=ct

where d represents the displacement (in linear units), t represents the time (in
time units), and ¢ represents the speed of light in linear units per unit time, as it
travels through free space. Using this conversion formula, you can “morph” any
displacement unit into an equivalent time interval and any time interval into an

equivalent displacement unit.

proBLEM 11-1
How many second-equivalents compose a distance of 1 kilometer?

SOLUTION
We know that the speed of light equals 300,000 kilometers per second
{accurate to three significant figures) in free space, so it takes 1/300,000 of
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TABLE 11-1 Displacement and time equivalents in free space (a vacuum) where the

speed of light equals approximately 300,000 kilometers per second. Con-
sider the displacement equivalents accurate to three significant figures.

Displacement Equivalent

Time Equivalent

9,460,000,000,000 kilometers
25,900,000,000 kilometers
1,079,000,000 kilometers
18,000,000 kilometers
300,000 kilometers

300 kilometers

1 kilometer

300 meters

1 meter

300 millimeters

1 millimeter

1 year

1 solar day

1 hour

1 minute

1 second

0.001 second
0.00000333 second
0.000001 second
0.00000000333 second
0.000000001 second

0.00000000000333 second

a second for a ray of light to travel 1 kilometer. That's approximately
0.00000333 second or 3.33 microseconds. One kilometer therefore repre-
sents 0.00000333 second-equivalent, or 3.33 microsecond-equivalents.

Beyond Four Dimensions

No limit exists as to the number of dimensions that we can define using the

Cartesian coordinate paradigm. We can “create” spaces having any positive
whole number of dimensions—10, 20, 100, 200, or whatever! We can incorpo-

rate time as a dimension if we want, but we don’t have to include it.

Cartesian Extrapolations

A system of rectangular coordinates in five dimensions defines Cartesian five-

space. This system has five number lines that serve as coordinate axes, all of

which intersect at a point corresponding to the zero point of each line, and such
that each of the lines runs perpendicular to the other four. We can call the
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variables for the resulting axes v, w, x, y, and z. Alternatively, we might call
them x, x,, x;, x,, and x,. Points are named or identified by ordered quintuples
such as (v,w,x,y,z) or (x,,x,,%,%,x;). The origin point has the coordinates
(0,0,0,0,0). As you can guess, it doesn’t matter what we call the variables, as
long as we allow each one to change value independently from the other four.

A system of rectangular coordinates in Cartesian n-space (where n represents
any positive integer, as large as we want) consists of n number lines, all of which
intersect at their zero points, such that each of the lines runs perpendicular to
all the others. The axes can be named x,, x,, x;, ..., and so on up to x, . Points in
Cartesian n-space can be uniquely defined by ordered n-tuples of the form
(o), %, %5, ..., ).

A Five-Prism

Imagine a tesseract or a rectangular four—prism that appears at a certain time, does
not move, and then disappears some time later. This object constitutes a rectan-
gular five-prism. If x , x,, x,, and x, represent four spatial dimensions (in kilometer-
equivalents or second-equivalents) for a rectangular four-prism in Cartesian
four-space, and if ¢ represents the five-prism’s “lifetime” in the same units, then
the 5D hypervolume (call it V) equals the product of them all. We have

Vi = x,%,0.X,t

This formula holds only as long as the five-prism doesn’t move relative to us at
a significant speed. If the prism moves at a fast enough speed, then we must
incorporate the relativistic correction factor (1 —s?/c?)"/?, where s represents the
object’s relative speed.

Dimensional Chaos

In pure mathematics, nothing can stop us from dreaming up hyperspace universes
containing as many dimensions as we desire. Imagine, for example, Cartesian
25-space in which coordinates take the form of ordered 25-tuples (x,,x,,x;,...,%,s),
none of which represent time. Alternatively, we might allow Cartesian 25-space
to contain 24 spatial dimensions and one time dimension. Then we would define
the coordinates of a point as an ordered 25-tuple of the form (x,x,,x,...x,,,1).
Some cosmologists—scientists who explore the origin, structure, and evolu-
tion of the cosmos—have suggested that our universe contained many more
than three spatial dimensions in its first few moments of existence, billions of
years ago. According to this hypothesis, we cannot represent all of these dimen-
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sions using Cartesian coordinates. Some of the axes are “curled up” as if wrapped
around tiny bubbles.

A few intrepid mathematicians play with objects that seem to occupy two
dimensions when imagined in a certain way, yet occupy three dimensions when
imagined in a different way. Some inquisitive people ask questions such as,
“How many dimensions exist in the complicated surface of a theoretical foam,
assuming that each individual bubble constitutes a sphere of arbitrarily tiny size
and with an infinitely thin 2D surface? Two dimensions? Three? How about
two and a half dimensions?”

TIP Asyou can doubtlessly imagine by now, dimensional scenarios can get a lot
more complicated than anything we’ve dealt with here. Think about the possible
ways in which a 4D parallelepiped might exist, or a 4D sphere. How about a 5D
sphere or a 7D ellipsoid? Let your mind roam free.

Distance Formulas

In n-dimensional Cartesian space, we can calculate the shortest distance
between any two known points using a formula similar to the distance formu-
las for Cartesian two-space and three-space. The outcome of our arithmetic
represents the length of a straight line segment connecting the two points.
Consider two points P and Q in Cartesian n-space whose coordinates are

P=(x,,x,%,...,x,)
and
Q=Y Y3Y,)

We can find the length of the shortest possible path between P and Q, written
|PQI, with the formula

IPQI=[(v, —x,)? + (v, - %,)* + (v; — %)% + = + (v, — x, )*]"?
or the alternative

IPQI=[(x, = v,)* + (0, = 3,07 + (o6, = y)* + - + (2, — v, )]

PROBLEM 11-2

Find the distance |PQ| between the points P=(4,-6,-3,0) and Q=(-3,5,0,8)
in Cartesian four-space. Assume the coordinate values to be exact. Round
off the answer to two decimal places.
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[jSOLUTION

Let’s assign the numbers in the ordered quadruples the following values
according to the formatting of the above formulas. For P, we have

x,=4
x,=-6
x,=-3

X,= 0
For Q, we have

y,=-3
y,=
y,=0
y,=8

Now, we can plug these values into either of the above two distance
formulas. If we use the first one, we obtain

|PQ|={(-3 - 4)*+[5 - (-6)1* +[0 - (-3)]*+ (8 - 0)°}'?
=[(-7)*+ 112+ 32+ 87"
=(49+121+9+64)"
=243'2
=15.59

PROBLEM 11-3
How many vertices does a tesseract have?

SOLUTION
Imagine a tesseract as a 3D cube that lasts for a length of time equivalent
to the linear span of each edge. When we think of a tesseract this way, and
if we think of time as “flowing upward” from the past toward the future, the
tesseract has a “bottom” that represents the instant that it appears and a
“top” that represents the instant that it vanishes. The “bottom” and the
“top” of the tesseract, thereby defined, form two separate cubes. We know
that a cube has eight vertices. In the tesseract, we observe twice as many
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FIGURE 11-7 - The cube-within-a-cube portrayal of a
tesseract clarifies the fact that the figure has 16 vertices.

vertices as we do in a cube, because we join two cubes with line segments
between corresponding pairs of vertices. The eight vertices of the “bottom”
cube and the eight vertices of the “top” cube connect pairwise with line
segments that run through time.

TIP We can think of a “dimensionally reduced” tesseract as a cube-within-a-cube
as shown in Fig. 11-7. lllustrators sometimes use this trick in a 3D attempt to portray
a 4D tesseract. We don't get a true picture this way, of course, because the “inner”
and the “outer” cubes in a real tesseract are the same size. But this rendition dem-
onstrates the fact that a tesseract has 16 vertices. We can simply count them!

prROBLEM 11-4
What'’s the 4D hypervolume, V,, of a rectangular four-prism consisting of
a 3D cube measuring exactly 1 meter on each edge, that“lives” for exactly
1 second, and that does not move? Express the answer in quartic kilometer-
equivalents and in quartic microsecond-equivalents.

SOLUTION
We must find the 4D hypervolume of a 3D cube measuring 1 X 1 X 1 meter
{whose 3D volume therefore equals 1 cubic meter) that exists for precisely
1 second.
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To solve the first half of this problem, we remember that light travels
300,000 kilometers per second, so the four-prism“lives” for 300,000, or 105,
kilometer-equivalents. We can consider that value as the length of the four-
prism. Its cross section is a cube measuring 1 meter, or 0.001 kilometer, on
each edge, so the 3D volume of this cube equals

0.001 x0.001 x 0.001 =0.000000001

=10"° cubic kilometer

Therefore, the 4D hypervolume (V) of the rectangular four-prism in
quartic kilometer-equivalents is

V4D =300,000 x 0.000000001
=3Xx10°%x10"°
=3x10"*

=0.0003 quartic kilometer-equivalent

To solve the second half of the problem, let’s note thatin 1 microsecond
(0.000001 second), a ray of light travels 300 meters, so it takes light 1/300
of a microsecond to travel 1 meter. The 3D volume of the cube is
therefore

(1/300)3=1/27,000,000
=0.00000003704

=3.704 X 1078 cubic microsecond-equivalent

The cube exists for 1 second, which equals 1,000,000, or 105, microseconds.
Therefore, the 4D hypervolume V,  of the rectangular four-prism in quartic
microsecond-equivalents is

V,,=0.00000003704 x 1,000,000
=3.704x108x 108
=3.704%x 107

=0.03704 quartic microsecond-equivalent

proBLEM 11-5
Suppose that the four-prism described in Problem 11-4 moves, during its
brief existence, at a speed of 270,000 kilometers per second relative to
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an observer. What is its 4D hypervolume (V) as seen by that observer?
Express the answer in quartic kilometer-equivalents and in quartic
microsecond-equivalents.

SOLUTION

The object moves at 270,000/300,000, or 9/10, of the speed of light relative
to the observer. If we let s represent its speed, then s/c=0.9 and s?/c2=0.81.
We must multiply the answers to the previous problem by the factor

(1-5%c?)"2=(1-0.81)"
=0.19"2
=0.436

When we apply this conversion factor to the solutions we got for
Problem 11-4, we obtain the 4D hypervolume values

V,,=0.0003 x 0.436
=0.000131 quartic kilometer-equivalent

and

V,,=0.03704x0.436

=0.0161 quartic microsecond-equivalent

Parallel Principle Revisited

All of the theorems in conventional geometry derive from five axioms, also
called postulates, originally formalized by the Greek mathematician Euclid
of Alexandria who lived in the third century B.C. Everything that we've
done in this book so far—even the theoretical problems involving four
dimensions—has evolved and worked out according to Euclid’s five axioms.
We've dealt exclusively with so-called Euclidean geometry. However, other
“flavors” of geometry exist, in which Euclid’s axioms do not necessarily
all hold true. Mathematicians call any such discipline non-Euclidean
geometry.
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Euclid’s Axioms

Let’s examine the statements that Euclid regarded as self-evident truths. We'll
modify Euclid’s original wording slightly, so as to make the passages sound
sensible in today’s language. Figure 11-8 shows examples of each postulate.

e We can connect any two points P and Q with a straight line segment
(Fig. 11-8A).

e We can extend any straight line segment indefinitely and continuously to
form a straight line (Fig. 11-8B).

e Given any point P, we can define a circle having a specific radius r with P
at its center (Fig. 11-8C).
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FIGURE 11-8 - Euclid’s original five axioms. See text for discussion.
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o All right angles are congruent to one another; that is, all right angles have
equal measures (Fig. 11-8D).

e Consider two lines L and M that lie in the same plane, and a transversal
line N that crosses them both. Suppose that the measure of the acute or
right angle between M and N (x as shown in Fig. 11-8E) and the measure
of the obtuse or right angle between L and N (y as shown in Fig. 11-8E)
add up to something less than 180° (xt rad). In that case, lines L and M
intersect at some point on the same side of line N as the adjacent angles
x and y lie.

