@ CRC Press

Taylor & Francis Group
° ®

Floating Point

Numerics for Games
and Simulations

Nima Badizadegan

lep(a.h)=all-t) N= () 2%(m)

S & Wanfisst
KSE3T5F= O tatiiio oofliolottooutolil
.2 ANHBZY30IS %\ +¢

a 2T = w(EEm) e red)

of su’lzlx‘mw.(

6'__—
} e
0 M ’
00000000 0000000000

0z g -

+0
pobd (’ ?0{/ ygr:/

sih(y)- %égzp_/—_{)

G L
{gﬂ:ﬁen"("g)xn 717(1

/\‘\ % Xin X LV‘AG):{?)%V(’HQ"—V

inl#) ‘/4"%=M'+7(xf,w,f}4
x(+)= Bt |
B ) X=X

2 Wi ¥ T
=0 Vial = Viel +7(:(.-,,, V""ﬂL)’l

=10 -05 00




Floating Point
Numerics for Games
and Simulations

Floating point is ubiquitous in computers, where it is the default way to represent non-in-
teger numbers. However, few people understand it. We all see weird behavior sometimes,
and many programmers treat it as a mystical and imprecise system of math that just works
until it sometimes doesn’t. We hear that we shouldn't trust floating point with money, we
know that 0.1 + 0.2 does not equal 0.3, and “NaN” shows up in our logs when things break.
We rarely hear why any of this is the case, and less about what to do about it.

This book pulls back the veil on floating point and shows how this number system we pro-
gram with every day works. It discusses how to leverage the number system for common
calculations, particularly in graphics and simulations, and avoid pitfalls. Further, we will
review methods that can give you either better performance or better accuracy on tasks
like numerical integration and function approximation, so you can learn to make the right
tradeoffs in your programs.

This book builds upon a basic knowledge of calculus and linear algebra, working with il-
lustrative examples that demonstrate concepts rather than relying on theoretical proofs.
Along the way, we will learn why Minecraft has struggled with boat physics and what the
heck John Carmack was thinking with Quake III's infamous fast reciprocal square root al-
gorithm. By the end of the book, you will be able to understand how to work with floating
point in a practical sense, from tracking down and preventing error in small calculations
to choosing numerical building blocks for complex 3D simulations.

Gives insight into how and why floating-point math works

Describes how floating-point error arises and how to avoid it

e Surveys numerical methods important to graphics and numerical simulations
Includes modern techniques to apply to your numerical problems

Shows how to hack the floating-point numbers to compute faster and more accurately

Nima Badizadegan is an engineer who works at the intersection of computer systems and
mathematics. His past experience includes work at Google and on Wall Street, as well as
being a consultant and startup founder. Badizadegan has several publications in the fields
of simulation and computer arithmetic and is the inventor of over 10 patents. He is a mem-
ber of the IEEE and ACM and contributes to the IEEE 754 floating point standard. He is
the author of the popular technical blog Speculative Branches (https://specbranch.com),
where he writes about computer systems, software engineering, and math.
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Preface

There are two default ways to represent numbers on computers: Integer and
floating point. If you work with numbers on computers, floating point quietly
underlies everything you do. Games and simulators fit at the center of this
world, building experiences and experiments that are backed by floating point.
Most of the time, it works flawlessly, but every once in a while, the abstraction
leaks.

The best-selling video game in history is Minecraft. In Minecraft, when
you fall off a high cliff while your character is in a boat, you will not take fall
damage. That is, unless you fall exactly 12, 13, 49, 51, 111, 114, 198, 202, 310,
or 315 blocks. From those heights, there has been a persistent bug that causes
your boat to break. The player character will die in a way that defies the
“rules” of the game, with seemingly no explanation. You can thank floating-
point numerics for that death. This bug, reported in 2017 and still persistent
as of 2024 in some cases despite workarounds, comes from the interaction of
two pieces of numerical code deep in Minecraft’s game engine.

Floating point is so successful as a number system that several program-
ming languages use floating-point numbers as their default numeric type. The
most popular programming language today, Javascript, follows this pattern.
It is not an exaggeration to say that every programmer in the world has in-
teracted with and relied on floating point.

I first came to seriously thinking about and contributing to the IEEE 754
floating point standard in 2017, right at the end of the process of designing
and ratifying the most recent version of the standard (yes, the floating point
standard’s most recent update came in 2019). At the time of writing, this is
the most recent version of the standard. Although many of the core features
of floating point like addition and multiplication have been stable for several
decades, some features, like fused-multiply add operations, are relatively new.
Beneath you work, computer arithmetic is alive and advancing.

As part of the process of working in computer arithmetic and the IEEE
754 standard, I realized that there was a need for a user’s guide, that takes
the abstract ideas involved in creating the standard and makes them more
concrete and usable. As such, this book is intended to be a “field guide” to the
floating-point number system and numerical analysis for practitioners like me.
It is intended to be approachable to you without mathematical background
beyond basic calculus and linear algebra. Instead of the theorems and proofs
you might find in a numerical analysis book, we will be taking a look at
illustrative examples and case studies, since much of the theory of numerical

xi



xii Preface

analysis relies on continuous arithmetic, anyway. Thus, this book is an attempt
to cover the practice of numerics on computers.

The first two chapters of this book introduce the floating point numbers
as an approximation of the real numbers. Chapters 3-8 discuss floating point
operators, beginning with an introduction of the universal features of every
operation in Chapter 3, rounding and exceptions. Chapter 4 discusses the basic
arithmetic operators, Chapters 5 and 6 cover the operations that are most
likely to realize problems from error: Comparisons and conversions. Chapter 7
covers the transcendental functions you are likely to see, and Chapter 8 covers
several useful operators which help you bend the floating-point abstraction.

Chapters 9-12 discuss numerical analysis in computing. We begin with a
discussion of methods of handling imprecision in calculation chains in Chapter
9, with Chapter 10 discussing function approximation and the methods that
underlie the functions from Chapter 7, so you can build your own functions.
Chapter 11 discusses numerics in geometry in the context of a discrete number
system. Finally, we conclude with a discussion of numerical integration in
floating point in Chapter 12, one of the foundational pieces of simulators.

While the latter half of this book depends on what some might call heavy
mathematics, I have kept the number of formal proofs to a minimum, instead
preferring to work with motivating examples. For this reason, the bibliography
skews toward books and papers that are deeply technical and mathematical
for those who are interested in a more formal and rigorous approach to any
specific subject. I have also marked the formal derivations in this book with the
use of Greek letters, so you can read closely or avoid those sections altogether
based on your taste.

In the cases of descriptions of hardware, compilers, and historical events,
the bias is toward primary sources, while other resources may have better
explanations. Additionally, there is some bias toward IEEE and ACM papers
as well as books published in the United States, because that is what you
will find in the author’s personal library. The IEEE 754 standard [1] itself is
used quite extensively as a reference, so while it is reference number one in
the bibliography, you will not find it cited in the text, as there would be too
many citations to be useful.

Finally, every chapter includes a set of exercises. Several of these exercises
are intended to be deep (and sometimes tricky) applications and expansions
of the material from the chapter, and they are also intended to be ordered by
difficulty. Some are open-ended and some are motivated by recent talks and
research papers. One problem from Chapter 2 inspired a paper of its own. It
is not out of the question for one of the later problems in any chapter to be a
10-hour adventure, but I hope you find the time rewarding.
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1

Computing with Numbers

Ever since the invention of computers, humans have used computers to do
arithmetic. The first computer, ENTAC, was built to compute artillery tables,
and ended up simulating nuclear explosions. The history of numerical comput-
ing is the history of computing. This also means that the legacy of numerical
computing, like it or not, is with us today.

I like to joke that computers were built for video games, although this is not
exactly true. They, and the number formats they use, were built for war-related
physics simulations. Artillery tables and calculation of jump trajectories use
the same underlying math. Collisions, explosions, and other common features
of games are also strategically important to understand when you reframe
them as collisions of atomic nuclei or yield calculations for bombs. The math
that built weapons of war now gives us the power to understand the world, and
has produced the most popular medium of entertainment of the 21st century.

From the beginning, computers have had to contend with the fact that
space is continuous, while bits are discrete. Any representation of that con-
tinuous space is guaranteed to be a compromise of some kind, trading off
computational complexity for the ability to represent pieces of the range of
real numbers. Computers also rely on software, and a further challenge is the
ability to compose software around your number system, bringing about a
third dimension on which to compromise: The complexity to the developer.

Among the number of compromises that you can accept when computing
with numbers, the compromises of floating point have the power of giving
good results while also avoiding mental load on the programmer and being
reasonably efficient to compute. Floating-point arithmetic actually predates
the computer. The first machines using floating point were built in 1938,
preceding ENTAC, the first computer, by several years [2]. It was found to be
a format that balanced the many compromises involved in representing the real
numbers in a computable way. The format has continued to be a mainstay for
numerical computations due to its wide dynamic range and stable precision,
eventually becoming the default option.

DOI: 10.1201/9781003565543-1 1
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2 Floating Point Numerics for Games and Simulations

1.1 Between the Integers

Digital computers are discrete machines. There is no question of how to repre-
sent a positive integer on a digital computer, and there is only one good way
to do it: With binary. The negative integers are a bit more interesting, but
the two’s complement format became the de-facto standard way to implement
negative integers due to the simplicity and ease of operations. If we want to
represent numbers that sit between the integers, however, there are still many
possible number formats, and all have their pluses and minuses.

The integers are a small set of numbers compared to the full set of real
numbers we use to calculate. Between each of the integers, there are an infinite
number of numbers. Splitting the difference between 0 and 1, we get % We
can split the difference again to get %, and so on. These lead us to the rational
numbers. Rational numbers are also representable in computer systems as
a pair of integers, and have some niche applications. Arithmetic on rational
numbers usually requires reducing the fraction to avoid magnitude problems:

1268609872658765 1
2537219745317530 2

Generic arithmetic operations on fractions produce a denominator that is the
product of the denominators of the two operands, and this means that algo-
rithms for operating on rational numbers must reduce the fraction frequently.
Reducing fractions is a computationally intensive problem, since it requires
finding the greatest common divisor of the numerator and denominator, two
numbers which we expect to be large any time we are doing a reduction. This
makes rational numbers unattractive for numerical computing.

Stepping back to the land of mathematics, the rational numbers still have
gaps. They do not account for numbers with an infinitely long non-repeating
decimal representation. Irrational numbers like e and 7 have no fraction that
can represent them. These gaps are only filled by the real numbers, and it is
the real numbers where most of mathematics actually takes place. We have
no hope of actually computing efficiently on the real numbers, but our task is
doing better than the integers and rational numbers.

1.2 Representing the Real Numbers

The real numbers are rigorously defined as the one-dimensional field that is
both continuous and complete. When we look at a number line, like Figure 1.1,
we usually put ticks on the integers, but the real numbers are the line. Con-
tinuous means that any pair of real numbers can be arbitrarily close together
and that any point along that line is a valid real number. Completeness means
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FIGURE 1.1
A number line of the real numbers shown in the range [—8,8] with ticks at
the integers.

that there are no possible gaps in the set: The number line of the real num-
bers can be drawn with one infinite stroke of an infinitesimally small pen.
These properties make the real numbers ideal for mathematics and physics,
but terrible for computing.

Our task when constructing computer number systems for real arithmetic
is to try to get close to the real numbers. Every real number has a decimal
representation (some, like 0.9999... = 1, have two), but those representations
can be infinitely long. On a computer, we have finite memory, so we can’t store
real numbers in their possibly infinite representations. We would prefer that
our numbers have a fixed bit width, too. This inevitably means quantizing
the space in which we represent the numbers. We have to find points on the
number line to represent and accept that we cannot represent the rest of them
exactly. The number of points we can represent is determined by the size of
numbers we store. Quantization means that we cannot have a number system
that is either continuous or complete, and we have to fake those properties
if we want our numbers to look like the reals. In that sense, floating-point
numbers are mathematically more like integers than like real numbers.

Additionally, when we quantize our numbers, we lose the scope of the real
numbers. The numbers 107100000000 574 9999999999999999 a1 hoth in the real
numbers. When we quantize our number space and pick a finite number of
them to represent, we must deal with the fact that any quantization of the
real numbers probably cannot include both of those two examples (and any
sane quantization will contain neither of them).

An alternative possibility is that we decide to keep numerical accuracy
instead of having a fixed size. This decision results in one of two solutions:
Arbitrary-precision arithmetic, where numbers are stored using as much mem-
ory as required, up to the full precision of the machine, or symbolic computa-
tion, where the computer directly does real-number algebra and only evaluates
(with arbitrary precision) at the end of the calculation. The former is used
by calculators and calculator applications, while the latter is the domain of
computer algebra systems, like Mathematica. These number formats are in-
credibly computationally intensive, and operations often take non-constant
time. For any situation where performance is of interest, these number sys-
tems are difficult to justify.

There was another word in the definition of the real numbers that is load-
bearing: “Field”. A field isn’t just a set of numbers. It is a set of numbers
that is paired with two operators addition and multiplication, so that you
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can do algebra with those operators and so that every operation gives you a
number in the field. Finally, fields contain identity element for each operator,
0 for addition and 1 for multiplication, which is the element of the set that
gives you back the number you added or multiplied with it, and contains all
inverses of all elements—the negative numbers are the additive inverses of
the positive numbers and % is the multiplicative inverse of x. This definition
has a lot of requirements that are also hard to satisfy with quantization.
For example, it is hard to have inexact mathematical operations satisfy the
algebraic properties required. Even the integers cannot form a mathematical
field, since the multiplicative inverses of the integers are not integers.

We are left with having to make a series of compromises when we want to
construct an arithmetic format that is practical for computing. At the core
of those compromises is quantization: The move from a continuous, infinite
space to a discrete, finite set. Quantization means that when we do math,
we need to consider the properties of the number space itself in addition to
the properties of the math we want to do. In a sense, the “miracle” of floating
point is that we rarely ever feel the effects of quantization on calculations.

1.3 Properties of Number Formats

Number formats on computers are compromises, and they have several im-
portant properties that allow us to compare them. The two major properties
we will consider are precision and dynamic range, which in turn tell us how
fine-grained our quantization is and how much total length on the number
line we can represent.

Precision indicates how large of a range of the real numbers maps to each
number in our quantized number system, and is often specified relative to the
magnitude of a number to put it in terms of a common concept in science:
Significant digits. Precision is a measure of how many significant figures we
can possibly represent. For example, the integer number 15 maps to all of the
real numbers between 14.5 and 15.5. The maximum absolute error between
the real value and the quantized value is 0.5, so this number is about 3.3%
precise, which corresponds to about four bits of precision. A mathematical
definition of precision is:

r—q
q
where 7 is a real number that maps to the given quantized number g. When we
take —log, of precision, we get the maximum number of bits of significance
that a number can have, and when we take —log,, we get the number of

significant figures. The calculation for bits of precision is:

)

P = max
T‘—)q

r—q
q

P, = —log, (max

r—q
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Significance carries through a computation. When we multiply the integer
15 by 1000, the resulting number has gained precision, since 15000.5 and
14 999.5 are closer in relative terms to 15000 than 14.5 is to 15, but the result
of the calculation cannot gain significance. Since 14.5 and 15.5 could have
mapped to 15, the range of real numbers that corresponds to the result of
15 x 1000 (assuming the 1000 is exact) is 14500 to 15500. The error we
acquire from representing an intermediate calculation result with the number
“15” carries through our full chain of operations.

You may have guessed by now that when the integers are used for
real-number calculations, they have varying precision with their magnitude.
“100000000” is fantastically precise while “4” is imprecise. This makes nu-
merical analysis in the integers quite an adventure, as any operation that
causes a decrease in magnitude causes a corresponding significance loss that
is stuck with you forever.

The second property is dynamic range. The dynamic range of a number
system is the ratio between the largest-magnitude and smallest-magnitude
numbers that can be represented in our quantized set. Dynamic range is a
term adapted from audio and signal processing, where it characterizes the
difference between the loudest possible sound you can hear and the quietest
possible sound you can hear. In equation form, the dynamic range of our
quantized set @ is:

DR = max|q| / min ||

Having a wide dynamic range gives a number system the ability to represent
very large and very small numbers simultaneously, while having a smaller
dynamic range means that a number system will be more prone to overflow
and underflow.

1.4 Fixed-Point Arithmetic

The simplest possible quantization of a number space is to “sample” it with
even spacing between samples. This is a simple extension of the integers: The
integers are the result of sampling the real numbers with a sampling interval of
one. In other words, we put all of the bits of our number in front of the decimal
point. Computer integers also have a finite number of bits, b, and can only
represent numbers between —2°~! and 2°~! — 1 (for two’s complement signed
integers). A number line of the integers is in Figure 1.2. Many programmers
are intimately familiar with the integers and what you can and can’t do with
them algebraically. The integers are actually very well-behaved in this sense,
with the exception of division.

If we choose a sampling interval of 27% (typically with k > 0), we get fixed-
point arithmetic. A fixed-point number line is shown in Figure 1.3 compared
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FIGURE 1.2
A number line of the 4-bit two’s complement signed integers.

against a number line of the integers. This scaling factor puts some bits of
an integer in front of the decimal point, and some bits behind the decimal
point. Fixed point can be thought of as a mapping of integers to non-integer
values on the number line. This way, we can represent non-integers with a
given granularity. What we gain in precision, however, we lose in range. With
a 32-bit integer, the size of the range is about 4 billion, but if we put half of
those bits after the decimal place, we can now only represent numbers between
—32768 and 32767. However, we can now represent 0.5 and 0.25 precisely and
approximate 0.1 usefully.

There is a general notation for fixed-point number formats, which is to use
a Q when indicating the number of bits in front of and behind the decimal
place. A Q16.48 number is a 64-bit number with 16 bits in front of the decimal
place and 48 bits after the decimal place, indicating k£ = 48. This number
system has the same range as the 16-bit integers, but now has the capability
to represent most common decimals with precision.

Fixed-point operations are easy to do when you have an integer computer.
A fixed-point operation is computed by combining integer operations with
some shifting and bit manipulation. Addition of fixed point numbers just
requires that the decimal places in the two numbers be lined up, while multi-
plication involves a shift of the double-width result of the multiplication. The
product of two fixed point numbers includes the product of its bias. The prod-
uct of two integers of n bits is a 2n bit number, and while we usually discard
the top of the result for integer calculations, we need to use some bits from it
for calculations in fixed point: The product of a pair of Q16.48 numbers is a
Q32.96 number, so most of the bits of our result end up in the high part of
the product.

Achieving good numerical accuracy on long arithmetic chains in fixed point
is a difficult task that involves precise tracking of number ranges, significance,
and precision. Fixed point arithmetic chains can also involve temporarily ex-
tending the precision of numbers to keep significance while numbers move up

N
01—
IS
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N

FIGURE 1.3
A number line of the 4-bit two’s complement fixed point numbers with two
bits behind the decimal place (k = —2 or Q2.2 format).
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and down the range of magnitudes. A Q48.16 fixed point number will rep-
resent numbers close to 240 with fantastic precision, but numbers less than
0.01 will be somewhat cramped. This means that keeping precision through
an operation chain is best done by making sure that the intermediate results
are represented with the largest possible integer values. If you have a number
that you are sure will be less than 100, you are losing precision by keeping
more than 8 bits ahead of the decimal place. If you want to add that number
to a number that is 10 000 or greater, you now have to switch the locations of
your decimal place for the final result. Tracking all of this is a difficult task
and requires thorough knowledge of the exact operating environment of your
arithmetic to navigate the path between imprecision and overflow.

It is also possible to work with a sampling interval that is not a power
of two, although this does not fit the strict definition of “fixed point”. For
example, stock exchanges around the world send prices represented as “integer
in units of 10~* dollars” (so a price of 10 000 corresponds to one dollar), which
can be thought of as decimal fixed point. This is a good way to ensure that
every valid price can be represented exactly, and since the exchange has no
need to do arithmetic on prices aside from a few comparisons, they don’t mind
that this is a coarse-grained representation.

The Nasdaq learned the dynamic range problems of this approach the hard
way in May of 2021. Using a price unit of “integer 10~* dollars” and a 32-bit
integer, the exchange could only represent a maximum price of $429496.72,
and the stock of Berkshire Hathaway exceeded this price. For some time, the
Nasdaq reported very cheap prices for Berkshire Hathaway due to the integer
overflow!

Fixed point gives us a straightforward trade of precision with dynamic
range, and if we know the expected range of operations and have a limited
computation environment, it can be a useful tool. However, this tool comes
at a significant cost in development time and mental effort.

1.5 Decoupling Precision from Magnitude

The idea of floating point is driven by the desire to decouple the magnitude of
numbers from their precision. Fixed point numbers are more precise when they
are larger, but that is an undesirable property. Scientists tracking significant
figures in lab work also face the same dilemma, and their solution is scientific
notation:

2.48 x 10°

This number is 2480000000 with three significant digits, indicating that it
is only known to within 4+5000000. The first number in the notation, also
called the significand, indicates the precise value of the number, while the
exponent of the ten indicates its magnitude. The significand has a dynamic



8 Floating Point Numerics for Games and Simulations

range of 10, since it must always have a leading digit before the decimal place,
while the exponent determines dynamic range of the format. Similarly, the
exponent does not affect the precision of the number format at all.

For numerical analysis, we are less concerned with tracking significance
than we are with keeping it, so we will store the significand with as many
bits as possible rather than trying to stick to the minimum required size for
a number. Since computers work in binary, we will swap over to base two,
and we will use enough exponent bits to represent all of the numbers that we
think might be reasonable. Only six exponent bits gives us equivalent dynamic
range to a 32-bit integer.

By decoupling precision from range, we also simplify our ability to analyze
our numbers and our calculations. This trades off against making operations
more challenging to compute. It is this idea that brings us to floating point.
We store a number as a tuple, explained in the next chapter, representing a
significand whose decimal point is allowed to float around based on the value
of an exponent.

Check Your Understanding

Problem 1.1. Come up with a formula for the precision of integers relative
to their magnitude.

Problem 1.2. Come up with a formula for the precision of rational numbers
represented as a pair of integers.

Problem 1.3. Representing rational numbers as pairs of integers, write a
function that computes the product of rational numbers without normalizing
the fraction. Generate 10000 random fractions with numerator and denomi-
nator in the range [1,100]. What is the average number of multiplications you
need to reach overflow? What is the minimum number?

Problem 1.4. Representing rational numbers as pairs of integers, write a
function that computes the product of rational numbers and write a nor-
malization function. Generate 10000 random fractions with numerator and
denominator in the range [1,100]. Compute the product of these numbers,
normalizing any time you would risk overflow. How many normalization steps
do you need? Compared to the product of 10000 random floating point num-
bers in the range [0, 1], how much slower is it to work in the rational numbers?

Problem 1.5. Several virtual machines from cryptocurrencies use 32-byte in-
tegers and have no floating point. They replace floating point with Q128.128
fixed point. What is the dynamic range of this number system? Write a multi-
plication algorithm for this fixed-point number system and compare its speed
to double-precision floating point on your computer.
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Numbers in Floating Point

Floating point stores numbers in scientific notation, as a tuple of three separate
numbers, a sign bit, an exponent, and a mantissa field that represents the
“tail” of the significand. This is a compact representation that gives precision
that is independent of magnitude. However, the devil is in the details. While
the normal numbers follow a nice pattern, there are several exceptions that
are required to give the floating point numbers nice properties.

Floating point also contains several special numbers, including two zeros,
two infinities, and several representations of invalid numbers. This keeps cal-
culations in floating point mathematically closed and gives nice properties for
numerical calculations down to 0 and up to infinity, while still maintaining
space to represent errors that would otherwise break the number system.

While the design may seem convoluted at points, the design choices that
define floating point have been made to reduce the cognitive load on program-
mers while approximating the real numbers as closely as possible.

2.1 Extending the Real Numbers

We would like to keep calculations in the floating point numbers algebraically
closed while still representing a small subset of the real numbers. To do this,
we begin by extending the real numbers to have all of the numbers we need.
We are going to have zero in our quantized number system, so we are going
to need to have some representation of % in our number system. This means
that we need to find a way to map infinity into our number system.

Mathematically, we can do this by projecting the real numbers onto a
circle as shown in Figure 2.1. This figure shows a projection called the affine
extended real number line, where we project the real number line onto a circle
above the number line. Projection lines from the circle to the number line go
from the top of the circle to a point on the number line. This uniquely maps
every real number to each point on the circle, and puts positive and negative
infinity at the point on top of the circle.

We then have a choice about our infinities and zeros. We can choose to have
both infinities, allowing us to represent arbitrarily large positive and negative
numbers separately, or we can choose to have a single infinity corresponding

DOI: 10.1201/9781003565543-2 9


https://doi.org/10.1201/9781003565543-2

10 Floating Point Numerics for Games and Simulations

—00 +00

Toward Infinity

“Se Extended
Reals

1
-0 +0 e
- . . »
-5 0 1 Real Numbers

FIGURE 2.1

Projection showing the mapping of the real number line onto the extended
real numbers. The extended real numbers are represented by the circle, which
has the infinities at its zenith.

to the point on the circle. In floating point, we use two infinities. This allows
us to have calculations overflow in both directions while keeping the infinities
ordered with respect to the numbers. We know that positive infinity is greater
than all the positive numbers, while if we had one infinity, we would not have
that guarantee. Corresponding to the two infinities, we have two zeros, one

positive zero and one negative zero. That allows us to give ﬁ = +o0 and
}0 = —o0, keeping the direction from which the denominator approached
Zero.

What remains is for us to choose points around the circle to use for our
quantization. We do that in floating point by unrolling the circle into a line
and then choosing points that are distributed to decouple precision and accu-
racy using a binary scientific notation. Our encoding will also need to include
several special numbers to keep the algebra system closed, like the pair of
infinities and their corresponding zeros.

2.2 Binary Scientific Notation

An integer in binary looks like:
25049568 = 1011111100011 1001 11100000,

Note the b subscript, indicating a binary number. For scientific notation, we
would remove powers of ten from the number and move them to an exponent,
while for binary scientific notation we will remove powers of two, making the
process simpler for computers. Translating into binary scientific notation, we
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get:

25049568 = 1.4930706024169922 x 2°*
= 1.011111100011100111100000;, x 2'+000

Since multiplying a number by 2% is equivalent to shifting that number to the
left by k bits, computers and circuits can work in this form efficiently. Every
number in scientific notation has a single digit in front of the decimal place. In
binary, that digit can only have one possible value: It must be one. This means
that we do not need to store the one, since we know it’s there, and it will take
up valuable encoding space that we can otherwise use to extend precision or
dynamic range. Binary scientific notation combined with the bit-saving trick
of implied bits motivates the design of the floating point numbers.
A floating-point number is a 3-element tuple containing:

1. A sign bit.
2. An exponent with length eBits, stored in an offset-binary format.

A mantissa of length mBits, representing the fractional bits of the
significand.

