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PREFACE

Our goal in writing this book is to describe matrix theory from a geometric, physical
point of view. The beauty of matrices is that they can express so many things in
a compact, suggestive vernacular. The drudgery of matrices lies in the meticulous
computation of the entries. We think matrices are beautiful.

So we try to describe each matrix operation pictorially, and squeeze as much infor-
mation out of this picture as we can before we turn it over to the computer for number
crunching.

Of course we want to be the computer’s master, not its vassal; we want to know
what the computer is doing. So we have interspersed our narrative with glimpses of the
computational issues that lurk behind the symbology.

Part I. The initial hurdle that a matrix textbook author has to face is the exposition of
Gauss elimination. Some readers will be seeing this for the first time, and it is of prime
importance to spell out all the details of the algorithm. But students who have acquired
familiarity with the basics of solving systems of equations in high school need to be
stimulated occasionally to keep them awake during this tedious (in their eyes) review.
In Part I, we try to pique the interests of the latter by inserting tidbits of information
that would not have occurred to them, such as operation counts and computer timing,
pivoting, complex coefficients, parametrized solution descriptions of underdetermined
systems, and the logical pitfalls that can arise when one fails to adhere strictly to Gauss’s
instructions.

The introduction of matrix formulations is heralded both as a notational shorthand
and as a quantifier of physical operations such as rotations, projections, reflections,
and Gauss’s row reductions. Inverses are studied first in this operator context before
addressing them computationally. The determinant is cast in its proper light as an
important concept in theory, but a cumbersome practical tool.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



x PREFACE

Readers are guided to explore projects involving LU factorizations, the matrix
aspects of finite difference modeling, Kirchhoff’s circuit laws, GPS systems, and fixed
point methods.

Part II. We show how the vector space concepts supply an orderly organizational
structure for the capabilities acquired in Part I. The many facets of orthogonality are
stressed. To maintain computational perspective, a bit of attention is directed to the
numerical issues of rank fragility and error control through norm preservation. Projects
include rotational kinematics, Householder implementation of QR factorizations, and
the infinite dimensional matrices arising in Haar wavelet formulations.

Part III. We devote a lot of print to physical visualizations of eigenvectors—for
mirror reflections, rotations, row reductions, circulant matrices—before turning to the
tedious issue of their calculation via the characteristic polynomial. Similarity transfor-
mations are viewed as alternative interpretations of a matrix operator; the associated
theorems address its basis-free descriptors. Diagonalization is heralded as a holy grail,
facilitating scads of algebraic manipulations such as inversion, root extraction, and
power series evaluation. A physical experiment illustrating the stability/instability of
principal axis rotations is employed to stimulate insight into quadratic forms.

Schur decomposition, though ponderous, provides a valuable instrument for under-
standing the orthogonal diagonalizability of normal matrices, as well as the Cayley–
Hamilton theorem.

Thanks to invaluable input from our colleague Michael Lachance, Part III also pro-
vides a transparent exposition of the properties and applications of the singular value
decomposition, including rank reduction and the pseudoinverse.

The practical futility of eigenvector calculation through the characteristic polyno-
mial is outlined in a section devoted to a bird’s-eye perspective of the QR algorithm.
The role of luck in its implementation, as well as in the occurrence of defective matrices,
is addressed.

Finally, we describe the role of matrices in the solution of linear systems of differen-
tial equations with constant coefficients, via the matrix exponential. It can be mastered
before the reader has taken a course in differential equations, thanks to the analogy
with the simple equation of radioactive decay. We delineate the properties of the matrix
exponential and briefly survey the issues involved in its computation.

The interesting question here (in theory, at least) is the exponential of a defec-
tive matrix. Although we direct readers elsewhere for a rigorous proof of the Jordan
decomposition theorem, we work out the format of the resulting exponential. Many
authors ignore, mislead, or confuse their readers in the calculation of the generalized
eigenvector Jordan chains of a defective matrix, and we describe a straightforward and
foolproof procedure for this task. The alternative calculation of the matrix exponential,
based on the primary decomposition theorem and forgoing the Jordan chains, is also
presented.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



PREFACE xi

Group projects for Part III address positive definite matrices, Hessenberg forms, the
discrete Fourier transform, and advanced aspects of the singular value decomposition.

Each part includes summaries, review problems, and technical writing exercises.

EDWARD BARRY SAFF ARTHUR DAVID SNIDER
Vanderbilt University University of South Florida
edward.b.saff@vanderbilt.edu snider@usf.edu

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



PART I

INTRODUCTION: THREE EXAMPLES

Antarctic explorers face a problem that the rest of us wish we had. They need to con-
sume lots of calories to keep their bodies warm. To ensure sufficient caloric intake
during an upcoming 10-week expedition, a dietician wants her team to consume
2300 ounces of milk chocolate and 1100 ounces of almonds. Her outfitter can sup-
ply her with chocolate almond bars, each containing 1 ounce of milk chocolate and
0.4 ounces of almonds, for $1.50 apiece, and he can supply bags of chocolate-covered
almonds, each containing 2.75 ounces of chocolate and 2 ounces of almonds, for $3.75
each. (For convenience, assume that she can purchase either item in fractional quanti-
ties.) How many chocolate bars and covered almonds should she buy to meet the dietary
requirements? How much does it cost?

If the dietician orders x1 chocolate bars and x2 covered almonds, she has 1x1 + 2.75x2

ounces of chocolate, and she requires 2300 ounces, so

1x1 + 2.75x2 = 2300. (1)

Similarly, the almond requirement is

0.4x1 + 2x2 = 1100. (2)

You’re familiar with several methods of solving simultaneous equations like (1) and
(2): graphing them, substituting one into another, possibly even using determinants.
You can calculate the solution to be x1 = 1750 bars of chocolate and x2 = 200 bags of
almonds at a cost of $1.50x1 + $3.75x2 = $3375.00.

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



2 PART I INTRODUCTION: THREE EXAMPLES

But did you see that for $238.63 less, she can meet or exceed the caloric requirements
by purchasing 836.36. . . bags of almonds and no chocolate bars? We’ll explore this in
Problem 20, Exercises 1.3. Simultaneous equations, and the linear algebra they spawn,
contain a richness that will occupy us for the entire book.

Another surprising illustration of the variety of phenomena that can occur arises in
the study of differential equations.

Two differentiations of the function cos t merely result in a change of sign; in other
words, x(t) = cos t solves the second-order differential equation x′′ = −x. Another
solution is sin t, and it is easily verified that every combination of the form

x(t) = c1 cos t + c2 sin t,

where c1 and c2 are arbitrary constants, is a solution. Find values of the constants (if
possible) so that x(t) meets the following specifications:

x(0) = x(π/2) = 4; (3)

x(0) = x(π) = 4; (4)

x(0) = 4; x(π) = −4. (5)

In most differential equations textbooks, it is shown that solutions to x′′ = −x
can be visualized as vibratory motions of a mass connected to a spring, as depicted
in Figure I.1. So we can interpret our task as asking if the solutions can be timed so
that they pass through specified positions at specified times. This is an example of
a boundary value problem for the differential equation. We shall show that the three
specifications lead to entirely different results.

Evaluation of the trigonometric functions in the expression x(t) = c1 cos t + c2 sin t
reveals that for the conditions (3) we require

c1 · (1) + c2 · (0) = 4

c1 · (0) + c2 · (1) = 4 (3′)

with the obvious solution c1 = 4, c2 = 4. The combination x(t) = 4 cos t + 4 sin t
meets the specifications, and in fact, it is the only such combination to do so.

Fig. I.1 Mass-spring oscillator. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



PART I INTRODUCTION: THREE EXAMPLES 3

Conditions (4) require that

c1 · (1) + c2 · (0) = 4,

c1 · (−1) + c2 · (0) = 4, (4′)

demanding that c1 be equal both to 4 and to −4. The specifications are incompatible,
so no solution x(t) can satisfy (4).

The requirements of system (5) are

c1 · (1) + c2 · (0) = 4,

c1 · (−1) + c2 · (0) = −4. (5′)

Both equations demand that c1 equals 4, but no restrictions at all are placed on c2. Thus
there are infinite number of solutions of the form

x(t) = 4 cos t + c2 sin t.

Requirements (1, 2) and (3′, 4′, 5′) are examples of systems of linear algebraic
equations, and although these particular cases are quite trivial to analyze, they demon-
strate the varieties of solution categories that are possible. We can gain some perspective
of the complexity of this topic by looking at another application governed by a linear
system, namely, Computerized Axial Tomography (CAT).

The goal of a “CAT” scan is to employ radiation transmission measurements to con-
struct a map of flesh density in a cross section of the human body. Figure I.2 shows the
final resuls of a scan through a patient’s midsection; experts can detect the presence of
cancer tumors by noting unusual variations in the density.

Emitters

Chamber #1#1
#1

#2
#2

#3 #4

#3 #4

Chamber #3 Chamber #4

Detectors

Chamber #2

Fig. I.2 Simplified CAT scan model. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4 PART I INTRODUCTION: THREE EXAMPLES

A simplified version of the technology is illustrated in Figure I.2. The stomach is
modeled very crudely as an assemblage of four chambers, each with its own density.
(An effective three-dimensional model for detection of tiny tumors would require mil-
lions of chambers.) A fixed dose of radiation is applied at each of the four indicated
emitter locations in turn, and the amounts of radiation measured at the four detectors are
recorded. We want to deduce, from this data, the flesh densities of the four subsections.

Now each chamber transmits a fraction ri of the radiation that strikes it. Thus if a unit
dose of radiation is discharged by emitter #1, a fraction r1 of it is transmitted through
chamber #1 to chamber #2, and a fraction r2 of that is subsequently transmitted to
detector #1. From biochemistry we can determine the flesh densities if we can find the
transmission coefficients ri.

So if, say, detector #1 measures a radiation intensity of 50%, and detectors #2, #3,
and #4 measure intensities of 60%, 70%, and 55% respectively, then the following
equations hold:

r1r2 = 0.50; r3r4 = 0.60; r1r3 = 0.70; r2r4 = 0.55.

By taking logarithms of both sides of these equations and setting xi = ln ri, we find

x1 + x2 = ln 0.50

x3 + x4 = ln 0.60

x1 + x3 = ln 0.70

x2 + x4 = ln 0.55, (6)

which is a system of linear algebraic equations similar to (1, 2) and (3′, 4′, 5′). But the
efficient solution of (6) is much more daunting—awesome, in fact, when one considers
that a realistic model comprises over 106 equations, and that it may possess no solutions,
an infinity of solutions, or one unique solution.

In the first few chapters of this book, we will see how the basic tool of lin-
ear algebra—namely, the matrix–can be used to provide an efficient and systematic
algorithm for analyzing and solving such systems. Indeed, matrices are employed in vir-
tually every academic discipline to formulate and analyze questions of a quantitative
nature. Furthermore, in Chapter Seven, we will study how linear algebra also facili-
tates the description of the underlying structure of the solutions of linear differential
equations.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1
SYSTEMS OF LINEAR
ALGEBRAIC EQUATIONS

1.1 LINEAR ALGEBRAIC EQUATIONS

Systems of equations such as (1)–(2), (3′), (4′), (5′), and (6) given in the “Introduc-
tion to Part I” are instances of a mathematical structure that pervades practically every
application of mathematics.

Systems of Linear Equations

Definition 1. An equation that can be put in the form

a1x1 + a2x2 + · · · + anxn = b,

where the coefficients ai and the right-hand side b are constants, is called a lin-
ear algebraic equation in the variables x1, x2, . . . , xn. If m linear equations, each
having n variables, are all to be satisfied by the same set of values for the vari-
ables, then the m equations constitute a system of linear algebraic equations (or
simply a linear system):

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm (1)

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

One solution

One solution

No solutions

No solutions

Infinity of solutions

Infinity of solutions

(a) (b) (c)

(d) (e) (f)

Fig. 1.1 Typical graphs of linear systems with two unknowns.

We assume that the reader has had some experience solving linear systems of two
equations in two unknowns, such as (1, 2) in the preceding section, although the lack of
solutions to (4′) and the multiplicity of solutions to (5′) may have come as a surprise.
The graph of the solutions to a single equation in two unknowns is, of course, a straight
line (hence the designation “linear”) and the graphs in Figure 1.1(a–c) illustrate why
a system of two such equations typically has one solution, but special alignments can
result in zero or an infinite number of solutions. If a third equation is added to the system
(Figure 1.1(d–f)), typically there will be no solutions, although accidental alignments
can result in one, or an infinity of, solutions.

The graph of the solutions to a “linear” algebraic equation in three unknowns is not
literally a line, but a plane, and Figure 1.2 reinforces our expectation that systems with
three unknowns can again possess zero, one, or an infinity of solutions.

Although the graphs provide much insight into the nature of the solutions of lin-
ear systems, they are obviously inadequate as tools for finding these solutions when
more than three unknowns are present. We need an analytic technique for solving
simultaneous linear equations that is efficient, accurate, foolproof, and easy to auto-
mate. After all, the task of solving linear systems is performed billions of times each
day in computers around the world. It arises in an enormous number of applications.
The allocation of medical resources such as hospital beds, antibiotics, health per-
sonnel, etc. after a disaster involves dozens of variables. Displaying and/or saving
an image on a computer screen may require thousands of equations converting the
red/green/blue intensities to the wavelet coefficients for the JPEG 2000 image compres-
sion format; similar considerations hold for face recognition and other image processing
schemes. The algorithm employed in CAT scans, we have noted, can involve millions
of unknowns. In fact, the task of solving large systems of linear equations is intimately

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.1 LINEAR ALGEBRAIC EQUATIONS 7

No solutions

No solutions No solutions

One solution

Infinity of solutions

Fig. 1.2 Graph of three equations in three unknown.

entwined with the history and evolution of the electronic computer. So bear in mind
that although you will be solving small linear systems by hand as you learn the basics,
in practice you will usually be entrusting your analyses to software. In such appli-
cations it is absolutely essential that the computer’s speed be coupled with a precise
understanding of what it is doing, and that is the goal of our exposition in the next
few sections.

We are going to focus on one algorithmic procedure for solving linear systems. It
is known as Gauss elimination (in tribute to the great German mathematician Carl
Friedrich Gauss (1777–1855), although his other works dwarf this effort). It1 is used
almost universally for solving generic linear systems. (To be sure, faster algorithms
exist for systems with special structures.)

The Gauss elimination algorithm, “by the book,” is inflexible. Just the same, anytime
you’re solving a system by hand and you see a shortcut, by all means take it; most of
the time you will save time and work. However, there will be occasions when you get
nonsense (see Problems 15–18 for examples), and then you must back up and follow
Gauss’s rules rigidly.

The basic idea of Gauss elimination is to add multiples of earlier equations to sub-
sequent equations, choosing the multiples so as to reduce the number of unknowns.
(Equivalently, one can say we are subtracting multiples of earlier equations from
subsequent equations. We’ll employ whichever interpretation seems appropriate.)
The resulting system of equations can then be solved in reverse order. We demon-
strate with a system of three equations in three unknowns before giving the general
formulation.

1Or an equivalent formulation called “LU decomposition,” described in Group Project A, Part I.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



8 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Example 1. Solve the system

x1 + 2x2 + 2x3 = 6

2x1 + x2 + x3 = 6

x1 + x2 + 3x3 = 6. (2)

Solution. We eliminate x1 in the second equation by adding (−2) times the first
equation (or subtracting 2 times the first equation):

x1 + 2x2 + 2x3 = 6

−3x2 − 3x3 = −6

x1 + x2 + 3x3 = 6.

Similarly x1 is eliminated from the third equation by adding (−1) times the first;

x1 + 2x2 + 2x3 = 6

−3x2 − 3x3 = −6

−x2 + x3 = 0. (3)

Next x2 is eliminated from the third equation by adding (−1/3) times the second:

x1 + 2x2 + 2x3 = 6

−3x2 − 3x3 = −6

2x3 = 2. (4)

The third equation only has one unknown and its solution is immediate:

x3 = 1.

But now, the second equation has, effectively, only one unknown since we can substitute
1 for x3. Hence, its solution is

x2 = −1
3
[−6 + (3 × 1)] = 1. (5)

And substitution for x3 and x2 in the first equation yields

x1 = 6 − 2 × (1)− 2 × (1) = 2. �

To maintain focus on the methodology of Gauss elimination, we usually con-
trive examples like the above, with integer or small-fraction constants. But some-
times the transparency of simplified examples can obscure the underlying algorithm.
For example, if you examine the system (3), you may see that adding (2/3) times the sec-
ond equation to first would have enabled us to conclude x1 = 2 immediately. Obviously
we can’t rely on such serendipity in general. So we include the following unwieldy 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.1 LINEAR ALGEBRAIC EQUATIONS 9

example to focus your attention on the regimented steps of Gauss elimination. Don’t
bother to follow the details of the arithmetic; just note the general procedure.

Example 2. Solve the linear system

0.202131x1 + 0.732543x2 + 0.141527x3 + 0.359867x4 = 0.171112

0.333333x1 − 0.112987x2 + 0.412989x3 + 0.838838x4 = 0.747474

−0.486542x1 + 0.500000x2 + 0.989989x3 − 0.246801x4 = 0.101001

0.101101x1 + 0.321111x2 − 0.444444x3 + 0.245542x4 = 0.888888

Solution. To eliminate x1 from the second equation, we add (−0.333333/0.202131)
times the first. Similarly we add (0.486542/0.202131) times the first equation to
the third, and add (−0.101101/0.202131) times the first to the fourth. These three
operations produce (to 6 digits)

0.202131x1 + 0.732543x2 + 0.141527x3 + 0.359867x4 = 0.171112

−1.32101x2 + 0.179598x3 + 0.245384x4 = 0.465294

2.26317x2 + 1.33063x3 + 0.619368x4 = 0.512853

−0.045289x2 − 0.515232x3 + 0.065545x4 = 0.803302

(Roundoff effects will be discussed in Section 1.5.)
Next, we eliminate x2 from the third and fourth equations by adding, in turn, the

multiples (2.26317/1.32102) and (−0.045289/1.32102) of the second equation. And
so on. Continuing with the forward part of the algorithm we arrive at the system

0.202131x1 + 0.732543x2 + 0.141527x3 + 0.359867x4 = 0.171112

−1.32101x2 + 0.179598x3 + 0.245384x4 = 0.465294

1.63832x3 + 1.03176x4 = 1.30999

0.388032x4 = 1.20425 (6)

And performing “back substitution,” that is solving for the variables in reverse order
from the bottom up, we obtain the solution. It turns out to be

x4 = 3.10348

x3 = −1.17003

x2 = 0.065189

x1 = −4.09581 �

We now give a brief exposition of the steps of the Gauss elimination process, as
demonstrated in these examples. It may have occurred to you that the algorithm, as
described so far, has a flaw; it can be foiled by the untimely appearance of zeros at 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



10 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

certain critical stages. But we’ll ignore this possibility for the moment. After you’ve
become more familiar with the procedure, we shall patch it up and streamline it
(Section 1.3). Refer to Example 2 as you read the description below.

Gauss Elimination Algorithm (without anomalies) (n equations in n unknowns,
no “zero denominators”)

1. Eliminate x1 from the second, third, . . ., nth equations by adding appropri-
ate multiples of the first equation.

2. Eliminate x2 from the (new) third, . . ., nth equations by adding the appro-
priate multiples of the (new) second equation.

3. Continue in this manner: eliminate xi from the subsequent equations by
adding the appropriate multiples of the ith equation.

When xn−1 has been eliminated from the nth equation, the forward part
of the algorithm is finished. The solution is completed by performing back
substitution:

4. Solve the nth equation for xn.

5. Substitute the value of xn into the (n − 1)st equation and solve for xn−1.

6. Continue in this manner until x1 is determined.

Problems 15–18 at the end of this section demonstrate some of the common traps
that people can fall into if they don’t follow the Gauss procedure rigorously. So how can
we be sure that we haven’t introduced new “solutions” or lost valid solutions with this
algorithm? To prove this, let us define two systems of simultaneous linear equations
to be equivalent if, and only if, they have identical solution sets. Then we claim that
the following three basic operations, which are at the core of the Gauss elimination
algorithm, are guaranteed not to alter the solutions.

Basic Operations

Theorem 1. If any system of linear algebraic equations is modified by one of the
following operations, the resulting system is equivalent to the original (in other
words, these operations leave the solution set intact):

(i) adding a constant multiple of one equation to another and replacing the
latter with the result;

(ii) multiplying an equation by a nonzero constant and replacing the original
equation with the result;

(iii) reordering the equations.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.1 LINEAR ALGEBRAIC EQUATIONS 11

We leave the formal proof of this elementary theorem to the reader (Problem 14) and
content ourselves here with some pertinent observations.

• We didn’t reorder equations in the examples of this section; it will become
necessary for the more general systems discussed in Section 1.3.

• Multiplying an equation by a nonzero constant was employed in the back substitu-
tion steps where we solve the single-unknown equations. It can’t compromise us,
because we can always recover the original equation by dividing by that constant
(that is, multiplying by its reciprocal).

• Similarly, we can always restore any equation altered by operation (i); we just add
the multiple of the other equation back in.

Notice that not only will we eventually have to make adjustments for untimely zeros,
but also we will need the flexibility to handle cases when the number of equations does
not match the number of unknowns, such as described in Problem 19.

Exercises 1.1

1. Solve the following linear systems by back substitution (reordering of equations
may be helpful).

(a) 2x1 + x2 − x4 = −2 (b) 5x1 = 15
3x2 + 2x3 + x4 = 2 −2x1 − 3x2 = −12

x3 + 2x4 = −1 x1 + x2 + x3 = 5
4x4 = 4

(c) − x3 + 2x4 = 1 (d) 2x1 + x2 = 3
4x1 + 2x2 + x4 = −3 3x1 + 2x2 + x3 = 6

− 2x4 = −2 4x1 = 4
x2 + 2x3 + 3x4 = 5

2. For each of the following systems, graph the linear equations and determine the
solution(s), if any.

(a) x + 2y = 1 (b) x + 2y = 1
x − y = 0 x − 4y = 0

x − y = 0

(c) x + 2y = 1 (d) x + 2y = 1
x + 3y = 1 −2x − 4y = −2
x + 4y = 1 1

2 x + y = 1
2

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



12 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

In Problems 3–6, use Gauss elimination to solve the given linear system.

3. 3x1 + 8x2 + 3x3 = 7
2x1 − 3x2 + x3 = −10

x1 + 3x2 + x3 = 3

4. 2x1 − 4x2 + 3x3 = 0
2x1 + 5x2 − 2x3 = 0
5x1 + 4x2 − 6x3 = 0

5. x1 + x2 + x3 +x4 = 1
x1 +x4 = 0

2x1 + 2x2 − x3+x4 = 6
x1 + 2x2 − x3+x4 = 0

6. x1 − x2 − x3 − x4 − x5 = −1
−x1 − x2 − x3 − x4 + x5 = −1

x1 − x2 + x3 − x4 + x5 = 1
x1 − x2 + x3 − x4 − x5 = −1
x1 + x2 + x3 + x4 + x5 = 3

7. Solve the system

0.123x1 + 0.456x2 = 0.789

0.987x1 + 0.654x2 = 0.321

by Gauss elimination, using a calculator and retaining 3 significant digits at each
stage. What is the total number of multiplications, divisions, and (signed) additions
required? (Hint: Try to organize your calculations so that you minimize your effort.
Don’t bother to compute numbers which you know will turn out to be zero.)

8. Show that if ae − bd �= 0, then solving the system

ax + by = c

dx + ey = f

for x and y in terms of the other symbols yields

x =
ce − bf
ae − bd

, y =
af − cd
ae − bd

.

9. Use the formula derived in Problem 8 to solve the system in Problem 7. What is
the number of divisions, multiplications, and additions that you performed?

10. Show that if D := afk + bgi + cej − cfi − bek − agj is not zero, then solving the
system

ax + by + cz = d

ex + fy + gz = h

ix + jy + kz = l

for x, y, z in terms of the other symbols yields

x =
dfk + bgl + chj − dgj − bhk − cfl

D
,

y =
ahk + dgi + cel − chi − dek − agl

D
,

z =
afl + bhi + dej − dfi − ahj − bel

D
.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.1 LINEAR ALGEBRAIC EQUATIONS 13

(Hint: Eliminate x from the last two equations and then apply the formula derived
in Problem 8 to solve for y and z.)

11. Solve the system

0.123x1 + 0.456x2 + 0.789x3 = 0.111

0.987x1 + 0.654x2 + 0.321x3 = 0.444

0.333x1 − 0.555x2 − 0.777x3 = 0.888

by Gauss elimination, using a calculator and retaining three significant digits. What
is the total number of multiplications, divisions, and (signed) additions required?
(See Problem 7.)

12. Apply the formula derived in Problem 10 to solve Problem 11. What is the number
of multiplications, divisions, and (signed) additions required?

13. Use a calculator to solve the following systems of equations by back substitu-
tion. What is the total number of multiplications, divisions, and (signed) additions
required? (See Problem 7.)
(a)

1.23x1 + 7.29x2 − 3.21x3 = −4.22

2.73x2 + 1.34x3 = 1.11

1.42x3 = 5.16

(b)

0.500x1 + 0.333x2 + 0.250x3 + 0.200x4 = 1

+0.111x2 + 0.222x3 + 0.333x4 = −1

0.999x3 + 0.888x4 = 1

+0.250x4 = −1

14. Give a formal proof of Theorem 1. (Hint: You must show that if the xi’s satisfy a
particular linear system, then they also satisfy the new linear system that results by
performing one of the “sanctioned” operations on the old system. Then show that
if they satisfy the new system, they also satisfy the old.)

15. Starting with the linear system (2), derive the following system by subtracting the
second equation from the first, the third from the second, and the first from the
third:

−x1 +x2+ x3 = 0
x1 −2 x3 = 0

−x2+ x3 = 0.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



14 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Is this procedure consistent with the rules for Gauss elimination? Explain. Note
that the new system admits more solutions than (2); for example, it sanctions x1 =
x2 = x3 = 0.

16. (a) Why does squaring an equation change its solution set? Specifically, consider
the equation 4x = 8.

(b) Why does Gauss elimination sanction multiplying equations by nonzero
constants only?

17. For the nonlinear system of equations

x2 − y2 + 2y = 1

x + 2y = 5

consider the following “derivation”:

x2 = y2 − 2y + 1 = (y − 1)2

x = y − 1

(y − 1) + 2y = 5

y = 2

x = 2 − 1 = 1

This solution does satisfy the original system, but so does x = −3, y = 4. Why
was one solution lost? (Graph the original equations.)

18. For the nonlinear system of equations

√
x + 1 = y

x − y2 = −1 + 2y

consider the following “derivation”:

√
x = y − 1

x = y2 − 2y + 1

(y2 − 2y + 1)− y2 = −2y + 1 = −1 + 2y

y = 1/2

x = (1/2)2 − 2(1/2) + 1 = 1/4.

Now observe that this solution does not solve the original equation:

√
x + 1 =

√
1/4 + 1 = 3/2 �= 1/2 = y

Where is the logical error? (Graph the original equations.) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.1 LINEAR ALGEBRAIC EQUATIONS 15

19. Consider the problem of finding the equation of a straight line passing through two
given points; in other words, one must determine the values of a, b, and c so that
ax + by = c is satisfied by two specific pairs x = x1, y = y1 and x = x2, y = y2.
Show that this problem can be formulated as a system of two simultaneous linear
equations in the three unknowns a, b, and c. This system will always have an infinite
number of solutions; why?

20. The nonlinear equation y = ax2 + bx + c has a parabola as its graph. Consider
the problem of passing a parabola through the three points x0 = 0, y0 = 1; x1 = 1,
y1 = 2; and x2 = 2, y2 = 1. Write down a system of three simultaneous linear
equations for the unknown coefficients a, b, and c. Then solve this system.

21. The generalization of Problem 20 is known as the Lagrange Interpolation Prob-
lem. The coefficients a0, a1, . . . , an are to be chosen so that the graph of the nth
degree polynomial

y = a0 + a1x + a2x2 + · · · + anxn

passes through the n + 1 points (x0, y0), (x1, y1), . . . , (xn, yn). Express this as a
system of n + 1 simultaneous linear equations for the unknowns ai.

While the examples presented so far have had real numbers as the coefficients
in the equations, Gauss elimination can be carried out in any number system that
supports the basic operations of addition, subtraction, multiplication, and division.
In Problems 22 and 23, apply the algorithm to solve the given system of linear
equations over the complex numbers.

22. (1 + i)x1 + (1 − i)x2 = i

2x1 + ix2 = 1

23. (1 + i)x1+ 2x2 = 2i
x1+ ix2+ (2 − i)x3 = 1 + i

(−1 + 2i)x2+ (−2 − 3i)x3 = 0.

24. Complex equations can be expressed with real numbers by separating the real and
imaginary parts.
(a) Show that the system in Problem 22 can be expressed (with x = u + iv) as

u1 − v1 + u2 + v2 = 0

u1 + v1 − u2 + v2 = 1

2u1 − v2 = 1

2v1 + u2 = 0 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



16 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

(b) Show that the system in Problem 23 can be expressed as

u1−v1+ 2u2 = 0

u1 +v1 +2v2 = 2

u1 − v2+ 2u3 + v3 = 1

v1+ u2 − u3 +2v3 = 1

− u2−2v2−2u3 +3v3 = 0

2u2− v2−3u3−2v3 = 0.

25. What inhibits the application of the Gauss elimination algorithm to the algebraic
system composed of just the integers? Prove that 6x − 4y = 9 has no solutions
among the integers.

26. Prove that if a linear system of n equations in n unknowns has only rational numbers
(i.e., ratios of integers) as coefficients and as right-hand sides and if Gauss elim-
ination proceeds “normally” (no unwanted zeros), then the solutions are rational
numbers also.

27. (For students with experience in modular arithmetic) Use Gauss elimination to
solve the following system in the integers modulo 7.

2x + 4y = 3

3x + 2y = 3.

Does the system have a solution in the integers mod 6?

28. Show that a general system of n equations in n unknowns having the structure of
the systems in Problem 13 can be solved using back substitution with n divisions,
n(n − 1)/2 multiplications, and n(n − 1)/2 additions. Then show that the total
number of divisions, multiplications, and additions that are required to solve n
equations in n unknowns using Gauss elimination, assuming no zero denomi-
nators occur, is n(n + 1)/2 divisions, (n − 1)n(2n + 5)/6 multiplications, and
(n − 1)n(2n + 5)/6 additions.

29. Use the formulas derived in Problem 28 to estimate the computer times required
to solve representative linear systems arising in the following disciplines. Com-
pare the performance of a typical PC, which performs 5 × 109 operations (signed
additions, multiplications, or divisions) per second, with that of the Tianhe-2 com-
puter developed by the National University of Defense Technology in Changsha
city in central China, 3.38 × 1016 operations per second (Forbes, November 17,
2014).

Thermal stress (10,000 unknowns);

American Sign Language (100,000 unknowns);

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.2 MATRIX REPRESENTATION OF LINEAR SYSTEMS 17

Chemical plant modeling (300,000 unknowns);

Mechanics of composite materials (1,000,000) unknowns;

Electromagnetic modeling (100,000,000 unknowns);

Computational fluid dynamics (1,000,000,000 unknowns).

(Fortunately most of these systems have special structures that accommodate
algorithms faster than Gauss elimination.)

30. Show that an exchange of rows i and j in a matrix can be achieved by using only
the other two elementary row operations, as follows. Subtract row i from row j, add
the resulting row j to row i, subtract the resulting row i from row j, and multiply
row j by (−1).

1.2 MATRIX REPRESENTATION OF LINEAR SYSTEMS
AND THE GAUSS-JORDAN ALGORITHM

The system of linear equations that we solved in Example 1 of the preceding section,

x1 + 2x2 + 2x3 = 6

2x1 + x2 + x3 = 6

x1 + x2 + 3x3 = 6,

(1)

can be represented in an obvious way by a 3-by-4 (some authors write 3×4) rectangular
array, or matrix2:

⎡
⎢⎢⎢⎣

1 2 2
... 6

2 1 1
... 6

1 1 3
... 6

⎤
⎥⎥⎥⎦ . (2)

Note the use of the dots to indicate the equal signs. The coefficients of the variables
appear in a submatrix called, appropriately, the coefficient matrix:

⎡
⎣1 2 2

2 1 1
1 1 3

⎤
⎦ (3)

2The term “matrix” was coined in 1850 by the English mathematician James Joseph Sylvester, the founder
of the American Journal of Mathematics.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



18 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

In general, a system of m simultaneous linear equations in n unknowns,

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm,

(4)

will be represented by an m-by-(n + 1) augmented coefficient matrix of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
... b1

a21 a22 · · · a2n
... b2

...
. . .

...
...

...

am1 am2 · · · amn
... bm

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5)

which we write in compact notation as [A|b]. A is the m-by-n coefficient matrix and
b is the m-by-1 column matrix of the bi’s. (We denote matrices by boldface capitals.)
The ordering of the subscripts demonstrates how the entries in a matrix are addressed;
aij denotes the element in the ith row and jth column,3 and is the coefficient in the ith
equation of the jth variable (except for j = n + 1, when aij is bi).

The three basic operations of Gauss elimination become operations on the rows of
the augmented coefficient matrix. Let’s see how the solution procedure of the example
looks in matrix form.

Example 1. Carry out the solution of systems (1) and (2), reproduced below.

x1 + 2x2 + 2x3 = 6
2x1 + x2 + x3 = 6
x1 + x2 + 3x3 = 6

⎡
⎢⎢⎢⎣

1 2 2
... 6

2 1 1
... 6

1 1 3
... 6

⎤
⎥⎥⎥⎦ (6)

Solution. Notice that the elimination of x1 is accomplished, in the matrix form, by
adding the appropriate multiple of the first row to the subsequent ones. This gives

x1 + 2x2 + 2x3 = 6
−3x2 − 3x3 = −6
− x2 + x3 = 0

⎡
⎢⎢⎢⎣

1 2 2
... 6

0 −3 −3
... −6

0 −1 1
... 0

⎤
⎥⎥⎥⎦ (7)

3Sometimes, for clarity, we use a comma: ai,j. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.2 MATRIX REPRESENTATION OF LINEAR SYSTEMS 19

The forward part is completed with the elimination of x2:

x1 + 2x2 + 2x3 = 6
−3x2 − 3x3 = −6

2x3 = 2

⎡
⎢⎢⎢⎣

1 2 2
... 6

0 −3 −3
... −6

0 0 2
... 2

⎤
⎥⎥⎥⎦ (8)

Back substitution proceeds the same in both cases and we obtain

x3 = 1, x2 = 1, x1 = 2. (9)

�
The following terminology is helpful in describing the matrix manipulations perti-

nent to Gauss elimination.

Diagonal Matrices

Definition 2. The diagonal of an m-by-n matrix A is the set of elements {aii :
i = 1, 2, . . ., min{m, n}}. A diagonal matrix is a matrix with all entries equal
to zero except those on the diagonal.

Some examples of diagonal matrices are
⎡
⎢⎢⎢⎢⎣

2 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 −1

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎣1 0 0 0 0

0 2 0 0 0
0 0 3 0 0

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎣

4 0 0
0 4 0
0 0 4
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ .

Trapezoidal Matrices

Definition 3. An upper trapezoidal matrix A has all the entries below the diag-
onal equal to zero, that is, aij = 0 if i > j. If A is square and upper trapezoidal, it
is called upper triangular.

Examples of upper trapezoidal matrices are

⎡
⎣1 1 1 1 1

0 1 1 1 1
0 0 1 1 1

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎣

1 2 3
0 4 5
0 0 6
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
0 0 3 4 5
0 0 3 4 5
0 0 0 4 5
0 0 0 0 5

⎤
⎥⎥⎥⎥⎦ ,

where the last matrix is upper triangular. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



20 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Lower trapezoidal and lower triangular matrices are defined similarly; some exam-
ples are as follows:

⎡
⎣1 0 0 0 0

1 1 0 0 0
1 1 1 0 0

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎣

1 0 0
2 3 0
4 5 6
8 6 9
9 6 8

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
1 2 0 0 0
1 2 3 0 0
1 2 3 4 0
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦ .

Important special cases of upper trapezoidal matrices are the row matrices or row
vectors,

[1 2], [1 2 3], [1 0 0 0 0 1],

and the column matrices or column vectors are special instances of lower trapezoidal
matrices,

[
1
2

]
,

⎡
⎣1

2
3

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Elementary Row Operations

Definition 4. The following operations on a matrix are known as elementary
row operations:

(i) adding (or subtracting) a multiple of one row to another and replacing the
latter with the result;

(ii) multiplying a row by a nonzero constant and replacing the original row
by the result;

(iii) switching two rows.

These are, of course, the matrix analogs of the operations listed in Theorem 1 and
they are guaranteed not to alter the solution set. With the new terminology, we can
summarize our deliberations by saying the forward part of the Gauss elimination algo-
rithm uses elementary row operations to reduce the augmented coefficient matrix to

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.2 MATRIX REPRESENTATION OF LINEAR SYSTEMS 21

upper trapezoidal form. This is achieved by adding appropriate multiples of the ith row
to the subsequent rows, so as to form zeros in the ith column below the diagonal (for
i = 1 to n − 1).

In the matrix below, the entries marked with # signs are targeted for “annihilation”
by adding multiples of the second row.

⎡
⎢⎢⎢⎢⎢⎢⎣

X X X X
... X

0 X X X
... X

0 # X X
... X

0 # X X
... X

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In order to help the reader see which of the various elementary row operations is
being employed in a specific computation, we introduce a shorthand:

(i) to add (−3) times row #2 to row #4 and replace the latter with the result, write

(−3)ρ2 + ρ4 → ρ4 (“row 4”);

(ii) to multiply row #3 by 7 and replace the original row by the result, write

7ρ3 → ρ3;

(iii) to switch rows #2 and #4, write

ρ2 ↔ ρ4.

We employ this shorthand in the next example; it motivates a very useful extension of
the matrix representation.

Example 2. Solve the following linear systems, which have identical coefficient
matrices.

⎡
⎢⎢⎢⎣

2 1 4
... −2

3 3 0
... 6

−1 4 2
... −5

⎤
⎥⎥⎥⎦;

⎡
⎢⎢⎢⎣

2 1 4
... 7

3 3 0
... 6

−1 4 2
... 5

⎤
⎥⎥⎥⎦ . (10)

Solution. Observe that the Gauss elimination algorithm calls for the same sequence of
elementary row operations for both systems. First we add (−3/2) times the first row to
the second, and add 1/2 times the first to the third, in both cases. This gives

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



22 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

(−3/2)ρ1 + ρ2 → ρ2

(1/2)ρ1 + ρ3 → ρ3

⎡
⎢⎢⎢⎣

2 1 4
... −2

0 3/2 −6
... 9

0 9/2 4
... −6

⎤
⎥⎥⎥⎦ ;

⎡
⎢⎢⎢⎣

2 1 4
... 7

0 3/2 −6
... −9/2

0 9/2 4
... 17/2

⎤
⎥⎥⎥⎦ .

Next we add (−3) times the second row to the third row—again, for both systems—
yielding

(−3)ρ2 + ρ3 → ρ3

⎡
⎢⎢⎢⎣

2 1 4
... −2

0 3/2 −6
... 9

0 0 22
... −33

⎤
⎥⎥⎥⎦ ;

⎡
⎢⎢⎢⎣

2 1 4
... 7

0 3/2 −6
... −9/2

0 0 22
... 22

⎤
⎥⎥⎥⎦ .

Back substitution then proceeds normally and we obtain

x3 = −33/22 = −3/2
x2 = (2/3)(9 − 9) = 0
x1 = (1/2)(−2 + 6 − 0) = 2

;
x3 = 1
x2 = (2/3)(−9/2 + 6) = 1
x1 = (1/2)(7 − 4 − 1) = 1.

(11)

�

The point that we wish to make here is that the forward part of the Gauss algorithm
only “looks at” the coefficient matrix (submatrix) in selecting its multipliers for the
eliminations. The data on the right are passively swept along by the process. So the effi-
cient way to handle such situations is to augment the (common) coefficient matrix with
two columns, one for each right-hand side. Thus, the calculations are more efficiently
expressed as follows:

⎡
⎢⎢⎢⎣

2 1 4
... −2 7

3 3 0
... 6 6

−1 4 2
... −5 5

⎤
⎥⎥⎥⎦ (−3/2)ρ1 + ρ2 → ρ2

(1/2)ρ1 + ρ3 → ρ3

⎡
⎢⎢⎢⎣

2 1 4
... −2 7

0 3/2 −6
... 9 −9/2

0 9/2 4
... −6 17/2

⎤
⎥⎥⎥⎦

(−3)ρ2 + ρ3 → ρ3

⎡
⎢⎢⎢⎣

2 1 4
... −2 7

0 3/2 −6
... 9 −9/2

0 0 22
... −33 22

⎤
⎥⎥⎥⎦

(12)

and the final result (11) is obtained by back substitution for each right-hand side.
There is a minor modification to Gauss elimination that renders the back-substitution

step unnecessary; it is known as the Gauss-Jordan algorithm. Before we eliminate the 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.2 MATRIX REPRESENTATION OF LINEAR SYSTEMS 23

“3” and the “−1” in the first column of system (10), we multiply the first row by (1/2):

(−1/2)ρ1 → ρ1

⎡
⎢⎢⎢⎣

1 1/2 2
... −1 7/2

3 3 0
... 6 6

−1 4 2
... −5 5

⎤
⎥⎥⎥⎦ .

The replacement of the leading “2” by a “1” makes the elimination of the “3” and “−1”
a little easier for hand computation. We add the multiples (−3) and (1) times the first
row to the second and third rows:

(−3)ρ1 + ρ2 → ρ2

ρ1 + ρ3 → ρ3

⎡
⎢⎢⎢⎣

1 1/2 2
... −1 7/2

0 3/2 −6
... 9 −9/2

0 9/2 4
... −6 17/2

⎤
⎥⎥⎥⎦ .

Similarly, we multiply the second row by (2/3)

(2/3)ρ2 → ρ2

⎡
⎢⎢⎢⎣

1 1/2 2
... −1 7/2

0 1 −4
... 6 −3

0 9/2 4
... −6 17/2

⎤
⎥⎥⎥⎦

before eliminating the “9/2” by adding (−9/2) times the second row to the third row.

(−9/2)ρ2 + ρ3 → ρ3

⎡
⎢⎢⎢⎣

1 1/2 2
... −1 7/2

0 1 −4
... 6 −3

0 0 22
... −33 22

⎤
⎥⎥⎥⎦ .

But at this stage, we also eliminate the “1/2” in the first row by adding (−1/2) times
the second row:

(−1/2)ρ2 + ρ1 → ρ1

⎡
⎢⎢⎢⎣

1 0 4
... −4 5

0 1 −4
... 6 −3

0 0 22
... −33 22

⎤
⎥⎥⎥⎦ .

In terms of equations, we have eliminated x2 from all equations below and above the
second. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



24 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Finally we multiply the third row by (1/22) and add the multiples (−4), (4) of the
(new) third row to the first and second (eliminating x3 from these equations):

(1/22)ρ3 → ρ3

⎡
⎢⎢⎢⎣

1 0 4
... −4 5

0 1 −4
... 6 −3

0 0 1
... −3/2 1

⎤
⎥⎥⎥⎦
(−4)ρ3 + ρ1 → ρ1

4ρ3 + ρ2 → ρ2

⎡
⎢⎢⎢⎣

1 0 0
... 2 1

0 1 0
... 0 1

0 0 1
... −3/2 1

⎤
⎥⎥⎥⎦ .

Now the solutions (11) are displayed explicitly.
The rules for the Gauss-Jordan algorithm are easily obtained by modifying those of

Gauss elimination. Expressed in terms of equations, they are

Gauss-Jordan Algorithm (without anomalies) (n equations in n unknowns,
no zero denominators)

1. Multiply the first equation by the reciprocal of the coefficient of x1.

2. Eliminate x1 from all equations except the first by adding (or subtracting)
appropriate multiples of the (new) first equation.

3. Multiply the (new) second equation by the reciprocal of the coefficient of x2.

4. Eliminate x2 from all equations except the second by adding appropriate
multiples of the second equation.

5. Continue in this manner: multiply the kth equation by the reciprocal of
the coefficient of xk and eliminate xk from all other equations by adding
appropriate multiples of the kth equation.

The resulting system (or augmented matrix) will then display the solution explicitly.
The Gauss-Jordan algorithm4 is suitable for hand calculation with small systems, but

the apparent simplicity of its final format is deceiving; its complete execution actually
requires more calculations than does Gauss elimination. It has value as a theoretical
construct, however, and we shall have occasion to refer to it again in subsequent dis-
cussions. Like Gauss elimination, it can be foiled by inconvenient zeros, necessitating
the remedial measures that are described in the following section.

4Wilhelm Jordan (Yor’ - dan) was a 19th-century German geodist. The algorithm is often attributed to
his contemporary, the French mathematician Camille Jordan (Jor - dan’), who conceived the Jordan form
described in Section 7.3. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.2 MATRIX REPRESENTATION OF LINEAR SYSTEMS 25

Exercises 1.2

In Problems 1–4, solve the systems of equations represented by the following augmented
coefficient matrices.

1.

⎡
⎣2 1

... 8

1 −3
... −3

⎤
⎦ 2.

⎡
⎢⎢⎢⎣

1 1 1
... 0

1 0 1
... 3

0 1 1
... 1

⎤
⎥⎥⎥⎦

3.

⎡
⎢⎢⎢⎣

4 2 2
... 8 0

1 −1 1
... 4 2

3 2 1
... 2 0

⎤
⎥⎥⎥⎦ 4.

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 1
... 4 0

1 1 1 −2
... −4 2

0 2 1 3
... 4 2

2 1 −1 2
... 5 3

⎤
⎥⎥⎥⎥⎥⎥⎦

5. In most computer languages, the elements of an m-by-n matrix are stored in
consecutive locations by columns, that is, the addressing sequence is as shown:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

#1 #6 #11

#2 #7 #12

#3 #8 #13

#4 #9 #14

#5 #10 #15

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(a) In a 7-by-8 matrix what are the addresses of a1,7, a7,1, a5,5, and a7,8?

(b) In a 5-by-12 matrix what are the row and column numbers of the data at
addresses #4, #20, and #50?

(c) Given the matrix dimensions m and n, what formula does the computer use to
calculate the address of ai,j?

(d) Given m and n, how does the computer calculate the row and column for the
datum at address #p ?

6. Analogous to the elementary row operations are the elementary column opera-
tions:

(i) adding a multiple of one column to another and replacing the latter with the
result;

(ii) multiplying a column by a nonzero constant and replacing the original column
with the result;

(iii) switching two columns.
These operations are of little value in equation solving, but they have interesting
interpretations. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



26 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

(a) Show that (i) corresponds to replacing some xi by a combination xi + cxj.

(b) Show that (ii) corresponds to “rescaling” one of the unknowns (e.g., replacing
x3 by x3/c).

(c) Show that (iii) corresponds to renumbering the unknowns.

7. Solve the following systems using the Gauss-Jordan algorithm:

(a)

⎡
⎣3 8 3 : 7

2 −3 1 : −10
1 3 1 : 3

⎤
⎦ (b)

⎡
⎣1 2 1 : 1 0 0

1 3 2 : 0 1 0
1 0 1 : 0 0 1

⎤
⎦

8. A classic problem in numerical analysis is least squares approximation by poly-
nomials. Here, a given function is to be approximated by a polynomial of degree,
say, 2:

f (x) ≈ a0 + a1x + a2x2,

and the coefficients ai are to be selected so as to minimize the mean square error

ε =

∫ 1

0
[ f (x)− (a0 + a1x + a2x2)]2dx.

(a) Since ε is a function of the coefficients a0, a1, and a2, calculus directs us to the
simultaneous solution of the variational equations

∂ε

∂a0
= 0,

∂ε

∂a1
= 0,

∂ε

∂a2
= 0 (13)

for the values of a0, a1, and a2 minimizing ε. Work out these equations and show
that they are linear in the unknowns a0, a1, and a2.

(b) Assemble the augmented coefficient matrix for the system and evaluate the
integrals in the coefficient submatrix. Show that the latter is the 3-by-3 matrix

⎡
⎣ 1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5

⎤
⎦ .

(c) Derive the coefficient submatrix for the unknown polynomial coefficients in the
least square approximation by polynomials of degree 3.

9. A minor improvement in the Gauss-Jordan algorithm, as stated in the text, goes as
follows: instead of eliminating the unknown xj from all equations other than the jth
equation, eliminate it only in the equations following the jth, reducing the system to
upper triangular form; then working from the bottom up, eliminate xn, xn−1, . . . , x2

from the earlier equations. Why is this more efficient? (Hint: If you don’t see this
immediately, try it on a system of four equations in four unknowns.) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.3 THE COMPLETE GAUSS ELIMINATION ALGORITHM 27

1.3 THE COMPLETE GAUSS ELIMINATION
ALGORITHM

In this section, we will modify the basic Gauss algorithm to accommodate linear sys-
tems that have no solutions or an infinite number of solutions, systems for which the
number of equations and unknowns don’t match, and systems that appear to call for
division by zero. We begin by considering a system in which there are more equations
than unknowns.

Example 1. Solve the system of 4 equations in 3 unknowns represented by

⎡
⎢⎢⎢⎢⎢⎣

1 0 1
... 0

1 1 1
... 1

0 1 1
... 1

3 3 6
... 3

⎤
⎥⎥⎥⎥⎥⎦

. (1)

Solution. We proceed to eliminate variables according to the forward part of the Gauss
algorithm. Elimination of x1 and x2 produces

(−1)ρ1 + ρ2 → ρ2

(−3)ρ1 + ρ4 → ρ4

⎡
⎢⎢⎢⎢⎢⎣

1 0 1
... 0

0 1 0
... 1

0 1 1
... 1

0 3 3
... 3

⎤
⎥⎥⎥⎥⎥⎦ (−1)ρ2 + ρ3 → ρ3

(−3)ρ2 + ρ4 → ρ4

⎡
⎢⎢⎢⎢⎢⎣

1 0 1
... 0

0 1 0
... 1

0 0 1
... 0

0 0 3
... 0

⎤
⎥⎥⎥⎥⎥⎦

.

At this point notice that the third and fourth equations say the same thing; namely,
that x3 = 0. Thus, the fourth equation contains no new information. This becomes even
more obvious if we proceed in strict accordance with Gauss’ procedure, which calls for
the subtraction of three times the third row from the fourth. Elimination of x3 results in

(−3)ρ3 + ρ4 → ρ4

⎡
⎢⎢⎢⎢⎢⎣

1 0 1
... 0

0 1 0
... 1

0 0 1
... 0

0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎦

. (2)

The solution of this system is easily obtained by back substitution:

x3 = 0

x2 = 1 (3)

x1 = 0. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



28 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

This must also be the solution for the original system (1) since we have proceeded in
accordance with the rules in Theorem 1 (Section 1.1).

The fact that the fourth equation ultimately became 0 = 0 (see (2)) indicates that in
the original system (1), the fourth equation was redundant. After all, if the fourth row
was reduced to zero by subtracting off multiples of previous rows, then it must have
been expressible as a sum of multiples of those previous rows. Consequently, the fourth
equation could have been deduced from the others; it carried no new information. In
fact, for the system (1), the fourth row could have been derived by adding the first row
to the third, and multiplying by 3.5

By generalizing this idea, we uncover a valuable feature of the Gauss algorithm:
when a row of zeros appears in the augmented coefficient matrix during the forward
part of Gauss elimination, the original equation corresponding to that row is redundant
(derivable from the others).

A redundant system of equations in two unknowns was depicted in the solution
graphs in Figure 1.1e. Any two of the straight lines specifies the solution; the third
line conveys no new information.

Another situation is illustrated in the next example, in which the linear system differs
from (1) only by the inclusion of a fifth equation.

Example 2. Perform Gauss elimination on the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
... 0

1 1 1
... 1

0 1 1
... 1

3 3 6
... 3

1 2 2
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Solution. Eliminating x1, x2, and x3 in turn produces

(−1)ρ1 + ρ2 → ρ2

(−3)ρ1 + ρ4 → ρ4

(−1)ρ1 + ρ5 → ρ5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
... 0

0 1 0
... 1

0 1 1
... 1

0 3 3
... 3

0 2 1
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(−1)ρ2 + ρ3 → ρ3

(−3)ρ2 + ρ4 → ρ4

(−2)ρ2 + ρ5 → ρ5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
... 0

0 1 0
... 1

0 0 1
... 0

0 0 3
... 0

0 0 1
... −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5Problem 16 spells out how one can derive the expression of the redundant equation in terms of the others
by keeping track of the elementary row operations that led to its “annihilation.” 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.3 THE COMPLETE GAUSS ELIMINATION ALGORITHM 29

(−3)ρ3 + ρ4 → ρ4

(−1)ρ3 + ρ5 → ρ5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
... 0

0 1 0
... 1

0 0 1
... 0

0 0 0
... 0

0 0 0
... −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As before we see that the original fourth equation has been exposed as redundant, but
more interesting is the final equation, 0 = −1! Of course, no set of values of x1, x2 and
x3 will make 0 equal −1. Consequently (4) has no solution, and hence by Theorem 1
(Section 1.1), the original system has no solution.

The fact that the left-hand side of the fifth equation in (4) was reduced to zero by
subtracting multiples of other equations indicates, as before, that its original left-hand
side was expressible as a sum of multiples of the other left-hand sides. However, the
corresponding combination of the other right-hand sides evidently didn’t match up.
So the fifth equation is incompatible with the others, and we say the system is incon-
sistent. In fact, if we add the original equations #2 and #3 in (4), we deduce that the
combination x1 + 2x2 + 2x3 equals 2, whereas the fifth equation says it equals 1. Gauss
elimination exposed the inconsistency. If, at any stage, the Gauss algorithm produces
a row that states 0 = c for a nonzero constant c, then the linear system has no solution
(is inconsistent).

An inconsistent system of three equations in two unknowns was depicted graphi-
cally in Figure 1.1d. The fact that the third line “misses the mark” demonstrates its
incompatibility.

Next we turn to the problem of unwanted zeros in the Gauss algorithm. It arises right
at the start in the following example.

Example 3. Solve the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 1 0
... 0

2 4 4 2 2
... 0

3 6 6 0 0
... 0

0 −2 −1 −2 2
... 1

0 2 1 2 4
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Solution. As we have formulated it, the Gauss algorithm calls for multiplying the first
row by (−2/0), as a preliminary to eliminating x1 from the second row. Naturally this
cannot be done; in fact there is no way row #1 can be used to eliminate x1 from row #2,
because of the 0 in the (1, 1) position. Of course the cure is obvious; we’ll use another 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



30 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

row to eliminate x1. We can achieve this while maintaining the “spirit” of the Gauss
algorithm by switching the first row with either the second or third (obviously not the
fourth or fifth!) and proceeding as usual.

Switching the first and third rows results in

ρ1 ↔ ρ3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 6 6 0 0
... 0

2 4 4 2 2
... 0

0 2 1 1 0
... 0

0 −2 −1 −2 2
... 1

0 2 1 2 4
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Elimination of x1 then proceeds normally as follows:

(−2/3)ρ1 + ρ2 → ρ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 6 6 0 0
... 0

0 0 0 2 2
... 0

0 2 1 1 0
... 0

0 −2 −1 −2 2
... 1

0 2 1 2 4
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The tactic we have just performed is known as pivoting; by using the third row to
eliminate x1, we have designated row #3 as the pivot row and the coefficient of x1

in this row (namely, 3) is the pivot element. In all our previous examples, the pivot
elements occurred along the diagonal of the coefficient matrix, so our pivoting strategy
did not call for switching any rows. In general when one uses row #i to eliminate the
coefficient of xj from other rows, the ith row is called a pivot row and aij is a pivot
element. Commonly one says “we pivot on the element aij.”

Returning to (7) in the example, we see that the elimination of x2 presents the same
dilemma as did x1, and we resolve it by pivoting on the 2 in the third row. That is, we
switch the second and third rows and then eliminate x2 as usual:

ρ2 ↔ ρ3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 6 6 0 0
... 0

0 2 1 1 0
... 0

0 0 0 2 2
... 0

0 −2 −1 −2 2
... 1

0 2 1 2 4
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ρ2 + ρ4 → ρ4

(−1)ρ2 + ρ5 → ρ5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 6 6 0 0
... 0

0 2 1 1 0
... 0

0 0 0 2 2
... 0

0 0 0 −1 2
... 1

0 0 0 1 4
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Now we encounter a totally new situation. On the one hand, there is no row that we
can switch with row #3 to avoid a zero division because the coefficient for x3 is zero
in all the subsequent rows. On the other hand, there is no need to eliminate x3, for the
very same reason! Since there’s nothing we can do about x3, we skip it and go on to x4.
The role of x3 will become clear later when we perform back substitution.

We use the third row (not the fourth) as the pivot row to eliminate x4 from subsequent
rows; then we eliminate x5.

(1/2)ρ3 + ρ4 → ρ4

(−1/2)ρ3 + ρ5 → ρ5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 6 6 0 0
... 0

0 2 1 1 0
... 0

0 0 0 2 2
... 0

0 0 0 0 3
... 1

0 0 0 0 3
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(−1)ρ4 + ρ5 → ρ5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 6 6 0 0
... 0

0 2 1 1 0
... 0

0 0 0 2 2
... 0

0 0 0 0 3
... 1

0 0 0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Gauss elimination has exposed the fifth equation as redundant.
Back substitution produces

x5 = 1/3

x4 = −1/3.

Now there is no equation for x3. The second equation

2x2 + x3 = −x4 = 1/3 (9)

tells us the values of the combination (2x2 + x3) but says nothing about x2 or x3 sep-
arately. Evidently x3 can take on any value, as long as x2 is adjusted to make the
combination (2x2 + x3) equal to 1/3. So we enforce this by writing

x3 arbitrary

x2 =
1
2

(
1
3
− x3

)
=

1
6
− 1

2
x3. (10)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



32 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Back substitution of these expressions into the first equation gives

x1 = −2x2 − 2x3 = −2

(
1
6
− 1

2
x3

)
− 2x3 = −1

3
− x3. (11)

Equations (10) and (11), and hence the original equations (5), have an infinite number
of solutions—one for each value of x3. Since we are free to choose x3, it is customary
to call x3 a free variable and display the solutions as

x1 = −1
3
− x3

x2 =
1
6
− 1

2
x3

x3 free

x4 = −1
3

x5 =
1
3

.

It will prove convenient for later purposes to display these solutions by introducing a
“dummy variable” t for x3 and writing

x1 = −1
3
− t, x2 =

1
6
− 1

2
t, x3 = t, x4 = −1

3
, x5 =

1
3

. (12)

We call (12) a parametrization of the solution set; all the solutions of the original system
(5) are generated by letting the parameter t range through the real numbers. �

Notice that there is some flexibility in interpreting the format (8); in particular, its
second equation (9). We could equally well have taken x2 as the free variable and then
adjusted x3 to make the combination (2x2 + x3) equal 1/3. Then (10) and (11) would be
replaced by

x3 =
1
3
− 2x2 (13)

x1 = −2x2 − 2

(
1
3
− 2x2

)
= −2

3
+ 2x2, (14)

and the tabulation would take the following parametric form (we use s instead of t to
distinguish the parametrizations):

x1 = −2
3

+ 2s, x2 = s, x3 =
1
3
− 2s, x4 = −1

3
, x5 =

1
3

. (15)

The equations (15) must, of course, describe the same solution set as (12). In
Problem 17, the reader is requested to construct yet another parametrization with x1

as the free variable. Since the values of x4 and x5 are fixed, however, they can never 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.3 THE COMPLETE GAUSS ELIMINATION ALGORITHM 33

serve as free variables. (Problem 18 addresses the question of how one can deter-
mine, in general, whether or not two different parameterizations describe the same
solution set.)

We summarize the considerations of this section, so far, as follows: when a variable
is eliminated “prematurely” in the forward part of the Gauss procedure, it becomes a
free variable in the solution set. Unless the system is inconsistent, the solution set will
be infinite.

The final case to consider in this section arises when the number of equations is
fewer than the number of unknowns. The following example demonstrates that this
introduces no new complications.

Example 4. Solve the following the linear system of three equations in six unknowns:

⎡
⎢⎢⎢⎣

1 2 1 1 −1 0
... 3

1 2 0 −1 1 0
... 2

0 0 1 2 −2 1
... 2

⎤
⎥⎥⎥⎦ .

Solution. Elimination of x1and x3 (skipping x2) produces

(−1)ρ1 + ρ2 → ρ2

⎡
⎢⎢⎢⎣

1 2 1 1 −1 0
... 3

0 0 −1 −2 2 0
... −1

0 0 1 2 −2 1
... 2

⎤
⎥⎥⎥⎦

ρ2 + ρ3 → ρ3

⎡
⎢⎢⎢⎣

1 2 1 1 −1 0
... 3

0 0 −1 −2 2 0
... −1

0 0 0 0 0 1
... 1

⎤
⎥⎥⎥⎦ .

Back substitution tells us that

x6 = 1

x5 is free

x4 is also free (!)

x3 = 1 − 2x4 + 2x5 (16)

x2 is free (!!)

x1 = 3 − 2x2 − (1 − 2x4 + 2x5)− x4 + x5

= 2 − 2x2 + x4 − x5. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



34 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Thus, we have a three-parameter solution set which we can write as

x1 = 2 − 2t1 + t2 − t3, x2 = t1, x3 = 1 − 2t2 + 2t3, x4 = t2, x5 = t3, x6 = 1. �

We have now covered the basic techniques needed for solving linear algebraic
systems. After you have practiced with the problems in this section, you should feel con-
fident that, given enough time (and perhaps some computational assistance), you will
be able to determine the solution set for any system of simultaneous linear equations.
Although we shall, on occasion, have a few more things to say about this subject, from
here on we presume the right to call on your “Gauss Elimination Equation Solver”
whenever the analysis of any problem has been reduced to a linear system of equations.

Exercises 1.3

In Problems 1–11, solve the given system:

1.

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
... 1

2 2 −1 1
... 0

1 0 0 1
... 0

1 2 −1 1
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

2.

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
... 1

2 2 −1 1
... 0

−1 −1 0 1
... 0

0 0 1 −1
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

3.

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
... 1

2 2 −1 1
... 0

−1 −1 0 1
... 0

0 0 3 −4
... 11

⎤
⎥⎥⎥⎥⎥⎥⎦

4.

⎡
⎢⎢⎢⎣

3 −1 −2
... 0

2 −1 −1
... 0

1 2 −3
... 0

⎤
⎥⎥⎥⎦

5.

⎡
⎢⎢⎢⎣

1 3 1
... 2

3 4 −1
... 1

1 −2 −3
... 1

⎤
⎥⎥⎥⎦ 6.

⎡
⎢⎢⎢⎣

1 −1 1 1
... 0

2 1 −1 1
... 0

4 −1 1 3
... 0

⎤
⎥⎥⎥⎦

7.

⎡
⎢⎢⎢⎣

1 −1 −2 3
... 1 0 1

1 2 1 −2
... 1 0 −1

2 1 −1 1
... 2 0 1

⎤
⎥⎥⎥⎦ 8.

⎡
⎢⎢⎢⎣

2 4 6 3
... 1 0 1

−4 −8 8 4
... 3 0 1

2 4 26 13
... 6 0 1

⎤
⎥⎥⎥⎦

9.

⎡
⎢⎢⎢⎣

1 −1 2 0 0
... 1

2 −2 4 1 0
... 5

3 −3 6 −1 1
... −2

⎤
⎥⎥⎥⎦ 10.

⎡
⎢⎢⎢⎣

3 12 0 10
... 16

−5 −20 1 −17
... −26

1 4 0 3
... 3

⎤
⎥⎥⎥⎦ 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.3 THE COMPLETE GAUSS ELIMINATION ALGORITHM 35

11.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 1 0
... 0 1 0

2 4 4 2 2
... 0 1 0

3 6 6 0 0
... 0 1 0

0 −2 −1 −2 2
... 1 0 0

0 2 1 2 4
... 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(recall Example 3)

12. Prove: if matrix A is changed into matrix B by a sequence of elementary row oper-
ations, then there is another sequence of elementary row operations that changes
B back into A. How is the second sequence related to the first?

In Problems 13–15, determine what values of α (if any) will make the following
systems have no solution, one solution, an infinity of solutions.

13.

⎡
⎢⎢⎢⎣

1 1 1
... 1

−2 7 4
... α

0 3 2
... 2

⎤
⎥⎥⎥⎦ 14.

⎡
⎢⎢⎢⎣

2 0 α
... 2

1 1 1
... 1

4 −2 7
... 4

⎤
⎥⎥⎥⎦

15.

⎡
⎢⎢⎢⎣

2 1 2
... 1

2 2 α
... 1

4 2 4
... 1

⎤
⎥⎥⎥⎦

16. To see how an equation, exposed as redundant by Gauss elimination, is implied by
the other equations, follow these steps:
(a) Prove: if the forward part of the Gauss elimination algorithm can be performed

without pivoting, then every row of the final augmented coefficient matrix
equals the corresponding row in the original matrix, plus a sum of multiples
of the preceding rows in the original matrix. How is this statement modified if
pivoting is performed?

(b) Show how, by keeping track of the multipliers and pivot exchanges employed
in the elimination process, one can explicitly express the final rows in terms
of the original rows. (Hint: It may be helpful for you to trace the elimination
steps for a particular example such as Example 3 or 4.)

(c) Apply your method to Example 1 to derive the statement, made in the text,
that the original fourth row equals three times the sum of the first and
third rows.

17. Express the solution set for (5) with x1 as the parameter. (Hint: It may be easiest to
start from (8).)

18. To prove that two different parametrizations, such as (12) and (15), describe the
same solution set, one must show that (i) for any value of s in (15), a value can be
found for t in (12) so that the two solutions are the same and (ii) conversely, for
any t in (12) an s can be found for (15) that makes the solutions match. One way to

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



36 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

do this is to consider the system formed by equating the corresponding parametric
expressions for each variable.

−1/3 − t = −2/3 + 2s

1/6 − t/2 = s

−1/3 = −1/3

1/3 = 1/3

Now the parametrizations are equivalent if this system is consistent (i.e., has
solutions) both when t is considered as the unknown (and s known but arbitrary)
and when s is considered as the unknown. Thus, the equivalence can be established
by two applications of the forward part of the Gauss algorithm.
(a) Carry this out to prove that (12) and (15) are equivalent parametrizations.

(b) Show that the following parametrization (see Problem 17) is equivalent to (12):

x1 = r

x2 = 1/3 + r/2

x3 = −r − 1/3

x4 = −1/3

x5 = 1/3.

(c) Show that the following parametrization is not equivalent to (12).

x1 = −2/3 + u

x2 = u

x3 = 1/2 − 2u

x4 = −1/3

x5 = 1/3.

Exhibit a particular solution to (5) which cannot be described by the above
parametrization.

(d) Show that the following parametrization is equivalent to (16).

x1 = s1

x2 = 5/4 − s1/2 − s2/4

x3 = s2

x4 = s3

x5 = −1/2 + s2/2 + s3

x6 = 1.

19. Without performing any computations, decide whether the following systems have
no solution, one solution, or infinitely many solutions. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.3 THE COMPLETE GAUSS ELIMINATION ALGORITHM 37

(a)

⎡
⎢⎢⎢⎣

2 0 1 1
... π

0 3/2 5 22
... 0

0 0 22 −3
... 8

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −9 6
... 13

0 1 9
... 9

0 0 1
... −7

0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(c)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 8 94
... 0

0 1 32
... 12

0 0 1
... 0

0 0 0
... 0

0 0 0
... −6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(d)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 9 −6 0 0
... 0

0 2 1 7 −3
... 0

0 0 0 2 8
... 6

0 0 0 0 3
... 4

0 0 0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

20. Let’s return to the Antarctic expedition dietary problem in the “Introduction to
Part I”. We formulated equations (1) and (2) that said the chocolate/almond
purchases should exactly match the caloric requirements. But in fact the stated
requirements are minimum consumption levels; there is no harm in exceeding them.
Thus, equations (1) and (2) are more honestly expressed as inequalities:

1x1 + 2.75x2 ≥ 2300 (at least 2300 ounces of chocolate)

0.4x1 + 2x2 ≥ 1100 (at least 1100 ounces of almonds).

Now if we introduce the variable x3 which measures the “slack” in the first inequal-
ity, i.e., the extent to which its left member exceeds its right, then we can replace
the inequality by an equation

1x1 + 2.75x2 − x3 = 2300

with the understanding that the slack variable x3 is nonnegative. Similarly, the
second inequality is rewritten using the nonnegative slack variable x4:

0.4x1 + 2x2 − x4 = 1100, x4 ≥ 0.

(a) Show that the solutions to these equations can be expressed parametrically as

x1 = 1750 +
20
9

x3 −
55
18

x4, x2 = 200 − 4
9

x3 +
10
9

x4.

(b) Show that the cost of the order is

1.50x1 + 3.75x2 = 3375 +
15
9

x3 −
5
12

x4.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



38 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

(c) Keeping in mind that the slack variables x3 and x4 must be nonnegative, argue
that the cost can be decreased by choosing x3 = 0 and making x4 as large
as possible. Since the purchases x1 and x2 cannot be negative, the parametric
equation for x1 limits x4. Show that the minimum cost is $3136.36 (rounded to
cents), in accordance with the comment in the “Introduction to Part I”.

1.4 ECHELON FORM AND RANK

To get an overview on how Gauss elimination works in general, it is instructive to
consider the structure of the augmented coefficient matrix after the forward phase has
been completed, i.e., just prior to back substitution. The forms of the matrices at this
stage, for the examples that we have studied in this chapter, are summarized below. Only
the pivot elements and the zeros corresponding to “eliminated” elements are written out,
since the other entries have no bearing on the structure. (In other words, the X’s may,
or may not, be zero.)

(a)

0.202131 X X X
... X

0 − 1.32101 X X
... X

0 0 1.63823 X
... X

0 0 0 0.388032
... X

(b)
2 X X X

... X

0 3/ 2 X X
... X

0 0 22 X
... X

(c)

1 X X
... X

0 1 X
... X

0 0 1
... X

0 0 0
... 0

(d)

1 X X
... X

0 1 X
... X

0 0 1
... 0

0 0 0
... 0

0 0 0
... − 1

(e)

3 X X X X
... X

0 2 1 X X
... X

0 0 0 2 X
... X

0 0 0 0 3
... X

0 0 0 0 0
... 0

(f)
1 X X X X X

... X

0 0 − 1 X X X
... X

0 0 0 0 0 1
... X 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.4 ECHELON FORM AND RANK 39

The first matrix displays the form when there are no “complications”—same number
of equations as unknowns, no zero pivots. The coefficient submatrix is upper triangu-
lar and the augmented matrix is upper trapezoidal. However, the subsequent examples
reveal that the arrangement will be more complicated than this, in general. Ignoring the
right-hand sides, we see that the zero entries of the coefficient matrix exhibit a staircase,
or echelon, structure, with the steps occurring at the pivot elements.

Row-Echelon Form

Definition 5. Let A be an m-by-n matrix with the following property: starting
from the second row, the first nonzero entry in each row lies to the right of the first
nonzero entry in the preceding row. Then A is said to be a row-echelon matrix,
or a matrix in row-echelon form.6

Note that all the coefficient matrices that appear in (a) through (f) above are in row-
echelon form and so are the augmented matrices except for (d). Indeed, one more row
switch will bring (d) into conformity:

(d′)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 X X
... X

0 1 X
... X

0 0 1
... 0

0 0 0
... −1

0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using the concept of row-echelon form, we summarize our equation-solving proce-
dure as follows.

Synopsis of the Gauss Elimination Algorithm

In the forward part of the algorithm, elementary row operations are performed
on the augmented coefficient matrix to reduce the coefficient submatrix to row-
echelon form. Within the (resulting) coefficient submatrix, the first nonzero entry
in each row is a pivot element and its corresponding variable is labeled a pivot
variable; all other variables are free variables. The rows of the augmented matrix
that state 0 = 0 are ignored. If any row states 0 = c and c is nonzero, the sys-
tem is inconsistent. Otherwise one proceeds with back substitution, solving the

6The corresponding form for the Gauss- Jordan algorithm is often called the row-reduced echelon form.
It differs from row-echelon form in that the entries above, as well as below, the first nonzero entry in each
row are zero, and this nonzero entry is 1. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



40 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

equations in succession from the last to the first and expressing the pivot variables
in terms of the free variables.

For future reference, we record some useful facts that arise as “spinoffs” of the Gauss
process. Theorem 2 summarizes our deliberations to this point.

Reduction to Row-Echelon Form

Theorem 2. Any matrix can be reduced to row-echelon form7 by a sequence of
elementary row operations.

Rank of Row-Echelon Matrices

Definition 6. If a matrix is in row-echelon form, we say that its rank equals the
number of nonzero rows.8

Note that rank of a row-echelon matrix cannot exceed the number of its columns.
Suppose that a linear system of equations with coefficient matrix A is represented by

the augmented matrix [A|b] and let [Aech|b′] denote the resulting row-echelon matrix
after appropriate row operations have been performed on the original (augmented)
matrix. From the ranks of [Aech|b′] and Aech, we can glean some important information
about the numbers of solutions for the system. For example, the inconsistency of the
system (d′) can be attributed to the fact that after reduction to row-echelon form the
rank of the augmented matrix exceeds the rank of the coefficient matrix.

Furthermore, generalizing from the matrices in (a) and (c), we observe that if a sys-
tem is consistent, it has a unique solution if the number of columns of Aech (i.e., the
number of unknowns) equals its rank; in this case we say the coefficient matrix Aech has
full rank. (See, for example, the matrices (a) and (c).) But the matrices in (b), (e), and
(f) demonstrate that if the system is consistent, it has an infinite number of solutions
whenever the number of columns of Aech exceeds its rank. To summarize:

Characterization of Number of Solutions of a Linear System by Rank

Theorem 3. For a system of linear equations represented by the augmented
matrix [A|b], let [Aech|b′] be an echelon form resulting from applying elementary
row operations to [A|b].

7Or row-reduced echelon form.
8In Section 3.3, we will generalize this definition to all matrices. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.4 ECHELON FORM AND RANK 41

• If the rank of [Aech|b′] exceeds the rank of Aech, the linear system is
inconsistent (has no solutions).

• If the ranks of [Aech|b′] and Aech are equal, then the linear system is
consistent, having

(i) exactly one solution when the (common) rank equals the number of
unknowns (which is the same as the number of columns of Aech);

(ii) infinitely many solutions if the (common) rank is less than the
number of unknowns.

Example 1. A linear system of equations in x1, x2, x3, x4, and x5 is represented by
the augmented coefficient matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

3 9 −6 0 0
... 1

0 2 7 8 3
... 5

0 0 0 2 6
... 9

0 0 0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1)

Verify that

# columns Aech = rank [Aech|b′] + # free parameters (2)

(the last term is the number of free parameters in the solution set).

Solution. The number of nonzero rows in (1) is clearly 3; so 3 is the rank. Back substi-
tution would dictate that x5 is free, x4 is not, x3 is free, and x2 and x1 are not; the number
of free parameters is 2. Therefore, the right-hand member of (2) is 3 + 2 = 5, which is
the number of columns of Aech. �

In fact, equation (2) holds for all consistent systems in row-echelon form.
(See Problem 16.) Section 3.3 will establish an important generalization of this
equation.

A useful spinoff of Theorem 3 occurs when the system is homogeneous, in accor-
dance with the following: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



42 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Linear Homogeneous System

Definition 7. A system of m equations in n unknowns that can be put in the form

a11x1 + a12x2+ · · · + a1nxn = 0

a21x1 + a22x2+ · · · + a2nxn = 0
...

am1x1 + am2x2+ · · · + amnxn = 0,

(3)

where the right-hand sides are all zero, is called a linear homogeneous system.9

In two (three) dimensions, a linear homogeneous system represents lines (planes)
passing through the origin.

The augmented matrix notation for a homogeneous system with coefficient matrix
A is [A | 0]. Notice that a homogeneous system is always consistent since its solution(s)
include x1 = x2 = · · · = xn = 0, the zero solution (or “trivial solution”). Therefore,
part (ii) of Theorem 3 guarantees the following:

Corollary 1. A linear homogeneous system containing fewer equations than
unknowns has an infinite number of solutions.

Exercises 1.4

In Problems 1–6, determine whether the given matrix is in row-echelon form. If so,
determine its rank.

1.

⎡
⎣0 1 3

0 0 0
0 0 0

⎤
⎦ 2.

⎡
⎣2 0 0

0 0 0
0 0 1

⎤
⎦ 3.

⎡
⎣4 6 3 1

0 0 1 0
0 0 0 1

⎤
⎦ 4.

⎡
⎣0 3 0 0

1 0 0 0
0 0 0 0

⎤
⎦

5.

[
2 0 1 8
0 1 2 3

]
6.

⎡
⎣3 0

0 1
0 0

⎤
⎦

In Problems 7–12, an augmented matrix [A | b] for a linear system with coef-
ficient matrix A is given. Determine whether the system is consistent and, if so,
whether the system has a unique solution or infinitely many solutions.

7.

⎡
⎣4 0 9

... 1

0 0 3
... 0

⎤
⎦ 8.

⎡
⎣0 1 5

... 0

0 0 2
... 3

⎤
⎦ 9.

⎡
⎢⎢⎢⎣

0 8 7
... 4

0 0 0
... 0

0 0 0
... 0

⎤
⎥⎥⎥⎦

9Otherwise the system is said to be nonhomogeneous. 
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10.

⎡
⎢⎢⎢⎣

2 3 8
... 9

0 1 5
... 2

0 0 0
... 4

⎤
⎥⎥⎥⎦

11.

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 9 2
... 0

0 3 6 9
... 1

0 0 4 4
... 2

0 0 0 1
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

12.

⎡
⎢⎢⎢⎢⎢⎢⎣

2 3
... 9

0 8
... 2

0 0
... 0

0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

13. For what values of α will the following homogeneous systems have nontrivial
solutions?

(a)
2x1 + 5x2+αx3 = 0
x1 − 6x2+ x3 = 0

(b)
x1 + x2+ x3 = 0
αx1+ 4x2+ 3x3 = 0
4x1+ 3x2+ 2x3 = 0

14. Show that the homogeneous system

a11x1 + a12x2 = 0
a21x1 + a22x2 = 0

has infinitely many solutions if and only if a11a22 − a12a21 = 0.

15. For the systems of equations represented by the given augmented matrices, verify
that equation (2) holds.

(a)

⎡
⎢⎢⎢⎣

1 2 3
... 0

0 5 6
... 1

0 0 7
... 2

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣

3 5 0 0 0 1
... 2

0 0 1 3 2 5
... 0

0 0 0 0 0 1
... 2

⎤
⎥⎥⎥⎦

(c)

⎡
⎢⎢⎢⎣

3 0 1 0 0 0
... 2

0 0 1 0 0 5
... 0

0 0 0 0 0 1
... 2

⎤
⎥⎥⎥⎦

16. Prove that if [Aech|b] is any consistent system, then equation (2) holds.

Problems 17–22 involve the sum or difference of two n-by-1 column matrices as
well as the scalar multiple of a column vector. Recall from calculus that

⎡
⎢⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎥⎦±

⎡
⎢⎢⎢⎣

y1

y2
...
yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1 ± y1

x2 ± y2
...
xn ± yn

⎤
⎥⎥⎥⎦ and c

⎡
⎢⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cx1

cx2
...
cxn

⎤
⎥⎥⎥⎦ .

17. If A is an m-by-n matrix and x and y are each n-by-1 column vector solutions to
the homogeneous system [A | 0], show that x ± y is also a solution. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



44 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

18. If A is an m-by-n matrix and x and y are each n-by-1 column vector solutions to the
nonhomogeneous system [A | b] with b �= 0, show that neither x± y is a solution.
Give an example. What system does x + y solve?

19. If A is an m-by-n matrix and x is an n-by-1 column vector solution to the
homogeneous system [A | 0], show that cx is also a solution, for any scalar c.

20. If A is an m-by-n matrix and x is an n-by-1 column vector solution to the
nonhomogeneous system [A | b] with b �= 0, show that cx is not a solution unless
c = 1. Give an example.

21. If A is an m-by-n matrix and x and y are each n-by-1 column vector solutions to the
nonhomogeneous system [A | b], show that x−y is a solution to the corresponding
homogeneous system [A | 0].

22. If A is an m-by-n matrix and x is an n-by-1 column vector solution to the nonho-
mogeneous system [A | b] and y is a solution to the corresponding homogeneous
system [A | 0], show that x + y is, again, a solution to [A | b].

23. (For physics and engineering students: see Group Project D: Kirchhoff’s Laws).
The 6 unknown currents I1 through I6 in Figure 1.3 must satisfy Kirchhoff’s

Laws (Kirchhoff’s Current Law, KCL; Kirchhoff’s Voltage Law, KVL). With
hindsight, we formulate the system of equations as follows:

KCL at the left node: I1 −I2 +I3 = 0
KCL at the right node: I2 −I4 −I5 +I6 = 0
KVL around loop #1: 5I3 = 5
KVL around loop #2: 3I4 = 7 − 6 = 1
KVL around loop #3: 2I6 = 6
KVL around loop #4: 5I3 −2I6 = 0

+
5 v

#1

#4

#3

#2
I1 I2 I4

I3 I6

I5

5 Ω
2 Ω

3 Ω

–

+
6 v
–

+
7 v
–

Fig. 1.3 Circuit for Problem 23. 
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Wall

Spring 1 Spring 2 Spring 3

Fig. 1.4 Spring system for Problem 24.

(a) Verify these equations.

(b) Reduce this system to echelon form and show that it is inconsistent.

(c) Show that if the 5 V battery is changed to a 6 V battery, the system
becomes consistent but indeterminant having an infinite number of solutions
parametrized by

I1 = −58
15

+ t, I2 = −8
3

+ t, I3 =
6
5

, I4 =
1
3

, I5 = t, I6 = 3.

(d) Most experienced engineers would instantly recognize the conflict in the first
circuit; the 5 V battery is wired in parallel to the 6 V battery. Changing the 5 V
battery to 6 V makes one of them redundant and an indeterminant amount of
current can circulate in the battery loop (I5, I2, and I1). How is this revealed in
the solution parametrization?

24. Each spring shown in Figure 1.4 satisfies Hooke’s Law when it is compressed:

{compressive force (N)} = {compression (m)} times {spring constant (N/m)}

The spring constants are given by k1 = 5, 000 N/m, k2 = 10, 000 N/m, and k3 =
20, 000 N/m. If the three-spring system shown in Figure 1.4 is compressed 0.01 m,
how much is each spring compressed? What force is required for this compression?

25. The three springs in Problem 24 are reconfigured as in Figure 1.5. Suppose the
rigid bar is uniform and its weight exerts a force of 650 N and suppose further that
the springs are 1 m apart. The compressions xi of each spring, and the forces Fi

that they exert, are as indicated.
Force equilibrium requires that the sum of the Fi equals 650 N. Torque equilib-

rium requires that F1 = F3. And geometric compatibility requires that x2 equals
the average of x1 and x3.
(a) Express these conditions in terms of xi and solve.

(b) Now suppose that the springs are rigid; the spring constants are infinite, and
the compressions are each zero (so that geometric compatibility is automatic).
Rewrite the equilibrium equations in terms of Fi and show that there are
infinitely many solutions.

Mechanical engineers say the rigidly supported system is statically indeterminate. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



46 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Spring 1 Spring 2 Spring 3

X3X2X1

F1 F3

F2

Fig. 1.5 Spring system for Problem 25.

1.5 COMPUTATIONAL CONSIDERATIONS

The Gauss elimination algorithm is ideally suited for automatic implementation. The
basic computations are very simple and repetitive—multiply and add, multiply and
add, … . Indeed, the calculation sequence is so routine that its human execution can be
boring and prone to silly mistakes. Practically all computers sold today, and the better
hand-held programmable calculators, have Gauss elimination codes available (although
most computers implement Gauss elimination through computationally equivalent
matrix factorization codes). The key advantages of the algorithm are its versatility,
efficiency, and accuracy, as we shall see.

Gauss elimination and electronic computation share a rather fascinating history. Here
we shall give only a brief sketch, but the interested reader can find names and dates in
the reference list at the end of the section. The solution technique, of course, is quite ele-
mentary, and a form of it was known to the Chinese in 250 BC. Gauss’s real contribution
was essentially nothing more than the explicit, systematic, and efficient formulation of
the computation sequence.

The solution of systems of simultaneous linear equations is the problem most fre-
quently encountered in scientific computations. Consequently it was no surprise that
Gauss elimination would be one of the first tasks for the “new” electronic computers
of the 1940s. Soon the effects of roundoff errors began to draw increasing attention
because digital computers cannot represent all numbers exactly. (If we want 1/3, for 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.5 COMPUTATIONAL CONSIDERATIONS 47

example, we have to settle for something like 0.333333 in a decimal machine, or
0.0101010101010101 in a binary machine. Consequently we cannot obtain an exact
solution to even a trivial equation like 3x = 1; worse yet, we can’t even read the
equation (1/3)x = 1 into the computer.)

By the 1950s, John von Neumann and Herbert Goldstine published a very elaborate
analysis of the cumulative effects of roundoff error and it was interpreted as stating
that the accurate solution of large systems was, essentially, hopeless. This pessimistic
result cast a pall of gloom on the subject until the early 1960s when John Wilkinson
discovered the proper way to look at the conclusions. His backward error analysis
showed that the Gauss elimination algorithm, coupled with the pivoting strategy which
we discuss below, gives answers as accurate as one can reasonably ask.

Later interest focused on the speed of the algorithm. Many alternative, and faster,
procedures have been developed for solving systems possessing special properties. For
example, the conversion of red/blue/green levels in computer displays to the JPEG
2000 format, the computation of the discrete Fourier transform, and the solution of
systems whose coefficient matrices have lots of zeros or predominantly large diagonal
entries are accomplished by special algorithms tailored to the specific situation. Indeed,
Gauss elimination itself is customarily coded as a computationally equivalent “matrix
factorization” scheme, largely because the latter can be adapted to take advantage of
symmetry in the coefficient matrix when it is present.10 However, the basic algorithm is
still regarded as the most efficient, practical, general purpose linear equation solver (if
its memory requirements can be met). In the past, many mathematicians speculated that
it was the best possible, but the emergence of some radical new designs and concepts
in computer science undermined this conviction. However, these procedures appear too
complicated to displace Gauss elimination as the method of choice.

Most of these topics are best reserved for advanced courses in numerical linear alge-
bra or computational complexity. The textbooks by Strang, Stewart, and Watkins (listed
in the references) are quite readable and suitable for self study. As we mentioned, how-
ever, there is one feature of Gauss elimination that we will consider here because of its
importance in digital computer implementation: the pivoting strategy.

Consider the linear system

⎡
⎣0.000001 1

... 1

−1 1
... 2

⎤
⎦. (1)

Hand-calculated Gauss elimination produces

⎡
⎣0.000001 1

... 1

0 1, 000, 001
... 1, 000, 002

⎤
⎦ (2)

10See Group Project A, Part I. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



48 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

and back substitution yields the (easily verified) answers

x2 =
1,000,002
1,000,001

(≈ 1) (3)

x1 = −1,000,000
1,000,001

(≈ −1).

Now consider how a typical modern computer, which rounds all data to (say) 6 digits
would solve (1).11 Instead of (2) after the elimination, the numbers would be rounded
by the machine to

⎡
⎣1 × 10−6 1

... 1

0 1.00000 × 106
... 1.00000 × 106.

⎤
⎦ (4)

Back substitution now yields

x2 = 1

x1 = 0 (!) (5)

This is awful! For such a simple problem, we should expect better results from a
six-digit computer. But the roundoff that took place in (4) doomed the computation.

The source of the problem is the oversized factor, 106, that multiplied the first
equation in (1) when eliminating x1 from the second. The coefficients in the first
equation were magnified so greatly that they “swamped out” the least significant digits
“1” and “2” in the original second equation (2); there is no trace of these digits in the
resulting system (4). In effect, most of the information in the original second equation
was simply overwhelmed by the addition of 106 times the first equation.

But look what happens if we first reorder the equations. The reordered system is

⎡
⎣ −1 1

... 2

0.000001 1
... 1

⎤
⎦ . (6)

Now the multiplier is 10−6 and Gauss elimination results in

⎡
⎣−1 1

... 2

0 1.000001
... 1.000002

⎤
⎦ , (7)

11Of course most computers do not use a base 10 number system, but the overall effect is the same, so we
stick with familiar decimal examples. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.5 COMPUTATIONAL CONSIDERATIONS 49

which the computer rounds to

⎡
⎣−1 1

... 2

0 1
... 1

⎤
⎦ . (8)

Once again the “1” and “2” in the original system (1) are overwhelmed when the second
equation is combined with the first, but they are not entirely lost—they are still present
in the first equation. And the resulting back substitution produces a perfectly acceptable
approximation to the exact answers (3):

x2 = 1

x1 = −1. (9)

Generalizing from this example, we can see that the occurrence of outsized mul-
tipliers in the algorithm can lead to loss of accuracy on digital machines but that a
reordering of the equations can keep the multipliers within bounds. Specifically, the
first equation should always be the one with the largest coefficient of x1 (in magni-
tude), and at later stages the equation that is used to eliminate xi from the remaining
equations should be the one with the largest coefficient of xi. When pivoting is used
to achieve this, the technique is known among numerical analysts as “partial pivoting”
(sometimes the word “partial” is merely understood. A seldom used variation called
complete pivoting is described in the Problem 5.) It ensures that none of the multipliers
ever exceeds 1 in magnitude. A pivoting strategy is an integral part of every respectable
computer code for Gauss elimination. Clearly partial pivoting is compatible with the
customary reordering necessitated by the occurrence of zeros.