The Fifth Postulate

The last axiom stated above has become known as Euclid’s fifth postulate. It’s
logically equivalent to the following statement called the parallel postulate:

e Let L represent a straight line. Let P represent a point that does not lie on
L. There exists one and only one straight line M, in the plane defined by
line L and point P, that passes through P and runs parallel to L.

This axiom—and in particular its truth or untruth—has received enormous
attention from geometers over the last few hundred years. If we deny the parallel
postulate, we end up with a system of geometry that “works” just as well as
traditional plane geometry does. Some people find such “geometries” strange,
but they’re logically sound in the sense that contradictions don’t arise. We can
deny the truth of the parallel postulate in either of two ways:

e There exists no line M through point P that runs parallel to line L.

¢ There exist two or more lines M|, M,, M,, ... through point P that run
parallel to line L.

When we replace Euclid’s original parallel postulate with either of the forego-
ing two variants, we get a system of non-Euclidean geometry. In the 2D case,
we find ourselves confined to a non-Euclidean surface. Visually, such a surface
looks warped or curved.

Geodesics

In a non-Euclidean universe, we must modify the concept of “straightness” and,
in particular, the notion of what constitutes a “line.” Instead of thinking about
“straight lines” or “straight line segments,” we must think about geodesics.
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Imagine two distinct points P and Q on a non-Euclidean surface. The
geodesic segment or geodesic arc connecting P and Q is the set of points
representing the shortest possible path between P and Q that lies entirely
on the surface. If we extend a geodesic arc indefinitely in either direction
on the surface beyond P and Q, we obtain the complete geodesic within
which the arc lies.

' Y

= Still Struggling

Do you have trouble imagining a geodesic arc in your “mind’s eye”? Think about
the path that a thin ray of light would follow between two points if confined to
a certain 2D universe. The extended geodesic conforms to the path that the ray
would take if allowed to travel over the surface forever without striking any
obstructions. On the surface of the earth, a geodesic arc is the path that an
airline pilot takes when flying from one place to another far away, such as from
Moscow, Russia to Tokyo, Japan (neglecting takeoff and landing patterns and
assuming that the pilot doesn’t have to adjust the course to avoid storms or
hostile air space).

Modified Parallel Postulate

When we restate the parallel postulate as it applies to both Euclidean and
non-Euclidean surfaces, we must replace the term “line” with “geodesic.”
When two geodesics G and H lie on the same surface X but fail to intersect
at any point on X, we say that G and H constitute a pair of parallel geodesics
on X. Let G represent a geodesic, let X represent a surface, and let P repre-
sent a point that does not lie on G. Then one of the following three situations
holds true:

e There exists exactly one geodesic H on X that passes through P and runs
parallel to G.

o There exists no geodesic H on X that passes through P and runs parallel
to G.

o There exist two or more geodesics H,, H,, H,, ... on X that pass through
P and run parallel to G.
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No Parallel Geodesics

Now imagine a universe U in which no two geodesics ever run parallel to each
other. In the universe U, if we extend two geodesic arcs that “look” parallel on
a local scale far enough in both directions off their ends, they’ll eventually
intersect at some point in U. In a universe of this sort, we must employ a system
of elliptic geometry, also known as Riemannian geometry (named after Bernhard
Riemann, a nineteenth-century German mathematician). When there exist no
pairs of parallel geodesics in a particular universe U, we say that U has positive
curvature. Two-space universes with positive curvature include the surfaces of
spheres, oblate (flattened) spheres, and ellipsoids.

Figure 11-9 illustrates a sphere with a triangle and a quadrilateral on its
surface. The sides of polygons in non-Euclidean geometry always constitute
geodesic arcs, just as, in Euclidean geometry, they always constitute straight line
segments. The interior angles of the triangle and the quadrilateral in Fig. 11-9
add up to more than 180° (x rad) and more than 360° (2r rad), respectively.
The measures of the interior angles of an n-sided polygon on a Riemannian
surface always sum up to something more than the sum of the measures of the
interior angles of an n-sided polygon on a Euclidean (flat) plane.

FIGURE 11-9 - A surface with positive curvature, in this case a
sphere, showing a triangle and a quadrilateral whose sides
constitute geodesics.
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TIP On the surface of the earth, all the lines of longitude, called meridians, are
geodesics. So is the equator. But latitude circles other than the equator, called
parallels, are not geodesics. For example, the equator and the parallel representing
10° north latitude don’t intersect at any point, but they aren’t both geodesics.

More Than One Parallel Geodesic

Consider a surface on which we can have two or more geodesics that pass
through a point and run parallel to a given geodesic. This form of non-Euclidean
geometry is known as hyperbolic geometry. Some mathematicians call it
Lobachevskian geometry (named after Nikolai Lobachevsky, a nineteenth-
century Russian mathematician). A Lobachevskian universe exhibits so-called
negative curvature. Two-space universes with negative curvature include
extended saddle-shaped and funnel-shaped surfaces.

Figure 11-10 shows a negatively curved surface containing a triangle and a
quadrilateral. On this surface, the interior angles of the triangle and the

.......................

FIGURE 11-10 - An example of a surface with negative
curvature, showing a triangle and a quadrilateral whose
sides constitute geodesics.
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quadrilateral add up to less than 180° (n rad) and 360° (2x rad), respectively.
The measures of the interior angles of a polygon on a Lobachevskian surface
always sum up to something less than the sum of the measures of the interior
angles of a similar polygon on a Euclidean plane.

Warped Space

The observable universe seems Euclidean to all casual observers. If we use lasers
to “construct” polygons and then measure their interior angles with precision
lab equipment, we’ll always find that the angle measures add up according to
the rules of Euclidean geometry. The conventional formulas for the volumes of
solids such as the pyramid, cube, and sphere hold perfectly, as far as we can tell.
Now imagine a 3D space in which these rules fail! If we could find such a con-
tinuum, we would call it curved 3D space, warped 3D space, or non-Euclidean
3D space.

Gravity Warps Space

In the 1900s, shortly after Einstein published the details of his general theory of
relativity, astronomers and cosmologists began to look for evidence that the three-
space in which we live is not perfectly Euclidean. Their efforts reaped fascinating
results. Gravitational fields produce effects on light beams that suggest
Lobachevskian warping—negative curvature—of three-space. Under ordinary
circumstances, the departure from Euclidean perfection is too small to notice, so
we never suspect it. However, astronomers have observed the effects of such
curvature using sensitive equipment when looking at certain celestial objects.
Astronomers conducted several experiments in the years following the publi-
cation of Einstein’s general theory, scrutinizing the behavior of light rays from
distant stars as the rays passed close to the sun during solar eclipses. The goal:
Find out whether or not the sun’s gravitational field, which attains considerable
intensity near the sun’s surface, bends light rays in the way that we should
expect if space has negative curvature near the sun. Early in the twentieth cen-
tury, Albert Einstein predicted that such bending could be observed and mea-
sured. He calculated the expected angular changes that astronomers would see
in the positions of distant stars as the sun passes almost directly in front of them.
Repeated observations verified Einstein’s predictions, not only as to the exis-
tence of the spatial curvature, but also as to its extent. As the distance from the
sun increases, the spatial warping decreases. The greatest amount of light-beam
bending occurs when the rays from a distant star graze the sun’s surface.



316 GEOMETRY DeMYSTiFieD

In another experiment, astronomers have observed the light rays from a
distant, brilliant object called a quasar as a compact, dark, intense source of
gravitation (known as a black hole) passes between the quasar and our solar
system. The light-bending is much greater near this type of object than is the
case near the sun. The apparent black hole bends the rays from the distant
quasar to the extent that multiple images of the quasar appear (with the black
hole presumably at the center). One peculiar example, in which four images of
the quasar appear, has been called a gravitational light cross.

The “Hyperfunnel”

We can compare curvature of space in the presence of a strong gravitational
field to the shape of a funnel (Fig. 11-11), except that the surface of the funnel
has three dimensions rather than two, and the entire object exists in four-space

Three-dimensional
space €

N

Source of
extreme
gravitation

FIGURE 11-11 - An intense source of gravitation produces negative curva-
ture, or warping, of space in its immediate vicinity.
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rather than three-space. When we define the fourth dimension as time, we find
that time “flows” more slowly in a gravitational field than it does in interplan-
etary space, far removed from significant sources of gravitation. This effect, like
the Lobachevskian curvature of space, has been experimentally observed.

The shortest path in physical three-space between any two points near a
gravitational source lies along a geodesic, not along a straight line. Curvature of
space caused by gravitational fields increases the distances between points in
the vicinity of the source of the gravitation, compared with the situation if the
gravitational source were not there. The shortest path between any two points
in non-Euclidean space invariably exceeds the path length that we would
observe if the space between the points were Euclidean.

As the intensity of the gravitation increases, the extent of the spatial curva-
ture also increases. However, some effect theoretically occurs no matter how
weak the gravitation. Some cosmic warping occurs in the space around the
earth, in the space around your body, and even in the space around each atom
in your body.

' Y

= Still Struggling

Does the entire universe, containing all the stars, galaxies, quasars, and other
stuff that exists, possess a geometric shape that results from the combined gravi-
tational effect of all matter? If so, is the general contour of space Riemannian,
Lobachevskian, or Euclidean? | don't think anybody knows for sure. Do you?
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Quiz

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. Using the speed of light in free space as the basis for conversion, what'’s the
distance equivalent of 1 minute?
A. 5000 kilometers
B. 500,000 kilometers
C. 1,800,000 kilometers
D. 18,000,000 kilometers

2. Using the speed of light in free space as the basis for conversion, what'’s the time
equivalent of 150 meters?
A. 500 nanoseconds (0.0000005 second)
B. 200 nanoseconds (0.0000002 second)
C. 500 microseconds (0.0005 second)
D. 200 microseconds (0.0002 second)

3. Figure 11-12 illustrates a light cone in dimensionally reduced time-space,
along with four hypothetical paths P, Q, R, and S for objects traveling in

Toward the future

Each spatial division
I~ equals 100,000 kilometers

bv?,rgﬁ first - Each time division
-y switched on _L equals 1/3 second

\4
—t

FIGURE 11-12 . illustration for Quiz Question 3.
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that space. Which, if any, of these paths could a physical object actually
follow?

A. PandQ

B. QandR

C. PandS$S

D. None of the above

. Onthe surface of a sphere, the measure of each interior angle of a regular hexagon
would

A. be less than 120°.

B. equal 120e°.

C. exceed 120°.

D. be impossible to define.

. Figure 11-13 shows a sphere, along with a specific circle called C (heavy solid
curve) on its surface. The radius of C equals 200 units as measured over the sur-
face of the sphere along a geodesic arc. Based on this information, we know that
the circumference of C must

A. exceed 4007 units.

B. be less than 4007 units.

C. equal 4007 units.

D. beimpossible to define.

FIGURE 11-13 - lllustration for Quiz Question 5.
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6. What's the distance between the origin and the point (1,1,1,1) in Cartesian four-

space? Assume the coordinate values to be exact.
A. The cube root of 8 units

B. The square root of 2 units

C. 2units

D. The square root of 8 units

. Imagine a rectangular prism that measures exactly 60 meters high, 120 meters

wide, and 300 meters deep. Suppose that it forms from nothing, exists in free
space for exactly 0.01 second, and then vanishes. What's its hypervolume in
quartic kilometer-equivalents? Assume that the free-space speed of light equals
exactly 3 x 10° kilometers per second.

A. 6.48 quartic kilometer-equivalents

B. 2.40 quartic kilometer-equivalents

C. 1.80 quartic kilometer-equivalents

D. 2.16 quartic kilometer-equivalents

. Imagine a rectangular prism that measures exactly 60 meters high, 120 meters

wide, and 300 meters deep. Suppose that it forms from nothing, exists in free
space for exactly 0.01 second, and then vanishes. What'’s its hypervolume in
quartic microsecond-equivalents? Assume that the free-space speed of light
equals exactly 3 x 10° kilometers per second.