Our floating point number (usually) maps to the real number corresponding
to:
F = (-1)"2°(1.m)

where s is the sign bit, e is the exponent (not the mathematical constant), and
m is the mantissa. The sign bit is the simplest field, with a zero for a positive
number or a one for a negative number. The exponent is an integer indicating
the power of two to multiply by the significand. This exponent is not a normal
signed integer, however. It is stored as an unsigned number with a negative
bias (eBias). This way, small numbers in the exponent field correspond to
floating point numbers that are close to zero, while large numbers correspond
to large numbers, so you can compare floating point numbers by comparing
them as though they were integers. The final field, the mantissa, shows the
tail of the significand after the decimal place. This mapping works for the
floating point numbers called the normal numbers, but note that there is no
way to represent zero as a normal number.

A few examples of normal numbers are:

1=1.0,x2° — (s =0, e = eBias,m = .0)
—1337 = —1.0100111001, x 2'° — (s = 1,e = eBias+ 10,m = .0100111001)
105 = 1.01, x 271 — (s = 0, e = eBias — 10, m = .01)
To save space, we have dropped the trailing zero bits of the mantissas here and

kept only the leading bits close to the decimal point. This is the opposite of
how integers are usually notated, where leading zeros are dropped. Numbers
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with an infinite decimal are also approximated by normal numbers as long as
they are within the range of available exponents by rounding the mantissa to
length mBits. The number 0.1 is a repeating decimal in binary:

0.1 = 1.1001, x 274 ~ 1.10011001100110011001101, x 2~*
— (s =0,e = —eBias — 4,m = .10011001100110011001101;)

Similarly, we can round irrational numbers to the nearest normal:

7~ 3.1415927410125732421875 = 1.10010010000111111011011; x 2
— (s =0,e =1 — eBias,m = .10010010000111111011011,)

The normal numbers all have a precision equal to mBits 4+ 1 bits, and a
dynamic range of 2¢8%5-2 Ag we will see, this is a small compromise on pre-
cision compared to the largest integers and high-precision fixed-point formats,
but it comes with the benefit of gigantic dynamic range and normalized pre-
cision across that range. We get that dynamic range and precision by having
a very unequal number density of numbers across the number line. Density
of numbers increases exponentially as magnitude decreases, with half of the
numbers in the format being in the range [—1, 1]. A density plot for a floating
point format is shown in Figure 2.2.

The exponent also denotes whether a number is normal or not. An expo-
nent of all zeros (the smallest exponent) or all ones (the biggest exponent)
indicates a special number, while exponents between 000...01 and 111...10
are the normal numbers. These interpretations are shown in Table 2.1. The
interpretation of the mantissa changes based on the regime, although the sign
bit preserves its function in all but one case. The non-normal regimes are:

0.050

0.010

0.005

0.001

5.x107%

1.x1074

L L
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FIGURE 2.2
Log plot of a smoothed density function representing the distribution of num-
bers in a floating-point format with eBits = 4, eBias = —7, and mBits = 3.

Ripples at magnitudes greater than 256 are an artifact of smoothing.
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TABLE 2.1
The regimes of floating-point encoding of real numbers.

Exponent Mantissa Regime  Value

0 m =20 Zeros +0 depending on sign bit
m#0  Subnormals (—1)°2¢Bs+1(0.m)
geBits _ | m =0 Infinities oo depending on sign bit
m #0 NaNs “Not a number”
All others All Normals  (—1)%2¢(1.m)

e The zeros, 0, which indicate a zero or infinitesimal value.

e The subnormal numbers, which allow the floating point numbers to smoothly
go down toward zero.

e The infinities, 00, which represent numbers that are too large to represent.

e The NaNs, which indicate that the floating point datum is actually not a
number.

The construction of the significand of the number from the binary mantissa
depends on the exponent to work appropriately in each regime. If the exponent
is zero, the significand is 0.m, with an implied zero in front of the mantissa.
These numbers are the zeros (m = 0) and the subnormal (m # 0) numbers. If
the exponent is all ones, and the mantissa is zero, we have an infinity, and all
other mantissas indicate “Not a Number” and can carry some other payload
in the mantissa. Neither case has a significand.

A number line of a hypothetical floating point format with exponent range
[—2, 2] and one mantissa bit is shown in Figure 2.3, combining all five of these
regimes. We see the exponential density of the normal numbers in the range
[—6, 6], and the number line is bounded by two infinities. As we get toward
zero, the transition to the two zeros is smoothed out with subnormal numbers
on each side of zero, with magnitudes less than 272.

FIGURE 2.3

Number line for a reduced-precision version of floating point. This format has
an exponent range of [—2,2], and only one mantissa bit. The numbers are
exponentially distributed, and we have two infinities and two zeros.
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2.3 Floating Point Bit Layouts

The tuple of three parts that makes up a floating point number is packed
into a small structure of bits, usually 32 (for single-precision) or 64 bits (for
double-precision). These two formats are the main formats supported by pro-
cessors for numerical calculations, and are often called float and double in
programming languages. Together with two other binary formats with less
use, the half-precision 16-bit format and the quad-precision 128 bit format,
these make up the “mainline” floating point formats. These formats balance
precision and dynamic range at each size, and are full-featured floating point
formats. These formats, in the floating point standard, are referred to by the
names binary16, binary32, binary64, and binary128, but we will use the
common names going forward.

The elements of the floating point number are packed into words with
the sign bit as the most significant bit, the exponent next, and the mantissa
in the remaining least significant bits. The formats and their bit widths are
summarized in Table 2.2, and shown in Figure 2.4. These are then stored
as a single word of the appropriate width on the machine, meaning that the
exact byte layout in memory depends on the way the machine stores words.
As the total width of the format grows, the number of exponent bits grows
more slowly than the number of mantissa bits, although both precision and
dynamic range grow equally.

As with the integers, larger floating-point formats are more difficult to
operate on. On current CPUs, operations on single-precision floating-point
numbers are about equal in speed to operations on 64-bit integers, while op-
erations on double-precision floats are slightly slower. Quad precision floating-
point numbers do not have hardware support, so operations are very slow [3].

The numerical properties of each format are shown in Table 2.3.
The half precision floats cannot represent numbers larger than 65504
(11111111111000004), which is a relatively “human” magnitude. The single

TABLE 2.2

Binary properties of the four mainline binary floating point formats from half
precision to quad precision. Single and double precision are the two main
formats. All formats have one sign bit.

Exponent
Size Name Width Bits Bias Mantissa Bits
Half (FP16, H) 16 5 —15 10
Single (FP32, F) 32 8 —127 23
Double (FP64, D) 64 11 —1023 52

Quad (FP128, Q) 128 15 —16383 112
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Half Precision
15 14 10 9 0
H Exponent Mantissa

Single Precision

31 30 23 2 0
B Exponent Mantissa

Double Precision

6463 5251 0
[s] Exponent Mantissa

FIGURE 2.4
Binary layout of three floating-point types within their respective binary
words.

precision floats have enough dynamic range to represent the size of the known
universe in nanometers as well as the radius of an electron in light years, al-
though the available precision is relatively limited, and both quantities will
be rounded to a value that is known to be wrong. By the time we reach dou-
ble precision, the number range that can be represented is wide enough to
include quantities like “googol” (albeit not exactly), and there is enough pre-
cision available to represent most physical quantities to within their known
error bounds. However, as we will see, excess precision is good for avoiding
inaccuracy in long computing chains, and excess dynamic range prevents over-
flows and underflows.

Additionally, the precision level tells us the range of integers that can be
represented exactly. The single-precision floats can represent 24-bit integers
exactly, but not 25-bit integers. The doubles can represent any integer up
to 53 bits exactly. This is why some programming languages can get away
with not having an integer type: If you restrict your integer range a little
bit, the functionality of the floating-point numbers is a strict superset of the
functionality of the integers.

Going forward in this book, we will be using a few representations to notate
numbers in a given binary format. A number in floating point will be shown

TABLE 2.3
Numerical properties of the four mainline binary floating point formats from
half precision to quad precision.

Precision Dynamic Smallest Largest
Name (bits) Range Normal Normal
Half 11 230 0.000061 65 504
Single 24 2254 1.18 x 10738 3.40 x 1038
Double 53 22046 2.23 x 107308 1.80 x 1038

Quad 112 232766 336 x 1074932 1,19 x 104932
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with a subscript indicating its type, with H for half precision, F for single
precision (many languages call these numbers float, so we will abbreviate
with F), and D for double precision. Examples of this representation are:

64 —56p 0.125y
64 in single precision | —56 in double precision | 0.125 in half precision

There will be times when it is better to separate the significand and exponent.
When this happens, we will use a notation similar to the “e” notation that is
used for scientific notation:

+[Significand] [Format] [Exponent]

As with integers, a ; subscript indicates that any of these numbers is in binary
rather than in decimal. The three examples from above will look like:

645 —56p 0.1254
1.0 x 26 1.75 x 2° 1.0 x 273
1.0r6 | [~1.11,D5] or [—1.75D5] | 1.0H(—3)

Although this scientific notation is more verbose than the number with a
subscript, some corner cases and pathological examples benefit from looking
at them in this way. We also include the implied leading bit of the significand
in the notation even though it is not in the stored number.

Given a set of 32 bits, a mapping of that number’s integer value to its
floating point value is shown in Figure 2.5. For each of the positive and nega-
tive numbers, this mapping is monotonic, and roughly traces out a linearized
exponential function. Comparing floating point numbers can be mostly done
by comparing the numbers as integers. Creating this monotonic mapping is
part of why offset-binary format is used for the exponent rather than two’s
complement.

o . 10

1020

10720 2

10740 0

0 5.0x108 1.0x10° 1.5x10° 20x10% 1.04x10% 1.05x10° 1.06x10° 1.07x10° 1.08x10% 1.09x10° 1.10x10°

FIGURE 2.5

Left: Log plot mapping the integer value of a word when read as a two’s
complement integer (x axis) to the floating point value of the same word (y
axis), showing the positive half of the range. Right: Zoomed in linear plot
showing the shape of the curve.
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Measuring Format-Aware Error

Since our precision is measured in bits and, for the normal numbers, is fully
decoupled from dynamic range, it helps to track precision loss during opera-
tions in units in the last place (ULPs). The size of one ULP for a number

of a given exponent, e, is:
2e—mBit8

Many operations have up to half a ULP of error corresponding to rounding an
inexact result, but some operations are worse. This gives us a measure of error
that directly translates to the layout of the format and is decoupled from the
value of the operands. This measure of error allows us to look at the error of
calculation chains in a range-agnostic way when measuring how accurate they
will be.

2.4 Zeros and Infinities

Floating point has two zeros and two infinities. The two zeros are one of the
more confusing parts of floating point, but they go hand-in-hand with two
infinities. The infinities are the only floating point numbers that are not real
numbers: Infinity is not a real number since the real numbers can get arbi-
trarily large, but it is a floating-point number. In the real numbers, functions
can approach infinity as you move smoothly toward some value a, but will
keep growing and growing until being undefined exactly at a. While a might
be a floating point number, there is no way to approach a smoothly in the
quantized space of floating point, and leaving a hole in the value of a function
at a is a dramatic thing to do. Thus, instead of infinity being something that
you move toward, floating point makes the infinities valid numbers.

When you have negative and positive infinities, you need to be able to know
what é and ﬁ are. That gives us two zeros. Several functions approach zero
from the negative values at a given point, and if you don’t have a negative zero,
the inverse of those functions will go to positive infinity instead of negative
infinity as expected. A case of this is the simple function:

- 1
T 10-10g

f(x)

With a negative zero, when x gets close to 0, the denominator calculation will
underflow to negative zero, and f(x) will be negative infinity, as expected.
Without a negative zero, the denominator will underflow to zero, and % could
evaluate to positive infinity, which is very far from the correct answer! In
reality, what would happen is that infinity would have to become unsigned,
representing either positive or negative infinity. Having the two zeros allows
% to have a determinate value for all possible values of x.
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One misconception about the two zeros is that they represent infinitesimal
values, where negative zero is a tiny negative number and positive zero is a
tiny positive number. While tiny negative and positive numbers can become
their respective zeros, it’s not accurate to think of them that way. The zeros
are zero, but the sign indicates the direction from which we approached zero.
“Zero approached from the left” is negative zero, while “zero approached from
the right” is positive zero. The zeros can be created by underflow, in which
case they represent an infinitesimal value, but both zeros can also arise exact
calculation.

Positive zero is the “default” zero when it is indeterminate which zero to
use, but almost all cases have a determinate sign for zero. If we modify our

example from before:
1

F@) = om0, 1

When (1071%2) yields 1, even if it does so inexactly, f(x) will evaluate to
positive infinity.

Similarly, the infinities are also often thought of as being “too big to repre-
sent”, which is sometimes true, but infinity also often represents a value that
is actually infinite. There are two types of operations that can yield infinities
when done on normal numbers, overflows and divisions by zero. In the former
case, the infinity is a number that is too big to represent, but in the latter
case, the infinity is actually infinity.

2.5 Subnormal Numbers

Looking at our formula for the value of the normal numbers,
(—=1)°2°(1.m)

the smallest positive normal number has the minimum normal exponent and

a mantissa of zero:
2eBias+1

This is a small number, and for the single-precision floats it is 2726, The
distance between this number and the next number above it is one ULP away,
while the next number below it might be zero. That ULP, for the single-
precision floats of magnitude 27126 is:

ULP (2—126) — 2—126—23 — 2—149

The size of one ULP is a lot smaller than the distance between 27126 and zero.
The subnormal numbers, also called “denormalized numbers” or “denorms”,
cover the gap between the normal numbers and zero by continuing toward
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FIGURE 2.6

Comparison of a floating point number line with subnormal numbers (top)
against a number line with an extension of the normal numbers (bottom).
With the normal numbers only, there is a big jump to zero, while the subnor-
mal numbers create a gradual transition.

zero gradually. Figure 2.6 shows why the subnormal numbers are valuable
by comparing them to using that encoding space for additional normal num-
bers. The use of subnormal numbers costs a small amount of precision in a
small numeric range, but avoids a large loss of precision near zero. They allow
precision to degrade slowly rather than all at once.

Even though the subnormal numbers have an exponent of 0 in the exponent
field, they still use the exponent of eBias + 1. To approach zero gradually, the
subnormal numbers have an implied leading zero instead of an implied leading
one. This leads to the formula for the value of a subnormal number:

(_I)SQeBias-i-l (Om)

This allows us to walk down toward zero with a monotonically decreasing step
size rather than having a single big jump at the end.

The danger of the subnormal numbers is that the implied leading zero
means that they have degraded precision. The precision of the subnormal
numbers is like the precision of the integers, and is dependent on magnitude.
Operations on subnormal numbers will still accumulate error in ULPs, so
they cause relative error to accumulate faster than operations on the normal
numbers. They are still a lot more precise for small numbers than rounding
to zero or to a much larger normal number [4].

Operations on subnormal numbers used to need help from microcode, and
were significantly slower than operations on the normal numbers, but pro-
cessors have started to integrate floating point hardware that works equally
fast on subnormal numbers as on normalized numbers [5]. For performance
on these platforms, it is usually possible to turn off support for subnormal
numbers, and just flush them to zero instead [3].

2.6 NaNs (Not-a-Number)

The last parts of the floating-point encoding space are the “Not-a-Numbers”
(NaNs). As the name suggests, these are not numbers. There is also a large
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amount of encoding space devoted to them, since every floating-point value
with an exponent of all ones and a non-zero mantissa field is a NaN. A single-
precision floating-point NaN breaks down into the parts:

S Exp Mantissa
NaNp = X 11111111 XXXXXXXXXXXXXXXXXXXXXXX
Any eMazx Any nonzero

There are two types of NaNs: Quiet NaNs (gNaN) and signaling NaNs
(sNaN). Quiet NaNs pass through operations, while signaling NaNs raise an
exception (specifically the invalid operation exception). Once an exception is
raised from a signaling NaN, the NaN is “quieted” and turned into a quiet
NaN. The distinction between quiet and signaling NaNs is the top bit of the
mantissa. A quiet NaN has a leading one bit, while a signaling NaN has a
leading zero bit:

S Exp Mantissa
gNalNp = X 11111111 1IXXXXXXXXXXXXXXXXXXXXXX
Any eMazx Any with leading 1
S Exp Mantissa
sNaNp = X 11111111 OXXXXXXXXXXXXXXXXXXXXXX
Any eMax Nonzero with leading 0

The general idea of signaling NaNs is that the developer can set up a signaling
NaN at the point of an error, and use floating point exceptions to catch the
point of the error.

The rest of the mantissa field is free to carry any payload. There are
several different proposed uses for these payload bits for carrying information
about errors and other similar uses, but none are standardized or uniformly
implemented across platforms. An important use of these bits is NaN boxing,
where a separate type is carried inside the payload bits of a NaN, allowing
a union of a floating point number and another type to share the same bits
with efficient type detection (see Section 8.4) [6].

Operations that have no determined value, such as %, produce a NaN to
indicate an error in the arithmetic that results in an indeterminate answer.
Additionally, operations that involve a NaN will propagate a NaN to the
result because any operation with a NaN input cannot produce a determinate
result. The exact NaN generated depends on the behavior of the hardware.
Some processors will propagate one of the input NaNs to the output, and
many will produce a new NaN, either a specific “default” NaN or one with
scrambled payload bits [7].

Beyond the level of the processor, some programming languages also spec-
ify a canonical NaN and additional rules on production and consumption of
NaNs. Incoming NaNs to these environments get canonicalized, turning them
into the one canonical NaN, and any calculation that produces a NaN has an
additional check to canonicalize its output. Additionally, several languages,
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including JavaScript [8], do not support signaling NaNs. These math libraries
will usually treat signaling NaNs as quiet NaNs, but some will have errors
or bugs (possibly even critical security exploits) if you find a way to get a
non-standard NaN into a program.

2.7 Other Floating-Point Formats

There are two other classes of floating-point formats that are different from
the main binary formats but deserve a mention. These should generally be
considered special-purpose numerical formats:

e Reduced-precision floating-point formats
e Decimal floating point

Reduced-precision formats are primarily for machine learning models, and the
smallest formats specifically only work well for large models. Decimal floating
point is used in some niches for accounting calculations.

Reduced-precision formats have gained prominence recently due to their
use in large language models and other large-model machine learning systems.
The primary benefit of these formats is that they can compress the storage
of model weights while maintaining the dynamic range of larger integers. The
main reduced-precision formats are shown in Table 2.4. These formats largely
come from CPU and GPU vendors, as well as the Open Compute Project,
which is a consortium of vendors. Bfloat16 and E5M2 have similar NaNs and
infinities to mainline floating point, but the smaller formats have no infinity
and have normal numbers all the way up to the max exponent. E4AM3 com-
promises, placing two NaNs with exponent and mantissa fields of all ones,

TABLE 2.4

Binary properties of proposed reduced-precision floating-point formats, in-
cluding the number of zeros, infinities, and NaNs in the encoding space. All
formats have one sign bit. Names indicate the number of bits in the format,
with “E” and “M” labeling the number of exponent and mantissa bits.

Exponent Mantissa Zeros/

Name Width Bits Bias Bits Infinities NalNs
Bfloat16 16 8 —127 7 2/2 254
FP8-E5M2 8 5 -15 2 2/2 6
FP8-E4M3 8 4 -7 3 2/0 2
FP4-E3MO 4 3 -3 0 0/0 0
FP4-E2M1 4 2 -1 1 2/0 0




22 Floating Point Numerics for Games and Simulations

although the remaining numbers with an exponent of all ones are normal
numbers. All formats except E3MO, which is a hypothetical format with no
zeros, still have two zeros and the standard subnormals [9].

Bfloat16 and E5SM2 result from the truncation of common floating-point
formats to a smaller binary size. Bfloat16 is a truncated version of single-
precision float from 32 bits to 16, and E5M2 is a truncated version of half-
precision float from 16 bits to eight.

Some of these formats are not used for calculations, and the ones that are
used for calculations are often used in matrix operations that accumulate to
a larger-precision format. For example, several large language models will use
matrix operations with FP8 inputs that accumulate results in half precision.
Outside of the matrix multiplications, half-precision floating point is still com-
mon. The smallest formats are often only used for storage, and calculations
happen in a wider, more precise numeric format.

Decimal floating point is an IEEE-754 standard that is primarily used for
calculations involving money. Decimal floating point does not use 2 as its
exponent radix, but 10. This introduces a number of problems for the format
that make things more difficult than in the binary formats. There are three
standardized decimal floating-point formats, a 32-bit format, a 64-bit format,
and a 128-bit format. These formats are shown in Table 2.5.

The encoding of numbers in decimal floating point is more complex than
binary floating point, and there are two encodings. Both encodings replace the
exponent with a “combination” field that encodes the exponent and the high
bits of the significand. Although the exponent range is smaller for decimal
floating point than the binary format equivalent, the full combination field is
several bits larger. In the first encoding, the significand (S) is encoded as a
binary number with the high bits covered by the combination field and the
remaining bits in the mantissa:

(—1)°10°8

In the second encoding, the mantissa is a densely packed decimal format using
an optimized encoding for packing binary-coded decimal digits together. This
encoding packs three decimal digits into ten binary bits for maximum infor-
mation density, and then uses packs of 10-bit pieces to create the mantissa.

TABLE 2.5
Decimal properties of the decimal floating-point formats.

Exponent (10°) Significand

Name Width Min Max Digits
Decimal32 32 —-95 96 7
Decimal64 64 —383 384 16

Decimall28 128 —6143 6144 34
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Broadly speaking, the use of decimal numbers means applying some forms of
compression in order to take advantage of the binary encoding space available.

Unlike binary floating point, both encodings have multiple forms of the
same number, so decimal floating point calculations sometimes need to reg-
ularize the value of their results. Otherwise, the operations on floating-point
numbers translate to decimal floating point. The decimal floating point num-
bers can represent powers of 10 exactly, so while binary floating point formats
must approximate the number 0.1, decimal floating point has an exact repre-
sentation.

Despite being a standard format, hardware support for decimal floating
point is relatively limited, with IBM offering support in its CPUs and main-
frames [10], but no support from either the x86 or Arm architectures. However,
several software libraries provide support for decimal floating point if it is of
interest.

Check Your Understanding

Problem 2.1. Write a program that constructs a single-precision floating-
point number from a tuple of integers. Use that program to construct the
following floating point numbers:

e 1.0
47919936.5
0.013843536376953125

s —0
2—140

Problem 2.2. Write a program that breaks down a double-precision floating-
point number into a tuple of integers. Use that program to construct the
following sets of integers:

e Sign: 0, Exponent: 1300, Mantissa: 0

e Sign: 1, Exponent: 1023, Mantissa: 100000 000 000

e Sign: 0, Exponent: 1000, Mantissa: 25!

e Sign: 0, Exponent: 0, Mantissa: 123 456 789

e Sign: 1, Exponent: 96, Mantissa: 987 654 321

Problem 2.3. How many possible NaNs are there in double-precision floating
point?

Problem 2.4. Of all possible single-precision floating-point numbers, what
fraction are greater than 13377 What fraction of half-precision floating-point
numbers are greater than 13377
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Problem 2.5. Using a random integer generation algorithm (e.g., C rand()),
write a function that produces a random single-precision floating point number
drawn uniformly from the range [1,2]. Subtract 1 from this result to produce
a random floating point number from the range [0, 1]. Are there any floating
point numbers in the range [0, 1] that your function will never produce?

Problem 2.6. Write a function that takes the logical AND of two positive
integers stored in double-precision floating point. Ensure that your function
works for all positive integers that can be represented in double precision (in-
cluding those with exponents over 1000). Does this function always calculate
the exact AND of the two numbers?



3

Sources of Error

Floating point operations can introduce error through rounding and through
exceptional conditions. Rounding and the exceptions are notorious for creat-
ing calculation problems, partly due to using a number format designed for
numerical analysis to do generalist arithmetic.

Rounding is one of the most potent aspects of floating point, both in terms
of its power and the challenges involved in using it. There are four rounding
modes that are available to be used, and any time an inexact calculation oc-
curs, the result is rounded. Rounding is often responsible for the accumulation
of error in calculations, but it keeps your results as accurate as possible while
staying in a fixed bit width.

Similarly, there are five exceptions in floating point, from division by zero
to an inexact exception, which are signaled to the user to indicate any con-
dition where a calculation does not exactly match what should happen with
arithmetic in the real numbers. Exceptional conditions can be triggered by
all floating-point operations. If an operation does not hit an exception (and
therefore does not round), it has not added any error to the result of that
calculation.

3.1 Rounding and Rounding Modes

One part of floating point that cannot be ignored or avoided is rounding.
Rounding is an important feature of any numeric format of finite length.
Integer calculations round by truncation. If you have any fractional bits, they
get flushed to zero. Floating point takes rounding more seriously to avoid
adding error where possible. There are four default rounding modes for binary
floating point that can apply to every operation:

1. Round to nearest, with ties to even (RTN). In this mode,
rounding goes to the nearest number, but results exactly halfway
between two floating-point numbers are rounded toward the number
with the even mantissa (the number whose mantissa has a trailing
zero). This is the default rounding mode.
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2. Round toward zero (RZ). In this mode, results are always
rounded toward the smaller (in magnitude) of the two options. This
mode is equivalent to rounding by truncation, and is usually what
people mean when the think of “rounding down”.

3. Round toward positive (round up or RU). In this mode, re-
sults are always rounded toward the higher of the two options.

4. Round toward negative (round down or RD). In this mode,
results are always rounded toward the lower of the two options.

The last three rounding modes are referred to as directed rounding modes,
because you control the direction of the rounding, while the first one is often
abbreviated as just round to nearest. The three directed rounding modes
allow you to always round toward the smaller number, rounding up below
zero and rounding down above 0, or to always round up or down. A few visual
examples of these rounding modes are shown in Figure 3.1.