For this reason, you may have difficulty checking some of your hand-calculated

answers with your computer. By hand, one would probably reduce A =

[ 1
2 1
1 1

]
to row-

echelon form by subtracting twice the first row from the second, resulting in

[ 1
2 1
0 −1

]
.

However, good software would switch the rows first, and then subtract half the (new)

first row from the (new) second, producing

[
1 1
0 1

2

]
as the row-echelon form. After back

solving, of course, the two final solutions to a system Ax = b should agree.
In coding a pivoting strategy, it is important to note that when rows of a matrix

are switched, it is not necessary actually to switch the location of all the entries in
computer memory (any more than it is necessary to keep recopying equations when
solving systems by hand!). All that is needed is to exchange the addresses and this can
easily be handled by intelligent coding.

Example 1. How would a computer that rounds to 12 digits implement Gauss
elimination for the two systems represented by 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



50 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

⎡
⎣2 4/3

... 2 2

1 2/3
... 1 2

⎤
⎦? (10)

Solution. Before proceeding, notice that exact Gauss elimination shows that the first
system has an infinite number of solutions and the second has none:

⎡
⎣2 4/3

... 2 2

0 0
... 0 1

⎤
⎦ . (11)

The original system (10), rounded to 12 digits, reads

⎡
⎣2 1.333333333333

... 2 2

1 0.666666666667
... 1 2

⎤
⎦ . (12)

When the computer divides 1.3333333333 by 2 and retains 12 places, it gets
0.666666666665. So subtracting half the first row from the second results in the
row-echelon form

⎡
⎣2 1.333333333333

... 2 2

0 2 × 10−12
... 0 1

⎤
⎦ . (13)

The computer concludes that the second equation is neither redundant nor inconsistent!
With back substitution, we readily see that this sophisticated machine finds only

one of the infinite number of solutions of the consistent system and reports an absurd
answer for the inconsistent system. �

An intelligent numerical analyst, of course, would recognize the entry 2 × 10−12 as
“roundoff garbage” in (13) and reset this coefficient to zero before back substituting.
For more complex systems, however, these decisions are not so transparent and a deeper
understanding of the situation is necessary. Such matters are dealt with in specialized
texts.

Top-grade matrix computation software will alert the user if it encounters situations
like these, when the credibility of the computed answer should be scrutinized.
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Exercises 1.5

1. With a calculator, simulate Gauss elimination as performed on a 4-digit machine,
with and without partial pivoting, for the following system. Compare both
answers with the exact solution: x1 = 10.00 and x2 = 1.000.

0.003000x1 + 59.14x2 = 59.17

5.291x1 − 6.130x2 = 46.78 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



52 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

2. This problem analyzes pivoting from a theoretical, machine-free point of view.
(a) Show that “symbolic” Gauss elimination generates the row-echelon form as
shown:

⎡
⎣ε 2

... 2

1 1
... 2

⎤
⎦ ⇒

⎡
⎣ε 2

... 2

0 1 − 2
ε

... 2 − 2
ε

⎤
⎦ , (14)

and derive the formula for the solution x = x(ε), y = y(ε). Show that as ε → 0 the
solutions tend to x = 1, y = 1.
(b) Argue that on any finite-precision machine executing the algorithm without

pivoting, for sufficiently small ε, the computation indicated in (14) will be
rendered as

⎡
⎣ε 2

... 2

1 1
... 2

⎤
⎦ ⇒

⎡
⎣ε 2

... 2

0 1 − 2
ε

... 2 − 2
ε

⎤
⎦ ⇒

⎡
⎣ε 2

... 2

0 −2
ε

... −2
ε

⎤
⎦ , (15)

resulting in the (unacceptable) solution x = 0, y = 1.

(c) Argue that with pivoting the machine will generate

⎡
⎣ε 2

... 2

1 1
... 2

⎤
⎦⇒

⎡
⎣1 1

... 2

ε 2
... 2

⎤
⎦⇒

⎡
⎣1 1

... 2

0 2 − ε
... 2 − 2ε

⎤
⎦⇒

⎡
⎣1 1

... 2

0 2
... 2

⎤
⎦

and produce the (acceptable) solution x = 1, y = 1.

3. A healthy scotch and soda contains 290 ml of liquid, consisting of x1 ml of lemon
seltzer and x2 ml of scotch. A careful calorimetric analysis reveals that the high-
ball contains 252.8 kcal. One ml of lemon seltzer contains 0.004 kcal and 1 ml of
scotch contains 2.8 kcal. Formulate two equations in x1 and x2 expressing (i) the
calorimetric content and (ii) the volume of the highball. Using a calculator, simulate
the solution of the equations via the Gauss algorithm, without pivoting, performed
on a machine that retains 3 significant digits after each calculation. The repeat the
simulation with pivoting.

The exact solution is x1 = 200 ml, x2 = 90 ml. The machine retains 3 digit
accuracy on a very brief calculation; yet the answer reported without pivoting is
only accurate to 1 digit.

4. With a calculator, simulate Gauss elimination as performed on a 3-digit machine,
with and without partial pivoting, for the following system. Compare both
answers with the answer obtained using full calculator precision, then rounding. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.5 COMPUTATIONAL CONSIDERATIONS 53

⎡
⎢⎢⎢⎣

0.001 2 3
... 1

−1 3.71 4.62
... 2

−2 1.07 10.0
... 3

⎤
⎥⎥⎥⎦ .

5. The effect of a large number “swamping out” a small number under addition, which
plagued the calculation (4) when it was performed without pivoting, can still occur
with pivoting, due to growth of the coefficients. Consider the family of systems
defined by the n-row version of the augmented matrix below, where s is an integer
satisfying 1 ≤ s < 2n−1:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1
... 1

... 0
... 1

−1 1 0 0 1
... 1

... 0
... 1

−1 −1 1 0 1
... 1

... 0
... 1

−1 −1 −1 1 1
... 1

... 0
... 1

−1 −1 −1 −1 1
... 1

... s
... 1 + s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that the solution for the third right-hand side is the column sum of the
solutions for the first two (so you can forego its calculation in the following).
(a) Perform the forward part of the Gauss elimination algorithm for the first two

right-hand sides, in the case of n = 5 rows as shown. Note that the computation
is very easy and that pivoting is “naturally” satisfied. Observe that the largest
entry that occurs is 16 in the final (5,5) and (5,6) positions.

(b) Repeat part (a) for the version of this problem containing 6, 7, … rows until you
can confidently conjecture the echelon form of the augmented matrix for the
n-row case. You should see that the largest entries in the echelon form are 2n−1,
in positions (n, n) and (n, n + 1). What would be the largest entry in the third
system?

(c) Back-solve the first two systems for 5, 6, … rows until you can confidently con-
jecture the form of the solutions for the n-row case. (Did you anticipate the
obvious solution for the first system?) Observe that the (n − 1)st entry of the
answer for the third system is always -s/2 and is the largest entry in magnitude.

(d) Now consider solving the third system on a finite precision machine. There will
be a value for n for which the computation of 2n−1 + s (in the final entry of the
row-echelon form, part (b)) will “overflow;” that is, 2n−1 + s will be replaced by
2n−1 + s’ for some s′ < s. Thus, the machine will either stop and issue an error
flag, or the row-echelon form will be in error, and back substitution will return
the value s′/2 for the (n−1)st entry of the answer. In other words, even with the
pivoting strategy, a finite-precision machine will either quit or commit an error
of magnitude at least 1/2 in the largest entry of the answer, due to unbridled 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



54 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

growth of the data. A strategy described in the literature as complete pivoting,
where the pivot element is chosen to be the largest-in-magnitude entry in the
entire coefficient matrix (rather than the largest in the current column), prevents
this. However, the growth exhibited in this contrived example is so unlikely, and
the wider search strategy so time-consuming, that simple “partial pivoting” has
been deemed as sufficient for most commercial software.

6. Even when pivoting is performed, sometimes a linear system simply cannot be
solved accurately on a finite precision machine due to an inherent “instability” in the
coefficient matrix. This instability, which magnifies the effect of rounding errors, is
measured by the condition number μ of the matrix. The effect of the condition num-
ber is roughly as follows: if the computer retains p decimal digits of accuracy, so that
the relative accuracy is about 10−(p+1), then the relative accuracy of the solution will
usually be about μ10−(p+1). In other words, you can expect to lose log10 μ significant
digits in the course of solving any system, simply due to the rounding errors gen-
erated while reading in the data! Although we defer a thorough explanation of this
phenomenon until Section 6.4, it is amusing to perform the following experiment
involving the notoriously ill-conditioned Hilbert matrix, where aij = 1/(i + j − 1).
(These matrices turned up in Problem 8, Exercises 1.2.) The condition number for
the 4-by-4 Hilbert matrix is approximately 15,000.
(a) Use a computer to obtain the solution to the system

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1/2 1/3 1/4
... 1

1/2 1/3 1/4 1/5
... 0

1/3 1/4 1/5 1/6
... 0

1/4 1/5 1/6 1/7
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

(You may use whatever subroutines are available at your facility.)

(b) Compare the computed solution with the exact solution:

x1 = 16, x2 = −120, x3 = 240, x4 = 140.

To how many digits is the computed answer correct? How many digits does your
computer retain? Did you lose about four digits?

(c) It is important to understand that the blame for the errors is not due to the algo-
rithm but to the problem itself. Program the computer to perform the following
calculations of the left-hand side of (16):

x1 + (1/2)x2 + (1/3)x3 + (1/4)x4,
(1/2)x1 + (1/3)x2 + (1/4)x3 + (1/5)x4,
(1/3)x1 + (1/4)x2 + (1/5)x3 + (1/6)x4,
(1/4)x1 + (1/5)x2 + (1/6)x3 + (1/7)x4;

(17)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



1.6 SUMMARY 55

and

x1 + x2/2 + x3/3 + x4/4,
x1/2 + x2/3 + x3/4 + x4/5,
x1/3 + x2/4 + x3/5 + x4/6,
x1/4 + x2/5 + x3/6 + x4/7.

(18)

Substitute the computed solution and the exact solution into (17). Observe that
the exact solution does not “check” much better than the computed solution.
(Indeed, if your facility’s equation-solving subroutine is fairly sophisticated, the
computed solution may seem superior.) On the other hand, substituting these
solutions into (18), which avoids the rounding errors in the coefficient matrix
(at least, for the exact solution), clearly distinguishes the exact solution.

(d) Repeat these computations using double precision.

1.6 SUMMARY

The tasks of analyzing data sets such as CAT scans and of fitting solution expressions
for a linear differential equation to specified auxiliary conditions are instances where
solving linear algebraic systems is an essential step. Because the latter are pervasive in
mathematics and applications, it is important to have a methodical, foolproof algorithm
for this problem that is suitable for implementation on computers. Gauss elimination
fills this need.

Gauss Elimination

Gauss elimination incorporates the familiar techniques of substitution, cross-
multiplication and subtraction, and solution by inspection into a systematic sequence
of steps that result in explicit solutions to linear systems. The basic operations, which
are guaranteed not to alter the solution set, are

(i) reordering the equations;

(ii) adding (or subtracting) a constant multiple of one equation to another and
replacing the latter with the result;

(iii) multiplying an equation by a nonzero constant and replacing the original
equation with the result.

Augmented Matrix Formulation

The efficiency of the Gauss elimination algorithm for solving a system of m linear
equations in n unknowns is enhanced by representing the linear system in an augmented
matrix format. The m-by-(n+1) augmented matrix contains m rows and n+1 columns, in 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



56 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

which the rows depict the (m) individual equations, the final ([n+1]st) column contains
the nonhomogeneous terms, and the first n columns (which constitute the coefficient
matrix) contain the coefficients of the unknowns.

Row-Echelon Form

In the forward part of the Gauss elimination algorithm, the basic operations are applied
to the rows of the augmented matrix to reduce it to a row-echelon form, in which the
first nonzero entry in each row lies to the right of the first nonzero entry in the previous
row. From this form, one can identify redundant equations (a row containing all zeros)
and inconsistent systems (the appearance of a row with exactly one nonzero element,
in its last column).

Back Substitution

The back substitution part of the Gauss algorithm assembles the complete solution to
the system by solving the equations represented by the row-echelon form in order, from
last to first. Unknowns corresponding to columns that contain no nonzero leading row
entries are classified as free variables and the other unknowns are expressed in terms
of them through a parametric representation of the solution set.

Rank of Row-Echelon Form

The rank of a row-echelon matrix, that is the number of its nonzero rows, can be used
to classify the number of solutions of the system.

(i) If the rank of the augmented matrix equals the rank of the coefficient matrix,
the system is consistent (has a solution); otherwise it is inconsistent.

(ii) If the system is consistent and the rank of the coefficient matrix equals its
number of columns (the number of unknowns), the system has a unique
solution.

(iii) If the system is consistent and the rank of the coefficient matrix is less than
its number of columns (the number of unknowns), the system has an infinite
number of solutions.

Linear Homogeneous Systems

A linear homogeneous system always possesses the trivial solution in which every
unknown equals zero. If the number of equations is less than the number of unknowns,
it has an infnite number of solutions. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



1.6 SUMMARY 57

Computational Considerations

Performing Gauss elimination on computers having finite precision can lead to unac-
ceptable errors if large multiples of some equations are added to others. The effect
is controlled by a partial pivoting strategy, which reorders the equations so that these
multiples never exceed one, in absolute value.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2
MATRIX ALGEBRA

2.1 MATRIX MULTIPLICATION

In this section we will be studying an algebraic system based on matrices. Although
“matrix algebra” is interesting in its own right, the big payoff is that it gives us a new lex-
icon that enables us to articulate many operations—physical (rotations, projections) and
computational (the row operations)—in a compact format that facilitates understanding
and utilization.

Matrix Products

The matrix product has proved to be one of the most useful inventions in mathe-
matics. It undoubtedly was motivated by the desire to represent a system of linear
algebraic equations compactly in the form Ax = b. (As one would expect, we
say matrices are equal when their corresponding entries are equal.)

The system that we solved in Example 1 of Section 1.1,

x1 + 2x2 + 2x3 = 6

2x1 + x2 + x3 = 6 (1)

x1 + x2 + 3x3 = 6

has a coefficient matrix

A =

⎡
⎣1 2 2

2 1 1
1 1 3

⎤
⎦ .

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



2.1 MATRIX MULTIPLICATION 59

Therefore, introducing column matrices for the unknowns x and the right-hand
side b,

x =

⎡
⎣x1

x2

x3

⎤
⎦ , b =

⎡
⎣6

6
6

⎤
⎦ ,

we define the matrix product Ax so that the equation Ax = b expresses system
(1):

⎡
⎣1 2 2

2 1 1
1 1 3

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ :=

⎡
⎣x1 + 2x2 + 2x3

2x1 + x2 + x3

x1 + x2 + 3x3

⎤
⎦ ; (2)

Ax =

⎡
⎣x1 + 2x2 + 2x3

2x1 + x2 + x3

x1 + x2 + 3x3

⎤
⎦ =

⎡
⎣6

6
6

⎤
⎦ = b.

The first entry of the product Ax is a mathematical combination that is familiar from
vector calculus. Namely, it is the dot product of two vectors: the first row of A, and the
unknowns.

x1 + 2x2 + 2x3 = (1, 2, 2) · (x1, x2, x3). (3)

Similarly, the second and third members are dot products also, involving the corre-
sponding rows of A.

In higher dimensions, the product of a matrix—that is, an m-by-n rectangular array
of numbers—and a column vector (with n components) is defined to be the collection
of dot products of the rows of the matrix with the vector, arranged as a column:

⎡
⎢⎢⎢⎣

row #1 →
row #2 →

...
row #m →

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣x
↓

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
(row #1) · x
(row #2) · x

...
(row #m) · x

⎤
⎥⎥⎥⎦

where the dot product of two n-dimensional vectors is computed in the obvious way:

(a1, a2, . . . , an) · (x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn.

The arrangement of terms in the dot product has come to be known also as the inner
product. We use the terms “dot product” and “inner product” interchangeably. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



60 MATRIX ALGEBRA

The fact that a linear system of equations can be written in matrix jargon as Ax = b
suggests that its solution x might be expressed in some form such as “x = b/A”. In
Section 2.3 we will, in fact, fulfill this expectation.

Having defined products of matrices times column vectors, we now generalize the
definition to embrace products of matrices with other matrices. The product of two
matrices A and B is formed by taking the array of the matrix products of A with the
individual columns of the second factor B. For example, the product

[
1 0 1
3 −1 2

]⎡
⎣ 1 2 x
−1 −1 y
4 1 z

⎤
⎦

is assembled from the (matrix-vector) products

[
1 0 1
3 −1 2

]⎡
⎣ 1
−1
4

⎤
⎦ =

[
5

12

]
,

[
1 0 1
3 −1 2

]⎡
⎣ 2
−1
1

⎤
⎦ =

[
3
9

]
,

[
1 0 1
3 −1 2

]⎡
⎣x

y
z

⎤
⎦ =

[
x + z

3x − y + 2z

]

to form

[
1 0 1
3 −1 2

]⎡
⎣ 1 2 x
−1 −1 y
4 1 z

⎤
⎦ =

[
5 3 x + z

12 9 3x − y + 2z

]
.

More generally, if A is m-by-n and B is n-by-p with b1, b2, . . . , bp denoting its
columns, then

AB = A [b1 b2 · · · bp] = [Ab1 Ab2 · · · Abp],

i.e. the jth column of the product is given by Abj.
Caution: Note that AB is only defined when the number of rows of B matches the

number of columns of A.
One can also express matrix multiplication in terms of dot products: the (i, j)th entry

of the product AB equals the dot product of the ith row of A with the jth column:

[
1 0 1
3 −1 2

]⎡
⎣ 1 2 x
−1 −1 y
4 1 z

⎤
⎦ =

[
1 + 0 + 4 2 + 0 + 1 x + 0 + y
3 + 1 + 8 6 + 1 + 2 3x − y + 2z

]

=

[
5 3 x + z

12 9 3x − y + 2z

]
.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.1 MATRIX MULTIPLICATION 61

The mathematical formula1 for the product of an m-by-n matrix A and an n-by-p
matrix B is

AB-: [cij], where cij =
n∑

k=1

aikbkj. (4)

Because AB is computed in terms of the rows of the first factor and the columns of
the second factor, it should not be surprising that, in general, AB does not equal BA
(matrix multiplication does not commute):

[
1 2
3 4

] [
0 1
1 0

]
=

[
2 1
4 3

]
, but

[
0 1
1 0

] [
1 2
3 4

]
=

[
3 4
1 2

]
.

[
1 2 3

]
⎡
⎣4

5
6

⎤
⎦ =

[
32

]
, but

⎡
⎣4

5
6

⎤
⎦ [

1 2 3
]
=

⎡
⎣4 8 12

5 10 15
6 12 18

⎤
⎦ .

In fact, the dimensions of A and B may render one or the other of these products
undefined.

[
1 2
3 4

] [
0
1

]
=

[
2
4

]
;

[
0
1

] [
1 2
3 4

]
not defined.

By the same token, one might not expect (AB)C to equal A(BC), since in (AB)C we
take dot products with columns of B, whereas in A(BC) we employ the rows of B. So
it is a pleasant surprise that the customary parenthesis grouping rule does indeed hold.

Example 1. Verify the associative law for the product ABC, where

A =

[
1
2

]
, B =

[
3 4

]
, C =

[
1 2 3 4
4 3 2 1

]
.

Solution. Straightforward calculation verifies the law:

(AB)C =

[
3 4
6 8

] [
1 2 3 4
4 3 2 1

]
=

[
19 18 17 16
38 36 34 32

]
,

A(BC) =

[
1
2

] [
19 18 17 16

]
=

[
19 18 17 16
38 36 34 32

]
�

To fully exploit the advantages of matrix notation we “flesh out” the algebra by
including matrix addition and scalar multiplication.

1The dot product of the ith row of A and the jth column of B is sometimes called the “sum of products”
expression for cij.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



62 MATRIX ALGEBRA

Matrix Addition and Scalar Multiplication

The operations of matrix addition and scalar multiplication are very straightfor-
ward. Addition is performed by adding corresponding elements:

[
1 2 3
4 5 6

]
+

[
1 7 1
0 1 1

]
=

[
2 9 4
4 6 7

]
.

Formally, the sum of two m-by-n matrices is given by

A + B =
[
aij

]
+
[
bij

]
:=

[
aij + bij

]
.

The sole novelty here is that addition is undefined for two matrices having
different dimensions.

To multiply a matrix by a scalar (number), we simply multiply each element
in the matrix by the number:

3

[
1 2 3
4 5 6

]
=

[
3 6 9

12 15 18

]
=

[
1 2 3
4 5 6

]
3

In other words, rA = r[aij] := [raij] (and Ar is the same as rA). The notation
−A stands for (−1)A.

Properties of Matrix Addition and Scalar Multiplication

Matrix addition and scalar multiplication are nothing more than mere bookkeep-
ing, and the usual algebraic properties hold. If A, B, and C are m-by-n matrices,
0 is the m-by-n matrix whose entries are all zeros, and r, s are scalars, then

A + (B + C) = (A + B) + C, A + B = B + A,

A + 0 = A, A + (−A) = 0,

r(A + B) = rA + rB, (r + s)A = rA + sA,

r(sA) = (rs)A = s(rA).

The parenthesis grouping rules for matrix algebra are then given as follows:

Properties of Matrix Algebra

(AB)C = A(BC) (Associativity)

(A + B)C = AC + BC (Distributivity)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.1 MATRIX MULTIPLICATION 63

A(B + C) = AB + AC (Distributivity)

(rA)B = r(AB) = A(rB) (Associativity)

The proofs of these properties involve meticulous sorting of the products in (4); see
Problem 16.

In general, the algebra of matrices (with compatible dimensions) proceeds much like
the standard algebra of numbers, except that we must never presume that we can switch
the order of matrix factors. Notice that the zero matrices act like the number zero in that

0 + A = A, 0 · B = 0

when the sum (product) is defined. There are also “multiplicative identity” matrices,
namely, n-by-n matrices denoted I (or In) with ones down the main diagonal and zeros
elsewhere. Multiplying I on the right or left by any other compatible matrix reproduces
the latter:

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦ =

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦ =

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

Armed with the full arsenal of matrix algebra, we turn to a simple application. The
basic row operations of Gauss elimination (Definition 4, Section 1.2) can be expressed
as left multiplication by appropriate matrices, the “elementary row matrix operators”.
Observe that the following product accomplishes an exchange of rows 2 and 3 in the
matrix on the right:

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦
⎡
⎣a b c d

e f g h
i j k l

⎤
⎦ =

⎡
⎣a b c d

i j k l
e f g h

⎤
⎦ .

Similarly, the addition of α times row 1 to row 2 is accomplished by the product

⎡
⎣1 0 0
α 1 0
0 0 1

⎤
⎦
⎡
⎣a b c d

e f g h
i j k l

⎤
⎦ =

⎡
⎣ a b c d

e + αa f + αb g + αc h + αd
i j k l

⎤
⎦ ,

and the multiplication of row 2 by β is achieved by the product

⎡
⎣1 0 0

0 β 0
0 0 1

⎤
⎦
⎡
⎣a b c d

e f g h
i j k l

⎤
⎦ =

⎡
⎣ a b c d
βe βf βg βh
i j k l

⎤
⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



64 MATRIX ALGEBRA

Example 2. Write out the matrix operator representation for the elementary row
operations used in the forward part of the Gauss elimination algorithm depicted below:

⎡
⎢⎢⎣

2 2 2 2 2
2 2 4 6 4
0 0 2 3 1
1 4 3 2 3

⎤
⎥⎥⎦

(−1)ρ1 + ρ2 → ρ2

(−1/2)ρ1 + ρ4 → ρ4

⎡
⎢⎢⎣

2 2 2 2 2
0 0 2 4 2
0 0 2 3 1
0 3 2 1 2

⎤
⎥⎥⎦

ρ2 ↔ ρ4

⎡
⎢⎢⎣

2 2 2 2 2
0 3 2 1 2
0 0 2 3 1
0 0 2 4 2

⎤
⎥⎥⎦
(−1)ρ3 + ρ4 → ρ4

⎡
⎢⎢⎣

2 2 2 2 2
0 3 2 1 2
0 0 2 3 1
0 0 0 1 1

⎤
⎥⎥⎦ .

Solution. The location of the (−1) in

E1 =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

dictates that left multiplication of a matrix by E1 adds (−1) times the first row to the
second row of the matrix: (−1)ρ1 + ρ2 → ρ2. Similarly, the (−1/2) in

E2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
− 1

2 0 0 1

⎤
⎥⎥⎦

enforces, through left multiplication, the addition of (−1/2) times the first row to the
fourth row: (−1/2)ρ1 + ρ4 → ρ4. The second row of

E3 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦

overwrites (through premultiplication) the second row of a matrix with a copy of its
fourth row, while the fourth row of E3 overwrites the fourth row with the second; thus
E3 exchanges the second and fourth rows of any matrix it premultiplies: ρ2 ↔ ρ4.
Finally, premultiplication by

E4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

⎤
⎥⎥⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.1 MATRIX MULTIPLICATION 65

achieves (−1)ρ3 + ρ4 → ρ4. Since one interprets a sequence of left multiplications
by reading from right to left, we can express the sequence of row operations in matrix
operator form as follows:

⎛
⎜⎜⎝E4

⎛
⎜⎜⎝E3

⎛
⎜⎜⎝E2

⎛
⎜⎜⎝E1

⎡
⎢⎢⎣

2 2 2 2 2
2 2 6 4 4
0 0 2 3 1
1 4 3 2 3

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

2 2 2 2 2
0 3 2 1 2
0 0 2 3 1
0 0 0 −2 0

⎤
⎥⎥⎦ .

In fact, by regrouping the parentheses we can see that left multiplication by the single
matrix (revealed after tedious computation)

E4E3E2E1 =

⎡
⎢⎢⎣

1 0 0 0
−1/2 0 0 1

0 0 1 0
−1 1 −1 0

⎤
⎥⎥⎦

puts the original matrix into echelon form. �

A quick way to find the matrix operator E corresponding to an elementary row oper-
ation is to interpret the identity E = EI as saying one can get E by simply performing
the row operation on the identity matrix. Take a second to verify this for the operators
in Example 2.

Exercises 2.1

1. Let A :=

[
2 1
3 5

]
and B :=

[
2 3
−1 0

]

Find: (a) A + B (b) 3A − B

2. Let A :=

[
2 1 1
2 0 5

]
and B :=

[
1 −1 2
0 3 −2

]

Find: (a) A + B (b) 7A − 4B

3. Let A :=

⎡
⎣2 4 0

1 1 3
2 1 3

⎤
⎦ and B :=

⎡
⎣−1 3 0

5 2 1
4 5 1

⎤
⎦

Find: (a) AB (b) BA (c) A2 = AA (d) B2 = BB

4. Let A :=

⎡
⎣ 2 1

0 4
−1 3

⎤
⎦ and B :=

[
0 3 −1
1 1 1

]

Find: (a) AB (b) BA

5. Let A :=

⎡
⎣ 2 −4 1

1 2 3
−1 1 3

⎤
⎦, B :=

⎡
⎣3 4 0

7 1 3
2 −1 −3

⎤
⎦, and C :=

⎡
⎣ 0 −4 0

1 1 5
−3 1 5

⎤
⎦

Find: (a) AB (b) AC (c) A(B+C)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



66 MATRIX ALGEBRA

6. Let A :=

[
1 2

15 1

]
, B :=

[
0 3
1 2

]
, and C :=

[
1 −4
4 6

]

Find: (a) AB (b) BC (c) (AB)C (d) A(BC)

7. Let A :=

[
2 −1
−3 4

]
and B :=

[
1 2
3 2

]

Verify that AB �= BA.

8. Let A :=

⎡
⎣4 4

0 0
2 2

⎤
⎦ and B :=

[
1 0 −1
−1 0 1

]

Show that AB =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ , but BA �=

[
0 0
0 0

]
.

9. Construct, by trial and error, a 2-by-2 matrix A such that A2 = 0, but A �= 0. (Here
0 is the 2-by-2 matrix with all entries zero.)

10. Show that if two n-by-n matrices A and B commute (i.e., AB = BA), then
(A + B)2 = A2 + 2AB + B2. Then show by example that this formula can fail
if A and B do not commute.

11. Construct 2-by-2 matrices A, B, and C �= 0 such that AC = BC, but A �= B. [Hint:

Start with C =

[
1 −1
1 −1

]
and experiment to find suitable matrices A and B.]

12. Show that if A, B, and C are n-by-n matrices such that AC = BC and, further-
more, that there exists a matrix D such that CD = I, then A = B. (Compare with
Problem 11.)

13. For each of the following, decide whether the statement made is always True or
sometimes False.
(a) If A and B are each n-by-n matrices and all the entries of A and of B are

positive numbers, then all the entries of the product AB are positive numbers.

(b) If A and B are each n-by-n matrices and AB = 0, then either A = 0 or B = 0.
(Here 0 is the n-by-n matrix with all entries equal to zero.)

(c) If A and B are each n-by-n upper triangular matrices, then AB is upper
triangular.

(d) If A is an n-by-n diagonal matrix (i.e., a matrix whose only nonzero entries
are on the diagonal), then A commutes with every n-by-n matrix B (i.e.,
AB = BA).

14. Write each of the following systems in matrix product form:

(a)
8x1 − 4x3 = 2
−3x1 + x2 + x3 = −1
6x1 − x2 = π

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.1 MATRIX MULTIPLICATION 67

(b)
x + 2y + 6z − 8 = 0
3 + y + 4x + z = 0

x − 4 + y = 0
15. Write each of the following systems in matrix product form.

(a)
x2 + 3x3 = 0

−x1 + 7x2 − 9x3 = −9
6x1 − 4x2 = 2

(b)
3y − 2x + 7 = 0

−x + 2y − 6 + z = 0
3z − y − x + 3 = 0

16. Verify the associativity property of multiplication, that is (AB) C = A(BC), where
A = [aij] is an m-by-n matrix, B = [bjk] is n-by-p, and C = [ckr] is p-by-q. [Hint:
Let D := (AB)C and E := A(BC) and show, using the formula (4), that the (i, r)th
entry dir of D is given by

dir =
n∑

j=1

aij

p∑
k=1

bjkckr,

and then interchange the order of summations to show that this is the same as the
(i, r)th entry of E.]

17. Let A :=

⎡
⎣ 2 −4 1

1 2 3
−1 1 3

⎤
⎦ . Find a matrix operator B such the following elementary

row operations on A are accomplished via left multiplication by B.

(a) BA =

⎡
⎣ 2 −4 1
−1 1 3
1 2 3

⎤
⎦,

(b) BA =

⎡
⎣ 2 −4 1

0 4 5
2

−1 1 3

⎤
⎦,

(c) BA =

⎡
⎣ 2 −4 1

2 4 6
−1 1 3

⎤
⎦ .

18. Let A :=

⎡
⎣0 0 −1 5

2 1 −1 4
6 −3 2 2

⎤
⎦ . Find a matrix operator B such the following

elementary row operations on A are accomplished via left multiplication by B.

(a) BA =

⎡
⎣6 −3 2 2

2 1 −1 4
0 0 −1 5

⎤
⎦,
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(b) BA =

⎡
⎣ 0 0 −1 5

2 1 −1 4
−3 3

2 −1 −1

⎤
⎦,

(c) BA =

⎡
⎣0 0 −1 5

2 1 −1 4
0 −6 5 −10

⎤
⎦ .

19. Transform the following matrices into row echelon form and display how this can
be accomplished by a sequence of left multiplications.

(a) A =

⎡
⎣0 0 −1

2 1 −1
6 −3 2

⎤
⎦,

(b) B =

⎡
⎣2 0 −3 5

2 1 −1 4
6 −3 2 2

⎤
⎦,

(c) C =

⎡
⎣1 2 1 1 −1 0

1 2 0 −1 1 0
0 0 1 2 −2 1

⎤
⎦.

20. Transform the following matrices into row echelon form and display how this can
be accomplished by a sequence of left multiplications.

(a) A =

⎡
⎣2 −1 0

2 3 −1
0 −3 2

⎤
⎦,

(b) B =

⎡
⎣0 0 5 3

0 −2 −1 0
4 −3 1 2

⎤
⎦,

(c) C =

⎡
⎢⎢⎣

0 2 1 1
2 4 4 2
3 6 6 0
0 −2 −1 −2

⎤
⎥⎥⎦.

21. Years of experience have taught a fisherman that a good day of fishing is followed
by another good day 75% of the time, while a bad day of fishing is followed by
another bad day 40% of the time. So if Sunday is a good day, the probability that
Monday is a good day is 0.75 and the probability that it is bad is 0.25.
(a) If Sunday is a good day, what are the probabilities for Tuesday?

(b) If xn =

[
gn

bn

]
gives the probabilities that day n is good (gn) or bad (bn), express

the probabilities xn+1 for day n + 1 as a matrix product xn+1 = Axn.

(c) What is the sum of the entries of the column vectors xn+1? What is the sum of
the entries in each column of A?

(d) Suppose we refined the classification of fishing day quality to excellent, good,
fair, and bad and modeled the probabilities as in (b). Would either of the
answers in (c) remain the same?

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.2 SOME PHYSICAL APPLICATIONS OF MATRIX OPERATORS 69

22. (Iteration of Stochastic Matrices) Problem 21 is generalized as follows. An
n-by-n stochastic matrix is a matrix for which each column vector has non-negative
entries that add up to 1 (such vectors are called probability vectors).
(a) Show that if x is probability vector and A is a stochastic matrix, then Ax is a

probability vector.

(b) Starting with a probability vector x0 and a stochastic matrix A, the sequence
of probability vectors x0, x1 := Ax0, x2 := Ax1, etc. is called a Markov chain
which can be represented by the iterative formula xk+1 := Axk, k = 0, 1, . . .
Explain why xk = Akx0, where A0 := In.

(c) Using a computer software package for multiplication, predict the long-term
behavior (as k → ∞) of the Markov chain for

A =

⎡
⎢⎢⎣

.33 .40 .32 .55

.11 .15 .41 .03

.11 .30 .12 .35

.45 .15 .15 .07

⎤
⎥⎥⎦ , with x0 =

⎡
⎢⎢⎣

.25

.25

.25

.25

⎤
⎥⎥⎦ ,

that is, predict the limit of the entries in the xk as k → ∞. This limit vector is
called a steady-state probability vector.

(d) Experiment with different starting probability measures x0, to see if the
predicted long-term behavior depends on the starting vector.

23. If A and B are n-by-n matrices and v is an n-by-1 vector, which of the following
calculations is more efficient?
(a) A(Bv) or (AB)v?

(b) (A + B)v or Av + Bv?
[Hint: How many dot products are required in each of the four calculations?]

2.2 SOME PHYSICAL APPLICATIONS OF MATRIX
OPERATORS

In this section we explore several ways matrix language is used to express some of the
operations performed in applied mathematics.

We will see that, while it is important to adhere strictly to the rules of matrix alge-
bra as listed in the previous section, some applications call for a little flexibility. For
example, sometimes the algebra requires the x,y coordinates of a point in the plane to
be listed as a row vector [x y], and other times as a column vector

[
x
y

]
.

The matrix transpose gives us this flexibility. When a is, say, a 1-by-m row vector, the
symbol aT denotes the m-by-1 column vector with the same entries; and similarly when
b is a column, bT is the corresponding row:

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



70 MATRIX ALGEBRA

[
1 2 3

]T
=

⎡
⎣1

2
3

⎤
⎦ ;

⎡
⎣4

5
6

⎤
⎦

T

=
[
4 5 6

]
.

We’ll denote the set of all m-by-1 column (1-by-m row) vectors with real entries by
Rm

col (Rm
row).2

In many mechanical systems, an object executes a rotational motion in a stationary
force field. For example, communications satellites rotate around the fixed earth’s grav-
itational field; and inside electrical motors the rotor spins in the fixed magnetic field
provided by the stator (see Fig. 2.1). The equations in the next example, which link the
rotator’s position to the stationary coordinate system, are among the most important
relations in engineering analysis.

Example 1. Determine the matrix implementing the operation of rotating a vector in
the x, y-plane.

y

y1

y2

x2

θ

x1

v1

v2

x

Connectors Conductors

Core

Windings

ROTOR

STATOR

Yoke

Fig. 2.1 Rotating systems.

2Our printer encourages us to use the row form whenever possible, to minimize the number of pages. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.2 SOME PHYSICAL APPLICATIONS OF MATRIX OPERATORS 71

Solution. Figure 2.1 depicts the vector v1 with its tail at the origin and its tip at (x1, y1).
After v1 is rotated through the angle θ, its tip lies at (x2, y2). It is a classic exercise in
trigonometry to show that the relations between the tip coordinates are dot products,
which can be assembled into the matrix format:

x2 = x1 cos θ − y1 sin θ
y2 = x1 sin θ + y1 cos θ

or

[
x2

y2

]
= Mrot

[
x1

y1

]
,

where the matrix for the rotation operator is

Mrot =

[
cos θ − sin θ
sin θ cos θ

]
. (1)

�

For example, the matrix

[
0 −1
1 0

]
performs a 90-degree counterclockwise rotation,

sending [1 0]T to [0 1]T and [0 1]T to [−1 0]T .
When the motion of an object is mechanically constrained, as in the instance of a

bead on a wire or a block sliding down an inclined plane, its acceleration is not deter-
mined by the full force of gravity; the component of gravity that opposes the constraint
is nullified by the constraint itself, and only the component parallel to the allowed
motion affects the dynamics. Example 2 shows how such components can be expressed
in the matrix jargon.

Example 2. Express the matrix describing the operation of orthogonally projecting

a vector v =

[
v1

v2

]
onto the direction of a unit vector n =

[
n1

n2

]
in the x, y-plane.

Solution. Figure 2.2 depicts the projection, vn, of v onto the direction of n.
The length of vn equals the length of v times the cosine of the angle θ between v

and n. The direction of vn is, of course, n.

y

x

v

vn n

Fig. 2.2 Orthogonal projection. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



72 MATRIX ALGEBRA

Now recall that the dot product has a geometric interpretation in vector calculus; in
two or three dimensions,

u · w = (length of u)× (length of w)× (cosine of the angle between u and w).

Therefore n · v equals the length of vn, since the length of n is unity. The formula for
the projection is thus vn = (n · v)n.

To rearrange this into a matrix-vector product, we exploit the associative law:

vn =

[
vn,1

vn,2

]
= (n · v)

[
n1

n2

]
=

[
n1

n2

]
(n · v) =

[
n1

n2

]([
n1 n2

] [v1

v2

])

=

([
n1

n2

] [
n1 n2

]) [
v1

v2

]
= Mproj

[
v1

v2

]
,

and conclude that the matrix for the projection operator is

Mproj :=

[
n1

n2

] [
n1 n2

]
=

[
n2

1 n1n2

n1n2 n2
2

]
= nnT . (2)

�

For example, the matrix

[
0 0
0 1

]
projects a vector onto the y-axis having direction

n =

[
0
1

]
, and

[
1/2 1/2
1/2 1/2

]
projects it onto the line y = x, which has direction n =

±
[√

2/2√
2/2

]
.

The enhanced illumination of a darkened room by a candle held in front of a wall
mirror can be predicted quantitatively by postulating a second, identical candle located
at the position of the original’s image in the mirror. This “imaging” effect is exploited
in radiotelemetry by employing “ground planes” in the presence of radiating antennas.
Example 3 shows how reflector matrices are used to pinpoint the mirror image.

Example 3. Express the matrix describing the operation of reflecting a vector in the
x, y-plane through a mirror-line with a unit normal n.

Solution. Figure 2.3 illustrates that the reflection v̂ of v is obtained by subtracting,
from v, two times its orthogonal projection onto the normal. Using (2), then, we exploit
the identity matrix to write

[
v̂1

v̂2

]
=

[
v1

v2

]
− 2

([
n1

n2

] [
n1 n2

]) [
v1

v2

]

=

([
1 0
0 1

]
− 2

([
n1

n2

] [
n1 n2

]))[
v1

v2

]
= Mref

[
v1

v2

]
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y

v̂

v

vn

n

–2vn

Mirror

x

Fig. 2.3 Mirror reflector.

and the matrix for the reflection operator is

Mref :=

[
1 0
0 1

]
− 2

[
n1

n2

] [
n1 n2

]
=

[
1 − 2n2

1 −2n1n2

−2n1n2 1 − 2n2
2

]
= I − 2nnT . (3)

�

For example,

[
0 1
1 0

]
reflects a vector through the line y = x, whose unit normal is

±
[ √

2/2
−
√

2/2

]
.

The associativity property, A(BC) = (AB)C, has a nice interpretation in this
context. Consider the complicated operation of rotating vectors and then reflecting
them, regarded as a single (concatenated) operation. Is this describable as a matrix
product? And if so, what is the matrix that performs the operation? The composite
operation is clearly prescribed by y = Mref(Mrotx). Associativity equates this with
y = (MrefMrot)x, providing us with the single matrix (MrefMrot) that performs the
move. For example, if we employ the 90◦ rotation analyzed in Example 1 followed by
reflecting in the mirror y = x as per Example 3, the vector [1 0]T is rotated to [0 1]T and
then reflected back to [1 0]T , while [0 1]T is rotated to [−1 0]T and reflected to [0 −1]T .
The matrix accomplishing this maneuver is

Mref/rot =

[
1 0
0 −1

]
,

in agreement with associativity, which stipulates the composite operator

MrefMrot =

[
0 1
1 0

] [
0 −1
1 0

]
=

[
1 0
0 −1

]

(Equations (1) and (3)). 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



74 MATRIX ALGEBRA

Start Re-startRotate RotateReflect Reflect

Fig. 2.4 Violation of commutativity.

This example also demonstrates the violation of commutative multiplication,

because Mrot Mref equals

[
−1 0
0 1

]
. Indeed, compare the progress of the symbol in

Figure 2.4, as it is first rotated/reflected, then reflected/rotated.

Example 4. Find a 2-by-2 matrix that orthogonally projects a vector onto the line
y = 2x, and then rotates it counterclockwise by 45◦.

Solution. A vector parallel to the line y = 2x is [1 2]T ; a unit vector is then nproj =

[1 2]T/
√

5. Thus (Eq. (2))

Mproj = nprojnT
proj =

1
5

[
1
2

]
[1 2] =

1
5

[
1 2
2 4

]
.

Eq. (1) gives the rotator matrix:

Mrot =

[
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

]
=

1√
2

[
1 −1
1 1

]
.

The composite action is then represented by the matrix (watch the order!)

MrotMproj =
1√
2

[
1 −1
1 1

]
1
5

[
1 2
2 4

]
=

1

5
√

2

[
−1 −2
3 6

]
. �

We will see that these examples, which demonstrate that elementary row operations,
rotations, projections, and reflections are equivalent to left multiplication by appro-
priate “operator” matrices, are extremely useful as theoretical tools. They provide us
with an algebraic language for expressing the operations. In practice, however, they are
quite inefficient. For instance, it would be foolish to execute a full matrix multiplication
simply to exchange two rows in a matrix.

Exercises 2.2

In Problems 1–4 we identify points of the x,y-plane as 2-by-1 column vectors.

1. Find a 2-by-2 matrix A such that
(a) Ax rotates a vector x by 30◦ in the counterclockwise direction;

(b) Ax reflects a vector x through the line 2x + y = 0;

(c) Ax orthogonally projects a vector x onto the direction of the line y = x.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.2 SOME PHYSICAL APPLICATIONS OF MATRIX OPERATORS 75

2. Find a 2-by-2 matrix A such that
(a) Ax rotates a vector x by 45◦ in the clockwise direction;

(b) Ax reflects a vector x through the line x − 3y = 0;

(c) Ax orthogonally projects a vector x onto the direction of the line
y = 3x.

3. Show that a 2-by-2 matrix A =

[
a b
c d

]
with ad − bc �= 0, regarded as a function

that maps x into Ax, transforms any straight line in the plane into another straight
line. Construct an example to show that if ad − bc = 0, then a straight line might
be transformed to a single point.

4. Show that the matrix A in Problem 3 with ad − bc �= 0 transforms the sides
of any parallelogram having a vertex in the origin to the sides of another such
parallelogram.

5. What is the matrix that performs the following composite operations in the x, y-
plane?
(a) Reflects a vector x in the line x + 2y = 0, and then orthogonally projects it

onto the direction of the line y = −x.

(b) Rotates a vector x counterclockwise by 120◦, then reflects it in the line
y − 2x = 0.

6. What is the matrix that performs the following composite operations in the x, y-
plane?
(a) Orthogonally projects a vector x onto the direction of the line y = 3x, and then

rotates it clockwise by 45◦.

(b) Reflects a vector x in the line y = −x, and then orthogonally projects it onto
the direction of the x-axis.

7. Construct a single 2-by-2 matrix A that transforms (via left multiplication by A)
any column vector x in the plane to a vector one-half its length that is rotated 90◦

in the counterclockwise direction.

8. Verify, and then explain why, M2
proj = Mproj in Example 2.

9. Verify, and then explain why, M4
rot = I for a 90-degree rotation.

10. (a) Review Example 2, interpreting the vectors in Figure 2.2 as three dimen-
sional, and argue that the formula Mproj = nnT (see Eq. (2)) represents the
orthogonal projection operation in three dimensions (when n is a unit vector
in R3

col).

(b) Confirm the following properties of the orthogonal projection operation alge-
braically, by manipulating the formula Mproj = nnT (when n is a unit vector
in R3

col):

• Repeated applications of Mproj simply reproduce the result of the first
projection.

• For any vector v, the residual vector v − Mprojv is orthogonal to the
projection Mprojv.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



76 MATRIX ALGEBRA

11. Construct the three dimensional orthogonal projection matrices that project a
vector in R3

col

(a) onto the z-axis and

(b) onto the line x = y = z.

12. Apply the projection matrices constructed in Problem 11 to the vector v = [1 2 3]T ,
and confirm the properties listed in Problem 10(b).

13. (a) Review Example 3, interpreting the vectors in Figure 2.3 as three dimensional
and the mirror as a plane with unit normal n, and argue that the formula Mref =
I− 2nnT (see Eq. (3)) represents the mirror reflection (when n is a unit vector
in R3

col).

(b) Confirm the following properties of the reflection operation algebraically,
by manipulating the formula Mref = I − 2nnT (when n is a unit vector
in R3

col):

• Two applications of Mref simply reproduce the original vector.

• For any vector v, the residual vector v − Mrefv is parallel to the mirror
normal n.

14. Construct the three-dimensional reflection matrices that reflect a vector
in R3

col

(a) in the mirror given by the x, y-plane and

(b) in the plane mirror normal to the line x = y = z.

(c) Apply these reflection matrices to the vector v = [1 2 3]T , and confirm the
properties listed in Problem 13(b).

2.3 THE INVERSE AND THE TRANSPOSE

We have noted that the formulas IA = A and AI = A demonstrate that the identity
matrix I is analogous to the scalar 1 in arithmetic. So it is natural to look for the analog
to the scalar inverse. Keeping in mind that matrix multiplication is noncommutative,
we tentatively call the matrix B a right inverse for A if AB = I, and a left inverse if
BA = I. For example, the calculation

AB =

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣ 3/2 −1 1/2

1/2 0 −1/2
−3/2 1 1/2

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ (1)

shows that B is a right inverse of A; and, of course, that A is a left inverse
of B.

In this section we will show that if a square matrix A has a right inverse, it has
only one. Furthermore this right inverse is also a left inverse, as is exemplified by the
matrices in (1), because B is also a left inverse: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



2.3 THE INVERSE AND THE TRANSPOSE 77

BA =

⎡
⎣ 3/2 −1 1/2

1/2 0 −1/2
−3/2 1 1/2

⎤
⎦
⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Thus a square matrix either has no inverse of any kind, or it has a unique, two-sided
inverse which we can designate as the inverse, A−1. Anticipating these results, we
formulate the following definition.

Inverse of a Square Matrix

Definition 1. The inverse of an n-by-n matrix A is the unique matrix A−1

satisfying

AA−1 = A−1A = I. (2)

Square matrices that have inverses are said to be invertible or nonsingular;
otherwise they are noninvertible or singular.

If a matrix has an “operator” interpretation, it may be easy to figure out its inverse.

Example 1. Derive the inverses of the rotation and reflection matrices of
Section 2.2.

Solution. Equation (2) says that the inverse undoes the operation performed by the
original matrix. To undo a rotation through an angle θ, we simply need to rotate through
the angle (−θ). Therefore, if Mrot(θ) denotes the rotation matrix (recall Example 1,
Section 2.2), Mrot(−θ)Mrot(θ) = I:

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

] [
cos θ − sin θ
sin θ cos θ

]
=

[
1 0
0 1

]
, (3)

and Mrot(θ)−1 = Mrot(−θ). �

Undoing a reflection (Example 3, Section 2.2) is even simpler—we reflect again:
Mref Mref = I, and M−1

ref = Mref. Problem 13, Exercises 2.2, confirmed this identity
directly using the formula for Mref from Section 2.1.

The orthogonal projection operation described in Example 2 of Section 2.2 cannot be
inverted; one cannot deduce, simply from the resultant projection vn, what the original
vector v was. Therefore, the projection matrix has no inverse. Neither does the zero
matrix 0, because the equation 0B = I can never be satisfied. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



78 MATRIX ALGEBRA

Example 2. Derive the inverses of the elementary row operation matrices.

Solution. To undo a row exchange, one simply repeats the exchange. To undo the addi-
tion of a multiple of one row to another, one subtracts the same multiple. To undo multi-
plication of a row by a nonzero constant, one divides the row by that constant. Applying
these statements to the elementary row operation matrices of Section 2.1 yields

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦
−1

=

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ ,

⎡
⎣1 0 0
α 1 0
0 0 1

⎤
⎦
−1

=

⎡
⎣ 1 0 0
−α 1 0
0 0 1

⎤
⎦ ,

⎡
⎣1 0 0

0 β 0
0 0 1

⎤
⎦
−1

=

⎡
⎣1 0 0

0 1
β 0

0 0 1

⎤
⎦ . �

Now we are going to show how to compute a square matrix’s right inverse (or detect
if it has none). A subsequent perusal of the calculation will reveal why the right inverse
is also a left inverse and is unique.

Consider the requirement that a matrix X be a right inverse of the matrix A in (1):

AX =

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

The individual columns of X satisfy
⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣x11

x21

x31

⎤
⎦ =

⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣x12

x22

x32

⎤
⎦ =

⎡
⎣0

1
0

⎤
⎦ , (4)

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣x13

x23

x33

⎤
⎦ =

⎡
⎣0

0
1

⎤
⎦ .

Thus computing the right inverse amounts to solving a linear system with several right-
hand sides, starting with the augmented matrix [A:I]. The Gauss–Jordan algorithm is
best suited for this task.

Example 3. Find the right inverse of the matrix A in Equation (1).

Solution. We form the matrix [A:I] and perform the Gauss–Jordan algorithm:
⎡
⎣1 2 1 : 1 0 0

1 3 2 : 0 1 0
1 0 1 : 0 0 1

⎤
⎦ (−1)ρ1 + ρ2 → ρ2

(−1)ρ1 + ρ3 → ρ3

⎡
⎣1 2 1 : 1 0 0

0 1 1 : −1 1 0
0 −2 0 : −1 0 1

⎤
⎦

(−2)ρ2 + ρ1 → ρ1

2ρ2 + ρ3 → ρ3

⎡
⎢⎣1 0 0

... 3
2 −1 1

2
0 1 1 : −1 1 0
0 0 2 : −3 2 1

⎤
⎥⎦

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.3 THE INVERSE AND THE TRANSPOSE 79

(−1/2)ρ3 → ρ3

⎡
⎢⎣1 0 0

... 3
2 −1 1

2
0 1 1 : −1 1 0
0 0 1 : − 3

2 1 1
2

⎤
⎥⎦

(−1)ρ3 + ρ2 → ρ2

⎡
⎢⎢⎢⎣

1 0 0
... 3

2 −1 1
2

0 1 0
... 1

2 0 − 1
2

0 0 1
... − 3

2 1 1
2

⎤
⎥⎥⎥⎦ .

Now we can read the inverse from the final three columns.

A−1 =

⎡
⎣ 3/2 −1 1/2

1/2 0 −1/2
−3/2 1 1/2

⎤
⎦ (in agreement with Eq. (1)). �

Having employed only elementary row operations to transform [A : I] into [I : B],
we can use a little juggling to prove that the right inverse B is a left inverse.

Right and Left Inverses

Theorem 1. If the square matrix A has a right inverse B, then B is the unique
right inverse, and B is also the unique left inverse.

Proof. We demonstrate that the right inverse B constructed in Example 3 is a
left inverse by invoking the operator-matrix characterization of the row opera-
tions employed in its construction; the argument generalizes to arbitrary square
matrices. Let E1, E2, . . . , E6 be the operator matrices that accomplish (through
left multiplication) the various row operations that were executed in the example,
so that we can write

E6 E5 · · ·E2E1A = I. (5)

Right multiplication by B gives

E6 E5 · · ·E2 E1 A B = E6 E5 · · ·E2 E1I = I B = B. (6)

Equation (6) implies B equals E6E5 · · ·E2E1, and thus (5) shows that BA = I.
In other words, the right inverse B is a left inverse also.

To see that (the two-sided inverse) B is the only possible right inverse, suppose
that C is another right inverse. Then left multiplication of the relation I = AC by
B, together with associativity, implies that C is the same as B:

BI = B(AC) = (BA)C = IC;

that is, B = C. A similar argument shows that B is the unique left inverse
of A. �
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The fact that the right inverse (if it exists) is unique means that the solutions to
the systems (4) are unique. In the terminology of Section 1.3, then, there are no “free
variables”; thus there are no zeros on the diagonal of the row echelon form resulting
from the forward part of the Gauss elimination algorithm. Moreover, when there are no
such zeros, back substitution can be carried out and the computation of the inverse is
unhindered.

Another way of stating this is to use the rank concept introduced in Section 1.4, since
the rank of a square row echelon matrix with no zeros on the diagonal is equal to its
number of columns; that is, the matrix has full rank. Noting that a matrix has full rank
when and only when the homogeneous sytem Ax = 0 has x = 0 as its only solution,
we summarize with the following.

Equivalent Conditions for the Existence of the Inverse

Theorem 2. Let A be a square matrix. Then the following statements are
equivalent:

• A has an inverse A−1 (which is the unique left inverse as well as unique right
inverse).

• A can be reduced by elementary row operations to a row echelon form with
full rank.

• The homogeneous system Ax = 0 has only the trivial solution x = 0.

• For every column vector b, the system Ax = b has a unique solution.

We noted earlier that an orthogonal projection operation is noninvertible. The matrix

[
1/2 1/2
1/2 1/2

]

projects a vector onto the line y = x, as we saw in Example 2 of the preceding section;
and clearly subtracting the first row from the second yields a row echelon matrix of
rank one, so its noninvertibility is consistent with Theorem 2.

Once we know an inverse for the coefficient matrix A in a system of linear equations
Ax = b, the solution can be calculated directly by computing x = A−1b, as the
following reasoning shows:

Ax = b implies A−1Ax = A−1b implies x = A−1b.

For the system

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 1
−1
0

⎤
⎦

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.3 THE INVERSE AND THE TRANSPOSE 81

whose coefficient matrix and its inverse appear in Equation (1),⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 3/2 −1 1/2

1/2 0 −1/2
−3/2 1 1/2

⎤
⎦
⎡
⎣ 1
−1
0

⎤
⎦ =

⎡
⎣ 5/2

1/2
−5/2

⎤
⎦ .

When A−1 is known, this calculation is certainly easier than applying Gauss elim-
ination. However, the reader may correctly surmise that computing A−1 and using it
to solve a system is less efficient than solving it directly by Gauss elimination, since
one must perform the Gauss (or Gauss–Jordan) algorithm anyway, to get the inverse.
It can be shown that even if the system has multiple right-hand sides, computing and
using the inverse is less efficient than Gauss elimination. Although the inverse is an
extremely useful theoretical concept (as we shall see), in practice good computists avoid
its calculation if at all possible.

It is often useful in matrix analysis to switch one’s focus from a matrix’s rows to its
columns, or vice versa—reflecting the matrix across its diagonal, as it were. For this
purpose we extend the (vector) transpose introduced in the previous section.

The Matrix Transpose

Definition 2. The transpose AT of an m-by-n matrix A is the n-by-m matix
whose (i, j)th entry is the (j, i)th entry of A.

For example,

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦

T

=

⎡
⎣1 4 7

2 5 8
3 6 9

⎤
⎦ ,

[
1 2 3
4 5 6

]T

=

⎡
⎣1 4

2 5
3 6

⎤
⎦ , (7)

[
1 2 3

]T
=

⎡
⎣1

2
3

⎤
⎦ ,

⎡
⎣1

2
3

⎤
⎦

T

=
[
1 2 3

]
.

Note that the rows of A become the columns of AT :
⎡
⎣− u −
− v −
− w −

⎤
⎦

T

=

⎡
⎣ | | |

u v w
| | |

⎤
⎦ , (8)

and that when AT = A the matrix is symmetric (about its diagonal):

⎡
⎣a b c

b d e
c e f

⎤
⎦

T

=

⎡
⎣a b c

b d e
c e f

⎤
⎦ . (9)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



82 MATRIX ALGEBRA

We make two brief, elementary observations:

(a) (AT)T = A;

(b) the dot product v · w can be written as vTw when v and w are column vectors,
and as vwT when they are rows.

Example 4. Show that the transposes of the operator matrices that perform the
elementary row operations are themselves operator matrices for elementary row
operations.

Solution. These matrices were illustrated in Example 2, Section 2.1. For a row-
switching matrix, such as

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ ,

that exchanges rows 2 and 4, the transpose equals the original matrix; it is symmetric.
The matrix

⎡
⎢⎢⎣

1 0 0 0
0 c 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

multiplies row 2 by c, and is also symmetric. Finally the matrix

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 c 0 1

⎤
⎥⎥⎦ ,

which adds c times row 2 to row 4, has as its transpose

⎡
⎢⎢⎣

1 0 0 0
0 1 0 c
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ;

it adds c times row 4 to row 2. The generalization to n -by-n matrices is clear. �

Curiously, the inverse and the transpose of a matrix product are calculated by the
same rule: 
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Transpose and Inverse of the Matrix Product

Theorem 3. If the matrix product AB is defined, then we have

(AB)T = BTAT . (10)

Moreover, if A and B are invertible, then so is AB and

(AB)−1 = B−1A−1. (11)

Proof. The inverse property (11) is easier to prove; we simply need to confirm
that (B−1A−1)(AB) = I, and this follows from manipulation of parentheses (as
sanctioned by associativity): (B−1A−1)(AB) = B−1(A−1A)B = B−1B = I.

To see (10) requires some computation. Compare the calculation of the (2,3)
entry of AB with the (3,2) entry of BTAT in the following:

AB =

[
− − −
s t u

]⎡
⎣− − x −
− − y −
− − z −

⎤
⎦ =

[
− − − −
− − ∗ −

]
,

BTAT =

⎡
⎢⎢⎣
− − −
− − −
x y z
− − −

⎤
⎥⎥⎦
⎡
⎣− s
− t
− u

⎤
⎦ =

⎡
⎢⎢⎣
− −
− −
− ∗
− −

⎤
⎥⎥⎦ .

Both entries contain sx + ty + uz, the dot product of the second row of A (which
is the second column of AT ) with the third column of B (i.e., the third row of
BT ). Generalizing, we see that the computation of the (i, j)th entry of BTAT is
identical to that of the (j, i)th entry of AB, proving (10). �

Theorem 3 generalizes to extended products easily:

(A1A2 · · ·Ak−1Ak)
−1 = A−1

k A−1
k−1 · · ·A−1

2 A−1
1 (12)

(A1A2 · · ·Ak−1Ak)
T = AT

k AT
k−1 · · ·AT

2 AT
1 ,

where in (12) we presume that all the inverses exist. (See Problems 21 and 22.)

Example 5. Show that the transpose of the inverse equals the inverse of the transpose;
that is, for invertible matrices (A−1)T = (AT)−1.

Solution. By Equation (10), the transpose of the equation AA−1 = I is (A−1)TAT =
IT = I. so (A−1)T is, indeed, the inverse of AT . � 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



84 MATRIX ALGEBRA

Exercises 2.3

In Problems 1–6, without performing any computations, find the inverse of the given
elementary row operation matrix.

1.

⎡
⎣1 0 −5

0 1 0
0 0 1

⎤
⎦ 2.

⎡
⎣1 0 0

0 1 0
0 0 π

⎤
⎦

3.

⎡
⎣1 0 0

0 5 0
0 0 1

⎤
⎦ 4.

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

5.

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ 6.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 −18 0 1

⎤
⎥⎥⎦

In Problems 7–12, compute the inverse of the given matrix, if it exists.

7.

[
2 1
−1 4

]
8.

[
4 1
5 9

]

9.

⎡
⎣1 1 1

1 2 1
2 3 2

⎤
⎦ 10.

⎡
⎣1 1 1

1 2 3
0 1 1

⎤
⎦

11.

⎡
⎢⎢⎣

3 0 0 1
2 0 0 0
0 0 2 0
0 1 2 0

⎤
⎥⎥⎦ 12.

⎡
⎢⎢⎣

3 4 5 6
0 0 1 2
0 0 4 5
0 0 0 8

⎤
⎥⎥⎦

13. Let A =

⎡
⎣1 0 3

0 2 4
4 −3 8

⎤
⎦. Compute A−1 and use it to solve each of the following

systems:

(a) Ax=[ 1 0 3]T (b) Ax = [−3 7 1]T (c) Ax = [0 − 4 1]T

14. Let A be the matrix in Problem 11. Use A−1 to solve the following systems:
(a) Ax = [−1 0 2 1]T (b) Ax = [2 3 0 − 2]T

15. Let A be the matrix in Problem 10. Use A−1 to solve the following matrix equation
for X:

AX =

⎡
⎣1 0 3

0 2 4
4 −3 8

⎤
⎦ . (13)

16. Prove that if A and B are both m-by-n matrices, then (A+B)T= AT+BT . 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.3 THE INVERSE AND THE TRANSPOSE 85

17. For each of the following, determine whether the statement made is always True
or sometimes False.
(a) If A and B are n-by-n invertible matrices, then A+B is also invertible.

(b) If A is invertible, so is A3.

(c) If A is a symmetric matrix, then so is A2.

(d) If A is invertible, so is AT .

18. Prove that if A is any n-by-n matrix, then the matrices A + AT and AAT are
symmetric.

19. Prove that if A =

[
a b
c d

]
, then A is invertible if and only if ad − cb �= 0. Show

that if this condition holds, then

A−1 =
1

ad − cb

[
d −b
−c a

]
.

20. Use the formula in Problem 19 to provide another proof that Mrot(θ)−1 =Mrot(−θ)
and that M−1

ref =Mref (see Section 2.2).

21. Use Theorem 3 to prove that if A, B, and C are n-by-n matrices, then (ABC)T =
CTBTAT .

22. Prove that if A, B, and C are invertible n-by-n matrices, then ABC is invertible and
(ABC)−1 = C−1B−1A−1.

23. Show that the transpose of the rotation operator matrix Mrot discussed in Example 1
is also the inverse of Mrot.

24. If A is a nilpotent matrix; that is, a square matrix such that Ak = 0 for some
nonnegative integer k, prove that I − A is invertible and that

(I − A)−1 = I + A + A2 + · · · + Ak−1.

25. Verify the Sherman–Morrison–Woodbury formula:

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1A−1.

[Hint: Left-multiply the right-hand member by A + BCD, and judiciously insert
I = CC−1.] This formula is helpful when the inverse is known for a matrix A, but
then A must be “updated” by adding BCD, with an easily invertible C. Let A be
the 5-by-5 identity matrix, B = [0 0 0 0 1]T, C = [0.1], and D = [1 1 1 1 1] to
obtain a quick evaluation of

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0.1 0.1 0.1 0.1 1.1

⎤
⎥⎥⎥⎥⎦

−1

.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



86 MATRIX ALGEBRA

2.4 DETERMINANTS

The matrix concept is very powerful; a simple symbol like M stands for 10, 000 pieces
of data, when M is a 100-by-100 matrix. However, this much information can be over-
whelming, so it is important to have a few simple numbers that give a rough description
of the matrix. For square matrices, one such descriptor is the determinant. The reader
should be familiar with its formula for a 2-by-2 matrix:

det

[
a1 a2

b1 b2

]
= a1b2 − a2b1. (1)

Example 1. Compute det

[
1 −2
3 4

]
.

Solution. An easy way to remember (1) is to note that it combines products of entries

along the “slopes”

[
↘

↘

]
and

[
↗

↗

]
, signed positively for the “downhills” and

negatively for the “uphills.”

So det

[
1 −2
3 4

]
= (+)(1)(4)− (3)(−2) = 10. �

There is a geometric interpretation of (1). From elementary calculus, recall that the
cross product a × b of two vectors a and b is defined to be the vector perpendicular to
both a and b, whose length equals the length of a times the length of b times the sine of
the angle between a and b, and whose direction is chosen so that a, b, and a × b form
a right-handed triad (see Fig. 2.5).

From this definition, we see that the cross products of unit vectors i, j, and k along
the x, y, and z axes, respectively, are given by the equations

i × j = −j × i = k, j × k = −k × j = i, k × i = −i × k = j, (2)

a
θ

b

a×b

Fig. 2.5 Cross product. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.4 DETERMINANTS 87

and a × a = 0 for every vector a. It is also known that the cross product is distributive
and anticommutative:

(a + b)× c = a × c + b × c, but a × b = −b × a. (3)

Now observe that in Figure 2.5 the pair of vectors a and b generate a parallelogram,
whose base is the length of a, and whose height is the length of b times the sine of the
angle between a and b; in other words, the area of the parallelogram is precisely the
length of the cross product. If a and b lie in the x, y-plane, we can use the Equations
(2) and (3) to derive a simple expression for this area in terms of the components of
a = a1i + a2j and b = b1i + b2j:

(a1i + a2j)× (b1i + b2j) = [a1b2 − a2b1]k. (4)

Therefore the area of the parallelogram is given by the length of this vector, which is
either a1b2 − a2b1 or its negative (depending on whether a, b, k form a right-handed or
left-handed triad).

Note the similarity between (1) and (4). The determinant of the 2-by-2 matrix con-
taining the components of a in its first row and those of b in its second row equals, up
to sign, the area of the parallelogram with edges a and b.

We can apply similar reasoning to Figure 2.6 to derive a component formula for the
volume of a parallelepiped generated by three vectors a, b, and c. Keeping in mind that
the length of the cross product a × b equals the area of the base parallelogram, note
that the height of the parallelepiped as depicted in the figure is given by the length of c
times the cosine of the angle between c and a × b. So the volume is the dot product of
c and a×b; it equals the length of a×b (i.e., the area of the base parallelogram) times
the length of c times the cosine of this angle.

In other words, we have arrived at a vector formula for the volume of the
parallelepiped—namely, |(a × b) · c|. (The absolute value is necessitated by the
possibility that a, b, c might comprise a left-handed triad.)

a

b

c

a×b

Fig. 2.6 Volume of a parallepiped. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



88 MATRIX ALGEBRA

The component expression for (a× b) · c can be worked out by using Equations (2)
again. With

a = a1i + a2j + a3k, b = b1i + b2j + b3k, and c = c1i + c2j + c3k,

we could laboriously tabulate the 3 × 3 × 3 = 27 terms in (a × b) · c.
However, the somber student in Figure 2.7 will be gladdened to note that

(i) all triple products containing repeated factors are zero (e.g., (i × j) · i = 0; the
corresponding parallepiped is flat and has no volume);

(ii) all the other triple products are either +1 or −1 (e.g., (i × j) · k = 1, (k × j) ·
i = −1).

So only six terms survive, and we define the determinant of the 3-by-3 matrix containing
the components of a, b, and c to be the resulting expression:

det

⎡
⎣a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤
⎦ = (a × b) · c (5)

= a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1

= a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1).

We display the determinant in (5) in factored form, because when we compare it
with (1) we observe the appearance of 2-by-2 determinants in the formula:

a1b1c1ixii
+a1b1c1jxii
+a1b1c1kxi.i
+a1b1c1ixji
+a1b1c1jxji
+a1b1c1kxk.i
+a1b1c1kxi.i

Fig. 2.7 Determined Student. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.4 DETERMINANTS 89

det

⎡
⎣a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤
⎦ = a1 det

[
b2 b3

c2 c3

]
− a2 det

[
b1 b3

c1 c3

]
+ a3 det

[
b1 b2

c1 c2

]
. (6)

Notice the alternating signs, which we have introduced to maintain the original ordering
of the columns.

Formula (6) is easy to remember by striking out the first row and successive columns
of the matrix:

det

⎡
⎣a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤
⎦

a1

a1 a2 a3

b1 b2 b3

c1 c2 c3

a2

a1 a2 a3

b1 b2 b3

c1 c2 c3

a3

a1 a2 a3

b1 b2 b3

c1 c2 c3

.

Example 2. Compute det(A), where A =

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ .

Solution. From (6), we obtain

det(A) = (1) det

[
5 6
8 9

]
− 2det

[
4 6
7 9

]
+ 3det

[
4 5
7 8

]

= (45 − 48)− 2(36 − 42) + 3(32 − 35)

= −3 + 12 − 9 = 0. �

Now observe that a reduction identity similar to (6) arises when we juggle the 2-by-2
determinant expression (1):

a1 a2

b1 b2
a1b2 a2b1 a1

a1 a2

b1 b2
a2

a1 a2

b1 b2
(7)

(if we take the determinant of a 1-by-1 matrix to be simply the value of the entry).
Since (6), (7) express 3-by-3 determinants in terms of 2-by-2’s and 2-by-2’s in terms

of 1-by-1’s, we can use the same pattern to define 4-by-4 determinants in terms of
3-by-3’s, and so on, to formulate a recursive definition. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



90 MATRIX ALGEBRA

Determinants

Definition 3. The determinant of a 1-by-1 matrix [a11] is simply a11, and
the determinant of an n-by-n matrix with n > 1 is defined via lower-order
determinants by

det(A) = det

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann

⎤
⎥⎥⎥⎥⎥⎦

(8)

:= a11 det(A11)− a12 det(A12) + a13 det(A13)

− · · · + (−1)n+1a1n det(A1n)

=
n∑

j=1

(−1)1+ja1j det(A1j),

where A1j is the (n − 1)-by-(n − 1) submatrix obtained by deleting the first row
and jth column of A.

Note that from this recursive definition it follows that the determinant of a diag-
onal matrix is the product of the entries along the diagonal. This is consistent with
our original volume interpretation of the determinant; we are inclined to postulate that
a rectangle in n-dimensional space having edge lengths a1, a2, . . . , an along the axes
should have a volume given by a1a2 · · · an. Since its edge vectors would be represented
by [a1 0 · · · 0], [0 a2 · · · 0], . . . , [0 0 · · · an], the determinant does indeed give the
volume:

det

⎡
⎢⎢⎢⎣

a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

⎤
⎥⎥⎥⎦ = a1a2 · · · an.

Remark. An alternative notation for the determinant utilizes vertical bars:

∣∣∣∣∣∣∣
a11 . . . a1n
...

. . .
...

an1 . . . ann

∣∣∣∣∣∣∣
:= det

⎡
⎢⎣

a11 . . . ann
...

. . .
...

an1 . . . ann

⎤
⎥⎦

We employ this notation in the following example. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.4 DETERMINANTS 91

Example 3. Compute

∣∣∣∣∣∣∣∣

2 3 4 0
5 6 3 0
2 5 3 7
2 2 2 2

∣∣∣∣∣∣∣∣
.

Solution. (We highlight the lower right-hand 2-by-2 submatrix for future reference.)
Using the definition we reduce the computation to 3-by-3 determinants,

det(A) = 2 ×

∣∣∣∣∣∣
6 3 0
5 3 7
2 2 2

∣∣∣∣∣∣− 3 ×

∣∣∣∣∣∣
5 3 0
2 3 7
2 2 2

∣∣∣∣∣∣ + 4 ×

∣∣∣∣∣∣
5 6 0
2 5 7
2 2 2

∣∣∣∣∣∣− 0 ×

∣∣∣∣∣∣
5 6 3
2 5 3
2 2 2

∣∣∣∣∣∣ . (9)

These are further reduced to 2-by-2’s:

det(A) = 2

{
6 ×

∣∣∣∣3 7
2 2

∣∣∣∣− 3 ×
∣∣∣∣5 7
2 2

∣∣∣∣ + (0)

}
(10)

− 3

{
5 ×

∣∣∣∣3 7
2 2

∣∣∣∣− 3 ×
∣∣∣∣2 7
2 2

∣∣∣∣ + (0)

}

+ 4

{
5 ×

∣∣∣∣5 7
2 2

∣∣∣∣− 6 ×
∣∣∣∣2 7
2 2

∣∣∣∣ + (0)

}
− (0)

= (2 × 6)

∣∣∣∣3 7
2 2

∣∣∣∣− (3 × 5)

∣∣∣∣3 7
2 2

∣∣∣∣ + (4 × 5)

∣∣∣∣5 7
2 2

∣∣∣∣
− (2 × 3)

∣∣∣∣5 7
2 2

∣∣∣∣ + (3 × 3 − 4 × 6)

∣∣∣∣2 7
2 2

∣∣∣∣ ,

and the final answer is evaluated using (1) to calculate the 2 -by-2 determinants:

(12 − 15)(−8) + (20 − 6)(−4) + (9 − 24)(−10) = 118. �

Observe from (1) and (6) that if two rows are switched in a 3-by-3 or a 2-by-2 matrix,
the determinant changes sign. (This can be traced back to the cross product appearing
in (4) and (5).) To investigate this for larger matrices, consider the next example.

Example 4. Compute the determinant of the matrix in Example 3 with its first two
rows switched.

Solution. If we blindly retrace the sequence of calculations of Example 3 starting with
the row-switched matrix

det

⎡
⎢⎢⎣

5 6 3 0
2 3 4 0
2 5 3 7
2 2 2 2

⎤
⎥⎥⎦ ,
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it should be clear that the lower right subdeterminant det

[
3 7
2 2

]
in (9), (10) would

acquire coefficients of (5 × 3) and −(6 × 2) instead of (2 × 6 − 3 × 5); similarly

det

[
5 7
2 2

]
would acquire (3 × 2 − 5 × 4) instead of (4 × 5 − 2 × 3). Every term in

(10), in fact, would be negated, and the determinant would turn out to be −118. �

Examples 3 and 4 demonstrate that switching the first two rows of a 4-by-4 matrix
changes the sign of its determinant. Moreover (9) shows that switching any pair of the
last 3 rows also changes the sign, since a row switch would occur in each (3-by-3)
determinant on the right of (9).

What happens if row 1 is switched with, say, row 3? Easy; first we switch row 3
with row 2—one sign change; then we switch (the new) row 2 with row 1—another
sign change; then we switch (the new) row 2 with row 3. That’s three sign changes or,
equivalently, one sign change. (An alternative argument can be constructed based on
the permutation formula for the determinant discussed in Problem 20.)

Row Interchange Property

Theorem 4. The determinant of a square matrix changes sign if any two of its
rows are switched.

Note that if the two rows to be exchanged happened to be identical, the determinant
would remain unchanged; therefore, to be consistent with Theorem 4, the determinant
must be zero.

Corollary 1. If any two rows of a square matrix are equal, its determinant is zero.

As a consequence of Theorem 4, we shall show that we can use any row to implement
the calculation of a determinant by Definition 3, if we are careful about counting the
sign changes. To begin the argument, we first generalize the nomenclature.

Minors and Cofactors

Definition 4. If the elements of a square matrix A are denoted by aij, the deter-
minant of the submatrix Aij, obtained by deleting the ith row and jth column of A,
is called the (i, j)th minor of A. The (i, j)th cofactor of A, denoted cof(i, j), is
the (i, j)th minor of A times (−1)i+j:

cof(i, j) := (−1)i+j det(Ai,j) = (−1)i+j × {(i, j)th minor of A}.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.4 DETERMINANTS 93

Thus the definition of the determinant (8) can be stated in terms of cofactors by

det(A) =
n∑

j=1

a1,j (−1)1+j det(A1,j) =
n∑

j=1

a1,j cof(1, j).

Now we use the row-interchange property of determinants to generalize:

Cofactor Expansion

Theorem 5. The determinant of a square matrix A can be calculated using the
entries and cofactors of any row i in accordance with

det(A) =
n∑

j=1
ai,j cof(i, j). (11)

Proof. To see this, simply imagine the ith row of A moved to the top of the
matrix by successively interchanging it with the rows immediately above it, in a
step-ladder fashion; this entails (i−1) row interchanges. Call the resulting matrix
Anew, and note that due to the interchanges det(A) = (−1)i−1 det(Anew). The
entry aij in the original matrix becomes anew

1j in the new matrix, but they both
have the same minor, because the same rows and columns are deleted. However,
the cofactor of anew

1j equals (−1)1+j times this minor, while the cofactor of aij is
(−1)i+j times the minor. As a result, we can argue

det(A) = (−1)i−1 det(Anew) = (−1)i−1
n∑

j=1

anew
1,j (−1)1+j det(Anew

1j ),

and making the indicated identifications we get (11). �

From the cofactor expansion of the determinant we immediately conclude

Corollary 2. If any row of a matrix is multiplied by a scalar, the determinant is
multiplied by the same scalar.

Corollary 3. If a row of A consists of all zeros, then det(A) = 0.

And with a little reasoning we also see

Corollary 4. If any multiple of one row of a matrix is added to another row, its
determinant is unchanged. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



94 MATRIX ALGEBRA

This follows because if aij in (11) is replaced by, say, aij + βakj, the result of adding β

times row k to row i, the new determinant would be given by

n∑
j=1

[aij + βakj] cof(i, j) =
n∑

j=1

aij cof(i, j) + β
n∑

j=1

akj cof(i, j).

The first sum on the right is the determinant of the original A, and the second sum is
β times the determinant of a matrix with two equal rows.

A similar argument (Problem 14) establishes the linearity property of the deter-
minant:

Corollary 5. If A is an n-by-n matrix with rows a1, a2, . . . , an and b is an 1-by-n row
vector, then

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

ak−1

(ak + b)
ak+1

...
an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

ak−1

ak

ak+1
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

ak−1

b
ak+1

...
an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Example 5. Compute the determinant of the triangular matrices A and B.

A =

⎡
⎢⎢⎢⎢⎣

α 0 0 0 0
β γ 0 0 0
δ ε ζ 0 0
η θ σ κ 0
λ μ ν τ ω

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

α β γ δ ε

0 ζ η θ σ

0 0 κ λ μ

0 0 0 ν τ

0 0 0 0 ω

⎤
⎥⎥⎥⎥⎦ .

Solution. For the matrix A, we use the cofactor expansion along the top rows.

det(A) = αdet

⎡
⎢⎢⎣
γ 0 0 0
ε ζ 0 0
θ σ κ 0
μ ν τ ω

⎤
⎥⎥⎦− 0 + 0 − 0 + 0 = αγ det

⎡
⎣ζ 0 0
σ κ 0
ν τ ω

⎤
⎦ + (0)

= αγζ det

[
κ 0
τ ω

]
+ (0) = αγζκdet [ω] + (0) = αγζκω.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.4 DETERMINANTS 95

For B, we expand along the bottom rows:

det(B) = 0 − 0 + 0 − 0 + ω det

⎡
⎢⎢⎣
α β γ δ

0 ζ η θ

0 0 κ λ

0 0 0 ν

⎤
⎥⎥⎦ = (0) + ων det

⎡
⎣α β γ

0 ζ η

0 0 κ

⎤
⎦

= (0) + ωνκdet

[
α β

0 ζ

]
= (0) + ωνκζ det [α] = ωνκζα.

In both cases, the determinant is simply the product of the elements along the
diagonal. �

In general, the determinant of a triangular matrix is the product of the entries along
the diagonal.

Does the formula in Definition 3 give a practical way to calculate an n-by-n determi-
nant? The answer is NO. Example 3 demonstrates that one must ultimately evaluate all
products of entries drawn one from each row and column. That’s n − 1 multiplications
per term, and n! terms.

In 2014, the Tianhe-2 computer developed by the National University of Defense
Technology in Changsha city in Central China could do 3.386 × 1016 multiplications
per second (Forbes, November 17, 2014). To evaluate a modest 25-by-25 determinant
this way would take the machine hundreds of years!

But the forward stage of the Gauss elimination process reduces a matrix to upper
triangular form by adding multiples of one row to another (which doesn’t change
the determinant) and switching rows (changing only the sign). And the determinant
of an upper triangular matrix requires only (n − 1) multiplications. Problem 28 of
Exercises 1.1 tells us that the forward stage of Gauss elimination requires roughly
n3/3 multiplications. So using elementary row operations the Tianhe-2 could calculate
a 25-by-25 determinant in a fraction of a picosecond.

Exercises 2.4

In Problems 1–11 use cofactor expansions to calculate the determinants of the given
matrices.

1.

[
−1 −1
−1 −1

]
2.

[
2 1 − 3i

2 − i 2

]
3.

⎡
⎣1 2 2

2 1 1
1 1 3

⎤
⎦

4.

⎡
⎣0 2 3

0 2 0
2 1 1

⎤
⎦ 5.

⎡
⎣ 2 1 4 + i

3 3 0
−1 4 2 − 3i

⎤
⎦ 6.

⎡
⎢⎢⎢⎢⎣

0 2 1 1 0
2 4 4 2 2
3 6 6 0 0
0 −2 −1 −2 2
0 2 1 2 4

⎤
⎥⎥⎥⎥⎦
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7.

⎡
⎢⎢⎣

0 0 0 a
0 0 b c
0 d e f
g h i j

⎤
⎥⎥⎦ 8.

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
a b c d

⎤
⎥⎥⎦ 9.

⎡
⎢⎢⎣

x 1 0 0
0 x 1 0
0 0 x 1
a b c d

⎤
⎥⎥⎦

10.

⎡
⎢⎢⎢⎢⎣

a 0 f 0 0
0 b g 0 0
0 0 c 0 0
0 0 h d 0
0 0 i 0 e

⎤
⎥⎥⎥⎥⎦ 11.

⎡
⎢⎢⎣

x 1 1 1
1 x 1 1
1 1 x 1
1 1 1 x

⎤
⎥⎥⎦

12. Generalize your answers to Problems 7–11 to n-by-n matrices having the same
structures.

13. If a particular entry aij of the n-by-n matrix A is regarded as a variable, show that
the function f (aij) := det(A) is either identically zero, never zero, or zero for
exactly one value of aij. Construct 3-by-3 examples of each case.

14. Prove the linearity property of the determinant, Corollary 5.

15. Use determinants to compute the volume of the parallepiped determined by the
vectors a = −2i − 3j + k, b = 2i + 6j − 2k, and c = 4i − 4k.

16. Use determinants to compute the volume of the parallepiped determined by the
vectors a = 2i − 3j + k, b = i + 6j − 2k, and c = i − 4k.

17. Let A be the matrix

A =

⎡
⎢⎢⎣

a b c d
e f g h
i j k l
m n o p

⎤
⎥⎥⎦ .

Use the properties derived in this section to express the determinants of the
following matrices in terms of det(A):

(a)

⎡
⎢⎢⎣

a + e b + f c + g d + h
e f g h
i j k l
m n o p

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎣

a b c d
3e 3f 3g 3h
i j k l
m n o p

⎤
⎥⎥⎦

(c)

⎡
⎢⎢⎣

a b c d
e f g h
−i −j −k −l
m n o p

⎤
⎥⎥⎦ (d)

⎡
⎢⎢⎣
−a −b −c −d
−e −f −g −h
−i −j −k −l
−m −n −o −p

⎤
⎥⎥⎦

(e)

⎡
⎢⎢⎣

3a 3b 3c 3d
3e 3f 3g 3h
3i 3j 3k 3l
3m 3n 3o 3p

⎤
⎥⎥⎦ (f)

⎡
⎢⎢⎣

i j k l
m n o p
a b c d
e f g h

⎤
⎥⎥⎦
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(g)

⎡
⎢⎢⎣

a b c d
3e − a 3f − b 3g − c 3h − d

i j k l
m n o p

⎤
⎥⎥⎦

(h)

⎡
⎢⎢⎣

a b c d
e − 3a f − 3b g − 3c h − 3d

i j k l
m n o p

⎤
⎥⎥⎦

18. What are the determinants of the matrices that implement the elementary row
operations by left multiplication? (Recall Example 2, Section 2.1.)

19. Reduce the following matrices to lower triangular form by subtracting appropri-
ately chosen multiples of lower rows from upper rows, and thereby evaluate the
determinants. Formulate the n-by-n generalizations.

(a)

⎡
⎢⎢⎣

1 x x2 x3

x 1 x x2

x2 x 1 x
x3 x2 x 1

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎣

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

⎤
⎥⎥⎦

20. (Permutation formula for the determinant)
(a) Continue performing cofactor expansions on (6) and confirm the formulation

det

⎡
⎣a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤
⎦ =

= a1b2 det

⎡
⎣1 0 0

0 1 0
0 0 c3

⎤
⎦ + a1b3 det

⎡
⎣1 0 0

0 0 1
0 c2 0

⎤
⎦

+ a2b1 det

⎡
⎣0 1 0

1 0 0
0 0 c3

⎤
⎦ + · · ·

= a1b2c3 det

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ + a1b3c2 det

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

+ a2b1c3 det

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ + a2b3c1 det

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦

+ a3b1c2 det

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ + a3b2c1 det

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ .

(b) The (valid) generalization of part (a) is the formula

det(A) =
∑

i1,i2,...,in

a1i1 a2i2 · · · anin det(Pi1,i2,...,in), 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



98 MATRIX ALGEBRA

where the sum extends over every reordering {i1, i2, . . . , in} of the sequence
{1, 2, . . . , n}, and the permutation Pi1,i2,...,in is the matrix whose jth row has a
one in column ij and zeros elsewhere (for j = 1, 2, . . . , n). For example,

P2,3,1 =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ .

Verify this formula for the 4-by-4 determinant.

(c) By applying the determinant rule for switching rows to the matrix Pi1,i2,...,in ,
argue that det(Pi1,i2,...,in) is±1, positive if Pi1,i2,...,in can be manipulated into the
form of the n-by-n identity with an even number of row exchanges, and minus
if an odd number of exchanges are required. You have shown that det(A) is the
sum of all possible products of one entry from each row and column of A, with
appropriate signs.

(d) The “evenness” (+1) or “oddness” (−1) of the number of exchanges required
to reorder the sequence {i1, i2, . . . , in} into the standard order {1, 2, . . . , n} is
called the parity of the sequence. Note that since det(Pi1,i2,...,in) is a fixed num-
ber, the parity depends only on the sequence itself (and not on the choice of
exchanges).

21. Using the previous problem, identify the coefficient of x4, x3, and x0 = 1 in the
polynomial given by

det

⎡
⎢⎢⎣

x + a b c d
e x + f g h
i j x + k l
m n o x + p

⎤
⎥⎥⎦ .

Generalize to the n-by-n case.

22. A “block lower triangular” matrix has the form

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1i 0 · · · 0
... · · ·

...
... · · ·

...
ai1 · · · ai,i 0 · · · 0

bi+1,1 · · · bi+1,i ci+1,i+1 · · · ci+1,n
... · · ·

...
... · · ·

...
bn1 · · · bn,i cn,i+1 · · · cnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡

[
A 0
B C

]
.

(Note that M, A, and C are square.)
(a) Show that det(M) does not depend on any of the entries bjk. (This will be easy

to see if you experiment by using the first row to expand a 4-by-4 block lower
triangular matrix M having 2-by-2 blocks.)

(b) Show that det(M) = det(A) det(B).

(c) Formulate the analogous rule for block upper triangular matrices.
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23. The 3-by-3 Vandermonde determinant is the determinant of the matrix of the form

V =

⎡
⎣1 z z2

1 x1 x1
2

1 x2 x2
2

⎤
⎦

(a) For the moment, regard “z” as a variable, and consider x1 and x2 to be dis-
tinct constants. Without completely carrying out the cofactor expansion of
det(V) along the first row, argue that the expansion would reveal that det(V) is
a second-degree polynomial in z. As such, it can be factored using its roots z1

and z2: a2z2 + a1z + a0 = a2(z − z1)(z − z2).

(b) From the expansion, identify the coefficient a2 as a 2-by-2 Vandermonde
determinant. Evaluate a2.

(c) What are the two roots? (By looking at V itself, it will become obvious that
two values of z will render it a matrix with determinant zero.)

(d) Assemble the formula for the 3-by-3 Vandermonde determinant.

(e) Reason similarly to work out the formula for the 4-by-4 Vandermonde deter-
minant:

det

⎡
⎢⎢⎣

1 z z2 z3

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

⎤
⎥⎥⎦

[Hint: If p and q are two polynomials of degree 3, and they have three zeros in
common, then one of them is a constant times the other.]

(f) Generalize for the n-by-n case.

24. The determinant is, of course, a function of a (square) matrix. We will study several
other matrix functions in the coming chapters: the trace, eigenvalues, norms, . . ..
In this light, it is amusing to compare the determinant with other functions sharing
its properties. In the displays that follow, the ai’s and b’s are matrix rows, and α

and β are scalar parameters.
(a) (Recall Corollaries 2 and 5.) A matrix function f (A) is said to be a multilinear

function of the rows of A if, for all values of the parameters shown,

f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...