A. 200 quartic microsecond-equivalents

B. 333 quartic microsecond-equivalents

C. 667 quartic microsecond-equivalents

D. 800 quartic microsecond-equivalents

. Figure 11-14 portrays a tesseract in “dimensionally reduced” form. As we've

already learned, this 4D figure has 16 vertices. How many line-segment edges
does the figure have?

FIGURE 11-14 . illustration for Quiz Questions 9 and 10.
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A. 16
B. 24
C. 32
D. 40

Imagine that the tesseract of Fig. 11-14 has a hypervolume of exactly 4096
quartic units. How long is each edge? Remember that in a true tesseract, all the
edges have equal length (despite the distorted appearance of this illustration).
A. 16 units

B. The square root of 128 units

C. The cube root of 2048 units

D. 8units
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Test: Part 11

Do not refer to the text when taking this test. You may draw diagrams or use a
calculator if necessary. A good score is at least 38 correct. Answers are in the
back of the book. It’s best to have a friend check your score the first time, so
you won't memorize the answers if you want to take the test again.
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. Imagine that two planes intersect in a straight line. We can express the angle at

which the planes intersect in two ways: as an acute angle u or as an obtuse angle
v. If we measure both angles in degrees, then

A u=90°-v.
B. u=120°-v.
C. u=180°-v.
D. u=270°-v.
E. u=300°-v.

. The equation of the line x=0, as expressed in the Cartesian plane, translates to

the polar-coordinate equation
0=m/8.

0=m/4.

0=m/2.

0=2m/3.

0=3n/4.

mONw>

. The equation of the line y=—x, as expressed in the Cartesian plane, translates to

the polar-coordinate equation
0=m/8.

0=m/4.

0=m/2.

6=2m/3.

0=3n/4.

mOnNwm>»

. What's the sum of the Cartesian three-space vectors u = (2,3,4) and v =

(-4,-3,-2)?
u+v=(-2,0,2)
u+v=(2,0-2)
u+v=(6,6,6)
u+v=(-6,-6,-6)
u+v=(0,0,0)

mONwm>»

. Figure Test II-1 illustrates various geometric shapes in a Euclidean plane. The

only difference among the versions shown in Figs. Test II-1A, B, and C involves

the extent to which the figures include their boundaries. Based on this informa-

tion, what can we say about the three different scenarios shown in Figs. Test lI-1A,

B,and C?

A. The figures in Fig. Test II-1A have greater perimeters than their counterparts in
Fig. Test II-1B, which in turn have greater perimeters than their counterparts in
Fig. Test II-1C. However, the figures in Fig. Test lI-1A have the same interior
areas as their counterparts in Fig. Test II-1B, which in turn have the same inte-
rior areas as their counterparts in Fig. Test [I-1C.

B. The figures in Fig. Test lI-1A have greater perimeters than their counterparts in
Fig. Test II-1B, which in turn have greater perimeters than their counterparts in
Fig. Test II-1C. Also, the figures in Fig. Test Il-1A have greater interior areas than
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FIGURE TEST I1-1 « llustration for Part Il Test Question 5.

their counterparts in Fig. Test [I-1B, which in turn have greater interior areas
than their counterparts in Fig. Test [I-1C.

C. Thefigures in Fig. Test II-1A have greater interior areas than their counterparts
in Fig. Test [I-1B, which in turn have greater interior areas than their counter-
parts in Fig. Test lI-1C. However, the figures in Fig. Test II-1A have the same
perimeters as their counterparts in Fig. Test lI-1B, which in turn have the same
perimeters as their counterparts in Fig. Test II-1C.

D. The figures in Fig. Test Il-1A have the same interior areas as their counterparts
in Fig. Test II-1B, which in turn have the same interior areas as their counter-
parts in Fig. Test lI-1C. Also, the figures in Fig. Test lI-1A have the same perime-
ters as their counterparts in Fig. Test lI-1B, which in turn have the same
perimeters as their counterparts in Fig. Test II-1C.

E. We cannot make any of the above general statements.

In three-space, whenever two flat planes intersect but do not actually coincide,
their intersection can take the form of a

point or a straight line.

point or a straight ray.

straight ray or a straight line.

point, a straight ray, or a straight line.

straight line only.

mONw>

Figure Test 1I-2 illustrates three planes X, Y, and Z. Planes X and Y intersect in a
straight line L. Planes X and Z intersect in a straight line M. Lines L and M run
parallel to each other. Line PQ lies in plane X and runs perpendicular to both
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FIGURE TEST I1-2 - Illustration for Part Il Test Question 7.

lines L and M. Line RS lies in plane Y and runs perpendicular to both lines L and
PQ. Line TU lies in plane Z and runs parallel to line RS. Angle TWP has the same
measure as angle RVP (both angles are denoted by dashed arcs). Based on all
this information, what can we say about planes Y and Z?

mONw>

They're parallel to each other.

They're skew to each other.

They're normal to each other.

They must intersect at some point not shown here.
They must intersect at some line not shown here.

8. What'’s the surface area of a rectangular prism that measures 4 inches high,
5 inches wide, and 7 inches deep?

mONw>

32 square inches

The square root of 140 square inches
The square root of 166 square inches
140 square inches

166 square inches

9. What's the volume of a rectangular prism that measures 4 inches high, 5 inches
wide, and 7 inches deep?

mONw>

32 cubicinches

The square root of 140 cubic inches
The square root of 166 cubic inches
140 cubic inches

166 cubic inches
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13.

14.

15.
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In celestial coordinates, declination is the equivalent of
right ascension.

celestial latitude.

celestial longitude.

elevation.

azimuth.

mONw>

In the context of terrestrial (earth-based) navigation, the term declination can
refer to something entirely different than its meaning in the context of celestial
coordinates: the angular difference between

magnetic north and geographic north.

azimuth and elevation.

right ascension and celestial longitude.

the vernal equinox and the zenith.

the zenith and the celestial latitude.

mONw>

Consider a flat plane in three-space, and a straight line that does not intersect
the plane at any point. In this situation, the line and the plane are

orthogonal.

perpendicular.

non-Euclidean.

normal.

parallel.

mON®m>

Suppose that in the Cartesian coordinate plane, a certain vector u begins (origi-
nates) at the point (-5,8) and ends (terminates) at the point (3,1). Which of the
following ordered pairs represents u in standard form?

A. u=(-8,7)
B. u=(8,-7)
C. u=(-29)
D. u=(8,9)

E. u=(-15,8)

Suppose that in the Cartesian plane, a certain vector v begins at the point (3,1)
and ends at the point (-5,8), exactly the opposite state of affairs from the situa-
tion described in Question 13. What's v in standard form?

A. v=(-8,7)
B. v=(8,-7)
C. v=(-2,9)
D. v=(8,9)

E. v=(-15,8)

What's the four-dimensional (4D) hypervolume, in quartic units, of a tesseract
that measures exactly 5 units on each edge?

1024 quartic units

625 quartic units

125 quartic units

25 quartic units

20 quartic units

mONw>
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16.

17.

18.

What's the 4D hypervolume, in quartic meter-equivalents, of a rectangular four-
prism consisting of a three-dimensional (3D) cube measuring exactly 2 meters
on each edge, that“lives” for exactly 2 seconds, and that does not move? Assume
that the speed of light in free space equals 3.00 x 10® meters per second.

4.8 x 10° quartic meter-equivalents

2.4 x 10° quartic meter-equivalents

1.2 X 10° quartic meter-equivalents

9.6 x 108 quartic meter-equivalents

4.8 x 108 quartic meter-equivalents

mOnNwm>»

The point (—1,—1) in the Cartesian xy-plane corresponds to one of the following
points in mathematician’s (4r) polar coordinates (MPC). Which point? Remember
that the 1/2 power of a number equals the positive square root of that number.
(m/4,2'2)

1/2,2"2)

31/4,2'72)

51/4,2'72)

71/4,2'72)

mONw>

(
(
(
(

Figure Test 1I-3 illustrates a slant circular cylinder. What’s the volume of the
enclosed solid? Assume that the base radius, the top radius, and the height have
exactly the values shown. Here’s a hint: The area enclosed by a circle equals &
times the square of its radius. Here’s another hint: To find the area of a cylinder
(whether it’s slanted or not), multiply its height by the enclosed area of its base.
84 cubic units

168 cubic units

336 cubic units

475 cubic units

672 cubic units

mONw>

Center of top

21/m units

<«— 4 units _>‘ Center of base

FIGURE TEST I1-3 - Illustration for Part Il Test Question 18.
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20.

21.

22,

23.

24,
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Considered with respect to the speed of light in free space (3.00 X 102 meters per
second), the distance from the earth to the sun (1.50 x 108 kilometers) represents
a time differential of

33 minutes and 20 seconds

16 minutes and 40 seconds.

8 minutes and 20 seconds.

4 minutes and 10 seconds.

2 minutes and 5 seconds.

mOnNwm>

If we double the radius of a slant circular cone’s base but do not change the
cone’s height, the volume of the enclosed solid increases by a factor of

A. the fourth root of 2.

B. the cube root of 2.

C. the square root of 2.

D. 2.

E. 4.

If we double the height of a slant circular cone but do not change the cone’s base
radius, the volume of the enclosed increases by a factor of

A. the fourth root of 2.

B. the cube root of 2.

C. the square root of 2.

m O

2.
. 4
What'’s the distance between (0,0,0,0,0,0,0,0) and (-1,-1,-1,-1,-1,-1,-1,-1) in
Cartesian eight-space?
1 unit
The eighth root of 2 units
The eighth root of —1 unit

The square root of 8 units
We can't define it.

mONw>

If we increase the volume of a perfect cube by a factor of 4, its surface area
increases by a factor of the

cube root of 16.

cube root of 32.

cube root of 64.

square root of 8.

square root of 32.

mONwm>

What'’s the six-dimensional (6D) hypervolume, in hexic meters, of a six-cube
measuring 1 meter on each edge?

1 hexic meter

6 hexic meters

36 hexic meters

216 hexic meters

1296 hexic meters

mONw>
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25. If we triple the radius of a sphere, its surface area increases by a factor of

A. 27.

B. 9.

C. 3.

D. the square root of 3.
E. the cube root of 3.

26. If we triple the radius of a sphere, its enclosed volume increases by a factor of

A. 27.

B. 9.

C. 3.

D. the square root of 3.
E. the cube root of 3.

27. Figure Test II-4 shows two vectors g and h in Cartesian three-space. Which of the
following statements holds true for them?
A. geh=(0,-10,25)
B. geh=(-1,3,10)
C. geh=0 (thescalar0)
D. geh=15 (the scalar 15)
E. g e h=0 (the zero vector)

Each axis division
equals 1 unit

+z

h = (0,-2,5)

-y

FIGURE TEST 11-4 - lllustration for Part Il Test Questions 27 through 29.
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29,

30.

31.

32.
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Which of the following statements holds true for the vectors of Fig. Test 1I-4?

A. g+h=(0-10,25)

B. g+h=(-1,3,10)

C. g+h=0 (the scalar zero)
D. g+h=15

E. g+h=0 (the zero vector)

We can represent any straight line in Cartesian xyz-space as a symmetric equa-
tion of the form

(x-x)/a=(y- yo)/b =(z-2z)/c

where x, y, and z represent the variables; the ordered triple (XY Z,) tells us the
coordinates of a specific point on the line; and a, b, and c represent the line’s
direction numbers. Consider a line L connecting the two points at the nonorigin
(terminating) ends of the vectors g and h shown in Fig. Test lI-4. What are the
direction numbers of L in the form of an ordered triple (a,b,c)? Here’s a hint:
Determine the standard form of a vector that originates at the nonorigin end of
h and terminates at the nonorigin end of g.