The round-to-nearest mode is the most accurate of the rounding modes.
The behavior of ties going to the even number is unintuitive, but it means
going to the “rounder” of the two options, and also balances error in long
chains of operations. As an example, three examples from the figure show ties

Round to Nearest, Ties to Even (RTN)

-56 — -6 -35— -4 21 —> -2 125 — 1 28 —3 5—453—>6
| VAN & & o+ o S & e N |
f 4 4 T b S e R SRR R ARR RN A * ¥ ¥ 1
-0 -4 -2 -1 0 1 2 4 00
Round Toward Zero (RZ)
-56 — 435 — -3-21 — -2 125 — 128 —2 5—4 53 —4
-0 -4 -2 -1 0 1 2 4 o0
Round Toward Positive (RU)
=56 — —4-35 — -3-2.1 — -2 125 — 15 28 —3 5—653—>6
-0 -4 -2 -1 0 1 2 4 S
Round Toward Negative (RD)
-56 —> -6 -35—-4 -21—-3 125 > 128 —2 5—4 53 —4
| VAN AN i W T IITITED JS P g .| & e | |
f 4 4 4 B e S SRR R RN RN A 4 T 4 T 1
-0 -4 -2 -1 0 1 2 4 00
FIGURE 3.1

Examples of rounding of operation results under each of the rounding modes
using an example floating point system with 1-bit mantissa and exponent
range [—2, 2].
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going to the number with an even mantissa:

—-3.5 — —4 instead of —3
125 — 1 instead of 1.5
5 — 4 instead of 6

Examples which are not exactly between the two options, including —5.6 and
5.3, are rounded as normal to the nearest result. We can also see that the
directed rounding modes can cause results to move significantly further than
round to nearest, with certain directed rounding modes taking larger steps
than might be expected:

2.8 — 2 instead of 3 for RD and RZ
—-2.1 — —2.5 instead of —2 for RD
—-5.6 — —4 instead of —6 for RU and RZ

The classic schoolbook rounding method, shared by children and accoun-
tants alike, is not an option in binary floating point. This rounding mode
would be called “round to nearest, ties away from zero” since the classic idea
of rounding is to choose the larger of the two options when you are halfway
between two choices (e.g., 12.5 rounds up to 13). This rounding method tends
to accumulate error faster in long operation chains because slightly more than
half of the numbers between each floating-point number will round up. With
ties to even, the number line alternates between having a bias toward round-
ing up and a bias toward rounding down, balancing out any rounding bias.
Incidentally, this mode is standard in decimal floating point to accommodate
accounting calculations, but not binary floating point.

The classic case for rounding to even is the following pathological example.
Given two numbers z and y, if you take the sequence:

T =(x+y) -y
o= (r1+Yy)—y

Tpn = (xn—l +y) -y

The resulting x,, under round-to-nearest-ties-to-even is either equal to = or z;
for all n > 1. Under schoolbook rounding, however, z,, will blow up toward an
infinity if the operations used are inexact. For example, let’s consider rounding
to two decimal places for each operation, with x = 10 and y = 5.5. The
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operation chains look like [11]:

Ties to Even Ties Away from Zero
x1 = (10+5.5) — 5.5 x1 = (10+5.5) — 5.5
x1 = (16) — 5.5 x1 = (16) — 5.5
z1 =10 =11
x9 = (104 5.5) — 5.5 29 = (1145.5) — 5.5
x2 = (16) — 5.5 x9 = (17) = 5.5
To = 10 To =12

For ties to even, we stay with x,, = 10 for all n, while schoolbook rounding
will continue until z,, = 95. At that iteration, 95 + 5.5 will round to 100,
since we are rounding to two decimal places. Subtracting 5.5 again will return
Tp41 = 95. With ties to even, it is much harder to construct cases where
rounding alone creates numerical instability like this. In 2023, this rounding
mode cost the author $2 in extra taxes compared to ties-to-even.

3.2 Errors and Exceptions

Floating point leaves the handling of exceptional conditions up to the pro-
gramming language, the CPU architecture, and the user. The only official
constructs related to error conditions in floating point are the five exceptions.
These exceptions indicate that something unexpected or otherwise imperfect
has occurred. A floating-point operation that gives no exceptions behaves the
same way that the operation would under arithmetic in the real numbers.

Since each of these exceptions is important when thinking about floating
point, we will be notating them with a two-letter code for easy reference in
mathematical expressions. The five exceptions are:

e Invalid Operation (I0) exceptions occur when an expression has an indefinite
result.

e Division by Zero (DZ) exceptions occur when an operation on finite inputs
has an exact infinite result.

e Underflow (UF) exceptions occur when an operation’s result is too small to
be represented.
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e Overflow (OF) exceptions occur when an operation’s result is too big to be
represented.

e Inexact (IX) exceptions occur whenever an operation’s result is not exactly
equal to its real-valued equivalent.

Not all of these exceptions are errors. Inexact operations, in particular, are
commonplace in most numerical code, and generally pass silently.

These codes are the same as the codes used by floating point status flags in
some CPUs, and will also be used to notate exceptions that occur in floating-
point operations in this book. The notation for operations that we use going
forward will look like:

[Operation] CRES [Result]

Since many of these operations are irreversible, especially operations with
an exception, we are also replacing the usual equals sign that appears in
math notation with an arrow indicating the production of a result from the
operation when we consider floating-point operations. Exception codes will
be placed above the production arrow to indicate the exceptions that occur
during that operation.

3.3 The Inexact (IX) Exception

The inexact (IX) exception is surprising for people who are users of floating
point and are comfortable with inexact calculations—your hardware warns
you when that occurs. Inexact exceptions arise any time an operation pro-
duces an inexact result. It is both the most common exception and the most
commonly ignored exception. More rigorously, the inexact exception indicates
that rounding occurred and that the rounded result is not equal to the exact
result as computed with infinite precision. It is a normal part of working in
floating point, but can still be helpful to know about.

Every inexact operation represents a small precision loss compared to a
real-valued calculation, and in cases where you need to track precision loss
very closely, the inexact exception is how to handle this. An operation with
an inexact exception may add up to one ULP of error (depending on rounding
mode) to a calculation, while an exact operation does not add error.

In geometric and numerical calculations, inexact exceptions are expected
and usually ignored. However, if you are interested in tracking specific points
that create error, it is possible to pay attention to points of inexactness.
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3.4 Invalid Operations (I0) and Division by Zero (DZ)

The first two exceptions we will discuss relate to conditions where funda-
mentally bad inputs are fed to an operation. An invalid operation exception
(which we will abbreviate as I0) indicates when an operation is done on inputs
that would produce an indefinite result. All operations that signal an invalid
operation exception produce a NaN. An example of this kind of operation is:

OOF — OCOF =7

Depending on the nature of the infinities, the correct result of this calculation
could be any number, including co, depending on how each of the operands was
reached. Since we have none of that history in our floating-point subtraction,
we do not try. Instead, floating point signals an invalid operation:

I0
oor — oor = NalNg

However, not all operations that produce a NaN will signal an invalid ex-
ception. Any operation on a quiet NaN will output a quiet NaN without this
exception, and operations on a signaling NaN will output gNaN while signaling
an invalid operation exception. In other words, whenever there is a signaling
NaN, that signal will come in the form of an invalid operation exception. In-
valid operations can also occur on conversions from floating point to integer
if the result would be an integer version of infinity (e.g., a number greater
than INT_MAX and a rounding mode that would require that number to be
rounded up), and in the case of a signaling comparison involving a NaN. In
these operations, they will not produce a result since there is no “NaN” for
integers or booleans.

Invalid operation exceptions never occur when all the inputs to an opera-
tion are normal numbers or zeros. Usually, you need to have an infinity or a
signaling NaN to produce an invalid operation exception. Aside from signaling
NaN inputs, which always produce an invalid operation exception, the list of
cases in which an invalid operation exception occurs can fit in a few short
tables. For reference, the operations producing a NaN and an I0 exception
are in Table 3.1.

Division by Zero (DZ) is a special kind of operand-related condition which
occurs when a floating point operation on a finite input produces an exact
infinite result. Division by zero is the obvious case: integer division by zero is
a problem, but since we have an oo in our number system, we can represent
% exactly. Any number divided by either zero produces an infinity with an
appropriate sign, and signals a division by zero exception. Many systems and
programming languages, including Python, will treat a floating-point division
by zero as a language-level error condition, but it is not an issue within the
floating point number system as long as you can handle the infinities produced
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TABLE 3.1

Enumerated list of cases that produce an invalid operation flag in the basic
operations of binary floating point. Decimal floating point has a few extra
cases around its special operations.

Operation Result
00 — 00 NaN
+oo x £0.0 NaN
+oo/ £ 00 NaN
40/ 0 NaN
FMA containing an invalid multiply or add NaN
remainder(x,+0) for any non-NaN z NaN
remainder(co,z) for any non-NaN z NaN
Vv with z <0 NaN
integer(+o0) No result
integer(NaN) No result
integer(x) with x < INT_MIN if rounding down No result
integer(x) with z > INT_MAX if rounding up No result
Signaling comparisons with NaN operands No result
intLogB(+00) No result
intLogB(+0) No result
intLogB(NaN) No result
Any operation with sNaN NaN/No result

by the division by zero. Division by zero is not a catastrophe, but it’s a case
where floating point does something weird.

One other required floating-point operation can produce a division by zero
exception, and it is the binary logarithm operation. The logarithm of 0 is well-
defined as —oo (a mathematician would say that this happens in the limit),
and this is another example of an operation on a finite input with an exact
infinite result. These two cases with signs spelled out are shown in Table 3.2.

TABLE 3.2
Enumerated list of cases that produce a divide by zero exception in the basic
operations of floating point.

Operation Result
x/0  with x>0 00
/0 with <0 —o0

z/(—=0) with z>0 —o0
x/(—=0) with z <0 00
logB(+0) —00




32 Floating Point Numerics for Games and Simulations

Invalid operation and division by zero exceptions operate the same way
for every floating point number format, and are unrelated to dynamic range
or numerical precision. Invalid operations either produce a NaN or fail, and
operations that raise a division by zero exception produce an exact infinity
from finite inputs.

Other operations in math libraries can also produce invalid operation and
division by zero exceptions, but they follow the same principles as the required
operations. A case where non-NaN inputs produces a NaN output is an in-
valid operation, and a case where normal inputs produce an infinity will be
signaled as a division by zero.

3.5 Overflow (0F) and Underflow (UF)

Overflow and underflow exceptions occur when operations exhaust one end of
the dynamic range of the floating point format. Overflow (0F) occurs when the
exact result of a calculation is past the maximum or minimum representable
value in the given format. Underflow (UF) occurs when the result of a cal-
culation is smaller than the smallest normal number but not exactly zero.
Graphically, overflow and underflow occur when results land in the regions
indicated in Figure 3.2.

Overflow is the simpler case. If the rounded result of an operation has
a larger magnitude than can be represented in the result format, we get an
overflow. Overflow doesn’t necessarily need to come from arithmetic opera-
tions. A common place to find overflows is in conversion operations between
wider and narrower floating point formats. If the number being converted is
beyond the dynamic range of the destination format, you get an overflow. The
behavior of overflow depends on the rounding mode chosen. The behavior is
summarized in Table 3.3. Calculations involving infinities are not overflows,
and frequently don’t raise exceptions, while calculations of normal numbers
that produce an infinity are always either an overflow or a division by zero.
The difference between overflow and division by zero is that a division by zero
exception signals a result that is exactly infinity, while an overflow signals a

Overflow (-) Underflow Overflow (+)

! il | | | 1 Ll Dbl 1] || | 1 | | Il |
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FIGURE 3.2

Regions where unrounded operation results cause underflow and overflow ex-
ceptions on an example floating point system with 1-bit mantissa and exponent
range [—2,2].
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TABLE 3.3
Behavior of floating-point operations under overflow, depending on the chosen
rounding mode. HUGE represents the largest non-infinite floating-point number.

Result
Rounding Mode Approaching —oc Approaching oo
Nearest, Ties to Even (Default) —00 00
Toward Zero —HUGE HUGE
Toward Negative —00 HUGE
Toward Positive —HUGE 00

result that could be rounded to infinity. An overflow is always also an inexact
calculation, almost by definition.

It is possible to avoid creating any infinity on overflow by using the round-
toward-zero rounding mode. In this rounding mode, you sacrifice accuracy
since inexact calculations can be off by one ULP rather than half a ULP, but
the only operations on normal numbers that create an infinity result are ones
that trigger a divide by zero exception.

Technically, a floating-point underflow exception can occur in two circum-
stances:

1. When an inexact calculation produces a result before rounding
whose magnitude is smaller than the smallest normal number.

2. When an exact calculation produces a nonzero subnormal result.

In the first case, the inexact exception is also triggered, and you get an un-
derflow when the rounded result is zero. You also get an underflow exception
when the result is rounded to a normal number, since the underflow flag de-
pends on the pre-rounding result. This is the normal idea of what “underflow”
means. The second case creates a few oddities: An operation whose exact re-
sult is a subnormal number is considered an underflow, including the exact
sum of two subnormal numbers (if the result is also a subnormal number).
Thankfully, the default behavior of underflow exception reporting, which is
followed by most CPUs, is to only signal an underflow in the first case, when
you have an inexact operation that actually loses precision due to the arith-
metic underflow.

The definition of overflow and underflow depends only on the result of the
calculation, not on the inputs, but they mostly follow the intuitive definitions
of the words “overflow” and “underflow”. These two exceptions are also com-
panions to the inexact exception (excluding the non-default behavior of the
underflow exception), and will generally only be signaled alongside it. They
clarify two special modes in which a calculation can be inexact. For brevity, we
will be omitting mention of the IX exception when an overflow or underflow
occurs in an example in this book.
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3.6 Exceptions and Rounding in Processors

CPUs usually have a floating point status register that indicates the exceptions
quietly and a control register that allows you to set floating-point exceptions
as CPU traps, interrupting computation and passing the error to a handler.
There is also usually a field in the control register to set the rounding mode
used. This level of flexibility allows you to convert certain types of exceptions
into program-level errors and ignore other kinds.

Generally, processors will give you a lot of control over rounding modes,
but limit the control you have over exception signaling. For example, they
will usually not allow you to report an underflow on an exact result. However,
most will let you set which kinds of errors are reported in flags and which
kinds of errors cause a CPU interrupt, and some languages and programming
environments take advantage of this differently than others. Almost all CPUs
give you all of the rounding modes as options. It’s a small amount of silicon,
but has great benefits for the flexibility of programs.

Single-instruction multiple-data (SIMD) pipelines in CPUs, such as Intel’s
AVX, will often aggregate the signals coming from all lanes of the computation,
so you will not necessarily get information about which calculation caused an
error. It generally works out well to look for the NaN when you get one of
these flags (or the infinity), but that does not work for some other exceptions,
like the inexact exception. CPUs of the x86 family set rounding modes, control
CPU traps, and report error in the MXCSR control and status register. When
using an x86 CPU for floating point, if you care a lot about the exceptions in
the calculation, you have to do one calculation at a time instead of using a
vector [3]. ARM works much the same way, but splits the control and status
registers into the FPCR for control and FPSR for status [7].

GPUs generally do not signal these exceptions in any way, and have no
mechanism for converting them into traps. Since GPUs run a lot of threads
at once and rely on having very little flow control for each thread, checking
for and trapping on floating-point exceptions loses a lot of the benefit of using
a GPU. GPUs are still compliant with the floating point standard, and will
operate correctly for overflows and invalid operations, but they do not have
any out-of-band reporting mechanisms for exceptions. Specialized types of
arithmetic that rely on seeing exceptions (e.g., arithmetic that needs a non-
default rounding mode, and needs an inexact signal) will not be able to be
translated to a GPU. On the positive side, GPUs will often allow you to control
rounding modes as part of the operation instruction, so you have very fine-
grained control of rounding. Systems like interval arithmetic, which have half
of your instructions rounding to negative and half rounding to positive, can
take advantage of this capability to get better performance than you might
expect [12].
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When you are running a numerical algorithm that needs both accuracy and
speed, it is common to do development of the algorithm serialized on a CPU
and then parallelize to a SIMD or GPU implementation once you have worked
out that you can safely ignore any exceptions that might be raised. Reporting
errors and exceptions from parallel computation systems is much harder than
reporting them from systems that compute serially, and the floating-point
exceptions are no exception to that rule.

Check Your Understanding

Problem 3.1. Catch them all: Using SIMD intrinsics or a SIMD library,
perform a single vectorized floating-point operation on a handcrafted input
(the operation and the input are up to you) that triggers all the floating-point
exceptions simultaneously.

Problem 3.2. Write a program that converts integers to single-precision
floating point numbers, rounding to odd mantissas for inexact conversions.
Find a large number where the input, the default-rounded version, and the
rounded-to-odd version are all different.

Problem 3.3. Only using integer arithmetic, construct a program that per-
forms integer division with round-to-nearest-ties-to-even rounding.

Generate 10000 pairs of integers with the first number between —10000
and 10000, and the second number between —100 and 100. Compare the
accuracy of your round-to-nearest code against default integer division and
a double-precision quotient of the numbers. Compute a sum-of-quotients for
the whole set of numbers in each mode (integer, rounded integer, and double
precision) and compare the accuracy of the results.

Problem 3.4. Write a function that performs single-precision floating point
sums using stochastic rounding. Stochastic rounding involves rounding inexact
operations up or down with probability related to the magnitude of the tail
of the number (e.g., 1.9 would round to 2 with probability 0.9 and round to
1 with probability 0.1), and must be implemented manually using a wider
format to get the exact result prior to rounding.

Add up 100000 random numbers drawn uniformly from the range [0, 1] in
single precision with default rounding, single precision with stochastic round-
ing, and double precision. Is the result with default rounding or the result
with stochastic rounding closer to the double precision result?



4

The Basic Arithmetic Operations

Floating-point systems have six basic arithmetic operations: The four opera-
tions we all know and love, plus square root and an operation that combines
multiplication and addition, called a fused-multiply-add (FMA) operation. All
of these operations can produce an inexact result, and rely on rounding to get
back to an appropriate bit width.

I think of floating point as a format built around multiplication: The sim-
plest operations for floating point are multiplication and division. For this
reason, this chapter begins with a discussion of multiplication rather than the
traditional approach of starting with addition.

Floating point operations also do not have the same algebraic properties
that you expect from operations like addition and multiplication. For this
reason, compilers generally make the (dangerous) assumption that you know
what you are doing. This also means that you have a lot of freedom to choose
how accurate or fast you want your math to be.

4.1 Multiplication

Multiplication and division are the simplest and easiest floating point opera-
tions, with the fewest pitfalls.

Both multiplication and division can be computed by separating the float-
ing point number and computing the result on each part. Remember the for-
mula for the value of a floating point number:

F = (~1)*2¢(1.m)

Since all three of these terms are multiplied together, when multiplying two
floating point numbers, we can separate the multiplication:

Fy x Fy =[(—1)*12% (1.mq)] x [(=1)%22°2(1.mg)]
= [(=1)™ x (~1)][2° x 2°2)[(Lamy) x (Lamo)]

Simplifying by the distributive property of exponentiation over multiplication:

F1 X F2 = (—1)Sl+822€1+62[(1.m1) X (1m2)}
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This gives us a new floating point number. The sign calculation cannot affect
any other part of the number, since no other part of the number has —1 as a
factor, and so the new sign bit is the XOR of the signs of the inputs (addition
modulo 2 is equivalent to XOR). Similarly, the exponent calculation stays in
its lane computing a new power of two by addition. However, the mantissa
can leak a bit: Since each of the numbers being multiplied to create the new
mantissa is between 1 and 2, the result of that multiplication may be between
1 and 4. This can cause a leak of bits into the exponent field, but that is the
only inter-field dependency.

The multiplication of the mantissas may need the result to be rounded.
Consider the single-precision floating-point number: (1 + 271°)g, also repre-
sented exactly as 0F1.000000000000001;. The exact square of this number is:

(14270 x (1427 =1+2"" 4279
However, the 2730 portion of this product represents a problem: We only have
23 mantissa bits, so we cannot put a bit in the 30th place. This means that
we have an inexact result and we need to round. Rounding will take place
using whatever rounding mode has been decided before. Using the default
round-to-nearest mode, we get the result:

(1+25)p x (1+27 %) 2 (1427 M)

Or in other words:
1.000000000000001,F0 x 1.000000000000001,F0 X 1.00000000000001,F0

As expected, this operation will trigger an inexact exception. If we did this
example in double precision, there are enough bits for an exact result:

1.000000000000001;D0 x 1.000000000000001D0 =
1.000000000000010000000000000001,D0

In the general case, multiplication of two mantissas produces a product that
has twice the precision of the original multiplication, so rounding is often
necessary.

Zero (along with subnormal numbers) is often a special case for floating
point multiplier hardware. In this case, the multiplier simply has to detect
a zero to produce a zero result. The same goes for infinity. However, infinity
times zero gives a NalN result. The special cases can be found in Table 4.1.
Note that in all of the special cases, the sign bit is still dutifully calculated as
the XOR of the sign bits of the operands.

Due to the addition of the exponents, multiplication can easily overflow or
underflow. Multiplying lists of numbers easily result in this when you reach
a block of very large or very small numbers, even when the final product
of the list is representable in floating point. This is much harder to do in
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TABLE 4.1
Special cases of floating-point multiplication, where x is a positive normal
floating point number.

Operation Result Exceptions

+x x 0.0 +0.0
+x x —=0.0 F0.0
00 x 00 0.0
0.0 x —=0.0 —0.0
—-0.0 x -0.0 0.0
+r x oo +oo
+r X —o0 TFoo
oo X 00 00
o0 X —00 —00
—0 X -0 00
+oo x £0.0 NaN I0
NaN X Any NaN I0 for sNaN

floating point than it is with integers, though, since floating point has such a
wide dynamic range that most products of “usual” numbers won’t go beyond
the range of a double. Multiplication is also numerically well-behaved: Aside
from the normal rounding errors, you will almost never get a result that isn’t
close to the intuitive expectation since the multiplication of the significands
maintains precision.

Multiplying floating point numbers is usually as fast as integer multiplica-
tion, and is usually the fastest floating point arithmetic operation available.
For this reason, floating point algorithms designed for speed will often prefer
multiplication over addition.

4.2 Division

In the normal cases, division is somewhat similar to multiplication, with the
addition of a reciprocal calculation:

F 1

2 [(=1)2% (L.mq)] x |(=1)7*227% (1.mg)

-y [ln]

1.m2

Like multiplication, the only inter-field dependency is that the mantissa cal-
culation can adjust the exponent calculation by one, but this time it can go
down.

Two methods are generally used for computing reciprocals, functional it-
eration and digit recurrence. Digit recurrence division uses a method similar
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to the paper method of long division. Bits of the significand are grouped into
digits, and the quotient is computed one digit at a time, starting with the
most significant bits and moving down the number. This algorithm uses a
small lookup table based on the divisor and the top digit of the current re-
mainder to determine how many times the divisor divides the top digit of the
remainder, then updates the remainder. The first Pentium processors from
Intel used digit-recurrence division with a digit size of two bits. The lookup
table had 5 out of 1066 entries populated with the wrong result, resulting in
errors in division that accumulated over the rest of the division calculation.
Modern processors will often use 3-6 bits per digit, with a correspondingly
larger lookup table [13].

Functional iteration methods start with an initial approximation, usually
taken from a lookup table, and use an iterative algorithm such as Newton-
Raphson to refine the precision of the result. These algorithms have quadratic
convergence, doubling their precision in bits for each refinement step, but the
refinement step is slower and more energy-intensive than the digit-recurrence
method. For this reason, digit-recurrence division is more common to see in
CPUs and GPUs, but functional iteration methods are often faster [14].

As an example of how this computation is done, the most common func-
tional iteration method for division is Goldschmidt’s method, which uses the

following idea:
N NFFF

We can set the F’s so that the sequence DFyFiF5... converges to 1, causing
the sequence N FyF1 F5... to naturally converge to @. When 0 < D < 1, there
is a simple formula to find the next F' based on a current value of D:

Fopn=2-D,
For example, if we are computing with D = 0.7:
D=07—F =13
Dy =F1Dy=(0.7) x (1.3) =091 — F» =1.09
Dy = F5,D; = (0.91) x (1.09) = 0.9919 — F5 = 1.0081
D3 = F3Dy = (0.9919) x (1.0081) = 1.99993439 — F3 = 1.0.00006561

This sequence will converge so that Dy, = F,, = 1. Intuitively, at each
round, we add % to a number that is “discounted” by x%. Combining the
multiplicative markup with the multiplicative discount, we get closer and
closer to 1. In general, with D =1 — z:

D=l-2—F=14+x

Di=(1-z)1+2)=1-2> — F,=1+2"
Dy=(1-a)(1+2)=1-2"— F3=1+a"
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We can see that in this sequence, we converge to 1 by squaring = at each
iteration. Since x is the error in our division, we are squaring the error at each
step, which corresponds to doubling the number of correct bits in the result.
This form of calculation does not even require us to compute the sequence of
D’s. We can simply start with x = 1 — D and estimate the quotient as:

Q=N(1+z)(1+a?)(1+a*)(1+25)..

Since the floating point significand calculation naturally has 1 < D < 2,
we can simply divide by two, shifting bit places, for this calculation to get
0.5 < D < 1, and shift back for the final result. In practice, the first F' is
often chosen from a lookup table which has a decent approximation of 1/D,
and the iteration is just run 1-3 times. Starting with 0 < z < 0.5, you have to
run 5 rounds for 24 bits of precision, but if you start with 12 bits of precision
coming out of a lookup table, you only need to run one refinement round.
As you might imagine, each step needs to be done with a few extra bits of
precision to get a precisely rounded final result [15].

CPUs have logic dedicated to computing these reciprocals, and they are
done relatively quickly, but division is a slower operation than multiplication
or addition, so you will often see compilers swapping divisions for multiplica-
tions when they are exactly equivalent. You may find that it improves perfor-
mance to do this in your own formulas. If you are in the situation where you
are using one denominator function frequently, it can help to take a small pre-
cision loss by pre-computing the reciprocal of that denominator and storing
it. A compiler will not do this automatically, since it causes a loss of precision.

Many CPUs will also have an instruction that quickly computes an approx-
imate division. This is a straightforward compromise of speed and accuracy,
allowing you to get somewhere between 8 and 14 bits of precision in the same
amount of time that it takes to compute a multiplication. Note that this prob-
lem is actually easier than integer division: since we are dividing two numbers
between 1 and 2, the result is guaranteed to be between 0.5 and 2, and the
precision is lower than would be needed for 64 bit integer division as well.

Like multiplication, division is often inexact, but is well-behaved. The in-
exact nature of division is intuitive, thinking about integer division, but the
general case also would require 2n bits to precisely represent the significand
of a division result with n bit significands. As a sister operation to multi-
plication, division is also prone to overflow and underflow (albeit much less
prone to overflow than integers), but is similarly well-behaved. It is hard to
reach overflow with “typical” numbers, and the precision of results is perfectly
maintained aside from rounding, which results in a precision loss of half a ULP
with rounding to nearest or one ULP with directed rounding.

The special cases are where division stands out, outlined in Table 4.2.
Division by zero does not create numerical problems, as we do have an ap-
propriate infinity to cover those cases, but it signals an exception in case you
weren’t expecting to divide by zero. Some languages, however, will take this
exception as an actual error: C and C++ will not, although they can have
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TABLE 4.2
Special cases of floating-point division.