αai + βbi
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= αf

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...
ai
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ βf

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...

bi
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



100 MATRIX ALGEBRA

Are there any other multilinear matrix row functions (other than the determi-
nant)? [Hint: There is an easy way to alter the 2-by-2 determinant formula (1)
while preserving “multilinearity.” Generalize to formula (8).]

(b) (Recall Theorem 4.) A matrix function f (A) is said to satisfy the row inter-
change property if, for any values of the parameters shown,

f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...
ai
...
aj
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...
aj
...
ai
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Prove that for any multilinear matrix row function, the row interchange
property implies, and is implied by, the zero-row property:

f

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

a1
...
0
...

an

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

Are there any other multilinear matrix row functions that have the row inter-
change property (other than the determinant)? [Hint: There is a very trivial
one.]

(c) Prove that if f is any multilinear matrix row function with the row interchange
property, and if a forward Gauss elimination reduces a square matrix A to
echelon form E, then f (A) = ±f (E) : (+) if the number of row switches is
even, (−) otherwise.
Furthermore, if the diagonal entries of E are nonzero and “back elimination”
is performed to further reduce E to a diagonal matrix D, then f (A) = ±f (D).

(d) Conclude that each multilinear matrix row function with the row interchange
property is determined solely by its value on the identity matrix.

2.5 THREE IMPORTANT DETERMINANT RULES

In this section, we will be deriving a few theoretical properties of determinants that
greatly enhance and facilitate their utility. One of the most important of these is the
rule for the determinant of the transpose: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



2.5 THREE IMPORTANT DETERMINANT RULES 101

Transpose Rule

det(AT) = det(A). (1)

In anticipation of the derivation, notice that (1) will immediately justify the column
version of some of the “row rules” derived earlier:

(i) If any row or column of A is multiplied by a scalar, the determinant is multiplied
by the same scalar.

(ii) If a row or column of A consists of all zeros, det(A) = 0.

(iii) If any two rows or columns of a matrix are switched, its determinant changes
sign.

(iv) If any two rows or columns of A are equal, det(A) = 0.

(v) If any multiple of one row (column) of a matrix is added to another row
(column), its determinant is unchanged.

(vi) The cofactor expansion is valid for any row and column:

det(A) =
n∑

k=1

aikcof(i, k) =
n∑

k=1

akjcof(k, j).

(vii) The linearity properties

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 →
...
ak−1 →
(ak + b) →
ak+1 →
...
an →

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 →
...
ak−1 →
ak →
ak+1 →
...
an →

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 →
...
ak−1 →
b →
ak+1 →
...
an →

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

det

[
a1 · · · ak−1 (ak + b) ak+1 · · · an

↓
... ↓ ↓ ↓

... ↓

]

= det

[
a1 · · · ak−1 ak ak+1 · · · an

↓
... ↓ ↓ ↓

... ↓

]

+ det

[
a1 · · · ak−1 b ak+1 · · · an

↓
... ↓ ↓ ↓

... ↓

]
.

Our derivation of the transpose rule hinges on another important theoretical
property, the rule for matrix products: 
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Product Rule
det(A1A2 · · ·Ak) = det(A1) det(A2) · · ·det(Ak). (2)

We will see that the product rule leads to, among other things, a direct formula for
A−1 (the “adjoint formula”) and a determinant expression for the solution to a linear
system (Cramer’s Rule).

Equation (2) is obviously true for 1-by-1 matrices, and one can do the algebra to
verify its truth for any pair of 2-by-2 matrices (Problem 16). But the algebraic manip-
ulations required for handling n-by-n matrices quickly become unwieldy. The product
rule is one of those innocent-looking propositions whose proof is infuriatingly elusive.3

The full derivation is outlined in Problem 20; it exploits the following fact (which is
also useful in other contexts).

Lemma 1. Suppose an arbitrary square matrix A is reduced to row echelon form U
using the forward stage of Gauss elimination. If q row switches are performed during
the reduction, then

det(A) = (−1)q det(U). (3)

Proof. Use the matrix operator representation of the elementary row operations to
express the reduction with the matrix equation

U = EpEp−1 · · ·E2E1A. (4)

Now only row switches and additions of multiples of one row to another are involved
in the forward part of the Gauss elimination algorithm. By Theorem 4 and Corollary 4
(Section 2.4), only the row switches affect the determinant, and Lemma 1 follows.

This lemma establishes a very important connection between the determinant and the

inverse. Suppose we try to calculate A−1 by solving the systems represented by
[
A

...I
]

(recall Example 3, Section 2.3). If we apply the forward part of the Gauss elimination

algorithm, the systems
[
A

...I
]

will evolve to a form
[
U

...B
]
. The particular nature of the

matrix B is of no concern here. If each of the diagonal entries of U is nonzero, we
will succeed in computing A−1 by back substitution. But if any of them are zero, the
systems will either have multiple solutions or be inconsistent, indicating that A is not
invertible. In the first case, det(U) �= 0; in the second case, det(U) = 0. From (3) it
then follows that

(viii) A is invertible if and only if det(A) �= 0.

3The product rule was first proved by the great French mathematician Augustin-Louis Cauchy in 1812. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.5 THREE IMPORTANT DETERMINANT RULES 103

Further illumination of this connection is obtained by applying the product rule (2)
(which we now take for granted) to the equation A−1A = I; we conclude

(ix) det(A−1) = 1/det(A) if A is invertible.

We now turn to the verification of the transpose rule (1). Notice that it is immediate
for symmetric matrices, and it is obvious for triangular matrices as well. Example 2,
Section 1, showed that each of the elementary row operator matrices is either symmetric
or triangular, so (1) holds for them too. For an arbitrary square matrix A, we apply the
reasoning of Lemma 1 and take the transpose of Equation (4) to write

UT = ATET
1 ET

2 · · ·ET
p−1ET

p .

Applying the product rule, we conclude (recall that q is the number of row switches)

det(U) = det(UT) = det(AT)(−1)q. (5)

Combining this with (3) we confirm the transpose rule (1) (and its consequences (i)
through (vii)). (For an alternate proof of (1), see Problem 32.)

Adjoint Matrix

A very useful fact emerges when we maneuver the cofactor expansion formula
(vi) into the format of a matrix product. If we form the matrix whose (i, j)th entry
is cof(i,j), the (i, j)th cofactor of A, and then take the transpose, the result is called
the adjoint matrix Aadj.

Aadj :=

⎡
⎢⎢⎢⎣

cof(1,1) cof(2,1) · · · cof(n,1)
cof(1,2) cof(2,2) · · · cof(n,2)

...
...

. . .
...

cof(1, n) cof(2, n) · · · cof(n, n)

⎤
⎥⎥⎥⎦ .

Look at what results when we multiply A by its adjoint:

A Aadj =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

cof(1,1) cof(2,1) · · · cof(n, 1)
cof(1,2) cof(2,2) · · · cof(n, 2)

...
...

. . .
...

cof(1, n) cof(2, n) · · · cof(n, n)

⎤
⎥⎥⎥⎦

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



104 MATRIX ALGEBRA

On the diagonal—the (2,2) entry, for example—we get
∑n

j=1 a2j cof(2, j), which is the
expansion, by the cofactors of the second row, for det(A). So the diagonal of A Aadj

looks like

A Aadj =

⎡
⎢⎢⎢⎢⎣

det (A) − · · · −
− det (A) · · · −
...

...
. . .

...

− − · · · det (A)

⎤
⎥⎥⎥⎥⎦ .

Off the diagonal—say, the (1,2) entry—we get
∑n

j=1 a1j cof(2, j). This resembles a
cofactor expansion for det(A) by the cofactors of the second row, but the entries
a11, a22, . . . , a1n are drawn from the first row. Therefore this is a cofactor expansion
of the determinant of the matrix A with its second row replaced by its first row,

det

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a11 a12 · · · a1n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎥⎦ =

∑n

j=1
a1j cof(2, j).

This determinant is, of course, zero.
Generalizing, we conclude that

A Aadj =

⎡
⎢⎢⎢⎢⎣

det (A) 0 · · · 0

0 det (A) · · · 0
...

...
. . .

...

0 0 · · · det (A)

⎤
⎥⎥⎥⎥⎦ = det(A) I, (6)

which yields a direct formula for A−1 if det(A) �= 0.

Adjoint Formula for the Inverse

A−1 = Aadj/det (A) if A is invertible.

From these properties, we will be able to derive a direct formula for the solution to
a linear system.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.5 THREE IMPORTANT DETERMINANT RULES 105

Cramer’s Rule4

If A = [aij] is an n-by-n matrix and det(A) �= 0, the system Ax = b has a unique
solution whose ith component is given by

xi =
1

det (A)
det

⎡
⎢⎢⎢⎣

a11 a12 . . . a1,i−1 b1 a1,i+1 . . . a1n

a21 a22 . . . a2,i−1 b2 a2,i+1 . . . a2n
...

...
. . .

...
...

...
. . .

...
an1 an2 . . . an,i−1 bn an,i+1 . . . ann

⎤
⎥⎥⎥⎦ . (7)

Example 1. Use Cramer’s rule to solve the system

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 1
−1
0

⎤
⎦ .

(This replicates system (2) in Section 2.1.)

Solution. Following (7), we have

x1 =

det

⎡
⎣ 1 2 1
−1 3 2
0 0 1

⎤
⎦

det

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦

=
5
2

, x2 =

det

⎡
⎣1 1 1

1 −1 2
1 0 1

⎤
⎦

det

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦

=
1
2

,

x3 =

det

⎡
⎣1 2 1

1 3 −1
1 0 1

⎤
⎦

det

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦

=
−5
2

. �

Now we’ll show why Cramer’s rule follows from property (ix). When A is invertible
the (unique) solution to the system Ax = b is given by x = A−1b, or

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ =

1
det(A)

Aadjb

4First published by the Swiss mathematician Gabriel Cramer in 1850.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



106 MATRIX ALGEBRA

=
1

det(A)

⎡
⎢⎢⎢⎣

cof(1,1) cof(2,1) · · · cof(n,1)
cof(1,2) cof(2,2) · · · cof(n,2)

...
...

. . .
...

cof(1,n) cof(2,n) · · · cof(n,n)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎦

=
1

det(A)

⎡
⎢⎢⎢⎣

b1cof(1,1) + b2cof(2,1) + · · · + bncof(n,1)
b1cof(1,2) + b2cof(2,2) + · · · + bncof(n,2)

...
b1cof(1,n) + b2cof(2,n) + · · · + bncof(n,n)

⎤
⎥⎥⎥⎦ . (8)

But comparison with the cofactor expansion formula (vi) shows that the first entry of
the final (column) matrix is the expansion, by the cofactors of the first column, of the
determinant of the matrix A with its first column replaced by the vector b:

x1 =
1

det(A)
det

⎡
⎢⎢⎢⎣

b1 a12 · · · a1n

b2 a22 · · · a2n
...

...
. . .

...
bn an2 · · · ann

⎤
⎥⎥⎥⎦ .

The second entry of the final column matrix displayed in (8) is the cofactor expansion of

det

⎡
⎢⎢⎢⎣

a11 b1 · · · a1n

a21 b2 · · · a2n
...

...
. . .

...
an1 bn · · · ann

⎤
⎥⎥⎥⎦

and so on, confirming the general formula (7).
Cramer’s rule is not nearly as computationally efficient as Gauss elimination, but it

provides a neat formula for the solution to a system (which the algorithm does not).
This can be very helpful in some situations. For example, suppose one is studying an
engineering design governed by a linear system of equations Ax = b. The solution x
depends, of course, on the data in the coefficient matrix A, as well as the right-hand
vector b. It might be desirable to know the influence of a particular piece of data on a
particular component in the system. Consider the following:

Example 2. The following system contains a parameter α in its right-hand side.

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ α

−1
0

⎤
⎦ ,

What is the derivative of the solution component x3 with respect to α? 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



2.5 THREE IMPORTANT DETERMINANT RULES 107

Solution. Using Cramer’s rule and the cofactor expansion for the third column in the
numerator, we find

x3 =

det

⎡
⎣1 2 α

1 3 −1
1 0 0

⎤
⎦

det

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦

=
α cof(1, 3)− 1 cof(2, 3) + 0 cof(3, 3)

2
,

dx3

dα
=

cof(1, 3)
2

=
3
2

. �

Exercises 2.5

In Problems 1–4, use the Gauss elimination calculations performed in preceding
sections to deduce the value of the determinant of the given matrix.

1.

⎡
⎣1 2 2

2 1 1
1 1 3

⎤
⎦ (Example 1, Section 1.2)

2.

⎡
⎣ 2 1 4

3 3 0
−1 4 2

⎤
⎦ (Example 2, Section 1.2

3.

⎡
⎢⎢⎣

0.202131 0.732543 0.141527 0.359867
0.333333 −0.112987 0.412989 0.838838
−0.486542 0.500000 0.989989 −0.246801
0.101101 0.321111 −0.444444 0.245542

⎤
⎥⎥⎦ (Example 2, Section 1.1)

4.

⎡
⎢⎢⎢⎢⎣

0 2 1 1 0
2 4 4 2 2
3 6 6 0 0
0 −2 −1 −2 2
0 2 1 2 4

⎤
⎥⎥⎥⎥⎦ (Example 3, Section 1.3)

In Problems 5–11, use the adjoint matrix to compute the inverse of the given
matrix.

5.

[
0 1
1 0

]
6.

[
cos θ − sin θ
sin θ cos θ

]
7.

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



108 MATRIX ALGEBRA

8.

⎡
⎣1 0 0
α 1 0
0 0 1

⎤
⎦ 9.

⎡
⎣1 0 0

0 β 0
0 0 1

⎤
⎦ 10.

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦

11.

⎡
⎣ 3/2 −1 1/2

1/2 0 −1/2
−3/2 1 1/2

⎤
⎦

12. Prove that if A2 = A, the determinant of A is 1 or 0.

In Problems 13–15, use Cramer’s rule to solve the given system.

13.

⎡
⎣2 2

... 4

3 1
... 2

⎤
⎦

14.

⎡
⎢⎢⎢⎣

1 2 2
... 6

2 1 1
... 6

1 1 3
... 6

⎤
⎥⎥⎥⎦ (Cf. Example 1, Section 1.2)

15.

⎡
⎢⎢⎢⎣

2 1 4
... −2

3 3 0
... 6

−1 4 2
... −5

⎤
⎥⎥⎥⎦ (Cf. Example 2, Section 1.2)

16. For arbitrary 2-by-2 matrices A and B, verify algebraically that det(AB) =
det(A) det(B)

17. For the system containing the variable α,

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣2
α

0

⎤
⎦ ,

use Cramer’s rule to express the derivatives of the solution components xj (j =
1, 2, 3) with respect to α in terms of determinants and cofactors.

18. Generalize the preceding problem: for the system Ax = b, show that the par-
tial derivative of xj with respect to bk (holding the other bi’s constant) is given by
cof(k, j) / det(A).

19. For the system containing the variable α,

⎡
⎣2 2 1
α 3 2
1 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣2

3
4

⎤
⎦ , 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



2.5 THREE IMPORTANT DETERMINANT RULES 109

use Cramer’s rule to find an expression for
(a) the derivative of the solution component x1 with respect to α;

(b) the derivative of the solution component x2 with respect to α.

20. Carry out the following argument to prove the product rule (2) for determinants.
All matrices herein are n-by-n.
(a) Argue that det(DB) = det(D) det(B) when D is diagonal (and B is arbitrary),

by considering

⎡
⎢⎢⎢⎣

d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

d11b11 d11b12 · · · d11b1n

d22b21 d22b22 · · · d22b2n
...

...
. . .

...
dnnbn1 dnnbn2 · · · dnnbnn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d11 × [row1 of B]
d22 × [row2 of B]

...
dnn × [rown of B]

⎤
⎥⎥⎥⎦

and applying Corollary 2 of Section 2.4.

(b) Generalize: argue that

det(UB) = det(U) det(B) (9)

if U is an upper triangular matrix, by considering

⎡
⎣α 0 0

0 β γ

0 0 δ

⎤
⎦
⎡
⎣b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎦ =

⎡
⎣ α× [row1]
β × [row2] + γ × [row3]

δ × [row3]

⎤
⎦ .

and applying Corollaries 2 and 4 of Section 2.4.

(c) Suppose as in Lemma 1 that the reduction of the (arbitrary) matrix A to
upper triangular form U during the forward stage of Gauss elimination is
represented by the formula (4), with q row exchange operators in the set
{E1, E1, · · · , Ep−1, Ep}. Multiply (4) by B, on the right, and apply the inverses
of the row operators to derive

E−1
1 E−1

2 · · ·E−1
p−1E−1

p UB = AB. (10)

(d) Argue that (10) demonstrates that the matrix (UB) evolves into the matrix (AB)
after a sequence of p elementary row operations, including q row exchanges
(and no multiplications by scalars). Thus

det(AB) = (−1)q det (UB). (11)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



110 MATRIX ALGEBRA

(e) Combine (9), (11), and (3) in Lemma 1 to conclude that det(AB) =
det (A) det (B) in general. Extend to derive the product rule (2).

21. Express det

⎡
⎢⎢⎣

p o n m
l k j i
h g f e
d c b a

⎤
⎥⎥⎦ in terms of det

⎡
⎢⎢⎣

a b c d
e f g h
i j k l
m n o p

⎤
⎥⎥⎦. Formulate the gen-

eralization for the n-by-n case.

22. A skew-symmetric n-by-n matrix A has the property A = −AT . For example,⎡
⎣ 0 a b
−a 0 c
−b −c 0

⎤
⎦ is skew symmetric. Show that the determinant of such a matrix is

zero if n is odd.

23. Let Dn be the determinant of the n-by-n submatrix defined by the first n rows and
columns of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b 0 0 0 · · ·
b a b 0 0 · · ·
0 b a b 0 · · ·
0 0 b a b · · ·
0 0 0 b a

. . .
...

...
...

...
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Evaluate D1, D2, and D3.

24. (a) Use a row cofactor expansion followed by a column cofactor expansion to
derive the recurrence relation Dn = aDn−1 − b2Dn−2 for the determinants
defined in the preceding problem. [Hint: First try it out on the 5-by-5 matrix
to see how it works.]

(b) For the case a = b = 1, compute D3 to D6 and predict the value of D99.

25. Let Fn be the determinant of the n-by- n submatrix defined by the first n rows and
columns of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a −b 0 0 0 · · ·
b a −b 0 0 · · ·
0 b a −b 0 · · ·
0 0 b a −b · · ·
0 0 0 b a

. . .
...

...
...

...
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(a) Use a row cofactor expansion followed by a column cofactor expansion to
derive the recurrence relation between Fn, Fn−1, and Fn−2. [Hint: Use the
strategy suggested in the preceding problem.] 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



2.6 SUMMARY 111

(b) Write out six members of the sequence {Fn} for the case a = b = 1. Do you
recognize them as members of the Fibonacci sequence?

26. (a) Use the adjoint matrix to argue that if A has all integer entries and det(A) =
±1, then A−1 also has all integer entries. Construct a nondiagonal 3-by-3
integer matrix illustrating this fact.

(b) Conversely, show that if A and A−1 both have all integer entries, then
det(A) = ±1.

27. For each of the following decide whether the statement made is always True or
sometimes False.
(a) If A is a square matrix satisfying ATA = I, then det(A) = ±1.

(b) The (i, j)th cofactor of a matrix A is the determinant of the matrix obtained by
deleting the ith row and jth column of A.

(c) If A and S are n-by-n matrices and S is invertible, then det(A) = det(S−1AS).

(d) If det(A) = 0, then there is at least one column vector x �= 0 such that
Ax = 0.

28. Suppose A, B, and C are square matrices of the same size whose product ABC
is invertible. Use the properties of determinants to prove that the matrix B is
invertible.

29. Use the adjoint matrix to construct the inverse of the following matrices:

(a)

⎡
⎣1 2 3

0 4 5
0 0 6

⎤
⎦ (b)

⎡
⎣1 2 3

2 3 4
3 4 1

⎤
⎦

30. Use Problem 29 as a guide to
(a) show that if A is upper (lower) triangular and invertible, then so is A−1;

(b) show that if A is symmetric and invertible, then so is A−1.

31. If A and B are n-by-n matrices and B is invertible, express det(BAB−1) and
det(BABT) in terms of det(A) and det(B).

32. Use the permutation representation of the determinant, Problem 20 of Exercises
2.4, to give an alternative proof of the transpose rule (1).

2.6 SUMMARY

Matrix Algebra and Operators

Comparison of the augmented matrix representation and the customary display of a sys-
tem of linear equations motivates the definition of the matrix product, which enables
the system to be compactly represented as Ax = b. The product, coupled with the nat-
ural definition of matrix addition, gives rise to an algebra that facilitates the formulation
and solution of linear systems, as well as providing a convenient instrument for ana-
lyzing the operators involved in Gauss elimination, orthogonal projections, rotations, 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



112 MATRIX ALGEBRA

plane mirror reflections, and many other applications that will be explored in subse-
quent chapters. This algebra adheres to most of the familiar rules of computation except
for the complications introduced by the noncommutativity of the product and the pre-
carious nature of the multiplicative inverse; indeed, the very existence of the latter is
intimately tied to the issues of solvability of the system Ax = b. The notion of the
transpose of a matrix further enriches the utility of the algebra.

Determinants

The definition of the determinant of a square matrix A generalizes the expression for the
volume of a parallelepiped in terms of the Cartesian components of its edge vectors.
The following summarizes its basic properties:

1. If any row or column of A is multiplied by a scalar, the deteminant is multiplied
by the same scalar.

2. If a row or column of A consists of all zeros, det(A) = 0.

3. If any two rows or columns of a matrix are switched, the deteminant changes sign.

4. If any two rows or columns of A are equal, det(A) = 0.

5. If any multiple of one row (column) of a matrix is added to another row (column),
the deteminant is unchanged.

6. The determinant of a triangular matrix equals the product of the entries along its
diagonal.

7. Product rule: det(A1A2 · · ·Ak) = det(A1) det(A2) · · ·det(Ak).

8. det(A) = (−1)q det(U), if A is reduced to the upper triangular matrix U with q
row exchanges in the forward part of the Gauss elimination algorithm.

9. A is invertible if and only if det(A) �= 0, and det(A−1) = 1/det(A).

10. Transpose rule: det(AT) = det(A).

11. The cofactor expansion is valid for any row and column:

det(A) =
n∑

k=1

aikcof(i, k) =
n∑

k=1

akjcof(k, j)

where cof(i, k) denotes (−1)i+k det(Aik)when Aik is obtained from A by deleting
the ith row and kth column.

12. The adjoint matrix Aadj associated with A is the matrix whose (i, j)th entry is
cof(j, i). Furthermore, A−1 = Aadj/det(A) if A is invertible.

13. Cramer’s rule. If det(A) �= 0, the system Ax = b has a unique solution whose ith
component is given by

xi =
det[a1 a2 · · · ai−1 b ai+1 · · · an]

det (A)
, where aj is the jth column of A. 
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REVIEW PROBLEMS FOR PART I

1. For which values of γ does the following system possesses solutions?⎡
⎢⎢⎢⎣
−3 2 1

... 4

1 −1 2
... 1

−2 1 3
... γ

⎤
⎥⎥⎥⎦

Are the solutions unique?

2. (a) Construct a linear system of equations for the coefficients a, b, c in the
polynomial ax2 + bx + c that matches ex at the points x = 0, 1, and 2.

(b) Construct a linear system of equations for the coefficients a, b, c in the poly-
nomial ax2 + bx + c whose value, first derivative, and second derivative match
those of ex at the point x = 1.

(c) Construct a linear system of equations for the coefficients a, b, c in the poly-
nomial a(x − 1)2 + b(x − 1) + c whose value, first derivative, and second
derivative match those of ex at the point x = 1.

3. Compute the following matrix products:

(a)

[
2 3 −1
4 2 3

]⎡
⎣2

4
6

⎤
⎦ (b) [2 3 − 1]

⎡
⎣2 0 1

4 2 −1
6 2 3

⎤
⎦ (c)

⎡
⎣2

3
−1

⎤
⎦ [2 4 6]

(d)

[
2 3 − 1
4 2 3

]⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ (e)

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

3

(f)

⎡
⎣−1 0 1

0 1 0
0 0 −1

⎤
⎦

25

4. By experimentation, find all powers

[
1 1
0 1

]n

, for positive and negative integers n.

5. Construct a pair of real, nonzero 2-by-2 matrices A and B such that A2 + B2 = 0.

6. Show that if A is a 2-by-2 matrix satisfying AB = BA for every (2-by-2) matrix

B, then A is a multiple of the (2-by-2) identity. [Hint: Pick B1 =

[
1 0
0 − 1

]
and

B2 =

[
0 1
1 0

]
.]

7. Let E be a matrix that performs an elementary row operation on a matrix A
through left multiplication EA, as described in Example 2 of Section 2.1.
(a) Describe the form of E for each of the three elementary row operations

corresponding to the operations listed in Theorem 1, Section 1.1.

(b) Describe the form of E−1 for the matrices in (a).

(c) Describe the effect of right multiplication AE on the columns of A, for the
matrices in (a). 
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(d) If A′ is formed by switching two rows of A, how does one form (A′)−1 from
A−1? [Hint: exploit the relation (EA)−1 = A−1E−1.]

(e) If A′ is formed by multiplying the second row of A by 7, how does one form
(A′)−1 from A−1?

(f) If A′ is formed by adding the first row of A to its second row, how does one
form (A′)−1 from A−1?

8. Suppose the second row of A equals twice its first row. Prove the same is true of
any product AB.

9. Find matrices A and B such that AMB equals the (i, j)th entry of M.

10. For the system

2u + 3v + 7w − x + 2y = 3
−u + 2v + w + 2x + y = 2,

express x and y in terms of u, v, and w by first rewriting the system in the matrix
form

A
[

x
y

]
+ B

⎡
⎣u

v
w

⎤
⎦ = C

and then multiplying by A−1.

11. For each of the following, determine if the statement made is always True or
sometimes False.
(a) If A is invertible, then so is A2.

(b) If x is an n-by-1 column vector and y is an 1-by-n row vector, with n ≥ 2,
then xy is an n-by-n singular matrix.

(c) If the n-by-n row echelon matrix A is invertible, then it has rank n.

(d) If A and B are n-by-n matrices satisfying AB = 0, then either A = 0 or
B = 0.

(e) If x is a vector in R3
row, then x is a linear combination of vectors [1 3 − 1],

[4 6 1], and [1 − 3 4].

(f) If A is an n-by-n matrix, then A and AT commute.

12. Find necessary and sufficient conditions on the values of c and d so that the system

⎡
⎢⎢⎢⎣

1 0 1
... b1

0 c 1
... b2

0 1 d
... b3

⎤
⎥⎥⎥⎦

always has a solution (for any b1, b2, b3). 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



TECHNICAL WRITING EXERCISES FOR PART I 115

13. Prove that if K is skew-symmetric (KT = −K), then I + K must be nonsin-
gular. [Hint: First argue that vTKv is zero for every v, and conclude that the
homogeneous equation (I + K)x = 0 has only the trivial solution.]

14. Find the determinants using cofactor expansions:

(a)

∣∣∣∣∣∣∣∣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

∣∣∣∣∣∣∣∣
(b)

∣∣∣∣∣∣∣∣

0 0 0 1
0 0 2 3
0 4 5 6
7 8 9 10

∣∣∣∣∣∣∣∣

(c)

∣∣∣∣∣∣∣∣

0 0 2 3
0 0 0 1
7 8 9 10
0 4 5 6

∣∣∣∣∣∣∣∣
(d)

∣∣∣∣∣∣∣∣∣∣

x 1 0 0 0
0 x 1 0 0
0 0 x 1 0
0 0 0 x 1
1 2 3 4 5

∣∣∣∣∣∣∣∣∣∣
15. Use Cramer’s rule to determine dxi/dγ for i = 1, 2, 3, for each of the following

systems involving the variable γ:

(a)

⎡
⎢⎢⎢⎣
−3 2 1

... 4

0 −1 2
... 1

−2 1 3
... γ

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣
−3 2 1

... 4

γ −1 2
... 1

−2 1 3
... 0

⎤
⎥⎥⎥⎦.

16. Describe how to calculate A−1Bv and BA−1v without computing A−1.

TECHNICAL WRITING EXERCISES FOR PART I

1. Describe how traces of each of the traditional solution techniques—substitution,
cross-multiplication and subtraction, and inspection—are incorporated in the
Gauss elimination algorithm.

2. Compare the algebraic properties of the collection of positive real numbers
with those of the collection of n-by-n matrices having all positive real-number
entries. Provide specific examples to justify your claims regarding, for example,
multiplication and inversion.

3. Matrix multiplication has the property A(c1x+c2y) = c1Ax+c2Ay. This property
is known as linearity when A is considered as an operator or function acting
on vectors. Describe some other operators, like d/dx, that possess the linearity
property. Also describe some examples of nonlinear operators.

4. Explain why performing all the required row exchanges at the outset on a sys-
tem of linear equations (if you could predict what they would be) results in a
system whose Gauss elimination procedure employs exactly the same arithmetic
calculations, but no pivoting.

5. Explain why the following four ways to calculate the matrix product are
equivalent: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



116 MATRIX ALGEBRA

(i) (by individual entries) The (i, j)th entry of AB is the dot product of the ith
row of A with the jth column of B.

(ii) (by individual columns) The ith column of AB is the linear combination of
all the columns of A with coefficients drawn from the ith column of B.

(iii) (by individual rows) The ith row of AB is the linear combination of all the
rows of B with coefficients drawn from the ith row of A.

(iv) (all at once) AB is sum of the products of all the columns of A with the
corresponding rows of B.

GROUP PROJECTS FOR PART I

A. LU Factorization

Bearing in mind that back substitution is the quickest step in the Gauss elimination algo-
rithm for Ax = b, consider the following proposal for solving the system in Example 1,
Section 1.2, rewritten using matrix algebra as

⎡
⎣1 2 2

2 1 1
1 1 3

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣6

6
6

⎤
⎦ . (1)

(i) First perform a preliminary calculation on the coefficient matrix A that factors it
into the product of a lower triangular matrix L and an upper triangular matrix U:

A ≡

⎡
⎣1 2 2

2 1 1
1 1 3

⎤
⎦ =

⎡
⎣l11 0 0

l21 l22 0
l31 l32 l33

⎤
⎦
⎡
⎣u11 u12 u3

0 u22 u23

0 0 u33

⎤
⎦ := LU. (2)

(ii) The system thus takes the form LUx = b; or equivalently, introducing the inter-
mediate variable y, Ly = b, and Ux = y. Back substitute Ly = b (well,
forward substitute in the case of a lower triangular matrix!) to find y, and then
back-substitute Ux = y to find x.

Obviously the tricky part here is finding the factors L and U. Let us pro-
pose that L has ones on its diagonal: l11 = l22 = l33 = 1. Then the expression
for the 1,1 entry of LU is simply u11, and by equating this with the 1,1 entry
of A we determine u11; in fact, for the data in Equation (1), u11 = 1. Simi-
larly, u12 and u13 are just as easy to determine; for Equation (1), they are each
equal to 2.

Next, consider the 2,1 entry of LU. It only involves u11, which is now known,
and l21; by matching this with the (2,1) entry of A, we thus determine l21, which
is 2/u11 = 2 for Equation (1). The (2,2) entry of LU involves l21, u12, and l22, 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



GROUP PROJECTS FOR PART I 117

which are known, and u22. Matching with the 2,2 entry of A we can find u22,
which is −3 for the data in Equation (2).

(iii) Continue in this manner to find the complete L and U matrices for Equation
(1). Then forward/back substitute to find y and x, and confirm the solution
x =

[
2 1 1

]T
reported in Example 1, Section 1.2.

Clearly this procedure will work on any consistent linear system (once it has been
retooled to accomodate pivoting—we omit details). It may seem like idle tinkering
at this point, but there are surprising payoffs. If you look over your calculations and
compare them with Example 1, you can confirm the following observations:

• The final U matrix that you obtain by LU factorization is exactly the same as the
upper triangular coefficient matrix that terminates the forward part of the Gauss
elimination procedure (and therefore the final back-substitution calculations are
identical).

• The numbers in the L matrix are the factors that the Gauss algorithm multiplies
rows by, to eliminate variables in subsequent rows.

• In fact, all of the individual arithmetic calculations performed by LU factorization
and by Gauss elimination are exactly the same (but they are not necessarily done in
the same order; the final calculations for top-down solving Ly = b are performed
earlier in the Gauss procedure, you will see).

• Every time an entry in the L matrix is computed, the corresponding entry in the A
matrix is never used again.

Therefore the same computational effort is expended using either procedure, and LU
factorization saves computer memory, since it can overwrite the old A matrix. Another
advantage accrues if the data on the right-hand side vector b is updated; the new solu-
tion can be found using only two back substitutions, if the factorization A = LU is
retained. Practically all modern scientific software systems use some form of the LU
factorization algorithm (suitably adjusted to accomodate pivoting) for general-purpose
solving of linear systems.

(b) The biggest fallout from the LU strategy is that it suggests other factorizations
that can provide huge efficiencies. When a matrix is symmetric, for example,
the triangular factors L and U can be chosen to be tranposes of each other—so
only one of them needs to be computed! (Truthfully, the matrix A must also be
“positive definite,” a property that we’ll consider in Group Project A, Part III.)
Explore this by finding the so called Cholesky factorization of

A =

⎡
⎣4 2 0

2 5 4
0 4 8

⎤
⎦ = UTU =

⎡
⎣u11 0 0

u12 u22 0
u13 u23 u33

⎤
⎦
⎡
⎣u11 u12 u13

0 u22 u23

0 0 u33

⎤
⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



118 MATRIX ALGEBRA

(c) What difficulties will be encountered in the LU factorization procedure if A is
singular? Explore this with the matrix

A =

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ .

B. Two-Point Boundary Value Problem

The purpose of this project is generate approximations to the solution of the following
boundary value problem:

d2y
dt2

= −y, 0 < t < 1;

y(0) = 0, y(1) = 1.

Let h = 1/N be the step size, where N is an integer. The approximations will be
obtained at the points tk = kh, where k = 0, 1, . . . , N, using the centered difference
approximation (which you can verify using L’Hopital’s rule)

d2y
dt2

(kh) ≈ y([k + 1]h)− 2y(kh) + y([k − 1]h)
h2

.

Let yk denote the approximation to y(kh). Replace d2y/dt2 by its centered differ-
ence approximation in the given differential equation for t = tk to obtain a centered
difference approximation to the equation at tk.

(a) For the case N = 5, how many unknown values of yk are there? How many
centered difference approximations to the differential equation are there? Write
out these centered difference approximate equations. (This is not hard, once you
see the pattern.)

(b) Organize the centered difference approximate equations into a linear system
represented by an augmented matrix.

(c) Conjecture the form of this system of equations for arbitrary N. Why is the
coefficient matrix said to be “sparse”? Why is it called “tridiagonal”?

(d) Solve the system for N = 5 by hand and plot the approximate solution by con-
necting points. Then use software to solve the system for N = 50 and plot the
result. Verify that the exact solution is y(t) = sin t. Plot this and compare with
your approximation solutions.

(e) How many multiply-and-subtract operations are required to reduce a tridiago-
nal augmented coefficient matrix to row echelon form? How many to solve the
resulting system by back substitution? 
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0 x1

y2

y3

y4

y

y1

x2 x3 x4 x5 x6

x

Fig. I.C.1 Voltage inside a conducting rectangle.

C. Electrostatic Voltage

The values of the electrostatic potential V(x, y) at the mesh points (xi, yj) inside a region
bounded by a conductor, as depicted in Figure I.C.1, satisfy a “mean value property” to
a high degree of accuracy. That is, each value at an interior mesh point is approximately
equal to the average of the values immediately above, below, to the left, and to the right.
The validity of this approximation improves as the “mesh size” xi+1 − xi ≡ yj+1 − yj

is decreased. The values on the boundary walls are prescribed; the interior values must
be determined.

Note that the potential values are rather naturally organized into a matrix format
Vij = V(xi, yj). However, to exploit the techniques of matrix algebra the mean value
property must be expressed as a system Ax = b, where all the unknown (interior)
potentials are listed as a column, and the known (boundary) potentials appear in the
column b.

(a) List the 15 unknown potentials from left to right, then top to bottom, and find A
and b so that Ax = b expresses the mean value conditions.

(b) The matrix A that you constructed consists mostly of zeros; it is sparse. The
sparseness of a matrix can be exploited to reduce the complexity of computer-
ized matrix computations, especially when the nonzero elements lie close to the
diagonal. Experiment with a few other schemes for enumerating the unknown
potential values to see if you can bring the nonzero coefficients in A closer to
the diagonal.

(c) Suppose that the dimensions of the rectangle in Figure I.C.1 are 6-by-4, so that
mesh size as depicted in the figure is unity. Potential theory tells us that the
function V(x, y) = x3 − 3xy2 is a valid electrostatic potential. Evaluate this
function on the edges of the rectangle to obtain the column b; then use software 
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to solve Ax = b for the interior values of the potential, and compare with the
true values V(x, y).

(d) “Refine the mesh” in Figure I.C.1 by inserting more points so that the mesh size
xi+1 − xi ≡ yj+1 − yj is 0.5 (while the rectangle retains its original 6-by-4 size).
Use software to recompute b and solve Ax = b for the interior values. Compare
with the true values V(x, y). Repeat for another level of mesh refinement. Do
you see the convergence to the true values?

(e) Formulate the three-dimensional version of this electrostatics problem, where
the region is confined to a box and potential values directly above and below the
mesh point are tallied into the averages.

D. Kirchhoff’s Laws

A typical electrical ciruit is shown in Figure I.D.2. We assume you are familiar with
the physical characteristics of the circuit elements; we wish to concentrate only on the
manner in which the elements are connected.

As indicated, each circuit element carries a current ij and a voltage vj. The reference
directions for the currents are indicated by arrows, and the reference directions for the
voltages by ± signs, with each current arrow pointing along the plus-to-minus direction
for the corresponding voltage. The circuit elements or branches are numbered, as are
the connection points or nodes.

i1

i2 i3

i4 i5 i6

i8 i7
1 2

34
5

6

i9

v1

v2 v3

v4 v5 v6

v7

+

+

++

+

–
––

+

+–

–

–

++

+

––

–

+ –

+ –

v8

v9

–

Fig. I.D.2 Electrical circuit (nodes 1−6, voltages v1−v9, currents i1−i9). 
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The incidence matrix A for the circuit completely specifies the connection topology,
in accordance with

aij = 1 if current j leaves node i,

aij = −1 if current j enters node i,

aij = 0 otherwise.

So for the circuit in Figure I.D.2,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0 1 1
0 0 0 0 0 −1 1 0 −1
1 0 1 0 0 1 0 0 0
−1 1 0 1 0 0 0 0 0
0 −1 −1 0 −1 0 0 0 0
0 0 0 0 1 0 −1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

A has a column for every current and a row for every node in the circuit.

(a) Explain why every column of the incidence matrix always contains one +1 and
one −1.

Kirchhoff’s current law states that the sum of all currents leaving any node must
equal zero.

(b) Argue that the current law is expressed by the equation Ai = 0, where i is the
column vector of branch currents i =

[
i1 i2 · · · in

]T
.

A loop in the circuit is a sequence of connected nodes starting and ending on the
same node. For example, one loop in the circuit of Figure I.D.2 would run sequentially
through nodes 1, 6, 5, 4, and back to 1. We restrict ourselves to simple loops which visit
no node, other than the initial and final, more than once. The loop can be characterized
by the currents that comprise its path; for example the loop through nodes {1,6,5,4,1}
is “carried” by the currents i8, i5,−i2, and i4. We tagged i2 with a minus sign to indicate
that the direction of travel in the loop ran opposite to the indicated direction of i2. In
this manner any loop can be characterized by a column vector �, with

�j = 1 if current j is part of the loop and directed along it,
�j = −1 if current j is part of the loop and directed oppositely, and
�j = 0 otherwise.

Thus, the loop through nodes {1,6,5,4,1} generates the loop vector

� =
[
0 −1 0 1 1 0 0 1 0

]T
. 
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Of course the loop vector does not “know” which node was the starting point; this is
seldom important for a loop.

(c) Show that A�= 0 for any such loop, by interpreting A� as a sum of (signed)
columns of A. Add the columns in the order that they appear in the loop, and
argue that every partial sum contains one +1 and one −1 except for the final
sum, which is all zeros.

Kirchhoff’s voltage law states that the sum of the voltage drops around every loop
must equal zero. The voltage drop in branch j equals vj if the direction of the current ij
is along the direction of the loop, and equals −vj if the current direction is opposite to
the loop.

(d) Argue that if v is the row vector of branch voltages v =
[
v1 v2 · · · vn

]
then

the voltage law implies v�= 0 for any loop.

The similarity of the topological law A�= 0 and the physical law v�= 0 indicates
that there is a relation between A and v. To explore this, designate one of the nodes in
the circuit as the reference node (or “ground” node). For example in Figure I.D.2 we
take node #1 as the reference node. Then define a node voltage ek at each node (k) by
choosing a path along the circuit elements connecting the reference node to node #k,
and adding up the branch voltage rises along the path. For instance, if we choose the
path in Figure I.D.2 connecting node #1 to node #3 to include the nodes {1,6,2,3} in
order, then we define e3 to be −v8 + v7 + v6.

(e) Argue that Kirchhoff’s voltage law implies that the values calculated for the
node voltages are independent of the choice of paths used to evaluate them.
For example, the same value for e3 would have been assigned if we calculated
v4 − v2 + v3.

(f) Argue that if the node voltages are assembled into a row vector e =[
e1 e2 · · · em

]
, then the branch voltages are given by v = eA.

The relation v= eA demonstrates that the voltage law v�= 0 is implied
by the topological law A�= 0. In summary, both of Kirchhoff’s laws
are expressible using the incidence matrix via Ai= 0 and v= eA. This
enables the translation of the topology of electric circuit connections into
computer code.

E. Global Positioning Systems

This project explores some the mathematical features of a GPS system.

(a) A fixed transmitter emits electromagnetic pulses that propagate in all directions
at the speed of light c (taken to be a known constant). A traveler would like to be
able to figure how far he/she is from the emitter, upon receiving the pulse. What
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kind of information can the emitter encode in the pulses, so that all travelers are
accommodated?

(b) For motion in the plane, the locus of possible positions for a traveler at a known
distance from an emitter is, of course, a circle. Write the equation relating the
traveler’s position (x, y), the emitter’s position (x1, y1), and the distance from
the emitter r1.

(c) If the distance r2 from a second emitter located at (x2, y2) is also known, how
many solutions can the system of two equations describing the locus have? Why
does the (0, 1,∞) rule (Theorem 3, Section 1.4) not apply?

(d) Now assume the traveler knows the distance r3 from a third emitter located at
(x3, y3). Reasoning geometrically, argue that all ambiguity about the traveler’s
position is removed, as long as the three emitters avoid certain configurations;
what are these configurations?

(e) The system of three “locus” equations (in two unknowns x, y) is not linear, and is
hard to solve. But luckily the differences of any two of them turn out to be linear.
Formulate the three locus equations, form the differences of any two pairs, and
show that Gauss elimination can be used to find x, y as long as the troublesome
emitter configurations are not present.

(f) What changes need to be made to this scheme in three dimensions?
More thorough descriptions of the subtleties of global positioning systems

are available on the internet; see, for example,
http://www.aero.org/education/primers/gps or
http://www.trimble.com/gps/index.shtml

F. Fixed-Point Methods

Bruce W. Atkinson, Samford University
In this project, you will be introduced to the fixed point method for approximat-

ing solutions to equations in one variable. Then you will extend this technique for
approximating solutions to a linear system of equations.

(a) Let f (x) be a function of one variable. A real number a is called a fixed point of f
if f (a) = a. A well-known method of approximating a fixed point is function iteration.
The basic idea is as follows: Let x0 be an initial “guess” for a fixed point. Define a
sequence of estimates (xn), for n ≥ 1, by letting xn+1 := f (xn). Thus x1 = f (x0), x2 =
f (f (x0)), x3 = f (f (f (x0))), etc. xn is the nth iterate of f with initial value x0. Now if f
is continuous and a = limn→∞ xn exists it follows that

f (a) = f ( lim
n→∞

xn) = lim
n→∞

f (xn) = lim
n→∞

xn+1 = a.

Therefore limn→∞ xn is a fixed point of f , and the sequence can be used to approximate
the fixed point.
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For example, let f (x) = x
2 + 1

x . Show that
√

2 is a fixed point of f . Let x0 = 1. By
hand, calculate the first two iterates. Then use a computer algebra system (CAS) to write
the fourth iterate x4 as an exact fraction. How well does this fraction approximate

√
2?

(b) The fixed point method can be used to approximate solutions to linear systems,
as the following example illustrates. Consider the system:

4x + y + z = 17 (1)

x + 4y + z = 2 (2)

x + y + 4z = 11. (3)

Solving Equation (1) for x, Equation (2) for y, and Equation (2) for z results in the
equivalent system:

x = 4.25 − 0.25y − 0.25z (4)

y = 0.5 − 0.25x − 0.25z (5)

z = 2.75 − 0.25x − 0.25y. (6)

Let

f

⎛
⎝
⎡
⎣x

y
z

⎤
⎦
⎞
⎠ = C + A

⎡
⎣x

y
z

⎤
⎦ , (7)

where

C =

⎡
⎣4.25

0.5
2.75

⎤
⎦ and A =

⎡
⎣ 0 −0.25 −0.25
−0.25 0 −0.25
−0.25 −0.25 0

⎤
⎦

Thus a solution to Equations (1), (2), and (3) is a fixed point of f . It is natural to
approximate the fixed point by iterating the function, starting with a specified initial
vector ⎡

⎣x0

y0

z0

⎤
⎦ .

f is an example of an affine transformation, that is, a linear transformation plus a con-
stant vector. For the general affine transformation with constant vector C and matrix A,
as in the earlier example, it can be shown that for any initial vector the iterates converge
to a unique fixed point if An converges to zero entry-wise as n → ∞. Further, it can be
shown An converges to zero entry-wise as n → ∞ if the sum of the absolute values of
the entries in each row is less than one. This is clearly the case with the above example.

In general, we are given an n-by-n linear system, with coefficient matrix M having
non-zero diagonal entries. To generalize the technique of the earlier example, an affine
function f is be constructed so that the solution to the system is a fixed point of f . 
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Iterating that function, starting with an initial vector, for the purpose of approximating
a solution to the system, is called the Jacobi method.

In the example, let the initial vector be given by

⎡
⎣0

0
0

⎤
⎦ ,

and denote the nth iterate of f , starting with this initial vector, by

⎡
⎣xn

yn

zn

⎤
⎦ .

Use a CAS to find

⎡
⎣x10

y10

z10

⎤
⎦ .

How close is that iterate to the actual solution of the system represented by Equations
(1), (2), and (3)?

A matrix is said to be diagonally dominant if, on each row, the absolute value of the
diagonal entry is greater than the sum of the absolute values of the other row entries. Use
the above to prove that if A is diagonally dominant, the Jacobi method will converge
for the system Ax = b.

(c) Again, consider the the system represented by Equations (1), (2), and (3). One
can get another equivalent system which is an “improvement” of the system represented
by Equations (4), (5), and (6). Take the result of Equation (4) and substitute it into the
right hand side of Equation (5). The result is

y = −0.5625 + 0.0625y − 0.1875z. (8)

Finally take the result of Equations (4) and (8) and substitute them into the right hand
side of Equation (6). The result is

z = 1.828125 + 0.046875y + 0.109375z. (9)

In summary we now have a new equivalent system:

x = 4.25 − 0.25y − 0.25z (10)

y = −0.5625 + 0.0625y − 0.1875z (11)

z = 1.828125 + 0.046875y + 0.109375z. (12) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



126 MATRIX ALGEBRA

Let

g

⎛
⎝
⎡
⎣x

y
z

⎤
⎦
⎞
⎠ = D + B

⎡
⎣x

y
z

⎤
⎦ , (13)

where

D =

⎡
⎣ 4.25
−0.5625
1.828125

⎤
⎦ and B =

⎡
⎣0 −0.25 −0.25

0 0.0625 −0.1875
0 0.046875 0.109375

⎤
⎦

Thus, a solution to Equations (1), (2), and (3) is a fixed point of g. One can similarly
iterate g, starting with any initial vector, to solve the original system represented by
Equations (1), (2), and (3).

In general, we are given an n-by-n linear system, with coefficient matrix M having
non-zero diagonal entries. Generalizing the technique of the earlier example, an affine
function g can be constructed so that the solution to the system is a fixed point of g.
Iterating that function, starting with an initial vector, for the purpose of approximating
a solution to the system, is called the Gauss–Seidel method.

For the purpose of approximating solutions to the system represented by Equations
(1), (2), and (3), one can either use the Jacobi method by iterating f in Equation (7), or
one can use the Gauss–Seidel method by iterating g in Equation (13). Note that the first
iterate of f amounts to using the same initial values three times in providing the first
“updates,” x1, y1, and z1. However, the first iterate of g starts with updating the x value
as with f , but uses that updated x value immediately in updating the y value. Similarly,
the updated z value uses the latest updated x and y values. (Sometimes, we say that the
Jacobi method updates the iterations simultaneously, while the Gauss–Seidel method
updates them successively.) Thus g seems to be an improvement over f because of this
self-correcting feature. Numerically, the iterates of g converge to the desired solution
much faster than those of f .

In the example, let the initial vector once again be given by

⎡
⎣0

0
0

⎤
⎦ ,

and denote the nth iterate of g, starting with this initial vector, by

⎡
⎣αn

βn

γn

⎤
⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



GROUP PROJECTS FOR PART I 127

Use a CAS to find

⎡
⎣α1

β1

γ1

⎤
⎦ ,

⎡
⎣α2

β2

γ2

⎤
⎦ ,

⎡
⎣α3

β3

γ3

⎤
⎦ , and

⎡
⎣α4

β4

γ4

⎤
⎦ .

How close are these iterates to the actual solution of the system represented by
Equations (1), (2), and (3)? Do these iterates support the claim that the Gauss-Seidel
method is an improvement over the Jacobi method?

(d) Let M be the coefficient matrix for the system represented by equations (1), (2),
and (3), that is

M =

⎡
⎣4 1 1

1 4 1
1 1 4

⎤
⎦ .

Explain how you can use the Gauss–Seidel method to approximate M−1.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



PART II

INTRODUCTION: THE STRUCTURE OF
GENERAL SOLUTIONS TO LINEAR
ALGEBRAIC EQUATIONS

What features do the solutions to the linear system (1) and the differential equation (2)
have in common?

⎡
⎢⎢⎢⎣

1 2 1 1 −1 0
... 0

1 2 0 −1 1 0
... 0

0 0 1 2 −2 1
... 0

⎤
⎥⎥⎥⎦ ; (1)

d3y
dx3

= 0. (2)

Gauss elimination, applied to the homogeneous linear system (1), yields the row
echelon form

⎡
⎢⎢⎢⎣

1 2 1 1 −1 0
... 0

0 0 −1 −2 2 0
... 0

0 0 0 0 0 1
... 0

⎤
⎥⎥⎥⎦ ,

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



130 PART II INTRODUCTION: THE STRUCTURE OF GENERAL SOLUTIONS

which has a three-parameter solution family

x1 = −2t1 + t2 − t3
x2 = t1
x3 = −2t2 + 2t3
x4 = t2
x5 = t3
x6 = 0

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= t1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ t2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ t3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

We do not presume that the reader has studied differential equations, but equation
(2) is very simple to analyze. Indefinite integration yields, in turn,

y′′ = c1; (4)

y′ = c1x + c2;

y = c1x2/2 + c2x + c3.

Although the displays (3) and (4) refer to quite different mathematical objects, they
are instances of a concept known as a vector space. By focusing attention in this chapter
on the abstract notion of vector spaces, we will be able to establish general principles
that can be handily applied in many diverse areas.

So let us list three apparent features that the general solutions (3) and (4) have in
common. Remember that in both cases, the coefficients {ti}, {ci} can take any real
values; in Section 1.3, the coefficients {ti} were called “parameters;” of course, the
coefficients {ci} are “constants of integration.”

(i) Zero is a solution. Here we have already begun to universalize our language;
“zero” for (3) means the six-component vector with all entries zero, but “zero”
for (4) means the identically zero function.

(ii) The sum of any two solutions is also a solution.

(iii) Any constant multiple of a solution is also a solution.

What other mathematical structures satisfy (i)–(iii)? A familiar example is the set of
vectors (directed line segments) in the x, y-plane. The sum of two vectors, as well as
the multiplication of a vector by a constant, is depicted in Figure II.1.

In fact, the set of all vectors in three-dimensional space—or, all vectors along a line,
or in a plane—satisfy (i)–(iii). However, any finite collection of such vectors would
not meet the closure conditions (ii), (iii); such sets are not “closed” under addition
and scalar multiplication. (Exception: The single zero vector does, trivially, satisfy (ii),
(iii).) Similarly, the set of all vectors in the plane pointing into the first quadrant fails
to have the closure property. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



PART II INTRODUCTION: THE STRUCTURE OF GENERAL SOLUTIONS 131

a

b

a+b

2a

–a

Fig. II.1 Vector addition.

In subsequent sections, we will formalize and generalize the concept of a vector
space and establish general tools that can be utilized in the analysis of algebraic and
differential equations, matrices, geometry, and many other areas.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



3
VECTOR SPACES

3.1 GENERAL SPACES, SUBSPACES, AND SPANS

In the Introduction to Part II, we noted that solutions to linear homogeneous algebraic
systems, solutions of certain linear differential equations, and geometric space vectors
have some algebraic features in common. In rough terms,

• The objects themselves (call them v’s) enjoy an “addition” operation which
satisfies the customary algebraic laws;

• These objects interact with another algebraic collection called the scalars (herein
denoted by c’s) through scalar multiplication cv, and this operation also satisfies
the expected parenthesis rules. The real numbers have played the role of the scalars
in the examples we have seen so far, but in subsequent applications we shall use
complex numbers. The specifics are given in the following defintion.

Then V is said to be a vector space over the field of scalars F.

Vector Space

Definition 1. Let V be a collection of objects which we call vectors (typically
denoted by boldface lower case Latin letters v, w, a, etc.), and let F be the set
of real, or the set of complex, numbers; the elements of F will be designated as
scalars (c1, c2, c3, etc.). Suppose there is an operation called vector addition,
written as v1 + v2, that combines pairs of vectors, and another operation called

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



134 VECTOR SPACES

scalar multiplication, written cv, that combines scalars with vectors, such that
for any v, v1, v2, v3 in V and any c, c1, c2 in F,

(i) v1 + v2 belongs to V (“V is closed under vector addition”);

(ii) cv belongs to V (“V is closed under scalar multiplication”);

(iii) V contains an additive identity vector 0 such that 0 + v = v for all v
in V;

(iv) −1v, also denoted by −v, is the additive inverse of v (−v + v = 0);

(v) v1 + v2 = v2 + v1;

(vi) v1 + (v2 + v3) = (v1 + v2) + v3;

(vii) c1(c2v) = (c1c2)v;

(viii) c(v1 + v2) = cv1 + cv2 and (c1 + c2)v = c1v + c2v;

(ix) 1v = v.

If the context is clear, we shorten “vector space” to, simply, “space.” Note that (i)
and (ii) together can be more compactly expressed as

(i′) c1v1 + c2v2 belongs to V .

Furthermore, it is easy to prove from the above axioms that the zero scalar times
any vector equals the zero vector:

(x) 0v = 0 for all v

(see Problem 10.)

The most common examples of vector spaces are the geometric vectors discussed
in the Introduction (Figure II.1). Indeed, they gave rise to the nomenclature “vector
space.” Another ubiquitous example is the set of all column matrices with a fixed
number of entries; the set of all m-by-1 column matrices with real-valued entries is
a vector space over the field of real numbers, and the set of all m-by-1 column matri-
ces with complex-valued entries is a vector space over the field of complex numbers.
Note that the additive identity in these examples is the m-by-1 matrix of zeros (not the
number zero!).

Of course row matrices also form vector spaces. In fact the set of all m-by-n rectan-
gular matrices is a vector space over the appropriate scalar field (real matrices over the
real numbers, complex matrices over the complex numbers).

A more abstract example is the set of all continuous functions on a fixed interval
(a, b). Elementary calculus tells us that sums and scalar multiples of continuous func-
tions are continuous, and the other properties are simple algebraic identities. Note that
the “additive identity” in this case is the identically zero function. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



3.1 GENERAL SPACES, SUBSPACES, AND SPANS 135

The following examples of vector spaces occur frequently enough to merit special
nomenclature:

Some Common Vector Spaces

• Rm
col (Rm

row) (Section 2.2) is the set of all m-by-1 column (1-by-m row)
matrices with real entries, over the real numbers;

• Cm
col (Cm

row) denotes the set of all m-by-1 column (1-by-m row) matrices with
complex entries, over the complex numbers;

• Rm,n denotes the set of all m-by-n matrices with real entries, over the real
numbers;

• Cm,n denotes the set of all m-by-n matrices with complex entries, over the
complex numbers;

• C(a, b) denotes the set of all real-valued continuous functions on the open
interval (a, b), over the real numbers (and similarly C[a, b] denotes such
functions on the closed interval [a, b]).

• Pn denotes the collection of all polynomial functions of degree at most n,
with real coefficients. That is,

Pn := {a0 + a1x + · · · + anxn| ai’s are real numbers}.

A subspace of a vector space is (just what you’d guess) a nonempty subset of the
space which, itself, satisfies all the vector space properties. Most of these will be “inher-
ited” from the original space; in fact, a nonempty subset of a vector space is a subspace
if, and only if, it is closed under vector addition and scalar multiplication. In many
cases, checking closure for a set is a simple mental exercise.

Example 1. Determine which of the following are subspaces of R5
row:

(a) All vectors of the form [a b c b a];

(b) All vectors of the form [a b 0 −b −a];

(c) Those vectors all of whose entries are the same [a a a a a];

(d) Those vectors whose second entry is zero [a 0 b c d];

(e) Those vectors whose middle entry is positive [a b c(>0) d e];

(f) Those vectors whose entries are integers;

(g) Those vectors whose entries are nonnegative real numbers;

(h) The (single) zero vector 0 = [0 0 0 0 0].

Solution. Combinations of the form c1v1 + c2v2 will preserve the symmetries (a), (b),
and (c) as well as the zero in (d); these subsets are subspaces. But forming the scalar 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



136 VECTOR SPACES

f(x) + g(x)

f(x)

g(x)

–1 1

Fig. 3.1 Piecewise linear functions.

multiple 0v would violate the nonzero restriction (e), v/2 would destroy the integer
property if any of the original integers in (f) were odd, and (−1)v obviously invalidates
(g); so (e), (f), and (g) are not subspaces. The single vector 0 is a subspace (the only
one-element subspace). �

Similar reasoning shows that the following are subspaces of C(−2, 2):

• The set of even continuous functions [f (x) = f (−x)];

• The set of odd continuous functions [f (−x) = −f (x)];

• The set of continuous functions that are zero when x = 1/2;

• The single function f (x) ≡ 0;

• The set of continuous functions that are bounded as x → 2−;

• The set of continuous piecewise linear functions whose graphs are straight-line
segments connected at the values x = −1, 0, 1 (Figure 3.1).

In each case, the combination c1v1 + c2v2 preserves the defining credential.
An important example of a subspace of Rm

col is the set of all solutions to a linear
homogeneous algebraic system Ax = 0; if Ax1 = 0 and Ax2 = 0, then certainly
A(c1x1 + c2x2) = 0 (= c10 + c20). The collection of such solutions is called the null
space or the kernel of the coefficient matrix A. We formalize this observation in the
following theorem.

Solution Space for a Linear Homogeneous Algebraic System

Theorem 1. The set of all solutions to any linear homogeneous algebraic system
Ax = 0 (i.e., the null space or kernel of A) comprises a vector space.

If the equation is nonhomogeneous, however, the solutions forfeit the closure prop-
erty, because the sum x1 + x2 of two solutions of Ax = b satisfies A(x1 + x2) = 2b
(which is different from b in the nonhomogeneous case). 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



3.1 GENERAL SPACES, SUBSPACES, AND SPANS 137

Example 2. Express the subspaces in Example 1 as null spaces.

Solution. Of course, matrix notation requires that we first change these row spaces
into the corresponding column spaces.

(a) A column vector has the required symmetry when its first and fifth elements are
equal, and its second and fourth are also equal: x1 = x5; x2 = x4. These two
equations in five unknowns can be expressed as Ax = 0 with A taken to be

A =

[
1 0 0 0 −1
0 1 0 −1 0

]
.

(b) Here the first component is the negative of the fifth, the second component is the
negative of the fourth, and the third component is zero. Symbolically, x1 = −x5,
x2 = −x4, x3 = 0, from which we get

A =

⎡
⎣1 0 0 0 1

0 1 0 1 0
0 0 1 0 0

⎤
⎦ .

Similarly, subspaces (c), (d), and (h) are the null spaces of

⎡
⎢⎢⎣

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

⎤
⎥⎥⎦ ,

[
0 1 0 0 0

]
, and

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

respectively. �

Expressions like

t1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ t2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ t3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, c1x2/2 + c2x + c3, and 3i + 4j − 2k

are commonplace in vector space calculations. We say that any expression containing
vectors and scalars in the format c1v1 + c2v2 + · · · + cnvn is a linear combination of
the vectors {v1, v2, . . . , vn}. The following property is trivial, but so pervasive that it is
convenient to spell it out explicitly, for future reference. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



138 VECTOR SPACES

Linear Combination Composition Principle

Lemma 1. If w1, w2, . . . , wm are each linear combinations of the vectors
v1, v2, . . . , vn, then so is any linear combination of w1, w2, . . . , wm.

Proof. This is a matter of simple bookkeeping. For m = 2 and n = 3, the
calculation goes this way. Suppose u is a linear combination of w1 and w2, say

u = d1w1 + d2w2.

We know that

w1 = c(1)
1 v1 + c(1)

2 v2 + c(1)
3 v3,

w2 = c(2)
1 v1 + c(2)

2 v2 + c(2)
3 v3.

Substituting these representations into the expression for u, we get

u = d1(c
(1)
1 v1 + c(1)

2 v2 + c(1)
3 v3) + d2(c

(2)
1 v1 + c(2)

2 v2 + c(2)
3 v3)

= (c(1)
1 d1 + c(2)

1 d2)v1 + (c(1)
2 d1 + c(2)

2 d2)v2 + (c(1)
3 d1 + c(2)

3 d2)v3

= e1v1 + e2v2 + e3v3,

as claimed. In fact, defining the matrix C = [Cij] by Cij = c(j)
i , we can write a

matrix equation for the new coefficients:

⎡
⎣e1

e2

e3

⎤
⎦ = C

[
d1

d2

]
.

If we consider the set of all linear combinations of any set of vectors, it is easy to
verify that we get a vector space. (The crucial point is, as usual, closure; if u and w are
each linear combinations of {v1, v2, . . . , vn}, then the linear combination composition
principle assures us that c1u + c2w is, also.)

Span

Definition 2. The span1 of the vectors {v1, v2, . . . , vn} is the subspace of all
linear combinations of {v1, v2, . . . , vn}. It is abbreviated Span {v1, v2, . . . , vn}.

1The word can also be used as a verb. We say that the vectors {v1, v2, . . . , vn} span a vector space V provided
V = Span{v1, v2, . . . , vn}. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



3.1 GENERAL SPACES, SUBSPACES, AND SPANS 139

Referring to the examples discussed in the Introduction to Part II, we can say that the
vector space of solutions to d3y/dx3 = 0 is the span of x2/2, x, and 1; and the solution
space of

⎡
⎢⎢⎢⎣

1 2 1 1 −1 0
... 0

1 2 0 −1 1 0
... 0

0 0 1 2 −2 1
... 0

⎤
⎥⎥⎥⎦ (1)

is spanned by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, and

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(see (3)) in the Introduction).

The solution space of (1) is a subspace of the vector space of all 6-by-1 column
vectors R6

col, which in turn is given by the span of

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, and

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Example 3. Show that in R4
row,

Span {[2 3 8 0], [1 0 0 1], [3 3 8 1]} = Span {[2 3 8 0], [1 0 0 1]}.

Solution. Let v1 = [2 3 8 0], v2 = [1 0 0 1], and v3 = [3 3 8 1]. If you noticed that
v3 is the sum of v1 and v2, you probably see why adding v3 into the Span “arsenal”
does not increase it. Let’s give a more formal argument. First note that Span{v1, v2} ⊆
Span{v1, v2, v3} since any linear combination of v1 and v2 can be regarded as a lin-
ear combination of v1, v2, and v3 with zero being the scalar multiplier of v3. On the
other hand, observe that v3 = v1 + v2 and so, by the linear combination principle,
any linear combination of v1, v2, and v3 is a linear combination of v1 and v2. Thus
Span{v1, v2, v3} ⊆ Span{v1, v2}, and so the two spans are equal. �

In subsequent sections, we shall delve further into the properties of the span, and
we shall see that the notion of a vector space provides an organizational structure that
unifies many areas of application of mathematics. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



140 VECTOR SPACES

Exercises 3.1

1. Which of the following are subspaces of R3
row? Justify your answers.

(a) All vectors [a b c] with a + b + c = 0.

(b) All vectors [a b c] with a3 + b3 + c3 = 0.

(c) All vectors of the form [0 b c].

(d) All vectors [a b c] with abc = 0.

2. Which of the following subsets of R3
col are subspaces over the real numbers? Justify

your answers.
(a) All column vectors orthogonal to [1 2 3]T (use the dot product; the zero vector

is regarded as being orthogonal to all vectors).

(b) All column vectors whose entries are rational numbers.

(c) All column vectors of the form [t 2t 5t]T , where t is any real number.

(d) Span{[1 0 3]T , [0 2 4]T}.

3. Which of the following are subspaces of C[−1, 1]? Justify your answers.
(a) All continuous functions f on [−1, 1] with

∫ 1
−1 f (x) dx = 0.

(b) All functions with three continuous derivatives on [−1, 1].

(c) All continuous functions f on [−1, 1] satisfying |f (x)| ≤ 1 for all x in [−1, 1].

(d) All continuous functions f on [−1, 1] with f ′(0) = 0.

4. (a) Verify that the collection Pn of all polynomials of degree at most n is a vector
space over the real scalars.

(b) Is the set of all polynomials of degree exactly n (> 0) a subspace of Pn?

5. (a) Show that P2 is the span of the polynomials {1, x − 1, (x − 1)2}.

(b) Show that P2 cannot be spanned by a pair of polynomials.

6. Do the polynomials of the form (x − 5)q(x), with q(x) in P2, form a subspace
of P3?

7. Which of the following subsets of R3,3 are subspaces? Justify your answers.
(a) All symmetric matrices.

(b) All upper triangular matrices.

(c) All matrices whose sum of diagonal entries is zero.

(d) All invertible matrices.

(e) All skew-symmetric matrices A, that is, matrices satisfying AT = −A.

(f) All matrices A such that A ×

⎡
⎢⎣

1 2 3
5 6 7
8 9 10

⎤
⎥⎦ =

⎡
⎢⎣

0 0 0
0 0 0
0 0 0

⎤
⎥⎦ .

8. Let V be the collection of all 1-by-3 vectors of the form [f (x) g(x) h(x)], where
f , g, and h are continuous real-valued functions on [0, 1].

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



3.1 GENERAL SPACES, SUBSPACES, AND SPANS 141

(a) Explain why V is a vector space over the real scalars (under the usual
definitions of scalar multiplication and vector addition).

(b) What is the zero vector of this space ?

(c) Let S be the set of all vectors of the form [aex b sin x c cos x], where a, b, c
are real numbers. Is S a subspace of V?

9. For each of the following, determine whether the statement made is always True
or sometimes False.
(a) R2

row = Span{[2 0], [0,π]}.

(b) If the vectors v1 and v2 are linear combinations of the vectors w1 and w2, then
Span{v1, v2} = Span{w1, w2}.

(c) The complex numbers form a vector space over the reals (i.e., the scalars are
real numbers).

(d) Any two subspaces of a vector space have a nonempty intersection.

10. Using only the axioms for a vector space (Definition 1), prove that 0v = 0 for all
vectors v. (Hint: Start by writing 0v = (0 + 0)v.)

11. Let S be the collection of all infinite sequences s = (s0, s1, s2, . . .), where the si’s
are real numbers. Then S forms a vector space under the standard (elementwise)
addition of sequences and scalar multiplication: s + t = (s0 + t0, s1 + t1, . . .), αs =
(αs0,αs1, . . .).
(a) What is the zero vector of this space ?

(b) Is the subset of convergent sequences a subspace of S?

(c) Is the subset of all bounded sequences a subspace of S? (Recall that a
sequence s is bounded if there is a constant M such that |si| ≤ M for all
i = 0, 1, . . . .)

(d) Is the subset of all sequences s for which
∑∞

i=0 si is convergent a subspace
of S?

12. Matrices as Mappings. Let A be an m-by-n matrix and x an n-by-1 column vector.
Since the product y = Ax is an m-by-1 vector, A can be viewed as a function that
maps Rn

col into Rm
col; that is, A(x) := Ax with domain Rn

col and range a subset of
Rm

col. Prove that the range is a subspace of Rm
col.

13. Show that the collection of all twice differentiable functions y that satisfy the
homogeneous differential equation

x2y′′ + exy′ − y = 0

for x > 0 is a vector space.

14. Prove the following: If A is an n-by-n matrix with real number entries and r is a
fixed real number, then the set of n-by-1 column vectors x satisfying Ax = rx is a
vector space (a subspace of Rn

col). Furthermore, show that this vector space consists
of exactly one vector if and only if det(A − rI) �= 0. (Values of r for which this
space has more than one vector are called eigenvalues of A in Chapter 5.)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



142 VECTOR SPACES

15. Prove that if S and T are subspaces of a vector space V, then the set consisting of all
vectors of the form s + t, with s in S and t in T , is also a subspace of V (we denote
this space by S + T).

16. Prove that if two nonzero vectors in the plane R2
col are not parallel, then their span

is the whole plane. (Hint: Show that every vector in the plane can be written as a
linear combination of the two vectors.)

17. Justify the following statement: All subspaces of the plane R2
col can be visualized

either as the whole plane, a line through the origin, or just the origin itself. How
could you visualize all the subspaces of R3

col?

18. Explain why Span{[1 2 0], [1 2 3], [0 0 6]} = Span{[1 2 0], [1 2 3]}.

19. Do the sets

⎡
⎣1

1
1

⎤
⎦ ,

⎡
⎣ 1

0
−1

⎤
⎦ and

⎡
⎣1

1
1

⎤
⎦ ,

⎡
⎣ 1

0
−1

⎤
⎦ ,

⎡
⎣2

1
1

⎤
⎦ span the same subspace?

20. Suppose v1 and v2 are linear combinations of w1, w2, and w3. Explain why
Span{v1, v2, w1, w2, w3} = Span{w1, w2, w3}.

21. For the vector space C(−∞,∞), show that f (x) = x is not in the span of
{ex, sin x}. (Hint: What would be the consequence of x = c1ex +c2 sin x at x = 0?)

3.2 LINEAR DEPENDENCE

The notion of span gives us new insight into the analysis of systems of linear algebraic
equations. Observe that the matrix product Ax can be identified as a linear combination
of the columns of A:

Ax =

⎡
⎢⎢⎣

1 2 3
1 0 1
1 1 2
0 0 0

⎤
⎥⎥⎦
⎡
⎣x1

x2

x3

⎤
⎦ ≡

⎡
⎢⎢⎣

1x1 + 2x2 + 3x3

1x1 + 0x2 + 1x3

1x1 + 1x2 + 2x3

0x1 + 0x2 + 0x3

⎤
⎥⎥⎦

= x1

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦ + x2

⎡
⎢⎢⎣

2
0
1
0

⎤
⎥⎥⎦ + x3

⎡
⎢⎢⎣

3
1
2
0

⎤
⎥⎥⎦ .

(1)

Therefore, b belongs to the span of the columns of A if and only if the system Ax = b
has a solution. This suggests that Gauss elimination could be a critical tool in settling
questions about the span.

Example 1. Given the column vectors

a1 =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦ , a2 =

⎡
⎢⎢⎣

2
0
1
0

⎤
⎥⎥⎦ , a3 =

⎡
⎢⎢⎣

3
1
2
0

⎤
⎥⎥⎦ ,

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



3.2 LINEAR DEPENDENCE 143

b1 =

⎡
⎢⎢⎣

6
2
4
0

⎤
⎥⎥⎦ , b2 =

⎡
⎢⎢⎣

1
1
2
0

⎤
⎥⎥⎦ , b3 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ,

which of b1, b2, b3 is spanned by {a1, a2, a3}?

Solution. Note that every vector in Span{a1, a2, a3} will have a zero in its fourth row,
so b3 can be eliminated immediately. For b1 and b2, we resort to the solution criterion
for Ax = b just established, with A = [a1 a2 a3]. Gauss elimination applied to

[
a1 a2 a3

... b1 b2

]
≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3
... 6 1

1 0 1
... 2 1

1 1 2
... 4 2

0 0 0
... 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

results in the row echelon form

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3
... 6 1

0 −2 −2
... −4 0

0 0 0
... 0 1

0 0 0
... 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2)

The third row in the display tells us that b2 is not spanned by {a1, a2, a3}; but since
the solutions for b1 are expressible in terms of a free parameter t as x3 = t, x2 =
(−4+2t)/(−2) = 2− t, x1 = 6−2(2− t)−3t = 2− t, the vector b1 can be expressed
in terms of {a1, a2, a3} in any number of ways. For instance by setting t = 1, we obtain
b1 = a1 + a2 + a3. �

Sometimes, we can draw conclusions about the span of a set of vectors quite easily
from elementary observations about the structure of the data. In Example 1, we saw
immediately that every vector in Span{a1, a2, a3} must have 0 in its fourth entry. If we
consider the row vectors

v1 =
[
1 1 0 0 0

]
, v2 =

[
0 0 0 3 −3

]
, v3 =

[
2 2 0 −2 2

]
, (3)

it is clear than any vector in Span{v1, v2, v3} will have zero in its third column, equal
entries in its first two columns, and equal-but-opposite entries in its last two columns.
In fact, this verbal description suffices to characterize the span completely. Usually,
though, the span is more obscure and we have to resort to Gauss elimination to answer
specific inquiries about it. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



144 VECTOR SPACES

Example 2. Show that the sets

{
a1 =

[
1 1 1 0

]
, a2 =

[
2 0 1 0

]
, a3 =

[
3 1 2 0

]}

and

{
c1 =

[
8 4 6 0

]
, c2 =

[
5 1 3 0

]}

span the same subspace of R4
row.

Solution. We need to show that c1 and c2 are linear combinations of a1, a2, and a3;
it will then follow by the linear combination composition principle (Section 3.1) that
Span{c1, c2} is contained in Span{a1, a2, a3}. The reverse implication will follow when
we show that a1, a2, and a3 are in the span of c1 and c2.

Transposing these row vectors into columns for convenience in applying Gauss
elimination, we approach the first task by reducing

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3
... 8 5

1 0 1
... 4 1

1 1 2
... 6 3

0 0 0
... 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

to row-echelon form. The result of this calculation,

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3
... 8 5

0 −2 −2
... −4 −4

0 0 0
... 0 0

0 0 0
... 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

shows that both systems are consistent, so c1 and c2 belong to Span{a1, a2, a3}.
Similarly, the second task requires reducing

⎡
⎢⎢⎢⎢⎢⎢⎣

8 5
... 1 2 3

4 1
... 1 0 1

6 3
... 1 1 2

0 0
... 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



3.2 LINEAR DEPENDENCE 145

This results in

⎡
⎢⎢⎢⎢⎢⎢⎣

8 5
... 1 2 3

0 −1.5
... 0.5 −1 −0.5

0 0
... 0 0 0

0 0
... 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and the three systems are each consistent. Each of the subspaces Span{a1, a2, a3} and
Span{c1, c2} is contained in the other, implying that they are equal. �

Observe that in Example 2, the vector a3 is redundant in the specification
Span{a1, a2, a3}, since it is already spanned by a1 and a2; indeed, a3 = a1 + a2. This
illustrates the important notion of linear dependence.

Linear Dependence and Linear Independence

Definition 3. A vector v is said to be linearly dependent on the set of vec-
tors {v1, v2, . . . , vm} if v can be expressed as a linear combination of the
{v1, v2, . . . , vm}; that is, v belongs to Span{v1, v2, . . . , vm}. Otherwise, it is
linearly independent of the set.

A set of distinct vectors {v1, v2, . . . , vn} is said to be linearly dependent if at
least one member of the set is linearly dependent on the rest of the set. Otherwise
the set is linearly independent.

When a set of distinct vectors is linearly dependent, one often says “the vectors are
dependent,” with similar terminology used if the set is linearly independent. Note that
a pair of vectors is linearly dependent if and only if one of them is a scalar multiple of
the other. In R3

col, a set of three vectors is linearly dependent if and only if the vectors
are coplanar (see Problem 29).

There are alternative characterizations of linear independence that are sometimes
easier to test. Suppose there is a linear combination of {v1, v2, · · · , vn} that equals zero:

c1v1 + c2v2 + · · · + cn−1vn−1 + cnvn = 0.

This will happen, trivially, if each ci is zero. However, if any of them (say, cp) is not
zero, we could divide by this coefficient and display linear dependence:

vp = −c1

cp
v1 −

c2

cp
v2 − · · · − cn−1

cp
vn−1 −

cn

cp
vn

(vp omitted in the right-hand side). Thus we have the following: 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



146 VECTOR SPACES

Test for Linear Independence

Theorem 2. A set of distinct vectors {v1, v2, . . . , vn} is linearly independent if,
and only if, the only linear combination of {v1, v2, . . . , vn} that equals zero is the
trivial one (with all coefficients zero).

Remark. We cannot establish independence for a set of vectors simply by checking
them in pairs; {

[
1 0

]
,
[
0 1

]
,
[
1 1

]
} is a pairwise linearly independent set in R2

row,
but the last vector equals the sum of the first two, so the set is linearly dependent. A
valid way of establishing independence proceeds “sequentially,” in the following sense.
Suppose we can show that vn is linearly independent of the vectors {v1, v2, . . . , vn−1},
and that vn−1 is linearly independent of the remaining vectors {v1, v2, . . . , vn−2}, vn−2

is linearly independent of {v1, v2, . . . , vn−3}, and so on. Then we can be assured that
{v1, v2, . . . , vn} is linearly independent—if not, there would a nontrivial linear combi-
nation c1v1 + c2v2 + · · · + cn−1vn−1 + cnvn = 0, but then the last vk whose ck is nonzero
would be dependent on its predecessors, in violation of the assumptions.

Example 3. Let Aech be a matrix in row echelon form, as for example

Aech =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α − − − − − − −
0 β − − − − − −
0 0 0 0 γ − − −
0 0 0 0 0 δ − −

...
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where we have indicated the first nonzero entries in each row. (If Aech happened to be
the result of Gauss elimination applied to a “full” matrix, these entries would be the
pivot elements discussed in Section 1.4.) Show that the columns that contain the pivot
elements form a linearly independent set, while each of the other columns is linearly
dependent on its predecessors. Show the nonzero rows are linearly independent.

Solution. The sixth column in (4), the final column containing a leading nonzero entry,
is preceded by columns that each have zeros in their fourth row (the row of the nonzero
entry). Therefore, the sixth column cannot possibly be expressed as a linear combina-
tion of the preceding columns. Similarly for the fifth, second, and first columns; each
of the columns is linearly independent of the columns preceding it. Therefore, these
columns form a linearly independent set.

Now if we regard the eighth column as the right-hand side of a system for which the
preceding seven columns form the coefficient matrix, this system is clearly consistent.
Thus column eight is expressible as a linear combination of the preceding columns.
Similar considerations show that columns three, four, and seven are linearly dependent
on their predecessors. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



3.2 LINEAR DEPENDENCE 147

A similar analysis proves that all of the nonzero rows are linearly independent of
their subsequent rows, so they are independent. �

As we saw in Example 3, sometimes the data structure in a set of vectors makes it
easy to determine their independence by inspection.

Example 4. Show that the set {v1 =
[
4 7 1 0

]
, v2 =

[
−2 0 1 1

]
, v3 =[

2 0 1 0
]

, and v4 =
[
1 0 2 0

]
} is linearly independent.

Solution. By looking at the second and fourth columns, we see that v1 and v2 are
independent of the others. And since v3 and v4 are clearly not multiples of each other,
they are independent of each other. Observing v3, v4, v1, v2 sequentially, we conclude
that the set is independent. �

How can we test if an arbitrary set of vectors is linearly dependent? There’s
an easy test for vectors in Rn

col. By Theorem 2 we need to see if we can write
c1v1 + c2v2 + · · · + cnvn = 0 with at least one nonzero ci; but as (1) demonstrates,

c1v1 + c2v2 + · · · + cnvn =
[
v1 v2 · · · vn

]
⎡
⎢⎢⎣

c1

c2

cn

⎤
⎥⎥⎦ = 0 (5)

amounts to a linear system of algebraic equations. It will possess nontrivial solutions
(other, that is, than c1 = c2 = · · · = cn = 0) only if the Gauss elimination algorithm
reveals the presence of free variables. This is easily detected from the final row echelon
form of

[
v1 v2 · · · vn

]
.

Example 5. Use Gauss elimination to verify that the vectors a1, a2, and a3 in
Example 1 are linearly dependent.

Solution. A row echelon form of
[
a1 a2 a3

]
was displayed earlier in the left portion

of (2); it shows that they are dependent, because the related system

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3
... 0

0 −2 −2
... 0

0 0 0
... 0

0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

has nontrivial solutions (in fact, an infinity of solutions). �

It should be clear that any linearly independent set of vectors in Rn
col can contain no

more than n vectors; the row echelon form of a matrix with more columns than rows
would have to indicate free parameters. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



148 VECTOR SPACES

Example 6. Show that in the vector space R3,2 of 3-by-2 matrices, the following
matrices are independent:

A =

⎡
⎣6 3

5 2
4 1

⎤
⎦ , B =

⎡
⎣1 0

0 0
0 0

⎤
⎦ , C =

⎡
⎣1 4

2 5
3 6

⎤
⎦ .

Solution. The test for dependence involves checking the expression c1A+c2B+c3C =
0. Although the matrices A, B, and C are presented in a rectangular format, this is a
term-by-term comparison, so we can regard each matrix as a column of data: the crucial
question becomes whether

c1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6
5
4
3
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 0

requires that each ci = 0. Gauss elimination reduces the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 1 1
... 0

5 0 2
... 0

4 0 3
... 0

3 0 4
... 0

2 0 5
... 0

1 0 6
... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

to the row echelon form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 1 1
... 0

0 − 5
6

7
6

... 0

0 0 28
5

... 0

0 0 0
... 0

0 0 0
... 0

0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whose only solution is c1 = c2 = c3 = 0. The matrices are linearly independent. �

Since independence reduces to a question of solvability, surely we can find an
application for the determinant somewhere. So we conclude this section with

Linear Independence of the Rows and Columns of a Square Matrix

Theorem 3. The rows (or the columns) of a square matrix A are linearly
independent if and only if det(A) �= 0.

Proof. If det(A) �= 0, the matrix A has an inverse so the only solution to AX= 0
is x = 0, that is the only linear combination of the columns of A that equals zero
is the trivial one; hence the columns are independent. Since det(AT) = det(A),
the same is true of the rows. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



3.2 LINEAR DEPENDENCE 149

If det(A) = 0, then (by the discussion in Section 2.5) A can be reduced by
elementary row operations to an upper triangular matrix U in row echelon form
whose determinant is also zero. But a square upper triangular matrix in row ech-
elon form with zero determinant must have all zeros in its last row. Therefore, the
corresponding row in the original matrix A was reduced to zero by subtracting
multiples of other rows; in other words, it was equal to a linear combination of
the other rows. Hence the rows of A are linearly dependent. Again, applying this
reasoning to AT demonstrates that A’s columns are also dependent.

In Example 3 of Section 2.4, we computed the determinant of the matrix

A =

⎡
⎢⎢⎣

2 3 4 0
5 6 3 0
2 5 3 7
2 2 2 2

⎤
⎥⎥⎦

to be 118. Therefore, we know its columns and its rows are linearly independent.
The issue of linear independence for vector spaces of functions is subtler than that

for Rm
col or Rm,n. Section 4.4 will address this topic.

Exercises 3.2

1. Which of the following vectors in R3
row lie in the span of the vectors a1 = [1 −1 2],

a2 = [2 5 6]?
(a) [1 6 7] (b) [3 4 8] (c) [1 −1 2] (d) [0 0 0]

2. Which of the following vectors in R3
row lie in the span of the vectors a1 = [1 0 1],

a2 = [2 0 1]?
(a) [1 0 −3] (b) [0 −1 2] (c) [1 0 2] (d) [0 0 0]

3. Given the row vectors a1 = [1 0 2 0], a2 = [1 1 1 1], a3 = [1 0 2 1], and
b1 = [1 −1 2 1], b2 = [−1 −1 −1 −1], b3 = [1 0 1 0], which of b1, b2, b3

is spanned by {a1, a2, a3}?

4. Given the row vectors a1 = [1 1 0 3 1], a2 = [0 1 1 3 2], a3 = [1 1 1 6 2], and
b1 = [−1 −1 0 −3 −1], b2 = [0 1 1 3 1], b3 = [2 3 2 12 5], which of b1, b2, b3

is spanned by {a1, a2, a3}?

5. Show that the sets {[1 0 0 1], [0 1 1 3], [2 −3 −3 −7]} and {[2 −2 −2 −4],
[0 −1 −1 −3]} span the same subspace of R4

row.

6. Show that the sets {[1 1 0 −1], [0 1 2 3], [−1 1 1 6]} and {[1 3 4 5],
[7 7 6 −5], [0 −1 −2 −3]} span the same subspace of R4

row.
In Problems 7–16 determine whether the given set of vectors is linearly inde-

pendent or linearly dependent in the prescribed vector space. If the vectors are
linearly dependent, find a non-trivial linear combination of them that equals the
zero vector.

7. [0 3 −1], [0 3 1] in R3
row. 
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8. [π 9], [7 e], [−1 800] in R2
row.

9. [−2 1 −1 1], [4 0 6 0], [5 4 −2 1] in R4
row.

10. [2 −4 3 −6]T , [2 0 0 0]T , [−5 0 5 0]T , [7 −3 8 −5]T in R4
col.

11.
[
2 + 3i 1 + i 4 + i

]
,
[
6 − 2i 2 − i 2 − 4i

]
,
[
−6 + 13i −1 + 5i 8 + 11i

]
in C3

row.

12. [1 2 1 0]T , [2 −2 0 2]T , [3π 0 π 5π]T in R4
col.

13. The rows of the matrix

⎡
⎣5 −1 2 3

0 3 6 −2
0 0 0 9

⎤
⎦ in R4

row.

14. The columns of the matrix

⎡
⎢⎢⎣
−4 5 2
0 0 1
0 2 2
0 0 4

⎤
⎥⎥⎦ in R4

col.

15.

[
2 3
−3 1

]
,

[
−8 −9
0 −4

]
,

[
8 10
−2 6

]
in R2,2.

16.

[
1 2 3
3 2 1

]
,

[
2 4 6
6 4 2

]
in R2,3.

17. Find necessary and sufficient conditions on the values of b and c so that the columns

of

⎡
⎣1 0 1

0 b 1
0 1 c

⎤
⎦ span R3

col.

18. Find necessary and sufficient conditions on the values of b and c so that the rows

of

⎡
⎣1 b 1

0 b 1
1 1 c

⎤
⎦ span R3

row.

19. For each of the following, decide whether the statement made is always True or
sometimes False.
(a) Any set of vectors that contains the zero vector is linearly dependent.

(b) If a set of three vectors is linearly dependent, then one of the vectors must be
a scalar multiple of one of the others.

(c) Every subset of a set of linearly dependent vectors is linearly dependent.

(d) If the columns of a square matrix A are linearly dependent, then det(A) = 0.

(e) The rows of any elementary row operation matrix are linearly independent.

20. If A is a 6-by-6 matrix whose second row is a scalar multiple of its fifth row, explain
why the columns of A are linearly dependent.

21. Explain why the following is true: If v1, v2, and v3 are linearly independent and v4

is not in Span{v1, v2, v3}, then the set {v1, v2, v3, v4} is linearly independent.

22. Prove that any four vectors in R3
col must be linearly dependent. What about n + 1

vectors in Rn
col?

23. Prove that if A, B, and C are linearly independent matrices in R3,3 and D is an
invertible 3-by-3 matrix, then AD, BD, and CD are linearly independent matrices. 
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24. Prove that if v1, v2, v3 are the columns of an n-by-3 matrix A and B is an invertible
3-by-3 matrix, then the span of the columns of AB is identical to Span{v1, v2, v3}.

25. Let A be an n-by-n matrix and x be an n-by-1 column vector. Explain why the
columns of Ax, A2x, A3x, . . . all lie in the span of the columns of A.

26. Let A be an n-by-n matrix and B be an invertible n-by-n matrix. Prove that if the
column vectors of A are linearly independent, then so are the columns vectors
of AB.

27. Given that the vectors v1, v2, v3 are linearly independent, show that the following
vectors are also linearly independent:
(a) w1 = 2v1 − 3v2, w2 = 4v1 − 3v2

(b) w1 = v1 − 3v2, w2 = 4v1 − 3v3, w3 = 2v2 − 3v3.