A. (ab,)=(-1,7,0)
B. (a.b,c)=(0,-10,25)
C. (a,b,c)=(-1,3,10)
D. (a,b,c)=(0,0,0)

E.

We can't define them.

The faces (including the base) of a tetrahedron are all

triangles.
squares.
rectangles.
rhombuses.
parallelograms.

mONw>

Two distinct, flat half planes in three-space run parallel to each other if and only
if the complete planes in which they lie intersect

nowhere.

in a single point.

in a straight ray.

in a straight line.

in either a straight ray or a straight line.

mONw>

In Fig. Test lI-5, suppose that we let each radial division (distance outward from
one of the concentric circles to the next one) represent exactly 1 unit. In that
case, what'’s the equation of the spiral?

r=20

r=26/3

r=20/n

r==0/3

r=0/n

mONw>
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/2

3/ \ /4
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Y,
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Sn/4 /4

3m/2

FIGURE TEST I1-5 . Illustration for Part Il Test Questions
32and 33.

33. InFig.Testl-5, suppose that we let each radial division represent exactly 7 units.
In that case, what's the equation of the spiral?

r=26

r=26/3

r=26/n

r=0/3

r=0/n

mONwm>»

34. Figure Test -6 illustrates a 3D set of

Cartesian coordinates.
cylindrical coordinates.
terrestrial coordinates.
spherical coordinates.
elliptical coordinates.

mONw>

35. What's the dot product of the Cartesian-plane vectors q=(0,5) and r=(-5,0)?

The zero vector

The vector (-5,5)

The scalar quantity 25

The scalar quantity 0

A vector that lies outside the plane containing g and r

mOnNwm>»
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38.
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6 = angle coordinate h = height (or altitude)
r = radius coordinate coordinate

FIGURE TEST I1-6 - lllustration for Part Il Test Question 34.

What's the cross product of the Cartesian-plane vectors q=(0,5) and r = (-5,0)?
The zero vector

The vector (-5,5)

The scalar quantity 25

The scalar quantity 0

A vector that lies outside the plane containing qand r

mONw>

Imagine that two planes intersect at an angle of 60°, representing the more
common of two ways in which we can express the intersection angle. What'’s a
less common, but still technically valid, expression for the intersection angle in
the same situation?

—-70°

-30°

100°

120°

150°

mON®m>

If we double the length of one semiaxis in an ellipsoid while not changing the
lengths of the other two semiaxes, we increase the volume of the enclosed solid
by a factor of

the square root of 2.

2.

the square root of 8.

4,

8.

mONw>
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39.

40.

41.

42.

p
X A

4.2 Units

N> ¢

3.7 units

Origin

FIGURE TEST I1-7 - Illustration for Part Il Test Question 39.

Imagine that in the scenario of Fig. Test ll-7, we construct line segment PQ. What's
its length to the nearest tenth of a unit?

A. 5.6 units

B. 6.2 units

C. 7.0 units

D. 7.9 units

E. We need more information to answer this question.

By convention, we can express the distance between two flat, parallel planes

along any line that

runs parallel to both planes.

runs parallel to only one of the planes.
runs normal to both planes.

intersects both planes.

intersects only one of the planes.

mONwm>»

At a minimum, how many distinct points do we need to uniquely define a flat
plane in three-space?

A. None

B. One

C. Two

D. Three

E. Four

Figure Test II-8 is a time-space graph of the earth (small black dot) as it revolves
around the sun. What'’s the time-space value of d. in second-equivalents, assuming
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FIGURE TEST I1-8 - Illustration for Part Il Test Questions 42 and 43.

that we consider the earth’s orbit as a perfect circle and the sun as an abso-
lutely stationary point of reference? Assume that the speed of light in free space
is 3.00 X 108 meters per second. Also assume that 1 year equals exactly 365 days,

each of which contains exactly 24 hours.

6.31 X 107 second-equivalents
3.15 x 107 second-equivalents
8.64 x 10° second-equivalents
4.32 x 10° second-equivalents
2.16 X 10° second-equivalents

mONw>

In the scenario of Fig. Test 1I-8, what’s the time-space value of d, in meter-
equivalents? Consider the speed of light and the length of the year to have the
values stated in Question 47. As before, consider the earth'’s orbit as a perfect
circle and the sun as a stationary point of reference.

1.30 X 10" meter-equivalents
2.36 x 10" meter-equivalents
2.59 x 10" meter-equivalents
4.73 x 10" meter-equivalents
9.45 x 10" meter-equivalents

mONwm>
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44. The larger of the two definable angles between a line and a plane has a measure
that can range anywhere between

0° and 360°.

90° and 180°.

180° and 270°.

270° and 360°.

180° and 360°.

mONw>

45. If we double the lengths of all the edges of a perfect tesseract, its four-space
hypervolume increases by a factor of
A 2.
B. 4.
C. 8.
D. 16.
E. 32.

46. Figure Test II-9 shows a hypothetical set of coordinates for Cartesian four-space.
What, if any, problem exists with this rendition?
A. It contains one too many lines (axes); we need, and should have, only three
lines (axes) here.
B. It can't uniquely portray points in four-space in our “real world,” because we
can't, in practice, make four lines intersect at a common point and remain
mutually perpendicular.

+Ww

Each increment
represents
1 distance unit

A\

+X

Cartesian

+7Z € four-space

v
-y
FIGURE TEST 11-9 - Illustration for Part Il Test Questions 46 and 47.




47.

48.

49.

50.

D.

E.

TEST: PART I

It does not contain enough axes; we must add an axis to represent time, so
that we end up with five axes in total.

A four-space coordinate system cannot exist in Cartesian form; we must either
graduate one of the axes in nonuniform increments, or else represent it as a curve.
No problem exists with this system.

How can we change the coordinate system shown in Fig. Test 1I-9 so that it
represents 4D time-space?

A.

D.

E.

We can ensure that the w, x, y, and z axes remain mutually perpendicular at
the origin and then imagine (but not attempt to draw) time as an additional t
axis, running from the past (negative values of t), through the present (t =0),
and toward the future (positive values of t).

We can change the x axis to a t axis to represent time, running from the past
(negative values of t), through the present (t = 0), and toward the future
(positive values of t), and leave everything else the same.

We can remove the w axis, ensure that the x, y, and z axes remain mutually
perpendicular at the origin, and then imagine (but not attempt to draw) time
as an additional t axis, running from the past (negative values of t), through
the present (t = 0), and toward the future (positive values of t).

We can convert the entire system to a set of celestial coordinates that portrays
values of right ascension, declination, azimuth, and elevation.

We can't.

Imagine a unit circle in the Cartesian plane, and a ray that emanates from the origin
(0,0) outward and upward toward the left, so that we have to turn precisely 45°
clockwise to get from the negative x axis to the ray. What's the x-value of the point
where the ray passes through the unit circle, accurate to three decimal places?

0.707

A
B. —-0.500
C.
D
E

0.866

. —0.866
. —0.707

In the situation of Question 48, what’s the y-value of the point where the ray
passes through the unit circle, accurate to three decimal places?

0.707

A
B. —0.500
C
D
E

0.866

. —0.866
. —0.707

One hour of right ascension, as an astronomer would define it, represents an
angle equivalent to

mON®m>

1°.

10°.
15°.
30°.
60°.
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Final Exam

Do not refer to the text when taking this test. You may draw diagrams or use a
calculator if necessary. A good score is at least 75 correct. Answers are in the
back of the book. It’s best to have a friend check your score the first time, so
you won’t memorize the answers if you want to take the test again.
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. Each vertex of a triangle corresponds to a specific interior angle that

measures
A. more than O rad but less than /2 rad.

B. more than n/2 rad but less than &t rad.

O

more than ©/2 rad but less than 27 rad.

)

. more than O rad but less than = rad.
more than —nt/2 rad but less than ©/2 rad.

£

. Which of the following statements is true?

A. All trapezoids are squares.

B. All trapezoids are rectangles.
C. All rhombuses are squares.
D. All squares are rectangles.

E. All rectangles are rhombuses.

In a convex Euclidean plane polygon, the measure of each interior angle
must remain less than

A. 45°.
B. 90°.
C. 180°.
D. 270°.
E. 360°.

. We say that two lines run parallel to each other if and only if they don’t

intersect anywhere, and also that they
A. lie in the same plane.

B. run perpendicular to each other.
C. lie infinitely far apart.

D. run askew relative to each other.

E. have undefined separation distance.

Suppose that we encounter a Euclidean plane triangle whose sides measure
exactly 23, 23, and 37 meters long. We’ve found

A. areflex triangle.
B. aright triangle.

C. an isosceles triangle.
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D. an equilateral triangle.
E. None of the above

When we encounter a rectangle, we can have complete confidence that
the measures of either pair of opposite interior angles add up to

A. mrad.

B. 27 rad.
C. /2 rad.
D. 3n/2 rad.
E. 37 rad.

Figure Exam-1 portrays two lines L and M that both intersect a transversal
line N. All three lines L, M, and N lie in a single flat plane. Line N inter-
sects line L at point P. Line N intersects line M at point Q. As a result, we
get eight angles s through z, as shown. Suppose that we scrutinize all eight
angles and find that angle x has a slightly larger measure than angle .
From this information, we can have absolute confidence that

A. lines L and M intersect somewhere.
B. angles v and y have equal measure.
C. angles w and s have equal measure.
D. angles u and z have equal measure.

E. lines L and M don’t intersect anywhere.

\ 4

\ 4

FIGURE EXAM-1 . lllustration for Final Exam Question 7.
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8.

10.

In order to “qualify” as a true Euclidean plane quadrilateral, a geometric
figure must have all of the following characteristics except one. Which one?

A. Four vertices, all of which lie in the same plane

B. Four sides, all of which have finite, positive, nonzero length
C. Four interior angles whose measures add up to 7 rad

D. Four interior angles, each of which has positive measure

E. Four sides, all of which are straight line segments

Imagine a regular Euclidean plane polygon with interior angles that all
measure 144°. What'’s the measure of each exterior angle?

A. 36°
B. 54°
C. 216°
D. 234°
E. 324°

Figure Exam-2 portrays two lines L and M that intersect at point P. As a
result, we get four angles w through z, as shown. We can have absolute
confidence that

A. angles w and x complement each other.

B. angles x and y complement each other.

A 4

FIGURE EXAM-2 . illustration for Final Exam
Questions 10 and 11.
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12.

13.

14.
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C. angles w and y complement each other.
D. More than one of the above
E. None of the above

In the situation shown by Fig. Exam-2, we can have absolute confidence that
A. angles w and x have equal measure.

B. angles x and y have equal measure.

C. angles w and y have equal measure.

D. More than one of the above

E. None of the above

Consider a specific line L in Euclidean three-space. Let R represent a
point that does not lie on L. How many different lines can we find that
pass through point R and run parallel to L?

A. None

B. One

C. Two

D. Three

E. Infinitely many

Consider a specific line N in Euclidean three-space. Let X represent a
point that does not lie on N. How many different lines can we find that
pass through point X and run askew to N?

A. None

B. One

C. Two

D. Three

E. Infinitely many

We can have absolute confidence that all four of the triangles shown in
Fig. Exam-3 exhibit

A. direct similarity.

B. direct congruence.
C. inverse similarity.
D. inverse congruence.

E. More than one of the above
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Identical sizes

Identical
proportions as
we go around
clockwise

Various
orientations

FIGURE EXAM-3 . lllustration for Final Exam

Question 14.

15. We can have absolute confidence that all four of the triangles shown in
Fig. Exam-4 exhibit

A. direct similarity.
B. direct congruence.

C. inverse similarity.

Identical proportions
as we go around clockwise

>

Various
orientations

FIGURE EXAM-4 . lllustration for Final Exam

Question 15.

Various sizes
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19.
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D. inverse congruence.