Operation Result Exceptions

00 / =z +00

£0.0 / -z  F0.0

0.0 / oo 0.0

0.0 / —oco  F0.0

tr / +0.0

tx |/ —oo  F0.0

too / =z +oo

too / -z Foo

tz / 0.0 +o0 DZ
tz / —-00 Foo DZ
too /0.0 +oo DZ
too / 00 Foo DZ
too / £ NaN 10
0.0 / 0.0 NaN 10
NaN / Any NaN 10 for sNaN
Any / NaN NaN IO for sNaN

some pitfalls—division by floating point zero is undefined behavior on plat-
forms that do not conform with IEEE 754 [16]—but Python is known for
turning this acceptable case into an error. Division by an infinity generates
a corresponding zero, and is a completely valid operation. Division also care-
fully preserves the sign that would come from the operation, so the sign bit
of the resulting operation is generally the XOR of the sign bits of the input
operands, even when a 0 or infinity result is generated. While multiplication
had one class of invalid NaN-producing operations, division has two: co/co
and 0/0 for all signs. These are analogous to the oo x 0.0 case.

Unlike integer division, the floating-point remainder operation is a separate
operation from division, and we will discuss its variants later in Section 7.1.
The idea of a remainder feels somewhat more synthetic when we are not
constrained tightly to the integers, and depends on integer conversion. Still,
floating point also has an optional remainder operation, which can be set up
to work like an integer remainder (see Section 7.1).

4.3 Addition and Subtraction

Addition and subtraction are the operations that have the largest number
of pitfalls in floating point, and are also probably the most commonly used
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operations. Addition and subtraction, when you are not careful, can swallow
numbers wholesale, and are also prone to a problem known as catastrophic
cancellation, when subtracting two numbers of similar magnitude. However,
it is possible to avoid these problems by learning how floating point addition
works.

The algorithm used inside floating point units for addition involves justi-
fying the significand of the lower-magnitude number with that of the higher-
magnitude number by shifting right, negating as appropriate, and then adding
the significands like integers. The exponent is then renormalized based on the
computed sum of the two significands, possibly going up by one, going down
by the precision of the numeric format, or going to zero. The output of an
addition or subtraction can have many different exponents depending on the
difference of the justified significands, and it is possible to have either sign
depending on the magnitudes of the operands. Given two numbers to add in
scientific notation, you would likely do a similar algorithm or abandon scien-
tific notation altogether, since the notation gets in the way on addition.

To illustrate the problems of addition and subtraction, we will start with
a few examples. Our first example is relatively tame, but foreshadows what is
to come:

253F + 4F = 257F

In our scientific notation, these numbers look like:
1.9765625F7 + 1.0F2 = 1.00390625F8

Executing the algorithm of aligning the significands, we get the following
process of addition:

1.1111101 x 27

+ 1.00 x 22
1.1111101 x 27

+ 0.0000100 x 27
10.0000001 x 27

1.00000001 x 28

We first normalize to the magnitude of the highest-magnitude operand, and
then we add as normal. A final step is to renormalize the final number.

We can see two immediate differences with multiplication here. First, the
computation cannot be done with the fields separated. The significands are
where the entirety of the action is. However, they cannot just be added naively,
and they have to be justified based on the exponents of their numbers for the
addition. This can create a slightly uncomfortable circumstance, illustrated
by our next example:

16777216 + 1 =7

Exposing the values of the exponent and significand,

1.0F24 4 1.0F0 =7
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Justifying and computing the sum in binary, we get the following result:

1.000000000000000000000000 x 224
+ 0.000000000000000000000001 x 22

1.000000000000000000000001  x 224

There seems to be no problem here until we count the number of zeros. There
is one too many, so we need to round. We are rounding to nearest with ties
going to even numbers, so the complete calculation is:

1.00000000000000000000000.0 224

X

+ 0.00000000000000000000000 1 x 224

Round 1.00000000000000000000000 1 x 224
1.00000000000000000000000 x 2% 1x

The addition has completed without changing the first operand. In other
words:
1.0F24 + 1.0r0 2 1.0r24

In this case, adding two integers results in an unchanged value and only
an often-ignored inexact exception. The default rounding mode is to round
to nearest with ties to even, and the nearest even value to a mantissa of
[O + %ULP] is 0. The value of 24F1.0 completely dominates this calculation,
and when rounding to nearest, we round back to that operand.

This is why storing counters in floating point numbers is a bad idea. The
significand of floating point numbers is substantially smaller than the width
of an integer, but integer counters also can roll over once they reach 232.
Floating point counters will make their way to 224 and stop (assuming default
rounding). Double-precision counters have a similar ceiling at 2°3. If you must
make a counter using floating point numbers, force it to roll over at 224 or
293 to avoid rounding-related issues, and do modular arithmetic if you want
to compare counter values.

Our final example is an example of a subtraction:

16777216F — 16777212F = 4f
Or alternatively:
1.0F24 — 1.9999995231628418F23 = 1.0F2

In this form, it is clear what is happening here. We are subtracting a number
that is almost equal to 224 from 224, which naturally gives us a small number.
The exponent of 24 that we had in both operands goes out the window, since
almost every bit of the subtraction of the significands cancels to 0. In binary,
that subtraction goes like this:

1.00000000000000000000000 x 22
— 0.11111111111111111111110 x 224

0.00000000000000000000010  x 224
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Everything about taking the exponent of the larger-magnitude number has
gone. We have two numbers close to 224, and the difference between them
is on the order of 22. We have essentially reduced from two numbers with
24 significant bits (the binary analogue of significant digits) down to one
number with two significant bits. This is even worse than you might think.
The real numbers corresponding to those floating point numbers could have
been 16777217 and 16777 211.5. We have computed a difference of 4 when
the true difference is 5.5, a 37.5% error in the difference.

Alternatively, 1 could have been added to the 16 777216 operand 10 times
prior to the subtraction. The nearly insignificant error of dropping those 10
additions when the number was 224 becomes a major accuracy problem when
the number is close to 1. This is catastrophic cancellation, when cancellation
during an addition or subtraction causes you to lose a large amount precision.
16777217 and 16777 211.5 are within 0.0005% of their respective floating-
point representations, but their difference is 37.5% off when calculated using
floats.

It is very easy in your mathematical code to run into issues with both
catastrophic cancellation and operand swallowing. The most basic example is
when you are keeping a running sum of samples, and then comparing that
running sum to an expected outcome. Floating point addition is often more
precise than integer addition when the numbers are of a similar magnitude, but
it can be disastrously imprecise when the two operands have a large difference
in magnitude, as could happen during a running sum. Most numerical code
uses double-precision floating point, which has enough precision to absorb
most of the problems we have mentioned in this chapter without issue. Loss
of precision from addition and subtraction, however, is still a risk.

Floating point addition and subtraction have relatively few special cases,
enumerated in Table 4.3. Most of these cases are what you would expect. With
a 0 operand, you pass the other operand. With an infinity, the infinity takes
over, and the only invalid operation is the sum of infinities of opposite signs.
There is a subtlety with the zeros, which is that the sum of a positive and
negative zero is a positive zero. This is a way to eliminate negative zero in
any calculation: You can simply add 0.0 to any calculation, and every number
other than —0.0 will be unaffected, but a negative zero will become positive.
In fact, the only case where a negative zero is produced is when two negative
zeros are added. The sum of a number and its negative is always positive
zero. Finally, the only invalid operation is the sum of infinities of opposite
signs.

Despite being heavily optimized, floating point addition is often slower
than floating point multiplication in microprocessors. This is natural due to
the larger size of circuits required and the increased number of special cases. It
is still a relatively fast operation, but not at the scale of integer addition, which
is trivial by comparison. Floating point is a format made for multiplication.



The Basic Arithmetic Operations 45

TABLE 4.3
Special cases of floating-point addition. When rounding toward negative, the
starred results are instead —0.0.

Operation Result Exceptions
+x 4+ =£0.0 +z
r + -z 0.0%*
0.0 + 00 0.0
00 + -00 0.0*
-00 + -0.0 -0.0
+xr + o0
+xr + -—o0 —00
+£0.0 + oo 00
+00 + —o0 —00
00 + 0 00
—00 + —00 —00
00 + —00 NaN I0
NaN + Any NaN 10 for sNaN

4.4 Square Root

Many users of floating point are surprised to see that square root is given
a prominent place as a required operation, when the other transcendental
functions are not. Calculation of square roots is important for graphics and
computations that involve geometry, like simulations, possibly more so than
division. Thankfully, computing square roots in floating point is efficient and
fast, on par with the speed of calculation of a division, and square roots are
a well-behaved floating point operation.

Square root, like multiplication and division, can be computed on a sepa-
rated form of the number. In this sense, it is easier than addition or subtrac-
tion. In practical implementations, square root calculation tends to share a lot
of hardware with division. When sign, exponent and mantissa are separated,
we get the following property:

V(=1)52¢(L.m) = /(=1)*V2V1.m

Since square roots of negative numbers are undefined in floating point, all
negative square roots, with the exception of v/—0, become NaN. The complete
special cases are shown in Table 4.4. As expected, infinity preserves itself, and
NaNs propagate.

One oddity of floating point is that unlike all the rest of the negative
numbers, v/—0 = —0. This is for the benefit of interval arithmetic, where
expressions are computed over ranges rather than single numbers. Interval
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TABLE 4.4
Special cases of floating-point square root.

Operation Result Exceptions

v/+0.0 +0.0

Voo 00

V—z NaN 10
V=00 NaN 10

NaN I0 for sNaN

=
o
=

arithmetic frequently uses the signs of zero to indicate open and closed in-
tervals containing zero, and since most other floating-point operations will
diligently preserve signs of zero, square root does as well. This is also part of
why thinking about negative zero as a “negative epsilon” is not quite correct.
Negative zero is zero, but we approached it from the negatives.

The positive square roots are then computed using a nice identity:

V2 x V1.m = 2¢/%2 x \/1.m

The calculation of e/2 can result in a non-integer, but if we pull in the least
significant bit of e to the computation of the square root of the mantissa, we
can make that problem go away:

9¢/2 x v1.m even e
2¢ X V1im =
V2e x Vm { 2(e=1)/2 2(1.m) odde

The square root can then be approximated using a range between 1 and 4.
These square roots are generally computed using one of the two iterative meth-
ods used for computing divisions, often sharing significant hardware resources
with the division calculation. Digit recurrence methods use a different lookup
table for square roots and a different function for functional iteration, but the
overall methods are the same, either going digit by digit or refining a guess.

Square root is probably the most well-behaved floating point operation in
terms of its exceptional behaviors. When x < 1, \/z > x, meaning that the
square root calculation cannot underflow. Similarly, when z > 1, v/ < =z,
meaning that the square root calculation similarly cannot overflow. In many
cases, such as v/2, square roots will be inexact and will need to round, but you
will never see an infinity from square root, and you will never see a NaN unless
you pass a negative number or a NaN in. Inexact square roots are common,
though, as many are irrational.

Square root is a first-class citizen in floating point arithmetic. Square root
is important for graphics calculations, simulations, and some machine learning
calculations, and many programs will take more square roots than divisions.
It is given the same level of care by processor architects as the four basic
arithmetic functions.
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4.5 Fused Multiply Add (FMA)

FMA is the most recent basic operation standardized in the IEEE 754-2008
specification, but has been a useful tool of scientific computing for several
decades. The idea of FMA is to compute AB + C without doing intermediate
rounding, fusing a multiplication to an addition. Essentially, the multiplication
of A and B is completed with exact precision, and the result is added to C,
with only a final rounding step.

Consider the example in single precision floating point where C =
—1985783424F, B = 1985783424¢, and A = 1.00000000000000000000001,F0.
In this case, B and C have been chosen such that B and C are large in
magnitude, but able to be represented exactly. AB is very slightly larger in
magnitude than C, but we have picked A such that the product AB would
have an inexact result when computed alone. Breaking down the operation,
the intermediate clearly cuts off several bits:

1.00000000000000000000001,F0 x 1985783424F Z 1985783680F
and the sum operation gives the following result:
1985783680F + (—1985783424F) = 256§

When computed in double precision, which has twice as many bits of precision,
we can see that:

1.00000000000000000000001,D0 x 1985783424p = 1985783660.723831p

1985783660.723831p + (—1985783424p) = 236.723831p
With single-precision FMA | however:

FMA(1.00000000000000000000001,F0, 1985783424F, —1985783424F)
= 236.723831F

Since the multiplication is done at infinite precision, there is no inexactness
or rounding. We have essentially prevented a catastrophic cancellation issue.

While double precision works for this example, there are analogous exam-
ples where double precision fails, and an FMA operation will give a correct
result. FMA does take extra hardware and is a bit harder for embedded CPUs
to compute, but it is a very good tool for numerical accuracy. By having an
effectively unlimited precision for the multiplication, FMA precision issues in
the addition step. We get perfect precision in situations that would otherwise
have had a catastrophic cancellation, like this one, and it improves accuracy
significantly when the term being added is smaller than the multiplication
result.
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FMA has the same sets of exceptional conditions as multiplication and
adding. It can overflow, it can underflow, and it can produce inexact results.
The special cases are also the same as the combination of the respective oper-
ations. If the product produces an infinity of the opposite sign as an infinity
in the sum term, the FMA can produce an invalid operation exception. There
is one interesting special case of an invalid operation, though. An implemen-
tation is allowed but not required to raise an invalid operation exception in
the following case:

FMA(00, 0, NaN) = NaN

Since the product of oo and 0 would give an invalid result exception, we are
allowed to produce one, but the valid sum of this result with a NaN operand
is allowed to “swallow” the exception.

Many compilers will automatically infer an FMA when the AB+C pattern
shows up in code. This usually helps, but it can explain why the math isn’t
working the same way from one build to the next. If you were expecting there
to be intermediate rounding and there is no rounding, you will get a different
answer than you expect. Counterintuitively, the FMA is actually doing better
math, but we can sometimes see it as error because it changes the result of a
calculation.

However, the FMA is a powerful addition to the family of floating-point
operations. While it takes longer to perform an FMA than to perform a prod-
uct or a sum, the hardware for FMA can be optimized so that the combined
operation without intermediate rounding takes less time than the pair of op-
erations with intermediate rounding. Therefore, when vendors benchmark the
performance of their hardware in FLOPS (floating-point ops per second), they
will frequently use back-to-back FMAs as their chosen benchmark. Each FMA
counts as two “operations” in the historical context of the benchmark but uses
a single fused instruction in most processors [17].

4.6 The Algebra of Floating Point

Most of the time we do math, we expect to be able to do algebra, allowing
us to simplify complicated expressions into simpler ones. Mathematically, the
ability to do this depends on a few properties, only some of which are provided
by floating point. In practice, this means that a compiler or programming
environment will faithfully replicate the order of operations that we choose
when we write code.

A basic property of addition and multiplication is the commutative prop-
erty:

A+B=B+ A

AxB=BxA
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Which essentially means that neither operand is special - swapping the left
and right sides of the operator is possible. A second property is the associative
property, the ability to reorder operators:

(A+B)+C=A+(B+0C)

Reordering operations is very powerful for computers, and is generally possible
with integer math. It also allows the reduction of constants, for example. The
expression 2+ x + 7 would normally be able to be evaluated as x + 9, but only
if the commutative and associative properties hold:

COMMUTE ASSOCIATE EVALUATE

2+z)+7 —  (z+2)+7TT—= xz+247) = "z+9

Simplification of constants is something that compilers and humans are very
comfortable doing, and is completely safe, since you are simply pre-evaluating
that branch of the expression. A final property is the distributive property,
which specifies the interaction between addition and multiplication. It guar-
antees that you can “distribute” a multiplication across the elements of an
addition:

A(B+C)=AB+ AC

Or more famously:
(A+B)(C+D)=(A+B)C+(A+B)D=AC+ BC+ AD+ BD

This property allows you to factor or expand an expression that is being eval-
uated. Factoring reduces the number of operations that are required, while
expanding allows more calculations in parallel. These algebraic properties are
also part of how compilers optimize integer math. Analogous properties ex-
ist in real arithmetic for subtraction and division, treating subtraction as an
addition of a negative and division as a multiplication of a reciprocal. Integer
division breaks this property, but with addition, subtraction, and multipli-
cation, you can factor and expand integer calculations and reach the same
results.

If you have been following along with the ways floating point addition
swallows precision, you might suspect that in floating point, the algebra you
can do without affecting the outcome of your expression is much more limited.
Thankfully, the commutative property still holds. Both operands are treated
equally. Let’s consider the associative property:

(A+B)+CZ A+ (B+0)

As you may have gathered from our discussion of addition, floating point
addition is not associative. Consider the case in single-precision floating point
using the default round-to-nearest rounding mode with A = 2?4, B =1, and
C =272 We get:

(A+ B)+ C = (1.0r24 + 1.0F0) + 1.0F—2
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The operation in parentheses is inexact. In this case, it rounds toward the
nearest even value, as we only have 23 bits of precision and the exact form
would have a mantissa of 1 + 2724, giving us half of a ULP to round. Since
we are exactly between two mantissas, we choose the even one. The result is:

(A+ B) + C = (1.0F24 + 1.0F0) + 1.0F—2 2 1.0r24 + 1.0F—2 2 1.0r24

When we change the order, though, we get the following calculation for the
first step, with an exact result:

A+ (B+C) =1.0F24 + (1.0F0 + 1.0F—2) = 1.0F24 + 1.25F0

In this addition, we would create an exact mantissa of 1+2724 42726 leaving
us with slightly more than half a ULP to round. Since we are rounding to
nearest, we round up to one ULP, leaving us with the result:

A+ (B+C) =1.0F24 + (1.0F0 4 1.0F—2) = 1.0F24 + 1.25F0

1.0F24 + 1.25F0 2 1.00000000000000000000001,F24

This is not the same as the result we got doing the addition in the other
order! Both of these results are equally wrong when considered in the infinite-
precision real number case, because both are off by two. However, the first
sequence had two inexact results, and thus two rounding steps, while the
second sequence had only one inexact result. The preservation of the extra
few bits meaningfully changes the result.

Although this is a contrived example, this loss of precision is a real prob-
lem that occurs when summing long vectors of floating point numbers. Large
numbers can swallow smaller numbers while either losing bits or going com-
pletely unchanged. One option is to sort by magnitude before taking a sum
and then add from smallest magnitude to largest magnitude, but this is not
foolproof, especially when negative numbers are involved.

Similarly, due to rounding between computations, floating point multipli-
cation is not associative either:

Ax (BxC)# (AxB)xC

Multiplication does not have the same chance for “error explosion” as addition
when done over a large list of numbers, but each operation rounds up or down
as needed, dropping half a ULP of precision each time. Another multiplicative
mathematical identity, the ability to distribute floating-point square roots
over floating-point multiplication, also does not hold for the same reason of
inexactness and rounding;:

VAXx B#VAxVB
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The counterexamples to these are somewhat more subtle. In both cases, the
trouble occurs any time you have a set of inexact multiplications to do, mean-
ing numbers that are either large or otherwise need a lot of precision (specif-
ically in binary—~0.1 is a “precise” number). In the case of square roots, the
expression on the right side rounds three times, while the expression on the
left will only round at most twice. In the case of multiplication, you can get an
instance where one ordering has two inexact operations and the other ordering
is inexact and then exact. It is also far easier to run into issues with these two
types of operations in the non-default rounding modes.

Finally, due to rounding and cancellation, the distributive property does
not hold between multiplication and addition:

Ax(B+C)#£AxB+AxC

Completing the chapter with another contrived example bordering on the
absurd, we will look at a different exceptional condition that breaks these al-
gebraic properties, and an example where cancellation helps. Consider double
precision arithmetic with A = 256p, B = 1.00000000000000000000001,01020,
and C' = —1020D1.0,. With numbers close in magnitude to 2'°2° but with
alternating signs, we know we have some catastrophic cancellation coming.
Working in factored form, we do see a large cancellation:

1.008 x [(1.00000000000000000001,01020) + (—1.001020)] = 1.008 x 1.001000

1.0p8 x 1.001000 = 1.001008

However, this is a sane result. It does not raise any floating point errors, and
it does produce a precise result (as long as we actually intended to subtract
numbers near 2192%). The calculation on the expanded form, however, takes a
very different turn:

1.008 x (1.00000000000000000001;01020) X o0p

We can’t represent 21928(1 + ¢), since the maximum exponent of double is
1023. The only thing we can do is overflow to co. Similarly,

1.008 x (—1.001020) & —oop

The piece de résistance is the final operation for the expanded calculation,
1.0p8 x (1.00000000000000000001,01020) + 1.0D8 x (—1.001020) X oop — 00D

I0
oop — oop = NalNp

There are inexact examples of the distributed property going wrong as well,
but it is fitting to finish off with the most catastrophic cancellation possible,
from infinities to a NaN. This final example seems contrived, but if you are
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computing the average of a large set of numbers, you may find an example of
exactly this kind showing up naturally.

There is very little algebra that your compiler can automatically do with
your floating point numbers, and most of the algebra you do will have some
affect on the result. Whether you are thinking about speed or accuracy, the
onus is on you, the user, to find the best formulas to use. Doing a little bit
of algebra and thinking about the relative sizes of your numbers can pay
dividends in terms of both accuracy and avoidance of NaNs.

Check Your Understanding

Problem 4.1. Write a program that computes floating point multiplication
using only integer arithmetic, and without using built-in float types. Check
your program with 1000 random multiplications to verify correctness. Check
your program’s overflow and underflow behavior.

Problem 4.2. Write a function that performs a subtraction while tracking
the precision loss due to cancellation. Treat the inputs to the subtraction as
having error of j:% ULP of uncertainty, and return two outputs: The difference
between the inputs and the uncertainty in the result. Subtract two numbers
near 10000, what is the uncertainty of the result? Subtract two numbers near
10000000000 and report the uncertainty of the result. Generate numbers
randomly between 1.0 and 1.01, and multiply by 2'0, 220, 230 and 250, What
is the average uncertainty at each range? How does that uncertainty relate to
the magnitude of the inputs and to the magnitude of the results?

Problem 4.3. Write a program that takes the double-precision sum of the
following list:

[-10000000000000.0, -23597.0, -5.0, -0.00003,
0.00000006, 0.01, 2.7, 16.0, 965.0, 86437628.0,
2125040692162.0, 7874872892830.0]

What is the result you get when you take the sum in the printed order? When
computed in different orders, what is the difference between the maximum
and minimum results? What is the correct sum of this list?

Problem 4.4. Find a rounding mode and a value of z in double-precision
floating point where (2 + ) +7 # z + 9.

Problem 4.5. Without using overflow or underflow, find an example of a
rounding mode and three floating point numbers where multiplication does
not associate: A x (B x C) # (Ax B) x C.

Hint: They will be easier to find if you avoid using round-to-nearest.
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Problem 4.6. Write a program that computes correctly rounded single-

precision floating point division using only integer arithmetic. Randomly gen-

erate 10000 floating point numbers in the range [—1000,10000] and check

your work against your computer’s built-in floating-point division unit using

default rounding. Generate 10000 floating point numbers in the range [0, 1]

and check with rounding up. Check all of the special cases from Table 4.2.
Challenge version: Do this without using integer division.
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Comparing Floating-Point Numbers

Comparisons of floating-point numbers does not create inaccuracy in itself,
but the interface between the world of floating point and the world of other
computations is where inaccuracies can solidify into odd behavior. Compar-
isons are the primary interaction with software control flow, and landing on
one side or the other of a comparison can result in vastly different computa-
tions to occur. Comparisons can also be a place where exceptional conditions
become problems in a calculation.

It is common knowledge that you should not directly compare the equality
of floating point numbers, and you should always use some “epsilon” value.
This is due to inexactness and rounding in the previous computation chain.
To set that epsilon, we may have to look backwards at what we have done
before in order to see how bad things could have gotten.

5.1 Relative Comparisons

Greater than, less than, greater-or-equal, and less-or-equal are relative com-
parison operations. These are the most well-behaved operations in floating
point, but the floating point numbers are not all ordered with respect to each
other. There are four possible relations between floating-point numbers, less
than, equal, greater than, and unordered. When one or both members
of a comparison are NaNs, the two numbers are unordered, but the numbers
otherwise compare as you would expect.

This means that there are actually eight different ways to compare the
relative magnitude of floating-point numbers, shown in Table 5.1. Unlike with
integers and real numbers, when a floating-point number is not less than
another floating-point number, that doesn’t mean that it is necessarily greater
than or equal to that number.

In code, these are all usually represented in the ways you would expect for
comparing numbers, but it is a little unusual for the comparison (a <= b) to
not return the same result as ! (a > b). This does hold, however, if neither
a nor b can be a NaN. This both means that your compiler cannot optimize
the latter comparison to the former, but also that you may get some benefits
from using a weirder-looking comparison when NaN may be an input.

DOI: 10.1201/9781003565543-5 o4
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TABLE 5.1
Relative comparison operations on floating-point numbers and the conditions
under which they are true.

Comparison True If
Greater than a>b greater

Less than a<b less

Greater or equal a>b greater, equal

Less or equal a<b less, equal

Not greater or equal a # b less, unordered

Not less or equal athb greater, unordered
Not greater than a?b less, equal, unordered
Not less than a £ b greater, equal, unordered

Relative comparison with infinities also works as expected. Positive infinity
is greater than any number other than another positive infinity, and negative
infinity is less than any other number. The one unintuitive relative comparison
is:

(—0.0r < 0.0r) = false

Negative zero is not less than positive zero. The two zeros are treated as
equal, no matter how they are derived. Remember that the zeros are actually
zero—not just indications of underflow—and the comparisons reinforce that.
If you happen to need negative zero to be less than positive zero, the standard
comparisons will not do that, and you will need to use an operator referred to
as “totalOrder” that imposes a total ordering on the floating-point numbers
(see Section 5.7).

It is common to account for inexactness in a calculation chain by adding
an “epsilon” value to comparisons. Relative comparisons do not need these.
Inexactness of operations can result in comparisons that “should” go one way
going another way, but landing on one side or the other of that comparison
is likely still a valid result. For example, a collision in a video game at zero
velocity often has the same effective result as a near-miss with zero velocity.

As we will see later in the chapter, relative comparisons can create bugs
in programs when you both combine the comparison with other numerical
operations and take very different code paths on one side of the threshold
compared to the other. These are places where you might want to consider how
to handle your near-misses. However, the use of an epsilon value is usually not
the way to do this for relative comparisons, as it simply adjusts the position of
the threshold. For every epsilon, there is going to be a new class of near-misses.

Instead, the analogue to an epsilon for relative comparisons is a dead zone,
and does not apply to many situations (unlike an epsilon, which nearly all
equality checks can use), because a dead zone involves giving your binary
comparison a third result: You will have a region which is true, a region which
is false, and the dead zone, in which the result is treated as indeterminate.
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This is a hybrid of two comparison operations, using a small epsilon in one or
both directions:

true T <Yy—e€
deadZone(z < y) = indeterminate y—¢ <z <y+e€,
false T >Y+ep

This only helps if you can handle an indeterminate result. For comparisons
that are truly binary, like collisions and most thresholding operations, there
is little point to using a dead zone.