28. Prove that an n-by-n matrix A is invertible if and only if for any set of n lin-
early independent vectors v1, v2, . . . , vn in Rn

col, the set Av1, Av2, . . . , Avn is linearly
independent.

29. Prove that three vectors in R3
col are linearly dependent if and only if they are copla-

nar.
(
Hint: If v1, v2, and v3 are coplanar, and n is a normal to the plane in which

they lie, then the dot products vi · n are zero for i = 1, 2, 3. What does this imply
about the determinant of the matrix [v1 v2 v3]?

)

3.3 BASES, DIMENSION, AND RANK

In Section 3.1 we noted that the span of any set of vectors constitutes a subspace. We
observed that the solution space of the homogeneous system

⎡
⎢⎢⎢⎣

1 2 1 1 −1 0
... 0

1 2 0 −1 1 0
... 0

0 0 1 2 −2 1
... 0

⎤
⎥⎥⎥⎦ (1)

(the “null space” of its coefficient matrix) is given by

Span{
[
−2 1 0 0 0 0

]T
,
[
1 0 −2 1 0 0

]T
,
[
−1 0 2 0 1 0

]T},
(2)

and the solution space of the homogeneous differential equation

d3y/dx3 = 0

is given by Span{x2/2, x, 1}.
Now consider the subspace of R5

row spanned by

v1 =
[
1 1 0 0 0

]
, v2 =

[
0 0 0 3 −3

]
, v3 =

[
2 2 0 −2 2

]
, (3) 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



152 VECTOR SPACES

which could be described as the subspace in which the first two entries were equal,
the final two negatives of each other, and the third entry zero. Observe that v3 can be
generated by taking 2v1 − 2v2/3. This means that v3 is redundant in Span{v1, v2, v3},
since (by the linear combination composition principle) any vector expressible as a
linear combination of v1, v2, and v3 can be rearranged into a linear combination of
v1 and v2 alone. So it would be economical to drop v3 and regard the subspace as
Span{v1, v2}. But we can’t economize any further, since v1 and v2 are independent of
each other (since v2 is not a scalar times v1). We formalize this idea:

Basis

Definition 4. A basis for a space (or subspace) is a linearly independent set of
vectors that spans the (sub)space.

A basis for a (sub)space is therefore a “minimal spanning set,” in the sense that if any
vector is dropped from the basis, it will no longer span the space (the dropped vector
itself, for example, cannot be expressed as a linear combination of the others). It can
also be characterized as a “maximal linearly independent set,” in the sense that there
are no other vectors in the subspace that are independent of the basis (otherwise, the
basis wouldn’t have spanned the space).

An obvious basis for, say, R4
col (or, for that matter, C4

col) would the “canonical basis.”

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦, and

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦.

However the columns of any nonsingular square n-by-n matrix comprise a basis for
Rn

col; indeed, since the determinant of the matrix is nonzero, Cramer’s rule implies both
linear independence and the spanning property.

Example 1. Construct bases for the subspaces of R5
row considered in Example 1 of

Section 3.1:

(a) All “symmetric” vectors of the form
[
a b c b a

]
;

(b) All “antisymmetric” vectors of the form
[
a b 0 −b −a

]
;

(c) Those vectors all of whose entries are the same
[
a a a a a

]
;

(d) Those vectors whose second entry is zero
[
a 0 b c d

]
.

Solution. (a) Two obvious vectors in the subspace are v1 =
[
1 0 0 0 1

]
and

v2 =
[
0 1 0 1 0

]
. However, they don’t span the subspace, since everything in

Span{ v1, v2} will have zero in its third entry. So we throw in v3 =
[
0 0 1 0 0

]
. 
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The set {v1, v2, v3} is clearly independent because of the location of the zeros, and it
spans the space, as witnessed by the display

[
a b c b a

]
= av1 + bv2 + cv3.

(b) Proceeding similarly to (a), we find the basis
[
1 0 0 0 −1

]
and[

0 1 0 −1 0
]
.

(c) The single vector
[
1 1 1 1 1

]
spans the subspace.

(d) This space is spanned by the independent vectors
[
1 0 0 0 0

]
,[

0 0 1 0 0
]
,
[
0 0 0 1 0

]
, and

[
0 0 0 0 1

]
. �

Example 2. Find a basis for the subspace of R4
col of vectors whose entries add

up to zero.

Solution. This subspace is the null space for the matrix A =
[
1 1 1 1

]
. Since A

is already in row echelon form, the solutions to Ax = 0 are parametrized by back-
solving the augmented system

[
1 1 1 1

... 0
]
, yielding x4 = t1, x3 = t2, x2 =

t3, x1 = −t1 − t2 − t3, or

x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ = t1

⎡
⎢⎢⎣
−1
0
0
1

⎤
⎥⎥⎦ + t2

⎡
⎢⎢⎣
−1
0
1
0

⎤
⎥⎥⎦ + t3

⎡
⎢⎢⎣
−1
1
0
0

⎤
⎥⎥⎦ , (4)

and the vectors in this display form a basis. �

Change of Coordinates

In Example 2 of Section 3.2, we saw how to test whether a vector v in Rn
col lies in

the subspace spanned by {w1, w2, . . . , wk}; indeed, the possibility of a relation

v = c1w1 + c2w2 + · · · + ckwk (5)

is easily resolved by Gauss elimination, since (5) amounts to a linear system of n
equations in k unknowns:

[
v

]
= c1

[
w1

]
+ c2

[
w2

]
+ · · · + ck

[
wk

]
=

[
w1 w2 · · · wk

]
⎡
⎢⎢⎢⎣

c1

c2
...

ck

⎤
⎥⎥⎥⎦

[
v

]
=

[
w1 w2 · · · wk

][
c

]
. (6)

Gauss elimination decides the issue and supplies the values of the coefficients
cj when appropriate. For example, to express [2 4]T in terms of the vectors
{[1 1]T , [1−1]T} (which are independent and form a basis), we solve 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



154 VECTOR SPACES

[
2
4

]
=

[
1 1
1 −1

] [
c1

c2

]
(7)

and calculate [c1 c2]T = [3 −1]T .

Let’s focus on the relationship between v = [2 4]T and c = [3 −1]T in
equations (5–7). They are different vectors, of course; [3 −1]T is not the same,
numerically, as [2 4]T . But (5) states that [3 −1]T represents [2 4]T with respect
to the basis {[1 1]T , [1 −1]T}. We say that c = [3 −1]T gives the coordinates of
v = [2 4]T in the basis {w1, w2} = {[1 1]T , [1 −1]T}.

In fact, the “original” vector [2 4]T can be interpreted as giving the coordinates
of v in the canonical basis {[1 0]T , [0 1]T}. With this jargon, we interpret (6)
as a coordinate transformation from the {wj} basis to the canonical basis, with[

w1 w2 · · · wk

]
playing the role of a transition matrix.

If the {wj} basis spans the whole space Rn
col, that is, if k = n, (6) implies that[

w1 w2 · · · wn

]
is invertible, and that its inverse is a transition matrix from canonical

coordinates to {wj} coordinates. The Gauss elimination that we performed on (7) was,
of course, equivalent to multiplying by the inverse.

Now let’s address the issue of a general change of coordinates. That is, we have
two different (non)canonical bases, {w1, w2, . . . , wp} and {u1, u2, . . . , uq} for the same
subspace of Rn

col, and a vector v lying in the subspace. Thus

v = c1 w1 + c2 w2 + · · · + cp wp = d1 u1 + d2 u2 + · · · + dq uq. (8)

How are its coordinates c in the {wj} basis related to its coordinates d in the {uj} basis?
Again, matrix algebra resolves the problem easily; (8) is equivalent to[

w1 w2 · · · wp

][
c

]
=

[
u1 u2 · · · uq

][
d

]
. (9)

The right-hand side is given, so Gauss elimination answers our question.

Example 3. The subspaces of R3
col spanned by {[1 1 0]T , [0 1 1]T} and by

{[1 2 1]T , [1 0 −1]T} can be shown to be the same by the method of Example 2,
Section 3.2. Find the coordinates in the first basis for the vector whose coordinates
in the second basis are [1 2]T .

Solution. Inserting our data into equation (9) gives
⎡
⎣1 0

1 1
0 1

⎤
⎦
[

c1

c2

]
=

⎡
⎣1 1

2 0
1 −1

⎤
⎦
[

1
2

]
=

⎡
⎣ 3

2
−1

⎤
⎦ (10)
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or

⎡
⎢⎢⎢⎣

1 0
... 3

1 1
... 2

0 1
... −1

⎤
⎥⎥⎥⎦ , (11)

which row reduces to

⎡
⎢⎢⎢⎣

1 0
... 3

0 1
... −1

0 0
... 0

⎤
⎥⎥⎥⎦

Therefore, the coordinates are c1 = 3, c2 = −1. This can be verified:

3

⎡
⎣1

1
0

⎤
⎦ + (−1)

⎡
⎣0

1
1

⎤
⎦ = 1

⎡
⎣1

2
1

⎤
⎦ + 2

⎡
⎣ 1

0
−1

⎤
⎦
⎛
⎝=

⎡
⎣ 3

2
−1

⎤
⎦
⎞
⎠ . �

If p = q = n, the matrices in (9) are square and nonsingular, and the change-of-
coordinates rule can be expressed

[
c

]
=

[
w1 w2 · · · wk

]−1[
u1 u2 · · · uk

][
d

]
. (12)

Formula (12) is elegant, but we have seen that Gauss elimination is more effi-
cient than using inverses, as well as universally applicable. Problem 44 discusses an
alternative formulation.

Of course a (sub)space will typically have more than one basis. (For example, the
columns of any nonsingular 3-by-3 matrix form a basis for R3

col.) But it is not possible
for it to have one basis of, say, 3 vectors and another basis with 4 vectors, for the
following reason:

Cardinality of Bases

Theorem 4. If the vector space V has a basis consisting of n vectors, then
every collection of more than n vectors in the space must be linearly depen-
dent. Consequently, every basis for a given space contains the same number of
elements.

Proof. We take n to be 3 and prove that every set of four vectors is linearly depen-
dent. The generalization will then be easy to see. Let {v1, v2, v3} be the basis, 
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and {w1, w2, w3, w4} be any four vectors in the space. We shall devise a nontriv-
ial linear combination d1w1 + d2w2 + d3w3 + d4w4 that equals the zero vector.
First express the wi’s in terms of the vj’s (exactly as in the proof of the linear
combination composition principle of Section 3.1):

0 = d1w1 + d2w2 + d3w3 + d4w4

= d1(c
(1)
1 v1 + c(1)

2 v2 + c(1)
3 v3) + d2(c

(2)
1 v1 + c(2)

2 v2 + c(2)
3 v3)

+ d3(c
(3)
1 v1 + c(3)

2 v2 + c(3)
3 v3) + d4(c

(4)
1 v1 + c(4)

2 v2 + c(4)
3 v3)

= (c(1)
1 d1 + c(2)

1 d2 + c(3)
1 d3 + c(4)

1 d4)v1 + (c(1)
2 d1 + c(2)

2 d2 + c(3)
2 d3 + c(4)

2 d4)v2

+ (c(1)
3 d1 + c(2)

3 d2 + c(3)
3 d3 + c(4)

3 d4)v3.

Can we find dj’s not all zero such that

c(1)
1 d1 + c(2)

1 d2 + c(3)
1 d3 + c(4)

1 d4 = 0

c(1)
2 d1 + c(2)

2 d2 + c(3)
2 d3 + c(4)

2 d4 = 0 (13)

c(1)
3 d1 + c(2)

3 d2 + c(3)
3 d3 + c(4)

3 d4 = 0 ?

Of course! As noted at the end of Section 1.4, a system like (13)—homogeneous,
with fewer equations than unknowns—has an infinite number of solutions.

Theorem 4 motivates a new definition.

Dimension

Definition 5. The dimension of a vector space is the number of vectors in its
bases.

Therefore, the dimension of Rn
col, or Rn

row, is n. The dimension of Rm,n is mn. The
dimensions of the subspaces of R5

row in Example 1 are 3 for symmetric vectors, 2 for
antisymmetric vectors, 1 for vectors with all components equal, and 4 for vectors with
zero in the second entry.

Now we are going to turn to a discussion of the dimension of some subspaces that
are associated with a matrix.

Recall that the null space of a matrix A is the set of solutions to the system Ax = 0;
one could call it the set of vectors “annihilated” by A. Its dimension is called the nullity
of A.

The range of a matrix A is the set of vectors b for which the system Ax = b has
solutions. As we have seen, the range is the span of the columns of A (and hence is a
vector space). A basis for the range would be any maximal linearly independent subset 
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of the columns of A, and the dimension of the range is the number of columns in such
a basis. Similar considerations apply to the row space of A, the span of A’s rows.

These spaces are very easy to analyze if the matrix A is in row echelon form, as for
example

Aech =

⎡
⎢⎢⎢⎢⎣

α − − − − − −
0 β − − − − −
0 0 0 0 γ − −
0 0 0 0 0 δ −
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (14)

Recalling the discussion of a similar matrix in the preceding section, we see that the bold
entries (the leading nonzero elements in each row) “flag” a maximal set of independent
columns and a maximal set of independent rows. So these sets are bases for the range
and the row space respectively, whose common dimension is the rank of Aech. (Recall
from Section 1.4 that the rank of a row echelon matrix was defined to be the number of
nonzero rows). If we contemplate back-solving Aechx = 0, the structure of the solution
formula would look like

x7 = t1, x6 = At1, x5 = Bt1, x4 = t2, x3 = t3,

x2 = Ct1 + Dt2 + Et3, x1 = Ft1 + Gt2 + Ht3

or

x = t1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F

C

0
0
B

A

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G

D

0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H

E

1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Every non-flagged column introduces a free parameter and an independent column
vector into the solution expression, so (15) demonstrates that the dimension of the null
space equals the number of unflagged columns. Therefore the total number of columns
of a row echelon matrix equals the dimension of the range plus the dimension of the
null space (the nullity). In our example, rank = 4, nullity = 3, and they sum to 7, the
number of columns.

What are the dimensions of these spaces for a “full” matrix, not in row echelon
form? We are going to prove that the row operations of Gauss elimination preserve the
dimensions of a matrix’s range and row space (!). This will show that we can find the
dimensions of these subspaces by using the forward portion of the Gauss elimination
algorithm to reduce the matrix to row echelon form, and reading off the dimensions as
demonstrated above. Our proof, then, will justify the following generalizations: 
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Range, Row Space, Null Space, and Rank

Theorem 5. The dimension of the range (or column space) of any matrix equals
the dimension of its row space.2

(You may be surprised by Theorem 5. Even if a matrix has 1000 rows and 5
columns, the maximal number of linearly independent rows is limited by the
number of independent columns.)

Definition 6. The rank of a matrix is the dimension of its row space (or column
space). A matrix is said to be of full rank if its rank equals its number of columns
or rows.

(The following theorem generalizes equation (2) of Section 1.4.)

Theorem 6. The rank plus the nullity of any matrix equals the total number of
columns.

We turn to the proof that Gauss elimination preserves column and row dependen-
cies. We begin with the column analysis. Recall that the test for linear dependence or
independence of a set of vectors is whether or not 0 can be written as a nontrivial linear
combination. The next theorem says the test can be applied either to the columns of A
or those of Aech.

Elementary Row Operations Preserve Column Dependence

Theorem 7. Suppose the matrix A is reduced to a row echelon form Aech by the
elementary row operations of Gauss elimination. Then if a linear combination of
the columns of A equals 0, the same linear combination of the columns of Aech

equals 0 also. Conversely if a linear combination of the columns of Aech equals 0,
the same linear combination of the columns of A equals 0 also. Consequently, the
dimension of the column space of A equals the dimension of the column space
of Aech.

Proof. In Example 2 of Section 2.1 we saw how Aech can be represented as

Aech = EpEp−1 · · ·E2E1A

where the E . . . matrices express elementary row operations (and thus are
invertible). It follows that Ac is zero if, and only if, Aechc is zero.

2Some authors say “the row rank equals the column rank.” Also the wording “the number of linearly
independent columns is the same as the number of independent rows” sometimes appears. The latter is haz-
ardous, however; a statement like “A has two independent rows” invites the meaningless question “Which
rows are they?”.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



3.3 BASES, DIMENSION, AND RANK 159

The effect of elementary row operations on the rows is much simpler, because the
rows of a matrix after a row operation are linear combinations of the rows before the
operation (since we merely add a multiple of one row to another, multiply a row by a
nonzero scalar, or switch two rows). By the linear combination composition principal
(Section 3.1), then, the succession of operations that reduce A to Aech render the rows
of Aech as linear combinations of the rows of A. Likewise, the rows of A are linear
combinations of the rows of Aech, since the elementary row operations are reversible.
The row spaces of A and Aech thus coincide and we have

Elementary Row Operations Preserve Row Dependence

Theorem 8. Suppose the matrix A is reduced to a row echelon form Aech by the
elementary row operations of Gauss elimination. Then the row space of A equals
the row space of Aech. (In particular they have the same dimension.)

Example 4. Find the row rank, column rank, and nullity of the matrix

A =

⎡
⎣2 1 0 6 4

0 4 0 2 2
2 1 0 3 1

⎤
⎦ .

Also find bases for its row space, column space, and null space.

Solution. The forward portion of the Gauss elimination algorithm reduces A to the
row echelon form

Aech =

⎡
⎣2 1 0 6 4

0 4 0 2 2
0 0 0 −3 −3

⎤
⎦ ,

with no row exchanges. All three rows of Aech are independent, so the row rank and
column rank are 3. The original rows of A, then, are independent, and they form a
basis for its row space. The first, second, and fourth (or fifth) columns of Aech are
independent, so the corresponding columns of A form a basis for its column space.
The nullity is 5 minus 3, or 2. Back substitution shows the solutions of Ax = 0 to be

x = t1

⎡
⎢⎢⎢⎢⎣

1
0
0
−1
1

⎤
⎥⎥⎥⎥⎦ + t2

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦ ,

which displays a basis for the null space. �

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



160 VECTOR SPACES

In closing, we wish to make three remarks: two on the practical aspects of the
calculations we have discussed, and one of little practical value at all.

Remark (i). The rank of the matrix

[ 1
3 1
1 3

]
is obviously 1; the second column equals

three times the first. However if the matrix is entered into a 12-digit calculator or com-

puter, its data are truncated to

[
0.333333333333 1

1 3

]
, and the machine will determine

its rank to be 2 (its determinant is −10−12, its columns are linearly independent). And
of course the same effect occurs in binary computers. An enlightened matrix software
package must issue a warning to the user, when the data renders decisions involving
linear independence or rank to be questionable.

Remark (ii). Although from a theoretical point of view all bases for a vector space are
equivalent, some are better than others in practice. For instance, the following two sets
are each bases for R2

col :

v1 =

[
3
1

]
and v2 =

[
1
3

]
; w1 =

[
0.333333333333

1

]
and w2 =

[
1
3

]
.

However if we try to write the simple vector

[
2
0

]
as linear combinations using these

two bases,

[
2
0

]
=

3
4

[
3
1

]
− 1

4

[
1
3

]
,

[
2
0

]
= −6, 000, 798, 970, 513.65

[
0.333333333333

1

]
+ 2, 000, 266, 323, 504.55

[
1
3

]
,

it becomes clear that in many applications the {v1, v2} basis would be superior.

Remark (iii). In any vector space, the zero vector—alone—qualifies as a subspace.
Does it have a basis? What is its dimension? Strictly speaking, there is no lin-
early independent set of vectors that span 0, so it has no basis and no dimension.
A diligent review of our theorems shows that we should define its dimension to
be zero.

Exercises 3.3

1. Find a basis for the vectors in R6
row whose first three entries sum to zero and whose

last three entries sum to zero.

2. Find a basis for the subspace of R6
row whose vectors have the form[

a a b b c c
]
.

3. Find a basis for the subspace of R6
row whose vectors have the form[

a −a b −b c −c
]
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3.3 BASES, DIMENSION, AND RANK 161

In Problems 4–12, find bases for the row space, column space, and null space
of the given matrix. Some of these matrices were previously reduced to row ech-
elon form in the cited sections of the book. (Don’t forget to account for the row
exchanges.)

4.

⎡
⎣1 2 2

2 1 1
1 1 3

⎤
⎦ (Section 1.1) 5.

⎡
⎣ 2 1 4

3 3 0
−1 4 2

⎤
⎦ (Section 1.2)

6.

⎡
⎢⎢⎣

0.202131 0.732543 0.141527 0.359867
0.333333 −0.112987 0.412989 0.838838
−0.486542 0.500000 0.989989 −0.246801
0.101101 0.321111 −0.444444 0.245542

⎤
⎥⎥⎦ (Section 1.1)

7.

⎡
⎢⎢⎢⎢⎣

0 2 1 1 0
2 4 4 2 2
3 6 6 0 0
0 −2 −1 −2 2
0 2 1 2 4

⎤
⎥⎥⎥⎥⎦ (Section 1.3) 8.

⎡
⎢⎢⎢⎢⎣

1 0 1
1 1 1
0 1 1
3 3 6
1 2 2

⎤
⎥⎥⎥⎥⎦ (Section 1.3)

9.

⎡
⎢⎢⎣

1 0 1
1 1 1
0 1 1
3 3 6

⎤
⎥⎥⎦ (Section 1.3)

10.

⎡
⎣1 2 1 1 −1 0

1 2 0 −1 1 0
0 0 1 2 −2 1

⎤
⎦ (Section 1.3)

11.

⎡
⎢⎢⎣

2 2 2 2 2
2 2 4 6 4
0 0 2 3 1
1 4 3 2 3

⎤
⎥⎥⎦ 12.

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦

13. Suppose the matrix B is formed by deleting some rows and columns from the
matrix A (“B is a submatrix of A”). Can the rank of B exceed the rank of A?

14. Prove that if {v1, v2, . . . , vn} constitutes a basis for Rn
col and det(A) �= 0, then

{Av1, Av2, . . . , Avn} also constitutes a basis for Rn
col.

In Problems 15–20 find the dimension of, and a basis for, the indicated subspace
of R5,5.

15. The subspace of upper triangular matrices.

16. The subspace of symmetric matrices.

17. The subspace of antisymmetric (or skew-symmetric: A = −AT ) matrices.

18. The subspace of matrices all of whose row sums are zero.

19. The subspace of matrices all of whose column sums are zero.

20. The subspace of matrices all of whose row sums and column sums are zero. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



162 VECTOR SPACES

21. What is the rank of a matrix whose entries are all ones?

22. What is the rank of a “checkerboard” matrix, whose (i, j)th entry is (−1)i+j?

23. What is the rank of the rotation matrix of Section 2.2? The orthogonal projection
matrix? The mirror reflection matrix?

24. Given k linearly independent vectors in Rn
col with k < n, describe a procedure for

finding (n − k) additional vectors that, together with the original k vectors, form
a basis for Rn

col. In fact, show that each of the new vectors can be chosen from
the canonical basis (only one nonzero entry). (Hint: Form the matrix whose first
k columns are the given vectors, and append n more columns formed from the
canonical basis vectors; then reduce to row echelon form.)

25. Find a basis for R3
row containing

[
1 2 3

]
and two canonical basis vectors.

26. Show that if v and w are nonzero vectors in Rn
col, then A := vwT has rank one. Is

the converse true?

27. Find a basis for R4
row containing

[
1 2 3 4

]
and

[
0 1 2 2

]
and two canon-

ical basis vectors.

28. If the rank of an m-by-n matrix A is r, describe how you could factor A into an
m-by-r matrix B and an r-by-n matrix C : A = BC. (Hint: Let B equal a matrix
of r independent columns of A. Then each of A’s columns can be expressed as Bc.
Assemble C out of the vectors c.) What is the factored form of a rank 1 matrix?

29. Carry out the factorization in Problem 28 for the matrix

⎡
⎣1 2 1 1 −1 0

1 2 0 −1 1 0
0 0 1 2 −2 0

⎤
⎦ .

30. Carry out the factorization in Problem 28 for the matrix

⎡
⎣1 2 1 1 −1 0

1 2 0 −1 1 0
0 0 1 2 −2 1

⎤
⎦ .

31. For what values of α (if any) do the vectors [0 1 α], [α 0 1], and [α 1 1 +α] form
a basis for R3

row?

For Problems 32–35 it may be helpful to refer to the displays of typical row
echelon forms (a)–(f) in Section 1.4.

32. What is the relation between the rank of the m-by-n matrix A, the dimension of the
null space of AT , and m?

33. If A is 23-by-14 and its rank is 10, what are the dimensions of the null spaces of
A and AT?

34. If the rank of an m-by-n matrix A is 7 and its null space has dimension 4, what can
you say about m and n?

35. Construct a two-dimensional subspace of R3
row that contains none of the vectors[

1 0 0
]

,
[
0 1 0

]
, or

[
0 0 1

]
.

36. If A is a 7-by-8 matrix and the dimension of its null space is 1, describe its column
space.

37. Let A be an m-by-n matrix and B be n-by-p. Show that
rank(AB) ≤ min{rank(A), rank(B)}.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



3.3 BASES, DIMENSION, AND RANK 163

38. Let A and B be matrices with the same number of rows but possibly different
numbers of columns. Let C be the augmented matrix C = [A|B]. Prove that
rank(C) ≤ rank(A) + rank(B).

39. Do you recognize the patterns of numbers in the following matrices, if they are
read left-to-right and top-to-bottom (“sinistrodextrally”)?

G =

⎡
⎣ 2 4

8 16
32 64

⎤
⎦ ; A =

⎡
⎣1 2 3 4

5 6 7 8
9 10 11 12

⎤
⎦ ;

F =

⎡
⎣ 1 1 2 3 5 8

13 21 34 55 89 144
233 377 610 987 1597 2584

⎤
⎦?

The data in G constitute a geometric sequence a, a2, a3, a4, . . .. Those in A form an
arithmetic sequence a, a + r, a + 2r, a + 3r, a + 4r, . . .. The numbers in F are drawn
from the Fibonacci sequence, where each entry is the sum of the two preceding
entries. For m, n > 1,
(a) what is the rank of the m-by-n matrix constructed from a geometric sequence?

(b) what is the rank of the m-by-n matrix constructed from an arithmetic sequence?

(c) what is the rank of the m-by-n matrix constructed from the Fibonacci
sequence?

40. The coordinates of a vector v in R3
col are [2 2 2] with respect to the basis

{[1 1 1]T , [1 1 0]T , [1 0 0]T}. Find its coordinates with respect to the basis
{[1 1 0]T , [0 1 1]T , [1 0 1]T}.

41. The coordinates of a vector v in R3
col are [1 2 −1] with respect to the basis

{[1 1 0]T , [1 0 1]T , [0 1 1]T}. Find its coordinates with respect to the basis
{[1 1 1]T , [1 1 0]T , [1 0 0]T}.

42. The deliberations of Example 2, Section 3.2 and the subsequent discussion showed
that the bases {[1 1 1 0], [2 0 1 0]} and {[8 4 6 0], [5 1 3 0]} span the same subspace
of R4

row. What are coordinates, in the first basis, of the vector whose coordinates in
the second basis are [2 0]?

43. The deliberations of Example 2, Section 3.2 and the subsequent discussion showed
that the bases {[1 1 1 0], [2 0 1 0]} and {[8 4 6 0], [5 1 3 0]} span the same subspace
of R4

row. What are coordinates, in the second basis, of the vector whose coordinates
in the first basis are [2 2]?

44. An alternative formalism for changing coordinates with respect to two bases
goes as follows. Let us return to equation (9), where {w1, w2, . . . , wp} and
{u1, u2, . . . , uq} are bases for the same subspace of Rn

col, and v has unknown
coordinates c in the first subspace and known coordinates d in the second.
(a) Rewrite (9) as Wc = Ud, with the obvious definitions of W and U, and mul-

tiply on the left by WT to obtain WTWc = WTUd. The matrix WTW is the
“Gram matrix” for the vectors wj. Show that the (i, j)th entry of WTW is the

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



164 VECTOR SPACES

dot product of wi and wj, and that the (i, j)th entry of WTU is the dot product
of wi and uj.

(b) Show that the Gram matrix of a set of linearly independent vectors is always
nonsingular. (Hint: if WTWx = 0 then xTWTWx = (Wx) · (Wx) = 0;
consider the implications when {w1, w2, . . . , wp} are independent.)

(c) Derive the rule for changing coordinates c = (WTW)−1WTUd.

3.4 SUMMARY

The structural similarities shared by solution sets of linear algebraic equations, gen-
eral solutions of linear differential equations, and vectors in two and three dimensions
give rise to the concept of an abstract vector space, characterized by the operations of
addition of vectors to vectors and multiplication of vectors by scalars. Indeed, vector
space theory can be summarized in a nutshell as the study of the varieties and properties
of the linear combinations c1v1 + c2v2 + · · · + cnvn, where the ci’s are scalars and the
vi’s are vectors. A subset of a vector space is a subspace if it contains all of its linear
combinations. The set of all linear combinations of a given set of vectors is a subspace
known as the span of the set.

Linear Independence

A set of distinct vectors is said to be linearly independent if none of the vectors can be
expressed as a linear combination of the others; or, equivalently, if the only linear com-
bination that equals zero is the trivial one (with all coefficients zero). Gauss elimination
can be used to decide the independence of a set of column vectors. If a matrix is in row
echelon form, all of its nonzero rows are independent, as are all of its columns that
contain pivot elements. The rows and the columns of a square matrix are independent
if and only if its determinant is nonzero.

Bases, Dimension, and Rank

A basis for a (sub)space is a linearly independent set that spans the (sub)space. All bases
for a particular (sub)space contain the same number of elements, and this number is the
dimension of the (sub)space. The dimension of the span of the columns of any matrix
equals the dimension of the span of its rows. The rank of the matrix, which is this
common dimension, is preserved by the elementary row operations. The nullity of a
matrix A is the dimension of the subspace of vectors x such that Ax = 0. The number
of columns of A equals the sum of its rank and its nullity.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4
ORTHOGONALITY

4.1 ORTHOGONAL VECTORS AND THE
GRAM–SCHMIDT ALGORITHM

In this section, we shall extend the notions of length and orthogonality to vector spaces
of arbitrary dimension.

Recall that the basic computation in forming a matrix product is the dot product,
identified in Section 2.1 via the formula

v · w = [v1 v2 · · · vn] · [w1 w2 · · · wn] = v1w1 + v2w2 + · · · + vnwn.

The matrix notation for this combination is vwT if the vectors are in Rn
row, and vTw if

the vectors are in Rn
col.

From calculus, recall that the dot product has a geometric interpretation. In two or
three dimensions, if the angle between v and w is denoted by θ (as in Figure 4.1), and
the lengths of the vectors are denoted by ‖v‖ and ‖w‖, then

v · w = ‖v‖‖w‖ cos θ. (1)

In particular, v and w are perpendicular or orthogonal if v · w = 0. The length of v
(in R3) is given, via the Pythagorean theorem, by

‖v‖ = (v · v)1/2 = (v2
1 + v2

2 + v2
3)

1/2,

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



166 ORTHOGONALITY

w

v

θ

Fig. 4.1 Constituents of the dot product.

and if v �= 0 the vector v/‖v‖ is a unit vector (its length is unity). In Example 2 of
Section 2.2, we pointed out that the orthogonal projection of v onto the direction of a
unit vector n is given by the formula (n · v)n (see Figure 2.2).

We now extend the notions of length and orthogonality to higher dimensions by
using the inner product.

Norm and Orthogonality in Rn
col

Definition 1. The Euclidean norm (or simply “norm”) of a vector v =
[v1 v2 · · · vn] in Rn

row is given by

‖v‖ := (v · v)1/2 = (v1
2 + v2

2 + · · · + vn
2)1/2,

and similarly for v in Rn
col.

Two vectors v and w are orthogonal if v · w = 0. An orthogonal set of vectors is a
collection of mutually orthogonal vectors. If, in addition, each vector in an orthogonal
set is a unit vector, the set is said to be orthonormal.

The orthogonal projection of a vector v onto a unit vector n in Rn
col or Rn

row is the
vector (v · n)n.

Note the following:

• By convention, we have dictated that the zero vector is orthogonal to all other
vectors in the space.

• Any nonzero vector can be rescaled into a unit vector by dividing by its norm:
vunit := v/‖v‖.

• After v has been orthogonally projected onto the unit vector n, the residual
v − (v · n)n is orthogonal to n:

n · [v − (v · n)n] = n · v − (v · n)n · n = n · v − (v · n)(1) = 0. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.1 ORTHOGONAL VECTORS AND THE GRAM–SCHMIDT ALGORITHM 167

Linear combinations of orthogonal vectors are convenient to deal with because the
coefficients are easily “isolated”; to extract, say, c1 from c1v1 +c2v2 + · · ·+cnvn, simply
take the dot product with v1; the result is c1v1·v1+c2v1·v2+· · ·+cnv1·vn = c1‖v1‖2+(0).
The other cj’s are annihilated.

This makes it easy to show that orthogonality of a set of (nonzero) vectors is a
stronger property than independence. To see why only the trivial linear combination
gives zero,

c1v1 + c2v2 + · · · + cnvn = 0, (2)

take the dot product of (2) with each vj in turn; the result is cj‖vj‖2 = 0, and since the
vectors are nonzero, each coefficient cj must be zero.

It follows that an orthogonal set of nonzero vectors is an orthogonal basis for the
space it spans. An orthogonal basis is a very valuable computational tool, because the
“isolation trick” makes it very easy to express any vector w as a linear combination of
the vectors in the basis.

Example 1. Let

v1 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

1
1
−1
−1

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

1
−1
1
−1

⎤
⎥⎥⎦ , v4 =

⎡
⎢⎢⎣

1
−1
−1
1

⎤
⎥⎥⎦ , and w =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ .

The (nonzero) vectors v1, v2, v3, v4 are mutually orthogonal (mentally verify this), and
since there are four of them they form an orthogonal basis for R4

col. Express w as a
linear combination of v1, v2, v3, v4.

Solution. Normally to express one vector in terms of others we would assemble a
matrix out of the columns,

A =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦ ,

and solve Ac = w for the coefficients cj. But look how easy it is to extract the cj from

w = c1v1 + c2v2 + c3v3 + c4v4

when we have orthogonality; premultiplying this equation by vT
1 , vT

2 , vT
3 , vT

4 in turn
we find

c1 = vT
1 w/vT

1 v1 =
1 + 2 + 3 + 4
1 + 1 + 1 + 1

= 2.5, c2 = vT
2 w/vT

2 v2 =
1 + 2 − 3 − 4
1 + 1 + 1 + 1

= −1,

c3 = vT
3 w/vT

3 v3 =
1 − 2 + 3 − 4
1 + 1 + 1 + 1

= −0.5, c4 = vT
4 w/vT

4 v4 =
1 − 2 − 3 + 4
1 + 1 + 1 + 1

= 0.

(3) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



168 ORTHOGONALITY

Thus,

w = 2.5v1 − v2 − 0.5v3. �

This task is made even easier if we first rescale {v1, v2, v3, v4} to be unit vectors.

Example 2. Express w in Example 1 as a linear combination of the orthonormal set

vunit
1 =

1√
4

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.5
0.5
0.5
0.5

⎤
⎥⎥⎦ , vunit

2 =

⎡
⎢⎢⎣

0.5
0.5
−0.5
−0.5

⎤
⎥⎥⎦ ,

vunit
3 =

⎡
⎢⎢⎣

0.5
−0.5
0.5
−0.5

⎤
⎥⎥⎦ , vunit

4 =

⎡
⎢⎢⎣

0.5
−0.5
−0.5
0.5

⎤
⎥⎥⎦ .

Solution. Isolating the coefficients in

w = c1vunit
1 + c2vunit

2 + c3vunit
3 + c4vunit

4 (4)

we obtain (note the denominators that appeared in (3) now become ones)

c1 =
(
vunit

1

)T
w/(1) = 5, c2 =

(
vunit

2

)T
w/(1) = −2, (5)

c3 =
(
vunit

3

)T
w/(1) = −1, c4 =

(
vunit

4

)T
w/(1) = 0.

Hence w = 5vunit
1 − 2vunit

2 − vunit
3 . �

For future reference, we note the generalizations of formulas (3)–(5):

Orthogonal (Orthonormal) Basis Expansions

Theorem 1. Let {v1, v2, . . . , vm} be an orthogonal basis for the vector space V ,
and let {vunit

1 , vunit
2 , . . . , vunit

m } be an orthonormal basis. Then any vector w in V
can be expressed as

w =
w · v1

v1 · v1
v1 +

w · v2

v2 · v2
v2 + · · · +

w · vm

vm · vm
vm (6)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.1 ORTHOGONAL VECTORS AND THE GRAM–SCHMIDT ALGORITHM 169

or

w = (w · vunit
1 )vunit

1 + (w · vunit
2 )vunit

2 + · · · + (w · vunit
m )vunit

m . (7)

Moreover,

‖w‖2 = (w · vunit
1 )2 + (w · vunit

2 )2 + · · · + (w · vunit
m )2. (8)

(Identity (8) follows easily by evaluating w · w using (7).)
Stimulated by these examples, we are led to ask how do you find an orthogonal

basis? One answer is given by the Gram–Schmidt algorithm.

Gram–Schmidt Algorithm

To replace a collection of (nonzero) vectors {v1, v2, v3, . . . , vm} by an
orthogonal set with the same span, first set

w1 := v1. (9)

Then subtract off, from v2, its orthogonal projection onto wunit
1 :

w2 := v2 − (v2 · wunit
1 )wunit

1 = v2 − (v2 · w1)w1/(w1 · w1). (10)

(As previously noted, the residual w2 of the projection of v2 onto wunit
1 is orthog-

onal to wunit
1 and hence to w1; See Figure 4.2(a).) Continue to subtract off in

succession, from each vj, its orthogonal projection onto the previous nonzero
wunit

k ’s:

w3 := v3 − (v3 · wunit
1 )wunit

1 − (v3 · wunit
2 )wunit

2 [Figure 4.2(b)]
... (11)

wm := vm − (vm · wunit
1 )wunit

1 − (vm · wunit
2 )wunit

2

− (vm · wunit
3 )wunit

3 − · · · − (vm · wunit
m−1)w

unit
m−1.

We ignore any vectors wk that turn out to be zero. The set {w1, w2, w3, . . . , wm},
with the zero vectors deleted, will then be an orthogonal basis spanning the same
subspace as {v1, v2, v3, . . . , vm}.

To verify the claim in the algorithm, note the following:

• each wk, k � 2, is orthogonal to w1, w2, . . . , wk−1, and so {w1, w2, . . . , wm}
are all mutually orthogonal; 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



170 ORTHOGONALITY

w2

w1 =v1

w2

v2(a)

w3 w3

w2

w1

v3
(b)

Fig. 4.2 Gram–Schmidt algorithm. (a) Two dimensions. (b) Three dimensions.

• each wk is a linear combination of the vj’s, so the span of the wk’s is contained in
the span of the vk’s;

• if a particular wk turns out to be zero, the corresponding vk is linearly dependent on
the preceding vj’s, so the maximal number of independent vj’s equals the number
of nonzero wj’s.

Thus the number of nonzero wj’s equals the dimension of Span{v1, v2, . . . , vm},
and the nonzero wj’s are independent. Consequently, they are a basis for
Span{v1, v2, . . . , vm}.

Example 3. Use the Gram–Schmidt algorithm to find an orthonomal basis for the
span of the following vectors:

v1 =

⎡
⎢⎢⎢⎣

2

2

1

0

⎤
⎥⎥⎥⎦ , v2 =

⎡
⎢⎢⎢⎣

6

−2

1

−2

⎤
⎥⎥⎥⎦ , v3 =

⎡
⎢⎢⎢⎣

2

−2

0

1

⎤
⎥⎥⎥⎦ , v4 =

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.1 ORTHOGONAL VECTORS AND THE GRAM–SCHMIDT ALGORITHM 171

Solution. We take w1 = v1 as in (9). Since w1 · w1 = ‖w1‖2 = 9, we get from (10),

wunit
1 =

1√
9

w1 =

⎡
⎢⎢⎣

2/3
2/3
1/3

0

⎤
⎥⎥⎦ ,

w2 =

⎡
⎢⎢⎣

6
−2
1
2

⎤
⎥⎥⎦−

⎧⎪⎪⎨
⎪⎪⎩
[
6 −2 1 2

]
⎡
⎢⎢⎣

2/3
2/3
1/3

0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎣

2/3
2/3
1/3

0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

6
−2
1
2

⎤
⎥⎥⎦− {3}

⎡
⎢⎢⎣

2/3
2/3
1/3

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
−4
0
2

⎤
⎥⎥⎦,

wunit
2 =

1√
36

⎡
⎢⎢⎣

4
−4
0
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2/3
−2/3

0
1/3

⎤
⎥⎥⎦ .

Similarly,

w3 =

⎡
⎢⎢⎣

2
−2
0
1

⎤
⎥⎥⎦−

[
2 −2 0 1

]
⎡
⎢⎢⎣

2/3
2/3
1/3

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2/3
2/3
1/3

0

⎤
⎥⎥⎦−

[
2 −2 0 1

]
⎡
⎢⎢⎣

2/3
−2/3

0
1/3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2/3
−2/3

0
1/3

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

(implying that v3 is not linearly independent of v1 and v2);

w4 = · · · =

⎡
⎢⎢⎣
−2/9
2/9

0
8/9

⎤
⎥⎥⎦ , wunit

4 =

⎡
⎢⎢⎣
−
√

2/6√
2/6
0

2
√

2/3

⎤
⎥⎥⎦ .

The vectors wunit
1 , wunit

2 , and wunit
4 form an orthonormal basis for Span{v1, v2,

v3, v4}. � 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



172 ORTHOGONALITY

In Section 4.2, we will see how the introduction of a new type of matrix facilitates
the incorporation of the concepts of the present section into our matrix language.

Exercises 4.1

1. Verify that the vectors
{[

3/5 4/5
]

,
[
−4/5 3/5

]}
form an orthonormal set and

express
[
5 10

]
as a linear combination of them.

2. Verify that the vectors {
[
1/
√

2 1/
√

2
]

,
[
1/
√

2 −1/
√

2
]
} form an orthonormal

set and express
[
2 4

]
as a linear combination of them.

3. Verify that the vectors
{ [

1/3 2/3 2/3
]

,
[
−2/3 −1/3 2/3

]
,
[
−2/3 2/3 −1/3

] }

form an orthonormal set and express
[
3 6 9

]
as a linear combination of them.

4. Verify that the vectors
{ [

1/2 1/2 1/2 1/2
]

,
[
1/2 −1/2 1/2 −1/2

]
[
−1/2 −1/2 1/2 1/2

]
,
[
1/2 −1/2 −1/2 1/2

] }

form an orthonormal set and express
[
1 2 3 4

]
as a linear combination of

them.

In Problems 5–10, use the Gram–Schmidt algorithm to construct a set of
orthonormal vectors spanning the same space as the given set.

5.
[
−8 6

]
and

[
−1 7

]
.

6.
[
1 2 2

]
and

[
2 3 4

]
.

7.
[
1 −1 1 −1

]
and

[
3 −1 3 −1

]
.

8.
[
1 1 1 1

]
,
[
1 0 1 0

]
, and

[
4 0 2 −2

]
.

9.
[
2 2 −2 −2

]
,
[
3 1 −1 −3

]
, and

[
2 0 −2 −4

]
.

10.
[
−1 1 −1 1

]
,
[
2 0 2 0

]
, and

[
3 1 1 −1

]
.

11. If you just purchased an iGram—a device that rapidly performs the Gram–Schmidt
algorithm on any set of vector inputs—what inputs would you send it to solve the
following?
(a) Find a vector orthogonal to [5 7].

(b) Find two vectors orthogonal to [1 2 3] and to each other.

In Problems 12–15 append the canonical basis to the given family and apply the
Gram–Schmidt algorithm to find the requested vectors.

12. Find a nonzero vector orthogonal to the family in Problem 6.

13. Find a nonzero vector orthogonal to the family in Problem 8.

14. Find a nonzero vector orthogonal to the family in Problem 9.

15. Find two nonzero vectors orthogonal to the family in Problem 7 and to each other. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.1 ORTHOGONAL VECTORS AND THE GRAM–SCHMIDT ALGORITHM 173

16. Find an orthonormal basis for the subspace of R3
row formed by vectors [x y z] in the

plane 3x − y + 2z = 0.

17. Find an orthonormal basis for the subspace of R4
row formed by vectors [x y z w] in

the hyperplane 2x − y + z + 3w = 0.

18. Find an orthonormal basis for the null space in R3
col of the matrix

A =

⎡
⎣ 1 −3 0
−2 6 0
1 3 0

⎤
⎦ .

19. Find an orthonormal basis for the null space in R4
col of the matrix

A =

[
2 3 1 0
1 1 1 1

]
.

20. The polar coordinate description of a two-dimensional vector v is given by v =[
x
y

]
=

[
r cos θ
r sin θ

]
. Use the characterization v1 · v2 = 0 to demonstrate that v1 and

v2 are orthogonal if their polar angles θ1 and θ2 differ by 90◦.

21. The spherical coordinate description of a three-dimensional vector v is given by

v =

⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣r sinφ cos θ

r sinφ sin θ
r cosφ

⎤
⎦.

Using the characterization v1 · v2 = 0, derive conditions on the spherical angles
θ1, φ1, θ2, φ2 guaranteeing that v1 and v2 are orthogonal.

22. The calculus identity v1·v2 = ‖v‖ ‖w‖ cos θ implies that |v1·v2| ≤ ‖v‖ ‖w‖ in 2 or
3 dimensions. The Cauchy–Schwarz inequality extends this to higher dimensions:

|vTw| ≤ ‖v‖ ‖w‖ for all vectors in Rn
col.

Prove the inequality by completing the following steps:
(a) Express (v + xw)T(v + xw) as a quadratic polynomial in x.

(b) Use the quadratic formula to express the roots of this polynomial.

(c) What does the fact (v + xw)T(v + xw) ≥ 0 tell you about the roots?

(d) Use these observations to prove the inequality.

23. Prove that equality holds in the Cauchy–Schwarz inequality (Problem 22) if and
only if v and w are linearly dependent.

24. Use the Cauchy–Schwarz inequality (Problem 22) to give a proof of the triangle
inequality ‖v+w‖ ≤ ‖v‖+‖w‖ for any v, w in Rn

col. (Hint: Consider (v+w)·(v+w).)

25. Prove the parallelogram law: ‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖. (Draw a
two-dimensional sketch to see why this identity is so named.) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



174 ORTHOGONALITY

4.2 ORTHOGONAL MATRICES

The following theorem motivates the definition of a new, extremely useful, class of
matrices.

Characterization of Norm-Preserving Matrices

Theorem 2. If Q is a square matrix with real number entries, the following
properties are all equivalent:

(i) The inverse of Q is its transpose (i.e., QQT = QTQ = I);

(ii) The rows of Q are orthonormal;

(iii) The columns of Q are orthonormal;

(iv) Q preserves inner products: vTw = (Qv)T(Qw) for any v, w;

(v) Q preserves Euclidean norms: ‖v‖ = ‖Qv‖ for any v.

Orthogonal Matrices

Definition 2. A real, square matrix satisfying any of the properties in Theorem 2
is said to be an orthogonal matrix.

From Example 2 of the preceding section, we conclude that the matrix
⎡
⎢⎢⎣

0.5 0.5 0.5 0.5
0.5 0.5 −0.5 −0.5
0.5 −0.5 0.5 −0.5
0.5 −0.5 −0.5 0.5

⎤
⎥⎥⎦

is orthogonal. Because of (ii) and (iii), a better name for this class would be “orthonor-
mal matrices,” but tradition dictates the stated nomenclature.

Proof of Theorem 2. If we depict Q by its rows, then the expression of the statement
QQT = I looks like

QQT =

⎡
⎢⎢⎢⎣
−row 1−
−row 2−

...
−row n−

⎤
⎥⎥⎥⎦
⎡
⎣ | | |
[row 1]T [row 2]T · · · [row n]T

| | |

⎤
⎦

= I =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ ,

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.2 ORTHOGONAL MATRICES 175

Thus the condition QQT = I says no more, and no less, than that the rows of Q are
orthonormal. Similarly, QTQ = I states that the columns of Q are orthonormal; thus
(i), (ii). and (iii) are all equivalent.

Statements (iv) and (v) are equivalent, because the norm and the inner product can
be expressed in terms of each other:

‖v‖ = (v · v)1/2 and 2v · w = ‖v + w‖2 − ‖v‖2 − ‖w‖2

(the latter is easily verified by writing the norms as inner products). So our proof will
be complete if we can show, for instance, that (i) implies (iv) and (iv) implies (iii).

The right-hand member in (iv) equals vTQTQw, so (iv) holds whenever QTQ = I;
that is, (i) implies (iv). And if ei denotes the ith column of the identity matrix, then Qei

is the ith column of Q; so applying (iv) when v = ei and w = ej, we conclude that the
columns of Q have the same orthonormality properties as the columns of I when (iv)
holds. Thus (iv) implies (iii).

Note that Theorem 2 implies that inverses, transposes, and products of orthogonal
matrices are, again, orthogonal.

Property (v) is the key to many of the applications of orthogonal matrices. For exam-
ple, since rotations and mirror reflections preserve lengths, we can immediately state
that the corresponding matrix operators are orthogonal. In fact, it can be shown that
in two or three dimensions the most general orthogonal matrix can be considered as a
sequence of rotations and reflections (See Group Project A at the end of Part II).

Example 1. Verify that the transpose of the reflection operator in Example 3 of
Section 2.2 is equal to its inverse.

Solution. If n denotes the column matrix representing the unit normal to the mirror,
formula (3) in Section 2.2 for the reflector operator states

Mref = I − 2nnT . (1)

Then we can verify

MT
refMref = {I − 2nnT}T{I − 2nnT} = {IT − 2nTTnT}{I − 2nnT} (2)

= {I − 2nnT}{I − 2nnT} = I − 2nnT − 2nnT + 4nnTnnT

= I − 2nnT − 2nnT + 4n(1)nT = I − 4nnT + 4nnT = I. �

Note that although the formula (1) was derived for reflections in two dimensions,
the calculation is independent of the number of dimensions. Accordingly, we say that

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



176 ORTHOGONALITY

Normal to mirror

3i

Mirror

x-axis

2i+j+2k

Fig. 4.3 Mirror for Example 2.

matrices of the form (1) generate reflections in Rn
col whenever n is a n-by-1 unit vector.

(And such matrices continue to satisfy MT
ref = M−1

ref = Mref .)

Example 2. Construct a reflector matrix that carries the three-dimensional vector
2i + j + 2k into a vector along the x-axis.

Solution. We will use the formula (1), once we figure out the unit normal to the mir-
ror. Since reflections preserve length (norm), the final vector must be (plus or minus)√

22 + 12 + 22i = ±3i. The normal to the mirror must then be parallel to the vector
connecting the tips of (say) +3i and (2i + j + 2k); that is, parallel to their difference (see
Figure 4.3). Therefore,

nunit =

⎡
⎣3 − 2

−1
−2

⎤
⎦ 1√

(3 − 2)2 + (−1)2 + (−2)2
=

1√
6

⎡
⎣ 1
−1
−2

⎤
⎦ ,

and the reflector matrix is

Mref =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦− 2

1√
6

⎡
⎣ 1
−1
−2

⎤
⎦ 1√

6

[
1 −1 −2

]
=

⎡
⎣2/3 1/3 2/3

1/3 2/3 −2/3
2/3 −2/3 −1/3

⎤
⎦ .

�

Matrices constructed as in Example 2 are known as Householder reflectors. Clearly,
they can be designed to zero out the lower entries in the first column of any matrix, as
depicted:

Mref

[
col #1 col #2 · · · col #n

↓ ↓ ↓

]
=

⎡
⎢⎢⎢⎢⎢⎣

‖col #1‖ X · · · X
0 X · · · X
0 X · · · X
...

...
. . .

...
0 X · · · X

⎤
⎥⎥⎥⎥⎥⎦

. (3)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.2 ORTHOGONAL MATRICES 177

A little thought (Group Project B at the end of Part II) will reveal that a sequence of
well-chosen reflectors can render the original matrix into row echelon form, producing
a competitor to the Gauss elimination algorithm! (And pivoting is unnecessary.) In fact,
Householder reflector schemes can also replace the Gram–Schmidt algorithm.

The use of orthogonal matrices in matrix computations has very important advan-
tages with regard to computational accuracy, because property (v) in Theorem 2 implies
that multiplication by orthogonal matrices does not increase errors. For example, if we
were to solve a system Ax = b using exact arithmetic (so that x = A−1b), but we later
learned that the vector b contained a measurement error δb, then our answer would
be in error by δx = A−1(b + δb) − A−1x = A−1δb. If A−1 is orthogonal, we have
‖δx‖ = ‖A−1δb‖ = ‖δb‖, showing that the error norm in the solution is no bigger
than the error norm in the data.

Most enlightened matrix software packages contain options for some computations
that use only orthogonal matrix multiplications. They usually require more arith-
metic operations, but the increased “numerical stability” may warrant the effort for
a particular application.1

Example 3. Calculate the matrix expressing the result of rotating a three-dimensional
vector through an angle θ around the z-axis, followed by a rotation through φ around
the x-axis.

Solution. In Example 1 of Section 2.2, we pointed out that the (x, y) coordinates of a
vector v1 are changed when it is rotated to the position v2 as in Figure 4.4a, according to

x2 = x1 cos θ − y1 sin θ (4)

y2 = x1 sin θ + y1 cos θ.

Since the z-coordinate is unchanged, as a three-dimensional rotation (4) has the matrix
formulation

⎡
⎣x2

y2

z2

⎤
⎦ =

⎡
⎣cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤
⎦
⎡
⎣x1

y1

z1

⎤
⎦ . (5)

To modify these equations for rotations around the x-axis, we redraw the diagram with
the x-axis coming out of the page, as in Figure 4.4b. We conclude x3 = x2 and simply
copy (4) with the variables appropriately renamed:

y3 = y2 cosφ− z2 sinφ, z3 = y2 sinφ + z2 cosφ;

1In 1977, one of the authors was directed to program a reflector matrix algorithm to replace Gauss
elimination for onboard guidance control calculations in the space shuttle, to ensure reliability. 
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y

v1

v2y2

y1

x1x2 x

θ ϕ

(a) (b)
z

v1

v2z2

z1

y1y2 y

Fig. 4.4 Rotation sequence.

that is,

⎡
⎣x3

y3

z3

⎤
⎦ =

⎡
⎣1 0 0

0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦
⎡
⎣x2

y2

z2

⎤
⎦ . (6)

Concatenating the two operations, we obtain

⎡
⎣x3

y3

z3

⎤
⎦ =

⎡
⎣1 0 0

0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦
⎡
⎣x2

y2

z2

⎤
⎦

=

⎡
⎣1 0 0

0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦
⎡
⎣cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤
⎦
⎡
⎣x1

y1

z1

⎤
⎦

=

⎡
⎣ cos θ − sin θ 0
cosφ sin θ cosφ cos θ − sinφ
sinφ sin θ sinφ cos θ cosφ

⎤
⎦
⎡
⎣x1

y1

z1

⎤
⎦. (7)

(Of course the product of two orthogonal matrices is, itself, orthogonal. Indeed, mental
calculation confirms the orthonormality of the columns above.) �

Exercises 4.2

1. What values can the determinant of an orthogonal matrix take?

2. For the matrix Mref in Example 2, verify each of the properties (i) through (v) in
Theorem 2.

3. Find all 2-by-2 orthogonal matrices of the form

(a)

[
x y
y x

]
(b)

[
x −y
y x

]
.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.2 ORTHOGONAL MATRICES 179

4. Show that if Q is orthogonal and symmetric, then Q2 = I.

5. Find the 3-by-3 rotation matrix that rotates every vector through ψ radians about
the y-axis.

6. Determine all 2-by-2 orthogonal matrices all of whose entries are either zero or one.

7. Determine all 3-by-3 orthogonal matrices all of whose entries are either zero or one.

8. Prove that the jth column of any square invertible matrix A is orthogonal to every
row of A−1, except the jth.

9. Construct a reflector matrix that carries the 3-dimensional vector 5i + 12j + 13k
into a vector along the x-axis.

10. Construct a reflector matrix that carries the 3-dimensional vector 5i + 12j + 13k
into a vector along the y-axis.

11. Construct a reflector matrix that carries the 4-dimensional vector
[
1 1 1 1

]
into a vector having all entries zero except the first.

12. Find a 3-by-3 Householder reflector matrix Mref that, through left multiplication,
zeros out all entries below the first entry, in the first column of

A =

⎡
⎢⎣

1 0 2

2 1 0

3 0 −1

⎤
⎥⎦ .

13. Find a Householder reflector matrix Mref that, through left multiplication, zeros
out all entries below the first entry, in the second column of

A =

⎡
⎢⎣

4 2 0

0 1 1

0 3 0

⎤
⎥⎦ . (8)

Is the zero pattern in the first column preserved?

14. Find a Householder reflector matrix Mref that, through left multiplication, zeros out
all entries above and below the second entry, in the second column of the matrix in
(8). (In other words, all nondiagonal entries in the second column will become 0.) Is
the zero pattern in the first column preserved? (Hint: Bearing in mind the reflector
preserves norms, decide to which vector the second column will be reflected, and
then figure out the mirror normal.)

15. Find a Householder reflector matrix Mref that, through left multiplication, zeros
out all entries below the second entry, in the second column of the matrix in (8),
and at the same time leaves the first entry in the second column intact. Is the zero
pattern in the first column preserved? (Hint: Bearing in mind the reflector preserves
norms, decide to which vector the second column will be reflected, and then figure
out the mirror normal.) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



180 ORTHOGONALITY

16. (An alternative to Gauss elimination) Describe how a sequence of n Householder
reflectors can be constructed to render, through left multiplication, an n-by-n
matrix into upper triangular form. (Hint: See Problem 15.)

17. Is reflection matrix multiplication commutative (Mref1Mref2 = Mref2Mref1)?
Resolve this question in two ways:

(a) Express the reflections using formula (1) in two dimensions and carry out the
multiplications.

(b) Compare a succession of reflections through the line y = x and through the
y-axis, in both orders.

18. Is rotation matrix multiplication in three dimensions commutative
(Mrot1Mrot2 = Mrot2Mrot1)? Resolve this question in two ways:

(a) Reevaluate the final matrix in Example 3 if the x rotation is performed first;

(b) Execute a succession of 90◦ rotations of your textbook about a set of z, x-axes,
in both orders.

19. Show that if A = −AT , then

(a) (I − A) is invertible. (Hint: First prove ||(I − A)v||2 = ||v||2 + ||Av||2.)

(b) (I−A)−1(I + A) is orthogonal. (Hint: Multiply the matrix by its transpose and
use the identity (M−1)T = (MT)−1 (Example 5, Section 2.3).)

20. In modern algebra, a set G with a binary operation ∗ is said to be a group if it
satisfies the following properties:

(i) Closure: If a, b belong to G, so does a ∗ b;

(ii) Associativity: If a, b, c belong to G then (a ∗ b) ∗ c = a ∗ (b ∗ c);

(iii) Identity: There is an element e in G such that e ∗ a = a ∗ e for
every a in G;

(iv) Inverse: For each a in G there is a b in G such that a ∗ b = b ∗ a = e;
Which of the following sets forms a group under the operation of matrix
multiplication?

(a) All n-by-n matrices;

(b) All invertible n-by-n matrices;

(c) All orthogonal n-by-n matrices.

4.3 LEAST SQUARES

The formula vn = n(n · v) orthogonally projects v onto the direction specified by the
unit vector n; that is, onto the one-dimensional subspace spanned by n. And indeed,
the residual (v − vn) is orthogonal to every vector in the subspace (Figure 4.5a). Now
we generalize this by employing the Gram–Schmidt algorithm to project v onto higher
dimensional subspaces (Figure 4.5b).
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v
v–vW

vW

v–y

y

Subspace W

(b)(a)

v v–vn

vn

n

Fig. 4.5 Orthogonal projections. (a) One-dimensional subspace. (b) Two-dimensional

subspace.

Beginning with a (finite-dimensional) vector space V and a subspace W onto which
we will project the vectors in V , the first step is to determine bases for these spaces—say,
{v1, v2, . . . , vn} for V and {w1, w2, . . . , wm} for W. Now we can obtain an orthonor-
mal basis for W by performing the Gram–Schmidt algorithm on {w1, w2, . . . , wm} and
rescaling to obtain unit vectors. Actually, we propose to apply this strategy to the
extended set {w1, w2, . . . , wm, v1, v2, . . . , vn}. The resulting vectors are independent
and span V; they, too, form a basis. The first m vectors extracted, {w′

1, w′
2, . . . , w′

m}
will be the orthonormal basis for W.

The remaining (n−m) vectors, {v′
m+1, v′

m+2, . . . , v′
n}, span a subspace of V which we

denote by W⊥ (“W perp”), because every vector in W⊥ is orthogonal (perpendicular)
to every vector in W; indeed,

(c1w′
1 + c2w′

2 + · · · + cmw′
m) · (cm+1v′m+1 + cm+2v′m+2 + · · · + cnv′n) (1)

= c1cm+1w′
1 · v′m+1 + c1cm+2w′

1 · v′m+2 + · · ·

= 0.

Thus W and W⊥ are mutually orthogonal subspaces. Notice also that the set
{w′

1, w′
2, . . . , w′

m, v′
m+1, v′

m+2, . . . , v′
n} is a full orthonormal basis for V.

Next we use the orthonormal basis expansion formula of Theorem 1 (Section 4.1)
to express an arbitrary vector v in V as a linear combination of elements of this
basis:

v = (v · w′
1)w

′
1 + (v · w′

2)w
′
2 + · · · + (v · w′

m)w
′
m (2)

+ (v · v′m+1)v
′
m+1 + (v · v′m+2)v

′
m+2 + · · · + (v · v′n+2)v

′
n

= vW + vW⊥ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



182 ORTHOGONALITY

This construction—orthogonalizing a basis for W and extending it to an orthonormal
basis for V, spawning identity (2)—demonstrates the decomposition of a vector space
into orthogonal subspaces. To summarize:

Orthogonal Subspace Decomposition

When W is a subspace of the vector space V, the notation

V = W ⊕ W⊥, (3)

signifies the following:

• Every vector in V can be decomposed into a sum of a vector in W plus one
in W⊥;

• W and W⊥ are mutually orthogonal subspaces.

Moreover, it is easy to prove that the decomposition is unique, and that the zero
vector is the only vector that W and W⊥ have in common; see Problem 22. Note that if
v = vW + vW⊥ as in (2), then the orthonormal basis expansion given in equation (8) of
Theorem 1, Section 4.1, implies that

‖v‖2 = ‖vW‖2 + ‖vW⊥‖2. (4)

Of course we have discussed the orthogonal projection of a vector onto another vec-
tor many times. Now we can call the “W-part” of (2), vW = c1w′

1 + c2w′
2 + · · · + cmw′

m,
the orthogonal projection of v onto the subspace W. This orthogonal projection
has a remarkable property; it’s the nearest vector to v among all the vectors in the
subspace W:

Best Approximation

Theorem 3. Let V = W ⊕ W⊥ and let vW be the orthogonal projection of the
vector v into the subspace W. If y is any other vector in W, then

‖v − vW‖ < ‖v − y‖.

In other words, of all vectors in W the orthogonal projection vW is the best approxi-
mation to the vector v (as measured by the Euclidean norm). As illustrated in Figure 4.5,
this is just a generalization of the familiar fact that the shortest distance from a point to
a plane is the length of the perpendicular from the point to the plane. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



4.3 LEAST SQUARES 183

Proof of Theorem 3. First observe that for any y in W, we can write

v − y = (v − vW) + (vW − y). (5)

The vector (v−vW) lies in the subspace W⊥ (in fact, it is vW⊥), while the vector (vW−y)
lies in W. So applying (4) to (5) we learn that

‖v − y‖2 = ‖v − vW‖2 + ‖vW − y‖2,

demonstrating that ‖v − y‖ exceeds ‖v − vW‖ unless y is, in fact, vW .

Theorem 3 is used in many areas of applied mathematics. For our purposes, it
provides an immediate answer to the dilemma of what to do about inconsistent systems.

Suppose an engineering design has led to a system Ax = b that turns out to have
no solutions. (For instance, it may have more equations than unknowns.) Rather than
abandon the design, the engineer may be willing to accept a “solution” vector x that
brings Ax as close to b as possible. We have seen that the product Ax can be inter-
preted as a linear combination of the columns of A, with coefficients given by x. So
our “compromise solution” will be to find the linear combination of columns of A that
best approximates b. In other words, we have the subspace W, given by the span of the
columns of A, and we seek the vector in that subspace that is closest to b. Theorem 3
says that the best approximation to b will be the orthogonal projection bW of b onto W.
So we tentatively formulate the following procedure:

Least-Squares Solution to Ax = b

To find a vector x providing the best approximation to a solution of the inconsis-
tent system expressed as Ax = b,2

(i) Compute an orthonormal basis for the subspace spanned by the columns
of A (using, for instance, the Gram–Schmidt algorithm);

(ii) Find the orthogonal projection bcolA of b onto this subspace (using, for
instance, (2));

(iii) Solve the (consistent) system Ax = bcolA.

Then the Euclidean norm of (b − Ax) will be less than or equal to ‖b − Ay‖ for
any vector y.

Note that the square of the Euclidean norm of the vector Ax−b is given by the sum
of the squares of its entries, which is precisely the sum of the squares of the differences
between the left- and right-hand sides of the “equations” represented by Ax = b. This

2Rigorously speaking, since the system is inconsistent, we honestly should refrain from writing “Ax = b”. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



184 ORTHOGONALITY

is commonly known as the sum of squares of errors, from which the procedure derives
its name, “Least Squares.”

Rather than display an example of this procedure as formulated, we turn directly to a
short cut. Since bcolA is the orthogonal projection of b onto the subspace spanned by the
columns of A, the residual b− bcolA is orthogonal to this subspace, and hence to every
column of A. There’s an easy way to express this orthogonality using the transpose:

A =

⎡
⎣ | | | |

col 1 col 2 · · · col n
| | | |

⎤
⎦ , AT =

⎡
⎢⎢⎢⎣
− [col 1]T −
− [col 2]T−

...
−[col n]T−

⎤
⎥⎥⎥⎦

and therefore

AT(b − Ax) =

⎡
⎢⎢⎢⎣
− [col 1]T −
− [col 2]T−

...
−[col n]T−

⎤
⎥⎥⎥⎦ (b − Ax) = 0

expresses the orthogonality.
Theorem 4 summarizes these observations. We leave it to the reader (Problem 21)

to provide the details of the proof.

Characterization of Least Squares Approximation

Theorem 4. The vector x provides a least squares approximation for the
(m-by-n) system Ax = b if and only if AT{b − Ax} = 0 or, equivalently,

AT Ax = AT b. (6)

Equations (6) are called the normal equations for the system represented by Ax = b.
The normal equations provide an alternative to the least squares procedure described
earlier.

Example 1. Find a vector x providing the least-squares approximation to the system
expressed by

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 1
... 1

1 1 3
... 0

1 1 3
... 1

1 1 3
... 2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.3 LEAST SQUARES 185

Solution. Note that the last three equations in (7) are blatantly inconsistent. The normal
equations for this system are

ATAx =

⎡
⎣ 1 1 1 1
−1 1 1 1
1 3 3 3

⎤
⎦
⎡
⎢⎢⎣

1 −1 1
1 1 3
1 1 3
1 1 3

⎤
⎥⎥⎦
⎡
⎣x1

x2

x3

⎤
⎦ = ATb =

⎡
⎣ 1 1 1 1
−1 1 1 1
1 3 3 3

⎤
⎦
⎡
⎢⎢⎣

1
0
1
2

⎤
⎥⎥⎦ ,

which, after multiplication, take the following augmented matrix form:

⎡
⎢⎢⎢⎣

4 2 10
... 4

2 4 8
... 2

10 8 28
... 10

⎤
⎥⎥⎥⎦ .

Gauss elimination reveals the solutions to this system to be

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣1 − 2t

−t
t

⎤
⎦ =

⎡
⎣1

0
0

⎤
⎦ + t

⎡
⎣−2
−1
1

⎤
⎦ .

The quality of the solution is exhibited by the “error” or “residual” b − Ax:

b =

⎡
⎢⎢⎣

1
0
1
2

⎤
⎥⎥⎦ , bcolA = Ax =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , error = b − Ax =

⎡
⎢⎢⎣

0
−1
0
1

⎤
⎥⎥⎦ . �

Example 1 highlights several noteworthy points about least squares approxima-
tions:

• The error b − Ax is always orthogonal to the best approximation Ax;

• The coefficient matrix ATA for the normal equations is always square and
symmetric;

• The normal equations are always consistent;

• The best approximation to b, namely bcolA =Ax, is unique. However the “solution”
vector x, that provides the best approximation to Ax= b, might not be unique.3

In Problem 15, it is demonstrated that the rank of ATA equals the rank of A. There-
fore if the columns of A are linearly independent, ATA is invertible and the least

3The “pseudoinverse” of A, described in Section 6.4, provides the solution vector x of minimal norm. For
Example 1, this would be [1/3 −1/3 1/3]T (for t = 1/3). 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



186 ORTHOGONALITY

Fig. 4.6 Scatter plot.

squares problem Ax = b has a unique solution given by

x = (ATA)
−1ATb. (8)

Our final example addresses a common situation. One has a “scatter plot,” that is,
a collection of measured data points in the plane, (xi, yi). The task is to find the best
straight line y = mx + b passing through the data. See Figure 4.6.
Example 2. (“Least Squares Linear Fit”) Given a collection of pairs of numbers

{xi, yi}N
i=1, derive equations for the slope m and intercept b of the straight line y = mx+b

that minimizes the sum of squares of errors

N∑
i=1

[yi − (mxi + b)]2.

Solution. We need to cast our assignment as a least squares problem for some system
Ax = b. The trick is to note that our unknowns are m and b (and not the known data xi).
We are trying to match up, as best possible, the left and right-hand sides of

mx1 + b =y1,

mx2 + b =y2, (9)
...

mxN + b =yN .

The system (9) can be expressed in matrix form as
⎡
⎢⎢⎢⎣

x1 1
x2 1
...

...
xN 1

⎤
⎥⎥⎥⎦
[

m
b

]
=

⎡
⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎦ . (10)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.3 LEAST SQUARES 187

The normal equations for (10) are

[
x1 x2 . . . xN

1 1 . . . 1

]
⎡
⎢⎢⎢⎣

x1 1
x2 1
...

...
xN 1

⎤
⎥⎥⎥⎦
[

m
b

]
=

[
x1 x2 . . . xN

1 1 . . . 1

]
⎡
⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎦ ,

or

[
ΣN

i=1x2
i ΣN

i=1xi

ΣN
i=1xi N

] [
m
b

]
=

[
ΣN

i=1xiyi

ΣN
i=1yi

]
.

Cramer’s rule then gives the solution

m =
NSxy − SxSy

NSx2 − S2
x

, b =
Sx2 Sy − SxSxy

NSx2 − S2
x

, (11)

where the sums are abbreviated

Sx :=
N∑

i=1

xi, Sy :=
N∑

i=1

yi, Sxy :=
N∑

i=1

xiyi, Sx2 :=
N∑

i=1

x2
i . �

In practice, the numerical implementation of the normal equations approach to solv-
ing least squares is more sensitive to errors than the orthogonal subspace procedure
described earlier. Most enlightened matrix software will automatically opt for the latter,
despite its extra complexity.

Exercises 4.3

1. Use the three-step procedure described after Theorem 3 to find all vectors x
providing the least squares solution to the inconsistent system

⎡
⎢⎢⎢⎢⎢⎢⎣

1 3
... 1

−1 −1
... 0

1 3
... 0

−1 −1
... 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(Save work by using Problem 7, Exercises 4.1.) What is the error for this least
squares approximation? 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



188 ORTHOGONALITY

2. Use the three-step procedure described after Theorem 3 to find all vectors x
providing the least squares solution to the inconsistent system

⎡
⎢⎢⎢⎢⎢⎢⎣

2 3 2
... 0

2 1 0
... 0

−2 −1 −2
... 0

−2 −3 −4
... 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(Save work by using Problem 9, Exercises 4.1.) What is the error for this least
squares approximation?

3. Write out and solve the normal equations for the inconsistent system in
Problem 2.

4. Write out and solve the normal equations for the inconsistent system

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 2 3
... 1

1 0 1
... 1

−1 2 1
... 1

1 0 −1
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

5. Use the three-step procedure described after Theorem 3 to find all vectors x
providing the least squares solution to the inconsistent system in Problem 4.
(See Problem 10, Exercises 4.1.) What is the error for this least squares
approximation?

6. Show that the least squares solutions to the system x + y = 1, x + y = 3 are the
solutions to x + y = 2.

7. Modify Example 2 to find the slope m for the straight line through the origin y =
mx that best fits the data {(xi, yi)}N

i=1.

8. Modify Example 2 to find the constant b for the horizontal line y = b that best fits
the data {(xi, yi)}N

i=1.

9. Modify Example 2 to find the slope m for the straight line with a prescribed
intercept b0, y = mx + b0, that best fits the data {(xi, yi)}N

i=1.

10. Modify Example 2 to find the intercept b for the straight line with a prescribed
slope m0, y = m0x + b, that best fits the data {(xi, yi)}N

i=1.

11. Given the data {(xi, yi)}N
i=1, take the averages x := 1

N

∑N
i=1 xi, y := 1

N

∑N
i=1 yi.

Show that the parameters m and b in Example 2 satisfy y = mx + b.

12. Suppose that in the inconsistent system Ax = b, the error in the ith equation is
weighted by the factor wi, and that our task is to minimize the weighted sum of
squares of errors. This would occur, for example, if some of the equations were
expressed in dollars, others in euros, pounds, etc.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.3 LEAST SQUARES 189

(a) Argue that the quantity to be minimized is ‖W(b − Ax)‖2, where W is the
diagonal matrix with the weights wi on its diagonal.

(b) Derive the normal equations for the weighted least squares problem.

13. Example 2, Section 2.2, derived the formula Mb = nnTb
for the matrix orthogonally projecting a two-dimensional column vector b onto the
direction of a unit vector n.
(a) Show that if v is not a unit vector, the formula for projecting b onto the direction

of v (which must be nonzero, of course) is vvTb/vTv.

(b) In higher dimensions, this problem would be expressed as finding the closest
vector of the form xv to the vector b. Express this as a least squares system, and
show that the normal equations imply that the same formula vvTb/vTv holds.

14. Generalize the formula in Problem 13; if {v1, v2, . . . , vm} forms an orthonormal
basis for the subspace W of Rn

col, derive a formula for the matrix operator that
orthogonally projects b into the subspace W.

15. Prove that the rank of ATA equals the rank of A by reasoning as follows:
(a) Show that the null space of A is contained in the null space of ATA.

(b) Show that the null space of ATA is contained in the null space of A (and
thus by part (a) these two null spaces are identical). (Hint: if ATAx = 0, then
xTATAx ≡ ‖Ax‖2 = 0.)

(c) Apply Theorem 6, Section 3.3, to complete the argument.

16. If the columns of A are independent, show that (ATA)−1AT is a left inverse of A.
(See Problem 15.)

17. Suppose that one wishes to find a good fit to a set of data {(xi, yi)}N
i=1, with each

yi > 0, using a function of the form y = cebx. Here both b and c are adjustible.
By taking logarithms, show that this can be reduced to the situation in Example 2.
What are the optimal values of c and b? What, precisely, is the quantity being
minimized?

18. Suppose that one wishes to find the least squares fit to a set of data {xi, yi}N
i=1

using a polynomial y = c0 + c1x + c2x2 + · · ·+ ckxk. What is the form of the normal
equations for the coefficients {c0, c1, c2, . . . , ck}?

19. Suppose that one wishes to find the least squares fit to a set of data {xi, yi}N
i=1 using

a linear combination of exponentials y = c0 + c1e−x + c2e−2x + · · · + cke−kx. What
is the form of the normal equations for the coefficients {c0, c1, c2, . . . , ck}?

20. The Fredholm alternative states that Ax = b has a solution if and only if b is
orthogonal to every solution of ATy = 0.
(a) Argue that [Span{rows of A}]⊥ = null space of A.

(b) Argue that Span{columns of A} = [null space of AT ]⊥ by applying (a) to AT .

(c) From these considerations, assemble a proof of the Fredholm alternative.

21. Prove Theorem 4 as follows:
(a) The sum of squares of errors is given by

SSE = ‖b − Ax‖2 = (b − Ax)T(b − Ax).

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



190 ORTHOGONALITY

Expand this formula in terms of the entries of A, b, and x to obtain

SSE =
∑n

i=1

∑n

j=1

∑n

k=1
AjiAjkxixk − 2

∑n

j=1

∑n

k=1
Ajkbjxk +

∑n

j=1
b2

j .

(b) SSE is a smooth function of x that is bounded below (by zero). Therefore at its
minimum point, each of its partials (with respect to xp) must be zero. Carefully
compute this partial to derive

∂SSE
∂xp

=
∑n

j=1

∑n

k=1
AjpAjkxk +

∑n

i=1

∑n

j=1
AjiAjpxi − 2

∑n

j=1
Ajpbj = 0.

[Hint: This might be easier to see if you first work it out explicitly for the cases
n = 2 and n = 3.]

(c) Argue that the equation in (b) is the pth component of the system 2ATAx −
2ATb = 0.

22. Show that if W, W1, and W2 are three subspaces of V such that V = W ⊕ W1 and
V = W ⊕ W2 are orthogonal decompositions as described by equation (3), then
W1 = W2. Show also that the only vector that W and W1 have in common is 0.

4.4 FUNCTION SPACES

Although in Section 3.1 we identified some examples of vector spaces whose elements
are functions, our subsequent examples and theorems have focused on the standard
spaces Rn

col and Rn
row. We discussed how Gauss elimination can be used to determine

independence and find bases, and how the dot product facilitates the exploitation of
orthogonality.

For more exotic vector spaces, these notions can be more subtle. For instance, con-
sider the task of determining the independence of three elements y1(x), y2(x), y3(x) of
the space of continuous functions on, say, the interval [0, 1]. We need to decide if the
requirement c1y1(x) + c2y2(x) + c3y3(x) = 0 for every x in [0, 1] necessitates that each
ci be zero. That’s an infinite number of conditions at our disposal!

We could contemplate proceeding by picking 3 points {x1, x2, x3} in [0, 1] and
reducing the equations

c1y1(x1) + c2y2(x1) + c3y3(x1) = 0

c1y1(x2) + c2y2(x2) + c3y3(x2) = 0

c1y1(x3) + c2y2(x3) + c3y3(x3) = 0

or
⎡
⎣y1(x1) y2(x1) y3(x1)

y1(x2) y2(x2) y3(x2)
y1(x3) y2(x3) y3(x3)

⎤
⎦
⎡
⎣c1

c2

c3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ (1)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.4 FUNCTION SPACES 191

to row echelon form. If this reveals that (1) has only the zero solution, we will
have shown that the only way c1y1(x) + c2y2(x) + c3y3(x) ≡ 0 can hold is if
c1 = c2 = c3 = 0, and thus the functions must be independent. However, if
nontrivial solutions do exist, we could not conclude that the functions are depen-
dent, because we could never be sure that a different selection of {x1, x2, x3}
might have established independence. So Gauss elimination may prove independence,
if we’re lucky in our choice of test values for x, but it can never establish
dependence.

Example 1. Show that the functions 1, x2, and x4 are linearly independent on
(−∞,∞).

Solution. If we test for independence at the points {−1, 0, 1}, the system (1)
becomes

⎡
⎢⎣

1 1 1

1 0 0

1 1 1

⎤
⎥⎦
⎡
⎢⎣

c1

c2

c3

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ ,

which has nontrivial solutions: for example, c1 = 0, c2 = −1, c3 = 1. So
the test is inconclusive. But if we had chosen {0, 1, 2}, the condition would have
been

⎡
⎢⎣

1 0 0

1 1 1

1 4 16

⎤
⎥⎦
⎡
⎢⎣

c1

c2

c3

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ ;

the determinant of the coefficient matrix is 12 (nonzero), so only the trivial solution is
possible for {c1, c2, c3}, implying the functions are independent. �

The basic villain here is that many function spaces are infinite dimensional. They
have no finite bases; no one who has taken calculus will believe that you can generate
every continuous function on (−∞,∞) by taking linear combinations of a paltry collec-
tion of, say, only 7, or 8, or 20 billion, of them. One of the aims of the discipline known
as functional analysis is to establish bases for the function spaces, but since such bases
contain an infinite number of elements, the notion of convergence is a prerequisite to
any analysis involving linear combinations.

This feature—the infinite dimensionality—is made more concrete by considering
tabulations of continuous functions on, say, a spread sheet:

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



192 ORTHOGONALITY

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t cos t sin t
0 1.000 0

π/6 0.866 0.500
2π/6 0.500 0.866
3π/6 0 1.000
4π/6 −0.500 0.866
5π/6 −0.866 0.500
π −1.000 0

7π/6 −0.866 −0.500
8π/6 −0.500 −0.866
9π/6 0 −1.000
10π/6 0.500 −0.866
11π/6 0.866 −0.500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

In computational practice, each function is reduced to a column vector. Indeed we
would tabulate 3 cos t + 4 sin t by forming linear combinations of the second and third
columns of (2). But we cannot completely trust any mathematical conclusion concern-
ing cos t and sin t based on only a finite number of sampled values. Therefore we need
to employ other tools to decide, rigorously, the independence of sets of functions.

In some cases, we can use the growth rate. For example, the linear independence of
1, x2, and x4 on (−∞,∞) is easily established as follows. If c11 + c2x2 + c3x4 = 0 for
all x , we can conclude that c3 = 0 by dividing by x4 and letting x → ∞;

c3 = lim
x→∞

[
−c1

x4
− c2

x2

]
= 0.

Then we apply the same reasoning to c11+c2x2 to get c2 = 0, and so on. This argument
is easily extended to show that any finite set of polynomials of differing degrees is
linearly independent on (−∞,∞).

Example 2. Verify the claim that any finite set of exponential functions with different
decay times is linearly independent on (−∞,∞).

Solution. We need to show that the equality

c1eα1x + c2eα2x + · · · + cneαnx = 0 (3)

(all αi distinct) can only hold if each ci = 0. We exploit the growth rates again. Suppose
αj is the largest (in the algebraic sense) of the αi’s. Dividing (3) by eαjx and letting
x → ∞, we see that cj must be zero. Now carry out the same argument with the second
largest of the αi’s, and so on, to conclude that every ci is zero. �

We remark that the growth rate argument will not work in analyzing linear inde-
pendence over a finite interval. Indeed, it is possible for a collection of functions to 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



4.4 FUNCTION SPACES 193

be linearly independent over (−∞,∞), but linearly dependent over some subinterval
(a, b). See Problem 20.

For future reference, it is useful to note that the following sets of functions are
linearly independent on every open interval (a, b):

• {1, x, x2, . . . , xn}
• {1, cos x, sin x, cos 2x, sin 2x, . . . , cos nx, sin nx}
• {eα1x, eα2x, . . . , eαnx} (for distinct constants αi)

(see Problems 4, 8, and 9).
Although Gauss elimination is ineffectual as a tool for analyzing function spaces,

the notion of orthogonality and its attendant features carry over quite nicely. How do
we form a dot product of the functions cos t and sin t (over the interval [0, 2π])? Again
taking a computational point of view, we could start by forming the dot product of the
second and third columns in (2), and contemplate the limit of such dot products as the
number of tabulations increases:

(cos t) · (sin t)
?
= lim

N→∞

N∑
i=1

cos ti sin ti. (4)

Sums of the form (4) diverge as N → ∞, but with the insertion of a constant factor
Δt := ti+1 − ti = 2π/N we observe the emergence of an old friend, the Riemann sum:

(cos t) · (sin t) = lim
N→∞

N∑
i=1

cos ti sin ti Δt =
∫ 2π

0
cos t sin t dt. (5)

Accordingly, one defines the inner product of two continuous functions on [a, b] to be

< f , g >:=
∫ b

a
f (t) g(t) dt (6)

with the associated norm

‖f‖ :=

[∫ b

a
f (t)2 dt

]1/2

. (7)

Through the inner product such concepts as the Gram–Schmidt algorithm, orthogonal
projection, and least squares approximations are enabled in function spaces. Fourier
series and eigenfunction expansions of solutions of partial differential equations are
some of the advanced techniques based on these considerations.4

4The term Hilbert Spaces refers to function spaces endowed with inner products (and a few other properties). 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



194 ORTHOGONALITY

Example 3. Show that the (infinite) collection {sin x, sin 2x, sin 3x, . . .} is an orthog-
onal family of functions in the interval (0,π).

Solution. The inner products (6) for this family are

π

∫
0
sinmx sin nx dx =

[
sin(m − n)x

2(m − n)
− sin(m + n)x

2(m + n)

]π
0

= 0 for m �= n. �

Example 4. Apply the Gram–Schmidt algorithm to the collection of functions
{1, x, x2} on the interval (−1, 1).

Solution. Executing the procedure described in Section 4.1 with the substitution of (6)
for the dot product v · w, we calculate

w1 = v1 = 1.

w2 = v2 − (v2 · w1)w1/w1 · w1 = x −
[

1
∫
−1
(x)(1) dx

]
1/

[
1
∫
−1
(1)(1) dx

]
= x.

w3 := v3 − (v3 · w1)w1/w1 · w1 − (v3 · w2)w2/w2 · w2

= x2 −
[

1
∫
−1
(x2)(1) dx

]
1/

[
1
∫
−1
(1)(1) dx

]
−

[
1
∫
−1
(x2)(x) dx

]
x/

[
1
∫
−1
(x)(x) dx

]

= x2 − 1
3

.

If these functions were rescaled to take the value one when x = 1, they would be the
first three Legendre polynomials. �

Exercises 4.4

1. Decide if the following sets of functions are linearly independent on the indicated
intervals.
(a) 1, sin2 x, cos2 x on [0, 2π]. (d) x, x2, 1 − 2x2 on [−2, 2].

(b) x, |x| on [−1, 1]. (e) x, xex, 1 on (−∞,∞).

(c) x, |x| on [−1, 0]. (f) 1/x,
√

x, x on (0,∞).

2. Perform the Gram–Schmidt algorithm on the set 1, ex, e−x to construct 3 functions
that are orthogonal on the interval (0, 1).

3. Perform the Gram–Schmidt algorithm on the set 1, x, x2 to construct 3 polynomials
that are orthogonal on the interval (0, 1).

4. Prove that the set of functions {1, x, x2, . . . , xn} is linearly independent over every
open interval (a, b). (Hint: If c0 + c1x + · · · + cnxn = 0 in an interval, differentiate
n times to show cn = 0.) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.4 FUNCTION SPACES 195

5. Use the strategy of Problem 4 to argue that {1, (x − 1), (x − 1)2, . . . , (x − 1)n} is
a basis for Pn (the space of all polynomials of degree at most n).

6. Express the polynomial xn as a linear combination of the basis elements in
Problem 5. (Hint: Consider the Taylor series.)

7. (a) Rescale the functions computed in Example 4 so that they take the value one
at x = 1.

(b) Extend the computations in Example 4 to find the Legendre polynomial of
degree 3.

8. Prove that the set of functions {1, cos x, sin x, cos 2x, sin 2x, . . . , cos nx, sin nx} is
linearly independent over every open interval (a,b). (Hint: If c0 +c1 cos x+d1 sin x+
· · · + cn cos nx + dn sin nx = 0 in an interval, differentiate 2n times and write the
resulting 2n+1 equations (regarding the cj’s and dj’s as unknowns) in matrix form.
Row operations will reduce the matrix to one with 2-by-2 blocks along the diagonal
and zeros below; the determinant will be seen to be positive.)

9. Prove that the set of functions {eα1x, eα2x, . . . , eαnx} (for distinct constants αi) is
linearly independent over every open interval (a,b). (Hint: If c1eα1x + c2eα2x +
· · · + cneαnx = 0 in an interval, differentiate n − 1 times and write the result-
ing n equations (regarding the cj’s as unknowns) in matrix form. Factor as
⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
α1 α2 · · · αn
...

...
. . .

...

αn−1
1 αn−1

2 · · · αn−1
n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

eα1x 0 · · · 0

0 eα2x · · · 0
...

...
. . .

...

0 0 · · · eαnx

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

c1

c2

...
cn

⎤
⎥⎥⎥⎥⎦ = 0

and consider determinants (recall Problem 23, Exercises 2.4).)

10. Prove that x, |x|, and x2 are linearly independent on (−1, 1).

11. Utilize the growth rates to show the following sets of functions are linearly
independent on (0,∞):
(a) {1, ln x, ex}

(b) {ex, xex, x2ex}

12. Consider the problem of approximating a function f (x) over an interval (a, b) by
a linear combination of other functions c1y1(x) + c2y2(x) + · · · + cnyn(x), so as to
minimize the integrated squared error

∫ b

a
{f (x)− [c1y1(x) + c2y2(x) + · · · + cnyn(x)]}2 dx.

(a) Recast this task as the problem of orthogonally projecting f (x) into
Span{y1(x), y2(x), . . . , yn(x)} using the inner product (6).

(b) Retrace the discussion in Section 4.1 to argue that the remainder
{f (x) − [c1y1(x) + c2y2(x) + · · · + cnyn(x)]} must be orthogonal to each of
the functions {y1(x), y2(x), . . . , yn(x)}. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



196 ORTHOGONALITY

(c) Express the system of n equations in the n unknowns {c1, c2, . . . , cn} enforc-
ing (b), in matrix form. This is the analog of the normal equations for function
spaces. The coefficient matrix is called a Gram matrix.