E. More than one of the above

In a Euclidean plane, the ratio of any circle’s circumference to its diam-
eter equals precisely

A. 22/7.

B. 3.14.

C. 3.14159.

D. the Arccosine of —1.
E. None of the above

If we have an ellipse with known dimensions and calculate its ellipticity,
we get a number that tells us

A. the ratio of the interior area to the circumference.
B. the ratio of the circumference to the interior area.
C. the average of the lengths of the semiaxes.

D. how much the figure differs from a perfect circle.

E. how much the figure differs from an inscribed regular polygon.

Which of the following maneuvers constitutes “cheating” in a geometric
construction with a compass, pencil, and straight edge?

A. Drawing a “random” arc with the compass, centered at an arbitrary
point

B. Defining a specific point by making a dot with the pencil

C. Marking the straight edge to quantify the length of a line segment

D. Using the compass to draw a circle centered at the end of a line
segment

E. Referencing a distance using the compass

In the situation shown by Fig. Exam-5, the area enclosed by AQPR
equals

A. (th+sh)/2.
B. thu + shv.

C. uv+ts.

D. 2hu + 2hv.
E. [(t+ s)uv]/2.

3u5
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20.

21.

FIGURE EXAM-5 . lllustration for Final Exam Question 19.

Imagine a circle that lies in a Euclidean plane, and that has a radius of
exactly 1 meter. Suppose that we circumscribe this circle with a regular
polygon having n sides, and then we increase n without limit, all the while
making sure that the polygon fits “tightly” around the circle. As we carry
out this process, the interior area of the polygon approaches

A. T meters.

B. the square root of 2 meters.

@

. the square root of T meters.

o

. /2 meters.

=

1 meter.

In the situation shown by Fig. Exam-6, suppose that line segment ST runs
parallel to line segment RQ. In that case, we know that the Euclidean
plane quadrilateral STQR is a

4 units

R 6 units Q

FIGURE EXAM-6 . lllustration for Final Exam Questions 21
through 23.
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23.

24.
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. parallelogram.
rhombus.
trapezoid.

. reflex figure.

SIICRN M-S

truncated rectangle.

In the situation of Fig. Exam-6, suppose that line segment ST not only
runs parallel to line segment RQ, but lies exactly 2 units from line segment
RQ. How long is line segment ST?

A. We need more information to calculate it.
B. 3 units

C. The square root of 6 units

D. 2 units

E. The square root of 10 units

In the situation of Fig. Exam-6, suppose that line segment ST runs
parallel to line segment RQ and lies exactly 2 units from line segment

RQ. What's the area enclosed by quadrilateral STQR?
A. We need more information to calculate it.

B. 6 square units

C. The square root of 24 square units

D. 9 square units

E. The square root of 48 square units

How can we use a compass, pencil, and straight edge to construct an
angle whose measure equals 22.5°?

A. We can draw a line segment, construct its perpendicular bisector,
bisect the resulting right angle to get 45°, and then bisect the 45°
angle to get 22.5°.

B. We can construct a rthombus and then bisect one of its vertex
angles.

C. We can construct an equilateral triangle and then bisect one of the
vertex angles.

D. We can construct a regular hexagon and then bisect one of its vertex
angles.

E. We can’t, unless we “cheat” and use a calibrated compass.
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25.

26.

Suppose that you want to construct a rhombus with a compass and
straight edge. What should you do first?

A. Construct two intersecting arcs.

B. Construct two parallel lines.

C. Construct two perpendicular lines.
D. Construct an equilateral triangle.

E. Construct a square.

Imagine a trapezoid defined by points P, Q, R, and S, which we encoun-
ter in that order as we go clockwise around the figure. Imagine that the
sides have lengths d, e, f, and g as shown in Fig. Exam-7. Let d represent
the base length, let & represent the height (vertical dashed line), let x
represent the angle between the sides having length d and e, and let y
represent the angle between the sides having lengths g and d. Suppose
that the sides having lengths d and f (line segments RS and PQ) are
parallel. Let m represent the length of the median of the trapezoid as
shown by the horizontal dashed line. Which of the following equations
holds true in all possible situations of the sort portrayed by this generic

drawing?

A x=y

B. m=(d+f)/2
Ce=¢g

D. h<m

E. h=m

P f Q
|
:h
m l
ef—————-— A g
|
90° |
X - y
S d R

FIGURE EXAM-7 . lllustration for Final Exam
Questions 26 through 28.
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Which of the following equations defines the perimeter B of trapezoid
PQRS as shown in Fig. Exam-7? (The 1/2 power denotes the positive
square root.)

A.B=h+m

B. B=2h+2m
C.B=d+e+f+g
D. B = (defg)'”?

E. B=mh

Which of the following equations defines the area A enclosed by trape-
zoid PQRS as shown in Fig. Exam-7? (The 1/2 power denotes the posi-
tive square root.)

A A=h+m

B. A=2h+2m
C A=d+e+f+g
D. A = (defg)'”?

E. A=mh

Consider a circle represented by the following equation in Cartesian
coordinates:

(x-—4)2+(w+1)=064
What are the coordinates of the circle’s center?
A (4-1)
B. (-4,1)
C (-14)
D. (1,-4)

E. We need more information to figure it out.

What’s the radius of the circle with the equation described in
Question 29?

A. 64 units
B. 32 units
C. 16 units
D. 8 units

E. We need more information to figure it out.

349



350 GEOMETRY DeMYSTiFieD

Euclidean
plane polygon

FIGURE EXAM-8 . Illustration for Final

Exam Question 31.

31. Figure Exam-8 illustrates an exterior angle @ for a “generic” Euclidean
plane polygon. Which of the following inequalities describes the range of
values, in radians, that @ can have?

A.0<b<m

B. 0<6<mn/2
0<6<m/4
.M/2<0<Tm
-n/2 <6< /2

™ g0

32. InEuclidean three-space, how many different lines can run perpendicular
to a given plane through a specific point that does not lie in that plane?

A. None

B. One

C. Two

D. Three

E. Infinitely many

33. In Euclidean three-space, how many different lines can run parallel to a
given plane through a specific point that does not lie in that plane?

A. None

B. One

C. Two

D. three

E. Infinitely many
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The ideal straight edge for carrying out a geometric construction
A. has an angle reference scale, preferably calibrated in degrees.

B. is calibrated for distance, preferably in metric units such as
millimeters.

C. has little holes in it to make small circles or to define points.
D. is a drafting triangle with two 45° angles and one 90° angle.

E. is an uncalibrated, flat object with at least one straight side.

If we want to define a specific straight line in Euclidean geometry, we
must precisely know the

A. location of one point.

B. locations of two points.

C. locations of three points.

D. locations and orientations of three planes.

E. locations and orientations of four planes.

Figure Exam-9 illustrates a “generic” regular Euclidean plane polygon. It
has n sides, each of length s units. Each interior angle measures @ radians.

Each side
measures
S units long

Regular

polygon with
N n sides

Each angle
measures
0 radians

FIGURE EXAM-9 . lllustration for Final Exam Questions 36
and 37.
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37.

38.

39.

Suppose that we let n increase without limit, but we also make sure that
the total perimeter of the polygon remains constant. What happens to s
as we do this?

A. Tt approaches 0.

B. It approaches 1 divided by the perimeter of the polygon.

C. It approaches ©t divided by the perimeter of the polygon.

D. It approaches the square root of © divided by the perimeter of the

polygon.
E. We can’t say unless we use calculus to figure it out.

In the situation shown by Fig. Exam-9 and described in Question 36,
what happens to the value of §as we increase n without limit?

A. It approaches O rad.
B. It approaches 1/4 rad.
C. It approaches n/2 rad.
D. It approaches 7 rad.
E. It approaches 27 rad.

Imagine the set of all possible isosceles triangles in a specific Euclidean
plane. We can have complete confidence that if we choose any two of
these triangles “at random,” they’ll turn out

A. directly congruent.
B. directly similar.
C. inversely congruent.

D. inversely similar.

E. None of the above

If we can identify at least one point that two different planes in Euclidean
three-space share, then we know that the two planes

A. run parallel to each other.
B. intersect in a straight line.
C. run perpendicular to each other.
D. run askew relative to each other.

E. intersect in a pair of parallel lines.
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40. If two different planes in Euclidean three-space share no points whatso-

41.

ever, then we know that the two planes
A. run parallel to each other.

B. intersect in a straight line.

C. run perpendicular to each other.

D. run askew relative to each other.

E. intersect in a pair of parallel lines.

Carefully inspect Fig. Exam-10. Suppose that you have a line segment
containing a point P, as shown in Fig. Exam-10A. You set your draft-
ing compass for a moderate span and construct two arcs opposite each
other, both centered at P and intersecting the line segment at points
Q and R (Fig. Exam-10B). Next, you roughly double the span of the
compass and then construct an arc centered at Q and another arc
centered at R, so that the two arcs have the same radius and intersect
each other at some point away from the line segment (Fig. Exam-10C).

QE P ER
s

P
g
A
Q( P )R
B
QE P }R )
C

FIGURE EXAM-10 . lllustration for Final Exam Question 41.
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42.

43.

44.

Finally, you use your straight edge to draw a ray that originates at P,
and that passes through the intersection point S of the two arcs you
just made (Fig. Exam-10D). In this situation, you can have absolute
confidence that

A. line segment PS has the same length as line segment QR.
B. ray PS runs perpendicular to line segment QR.

C. line segment QP has the same length as line segment PR.
D. More than one of the above

E. None of the above

In order for two lines in Euclidean three-space to run askew relative each
other, they must not

A. intersect at any point.

B. lie in the same plane.

C. run parallel to each other.

D. define a pair of vertical angles.
E. All of the above

If three lines all share exactly one point in Euclidean three-space, which
of the following statements can we make, with absolute certainty, about
those lines?

A. They all lie in the same plane

B. They're all parallel to each other

C. They're all askew relative to each other
D. They all coincide

E. None of the above

Figure Exam-11 shows two points on the Cartesian coordinate system.
What are the coordinates of point P, expressed as an ordered pair of the
form (x,y)?

A. (4,-5)
B. (-5,4)
C. (-4,5)
D. (5,-4)
E. (-4,-5)
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y
A
+6

‘\ """"" T4

P T2
«~t+—t+t+++T++t+t+++>x
6 4 2 L 2 i 4 6

— -2 E
T . Q
+4
L ,_.
+ -6
A\ 4

FIGURE EXAM-11 . lllustration for Final Exam Questions 44 through 48.

What are the coordinates of point Q in Fig. Exam-11, expressed as an
ordered pair of the form (x,y)?

A. (3,5)
B. (-3,5)
C. (5,3)
D. (-5,3)
E. (3,-5)

How far from the origin does point P lie in Fig. Exam-11? Assume that
the coordinate values, as you've identified them, are mathematically
exact. Round off the answer to three decimal places.

A. 4.472 units
B. 4.500 units
C. 6.000 units
D. 6.403 units
E. 6.667 units
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47.

48.

49.

50.

51.

How far from the origin does point Q lie in Fig. Exam-11? Assume that
the coordinate values, as you've identified them, are mathematically
exact. Round off the answer to three decimal places.

A. 6.000 units
B. 5.831 units
C. 5.657 units
D. 5.333 units
E. 5.111 units

How far from each other do points P and Q lie in Fig. Exam-11? Assume
that the coordinate values, as you've identified them, are mathematically
exact. Round off the answer to three decimal places.

A. 12.234 units
B. 12.042 units
C. 11.000 units
D. 10.000 units
E. 9.667 units

A tetrahedron has

A. four vertices, four edges, and four faces.
four vertices, six edges, and four faces.
six vertices, six edges, and four faces.

. six vertices, eight edges, and four faces.

Mg 0w

eight vertices, eight edges, and four faces.

In a regular tetrahedron, each face constitutes
A. an equilateral triangle.