5.2 Minimum and Maximum

An extension of comparison is taking the minimum and maximum of a set
of numbers. It is common to use a comparison operator and a conditional
statement to choose the minimum or maximum number, as below:

T y>c
y otherwise

min(z,y) ~ {

This is how many languages construct min and max when given a comparison
operation but no other direction. It normally works. It works when z and y
are numbers, and even works when one of x or y is an infinity. As long as
there is an order between x and y, this operation works as expected. However,
when one of your numbers is a NaN, the comparison operation may not return
the result you expect. Recall that every comparison with a NaN returns false
because NaNs are not ordered. Thus, when z or y is NaN, the formulation
above will always give x. We can make an alternative formulation that will
always give y if there is a NaN by flipping the comparison:

z <Ly
y otherwise

min(z,y) &~ {

Since x < y is always false when = or y is a NaN, this function always yields
y when z is a NaN.

To cover the cases, floating point specifies operations for minimum and
maximum that handle NaNs intelligently. If either operand is NaN, the minimum
and maximum operations will return NaN. This is not dependent on the order
of operands:

maximum(NaNg, —55F) = NaNg

minimum(—55F, NaNg) = NaNg

An interesting quirk of these operations is also that they treat negative zero
as being less than positive zero, so:

minimum(—0.0f,0.0r) = —0.0f
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This is the behavior of the minimum and maximum functions in the math
libraries for Golang, Python, and Javascript [8].

An alternative form of min and max allow you to remove NaNs from calcu-
lations. The minimumNumber and maximumNumber operations, will return the
number if one operand is NaN and the other is a number. This is the opposite
of what you would see from other operators, but allows the removal of NaNs
from calculation chains. If both arguments are NaNs, this operation gives a
NaN result because it is unavoidable. It is also operand-order independent.
For example:

maximumNumber (NaNg, —55F) = —55¢

maximumNumber(—55F, NaNg) = —55p
maximumNumber (NaNg, NaNg) = NaNg

The C and C++ fmin and fmax functions implement minimumNumber and
maximumNumber respectively [16].

The minimum and maximum operations are currently considered optional
in floating point, so their implementations by languages are not as uniform
as you might expect. A comparison-based min and max have behavior that
depends on operand order, while there are two options for floating-point spe-
cific minimum and maximum depending on whether you prefer to swallow or
propagate NaNs.

5.3 Equality and Epsilons

Floating point numbers can be compared for equality just using an equality
operator, but the usual intent of checking for equality in floating point is not
to check whether the floating point numbers are equal, but whether to the
calculation in the real numbers was equal. If any part of the calculation was
inexact, the equality operator will not work for that purpose. We also cannot
construct structures that do this perfectly while still operating in a bounded
amount of compute time. Therefore, most equality checks of floating-point
numbers are done with some allowed error, denoted by ¢ (epsilon).

For completeness, Table 5.2 shows the two exact comparison operators
(equal and not equal). Note that NaN is not equal to everything, including
another NaN:

(NaNp = 2F) = false

(NaNg # NaNp) = true

Even if the bits of the NaN operands are exactly the same, the two operands
are still unordered. Also, the two zeros are equal:

(=0.0r = 0.0) = true

Otherwise, the two numbers are equal if and only if they are exactly equal.
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TABLE 5.2
Exact comparison operations on floating-point numbers and the conditions
under which they are true.

Comparison True If

Equal to a=15b equal
Not equal to a # b less, greater, unordered

As discussed in the beginning of the section, if we have two numbers and we
would like to check whether they are equal, we can compare the numbers with
the equality operator. If one of those numbers is the result of a calculation,
however, rounding during that calculation will cause the number to deviate
from its real-valued counterpart. For this reason, most floating point equality
checks are turned into a windowed comparison with an epsilon:

false z<y—ce¢
epsEquality(z,y) = ¢ true y—e<z<y-+e
false z>y+e

Unlike the dead zone calculation from Section 5.1, this comparison has a
binary outcome, so it is a drop-in replacement for an equality check. What is
actually happening in this form of comparison is that we are allowing more
than one floating-point = to be “equal” to y. In other words, we have traded out
the chance of false negative comparisons due to inexactness for false positive
comparisons. With this equality check, we can have z and y calculated exactly
to be values that are within ¢, and we will falsely say that these two results
are equal. By increasing €, we accept more false positive comparisons at the
cost of avoiding more false negative comparisons.

In many systems, especially physics simulations and, by extension, game
engines, the epsilon-equality comparison is very useful, and should be the
default equality comparison. Simulations will frequently have long chains of
inexact operations, many of which are dependent on the outcome of other
inexact operations. The false negative in a simulation is often a lot more
costly than a nearby false positive, as it may result in outcomes like objects
failing to collide into each other or threshold values failing to trigger when
they are checked by equality.

If the calculation chain was exact and had no chance of inexactness, there
is no reason to use an epsilon. In this case, the real-valued result of the calcula-
tion is the same as the floating-point result of the calculation. This is the case
for for loops in languages like JavaScript, where the default representation of
integers is in floating point. As long as the integer calculation stays inside the
region [—253, 253] and does not include division, it will be exact.
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5.4 Setting Epsilon

Setting a perfect value of epsilon amounts to tracking the error in your cal-
culation that might cause deviations from the real-valued result. There are
three suggested methods suggested for setting e that can apply in different
circumstances. The first option is to determine how big of a buffer you phys-
ically want, and use that as a magic number. This buffer can be relative to
the magnitude of x or y or an absolute number. This is the easiest method,
but can lead to logic bugs or glitches if you guess wrong. A second option is
to backtrack the error through your calculation and then use that to figure
out the maximum possible value you need epsilon to be. This process is called
backwards error analysis, and we will discuss it in more depth in Section 9.5,
but it will give you the exact minimum value of € at the cost of being a rel-
atively onerous process. Finally, you can do some experimentation at high
precision in testing to get an idea of the range of € you might need in a lower
precision.

The first option is far more straightforward than the other two. It may
be what you do today. Some people have a favorite magic value of epsilon,
but if you can set epsilon in relation to whatever you are specifically doing,
you get a small bonus in accuracy for no cost. For example, if you have a 4k
screen and you treat the bottom left pixel as the point (0.0) and the top right
as the point (3840.0,2160.0), you may be able to get away with e = 0.5 for
collisions involving objects drawn on that screen, and certainly ¢ = 0.01 will
not cause collisions to have a visual gap even with anti-aliasing. This number
may be larger than you normally use, but visually has the same impact as
€ = 0.000001. They are both well below the visual resolution of the output,
and the larger epsilon actually can prevent glitches like objects that seem to
stick together due to the gap being less than a pixel. Finally, if you have some
idea of the general magnitude of numbers you are using, you can set epsilon
to make sure that it actually has an effect. Several pieces of code use the same
epsilon for £ = 10000 000 as = 0.01, but in order-of-magnitude terms, these
have completely different meaning, and if the difference in magnitude between
x and e is large enough, the epsilon will have no effect.

Backward error analysis involves tracking operations backward from your
comparison and adding up the possible error you get. This is similar to tracking
significant figures through a calculation, except we do it backward rather
than forward. Most operations account for half a ULP of error, but there
are cases, like catastrophic cancellations, that account for a lot more error.
A not-too-bad proxy for a real backward error analysis is simply counting
the number of operations involved in producing a number. 20 operations will
produce something like 10 ULPs of error, so an e of 10-50 ULPs is probably
enough to cover your imprecision. We are doing numerical engineering here,
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not numerical analysis. A more detailed explanation of backward error analysis
is in Section 9.5.

Finally, the experimentation method involves using either higher-precision
arithmetic or a technique like interval arithmetic and producing chains of
operations that are known to be close to your threshold. This can be done
by adding random jitter to an input or using interval arithmetic (Section 9.4)
for an interval of values that will end up near the threshold. By trying these
operations or these intervals and watching the spread of the output, you can
experimentally estimate your error compared to a real-valued calculation. This
allows you to statistically figure out how big your epsilon should be even when
a backwards error analysis would be too difficult.

5.5 Exceptions in Comparisons

With floating-point operations that have floating-point results, exceptions
other than inexactness will result in an exceptional-looking output. They
produce an infinity, a zero, or a NaN. Comparisons can only produce true
or false. For this reason, the floating point comparisons tend to be more
aggressive about exception signaling—when supported by the CPU and pro-
gramming language—than the other operations. The default relative compar-
isons are signaling comparisons, and will signal an invalid operation exception
for any NaN operand.

The floating point standard also defines quiet comparisons that behave
like the other operations on NaN, only signaling on sNaN. The default equality
comparisons are quiet, even though the relative comparisons are signaling.
Logically, any NaN will not be equal to a number, but if your operation chain
produced a NaN, the magnitude of the output of that chain of operations is
indeterminate. All we know is that it’s not a number.

The standard includes quiet and signaling comparisons for all of the com-
parison operations, but most languages and systems do not use the optional
quiet relative comparisons or the optional signaling equality comparisons. The
min and max functions have no notion of quietness like this, and behave ex-
actly like any other floating-point operator. They yield exceptions exactly as
normal, only signaling invalid operation for sNaN inputs.

The epsilon-equality function does not have the same exceptional behavior
as a standard equality comparison, and needs to be done in a specific way if we
would prefer that NaN stay not equal to the numbers. To maintain NaN # =z,
the suggested formulation of the epsilon-equality function is also the most
intuitive way to construct it:

epsEquality(z,y) = (y—e<z)A(z <y+e)
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with A representing a logical AND. Both comparisons will evaluate to false
if either x or y is a NaN. Since it uses two relative comparisons, it will also
not have signaling behavior (if that matters in your application) unless you
can find a way to specialize the comparisons to be the signaling versions of
the comparison.

5.6 Regime Comparisons

There are several operations that are comparisons to check the regime of
a floating-point number. Most math libraries define functions to check the
following about a floating-point number:

e isNormal checks whether a floating-point number is normal.
e isFinite checks whether a floating-point number is finite.

e isInf checks whether a floating-point number is infinite.

e isNaN checks for any NaN.

e isSignaling checks for any signaling NaN.

Each of these comparisons is a quick way to look for numbers that may oth-
erwise be hard to differentiate. The comparison for determining a NaN from
an infinity is a slightly messy thing to do, so it is better to push that down to
your math library. Most of these checks are actually done by extracting and
comparing individual bit fields from the floating-point number: For example,
isNormal looks for an exponent field that is not all zeros or all ones. That
means that these checks do not rely on comparison operators, which could
otherwise be a messy way to perform a similar function.

5.7 Total Ordered Comparison

The floating-point numbers have several numbers that are not ordered with
respect to each other. The NaNs compare as unordered and the zeros com-
pare as equal when you use a standard comparison operator. There is a rela-
tively esoteric comparison operator that can distinguish the ordering of these
equal numbers, the totalOrder operator. This operator is a comparison on
the floating-point numbers as though they were totally ordered. This is an
operator that is rarely present in math libraries as it is mostly for decimal
comparisons (the decimal floating-point numbers have many representations
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for the same value, while binary floating point only has the two zeros), but is
possible to emulate if you need it in binary floating point.

The binary version of totalOrder operates in the following way on two non-
NaN numbers, as a less-or-equal check with the numbers in a strict ordering:

true <y

false =z >y
totalOrder(z,y) =< true (z=-0)A (y=+40)

false (z=+0)A(y=—0)

true rT=yy

Decimal floating point also has a few additional cases, since one number can
be represented in multiple ways. In those cases, the total ordering of the
numbers falls back on the exponent, where numbers with a smaller exponent
are considered to be closer to zero.

Unlike most operators, totalOrder cares about the sign bit of NaN
operands. Negative NaNs are considered less than all numbers (including neg-
ative infinity), while positive NaNs occupy the other end of the spectrum.
When two NaNs are compared, negative is less than positive and signaling is
considered to have a smaller magnitude than quiet, but ordering is otherwise
up to the implementation.

5.8 Interactions between Comparisons

Simultaneous comparison operations can have some interesting results when
one of the comparisons is a relative comparison and the other one is an equality
comparison. The behavior of the relative comparison is best when it is done
without an epsilon, while the equality will often need an epsilon value for best
use. Remember that this bad interaction is fundamental to the idea of an
epsilon-based comparison: We want these false positives in the equality check
to avoid the false negatives.

This returns us to the Minecraft bug from the preface. In Minecraft, when
you fall off a high cliff while your character is in a boat, you will not take fall
damage unless you fall exactly 12, 13, 49, 51, 111, 114, 198, 202, 310, or 315
blocks. From those heights, you will take fall damage. At the time of writing,
the game developers have known about this bug for 7 years and it still has
not been fully patched [18].

The Minecraft simulation engine uses two comparisons: a collision check
with the ground using a relative comparison and a check whether your charac-
ter is on the ground, which uses an equality check with an epsilon. Normally,
when a player hits the ground, the collision happens in the same frame at
which the player’s “on ground” status flips from false to true. If you are
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in a boat, and you are not on the ground, and you take fall damage, the fall
damage will be negated by the boat.

Minecraft works in units of “blocks”, and the acceleration of gravity in
Minecraft is nominally 0.04 blocks per tick squared (a tick represents % sec-
onds), but when converted to floating point, 0.04 cannot be represented ex-
actly. The actual acceleration of gravity in Minecraft is slightly less than 0.04.
The error is about % ULP. For one reason or another, this constant appears
to be in single-precision floating point while some of the math around these
calculations is in double precision.

The height of the ground is in blocks, so it is always a relatively small
integer, and the frame number is also an integer. This means that if you are
falling for n ticks, the speed you will have at tick n is:

v(n) = 0.04pn = 0.0399999991Fn

Compared to nominal, our velocity accumulates a very small error from nom-
inal over time. The actual fall distance is as a function of tick index is:

nn+1)

d(n) = > v(m)=0.04f 5

m=0

Since we are picking up about % of a ULP of error compared to the nominal
velocity, our fall distance is accumulating error. In the beginning of the fall,
since the velocity is smaller than position, this error is actually swallowed in
the position update, but as velocity deviates more and more from the nominal
velocity that would be given with 0.04 instead of 0.0399999991, the error leaks
into the distance calculation as the game integrates velocity to get position
(see Chapter 12).

The list from the first paragraph gives the times when the nominal fall
distance is exactly an integer. If you fall for 24 ticks, just over a second, the
nominal fall distance is exactly 12 blocks, but the actual fall distance is just
short of 12 blocks. This causes the “on ground” comparison to trigger the
frame before the collision-with-ground comparison, which in turn causes the
behavior of the fall damage calculator to change in the following simulation
tick. This is due to a false positive from the value of epsilon used for the “on
ground” check. With math done entirely in double precision, the resulting
value will be more than 22° ULPs off, but many game developers both work
in single precision, where this distance is below one ULP!

Most simple fixes will not eliminate this bug. The code can likely have
a significantly reduced epsilon, but that will not eliminate the bug, but just
make it harder to trigger. Even if the Minecraft developers multiplied their
units by 100 so that the acceleration of gravity were exact, there would still
be certain fall heights where this behavior would persist.

The core of the bug here is the use of a relative and absolute comparison
together with necessarily different thresholds. Ultimately, the only way to fix
this bug is to completely eliminate the interaction between the relative and
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absolute comparison. this is often best done by turning one comparison into
a state machine based on the other—for example, having the “on ground”
status toggle true on collisions with the ground and false when the player gets
€ away from the ground. The Minecraft developers in late 2024 pushed a patch
that appears to reduce the acceleration of gravity on boats after they have
fallen a certain distance. This is one way to make this bug significantly more
difficult to trigger.

This situation is one in which a dead zone in the relative comparison
can become useful. A dead zone comparison could allow the game engine
to specifically perform actions aligned with the change of the “on ground”
status in the dead zone while reserving actual collision logic for the cases
beyond the dead zone. Alternatively, the dead zone could defer the switch
of “on ground” status to the next tick. Ultimately, these sorts of fixes are
always more complicated than they seem. However, this is a good lesson in
the dangers of using absolute and relative comparisons together. If you are
not certain of the exactness of your calculation, you will need to make sure
that you either keep thresholds the same between both comparisons or use
algorithmic tricks to avoid bugs.

Check your Understanding

Problem 5.1. Taking a double-precision floating point calculation of the

function:
3(x+1) 55—z 20—z 10+=x

@)= x _100x+x—3+5+x
We would like to alert the user whenever the real-valued result of this com-
parison would be outside of the range (—10,10] (including undefined values).
Construct the fastest possible comparison on the output of f(z) that produces
this alert. Test near x =0, z = 3, and z = —5.

Problem 5.2. Using the bitwise representation of floating-point numbers
and the floating-point comparison operators, write an implementation of the
totalOrder function described in Section 5.7.

Problem 5.3. Assuming all calculations are done in double precision, deter-
mine the maximum epsilon that would fix the Minecraft bug for all of the fall
distances mentioned in Section 5.8. Find a fall distance that would still trigger
the bug.
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Conversion to and from Floating Point

Having a beautiful numeric format means very little without the ability to
move numbers into and out of it. There are two main types of conversions
that matter for floating point: Conversion with integers, and conversion with
strings. One is easy, and the other is more nuanced. Conversion to integers uses
many of the same mechanisms we have discussed before, specifically rounding.
Due to the common interplay between integers and floating-point numbers on
computers, these conversions are usually done quickly in hardware, taking one
instruction that is usually faster than division.

String conversion, however, often involves writing and reading a form that
is shortened from the precise value of a floating-point number. Computers will
produce "0.1" when asked to convert the floating-point number closest to 0.1
to a string, while the number 0.1 cannot be represented in floating point.
This conversion is one of the more misunderstood aspects of floating point,
since it leads to results that are hard to explain without realizing that string
conversion is usually inexact.

6.1 Rounding to Integers

While not conversions per se, rounding operations behave like conversions,
and are the first step in the conversions to an integer. Rounding to integers
can be done in any of five rounding modes, which can be specified for each
operation separate from the rounding used when floating-point operations are
inexact. The available rounding modes are the four floating-point rounding
modes described in Section 3.1, and rounding to nearest with ties away from
zero. Rounding with ties away from zero still has the numerical problems
demonstrated in Section 3.1, but we expect rounding to integers to be infre-
quent and intentional.

The rounding functions or the directed rounding modes are often referred
to by the common names of their rounding modes:

e Rounding down to an integer is the floor function.

DOI: 10.1201/9781003565543-6 65


https://doi.org/10.1201/9781003565543-6

66 Floating Point Numerics for Games and Simulations

e Rounding up to an integer is the ceiling (ceil) function.

e Rounding toward zero to an integer is the truncate (trunc) function, rep-
resenting truncating the part of the number after the decimal place.

Additionally, rounding to nearest with ties away from zero (schoolbook round-
ing) is usually the default round function in math libraries. Some math li-
braries, including JavaScript’s, do not have a function that rounds to nearest
integer with ties to even despite that this is the default rounding mode for
other floating point operations [8]. All of these operations are simple enough
that they are done in one hardware instruction on most processors.

The rounding operations are all well-behaved. Zeros and infinities pass
through these operations untouched, and NaN operands produce a NaN result,
signaling if appropriate. The one interesting behavior of rounding is that every
operation that doesn’t have an integer input signals an inexact exception,
despite the result of the rounding operation being exact. We lost precision, so
we indicate inexactness.

6.2 Narrowing and Widening Formats

Conversion between floating-point formats is relatively straightforward, but
it is still a conversion. Moving to a wider format is simple, and there is no
possibility of exceptional cases. The exponent gets widened and re-biased,
and the mantissa gets widened and trailing zeros are added. The dynamic
range of wider formats is strictly larger, so there is no chance of overflow
or underflow, and every number that can be represented in a narrow format
can be represented in a wide format. The only complication is the subnormal
numbers, which need to be turned into normal numbers when a wider format is
used, so their exponent has to be computed. Still, this operation is completely
numerically safe and mostly trivial.

Narrowing floating-point numbers has a few more pitfalls. In the usual
case, the exponent is re-biased and narrowed and the mantissa is rounded
appropriately for the current rounding mode. If the new exponent is too large
or too small for the new format, then we have an overflow or and underflow
and the respective exceptional behavior occurs. If the mantissa had trailing
bits that got rounded away, the conversion of sizes is inexact. Moving from
a wider format to a narrow format can lose precision, and the overflows and
underflows can cause problems if you’re not careful.

The European Space Agency learned their lesson about narrowing conver-
sions the hard way when the Ariane 5 rocket crashed due to an overflow. The
conversion in question was from a 64-bit floating-point number to a 16-bit
integer, but the same overflow and underflow problems existed as would with
a narrow floating-point format. The 64-bit number exceeded 32767, and the
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computer performing the calculation within the inertial measurement unit
caught the exception, shutting itself down. Without this system, Ariane 5
crashed into the ground [19]. While this was a conversion to an integer format
and not a conversion between floating-point formats, the same lesson applies
to narrowing conversions within the floating-point formats: any narrowing of
the dynamic range of a format risks overflow and underflow.

Like rounding, narrowing and widening numbers is an operation that is
usually done in hardware. There are few complications to these operations, and
they rely entirely on building blocks that are parts of many other operations.

6.3 Integer to Float Conversion

Converting integers to floating-point numbers is the most straightforward con-
version operation, and on numbers that are a “typical” magnitude, is usually
exact. Integer to float conversion is also very fast, and often done with single
instructions in hardware.

Bitwise, the conversion of an integer to a floating-point number involves
the following steps:

1. Set sign bit based on the sign bit of the integer.

2. Treating the integer as positive, find the leading one bit of the
integer, giving us the order of magnitude of the integer.

3. Remove that bit, since it is implied, and shift appropriately to make
the mantissa. When the order of magnitude is less than p, this is a
left shift, and when it is greater than p, this is a right shift.

4. If we did a right shift that lost bits, round the mantissa appropri-
ately for the rounding mode.

5. Produce an exponent based on the order of magnitude of the integer.

This sequence is a few integer operations, all of which are simple hardware
units. The operation is not quite this simple, but it is close. Note that if we
have an integer that needs more than p bits, we have to chop off the tail bits
of that integer when we convert to float. This results in an inexact conversion,
which is signaled by an inexact exception, and rounding as normal. We have
a floating point result, so there is no specialization of rounding. Finally, if the
integer was zero, we set the result to the positive floating-point zero.

The ranges of integers that can be perfectly converted to floating point
and operate exactly like integers is shown in Table 6.1. These are relatively
wide ranges, covering most of the bits used to store the format. In this range,
addition, subtraction, and multiplication of integers represented in floating
point are also exact, so the floating-point formats can pretend to be integers
within these ranges.



68 Floating Point Numerics for Games and Simulations

TABLE 6.1

Numeric ranges in which floating-point numbers can convert perfectly from
integers and operate like integers. These ranges correspond to the precision of
the numeric format.

Perfect Integer Range

Numeric Format Precision Min Max
Half precision 11 —211 A
Single precision 24 —2% 224
Double precision 53 —253 253
Quad precision 112 —2l12 2112

Outside of the ranges shown in Table 6.1, the floating-point numbers can
still represent integer values, but may not be exact. For example, the integer
263 — 1 can be represented exactly in a 64-bit integer format, but it cannot
be represented exactly in double-precision floating point. In this regime, one
ULP has a numeric value of 2!°, so this number has to be rounded to 2% (or
203 — 210) The upside of floating point, however, is its dynamic range, so 263
can be represented even in single precision and stored in a 32-bit number.

6.4 Float to Integer Conversion

Float to integer conversion is similar to the process of rounding to integers,
but the final target of the result is not a floating-point number, but an integer.
However, there is also one wrinkle in the process because the wide dynamic
range of floating point means that integers that would need many more than
64 bits can be stored in floating point. Thus, float to integer conversion must
contend with overflow as well as rounding. However, it is still a very fast
operation.

Like the process of rounding floating-point numbers to the nearest integer,
the rounding mode used by a conversion from floating point to integer is
explicit and can be unrelated to the rounding mode used for inexact floating-
point operations.

In general terms, the steps of this operation are the following:

Determine a shift based on the exponent.

2. Remove the exponent and sign bit from the number and add the
implied one bit to the mantissa.

3. Shift by the determined shift factor (left or right).
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4. 1If we shifted right and lost bits, round appropriately and signal inex-
act. If we shifted left and overflowed, instead return either MIN_INT
or MAX_INT based on the sign, and signal inexact and overflow ex-
ceptions.

5. Negate the number appropriately if the sign bit was set.

Step 4 of this process contains the exceptional cases. The floating-point num-
ber 1.2r will need to round to integer 1 (in most rounding modes), which will
be an inexact conversion. Similarly (2!%9)g is a valid single-precision floating-
point number, but cannot be represented even as a 64-bit unsigned integer.
Thus, we will signal overflow and return the maximum possible integer in
the destination format. Another interesting case here is that when converting
—10F to an unsigned integer format, we also have an overflow. In this case,
we indicate the overflow with the overflow and inexact exceptions, but also
return zero, the minimum unsigned integer.

The exception behavior here matches the rounding operations, signaling
inexact when we lose precision. An alternate specified form of these operations
does inexact conversions silently, suppressing the inexact exception when the
floating-point operand is not an integer. However, the default version of integer
conversion implemented in processors does signal an exception[3].

There is also no integer NaN or infinity, at least in any sane integer for-
mat, so the conversion of a floating-point NaN or an infinity to an integer is
undefined, and is considered an invalid operation that raises an invalid oper-
ation exception. The infinities are not necessarily treated as large numbers in
this case—programming languages and processors are not required to do this
although some do. Similarly, NaN can produce any result that the designers
of the programming language and hardware platform decide. If you cannot
check your exceptions but risk sending a NaN into an integer conversion, it’s
a good idea to have a check for NaN beforehand to make sure that nothing has
gone wrong.

6.5 String to Float

Conversion of strings to floating-point numbers is conceptually simple, but
practically very tricky. This is two conversions in one: Reading a decimal
number in ASCII (or UTF-8/16) and then turning that decimal number into
a binary floating-point number. Sometimes, those numbers are also in deci-
mal scientific notation. Unlike integers, strings of digits can represent a lot
of different numbers, including many numbers that cannot be represented in
floating point. Thus, this conversion can overflow or underflow, and can easily
be inexact. Thankfully, the precision limit on each floating point format dic-
tates a limit on how many significant digits need to be read to determine the
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mantissa, but there may be an arbitrary number of digits that are required to
determine the order of magnitude.

All of the following strings are valid to convert to floating point, and will
produce normal numbers:

"808562976467199983616" "4.5893e-20" "-.0000000000000555"

The first example is an integer about 40 times larger than 264, but is exact
in double-precision floating point. A conversion of this number through an
integer of 64 bits will fail despite the conversion being exact. The second
example is a very small number in scientific notation. This is an alternate
valid format for floating-point numbers, and is often preferred when they are
small or large. The final number has a large number of leading zeros after
the decimal place. The number itself has three significant figures, but is 18
characters long. Neither of the latter two examples here is an exact conversion,
and as we will discuss in Section 6.7, there are relatively few decimal numbers
with few significant digits that are exactly representable.