13. Use the normal equations derived in Problem 12 to find the least squares approx-
imation of cos3 x by a combination of sin x and cos x, over the interval (0, 2π).
Sketch the graphs of cos3 x and the approximation.

14. Repeat Problem 13 using a combination of the functions 1 and x.

15. (a) Express the normal equations derived in Problem 12 to find the least squares
approximation of f (x) by a straight line mx+b, over the interval (a, b). Compare
with Example 2 in Section 4.3.

(b) Find the straight line that provides the least squares approximation to x2 over
the interval (0, 1).

(c) The linear Chebyshev approximation to x2 over the interval (0, 1) is the straight
line y = mx + b whose maximal vertical deviation from y = x2 over the inter-
val is least (a “minimax” approximation). Find this Chebyshev approximation.
(Hint: Do it graphically; place a ruler on the graph of y = x2 and adjust it until
the criterion is met.)

(d) Plot x2, its least squares approximation, and its Chebyshev approximation over
(0, 1) on the same graph.

16. Formulate the normal equations derived in Problem 12 for the task of finding
the least squares approximation to f (x) by a combination of 1, x, x2, . . . , xn. The
coefficient matrix was identified as the Hilbert matrix in Problem 6, Exercises 1.5.

17. Show that the functions {1, cos x, sin x, cos 2x, sin 2x, . . . , cos nx, sin nx} are
orthogonal on the interval (0,2π).

18. Show that any sequence of elementary row operations performed on the column
vector [1, x, x2, . . . , xn]T yields a vector whose entries constitute a basis for Pn.

19. By Problem 4 the set {1, x, x2, . . . , xn} is a basis for the space Pn of all polynomials
of degree less than or equal to n.
(a) Find another basis for Pn whose elements are all polynomials of the same

degree.

(b) Find a basis for the subspace of Pn consisting of all polynomials taking the
value zero at x = 0.

(c) Find a basis for the subspace of Pn consisting of all polynomials taking the
value zero at x = 1.

20. Argue that the functions

f1(x) = x; f2(x) =

{
x if − 1 < x < 1
x3 otherwise

;

f3(x) =

{
x3 if − 1 < x < 1
x otherwise

are linearly dependent on [−1, 1] but linearly independent on (−∞,∞).

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



4.5 SUMMARY 197

21. Prove that any n + 1 polynomials pk, k = 0, 1, . . . , n, with degree of each pk

precisely k, forms a basis for Pn.

4.5 SUMMARY

Orthogonality

The familiar notion of orthogonality in two and three dimensions is extended to higher
dimensions via the dot product criterion, which for real column vectors takes the form
vTw= 0. Similarly, the notion of length is generalized as the Euclidean norm ‖v‖ =
(vTv)1/2, and mutually orthogonal vectors having unit norm are called orthonormal. A
mutually orthogonal set of nonzero vectors must be linearly independent, and indeed
the coefficients in a linear combination of these, w = c1v1 + c2v2 + · · · + cnvn, are easy
to compute: ci = vT

i w/vT
i vi. The Gram–Schmidt algorithm is used to replace a given

set of vectors by a linearly independent mutually orthogonal set that is “equivalent,” in
the sense that it spans the same subspace.

Orthogonal matrices are characterized by the following equivalent properties:

(i) The inverse equals the transpose;

(ii) The rows are orthonormal;

(iii) The columns are orthonormal;

(iv) Multiplication by the matrix preserves inner products;

(v) Multiplication by the matrix preserves Euclidean norms.

Least Squares

A least squares solution to an inconsistent linear system Ax = b is a vector x that
minimizes the sum of the squares of the differences between its left and right hand
members. The left-hand side Ax is a best approximation, among the vectors in the
span of the columns of A, to the vector b, in the Euclidean norm. In general, a best
(Euclidean) approximation w to a vector b among all vectors in a given subspace W is
characterized by the property that the residual (b − w) is orthogonal to all the vectors
in the subspace.

An orthogonal decomposition V = W ⊕ W⊥ of a vector space V gives a unique
representation of every vector v in V as a sum of mutually orthogonal vectors w in the
subspace W and w⊥ in the suspace W⊥. Then w is the best approximation in W to the
vector v and the residual w⊥ is orthogonal to W.

It follows that a least squares solution x to an inconsistent m-by-n linear system
Ax = b will be a (genuine) solution to the (consistent) normal equations ATAx =
AT b.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



198 ORTHOGONALITY

Function Spaces

Some collections of functions may possess the properties of a vector space. Various
classes of polynomials, for example, are closed under addition and scalar multiplica-
tion. We can then exploit the attendant notions of independence, spans, and bases to
study them. Most function spaces are infinite-dimensional, however, and such concepts
are complicated by issues of convergence. Independence can sometimes be established
by considerations of growth rates, for functions defined on an infinite domain.

The similarity between the dot product of vectors in high-dimensional spaces and the
Riemann sum for functional integrals suggests the extension of the idea of orthogonality
to function spaces via the inner product < f , g >:=

∫ b
a f (t)g(t)dt and the associated

norm ‖f‖2 :=
∫ b

a f 2(t)dt.

REVIEW PROBLEMS FOR PART II

1. (a) Write a matrix equation expressing the condition that all the row sums of
the matrix A are equal; use only the symbol A (and not its entries aij).

(b) Write a matrix equation expressing the conditions that all the column sums
of the matrix A are equal.

(c) What further properties are exhibited by the “magic square” in
Albrecht Durer’s Melancolia (Figure 4.7) (http://en.wikipedia.org/wiki/
Melencolia_I)?

2. Is [1 2 3] spanned by [3 2 1] and [1 1 1]?

3. Find a nonzero vector that lies in both the span of [1 1 2] and [1 0 1], and the
span of [2 13 23] and [2 1 33].

4. Which of these subsets of R4
row are subspaces?

(a) The vectors whose entries all have the same sign.

(b) The vectors orthogonal to [1 1 1 1].

(c) The vectors [a b c d] satisfying ab = 0.

(d) The vectors [a b c d] satisfying a + 2b + 3c = d.

(e) The intersection of two arbitrary subspaces (i.e., the set of vectors belonging
to both subspaces);

(f) The union of two arbitrary subspaces (i.e., the set of vectors belonging to
one subspace or the other).

16

5

9

4

3

10

6

15
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11

7
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13

8

12

1

Fig. 4.7 Magic Square in Albrecht Durer’s Melancolia. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



REVIEW PROBLEMS FOR PART II 199

5. Which of these subsets of R4,4 are subspaces?
(a) The orthogonal matrices;

(b) The diagonal matrices;

(c) The reflection matrices;

(d) The Gauss-elimination row operators;

(e) The nonsingular matrices.

6. What are the dimensions of these subspaces of R4,4? Find bases for each.
(a) The symmetric matrices;

(b) The skew-symmetric matrices;

(c) The upper triangular matrices.

7. Find 2 vectors that, together with
[
1 2 3 4

]
and

[
4 3 2 1

]
, form a basis

for R4
row.

8. If v1, v2, . . . , vn are linearly independent, which of the following are indepen-
dent:
(a) The sums v1 + v2, v2 + v3, . . . , vn−1 + vn, v1 + vn ;

(b) The differences v1 − v2, v2 − v3, . . . , vn−1 − vn, v1 − vn?

9. Prove that any two three-dimensional subspaces of R5
col must have a nonzero

vector in common.

10. If V is the vector space of all polynomials of degree two or less, find a subset of
{1 + 2x + 3x2, 4 − x2, 1 + 2x, 2 − x, 1} that is a basis for V .

11. Find a basis for the space spanned by sin 2t, cos 2t, sin2 t, cos2 t, for
−∞ < t < ∞.

12. In the Introduction to Part II, we observed that the differential equation
d3y/dx3 = 0 has a set of solutions y = c1x2/2 + c2x + c3 comprising a three-
dimensional vector space. Find a set of three solutions that are orthogonal on
[0,1].

13. Prove that if A is 5-by-3 and B is 3-by-5, then AB is singular.

14. Prove that if the rank of A equals one, then A2 is a scalar multiple of A .

15. Is the following a basis for R2,2?

[
1 1
1 0

]
,

[
2 0
3 1

]
,

[
0 0
2 −1

]
,

[
−2 0
3 0

]
.

16. (Controllability) Many control systems can be described by the equation
xp+1 = Axp + Bup, where the vector xp describes the state of the system at time
p (so the entries of xp may be positions, angles, temperatures, currents, etc.);
A and B are appropriately dimensioned matrices characterizing the particular
system, and up is the input vector (at time p) selected by the system operator.
(a) Show that any state vector x lying in the span of the columns of

[Ax0, B, AB, A2B, . . . , AkB] can be reached within k + 1 time steps by 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



200 ORTHOGONALITY

proper choices of inputs [u0, u1, u2, . . . , uk]. (Hint: Derive, extend, and
exploit the relation x2 = A2x0 + ABu0 + Bu1.)

(b) If A is n − by − n, show that the system is “controllable,” that is, can be
driven into any state x from any initial state x0, if the rank of

[B, AB, A2B, . . . , AsB] equals n for some s.

(c) Find a sequence of inputs u0, u1, u2 that will drive the initial state x0 =
[1 1 1]T to the state x = [1 0 −1]T in three time steps for the system
characterized by

A =

⎡
⎣ 0 0 0

1 0 0
0 1 0

⎤
⎦ , B =

⎡
⎣ 1

0
0

⎤
⎦ .

17. Prove that if A is symmetric and uTAu = uTu for every vector u, then A is the
identity matrix. (Hint: First apply the equation with vectors u having all zero
entries except for a single “one”; then repeat, for vectors having two “ones.”)

18. (a) Describe how to express an arbitrary square matrix as a sum of a symmetric
matrix (A = AT) and a skew-symmetric matrix (A = −AT).

(b) Describe how to express an arbitrary square matrix as a sum of a symmetric
matrix and an upper triangular matrix.

(c) Is either of these decompositions unique?

19. What is u · v if ‖u‖ = ‖v‖ = ‖u + v‖ = 2?

20. Find the least squares best approximation over the interval [−1, 1] to x3 in the
form a1 + a2x + a3x2. (Hint: Use the results of Problem 12, Exercises 4.4.) How
is your answer the Legendre polynomial of degree three?

TECHNICAL WRITING EXERCISES FOR PART II

1. Discuss the fact that the intersection of two subspaces of a vector space is also a
subspace, but their union need not be a subspace. Illustrate with planes and lines.

2. Most mainframe, desktop, and laptop computers are binary machines; they
perform arithmetic in the base-2 system, using finite-precision binary approx-
imations to fractional numbers. However most calculators are binary-coded
decimal machines; they perform decimal arithmetic using finite-precision dec-
imal approximations, although the decimal digits are encoded in binary form.
(See http://en.wikipedia.org/wiki/Binary-coded_decimal for example.) Discuss
the nature of the numbers that are encoded exactly in each of the two systems, and
describe a matrix whose rank might be reported differently by two such machines. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



GROUP PROJECTS FOR PART II 201

GROUP PROJECTS FOR PART II

A. Rotations and Reflections

Your objective in this project is to demonstrate that every 3-by-3 orthogonal matrix
Q can be expressed as a product of rotation and reflection matrices. The following
observations will help you construct the argument.

(a) The orthonormal triad i = [1 0 0]T , j = [0 1 0]T , and k = [0 0 1]T represent unit
vectors along each of the three axes.

(b) The three columns iQ, jQ, and kQ of Q are the images, under multiplication
by Q, of these three unit vectors. They also form an orthonormal triad, so
kQ = (±) iQ × jQ. For our purposes, one can take kQ = iQ × jQ without
loss of generality by introducing, if necessary, a reflection through the xy plane.
Thus the resulting orthogonal matrix is completely determined by its first two
columns.

(c) Take a basketball or soccerball and imagine that the origin of the xyz axis system
lies at its center. Draw dots on the ball’s surface at the points where you estimate
i and j penetrate the ball; also draw dots where iQ and jQ penetrate the ball.

(d) Let M1 denote any rotation of the ball that carries i to iQ. Let j′ be the image of
j under this rotation.

(e) Argue that it must be possible to carry j′ to jQ by an additional rotation of the
ball about the axis through iQ. Call this rotation M2.

(f) Argue that the concatenation of these two rotations and the reflection (if needed)
qualifies as an orthogonal transformation because of Theorem 2, and that the first
two columns of its matrix are iQ and jQ; thus it must equal the original orthogonal
matrix.

B. Householder Reflectors

In this project, you will see how an extension of the reasoning employed in Example 2
of Section 4.2 generates alternative algorithms for solving linear systems, performing
Gram–Schmidt reductions, and finding least squares solutions.

(a) Show that a second Householder reflector M′
ref can be constructed to reduce the

second column of the matrix in Equation (3), Section 4.2, to the form shown:

M′
refMref

[
col #1 col #2 · · · col #n

↓ ↓ ↓

]
=M′

ref

⎡
⎢⎢⎢⎢⎢⎣

‖col #1‖ a12 · · · X
0 a22 · · · X
0 a32 · · · X
...

...
. . .

...
0 an2 · · · X

⎤
⎥⎥⎥⎥⎥⎦

,

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



202 ORTHOGONALITY

M′
ref

⎡
⎢⎢⎢⎢⎢⎣

‖col #1‖ a12 · · · X
0 a22 · · · X
0 a32 · · · X
...

...
. . .

...
0 an2 · · · X

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

‖col #1‖ a12 X · · · X
0 β X · · · X
0 0 X · · · X
0 0 X · · · X
0 0 X · · · X

⎤
⎥⎥⎥⎥⎦ .

(Hint: You need a reflector that leaves the first component of every vector intact,
but reflects the remaining components to the second axis.) Argue that the normal
to the corresponding mirror is given by [0 β 0 · · · 0]T − [0 a22 a32 · · · an2]T ,
where β = ± (a2

22 + a2
32 + · · · + a2

n2)
1/2.

(b) Extend this to argue that any matrix A can be reduced to a row-echelon
form R by premultiplication by a sequence of Householder reflectors R =
Mref

(m)Mref
(m−1) · · ·Mref

(1)A.

(c) Argue that this shows any matrix A admits a factorization into an orthogonal
matrix Q times a matrix in row echelon form R. A = QR is known as “the QR
factorization.”

(d) Explain how the QR factorization spawns an alternative for the forward part of
the Gauss elimination algorithm for solving a linear system Ax = b, replacing
the elementary row operations by premultiplication by Householder reflectors.
(Hint: Ax = b is equivalent to Rx = Q−1b.)

(e) Explain why pivoting is unnecessary in this procedure.

(f) For inconsistent systems, explain why the (Euclidean) norm ‖Ax − b‖ is the
same as ‖Rx − Q−1b‖, and that a vector x minimizing the latter is obvious.
Thus state an alternative procedure for finding least squares solutions.

C. Infinite Dimensional Matrices

In Section 4.4 we pointed out that function spaces typically are infinite-dimensional,
and we shied away from any reference to matrices in that context. Another, less
formidable, infinite-dimensional vector space is the set of all doubly infinite sequences
v = [· · · , v−2, v−1, v0, v1, v2, · · · ], manipulated formally like row vectors. We keep
track of the addresses of the elements by underlining the entry in column #0.

The Haar wavelet transform extracts (backward) sums and differences from a
sequence according to

sum = [· · · , v−4 + v−5, v−2 + v−3, v0 + v−1, v2 + v1, · · · ],

diff = [· · · , v−4 − v−5, v−2 − v−3, v0 − v−1, v2 − v1, · · · ].

It is amusing to express the equations for the Haar transform in matrix notation. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



GROUP PROJECTS FOR PART II 203

(a) Show that the backward sums of consecutive terms in the sequence v can be
represented by the matrix product

M+vT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

col #0
. . .

...
... ↓

...
...

...
· · · 1 0 0 0 0 0 · · ·
· · · 1 1 0 0 0 0 · · ·

row #0 → · · · 0 1 1 0 0 0 · · ·
· · · 0 0 1 1 0 0 · · ·
· · · 0 0 0 1 1 0 · · ·
· · · 0 0 0 0 1 1 · · ·

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
v−2

v−1

v0

v1

v2

v3
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
v−2 + v−3

v−1 + v−2

v0 + v−1

v1 + v0

v2 + v1

v3 + v2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(Note that we have underlined the (0,0) entry of the matrix and the entry in
row #0 of the column vector.)

(b) Construct the matrix M− that forms backward differences of consecutive terms.

(c) Of course the Haar sequences sum and diff are downsampled versions of M+vT

and M−vT ; they only retain every other term. Construct the downsampling
matrix M↓ that forms (the transposes of)

v↓ = [· · · , v−2, v0, v2, · · · ] from v = [· · · , v−2, v−1, v0, v1, v2, · · · ].

(d) Form the matrix products M↓M+ and M↓M− and verify that they directly
execute the Haar operations resulting in sum and diff.

(e) The upsampling matrix M↑ inserts zeros into a sequence, forming (the trans-
poses of)

v↑ = [· · · , v−2, 0, v−1, 0, v0, 0, v1, 0, v2, · · · ] from

v = [· · · , v−2, v−1, v0, v1, v2, · · · ].

Construct M↑. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



204 ORTHOGONALITY

(f) The left-shift matrix M← forms v← = [· · · , v−1, v0, v1, v2, v3, · · · ] from
v = [· · · , v−2, v−1, v0, v1, v2, · · · ]. Construct M←.

(g) An important property of the Haar transform is that it is easily inverted; the
sequences sum+diff

2 and sum−diff
2 , when properly interleaved, restore the original

sequence. Devise a combination of M↑, M←, sum+diff
2 and sum−diff

2 , that equals v.
Verify that the identity matrix results when M+, M−, M↑, and M← are properly
combined.

(h) In signal processing, the left-shift operation corresponds to a time advance and
is physically impossible. Define the time delay matrix M→ and argue that a
combination of M↑, M→, sum+diff

2 and sum−diff
2 can be constructed to yield a

time-delayed version of the original sequence v.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



PART III

INTRODUCTION: REFLECT ON THIS

A mirror passes through the origin of the x, y-plane. It reflects the unit vector [1 0]T

into the vector [0.8 0.6]T (Fig. III.1a), and the vector [0 1]T is reflected to [0.6 −0.8]T

(Fig. III.1b). Find a vector normal to the mirror.
The specifications of this problem give us sufficient information to write down the

reflector matrix Mref (or simply M): since M
[

1
0

]
equals the first column of M and

M
[

0
1

]
equals the second,

M =

[
0.8 0.6
0.6 −0.8

]
. (1)

In this section our strategy for finding a normal to the mirror is based on the observation
that the mirror reflection of a normal n is –n:

Mn = −n (2)

(Fig. III.1c).
Equation (2) can be rewritten, using the identity matrix I, as an equation for a null

vector of M + I:

Mn + n = (M + I)n = 0. (3)

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



206 PART III INTRODUCTION: REFLECT ON THIS

y

x

(0.8, 0.6)

(1, 0)

(a)

x

(b)
y

(0, 1)

(0.6, –0.8)

(c)
y

x

–n

n

Fig. III.1 (a) Mirror image of [1, 0], (b) mirror image of [0, 1], and (c) the normal.

For (3) to have a nontrivial solution, the matrix M + I must be singular, and the Gauss
elimination algorithm will reveal its null vectors. The steps go as follows:

[
M + I

...0
]
=

⎡
⎣0.8 + 1 0.6

... 0

0.6 −0.8 + 1
... 0

⎤
⎦

=

⎡
⎣1.8 0.6

... 0

0.6 0.2
... 0

⎤
⎦
(
−1

3
ρ1 + ρ2 → ρ2

)⎡
⎣1.8 0.6

... 0

0 0
... 0

⎤
⎦ ,

so that

n = t

[
−1/3

1

]
,

where t is any scalar. A quick calculation confirms (2). 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



PART III INTRODUCTION: REFLECT ON THIS 207

In fact, insertion of the unit normal [−1, 3]T 1√
10

into Equation (3) of Section 2.2
reproduces the matrix M in (1), confirming that it is, indeed, a reflector operator.

Now we generalize. Whenever the direction of a vector is unchanged (or reversed)
by a matrix multiplication, we say that the vector is an eigenvector of the matrix. More
specifically, if v is an eigenvector, Mv is simply a scalar multiple of v:

Mv = rv, (4)

and the scalar r is called the eigenvalue corresponding to v. In (4), we allow the pos-
sibility that the eigenvalue r can be negative or zero or even complex. But the zero
vector, since it has no “direction,” is excluded from the family of eigenvectors, although
it trivially satisfies (4) (for every scalar r). The mirror’s normal n is an eigenvector
corresponding to the eigenvalue −1 because of Equation (2).

In fact, any vector parallel to the mirror in Figure III.1 is also an eigenvector, since
it is unchanged by reflection; its eigenvalue is +1.

It is extremely profitable to know a matrix’s eigenvectors, mainly because an n-by-n
matrix—despite all its n2 pieces of data—simply acts like a scalar when multiplying an
eigenvector, and this can be exploited in a myriad of applications (including differen-
tial equations). In this chapter, we will examine the eigenvector–eigenvalue theory for
matrices.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



5
EIGENVECTORS AND
EIGENVALUES

5.1 EIGENVECTOR BASICS

We formalize the deliberations of the introduction to Part III as follows:

Eigenvectors and Eigenvalues

Definition 1. Let A = [aij] be a square matrix. The eigenvalues of A are those
real or complex numbers r for which the equation

Au = ru or, equivalently, (A − rI) u = 0, (1)

has at least one nontrivial (nonzero) solution u. The nontrivial solutions are called
the eigenvectors of A associated with r.

We have seen that the vectors normal and parallel to a mirror are eigenvectors of
the reflector matrix. The normal vectors share the eigenvalue −1 and form a one-
dimensional subspace, and the vectors parallel to the mirror share the eigenvalue +1
and also form a one-dimensional subspace (in two dimensions). (In three-dimensional
space the vectors parallel to the mirror form, of course, a two-dimensional subspace.)

Here are some other examples of eigenvectors and eigenvalues.

(i) A matrix that performs a rotation in three-dimensional space has, as eigen-
vectors, all vectors parallel to the axis of rotation (what is the eigenvalue?).

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



210 EIGENVECTORS AND EIGENVALUES

But a rotation in two dimensions changes every vector’s direction (unless the
rotation is through an integer multiple of 180◦). In both of these cases, we
shall see that rotation matrices do have more eigenvectors, but they are complex
(Example 4, Section 5.2).

(ii) Every singular matrix has the eigenvalue zero; its null vectors u satisfy
Au = 0u.

(iii) Each number on the diagonal of a diagonal matrix is an eigenvalue, with
eigenvectors exemplified by the following display:

⎡
⎢⎢⎢⎢⎢⎣

d11 0 0 · · · 0
0 d22 0 · · · 0
0 0 d33 · · · 0
...

. . .
...

0 0 0 · · · dnn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
...
0

⎤
⎥⎥⎥⎥⎥⎦
= d33

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
...
0

⎤
⎥⎥⎥⎥⎥⎦

More generally, if any single column of a square matrix has this “diagonal
structure,” the matrix will have an eigenvector as indicated:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x x 0 x · · · x
x x 0 x · · · x
x x d x · · · x
x x 0 x · · · x
...

...
...

...
...

x x 0 x · · · x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= d

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(iv) The matrices that perform Gauss elimination’s elementary row operations also
have some obvious eigenvectors. A matrix that, through multiplication, adds a
multiple of row j to row k of a column vector has, as eigenvectors, all nontriv-
ial vectors with a zero in row j; a matrix that switches two rows of a column
vector will have, as eigenvectors, any nontrivial vector with identical entries in
those rows:

⎡
⎣1 0 0

0 1 0
c 0 1

⎤
⎦
⎡
⎣0

s
t

⎤
⎦ = (1)

⎡
⎣0

s
t

⎤
⎦ ;

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦
⎡
⎣s

t
s

⎤
⎦ = (1)

⎡
⎣s

t
s

⎤
⎦ .

(v) The product Mu with u = [1 1 1 . . . 1]T tabulates the row sums of M. Thus if
all the row sums of M are equal, u is an eigenvector.

(vi) An eigenvector of A is also an eigenvector of A + sI, because Au = ru implies
(A + sI)u = ru + su = (r + s)u. The eigenvalue has been shifted by s.

(vii) An eigenvector u of A is also an eigenvector of An for any positive integer n.
For example, Au = ru implies A2u = A(Au) = A(ru) = rAu = r2u, and 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



5.1 EIGENVECTOR BASICS 211

analogous calculations hold for An; the eigenvalue is rn. In fact if A is invertible,
it follows easily that A−1u = r−1u; and u is an eigenvector of A−n also.

(viii) Similarly,

(
anAn + an−1An−1 + · · · + a1A + a0I

)
u =

(
anrn + an−1rn−1 + · · · + a1r + a0

)
u

for an eigenvector u. Thus for any polynomial p(t), u is an eigenvector of p(A)
with eigenvalue p(r).

It is important to note that any (nonzero) multiple of an eigenvector is also an eigen-
vector, with the same eigenvalue. (So eigenvectors are really “eigendirections,” but this
nomenclature has never caught on.) In fact if u1, u2, . . ., uk each satisfy Au = ru with
the same eigenvalue r, so does any linear combination:

A (c1u1 + c2u2 + · · · + ckuk) = c1Au1 + c2Au2 + · · · + ckAuk

= c1ru1 + c2ru2 + · · · + ckruk

= r (c1u1 + c2u2 + · · · + ckuk) .

Therefore the set of all eigenvectors with the same eigenvalue, together with the
zero vector (which we have excluded as an “eigenvector”), form a subspace—an
“eigenspace.”

On the other hand, eigenvectors with different eigenvalues are linearly independent.
To see this, suppose that we have a collection of eigenvectors {ui}, each having a dis-
tinct eigenvalue (ri). Choose any two; they will be independent, because if one were
a multiple of the other they would have the same eigenvalue. Now keep adding, one
by one, more eigenvectors from the collection as long they are independent of the set
already accumulated, until you have a maximal independent set u1, u2, . . ., uk. If there
is one left over, uk+1, it would be linearly dependent on the set and expressible as

uk+1 = c1u1 + c2u2 + · · · + ckuk (2)

with not all the ci’s zero (since uk+1 is not the zero vector). But multiplication of (2) by
A − rk+1I would yield

(rk+1 − rk+1) uk+1 = c1 (r1 − rk+1) u1 + c2 (r2 − rk+1) u2 + · · · + ck (rk − rk+1) uk. (3)

Since (3) displays a nontrivial linear combination of u1 through uk that equals 0, the
postulated independence of u1 through uk would be contradicted. We summarize our
findings in the following theorems. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



212 EIGENVECTORS AND EIGENVALUES

Spans of Sets of Eigenvectors

Theorem 1. If A is any square matrix, the set of all eigenvectors of A with the
same eigenvalue, together with the zero vector, forms a subspace.

Theorem 2. Any collection of eigenvectors of A that correspond to distinct
eigenvalues is linearly independent.

The exercises explore other examples of eigenvector–eigenvalue pairs that can be
visualized. A formal procedure for calculating eigenvectors will be described in the
next section.

Exercises 5.1

1. What are the eigenvalues and eigenvectors of an orthogonal projector matrix?
(Recall Example 2, Section 2.2.)

2. If we regard the three-dimensional vector m as fixed, the cross-product w = m×v
is a linear operation on the vector v, and can be expressed as a matrix product
w = Mv (with w and v as column vectors). Before you work out the specific
form of the matrix M (in terms of the components of m), identify an eigenvector–
eigenvalue pair for the cross product. Then write out M and verify your eigenvector
equation.

Problems 3 and 4 explore the eigenvector–eigenvalue structure of the matrices

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b b b b b
b a b b b b b
b b a b b b b
b b b a b b b
b b b b a b b
b b b b b a b
b b b b b b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3. Because volleyball is an extremely team-coordinated activity, it is difficult to assess
the value of a player in isolation. But it is noted that the Gauss Eliminators’ play
suffers when Saff sits on the bench and improves when Snider is sitting, while
rotating the other five members does not seem to make a difference—as long as
Saff and Snider are both playing. Thus the relative effectiveness of each player can
roughly be expressed by the vector

Saff Snider Aniston Jolie Berry Kardashian Gaga
v = +1 −1 0 0 0 0 0

Note that the jth entry of the product FvT (with F given above) measures the
effectiveness of the team when the jth player is sitting. From these observations, 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



5.1 EIGENVECTOR BASICS 213

construct six linearly independent eigenvectors of F with the eigenvalue −1. What
is the remaining eigenvalue (and a corresponding eigenvector)?

4. What are the eigenvectors and eigenvalues of G? [Hint: Express G in terms of F
and I.]

5. What are the eigenvectors of the Gauss-elimination matrix that multiplies one row
of a matrix vector by a constant?

6. In this problem you will prove that all of the diagonal entries of a triangular matrix
are eigenvalues. To fix our ideas let’s look at the 4-by-4 upper triangular case:

U =

⎡
⎢⎢⎣

u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

⎤
⎥⎥⎦

(a) Find an eigenvector with u11 as eigenvalue. [Hint: This is easy; look for an
eigenvector with only one nonzero entry.]

(b) Try to find an eigenvector corresponding to u22, of the form v =
[x 1 0 0]T . Show that the equation Uv = u22v only requires u11x + u12 =
u22x, or x = u12/(u22 − u11) if u22 �= u11. And if u22 does equal u11, we have
already proved it is an eigenvalue.

(c) Show that if u33 is not a duplicate of one of the earlier diagonal entries, then it
has an eigenvector of the form [x y 1 0]. And so on.

7. Following the strategy of the preceding problem, show that

U =

⎡
⎢⎢⎣

1 1 1 1
0 2 α 1
0 0 2 1
0 0 0 4

⎤
⎥⎥⎦

has an eigenvector corresponding to the eigenvalue 2, of the form [x 1 0 0]T ;
but it only has an eigenvector of the form [y z 1 0]T if α = 0.

The entries of the complex vector u4 = [i − 1 − i 1]T , depicted in
Figure 5.1, are the 4th roots of unity, 4

√
1. If they are regarded cyclically counter-

clockwise (so that i “follows” 1), they have some properties that can be expressed
as eigenvector equations. Refer to Figure 5.1 to assist in answering Problems 8–11.

8. From Figure 5.1, note that each root equals i times the previous root. Interpret this
as an eigenvector statement for the matrix

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



214 EIGENVECTORS AND EIGENVALUES

1–1

i

–i

Fig. 5.1 The fourth roots of unity.

9. From Figure 5.1, note that the difference of the successor and the predecessor
of each root in the list equals 2i times the root. Interpret this as an eigenvector
statement for the matrix

B =

⎡
⎢⎢⎣

0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0

⎤
⎥⎥⎦ .

10. From Figure 5.1, note that the sum of the successor and predecessor of each root
equals zero. Interpret this as an eigenvector statement for the matrix

C =

⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦ .

11. (a) The fourth roots of unity can also be written as the consecutive powers of
i ≡ ei2π/4, the “primitive” fourth root:

u4 =
[
i i2 i3 i4

]T
.

If we take the vector consisting of the four consecutive powers of the second
root in u4, namely i2 = −1, we get another sequence

[
i2 i4 i6 i8

]T
= [−1 1 − 1 1]T 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



5.1 EIGENVECTOR BASICS 215

that enjoys neighbor relations similar to those described in Problems 8 through
10; specifically, each entry is a fixed multiple of the previous entry, and the
sums/differences of each entry’s successor and predecessor are fixed multiples
of the entry. Hence the vector is another eigenvector of A, B, and C. What are
the corresponding eigenvalues?

(b) The consecutive powers of the third, and even the fourth, entries in u4:

[
i3 i6 i9 i12

]T
= [−i − 1 i 1]T and[

i4 i8 i12 i16
]T

= [1 1 1 1]T ,

continue to satisfy similar neighbor relations. What are the corresponding
eigenvector statements for A, B, and C?

12. The matrices A, B, and C in Problems 8–11 are special instances of the general
4-by-4 circulant matrix:

D =

⎡
⎢⎢⎣

d1 d2 d3 d4

d4 d1 d2 d3

d3 d4 d1 d2

d2 d3 d4 d1

⎤
⎥⎥⎦ ,

wherein each row is a cyclic right-shift of the preceding row. Show that u4 and the
three vectors described in Problem 11 are common eigenvectors of every circulant
matrix. What are the corresponding eigenvalues? [Hint: Figure 5.1 will probably
not be of any help; this problem should be tackled algebraically.]

13. Repeat the analyses of Problems 8–12 for the vector u6 constructed from the
powers of the primitive sixth root of unity ω = eiπ/3 = 6

√
1;

u6 =
[
eiπ/3 ei2π/3 ei3π/3 ei4π/3 ei5π/3 ei6π/3

]T

=
[
ω ω2 ω3 ω4 ω5 ω6

]T
.

(See Fig. 5.2.) In particular, construct six vectors that are eigenvectors for each of
the 6-by-6 circulant matrices corresponding to A, B, C, and D.

14. Generalize the circulant matrix in Problem 12 to its n-by-n form and formulate the
corresponding eigenvector statements.1

1The vectors[
ω ω2 ω3 · · · ωn

]T ,
[
ω2 ω4 ω6 · · · ω2n

]T , . . . , [1 1 1 · · · ]T ,

ω = ei2π/n (ωn = 1)

are discrete analogs of the “finite Fourier series.” The fact that they are eigenvectors of every circulant matrix
is crucial in the science of digital signal processing. See Group Project C at the end of Part III. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



216 EIGENVECTORS AND EIGENVALUES

eiπ/3

ei5π/3

1

–1

ei4π/3

ei2π/3

Fig. 5.2 The sixth roots of unity.

15. Show that if u is an eigenvector of (AB), then (Bu) is an eigenvector of BA, and
that AB and BA have the same eigenvalues.

16. If Au = ru, what is (3A3 − 4A + 2I)u ?

17. Show that if none of the eigenvalues of A equals one, then I − A is invertible.

18. If Au = r1u and Bu = r2u (and u �= 0), show that u is an eigenvector of A + B
and AB. What are the corresponding eigenvalues?

19. Property (vi) in the text points out that changing the matrix A to A + sI shifts every
eigenvalue of A by s. In numerical analysis, it is convenient to be able to shift
only one eigenvalue, leaving the others intact. If the eigenvalue is replaced by 0,
the matrix is said to be deflated. In this problem, you will accomplish this with a
“rank-one correction”—that is, adding a matrix of rank one to A. (Recall Problem
28, Exercises 3.3.) Suppose A is n-by-n and has the eigenvalue–eigenvector pairs
Au1 = r1u1, Au2 = r2u2, . . ., Aum = rmum.
(a) Let b be any nonzero n-by-1 vector. Verify that u1 is an eigenvector of A+u1bT

with corresponding eigenvalue

r′1 = r1 + bTu1.

(b) Show that every other eigenvalue r2, . . ., rm of A is still an eigenvalue of A +
u1bT . [Hint: if r2 = r′1, part (a) has already shown that it is an eigenvalue.
Otherwise right-multiply

A + u1bT by u2 +
[
bTu2/(r2 − r′1)

]
u1

and observe the eigenvector equation for r2.] 
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20. Show that every n-by-n matrix having u as an eigenvector with r as the correspond-
ing eigenvalue can be constructed by assembling n vectors orthogonal to u into the
rows of a matrix, and adding r to each diagonal entry.

5.2 CALCULATING EIGENVALUES AND
EIGENVECTORS

How can we find eigenvalues and eigenvectors? The complete story2 is contained in
the relation [A − rI]u = 0:

(i) the eigenvalue r must be a number that renders A − rI singular—that is,
det(A − rI) = 0;

(ii) with r specified, the eigenvectors u are found by solving [A− rI]u = 0 through
Gauss elimination.

As seen from the cofactor expansion theorem (Theorem 5 of Section 2.4), the deter-
minant of a matrix is a sum/difference of terms that are products of its entries, exactly
one from each row and column. So for an n-by-n matrix A, the term containing the
highest number of occurrences of the parameter r in det(A − rI) is the product of the
diagonal entries, generating (−r)n. Therefore, det(A−rI) is an nth degree polynomial
in r, and finding the eigenvalues of a matrix is equivalent to finding the zeros of its
characteristic polynomial p(r),

p(r) := det(A − rI) = (−r)n + cn−1rn−1 + · · · + c0

= (−1)n(r − r1) · · · (r − rn). (1)

The equation p(r) = 0 known as the characteristic equation of A.
Problem 6 in Exercises 5.1 argued that the eigenvalues of a triangular matrix are its

diagonal entries. This is readily confirmed by observing the characteristic polynomial.
For an upper triangular matrix,

det

⎡
⎢⎢⎢⎣

a11 − r a12 a13 . . . a1n

0 a22 − r a23 . . . a2n
...

0 0 0 ann − r

⎤
⎥⎥⎥⎦ = (a11 − r) (a22 − r) . . . (ann − r) .

The following examples of eigenvector calculations illustrate the basic procedure
and the complications that result when the characteristic equation has complex or
multiple roots.

2Section 6.5 addresses some important practical computational issues. 
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Example 1. Find the eigenvalues and eigenvectors of the matrix

A :=

[
2 1
−3 −2

]
.

Solution. The characteristic equation for A is

|A − rI| =
[

2 − r 1
−3 −2 − r

]
= (2 − r)(−2 − r) + 3 = r2 − 1 = 0 .

Hence the eigenvalues of A are r1 = 1, r2 = −1. To find the eigenvectors corre-
sponding to r1 = 1, we must solve (A − r1I)u = 0. Substituting for A and r1

gives

[
1 1
−3 −3

] [
u1

u2

]
=

[
0
0

]
. (2)

Gauss elimination (or mental arithmetic) shows the solutions to (2) are given by u2 = s,
u1 = −s. Consequently, the eigenvectors associated with r1 = 1 can be expressed as

u1 = s

[
−1
1

]
. (3)

For r2 = −1, the equation (A − r2I)u = 0 becomes

[
3 1
−3 −1

] [
u1

u2

]
=

[
0
0

]
.

Solving, we obtain u1 = −t and u2 = 3t, with t arbitrary. Therefore, the eigenvectors
associated with the eigenvalue r2 = −1 are

u2 = t

[
−1
3

]
. (4)

�

Example 2. Find the eigenvalues and eigenvectors of the matrix

A :=

⎡
⎣1 2 −1

1 0 1
4 −4 5

⎤
⎦ .
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Solution. The characteristic equation for A is

|A − rI| =

⎡
⎣1 − r 2 −1

1 −r 1
4 −4 5 − r

⎤
⎦ = 0,

which simplifies to (r− 1)(r− 2)(r− 3) = 0. Hence, the eigenvalues of A are r1 = 1,
r2 = 2, and r3 = 3. To find the eigenvectors corresponding to r1 = 1, we set r = 1 in
(A − rI)u = 0. This gives

⎡
⎣0 2 −1

1 −1 1
4 −4 4

⎤
⎦
⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ . (5)

Gauss elimination readily provides a parametrization of the solution set for (5).
However the system is so transparent that, again, mental arithmetic suffices. The third
equation is clearly redundant since it’s a multiple of the second equation. And forward
substitution reveals the solutions to the first two equations to be

u2 = s,

u3 = 2s, u1 = −s.

Hence, the eigenvectors associated with r1 = 1 are

u1 = s

⎡
⎣−1

1
2

⎤
⎦ . (6)

For r2 = 2 we solve

⎡
⎣−1 2 −1

1 −2 1
4 −4 3

⎤
⎦

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

in a similar fashion to obtain the eigenvectors

u2 = s

⎡
⎣−2

1
4

⎤
⎦ . (7)

Finally, for r3 = 3 we solve

⎡
⎣−2 2 −1

1 −3 1
4 −4 2

⎤
⎦

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦
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and get the eigenvectors

u3 = s

⎡
⎣−1

1
4

⎤
⎦ . (8)

�

Example 3. Find the eigenvalues and eigenvectors for

A =

⎡
⎣1 2 0

0 1 −2
2 2 −1

⎤
⎦ .

Solution. The characteristic equation,

|A − rI| =

∣∣∣∣∣∣
1 − r 2 0

0 1 − r −2
2 2 −1 − r

∣∣∣∣∣∣ = −r3 + r2 − 3r − 5 = 0,

simplifies to

(r + 1)
(
r2 − 2r + 5

)
= (r + 1)(r − [1 + 2i])(r − [1 − 2i]) = 0.

Thus the eigenvectors satisfy (A− rI)u = 0 for each of the eigenvalues −1, 1 + 2i, and
1 − 2i:

⎡
⎣1 − (−1) 2 0

0 1 − (−1) −2
2 2 −1 − (−1)

⎤
⎦
⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ ,

⎡
⎣1 − (1 + 2i) 2 0

0 1 − (1 + 2i) −2
2 2 −1 − (1 + 2i)

⎤
⎦
⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦,

⎡
⎣1 − (1 − 2i) 2 0

0 1 − (1 − 2i) −2
2 2 −1 − (1 − 2i)

⎤
⎦
⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦.

The first system has solutions t[−1 1 1]T . The second and third systems have
coefficient matrices that are complex conjugates of each other, and Gauss elimina-
tion (with complex numbers) produces the conjugate solutions t[1 (±i) 1]T . Quick
mental calculation confirms that 
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⎡
⎣1 2 0

0 1 −2
2 2 −1

⎤
⎦
⎡
⎣−1

1
1

⎤
⎦ = (−1)

⎡
⎣−1

1
1

⎤
⎦ ,

⎡
⎣1 2 0

0 1 −2
2 2 −1

⎤
⎦
⎡
⎣1

i
1

⎤
⎦ = (1 + 2i)

⎡
⎣1

i
1

⎤
⎦,

⎡
⎣1 2 0

0 1 −2
2 2 −1

⎤
⎦
⎡
⎣ 1
−i
1

⎤
⎦ = (1 − 2i)

⎡
⎣ 1
−i
1

⎤
⎦ . �

Example 4. Find the eigenvalues and eigenvectors for the rotation matrices

A =

[
cos θ − sin θ
sin θ cos θ

]
and B =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦

Solution. The form of the two-dimensional rotation matrix A was derived in Example 1
of Section 2.2. Its characteristic equation,

|A − rI| =
∣∣∣∣cos θ − r − sin θ
sin θ cos θ − r

∣∣∣∣ = (cos θ − r)2 + sin2 θ = r2 − 2r cos θ + 1 = 0,

has the roots

r =
2 cos θ ±

√
4 cos2 θ − 4
2

= cos θ ± i sin θ = e±iθ,

which are complex unless θ = 0 or π (in which case A = ±I). Complex eigenvectors
corresponding to e±iθ are easily seen to be [1 ∓ i]T .

In Figure 5.3, the matrix B takes the position vector [x y z]T into [z x y]T ; it
cycles the axes (x → y → z → x), and thus it is a rotation about the direction making
equal angles with the axes: namely, [1 1 1]T . The characteristic equation,

|B − rI| =

∣∣∣∣∣∣
−r 0 1
1 −r 0
0 1 −r

∣∣∣∣∣∣ = (−r)3 + 1 = 0,

shows that the eigenvalues are the cube roots of unity: namely, r1 = 1, r2 = ei2π/3,
and r3 = e−i2π/3. The direction of the axis of rotation [1 1 1]T is easily seen to
be an eigenvector corresponding to r1 = 1, as predicted in Section 5.1. The complex
eigenvectors are of little interest to us at this point. �

The next example demonstrates some curious aberrations that we will explore later
in this book. 
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z

y

x

Fig. 5.3 Rotation in three dimensions.

Example 5. Find the eigenvalues and eigenvectors for

A =

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦ and B =

[
1 0
c 1

]
(c �= 0).

Solution. The characteristic equation for A is

|A − rI| =

⎡
⎣1 − r −2 2

−2 1 − r 2
2 2 1 − r

⎤
⎦

= −r3 + 3r2 + 9r − 27 = −(r + 3)(r − 3)2 = 0.

The eigenvectors for the eigenvalue r = −3 are found by straightforward Gauss elimi-
nation to be t [−1 − 1 1]T . But when we substitute the double root r = +3 into the
homogeneous system for the eigenvectors, Gauss elimination produces

A − 3I �→

⎡
⎢⎢⎢⎣

1 − 3 −2 2
... 0

−2 1 − 3 2
... 0

2 2 1 − 3
... 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
−2 −2 2

... 0

−2 −2 2
... 0

2 2 −2
... 0

⎤
⎥⎥⎥⎦

⎛
⎝−ρ1 + ρ2 → ρ2

ρ1 + ρ3 → ρ3

⎞
⎠

⎡
⎢⎢⎢⎣
−2 −2 2

... 0

0 0 0
... 0

0 0 0
... 0

⎤
⎥⎥⎥⎦
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indicating that the double eigenvalue has a two-dimensional eigenspace,

t1

⎡
⎣1

0
1

⎤
⎦ + t2

⎡
⎣−1

1
0

⎤
⎦ .

For B the characteristic equation also has a double root:

|B − rI| =
[

1 − r 0
c 1 − r

]
= (1 − r)2, (9)

but its eigenspace is only one-dimensional:

B − (1)I �→

⎡
⎣1 − 1 0

... 0

c 1 − 1
... 0

⎤
⎦ ρ1 ↔ ρ2

⎡
⎣c 0

... 0

0 0
... 0

⎤
⎦

has t[0 1]T as its only solutions.3 �

To obtain some perspective for our further study, let’s summarize the observations
we have made so far.

• Every n-by-n matrix has at least one and at most n (possibly complex) eigenvalues.
Why? Because they are the roots of a polynomial of degree n (the characteristic
polynomial, Equation (1)).

• Every eigenvalue has at least one eigenvector—or, better, at least a one-
dimensional eigenspace. Why? Because the eigenvectors are solutions of a
singular, homogeneous system.

• If an eigenvalue of a real matrix is real, its eigenvectors can be taken to be real
as well. Why? Because they can be computed using the Gauss elimination algo-
rithm (which does not need complex numbers to reduce a real matrix). (Since any
nonzero multiple of an eigenvector is also an eigenvector, we could (maliciously)
make a real eigenvector complex by multiplying it by i (or any other complex
number); the eigenvalue, though, would remain real.)

• Multiple (repeated) eigenvalues may, or may not, have eigenspaces of dimension
higher than one.

• Eigenvectors corresponding to distinct eigenvalues are linearly independent. Thus
if there are no multiple eigenvalues, we can create a full basis of n eigenvectors—
one for each eigenvalue. Or, if each multiple eigenvalue has an eigenspace whose

3Did you recognize B as an elementary row operator matrix? 
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dimension is equal to its multiplicity (as a root of the characteristic equation),
again we can create a basis of eigenvectors.

• The eigenvalues of a triangular matrix are its diagonal entries.

We will show later that real, symmetric matrices have only real eigenvalues, and
each multiple eigenvalue has its “full set” of eigenvectors—that is, the dimension of
its eigenspace equals the multiplicity of the eigenvalue. But if a matrix is defective,
not having a full set of eigenvectors for each eigenvalue, we will see that we have
to settle for a basis consisting partially of eigenvectors, and partially of generalized
eigenvectors satisfying a “watered-down” version of the eigenvector equation (namely,
(A − rI)ku = 0 for some k > 1).

Exercises 5.2

The matrices in Problems 1 through 8 have distinct eigenvalues. Find these eigenvalues
and corresponding eigenvectors.

1.

[
9 −3
−2 4

]
2.

[
−1 −3
4 7

]
3.

[
1 −2
−2 1

]
4.

[
−3 2
−5 4

]
5.

[
1 1
1 1

]

6.

⎡
⎣1 0 2

3 4 2
0 0 0

⎤
⎦ 7.

⎡
⎣4 −1 −2

2 1 −2
1 −1 1

⎤
⎦ 8.

⎡
⎣ 2 −1 −1
−1 3 0
−1 0 3

⎤
⎦

The matrices in Problems 9–12 have complex eigenvalues. Find the eigenvalues and
eigenvectors.

9.

[
0 −1
1 0

]
10.

[
0 1

−1 + i −1

]
11.

[
1 2i
−1 3 + i

]
12.

⎡
⎣−6 2 16
−3 1 11
−3 1 7

⎤
⎦

The matrices in Problems 13–20 have multiple eigenvalues. Some are defective. Find
the eigenvalues and eigenvectors.

13.

[
10 −4
4 2

]
14.

[
1 −1
1 3

]
15.

[
3 2
−2 7

]
16.

[
0 −i
i 2i

]

17.

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ 18.

⎡
⎣ 1 2 6
−1 4 6
−1 2 8

⎤
⎦ 19.

⎡
⎣1 0 0

0 2 3
1 0 2

⎤
⎦ 20.

⎡
⎣ 1 2 2

2 4 3
−2 −1 0

⎤
⎦
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21. Deflation of a matrix. A matrix is said to be deflated when one of its eigenvalues
is replaced by zero, while the others are left intact. Calculate the eigenvalues of
each of the following matrices, deflate the matrix using the technique described in
Problem 19 of Exercises 5.1 to replace the highest eigenvalue by zero, and then
recalculate the eigenvalues to check your work.

(a)

[
9 −3
−2 4

]
(see Problem 1)

(b)

⎡
⎣ 1 −2 1
−1 2 −1
0 1 1

⎤
⎦

22. If A is invertible, show how one can construct the characteristic polynomial of A−1

from the characteristic polynomial of A (without calculating A−1).

23. (a) If A is a square matrix show that A and AT have the same eigenvalues.

(b) Show that eigenvectors v1 and v2 of AT and A respectively satisfy vT
2 v1 = 0,

if they correspond to different eigenvalues. [Hint: Start with the identity
vT

1 (Av2) = (ATv1)Tv2.]

(c) Verify (a) and (b) for the matrices

(i)

[
3 2
−1 0

]
(ii)

⎡
⎣−3 −2 2

2 5 −4
1 5 −4

⎤
⎦ .

24. Why does every real n-by-n matrix have at least one real eigenvalue if n is odd?
Construct a real 2-by-2 matrix with no real eigenvalues.

25. Show that the coefficient c0 in the characteristic polynomial (1) for A equals det(A).

26. Trace. Show that (−1)n times the coefficient cn−1 in the characteristic polynomial
(1) for A equals the sum of the diagonal elements of A (otherwise known as the
trace of A). (It is also the sum of the eigenvalues; why?)

27. What are the eigenvalues of a 2-by-2 matrix with trace equal to 2 and determinant
equal to −8?

28. Show that if A and B are both n-by-n matrices then AB and BA have the same
trace, determinant, and eigenvalues. [Hint: compare the characteristic polynomials
of AB and BA.]

5.3 SYMMETRIC AND HERMITIAN MATRICES

The results of the eigenvector calculations for the symmetric matrix A in Example 5 of
the previous section are summarized in the following text:
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A =

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦;

A

⎡
⎣1

0
1

⎤
⎦ = 3

⎡
⎣1

0
1

⎤
⎦, A

⎡
⎣−1

1
0

⎤
⎦ = 3

⎡
⎣−1

1
0

⎤
⎦, A

⎡
⎣−1
−1
1

⎤
⎦ = −3

⎡
⎣−1
−1
1

⎤
⎦ . (1)

This display exhibits some general properties of real symmetric matrices that make
them “ideal” for eigenvalue analysis.

Eigenvalues and Eigenvectors of Real Symmetric Matrices

Theorem 3. If A is a real symmetric matrix,

(i) its eigenvalues are all real (and consequently its eigenvectors can be taken
to be real);

(ii) its eigenvectors corresponding to distinct eigenvalues are orthogonal; and

(iii) its multiple eigenvalues have eigenspaces of dimension equal to the
multiplicity of the corresponding eigenvalues.

Note how Equation (1) manifests these conclusions. The eigenvalues are the real
numbers 3 (twice) and −3, the eigenspace for the repeated eigenvalue is spanned by
the two independent eigenvectors [1 0 1]T and [−1 1 0]T , and each of these is
orthogonal to the remaining eigenvector [−1 − 1 1]T .

The proofs of (i) and (ii) simply involve juggling the basic eigenvalue equation
Au = ru and the symmetry condition AT = A.

Proof of (i) and (ii). Suppose Au1 = r1u1 and Au2 = r2u2. Then the relation

r2uT
1 u2 = r1uT

1 u2 (2)

can be derived by processing uT
1 Au2 in two ways:

uT
1 Au2 = uT

1 (Au2) = uT
1 (r2u2) = r2uT

1 u2,
|||

uT
1 Au2 =

(
uT

1 A
)

u2 =
(
ATu1

)T
u2 = (Au1)

T u2 = (r1u1)
T u2 = r1uT

1 u2.
↑

(Keep in mind that AT = A.)

(3)

In the following, we use the overbar to denote the complex conjugate of a scalar or
vector. Thus a + ib = a − ib and v + iw = v − iw (for real a, b, v, and w). 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



5.3 SYMMETRIC AND HERMITIAN MATRICES 227

To show (2) implies (i), note that if Au = ru and A is real, then by taking complex
conjugates we derive Au = ru, so we invoke (2) with the identifications r1 = r, r2 = r,
u1 = u, u2 = u, to conclude ruTu = ruTu. But now uTu is a sum of squared
magnitudes and thus is positive (since u �= 0), so r has to equal r; the eigenvalues are
real. (And therefore the eigenvectors can be taken to be real also.)

To see that (2) implies (ii) we simply note that r1 �= r2 in (2) implies orthogonality:
uT

1 u2 = 0.
The proof of (iii) is more complicated and is deferred to Section 6.3.

Although Theorem 3 only guarantees that eigenvectors corresponding to distinct
eigenvalues are orthogonal, remember that eigenvectors corresponding to the same
eigenvalue form a subspace—and therefore an orthogonal basis of eigenvectors can be
constructed for the subspace (using, say, the Gram–Schmidt algorithm of Section 4.1).

Example 1. Form an orthogonal basis from the eigenvectors of the symmetric matrix
in display (1).

Solution. As noted, the eigenvectors u1 = [1 0 1]T and u2 = [−1 1 0]T , corre-
sponding the repeated eigenvalue 3, are each orthogonal to the remaining eigenvector
u3 = [−1 −1 1]T ; but we are required to alter them so that they are also orthogonal
to each other. Applying the Gram–Schmidt algorithm to u1 and u2, we retain u1 and
replace u2 by

u = u2 −
uT

1 u2

uT
1 u1

u1 =

[
−1

2
1

1
2

]T

,

revising (1) to display the orthogonal eigenvectors

A

⎡
⎣1

0
1

⎤
⎦ = 3

⎡
⎣1

0
1

⎤
⎦ , A

⎡
⎣−1/2

1
1/2

⎤
⎦ = 3

⎡
⎣−1/2

1
1/2

⎤
⎦ , A

⎡
⎣−1
−1
1

⎤
⎦ = −3

⎡
⎣−1
−1
1

⎤
⎦ . (4)

�

This construction allows us to refine statement (ii) of Theorem 3 and obtain a neater
characterization for eigenvectors of real symmetric matrices.

Corollary 1. A real symmetric n-by-n matrix has n orthogonal eigenvectors.

Our examples have shown that we can’t afford the luxury of real arithmetic when we
study eigenvalue theory; eigenvalues are roots of polynomial equations, and they can
be complex even when the matrices are real.

Luckily, the extension of our deliberations to complex matrices and vectors is not
too painful. The biggest concession we must make is in the inner product. Recall that 
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if v and w are two vectors in R3
col, their dot product v ·w is given by the matrix product

vTw, and we have employed this concept in two ways:

(i) the norm, or Euclidean length, of v equals
√

v · v, and

(ii) v and w are orthogonal when v · w equals zero.

Now if v is a complex vector, there is little value in considering the sum of squares
of its components. Indeed, the “length” of [i 1]T would be i2 + 12, or zero; so this
concept of length would be useless. What we need, to measure the intensity of a
complex vector v, is the square root of the sum of squares of the magnitudes of its
components,

√
|v1|2 + |v2|2 ≡

√
v1 v1 + v2 v2,

which is conveniently written in matrix notation as
(
vTv

)1/2
. Thus the intensity of

[i 1]T becomes
√
(−i)i + 12 =

√
2. Accordingly, we generalize the concepts of norm,

symmetry, and orthogonality as follows.

Norm and Orthogonality of Complex Vectors; Hermitian Matrices

Definition 2. (a) The conjugate-transpose of any matrix A is denoted AH

[“A-Hermitian,” named after the French mathematician Charles Hermite
(1822–1901).]

AH := (A)T , aH
ij = aji.

(b) The inner product < v|w > of two complex column vectors v and w
equals vHw; for row vectors it is vwT . (We always conjugate the first
vector.)4

(c) Complex vectors are said to be orthogonal when their inner product
< v|w > is zero.

(d) The norm of a complex vector v equals < v|v >1/2.

(e) A matrix that is equal to its conjugate-transpose is said to be Hermitian
or self-adjoint: A = AH .

(f) A matrix Q whose conjugate-transpose equals its inverse is said to be
unitary: QH = Q−1. (So if Q is real, it is orthogonal.)

So “Hermitian matrix” generalizes the terminology “symmetric matrix” and “uni-
tary matrix” generalizes “orthogonal matrix,” and the nomenclature for “norm” and
“orthogonal” is retained but upgraded.

4Some authors elect to conjugate the second vector. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



5.3 SYMMETRIC AND HERMITIAN MATRICES 229

The rule for rearranging factors when taking conjugate-transposes is quite pre-
dictable:

(ABC)H = (ABC)
T
= (A B C)T = C

T
B

T
A

T
= CHBHAH , (5)

and it follows as usual that the product of unitary matrices is unitary:

(Q1Q2Q3)
−1 = Q−1

3 Q−1
2 Q−1

1 = QH
3 QH

2 QH
1 = (Q1Q2Q3)

H . (6)

The proof of Theorem 3, asserting that eigenvectors corresponding to distinct eigen-
values of a symmetric matrix are orthogonal, is easily extended to the Hermitian case.
The basic equality

r2uH
1 u2 = r1 uH

1 u2 (7)

(analogous to (2)) is derived by adapting (3) for a Hermitian matrix as shown:

uH
1 Au2 = uH

1 (Au2) = uH
1 (r2u2) = r2uH

1 u2,
|||

uH
1 Au2 = (u1

TA)u2 = (AT u1)
T u2 = (A

T
u1)

T

u2 = (Au1)
Tu2 = (r1u1)

T u2 = r1uH
1 u2.︷ ︸︸ ︷

(A
T
= AH = A) .

.

So if u1 = u2 in (7), we conclude that every eigenvalue r1 is real, while if r1 �= r2

we conclude that the eigenvectors are orthogonal. As with real symmetric matrices, we
have the following.

Eigenvalues and Eigenvectors of Hermitian Matrices

Theorem 4. If A is a Hermitian matrix,

(i) its eigenvalues are all real [note that this implies the coefficients in its
characteristic polynomial, which can be displayed by multiplying out

p(r) = |A − rI| = (r1 − r)(r2 − r) · · · (rn − r),

are also real—although A itself may be complex.]

(ii) its eigenvectors corresponding to distinct eigenvalues are orthogonal; and

(iii) (to be proved in Section 6.3) its multiple eigenvalues have eigenspaces of
dimension equal to the multiplicity of the corresponding eigenvalues.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



230 EIGENVECTORS AND EIGENVALUES

Finally, we note that the Gram–Schmidt algorithm of Section 4.1 for extracting
orthogonal vectors is easily adapted to the complex case. One simply changes the matrix
transposes in Equations (9–11) of that section to conjugate transposes (See Problem 14).

Example 2. Find three orthogonal eigenvectors for the Hermitian matrix.

A =

⎡
⎣0 0 0

0 1 −1 + i
0 −1 − i 2

⎤
⎦ .

Solution. The eigenvalues are the roots of the characteristic polynomial

p(r) = |A − rI| = −r3 + 3r2 = −r2(r − 3).

The eigenvectors corresponding to r = 0 and r = 3 satisfy, respectively,

Au = 0 or

⎡
⎢⎢⎢⎣

0 0 0
... 0

0 1 −1 + i
... 0

0 −1 − i 2
... 0

⎤
⎥⎥⎥⎦ and

(A − 3I)u = 0 or

⎡
⎢⎢⎢⎣
−3 0 0

... 0

0 −2 −1 + i
... 0

0 −1 − i −1
... 0

⎤
⎥⎥⎥⎦ ,

and Gauss elimination yields the corresponding solutions t1[0 1 − i 1]T +
t2[1 0 0]T and t3[0 − 1 + i 2]T . As predicted by Theorem 4, the subspace of
eigenvectors for the double eigenvalue 0 has dimension 2; the choices t1 = 0, t2 = 1
and t1 = 1, t2 = 0 yield mutually orthogonal eigenvectors in this subspace, each
orthogonal to the third eigenvector.5 �

By applying the Gram–Schmidt algorithm to the multidimensional eigenspace in
Theorem 4 we arrive at the more economical formulation:

Corollary 2. A Hermitian n-by-n matrix has n orthogonal eigenvectors.

5Since these eigenvectors are already orthogonal, the Gram–Schmidt algorithm is unnecessary. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



5.3 SYMMETRIC AND HERMITIAN MATRICES 231

A fairly safe rule of thumb: to complexify (yes, that is a word) any statement about
real matrices, change all transposes to conjugate transposes. (But see Problem 13.) Also
note that for complex scalars c,

< cv|w >= c < v|w > but < v|cw >= c < v|w > .

Exercises 5.3

Find two orthogonal eigenvectors for the symmetric matrices in Problems 1–2.

1.

[
−7 6
6 2

]
2.

[
4 1
1 4

]

Find three orthogonal eigenvectors for the symmetric matrices in Problems 3–6.

3.

⎡
⎣1 4 3

4 1 0
3 0 1

⎤
⎦ 4.

⎡
⎣ 2 0 −1

0 2 −1
−1 −1 3

⎤
⎦ 5.

⎡
⎣2 1 1

1 2 −1
1 −1 2

⎤
⎦ 6.

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦

Find two orthogonal eigenvectors for the Hermitian matrices in Problems 7–8.

7.

[
0 i
−i 0

]
8.

[
4 2 + i

2 − i 0

]

Find three orthogonal eigenvectors for the Hermitian matrices in Problems
9–12.

9.

⎡
⎣ −1 0 −1 + i

0 −1 0
−1 − i 0 0

⎤
⎦ 10.

⎡
⎣2 0 −i

0 3 0
i 0 2

⎤
⎦ 11.

⎡
⎣0 0 −i

0 0 i
i −i 0

⎤
⎦

12.

⎡
⎣ 0 −2 − i −1 + i
−2 + i −3 3i
−1 − i −3i 0

⎤
⎦

13. Violation of the rule of thumb. Show by example that A and AH do not always
possess the same eigenvalues. Then prove that the eigenvalues of AH are complex
conjugates of eigenvalues of A. Show that if Av= rv and AHw= sw, then wHv= 0
unless r and s are conjugate.

14. Verify the statement that changing transposes to conjugate transposes in the Gram–
Schmidt algorithm results in a set of vectors that are orthogonal in the sense
of Definition 2. [Hint: Simply modify the analysis of the algorithm as given in
Section 4.1.]

15. Perform the Gram–Schmidt algorithm on the vectors [i 0 0], [i 1 1], and
[i i 1] to extract an orthonormal set spanning C3

row.

16. Are there any Hermitian matrices, other than multiples of the identity, with only
one eigenvalue? 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



232 EIGENVECTORS AND EIGENVALUES

17. You may have caught the slight gap between real symmetric matrices and (com-
plex) Hermitian matrices: namely, matrices that are complex and symmetric.

Explore the example

[
6i −1 − 5i

−1 − 5i 4i

]
to argue that such matrices have no

special properties:
(a) Are the eigenvalues real?

(b) Do the eigenvalues occur in complex conjugate pairs?

(c) Are the eigenvectors corresponding to distinct eigenvalues orthogonal
(vH

1 v2 = 0)?

(d) Are the eigenvectors corresponding to distinct eigenvalues orthogonal in the
“old” sense (vT

1 v2 = 0)? Explain. (Recall Equation (2).)

18. Prove that a skew-symmetric matrix, that is, one that satisfies A = −AT , has
only pure imaginary eigenvalues, and eigenvectors corresponding to different
eigenvalues are orthogonal. [Hint: Consider iA.]

5.4 SUMMARY

An eigenvector u for a square matrix A is a vector whose direction is unchanged (or,
possibly, reversed) by multiplication by A. Thus if Au = ru (and u �= 0), then u is
an eigenvector and the scalar r is the associated eigenvalue. Sometimes the eigenvec-
tors can be visualized for familiar matrix operators, but they can always be gleaned
by examining the matrix A − rI; the eigenvalues of A are the scalars r that make the
determinant |A − rI| (the characteristic polynomial) equal to zero, and its null vectors
for such r are the eigenvectors.

An n-by-n matrix always has n eigenvalues (real and complex) if the multiplicities
are counted. Each eigenvalue has at least one eigenvector—more precisely, a one-
dimensional subspace of eigenvectors, since only the direction of u is significant. And
eigenvectors corresponding to distinct eigenvalues are linearly independent. Therefore
all matrices possessing n distinct eigenvalues have n linearly independent eigenvectors,
but some matrices with multiple eigenvalues may be defective, possessing fewer than
n independent eigenvectors.

Symmetric and Hermitian Matrices

Real symmetric matrices have favorable eigenvector properties: their eigenvalues are
real, the associated eigenvectors can be taken to be real, and a complete orthogonal
basis for the vector space can be assembled out of the eigenvectors.

A handy and highly reliable rule of thumb for dealing with complex matrices is
to replace “transpose” in the theorems and definitions for real matrices by “conjugate
transpose.” With this proviso, the favorable eigenvector properties of real symmetric
matrices extend to Hermitian matrices. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6
SIMILARITY

6.1 SIMILARITY TRANSFORMATIONS
AND DIAGONALIZABILITY

The similarity transformation is an important concept in linear algebra. We have a
matrix A that describes a certain operation in Rn, but we would like to know the form
that the matrix will take if we employ a different basis for Rn; that is, we seek to translate
the action of the given matrix into the “language” associated with a different basis.

To be specific, in Example 3 of Section 2.2, we saw that the matrix

Mref =

[
0 1
1 0

]
(1)

effects a reflection in the mirror lying on the line y = x (Fig. 6.1a). That is, if [x y]T gives
the coordinates of a point before the reflection, then after the reflection its coordinates
are [y x]T = Mref[x y]T .

But suppose we wish to describe points in a different coordinate system; say, one
that is rotated counterclockwise 30◦ around the origin as in Figure 6.1b. If [x′, y′]T

designates a point’s coordinates in the new system before the mirror reflection, then
what are the coordinates (in the new system) after the reflection?

One way to answer this question would be to compute the mirror’s normal in the new
coordinates and carry out the calculation of the revised reflector matrix (by the process
described in Example 3 of Section 2.2). However at this point, we prefer to employ an

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



234 SIMILARITY

Mirror

X

Y
(a)

Mirror

(b)
Y

y

Y'

y'

x'
X'

Xx
30°

Fig. 6.1 (a) The line y = x as a reflecting mirror and (b) reflection with rotated coordinates.

operator to translate the new coordinates into old coordinates; then we apply (1) in the
old system, and finally translate back. The operator is a rotation matrix, and we use the
equations derived in Example 1 of Section 2.2.1

To “translate” new coordinates [x′ y′]T into old [x y]T coordinates we multiply by
the rotator matrix Mrot:

[
x
y

]
= Mrot

[
x′

y′

]
=

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

] [
x′

y′

]
=

[√
3/2 −1/2

1/2
√

3/2

] [
x′

y′

]
(2)

So, if we are given the coordinates of a point [x′ y′]T in the new system and want
to determine its image in the mirror, first we translate into old-system coordinates

1Remember that here we are not rotating the vector, but rather rotating the coordinate system. The effect on
the coordinates is the same as rotating the vector by 30◦ in the new system. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.1 SIMILARITY TRANSFORMATIONS AND DIAGONALIZABILITY 235

[x y]T = Mrot[x′ y′]T , multiply by the reflector Mref , and use Mrot
−1 to restore to

the new coordinate system:

[
x′

y′

]
reflected

= M−1
rot MrefMrot

[
x′

y′

]
.

We see that the reflector matrix, expressed in the new coordinate system, is
M′

ref = M−1
rot MrefMrot.

If we denote the unit vectors along the x, y axes as i and j, and those along the x′, y′

axes as i′ and j′, then these pairs are bases for R2
col. Thus the point to be reflected has

the equivalent descriptions x i + y j = x′i′ + y′j′; the matrix Mrot effects a change of
basis. In fact, whenever we encounter a relation A′ = P−1AP, we can view A′ as a
matrix performing the same operation as A, but in different coordinates; the matrix P
plays the role of an interpreter, mapping the coordinates of a vector in one basis to its
coordinates in another.

Similar Matrices

Definition 1. If two given n-by-n matrices A and B satisfy

A = P−1BP (3)

for some invertible matrix P, then we say A is similar to B, and P generates a
similarity transformation from B to A.

Obviously if A is similar to B, then B is similar to A, with P−1 generating the simi-
larity transformation, since by (3) we have B = PAP−1. And if B is also similar to C,
then A is similar to C:

C = QBQ−1 = Q
(
PAP−1)Q−1 = (QP)A(QP)−1.

From what we have seen, we can interpret similar matrices as carrying out identical
operations, but in different coordinate systems. This gives rise to a useful rule of thumb:

Essential Feature of Similar Matrices

If a matrix A has a property that can be described without reference to any specific
basis or coordinate system, then every matrix similar to A shares that property.

A few examples will make this “folk theorem” clear. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



236 SIMILARITY

Corollary 1. If A and B are similar matrices, then the following hold:

• A and B have the same eigenvalues.

• If A has k linearly independent eigenvectors corresponding to the eigenvalue
r, then B also has k linearly independent eigenvectors corresponding to the
eigenvalue r.

• A and B are both singular or both nonsingular.

• A and B have the same rank.

Folk proof: “A has the eigenvalue r” means there is at least a one-dimensional family
of solutions to the equation Au = ru. This statement contains no reference to any
coordinate system or basis, so it applies to any matrix similar to A.

Similarly, the statement “A has a k-dimensional family of solutions to Au = ru” is
basis-free; as is the claim that A has a nontrivial null vector. Finally, recall that the rank
is the range’s dimension, which is basis-free.

Example 1. Construct a rigorous proof demonstrating that similar matrices have the
same eigenvalues.

Solution. If Au = ru, then Pu is an eigenvector for PAP−1 with eigenvalue r, since
[(PAP−1)(Pu) = PAu = P(ru) = r(Pu)]. �

Indeed, the same logic readily verifies the other claims of Corollary 1. The gen-
eralization “similar matrices have the same eigenvectors” is not justified, because a
statement like “A has an eigenvector [1 0 1]T” refers specifically to the coordi-
nates of the eigenvector. (In fact Example 1 shows that the eigenvector of PAP−1 that
corresponds to u is Pu.)

Other, more subtle properties shared by similar matrices are described in Corollary 2.

Corollary 2. If A and B are similar, they have the same characteristic polynomial,
determinant, and trace.

Proof. The relation between the characteristic polynomials pA(r) and pB(r) is revealed
by a chain of reasoning exploiting the determinant properties:

pA(r) = det(A − rI) = det
(
P−1BP − rI

)
= det

(
P−1BP − rP−1IP

)
= det

(
P−1[B − rI]P

)
= det

(
P−1
)
det(B − rI) det(P) = det(B − rI) = pB(r).

Problems 25 and 26 of Exercises 5.2 showed that the determinant and the trace (the
sum of the diagonal elements) of a matrix appear as coefficients in its characteristic
polynomial.

Since the simplest matrices to compute with are the diagonal matrices, the most
important similarity transformations are those that render a matrix diagonal. Such trans-
formations are generated by matrices made up of linearly independent eigenvectors, as
shown by the following:

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.1 SIMILARITY TRANSFORMATIONS AND DIAGONALIZABILITY 237

Matrix Form of Eigenvector Equations

Lemma 1. If {u1, u2, . . ., up} is any collection of p eigenvectors of an n-by-n
matrix A and we arrange them into the columns of a n-by-p matrix P, then the set
of eigenvector equations Auj = rjuj(j = 1, 2, . . ., p) is equivalent to the matrix
equation

AP = PD, (4)

where D is a diagonal matrix with eigenvalues on the diagonal.

Proof. It’s immediate, because

AP = [A]

⎡
⎢⎢⎣

...
...

...
u1 u2 · · · up
...

...
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

...
...

...
Au1 Au2 · · · Aup
...

...
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

...
...

...
r1u1 r2u2 · · · rpup

...
...

...

⎤
⎥⎥⎦

and

PD =

⎡
⎢⎢⎣

...
...

...
u1 u2 · · · up
...

...
...

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

r1 0 · · · 0
0 r2 · · · 0
...

. . .
...

0 0 · · · rp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

...
...

...
r1u1 r2u2 · · · rpup

...
...

...

⎤
⎥⎥⎦ .

For instance, the eigenvector equations derived in Example 5, Section 5.2,

A =

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦ ; (5)

A

⎡
⎣1

0
1

⎤
⎦ = 3

⎡
⎣1

0
1

⎤
⎦ , A

⎡
⎣−1

1
0

⎤
⎦ = 3

⎡
⎣−1

1
0

⎤
⎦ , A

⎡
⎣−1
−1
1

⎤
⎦ = −3

⎡
⎣−1
−1
1

⎤
⎦ , (6)

can be rewritten in the format (4):

A

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦ =

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
⎡
⎣3 0 0

0 3 0
0 0 −3

⎤
⎦ . (7)

If the eigenvector collection is linearly independent and spans the vector space, then
P−1 exists and we can premultiply AP = PD by P−1 to get a similarity transformation.
We have shown
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Diagonalization of Matrices

Theorem 1. Every n-by-n matrix A that possesses n linearly independent eigen-
vectors is similar to a diagonal matrix D = P−1AP (and A = PDP−1); the
matrix generating the similarity transformation comprises columns of indepen-
dent eigenvectors, and we say that P diagonalizes A.

Example 2. Diagonalize the matrix in (5).

Solution. From Equation (7), we derive

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
−1

A

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦ =

⎡
⎣ 1/3 1/3 2/3
−1/3 2/3 1/3
−1/3 −1/3 1/3

⎤
⎦A

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦

=

⎡
⎣3 0 0

0 3 0
0 0 −3

⎤
⎦ , (8)

or

A =

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
⎡
⎣3 0 0

0 3 0
0 0 −3

⎤
⎦
⎡
⎣ 1/3 1/3 2/3
−1/3 2/3 1/3
−1/3 −1/3 1/3

⎤
⎦ . (9)

�

By Corollary 1, Section 5.3, the eigenvectors for a symmetric matrix can be
taken to be orthogonal, and hence orthonormal. The matrix P then becomes orthog-
onal [orthonormal columns, transpose equals inverse (Section 4.2)], and we have the
refinement

Corollary 3. A real symmetric matrix A can be diagonalized by an orthogonal
matrix Q:

D = QTAQ.

Example 3. Use Corollary 3 to diagonalize the matrix A in (5).

Solution. Even though A is symmetric, the eigenvectors displayed in (6) and (8)
are not orthogonal (due to the multiplicity of A’s eigenvalue 3). However, orthogo-
nal eigenvectors (computed using the Gram–Schmidt algorithm) for A were exhibited
in equation (4) of Section 5.3. Reduced to unit vectors they are [1 0 1]T/

√
2,

[−1/2 1 1/2]T/
√

3/2, and [−1 −1 1]T/
√

3, and Corollary 3 produces 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.1 SIMILARITY TRANSFORMATIONS AND DIAGONALIZABILITY 239

QTAQ =

⎡
⎣ 1/

√
2 0 1/

√
2

−1/
√

6 2/
√

6 1/
√

6
−1/

√
3 −1/

√
3 1/

√
3

⎤
⎦
⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦
⎡
⎣1/

√
2 −1/

√
6 −1/

√
3

0 2/
√

6 −1/
√

3
1/
√

2 1/
√

6 1/
√

3

⎤
⎦

=

⎡
⎣3 0 0

0 3 0
0 0 −3

⎤
⎦ . (10)

�
The complex version of Corollary 3 is

Corollary 4. A Hermitian matrix can be diagonalized by a unitary matrix Q:

D = QHAQ.

The set of eigenvalues of a Hermitian matrix is sometimes called its spectrum, and
this corollary is known as the spectral theorem; the display A = QDQH is called the
spectral factorization. Why? The eigenvalues of the (Hermitian) quantum mechanical
energy operator for the bound electrons in an atom are proportional to the frequencies
of the light that it emits. Frequencies determine color; hence, we say “spectrum.”

The benefits of being able to diagonalize a matrix are enormous:

(i) High powers of A, which would normally be time-consuming to calculate,
become trivial:

AN =
(
PDP−1)N

=
(
PDP−1) (PDP−1) · · · (PDP−1) = PDNP−1

= P

⎡
⎢⎢⎢⎣

rN
1 0 · · · 0
0 rN

2 · · · 0
...

. . .
...

0 0 · · · rN
n

⎤
⎥⎥⎥⎦P−1. (11)

The inner cancellation of factors in (11) is called "telescoping." For the matrix
A in (9) this reads

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦

5

=

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
⎡
⎣35 0 0

0 35 0
0 0 (−3)5

⎤
⎦
⎡
⎣ 1/3 1/3 2/3
−1/3 2/3 1/3
−1/3 −1/3 1/3

⎤
⎦.

(ii) A is trivial to invert:

A−1 =
(
PDP−1)−1

= PD−1P−1 = P

⎡
⎢⎢⎢⎣

r−1
1 0 · · · 0
0 r−1

2 · · · 0
...

. . .
...

0 0 · · · r−1
n

⎤
⎥⎥⎥⎦P−1. (12)
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Thus

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦
−1

=

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
⎡
⎣3−1 0 0

0 3−1 0
0 0 (−3)−1

⎤
⎦

×

⎡
⎣ 1/3 1/3 2/3
−1/3 2/3 1/3
−1/3 −1/3 1/3

⎤
⎦ .

(iii) “Square roots” of A can be calculated:

A1/2 = PD1/2P−1 = P

⎡
⎢⎢⎢⎢⎣

r1/2
1 0 · · · 0

0 r1/2
2 · · · 0

...
. . .

...

0 0 · · · r1/2
n

⎤
⎥⎥⎥⎥⎦P−1 (13)

satisfies
(
A1/2

)2
= PD1/2P−1PD1/2P−1 = PDP−1 = A, so a square root of

the matrix in (9) is given by

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦

1/2

=

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
⎡
⎣
√

3 0 0
0

√
3 0

0 0
√

3i

⎤
⎦
⎡
⎣ 1/3 1/3 2/3
−1/3 2/3 1/3
−1/3 −1/3 1/3

⎤
⎦ .

Considering the ± ambiguities for r1/2, (13) spawns 2n square roots for A. (In
general, matrices may have more, or less, roots than this. See Problem 21.)

In fact, for any real number x

Ax = PDxP−1 = P

⎡
⎢⎢⎢⎣

rx
1 0 · · · 0
0 rx

2 · · · 0
...

. . .
...

0 0 · · · rx
n

⎤
⎥⎥⎥⎦P−1

is a valid (multiple-valued) definition.

(iv) Because of (11), polynomials in A are easy to compute:

q(A) := cmAm + cm−1Am−1 + · · · + c1A + c0I

= P

⎡
⎢⎢⎢⎣

q(r1) 0 · · · 0
0 q(r2) · · · 0
...

. . .
...

0 0 · · · q(rn)

⎤
⎥⎥⎥⎦P−1. (14)
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Example 4. Evaluate 2A3 + I for A as displayed in (9).

Solution.

2A3 + I =

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
⎡
⎣2 · 33 + 1 0 0

0 2 · 33 + 1 0
0 0 2 · (−3)3 + 1

⎤
⎦

×

⎡
⎣ 1/3 1/3 2/3
−1/3 2/3 1/3
−1/3 −1/3 1/3

⎤
⎦

=

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
⎡
⎣55 0 0

0 55 0
0 0 −53

⎤
⎦
⎡
⎣ 1/3 1/3 2/3
−1/3 2/3 1/3
−1/3 −1/3 1/3

⎤
⎦ . �

Functions that are limits of polynomials, such as power series, can be extended to
matrix arguments if attention is paid to the domains of convergence. For example, the
exponential ex is the limit of polynomials:

ex =
∞∑

k=0

xk

k!
= lim

m→∞

[
1 + x +

x2

2!
+

x3

3!
+ · · · +

xm

m!

]
,

for every value of x. If we insert a diagonalizable matrix A = PDP−1 into the
polynomial in brackets, we find

I + A + A2/2! + · · · + Am/m!

= P

⎡
⎢⎢⎢⎢⎣

1 + r1 + r2
1/2! + · · · + rm

1 /m! 0 . . . 0
0 1 + r2 + r2

2/2! + · · · + rm
2 /m! . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1 + rn + r2
n/2! + · · · + rm

n /m!

⎤
⎥⎥⎥⎥⎦ P−1

As m → ∞ this matrix converges entrywise to

I + A + A2/2! + · · · + Am/m! + · · · = P

⎡
⎢⎢⎢⎣

er1 0 · · · 0
0 er2 · · · 0
...

. . .
...

0 0 · · · ern

⎤
⎥⎥⎥⎦P−1 =: eA, (15)

the “matrix exponential.”

Example 5. Compute the matrix exponential eA for A as displayed in (9).

Solution. From (15), we have

eA =

⎡
⎣1 −1 −1

0 1 −1
1 0 1

⎤
⎦
⎡
⎣e3 0 0

0 e3 0
0 0 e−3

⎤
⎦
⎡
⎣ 1/3 1/3 2/3
−1/3 2/3 1/3
−1/3 −1/3 1/3

⎤
⎦ . �
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In Chapter 7, we will see that the matrix exponential is extremely useful in solving
certain systems of ordinary differential equations. In fact, this feature will motivate
the study of generalized eigenvectors, which enable the computation eA when A is not
diagonalizable.

Exercises 6.1

1. Prove: if A is similar to B, then An is similar to Bn for every positive integer n.
If A is invertible, the statement holds for negative integers as well.

2. Suppose B is obtained from A by switching its ith and jth columns and its ith and
jth rows. Prove that A and B have the same eigenvalues. How are their eigenvectors
related?

3. Prove that if A is diagonalizable and has only one eigenvalue, it is a scalar multiple
of the identity.

4. Use the last assertion in Corollary 1 to prove that the rank of a diagonalizable
matrix equals the number of its nonzero eigenvalues (counting multiplicities).

5. Prove that if two matrices have the same eigenvalues with the same multiplicities
and are both diagonalizable, then they are similar.

6. Prove or disprove: the trace of AB equals the trace of BA, when A and B are n-by-n
matrices. Does this hold for all square matrices?

7. Show that if A and B are both n-by-n matrices and one of them is invertible, then
AB is similar to BA. Construct a counterexample if neither is invertible.

8. Is the trace of AB equal to the trace of A times the trace of B?

Diagonalize the matrices in Problems 9–20; that is, factor the matrix into the form
PDP−1 with an invertible P and a diagonal D. Express the inverse (when it exists) and
the exponential of the matrix, in factored form. The eigenvalues and eigenvectors of
these matrices were assigned in Exercises 5.2.

9.

[
9 −3
−2 4

]
10.

[
−1 −3
4 7

]
11.

[
1 −2
−2 1

]
12.

[
−3 2
−5 4

]
13.

[
1 1
1 1

]

14.

⎡
⎣1 0 2

3 4 2
0 0 0

⎤
⎦ 15.

⎡
⎣4 −1 −2

2 1 −2
1 −1 1

⎤
⎦ 16.

⎡
⎣ 2 −1 −1
−1 3 0
−1 0 3

⎤
⎦

17.

[
0 −1
1 0

]
18.

[
0 1

−1 + i −1

]
19.

[
1 2i
−1 3 + i

]
20.

⎡
⎣−6 2 16
−3 1 11
−3 1 7

⎤
⎦

21. Show that the following matrix form is a square root of the zero matrix for every
value of a, yet itself has no square root if a �= 0:

[
0 a
0 0

]
. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.1 SIMILARITY TRANSFORMATIONS AND DIAGONALIZABILITY 243

22. The geometric series 1 + x + x2 + x3 + · · · is the Maclaurin series for (1 − x)−1

and converges for |x| < 1. Insert the diagonalizable matrix A = PDP−1 into
I + A + A2 + · · · and show that it converges to

I + A + A2 + · · · = P

⎡
⎢⎢⎢⎣

1
1−r1

0 · · · 0
0 1

1−r2
· · · 0

...
...

. . .
...

0 0 · · · 1
1−rn

⎤
⎥⎥⎥⎦P−1 =: B

as long as each eigenvalue of A has magnitude less than one. Prove that B =
(I − A)−1 by computing (I − A)Bui for each of the (eigenvector) columns of P.

23. Show that if A is a symmetric matrix whose diagonalization is expressed by A =
QDQT , and if u1, u2, . . ., un are the columns of the orthogonal matrix Q, then A
can be expressed as follows:

A = r1u1uT
1 + r2u2uT

2 + · · · + rnunuT
n , (16)

where the ri are the eigenvalues of A. [Hint: Test (16) on the basis consisting of
the eigenvectors.] What is the form of (16) for a Hermitian matrix? Is (16) valid
for a real nonsymmetric matrix? (Many authors cite (16) as an expression of the
spectral theorem.)

24. Every polynomial with leading term (−r)n is the characteristic polynomial for
some matrix. Prove this by showing that the characteristic polynomial of

Cq =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎦

is q(r) = (−1)n{rn + an−1rn−1 + an−2rn−2 + · · · + a1r + a0}. In fact Cq is known
as the companion matrix for q(r).

25. Suppose the polynomial q(r) has distinct roots r1, r2, . . ., rn. The Vandermonde
matrix (Problem 23, Exercises 2.5) for these numbers equals

Vq =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
r1 r2 · · · rn

r2
1 r2

2 · · · r2
n

...
...

...
rn−1

1 rn−1
2 · · · rn−1

n

⎤
⎥⎥⎥⎥⎥⎦

.
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Show that each column of Vq is an eigenvector of the companion matrix Cq of the
preceding problem. What is V−1

q CqVq?

26. The Frobenius norm of a real m-by-n matrix A is the square root of the sum of

the squares of its entries, ||A||Frob =
(∑m

i=1

∑n
j=1 a2

ij

)1/2
.

Recall from Section 4.2 that multiplication of a vector by an orthogonal matrix
preserves the Euclidean norm of the vector. Derive an extension of this statement
for the Frobenius norm by the following reasoning:
(a) Verify that ||A||2Frob equals the sum, over all the columns, of the squared

Euclidean norms of the columns of A. It also equals the sum, over all the rows,
of the squared Euclidean norms of the rows of A.

(b) Verify that if Q is an orthogonal m-by-m matrix, then the Euclidean norms of
the columns of A are the same as the Euclidean norms of the columns of QA.
Similarly, if Q is an orthogonal n-by-n matrix, then the Euclidean norms of the
rows of A are the same as the Euclidean norms of the rows of AQ.

(c) From these observations fashion a proof that if a similarity transformation
B = QAQT for a square matrix A is generated by an orthogonal matrix Q,
then A and B have the same Frobenius norms.

27. Extend the reasoning of the previous problem to show that ||A||Frob =
||Q1AQ2||Frob for any matrix A, if Q1 and Q2 are both orthogonal matrices (of
appropriate dimensions). What is the complex version of this statement?

28. The order of appearance of the eigenvalues in a diagonal form of a nondefective
matrix A is not fixed, of course; they can be extracted in any order. Find a similarity
transform that changes the diagonal matrix with 1, 2, 3, 4 along its diagonal to one
with 1,3,2,4 along the diagonal. [Hint: You know how to switch the second and
third rows; how will you switch the second and third columns?]

6.2 PRINCIPLE AXES AND NORMAL MODES

6.2.1 Quadratic Forms

Quadratic forms (in three variables) are expressions that look like

ax2 + by2 + cz2 + dxy + eyz + fxz. (1)

It is easy to show (Problems 1 and 2) that the quadratic form is compactly expressed in
matrix notation as xTAx, with a symmetric matrix A and the identifications

x = [x1 x2 x3]
T = [x y z]T , A =

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ =

⎡
⎢⎢⎣

a d
2

f
2

d
2 b e

2
f
2

e
2 c

⎤
⎥⎥⎦ . (2)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.2 PRINCIPLE AXES AND NORMAL MODES 245

The slightly more general quadratic polynomials (in three variables) incorporate
additional linear terms and a constant:

(ax2 + by2 + cz2 + dxy + eyz + fxz) + (gx + hy + jz) + (k) = xTAx + bTx + (k). (3)

These notions generalize to n dimensions, of course. The n-dimensional quadratic
polynomial is xTAx + bTx + k with x and b in Rn

col and A symmetric in Rn,n.
Quadratic polynomials arise in formulas for moments of inertia, potential energy

(elastic, electromagnetic), and surface functions (i.e., their level surfaces describe
familiar shapes such as spheres, cylinders, cones, and ellipsoids). Before we explore
their interaction with similarity transforms, it is convenient to tabulate two elementary
properties. The first generalizes the familiar process of “completing the square,” and
effectively reduces quadratic polynomials to quadratic forms (plus constants).

Lemma 1. If A is symmetric and invertible and y = (x + A−1b /2), then

xTAx + bTx + k = yTAy +
(
k − bTA−1b/4

)
. (4)

Proof. Start with the quadratic form in y:

yTAy =
(
x + A−1b/2

)T
A
(
x + A−1b/2

)
= xTAx +

1
2

xTAA−1b +
1
2

bT
(
A−1
)T

Ax +
1
4

bT
(
A−1
)T

AA−1b.