B. aright triangle.

C. an obtuse triangle.

D. a reflex triangle.

E. asquare.

If we increase the volume of a cube by a factor of 125, then its surface area
increases by a factor of

A. 5.
B. the square root of 50.
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C. 10.
D. the square root of 125.
E. 25.

Suppose that we encounter a Euclidean plane triangle whose sides mea-
sure exactly 20, 48, and 52 meters long. We've found

A. an acute triangle.
a right triangle.
an isosceles triangle.

. an equilateral triangle.

m o 0w

an obtuse triangle.

Figure Exam-12 shows the graphs of three equations in Cartesian coor-
dinates. The graphs appear as a parabola (A), a circle (B), and a straight
line (C). Let’s call the corresponding equations “Equation A,” “Equation B,”
and “Equation C,” even though we don’t know any numerical specifics

FIGURE EXAM-12 . lllustration for Final Exam Questions 53 through 56.
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54.

55.

56.

57.

about them. Based on the visual information in Fig. Exam-12, how many
distinct real-number solutions exist for Equations A and B as a pair?

A. None

B. One

C. Two

D. Three

E. Infinitely many

Based on the visual information in Fig. Exam-12, how many distinct real-
number solutions exist for Equations B and C as a pair?

A. None

B. One

C. Two

D. Three

E. Infinitely many

Based on the visual information in Fig. Exam-12, how many distinct real-
number solutions exist for Equations A and C as a pair?

A. None

B. One

C. Two

D. Three

E. Infinitely many

Based on the visual information in Fig. Exam-12, how many distinct real-
number solutions exist for Equations A, B, and C considered all together?

A. None

B. One

C. Two

D. Three

E. Infinitely many

If we increase the volume of a sphere by a factor of 64, its surface area
increases by a factor of

A. 4.
B. 8.
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C. 16.
D. the square root of 128.
E. the cube root of 2048.

What's the magnitude of the vector 2i + 2j — 2k in Cartesian three-
space?

A 4

B. The square root of 6

C. 8
D. The square root of 8
E. The square root of 12

Figure Exam-13 shows three plane regions with different boundary defi-
nitions. Based on the assumption that the figures all have the same gen-
eral size and shape, which of the following statements holds true?

A. The regions all have identical interior areas, and they all have identical
perimeters.

B. Region A has greater interior area than region B, which in turn has
greater interior area than region C; however, all three regions have
identical perimeters.

C. Region A has greater perimeter than region B, which in turn has greater
perimeter than region C; however, all three regions have identical
interior areas.

A B Cc

FIGURE EXAM-13 . lllustration for Final Exam Question 59.
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D. Region A has greater perimeter than region B, which in turn has greater
perimeter than region C. In addition, region A has greater interior area
than region B, which in turn has greater interior area than region C.

E. We cannot define the interior areas or perimeters of any of the figures
shown here, because the boundary specifications aren’t clear.

60. In Cartesian time-space, each point follows its own time line. Assuming

61.

62.

that no point moves with respect to the origin, all the points follow time
lines that run

A. “parallel” to all the other time lines and “perpendicular” to three-space.
B. “parallel” to all the other time lines and “parallel” to three-space.

C. “perpendicular” to all the other time lines and “perpendicular” to
three-space.

D. “perpendicular” to all the other time lines and “parallel” to three-space.

E. “on the surface” of a light cone with the origin at its apex.

Imagine all possible right triangles in a Euclidean plane. If we choose any two
of them “at random,” we can have absolute confidence that they’ll both

A. be inversely similar.

B. be directly similar.

C. have equal perimeters.
D. have equal interior areas.

E. conform to the theorem of Pythagoras.

Refer to Fig. Exam-14. Let X represent a plane that passes through two
parallel planes Y and Z, intersecting Y and Z in lines L and M. Define
points P, Q, R, S, T, U, V, and W as shown, such that all of the following
conditions hold true:

Point V lies at the intersection of lines L, PQ, and RS
Point W lies at the intersection of lines M, PQ, and TU
Points P and Q lie in plane X

Points R and S lie in plane Y

Points T and U lie in plane Z

Lines PQ and RS both run perpendicular to line L
Lines PQ and TU both run perpendicular to line M
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FIGURE EXAM-14 . lllustration for Final Exam Questions 62 through 66.

Which of the following constitutes a pair of vertical angles, assuring us
that they have equal measure?

A. ZTWP and ZRVW
B. ZTWP and ZUWQ
C. ZQWT and £PVS
D. Z/PWU and ZQVR
E. ZPVS and ZWVR

In the situation described by Question 62 and Fig. Exam-14, which of the
following constitutes a pair of alternate interior angles, assuring us that
they have equal measure?

A. ZTWP and ZRVW
B. ZTWP and ZUWQ
C. ZQWT and £ZPVS
D. ZPWU and ZQVR
E. ZPVS and ZWVR
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64.

65.

66.

67.

In the situation described by Question 62 and Fig. Exam-14, which of the
following constitutes a pair of corresponding angles, assuring us that they
have equal measure?

A. ZTWP and ZRVW
B. ZTWP and ZUWQ
C. ZQWT and £PVS
D. ZPWU and ZQVR
E. ZPVS and ZWVR

In the situation described by Question 62 and Fig. Exam-14, which of the
following constitutes a pair of alternate exterior angles, assuring us that
they have equal measure?

A. ZTWP and ZRVW
B. ZTWP and ZUWQ
C. ZQWT and £PVS
D. ZPWU and ZQVR
E. ZPVS and ZWVR

In the situation described by Question 62 and Fig. Exam-14, which of the
following constitutes a pair of adjacent angles, assuring us that they're
supplementary?

A. ZTWP and ZRVW
B. ZTWP and ZUWQ
C. ZQWT and £PVS
D. ZPWU and ZQVR
E. ZPVS and ZWVR

Which of the following geometric objects represents a true mathematical
function when we work with it in a polar coordinate plane, but not when
we work with it in a Cartesian coordinate plane?

A. A circle centered at the origin

B. A straight, horizontal line that passes through the origin

0O

A straight, horizontal line that does not pass through the origin

O

. A parabola that opens upward and whose vertex lies at the origin

=

A parabola that opens upward and whose vertex does not lie at the
origin
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69.
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FINALEXAM

Imagine two rays emanating outward from the center point of a circle in
a Euclidean plane. Each of the two rays intersects the circle at a point;
call these points P and Q. Suppose that the distance between P and Q,
as expressed along the arc of the circle, equals the radius of the circle. In
this scenario, the measure of the angle between the rays equals

A. 1°.

B. 30°.

C. 45°.

D. 60°.

E. None of the above

What'’s the total surface area of the rectangular prism shown in
Fig. Exam-157?

A. 763 square inches

B. 1144 square inches

C. 1526 square inches

D. 3052 square inches

E. We need more information to calculate it.

What's the volume of the rectangular prism shown in Fig. Exam-15?
A. 49 cubic inches

B. 98 cubic inches

C. 2401 cubic inches

D. 3795 cubic inches

E. We need more information to calculate it.

|

15 inches

Rectangular
prism

L i

«<— 23 inches ——— >

11 inches

FIGURE EXAM-15 . lllustration for Final Exam Questions 69 and 70.
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72.

73.

74.

In polar coordinates, the equation 47 = 5@represents a
A. straight line.

B. circle.

C. spiral.

D. three-leafed rose.

E. hyperbola.

If we quadruple the length of one semiaxis of an ellipsoid while leaving
the other two semiaxes unchanged, the volume of the enclosed solid
increases by a factor of

A. 2.
B. the square root of 8.
C. the cube root of 32.
D. 4.
E. 8.

Suppose that we want to uniquely define a geometric plane in Cartesian
three-space. We can accomplish this task if we can determine

A. the coordinates of one point in the plane and the direction of a vector
that runs parallel to the plane.

B. the coordinates of two points in the plane and the direction of a vector
that runs parallel to the plane.

C. the coordinates of one point in the plane and the direction of a vector
that runs normal to the plane.

D. the back-end points of two vectors that both run normal to the
plane.

E. Any of the above

Consider a slant circular cone whose base radius equals » and height
equals &, as shown in Fig. Exam-16A. Point P represents the cone’s apex.
Point C represents the center of the base, which lies in plane X. Point Q
represents the projection of the apex onto plane X, so that line segment
PQ runs perpendicular to plane X. Imagine that we move point P straight
upward until we’ve exactly doubled the height of the cone to 2k, but we
don’t move point C, and the transformation has no effect on the location
of point Q. We get a taller cone, as shown in Fig. Exam-16 B. How do the
volumes of these two cones compare?
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Point C P

lies at center
of base
Plane X

Q

Y
<

|

| A
Point C
lies at center
of base
Plane X
i B
}e N

FIGURE EXAM-16 . lllustration for Final Exam Question 74.

A. The taller cone has twice the volume of the shorter cone.

B. The taller cone has the square root of 8 times the volume of the
shorter cone.

C. The taller cone has the cube root of 16 times the volume of the shorter
cone.

D. The taller cone has four times the volume of the shorter cone.

E. We need more information to answer this.

Consider the point (4,7,) = (31/2,16) in mathematician’s polar coordi-
nates. What's the ordered-pair (x,,y,) representation of this point in
Cartesian coordinates?
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76.

77.

78.

79.

A. (x,y,) = (0,~16)
B. (x,y,) = (0,-4)
C. (xo,yo) =(4,0)
D. (x,y,) = (4,16)
E. (x,y,) = (-4,-4)

With a drafting compass alone, you can “legally” perform all of the fol-
lowing actions, according to the formal rules for geometric construction,
except one. Which one?

A. Draw a circle centered at a defined point.

B. Replicate the distance between any two defined points.
C. Draw an arc centered at a “randomly” chosen point.

D. Determine the measure of an angle in degrees.

E. Draw a circle whose center lies on a defined line.

What'’s the sum of the vectors (1,-5,6) and (0,7,-12) in Cartesian
three-space?

A. (0,-35,-72)
B. (1,-12,6)
C. (1,2,-6)
D. (-1,12,-18)

E. We need more information to calculate it.

From the information shown in Figure Exam-17, we can deduce the fact that
A. the tangent of 90° is undefined.

B. the tangent of 45° equals 1.

C. the tangent of 135° equals —1.

D. the tangent of 315° equals —1.

E. All of the above

Based on the notion that the speed of light in free space equals 300,000
kilometers per second, we can define 1 minute of time as

A. 5000 kilometer-equivalents.

B. 18,000,000 kilometer-equivalents.
C. 300,000 cubic kilometers.

D. 60 cubic seconds.

E. None of the above
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Each axis division
equals 1/4 unit

b
~..~~
~

A

$~~~
Unit circle

X2+y2:1 n

e p= (21/2/2’_21/2/2)

FIGURE EXAM-17 . lllustration for Final Exam Question 78.

Imagine a rectangular prism that measures exactly 100 meters high,
200 meters wide, and 400 meters deep. Suppose that it forms from
nothing, exists in free space for exactly 0.01 second, and then van-
ishes. What's its hypervolume in quartic kilometer-equivalents? Assume
that the free-space speed of light equals exactly 3 x 10° kilometers per
second.

A. 6 quartic kilometer-equivalents

B. 12 quartic kilometer-equivalents
C. 18 quartic kilometer-equivalents
D. 24 quartic kilometer-equivalents

E. We need more information to calculate it.

What's the dot product of the two vectors shown in Fig. Exam-18?
A . ced=126

B. ced=23
C.ced=35
D.ced=0

E. We need more information to figure it out.
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82.

83.

¢ =(0,10,9) +

Each axis division
equals 2 units

d = (2,0,14)

-y

FIGURE EXAM-18 . lllustration for Final Exam Question 81.

What's the distance between the origin and the point (1,1,1,1,1,1,1,1,1,1)
in Cartesian 10-space? Assume the coordinate values to be exact.