String conversions will give you the nearest floating point number to the
string that was converted, and gracefully overflows and underflows. Over-
flow and underflow behave like they would for any arithmetic operation, with
numbers that are too small to represent getting flushed to zero (or a nearby
subnormal number) and numbers that are too large either becoming infinity
or the maximum representable normal number depending on rounding mode.
Additionally, a few numbers have special string representations that can be
converted to and from strings:

IINaNII IIInfinityll lI_OIl

These all convert to the expected numbers, NaN, infinity, and negative zero
respectively. The shortened string "inf" can also convert to infinity. The
conversion of "NaN" defaults to a gNaN either of a canonical form for the
language or with a zero payload. Strings like "sNaN" or "snan" (usually case-
insensitive) can produce a signaling NaN if supported by the language. Any
invalid input string will result in a NaN and an invalid exception.

Exceptions on string conversions are specified to be the same as exceptions
on other operations. However, since these operations are usually done in soft-
ware, programming languages that suppress exceptions will often not produce
an exception, especially for conversions that are merely inexact.

This process also occurs in compilers. When you specify a floating-point
literal in your code, your compiler will convert that into binary at compile time
using a string-to-float conversion routine. This allows you to specify any literal
you want even though the specified numbers may not be able to be represented
exactly in floating point. This is a lesson that many developers learn the hard
way, when things are just slightly off (see Section 5.8 for the example of
0.04). Inexactness of these specific conversions can have a tendency to be
sticky and noticeable because they induce systematic error compared to the
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expected behavior. Rounding usually introduces some jitter since some runs
of a function round up and some round down, but this is a time when every
iteration of a function has the same type of error.

Combining the complexity of this operation with language-to-language
variability in the encoding of characters and text strings, floating point con-
versions from text is always done in software, and the code for this is one of
the core parts of the language’s standard library. Unsurprisingly, this means
that conversion from strings is far slower than conversion from integers, and
it is also significantly slower than conversion of strings to integers. The space
of strings that can represent floating-point numbers is much larger than the
space of strings that represent integers, and this adds complexity on conver-
sions both to and from floating point.

6.6 Float to String

Converting floating-point numbers to strings is symmetrical to conversion of
strings to floating-point numbers. In this case, we are encoding a binary float-
ing point number as a decimal string.

Conversion of floating point numbers to strings is often very customizable,
with options to force the use of scientific notation or not and to control the
number of digits before and after the decimal place. In C and C++4, format-
ting floating point numbers using format strings uses the %f and %e (or %E)
formatting directives, with £ denoting the automatic conversion and e or E
forcing scientific notation (the lowercase gives a lowercase e as the indica-
tor for the exponent, while the uppercase gives an uppercase E). This format
string can be further augmented with character counts:

%x.yf

where x sets the total number of characters to use and y indicates the number
of characters after the decimal place. If x has a leading zero, the formatted
output will pad the left of the string with zeros to fill x characters [16]. Many
languages have similar formatting options, but the default is to use the fewest
characters necessary.

Since floating-point numbers can be encoded in scientific notation, float to
string conversion routines will often pick whether to use scientific notation or
not based on the exponent of the floating point number. Exponents that are
very large or very small will use scientific notation, while exponents that are
in the middle of the range do not unless the user specifies that they would
prefer scientific notation. In many languages, it is possible to force the use
of scientific notation for these numbers and vice versa, but the numbers that
default to scientific notation are usually very long when written out. Small
numbers have a lot of leading zero digits after the decimal place, and large
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numbers contain a lot of nonzero digits, but those digits have no information
content. Large floating point numbers are made of a large integer times a large
power of two, so the trailing digits are completely determined by that power
of two—they are not significant digits.

A general rule of floating-point string conversions is that when converted
to a string and then converted back, you will get the same floating-point
number back. Many systems will work in floating point, then transfer that
value to a string to hand to another program that works in floating point,
so serialization through strings should not induce numerical error. This is
exactly what happens when services communicate using text-based formats,
like command line pipes, JSON, or batch-processing of logs. Numerically, the
string conversion is transparent unless you specify fewer decimal places than
the precision of the format demands.

Floating-point NaNs do not preserve this relationship. A NaN can hold
a payload of several bits, but the three-character string representation "nan"
does not preserve the payload of the NaN, and does not preserve whether that
was a signaling NaN.

However, conversion of floating-point numbers to strings offers one inter-
esting trick. Unless otherwise specified, the conversion reduces the precision
as much as possible while still uniquely identifying a floating-point number. It
does not use the fewest number of characters that exactly represent the num-
ber, but only enough to disambiguate that number from any other floating-
point numbers. As a result, despite that 0.1 is not a valid floating-point number
(it is an infinitely repeating decimal), "0.1" is a valid string that can come out
of a float to string conversion. The exact decimal value of the single-precision
number that converts to the string "0.1" is:

toString (0.100000001490116119384765625F) = "0.1"

Similarly, the string "0.1" converts to that number, as it is the closest floating
point number to the real number 0.1.

As a consequence of this sort of conversion, when you widen a number in
a narrower floating-point format to a wider floating-point format, it will often
not convert to the same string that you get when you convert it directly from
the narrow format. Looking at the example above:

stringToFloat("0.1") 2 0.1000000014901161 19384765625F

toString(0.100000001490116119384765625p) = "0.10000000149011612"

Like string to float conversions, float to string conversions are always done
in software libraries, and are relatively computationally expensive compared
to math operations. However, it is still cheaper to produce good logs than to
have bad bugs.
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6.7 Exactness of Decimals in Floating Point

Many base-ten decimal numbers cannot be represented exactly in floating
point. This is relatively easy to see if we look at the fractions that represent
these numbers. The following fractions are examples of numbers that have
finite-length decimals in binary:

3 29 456 773

4 128 262 144

There are many numbers that have infinite numbers of digits behind the dec-
imal place in both base ten and base two. A few examples are:

1 15 3

317 28
Finally, here are a few examples of fractions that have finite-length decimal
expansions in base ten but not in binary:

1 15 1

5 25 1000

The common thread of these numbers is that the numbers that are finite
decimals in base two have a denominator that is purely a power of two. Finite
decimals in base ten can have prime factors in their denominators of five or
of two. This is because the prime factors of ten are five and two. Any number
whose denominator in reduced rational form has a prime factor that is not a
prime factor of the base cannot be represented with a finite number of decimal
places. This is easy to see for binary, since each power of two represents a
separate bit position. This means that there is a very limited set of decimal
numbers (and a very limited set of fractions) that can be represented in a
finite-length binary number.

The set of valid floating-point numbers is even smaller, however. Floating
point has a precision limit, so any number that requires more bits than can
fit in the mantissa is also out of contention. Many fractions with a power of
two denominator (including all of the examples above) are valid, but some are
not. This number must be rounded in single-precision floating point:

44040193

— 101010 0000.0000000000000001
65 536 b

The decimal representation of this fraction needs 26 bits of precision, and
while floating point gives us precision that is independent of the denominator,
single-precision floating point only gives us 24 bits of precision, so the trailing
one bit will be rounded despite this being a finite-length decimal in binary.
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There is a famous example of a set of string conversions producing a result
that looks weird to those who are not familiar with floating point, which comes
from the following:

toStr [toDouble("0.1") + toDouble("0.2")] = "0.30000000000000004"

You might guess that several inexact exceptions are involved in this chain, and
there are four. First, 0.1 and 0.2 are both converted inexactly from strings to
floats. Both numbers, when put in rational form, have a denominator that is
a multiple of five. The conversions are:

stringToDouble("0.1") =% 1100110011001 . .. 1010,D(—4)
stringToDouble("0.2") = 1.100110011001 . .. 1010,D(—3)

0.1 and 0.2 are not exactly representable in binary floating point, so we have
to round to the nearest values. In this case, it is a pattern of 1001’s repeating
12 times before a final 1010, with an exponent of —4 for 0.1 and —3 for 0.2.
These two numbers are slightly greater than 0.1 and 0.2 respectively, and the
conversion is inexact. The sum of these two numbers is:

1.1001...1010,D(—4) + 1.1001 ... 1010,D(—3) = 1.0011...0100D(—2)

Due to the trailing one bits and the different order of magnitude of the result,
our third inexact exception is in this addition. The rounded result is slightly
above 0.3, as expected, but its error is double that of the error of the conversion
results. We have gotten unlucky here, and all three operations rounded up.
Due to that rounding, our result is not the closest double-precision number to
0.3:

1.0011...0011D(—2) = 0.2999999999999999888978... ~ 0.3 — 1.11 % 10~ 17
1.0011...0100D(—2) = 0.3000000000000000444089... =~ 0.3 + 4.44 x 10717

so 1.0011...0011D(—2) is the canonical double-precision form for the string
"0.3". When we convert our result to a string, the conversion back to
a string is done with enough precision to uniquely identify it, so it is
"0.30000000000000004" to distinguish it from "0.3". For good measure,
this conversion to a string is also inexact. Four inexact operations create an
error that is noticeable to the user. This is a large part of why floating-point
numbers are not suitable for calculator applications, which often use arbitrary-
precision formats, and must be used with care in monetary calculations—and
often several explicit rounding operations.

Significance Tracking in Floating Point

As a consequence of this inaccuracy, many decimals that have few significant
digits will have inexact representations in floating point. When considering
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numbers like 0.1 or 0.7 which have only one digit behind the decimal place,
the only number that is exact in floating point is 0.5. Similarly, with two
significant digits, only 0.25, 0.50, and 0.75, are exact when converted to and
from floating point. If you are thinking about precision of calculations in terms
of decimal significant digits, the floating point results will often surprise you. If
you can instead work with an idea of significant bits, transferring significance
tracking to base two from base ten, floating point arithmetic will offer fewer
surprises and fewer inexact calculations.

Given a specified margin of error, €, a number will have log;(¢) significant
digits, and log,(€) significant bits. These numbers are often rounded up. Thus
a conversion of significant digit count to significant bit count is a straight
multiplication by log;(2) ~ 0.3 although rounding twice to whole numbers
can give you some error on the number of significant bits you have.

Preventing inexact calculations is now a matter of counting guaranteed
trailing zero bits. When you convert numbers with k significant bits to a
floating-point format with precision p, the result will have at least p—k trailing
zeros. From there, multiplications will reduce the number of trailing zeros by
k, and additions of numbers of similar magnitude will reduce the number of
trailing zeros by a few bits. You only risk inexact calculations when you reach
zero trailing zeros. Additions of numbers that vary greatly in magnitude will
cut into this budget significantly, however.

Significance tracking in terms of significant bits and significant digits will
give you results of decent accuracy and precision as long as you take the step
to round the calculation to the appropriate number of digits. In base b, you
can round to k decimal places with the operation:

round(z x b*)
bk

roundToDecimalPlacesy(x, k) =

The example above did not have such a rounding step, which induced a visible
amount of error. With base-ten significant digits, the division will be inexact,
but with base-two significant bits, the division will always be exact.

6.8 Bit Casting Floating-Point Numbers

An interesting way to get in and out of floating point is to do bit casting.
Instead of converting to an integer, bit casting will get you an integer with
the exact same bits as the floating point number. The value of that integer will
be very different than the value of the floating-point number, but the internal
representation will be the same.

Bit casting is how you can do bitwise manipulation on the floating point
number, and is not a standard operation, but a consequence of how floating-
point numbers are stored. It allows you to use integer operations to construct
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floating-point numbers out of their parts and to isolate individual pieces of
floating-point numbers. Several languages have a backdoor method through
which this can be done, even though setting an integer equal to a floating-point
number (and vice versa) usually does a conversion.

Bit casting floating-point numbers is relatively rare compared to conver-
sion, and usually done by people who are up to something. However, bit
casting floating point numbers is a unique and powerful mathematical oper-
ation that we will take full advantage of in Section 10.6 to create incredibly
fast approximations of transcendental functions, and many of the problems in
earlier chapters require bit casting to construct and operate on floating-point
numbers in their constituent parts.

Check Your Understanding

Problem 6.1. Find the smallest 64-bit integer that has error greater than
1000 when converting to double-precision floating point. Find the smallest
double-precision floating-point number greater than 1000 that has an error of
any kind when converting to 64-bit integer.

Problem 6.2. Write a function that converts from a rational number, 7,
represented as a pair of 64-bit integers to a double-precision floating-point

64 _ . .
2 17 with correct rounding.

number. Ensure that your function can convert g=5577%

Problem 6.3. Find the shortest string (in character count) that overflows
a conversion to double-precision floating point. Find the shortest string that
underflows a conversion to double-precision floating point. Finally, find the
shortest string that converts exactly to a double-precision number, and find
the shortest string that converts inexactly.

Problem 6.4. Write a function that efficiently converts decimal strings to
single-precision floating point (disregarding scientific notation) with the sim-
plifying assumption that each string will only ever be 10 characters long or
less. Use any integer or floating-point operations you need (including double-
precision operations), except for string conversions. Use the built-in conversion
operation as a reference for testing. Run benchmarks and see if there are any
sets of numbers where your version is faster than the built-in function.
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Numerical Operations

We discussed before that floating point is a format designed for numerical
computing. Now is its time to shine. Math libraries come with a number of
numerical operations that are built as correctly as possible, sometimes bit-
accurate. These functions usually have efficient implementations that allow
you to stand on the shoulders of giants for most of your numerical calculations.

A number of these operations are either combinations of operations from
earlier chapters or they are transcendental functions that are implemented for
you in languages and math libraries. A deeper dive into how transcendental
functions are implemented is in Chapter 10, but in this chapter we will be
discussing these operators from the perspective of a user.

7.1 Remainder and Modulus Operations

In order to emulate the behavior of the integers, languages and the floating
point standard set definitions for floating-point remainder and modulus oper-
ators. However, the behavior of these operators varies language-to-language,
especially when languages intend to emulate integer arithmetic using floating-
point values.

The standard floating-point remainder operation is not the same as the
integer modulus of a number. Instead of computing the remainder of a trun-
cated division (the behavior of integer division), it computes the remainder of
a rounded division. Mathematically, the remainder operation is equal to:

remainder(x,y) = ¢ — y X roundToIntegerNearest (%)

Note that rounding to nearest (with ties to even) is used, not rounding to-
ward zero you would expect for an integer remainder calculation. This gives
the smallest magnitude remainder that is possible, but it means that the re-
mainder can be negative when both z and y are positive:

5.0
remainder(5.0f, 3.0p) = 5.0F—3.0Fxround<30F> =5.0p—3.0px2.0r = —1.0p
O
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If you are familiar with the normal remainder operation, you would expect
the remainder’s sign to match the sign of z, the dividend. That is not the case
for this operation.

Languages like C and JavaScript provide a remainder similar to the re-
mainder from integer division. In the case of C, this operator is in addition to
the standard floating-point remainder, but in the case of JavaScript, it is in
its place. This operation is defined by:

fmod(z,y) = © — y X roundToIntegerTowardZero <§>

Note that while the C standard library calls this function “fmod”, it is not
taking a modulus in the mathematical definition of the word, but a remain-
der [16]. This is also the behavior of JavaScript’s remainder operator [8]. This
operation can be constructed by using the remainder function, and then cor-
recting the sign to match the sign of x then adding y if the remainder’s sign
is not equal to the sign of x. However, the floating-point remainder operation
cannot easily be constructed from fmod.

In both cases of remainder and modulus, it is invalid to have an infinite
x or a zero y. The special cases are shown in Table 7.1. Additionally, if the
remainder would be zero, its sign is the same sign as . Remainders are always
exact by definition.

A few languages like Python provide a modulo operator instead of a re-
mainder. While the remainder operator follows the sign of z, a modulo opera-
tor follows the sign of y. The behavior only differs when x and y have different
signs. A modulus can be constructed out of remainder (fmod) functions by the
following formula:

modulus(z,y) = fmod [fmod(x, y) + vy, Y]

These operations allow you to construct the last remaining piece of integer
arithmetic that is not normally supported by floating point. They also have

TABLE 7.1
Special cases of remainder operations. Cases are the same for remainder and
fmod. In this table, a represents any number (non-NaN).

Operands Result
T y  remainder(z,y) Exceptions
a +o0 z

+0.0 «a +0.0
a 0.0 NaN 10

+o0 a NaN I0

Any NaN NaN I0 for sNaN

NaN  Any NaN 10 for sNaN
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niche applications in numerical computing. The standard version is the most
flexible and extensible remainder, using rounding to nearest, but versions more
aligned with integer arithmetic are often provided by programming languages.

7.2 Exponentials and Logarithms

Exponentials and logarithms are some of the most common transcendental
functions to see in scientific computing, and as such, they are part of every
math library. These basic functions are often provided in base two, base ten,
and base e, although the internal implementation inside many math libraries
is in base two, with the other bases covered by a strategically placed constant
multiplication. The common exponential functions are exp, exp2, and exp10,
while their logarithm counterparts are log, log2, and logl0.

Many math libraries also have functions that compute exponential func-
tions minus one. For example, the function exp2m1:

exp2ml(z) =2 -1

Symmetric to these functions are the logarithms of x + 1, which are also often
found in math libraries:

loglOpi(x) = logyg(z + 1)

In some math libraries, the expm1 functions can get special handling, as the
exponentials minus one will produce results close to zero at different places
than the exponential functions will, and the results near zero need better
absolute error to have a fixed number of ULPs of error due to the density
of numbers near zero. Thus, library implementers may prefer to use different
approximations to get the best relative accuracy in this region. The same goes
for the logp1l functions. Not all standard libraries have these functions, and
many programmers will blissfully use (exp(z) — 1) instead of expm1(z).

In base two, exponential and logarithm can be constructed by separating
the parts of the number, using a similar idea to how division and square root
were computed in Chapter 4. Taking the example of logarithm, we note that
the sign bit does not factor into the calculation since we are restricted to
positive = (logarithm is undefined for negative z). Then, splitting « into its
exponent and mantissa:

log2(z) = log2[2°*(1.m,)] = toFloat(e,) + approxLog2(l.m;)

This means that a log in base two is given to us by taking the exponent of
the number and then adding that to an approximation of the logarithm of the
significand. Note that the change-of-base formula for logarithms then allows
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us to extend from base two to any base:

_ log, (z)
log, (b)

Some math libraries will give separate implementations for the best bit accu-
racy instead of using this formula, but many will use this formula, as it only
costs a small amount of accuracy in the worst case.

Unlike division and square root, where the parts of the number get com-
puted completely separately, the logarithm formula above adds the separated
parts of the floating-point number to get one floating-point result. Exponen-
tial functions are symmetric to logarithms, generating the parts of the number
separately based on the entire floating-point input. First, we take the integer
part of the = input to construct the exponent of the result, then get the
exponent by approximating based on the fractional part.

While exponentials can overflow and underflow, they are relatively well-
behaved in terms of exceptional conditions, only having exceptions when a
NaN is passed in. At the limits, exp2(co0) = oo as expected, and exp2(—o0) =
+0.0. Logarithms have a slightly more interesting set of exceptional cases,
including the first case of “division by zero” that does not involve dividing by
Zero:

logy, ()

log(0.0r) 2 _x

Since an operation on a number produces an infinity, we indicate division by
zero for the case of logarithms of zero. Additionally, logarithm is undefined
for any number less than zero, so these cases are all invalid:

log(z < 0) = Nan

These cases are uniform for all of the logarithm operations, and shifted over
for the log-plus-one operations.

7.3 Powers and Roots

Extending exponentials into two dimensions, we get the power functions used
to construct arbitrary powers of numbers. These are some of the most flexible
and powerful functions for numerical computing. The power function com-
putes the function:
pow(z,y) = z¥

This allows us to compute arbitrary exponentials, arbitrary powers of num-
bers, and arbitrary roots. The downside of this function is that it is compar-
atively slow and hard to make perfectly accurate when x and y are “weird”
numbers. Similarly, the flexibility of this function means that the floating-
point version has several compromises.
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Internally, one way that this function can be computed, and an outline for
the intended implementation for pow is the following:

oY — [QIogz(m}y — gulog,(@)

This identity only works if x is positive, however, which means that most
implementations will have a special case for negative x and integer y, but
will yield NaN for any negative z and non-integer y, indicating an invalid
operation. Many of these results will have complex results either way, but
some of them are unintuitive:

pow (—8.01:, %F) 20 Nan

The cube root of —8 is —2, but the pow function can’t be used to compute it
for you because % is inexact and so the true result of the calculation above is
actually a complex number. The cases for zero and infinity take some thought,
but all follow a logical pattern, shown in Table 7.2. One to any power is one,
even when that power is a gNaN, and anything to the zeroth power is also
one. From there, we have several ways to construct the equivalent of % and
é using pow, triggering a divide by zero exception when we construct % out
of two finite operands (compare the third and fifth rows of Table 7.2). For
values of x where z¥ grows as y grows, z°° is infinite, while values of x that
shrink as y grows yield zero. Finally, the domain restriction around negative
x values is loosened for zero-valued and infinite-valued z.

The need to compute both an exponential and a logarithm means that
pow is often one of the most inaccurate functions in any math library. It
is also guaranteed to be computed in software, and has one of the longest
computation times of any function in a math library.

Narrowing the function space somewhat, when you have an integer n where
y=nory= %7 there are a few other functions that may be available and can
be faster: The pown and rootn functions. Telling the implementation that you
are taking the nth power or nth root allows math libraries to compute these
functions much more quickly and more accurately than the generic power
function.

pown(z,n) = " integer n
rootn(x,n) = {/x integer n
In this case, instead of approximating log, pown and rootn can be done with
algorithms that are more restricted and more accurate than pow. These func-
tions also sidestep the issues with negative values of x that show up with the
pow function, since the space of n is limited enough that it is possible to know
that the user wants a real-valued nth root rather than an arbitrary power.
These functions are not part of the C math library, but are in the standard
libraries of some other programming languages like C#.
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TABLE 7.2

Special cases of the power (pow) function. In this table, O represents an odd
positive integer. Note that NaN inputs can produce non-NalN results, and
asymptotic behavior depends on evenness and oddness.

Operands Result
x y pow(z,y) Exceptions
Default One Outputs
Any including gNaN +0.0 1.0
1.0 Any including gNaN 1.0
Zero-valued x
+0.0 -0 +00 DZ
+0.0 @) +0.0
+0.0 —00 00
+0.0 00 +0.0
+0.0 y > 0 not odd integer +0.0
+0.0 y < 0 not odd integer 00 DZ
Infinite x
+oo 00 00
+o0 —00 +0.0
00 y <0 +0.0
o0 y >0 o0
—00 -0 -0.0
—00 (@) —00
—00 y > 0 not odd integer 00
—00 y < 0 not odd integer +0.0
Infinite y
-l<z<1 —00 00
r<—lorzxz>1 —00 +0.0
-l<z<l1 00 +0.0
r<—lorzxz>1 00 00
-1.0 +oo 1.0
Invalid Operations and NaNs
z <0 non-integer y NaN I0
Any #1.0 gNaN NaN
gNaN Any # 0.0 NaN
Any sNaN NaN 10

sNaN Any NaN 10
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TABLE 7.3
Special cases of the integer power (pown) function. In this table, O represents
an odd positive integer and E represents an even positive integer.

Operands Result
x n pown(z,n) Exceptions
Any except sNaN 0 1.0

£0.0 —-F 00 DZ
£0.0 -0 +o00 DZ
+0.0 E +0.0
+0.0 0] +0.0

00 n >0 00

00 n <0 +0.0

—00 0] —00

—00 E 00

—00 -0 -0.0

—00 - +0.0
gNaN Any #0 NaN
sNaN Any NaN 10

The special cases of pown and rootn are found in Tables 7.3 and 7.4
respectively. Note that the rootn function can differ from the square root
function in one corner case:

rootn(—0.0f,2) = +0.0p

This function actually behaves as you might expect for square root rather
than yielding negative zero. Additionally, you cannot take the zeroth root of
a number, while the zeroth power of anything but a signaling NaN is one.
Even roots of negative numbers are invalid since they would be imaginary,
while odd roots of negative numbers are valid. It is possible to take negative
and positive powers and roots, and the asymptotic behavior toward zero and
infinity is rational.

Finally, there is also a specialized cube root function in some math li-
braries [16]. The cube root function behaves exactly like rootn(z, 3), but can
be faster knowing that you are strictly taking a cube root. With this restric-
tion, internal methods can be somewhat more optimized to the point where
a cube root in software is a similar speed to a square root done in software
(although square roots are practically always done in hardware). Knowing
the root exactly means that a textbook Newton-Raphson approximation (see
Section 10.3) can be used, taking less than 20 floating-point operations from
start to finish, which makes one of the fastest operations in this chapter.

While the power function is powerful and flexible, it is also very slow to
support that power and flexibility, and many implementations are relatively
inaccurate. Using a specialized version of a power or exponential function will
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TABLE 7.4

Special cases of the integer root (rootn) function. In this table, O represents
any odd positive integer and E represents any even positive integer. Note that
the even roots of negative x are invalid, while the odd roots are not.

Operands Result

x n  rootn(x,n) Exceptions
+0.0 -—-F 00 DZ
+0.0 -0 +oo DZ
+0.0 E +0.0
+0.0 O +0.0

oo n>0 00

oo n<0 +0.0
—00 0] —00
—00 -0 —0.0
r<0 =£F NaN I0
Any 0 NaN I0
gNaN  Any NaN
sNaN  Any NaN 10

give you better results faster. However, if you need to compute something like
2.437681-5862 the pow function is there to help.

7.4 Reciprocal Square Root

Just like square root is a first-class citizen due to graphics calculations, re-
ciprocal square root (also confusingly called “inverse square root”) is a very
common operation for math libraries and processor hardware to support. Re-
ciprocal square root is useful for operations such as vector normalization:

v Vg Vy vV,

- b) b
v
vl \/v%—l—vg—i—vg \/vg—l—vg—i—vg \/U%—&-vf/—&—vg

Since floating point division and floating point square root are both relatively

slow operations, it makes sense to combine the two into a %E operation, the

reciprocal square root. We can then use hardware to approximate this result
directly instead of using it for two separate operations. One of the main algo-
rithms for fast square root calculation actually involves calculating a reciprocal
square root as an intermediate result, so we can take that intermediate directly
when we need to compute things like vector norms.
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Floating point specifies an optional reciprocal square root operation, al-
though several processors and math libraries do not implement this function
directly. The closest that you often get is an approximate reciprocal square
root, such as the VRSQRT14SD instruction on x86 CPUs, which computes a
very fast approximate reciprocal square root that has 14 correct bits. Nvidia
GPUs offer an exact reciprocal square root, as would be expected given the
usage of the function in graphics calculations, instead of having a square root
instruction. A square root is then constructed by computing = x % In con-
trast, CPUs will often have a square root operation and give you an inverse
by combining that with a division.

Where it is implemented, the reciprocal square root operator is intended to
operate exactly like the combination of a square root and a division operation.
That implies one weird case for reciprocal square roots:

1 1 »pz

= = —
v/ —0.0p —0.0f

The most common application of reciprocal square roots is the calculation of
distances, though, and the final operation before the square root in v2 + vg is
an addition, which will not produce a negative zero unless both operands are
negative zero. Since each number is squared, a negative zero will be impossible
for either one to produce. In this common case, the absurd possibility of a
distance of negative infinity will never occur, even when v, and v, are both
negative zero.