Since A (and its inverse) is symmetric, this reduces to

yTAy = xTAx + bTx + bTA−1b/4;

transpose the constant and add k, to derive (4).

For example, Problem 1(b) asks you to confirm that

[
x1 x2

] [1 2
2 3

] [
x1

x2

]
+
[
4 6

] [x1

x2

]
=
[
y1 y2

] [1 2
2 3

] [
y1

y2

]
− 3 if y = x +

[
0
1

]
.

(5)

The second property is the formula for differentiating a quadratic polynomial.
(A matrix function A(t) = [aij(t)] is differentiated entrywise: A′(t) = [a′ij(t)].)

Lemma 2. If A(t) and B(t) are differentiable matrices, then the product rule
holds:

d
dt
[A(t)B(t)] =

[
d
dt

A(t)

]
B(t) + A(t)

d
dt
[B(t)]. (6)

(Note that we are careful to respect the order of appearance of A and B, because
matrix multiplication is noncommutative.) 
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Proof. This is simple bookkeeping. Recall that the (i, j)th entry of AB is given by

[AB]ij =
p∑

k=1

aikbkj,

so its derivative is
[

d(AB)
dt

]
ij

=

p∑
k=1

[
daik

dt
bkj + aik

dbkj

dt

]
=

[
dA
dt

B + A
dB
dt

]
ij

.

(The derivative of a sum of matrices is simply the sum of their derivatives.)
Now if x is a vector in Rn

col and f (x) is a scalar-valued function, the gradient of f is
the column vector of its partial derivatives.

grad f =

[
∂f
∂x1

∂f
∂x2

. . .
∂f
∂xn

]T

.

What is the formula for the gradient of the quadratic polynomial (3)?

Lemma 3. If A is a constant symmetric n-by-n matrix and b is a constant n-by-1
vector, then

grad
(
xTAx + bTx

)
= 2Ax + b. (7)

Proof. Using the product rule to differentiate with respect to x2 (for example), we find
that

∂

∂x2
bTx = bT ∂

∂x2
x = bT ∂

∂x2

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xn

⎤
⎥⎥⎥⎥⎥⎦
= bT

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎦
= [b1 b2 . . . bn]

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

,

which simply “extracts” the second component of b. Generalizing from this, we see

grad bTx =

[
∂bTx
∂x1

∂bTx
∂x2

. . .
∂bTx
∂xn

]T

= b.

For the quadratic form we have

∂

∂x2
xTAx =

∂xT

∂x2
Ax + xTA

∂x
∂x2

= [0 1 0 0 · · · 0]Ax + xTA

⎡
⎢⎢⎢⎣

0
1
...
0

⎤
⎥⎥⎥⎦ ,

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.2 PRINCIPLE AXES AND NORMAL MODES 247

extracting the second component of Ax plus the second component of xTA—which are
identical, since A is symmetric ([Ax]T = xTAT = xTA). In general, then,

grad xTAx =

[
∂xTAx
∂x1

∂xTAx
∂x2

· · · ∂xTAx
∂xn

]T

= 2Ax.

For instance, it is easy to confirm that

grad
{
[x1 x2]

[
1 2
2 3

] [
x1

x2

]
+ [4 6]

[
x1

x2

]}
= grad

{
x2

1 + 4x1x2 + 3x2
2 + 4x1 + 6x2

}

=

[
2x1 + 4x2 + 4
4x1 + 6x2 + 6

]

= 2

[
1 2
2 3

] [
x1

x2

]
+

[
4
6

]
.

What do similarity transformations have to do with quadratic forms? Suppose we
rotate our coordinate system, as we did in the previous section (Fig. 6.1b), so that the
new coordinates of a point (x′) are related to its old coordinates (x) through a matrix
equation x = Qx′, where Q is an orthogonal matrix. Then the quadratic form becomes
expressed in the new coordinates as

xTAx = (Qx′)TA(Qx′) = x′
T

QTAQx′ = x′T(QTAQ)x′ = x′T(Q−1AQ)x′.

The symmetric matrix A in the quadratic form is replaced by the similar matrix
Q−1AQ. But more importantly, because A is symmetric we could use the matrix of
its (unit) eigenvectors to define the generator Q—in which case by Corollary 3 of the
previous section the matrix Q−1AQ would be diagonal, and there would be no cross
terms in the quadratic form! Indeed, the coefficients of the surviving terms would be
the eigenvalues. The eigenvector directions are the principal axes of A.

Principal Axes Theorem

Theorem 2. If A is a real symmetric matrix, its eigenvectors generate an orthog-
onal change of coordinates that transforms the quadratic form xTAx into a
quadratic form with no cross terms.

Corollary 5. If A is a Hermitian matrix, its eigenvectors generate a unitary change
of coordinates that transforms the quadratic form xHAx into a quadratic form with no
cross terms.

The following example brings to bear all of the important features of the theory of
real quadratic forms. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



248 SIMILARITY

Example 1. Rewrite x2
1 + x2

2 + x2
3 − 4x1x2 + 4x1x3 + 4x2x3 in new coordinates so that

it has no cross terms. Determine its maximum and minimum values on the sphere
x2

1 + x2
2 + x2

3 = 1.

Solution. From (1) and (2), we determine that the symmetric matrix appearing in the
quadratic form is the same matrix A that we used in Example 5, Section 5.2; that is,

x2
1 + x2

2 + x2
3 − 4x1x2 + 4x1x3 + 4x2x3 = [x1 x2 x2]

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ = xTAx.

Its diagonalization via the (orthogonal) matrix of eigenvectors is displayed in Section 6.1
Equation (10). Implementing the construction described above Theorem 2, we find

xTAx = xT
(
QQT)A

(
QQT) x =

(
QTx

)T
QTAQ

(
QTx

)

=
(
QTx

)T

⎡
⎣ 1/

√
2 0 1/

√
2

−1/
√

6 2/
√

6 1/
√

6
−1/

√
3 −1/

√
3 1/

√
3

⎤
⎦
⎡
⎣ 1 −2 2
−1 1 2
2 2 1

⎤
⎦

×

⎡
⎣1/

√
2 −1/

√
6 −1/

√
3

0 2/
√

6 −1/
√

3
1/
√

2 1/
√

6 1/
√

3

⎤
⎦ (QTx)

= yT

⎡
⎣3 0 0

0 3 0
0 0 −3

⎤
⎦ y = 3y2

1 + 3y2
2 − 3y2

3,

where y = QTx. The principal axes, in y coordinates, are [1 0 0]T , [0 1 0]T , and [0 0 1]T ;
in the original x coordinates they are the columns of Q (i.e., the eigenvectors), because
x = Qy.

Since multiplication by orthogonal matrices preserves lengths (Euclidean norms), the
set of points where x2

1 +x2
2 +x2

3 = 1 is the same as the set where y2
1+y2

2+y2
3 = 1. The max-

imum and minimum of 3y2
1 + 3y2

2 −3y2
3 (= 3−6y2

3) are obviously 3 and −3, the largest
and smallest eigenvalues. �

6.2.2 Normal Modes

Figure 6.2a shows an old (1920–1940) microphone used in radio broadcasting. (A
mockup of a similar microphone was used in “The King’s Speech,” the academy
award-winning movie produced in 2011.) The mounting is spring loaded to cushion
the microphone from environmental vibrations. Example 2 will demonstrate the use
of eigenvectors and similarity transformations to analyze the oscillations. To keep our
calculations down to a manageable size, we employ the simplified geometry shown in
Figure 6.2b.
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(a)

(3, 4)(–4, 3)

(4, –3)

(–3, –4)

#1

#2

#3

#4

k2

k1

k2k1

(b)

Fig. 6.2 (a) Spring-Mounted microphone, (b) Simplified model, (c) Displaced microphone,

and (d) Multiple spring model.
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#1

#2

#3

#4

k2

k1

k2k1

(c)

(3, 4)(–4, 3)

(4, –3)

(–3, –4)

(d)

(3, 4)
(–4, 3)

(4, –3)
(–3, –4)

k2

k1

k4k4

k2
k1

k3

k3

Fig. 6.2 Continued.

Before we start the analysis, let’s speculate on the results. Suppose in Figure 6.2b
that springs #1 and #3 are much stiffer than #2 and #4, so that k1 >> k2. Suppose further
that the microphone is displaced horizontally, to the right, as in Figure 6.2c. Then the
stronger springs 1 and 3 will force it to the left and down with more intensity than the
weaker springs force it right and up. When released from rest, the microphone will
execute some complicated curvilinear motion. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.2 PRINCIPLE AXES AND NORMAL MODES 251

But there are displacement directions for which the restoring force is directed
along the displacement: namely, displacements along the lines of the springs, at
tan−1(3/4)≈ 36.5◦ to the axes. If we rotate our coordinate system to point along the
springs, the x and y equations of motion should “uncouple” and become simpler to
solve. Such motions are called the normal modes of the system.

Example 2. Determine the restoring force when the microphone in Figure 6.2c is
released from rest at the position (x, y) slightly displaced from the origin, and display
the transformation that uncouples the equations of motion.

Solution. To hold the microphone tightly, in practice all the springs are stretched to
some extent from their “relaxed” lengths before the microphone is loaded—and its
weight will distort them even further. However, all the spring forces are presumably at
equilibrium when the microphone is centered, and we need only consider each spring’s
incremental force, given by the product of its stiffness times the incremental change in
length.

If the microphone is shifted to the position (x, y), the length of spring #1 is changed
from

√
32 + 42 = 5 to

√
(3 − x)2 + (4 − y)2 =

√
9 − 6x + x2 + 16 − 8y + y2 .

This nonlinear function bears no resemblance to the linear combinations that are
susceptible to matrix analysis, and we must approximate. Problem 16 describes the
Maclaurin series which shows that if the shift in position is very small, then the length
of spring #1 is contracted by 5 −

√
25 − 6x − 8y + x2 + y2 ≈ 0.6x + .8y .

The restoring force is directed along the spring, which for small displacements will
lie in the direction of −3i − 4j. Inserting the spring constant we find this force to be
approximated by

−3i − 4j√
32 + 42

k1(0.6x + 0.8y) =

[
−3/5
−4/5

]
k1 [0.6 0.8]

[
x
y

]
= −k1

[
0.36 0.48
0.48 0.64

] [
x
y

]
.

(8)

Spring #3 is stretched by the same amount and thus doubles this restoring force.
Problem 16 also dictates that spring #2 is compressed/stretched by −0.8x+0.6y, and

the restoring force, directed along 4i − 3j, is approximately
[

4/5
−3/5

]
k2 [−0.8 0.6]

[
x
y

]
= −k2

[
0.64 −0.48
−0.48 0.36

] [
x
y

]
, (9)

doubled due to the identical force from spring #4.
So the total restoring force equals −Kx, where x= [x y]T and the stiffness

matrix K is

K = 2k1

[
0.36 0.48
0.48 0.64

]
+ 2k2

[
0.64 −0.48
−0.48 0.36

]
=

[
0.72k1 + 1.28k2 0.96k1 − 0.96k2

0.96k1 − 0.96k2 1.28k1 + 0.72k2

]
.

(10)

Note that the stiffness matrix is symmetric. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



252 SIMILARITY

The displacements for which the restoring force Kx is aligned with the displacement
x are, of course, eigenvectors of K. If k1 happens to equal k2, then

K = k2

[
2 0
0 2

]

is a multiple of the identity and every displacement is, indeed, an eigenvector; the spring
support is isotropic.

For k1 = 2k2 the similarity transformation

K =

[
2.72k2 0.96k2

0.96 k2 3.28k2

]
=

[
0.6 −0.8
0.8 0.6

] [
4k2 0
0 2k2

] [
0.6 0.8
−0.8 0.6

]
= QDQ−1.

reveals the eigenvalues (4k2, 2k2) and eigenvectors (columns of Q) of the stiffness
matrix. As predicted, the eigenvectors [0.6 0.8]T and [−0.8 0.6]T are parallel to the
springs. If a displacement has coordinates x = [x y]T in the original system, its coordi-
nates z = [u v]T in the new system are given by z = Q−1x; Newton’s law force equals
mass times acceleration simplifies from

mẍ = −Kx or m

[
ẍ
ÿ

]
=

[
−2.72k2 −0.96k2

−0.96 k2 −3.28k2

] [
x
y

]

to

mz̈ = mQ−1ẍ = −Q−1Kx = −Q−1KQQ−1x = Dz′ or

mz̈ = m

[
ü
v̈

]
=

[
−4k2 0

0 −2k2

] [
u
v

]
=

[
−4k2u
−2k2v

]
. �

What about Figure 6.2d? Are there still directions for which the restoring force
is aligned along the displacement? The answer is yes; it is easy to generalize (8)
and (9) and see that every spring adds a symmetric contribution to the total stiffness
matrix. Thus K will always be symmetric and possess orthogonal eigenvectors defin-
ing, through the associated similarity transformation, a coordinate system in which the
equations are uncoupled (see Problem 14).

These observations form the foundations of the engineering discipline known as
modal analysis.

Exercises 6.2

1. (a) Verify directly that ax2 + by2 + cxy = [x y]

[
a c/2

c/2 b

] [
x
y

]

(b) Verify equation (5).

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.2 PRINCIPLE AXES AND NORMAL MODES 253

2. (a) Show that if v is a column vector with all zeros except for a “1” in its ith entry,
and if w is a column vector with all zeros except for a “1” in its jth entry, then
vTAw equals the isolated entry aij.

(b) Use (a) to show that in the product xTAx appearing in (3) the term aij appears
with the factors xi and xj. [Hint: Observe

xT = [x1 x2 · · · xn]

= [x1 0 · · · 0] + [0 x2 · · · 0] + · · · + [0 0 · · · xn]

and apply the distributive law of matrix multiplication.]

(c) Use (b) to show that formula (1) and xTAx are identical expressions if a11 =
a, a12 + a21 = d, etc.

Note that we don’t have to select equal values for a12 and a21 (namely d/2),
but doing so gives us the desirable eigenvector properties of a symmetric matrix,
leading to the principal axes theorem.

Find a change of coordinates that eliminates the cross terms in the quadratic
forms in Problems 3–7, and find the maximum and minimum of the forms on the
unit circle (x2

1 + x2
2 = 1) or sphere (x2

1 + x2
2 + x2

3 = 1), whichever is appropriate.
[Hint: Check Problems 1–6, Exercises 5.3, to see if you have already diagonalized
the matrix.]

3. −7x2
1 + 2x2

2 + 12x1x2 4. 4x2
1 + 4x2

2 + 2x1x2 5. x2
1 + x2

2 + x2
3 + 8x1x2 + 6x1x3

6. 2x2
1 + 2x2

2 + 3x2
3 − 2x2x3 − 2x1x3 7. 2x2

1 + 2x2
2 + 2x2

3 + 2x1x2 + 2x1x3 − 2x2x3

8. Find the maximum on the “unit hypersphere” (x2
1 +x2

2 +x2
3 +x2

4 = 1) of the quadratic
form 4x2

1 + 4x2
2 − 7x2

3 + 2x2
4 + 2x1x2 + 12x3x4.

9. Rayleigh Quotient Suppose the eigenvalues of A are distinct and are ordered as
r1 > r2 > · · · > rn.
(a) Show that the quadratic form vTAv achieves its maximum value, over all

unit vectors v, when v is an eigenvector u1 corresponding to the maximum
eigenvalue r1 of A; and that this maximum value is r1.

(b) Show that vTAv achieves its maximum value, over all unit vectors v orthog-
onal to u1, when v is an eigenvector u2 corresponding to the second largest
eigenvalue r2; and that this maximum value is r2.

(c) Characterize the eigenvalue ri(i > 2) similarly, in turns of vTAv.

(d) Argue that if we replace vTAv by the Rayleigh Quotient, vTAv/vTv, in (a–c)
above, we don’t have to restrict the search to unit vectors.

10. Combine what you have learned about the Rayleigh Quotient (in the previous
problem), quadratic forms, and eigenvalues of circulant matrices (Problem 14,
Exercises 5.1) to deduce the maximum of the expression x1x2 + x2x3 + x3x4 + · · · +
xn−1xn + xnx1 when x2

1 + x2
2 + · · · + x2

n = 1.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



254 SIMILARITY

11. Replace the quadratic form in the previous problem by the sum of xixj over
all unmatched indices x1x2 + x2x3 + x1x3 + x3x4 + x2x4 + x1x4 · · · + xn−1xn =∑n

i=1

∑n
j=1
j�=i

xixj, and rework it.

12. Linear Invariant Discrete Time Systems (homogeneous). A sequence of vectors
xn := x(n Δt) (0 ≤ n < ∞, n integer) that describe the state of some system at
multiples of a given time step Δt is called a discrete-time signal. If xn evolves
according to the transition equation

xn+1 = Axn (11)

with a constant m-by-m matrix A, then the discrete time system is said to be linear
homogenous time-invariant. An example is the Markov chain described in Problem
22 of Section 2.1. Note that we easily derive xn = Anx0. For simplification, assume
that A is diagonalizable.
(a) Let the initial state x0 be expressed in terms of m linearly independent

eigenvectors {ui} of A as x0 = c1u1 + c2u2 + · · · cmum. Show that

xn = c1rn
1u1 + c2rn

2u2 + · · · + cmrn
mum (12)

for any n > 0, where ri is the eigenvalue corresponding to ui.

(b) Show that if x0 is an eigenvector of A whose corresponding eigenvalue equals
one, then x0 is a stationary state in the sense that the constant signal xn ≡ x0

is a solution of (11).

(c) Show that if some of the eigenvalues of A equal one and all of the others are
less than one in magnitude, then every solution of (11) approaches either 0
or a stationary state as n → ∞. The system is said to be stable under such
conditions.

(d) What are the solution possibilities if some of the eigenvalues of A are greater
than 1 in magnitude?

13. Linear Invariant Discrete-Time Systems (nonhomogeneous). If the transition
equation of the system in the previous problem takes the form xn+1 = Axn +bn with
a constant m-by-m matrix A, the discrete system is called linear nonhomogeneous
time-invariant, even if the vectors bn vary with n. For simplicity, we address the
situation where the bn are constant, bn ≡ b:

xn+1 = Axn + b. (13)

As in the previous problem, assume A is diagonalizable.
(a) Verify that xn ≡ (I − A)−1b is a stationary solution to (13) if none of the

eigenvalues of A equals one.

(b) Show that all solutions of (13) can be represented as xn = Anx0 +(
An−1 + An−2 + · · · + A + I

)
b. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.2 PRINCIPLE AXES AND NORMAL MODES 255

(c) Apply the geometric series discussed in Problem 22 of Exercises 6.1 to show
that the solutions in (b) approach (I−A)−1b if all of the eigenvalues of A have
magnitude less than one.

(d) Show that if xn satisfies the nonhomogeneous equation (13), then yn satisfies
the homogeneous equation yn+1 = Byn where

[yn] :=

[
xn

1

]
, [B] =

⎡
⎣ A

... b

0 · · · 0
... 1

⎤
⎦ . (14)

(e) Conversely, show that if yn+1 = Byn then the (m + 1)st component of yn is
constant; and if this constant is not zero a solution to (13) can be extracted
from a solution to (14) by dividing yn by this constant and taking the first m
components.

(f) How are the eigenvalues of A and B related?

(g) How are the eigenvectors of A and B related? For simplicity, assume that one
is not an eigenvalue of A. [Hint: Consider the eigenvectors of A, padded with
a final zero, and the vector (I − A)−1b, padded with a final one.]

(h) Put this all together: given an initial state x0 for the nonhomogeneous
equation (13), explain thoroughly how to combine the reformulation in (d),
the eigenvectors uncovered in (g), the technique for solving homogeneous
transition equations described in the previous problem, and the extraction pro-
cedure in (e) to find an expression generalizing (12) to the nonhomogeneous
case.

14. Construct the stiffness matrix for the microphone support in Figure 6.2d and ver-
ify that it is symmetric. Find its eigenvectors and sketch the directions in which
uncoupled oscillations are possible.

15. The inertia tensor I of a rigid body is a symmetric matrix calculated from the body’s
mass density function ρ(x, y, z) (grams per cubic centimeter): with the coordinates
enumerated as (x, y, z) = (x1, x2, x3), we have

I = [Iij] =

{∫ ∫ ∫
ρ(x1, x2, x3) xixj dx1 dx2 dx3

}
(i, j = 1, 2, 3).

For any unit vector n (in R3
col) the quadratic form nTIn gives the moment of inertia

of the body about the axis n. If I is diagonalized by an orthogonal matrix Q, then
classical mechanics shows that (due to the absence of the off-diagonal "products
of inertia") the body can spin smoothly about its principal axes (columns of Q)
without wobbling. (Think of a spiral pass or an end-over-end placement kick of a
football. A punt, however, typically imparts a spin about a random axis, and the
result is a wobbly motion.) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



256 SIMILARITY
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Fig. 6.3 Principal axes of inertia.

(a) Show that for a uniform sphere of mass M and radius r, the axes in Figure 6.3a
are principal axes and

I =

⎡
⎣

2
5 Mr2 0 0

0 2
5 Mr2 0

0 0 2
5 Mr2

⎤
⎦ .

(b) Show that for a uniform cylinder of mass M, radius r, and height h, the axes in
Figure 6.3b are principal axes and

I =

⎡
⎢⎢⎣

M
(

r2

4 + h2

12

)
0 0

0 M
(

r2

4 + h2

12

)
0

0 0 M r2

2

⎤
⎥⎥⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.3 SCHUR DECOMPOSITION AND ITS IMPLICATIONS 257

(c) Show that for a uniform rectangular prism as shown in Figure 6.3c the
displayed axes are principal axes and

I =

⎡
⎢⎢⎣

1
12 M(a2 + b2) 0 0

0 1
12 M(c2 + b2) 0

0 0 1
12 M(a2 + c2)

⎤
⎥⎥⎦ .

You can experiment with the moments of inertia of your (hardcopy) text-
book by tying it shut with a rubber band and tossing it in the air. You will be
able to spin it smoothly around the “high inertia” and “low inertia” axes; but
even though the “intermediate inertia” axis is a principal axis, the revolutions
are unstable with respect to small perturbations. Try it out.

16. The first-order expansion of the Maclauren series for a suitably smooth
function f is given by

f (x, y) = f (0, 0) +
∂f (0, 0)

∂x
x +

∂f (0, 0)
∂y

y + O
(
x2 + y2

)
,

where O(x2 + y2) is a term bounded by a constant times (x2 + y2). Apply this
to the length functions in Example 2 to justify the approximations made there.

6.3 SCHUR DECOMPOSITION AND ITS IMPLICATIONS

Section 6.1 demonstrated that the diagonalization of a matrix is extremely useful in
facilitating computations. But the goal of attaining a diagonal D = P−1AP, with an
invertible P, is not always possible, since Example 5 of Section 5.2 showed that not all
matrices possess a full basis of eigenvectors (the columns of P); such matrices are said
to be defective. If we can’t get a diagonal matrix, what is the simplest matrix form that
we can get, using similarity transformations?2

One answer is provided by a result known as the Schur decomposition.3 The form
it achieves, upper triangular, may seem a far cry from diagonal, but (as we shall see)
the result is quite powerful, the diagonalizing matrix P is unitary (and thus easy and
accurate to invert), and the derivation is not hard.

2The upper triangular matrix U produced by the A = LU factorization using Gauss elimination (Project A,
Part I) is not similar to A (there is no right multiplier L−1).
3Issai Schur (1875–1941) is most remembered for this decomposition and his Lemma on group represen-
tations. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



258 SIMILARITY

Upper Triangular Form

Theorem 3. (Schur Decomposition) Every complex n-by-n matrix A is simi-
lar to an upper triangular matrix U = QHAQ, with a similarity transformation
generated by a unitary4 matrix Q.

Before we get to the proof, look at what this implies about Hermitian matrices. If A
is Hermitian, so is the upper triangular matrix U:

U = QHAQ = QHAHQ =
(
QHAQ

)H
= UH .

But an upper triangular Hermitian matrix must be diagonal! Thanks to Schur, we
now know that Hermitian (and real symmetric) matrices can always be diagonalized.
Specifically,

Corollary 6. Any Hermitian matrix can be diagonalized by a unitary matrix. Its
multiple eigenvalues have eigenspaces of dimension equal to the multiplicity of the
corresponding eigenvalues.

Just to refresh your memory: the eigenvalues are real and eigenvectors corresponding
to distinct eigenvalues are orthogonal; real symmetric matrices are Hermitian, and real
unitary matrices are orthogonal. If A is real and symmetric, the Schur decomposition
can be carried out in real arithmetic.

Proof of the Schur Decomposition. To maintain consistency in the discussion, we
temporarily rename A as A1. Roughly, the strategy of the proof is this. First we use
(any) unit eigenvector u1 of A1 to construct a similarity transformation that “upper-
triangulates its first column”—that is, introduces zeros below the diagonal. Then we
operate similarly on the lower (n − 1)-by-(n − 1) submatrix A2 to upper-triangulate its
first column—without overwriting the zeros in A1’s first column. And so on. Pictorially,

⎡
⎣A1

⎤
⎦ →

⎡
⎢⎢⎢⎣

r1 · · ·
0
... |A2|
0

⎤
⎥⎥⎥⎦→

⎡
⎢⎢⎢⎢⎢⎣

r1 · · ·
0 r2 · · ·
0 0
...

... | A3|
0 0

⎤
⎥⎥⎥⎥⎥⎦

.

So we start with a unit eigenvector A1u1 = r1u1, ||u1|| = 1, and (using, say, the
Gram–Schmidt algorithm) we construct an orthonormal basis for Cn

col containing u1.
The matrix Q1 containing this basis as columns (with u1 first) is unitary. Then the
similarity transformation QH

1 A1Q1 starts us on the way to upper triangular form, as
exhibited by the equations

4Perhaps you see our notation conflict; “U” for upper triangular, or “U” for unitary? We opt for the former,
and use “Q” for the unitary matrix which, if real, is orthogonal. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.3 SCHUR DECOMPOSITION AND ITS IMPLICATIONS 259

columns orthogonal to u1︸ ︷︷ ︸
Q1 =

⎡
⎣u1

|︷︸︸︷
· · ·

↓ ↓ · · · ↓

⎤
⎦, A1Q1 =

[
r1u1 · · ·
↓ ↓ · · · ↓

]
,

QH
1 A1Q1 =

⎡
⎢⎢⎣

→ uH
1 →⎛

⎝ →
rows orthogonal to u1

H

→

⎞
⎠

⎤
⎥⎥⎦
[

r1u1 · · ·
↓ ↓ · · · ↓

]

=

⎡
⎢⎢⎢⎣

r1 · · ·
0
... |A2 |
0

⎤
⎥⎥⎥⎦ . (1)

We don’t care about the details of the horizontal · · · entries until the last stage in
Equation (1), when they define A2, the lower right corner of QH

1 A1Q1.
A2 is an (n − 1)-by-(n − 1) matrix, and we pick one of its unit eigenvectors u2,

say A2u2 = r2u2; then we use the Gram–Schmidt algorithm to flesh out the rest of an
orthonormal basis of Cn−1

col . These columns are padded with a row and column of zeros
and a “one” to construct the n-by-n unitary matrix Q2 as shown:

Q2 =

⎡
⎢⎢⎢⎣

1 0 0 · · · 0
0 u2 · · ·
↓ ↓ ↓ · · · ↓︸ ︷︷ ︸

|

⎤
⎥⎥⎥⎦

|︷ ︸︸ ︷
columns orthogonal to u2

.

The product QH
2 QH

1 A1Q1Q2 then displays how we have introduced zeros below the
diagonal in the second column, while leaving the first column intact:

(QH
1 A1Q1)Q2 =

⎡
⎢⎢⎢⎣

r1 · · ·
0
... |A2 |
0

⎤
⎥⎥⎥⎦
⎡
⎣1 0 0 · · · 0

0 u2 · · ·
↓ ↓ ↓ · · · ↓

⎤
⎦

=

⎡
⎣r1 · · · · · · · · · · · ·

0 A2u2 · · ·
↓ ↓ ↓ · · · ↓

⎤
⎦ =

⎡
⎣r1 · · · · · ·

0 r2u2 · · ·
↓ ↓ · · ·

⎤
⎦,
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QH
2

(
QH

1 A1Q1Q2
)
=

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 uH

2 →

↓

⎛
⎜⎝

→
rows orthogonal

to u2
H

→

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣r1 · · · · · ·

0 r2u2 · · ·
↓ ↓ · · ·

⎤
⎦

=

⎡
⎢⎢⎣

r1 · · ·
0 r2 · · ·
↓ 0

↓ |A3|

⎤
⎥⎥⎦ .

In a similar fashion, a unit eigenvector v3 of A3 spawns the unitary matrix

Q3 =

⎡
⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
↓ 0 u3 · · ·

↓ ↓ · · ·

⎤
⎥⎥⎦

and so on. After n − 1 of these maneuvers, we achieve the desired upper triangular
form. The complete similarity transformation, generated by the unitary matrix product
(Q1Q2 · · ·Qn−1), is

(Q1Q2 · · ·Qn−1)
H A (Q1Q2 · · ·Qn−1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1 · · · · · · · · · · · ·
0 r2 · · · · · · · · ·
↓ 0 r3 · · · · · ·

↓ 0 · · · · · ·
↓

...
...

· · · rn

⎤
⎥⎥⎥⎥⎥⎥⎦
=: U.

Corollary 7. The upper triangular matrix in Theorem 3 has the eigenvalues of A on
its diagonal.

Proof. U is similar to A and thus shares its eigenvalues, which for a triangular matrix
are displayed on its diagonal (Section 5.2).

We now know that unitary matrices can be used to diagonalize, and not merely tri-
angularize, Hermitian matrices (through similarity transformations). What is the most
general class that can be so diagonalized?

Normal Matrices

Definition 7. Any matrix that commutes with its conjugate transpose is said to
be normal:

AAH = AHA. (2)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.3 SCHUR DECOMPOSITION AND ITS IMPLICATIONS 261

Diagonal matrices are clearly normal, as are Hermitian matrices (since A=AH) and
unitary matrices (since QH = Q−1). Note the following:

Remark 1. If a unitary matrix Q effects a similarity transformation between A and
B = QHAQ, and A is normal, then so is B. This is verified by contrived juggling:

BBH =
(
QHAQ

) (
QHAQ

)H
= QHAQQHAHQ

(
because [CDE]H = EHDHCH)

= QHAAHQ = QHAHAQ
(
because QQH = I and AAH = AHA

)
= QHAHQQHAQ

(
because QQH = I

)
= BHB.

In particular, A is normal if and only if its upper triangular form U, generated by Schur’s
decomposition, is normal.

Remark 2. Triangular matrices are normal only if they are diagonal. To see why, look
at the 4-by-4 case:

UUH =

⎡
⎢⎢⎣

u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u∗11 0 0 0
u∗12 u∗22 0 0
u∗

13 u∗23 u∗33 0
u∗

14 u∗24 u∗34 u∗44

⎤
⎥⎥⎦ ,

UHU =

⎡
⎢⎢⎣

u∗11 0 0 0
u∗12 u∗22 0 0
u∗

13 u∗23 u∗33 0
u∗

14 u∗24 u∗34 u∗44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

⎤
⎥⎥⎦ .

The jth diagonal entry of UUH is the squared norm of the jth row of U, but the jth
diagonal entry of UHU is the squared norm of the jth column of U. If they are equal we
conclude, in turn, that the first row of U is diagonal, then the second, and so on.

Merging these two observations, we have Theorem 4.

Diagonalization of Normal Matrices

Theorem 4. A matrix can be diagonalized by a similarity transformation gen-
erated by a unitary matrix if, and only if, it is normal.

Corollary 8. Any n-by-n normal matrix has n linearly independent eigenvectors (the
columns of the unitary matrix in Theorem 4).

We close this section by noting a widely-known corollary to the Schur decomposi-
tion: namely, every square matrix satisfies its characteristic equation. 
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Cayley–Hamilton Theorem

Corollary 9. Let p(r) be the characteristic polynomial of the square matrix A,

p(r) ≡ det(A − rI) = (−r)n + cn−1rn−1 + · · · + c1r + c0r0.

Then if rj is replaced by Aj (and r0 by I) in p(r), the result is the zero matrix.
Briefly,

p(A) = (−A)n + cn−1An−1 + · · · + c1A + c0I = 0. (3)

Note that the Cayley–Hamilton theorem does not make the (obvious) assertion that
the determinant |A − AI| equals zero; it is a matrix equality, equivalent to n2 scalar
equalities.

Proof of Corollary 9. If the list {r1, r2, . . . , rn} contains the eigenvalues of A including
multiplicities, then we know that multiplying out

(−1)n(r − r1)(r − r2) · · · (r − rn) (4)

results in the characteristic polynomial

p(r) = (−r)n + cn−1rn−1 + · · · + c1r + c0.

But collecting powers of A in

(−1)n(A − r1I)(A − r2I) · · · (A − rnI)

involves the same algebra as collecting powers of r in (4). So we also know that

p(A) = (−1)n(A − r1I)(A − r2I) · · · (A − rnI).

Now thanks to the telescoping effect (recall Equation (11), Section 6.1), if A has the
Schur decomposition A = QUQH , then Aj = QUjQH and p(A) = Q p(U)QH . But
p(U) = (−1)n(U− r1I)(U− r2I) · · · (U− rnI) turns out to be the zero matrix; observe
how the zeros bulldoze their way through, as we carry out the products in this 4-by-4
example. (Remember that the diagonal entries of U are the eigenvalues rj.) 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.3 SCHUR DECOMPOSITION AND ITS IMPLICATIONS 263

p(U) = (−1)n (U − r1I)× (U − r2I)× (U − r3I)× (U − r4I)

= (−1)n

⎡
⎢⎢⎣

0 # # #
0 # # #
0 0 # #
0 0 0 #

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣
# # # #
0 0 # #
0 0 # #
0 0 0 #

⎤
⎥⎥⎦

︸ ︷︷ ︸

×

⎡
⎢⎢⎣
# # # #
0 # # #
0 0 0 #
0 0 0 #

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣
# # # #
0 # # #
0 0 # #
0 0 0 0

⎤
⎥⎥⎦

= (−1)n

⎡
⎢⎢⎣

0 0 # #
0 0 # #
0 0 # #
0 0 0 #

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

# # # #
0 # # #
0 0 0 #
0 0 0 #

⎤
⎥⎥⎦

︸ ︷︷ ︸
×

⎡
⎢⎢⎣
# # # #
0 # # #
0 0 # #
0 0 0 0

⎤
⎥⎥⎦

= (−1)n

⎡
⎢⎢⎣

0 0 0 #
0 0 0 #
0 0 0 #
0 0 0 #

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
# # # #
0 # # #
0 0 # #
0 0 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

The n-by-n generalization is clear and (3) is proved.

Problems 20 and 21 demonstrate how the Cayley–Hamilton theorem can be
exploited to simplify many algebraic expressions involving A.

Exercises 6.3

Express the Schur decomposition A = QUQH for the matrices in Problems 1–5.

1.

[
7 6
−9 −8

]
2.

[
3 1
−1 1

]
3.

[
2 10
−4 −2

]

4.

⎡
⎣ 6 −3 4

4 −2 4
−4 2 −2

⎤
⎦ 5.

⎡
⎣ 0 −1 2
−1 0 0
−1 1 −1

⎤
⎦

6. Show that the upper triangular matrix in the Schur decomposition can be chosen
so that the eigenvalues appear on the diagonal in any specified order.

7. Find a diagonalizable matrix that is not normal. (Hint: there are several examples
in Section 5.2.)

8. Show that if A is normal, then so is any polynomial in A.

9. Give examples of two normal matrices A and B such that A + B is not normal;
similarly for AB.

10. Show that any circulant matrix (Problem 12, Exercises 5.1) is normal. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



264 SIMILARITY

11. Prove that the norm of Av equals the norm of AHv if A is normal, for any v.

12. Show that any eigenvector of a normal matrix is also an eigenvector of its conjugate
transpose.

Show that the nonhermitian matrices in Problems 13–16 are normal, and find
an orthonormal basis of eigenvectors.

13.

[
1 i
i 1

]
14.

⎡
⎣1 − i −1 1

−1 2 − i 0
1 0 2 − i

⎤
⎦

15.

⎡
⎣0 −2 −2

2 0 1
2 −1 0

⎤
⎦ 16.

⎡
⎢⎢⎣

1 1 −1 −1
1 1 1 1
1 −1 −1 1
1 −1 1 −1

⎤
⎥⎥⎦

17. Show that if a matrix is normal, the norm of its ith row equals the norm of its ith
column.

18. Two normal matrices A and B are said to be simultaneously diagonalizable if
and only if there is a single unitary matrix Q that renders both QHAQ and QHBQ
diagonal. Show that this can happen if, and only if, AB = BA.

19. Find a unitary matrix that simultaneously diagonalizes

⎡
⎣ 0 −1 1

1 0 −1
−1 1 0

⎤
⎦ and

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ .

20. Show that if A is n-by-n and pm(A) is a polynomial in A of degree m ≥ n, then
there is a polynomial ps(A) of degree s < n such that pm(A) = ps(A).

21. Use the Cayley–Hamilton Theorem to construct a polynomial formula for A−1 if
A is nonsingular.

6.4 THE SINGULAR VALUE DECOMPOSITION5

The bad news about matrix multiplication is that it distorts space. The good news is—
it does it in a regular way. If A is a real m-by-n matrix with rank r, multiplication
by A takes vectors in Rn

col into vectors in Rm
col. If we focus on all the vectors in Rn

col

with unit norm—the n-dimensional unit hypersphere—multiplication by A maps this
hypersphere into an r-dimensional “hyperellipsoid,” distorting the sphere in the manner
of Figure 6.4.

However we will see more, as suggested by the figure. Each hyperellipsoid contains
a vector u1 of maximal length (more than one, really; pick any one). It is the image
of some hypersphere vector v1. Now restrict multiplication by A to the vectors in the

5The authors express their gratitude to Prof. Michael Lachance (University of Michigan-Dearborn) for
valuable tutelage and contributions to this section.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 265

v1
v2

u2 =Av2

u1 =Av1
A

v1

v2v3

u1 =Av1

u2 =Av2u3 =Av3

A

(a)

(b)

Fig. 6.4 Ellipsoidal image of unit sphere under multiplication by A. (a) Two dimensions and

(b) Three dimensions.

lower-dimensional hypersphere orthogonal to v1 (the equatorial circle in Fig. 6.4b), and
pick a vector v2 whose image u2 := Av2 has maximal length among these. Continuing,
pick a unit vector v3 orthogonal to v1 and v2 with ||u3|| := Av3 maximal: then u4 =
Av4, u5 = Av5, until we exhaust the rank of A with ur = Avr. Let us express this
situation in matrix jargon. Despite the clutter, it will be useful to occasionally post a
reminder of the various matrix dimensions. Columnwise, we have

Am−by−n
[

v1 v2 . . . vr

]
n−by−r

=
[

u1 u2 . . . ur

]
m−by−r

. (1)

Of course the unit vectors v1, v2, . . . , vr are orthogonal, by construction. Surpris-
ingly, however, the columns u1, u2, . . . , ur are also orthogonal, as indicated in the figure.
The proof of this statement involves some ideas outside the realm of matrix theory. We
will guide you through them in Problems 25–27. For now let’s go on, to see the benefits.

It is traditional to tidy up (1) using orthogonal matrices. First we render the columns
of the u-matrix so that they are unit vectors (like the v-matrix):

A [v1 v2 . . . vr]

=
[

u1
||u1||

u2
||u2|| . . . ur

||ur||

]
m−by−r

⎡
⎢⎢⎢⎣

||u1|| 0 0
0 ||u2|| 0 0

0 0
. . . 0

0 0 ||ur||

⎤
⎥⎥⎥⎦

r−by−r

. (2)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



266 SIMILARITY

Now there is a string of vectors vr+1, vr+2, . . . , vn in the hypersphere, each orthogonal
to all of its predecessors and each mapped to the zero vector in Rm

col. Append them to the
v-matrix, and compensate by appending (n − r) zero column vectors to the right-hand
matrix:

Am−by−n [v1 v2 . . . vr vr+1 . . . vn]n−by−n

=
[

u1
||u1||

u2
||u2|| . . . ur

||ur||

]
m−by−r

⎡
⎢⎢⎢⎣
||u1|| 0 0 0 0 . . . 0

0 ||u2|| 0 0 0 . . . 0
...

...
. . .

...
... . . .

...
0 0 0 ||ur|| 0 . . . 0

⎤
⎥⎥⎥⎦

r−by−n

.

The v-matrix is now orthogonal; convention dictates that we call it V (not Q).
Similarly the u-matrix can be supplemented with m − r unit column vectors

ur+1, ur+2, . . . , um to create an orthogonal matrix, U (convention again); this is compen-
sated by adding (m − r) zero row vectors to form the right-hand side diagonal matrix
. . . diagonal matrix bold capital Sigma:

AV =
[

u1
||u1||

u2
||u2|| . . . ur

||ur|| ur+1 . . . um

]
m−by−m

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

||u1|| 0 0 0 0 . . . 0
0 ||u2|| 0 0 0 . . . 0

0 0
. . . 0 0 . . . 0

0 0 0 ||ur|| 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m−by−n

=: UΣ.

Multiplying on the right by the inverse V−1 = VT , we obtain the following result.

Singular Value Decomposition Theorem

Theorem 5. Any real m-by-n matrix A can be decomposed (factored) into the
product of an m-by-m orthogonal matrix U, times an m-by-n diagonal matrix Σ

with nondecreasing, nonnegative numbers down its diagonal, times an n-by-n
orthogonal matrix6 VT :

6The rightmost factor is traditionally written as VT , in keeping with the protocol of expressing the diag-
onalization of a symmetric matrix as A = QDQT . The singular value decomposition subroutine in many
software packages returns the matrix V, and it must be transposed to verify the factorization (3). Of course
equation (3) does not express a similarity transform, unless U = V.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 267

Am−by−n = UΣVT

=

[
U

]

m−by−m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0 0 . . . 0

0 σ2 0 0 0 . . . 0

0 0
. . . 0 0 . . . 0

0 0 0 σr 0 . . . 0

0 0 0 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m−by−n

[
VT

]

n−by−n

(3)

The entries on the diagonal of Σ are called the singular values of A; there are
min(m, n) of them. The number of nonzero singular values is r = rank(A), and
their values are the norms of the vectors u1, u2, . . . , ur. (Some authors restrict the term
“singular values” to the nonzero set.)

Recall that every real nondefective square matrix A can be diagonalized:
A = PDP−1 (Theorem 1, Section 6.1). And, in fact, P can be taken to be orthog-
onal when A is symmetric. How does the singular value decomposition differ from
this?

• The SVD holds for all real matrices—including defective and rectangular.

• The diagonalizing matrices U and V are always orthogonal. They are not always
equal.

• The singular values are always real and nonnegative.

Some examples of singular value decompositions appear below. They were obtained
using software. The matrix in display (4) was the coefficient matrix for an underdeter-
mined system solved in Example 4, Section 1.3:

⎡
⎢⎣

1 2 1 1 −1 0

1 2 0 −1 1 0

0 0 1 2 −2 1

⎤
⎥⎦

=

⎡
⎢⎣
−0.533 −0.607 −0.589

0.225 −0.773 0.593

−0.815 0.184 0.549

⎤
⎥⎦

⎡
⎢⎣

3.793 0 0 0 0 0

0 3.210 0 0 0 0

0 0 0.566 0 0 0

⎤
⎥⎦

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



268 SIMILARITY

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.081 −0.430 0.007 −0.560 0.560 0.426
−0.163 −0.860 0.015 0.342 −0.342 0.000
−0.356 −0.132 −0.071 −0.248 0.248 −0.853
−0.630 0.166 −0.149 0.562 0.438 0.213

0.630 −0.166 0.149 0.438 0.562 −0.213
−0.215 0.057 0.975 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The matrix A in (5) clearly has two independent rows; accordingly, its singular value
decomposition displays two nonzero singular values.

⎡
⎢⎢⎣

1 −1 1
1 1 3
1 1 3
1 1 3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−0.166 0.986 0 0

−0.569 −0.096 −0.577 −0.577

−0.569 −0.096 0.789 −0.211

−0.569 −0.096 −0.211 0.789

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

5.820 0 0

0 1.458 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎣
−0.322 0.479 0.817

−0.265 −0.874 0.408

−0.909 0.085 −0.408

⎤
⎥⎦

T

. (5)

The eigenvalues for the (square) matrix in (6) were determined to be 1, 2, and 3 in
Example 2, Section 5.2. Note the singular values are quite different.

⎡
⎢⎣

1 2 −1

1 0 1

4 −4 5

⎤
⎥⎦ =

⎡
⎢⎣

0.163 0.940 0.299

−0.152 0.323 −0.934

−0.975 0.107 0.195

⎤
⎥⎦
⎡
⎢⎣

7.740 0 0

0 2.231 0

0 0 0.348

⎤
⎥⎦

×

⎡
⎢⎣
−0.502 0.758 0.416

0.546 0.652 −0.527

−0.671 −0.037 −0.741

⎤
⎥⎦

T

. (6)

A short calculation shows that the eigenvalues of the matrix in (7) are complex: 1±i.
Nonetheless, the singular values are real and positive:

[
1 1

−1 1

]
=

[
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

][√
2 0

0
√

2

][
−1 0

0 1

]T

. (7)

The 4-by-4 Hilbert matrix (Problem 6, Exercises 1.5) is a symmetric matrix with
positive eigenvalues; note that in its singular value decomposition in (8), we see U = V,
so (8) merely expresses its usual diagonalization. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 269

⎡
⎢⎢⎣

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−0.793 0.582 −0.179 −0.029
−0.452 −0.371 0.742 0.329
−0.322 −0.510 −0.100 −0.791
−0.255 −0.514 −0.638 0.515

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1.5002 0 0 0
0 0.1691 0 0
0 0 0.0067 0
0 0 0 0.0001

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
−0.793 0.582 −0.179 −0.029
−0.452 −0.371 0.742 0.329
−0.322 −0.510 −0.100 −0.791
−0.255 −0.514 −0.638 0.515

⎤
⎥⎥⎦

T

(8)

However, the symmetric matrix in (9) has a negative eigenvalue (3 twice and −3;
Example 5, Section 5.2). The singular values are all +3’s, and U �= V.

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦ =

⎡
⎣−1/3 2/3 −2/3

2/3 −1/3 −2/3
−2/3 −2/3 −1/3

⎤
⎦
⎡
⎣3 0 0

0 3 0
0 0 3

⎤
⎦
⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦

T

. (9)

The matrix in (10) is defective; the nullity of A-3I is only 1. A study of the zeros in
U and V reveals that the singular value decomposition maintains the block structure,
and the eigenvalue −2 in the 1-by-1 block shows up, in magnitude, among the singular
values.
⎡
⎣3 1 0

0 3 0
0 0 −2

⎤
⎦ =

⎡
⎣0.763 −0.646 0

0.646 0.763 0
0 0 1

⎤
⎦
⎡
⎣3.541 0 0

0 2.541 0
0 0 2

⎤
⎦
⎡
⎣0.646 −0.763 0

0.763 0.646 0
0 0 −1

⎤
⎦. (10)

The singular value decomposition is a factorization of the matrix A that identifies
the semi-axis lengths (the nonzero singular values in Σ) and axes of symmetry (the
columns of U) of the image ellipsoid, together with the pre-images of those axes of
symmetry (the columns of V).

The computation of the U and V factors in the decomposition requires some fussi-
ness, and we have relegated it to Group Project D at the end of Part III; however, the
computation of Σ is easily enabled by the following theorem.

Computation of Singular Values

Theorem 6. Let A be a real m-by-n matrix. Then the eigenvalues of ATA are
nonnegative, and the positive square roots of the nonzero eigenvalues are identical
(including multiplicities) with the nonzero singular values of A.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



270 SIMILARITY

Proof. Since ATA is symmetric, it can be diagonalized: ATA = QDQT . But from
A = UΣVT we derive ATA = VΣTUTUΣVT = VΣTΣVT . Therefore QDQT =
VΣTΣVT , implying D and ΣTΣ are similar and hence possess the same eigenvalues
and multiplicities (Corollary 1, Section 6.1). Since ΣTΣ is the m-by-m matrix

ΣTΣ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0 σr 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n−by−m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0 σr 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m−by−n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
1 0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0 σ2
r 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n−by−n

, (11)

we can get the singular values by taking nonnegative square roots of the diagonal entries
of D (and reordering if necessary).

We have introduced the singular value decomposition A = UΣVT through the
interpretation of Figure 6.4, and we know that the factors are not unique. For exam-
ple, there is flexibility in selecting the hypersphere vectors comprising the columns
of V (we could replace any vi by −vi, e.g.). So what if we happened upon another

orthogonal/diagonal/orthogonal factorization ŨΣ̂Ṽ
T

of A? What can we say about the
factors?

• The absolute values of the diagonal entries of Σ̂ must match up with the singular
values of A, including multiplicities, in some order.

• If the diagonal entries of Σ̂ are nonnegative and occur in nonincreasing order, the
columns of Ũ and Ṽ are simply alternative choices to the columns of U and V, as
regards Figure 6.4.

These properties are proved in Problems 25–27.
Note that if A is a real, symmetric matrix, it admits the orthogonal/diagonal/

orthogonal factorization A = QDQT . Therefore, we have shown the following.

Corollary 10. The singular values of a real, symmetric matrix equal the absolute
values of its eigenvalues. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 271

Example 1. Calculate the singular values of the matrix

A =

⎡
⎣ 1 1
−1 1
1 0

⎤
⎦ .

Solution. We find

ATA =

[
1 −1 1
1 1 0

]⎡
⎣ 1 1
−1 1
1 0

⎤
⎦ =

[
3 0
0 2

]
.

whose eigenvalues are, obviously, 3 and 2. Thus the singular values of A are
√

3
and

√
2. �

6.4.1 Application 1. The Matrix Norm

The generalization of the concept of the length of a vector is its (Euclidean) norm,
introduced in Section 4.1: for v in Rn

col, ||v||2 := vTv. It is convenient to extend this
notion to matrices, so that ||A|| measures the extent to which multiplication by the
matrix A can stretch a vector. If the stretch is quantified as the ratio ||Av||/||v||, we
arrive at

Definition 8. The (Euclidean) norm of a matrix A equals

||A|| = maxv�=0
||Av||
||v|| . (12)

Note that this is identical with

||A|| = max||v||=1 ||Av||. (13)

Indeed at the beginning of this section, we identified v = v1 as the unit vector achieving
this maximum, and so the corresponding norm is the largest singular value:

||A|| = σ1 = ||u1|| = ||Av1||. (14)

Observe also that (12) validates the extremely useful inequality

||Av|| ≤ ||A|| ||v||. (15)

Since orthogonal matrices preserve length, we have immediately

Corollary 11. The Euclidean norm of an orthogonal matrix equals one. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



272 SIMILARITY

If A is n-by-n (square), then so are the matrices U,Σ, and VT . If A is invertible,
A−1 can be expressed A−1 =VΣ−1UT which, strictly speaking, isn’t the singular value
decomposition of A (since the diagonal entries σ−1

1 ,σ−1
2 , . . . ,σ−1

n are in increasing
order). Nonetheless, the display demonstrates the following.

Corollary 12. If A is invertible, then ||A−1|| = σ−1
min.

6.4.2 Application 2. The Condition Number

In Problem 6, Exercises 1.5, we stated that the relative accuracy of a solution to Ax = b
was related to the relative accuracy in the data b through the condition number μ of the
matrix A. Now we can be more specific about this relationship.

How do we assess the accuracy of an approximation xapp to a vector x—an n-
component entity? A reasonable answer (not the only one) would be to take, as the
error, the norm of the difference ||x − xapp|| = ||Δx||; and the relative error would be
the ratio ||Δx||/||x||. Now if the vector x is the solution to the system Ax = b, and
there is an error Δx in the solution due to an error Δb in the measurement of b (that is
to say A(x + Δx) = b + Δb), then two easy applications of inequality (15) give us a
relation between the relative errors:

Δx = A−1Δb ⇒ ||Δx|| ≤ ||A−1|| ||Δb||,
b = Ax ⇒ ||b|| ≤ ||A|| ||x|| ⇒ ||x|| ≥ ||b||/||A||.

Dividing inequalities (in the right direction) yields

||Δx||
||x|| ≤ ||A−1|| ||A|| ||Δb||

||b|| .

We summarize with a formal definition and a corollary.

Definition 9. The condition numberμ(A) of an invertible matrix A is the prod-
uct ||A−1|| ||A||. If A is square and noninvertible, its condition number is taken
to be infinity.

Corollary 13. For the n-by-n invertible system Ax = b, the ratio of the relative error
in the solution x to the relative error in the data b is upper-bounded by the condition
number:

||Δx||/||x||
||Δb||/||b|| ≤ μ(A) = ||A−1|| ||A|| = σmax/σmin. (16)

As is evident from (16), all condition numbers are greater than or equal to one. We
cannot expect to gain accuracy when we solve a linear system. But if the coefficient 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 273

matrix is orthogonal, we won’t lose accuracy either. That is why Householder reflectors
are used in sensitive algorithms.7

Example 2. Verify the statement made in Problem 6, Exercises 1.5, that the condition
number for the 4-by-4 Hilbert matrix (8) is approximately 15,000.

Solution. Display (8) reveals σmax = 1.5002 and σmin = 0.0001. From (16), then,
we have μ(A) = 1.5002/0.0001 ≈ 15, 000. �

One might be tempted to think of detA as a measure of how sensitive a linear system
is to errors in the data, due to its appearance in the denominator of Cramer’s rule and
the adjoint formula for A−1 (Section 2.5). This is false, as can be seen by the example
A = (0.1)I100, whose det A = 10−100, a very small number; yet Ax = b can be solved
perfectly with ease, since A−1 = (10)I100. Clearly μ(A) (= 1 for this A) is a much
better measure of sensitivity.

6.4.3 Application 3. The Pseudoinverse Matrix

If A has the singular value decomposition (3),

Am−by−n = UΣVT =

[
U

]

m−by−m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
. . .

0 σr 0 0
0 0 0 0

. . .
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

m−by−n

[
VT

]

n−by−n

,

it is constructive to try to create an inverse for A by transposing and reverse-ordering
the matrix factors and inverting the nonzero singular values:

Aψ
n−by−m := VΣψUT

:=

[
V

]

n−by−n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ−1
1 0 0 0

. . .
0 σ−1

r 0 0
0 0 0 0

. . .
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n−by−m

[
UT

]

m−by−m

. (17)

7See Section 4.2 and Group Project B of Part II. 
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Aψ is “very nearly” an inverse; observe:

AψA = VΣΨUTUΣVT = VΣΨΣVT = V

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
. . .

0 1 0 0
0 0 0 0

. . .
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n−by−n

VT .

AAψ = UΣVTVΣψUT = UΣΣψUT = U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
. . .

0 1 0 0
0 0 0 0

. . .
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

m−by−m

UT .

If A is invertible, then Aψ = A−1, but in general neither of the above products is the
identity, although one can easily verify the identity-like formulas A(AψA) = A =
(AAψ)A.

Definition 10. If A has the singular value decomposition A = UΣVT , the pseu-
doinverse of A is given by Aψ := VΣψUT , where Σψ is formed by inverting the
nonzero singular values in Σ and transposing.

The pseudoinverse is more than a mathematical plaything; it fills a key role in the
least-squares theory described in Section 4.3.

Minimal Least Squares Solution

Theorem 7. For any m-by-n matrix A, the vector x = Aψb provides a least-
squares solution to the (possibly) inconsistent system Ax = b, in the sense that
the norm of b−Ax will be less than or equal to the norm of b−Ay for any vector
y in Rn

col. Moreover, x itself has the least norm of all such least-square solutions.
(“x is the least-squares solution of minimal norm.”)

Proof. Let y be a generic vector in Rn
col. Since U in the decomposition is orthogonal,

||b − Ay|| = ||UT(b − Ay)|| = ||UTb − UTUΣVTy|| = ||UTb −ΣVTy||. (18)

The theorem will become clear when we scrutinize this expression compo-
nentwise. Write UTb as [β1 β2 · · · βn]T and VTy as [ν1 ν2 · · · νn]T . Then, since
only r of the singular values are nonzero, ΣVTy equals the m-component vector
[σ1ν1 σ2ν2 . . . σrνr 0 0 · · · 0]T . From (17), then,

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 275

||b − Ay||2 = ||UTb −ΣVTy||2 = (β1 − σ1ν1)
2 + (β2 − σ2ν2)

2

+ · · · + (βr − σrνr)
2 + (βr+1 − 0)2 + · · · + (βm − 0)2.

How can we choose y, or equivalently VTy, to minimize ||b−Ay||2? Clearly we take
νi = βi/σi for i = 1, 2, . . . , r to make the first r terms zero; and there’s nothing we can
do about the remaining terms. In terms of y, then, a least-squares solution is obtained
by any vector of the form

y = V

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1/σ1
...

βr/σr

νr+1
...
νn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(νr+1, . . . , νn arbitary),

and (since V is orthogonal) the shortest of these is

x = V

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1/σ1
...

βr/σr

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remembering that [β1 β2 . . . βm]T = UTb, compare this with Aψb (Equation (17)):

x = Aψb = Vn−by−n

⎡
⎢⎢⎢⎢⎣

σ−1
1 0 0 0
0 σ−1

2 0 0
0 0 σ−1

3 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

n−by−n

UT
m−by−m b ;

they are the same.

Example 3. Find the least-squares solution of minimal norm to Ax = b, where A is
the matrix in display (5) and b = [1 0 1 2]T .

Solution. Using the singular value decomposition factors (5) we calculate the minimal
least-squares solution as
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x = Aψb = VΣψUTb = V

⎡
⎣0.172 0 0 0

0 0.686 0 0
0 0 0 0

⎤
⎦ UTb =

⎡
⎣ 0
−0.5000
0.5000

⎤
⎦ . (19)

In fact, in Example 1 of Section 4.3 we used the normal equations to show that all
least-square solutions took the form

⎡
⎣1

0
0

⎤
⎦ + t

⎡
⎣−2
−1
1

⎤
⎦ . (20)

The minimal-norm vector of this family occurs when t = 1/2, and coincides with (19)
(Problem 9). �

6.4.4 Application 4. Rank Reduction

Suppose an engineer is trying to characterize a certain machine, for computer simula-
tion. She knows that the machine’s action can be described theoretically as converting
an input vector x into an output vector y via a matrix product y = Ax, and that the
matrix A has rank one. By making test measurements (with imperfect instruments),
she estimates the matrix A to be

A =

⎡
⎣0.956 1.912 2.868

1.912 3.871 5.726
3.824 7.647 11.518

⎤
⎦ . (21)

How should she choose an approximation to this A that has rank one, as required by,
say, her simulation software?

We need to choose a rank-one matrix B that is as close as possible to A. We’ll
interpret this to mean that the Frobenius norm of (A − B), that is,

||A − B||Frob :=

√√√√ 3∑
i=1

3∑
j=1

(aij − bij)2,

is as small as possible. Now Problem 27 of Exercises 6.1 demonstrates that left or right
multiplication of a matrix by an orthogonal matrix does not change its Frobenius norm.
So, consider the singular value decomposition of A:

A = UΣVT =

⎡
⎣−0.218 0.015 0.976
−0.436 0.893 −0.111
−0.873 −0.450 −0.188

⎤
⎦
⎡
⎣16.431 0 0

0 0.052 0
0 0 0.003

⎤
⎦×

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 277

⎡
⎣−0.267 0.007 0.964
−0.534 0.831 −0.154
−0.802 −0.556 −0.218

⎤
⎦ .

Now if B is any other matrix (of the same dimensions),

||A − B||Frob = ||UΣVT − B||Frob = ||UT(UΣVT − B)V||Frob

= ||Σ− UTBV||Frob.

Thus we can find a closest rank-one approximation to A by finding a closest rank one
approximation to Σ—call it Σ1, and forming UΣ1VT (which has the same rank). The
obvious candidate for Σ1 is

Σ1 =

⎡
⎣16.431 0 0

0 0 0
0 0 0

⎤
⎦ , (22)

and it is certainly the closest diagonal rank one approximation to Σ. But for the proof
that Σ1 is indeed the closest overall rank-one approximation, we must refer the reader
to the Eckart–Young Theorem described in Matrix Computations 4th ed., G. H. Golub
and Ch. F. van Loan, Johns Hopkins Press, 2013.

The rank one approximation corresponding to (22) is

A1 = UΣ1VT

=

⎡
⎣−0.218 0.015 0.976
−0.436 0.893 −0.111
−0.873 −0.450 −0.188

⎤
⎦
⎡
⎣16.431 0 0

0 0 0
0 0 0

⎤
⎦

×

⎡
⎣−0.267 0.007 0.964
−0.534 0.831 −0.154
−0.802 −0.556 −0.218

⎤
⎦

= 16.431

⎡
⎣−0.218
−0.436
−0.873

⎤
⎦ [−0.267 0.007 0.964

]

=

⎡
⎣0.954 1.912 2.869

1.912 3.833 5.752
3.824 7.667 11.505

⎤
⎦ . �

It is easy to generalize from this example. 
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Theorem 7. If A has the singular value decomposition

A = U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0 0 . . . 0

0
. . . 0 0 0 . . . 0

0 0
. . . 0 0 . . . 0

0 0 0 σr 0 . . . 0

0 0 0 0 0 . . . 0
...

. . .

0 0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m−by−n

VT ,

then the closest matrix of lower rank s < r to A is given by

As = U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0 0 . . . 0

0
. . . 0 0 0 . . . 0

0 0 σs 0 0 . . . 0

0 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0
...

. . .

0 0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m−by−n

VT . (23)

We can use the singular value decomposition to find reduced rank approximations
to any matrix. This practice has had tremendous payoffs in signal processing and
statistics in recent years, underlying the disciplines known as image compression
and principal component analysis.

Other aspects of the singular value decomposition are discussed in Cleve
Moler’s article at http://www.mathworks.com/company/newsletters/articles/professor-
svd.html.

Exercises 6.4

1. Find (by hand) the norm and condition number of

[
1 0
1 1

]
.

2. Find (by hand) the norm and condition number of

⎡
⎣1 0 1

0 1 0
0 0 1

⎤
⎦.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 279

Use software (if necessary) to determine the norms and condition numbers of
the matrices in Problems 3–6.

3.

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ 4.

⎡
⎣1 1 0

0 1 1
0 0 1

⎤
⎦ 5.

⎡
⎢⎢⎣

1 0 0 0
0 −2 0 0
0 0 3 0
0 0 0 −4

⎤
⎥⎥⎦

6. The Hilbert matrices of order 5, 8, and 10.

7. Find nonzero vectors w1, w2 rendering the inequalities

||Aw1|| ≤ ||A|| ||w1||, ||A−1w2|| ≤ ||A−1|| ||w2||

as equalities. (Hint: Search among the columns of V in (1).)

8. From among the columns of V in (1), find b and Δb producing solutions to
Ax = b and A(x + Δx) = b + Δb that render the inequality (16) as an equality
(for invertible A). (Hint: Trace the derivation of the inequality.)

9. Show that the minimum-norm vector in the family (20) is given by (19).

10. If the rank of the m-by-n matrix A is either m or n, prove that Aψ is a one-sided
inverse of A.

11. Prove that if A is m-by-n and B is n-by-p, then ||AB|| ≤ ||A|| ||B||.
12. Prove that if A is square, ||An|| ≤ ||A||n for every n = 1, 2, . . ..

13. Prove that if A is symmetric then ||An|| = ||A||n for every n = 1, 2, . . ..

14. Prove that if As is the closest rank-s matrix to A, then ||A−As|| Frob = σ2
s+1+· · ·+σ2

r

where σ1, σ2, . . . ,σr are the nonzero singular values of A.

15. Show that Theorem 6 also holds with ATA replaced by AAT .

16. Find the closest rank-one approximation to

[
1 2
2 4

]
.

17. Find the closest rank-one approximation to

[
1 1
1 −1

]
.

18. Find the closest rank-one approximation to

⎡
⎢⎢⎣

1 0 0 0
0 −2 0 0
0 0 3 0
0 0 0 −4

⎤
⎥⎥⎦.

19. Find the closest rank-two approximation to the first matrix given in the following.
Compare the approximation with the second matrix. Compare the quality of the
approximations, in the Frobenius norm.

⎡
⎢⎢⎣

1 2 3.001
1 2 2.999
1 0 1.001
1 0 0.999

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2 3
1 2 3
1 0 1
1 0 1

⎤
⎥⎥⎦
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20. Show that the singular value decomposition A = UΣVT in Theorem 5 can be
replaced by an “economical” decomposition A = UrΣrVT

r , using only the first r
columns of U and V and the first r columns and rows of Σ (where r is the rank
of A).

21. For the data given in the following text, it is desired to express the y values as a
linear combination of the x values.

x1 0 0.1 0.2 0.3 0.4 (xT
1 )

x2 0 0.01 0.04 0.09 0.16 (xT
2 )

x3 0 0.21 0.44 0.69 0.95 (xT
3 )

y 0 0.40 0.96 1.69 2.57 (yT)

(a) Use the pseudoinverse to find coefficients r, s, t providing a least squares fit of
the form y = rx1 + sx2 + tx3.

(b) Use the pseudoinverse to find coefficients r, s providing a least squares fit of
the form y = rx1 + sx2.

(c) Replace the matrix X = [x1 x2 x3] by its best rank two approximation X2,
and find the least squares solution of minimum norm to X2[r s]T = y.

(d) Tabulate the sum of squares of errors for (a), (b), and (c). Compare the
performance of the approximations.

22. When a matrix A is replaced by a lower-rank approximation As = UsΣsVT
s using

the singular value decomposition as in (23), each column of A is replaced by a
linear combination of the first s columns of U.
(a) Where, in the display As = UsΣsVT

s , would you find the coefficients in the lin-
ear combination of the first s columns of Us that approximates the first column
of A? The jth column?

(b) In fact, As replaces each column of A with a linear combination of its own
columns. Where, in the display As = UsΣsVT

s , would you find coefficients for
a linear combination of the columns of A that replaces the first column of A?
The jth column? (Hint: Derive the identity As = AVsV

T
s .)

23. If A has a singular value decomposition A = UΣVT , prove that detA = ±detΣ.
Give an examples of each case.

24. (a) If A = UΣVT is a singular value decomposition of A, and A = ÛΣ̂V̂T is
any orthogonal/diagonal/orthogonal factorization of A, show that the absolute
values of the nonzero entries of Σ̂ must equal A’s singular values, and their
multiplicities, in some order. (Hint: First show that Σ̂

T
Σ̂ is similar to ΣTΣ by

expressing ATA in terms of both factorizations.)

(b) If the diagonal entries of Σ̂ in (a) are nonnegative and occur in nonincreasing
order (implying Σ̂ = Σ), show that A can be written in terms of the columns
of Û and V̂ as

A = σ1û1v̂T
1 + σ2û2v̂T

2 + · · · + σrûrv̂T
r , (24)

where σ1,σ2, . . . ,σr are the nonzero singular values of A. (Hint: Recall
Problem 23, Section 6.1.)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.4 THE SINGULAR VALUE DECOMPOSITION 281

(c) Use (24) to demonstrate that alternative orthogonal/diagonal/orthogonal fac-
torizations of A can be created by changing the signs of certain columns in Û
and V̂.

(d) Use (24) to describe how alternative orthogonal/diagonal/orthogonal factor-
izations of A can be generated when some of its singular values are equal.

(e) Use (24) to show that v̂1 is one of the unit vectors maximizing ||Av|| over all
unit vectors v, and that Av̂1 = σ1û1.

(f) Use (24) to show that v̂2 is one of the unit vectors maximizing ||Av|| over all
unit vectors v orthogonal to v̂2, and that Av̂2 = σ2v̂2. (And so on.)

Problems 25–27 guide you through the missing step in the proof of the singular value
decomposition: that is, the proof that the vectors ui in Equation (1) are orthogonal. The
analysis hinges on the following lemma.

Lemma 4. Let S be the set of unit vectors in a vector subspace W of Rn
col:

S = {v in W such that ||v|| = 1},

and let v1 be a vector in S such that u1 := Av1 has maximal norm among all
vectors in S. Then for every vector v in S and orthogonal to v1, the vectors Av and
Av1 are orthogonal.

We shall guide you through two derivations of Lemma 4. The first, Problem 25, is
geometric, based on a diagram similar to Figure 6.4; so it can be visualized, but it is
not rigorous. The second, Problem 26, is incontrovertible but lacking in motivation.

25. (Geometric proof of Lemma 4) (a) Show that proving Av is orthogonal to Av1 is
equivalent to proving that v is orthogonal to ATAv1.
(b) In Figure 6.5, we depict the (hyper)sphere S. The vector v1 that maximizes

||Av|| on the sphere is displayed as the North Pole, and the set of vectors
in S that are orthogonal to v1 lie in the equatorial plane. Now the function
f (x) := ||Ax||2 = xTATAx is maximal, over the sphere, when x = v1;
starting from the North Pole there is no direction we can move on the sphere
that will increase this function. Use vector calculus to show that this implies
that all the tangent vectors to the sphere, at the North Pole, must be orthogonal
to the gradient of this function.

(c) Use Lemma 3 in Section 6.2 to compute the gradient of xTATAx at the North
Pole, where x = v1.

(d) The tangent vectors at the North Pole are displacements of the vectors in the
equatorial plane. So every vector v in the equatorial plane is orthogonal to
the gradient. Use this fact and (a) to complete the proof. �
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v1

v3 v2

grad (xTATAX)

Fig. 6.5 Gradient vector configuration.

26. (Analytic proof of Lemma 4) (a) Show that all vectors in the family

v1 cos θ + v sin θ, −π < θ < π

(v orthogonal to v0) have unit norm.
(b) Explain why the function f (θ) = ||A(v1 cos θ + v sin θ)||2 is maximal when

θ = 0.

(c) Expand f (θ) using the dot product.

(d) Set f ′(θ) = 0 at θ = 0 and conclude that Av is orthogonal to Av1.

27. (a) For what choice of subspace W does Lemma 4 imply that u2, u3, . . ., and ur

are each orthogonal to u1?

(b) For what choice of subspace W does Lemma 4 imply that u3, u4, . . ., and ur

are each orthogonal to u2?

(c) For what choice of subspace W does Lemma 4 imply that uk+1, uk+2, . . ., and
ur are each orthogonal to uk?

28. (For students who have studied real analysis.) Why, in the proof of the singular
value decomposition, are we justified in stating that there are vectors like v1 in
the hypersphere such that ||Av1|| is maximal?

6.5 THE POWER METHOD AND THE QR ALGORITHM

In all our examples, we have employed a straightforward method of calculating eigen-
values for a matrix: namely, working out the characteristic polynomial det(A−rI) and
finding its zeros. In most applications, this is hopelessly impractical for two reasons: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.5 THE POWER METHOD AND THE QR ALGORITHM 283

(i) Since A− rI is a symbolic matrix, its determinant cannot be evaluated by Gauss
elimination. It must be expanded using the original Definition 3 or Theorem 5
(cofactor expansions) of Section 2.4. And at the end of that section, we estimated
that the evaluation of a modest 25-by-25 determinant would take a modern
computer hundreds of years.

(ii) Even if we could work out the characteristic polynomial, we only have formulas
for its roots when the degree is less than 5. In fact, Galois and Abel proved
in the early 1800s that no such formula can possibly be stated for the general
fifth-degree polynomial.

So in practice, eigenvalues have to be computed numerically. We will briefly
describe two algorithms: the power method, which is classic, well-understood, but often
slow and unreliable; and the QR method, which is contemporary (or so it seems to the
elder author) and fast, but not completely understood.

An example will elucidate the power method. For simplicity, suppose that A is
3-by-3 and its eigenvalues are 0.5, 2, and 4, corresponding to eigenvectors u1, u2,
and u3 respectively. If v is any vector expressed in terms of the eigenvectors as
v = c1u1 + c2u2 + c3u3, and we repeatedly multiply v by A the results will look like

Av =
c1

2
u1 + 2c2u2 + 4c3u3, A2v =

c1

4
u1 + 4c2u2 + 16c3u3, . . . ,

A10v =
c1

1, 024
u1 + 1, 024c2u2 + 1, 048, 576c3u3, . . . (1)

and the direction of Apv would be rotated toward the eigenvector with the dominant
eigenvalue, u3 (or −u3 if c3 < 0). Computationally, then, we could form the powers
Apv until the direction stabilized, giving us an eigenvector (recall that only the direction
of an eigenvector matters); then we could apply A once more and extract the value of
the dominant eigenvalue r (namely, 4) from the equation Ap+1v ≈ rApv. The behavior
is depicted in Figure 6.6.

A3v

A2v

Av

v

A4v

Fig. 6.6 Iterations of the power method. 
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Example 1. Estimate the speed of convergence of the power method for an n-by-n
matrix A possessing n linearly independent eigenvectors.

Solution. Let u1, u2, . . . , un−1, un be an independent set of eigenvectors of unit norm,
whose eigenvalues are sorted by nondecreasing magnitude: |r1| ≤ |r2| ≤ · · · ≤
|rn−1| < rn. Represent the starting vector as

v = c1u1 + · · ·+ cn−1un−1 + cnun with cn > 0. (We’ll discuss these restrictions later.)
Then the vector Apv equals c1rp

1u1 + · · ·+cn−1rp
n−1un−1 +cnrp

nun. By a simple extension
of the triangular inequality (Problem 24, Exercises 4.1),

∥∥∥∥Apv
cnrp

n
− un

∥∥∥∥ =
∥∥∥∥c1

cn

(
r1

rn

)p

u1 + · · · +
cn−1

cn

(
rn−1

rn

)p

un−1

∥∥∥∥
≤
∣∣∣∣c1

cn

(
r1

rn

)p∣∣∣∣ ||u1|| + · · · +

∣∣∣∣cn−1

cn

(
rn−1

rn

)p∣∣∣∣ ‖un−1‖

≤
∣∣∣∣c1

cn

(
rn−1

rn

)p∣∣∣∣ + · · · +

∣∣∣∣cn−1

cn

(
rn−1

rn

)p∣∣∣∣
≤
(
|rn−1|
|rn|

)p{∣∣∣∣c1

cn

∣∣∣∣ + · · · +

∣∣∣∣cn−1

cn

∣∣∣∣
}

=:

(
|rn−1|
|rn|

)p

C.

Therefore, if |rn−1| < rn, the vectors Apv, suitably scaled, converge to the eigenvector

un; their tips lie inside a set of shrinking circles, of radii rp =
(

|rn−1|
|rn|

)p
C, centered at

the tip of un; see Figure 6.7. �

Of course in practice, we cannot rescale by the factor cnrp
n, since we know neither

cn nor rn. But we can compute the unit vector Apv/||Apv||; and since (see Fig. 6.7)

Radius rp

un

1

1

ApvApv/(cnrn
p)

Fig. 6.7 Scaled power method vectors. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.5 THE POWER METHOD AND THE QR ALGORITHM 285

the latter is closer to Apv
cnrp

n
than any other unit vector - in particular, un - we have the

estimate

∥∥∥∥ Apv
||Apv|| − un

∥∥∥∥ =
∥∥∥∥ Apv
||Apv|| −

Apv
cnrp

n
+

Apv
cnrp

n
− un

∥∥∥∥
≤
∥∥∥∥ Apv
||Apv|| −

Apv
cnrp

n

∥∥∥∥ +

∥∥∥∥Apv
cnrp

n
− un

∥∥∥∥
≤
∥∥∥∥un −

Apv
cnrp

n

∥∥∥∥ +

∥∥∥∥Apv
cnrp

n
− un

∥∥∥∥
≤ 2

(
|rn−1|
|rn|

)p

C.

Therefore, the distances from the normalized power iterates to the eigenvector un

diminish by, at least, the factor |rn−1/rn| on each iteration.
The power method is easy to understand. But it is subject to several shortcomings:

(i) The rescaling can be deferred, but the computer may overflow if we fail to
perform some rescaling.

(ii) Only the dominant eigenvalue is calculated.

(iii) If the dominant eigenvalue is negative or multiple, or if there are other eigen-
values with the same magnitude (allowing |rn−1/rn| = 1), the directional
convergence could be thwarted.

(iv) Even if the dominant eigenvalue is unique, the speed of directional convergence
(|rn−1/rn|) is slowed if there are other eigenvalues with magnitude close to that
of the dominant. (If the second eigenvalue were 3.9 instead of 2 in (1), the
displayed dominance of v3 would not occur until A270v.)

(v) If the computist has really bad luck, he/she might choose a starting vector with
no component along un—that is, cn might be zero. Then the powers Anv would
converge to the direction of the second most dominant eigenvector un−1(if
cn−1 > 0)—or, very likely, a small component along un might creep into the
calculations due to roundoff error, and very slowly steer the powers Apv back
to the direction of un. The performance of the algorithm would appear to be
bizarre indeed.

The element of “luck” arising in (v) is alien to rigorous mathematics, of course. But
we shall see that it pervades the eigenvalue problem in other ways.

There are workarounds for all of these difficulties (i–v) with the power method (see
Problems 8–11.) But the best technique for calculating eigenvalues is known as the
QR method, originally published by H. Rutishauser in 1958. It relies first of all on the
fact that if we use Gauss elimination to factor a square matrix A into lower triangular 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



286 SIMILARITY

(L) and upper triangular (U) factors (as described in Project A of Chapter 1), and then
construct a new matrix A′ by multiplying L and U in the reverse order,

A = LU, A′ = UL,

we get a matrix that is similar to A, and thus has the same eigenvalues:

A′ = UL = (L−1L)UL = L−1(LU)L = L−1AL.

But the marvelous thing about the algorithm is that if it is performed repeatedly (factor-
ing A′ and reversing the factors, etc.), the “reconstructed” products usually converge to
a triangular form, from which we can read off the eigenvalues! For example, a typical
sequence of 1, 2, and 10 iterations of the LU, UL factorization/multiplication process
produces the following similar matrices

⎡
⎣ 3 −3 3

2 −2 3
2 4 3

⎤
⎦ ,

⎡
⎣ 3 3 −3

4.667 1 6
0.667 1 0

⎤
⎦ ,

⎡
⎣ 4.857 6.849 6

1.378 −2.494 −6.857
0.234 0.595 1.636

⎤
⎦ ,

. . . ,

⎡
⎣ 5.993 6.667 6

0.009 −2.993 −7.494
0.000 0.000 1.000

⎤
⎦

Observing the diminishing values of the entries below the diagonal, we see that the
diagonal estimates are close to the true eigenvalues: 6, −3, and 1.

Rutishauser further noted that a factorization into a unitary matrix Q and an upper
triangular matrix R, followed by reverse multiplication (A = QR, A′ = RQ =
RQRR−1 = RAR−1), would also converge, and would be less sensitive to rounding
errors. The Gram–Schmidt algorithm provides one way of achieving this factorization
(see Problem 18). (In practice, Householder reflectors are used; see Section 4.2.) The
timeline of the 1st, 2nd, and 10th iterations of QR, RQ for our example reads as follows:

⎡
⎣3 −3 3

2 −2 3
2 4 3

⎤
⎦ ,

⎡
⎣4.882 3.116 −3.296

2.839 −0.882 4.366
0.404 0.728 0

⎤
⎦ ,

⎡
⎣5.987 0.581 −1.255

0.826 −3.272 −4.700
0.095 0.312 1.286

⎤
⎦ ,

. . . ,

⎡
⎣6.000 0.004 −1.730

0.004 −3.000 −4.900
0.000 0.000 1.000

⎤
⎦ .

However, these schemes don’t always converge. For instance, if A itself happened
to be unitary, then the iterations would go nowhere: A = Q = QI, A′ = IQ = A. This
is another instance of bad luck on the part of the computist!

The “cure” for a nonconvergent QR episode is to introduce a random shift into the
iterations. (Another affront to our standards of mathematical rigor!) In fact, judiciously 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.5 THE POWER METHOD AND THE QR ALGORITHM 287

chosen shifts will speed up the convergence in general. And sophisticated logic can
render the coding of the QR algorithm in real arithmetic (for a real matrix A), even
when the eigenvalues are complex.

Amazingly, Rutishauser’s single 1958 paper covered the LU and QR forms of the
algorithm, the shifts, and the real arithmetic coding, in one publication!8

All Rusthishauser left for the rest of us to do was to explain why it works, and this
has occupied numerical analysts ever since. It has been shown that the rationale of the
power method dwells inside the workings of the QR algorithm, but the necessity of
the random shift chaffs us. Yet the authors are aware of no documented instance of the
algorithm’s failure to converge (when the shifts are truly random).

There is one last point we would like to make about the role of luck in eigenvalue
problems. If a matrix has distinct eigenvalues nice things happen; it has a full set of lin-
early independent eigenvectors and it is diagonalizable. Troubles are caused by multiple
eigenvalues. So what are the odds that a random matrix has multiple eigenvalues?

Here is a formula for the eigenvalues of a 2-by-2 matrix

A =

[
a11 a12

a21 a22

]
:

r1,2 =
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

2
(2)

(Problem 17). If they are equal, then the entries of A must satisfy the equation

(a11 + a22)
2 − 4(a11a22 − a12a21) = 0 (3)

or, equivalently,

a12 =
−(a11 + a22)2 + 4a11a22

4a21
(4)

if a21 is not zero. If the entries are random numbers, what is the probability that (4)
occurs? In other words, what is the probability that the random number a12 takes the
exact value indicated? If there is a continuum of possible values for a12 and they are all
equally likely, this probability is zero. In technical jargon, the probability that a matrix
with random data will have multiple eigenvalues is the probability that a collection
of n2 random numbers satisfy an algebraic relation, that is they fall on an algebraic
“hypersurface of measure zero”; the probability is zero!9

In fact, even if the random datum a12 in formula (2) happened to satisfy Equation (4),
it is unlikely that your computer would detect it; practically all computations are

8Actually, Ruthishauer’s designation for the Lower Upper factorization was “LR”—possibly referring to Left
(“Links”) and Right (“Richtig”). Heinz Rutishauser (1918–1970) was a Swiss mathematician who worked
with Eduard Stiefel on the development of the first Swiss computer ERMETH.
9For the same reasons, the probability that a random matrix is singular is zero. Zero probability does not
imply impossibility. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



288 SIMILARITY

performed in floating point mode, so even as simple a number as 1/3 is rounded
and stored incorrectly. Unless your computer were programmed in rational arithmetic
(which is slow and typically impractical), it would report that A had distinct, very close
eigenvalues and would try to diagonalize it, with ugly results.

On the other hand, we don’t always pick matrices at random. In university, your
teachers go to great pains to construct homework and test problems with small integers
that lead to answers with small-denominator fractions. In practice, engineers are going
to design control systems with coefficients that are rounded to one or two digits. Indeed,
we shall see in Chapter 7 that Newton’s Law F = ma, when expressed in “matrix
normal form,” leads to a double eigenvalue of zero for the simplest case, when there is
no force!

So there is a place in applied mathematics for the zero-probability events of mul-
tiple eigenvalues and singular systems. But they are seldom evaluated correctly on
computers, and rational arithmetic or hand calculations have to be made.

Many interesting aspects of the QR algorithm are discussed in Cleve Moler’s arti-
cle at http://www.mathworks.com/tagteam/72899_92026v00Cleve_QR_Algorithm_
Sum_1995.pdf .

Exercises 6.5

A MATLAB� code suitable for experimenting with the power method is given below.
Similar codes for many other softwares can be designed easily.

(First define the matrix M and the initial vector v, and initialize the IterationCounter
to 0.)

v = M ∗ v; v = v/norm(v); IterationCounter = IterationCounter + 1;

disp(IterationCounter); disp([v M ∗ v]);

Copy this sequence of commands; then paste it into MATLABTM and execute it repeat-
edly. You will be able to see the succession of power-method iterates, and to compare
v with Mv for each.

Execute the power-method iterations with M = A to find the largest-in-magnitude
eigenvalue and its associated eigenvector for the matrices displayed in Problems 1
and 2. Iterate until the first three decimals in the eigenvector entries stabilize. Repeat
with a different, linearly independent, initial vector.

1.

⎡
⎣1 0 2

3 4 2
0 0 0

⎤
⎦ 2.

⎡
⎣ 2 −1 −1
−1 3 0
−1 0 3

⎤
⎦

3. From Equation (1), Figure 6.6, and Example 1 we see that the speed of convergence
of the power method is roughly governed by the ratio of the largest-in-magnitude

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



6.5 THE POWER METHOD AND THE QR ALGORITHM 289

eigenvalue to the second largest. The inverse power method looks at the iter-
ates v, A−1v, A−2v, . . .. What ratio governs its speed of convergence? Why is this
variation so effective on nearly singular matrices?

Execute the power-method iterations with M = A and with M = A−1 to find the
largest-in-magnitude and smallest-in-magnitude eigenvalues and their associated
eigenvectors for the matrices A displayed in Problems 4 through 7. Iterate until
the first three decimals in the eigenvector entries stabilize. Repeat with a different,
linearly independent, initial vector.

4.

[
9 −3
−2 4

]
5.

[
−1 −3
4 7

]
6.

[
1 −2
−2 1

]
7.

[
−3 2
−5 4

]

8. Let A =

[
2 1
−3 −2

]
, v =

[
0
−4

]
.

(a) Apply your power-method code to A. You will observe that the iterates even-
tually oscillate between two vectors. Note the calculations of the eigenvalues
and eigenvectors of A in Example 1, Section 5.2; compare with Equation (2),
and explain what you see.

(b) Let M = A + 0.5I, and apply your power-method code to M. Observe the
convergence, and deduce one of the eigenvalue–eigenvector pairs for A.

(c) Let M = A − 0.5I, and apply your power-method code to M. Observe the
convergence, and deduce the other eigenvalue–eigenvector pair for A.

9. If the dominant eigenvalues of A are known to be negatives of each other, how can
the eigenvectors be extracted from the iterates of the power method?

10. The shifted inverse power method looks at the iterates v, (A − mI)−1v,
(A − mI)−2v, . . ., where m is an approximation to any “interior” eigenvalue of A.
What ratio governs its speed of convergence?

11. Let A =

⎡
⎣1 2 −1

1 0 1
4 −4 5

⎤
⎦ , v =

⎡
⎣1

1
1

⎤
⎦ .

(a) Apply your power-method code with M = A. How many iterations are
required until the eigenvector entries stabilize to three decimals? Deduce the
largest-in-magnitude eigenvalue of A.

(b) Apply your power-method code with M = A−1. How many iterations are
required until the eigenvector entries stabilize to three decimals? Deduce the
smallest-in-magnitude eigenvalue of A.

(c) Apply your power-method code with M = (A−1.9I)−1. How many iterations
are required until the eigenvector entries stabilize to three decimals? Deduce
remaining eigenvalue of A.

(d) The eigenvalues of A were calculated in Example 2, Section 5.2. Refer-
ring to Example 1, explain the rapid convergence in (c), as compared to (a)
and (b).

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



290 SIMILARITY

Execute the power-method iterations with M = A for the matrices A displayed
in Problems 12 through 14. Refer to the text cited to see the true eigenvalues, and
explain the failure of the algorithm to converge.

12. A =

⎡
⎣1 2 0

0 1 −2
2 2 −1

⎤
⎦ , v =

⎡
⎣1

1
1

⎤
⎦ (Example 3, Section 5.2)

13. A =

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦ , v =

⎡
⎣1

1
1

⎤
⎦ (Example 5, Section 5.2)

14. A =

[
0.8 0.6
0.6 −0.8

]
, v =

[
1
1

]
(Part III, Introduction)

15. Suppose we have computed an approximation v to an eigenvector of A. If v is
not exact, then the relation Av = rv will be false, for every value of r. Apply
least-squares theory (Section 4.3) to Av = rv, regarded as an inconsistent linear
system of n equations in the single unknown r. Show that the normal equations dic-
tate that the best approximation for the eigenvalue is the Rayleigh quotient (recall
Problem 9, Exercises 6.2) r ≈ vTAv/vTv.

16. Problem 22 of Exercises 2.1 directed the reader to experiment with the limit (as
k → ∞) of Akx0, where A is a stochastic matrix and x0 is a probability vector. You
observed the convergence to a steady-state probability vector.
(a) Explain how the definition of “stochastic matrix” ensures that it will have an

eigenvalue equal to one.

(b) It can be shown that all of the other eigenvalues of a stochastic matrix are less
than one in magnitude. Use the logic behind the power method to explain the
observed behavior in Problem 22. How is the steady-state probability vector
related to the eigenvectors of A?

17. Derive Equation (2).

18. (QR Factorization) If {v1, v2, . . . , vm} are the columns of an m-by-m matrix A,
show how the Equations (9–11), Section 4.1, that define the Gram–Schmidt algo-
rithm can be interpreted as a factorization of A into a unitary matrix times an upper
triangular matrix.

6.6 SUMMARY

Similarity Transformations and Diagonalization

When square matrices are related by an equality A = PBP−1, we say that A is similar
to B and that P generates the similarity transformation. Similar matrices can be viewed
as representatives of the same linear operation, expressed in different bases; they share
the same eigenvalues, rank, determinant, and trace. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



6.6 SUMMARY 291

The most important similarity transformations are those that produce a diagonal
matrix D, and the relation AP = PD explicitly displays the fact that the columns of
a matrix P diagonalizing A are eigenvectors of A. Thus diagonalization is only possi-
ble if A is not defective. The telescoping of the adjacent factors of P and P−1 in powers
An = (PDP−1)n reduces the computation of matrix polynomials and power series to
mere evaluation of the corresponding scalar functions, for each of the eigenvalues.