A. 10 units

B. 100 units

C. The square root of 10 units
D. The 10th root of 10 units
E. 1T unit

What'’s the distance between the origin and the point (2,2,2,2,2,2,2,2,2,2)
in Cartesian 10-space? Assume the coordinate values to be exact.

A. The square root of 40 units
B. 200 units

C. The 10th root of 20 units
D. The square root of 20 units
E. 2 units
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84. With a straight edge alone, you can “legally” perform all of the following

85.

86.

actions, according to the formal rules for geometric construction, excepi
one. Which one?

A. Draw a ray that starts at a defined point.

B. Draw a line segment connecting two known points.
C. Duplicate a line segment.

D. Construct two lines that intersect at a single point.

E. Draw a line that intersects a defined circle at two “random” points.

What's the maximum number of dimensions that can theoretically exist
in Cartesian hyperspace?

A. Three

B. Four

C. Five

D. It depends on whether or not we include time.

E. No maximum exists!

Figure Exam-19 is a polar-coordinate graph showing a particular point P.
Each radial division (where radial divisions show up as concentric circles)

/2

Each radial
division
equals
1 unit

P = (7n/4,3)

3n/2

FIGURE EXAM-19 . lllustration for Final Exam Questions 86 and 87.
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87.

88.

89.

represents 1 unit. Based on this information, what’s the x coordinate of
P in the Cartesian xy-plane?

A. 3172

6]/2
(9/2)'2
/4
—(9/2)'2

= o 0w

In the situation of Fig. Exam-19, what’s the y coordinate of point P in the
Cartesian xy-plane?

A‘ 31/2
_61/2
(9/2)12
7m/4
~(9/2)"

Mg O W

Suppose that we want to determine the equation of a geometric line in a
Cartesian three-space coordinate system. We can accomplish this task if
we can find

A. the coordinates of one point on the line and the direction numbers for
a vector that runs parallel to the line.

B. the coordinates of one point on the line and the direction numbers for
a vector that runs normal to the line.

C. the direction numbers for two vectors that run normal to the line.
D. the direction numbers for two vectors that run parallel to the line.
E. Any of the above

Figure Exam-20 illustrates a set of three-space coordinates commonly
used by astronomers. What does the angular dimension 8, expressed in
degrees, represent here?

A. Celestial longitude
B. Declination

C. Azimuth

D. Right ascension

E. Elevation
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North celestial pole
6 =90°
A
¢ = 6 hours
¢ =12 hours /
\‘ [ Vernal
equinox
/
¢ =18 hours 6=0 hours
Plane of the equator Plane
of equator
\ 4
6 =-90°

South celestial pole

FIGURE EXAM-20 . illustration for Final Exam Questions 89 and 90.

What does the angular dimension ¢, expressed in hours, represent in the
coordinate system of Fig. Exam-20?

A. Celestial longitude
B. Declination

C. Azimuth

D. Right ascension

E. Elevation

What'’s the sum of the vectors (2,5) and (-7,-10) in Cartesian two-space?
A. (-5,-5)

B. (5,-15)

C. (9,-5)

D. (-8,-2)

E. (-14,-50)

What's the dot product of the vectors (2,5) and (-7,-10) in Cartesian
two-space?

A. -64

B. -10

C 4
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94.

95.

96.

D. 6
E. 36

In Cartesian time-space that describes our “real world,” how many coor-
dinate values do we need to uniquely name or define a point that lasts
for an “infinitely short” instant in time?

A. Two

B. Three

C. Four

D. Five

E. Infinitely many

We can have total confidence that two triangles are inversely similar if
they exhibit

A. inverse congruence.

B. direct similarity and the same orientation.
C. direct similarity and the same size.

D. direct congruence and different orientations.
E. Any of the above

In so-called navigator’s polar coordinates, we don’t allow the range to

have negative values. Why?

A. It results in an undefined quotient, rendering it impossible to define
the position of a point.

&

It produces relations but not always true mathematical functions.

C. It requires us to define angular values going clockwise, when we should
always define them going counterclockwise.
D. In the “real world,” nothing can lie any closer to us than the point

representing our own location.

E. All of the above

Imagine that S, T, and U represent three collinear points (they all fall
along a single straight line), such that T lies between S and U. Which of
the following four distance equations, if any, is false?

A. ST+ TU=SU

B. SU-ST=TU



97.

98.

99.

FINALEXAM

C. SU-TU=ST
D. ST-TU=SU

E. All of the above equations are true.

Which of the following actions violates the formal rules for geometric
construction?

A. Define the length of a line segment by laying the nonmarking tip of a
compass at one end point and the marking tip at the other end
point.

B. Represent a line by running a pencil’s tip along a straight edge for
some distance, and then draw arrows at each end of the pencil
mark.

C. Create a “random” angle by using a straight edge to draw two rays that
intersect at their back-end points.

D. Construct a “random” circle with a compass set to any desired
span.

E. Duplicate a line segment over and over, endlessly (in your imagination),
to create an infinitely complex Euclidean plane polygon.

Imagine two distinct points P and Q on a non-Euclidean surface. The
shortest possible path between P and Q that lies entirely on the surface
is known as a

A. Riemannian curve.
B. Lobachevskian curve.
C. longitudinal curve.

D. latitudinal curve.

E. None of the above

Figure Exam-21 illustrates a non-Euclidean 2D surface containing an
irregular polygon with five sides, all of which are geodesic arcs. The sur-
face in this illustration has

A. negative curvature.
B. positive curvature.
C. nongeodesic curvature.
D. relativistic curvature.
E.

elliptical curvature.
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Irregular pentagon,
all of whose sides
constitute geodesic arcs

................................

Non-Euclidean
surface

Figure lies entirely
on the warped
surface

FIGURE EXAM-21 . lllustration for Final Exam Questions 99 and 100.

100. If we take Fig. Exam-21 as a literal portrayal, we can have complete con-
fidence that the measures of the interior angles of the irregular pentagon
sum up to

A. something more than 540°.
B. exactly 540°.
something less than 540°.

g 0O

. something more than 600°.

£

something more than 720°.
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Tests, and Final Exam

Chapter 1 Chapter 3 Chapter 5 Test: Part |
1.B 1.D 1.C 1.E
2.C 2.B 2.D 2.B
3.A 3.A 3.C 3.C
4.B 4.C 4. A 4.B
5.B 5.D 5.B 5.A
6.C 6.A 6.A 6.D
7.A 7.A 7.D 7.D
8.B 8.C 8.C 8.D
9.D 9.D 9.C 9.C

10.D 10.B 10.A 10.C

11.D

Chapter 2 Chapter 4 Chapter 6 12.B
1.D 1.B 1.D 13. A
2.B 2.B 2.C 14.F
3.D 3.D 3.C 15.B
4.C 4.C 4.B 16.C
5.C 5.D 5.A 17.D
6.B 6.B 6.B 18.B
7.D 7.D 7.C 19.E
8.B 8.C 8.D 20.C
9.A 9.C 9.A 21.E

10.C 10. A 10.B 22.B
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23.D 9.D Chapter 11 26. A
24.F 10. A 1.D 27.D
25.F 2.A 28.B
26. A Chapter 8 3.B 29.A
27.C 1.B 4.C 30. A
28.D 2.B 5.B 31.A
29.D 3.C 6.C 32.C
30.C 4.C 7.A 33.A
31.E 5.D 8.D 34.B
32.D 6.A 9.C 35.D
33.A 7.C 10.D 36.F
34.D 8.C 37.D
35 D 9.C Test: Part Il 38.B
36.E 10. B 1.C 39. A
37.C 2.C 40.C
38. A Chapter 9 3.E 41.D
39.A LA 4.A 42.B
40 E 2.D >.D 43 E
41.D 3.B 6.E 44.B
42.A 4.B A 45.D
43.B 5. A 8.E 46.B
44.C 6.C 9.D 47.C
45.D 7 A 10.B 48 E
46.A 8.B 11.A 49 A
47.B 9.C 12.E 50.C
48 A 10. D 13.B
14. A Final Exam
49.E Chapter 10 15. B 1.D
°0-E 1.C 16. A 2.D
Chapter 7 2.C 17.D 3.C
1.D 3.A 18.C 4.A
2.A 4.D 19.C 5.C
3.B 5.B 20.E 6.A
4.A 6.B 21.D 7.A
5.C 7.C 22.D 8.C
6.B 8. A 23.A 9. A
7.D 9.D 24. A 10.E

8.C 10. A 25.B 11.C
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A

abscissa, 118
acute angle, 7
acute triangle, 34-35
adjacent angles, 13
adjacent dihedral angles, 174
adjacent line/plane angles, 176
alternate exterior angles for intersecting
lines, 15
alternate exterior angles for intersecting planes,
183-185
alternate interior angles for intersecting
lines, 14
alternate interior angles for intersecting planes,
183-184
altitude in cylindrical coordinates,
278
angle
bisection of, 9, 109-110
definition of 9-16
dihedral, 173-174
reproduction of, 108-109
angle-angle-angle principle,
32-33

angle-angle-side principle, 32

angle between line and plane,
175-176

angle measurement, 7

angle notation, 8, 74

angle-side-angle principle, 31

angles between intersecting planes, 173-174,

178-179
angular addition, 11-12
angular subtraction, 11-12
antipodes, 275
arc, construction of, 97-98
arctangent, 225
astronomical unit, 293-294
axioms, Euclid’s, 310-311
azimuth, 269

bearing, 269
bilateral symmetry, 33, 120
bisection

angle, 9, 109-110

line segment, 101-102
black hole, 315
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C

cardioid in polar coordinates, 262, 263-265
Cartesian extrapolations, 303-304
Cartesian five-space, 303-304
Cartesian four-space, 290-291
Cartesian n-space, 290-295, 304-305
Cartesian plane, 115-147, 219-228, 272-275
Cartesian three-space, 228-250, 292-294
Cartesian time-space, 292
celestial coordinates, 277-278, 280-283
circle

center of 135

circumference of, 81

construction of 96-99

definition of, 80

equation of, 135-138

interior area of 81

radius of, 135
circle in polar coordinates, 255-257
circular cone, 201-205
circular cylinder, 205-209
circular sector

interior area of, 85

perimeter of 84-85
circumference of circle, 81
circumference of ellipse, 81-82
circumscribed regular polygon, 83-84, 86-87
classical physics, 292
closed-ended ray, 5
closed line segment, 5
closed plane region, 168
compass, drafting, 92-114
complementary angles, 13
cone, circular, 201-205
congruent triangles, 26-34
conic section, 80
constructions, 92-114
coordinate conversions, 267-275
coplanar vertices, 39

corresponding angles for intersecting lines,
15-16
corresponding angles for intersecting planes,
185-186
cosine function, 221-222
cosmologist, 304
cross product of vectors, 237-238
cube
definition of, 196
surface area of 196-197
volume of, 196-197
curved space, 315-317
cylinder, circular, 205-209
cylindrical coordinates, 278-280, 283-284

D

declination

celestial, 277

magnetic, 270
dependent variable, 118, 230-231
dihedral angle, 173-174
direction angles, 233-234
direction cosines, 234-235
direction in polar coordinates, 253-254
direction numbers, 245-246
direction of vector, 225
directly congruent triangles, 27-30,

33-34, 40
directly similar triangles, 25-26, 29-30, 32-34
displacement as manifestation of time,
295-296

displacement versus distance, 6
distance addition, 10-11
distance between parallel line and plane, 178
distance between parallel planes, 182
distance between point and plane, 177
distance between points, 118-119, 231
distance formulas, 305-306
distance notation, 4-5



distance subtraction, 10-11
dot product of vectors, 226-228, 236
drafting compass, 92-114