This operator offers a straightforward speedup when it is available. Com-
pilers such as the CUDA compiler will infer this operation for you. The fast
approximate inverse square root is a more blunt tool that you will have to in-
voke manually when you don’t care so much about the error of the operation
and prefer to avoid a pair of relatively long operations.

rsqrt(—0.0f) =

oo

7.5 'Trigonometric Functions

The trigonometric functions are the other major class of numerical functions
that are common to see in simulations and geometric calculations, so floating-
point math libraries provide built-in support for trigonometric functions. The
trigonometric functions supported fall into the following categories, measuring
angle in radians and in pi-radians (half revolutions):

e The basic trigonometric functions: sin, cos, and tan.

e The trigonometric functions with arguments multiplied by pi: sinPi, cosPi,
and tanPi.

e The inverse trigonometric functions: asin, acos, and atan.
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e The inverse trigonometric functions with outputs multiplied by pi: asinPi,
acosPi, and atanPi.

e A special form of arctangent with both x and y specified: atan2 and
atan2Pi.

These functions actually use two different units for angles, with an irra-
tional relationship between them. The normal functions measure angles in
radians, where a full circle is x = 27 radians. The “Pi” functions compute the
same things, but measure angles in half revolutions of a circle, where a full
circle is x = 2 half-revolutions. The Pi functions have the advantage that large
floating-point numbers are all integers, so for large inputs, instead of trying
to figure out a position around the circle to compute sines and cosines, the Pi
functions are trivial. For example, compare cosine to cosPi with large x:

cos(1000000) = 0.936752 cosPi(1000000) = 1
cos(10 0000 0000) =X 0.837887 cosPi(1000000000) = 1

cos(10000 0000 0000) 2 0.791446 cosPi(1000000000000) = 1

The large integers on the left side are some fraction of a circle, so we have to
figure out where we are to get a sine or cosine. When the precision of numbers
is so rough that one ULP exceeds 2w, we don’t have enough precision to
decide where we are on a circle at all. Using the Pi functions lets us simply set
the result. It is also easier to convert degrees into half-revolutions than into
radians while maintaining accuracy, since the ratio of 180 degrees per half-
revolution can be represented exactly in floating point, while 1% cannot. By
their nature, the trigonometric functions in radians are almost always inexact,
while the trigonometric functions in half-revolutions can be exact more often.

Additionally, the tan function almost never returns an infinite value be-
cause 7 is irrational, so its value can only get arbitrarily large, while the tanPi
function reaches a value of positive or negative infinity at many floating-point
values, lying halfway between the integers (e.g., tanPi(0.5) = c0), indicating
the infinite value with a divide by zero exception. The tangent function can
overflow at input values near x = (n + %) 7, but since all of these x values are
irrational, it will never yield a division by zero exception since these overflows
are inexact, not exact. For all positive integers n, the tanPi function follows
the pattern:

tanPi (2n + %) g 00 tanPi (—2n — %) gﬁ —00
tanPi (2n + 1) = —0.0 tanPi (—2n —1) = +0.0
tanPi (2n + ) g% tanPi (—2n — %) g% 00

tanPi (2n +2) = +0.0 tanPi (—2n —2) = —0.0
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At zero, the tanPi and tan functions follow the sign of the zero passed in, and
yield negative zero when a negative zero argument is passed in. This makes
the tanPi and tangent functions odd under most rounding modes:

tanPi(—z) = —tanPi(z)

The sin and sinPi functions are odd and the cos and cosPi functions
are even. This means that the following relationships hold:

sinPi(—z) = —sinPi(x)

cosPi(—z) = cosPi(x)

This extends to all of the integer values, where sin(x) = 0, and the values
halfway between the integers where cosine is zero. For positive integer n (in-
cluding n = 0):

sinPi(n) = 40.0 cosPi (n+ 3) = +0.0
sinPi(—n) = —0.0 cosPi (3 —n) = 40.0

The zero-crossings of sinPi on the negative side of the z-axis are all negative
zero, while they are positive zero on the positive side, while the zero-crossings
of the cosPi function are always at positive zero. This is due to the strict
oddness and evenness of the functions.

While the trigonometric functions have an infinite input domain and a rel-
atively restricted output range, the atan and acos functions have a restricted
domain under which they produce a non-NaN value. Outside of the domain
[—1,1], these functions will give an invalid operation exception. The domains
and ranges of these functions are shown in Figure 7.1. While the ranges of the
inverse trigonometric functions are usually bounded by 7 or 7, once rounding
comes into play, it is possible for the output of these functions to exceed the
limits that might be expected in some rounding modes. This means that you

asin(z) acos(x) atan(z)

FIGURE 7.1

Plots of the inverse trigonometric functions. The arcsin and arccos functions
have limited domain. The asinPi, acosPi, and atanPi functions are scaled
down vertically by a factor of pi.
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atan2(3,-2)
atan2(-2,4)

atan2 (-3,-3)

FIGURE 7.2
Examples of the two-argument arctangent. The function measures the angle
from the positive z-axis to a given point.

may need to take care when using the radian-valued functions to check for a
jump from one region to the next—the Pi functions do not have this problem,
as their bounds are exact floating-point numbers. One class of inverse trigono-
metric function has additional flexibility: The atan2 and atan2Pi functions.
The atan?2 functions give the angle from the positive x-axis to the line from the
origin to the point (z,y) in Cartesian space. This is an extension of the arctan
function that brings back the geometric interpretation of the arctan function.
The arguments to atan2 are provided “backwards” with the y-coordinate as
the first argument or the side length of the right triangle opposite the angle.

A few graphical examples are shown in Figure 7.2. The output of atan?2 sits
in the interval [, 7] (unrounded), and the output of atan2Pi is inside [—1, 1].
This is different than the atan function, whose range is restricted [—g, 1}.
Since we have a vector whose angle to measure, we get an extra degree of
freedom in terms of triangles that can be represented by the input. In one
function, this function also gives us a simple transformation from Cartesian
to polar coordinates.

The atan2 function has a number of special corner-case values, and some
relatively distinct handling of these corner cases. The corner cases of atan?2
are shown in Table 7.5. None of the relevant corner cases causes overflow
or underflow, but they do cause inezractness due to the fact that all of the
non-zero outputs are irrational. The atan2Pi function does not have inexact
outputs at these points, because its output is exact. We essentially have to
guess when the inputs are too large or too small to measure.
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TABLE 7.5

Special cases of the two-argument arctangent functions. Here, a represents any
positive number. atan2Pi provides the same outputs as atan2 scaled down
by a factor of .

Operands Results Exceptions
Y x  atan2(x,y) atan2Pi(z,y) atan2(z,y) atan2Pi(z,y)
+0.0 —-0.0 +7 +1.0 IX
+0.0 +0.0 +0.0 +0.0
+00 —a +7 +1.0 IX
+00 a £0.0 +0.0
a  =£0.0 z 3 IX
—a  £0.0 -z -1 IX
+a 00 +0.0 +0.0
+a —o0 +7r +1.0 IX
00 +a 3 % IX
-0  =*a -3 f% IX
+oo T j:% IX
+oo —oo +3r +3 IX
Any NaN NaN NaN 10 for sNan
NaN  Any NaN NaN I0 for sNan

All of the functions mentioned in this section are difficult to compute,
and thus use approximation algorithms in software. The atan2 function is
somewhat more difficult to compute than the rest, but they are all on a sim-
ilar scale in terms of speed, around the same computation difficulty as an
exponential. Math libraries compute each one with good accuracy, although
accuracy can suffer as = gets large for the radian-based trigonometric func-
tions.

For trigonometry in floating point, the Pi functions are more numerically
useful than the basic trigonometric functions because key angles like the 90-
degree angle can be represented by exact values in floating point. Unless you
are required to work in units of radians, these functions will produce normal
behavior and exact results more often than their counterparts. However, all
of the trigonometric functions in floating point have radian-valued definitions
as well as half-revolution-valued definitions. Finally, there is a special two-
argument arctangent function that is useful for measuring angles when given
coordinates in space. All of these functions are inexact the vast majority of
the time, but they are still useful.
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7.6 Hyperbolic Functions

The hyperbolic functions are cousins of the trigonometric functions and ex-
ponential functions. These functions are shown in Figure 7.3. All of these
functions can be constructed out of exponentials, but math libraries will al-
most always provide a function that is faster and more accurate than trying
to manipulate the exponentials instead.

There are only six floating-point hyperbolic functions, the three basic func-
tions, sinh, cosh, and tanh; and their inverse counterparts, asinh, acosh, and
atanh. Each hyperbolic function is defined in terms of exponential functions:

_exp(x) — exp(—x)

sinh(z) = 5
cosh(x) = exp(z) +2exp(—:c)
tanh(z) = sinh(x) _ exp(z) — exp(—x)

cosh(z)  exp(x) + exp(—x)

We can see that as x moves away from zero, if we evaluate these definitions
directly, we will be adding a large number to a small number, which is a
recipe for inaccuracy and precision loss. Specifically looking at tanh, we get
a function that moves between negative and positive one with its exact value
depending on the ratio of a pair of large-plus-small additions. Unlike sinh and
cosh which both get large and approach an exponential for large x, allowing
us to use the exponential as a perfect approximation past a certain point, the
tanh function does neither.

cosh (x)

O tanh(x)

-5F sinh (x)

FIGURE 7.3
Plot of the hyperbolic functions.
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The hyperbolic functions are often constructed in math libraries with their
own approximations rather than relying on the exp function, but these func-
tions are harder to approximate than the exponentials, which can be approxi-
mated in a separable way, and the trigonometric functions, which have periodic
behavior.

Numerically, these functions are generally well-behaved and have infinite
domain and range, except for atanh, which must have z in the range [—1, 1],
and acosh which must have z inside [1, co]. Overflow, underflow, and inexact-
ness will show up as usual, and the sinh and cosh functions have a relatively
small domain where the result is non-infinite due to overflow. The one inter-
esting exceptional case for the hyperbolic functions is the case of atanh at the
limits:

atanh(£1.0) 2 +oo

Interestingly, the asinh, acosh, and atanh functions cannot overflow even
though they can produce infinite values. In all cases, when x gets large, the
magnitude of the result of the function is smaller than z, so we only get an
infinite result when z is infinite.

The hyperbolic functions are less common than the other functions from
this chapter in geometric calculations and numerical simulations, but the
floating-point versions are as fast and accurate as other members of math
libraries.

7.7 Statistical Functions

Many math libraries contain functions that relate to statistics and common
distributions. Unlike the functions in the rest of this chapter, these functions
are not specified in the IEEE 754 standard, and are not implemented uniformly
between programming languages. For some, they are in the standard library,
and for others, they are the domain of third-party implementations.

The most common statistical function is the error function, erf(x), and
its complement, erfc(z). These functions are sigmoidal in shape, as shown in
Figure 7.4, but are defined as an integral in their real-valued form:

2 [
eI‘f(.’E) = ﬁ/e_t dt
0

The complementary function is defined as erfc(z) = 1 — erf(z). The error and
complementary error functions are common functions in statistics, where they
arise from the use of Gaussian distributions, whose cumulative distribution
function takes the form of an error function.
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erfc(x)

erf (x)

-2

FIGURE 7.4
Plot of the error and complementary error functions.

The error function does not have a simple closed form, which means that
evaluation of the exact error function involves taking an integral. However, it
is still possible to construct approximations of the error function using poly-
nomials or lookup tables (see Chapter 10). The only region with interesting
dynamics is the region near zero, so approximate forms of the error function
and similar sigmoid functions are usually relatively small compared to approx-
imations of functions that move across their entire domain. However, this is
the first function in this chapter that does not display some form of “nice”
behavior—math libraries have to approximate it on its entire relevant domain
instead of relying on periodic or fractal behavior.

Numeric formats with higher precision have a wider relevant domain than
formats with lower precision, and the erfc function needs some care for pos-
itive x due to the fact that it approaches zero, the region where the floating-
point numbers have high density. When implemented, approximations of the
error function in math libraries are usually accurate, but may be slower than
some other functions in this chapter that have a smaller relevant domain [20].

A second function that is common to find in math libraries and is also
highly relevant to statistics is the gamma function. The gamma function is
useful for several statistical tests and distributions, and often uses the moniker
“tgamma” in math libraries to avoid confusion with a differently defined func-
tion previously named “gamma”. Like the error function, the gamma function
is defined by an integral:

I(z) = /tzfleftdt
0
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FIGURE 7.5
Plot of the gamma function with its asymptotes shown as dashed lines.

A plot of the gamma function is shown in Figure 7.5. Unlike the error function,
the gamma function has significant dynamics across x. Math libraries will
also often define the log gamma function (lgamma) as a sister to the gamma
function, returning the logarithm of I'(«). This function shows up occasionally
in fluid dynamics, but is also useful when z is large enough that I'(z) gets very
big.

Approximations of the gamma function and its extensions, like the incom-
plete gamma function, are very difficult to construct. When present in math
libraries, the gamma function is usually one of the functions with the most
error, sometimes reaching thousands of ULPs, although a few math libraries
give a bit-accurate approximation [20]. Most approximations of the gamma
function use a convergent series rather than attempting to use one of the
methods mentioned later in this book. The two main methods used are Stir-
ling’s formula and the Lanczos formula. Corrections to these methods have
been proposed for faster convergence, but all involve evaluation of transcen-
dental functions and an infinite series, making precise implementation very
difficult [21].

The gamma function also has several points where it is invalid or goes to
infinity. The behavior of approximations of the gamma function is not stan-
dardized, but the C standard library gives the following error conditions [16]:

e For I'(£0.0), return +oo and raise a DZ exception.
e For negative integer x or x = —o0, return NaN and raise an I0 exception.
e For x = oo, return co with no exception.

e Propagate NaN as expected.
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Math libraries will often contain several other domain-specific functions
that are otherwise difficult to approximate, including Bessel functions, beta
functions, and the Riemann zeta function. Behavior of these functions is com-
pletely defined by the math library used, so while most math libraries will
follow the conventions laid out in Chapter 3, there are no guarantees that
behavior will be exactly the same from language to language.

Check Your Understanding

Problem 7.1. Find the range of values of x where exp(z) produces a non-
zero, non-infinite result (i.e., where the function does not overflow or under-
flow).

Problem 7.2. Find the value of © where cosh(x) is within 1 ULP of exp(z)
in single-precision floating point.

Problem 7.3. Create a speed benchmark to compare z X x X x to pow(z, 3).
Which one is faster? Now compare the speed of both to pow(x,3.00001).

Problem 7.4. Find the range of values of = where erfc(z) produces a result
that is not equal to 0.0 or 2.0r. How many more positive floating point
numbers are in this space than negative numbers?

Problem 7.5. Find a value of z in floating point where tanPi(z) and tan(wz)
(using floating-point ) have opposite signs and: (1) tan(nz) is far from zero
and (2) tan(wx) is near zero.

Problem 7.6. Compare the output of pow(10,x) to exp10(z) by sampling
1000000 random points with —1000 < z < 1000 (in double precision). What
is the maximum difference between the two results? Do the same for exp(z)
and pow(e, x).

Problem 7.7. Construct a function for cosh(z) using exp functions. Compare
your function to the math library’s implementation of cosh(z). What is the
maximum error between your function and the math library in single-precision
floating point?

Problem 7.8. Create a reciprocal function using the square of the result of
the fast-reciprocal-square-root assembly instruction on your computer. Mea-
sure the maximum error compared to computing % directly. Measure the speed
compared to the normal approach using division.
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Bitwise Manipulations

Floating point has a few other operators that work at the level of bit fields,
and often don’t make as much sense to define mathematically. Some of them,
like the absolute value function, are also mathematical operators, but floating
point does not treat these functions in the same way it does the numerical
and arithmetic operators. Most of these functions don’t report exceptions or
errors on their inputs, and they can be used in ways that bend or break the
floating-point abstraction.

The most prominent example of bending the abstraction is the use of NaN
payloads to carry non-floating-point information. This can be helpful for com-
pressing other values by packing them into NaNs or for carrying information
about errors. This is enabled by paying attention to the binary encoding of
floating point.

8.1 Exponent Manipulation

Some functions allow you to directly manipulate the exponent of floating-point
numbers, giving a fast approximate logarithm and a fast scaling function.
These functions are essentially just faster ways to do things that could be
done with other, slower operators. Practically, these functions are actually
short sequences of integer operations with a useful meaning in floating point.

The first of these functions is the 1ogB function. Unlike the name suggests,
it does not actually compute a logarithm. Instead, logB(x) returns the expo-
nent of x as a signed integral value (as though it had infinite exponent range).
It can return that result either in floating point or as an integer—like C and
C++, we will refer to the integer version as iLogB, while the version that
returns a floating-point number will be called logB. Mathematically, LogB(z)
functions as |log,(x)| when z is positive. Unlike a logarithm, however, it is
possible to take logB of a negative number since we are not actually doing a
mathematical operation, but extracting the exponent. Pseudocode for 1ogB is
shown in Algorithm 8.1. The algorithm mostly comprises checks for zero and
infinity after extracting the exponent. We also have to give care to subnormal
numbers, which need to be scaled up into the normal numbers to correctly
get their exponent.
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Algorithm 8.1 Pseudocode for 1logB
Input: floating-point x
Output: floating-point y = logB(x)

1: i < bitCastint(z)

2: ey < (1> mbBits) & eMask > Get exponent bits
3: if e, = eMask then > Infinity or NaN, exponent is all ones
4: if (x & mMask) = 0 then

5: return oco

6: else

7: return NaN > Check for sNaN here is omitted for brevity
8: end if

9: else if e, = 0 then > Zero or subnormal number
10: if (x & mMask) = 0 then > Zeros
11: return —oco with DZ exception

12: else > Subnormal numbers
13: n<x x2P > Scale up to a normal number
14: in < bitCastint(n)

15: en  (in > mBits) & eMask > Get exponent
16: €r €, —D > Correct for our scale factor
17: end if

18: end if

19: return intToFloat(e, + eBias) > Unbias exponent and return to float

As you can see from the algorithm, the majority of the complexity in 1ogB
is around handling of special cases. The zeros have an exponent of negative
infinity and raise a divide by zero exception similar to the logarithm operation.
The infinities have an exponent of positive infinity. Everything else has an
exponent that is an integer value. To handle the subnormal numbers, it turns
out that the most efficient method on most modern hardware is to simply
multiply by the precision of the format to get a normal number and then
repeat the procedure of extracting the exponent. It is also possible to replace
lines 13-16 with a procedure producing the leading zero count of the mantissa
if the multiplication will require a microcode assist or otherwise be slower
than the bit manipulation. Also, 1ogB cannot overflow or underflow. Its output
range, aside from the cases that produce infinities, is relatively limited.

For iLogB, we will be producing an integer that does not have infinities
or NaN in its output space. Line 19 of the algorithm will simply not return to
floating point in this case, but all of the cases that would return an infinity
or a NaN will instead return an error result (such as a result that cannot be
a valid exponent) and raise an invalid operation exception.

While binary floating point numbers take a base-two logarithm for 1ogB, on
decimal floating point numbers, 1ogB performs the equivalent of a logarithm
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in base ten. The “B” stands for “base”, referring to the base of the format,
not “binary”.

A complement of logB is the scaleB function. scaleB(z,n) multiplies x
by 2" (actually b™ for floating point in base b), where n must be an integer.
Similarly to how logB extracts the exponent field, scaleB adds to it:

scaleB(z,n) = (—1)%2%"(1.m,)

Even though this is a simple operation, the scaleB function also checks for
overflow and underflow and indicates the appropriate exceptions if those occur.
However, scaleB is always exact thanks to the exponent-only nature of the
manipulation unless there is an overflow or underflow, or unless the input is
a subnormal number. The implementation of scaleB looks somewhat similar
to logB, where most of the code handles special cases. The common path
is simpler and faster than a multiplication, but it is fast enough to simply
construct a floating point number equal to 2" through bit manipulation and
then multiply it by «, and this has all the correct signaling and error handling
built-in.

8.2 Sign Bit Manipulation

Sometimes, all you need to do a useful piece of math is to manipulate the sign
bit of a floating-point number. The archetypal example of this is negation,
where the sign bit is negated. This flips the number from positive to negative.
Notice that this is easier and simpler than it is for integers, where negation can
change many of the bits of the number and where the range of positive and
negative numbers is different. In floating point, the only difference between a
positive number and a negative number of the same magnitude is the sign bit,
so to negate, we flip the sign bit. As expected, this also means that negation
has no exceptions.

The absolute value operator (abs or fabs) is another operation done solely
on the sign bit. By setting the sign bit to zero, you get the absolute value of
a floating point number:

2] = (=1)°2% (1.my)

This is another operation that is done without exceptions (even with an sNaN
input). If you happen to pass a negative NaN into the abs function, most
languages will give you a positive NaN. Remember that NaNs can carry a
sign, even though it is usually meaningless. This operator is actually just a
pure manipulation of the sign bit.

The signBit operator in some math libraries extracts the sign bit from
a floating-point number. The C specification indicates that signBit(z) re-
turns “a positive value” (equivalent to a boolean true) if x has a negative
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sign [16] and zero otherwise, while the C++ specification indicates specifically
a boolean return type. This is not a standard floating-point function, but is
a convenience, and when used as a comparison function, can disambiguate
negative zero as being less than positive zero.

A final sign bit manipulation is the copySign operation. copySign(zx,y)
returns the number x with the same sign as y, copying the sign bit from y
and the rest of the number from z. If you were wondering in the previous
paragraph how to get a negative NaN, the copySign operation is usually
how they are created. copySign is also completely free of exceptions and
passes sNaN through. The sign bit manipulation operations, while they have
mathematical functions, are bit manipulations at their core, and act as such.

8.3 Iterators

A few floating-point functions act as iterators through the space of floating-
point numbers. These functions are the following:

e nextUp(z) returns the next floating-point number above x.
e nextDown(z) returns the next floating-point number below z.

e nextAfter(z,y) returns the floating-point number next to x in the direction
of y. If x = y, nextAfter returns z.

The first two functions listed here are standard functions, while the more
flexible nextAfter function is in math libraries for C and several other lan-
guages [16].

These operators will overflow to infinity, indicating overflow, and will un-
derflow correctly as well. They also will only give one of the zeros, moving
straight from —0.0 to the smallest subnormal number rather than going to
0.0. The rigorous definition is that nextUp(x) returns the smallest number
that compares greater than z. The special cases for nextUp are enumerated in
Table 8.1, with nextDown(z) behaving exactly like —nextUp(—z). Aside from
a signaling NaN input, nextUp and nextDown are silent.

The nextAfter function is less quiet in the C standard library, signaling
an overflow exception when the function returns infinity and an underflow
exception on a subnormal or zero output (in both cases with an inexact ex-
ception to boot). It also has behavior that nextAfter(—0.0,+0.0) = +0.0,
returning y when = compares equal to y [16]. This behavior does not align
with the standard nextUp and nextDown, but it comes from a different source.
In C and the C-derived languages, nextAfter is the default iterator function,
and the math library does not contain nextUp or nextDown.

Like many functions in this chapter, the iterators are actually implemented
as short sequences of integer operations with some special case checks. In the
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TABLE 8.1

Special cases of floating-point nextUp, mirrored in nextDown. Here, TINY rep-
resents the smallest positive subnormal number, while HUGE represents the
largest positive non-infinite number.

Operation Result Exceptions

nextUp(+0.0) TINY
nextUp(—TINY) —0.0

nextUp(HUGE) 00
nextUp(oco) 00
nextUp(—oco)  —HUGE
nextUp(NaN) NaN 10 for sNaN

case of nextAfter, those special case checks raise exceptions. The core of
nextUp and nextDown is either incrementing or decrementing a floating-point
number as though it were an integer. Aside from the split between the negative
and positive numbers, the mapping from integers to floating-point numbers is
monotonic (recall Figure 2.5), so the easy way to get the next floating point
number is to just get the next integer. This is shown in Algorithm 8.2, which
describes a nearly branchless version of nextUp in 32-bit arithmetic.

Algorithm 8.2 Pseudocode for nextUp in Single-precision

Input: floating-point x
Output: floating-point y = nextUp(z)

1. if !isFinite(x) then

2 return =

3. end if

4: v+—240.0 > Turn negative zero into positive zero
5: 1 bitCaStI32(3;‘)

6: s< 1> 31 > Get the floating-point sign bit from i
7. d+1-—2x(s) >d =1 if sign bit is 0, d = —1 if sign is 1
8: return bitCastr(i + d)

These iterators are often used for testing floating-point functions when you
would like to scan a part of the range of numbers. The main usage is to scan
through a region to test the exact behavior of a piece of numerical code in
that region. If you try the code for every possible input, you can guarantee
that nothing unexpected will happen in that region. They can also tell you
the uncertainty range of a given number by indicating the size of half a ULP
in each direction:

() nextUp(z) —x 2 —nextDown(x) nextUp(z) — nextDown(x)
ul\xr) = =
2 2 2
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This function gives the size of the range of real numbers that would be repre-
sented by any floating-point number x.

The iterators are not generally used in runtime code, but for testing and
verification, they can be useful tools for scoping out your precision and analyz-
ing the cases you see. They also enable exhaustive testing of the floating-point
number range if you happen to need it.

8.4 NaN Boxing

A significant amount of the encoding space of floating-point numbers is de-
voted to NaNs. There are 9007 199 254 740 990 double-precision NaNs (253 —2),
just over nine quadrillion values. This is every value with exponent of all ones
except for the ones with a zero mantissa. Looking at that encoding space, it
is natural to think about what you might be able to do with it. There are
two general classes of use for that encoding space: Usage to convey informa-
tion about floating-point calculations—specifically when they go wrong—and
usage to store things that are not floating-point. The former has been pro-
posed by some math library developers, but is not in common use as of 2024.
The latter usage is called NalN boxing, and is commonly used in heavily-
optimized programs to make them more memory-efficient at a very small cost
of arithmetic operations.

A key point about double-precision numbers is that there is enough encod-
ing space in their NaNs to encode every possible pointer on a computer system.
252 bits is enough encoding space to store byte addresses to 4 petabytes of
memory, and at the time of writing, the largest computers on the planet have
no more than 24 terabytes of RAM, and systems not built for extreme memory
capacity stop at 1-2 terabytes. This means that as long as we can compress
the 64-bit pointer values into a 52-byte encoding, we can store every float-
ing point number and a pointer to every byte in an 8-byte slot. Pointers on
64-bit systems also are generally 8-byte aligned, so they will always have 3
trailing zero bits, leaving us encoding space for even more things. Increasing
compression of memory like this comes at a cost of arithmetic operations and
code that has more branches, but many programs are memory-bound and
have arithmetic operations to burn.