Besides their role in facilitating the computation of the important matrix exponential
function, similarity transformations are used in uncoupling the degrees of freedom of
vibrating systems and eliminating cross terms in bilinear forms.

Schur Decomposition

The full diagonalization of a matrix via a similarity transformation generated by a uni-
tary matrix is only possible if the matrix is normal, that is, commutes with its conjugate
transpose. But in fact, any matrix can be upper-triangularized by a unitary matrix. This
theorem of Schur can be used to show that every matrix satisfies its own characteris-
tic equation—the Cayley–Hamilton theorem. As a result, any integer power Am of an
n-by-n matrix A can be expressed as a combination of lower powers, if m equals or
exceeds n.

The Singular Value Decomposition

Any m-by-n matrix A can be decomposed (factored) into the product of an m-by-
m orthogonal matrix U, times an m-by-n diagonal matrix Σ with nondecreasing,
nonnegative numbers down its diagonal (the singular values), times an n-by-n orthog-
onal matrix VT .

From the singular values one can deduce the matrix’s norm and its condition number.
Further, the decomposition enables one to devise optimal lower-rank approximations
to the matrix, and to express minimal least squares solutions using the pseudoinverse.

Numerical Computations

The exact calculation of the eigenvalues of a matrix of dimension larger than 4 is,
in general, not possible, according to the insolvability theory of Abel and Galois.
The power method for estimating eigenvalues is based on the observation that suc-
cessive multiplications of a vector v by higher and higher powers of the matrix A
tend to steer v into the direction of the eigenvector of A of dominant eigenvalue.
And adjustments of this strategy have been devised to accommodate most of the
exceptional cases.

However, the prevailing procedure for approximating the eigenvalues is the QR
algorithm, which is based on two observations: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



292 SIMILARITY

(i) if A is factored into the product of a unitary and an upper triangular matrix
A = QR, the matrix A′ = RQ is similar to A;

(ii) repetition of step (i) typically results in a near-upper-triangular matrix A′, from
which the eigenvalues can easily be estimated;

Failure of (ii) to converge (and sluggishness in its convergence rate) can be overcome
by suitable shifting strategies applied to A.

Nonetheless, the presence of multiple eigenvalues - which, indeed, may be a symp-
tom of nondiagonalizability - can thwart the algorithm. Although such coincidences
can result from human choices, they rarely occur in random matrices.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7
LINEAR SYSTEMS OF
DIFFERENTIAL EQUATIONS

7.1 FIRST-ORDER LINEAR SYSTEMS

Although our textbook does not presume familiarity with differential equations, there
is one type of equation whose resolution is so simple that mere calculus suffices to
solve it completely. And fortunately, the matrix version of that equation pervades many
of the advanced applications of matrix analysis. The scalar version is illustrated in the
following radioactive decay example.

Example 1. The plutonium isotope with the shortest half-life, 20 min, is Pu-233.
Formulate a differential equation for the time evolution of a sample of PU-233 of
mass x(t).

Solution. The mass of a substance with a half-life of 20 min decays to one-half of its
value every 20 min, so it seems reasonable to propose that the decay rate is proportional
to the amount of substance currently available:

dx
dt

= ax, (1)

with a < 0. We can solve Equation (1) using a simple calculus trick. Notice that by the
product rule for differentiation,

d
dt
[e−atx] = e−at[−ax] + e−at dx

dt
= e−at

[
dx
dt

− ax

]
, (2)

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



294 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

which is zero according to (1). Therefore, for any two times t1 and t2,

e−at2 x(t2)− e−at1 x(t1) =

t2∫
t1

d
dt
[e−atx] dt =

t2∫
t1

[0] dt = 0,

or

x(t2) = ea(t2−t1)x(t1). (3)

Thus x(t2) will be one-half of x(t1) whenever ea(t2−t1) = 1/2; that is, whenever the
time interval a(t2 − t1) equals loge(1/2). Equation (3) does indeed imply a half-life for
x(t) of 20 min if

a =
loge(1/2)

20
≈ −0.0347 min−1. �

Equation (1) describes a host of physical phenomena besides radioactive decay. Any
process whose growth or decay rate is proportional to its size will exhibit the expo-
nential behavior predicted by (3). This includes the Malthusian model for population
growth, Newtonian cooling, compound interest, resistive electromagnetic attenuation,
and dielectric relaxation.

In the parlance of differential equations, (1) is known as a linear homogeneous dif-
ferential equation of first order with constant coefficient (a). Its nonhomogeneous
form is

dx
dt

= ax + f (t), (4)

where f (t) is a known function; one can interpret (4) physically as describing a material
decaying radioactively while being replenished at the rate f (t). The calculus trick for
analyzing (4) is almost as simple as that for the homogeneous equations:

d
dt
[e−atx] = e−at[−ax] + e−at dx

dt
= e−at

[
dx
dt

− ax

]
= e−atf (t),

so

e−at2 x(t2)− e−at1 x(t1) =

t2∫
t1

d
dt
[e−atx] dt =

t2∫
t1

[e−atf (t)] dt

or

x(t2) = ea(t2−t1)x(t1) + eat2

t2∫
t1

[e−atf (t)] dt. (5)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.1 FIRST-ORDER LINEAR SYSTEMS 295

Thus x(t2) can be expressed in terms of x(t1) for any interval [t1, t2] in which f (t) is
known (and integrable).

Since a differential equation is an equation for the derivative, or rate of change, of a
function, it is not surprising that it would yield an expression for the new value, x(t2),
in terms of the original value x(t1). Commonly t1 is taken to be zero and x(t1) is called
the initial value.

Now a linear nonhomogeneous system of differential equations of first order
with constant coefficients is formally identical to (4), with a, x, and f replaced by
(appropriately sized) matrices:

dx
dt

= Ax + f(t); (6)

here the coefficient matrix A is constant, and the system is homogeneous if f(t) is iden-
tically zero. Let’s be sure the interpretation of everything in (6) is clear. The symbols
x and f are matrix column functions—each entry is a function of t. And the entries in
dx/dt are the derivatives of the entries of x:

x =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xn(t)

⎤
⎥⎥⎥⎦ ; f =

⎡
⎢⎢⎢⎣

f1(t)
f2(t)

...
fn(t)

⎤
⎥⎥⎥⎦ ;

dx
dt

=

⎡
⎢⎢⎢⎣

dx1(t)/dt
dx2(t)/dt

...
dxn(t)/dt

⎤
⎥⎥⎥⎦

Similarly, integrals of matrix functions are evaluated entrywise:

∫
A(t) dt =

∫ ⎡
⎢⎣

a11(t) a12(t) · · · a1n(t)
...

...
...

...
am1(t) am2(t) · · · amn(t)

⎤
⎥⎦ dt

=

⎡
⎢⎣

∫
a11(t) dt

∫
a12(t) dt · · ·

∫
a1n(t) dt

...
...

...∫
am1(t) dt

∫
am2(t) dt · · ·

∫
amn(t) dt

⎤
⎥⎦ .

Example 2. Show that x(t) =

[
cosωt

−ω sinωt

]
is a solution of the matrix differential

equation dx/dt = Ax, where A =

[
0 1

−ω2 0

]
.

Solution. We simply check that dx/dt and Ax(t) are the same vector function:

dx(t)
dt

=

[
−ω sinωt
−ω2 cosωt

]
;

Ax =

[
0 1

−ω2 0

] [
cosωt

−ω sinωt

]
=

[
−ω sinωt
−ω2 cosωt

]
. �
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100 L
15 L/min

20 L/min5 L/min

5 L/min100 L

x(t) kg y(t) kg

A B

Fig. 7.1 Mixing problem for interconnected tanks.

Example 3. Two large tanks, each holding 100 L of a brine solution, are intercon-
nected by pipes as shown in Figure 7.1. Fresh water flows into tank A at a rate of
5 L/min, and fluid is drained out of tank B at the same rate; also 20 L/min of fluid
are pumped from tank A to tank B, and 15 L/min from tank B to tank A. The liquids
inside each tank are kept well stirred so that each mixture is homogeneous. If tank A
contains x(t) kg of salt and tank B contains y(t) kg, write a linear homogeneous system
of differential equations of first order with constant coefficients describing the rates of
change of x(t) and y(t).

Solution. Note that the volume of liquid in each tank remains constant at 100 L because
of the balance between the inflow and outflow volume rates. To formulate the equations
for this system, we equate the rate of change of salt in each tank with the net rate at
which salt is transferred to that tank.

The salt concentration in tank A is x/100 kg/L, so the upper interconnecting pipe
carries salt out of tank A at a rate of 20x/100 kg/min; similarly, the lower interconnecting
pipe brings salt into tank A at the rate 15y/100 kg/min, since the concentration of salt
in tank B is y/100 kg/L. The fresh water inlet, of course, transfers no salt (it simply
maintains the volume in tank A at 100 L). Thus for tank A,

dx
dt

= input rate − output rate =
15y
100

− 20x
100

;

and for tank B,

dy
dt

=
20x
100

− 15y
100

− 5y
100

.

Using matrices, we write the system in the prescribed form (6):

d
dt

[
x
y

]
=

[
−0.20 0.15

0.20 −0.20

] [
x
y

]
. (7)
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7.1 FIRST-ORDER LINEAR SYSTEMS 297

There are two remarkable observations to be made about the system (6):

(i) It is far more general than it seems, because differential equations of order higher
than one can be recast in this form;

(ii) Employing the matrix exponential function, we can execute the solution for (6)
almost as easily as for (4).

We shall elaborate on (i) in the remainder of this section. The rest of Chapter 7 will
describe the matrix exponential solution for linear systems.

Example 4. The mass-spring oscillator depicted in Figure I.1 in the introduction to
Part I obeys Newton’s law, force equals mass time acceleration, or m d2x/dt2. The forces
on the mass include the spring force −kx (Hooke’s law, with k > 0 denoting the spring
constant) and damping −b dx/dt with damping constant b ≥ 0. Therefore Newton’s
law becomes

m
d2x
dt2

= −kx − b
dx
dt

. (8)

Express (8) as a linear homogeneous system of differential equations of first order with
constant coefficients.

Solution. Observe that Equation (8) is of second order; it involves the second deriva-
tive of x(t). To recast it in terms of first derivatives, we are going to utilize the
formula

v = dx/dt (9)

in two ways:

(a) It defines an “artificial” new variable v whose first derivative can replace the
second derivative of x.

(b) It creates a new differential equation which we append to (8) to form an
equivalent linear first-order system.

dx
dt

= v

m
dv
dt

= −kx − bv
or

d
dt

[
x
v

]
=

[
0 1

−k/m −b/m

] [
x
v

]
. (10)

A solution to (8) generates a solution to (10) through the substitution (9), and the x
component of a solution to (10) is a solution to (8). They are equivalent. �

The same rule can be applied to a third order equation, or a system of coupled second-
order equations. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



298 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

Example 5. Write the following as linear systems of differential equations of first
order:

d3x
dt3

+ 4
d2x
dt2

+ 6
dx
dt

+ 8x = f (t); (11)

⎧⎨
⎩

d2x
dt2 = −2x + y,

d2y
dt2 = −2y + x

. (12)

Solution. For (11) the identifications

v = ẋ, a = ẍ

(motivated by “velocity” and “acceleration”) spawn the system

dx
dt

= v

dv
dt

= a

da
dt

= −4a − 6v − 8x + f (t)

or
d
dt

⎡
⎣x

v
a

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
−8 −6 −4

⎤
⎦
⎡
⎣x

v
a

⎤
⎦ +

⎡
⎣ 0

0
f (t)

⎤
⎦ .

For (12) the expedient tabulation

x1 = x, x2 =
dx
dt

, x3 = y, x4 =
dy
dt

results in the system

dx1

dt
= x2

dx2

dt
= −2x1 + x3

dx3

dt
= x4

dx4

dt
= −2x3 + x1

or
d
dt

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−2 0 1 0
0 0 0 1
1 0 −2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ . �

Equations (12) can be interpreted as describing the motion of a pair of coupled
mass-spring oscillators.

As the differential equation textbooks show, matrix reformulations can be helpful in
consolidating the theory and computer algorithms for this subject. But the full power of
the matrix approach is unleashed in the case of linear first-order systems with constant
coefficients. We devote the remainder of our book to this topic. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



7.1 FIRST-ORDER LINEAR SYSTEMS 299

Exercises 7.1

In Problems 1 and 2, find dX/dt for the given matrix functions.

1. X(t) =

[
e5t 3e5t

−2e5t −e5t

]
2. X(t) =

⎡
⎣ sin 2t cos 2t e−2t

− sin 2t 2 cos 2t 3e−2t

3 sin 2t cos 2t e−2t

⎤
⎦

In Problems 3 and 4, the matrices A(t) and B(t) are given. Find

(a)
∫

A(t) dt. (b)
1∫

0
B(t) dt. (c)

d
dt
[A(t)B(t)].

3. A(t) =

[
t et

1 et

]
, B(t) =

[
cos t − sin t
sin t cos t

]
.

4. A(t) =

[
1 e−2t

3 e−2t

]
, B(t) =

[
e−t e−t

−e−t 3e−t

]
.

In Problems 5 and 6, verify that the given vector function satisfies the given system.

5. x′ =

[
1 1
−2 4

]
x, x(t) =

[
e3t

2e3t

]
.

6. x′ =

⎡
⎣0 0 0

0 1 0
1 0 1

⎤
⎦ x, x(t) =

⎡
⎣ 0

et

−3et

⎤
⎦.

In Problems 7 and 8, verify that the given matrix function satisfies the given matrix
differential equation.

7. X′ =

[
1 −1
2 4

]
X, X(t) =

[
e2t e3t

−e2t −2e3t

]
.

8. X′ =

⎡
⎣1 0 0

0 3 −2
0 −2 3

⎤
⎦X, X(t) =

⎡
⎣et 0 0

0 et e5t

0 et −e5t

⎤
⎦ .

9. Verify that the vector functions

x1 =
[
et et

]T
and x2 =

[
e−t 3e−t

]T

are solutions to the homogeneous system

x′ = Ax =

[
2 −1
3 −2

]
x

on (−∞,∞) and that

xp =
3
2

[
tet

tet

]
− 1

4

[
et

3et

]
+

[
t
2t

]
−

[
0
1

]

is a solution to the nonhomogeneous system x′ = Ax + f(t), where f(t) = [et 1]T . 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



300 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

10. Verify that the vector functions

x1 =

⎡
⎣e3t

0
e3t

⎤
⎦ , x2 =

⎡
⎣−e3t

e3t

0

⎤
⎦ , x3 =

⎡
⎣−e−3t

−e−3t

e−3t

⎤
⎦

are solutions to the homogeneous system

x′ = Ax =

⎡
⎣ 1 −2 2
−2 1 2
2 2 1

⎤
⎦ x

on (−∞, ∞) and that

xp =

⎡
⎣5t + 1

2t
4t + 2

⎤
⎦

is a solution to x′ = Ax + f(t), where f(t) = [−9t 0 − 18t]T .

In Problems 11–14, express the given system of differential equations in the matrix
form x′ = Ax.

11. x′ = 7x + 2y,
y′ = 3x − 2y.

12. x′ = y,
y′ = −x.

13. x′ = x + y + z,
y′ = 2z − x,
z′ = 4y.

14. x′1 = x1 − x2 + x3 − x4,
x′2 = x1 + x4,
x′3 =

√
πx1 − x3,

x′4 = 0.

In Problems 15–17, write the given system in the matrix form x′ = Ax + f.

15. x′(t) = 3x(t)− y(t) + t2,
y′(t) = −x(t) + 2y(t) + et.

16. r′(t) = 2r(t) + sin t,
θ′(t) = r(t)− θ(t) + 1.

17. x′ = x + y + z + 3,
y′ = 2x − y + 3z + sin t,
z′ = x + 5z.

In Problems 18 and 19, express the given system of higher-order differential
equations as a first-order matrix system.

18. x′′ + 3x + 2y = 0,
y′′ − 2x = 0.

19. x′′ + 3x′ − y′ + 2y = 0,
y′′ + x′ + 3y′ + y = 0. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



7.1 FIRST-ORDER LINEAR SYSTEMS 301

In Problems 20–23, rewrite the given scalar equation as a first-order linear system.
Express the system in the matrix form x′ = Ax + f.

20. y′′(t)− 3y′(t)− 10y(t) = sin t.

21. x′′(t) + x(t) = t2.

22.
d4w
dt4

+ w = t2.

23.
d3y
dt3

− dy
dt

+ y = cos t.

24. Two large tanks, each holding 50 L of liquid, are interconnected by pipes, with the
liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at
a rate of 1 L/min (see Fig. 7.2). The liquid inside each tank is kept well stirred. A
brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate
of 5 L/min. The (diluted) solution flows out of the system from tank A at 3 L/min
and from tank B at 2 L/min. Write a system of differential equations in the form
x′ = Ax + f for the mass of salt in each tank.

25. Two tanks A and B, each holding 75 L of liquid, are interconnected by pipes. The
liquid flows from tank A into tank B at a rate of 4 L/min and from B into A at a
rate of 1 L/min (see Fig. 7.3). The liquid inside each tank is kept well stirred. A
brine solution that has a concentration of 0.2 kg/L of salt flows into tank A at a
rate of 4 L/min. A brine solution that has a concentration of 0.1 kg/L of salt flows
into tank B at a rate of 1 L/min. The solutions flow out of the system from both
tanks—from tank A at 1 L/min and from tank B at 5 L/min. (So the volume in tank
B decreases.) Write a system of differential equations in the form x′ = Ax + f for
the mass of salt in each tank (until tank B is depleted).

50 L

1 L/min

3 L/min5 L/min
A B

3 L/min

0.2 kg/L

2 L/min

50 L

x1(t) kg x2(t) kg

Fig. 7.2 Mixing problem for interconnected tanks.

75 L

1 L/min

4 L/min4 L/min

1 L/min

1 L/min

0.2 kg/L 0.1 kg/L

5 L/min

75 L

x1(t) kg x2(t) kg

A B

Fig. 7.3 Mixing problem for interconnected tanks. 
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A

4 h
4 h

2 h
10°F

20,000 Btu/h

B

Fig. 7.4 Air-conditioned house with attic.

A

4 h 3 h 5 h

B

0°F
xA(t) xB(t)

80,000 Btu/hr

Fig. 7.5 Two-zone building with one zone heated.

Problems 26 through 32 are directed to mechanical engineering students.

26. A house, for cooling purposes, consists of two zones: the attic area zone A and the
living area zone B (see Fig. 7.4). The living area is cooled by a 2-ton air condi-
tioning unit that removes 20,000 Btu/h. The heat capacity of zone B is 1/2◦F per
thousand Btu. The time constant for heat transfer between zone A and the outside
is 2 h, between zone B and the outside is 4 h, and between the two zones is 4 h.
The outside temperature is 100◦F. Write a system of differential equations in the
form x′ = Ax + f for the temperatures, xA and xB, in the two zones.

27. A building consists of two zones A and B (see Fig. 7.5). Only zone A is heated by
a furnace, which generates 80,000 Btu/h. The heat capacity of zone A is 1/4◦F per
thousand Btu. The time constant for heat transfer between zone A and the outside is
4 h, between the unheated zone B and the outside is 5 h, and between the two zones
is 3 h. The outside temperature is 0◦F. Write a system of differential equations in
the form x′ = Ax + f for the temperatures, xA and xB, in the two zones.

28. Two springs and two masses are attached in a straight line on a horizontal fric-
tionless surface as illustrated in Figure 7.6. Express Newton’s laws F = ma for
the system as a matrix differential equation in the form x′ = Ax. [Hint: Write
Newton’s law for each mass separately by applying Hooke’s law.]

29. Four springs with the same spring constant and three equal masses are attached
in a straight line on a horizontal frictionless surface as illustrated in Figure 7.7. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.1 FIRST-ORDER LINEAR SYSTEMS 303

m1 m2

x > 0

k1 k2

y > 0

y = 0x = 0

Fig. 7.6 Coupled mass–spring system with one end free.

y = 0 z = 0x = 0

x > 0 y > 0 z > 0

k k k
m

k

Fig. 7.7 Coupled mass–spring system with three degrees of freedom.

y = 0x = 0

x > 0

k1
m1 m2

bk2

y > 0

Fig. 7.8 Coupled mass–spring system with one end damped.

Express Newton’s law for the system as a matrix differential equation in the form
x′ = Ax.

30. Two springs, two masses, and a dashpot are attached in a straight line on a hori-
zontal frictionless surface as shown in Figure 7.8. The dashpot provides a damping
force on mass m2, given by F = −by′. Derive the matrix system of differential
equations for the displacements x and y.

31. Two springs, two masses, and a dashpot are attached in a straight line on a hori-
zontal frictionless surface as shown in Figure 7.9. The dashpot damps both m1 and
m2 with a force whose magnitude equals b|y′ − x′|. Derive the matrix system of
differential equations for the displacements x and y.

32. Referring to the coupled mass–spring system discussed in Problem 28, suppose an
external force E(t) = 3 cos 3t is applied to the mass m1. Express Newton’s law for
the system as a matrix differential equation in the form x′ = Ax + f. 
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y = 0x = 0

x > 0

k1
m1 m2

b k2

y > 0

Fig. 7.9 Coupled mass–spring system with damping between the masses.

I1

I2

I2

I1 I3 I3

I4 I5

I3

60 Ω30 Ω90 Ω9 V

2 H 1 H

b

a

#1 #2

#3

Fig. 7.10 RL network for Problem 33.

Problems 33–39 are directed to electrical engineering students.

33. RL Network. The currents I1 through I5 in the RL network given by the schematic
diagram in Figure 7.10 are governed by the following equations:

Kirchhoff’s voltage law around loop #1: 2I′1 + 90I2 = 9,

Kirchhoff’s voltage law around loop #2: I′3 + 30I4 − 90I2 = 0,

Kirchhoff’s voltage law around loop #3: 60I5 − 30I4 = 0,

Kirchhoff’s current law at node a : I1 = I2 + I3,

Kirchhoff’s current law at node b : I3 = I4 + I5.

Use Gauss elimination on the algebraic equations (the last three) to express I2,
I4, and I5 in terms of I1 and I3. Then write a matrix differential equation for I1

and I3.

34. Use the strategy of Problem 33 to write a matrix differential equation for the
currents I1 and I2 in the RL network given by the schematic diagram in Figure 7.11.

35. Use the strategy of Problem 33 to write a matrix differential equation for the
currents I2 and I3 in the RL network given by the schematic diagram in Figure 7.12.

36. RLC Network. The currents and charges in the RLC network given by the
schematic diagram in Figure 7.13 are governed by the following equations:

Kirchhoff’s voltage law for loop #1: 4I′2 + 52q1 = 10,

Kirchhoff’s voltage law for loop #2: 13I3 + 52q1 = 10,

Kirchhoff’s current law for node a : I1 = I2 + I3,
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I1
I3 I2

10 Ω

10 H 30 H

20 V
+

–
40 Ω

Fig. 7.11 RL network for Problem 34.

I1
I2 I3

10 Ω

0.02 H10 V 0.025 H
+

–

Fig. 7.12 RL network for Problem 35.

I1

I1

I1 I2
I3

13 Ω

a

10 V 4 H

F
1
52

#1
#2+

–

Fig. 7.13 RLC network for Problem 36.

where q1 is the charge on the capacitor and I1 = q′1. Eliminate the nuisance charge
variable q1 by differentiating the first two equations and replacing q′1 by I1; then
replace I1 using the third equation. Express the result as a first-order matrix
differential equation system for I2 and I3.

37. Use the strategy of Problem 36 to write a first-order matrix differential equation
system for the currents I1 and I2 in the RLC network given by the schematic diagram
in Figure 7.14.

38. Use the strategy of Problem 36 to write a first-order matrix differential equation
system for the currents I1 and I2 in the RLC network given by the schematic diagram
in Figure 7.15.
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50 H

80 Ω160 V

I1

I1

I2 I3

F1
800

+
–

Fig. 7.14 RLC network for Problem 37.

I
1

I
2 I

3

10 V 20 H
1

F
30

+
–

Fig. 7.15 RLC network for Problem 38.

0.5 F

0.5 H cos 3t

I3
I2I1

1 Ω V

+

–

Fig. 7.16 RLC network for Problem 39.

39. Use the strategy of Problem 36 to write a first-order matrix differential equation
system for the currents I1 and I2 in the RLC network given by the schematic diagram
in Figure 7.16.

7.2 THE MATRIX EXPONENTIAL FUNCTION

In the preceding section, we promised that the “quick and dirty” formula for a solution
to the (scalar) differential equation

dx
dt

= ax + f (t) (1)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.2 THE MATRIX EXPONENTIAL FUNCTION 307

namely,

x(t2) = ea(t2−t1)x(t1) + eat2

t2∫
t1

[e−asf (s)] ds (2)

would have a matrix analog. This is given in the following result.

Solution Formula for Linear Systems

Theorem 1. Any solution of the linear system of differential equations of first
order with constant coefficients

dx
dt

= Ax + f(t) (3)

(with f(t) continuous) satisfies

x(t) = eA(t−t1)x(t) + eAt

t∫
t1

[e−Asf(s)] ds. (4)

In order to verify that (4) is a solution, we have to examine the matrix exponential
function. Section 6.1 demonstrated that the formula

eA = I + A + A2/2! + · · · + Am/m! + · · · (5)

converges and defines a legitimate function for every diagonalizable matrix A:

A = P

⎡
⎢⎢⎢⎣

r1 0 · · · 0
0 r2 · · · 0
...

. . .
...

0 0 · · · rp

⎤
⎥⎥⎥⎦P−1 ⇒ eA = P

⎡
⎢⎢⎢⎣

er1 0 · · · 0
0 er2 · · · 0
...

. . .
...

0 0 · · · erp

⎤
⎥⎥⎥⎦P−1. (6)

And of course if A is diagonalizable, so is At, so for such A we can define the matrix
exponential via

eAt = I + At + A2t2/2! + · · · + Amtm/m! + · · · (7)

= P

⎡
⎢⎢⎢⎣

er1t 0 · · · 0
0 er2t · · · 0
...

. . .
...

0 0 · · · erpt

⎤
⎥⎥⎥⎦P−1

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



308 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

But as a matter of fact, the power series in (5) and (7) converge for every matrix A,
diagonalizable or not. The proof is outlined in Problem 28. Indeed the limit function eAt

is differentiable and its derivative can be obtained by differentiating (5) term-by-term,1

yielding the expected formula

d
dt

eAt =
d
dt
[I + At + A2t2/2! + · · · + Amtm/m! + · · · ]

= 0 + A + 2A2t/2! + · · · + mAmtm−1/m! + · · ·
= A[I + At + A2t2/2! + · · ·Am−1tm−1/(m − 1)! + · · · ]
= AeAt. (8)

Equation (8) expresses the most important feature of the matrix exponential function.
Other properties that the matrix exponential eAt shares with the scalar function eat are
listed in the following theorem.

Properties of the Matrix Exponential Function

Theorem 2. Let A and B be n-by-n constant matrices and r, s, and t be real (or
complex) numbers. Then

(i) eAt satisfies the matrix differential equation X′ = AX.

(ii) eA0 = e0 = I.

(iii) eIt = etI.

(iv) eA(t+s) = eAteAs.

(v) (eAt)−1 = e−At.

(vi) e(A+B)t = eAt eBt provided AB = BA.

Proof. Property (i) simply restates (8). Property (ii) is obvious from the series (5), and
(iii) follows from (7). (I is diagonalizable, of course.). We’ll confirm (iv) by examining
a few terms of the Taylor series for each side, expanded around t = 0 for fixed s.

eA(t+s) = eA(0+s) +

[
d
dt

eA(t+s)

]
t=0

t +

[
d2

dt2
eA(t+s)

]
t=0

t2/2! + · · · . (9)

1For rigorous proofs of these and other properties of the matrix exponential function, see Matrix Compu-
tations, 4th ed., by Gene H. Golub and Charles F. van Loan (Johns Hopkins University Press, Baltimore,
2013), Chapter 11. See also the amusing articles “Nineteen Dubious Ways to Compute the Exponential of
a Matrix,” by Cleve Moler and Charles van Loan, SIAM Review, Vol. 20, No. 4 (Oct. 1978), and “Nineteen
Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later,” ibid., Vol 45, No. 1 (Jan.
2003).

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.2 THE MATRIX EXPONENTIAL FUNCTION 309

By the chain rule and formula (7),

[
d
dt

eA(t+s)

]
t=0

=

[(
d

d(t + s)
eA(t+s)

)
d(t + s)

dt

]
t=0

=
[
(AeA(t+s))(1)

]
t=0

= AeAs,
[

d2

dt2
eA(t+s)

]
t=0

=

[
d

d(t + s)
(AeA(t+s))

d(t + s)
dt

]
t=0

= [(A2eA(t+s))(1)]t=0 = A2eAs

and so on, leading to the series

eA(t+s) = eAs + AeAst + A2eAst2/2! + · · · . (10)

However from (7) we have

eAteAs = {I + At + A2t2/2! + · · · }eAs, (11)

which matches up with (10).
We confirm (v) by letting s = −t in (iv) and invoking (ii).
Finally, the first three terms of the Taylor series expansions of the members in (vi)

demonstrate the need for the proviso:

e(A+B)t = I + (A + B)t + (A + B)2t2/2! + · · · (12)

by (7); on the other hand,

eAteBt = eA0eB0 +

[
d
dt
(eAteBt)

]
t=0

t +

[
d2

dt2
(eAteBt)

]
t=0

t2/2! + · · ·

= I + [AeAteBt + eAtBeBt]t=0 t (product rule, Section 6.2)

+ [A2eAteBt + AeAtBeBt + AeAtBeBt + eAtB2eBt]t=0 t2/2! + · · ·

= I + (A + B)t + (A2 + 2AB + B2) t2/2! + · · · .

(13)

Note that (A + B)2 = A2 + AB + BA + B2 in (12), and this equals A2 + 2AB + B2 in
(13) only if AB = BA.

Indeed, any algebraic proof of (vi) for the scalar case can be directly translated into
the matrix case as long as AB = BA. A slick proof that exploits differential equation
theory is given in Problem 30.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



310 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

The serendipity of properties (i) through (v) tempts us to try to derive the promised
formula (4) by reinterpreting the scalar derivation:

dx
dt

= Ax + f(t) ⇒ x(t2) = eA(t2−t1)x(t1) + eAt2

t2∫
t1

[e−Asf(s)] ds. (14)

Proof of (14). The differential equation is equivalent to

d
dt

[
e−Atx

]
= −Ae−Atx + e−At dx

dt
= e−At

[
dx
dt

− Ax
]
= e−Atf (15)

(since Ae−At = e−AtA; look at the power series), and hence

e−At2 x(t2)− e−At1 x(t1) =

t2∫
t1

[e−Atf(t)] dt,

implying (14) and hence, Theorem 1.

We have seen how to compute eAt when A is diagonalizable:

eAt = P

⎡
⎢⎢⎢⎣

er1t 0 · · · 0
0 er2t · · · 0
...

. . .
...

0 0 · · · erpt

⎤
⎥⎥⎥⎦P−1.

Thus we can see that the corresponding solutions to a homogeneous (f = 0) linear
constant coefficient system are combinations of constant vectors times exponentials
(erit) for diagonalizable A. Of course, these will be oscillatory if the eigenvalues ri are
complex.

Example 1. Example 2 of Section 7.1 demonstrated that

x(t) =
[

cosωt
−ω sinωt

]
(16)

is a solution of the matrix differential equation dx/dt = Ax, where

A =

[
0 1

−ω2 0

]

Verify this solution using Equation (4) of Theorem 1. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.2 THE MATRIX EXPONENTIAL FUNCTION 311

Solution. Taking t1 = 0 (and f(t) = 0) in (4) produces

x(t) = eAtx(0) = eAt

[
1
0

]

for the proposed x(0) (specified by equation 16). Since

det(A − rI) = det

[
−r 1
−ω2 −r

]
= r2 + ω2,

the eigenvalues of A are±iω. The corresponding eigenvectors are found to be [1 ±iω]T ,
and the diagonal form of A is

A = P
[

r1 0
0 r2

]
P−1 =

[
1 1
iω −iω

] [
iω 0
0 −iω

] ⎡
⎢⎣

1
2

− i
2ω

1
2

i
2ω

⎤
⎥⎦ ,

so that

eAt =

[
1 1
iω −iω

] [
eiωt 0
0 e−iωt

] ⎡
⎢⎣

1
2

− i
2ω

1
2

i
2ω

⎤
⎥⎦ .

Hence,

eAtx(0) =
[

1 1
iω −iω

] [
eiωt 0
0 e−iωt

] ⎡
⎢⎣

1
2

− i
2ω

1
2

i
2ω

⎤
⎥⎦
[

1
0

]

=

[
1 1
iω −iω

] [
eiωt 0
0 e−iωt

] [
1/2

1/2

]

=

[
1 1
iω −iω

] [
eiωt/2
e−iωt/2

]

=

[
eiωt/2 + e−iωt/2
iω (eiωt/2 − e−iωt/2)

]
=

[
cosωt
−ω sinωt

]
,

the oscillatory solution promised in (16). �

What if A cannot be diagonalized? There are other methods for numerically com-
puting eAt; indeed, with patience we can sum the power series (7) (but see Problem 31).
However it would be nice to know the nature of the solutions for defective (Section 5.2)
coefficient matrices A; if they’re not constants times exponentials, what are they? The 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



312 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

Jordan normal form that we will describe in the next section answers this question
completely. (They are constants times exponentials times polynomials.)

Final Remarks for Readers with Differential Equations Experience

1. Formula (4) settles the existence and uniqueness issues for linear first-order
systems with constant coefficients. The explicit formula is a solution, and
its derivation demonstrates that it is the only one.

2. The individual columns of eAt are solutions to dx/dt = Ax. They are lin-
early independent matrix functions; Theorem 2 states that eAt is invertible
and therefore nonsingular (for every t). Therefore if c is a generic constant
column vector, eAtc is a general solution and eAt is a fundamental matrix.

3. The matrix function e−At plays the role of an integrating factor in (15). The
display (4) can be interpreted as an instance of the variation of parameters
formula.

Exercises 7.2

Compute eAt for the matrices in Problems 1–12 using diagonalizability. [Hint: Their
eigenvalues and eigenvectors were calculated in Exercises 6.1.]

1.

[
9 −3
−2 4

]
2.
[
−1 −3
4 7

]
3.

[
1 −2
−2 1

]
4.

[
−3 2
−5 4

]
5.

[
1 1
1 1

]

6.

⎡
⎣1 0 2

3 4 2
0 0 0

⎤
⎦ 7.

⎡
⎣4 −1 −2

2 1 −2
1 −1 1

⎤
⎦ 8.

⎡
⎣ 2 −1 −1
−1 3 0
−1 0 3

⎤
⎦

9.

[
0 −1
1 0

]
10.

[
0 1

−1 + i −1

]
11.

[
1 2i
−1 3 + i

]
12.

⎡
⎣−6 2 16
−3 1 11
−3 1 7

⎤
⎦

If a matrix has only one eigenvalue (i.e., all of its eigenvalues are equal), then there is
a slick trick enabling the easy computation of its exponential:

(i) its characteristic polynomial (Section 5.2) must take the form p(r) = (r1 − r)n;

(ii) by the Cayley–Hamilton theorem (Corollary 9, Section 6.3), (A − r1I)n = 0;

(iii) the power series for e(A−r1I) terminates:

e(A−r1I) = I + (A − r1I) + (A − r1I)2/2! + · · ·
+ (A − r1I)n−1/(n − 1)! + 0 + 0 + · · · 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



7.2 THE MATRIX EXPONENTIAL FUNCTION 313

(iv) eA = er1Ie(A−r1I) = er1 e(A−r1I) provides a terminating power series for eA.

Use this trick to find the matrix exponential eAt for the matrices in Problems 13
through 18

13.

[
1 −1
1 3

]
14.

[
3 −2
0 3

]
15.

⎡
⎣ 2 1 −1
−3 −1 1
9 3 −4

⎤
⎦ 16.

⎡
⎣2 1 3

0 2 −1
0 0 2

⎤
⎦

17.

⎡
⎣ 0 1 0

0 0 1
−1 −3 −3

⎤
⎦ 18.

⎡
⎣−2 0 0

4 −2 0
1 0 −2

⎤
⎦ .

19. Use the results of Problem 15 and formula (4) to find the solution to the initial-value
problem

x′(t) =

⎡
⎣ 2 1 −1
−3 −1 1
9 3 −4

⎤
⎦ x(t) +

⎡
⎣0

t
0

⎤
⎦ , x(0) =

⎡
⎣0

3
0

⎤
⎦ .

20. Use the result of Problem 18 to find the solution to the initial-value problem

x′(t) =

⎡
⎣−2 0 0

4 −2 0
1 0 −2

⎤
⎦ x(t), x(0) =

⎡
⎣ 1

1
−1

⎤
⎦ .

21. Use the result of Problem 17 to find the solution to the initial-value problem

x′(t) =

⎡
⎣ 0 1 0

0 0 1
−1 −3 −3

⎤
⎦ x(t) + t

⎡
⎣ 1
−1
2

⎤
⎦ +

⎡
⎣3

1
0

⎤
⎦ , x(0) = 0.

In Problems 22–27, use formula (4) to determine a solution of the system x′(t) =
Ax(t) + f(t), where A and f(t) are given. Take x(0) = 0.

22. A =

[
0 1
2 0

]
, f (t) =

[
sin 3t

t

]
.

23. A =

[
−1 0
2 2

]
, f (t) =

[
t2

t + 1

]
.

24. A =

⎡
⎣ 0 −1 0
−1 0 1
0 0 1

⎤
⎦ , f(t) =

⎡
⎣0

0
1

⎤
⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



314 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

25. A =

[
0 1
−1 0

]
, f (t) =

[
1
0

]
.

26. Let

A =

⎡
⎣5 2 −4

0 3 0
4 −5 −5

⎤
⎦ .

For which initial conditions x(0) do the solutions to x′ = Ax remain bounded for
all t > 0 ?

27. For the matrix A in the previous problem, determine the solution to the initial value
problem

x′ = Ax + sin(2t)

⎡
⎣2

0
4

⎤
⎦ , x(0) =

⎡
⎣ 0

1
−1

⎤
⎦ .

28. Convergence of the matrix exponential series We shall guide you through a
proof that the series (7) converges by invoking the Comparison Test, cited in most
calculus texts:

Comparison Test. Suppose that
∑∞

k=0 Mk is a convergent series with each
Mk ≥ 0, and suppose that |αk| ≤ Mk for all subscripts k sufficiently large. Then∑∞

k=0 αk also converges.
(a) For any n-by-n matrix A, define ν(A) to be the largest-in-magnitude entry in

A. Prove that ν(A2) ≤ n ν(A)2.

(b) Prove that for all nonnegative integers k, ν(Ak) ≤ nk−1ν(A)k.

(c) Argue that the matrix entries in the series (7) are dominated in magnitude by
the corresponding terms in the series

∑∞
k=0 nk−1ν(At)k/k!, and that the latter

converges to enν(At)/n.

(d) Apply the comparison test to conclude that (7) converges.

Although the matrix exponential series (7) converges in theory, its numerical imple-
mentation is vexing. Problem 29 is drawn from the exposition in “Nineteen Dubious
Ways to Compute the Exponential of a Matrix,” by Cleve Moler and Charles van
Loan, SIAM Review, Vol. 20, No. 4 (Oct. 1978).

29. The matrix A has a diagonalization expressed as follows:

A :=

[
−49 24
−64 31

]
=

[
1 3
2 4

] [
−1 0
0 −17

] [
1 3
2 4

]−1

(a) Use formula (6) to calculate

eA =

[
1 3
2 4

] [
e−1 0
0 e−17

] [
1 3
2 4

]−1

≈
[
−0.7357589 0.5518191
−1.4715176 1.1036382

]
(17)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.2 THE MATRIX EXPONENTIAL FUNCTION 315

(b) Use a computer to show that, in the power series

eA = I + A + A2/2! + · · · + Am/m! + · · · ,

the 16th and 17th terms are approximately given by

A16

16!
≈

[
6, 977, 251.906101090 −3, 488, 625.953050545
9, 303, 002.541468118 −4, 651, 501.270734060

]

A17

17!
≈

[
−6, 977, 251.906101089 3, 488, 625.953050546
−9, 303, 002.541468109 4, 651, 501.270734056

]

Hence in the summation (A16/16! + A17/17!), 15 significant (decimal) dig-
its are lost through cancellation. A 16-digit computer has no chance of
performing this summation correctly.

(c) Moler and van Loan reported that on their 1978 computer, the first 59 terms of
the series

eA = I + A + A2/2! + · · · + Am/m! + · · ·

resulted in the horrible approximation

eA ≈
[
−22.25880 −1.432766
−61.49931 −3.474280

]

(compare with (17)). Today’s computers are much more accurate. Write a
program to calculate

I + A + A2/2! + · · · + Am/m!

for any input m. How many terms must be summed to obtain an answer close
to the true value (17) on your computer?

(d) Change A to

A :=

[
−100 49.5
−132 65

]
=

[
1 3
2 4

] [
−1 0
0 −34

] [
1 3
2 4

]−1

and use the diagonal form to show that

eA ≈
[
−0.7357589 0.5518192
−1.4715178 1.1036383

]
(18)

(e) Now how many terms of

eA = I + A + A2/2! + · · · + Am/m! + · · ·

must be summed to obtain an answer close to the true value on your computer? 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



316 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

30. Theorem 1 implies that the initial value problem

x′ = Mx, x(0) = c

has one, and only one, solution, given by equation (4) in the theorem (with f and t1
each zero), when M and c are any constant matrices of the appropriate dimensions.
Use this to prove statement (vi) in Theorem 2 by demonstrating that e(A+B)tc and
eAteBtc both satisfy x′ = (A + B)x, x(0) = c. [Hint: argue that

d
dt

eAteBt = AeAteBt + eAtBeBt

and also that eAtBeBt = BeAteBt if AB = BA.]

31. Let A =

[
1 2
−1 3

]
and B =

[
2 1
0 1

]
.

(a) Show that AB �= BA.

(b) Show that property (vi) in Theorem 2 does not hold for these matrices. That is,
show that e(A+B)t �= eAteBt.

In Problems 32–35, use a linear algebra software package for help in
determining eAt

32. A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
1 −3 3 0 0
0 0 0 0 1
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦ . 33. A =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 −1 −2 0 0
0 0 0 0 1
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦ .

34. A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
−1 −3 −3 0 0
0 0 0 0 1
0 0 0 −4 −4

⎤
⎥⎥⎥⎥⎦ . 35. A =

⎡
⎢⎢⎢⎢⎣

−1 0 0 0 0
0 0 1 0 0
0 −1 −2 0 0
0 0 0 0 1
0 0 0 −4 −4

⎤
⎥⎥⎥⎥⎦ .

7.3 THE JORDAN NORMAL FORM

We have seen three possibilities for the set of eigenvalues of an arbitrary n-by-n
matrix A:

(i) A has n distinct eigenvalues. Then A must have n linearly independent eigen-
vectors, and it can be diagonalized by a similarity transformation generated by
a matrix P of eigenvectors: A = PDP−1. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



7.3 THE JORDAN NORMAL FORM 317

(ii) A has multiple eigenvalues, but it still has n linearly independent eigenvectors.
It can, therefore, still be diagonalized by a similarity transformation generated
by a matrix of eigenvectors: A = PDP−1 .

(iii) A has multiple eigenvalues, but it has less than n linearly independent eigen-
vectors. Then it cannot be diagonalized. It is defective.

Practically, all random matrices fall into class (i), but “home-grown” matrices fre-
quently fall into classes (ii) and (iii) (Section 6.5).

In all three cases, A can be upper-triangularized by a similarity transformation gen-
erated by a unitary matrix (thanks to the Schur decomposition theorem of Section 6.3).
But the advantages of full diagonalization are enormous: powers, and power series, can
be evaluated readily, and linear differential equation systems can be solved. So it is
worthwhile to seek a form “as close to diagonal as possible” that is valid for all matri-
ces. The Jordan form is difficult to derive and devilish to calculate, but it’s the best that
mathematics has come up with.

To start with, it is block-diagonal, a concept which is much easier to diagram
(Fig. 7.17) than to define:

Remark. If two matrices are block diagonal with compatible dimensions, their sums
and products can be calculated “blockwise,” as illustrated in Figure 7.18.2 In particular,
any power of a block-diagonal matrix is calculated by raising the blocks to that power.

A = =

# # 0 0

0

0 0

0

00

0 0

0 0 # # # 0

0 0 # # #

0 0 0

0

0 0 0 0 0 #

# # 0 0 0 0

# # #

A1

A2

A3

Fig. 7.17 Block-diagonal matrix.

The individual diagonal blocks in the Jordan form have the structure illustrated in
Figures 7.19 and 7.20. (For convenience we have written J1×1 for J1-by-1.)

Jordan Form

Definition 1. A square matrix J is said to be a Jordan block if its diagonal
entries are all equal, its superdiagonal entries are all ones, and all other entries

2The best “proof” is simply to try these rules out. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



318 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

are zero. A square matrix is said to be in Jordan form if it is block diagonal and
each of its blocks is a Jordan block.

Theorem 3. Every square matrix A is similar to a matrix J in Jordan form:
A = PJP−1. The dimensions of the Jordan blocks in J are uniquely determined
by A.

×

=

[C] [0]

[0] [D]

[A] [0]

[0] [B]

+

[C] [0]

[0] [D]

[A] [0]

[0] [B]

[AC] [0]

[0] [BD]

[A+C] [0]

[0] [B+D]

=

Fig. 7.18 Blockwise addition and multiplication.

====

r

r

r

r

r

r

r

r

r
r

000

100

010

001

,

00

10

01

0

1
, , J4×4J3×3J2×2J1×1

Fig. 7.19 Jordan blocks.

=

||||||

||||||

||||||

00000

00000

01000

00100

00000

00001

J1×100

0J3×30

00J2×2

r3

r2

r2

r2

r1

r1

Fig. 7.20 Jordan form. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.3 THE JORDAN NORMAL FORM 319

Hordes of authors have sought to publish simple proofs of Theorem 3. We shall not
add to their number; suffice it to say we prefer the derivation of Filippov as expostulated
by Strang.3

As discussed in Section 6.5, even the detection of multiple eigenvalues is impractical
with finite-precision computation; calculations have to be performed in rational arith-
metic.4 Nonetheless knowledge of the mere existence of the Jordan form is of immense
value in some applications, so we explore it further.

The eigenvalues (and their multiplicities) of a matrix in Jordan form are displayed
along its diagonal (since the Jordan form is upper triangular). These are also the eigen-
values (and multiplicities) of the original matrix A, because similarity transformations
do not change the characteristic polynomial of a matrix (Corollary 2, Section 6.1). Note,
however, that the same eigenvalue may appear in more than one Jordan block. Thus,
the multiplicity of a particular eigenvalue equals the sum of the dimensions of the
Jordan blocks in which it appears. If r1 is distinct from r2 and r3 in Figure 7.20, its
multiplicity is two; if r1 = r2 �= r3, the multiplicity of r1 is 5.

Of course the statement A = PJP−1 is equivalent to AP = PJ. For the matrix in
Figure 7.20, if P’s columns are displayed as

P =

⎡
⎢⎢⎣

...
...

...
u1 u2 · · · u6
...

...
...

⎤
⎥⎥⎦ ,

then AP = PJ takes the form

AP = A

⎡
⎢⎢⎣

...
...

...
u1 u2 · · · u6
...

...
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

...
...

...
Au1 Au2 · · · Au6

...
...

⎤
⎥⎥⎦

= PJ =

⎡
⎢⎢⎣

...
...

...
u1 u2 · · · u6
...

...
...

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r1 1 0 0 0 0
0 r1 0 0 0 0
0 0 r2 1 0 0
0 0 0 r2 1 0
0 0 0 0 r2 0
0 0 0 0 0 r3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

3See “A short proof of the theorem on reduction of a matrix to Jordan form (Russian)”, Filippov, A.
F., Vestnik Moskov. Univ. Ser. I Mat. Meh. 26 1971 no. 2, 18–19; and Linear Algebra and Its Appli-
cations 4th ed., Strang, G., 2005, Cengage Learning (Appendix B. The Jordan Form). The web page
http://math.fullerton.edu/mathews/n2003/jordanform/JordanFormBib/Links/JordanFormBib_lnk_3.html
lists 64 proofs, published between 1962 and 2003.
4Some software codes perform rational arithmetic using symbol manipulation in their Jordan subroutines.
The resulting slowdown is apparent to the user. 
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=

⎡
⎢⎢⎢⎢⎣

...
...

...
...

...
...

r1u1 [r1u2 + u1] r2u3 [r2u4 + u3] [r2u5 + u4] r6u6

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎦ (1)

Therefore column ui of P satisfies either

Aui = rui (2)

or

Aui = rui + ui−1 (3)

for some eigenvalue r. Of course, in case (2), ui is an eigenvector corresponding to the
eigenvalue r on the ith diagonal. Thus in (1), the eigenvectors are u1, u3, and u6.

Example 1. What are the possible Jordan forms for a 5-by-5 matrix A with a single
eigenvalue r (of multiplicity 5)?

Solution. A can have 5, 4, 3, 2, or 1 linearly independent eigenvectors. They are man-
ifested in the Jordan form J by the columns with zeros in the (first) superdiagonal.
From Figure 7.20 or Equation (1), we can see that, informally speaking, every time we
“lose” an eigenvector, we gain a “1” on the superdiagonal. Keep in mind that only the
dimensions, not the locations, of the Jordan blocks are fixed.

5 (linearly independent) eigenvectors: J is diagonal:

⎡
⎢⎢⎢⎢⎢⎢⎣

r 0 0 0 0

0 r 0 0 0

0 0 r 0 0

0 0 0 r 0

0 0 0 0 r

⎤
⎥⎥⎥⎥⎥⎥⎦

.

4 eigenvectors: Adding a 1 on the superdiagonal will create three 1-by-1 Jordan
blocks and one 2-by-2. For example, if the 1 is placed at the (4, 5) location,

⎡
⎢⎢⎢⎢⎢⎢⎣

r 0 0 0 0

0 r 0 0 0

0 0 r 0 0

0 0 0 r 1

0 0 0 0 r

⎤
⎥⎥⎥⎥⎥⎥⎦

.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.3 THE JORDAN NORMAL FORM 321

3 eigenvectors: J contains two 1’s on the superdiagonal. This will create either a
3-by-3 block or two 2-by-2 blocks. For example,

⎡
⎢⎢⎢⎢⎣

r 0 0 0 0
0 r 0 0 0
0 0 r 1 0
0 0 0 r 1
0 0 0 0 r

⎤
⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎣

r 0 0 0 0
0 r 1 0 0
0 0 r 0 0
0 0 0 r 1
0 0 0 0 r

⎤
⎥⎥⎥⎥⎦ .

2 eigenvectors: J contains three 1’s on the superdiagonal. Since there are four super-
diagonal entries, the only issue is where to put the 0. As we see in the following
display,

⎡
⎢⎢⎢⎢⎣

r 0 0 0 0
0 r 1 0 0
0 0 r 1 0
0 0 0 r 1
0 0 0 0 r

⎤
⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎣

r 1 0 0 0
0 r 0 0 0
0 0 r 1 0
0 0 0 r 1
0 0 0 0 r

⎤
⎥⎥⎥⎥⎦ ,

either there will be a 4-by-4 block, or a 2-by-2 together with a 3-by-3 block.
1 eigenvector: the superdiagonal is “full” and J is a single 5-by-5 Jordan block:

⎡
⎢⎢⎢⎢⎣

r 1 0 0 0
0 r 1 0 0
0 0 r 1 0
0 0 0 r 1
0 0 0 0 r

⎤
⎥⎥⎥⎥⎦ . �

Shortly, we shall see how these considerations can be used to compute the matrix
P. But first we list some pertinent observations that follow from Theorem 3 and the
display (1).

(i) Since P is invertible, its columns form a basis for the underlying vector space
Rn

col (or Cn
col).

(ii) Thanks to (2) and (3), the columns of P cluster into groups {u1, u2},
{u3, u4, u5}, and {u6} with the property that whenever v lies in the span of
one of the groups, Av lies in its span also. For example, if v = c1u1 +c2u2, then

Av = c1r1u1 + c2(r2u2 + u1) = (c1r1 + c2)u1 + c2r2u2.

(In the jargon of algebra, the span of each group is an invariant subspace.)

(iii) Each of the columns ui that satisfies (2) or (3) for the eigenvalue r also satisfies

(A − rI)pui = 0 (4) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



322 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

for high enough p; if ui satisfies (2), then (4) is true for p = 1, and if ui satisfies
(3), then (A−rI)p ui = (A−rI)p−1ui−1 = (A−rI)p−2ui−2. . . and so on, until
we “get down” to a true eigenvector u for r, whence (A− rI)u = 0. Thus p can
be taken to be the dimension of the largest Jordan block with r on its diagonal.

Generalized Eigenvectors

Definition 2. A nonzero solution u of (A−rI)pu = 0 (for any r and any integer
p > 0) is called a generalized eigenvector of A.

Thus all the columns of P are (linearly independent) generalized eigenvectors.

(iv) (An intriguing theoretical note) Because A and J are similar, they have the same
characteristic polynomial (Corollary 7.2, Section 6.1). From the (upper trian-
gular) Jordan matrix display in Figure 7.20, we deduce that this polynomial can
be expressed in terms of the Jordan parameters as

p(r) = det (A − rI) = det (J − rI) = (r1 − r)p1(r2 − r)p2 · · · (rJ − r)pJ ,
(5)

when A has J Jordan blocks of size p1, p2, …, pJ containing corresponding
eigenvalues r1, r2, …, rJ . Since some of the eigenvalues might be repeated
in the display (5), for convenience let’s assume that {r1, r2, …, rK} are dis-
tinct eigenvalues and {rK+1, rK+2,…, rJ} replicate these. Then the characteristic
polynomial has the alternative display

p(r) = (r1 − r)q1(r2 − r)q2 · · · (rK − r)qK (6)

where the exponent in (ri − r)qi is the sum of the exponents of factors in (5)
containing the eigenvalue ri.

Now let u be any column of P satisfying either (2) or (3) with r = ri,
i ≤ K; by our count, there are qi such columns in all. Then u satisfies (4) with p
equal to the dimension of the largest Jordan block with ri on its diagonal. Hence
u satisfies (A − riI)qi u = 0 since qi is at least as big as the dimension of any
such Jordan block. The columns of P attest to the fact that for each eigenvalue ri

the generalized eigenvector equation (A− riI)qi u = 0 has (at least) qi solutions
that are linearly independent of each other, and linearly independent of those
for the other eigenvalues.

Could there be more than qi linearly independent solutions? No; q1 +
q2 + · · · + qK equals the degree n of the characteristic polynomial (where A
is n-by-n), and there can be no more than n linearly independent vectors. We
have derived a theorem that will be of crucial importance in Section 7.4. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



7.3 THE JORDAN NORMAL FORM 323

Primary Decomposition Theorem

Theorem 4. If the characteristic polynomial of the n-by-n square matrix A is

p(r) = det (A − rI) = (r1 − r)q1(r2 − r)q2 · · · (rK − r)qK , (7)

where the eigenvalues {ri} are distinct, then for each i there are qi linearly
independent generalized eigenvectors u vectors satisfying

(A − riI)qi u = 0; (8)

further, the totality of these n generalized eigenvectors is a linearly indepen-
dent set.

(Indeed, we have shown that qi in (8) can be replaced by the dimension of the largest
Jordan block corresponding to the eigenvalue ri.)

(v) One important application of the Jordan form is the direct calculation of the
matrix exponential for defective matrices. Although a defective matrix is not
diagonalizable, the powers of its Jordan form are transparent, and this facilitates
the summing of the power series. The powers of an m-by-m Jordan block have
a pattern that suggests the binomial formula (see Problem 28):

J =

⎡
⎢⎢⎣

r 1 0 0
0 r 1 0
0 0 r 1
0 0 0 r

⎤
⎥⎥⎦ , J2 =

⎡
⎢⎢⎣

r2 2r 1 0
0 r2 2r 1
0 0 r2 2r
0 0 0 r2

⎤
⎥⎥⎦ , J3 =

⎡
⎢⎢⎣

r3 3r2 3r 1
0 r3 3r2 3r
0 0 r3 3r2

0 0 0 r3

⎤
⎥⎥⎦ ,

J4 =

⎡
⎢⎢⎣

r4 4r3 6r2 4r
0 r4 4r3 6r2

0 0 r4 4r3

0 0 0 r4

⎤
⎥⎥⎦ (9)

Hence, the Taylor series for the matrix exponential eJt looks like

eJt = I + tJ + t2J2/2! + t3J3/3! + t4J4/4! + t5J5/5! + · · ·

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ + t

⎡
⎢⎢⎣

r 1 0 0
0 r 1 0
0 0 r 1
0 0 0 r

⎤
⎥⎥⎦ +

t2

2!

⎡
⎢⎢⎣

r2 2r 1 0
0 r2 2r 1
0 0 r2 2r
0 0 0 r2

⎤
⎥⎥⎦+

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



324 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

+
t3

3!

⎡
⎢⎢⎣

r3 3r2 3r 1
0 r3 3r2 3r
0 0 r3 3r2

0 0 0 r3

⎤
⎥⎥⎦ +

t4

4!

⎡
⎢⎢⎣

r4 4r3 6r2 4r
0 r4 4r3 6r2

0 0 r4 4r3

0 0 0 r4

⎤
⎥⎥⎦

+
t5

5!

⎡
⎢⎢⎣

r5 5r4 10r3 10r2

0 r5 5r4 10r3

0 0 r5 5r4

0 0 0 r4

⎤
⎥⎥⎦ + · · · . (10)

With a little cleaning up, we see the exponential power series recurring in every entry.
Along the diagonal, we get

1 + (tr) +
(tr)2

2!
+
(tr)3

3!
+ · · · = ert;

on the first superdiagonal, we get

t

[
1 + (tr) +

(tr)2

2!
+
(tr)3

3!
+ · · ·

]
= tert;

and for the second and third superdiagonals, we have

t2

2

[
1 + (tr) +

(tr)2

2!
+
(tr)3

3!
+ · · ·

]
=

t2

2
ert

and

t3

3!

[
1 + (tr) +

(tr)2

2!
+ · · ·

]
=

t3

3!
ert.

So the infinite matrix sum converges to the simple upper triangular form

eJt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ert

0!
tert

1!
t2ert

2!
t3ert

3!

0
ert

0!
tert

1!
t2ert

2!

0 0
ert

0!
tert

1!

0 0 0
ert

0!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.3 THE JORDAN NORMAL FORM 325

Thus for a matrix whose Jordan form is given by the pattern in Figure 7.20, we have

A = P

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r1 1 0 0 0 0
0 r1 0 0 0 0
0 0 r2 1 0 0
0 0 0 r2 1 0
0 0 0 0 r2 0
0 0 0 0 0 r3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

P−1,

eAt = P

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

er1t ter1t 0 0 0 0
0 er1t 0 0 0 0

0 0 er2t ter2t t2

2 er2t 0
0 0 0 er2t ter2t 0
0 0 0 0 er2t 0
0 0 0 0 0 er3t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

P−1.

(12)

For the reasons we have mentioned, it is virtually impossibly to find Jordan forms with-
out using exact arithmetic on exact data; the Jordan form is numerically unstable and
impractical. To satisfy the reader’s curiosity; however, we shall describe a pencil-and-
paper method for finding a set of generalized eigenvectors which, inserted into the
columns of P, produce a Jordan form P−1AP = J. It has the singular merit of being
very straightforward; it does not strive for efficiency. We presume that the eigenvalues
of the matrix A are known—exactly, of course.

Example 2. Find a Jordan form and eAt for A =

⎡
⎣1 1 2

0 1 3
0 0 2

⎤
⎦.

Solution. The eigenvalues of A are obviously 2 and 1, the latter having multiplicity
two. So possible Jordan forms for A are

⎡
⎣2 0 0

0 1 0
0 0 1

⎤
⎦ and

⎡
⎣2 0 0

0 1 1
0 0 1

⎤
⎦ , (13)

according to whether the multiple eigenvalue 1 has two linearly independent
eigenvectors

Au(1) = (2)u(1), Au(2) = (1)u(2), Au(3) = (1)u(3), (14)

or one eigenvector and one generalized eigenvector

Au(1) = (2)u(1), Au(2) = (1)u(2), Au(3) = (1)u(3) + u(2). (15) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



326 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

Now here’s the trick. Equations (14) and (15) can each be interpreted as single linear
systems, for the unknowns u = [u(1)

1 , u(1)
2 , u(1)

3 , u(2)
1 , u(2)

2 , u(2)
3 , u(3)

1 , u(3)
2 , u(3)

3 ]T . That is,
(14) can be expressed as

⎡
⎢⎣

0
0
0

⎤
⎥⎦ =

⎡
⎢⎣

Au(1) − 2u(1)

Au(2) − u(2)

Au(3) − u(3)

⎤
⎥⎦ =

⎡
⎢⎣

A − 2I 0 0

0 A − I 0

0 0 A − I

⎤
⎥⎦
⎡
⎢⎣

u(1)

u(2)

u(3)

⎤
⎥⎦, (16)

or equivalently, in terms of the components of u,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2 1 2 0 0 0 0 0 0 : 0

0 1 − 2 3 0 0 0 0 0 0 : 0

0 0 2 − 2 0 0 0 0 0 0 : 0

0 0 0 1 − 1 1 2 0 0 0 : 0

0 0 0 0 1 − 1 3 0 0 0 : 0

0 0 3 0 0 2 − 1 0 0 0 : 0

0 0 3 0 0 0 1 − 1 1 2 : 0

0 0 3 0 0 0 0 1 − 1 3 : 0

0 0 3 0 0 0 0 0 2 − 1 : 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

And (15) becomes

⎡
⎢⎣

0
0
0

⎤
⎥⎦ =

⎡
⎢⎣

Au(1) − 2u(1)

Au(2) − u(2)

Au(3) − u(3) − u(2)

⎤
⎥⎦ =

⎡
⎢⎣

A − 2I 0 0

0 A − I 0

0 −I A − I

⎤
⎥⎦
⎡
⎢⎣

u(1)

u(2)

u(3)

⎤
⎥⎦ . (18)

Now according to Theorem 3 the dimensions of the Jordan blocks are uniquely deter-
mined by A, so only one of the matrices in (13) is similar to A. Therefore, only one of the
systems (16), (18) generates solutions that separate into linearly independent vectors
u1, u2, u3, suitable as columns of the invertible matrix P in the equation P−1AP = J.
Thus our procedure is to

• solve (16) and (18) by Gauss (or Gauss-Jordan) elimination (with exact
arithmetic),

• repartition the solutions into column vectors, and

• test for independence.

Only one system will pass the test. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.3 THE JORDAN NORMAL FORM 327

Direct calculation shows that a general solution of (16) is

u = [5t3 3t3 t3 t2 0 0 t1 0 0]T or

u1 = t3

⎡
⎣5

3
1

⎤
⎦ , u2 = t2

⎡
⎣1

0
0

⎤
⎦ , u3 = t1

⎡
⎣1

0
0

⎤
⎦ (19)

and that of (18) is

u = [5t3 3t3 t3 t1 0 0 t2 t1 0]T or

u1 = t3

⎡
⎣5

3
1

⎤
⎦ , u2 = t1

⎡
⎣1

0
0

⎤
⎦ , u3 =

⎡
⎣t2

t1
0

⎤
⎦ . (20)

The columns in (19) are obviously linearly dependent (compare u2 and u3). Alter-
natively, we can test for independence by computing the determinants of the matrix
[u1 u2 u3] for each case;

system (19) determinant =

∣∣∣∣∣∣
5t3 t2 t1
3t3 0 0
t3 0 0

∣∣∣∣∣∣ = 0;

system (20) determinant =

∣∣∣∣∣∣
5t3 t1 t2
3t3 0 t1
t3 0 0

∣∣∣∣∣∣ = t3t2
1.

So the simple choice t1 = 1, t2 = 0, t3 = 1 produces a nonzero determinant, and
independent u1, u2, u3, for system (18); the correct Jordan form is the second matrix in
(13). The generalized eigenvectors thus created are

u1 =

⎡
⎣5

3
1

⎤
⎦ , u2 =

⎡
⎣1

0
0

⎤
⎦ , u3 =

⎡
⎣0

1
0

⎤
⎦ ,

the similarity transform to Jordan form is

A =

⎡
⎣5 1 0

3 0 1
1 0 0

⎤
⎦
⎡
⎣2 0 0

0 1 1
0 0 1

⎤
⎦
⎡
⎣5 1 0

3 0 1
1 0 0

⎤
⎦
−1

or

⎡
⎣5 1 0

3 0 1
1 0 0

⎤
⎦
−1

A

⎡
⎣5 1 0

3 0 1
1 0 0

⎤
⎦ =

⎡
⎣2 0 0

0 1 1
0 0 1

⎤
⎦ ,
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and the matrix exponential function is

eAt =

⎡
⎣5 1 0

3 0 1
1 0 0

⎤
⎦
⎡
⎣e2t 0 0

0 et tet

0 0 et

⎤
⎦
⎡
⎣5 1 0

3 0 1
1 0 0

⎤
⎦
−1

. �

Example 3. Find a Jordan form and eBt for

B =

⎡
⎢⎢⎣

1 0 −1 −2
−2 1 3 −4
0 0 1 4
0 0 0 −3

⎤
⎥⎥⎦ .

Solution. We’ll just state that the eigenvalues of B turn out to be 1 (of multiplicity 3)
and −3. So the candidates for Jordan forms are

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 −3

⎤
⎥⎥⎦ , and

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 −3

⎤
⎥⎥⎦ , (21)

corresponding to generalized eigenvector equations given by

(4 eigenvectors) Bu(1) = u(1), Bu(2) = u(2), Bu(3) = u(3), and Bu(4) = −3u(4).

(3 eigenvectors) Bu(1) = u(1), Bu(2) = u(2), Bu(3) = u(3) + u(2), and

Bu(4)=− 3u(4).

(2 eigenvectors) Bu(1) = u(1), Bu(2) = u(2) + u(1), Bu(3) = u(3) + u(2), and

Bu(4) = −3u(4).

The linear systems describing these three possibilities are
⎡
⎢⎢⎢⎢⎢⎢⎣

B − I 0 0 0
... 0

0 B − I 0 0
... 0

0 0 B − I 0
... 0

0 0 0 B + 3I
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

B − I 0 0 0
... 0

0 B − I 0 0
... 0

0 −I B − I 0
... 0

0 0 0 B + 3I
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

B − I 0 0 0
... 0

−I B − I 0 0
... 0

0 −I B − I 0
... 0

0 0 0 B + 3I
... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (22)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



7.3 THE JORDAN NORMAL FORM 329

The solutions of (22) partition into the following sets of vectors:

[
u(1) u(2) u(3) u(4)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
1
4

t1

t4 t3 t2
15
6

t1

0 0 0 −t1
0 0 0 t1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 t3
1
4

t1

t4 −2t3 t2
15
6

t1

0 0 0 −t1
0 0 0 t1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −t2 t4
1
4

t1

2t2 (−2t4 + 3t2) t3
15
8

t1

0 0 t2 −t1
0 0 0 t1

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)

The determinants are respectively 0, 0, and 2t1t3
2. The simple choice t1 = 1,

t2 = 1, t3 = t4 = 0 makes the latter nonzero; so the Jordan form is the third matrix
in (21), there are two linearly independent eigenvectors, and by assembling the cor-
responding generalized eigenvectors in (23) into a matrix we derive the similarity
transform

B=

⎡
⎢⎢⎣

1 0 −1 −2
−2 1 3 −4
0 0 1 4
0 0 0 −3

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0
1
4

2 3 0
15
8

0 0 1 −1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 −3

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0
1
4

2 3 0
15
8

0 0 1 −1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

and the matrix exponential function

eBt =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0
1
4

2 3 0
15
8

0 0 1 −1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

et tet t2 et/2 0
0 et tet 0
0 0 et 0
0 0 0 e−3t

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0
1
4

2 3 0
15
8

0 0 1 −1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

. �

For the final example, we compute the solution of a single fourth-order equation
using the Jordan form.

Example 4. Use the matrix exponential function to find all solutions to

y(iv) − 3y′′′ + 3y′′ − y′ = 0. (24) 
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Solution. The substitutions

x1 := y, x2 :=
dy
dt

, x3 :=
d2y
dt2

, x4 :=
d3y
dt3

result in the system

dx
dt

=
d
dt

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 1 −3 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ = Ax.

Matrices J, P expressing the similarity transformation of the coefficient matrix A to
Jordan form are found by the method described earlier to be

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 1 −3 3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 −2 3 −3
1 −1 1 0
1 0 0 0
1 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 −2 3 −3
1 −1 1 0
1 0 0 0
1 1 0 0

⎤
⎥⎥⎦
−1

= PJP−1,

resulting in the fundamental matrix

eAt = PeJtP−1 = P

⎡
⎢⎢⎣

et tet t2

2 et 0
0 et tet 0
0 0 et 0
0 0 0 1

⎤
⎥⎥⎦P−1.

The solution to x′ = Ax is given by eAtx(0). The solution to (24) is its first component,
or (after some computations)

y(t) = y(0)− 3y′(0) + 3y′′(0)− y′′′(0)

+ y′(0)et(3 − 2t + t2/2)

+ y′′(0)et(−4 + 4t − t2)

+ y′′′(0)et(1 − t + t2/2). �

In Section 7.2, we pointed out that the solutions to a homogeneous linear constant
coefficient system are combinations of constant vectors times exponentials (erit) for
diagonalizable A. Now we see that a nondiagonalizable A spawns solutions that are
constants time exponentials times polynomials. The corresponding statement, for a 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



7.3 THE JORDAN NORMAL FORM 331

single higher-order linear constant coefficient differential equation, is well known in
differential theory.

Exercises 7.3

1. Describe the eigenvectors of a matrix in Jordan form.

2. Suppose A is similar to the matrix

[
r a
0 r

]
. Show that A is diagonalizable if and

only if a = 0.

3. By experimentation, derive the formula for the inverse of a 3-by-3 nonsingular
Jordan block.

4. Suppose A is similar to the matrix

⎡
⎣r a b

0 r c
0 0 r

⎤
⎦. Show that

(a) if a = b = c = 0, A has 3 linearly independent eigenvectors;

(b) if ac �= 0, A has 1 linearly independent eigenvector;

(c) otherwise, A has 2 linearly independent eigenvectors.

(d) What are the Jordan forms of A in each of the above cases?

5. What are the possible Jordan forms for a 4-by-4 matrix with a single eigenvalue r
(of multiplicity 4)?

6. What are the possible Jordan forms for a 6-by-6 matrix that has 2 distinct
eigenvalues r1, r2 each of multiplicity 3?

Find Jordan forms for the matrices in Problems 7–18.

7.

[
4 −2
0 4

]
8.

[
−5 4
−1 −1

]
9.

⎡
⎣1 0 0

1 1 0
1 1 1

⎤
⎦ 10.

⎡
⎣ 5 −1 0
−1 5 1
0 −1 5

⎤
⎦

11.

⎡
⎣ 4 −1 −1

2 5 2
−1 1 4

⎤
⎦

12.

⎡
⎣ 2 1 1
−1 −2 0
2 −2 1

⎤
⎦ 13.

⎡
⎢⎢⎣

3 0 1 0
1 −1 0 1
−4 −6 −1 3
2 −6 0 4

⎤
⎥⎥⎦ [Hint: 2 and 1 are eigenvalues]

14.

⎡
⎢⎢⎣

2 −2 −2 4
1 −1 −1 2
−3 3 3 −6
−2 2 2 −4

⎤
⎥⎥⎦ [Hint: 0 is an eigenvalue]

15.

⎡
⎢⎢⎣
−1 1 0 1
−2 3 −1 3
−1 1 0 1
1 −2 1 −2

⎤
⎥⎥⎦ [Hint: 0 is an eigenvalue]
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16.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −6 −3 7 3 0
1 −2 −1 2 1 1
0 −10 −5 10 5 1
0 −2 −1 2 1 0
2 −6 −3 6 3 3
0 2 1 −2 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[Hint: 0 and −2 are eigenvalues]

17.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 1 1 0 0
1 1 −1 −1 0 0
0 0 2 0 1 1
0 0 0 2 −1 −1
0 0 0 0 1 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

18.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 1 −1 1 2
−7 −5 5 −10 5 8
−7 −4 4 −8 4 7
−3 −1 1 −2 1 3
−6 −2 2 −4 2 7
−1 −2 2 −3 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In Problems 19–25, find a Jordan form and eAt for the given matrix A.

19. A =

[
3 −2
0 3

]
20. A =

[
1 −1
1 3

]
21. A =

⎡
⎣1 0 0

1 3 0
0 1 1

⎤
⎦

22. A =

⎡
⎣0 1 0

0 0 1
1 −1 1

⎤
⎦ 23. A =

⎡
⎢⎢⎣

1 0 1 2
1 1 2 1
0 0 2 0
0 0 1 1

⎤
⎥⎥⎦

24. A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0
0 2 0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

25. A =

⎡
⎢⎢⎢⎢⎣

2 0 0 0 0
1 3 0 0 0
0 1 3 0 0
0 0 1 3 0
0 0 0 1 3

⎤
⎥⎥⎥⎥⎦

26. In elastic deformation theory, a matrix in the (Jordan) form J =

[
r 1
0 r

]
is called a

shear matrix. To see why, sketch the result when J is applied to the position vectors
[x y]T of all the points in the square {0 ≤ x, y ≤ 1}.

27. Solve systems (16) and (18).

28. Use the following steps to derive the formula for the powers of a Jordan block:

[Jp]1j =

(
p
j − 1

)
r p−j+1 =

p!
(j − 1)!(p − j + 1)!

r p−j+1 for 1 ≤ j ≤ n,

[Jp]i1 = 0 for i > 1, [Jp]ij = [Jp]i−1, j−1 for n ≥ i ≥ 2, n ≥ j ≥ 2 (25)

(a) First show that all powers of J are upper triangular.

(b) Next show that all powers of J are constant along any diagonal. This means
you only have to find the formula for the first row.

(c) Referring to Equation (9), compare the computation of the first row of Jn (via
J×Jn−1) with the computation of the powers (r +1)n = (r +1)× (r +1)n−1;
show that the patterns of calculation are identical.
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(iv) Cite the binomial formula to derive the first equation in (25). Cite (b) to derive
the second formula.

29. Solve systems (22).

30. Prove that if there is a positive integer k, a scalar r, and a nonzero vector u such
that (A − rI)ku = 0, then r must be an eigenvalue of A.

31. If the square matrix A has zeros everywhere but its diagonal and superdiagonal,
and its diagonal entries are all equal, then show that a Jordan form of A is obtained
by replacing every nonzero superdiagonal entry by one.

32. The ones on the superdiagonal of the Jordan form can be replaced by any other
nonzero number. More precisely, every matrix in Jordan form is similar to the
matrix obtained by replacing the ones on the superdiagonal by any other nonzero
number. Prove this by observing the identity

⎡
⎢⎢⎣
ε3 0 0 0
0 ε2 0 0
0 0 ε 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r 1 0 0
0 r 1 0
0 0 r 1
0 0 0 r

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ε−3 0 0 0
0 ε−2 0 0
0 0 ε−1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r ε 0 0
0 r ε 0
0 0 r ε

0 0 0 r

⎤
⎥⎥⎦

and using it to devise a suitable similarity transformation. Explain how this
justifies the statement there is a diagonalizable matrix arbitrarily close to any
nondiagonalizable matrix. This further illustrates the fragility of the Jordan form.

33. The differential equation y′′ = 0, whose solution is obviously y(t) = C1 + C2t, can
be interpreted as describing the simplest mass–spring oscillator, with no spring and
no damping. (Recall Example 4 of Section 7.1.) Recast it as a first-order system in
the manner of that example (Equation (10), Section 7.1). Observe that the coeffi-
cient matrix is defective, and show that the Jordan form methodology reproduces
this obvious solution.

34. Find the solution to the initial value problem x′ = Ax, x(0) = [−1 2]T , where A
is the matrix in Problem 19.

35. Find the solution to the initial value problem x′ = Ax, x(0) = [1 0 1]T , where A
is the matrix in Problem 21.

36. Find the solution to the initial value problem x′ = Ax, x(0) = [1 0 0 0]T , where
A is the matrix in Problem 23.

7.4 MATRIX EXPONENTIATION VIA GENERALIZED
EIGENVECTORS

In this section, we will be showing how the primary decomposition theorem provides
an alternative, simpler method for constructing the matrix exponential eAt (as compared
to the construction via the Jordan form).

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



334 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

Recall from Section 7.3 that for any n-by-n square matrix A with characteristic
polynomial

p(r) = det (A − rI) = (r1 − r)q1(r2 − r)q2 · · · (rK − r)qK (ri distinct),

the Primary Decomposition Theorem guarantees the existence of n linearly independent
generalized eignvectors {u1, u2, . . . , un} of A; the first q1 of them are solutions of the
homogeneous linear system (A − r1I)q1 u = 0, the next q2 of them are solutions of the
system (A − r2I)q2 u = 0, and so on.

Our scheme for calculating the matrix exponential is based on first calculating
the product eAtU, where U is the n-by-n matrix with the generalized eigenvectors as
columns:

eAtP = eAt [u1 u2 · · · un] . (1)

This, we shall demonstrate, is quite straightforward. Then we extract eAt by multipli-
cation by the inverse:

eAt = [eAtP]P−1. (2)

We’ll calculate eAtP columnwise:

eAtP =
[
eAtu1 eAtu2 · · · eAtun

]
.

To get the first column, recall from Section 7.2 (Theorem 2, part vi) that e(B+C)t =
eBt eCt when B and C commute. Therefore, we can write eAt = er1It e(A−r1I)t, and

eAtu1 = er1It e(A−r1I)t u1

= er1t

[
I + t(A − r1I) +

t2

2!
(A − r1I)2 + · · · +

tq1

q1!
(A − r1I)q1 + · · ·

]
u1. (3)

But because u1 is a generalized eigenvector, (A − r1I)q1 u1 = 0 and the series termi-
nates! In fact, the series in (3) terminates at (or before) q1 terms for every generalized
eigenvector in the family u1, u2, . . . , uq1 . For the next family, uq1+1, uq1+2, . . . , uq2 ,
the series in

eAtui = er2It e(A−r2I)t ui

= er2t

[
I + t(A − r2I) +

t2

2!
(A − r2I)2 + · · · +

tq2

q2!
(A − r2I)q2 + · · ·

]
ui

terminates after q2 terms (or sooner). And so on.
So we compute eAtP (in finite time) and postmultiply by P−1 to extract eAt. 
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Example 1. Evaluate eAt for the matrix A =

⎡
⎣1 1 2

0 1 3
0 0 2

⎤
⎦

Solution. We solved this problem using the Jordan form as Example 2 in Section 7.3.
The eigenvalues of A are obviously 2 and 1, the latter having multiplicity two, and the
characteristic polynomial is p(r) = (2 − r)(1 − r)2. Let’s compute the generalized
eigenvectors.

(A − 2I)u = 0 ⇔

⎡
⎣−1 1 2 : 0

0 −1 3 : 0
0 0 0 : 0

⎤
⎦ ⇔ u =

⎡
⎣5t

3t
t

⎤
⎦ = t

⎡
⎣5

3
1

⎤
⎦ ;

(A − 1I)2u =

⎡
⎣0 1 2

0 0 3
0 0 1

⎤
⎦

2

u = 0 ⇔

⎡
⎣0 0 5 : 0

0 0 3 : 0
0 0 1 : 0

⎤
⎦

⇔ u =

⎡
⎣s

t
0

⎤
⎦ = s

⎡
⎣1

0
0

⎤
⎦ + t

⎡
⎣0

1
0

⎤
⎦ .

As linearly independent generalized eigenvectors, let’s choose

u1 =

⎡
⎣5

3
1

⎤
⎦ , u2 =

⎡
⎣1

1
0

⎤
⎦ (s = t = 1), u3 =

⎡
⎣ 1
−1
0

⎤
⎦ (s = 1, t = −1).

Note that we do not have to choose vectors that form “Jordan chains” (Equations (2)
and (3) of Section 7.3); that is the advantage of this method. We have

eAtu1 = e2t [Iu1 + t(A −
�

�
�

� ��
0

2I)u1] =

⎡
⎣5e2t

3e2t

e2t

⎤
⎦ ,

eAtu2 = et

[
Iu2 + t(A − I)u2 +

t2

2!
(A
�

�
�

� ��
0

− I)2u2

]
= et

⎡
⎣1

1
0

⎤
⎦ + tet

⎡
⎣0 1 2

0 0 3
0 0 1

⎤
⎦
⎡
⎣1

1
0

⎤
⎦

=

⎡
⎣et + tet

et

0

⎤
⎦ ,

eAtu3 = et

[
Iu3 + t(A − I)u3 +

t2

2!
(A
�

�
�

� ��
0

− I)2u3

]
= et

⎡
⎣ 1
−1
0

⎤
⎦ + tet

⎡
⎣0 1 2

0 0 3
0 0 1

⎤
⎦
⎡
⎣ 1
−1
0

⎤
⎦

=

⎡
⎣et − tet

−et

0

⎤
⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



336 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

Therefore,

eAt = [eAtP]P−1 =
[
eAtu1 eAtu2 eAtu3

]
[u1 u2 u3]

−1

=

⎡
⎣5e2t et + tet et − tet

3e2t et et

e2t 0 0

⎤
⎦
⎡
⎣5 1 1

3 1 −1
1 0 0

⎤
⎦
−1

, (4)

and a little arithmetic will confirm that (4) agrees with the answer obtained in
Example 2, Section 7.3. �

Example 2. Solve the system x′ = Ax + f(t), with

A =

[
12 9
−16 −12

]
, f(t) =

[
t
0

]
, x(0) =

[
1
1

]
. (5)

Solution. The characteristic polynomial of A is p(r) = (12−r)(−12−r)−9(−16) =
r2, so A has r1 = 0 as a double eigenvalue. It may be defective, but we only need its
generalized eigenvectors. Accordingly, we address the homogeneous system

(A − r1I)q1 u = (A − 0I)2u = 0 ⇒
[

12 9
−16 −12

]2

u =

[
0 0
0 0

]
u = 0,

which has the obvious linearly independent solutions u1 = [1 0]T , u2 = [0 1]T .
Applying (3) is particularly easy in this case:

eAtu1 = e0It e(A−0I)t u1

=

[
I + t(A − 0I) +

t2

2!
(A
�

�
�

� ��
0

− 0I)2

] [
1
0

]
=

[
1 + 12t 9t
−16t 1 − 12t

] [
1
0

]
=

[
1 + 12t
−16t

]
.

Similarly,

eAtu2 =

[
1 + 12t 9t
−16t 1 − 12t

] [
0
1

]
=

[
9t

1 − 12t

]
.

Therefore, since [u1 u2] = I,

eAt = (eAt[u1 u2])[u1 u2]
−1 =

[
1 + 12t 9t
−16t 1 − 12t

]
. (6)
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The solution formula from Theorem 1, Section 7.2 gives us

x(t) = eAtx(0) + eAt

t∫
s=0

e−Asf(s) ds

=

[
1 + 12t 9t
−16t 1 − 12t

] [
1
1

]

+

[
1 + 12t 9t
−16t 1 − 12t

] t∫
s=0

[
1 + 12(−s) 9(−s)
−16(−s) 1 − 12(−s)

] [
s
0

]
ds

=

[
1 + 21t + t2/2 + 2t3

1 − 28t − 8t3/3

]
. �

We close with a note on yet another way to calculate the matrix exponential; it is
addressed to readers who have experience with differential equations.

Matrix Exponentiation via Fundamental Solutions

Suppose that, by whatever means, you have compiled n vector functions
{x1(t), x2(t), . . . , xn(t)} that are solutions of the differential equation x′=Ax,
for an n-by-n matrix A. Suppose also that at t= 0 the vectors {x1(0), x2(0), . . . ,
xn(0)} are linearly independent. Then the assembly X(t) = [x1(t) x2(t) . . . xn(t)]
is known as a fundamental matrix for the equation.

Theorem 1 from Section 7.2 states that xi(t) = eAtxi(0) for each solution, so
columnwise we have X(t) = eAtX(0). By forming the inverse, we derive the
formula

eAt = X(t)X(0)−1. (7)

So any differential equation solver is a tool for matrix exponentiation. (Of course,
this is a moot procedure if the objective for calculating the exponential was to
solve the differential equation.)

Exercises 7.4

Use generalized eigenvectors to find eAt for the matrices in Problems 1–12. (They
replicate Problems 7–18 in Section 7.3, where the Jordan form was prescribed for the
solution.)

1.

[
4 −2
0 4

]
2.

[
−5 4
−1 −1

]
3.

⎡
⎣1 0 0

1 1 0
1 1 1

⎤
⎦ 4.

⎡
⎣ 5 −1 0
−1 5 1
0 −1 5

⎤
⎦
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5.

⎡
⎣ 4 −1 −1

2 5 2
−1 1 4

⎤
⎦

6.

⎡
⎣ 2 1 1
−1 −2 0
2 −2 1

⎤
⎦ 7.

⎡
⎢⎢⎣

3 0 1 0
1 −1 0 1
−4 −6 −1 3
2 −6 0 4

⎤
⎥⎥⎦ [Hint: 2 and 1 are eigenvalues]

8.

⎡
⎢⎢⎢⎣

2 −2 −2 4
1 −1 −1 2
−3 3 3 −6
−2 2 2 −4

⎤
⎥⎥⎥⎦ [Hint: 0 is an eigenvalue]

9.

⎡
⎢⎢⎢⎣
−1 1 0 1
−2 3 −1 3
−1 1 0 1
1 −2 1 −2

⎤
⎥⎥⎥⎦ [Hint: 0 is an eigenvalue]

10.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −6 −3 7 3 0
1 −2 −1 2 1 1
0 −10 −5 10 5 1
0 −2 −1 2 1 0
2 −6 −3 6 3 3
0 2 1 −2 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[Hint: 0 and −2 are eigenvalues]

11.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 1 1 0 0
1 1 −1 −1 0 0
0 0 2 0 1 1
0 0 0 2 −1 −1
0 0 0 0 1 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

12.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 1 −1 1 2
−7 −5 5 −10 5 8
−7 −4 4 −8 4 7
−3 −1 1 −2 1 3
−6 −2 2 −4 2 7
−1 −2 2 −3 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

13. The simplicity of the calculations in Example 2 occurs for any matrix A satisfying
Ap = 0 for some power p. Such a matrix is called nilpotent. Explain why a nilpotent
matrix has only 0 as an eigenvalue. Explain why the columns of the identity matrix
are generalized eigenvectors for A.

14. Show that the matrix in Example 2 is, indeed, defective; find its Jordan form and
exponential, and verify that its exponential is given by (6).
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15. Solve Problem 34, Exercises 7.3, using the method of generalized eigenvectors.

16. Solve Problem 35, Exercises 7.3, using the method of generalized eigenvectors.

17. Solve Problem 36, Exercises 7.3, using the method of generalized eigenvectors.

18. Prove that every fundamental matrix for x′ = Ax, where A is n-by-n, must be of
the form eAtC, where C is an n-by-n constant invertible matrix.

7.5 SUMMARY

First-Order Linear Systems of Differential Equations

The formula dx/dt = Ax + f(t) depicts a linear system of nonhomogeneous differ-
ential equations of first order; the matrix x(t) is unknown, and the matrices A and
f(t) are known. The formula is quite general, because single or coupled higher-order
linear differential equations can be expressed in this format with suitable renaming of
variables.

We have restricted our attention to cases where the coefficient matrix A is constant;
this assumption allows us to express the solution using the matrix exponential:

x(t) = eA(t−t1)x(t1) + eAt

t∫
t1

[e−Asf(s)] ds (1)

The success in our utilizing formula (1) rests on our ability to calculate the matrix
exponential eAt.

The Matrix Exponential

The matrix exponential function eAtsatisfies most of the properties of the scalar expo-
nential eat, with the exception of the multiplicative identity eAteBt = e(A+B)t, which is
assured only when AB = BA. It can be computed using Taylor series, but a far more
reliable procedure is to exploit the diagonal form (when it is available):

A = P

⎡
⎢⎢⎢⎢⎣

r1 0 · · · 0

0 r2 · · · 0
...

. . .
...

0 0 · · · rp

⎤
⎥⎥⎥⎥⎦P−1 ⇒ eA = P

⎡
⎢⎢⎢⎢⎣

er1 0 · · · 0

0 er2 · · · 0
...

. . .
...

0 0 · · · erp

⎤
⎥⎥⎥⎥⎦P−1. (2)
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The Jordan Normal Form

A defective matrix, by definition, cannot be diagonalized; however, any matrix is
similar (A = PJP−1) to a matrix J in Jordan form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r1 1 0 0 0 0
0 r1 0 0 0 0
0 0 r2 1 0 0
0 0 0 r2 1 0
0 0 0 0 r2 0
0 0 0 0 0 r3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎣
|J2×2| |0| |0|
|0| |J3×3| |0|
|0| |0| |J1×1|

⎤
⎥⎦ . (3)

This renders the expression for the matrix exponential as

eAt = P

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

er1t ter1t 0 0 0 0
0 er1t 0 0 0 0

0 0 er2t ter2t t2

2 er2t 0
0 0 0 er2t ter2t 0
0 0 0 0 er2t 0
0 0 0 0 0 er3t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

P−1. (4)

From the forms (2), (4) of the matrix exponential, we see that the solutions to homo-
geneous linear constant-coefficient systems are sums of constants times exponentials
for diagonalizable A, and sums of constants times exponentials times polynomials for
defective A (interpret (1) when f = 0).