E

eccentricity, 82
Einstein, Albert, 296
elementary objects, 4
ellipse
circumference of 81-82
definition of, 80
interior area of 82
ellipse in polar coordinates, 256-258
ellipsoid
definition of, 211
positive curvature of, 313
surface area of, 212
volume of, 211-212, 214
elliptic geometry, 313-314
ellipticity, 82
equation of circle, 135-138
equation of line, 122-129
equation of parabola, 129-135
equations
multiple solutions of, 141-144
simultaneous, 138-144
solutions to pairs of, 138-144
two-by-two, 140
equatorial axis, 275
equilateral triangle, 37-38
equivalent vectors, 224-225, 232-233
Euclid of Alexandria, 3, 309
Euclidean geometry
definition of, 3
as subject for this book, 309
Euclidean plane polygon see polygon
Euclidean three-space, 166-190
Euclid’s axioms, 310-311
Euclid’s fifth postulate, 311

Index

exterior angles, 15, 76-77
extrapolations, Cartesian, 303-304

F

five-space, Cartesian, 303-304
four-cone, 300
four-cube, 297-299
four-leafed rose in polar coordinates,
260, 262
four-prism, rectangular, 198, 307-309
four-space, Cartesian, 290-291
free space, 299
frustum of right circular cone
definition of, 203
surface area of, 203-204
volume of, 203-204
functions, 120-122
functions versus relations, 119-122

G

general theory of relativity, 315-316
geodesic, 311-315

geodesic arc, 312

geodesic segment, 312

geographic north, 269

geometric polar plane, 265-266
gigagon, regular, 72

Global Positioning System, 270
graph of linear equation, 122-129
graph of quadratic equation, 129-135
gravitational light cross, 316

half line, 5

half plane, 170-171

half-open line segment, 5

heading, 265

height in cylindrical coordinates, 278
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helix, 295

hexagon, regular, 70-71

hyperbola in polar coordinates,
257-259

hyperbolic geometry, 314-315

hypercone, 300

hyperfunnel, 316-317

hyperprism, rectangular, 298

hypervolume, 298, 301-302, 307-309

if and only if symbol, 37

iff symbol, 37

independent variable, 118, 230-231

inscribed regular polygon, 83, 85-86

interior angles, 14, 24-25, 75-76

interior area of circle, 81

interior area of circular sector, 85

interior area of circumscribed regular
polygon, 84

interior area of ellipse, 82

interior area of inscribed regular
polygon, 83

interior area of parallelogram, 60

interior area of rectangle, 61

interior area of regular polygon, 78-79

interior area of rhombus, 61

interior area of square, 62

interior area of trapezoid, 63-64

interior area of triangle, 40

intersecting line principle, 168

intersecting planes, 171-176

inverse tangent, 225

inversely congruent triangles, 27-28, 34

inversely similar triangles, 26, 34

isosceles triangle, 36

K
kilometer-equivalent, 297-298, 302

L

latitude, 275-277, 314
lemniscate in polar coordinates, 259
light cone, 300-301
light-year, 296
line
construction of, 96
construction of parallel to,
104-107
dropping perpendicular to,
103-104
equation of, 122-129
line and point principle, 168
line as elementary object, 4
line in Cartesian three-space, 245-248
line in Euclidean three-space,
166-167
line on Cartesian plane, 122-129
line parallel to plane, 178
line segment
bisection of, 101-102
closed, 5
construction of, 94-95
duplication of, 100-101
half-open, 5
open, 5
perpendicular ray to, 102-103
linear equation
graph of, 122-129
point-slope form of, 125-127
slope-intercept form of, 123-124
standard form of, 123
straight line represented as, 122
lines, parallel, 12-13,171-172
lines, skew, 172
Lobachevskian geometry, 314-315
Lobachevsky, Nikolai, 314
logical implication symbol, 37
longitude, 275-277, 314



M

magnetic declination, 270

magnitude of vector, 225, 233

many-sided polygon, 72-74

mathematician’s polar coordinates,
271-275

midpoint principle, 5-6

minute-equivalent, 296

multiplication of vector by scalar, 226, 236

mutual perpendicularity, 17-18

naming of triangle, 24-25

navigator’s polar coordinates, 269-275
negative curvature, 314

Newtonian physics, 292

noncollinear points, 28

nonconvex octagon, regular, 72-73
non-Euclidean geometry, 309
non-Euclidean space, 315-317
normal line to a plane, 175,177
north geographic pole, 269

n-space, Cartesian, 290-295, 304-305

0

oblate sphere, 313

obtuse angle, 7

obtuse triangle, 35

octagon, nonconvex, regular, 72-73
octagon, regular, 71-73, 85-86
open line segment, 5

open plane region, 169
open-ended ray, 5

ordered pair, 116-117

ordered quadruple, 290
ordered triple, 229

ordinate, 118

origin, 118

orthogonal, 7

Index

P

parabola

equation of, 129-135

plotting of, 130-135

vertex point of, 129
parallel defined as latitude circle, 314
parallel geodesics, 312-315
parallel line, construction of, 104-107
parallel lines, 12-13, 171-172
parallel planes, 181-182
parallel postulate, 16-17,311-312
parallel principle for lines, 16-17
parallel principle for lines and planes, 187
parallel principle for planes, 186-187
parallel principle revisited, 309-315
parallelepiped

definition of, 198-199

surface area of, 198-199

volume of, 198-200
parallelogram

definition of, 48-49, 51

diagonals of 53-54

interior area of, 60

perimeter of, 60

special facts about, 53-54
parallelogram method of vector addition,

224
parametric equations, 246-248
partially closed plane region, 169
partially open plane region, 169
pentagon, regular, 70
perimeter of circular sector, 84-85
perimeter of circumscribed regular polygon,
83-84

perimeter of inscribed regular polygon, 83
perimeter of parallelogram, 60
perimeter of rectangle, 61
perimeter of regular polygon, 77-78
perimeter of rhombus, 60-61
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perimeter of square, 62
perimeter of trapezoid, 62
perimeter of triangle, 39-40
perpendicular

definition of, 7

dropping of, to a line, 103-104
perpendicular bisector

construction of, 102

definition of, 9-10
perpendicular bisector principle, 9-10
perpendicular planes, 174-175
perpendicular principle, 9-10
perpendicular transversal, 16
perpendicularity, mutual, 17-18
photon, 300
pi, definition and value of, 80
plane

Cartesian, 115-147, 219-228,272-275

general equation of, 240-245
plotting, 241-244

plane as elementary object, 4

plane geometry, definition of, 3

plane in Cartesian three-space, 239-245

plane in Euclidean three-space, 166-167

plane perpendicular to line, 177-178
plane polygon see polygon

plane regions, 168-170

point, construction of, 93-94

point as elementary object, 4

point in Euclidean three-space, 166-167

points, distance between, 118-119

point-slope form of linear equation, 125-127

polar axis, 275

polar coordinates, 252-275

polygon
circumscribed regular, 83-84, 86-87
definition of, 70
exterior angles of, 76-77

inscribed regular, 83, 85-86

polygon (Cont.):
interior angles of, 75-76
many-sided, 72-74
regular, definition of, 72
regular, interior area of, 78-79
regular, perimeter of, 77-78
requirements for, 70
rules for, 74-80
positive curvature, 313
prism, rectangular
definition of, 197
surface area of, 197-198, 200-201
volume of, 197-198
pyramid
definition of, 195
surface area of 195-196
volume of, 195-196
Pythagorean theorem, 39

Q

quadratic equation, graph of,
129-135

quadrilateral

definition of, 46

general, 50

irregular, 50

requirements for, 46

sum of angle measures, 52

types and characteristics of, 46-48
quartic kilometer-equivalent, 298
quasar, 316

R

radius in polar coordinates, 252-254
ray

closed-ended, 5

construction of, 95

open-ended, 5

perpendicular to line segment, 102-103



rectangle

definition of, 47-48, 51

diagonals of 54-55

interior area of, 61, 64-65

perimeter of 61

special facts about, 54-56, 58-59
rectangular four-prism, 298, 307-309
rectangular hyperprism, 298
rectangular prism

definition of, 197

surface area of, 197-198, 200-201

volume of, 197-198
rectangular three-space, 228-250
reference frame, 296
reflex angle, 7
regular gigagon, 72
regular hexagon, 70-71
regular nonconvex octagon, 72-73
regular octagon, 71-73, 85-86
regular pentagon, 70
regular polygon

circumscribed, 83-84, 86-87

definition of, 72

inscribed, 83, 85-86

interior area of 78-79

perimeter of, 77-78
relation, 119-120
relation conversions, 268
relation versus function, 119-122, 254-255
relativity, theory of, 296, 315-316
rhombus

definition of, 47-48

diagonals of, 56

interior area of 61

perimeter of, 60-61

special facts about, 56, 58-59
Riemann, Bernhard, 313
Riemannian geometry, 313-314
right angle, 7

Index

right ascension, 277

right circular cone
definition of, 201-202
surface area of, 202
volume of, 202-203

right circular cylinder
definition of, 206-207
surface area of, 206-207
volume of, 206-209

right triangle, 38

rigid transformation, 26

S

second-equivalent, 296, 302-303
side-angle-angle principle, 32
side-angle-side principle, 30-31
sides of triangle, 25
side-side-side principle, 29-30
similar triangles, 25-30, 32-34
simultaneous equations, 138-144
sine function, 220-222
skew lines, 172
slant circular cone

definition of, 204-205

volume of, 204-205
slant circular cylinder

definition of, 207-208

volume of 207-208
slope, definition of, 124
slope-intercept form of linear equation,

123-124

special relativity, theory of, 296
sphere

definition of, 210

oblate, 313

positive curvature of, 313

surface area of, 210

volume of, 210-211, 213
spherical coordinates, 280-282
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spiral in polar coordinates, 260, 263-264
square

definition of 4647

interior area of, 62

perimeter of, 62
standard form of linear equation, 123
straight angle, 7
straight edge, 92-114
sum of vectors, 226, 235
supplementary angles, 13
symmetric-form equation, 245,

247-248

symmetry, bilateral, 33, 120

T

tangent function, 221-223
tesseract, 297-299, 306-307
tetrahedron
definition of, 194
surface area of, 194
volume of 194-195
theorem of Pythagoras, 39
theory of general relativity, 315-316
theory of special relativity, 296
three-leafed rose in polar coordinates,
260-261
three-point principle for triangles,
28-29
three-point principle to define a plane, 167
three-space, Cartesian, 228-250,
292-294
three-space, Euclidean, 166-190
time as displacement, 295-296
time line, 292
time-space, 292-295, 301-302
torus
definition of, 212-213
surface area of, 212-213
volume of, 212-213

transversal, 14-16
trapezoid
definition of, 49-50
interior area of 63-64
median of, 57-58
perimeter of, 63
special facts about, 57-58
triangle
acute, 34-35
definition of, 24
equilateral, 37-38
interior angles of, 24-25
interior area of 40
isosceles, 36
naming of, 24-25
obtuse, 35
perimeter of 39-40
right, 38
sides of, 25
sum of angle measures, 39
trapezoid within, 57
vertices of, 24, 39
triangles
directly congruent, 27-30,
33-34,40

directly similar, 25-26, 29-30,

32-34

inversely congruent, 27-28, 34

inversely similar, 26, 34

three-point principle for, 28-29

trigonometry, 220-223
true north, 269
two-by-two equations, 140
two-point principle, 4

u

unit circle, 220-221
unit vectors, 238-239
universal speed, 295-296



v

vector

definition of, 223-224

multiplication of, by scalar, 226, 236
vectors

cross product of, 237-238

dot product of, 226-228, 236

sum of 226, 235

unit, 238-239
vectors in the Cartesian plane, 223-228
vernal equinox, 277, 282-283
vertical angles for intersecting lines, 13-14
vertical angles for intersecting planes, 182-183
vertices of triangle, 24

Index

W
warped space, 315-317

X

x axis, 116, 229
xyz-space, 228-250

Y

y axis, 116, 229
year-equivalent, 296

Z
z axis, 220
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