The dimensions of the Jordan blocks in formula (3) are uniquely determined by A.
This enables a Gauss-elimination-based scheme for deducing the Jordan form, given
the eigenvalues of the matrix.

However, the Jordan form is numerically fragile; it is premised on the equality of
eigenvalues, and as such must be carried out in exact arithmetic.

Matrix Exponentiation via Generalized Eigenvectors

If u is a generalized eigenvector of A corresponding to the eigenvalue r, (A−rI)qu = 0,
then the expression

eAtu = erIt e(A−rI)t u

= ert

[
I + t(A − rI) +

t2

2!
(A − rI)2 + · · · +

tq

q!
(A − rI)q + · · ·

]
u

terminates. Since the primary decomposition theorem guarantees the existence of n
linearly independent generalized eigenvectors {u1, u2, . . . , un} for any n-by-n matrix,

eAtP =
[
eAtu1 eAtu2 · · · eAtun

]

can be computed in finite time, and postmultiplication by P−1 yields eAt. 
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REVIEW PROBLEMS FOR PART III

1. Describe all matrices that are similar to the zero matrix, and all that are similar
to the identity matrix.

2. Show that rI is the only n-by-n diagonalizable upper triangular matrix with all
eigenvalues equal. [Hint: Unless all the coefficients in A − rI are zeros, back
substitution in (A − r I)u = 0 will yield fewer than n linearly independent
solutions.]

3. Each of the basic operations of Gauss elimination, listed in Theorem 1 of Section
1.1, can be represented as left multiplication by an appropriate matrix. What are
the eigenvectors of these matrices? Which of them are defective?

4. Prove or disprove: switching 2 rows of a matrix preserves its eigenvalues.
Find the eigenvectors and eigenvalues of the matrices in Problems 5–8.

5.

[
−3 2

−1 −6

]
6.

[
1 −1

2 1

]
7.

⎡
⎢⎣

1 −2 1

−1 2 −1

0 1 1

⎤
⎥⎦ 8.

⎡
⎢⎣

0 1 −1

0 0 3

1 0 3

⎤
⎥⎦

9. What are the eigenvalues of a 2-by-2 matrix with trace= 4 and determinant= 6?

10. Deflate the following matrix using the technique described in Problem 19 of

Exercises 5.1, replacing its highest eigenvalue by zero:

⎡
⎣1 2 −1

1 0 1
4 −4 5

⎤
⎦ .

11. Find four real, orthogonal eigenvectors for the symmetric matrix

⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦.

12. Find three orthogonal eigenvectors for the Hermitian matrix

⎡
⎣ 2 i 0
−i 2 0
0 0 1

⎤
⎦ .

Find similarity transformations that diagonalize the matrices in Problems
13–19. (See Problems 5–8.)

13.

[
−3 2

−1 −6

]
14.

[
1 −1

2 1

]
15.

⎡
⎢⎣

1 −2 1

−1 2 −1

0 1 1

⎤
⎥⎦ 16.

⎡
⎢⎣

0 1 −1

0 0 3

1 0 3

⎤
⎥⎦

17.

⎡
⎢⎣

1 2 −1

1 0 1

4 −4 5

⎤
⎥⎦ 18.

⎡
⎢⎢⎢⎣

0 1 0 1

1 0 1 0

0 1 0 1
1 0 1 0

⎤
⎥⎥⎥⎦ 19.

⎡
⎢⎣

2 i 0

−i 2 0

0 0 1

⎤
⎥⎦

Find a change of coordinates that eliminates the cross terms in each of the
quadratic forms appearing in Problems 20–25

20. 7x2
1 − 12x1x2 − 2x2

2 21. 4x2
1 + 2x1x2 + 4x2

2 22. x1x2 
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23. 2x2
1 + 2x1x2 + 2x2

2 + 2x1x3 − 2x2x3 + 2x2
3

24. 2x2
1 + 2x2

2 − 2x1x3 − 2x2x3 + 3x2
3 25. x1x2 + x1x3 + x2x3

26. Express the Schur decomposition A = QUQH for the matrix

⎡
⎣ 2 2 −1
−6 −5 6
−2 −1 3

⎤
⎦.

27. For what value of a is the matrix

⎡
⎣ 0 −1 2

a 0 2
−2 −2 0

⎤
⎦ normal? Find an orthogonal

basis of eigenvectors for the resulting matrix.

TECHNICAL WRITING EXERCISES FOR PART III

1. The matrix A =

[
1 0
1 1

]
, as we saw in Example 5 of Section 5.2, has only

one independent eigenvector for its double eigenvalue r = 1. Graph pairs of

independent eigenvectors for the matrices

[
1 0
1 0.9

]
,

[
1 0
1 0.99

]
,

[
1 0
1 0.999

]

approximating A. Do the same for the matrices

[
1 0
0 0.9

]
,

[
1 0
0 0.99

]
,

[
1 0
0 0.999

]

approximating the identity matrix I =

[
1 0
0 1

]
. Write a short paper describing

how one of the eigenvectors “disappears” for the matrix A, but not for I.

2. Suppose that the “second” hand on a stopwatch represents the vector v, and that
another hand points in the direction of Av, for some 2-by-2 matrix A. Write
a paragraph describing the motions of these hands during the course of one
minute, describing in particular what happens as v approaches an eigenvector of
A. Consider the possibilities that A is singular, defective, symmetric, or antisym-
metric. (The MATLAB® function “eigshow.m” demonstrates this for a variety of
matrices A.)

GROUP PROJECTS FOR PART III

A. Positive Definite Matrices

A positive definite matrix is any real n-by-n symmetric matrix A with the property
that

vTAv > 0, for every vector v in Rn
col other than zero. (1)

If every such vTAv is nonnegative, A is said to be positive semidefinite; and A is
negative definite if−A is positive definite. The concept of positive definiteness extends
readily to Hermitian matrices, via the criterion vHAv > 0. 
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Which of the following properties are necessary and/or sufficient for A to be positive
definite?

(a) The eigenvalues of A are positive. [Hint: Apply (1) to the equation Av = λv, and
to the similarity transform equation A = QDQT in Corollary 3, Section 6.1.]

(b) The determinant of A is positive. [Hint: How is the determinant related to the
eigenvalues?]

(c) All the entries of A are positive (nonnegative?). [Hint: Experiment.]

(d) All of the square submatrices centered on the diagonal of A are positive
definite. [Hint: Apply (1) with vectors having appropriate zeros, like v =
[0 0 x3 x4 x5 0 0].]

(e) A is a Gram matrix: that is, the (i, j)th entry of A is uT
i uj, where {u1, u2, . . ., un}

is any basis for Rn
col. (Hint: Convince yourself that A = PTP, where the columns

of P are the basis vectors; then apply (1). Why must the columns be linearly
independent?)

(f) All of the square submatrices of A “anchored at the upper left corner” have
positive determinants. [Hint: This is known as Sylvester’s Criterion, and the
determinants are called principal minors. You may find this problem difficult;
get help from the Internet.]

(g) (Recall Project A, Part I) A admits an LU factorization where U = LT (that
is, A = LLT), with L real and nonsingular. [Hint: This is called the Cholesky
factorization. It roughly halves the computer time and memory to solve systems
Ax = b. Use the Internet if necessary.]

The most common application of positive definiteness occurs in optimization prob-
lems, when the “cost” function to be optimized can be expressed (or approximated) by
a quadratic polynomial f (x) = xTAx + bTx + k. Use Lemma 1, Section 6.2, to show
that if A is positive definite, f (x) has a unique minimum point at x = −A−1b/2.

B. Hessenberg Form

As mentioned at the beginning of Section 6.3, although Gauss elimination reduces a
square matrix A to upper triangular form, the resulting matrix is not similar to A (so
the eigenvalues are altered in the process). Now recall (Section 2.1, Example 2) that
each operation in Gauss elimination is equivalent to left-multiplication by a matrix; so
if we right-multiplied by the inverse of that matrix, we would complete a similarity
transformation (and preserve the eigenvalues).

(a) Show that if left multiplication of the matrix A by the matrix E eliminates the
(2,1) entry of A (by adding an appropriate multiple of the first row to the second),
right multiplication by E−1 adds a multiple of the second column to the first, and
thus “undoes” the elimination. 
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(a)

a a a a a

a a a a a

0

0 0

0 0 0

a a a a

a a a

a a

(b)

x z x x x

x z x x x

0 z y y y

x z x x x

x z x x x

x x x x x

x x x x x

0 y y y y

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

Fig. III.B.1 (a) Hessenberg form and (b) Steps in reduction to Hessenberg form.

(b) Explain why no (finite-time) scheme using simple Gauss elimination could serve
as an eigenvalue calculator. [Hint: Argue that otherwise, we could attain a vio-
lation of Galois’s unsolvability theorem (Section 6.5) by applying the scheme
to the companion matrix (Exercises 6.1, Problem 24) of the polynomial in
question.]

Nonetheless, we can use Gauss elimination to find a matrix similar to A in
Hessenberg form, which is “nearly triangular” in that all entries below the first
subdiagonal are zero. See Figure III.B.1a.

(c) Explain how the strategy depicted in Figure III.B.1b, which eliminates the (3,1)
entry (below the subdiagonal) by adding an appropriate multiple of the second
row to the third, then completes the similarity transformation by adding a multi-
ple of the third column to the second, can be extended to reduce A to Hessenberg
form while preserving its eigenvalues.

(d) Show that if A is in Hessenberg form and is factored into a unitary matrix Q
times an upper triangular matrix R (as in Exercises 6.5 Problem 18), then Q,
as well as RQ, will also be in Hessenberg form. This means that all the matri-
ces occurring in the QR iterations for the estimation of the eigenvalues of A,
described in Section 6.4, will be in Hessenberg form.

Because of the savings in memory and calculating time, a preliminary reduction to
Hessenberg form is a crucial first step in all respectable scientific software featuring
the QR algorithm.

C. Discrete Fourier Transform

The response of many engineering systems, particularly electrical circuits and vibrating
structures, to an input function f (t) is often easier to characterize when the function is
a simple sinusoid,

eiωt = cosωt + i sinωt

(complex, but simple!). So an important tool in engineering analysis is the representa-
tion of a measured function as a linear combination of sinusoids:

f (t) =
∑

n

cneiωnt.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



GROUP PROJECTS FOR PART III 345

The evaluation of the coefficients cn is particularly convenient when the following
conditions are met:

• the function f (t) has been measured (“sampled”) at N discrete times
t0, t1, . . ., tN−1;

• the sampling times are uniform, tj = jΔt : j = 0, 1, . . . , N − 1;

• the angular frequencies ωn are integer multiples (“harmonics”) of the fundamental
frequency ωa := 2π/(NΔt), ωn = nωa, n = 0, 1, . . . , N − 1 .

In such a case, the set of coefficients cn is called the discrete Fourier transform of the
data f (tj).

(a) Formulate the conditions

f (tj) =
∑

n
cneiωntj

as a matrix equation for the unknown numbers cn.

(b) Identify the rows of the coefficient matrix for the system in (a) as rescaled (and
transposed) eigenvectors of the N-by-N circulant matrices described in Problem
12 of Exercises 5.1.

(c) Use the geometric sum formula

m∑
j=0

rj = (1 − rm+1)/(1 − r)

to prove that the rows of the coefficient matrix are orthogonal. What are their
norms?

(d) Construct F, the Hermitian circulant matrix whose first row comprises the
sampled values f (tj). Show that the eigenvalues of F are the elements cn

of the discrete Fourier transform of the data f (tj). Use this observation to
construct another proof of the orthogonality of the rows of the coefficient
matrix.

(e) Using the orthogonality, construct the inverse of the coefficient matrix, and
thereby formulate an explicit formula for the discrete Fourier transform of the
sampled values f (tj).

Note that the resulting formula involves taking inner products of the sampled values
of f (t) with sampled values of eiωnt. By taking advantage of the redundancies exhibited
in the following table, one can considerably accelerate the speed of the calculation; this
is the essence of the Fast Fourier Transform. 
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t cos t sin t
0 1.000 0
π/6 0.866 0.500

2π/6 0.500 0.866

3π/6 0 1.000

4π/6 −0.500 0.866

5π/6 −0.866 0.500

π −1.000 0

7π/6 −0.866 −0.500

8π/6 −0.500 −0.866

9π/6 0 −1.000

10π/6 0.500 −0.866

11π/6 0.866 −0.500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D. Construction of the SVD

In Section 6.4, we saw that in a singular value decomposition of an m-by-n matrix
A = UΣVT , the nonzero singular values in Σ were the squares roots of the eigenvalues
of ATA. Here you will show how a SVD factorization can be computed, by justifying
the steps in the following algorithm:

(a) Diagonalize the (symmetric) matrix ATA = QDQT , with Q orthogonal and the
diagonal entries of D in nonincreasing order. Construct the m-by-n matrix Σ

from D by taking square roots of the nonzero eigenvalues. Also construct the
pseudoinverse Σψ by transposing and inverting:

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 σr 0 0 0
0 0 0 0 0 0

0 0 0 0
. . . 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

m−by−n

:=

[
Σr 0
0 0

]
m−by−n

,

ΣT =

[
Σr 0
0 0

]
n−by−m

, Σψ =

[
Σ−1

r 0
0 0

]
n−by−m

. (1)

(b) Set V equal to the orthogonal matrix Q. Thus VTV = In (the n-by-n identity). 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



GROUP PROJECTS FOR PART III 347

(c) Establish that the eigenvector relationship for ATA implies ATAV =
VD = VΣTΣ.

(d) Calculate the m-by-m matrix AVΣψ. Justify the following:

(AVΣψ)T(AVΣψ) =

[
Σ−1

r 0
0 0

]
m−by−n

VTATAV
[
Σ−1

r 0
0 0

]
n−by−m

=

[
Σ−1

r 0
0 0

]
m−by−n

VTVD
[
Σ−1

r 0
0 0

]
n−by−m

=

[
Σ−1

r 0
0 0

]
m−by−n

ΣTΣ

[
Σ−1

r 0
0 0

]
n−by−m

=

[
Ir 0
0 0

]
m−by−m

, (2)

and conclude that the first r columns of AVΣψ are orthogonal unit vectors and
its final m − r columns are all zero vectors:

AVΣψ =

[
u1 · · · ur 0 · · · 0

]

m−by−m

. (3)

(e) Argue that

AVΣψΣVT = AV
[

Ir 0
0 0

]
n−by−n

VT = A − AV
[

0 0
0 In−r

]
n−by−n

VT . (4)

(f) Continuing from (4), show that

AV
[

0 0
0 In−r

]
n−by−n

= A
[
0 · · · 0 vr+1 · · · vn

]
. (5)

(g) Prove that because vr+1, ..., vn are eigenvectors of ATA with eigenvalue zero, they
are null vectors of A:

ATAvk = 0vk ⇒ ||Avk|| = 0, k = r + 1, . . . , n. (6)

(h) Equations (4) – (6) demonstrate that (AVΣψ)ΣVT equals A. The Gram–Schmidt
algorithm shows that we can replace the final n − r columns of (AVΣψ) in (3)
with orthonormal vectors so that the resulting matrix U is orthogonal:

U =

[
u1 · · · ur ur+1 · · · um

]

m−by−m

.

And the form of Σ in (1) shows that the final m − r columns of (AVΣψ) don’t
matter in the product (AVΣψ)ΣVT = A. Therefore, A = UΣVT . � 
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Work out singular values decompositions for the following matrices.

(i)

[
3 5
4 0

]
(j)

[
1 −2
−3 6

]
(k)

⎡
⎣ 1 1
−1 1
1 0

⎤
⎦ (l)

[
0 1 0
0 0 1

]
(m)

⎡
⎣2 0

0 −1
0 0

⎤
⎦

E. Total Least Squares

(In collaboration with Prof. Michael Lachance, University of Michigan–Dearborn)
In Example 2, Section 4.3 we described how to fit a straight line to a scatter plot of

points {(xi, yi)}N
i=1 by choosing m and b so as to minimize the sum of squares of errors

in y,
∑N

i=1[yi − (mxi + b)]2. Now we shall see how the singular value decomposition
enables us to find the line that minimizes the deviations of both x and y from the line.

To clarify this, consider Figure III.E.1a, a scatter plot like Figure 4.6 in Section 4.3.
To simplify the derivation initially, we choose a straight line through the origin, and
tabulate the distances from the data points to this line.

(xi, yi)

(a)

n

X

X

X

X

X

XX

n

(xi, yi)

(b)

(x0, y0)

X

X

X

X

XXX

Fig. III.E.1 (a) Scatter plot #1. (b) Scatter plot #2.
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(a) Argue that this distance is the projection of the vector from the origin to the data
point, ri = xii + yij, onto the direction normal to the line, and is given by the
magnitude of the dot product ri · n = [xi yi][n1 n2]T when n = nii + n2j is a unit
normal to the line.

(b) Therefore the sums of squares of these distances is given by the norm-squared
of the vector

An :=

⎡
⎢⎢⎢⎣

x1 y1

x2 y1
...

...
xN yN

⎤
⎥⎥⎥⎦
[

n1

n2

]

Our goal is to choose n so that ||An||2 is minimal. For this purpose, replace A
by its singular value decomposition,

An = UΣVTn = U

⎡
⎢⎢⎢⎢⎢⎣

σ1 0
0 σ2

0 0
...

...
0 0

⎤
⎥⎥⎥⎥⎥⎦

VTn,

and show that n should be taken to be the second column of V (to minimize
||An||2).

(c) Show that total least squares achievable by a straight line through the origin is
the square of A’s second singular value, σ2

2.

(d) To find the total least squares line passing through a point (x0, y0), argue from
Figure III.E.1b that the distances are given by the projections of the vectors from
the point (x0, y0) to the points (xi, yi) onto the normal.

(e) Prove the following corollary.

Corollary E.1. The straight line passing through (x0, y0) and achieving the total least
squares for the data {(xi, yi)}N

i=1 is normal to the second column of V in the singular
value decomposition UΣVT of the matrix

A =

⎡
⎢⎢⎢⎣

x1 − x0 y1 − y0

x2 − x0 y2 − y0
...

...
xN − x0 yN − y0

⎤
⎥⎥⎥⎦ .

Typically the point (x0, y0) is taken to be the centroid of the data,

(ΣN
i=1xi/N,ΣN

i=1yi/N).

It is rather more complicated to incorporate the choice of (x0, y0) into the minimization. 
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F. Fibonacci Numbers

The Fibonacci numbers Fn form a sequence of integers defined by the recurrence
formula

Fn = Fn−1 + Fn−2

and the starting values F0 := 0, F1 := 1. Thus F2 = F1+F0 = 1, and F3 = F2+F1 = 2,
F4 = 3, etc. In this project we study the behavior of the Fibonacci sequence and its
relation to the famous Golden Ratio:

ϕ =
1 +

√
5

2
.

The connection is via properties of the matrix

A:=

[
1 1
1 0

]
.

(a) Show that the eigenvalues of A are ϕ and −1/ϕ .

(b) Derive an orthogonal matrix Q that diagonalizes A via similarity.

(c) Use the result of (b) to prove that for k = 0, 1, 2, . . .

Ak =
1

1 + ϕ2

⎡
⎢⎣ ϕk+2 +

(
−1
ϕ

)k
ϕk+1 +

(
−1
ϕ

)k−1

ϕk+1 +
(

−1
ϕ

)k−1
ϕk +

(
−1
ϕ

)k−2

⎤
⎥⎦ .

(d) Writing

Ak =

⎡
⎣a(k)

11 a(k)
12

a(k)
21 a(k)

22

⎤
⎦, A0 = I,

show that a(k)
11 = a(k−1)

11 + a(k−2)
11 , a(0)

11 = 1, a(1)
11 = 1. Thereby conclude that

a(k)
11 = Fk+1 for all k.

How are the three other sequences of entries of Ak related to the Fibonacci
sequence?

(e) The Padovan sequence

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, . . .

is named after architect Richard Padovan. These numbers satisfy the recurrence
relation Pn = Pn−2 + Pn−3 with initial values P0 = P1 = P2 = 1. The ratio
Pn+1/Pn of two consecutive Padovan numbers approximates the plastic constant
P = 1.3247 . . . . Develop a theory analogous to the Fibonacci analysis for the
Padovan sequence, starting with a suitable 3-by-3 matrix A. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                

              
 



ANSWERS TO ODD NUMBERED
EXERCISES

Exercises 1.1

1. (a) x1 = −5/3, x2 = 7/3, x3 = −3, and x4 = 1.

(b) x1 = 3, x2 = 2, and x3 = 0.

(c) x1 = −1, x2 = 0, x3 = 1, and x4 = 1.

(d) x1 = x2 = x3 = 1.

3. x1 = −1, x2 = 2, and x3 = −2.

5. x1 = 6, x2 = 1/3, x3 = 2/3, and x4 = −6.

7. x1 = −1.00, x2 = 2.000. Requires 3 divisions, 3 multiplications, and 3
additions.

9. x = −1.00, y = 2.00. Requires 2 divisions, 6 multiplications, and 3 additions.

11. x1 = 1.63, x2 = −2.41, x3 = 1.28. Requires 6 divisions, 11 multiplications,
and 11 additions.

13. (a) To two decimal places,

x1 = 14.21, x2 = −1.38, x3 = 3.63.

Requires 3 divisions, 3 multiplications, and 3 additions.

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 
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(b) To three decimal places,

x1 = 5.399, x2 = −6.122, x3 = 4.557, x4 = −4.000.

Requires 4 divisions, 6 multiplications, and 6 additions.

15. No. One must subtract the current, not the original, first equation from the
third.

17. x2 = (y − 1)2 implies x = ±(y − 1).

19.

ax1 + by1 = c

ax2 + by2 = c.

There is always a line passing through two given points, and any multiple of a
solution (a, b, c) is also a solution.

21.

a0 +a1x0 + · · ·+ anxn
0 = y0

a0 +a1x1 + · · ·+ anxn
1 = y1

...
a0 +a1xn + · · ·+ anxn

n = yn

23.

x1 = 1 + i, x2 = 0, x3 = 0.

25. One cannot perform division in the integer system. 6x− 4y is even but 9 is odd.
27.

x mod 7 = 6, y mod 7 = 3.

The system is inconsistent in integers modulo 6.

29.

Model n Typical PC Tianhe-2

Thermal Stress 104 133.333 1.97 × 10−5

American Sign Language 105 1.33 × 105 0.020
Chemical Plant Modeling 3 × 105 3.59 × 106 0.532
Mechanics of Composite Materials 106 1.33 × 108 19.723
Electromagnetic Modeling 108 1.33 × 1014 1.97 × 107

Computation Fluid Dynamics 109 1.33 × 1017 1.97 × 1010
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Exercises 1.2

1. x1 = 3, x2 = 2.

3. For the first system,

x3 = 10, x2 = 2, x1 = −4.

For the second system,

x3 = −2, x2 = −2, x1 = 2.

5. (a)

# (a1,7) = 43; # (a7,1) = 7;

# (a5,5) = 33; # (a7,8) = 56.

(b)

#4 : a4,1; #20 : a5,4; #50 : a5,10.

(c)

# of aij = m(j − 1) + i.

(d) j = (p/m) rounded up, i = p − m(j − 1).

7. (a) x1 = −1, x2 = 2, and x3 = −2.

(b) The solutions to the given systems, respectively, are

x1 =
3
2

, x2 =
1
2

, x3 = −3
2

;

x1 = −1 , x2 = 0 , x3 = 1 ;

x1 =
1
2

, x2 = −1
2

, x3 =
1
2

.

9. To eliminate (say) a12 at the outset entails changing a13 and a14 as well as the
right-hand side, but eliminating it at the end entails changing only the right-hand
side. 
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Exercises 1.3

1.

x1 = 0, x2 =
1
3

, x3 =
2
3

, x4 = 0.

3. Inconsistent.

5. Inconsistent.

7. First system: x3 = s, x4 = t, x2 =
5t−3s

3 , x1 =
3−4t+3s

3 .
Second system: x3 = s, x4 = t, x2 =

5t−3s
3 , x1 =

3s−4t
3 .

Third system is inconsistent.

9.

x1 = 1 + s − 2t, x2 = s, x3 = t, x4 = 3, x5 = −2.

11. First system:

x1 = −2
3

+ 2s, x2 = s, x3 =
1
3
− 2s, x4 = −1

3
, x5 =

1
3

.

Second system is inconsistent.
Third system:

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

2s
s

−2s
0
0

⎤
⎥⎥⎥⎥⎦ .

13. Inconsistent if α �= 4. Otherwise,

x3 = s, x2 =
2 − 2s

3
, x1 =

1 − s
3

.

(infinitely many solutions).

15. No solution for any α.

17.

x1 = s, x2 =
2 + 3s

6
, x3 = −1 + 3s

3
, x4 = −1

3
, x5 =

1
3

. 
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19. (a) Infinitely many solutions.

(b) Unique solution.

(c) No solution.

(d) Infinitely many solutions.

Exercises 1.4

1. Yes: rank is 1.

3. Yes: rank is 3.

5. Yes: rank is 2.

7. Consistent, infinitely many solutions.

9. Consistent, infinitely many solutions.

11. Consistent, unique solution.

13. (a) All α.

(b) α = 5.

15. (a) 3 columns, rank = 3, no free parameters.

(b) 6 columns, rank = 3, 3 free parameters.

(c) 6 columns, rank = 3, 3 free parameters.

17. (Simple substitution)

19. (Simple substitution)

21. (Simple substitution)

23. (a) At the left node, I2 is incoming and I1 and I3 are outgoing currents. In the
loop 1, the current I3 passing through the resistance R = 5 (Ω) drops 5I3

(V), followed by a voltage rise in the source of 5 (V). Thus

−(5)I3 + 5 = 0 ⇔ 5I3 = 5.

And so on.

(b) The echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0 0 0
... 0

0 1 0 −1 −1 1
... 0

0 0 5 0 0 0
... 5

0 0 0 3 0 0
... 1

0 0 0 0 0 2
... 6

0 0 0 0 0 0
... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(c) The echelon form is changed to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0 0 0
... 0

0 1 0 −1 −1 1
... 0

0 0 5 0 0 0
... 6

0 0 0 3 0 0
... 1

0 0 0 0 0 2
... 6

0 0 0 0 0 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(d) The parametrized solution shows that increasing I5 by t units increases I1

and I2 by the same amount but does not affect the currents I3, I4, and I6.

25. (a)

x1 −4x3 = 0
x1 −2x2 +x3 = 0
x1 +2x2 +4x3 = 0.13,

whose solution is

x3 = 0.01, x2 = 0.025, x1 = 0.04.

(b) The equilibrium conditions for forces say that

F1 −F3 = 0
F1 +F2 +F3 = 650

⇔

⎡
⎣ 1 0 −1

... 0

1 1 1
... 650

⎤
⎦

3 columns, rank = 2, so one free parameter (infinitely many solutions).

Exercises 1.5

1. Without pivoting, 4-digit computation yields

x2 = 9.962 × 10−2, x1 = 1.776 × 104.

With pivoting,

x2 = 1.000, x1 = 10.00. 
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3. The system satisfying the given conditions is, in the matrix form,

⎡
⎣ 0.004 2.8

... 252.8

1 1
... 290

⎤
⎦

Without pivoting, 3-digit computation yields

x2 = 89.9, x1 = 270.

With pivoting,

x2 = 89.9, x1 = 200.

5. (b) The largest value is 2n−1 + s, occurring in the (n, n + 3) entry.

(c) For the first system, the solution form is typified by

x5 = 1,

x4 = 0,

x3 = 0,

x2 = 0,

x1 = 0;

for the second system by

x5 = s/16,

x4 = −s/2,

x3 = −s/4,

x2 = −s/8,

x1 = −s/16;

and for the third system, the value of x4 will be the sum of values of this
variable in the first two systems, namely, x4 = 0 + (−s/2) = −s/2.

Exercises 2.1

1. (a)

[
4 4
2 5

]
.
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(b)

[
4 0
10 15

]
.

3. (a)

AB =

⎡
⎣ 18 14 4

16 20 4
15 23 4

⎤
⎦ .

(b)

BA =

⎡
⎣ 1 −1 9

14 23 9
15 22 18

⎤
⎦ .

(c)

A2 =

⎡
⎣ 8 12 12

9 8 12
11 12 12

⎤
⎦ .

(d)

B2 =

⎡
⎣ 16 3 3

9 24 3
25 27 6

⎤
⎦ .

5. (a)

AB =

⎡
⎣ −20 3 −15

23 3 −3
10 −6 −6

⎤
⎦ .

(b)

AC =

⎡
⎣ −7 −11 −15

−7 1 25
−8 8 20

⎤
⎦ .

(c)

⎡
⎣ −27 −8 −30

16 4 22
2 2 14

⎤
⎦ .
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9. For example,

A =

[
1 −1
1 −1

]
.

11. For example, one can choose

A = 2C, B = C or A = C + I, B = I,

where I is the 2-by-2 multiplicative identity matrix.

13. (a) True (b) False (c) True (d) False

15. (a) We set

A =

⎡
⎣ 0 1 3

−1 7 −9
6 −4 0

⎤
⎦ , x =

⎡
⎣ x1

x2

x3

⎤
⎦ , b =

⎡
⎣ 0

−9
2

⎤
⎦ .

Then the given system is equivalent to Ax = b.

(b) Let

A =

⎡
⎣ −2 3 0

−1 2 1
−1 −1 3

⎤
⎦ , t =

⎡
⎣ x

y
z

⎤
⎦ , b =

⎡
⎣ −7

6
−3

⎤
⎦ .

With these notations, the system can be written in matrix form as At = b.

17. (a)

B =

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦ .

(b)

B =

⎡
⎣ 1 0 0
−1/2 1 0

0 0 1

⎤
⎦ .

(c)

B =

⎡
⎣ 1 0 0

0 2 0
0 0 1

⎤
⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



360 ANSWERS TO ODD NUMBERED EXERCISES

19. (a)

⎡
⎣ 1 0 0

−3 1 0
0 0 1

⎤
⎦
⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦A.

(b)

B(2) =

⎡
⎣ 1 0 0

0 1 0
0 3 1

⎤
⎦
⎡
⎣ 1 0 0

−1 1 0
−3 0 1

⎤
⎦B.

(c)

C(2) =

⎡
⎣ 1 0 0

0 1 0
0 1 1

⎤
⎦
⎡
⎣ 1 0 0

−1 1 0
0 0 1

⎤
⎦C.

21. (a) 0.2875.

(b)

[
0.75 0.6
0.25 0.4

]
xn.

(c) 1, 1.

(d) Yes.

23. (a) A(Bv) (b) (A + B)v

Exercises 2.2

1. (a)

[ √
3/2 −1/2

1/2
√

3/2

]
.

(b)

[
−3/5 −4/5
−4/5 3/5

]
.

(c)

[
1/2 1/2
1/2 1/2

]
.
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3. The matrix A with a1,1 = 1 and all other zero entries shrinks the entire y-axis
to the origin.

5. (a)

1
10

[
7 −1
−7 1

]
.

(b)

1
10

[
3 + 4

√
3 −4 + 3

√
3

−4 + 3
√

3 −3 − 4
√

3

]
.

7.

[
0 −1/2

1/2 0

]
.

9. Four counterclockwise rotations of a vector by 45◦ are equivalent to one rotation
by 4 × 45◦ = 180◦, whose rotation matrix is

[
−1 0
0 −1

]
= −I.

11. (a)

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦ .

(b)

⎡
⎣ 1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3

⎤
⎦ .

Exercises 2.3

1.

⎡
⎣ 1 0 5

0 1 0
0 0 1

⎤
⎦ .
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3.

⎡
⎣ 1 0 0

0 1/5 0
0 0 1

⎤
⎦ .

5.

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

7.

[
4/9 −1/9
1/9 2/9

]
.

9. Not invertible.

11.

⎡
⎢⎢⎣

0 1/2 0 0
0 0 −1 1
0 0 1/2 0
1 −3/2 0 0

⎤
⎥⎥⎦ .

13.

A−1 =

⎡
⎣ 7 −9/4 −3/2

4 −1 −1
−2 3/4 1/2

⎤
⎦ .

(a)

⎡
⎣ 5/2

1
−1/2

⎤
⎦ .

(b)

⎡
⎣ −153/4

−20
47/4

⎤
⎦ .
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(c)

⎡
⎣ 15/2

3
−5/2

⎤
⎦ .

15.

⎡
⎣ −3 3 −5

9 −8 15
−5 5 −7

⎤
⎦ .

17. (a) False (b) True (c) True (d) True.

19. If ad − bc = 0 the rank of the matrix is less than 2:
(i) if d = 0 then either the second column or the second row is zero;

(ii) if c = 0 then either the first column or second row is zero;

(iii) if cd �= 0 then a/c = b/d and one column is a multiple of the other.

21.

(ABC)T = (A(BC))T = (BC)TAT = CTBTAT .

23.

Mrot(θ)
−1 = Mrot(−θ) =

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

=

[
cos θ sin θ
− sin θ cos θ

]
= Mrot(θ)

T .

25.

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0.1 0.1 0.1 0.1 1.1

⎤
⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

− 1
11

− 1
11

− 1
11

− 1
11

10
11

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Exercises 2.4

1. 0.

3. −6.

5. 66 + 6i.

7. abdg. 
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9. dx3 − cx2 + bx − a.

11. (x − 1)3(x + 3).

13.

det(A) = ax + b,

a linear function of x. Examples demonstrating the possibilities are:

det

⎡
⎣ 1 0 0

0 0 x
0 0 0

⎤
⎦ = 0 for any x;

det

⎡
⎣ 1 0 0

0 1 x
0 0 1

⎤
⎦ = 1 �= 0 for any x;

det

⎡
⎣ 1 0 0

0 x 0
0 0 1

⎤
⎦ = x = 0 only for x = 0.

15. 24

17. (a) det(A).

(b) 3 · det(A).

(c) −det(A).

(d) det(A).

(e) 81 · det(A).

(f) det(A).

(g) 3 · det(A).

(h) det(A).

19. (a)

det

⎡
⎢⎢⎢⎢⎢⎣

1 x x2 . . . xn−1

x 1 x . . . xn−2

...
xn−2 xn−2 xn−3 . . . x
xn−1 xn−2 xn−3 . . . 1

⎤
⎥⎥⎥⎥⎥⎦
=
(
1 − x2

)n−1
.

for any n.

(b) Determinant = 1 for any n. 
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21. Let P(x) = αx4 + βx3 + γx2 + δx + ε denote the determinant. Then

α = 1, β = a + f + k + p,

ε = det

⎡
⎢⎢⎣

a b c d
e f g h
i j k l
m n o p

⎤
⎥⎥⎦ .

23. (b)

a2 = cof(1, 3) = (−1)1+3det

[
1 x1

1 x2

]
= x2 − x1.

(c) z = x1 and z = x2.

(d)

det(V) = (x2 − x1)(z − x1)(z − x2).

(e)

(x1 − x2)(x1 − x3)(x2 − x3)(z − x1)(z − x2)(z − x3).

(The generalization is clear.)

Exercises 2.5

1. −6

3. ≈ −0.169748, accurate to four decimal places.

5.

[
0 1
1 0

]
.

7.

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦ .
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9.

⎡
⎣ 1 0 0

0 1/β 0
0 0 1

⎤
⎦ .

11.

⎡
⎣ 1 2 1

1 3 2
1 0 1

⎤
⎦ .

13.

x1 = 0, x2 = 2.

15. x1 = 2, x2 = 0, x3 = − 3
2 .

17.

dx1

dα
=

cof(2, 1)
|A| ;

dx2

dα
=

cof(2, 2)
|A| ;

dx3

dα
=

cof(2, 3)
|A| .

19. (a)

dx1

dα
=

8
(7 − 2α)2

,

(b)

dx2

dα
= − 4

(7 − 2α)2
, (α �= 7/2).

21. The determinants are equal in the 4-by-4 and n-by-n cases.

23.

D1 = det[a] = a;

D2 = a2 − b2;

D3 = a3 − 2ab2.

25. (a)

Fn = aFn−1 + b2Fn−2. 
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(b)

F1 = 1; F2 = 2;

F3 = 3; F4 = 5;

F5 = 8; F6 = 13.

27. (a) True

(b) False.

(c) True.

(d) True.

29. (a)

⎡
⎣ 1 −1/2 −1/12

0 1/4 −5/24
0 0 1/6

⎤
⎦ .

(b)

⎡
⎣ −13/4 5/2 −1/4

5/2 −2 1/2
−1/4 1/2 −1/4

⎤
⎦ .

31.

∣∣BAB−1
∣∣ = |A| ; ∣∣BABT

∣∣ = |B|2 |A| .

REVIEW PROBLEMS FOR PART I

1. The system is consistent if and only if γ = 5. In this case, the system has
infinitely many solutions.

3. (a)

[
10
34

]
.

(b)

[
0 4 − 4

]
. 
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(c)

⎡
⎣ 4 8 12

6 12 18
−2 −4 −6

⎤
⎦ .

(d)

[
2 3 −1
4 2 3

]
.

(e)

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

(f)

⎡
⎣ −1 0 25

0 1 0
0 0 −1

⎤
⎦ .

5. For example,

A = B =

[
0 1
0 0

]

7. (a) E results when the identical operation is performed on the rows of the
identity.

(b) E results when the inverse operation is performed on the rows of the identity.

(c) The operations that EA performs on the rows of A are performed, instead,
on the columns of A.

(d) Switch the corresponding columns of A−1.

(e) Multiply the second column of A−1 by 1/7.

(f) Subtract the second column of A−1 from its first column.

9. Let M be an r-by-s matrix, A = [ak] is the 1-by-r row vector with ai = 1 and
all other zero entries, and B = [bk] is the s-by-1 column vector with bj = 1 and
all other zero entries.

11. (a) True. (b) True. (c) True. (d) False. (e) False. (f) False. For example,

A =

[
1 0
1 0

]
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13. (Multiply (I + K) x = x + Kx = 0 on the left by xT .)

15. (a)

dx1

dγ
= 1,

dx2

dγ
=

6
5

,
dx3

dγ
=

3
5

.

(b)

dx1

dγ
= − 125

(5γ − 5)2
,

dx2

dγ
= − 175

(5γ − 5)2
,

dx3

dγ
= − 25

(5γ − 5)2
.

Exercises 3.1

1. (a) Yes (b) No: [1 −1 0] + [1 0 −1] = [2 −1 −1]
(c) Yes (d) No: [1 1 0] + [0 0 1] = [1 1 1]

3. (a) Yes (b) Yes

(c) No: f (x) ≡ 1, multiplied by 2, does not belong.

(d) Yes

5. (a) p(x) in P2 implies p(x) = p(1) + p′(1)(x − 1) + p′′(1)(x − 1)2/2 (in P2).

(b) Identify ai + bj + ck with a + bx + cx2. Then linear combinations of vec-
tors correspond to linear combinations of polynomials. But no 2 vectors
span R3.

7. (a) Yes (b) Yes (c) Yes

(d) No. The zero matrix does not belong.

(e) Yes (f) Yes

9. (a) True (b) False (Take v1 = 0.)

(c) True (d) True (0)

11. (a) [0 0 0 ...] (b) Yes

(c) Yes (d) Yes

13. (Verify the definition.)

15. (Verify the definition.)

17. A two-dimensional subspace must be the whole plane; a one-dimensional sub-
space must be a line through the origin; and the origin, alone, is a subspace.
For R3

col, there is the whole space, planes through the origin, lines through the
origin, and the origin.

19. No.

21. Test x = c1ex + c2 sin x at 0 and π. 
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Exercises 3.2

1. (a) No (b) Yes (c) Yes (d) Yes

3. b2

5. Row reduce

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 2
... 2 0

0 1 −3
... −2 −1

0 1 −3
... −2 −1

1 3 −7
... −4 −3

⎤
⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0
... 1 0 2

−2 −1
... 0 1 −3

−2 −1
... 0 1 −3

−4 −1
... 1 3 −7

⎤
⎥⎥⎥⎥⎥⎥⎦

to show they are both consistent.

7. Independent

9. Independent

11. Dependent

13. Independent

15. Independent

17. bc �= 1.

19. (a) True (b) False (c) False

(d) True (e) True

21. If a nontrivial linear combination av1 + bv2 + cv3 + dv4 were zero, then d4 must
be 0; so it would reduce to a nontrivial linear combination of v1, v2, v3.

23. A vanishing linear combination of AD, BD, CD, postmultiplied by D−1, yields
a vanishing linear combination of A, B, C.

25. Ax is a linear combination of the columns of A; A2x is a linear combination of
the columns of Ax; and so on. Now apply the linear combination composition
principle.

27. (a) aw1 + bw2 = 0 implies 2a + 4b = 0 and −3a − 3b = 0, which implies
a = b = 0.

(b) aw1 +bw2 +cw3 = 0 implies a+4b = −3b+2c = −5c = 0, which implies
a = b = c = 0.

29. The dot products are the entries of

⎡
⎣ vT

1

vT
2

vT
3

⎤
⎦ [ n

]
.
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If these are zero for nonzero n, the vectors are linearly dependent, and con-
versely.

Exercises 3.3

1. (For example) [1 0 −1 0 0 0], [0 1 −1 0 0 0], [0 0 0 1 0 −1], and [0 0 0 0 1 −1].

3. (For example) [1 −1 0 0 0 0], [0 0 1 −1 0 0], and [0 0 0 0 1 −1].

5. (For example) rows 1–3 for the row space; columns 1–3 for the column space;
the null space contains only 0.

7. (For example) rows 1–4 for the row space; columns 1, 2, 4, and 5 for the column
space; [−1 −0.5 1 0 0 0]T for the null space.

9. (For example) rows 1–3 for the row space; columns 1–3 for the column space;
the null space contains only 0.

11. (For example) rows 1–4 for the row space; columns 1–4 for the column space;
[0 −1 1 −1 1]T for the null space.

13. No.

15. Dimension = 15: all upper triangular matrices with a single “one” entry and the
rest zeros.

17. Dimension = 10: all antisymmetric matrices with a single “one” above the
diagonal, a corresponding “minus one” below the diagonal, and the rest zeros.

19. Dimension = 20: All matrices with a single “one” in the first four rows, a “minus
one” in the corresponding column, and the rest zeros.

21. One.

23. Two. One. Two.

25. (For example) any two canonical basis vectors and [1 2 3].

27. Every column is a multiple of v; yes.

29.

⎡
⎣1 1

1 0
0 1

⎤
⎦
[

1 2 0 −1 1 0
0 0 1 2 −2 0

]

31. All α �= 0.

33. 4 and 13.

35. For example, Span {[1 1 0], [0 1 1] }.

37. AB comprises linear combinations of the columns of A; also it comprises linear
combinations of the rows of B. Thus its rank cannot exceed the rank of either
A or B. 
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39. (a) 1. (b) 2. (c) 2.

41. [1 −1 3].

43. [1/3, 2/3].

Exercises 4.1

1. [5 10] = 11 [3/5 4/5] + 2 [−4/5 3/5] .

3. [3 6 9] = 11 [1/3 2/3 2/3]+ 2 [−2/3 − 1/3 2/3]+ (−1) [−2/3 2/3 − 1/3] .

5. {[−4/5 3/5] , [3/5 4/5]}.

7. {[1/2 − 1/2 1/2 − 1/2] , [1/2 1/2 1/2 1/2]}.

9. {[1/2 1/2 − 1/2 − 1/2] , [1/2 − 1/2 1/2 − 1/2] ,
[−1/2 − 1/2 − 1/2 − 1/2]}.

11. (a) (For example) [1 0] and [5 7]. (b) (For example) {[1 2 3] , [1 0 0] , [0 1 0]} .

13. (For example) [1 −1 −1 1].

15. (For example) [1 0 −1 0] and [0 1 0 −1].

17. (For example)

{[√
5

5
2
√

5
5

0 0

]
,

[
−2

√
30

5

√
30
5

5
√

30
5

0

]
,

[
6
√

370
370

− 3
√

370
370

− 18
√

370
370

√
370

370

]}
.

19. (For example)

{[
− 2√

6

1√
6

1√
6

0

]T

,

[
− 4√

102
− 1√

102
− 7√

102

6√
102

]T
}

.

21.

sinφ1 sinφ2 cos(θ1 − θ2) + cosφ1 cosφ2 = 0.

23. Following the steps in Problem 22, it follows that the equality holds if and only
if f (x) = ‖v + xw‖2 has a (real) root x0. However, ‖v + x0w‖ = 0 implies
v + x0w = 0.

25.

||v + w||2 + ||v − w||2 = (v + w) · (v + w) + (v − w) · (v − w)

= v · v + 2(v · w) + w · w + v · v − 2(v · w) + w · w

= 2||v||2 + 2||w||2.
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Exercises 4.2

1. ±1.

3. (a)

[
a 0
0 a

]
or

[
0 a
a 0

]
, where a = ±1.

(b)

[
a −b
b a

]
, where a2 + b2 = 1.

5.

⎡
⎣ cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ

⎤
⎦ .

7.

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ,

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦ ,

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ ,

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦ ,

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦ ,

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ .

9.

⎡
⎣ 0.2720 0.6527 0.7071

0.6527 0.4148 −0.6340
0.7071 −0.6340 0.3132

⎤
⎦, for example.

11.

⎡
⎢⎢⎣

1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2
1/2 −1/2 −1/2 1/2

⎤
⎥⎥⎦, for example.

13.

⎡
⎣ 0.5345 0.2673 0.8018

0.2673 0.8465 −0.4604
0.8018 −0.4604 −0.3811

⎤
⎦, for example. No.

15.

⎡
⎣ 1.0000 0 0

0 0.3162 0.9487
0 0.9487 −0.3162

⎤
⎦, for example. Yes.

17. No. (b) The point [1 0], reflected about y = x, is sent to [1 0] , and then to
itself when reflected about the y−axis. However, when reflected first about the
y−axis, it is sent to [−1 0] , and then to [0 − 1] when reflected about the line
y = x.

19. (a) The hint, which is directly verified, shows that (I − A) has only the zero null
vector.

Exercises 4.3

1. x =

[
−1
1/2

]
; error=

⎡
⎢⎢⎣

1/2
−1/2
−1/2
1/2

⎤
⎥⎥⎦. 
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3.

⎡
⎣ 16 16 16

16 20 20
16 20 24

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ −2

−3
−4

⎤
⎦ .

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 1/8

0
−1/4

⎤
⎦.

5. x = [0.5 0.5 0.25]T , error = [0.25 − 0.25 − 0.25 0.25]T .

7. m =
Sxy

Sx2
.

9. m =
Sxy − b0Sx

Sx2
.

17.

b =
1

NSx2 − S2
x
log

yNx1
1 yNx2

2 . . . yNxN
N

(y1y2 . . . yN)Sx

log c =
1

NSx2 − S2
x
log

(y1y2 . . . yN)Sx2

(yx1
1 yx2

2 . . . yxN
N )Sx

.

19.

⎡
⎢⎢⎢⎣

1 1 . . . 1
e−x1 e−x2 . . . e−xN

...
...

. . .
...

e−kx1 e−kx2 . . . e−kxN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 e−x1 . . . e−kx1

1 e−x2 . . . e−kx2

...
...

. . .
...

1 e−xN . . . e−kxN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c0

c1
...

ck

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 1 . . . 1
e−x1 e−x2 . . . e−xN

...
...

. . .
...

e−kx1 e−xN . . . e−kxN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎦ .

Exercises 4.4

1. (a) No; (b) Yes; (c) No; (d) Yes; (e) Yes; (f) Yes.

3.
{

1,
√

3(2x − 1),
√

5(6x2 − 6x + 1)
}

.

5. If c0 + c1(x − 1) + · · · + cn(x − 1)n = 0, differentiate k times and set x = 1 to
prove ck = 0.

7. (a) 1
2(3x2 − 1); (b) x3 − 3

5 x.

9. The Vandermonde determinant is nonzero for distinct αi. The second matrix is
clearly nonsingular, so the condition implies that each ci is zero.

11. (a) c1 + c2 ln x + c3ex = 0 =⇒ c3 = limx→∞ − c1+c2 ln x
ex = 0 =⇒ c2 = 0

limx→∞ − c1
ln x = 0 =⇒ c1 = 0.

(b) c1ex + c2xex + c3x2ex = 0 =⇒ c3 = limx→∞ − c1+c2x
x2 = 0 =⇒ c2 = 0

limx→∞ − c1
x = 0 =⇒ c1 = 0.

13. (0) sin x + 3
4 cos x. 
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15. (a)

[
x3

2−x3
1

3
x2

2−x2
1

2
x2

2−x2
1

2 x2 − x1

] [
m
b

]
=

[∫ x2

x1
x f (x) dx∫ x2

x1
f (x) dx

]

(b) x2
≈ x − 1

6

(c) x2
≈ x − 1

8

17. (Straightforward integration).

19. (a) (For example) add xn to each element of the basis in Problem 4.

(b) (For example)
{

x, x2, . . . , xn
}

;

(c) (For example)
{
(x − 1), (x2 − 1), . . . , (xn − 1)

}
.

21. Since dimPn = n + 1, it suffices to show that the polynomials are linearly
independent; apply the growth rate method.

REVIEW PROBLEMS FOR PART II

1. (a) (For example)

⎡
⎢⎢⎣
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

⎤
⎥⎥⎦A

⎡
⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

(b) (For example)
[
1 1 1 1 1

]
A

⎡
⎢⎢⎢⎢⎣

−1 −1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ =

[
0 0 0 0

]

(c) The row sums, the column sums, the diagonal sum, and the reverse diagonal
sum are all equal.

3. (For example) [22 191 213].

5. (a) No. (b) Yes. (c) No. (d) No. (e) No.

7. (For example) [1 0 0 0] and [0 1 0 0].

9. Let v1, v2, v3, and w1, w2, w3 be bases for the two subspaces. Because the
dimension is 5, there must be a nontrivial relationship c1v1 + c2v2 + c3v3 +
c4w1 +c5w2 +c6w3 = 0, which can be manipulated to show that the subspaces
have a nonzero vector in common.

11. (For example) sin 2t, cos 2t, sin2 t.

13. By Problem 37, Exercises 3.3, the rank of AB can be no bigger than 3.

15. Yes.

17. First apply the equation with u = [1 0 0 0]T and [0 1 0 0]T to conclude that
A11 = A22 = 1. Then apply with u = [1 1 0 0]T to conclude that A12 = A21 = 0.
Generalize.

19. −2. 
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Exercises 5.1

1. Any vector along the projection direction is an eigenvector with eigenvalue 1
and all vectors orthogonal to this vector are eigenvectors with eigenvalue 0.

3. Any vector with one 1, one −1, and five 0s is an eigenvector with eigenvalue
−1. The vector with seven 1s is an eigenvector with eigenvalue 6.

5. The canonical basis vectors are eigenvectors; all have eigenvalue 1 except for
the one with 1 in the row that gets multiplied.

7. One eigenvector is x = [1 1 0 0]T . Another is x = [1 0 1 0]T , if α = 0. But for
eigenvectors of the form [y z 1 0]T , the second equation in the system Ux = 2x
is 2z + α = 2z, which necessitates α = 0.

9. Bu = 2iu.

11. (a) −1, 0, and −2 respectively.

(b) [−i −1 i 1]T is paired with eigenvalues −i,−2i, and 0, respectively.
[1 1 1 1]T is paired with eigenvalues 1, 0, and 2, respectively.

13.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 −1 0 1

1 0 1 0 −1 0

0 1 0 1 0 −1

−1 0 1 0 1 0

0 −1 0 1 0 1

1 0 −1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 d2 d3 d4 d5 d6

d6 d1 d2 d3 d4 d5

d5 d6 d1 d2 d3 d4

d4 d5 d6 d1 d2 d3

d3 d4 d5 d6 d1 d2

d2 d3 d4 d5 d6 d1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
ω ω2 ω3 ω4 ω5 ω6

]T
is an eigenvector corresponding to the eigenvalues

ω, 2ω, 0 and (d1 + d2ω + d3ω
2 + d4ω

3 + d5ω
4 + d6ω

5), respectively.[
ω2 ω4 ω6 ω8 ω10 ω12

]T
is an eigenvector corresponding to the eigenvalues

ω2,−2ω2, 0, and (d1 + d2ω
2 + d3ω

4 + d4 + d5ω
2 + d6ω

4), respectively.[
ω3 ω6 ω9 ω12 ω15 ω18

]T
is an eigenvector corresponding to the eigenvalues

−1, 1, 3 and (d1 − d2 + d3 − d4 + d5 − d6), respectively.[
ω4 ω8 ω12 ω16 ω20 ω24

]T
is an eigenvector corresponding to the eigenvalues

ω4, 2ω, 0 and, (d1 − d2ω + d3ω
2 + d4 + d5ω

4 + d6ω
2), respectively. 
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[
ω5 ω10 ω15 ω20 ω25 ω30

]T
is an eigenvector corresponding to the eigenvalues

−ω2,−2ω2, 0, and (d1 + d2ω
5 + d3ω

4 + d4ω
3 + d5ω

2 + d6ω), respectively.[
ω6 ω12 ω18 ω24 ω30 ω36

]T
= [1 1 1 1 1 1]T is an eigenvector corresponding to

the eigenvalues 1, 1, 3, and (d1 + d2 + d3 + d4 + d5 + d6), respectively.

15. If u is an eigenvector of AB, (AB)(u) = r(u) =⇒ (BA)Bu = (BAB)u =
B(AB)u = rBu.

17. Ax = x has only the trivial solution, implying (I − A)x = 0 has only the trivial
solution.

19. (a)

(
A + u1bT) u1 = Au1 + u1bTu1 = r1u1 + u1bTu1 =

(
r1 + bTu1

)
u1.

(b)

(
A + u1bT)(u2 +

bTu2

r2 − r′1
u1

)
=
(
A + u1bT)u2 +

(
A + u1bT)( bTu2

r2 − r′1
u1

)

= Au2 + u1bTu2 +
bTu2

r2 − r′1
r′1u1

= r2u2 +

(
bTu2 +

r′1bTu2

r2 − r′1

)
u1

= r2

(
u2 +

bTu2

r2 − r′1
u1

)
.

Exercises 5.2

1. [1 2]T (3), and [3 − 1]T (10).

3. [1 1]T (−1), and [1 − 1]T (3).

5. [1 − 1]T (0), and [1 1]T (2).

7. [1 1 1]T (1), [1 0 1]T (2), and [1 1 0]T (3).

9. [1 − i]T (i), and [1 i]T (−i).

11. [2 1]T (1 + i), and [i 1]T (3).

13. The only eigenvalue is 6, corresponding to only one linearly independent
eigenvector [1 1]T .

15. The only eigenvalue is 5, corresponding to only one linearly independent
eigenvector [1 1]T .

17. The eigenvalues are 2, with multiplicity 1 and corresponding eigenvector
[1 1 1]T , and −1 with multiplicity 2, and the corresponding eigenvectors
[1 − 1 0]T and [1 0 − 1]T . 
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19. The eigenvalues are 1, with multiplicity 1 and corresponding eigenvector
[1 3 − 1]T , and 2 with multiplicity 2, and only one linearly independent
corresponding eigenvector [0 1 0]T .

21. (a)

[
0 0
1 3

]
(0, 3).

(b)

⎡
⎣ 1 −1 2

−1 1 −2
0 0 0

⎤
⎦ , (2, 0, 0).

23. (a) det(AT − rI) = det
(
(A − rI)T

)
= det(A − rI).

(b) 0 = v1
T(Av2) − (ATv1)v2 = r2v1

Tv2 − r1v1
Tv2. Thus r1 �= r2 =⇒

v1
Tv2 = 0.

(c) (i) Eigenvalues are r1 = 1, corresponding to [1 − 1]T and [1 2]T , and
r2 = 2, corresponding to [2 − 1]T and [1 1]T .

(ii) Eigenvalues are r1 = −1, corresponding to [1 1 2]T and [1 2 − 2]T ;
r2 = −2, corresponding to [2 0 1]T and [1 1 − 1]T ; and r3 = 1,
corresponding to [0 1 1]T and [1 3 − 2]T .

25. c0 = det(A − 0I) = det(A).

27. −2 and 4.

Exercises 5.3

1.
{
[1 2]T , [2 − 1]T

}
.

3.
{
[0 3 − 4]T , [5 − 4 − 3]T , [5 4 3]T

}
.

5.
{
[1 − 1 − 1]T , [1 1 0]T , [1 − 1 2]T

}
.

7.
{
[i − 1]T , [i 1]T

}
.

9.
{
[1 0 − (i + 1)]T , [0 1 0]T , [(i − 1) 0 − 1]T

}
.

11.

{
[1 1 0]T ,

[
i − i

√
2
]T

,
[
i − i −

√
2
]T
}

.

13. A =

[
2 1

1 + i 1 + 2i

]
provides a counterexample.

15.

{
[i 0 0] ,

1√
2
[0 1 1] ,

1√
3

[
0
(3i − 1)

2
(i + 1)

2

]}
.

17. (a) No. (b) No. (c) No. (d) Yes.

Exercises 6.1

1. A = P−1BP =⇒ An = (P−1BP)(P−1BP) · · · (P−1BP) = P−1BnP. 
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3. A = P−1DP, but D = aI. Thus A = P−1(aI)P = aI.

5. Assume A1 is similar to D1 and A2 is similar to D2, with Di as described. Note
that the entries on a diagonal matrix can be rearranged by similarity transfor-
mations: switch rows by left-multiplying by the appropriate elementary row
operator and switch columns by right-multiplying by the inverse of the same
operator (which is identical to the operator itself). Thus D1 is similar to D2;
therefore, A1 is similar to A2 (see paragraph after Definition 1).

7. BA = (A−1A)BA = A−1(AB)A or AB = (B−1B)AB = B−1(BA)B.
Counterexample:

A =

[
0 1
0 0

]
and B =

[
1 0
0 0

]
.

9. P =

[
1 3
2 −1

]
, D =

[
3 0
0 10

]
;

[
9 −3
−2 4

]−1

=

[
1 3
2 −1

] [
1/3 0

0 1/10

] [
1 3
2 −1

]−1

e

⎡
⎣ 9 −3
−2 4

⎤
⎦
=

[
1 3
2 −1

] [
e3 0
0 e10

] [
1 3
2 −1

]−1

.

11. P =

[
1 1
1 −1

]
, D =

[
−1 0
0 3

]
;

[
1 −2
−2 1

]−1

=

[
1 1
1 −1

] [
−1 0
0 1/3

] [
1 1
1 −1

]−1

e

⎡
⎣ 1 −2
−2 1

⎤
⎦
=

[
1 1
1 −1

] [
e−1 0
0 e3

] [
1 1
1 −1

]−1

.

13. P =

[
1 1
−1 1

]
, D =

[
0 0
0 2

]
; The matrix is singular.

e

⎡
⎣ 1 1

1 1

⎤
⎦
=

[
1 1
−1 1

] [
1 0
0 e2

] [
1 1
−1 1

]−1

.
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15. P =

⎡
⎣ 1 1 1

1 0 1
1 1 0

⎤
⎦ D =

⎡
⎣ 1 0 0

0 2 0
0 0 3

⎤
⎦ .

⎡
⎣ 4 −1 −2

2 1 −2
1 −1 1

⎤
⎦
−1

=

⎡
⎣ 1 1 1

1 0 1
1 1 0

⎤
⎦
⎡
⎣ 1 0 0

0 1/2 0
0 0 1/3

⎤
⎦
⎡
⎣ 1 1 1

1 0 1
1 1 0

⎤
⎦
−1

.

e

⎡
⎢⎢⎢⎣

4 −1 −2
2 1 −2
1 −1 1

⎤
⎥⎥⎥⎦
=

⎡
⎣ 1 1 1

1 0 1
1 1 0

⎤
⎦
⎡
⎣ e 0 0

0 e2 0
0 0 e3

⎤
⎦
⎡
⎣ 1 1 1

1 0 1
1 1 0

⎤
⎦
−1

.

17. P =

[
1 1
−i i

]
, D =

[
i 0
0 −i

]
;

[
0 −1
1 0

]−1

=

[
1 1
−i i

] [
−i 0
0 i

] [
1 1
−i i

]−1

e

⎡
⎣ 0 −1

1 0

⎤
⎦
=

[
1 1
−i i

] [
ei 0
0 e−i

] [
1 1
−i i

]−1

.

19. P =

[
i 2
1 1

]
, D =

[
3 0
0 i + 1

]
;

[
1 2i
−1 3 + i

]−1

=

[
i 2
1 1

] [
1/3 0

0 1/(i + 1)

] [
i 2
1 1

]−1

e

⎡
⎣ 1 2i
−1 3 + i

⎤
⎦
=

[
i 2
1 1

] [
e3 0
0 ei+1

] [
i 2
1 1

]−1

.

21. Let A =

[
0 a
0 0

]
. Clearly A2 = 0.

Suppose now A = B2, a �= 0, and B =

[
x y
z t

]
. Then

⎧⎪⎪⎨
⎪⎪⎩

x2 + yz = 0
t2 + yz = 0
z(x + t) = 0
y(x + t) = 0.

From the first two equations, we see that x = ±t. If x = −t, from the last
equation, we get 0 = a, a contradiction. If x = +t, the third equation implies 
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zx = 0. If x = 0, then t = 0, and the last equation yields again, 0 = a. Finally,
if z = 0, the first equation implies x = 0 and we again find a contradiction in
the last equation.

23. The left- and right-hand members of (16) yield the same answer when multi-
plying an eigenvector ui, namely, riui. Since the eigenvectors form a basis, they
yield the same answer when multiplying any vectors in the space. For Hermitian
matrices, the form is

A = r1u1uH
1 + r2u2uH

2 + · · · + rnunuH
n .

25.

Cqvi =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0

...
0 0 0 . . . 1

−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
ri

r2
i
...

rn−1
i

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ri

r2
i

r3
i
...

−
∑n−1

i=0 air
n−1
i

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

ri

r2
i

r3
i
...

rn
i

⎤
⎥⎥⎥⎥⎥⎦
= rivi.

As in Section 6.1, this can be expressed CqVq = VqD, or V−1
q CqVq = D, where

D =

⎡
⎢⎢⎢⎣

r1 0 . . . 0
0 r2 0
...

. . .
...

0 0 . . . rn

⎤
⎥⎥⎥⎦ .

Exercises 6.2

3. The change of coordinates generated by the matrix

Q =
1√
5

[
−2 1
1 2

]

eliminates the cross terms. Maximum is 5, minimum is −10. 
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5. The change of coordinates generated by the matrix

Q =

⎡
⎢⎣

0
√

2
2

√
2

2
3
5 − 2

√
2

5
2
√

2
5

− 4
5 − 3

√
2

10
3
√

2
10

⎤
⎥⎦

eliminates the cross terms. Maximum is 6, minimum is −4.

7. The change of coordinates generated by the matrix

Q =

⎡
⎣ 1/

√
3 1/

√
2 1/

√
6

−1/
√

3 1/
√

2 −1/
√

6
−1/

√
3 0 2/

√
6

⎤
⎦

eliminates the cross terms. Maximum is 3, minimum is 0.

9. (a) Let Q be an orthogonal matrix of eigenvectors corresponding to the ordering
r1 ≥ r2 ≥ · · · ≥ rn. The maximum of vTAv over all unit vectors v is the
same as the maximum of xTQTAQx over all unit x. Then xTQTAQx =
r1x2

1 + r2x2
2 + · · · + rnx2

n is a weighted average of the eigenvalues since x2
1 +

x2
2 + · · · + x2

n = 1. Its maximum (r1) occurs when x = [1 0 0 . . . 0]T , for
which v = Qx is the first column of Q or the first eigenvector.

(b) If w is a unit vector orthogonal to the first eigenvector v, then QTw is a
unit vector orthogonal to x = [1 0 0 . . . 0]T , that is, QTw has the form
[0 y2 y3 . . . yn]T with y2

2 + y2
3 + · · · + y2

n = 1. Therefore, xTQTAQx =
r2y2

2 + · · · + rny2
n is a weighted average of r2 through rn, whose maximum

(r2) is achieved when y = [0 1 0 . . . 0]T . Qy is the second column of Q.

(c) (Similarly for the remaining eigenvalues.)

(d) The Rayleigh quotient vT Av
vT v has the same value as vT

1 Av1, where v1 is the unit

vector in the direction of v, namely v1 = v
|v| , because vT

1 Av1 = vT

|v|A
v
|v| =

vT Av
|v|2 = vT Av

vT v . Thus seeking the maximum Rayleigh quotient among all vec-
tors (nonzero, of course) is the same as seeking the maximum vT

1 Av1 among
all unit vectors.

11. The matrix corresponding to the quadratic form is

A =
1
2

⎡
⎢⎢⎢⎣

0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

⎤
⎥⎥⎥⎦ .

Using the theory of circulant matrices from Problem 14, Exercises 5.1, we find
the eigenvalues of A to be r1 = (n − 1)/2, of algebraic multiplicity 1, and
r2 = −1/2, with algebraic multiplicity (n − 1). 
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Now using the reasoning of Problem 9 above, we conclude that the maximum
of the given bilinear form, when x2

1 + x2
2 + · · · + x2

n = 1, equals the largest
eigenvalue, (n − 1)/2.

13. (a) Since 1 is not an eigenvalue, (I − A)−1 exists, and the stationary equation
x = Ax + b has the solution (I − A)−1b.

(b) x1 = Ax0 + b, x2 = Ax1 + b = A2x0 + Ab + b, x3 = A3x0 + A2b + Ab + b,
etc.

(c) xn → 0 + (I − A)−1b.
(d), (e) straightforward.

(f) (Eigenvalues of B) = (Eigenvalues of A)
⋃

{1}.

(g) The hint reveals the answer.

(h)

xn = (c1 − d1) rn
1v1 + (c2 − d2) rn

2v2 + · · · + (cm − dm) rn
mvm + (I − A)−1b

= ((c1 − d1)r
n
1 + d1) v1 + ((c2 − d2)r

n
2 + d2) v2 + . . .

+ ((cm − dm)r
n
m + dm) vm

with

di =
fi
ri

, i = 1, . . . , m,

where b = f1v1 + f2v2 + · · · + fmvm.

Exercises 6.3

1. Possible answer:

Q =
1√
2

[
1 1
−1 1

]
,

U = QHAQ =
1
2

[
1 1
−1 1

] [
7 6
−9 −8

] [
1 −1
1 1

]
=

[
1 15
0 −2

]
.

3. Possible answer:

Q =
1√
14

[
3i − 1 2

2 3i + 1

]
,

U =

[
−6i 4 − 6i

0 6i

]
.
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5. Possible answer:

Q1 =
1√
2

⎡
⎣ 1 1 0

1 −1 0
0 0

√
2

⎤
⎦ ,

Q2 =

⎡
⎣ 1 0 0

0 (i − 1)/2
√

2/2
0

√
2/2 (i + 1)/2

⎤
⎦ ,

U = QH
2 (Q

H
1 AQ1)Q2 ==

⎡
⎣ −1 1 (i + 1)/

√
2

0 −i −
√

2(i + 1)
0 0 i

⎤
⎦ .

7. If the Schur decomposition is U = QHAQ, then Trace(U) = Trace(QHAQ) =
Trace

(
(QQH)A

)
= Trace(IA) = Trace(A) equals the sum of the eigenvalues

of A.

9. A =

[
1 −1
1 1

]
and B =

[
1 0
0 −1

]
.

11.

||Av||2 =
(
Av
)T

(Av) =
(
Āv̄
)T

(Av) = v̄TĀTAv = v̄TAHAv

= v̄TAAHv =
(
ATv̄
)T (

AHv
)
=
(

ĀTv
)T (

AHv
)
=
(

AHv
)T (

AHv
)

= ||AHv||2

13.

{[
1√
2

1√
2

]T

,

[
1√
2

− 1√
2

]T
}

.

15.

{[
1
3

2
3

− 2
3

]T

,

[
2 − 6i

3
√

10

4 + 3i

3
√

10
5

]T

,

[
2 + 6i

3
√

10

4 − 3i

3
√

10
5

]T
}

17. Let

A = [u1 u2 . . . un] =
[
vT

1 vT
2 . . . vT

n

]

be a normal n×n matrix, and let ei denote the standard vector [0 . . . 0 1 0 . . . 0]T ,
with the nonzero entry on the ith row. We have ‖Aei‖ = ‖ui‖, while ‖AHei‖ =
‖vi‖. Problem 11 showed that A normal implies ‖Aei‖ = ‖AHei‖.

19. Q = Q1Q2, where

Q1 =

⎡
⎣ 1/

√
3 1/

√
2 −1/

√
6

1/
√

3 −1/
√

2 −1/
√

6
1/
√

3 0 2/
√

6

⎤
⎦ and Q2 =

⎡
⎣ 1 0 0

0 1/
√

2 i/
√

2
0 i/

√
2 1/

√
2

⎤
⎦ .

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                

              
 



ANSWERS TO ODD NUMBERED EXERCISES 385

21.

A−1 =
1
c0

(
(−A)

n−1 − cn−1An−2 − · · · − c1I
)

.

Exercises 6.4

1. Norm = 1+
√

5
2 , cond = 3+

√
5

2 .

3. Norm = 16.848; cond = ∞.

5. Norm = 4; cond = 4.

7. w1 = v1; w2 = vr.

9. Minimize (1 − 2t)2 + (−t)2 + (t)2.

11. ||AB|| = max||v||=1||(AB)v|| ≤ ||A|| ||Bv|| ≤ ||A|| ||B|| (1).
13. Equation (14) and Corollary 10.

15. The transpose of the SVD for A is an SVD for AT and demonstrates that the
nonzero singular values of A are the same as those of AT . Now apply Theorem
6 to AT .

17.

[
0 1
0 −1

]
,

[
1 0
1 0

]
, and

[
1 1
0 0

]

are equally close rank 1 approximations.

19.

⎡
⎢⎢⎣

1.0003 2.0003 3.0007
0.9997 1.9997 2.9993
1.0003 0.0003 1.0007
0.9997 −0.0003 0.9993

⎤
⎥⎥⎦

is the closest rank 2 approximation. The Frobenius norms of the differences are
0.0012 and 0.0020.

21. (a) r = 0.7395, s = 7.0263, t = 1.2105.

(b) r = 3.1965, s = 8.0806.

(c) r = 0, s = 6.7089, t = 1.5749.

(d) (a) 5.2632e-06 (b) 2.3226e-05 (c) 1.9846e-05. Part (b) constructed a rank
2 approximation by eliminating the third unknown (x3); but part (c) utilized
the best rank 2 approximation.

23. For square A, all of the matrices have the same dimension; therefore, detA =
(detU)(detΣ)(detU) and the unitary matrices have determinant ±1. The simple
1-by-1 matrices [1] and [−1] demonstrate the two possibilities. 
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25. (a) (Av)T(Av) = (v)T(ATAv).

(b) The directional derivative equals the dot product of the gradient with a
unit vector in the direction in question. At a maximum on the sphere, all
directional derivatives are zero in directions tangent to the sphere.

(c) ∇(xTATAx) = 2ATAx.

(d) v2 in tangent plane =⇒ v2 orthogonal to gradient =⇒ Av2 orthogonal
to Av1.

27. (a) W = Rn
col.

(b) The subspace orthogonal to u1.

(c) The subspace orthogonal to u1,u2, . . . , uk.

Exercises 6.5

1. Both iterations converge to the eigenvalue 4, eigenvector [0 1 0]T .

3. The ratio of the inverse of the smallest-in-magnitude eigenvalue to that of the
next smallest. Nearly-singular matrices have at least one very small eigenvalue
(in magnitude).

5. Largest = 5; smallest = 1.

7. Largest = 2; smallest = −1.

9. Consider the differences of two consecutive iterates.

11. (a) 13 iterations: largest-in-magnitude eigenvalue ≈ 3.0068. (b) 10 iterations:
smallest-in-magnitude eigenvalue ≈ 0.9987. (c) 4 iterations: eigenvalue ≈
2.0000.

(d) The ratio of the largest-in-magnitude eigenvalue of M to its second largest
is 1.5. The ratio of the largest-in-magnitude eigenvalue of M−1 to its
second largest is 2. The ratio of the largest-in-magnitude eigenvalue of
(M − 1.9I)−1 to its second largest is 9.

13. Two large eigenvalues of equal magnitude.

15. The normal equation is vTvr = vTAv.

17. Apply A to the quadratic formula for the characteristic polynomial.

Exercises 7.1

3. (a)

∫
A(t) dt =

[
t2/2 + c1 et + c2

t + c3 et + c4

]
.
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(b)

1∫
0

B(t) dt =

[
sin 1 cos 1 − 1

1 − cos 1 sin 1

]
.

(c)

d
dt

[A(t)B(t)]

=

[
(1 + et) cos t + (et − t) sin t (et − t) cos t − (et + 1) sin t

et cos t + (et − 1) sin t (et − 1) cos t − et sin t

]
.

13.

⎡
⎣ x

y
z

⎤
⎦
′

=

⎡
⎣ 1 1 1

−1 0 2
0 4 0

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦ .

15.

[
x(t)
y(t)

]′
=

[
3 −1
−1 2

] [
x(t)
y(t)

]
+

[
t2

et

]
.

21.

[
x′1(t)
x′2(t)

]
=

[
0 1

10 3

] [
x1(t)
x2(t)

]
+

[
0

sin t

]
.

23.

⎡
⎢⎢⎣

x′1(t)
x′2(t)
x′3(t)
x′4(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0
t2

⎤
⎥⎥⎦ .

33.

[
I1

I3

]′
=

[
−45 45
90 −110

] [
I1

I3

]
+

[
9/2

0

]
.

35.

[
I2

I3

]′
=

[
−500 −500
−400 −400

] [
I2

I3

]
+

[
500
400

]
.

37.

[
I1

I2

]′
=

[
0 −8/5

10 −10

] [
I1

I2

]
+

[
16/5

0

]
.

39.

[
I1

I2

]′
=

[
0 −2
2 −2

] [
I1

I2

]
+

[
0

−3 sin 3t

]
.
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Exercises 7.2

1.

[
−3 1
1 2

] [
e10t 0
0 e3t

] [
−3 1
1 2

]−1

3.

[
1 −1
1 1

] [
e−t 0
0 e3t

] [
1 −1
1 1

]−1

5.

[
−1 1
1 1

] [
1 0
0 e2t

] [
−1 1
1 1

]−1

7.

⎡
⎣ 1 1 1

1 1 0
1 0 1

⎤
⎦
⎡
⎣ et 0 0

0 e3t 0
0 0 e2t

⎤
⎦
⎡
⎣ 1 1 1

1 1 0
1 0 1

⎤
⎦
−1

9.

[
i −i
1 1

] [
eit 0
0 e−it

] [
i −i
1 1

]−1

11.

[
2 i
1 1

] [
e(i+1)t 0
0 e3t

] [
2 i
1 1

]−1

13.

[
(1 − t)e2t −te2t

te2t (1 + t)e2t

]

15. e−t

⎡
⎣ 1 + 3t − 1.5t2 t −t + 0.5t2

−3t 1 t
9t − 4.5t2 3t 1 − 3t + 1.5t2

⎤
⎦

17.

⎡
⎣ 1 + t + 0.5t2 t + t2 0.5t2

−0.5t2 1 + t − t2 t − 0.5t2

−t + 0.5t2 −3t + t2 1 − 2t + 0.5t2

⎤
⎦ e−t

19.

⎡
⎣ t − 2 + 2e−t + 4te−t

t − 1 + 4e−t

3t − 6 + 6e−t + 12te−t

⎤
⎦

21.

⎡
⎣ 2t + 8 − (8 + 7t + 2t2)e−t

(t + 1)(e−t + 2te−t − 1)
t − 2 + (2 + t − 2t2)e−t

⎤
⎦

23.

[
t2 − 2t + 2 − 2e−t

−t2 + t/2 − 9/4 + 4e−t/3 + 11e2t/12

]
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25.

[
sin(t)

cos(t)− 1

]

27.

⎡
⎣ (4/13)e−3t + 6te3t + (2/13)(3 sin 2t − 2 cos 2t)

e3t

(8/13)e−3t + (3t − 1)e3t + (4/13)(3 sin 2t − 2 cos 2t)

⎤
⎦

29. (c) 56 terms (using MATLAB� R2012b)

(d) 202 terms (using MATLAB� R2012b)

33. eAt ≡

⎡
⎢⎢⎢⎢⎣

et 0 0 0 0
0 e−t(1 + t) te−t 0 0
0 −te−t e−t(1 − t) 0 0
0 0 0 cos(t) sin(t)
0 0 0 − sin(t) cos(t)

⎤
⎥⎥⎥⎥⎦

35. eAt ≡

⎡
⎢⎢⎢⎢⎣

e−t 0 0 0 0
0 e−t(1 + t) te−t 0 0
0 −te−t e−t(1 − t) 0 0
0 0 0 e−2t(1 + 2t) te−2t

0 0 0 −4te−2t e−2t(1 − 2t)

⎤
⎥⎥⎥⎥⎦

Exercises 7.3

1. If the upper left corners of the Jordan blocks of the matrix occur in positions
(ip, ip) with 1 ≤ p ≤ q, then the column vectors with 1 in row ip and zeros
elsewhere are eigenvectors corresponding to eigenvalues rp.

3.

⎡
⎣ r−1

1 −r−2
1 r−3

1

0 r−1
1 −r−2

1

0 0 r−1
1

⎤
⎦ .

5.

⎡
⎢⎢⎣

r 0 0 0
0 r 0 0
0 0 r 0
0 0 0 r

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

r 0 0 0
0 r 0 0
0 0 r 1
0 0 0 r

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

r 0 0 0
0 r 1 0
0 0 r 1
0 0 0 r

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

r 1 0 0
0 r 0 0
0 0 r 1
0 0 0 r

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

r 1 0 0
0 r 1 0
0 0 r 1
0 0 0 r

⎤
⎥⎥⎦ .
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7.

[
4 1
0 4

]
9.

⎡
⎣ 1 1 0

0 1 1
0 0 1

⎤
⎦ 11.

⎡
⎣ 3 0 0

0 5 1
0 0 5

⎤
⎦ 13.

⎡
⎢⎢⎣

2 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

15.

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ 17.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 2 1
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

19.

[
3 1
0 3

]
; eAt =

[
−2 0
0 1

] [
e3t te3t

0 e3t

] [
−0.5 0

0 1

]
.

21.

⎡
⎣3 0 0

0 1 1
0 0 1

⎤
⎦ ; eAt =

⎡
⎣ 0 0 1

0.5 0 −0.5
0.25 −0.5 −0.25

⎤
⎦
⎡
⎣e3t 0 0

0 et tet

0 0 et

⎤
⎦
⎡
⎣1 2 0

0 1 −2
1 0 0

⎤
⎦ .

23.

⎡
⎢⎢⎣

2 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ ; eAt =

⎡
⎢⎢⎣

3 0 −2 −5
6 −2 −6 −6
1 0 0 0
1 0 0 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

e2t 0 0 0
0 et tet t2et/2
0 0 et tet

0 0 0 et

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0 0 1 0
1.5 −0.5 3 −4.5
−0.5 0 −1 2.5

0 0 1 −1

⎤
⎥⎥⎦

25.

⎡
⎢⎢⎢⎢⎣

2 0 0 0 0
0 3 1 0 0
0 0 3 1 0
0 0 0 3 1
0 0 0 0 3

⎤
⎥⎥⎥⎥⎦ ; eAt =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−1 0 0 0 1
1 0 0 1 −1
−1 0 1 −1 1
1 1 −1 1 −1

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣

e2t 0 0 0 0
0 e3t te3t t2e3t/2 t3e3t/6
0 0 e3t te3t t3e3t/2
0 0 0 e3t te3t

0 0 0 0 e3t

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦ .
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31. The similarity transformation can best be described by example. If

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r a 0 0 0 0 0
0 r b 0 0 0 0
0 0 r c 0 0 0
0 0 0 r 0 0 0
0 0 0 0 r 0 0
0 0 0 0 r e
0 0 0 0 0 0 r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, then take V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

abc 0 0 0 0 0 0
0 bc 0 0 0 0 0
0 0 c 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 e 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and V−1AV will have the proposed Jordan form.

33.

[
x1

x2

]
= A

[
x1

x2

]
where A =

[
0 1
0 0

]
, and eAtC =

[
C1 + C2t

C2

]

35. eAt

⎡
⎣1

0
1

⎤
⎦ =

⎡
⎣ 0 0 1

0.5 0 −0.5
0.25 −0.5 −0.25

⎤
⎦
⎡
⎣e3t 0 0

0 et tet

0 0 et

⎤
⎦
⎡
⎣1 2 0

0 1 −2
1 0 0

⎤
⎦
⎡
⎣1

0
1

⎤
⎦ .

Exercises 7.4

(See Exercises 7.3 for # 1–11 and 15–17.)

13. If r is an eigenvalue of A, rp is an eigenvalue of Ap, but the latter are all zero.
Every non zero vector is a generalized eigenvector of A.

REVIEW PROBLEMS FOR PART III

1. Only 0 is similar to 0, and only I is similar to I.

3. Eigenvectors for adding a nonzero multiple of the ith row to another row are all
vectors with zero in the ith entry (eigenvalue is one); the matrix is defective.

Eigenvectors for multiplication of the ith row by a nonzero scalar are all vec-
tors with zero in the ith entry (eigenvalue equals one); and vectors whose only
nonzero entry is its ith (eigenvalue equals the scalar).

Eigenvectors for switching the ith and jth rows are all vectors with equal ith
and jth entries (eigenvalue is one); and all vectors with opposite-signed ith and
jth entries, all other entries zero (eigenvalue is −1).

5. [2 − 1] has eigenvalue −4; [1 − 1] has eigenvalue −5.

7. [3 1 − 1] has eigenvalue 0; [−1 1 1] has eigenvalue 2. (Defective matrix.)

9. 2 ± i
√

2

11. [1 −1 1 −1] has eigenvalue −2; [1 0 −1 0] and [0 1 0 −1] have eigenvalue
0; and [1 1 1 1] has eigenvalue 2. 
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13.

P =

[
0.8944 −0.7071
−0.4472 0.7071

]
.

15. Impossible

17.

P =

⎡
⎣−0.2357 0.4364 0.4082

0.2357 −0.2182 −0.4082
0.9428 −0.8729 −0.8165

⎤
⎦ .

19.

P =

⎡
⎣ i/

√
2 0 i/

√
2

−1/
√

2 0 1/
√

2
0 1 i/

√
2

⎤
⎦ .

21. [
x1

x2

]
=

1√
2

[
−1 1
1 1

] [
y1

y2

]
.

23. ⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 0.5774 0.2673 0.7715
−0.5774 0.8018 0.15431
−0.5774 −0.5345 0.6172

⎤
⎦
⎡
⎣y1

y2

y3

⎤
⎦ .

25. ⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣−0.7152 0.3938 0.5774

0.0166 −0.8163 0.5774
0.6987 0.4225 0.5774

⎤
⎦
⎡
⎣y1

y2

y3

⎤
⎦ .

27. α = 1;

⎡
⎢⎢⎢⎢⎢⎢⎣

1
6
− i

2

−1
6
− i

2
2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
6

+
i
2

−1
6

+
i
2

2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
3

2
3
1
3

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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adjoint, 103–4
affine transformations, 123–7
associative law, 61–3, 67
augmented coefficient matrix, 18

back substitution, 9
basis, 152, 155
best approximation, 182
block diagonal matrix, 317
block matrix, 98
boundary value problem, 2, 118–19

C(a,b), 135
canonical basis, 152
CAT (computerized axial tomography), 3
Cauchy–Schwarz inequality, 173
Cayley–Hamilton theorem, 262, 264
change of coordinate, 153–4
characteristic equation, polynomial, 217, 243
Cholesky factorization, 117, 343
circulant matrix, 215, 253, 345
coefficient matrix, 17
cofactor, 92–3
commutative law, 61
completing the square, 245
complex equations, 15

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

condition number, 54, 272
consistent systent, 29, 42
controllability, 199–200
Cramer’s rule, 105
Cm

row (Cn
col) (Cm,n), 135

defective matrix, 224
deflated matrix, 216, 225
determinant, 90, 97, 101–2, 112, 148
diagonal matrix, 19
diagonalization of matrix, 238
diagonally dominant, 125
diet, antarctic, 1, 37
dimension, 156, 191, 202–4
discrete Fourier transform, 345
discrete time system, signal, 254
distributive law, 62–3
dot product, 59
Durer, A., 198

echelon form, 39
eigenvalue, eigenvector, 209, 223, 322
electrical circuit, 40, 304–6
elementary column operations, 25, 158
elementary row matrix operator, 63
elementary row operations, 20, 63, 158
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fast Fourier transform, 345
Fibonacci sequence, 163, 350
fixed point method, 123–7
Fredholm alternative, 189
free variable, 32, 39
Frobenius norm, 244
function space, 190
fundamental matrix, 312

Gauss elimination, 7–10, 27–34, 39
back substitution, 9
basic operations, 10
operations count, 12–13, 16

Gauss, C. F., 7
Gauss–Jordan algorithm, 22–4
Gauss–Seidel, 126
generalized eigenvector, 224,

322–3, 334
geometric series, 243, 255
global positioning systems, 122–3
golden ratio, 350
Goldstine, H., 47, 50
gradient, 246, 281
Gram matrix, 163, 196, 343
Gram–Schmidt algorithm, 169

Haar, 202–4
heat transfer, 302
Hermitian matrix, 228–9, 258
Hessenberg form, 344
Hilbert matrix, 54, 196
Hilbert space, 193
homogeneous system, 42
Hooke’s law, 2, 45
Householder reflectors, 176,

179, 201

identity matrix, 63
incidence matrix, 121
inconsistent system, 29, 45
inertia tensor, 255
inner product, 59
inner product, 193
integer equations, 16
integrating factor, 312
interconnected tanks, 296, 301
interpolation, 15
inverse, 76–80, 83, 85
invertible, 77

Jacobi, 125
Jordan block, 318

Jordan chain, 336
Jordan form, 318, 333
Jordan, W., 24

kernel, 136
Kirchhoff’s laws, 44, 120–122

Lagrange interpolation problem, 15
least squares, 183, 185, 274, 348

polynomial approximation, 26
least squares fit, straight line, 186
left inverse, 76–9
Legendre polynomial, 194
linear algebraic equations, 5

graphs, 6, 7
linear combination, 137

combination principle, 138
linear dependence (independence), 145, 147,

191–3
linear systems, 5
lower trapezoidal matrix, 19
lower triangular matrix, 19
LU factorization, 116–18, 286

magic square, 198
mappings, 141
mass-spring system, 2, 45, 248–52, 297,

302–3, 333
matrix

addition, 62
addresses, 25
augmented coefficient, 18
block, 98
coefficient, 17
column, 20
diagonal, 19
differential equation, 295, 307, 329, 336
exponential, 241, 307, 308, 311, 314,

323–5, 337
incidence, 121
inverse, 76
multiplication, 58–61, 115–16
nilpotent, 85
representation, 17
row, 20
scalar multiplication, 62
skew-symmetric, 110
stochastic, 69
symmetric, 226, 258
trapezoidal, 19
triangular, 19

matrix operator 
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elementary row, 63
mirror reflection, 72–3, 76, 201
orthogonal projection, 71–2, 75
rotation, 70–71, 201

matrix square root, 240
minor, 92, 343
modal analysis, 252

nilpotent, 85
matrix, 338

norm, 166, 174, 228, 244, 271
normal equations, 184
normal matrix, 260, 261, 264
normal modes, 251
null space, 136
nullity, 156, 158

operations count, 12–13, 16
orthogonal, 166, 228

matrices, 174, 201
subspace decomposition, 182

Padovan sequence, 351
parallelogram law, 173
parametrization of silutions, 32, 35–6
permutation, 97
pivot

complete, 54
element, 30, 39, 49, 52
partial, 49, 52, 53

plastic constant, 351
Pn, 135
positive definite matrix, 342–3
power method, 283
primary decomposition theorem, 323
principal axes, 247
principal component analysis, 278
products of inertia, 255
pseudoinverse, 274

QR
factorization, 201–2, 290
method, 285

quadratic form, 244
quadratic polynomial, 245

range, 156, 158
rank, 40

reduction, 278
rank one matrix, 162, 216
Rayleigh quotient, 253, 290
redundant system, 28

reflection, 201
right inverse, 76–9
rotation, 201, 221
roundoff, 46–50
row echelon form, 39–40
row space, 158
row-reduced echelon form, 39
Rm

row (Rm
col) (Rm,n), 135

scalar multiplication, 133
Schur decomposition, 258
self-adjoint, 228
shear matrix, 332
Sherman–Morrison–Woodbury, 85
shifted eigenvalue, 210
similarity transformation, 235
singular, 77
singular value decomposition, 266, 269,

279, 346
skew-symmetric, 110, 232
span, 138
spectral factorization, theorem, 239
speed, 16
stiffness matrix, 251, 255
stochastic matrix, 69, 290
subspace, 135
Sylvester, j. j., 17
Sylvester’s criterion, 343
symmetric matrix, 226, 258
systems of linear equations, 5

time, computation, 16, 95
total least squares, 348
trace, 225
transpose, 69–70, 81, 83
trapezoidal matrix, 19
triangle inequality, 173
triangular matrix, 19, 213, 217

unitary matrix, 228, 258, 260
upper trapezoidal matrix, 19
upper triangular matrix, 19, 258

Vandermonde, 99, 195, 243
variation of parameters, 312
vector (row, column), 20
vector space, 133
von Neumann, 47, 50

wavelet, 202–4
weighted least squares, 188
Wilkinson, J., 47, 51 
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