This can be exploited by working with CPU and OS memory management.
Most systems will give you all ones or all zeros in the top bits of a pointer,
S0 compression is easy. Some systems will assign pointers with random 64-
bit addresses or a tag in the top bits, and we need to be tricky if we are
compressing pointers. The way around this is to use a customized allocator.
Several programs that use NaN boxing for pointers will put those pointers
inside a large region allocated with mmap or based on a single large initial
allocation. This seems wasteful, but virtual memory will guarantee that this
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memory allocation does not actually occupy physical RAM until it is touched,
so if you put a reasonable memory allocator on top of this big initial block
of memory, you can use offsets within that block as your memory addresses,
giving address compression. This is more difficult than using malloc or new,
but it is a hack that allows you to significantly compress pointers by adding
a small layer of indirection on your pointers.

A final benefit of NaN boxing is that you can do arithmetic on NaN-boxed
values and anything that is not a number will give you an appropriate NaN.
This allows arithmetic to be branchless. Many systems will propagate NaNs
through calculations as well, completely preserving whatever it is you tried to
operate on, meaning that you won’t necessarily lose the payload. However, this
is not universal outside the world of x86 CPUs, so operating non-destructively
is better if you do this. Arm CPUs for example, don’t preserve NaN payloads
by default.

NaN boxing is most common with 64-bit values, but is not restricted to 64-
bit values. there are 224 — 2 single-precision NaNs, which may not be enough
to hold a pointer, but are enough to carry an object handle or an array index
in addition to every floating-point value.

NaN Boxing in JavaScript Engines

The typical example of a system using NaN boxing to hold values is in
browsers, where they use pointers stored in the NaN encoding space along with
numbers stored in floating point. This allows quick identification of double-
precision numbers and other types, and fast decoding. WebKit’s JavaScript-
Core (JSC) engine uses a variant of NaN boxing that stores pointers so that
there is no modification to access pointers, but the encoding space of floating-
point numbers is rotated. Firefox’s JavaScript engine also uses NaN boxing,
but a different form [6].

Normally, double-precision floating-point NaNs have an exponent of all
ones, and quiet NaNs have an additional one bit. If we take the sign bit also
as 1, that means we get NaNs when we have 13 leading one bits—the sign, the
11-bit exponent, and the quiet bit. Adding a 14th bit, we can now guarantee
that we are only operating in NaNs with non-zero payloads, allowing a NaN
with a zero payload in the encoding space.

JSC uses this space to store values with a 15-bit tag, and reserves tags of
all ones and all zeros for things that are not floating-point numbers. In turn,
the floating-point numbers are stored with an integer offset of 249 from their
canonical binary encodings, preserving every relevant floating-point number.
The integer offset means that reserving a tag of zero for pointers takes NaN
encoding space, not valuable encoding space near zero.

For JSC, a tag of zeros denotes a pointer or a special value. Values in
binary are:

00000000 0000000P PPPPPPPP PPPPPPPP PPPPPPPP PPPPPPPP PPPPPPPP PPPPPPPPy,
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This leaves 49 bits (the Ps) for pointers. Pointers themselves have tags in their
three least significant bits, and special values including FALSE, TRUE, NULL, and
UNDEFINED are also encoded in this space, using the second-least-significant
bit to tag these special values. Zero is a banned encoding. The exact protocol
used by this field is significantly more complicated around the tagging of the
pointers, but pointers get preferred encoding for WebKit.

When the top 15 bits are not all ones or all zeros, you have a floating-
point number that can be extracted by performing an integer subtraction of
249 £0 re-align this range to start at zero. The encoding space for floating-point
numbers before the subtraction is:

0002 NNNN NNNN NNNNy,

FFFC NNNN NNNN NNNNy,

In turn, after subtracting integer 249, this range of hexadecimal numbers corre-
sponds to a ranges of double precision values that contain almost every useful
value. These ranges are shown in Table 8.2. This leaves a space including
all positive NaNs, both infinities, the zeros and subnormals, and all normal
numbers. Every other use of the 8-byte value costs only a small slice of the
negative NaNs.

Finally, a tag of all ones denotes a 32-bit integer. This is a speed optimiza-
tion for the most common JavaScript numbers, which are 32-bit integers. Since
JavaScript does a lot of integer math, but CPUs generally perform floating-

TABLE 8.2

Floating-point ranges available with WebKit’s JavaScriptCore NaN boxing.
These come after subtracting integer 20000 0000 00005 (249) from the stored
binary encoding.

Bit Fields of Floating-point Encoding
Sign Exponent (bin) Mantissa (hex) Floating-point Value

0 11111111111, FFFFFFFFFFFFF,

: All positive NaN
0 11111111111, 000000000 0000; o0

: All positive numbers
0 000 00000000, 0000000000000;, +0.0
1 00000000000, 0000000000000;, —0.0

: All negative numbers
1 11111111111, 0000000000000, —o0

: Some negative NaN
1 11111111111, 900000000 0000y,
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point calculations inside vector engines that make it difficult to use those
values for tasks like indexing arrays, it is faster to separate out the integers
when JSC can infer that numbers are being used as integers:

FFFEOOOOITIIIIII,

This allows the JavaScript engine to use 32-bit arithmetic instructions to do
integer operations, ignoring the top 32 bits that have some junk in them.

This encoding allows pointers and integers to all be used unmodified, while
all useful floating-point numbers are still accessible with a simple integer sub-
traction. The full specification for this encoding can be found in the WebKit
repo on GitHub, including pointer tags and an encoding for small values stored
in a Biglnteger type. All of these fit inside eight bytes [22], allowing all of the
normal numbers, fast integers, and machine pointers to occupy one value.
This represents one of the most complex uses of NaN boxing, storing a tagged
pointer, an integer, and all useful floating-point values in eight bytes. The
rotation of the encoding space is a performance choice, as is the separation
of integers. All of these choices add complexity but allow you to pack a lot of
information into what otherwise would be wasted space.

Check Your Understanding

Problem 8.1. Write a function that performs copyExp(z,y), returning a
floating-point number with the mantissa and sign of x, but the exponent of y.

Problem 8.2. Write a function that implements nextAfter using bit casting
and integer operations. Make sure to handle the corner cases.
Challenge version: Make this function completely branchless.

Problem 8.3. Make a “double-or-string” type that can store either a double-
precision floating-point number or a text string in one 8-byte value. Ensure
that strings under 6 bytes long are stored as a small string within the 8-byte
value, and that only larger strings are stored as a pointer.

Problem 8.4. Design a memory-efficient data structure for an ordered set of
double-precision floating point numbers, using NaN boxing to store floating-
point values for leaf nodes and pointers for internal nodes. Ensure that you
have add (x), remove(x), and an iterator.

Challenge version: Use a B-tree (or B+ tree) with an arena allocator or a
freelist for maximum speed.
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Working with Error in Floating Point

Finally, we will take a look at several techniques to deal with floating-point
error. Following a few simple rules can make accurate numerical calculations
simpler to achieve. When those rules fail, it is possible to perform a basic error
analysis on your calculation chains to find or rule out floating point issues.
Another issue is the presence of non-numbers, like NaNs and infinities, that
can creep in to calculations. Finally, if you don’t care, it can help to enable
fast math mode on a compiler or apply similar ideas for yourself, and we will
discuss what “fast math” actually means.

9.1 Algebra for Accuracy

Some formulas compute equivalent things in the real numbers but are far more
accurate in the floating-point numbers. A common example is the formula:

fla)=Va+1-va

As x grows, this formula causes a subtraction of two large numbers, which
means cancellation. A plot of this function executed as written is shown as
the left side of Figure 9.1.

A much more accurate formula that performs the same computation in
the real numbers is given by using a difference-of-squares trick to rearrange
things:

Wt T-VE) (Ve +T+Ve) 1
Vet 1oy = NCE S e V=S

The new formula here has no chance of cancellation, since we are adding
two positive numbers and then dividing. It will be slightly slower due to the
division, but for large x, is far more accurate. A plot of the new function is
shown on the right side of Figure 9.1.

These sorts of algebra tricks to remove subtractions and additions that
can have opposite signs are good ways to make calculations more precise. The
quadratic formula is another famous example of a formula that does not work
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FIGURE 9.1

Plots of two functions that compute vz + 1 — /2 in double precision. Left:
Plot the naive function, which jitters randomly around zero, giving spurious
results of £16 384. Right: Plot of a corrected function that gives the correct
result of 5 x 10721 across this window.

as well in floating point as you might hope:

—b+Vb% — dac
2a

This formula has two additions that can have opposite signs, one of which
is guaranteed to have an opposite sign since it is a “+” that represents an
addition and a subtraction. The b% — 4ac inside the square root can also cause
cancellation when a and ¢ have the same sign. Some algebra will produce a
significantly better formula depending on the values of a, b, and ¢, but the best
formula to use depends on the magnitudes and regimes you are working with.
Any chance you have to turn possible subtraction into same-sign addition
and/or any multiplicative operation will likely improve accuracy.

Tools like herbie can be used to do some of this algebraic manipulation au-
tomatically [23]. Herbie analyzes floating-point expressions for accuracy across
their range and determines more accurate substitutions that are algebraically
equivalent in the real number space. However, they are limited to a fixed set
of algebraic manipulations and cannot change the inputs or outputs of the for-
mulas used. Put another way, Herbie is probably better at coming up with the
correct algebraic tricks than we are, but only views the narrow environment
of a single floating-point expression.

A final class of algebraic manipulations that can help with accuracy is to
perform changes of coordinates. When you need to do a lot of manipulations
on a quantity that is large or small, it can help to center on that quantity by
doing a linear change of coordinates for that calculation. An example of a two-
dimensional grid represented in a floating-point format is given in Figure 9.2,
showing the effects of being close to or far from the origin.

An implied change of coordinates that is common to see in simulations
is calculation of a delta to apply to an existing number instead of directly
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A

FIGURE 9.2

Grid showing the resolution of two-dimensional space in floating point. Around
the point in the upper right side of the grid, the resolution of the grid is
significantly lower than it is at the point near the origin.

calculating a new number. Operations update a change in a quantity, which
often defaults to a smaller number than the quantity itself, only updating
the original number after computing the final delta. Errors of several ULPs
in a delta that is close to zero become an exact operation when you finally
add that delta to a quantity in the thousands. This kind of transformation
can also allow you to take advantage of numerical integration methods (see
Chapter 12) in cases where you are updating a number over time, since you
are creating a differential equation by separating out the “velocity” of that
number into a delta.

Changes of coordinates are routinely used in open-world and massively-
multiplayer games, where the technique is called floating origin. Floating
origin will center the coordinate (0,0,0) on the camera or player, allowing
fine precision for local movement. This also has the effect of keeping the math
and associated simulations consistent no matter where the player is located in
the in-game world. Floating origin also allows the player’s view to be rendered
using reduced precision while the state of the world is stored at higher precision
with no loss of accuracy (e.g., a world whose state is stored in double-precision
on the server side can be rendered quickly and accurately in single-precision).

Additionally, some problems benefit from alternative coordinate systems.
Problems that are circular in nature, such as planetary orbits, can use po-
lar coordinates to have a nice closed-form solution rather than running a full
simulation. Kepler’s equations of motion are simple to define in polar coordi-
nates, while expressing them in terms of points on an x-y grid is comparatively
messy. Translating from polar coordinates to usable Cartesian coordinates and
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back takes a few trigonometric operations. Similarly, simulations with rota-
tional symmetry of some kind are often much more simply expressed in polar
coordinates than on a grid.

Averaging Floating-point Sets

Computing averages of large datasets is more challenging than it seems since
you are essentially computing a quantity that looks like a very large sum.
When averaging a large sample of numbers that are about the same size, the
typical formula for computing an average is:

1 n
E:N;xn

The running sum of a large set is hard to compute accurately and risks over-
flow. There are algorithms, such as a famous one that uses double-word arith-
metic (we will revisit this example in Section 9.3) for taking accurate sums,
but this is often not necessary unless N gets very large.

We can reformulate our calculation into an iterative calculation that keeps
a running estimate of the average, E,,, rather than keeping a sum:

n T,
E,
n+1 +n+1

En+1 -

At each step, we adjust the current average by a small amount and then add
a small adjustment corresponding to z,. We still have problems as n gets
large, since the .y term gets smaller and smaller and 7 loses precision as
it approaches one, but this formula now will not overflow for large x values.

However, in floating point we have rounding, which means that:

n 1

—_——#£1
nJrl—’_n—&—I;”é

Our old formula actually gave each round a weight that is slightly more or less
than one, which can cause systematic error depending on N. A new formula
that does guarantee a total weight of one in each round is:

n
n+1
E,.1=F,E,+(1-F,)x,

n =

Our subtraction here will always be exact because Fj, is always close to one
(for the theoretically inclined, this is shown by Sterbenz’s lemma [24]). If
we had instead computed F;, as the weight for z,, and used 1 — F,, as the
coefficient of E,,, we would not have been able to say that this subtraction is
always exact. Practically, this formula will produce inaccuracy by jittering the
weight of each x a bit depending on whether the F,, calculation rounded up or
down. When n is small enough, this jitter is essentially random and will often
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average out. As F), gets closer and closer to one, however, this jitter becomes
biased and the usability of this formula breaks down.

A popular formula for the average of a set of numbers that avoids this
problem with large n is:

z, — B,
FE,i1.=FE,+ —
+1 + w1

By now calculating using a delta adjustment, we avoid the error we would
have gotten from HLH However, we have added a subtraction to a place where
we previously did not have one, creating a new source of precision loss due to
cancellation, and we are now performing an addition with a larger disparity in
order of magnitude than we had before. Previously, we were adding a quantity

close to nL to a number close to E, but now we are adding i;f , which is a

Signiﬁcantjl; smaller quantity.

It is always possible to also parallelize the calculation of means, too, but we
should parallelize with a numerically stable formula rather than parallelizing
to compensate for the use of a bad one. Additionally, lists sorted by magnitude
will look somewhat better than lists in random order, but there are more
efficient ways to get a clean average of a set when this is not the case, falling
back to the naive algorithm for averaging, but using clever tricks to produce

an accurate sum.

9.2 Changes of Units

As we have seen from the Minecraft example and the example of trigonometric
functions, changes of units alone can be a way to avoid accumulation of error in
floating-point calculations. Whenever inexact constants are repeatedly used,
error from those constants has a tendency to accumulate. It is far better
to choose units in which common values and constants can be represented
exactly. The most classic example of a bad unit is using floating-point dollars
for financial calculations. Only four out of 100 possible values between $1.00
and $1.99 can be represented exactly in floating point. A far better unit for
financial calculations is to work in cents or in hundredths of cents. The same
logic goes for angles; using units of half-revolutions will make common angles
(like right angles) exact, while they are approximate in radians.

In video games and simulators, it is often an option to choose to use
weirder units rather than physical quantities. The player’s perspective of a
distance of one unit can vary a lot from game to game, from being a small
piece of a character to the size of a full room. However, representing things
like the player velocities and gravitational constants in terms of “units per
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frame” or “units per frame®” can cause small errors between the intent of the

designer and the implementation of the game. The use of units that allow exact
representation of common quantities allows you to start off from a baseline
that is as numerically clean as possible, and allow error to accumulate only
through rounding rather than contending with systematic errors.

Unit-related bugs don’t just occur in games like Minecraft. The United
States’ Patriot missile system uses a 24-bit representation of time, counted in
units of 0.1 seconds. When calculating the trajectories of incoming missiles
to intercept, the Patriot’s software used floating-point seconds as its unit of
time, calculated by multiplying its integer time counter by a single-precision
representation of 0.1. As we know, 0.1 cannot be exactly represented in floating
point, so the value they used was rounded down, causing all times in the
Patriot system to have a systematic error of approximately 0.0001%. This
was not normally a problem since these machines were frequently shut off
and redeployed, but as error accumulates over time, measurements of short
durations in the Patriot system become very inaccurate. This, in turn, caused
Patriot systems that had been deployed for a long time to lose track of fast-
moving targets. In February of 1991, a Patriot system that had been running
for 100 hours lost track of a Scud missile due to this time error and failed
to intercept it, causing 28 soldiers to lose their lives [25]. Working in units
of “meters per tenth of a second” instead of meters per second would have
avoided this issue.

In a different vein, the units used can also affect when overflow and un-
derflow happen. Half of all floating-point numbers have a magnitude less than
one, and half have a magnitude greater than one. If you have a system with
a very wide dynamic range, it can be more useful to set your units so that
numbers are usually around one, allowing the numbers to grow and shrink as
much as possible while avoiding underflow or overflow.

Being careful about units in general is a good idea in any form of numerical
software. Another famous numerical spacecraft accident, the Mars Climate
Orbiter crash, was related to bad use of units. The spacecraft was intended to
use metric units, but one contractor who supplied software for the spacecraft
used US customary units instead. With this unit discrepancy, the spacecraft
quickly fell out of its orbit and crashed [26]. This is not a numerics bug in
the traditional sense, but it underscores the importance of making sure your
units make sense and are used consistently through the entire system.

The need to track units adds programmer overhead, and this creates a
source of errors even when your math is correct and you use a memory-safe
programming language. Programming languages and library developers have
added add libraries that allow you to encode physical units as language types
so that unforced errors involving units will be harder to introduce [27].



110 Floating Point Numerics for Games and Simulations

9.3 Double-word Arithmetic

A conceptually simple way to get more precision is to widen the numeric
format you are using, but when you run out of fast numeric formats that are
available, double-word arithmetic offers an attractive speed-accuracy tradeoff.
Double-word arithmetic increases your precision by using two floating-point
numbers, a coarse number and a fine number, to represent one quantity. The
full value of the number is equal to the sum of the coarse and fine parts.
This allows you to get precision close to quad precision while still doing math
on double-precision numbers or precision close to double while using single-
precision arithmetic. A colloquial term to refer to double-word arithmetic with
double-precision operands is double-double arithmetic, referring to the fact
that two doubles are used for each quantity.

Double-double arithmetic offers 106 bits of precision, (p = 53 for double
precision, so 53 x 2), which is almost as precise as a quad-precision number.
However, the dynamic range does not change, and a significant chunk of the
number space has reduced precision. The exponent of the coarse value in the
pair carries the exponent of the number, so double-double numbers cannot
have larger magnitude than doubles. The exponent of the fine value is at most
p less than the exponent of the coarse value, so the minimum exponent where
double-double numbers have full precision is p higher than it is for doubles.
Below that, the fine value becomes a subnormal number, and the precision of
double-doubles degrades. However, there is no obligation that the fine part of
the number has exactly an exponent that is p less than the coarse exponent,
so it is possible to represent quantities like 14 27200 exactly in double-double
arithmetic.

There are a few libraries available that perform double-double arithmetic,
and can go up to quad-double arithmetic, offering 212 bits of precision. The
QD library provides basic operations and some transcendental functions in
double-double and quad-double arithmetic in C or C++ [28], and is the most
commonly used library for this form of arithmetic. These libraries back most
uses of double-word arithmetic.

Double-word arithmetic is built on top of a set of three operations that
create perfect two-output sums and products of floating-point numbers. These
operations are collectively referred to as augmented operations. There are
two operations, fast2sum and 2sum, which are used to perform augmented
sums of floating-point numbers. The fast version is used when it is known
which operand is larger, while the slower version can handle operands of un-
known order. The third operation performs an augmented product of two
floating-point numbers, and is called 2prod.

Algorithm 9.1 shows the fast two-output sum, which is done by adding the
numbers and then finding the error of that addition to put in the low part. All
of these operations are built out of round-to-nearest floating-point operations,
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which we make explicit in the following algorithms. Double-word arithmetic
algorithms are all about handling the error associated with rounding, so it is
worth a note to be explicit about exactly where rounding occurs.

Algorithm 9.1 Fast Two-output (Augmented) Sum “fast2sum”

Input: Double-precision a, b with |a| > |b]
Output: Double-double z = (zp, ;) equal to a + b

), + RIN(a + b)

t + RTN(zp, — a) > Find the error in the sum we just took
) « RTN(b — t)

return (z,x;)

The generic version of the 2sum algorithm, described in Algorithm 9.2,
does a few extra floating-point operations in order to avoid a branch. It is
possible to check for the larger number and then swap if needed, but that
is usually slower on processors than adding more arithmetic operations. The
computation starts the same as the fast algorithm, but we adjust the low term
to handle both |a| > |b] and |a| < |b].

Algorithm 9.2 Generic Two-output (Augmented) Sum “2sum”

Input: Double-precision a, b
Output: Double-double z = (zp, ;) equal to a + b

1. xp < RTN(a + b)

2: ty < RIN(zp, — @) > Find the error in the sum if @ > b
3: t; < RTN(zp, — tg) > Start delta error if b > a
4: g < RTN(b—t,) > Finish error if a > b
5: | <+ RTN(a — t;) > Finish error if b > a
6: x; < RTN(g + 1) > Final construction of x;
7. return (zp,1;)

The extended product is trivial with the FMA operation, first doing a
coarse product, then subtracting that coarse product from a x b to get the
error. The resulting algorithm is shown in Algorithm 9.3. The FMA operation
also rounds to nearest in this algorithm.

Algorithm 9.3 Two-output (Augmented) Product “2prod”

Input: Double-precision a, b
Output: Double-double z = (zp, ;) equal to a x b

1: xp, < RTN(a x b) > Get the coarse product
2: 1y + FMA(a, b, —xp) > Use FMA to get the tail as a x b — xy,
3: return (zp,x;)
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With these basic augmented operations, we can then start to construct
double-word operations. The recent version of the IEEE 754 specification in-
cludes versions of these operations that give better accuracy and have slightly
different rounding, but at the time of writing, no hardware vendor implements
these operations. It might therefore be more precise to not use the term “aug-
mented” to describe the 2sum and 2prod algorithms, but they fill the same
roles that these standardized augmented operations eventually will.

Building on top of our basic operations, the algorithm to take the product
of two double-word numbers is shown Algorithm 9.4, and the sum of double-
word numbers is shown in Algorithm 9.5. Both of these can be significantly
simplified when one operand is a singular double-precision number rather than
a double-double [29]. The general schema of both algorithms is to compute
the partial results that must be added together to produce the final result,
and then use the fast2sum algorithm to add each of these parts into the final
result. Both algorithms presented here are optimized, leaving out terms that
do not have a significant effect on the final output.

Algorithm 9.4 Double-double Product
Input: Double-double a = (ap, a;), b = (bp, b;)
Output: Double-double result p = (pn, p;) equal to a X b

1: (ep, ) « 2prod(ap, by) > Full high-high product for pj,
2: lgp < RTN(ap, X by) > High-low products for p;
3: lpg < RTN(a; X by,)

4: @ = RTN(lap + lpa) > Add up terms for p; into y
5. y < RIN(z + ¢;)

6: (pn,p1) + fast2sum(cp,y) > Add in the y error term
7: return (pp, p;)

Algorithm 9.5 Double-double Sum
Input: Double-double a = (ap,a;), b = (bp, by)
Output: Double-double result s = (s, s;) equal to a + b

1. (hp, hy) < 2sum(ap, by) > High-high sum
2: (Ip, 1)) < 2sum(ay, by) > Low-low sum
3: ¢ < RTN(h; + ) > Carry from high part of low sum to the result
4: (tp,t;) + fast2sum(hp,c)

5. d < RIN(l; + ;) > Carry from low part of low sum to the result
6: (sn,s1) < fast2sum(tp,d)

7: return (sp, s;)

While these are the basic algorithms for sums and products, other algo-
rithms, including division and transcendental functions, can be constructed
relatively efficiently in double-word arithmetic when compared to software
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emulation of a wider floating-point format. When you absolutely need more
precision, they are good default options. Note that the product of two double-
doubles only needs nine floating-point operations (with FMA being one), while
double-double sum needs 20 floating-point operations. All of these are branch-
free, so they “look” to a processor like normal arithmetic. They also handle
overflow and underflow correctly, but with the normal caveats on the reduced
dynamic range of double-double compared to double precision.

Double-word operations are traditionally used only when there are no hard-
ware operators otherwise available, but simulations on gaming GPUs may be
able to make use of them as well. Many gaming GPUs leave you with signifi-
cantly reduced double-precision calculation capabilities in comparison to their
single-precision capabilities, with recent GPUs offering 32 or 64 times fewer
double-precision FLOPS than single-precision FLOPS. If you happen to need
precision close to double precision but cannot pay the cost of double precision
on your GPU, using double-word arithmetic on single-precision numbers may
be a viable alternative, giving 48 bits of precision with each primitive taking
less than 32 single-precision floating-point operations.

Double-word algorithms all rely on the precise order of calculations, so
the use of double-word arithmetic limits your options for optimizing other
math. In particular, some compiler options (see Section 9.7) can cause these
algorithms to be completely optimized away since they may not preserve exact
ordering. In the course of the fast2sum operation, we perform the following
floating point operations to get x;:

b—((a+b) —a)= 1z

If our compiler thinks that floating-point math is associative, this expression
completely reduces to 0 = x;, which completely invalidates most of double-
word arithmetic.

Double-word Arithmetic in Sums of Sets

When we discussed calculation of averages earlier in the chapter, the simple
algorithm was to take a sum of the set of numbers. However, those sums risk
losing precision. If we add some extra precision to our running total as we
take the sum, we can avoid some of this loss by simply having more precision
that is available to lose.

An algorithm that makes use of a limited form of double-word arithmetic
to add extra precision to sums is Kahan’s summation algorithm, also known as
compensated summation. This is an algorithm for taking an accurate sum of
double-precision numbers using double-word arithmetic, although it was intro-
duced several decades before double-word arithmetic was a known technique.
This algorithm is not perfect, but it stands up to significantly larger numbers
of elements than a simpler running sum due to the increased precision of the
accumulator. The algorithm is given in Algorithm 9.6 [30].
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Algorithm 9.6 Compensated Summation

Input: List of doubles, X = {zo,z1,...xn}
Output: Double-precision s equal to the sum of all elements of X

s+ 0.0 > Initialize
c <+ 0.0
for z; € X do
Yy x+c > Add our compensation term to x;
(s,¢) « fast2sum(s,y) > Sum and get new compensation term
end for
return s

We keep the running rounding error of summation in ¢, and each time we
go to add a new number, we add ¢ to that number before doing a double-
double addition of that number and our final sum. Note that if our final sum
could be smaller in magnitude than y while requiring full precision, we may
need to replace fast2sum with the more generic 2sum in this algorithm. This
is what can happen if we get significant cancellation, in which case the use of
fast2sum in this algorithm can add some error compared to 2sum. In almost
every case, though, |s| > |¢| will hold.

This algorithm doubles the precision of the accumulator when we take the
sum of a list of floating-point numbers, but due to the wide dynamic range
of floating point, that is not enough to get a fully accurate and reproducible
sum. This algorithm, like all summation algorithms, can also overflow readily
since the dynamic range of our double-double accumulator is no different
than the dynamic range of x. This algorithm does mostly prevent error from
cancellation during the summation process, though, since the compensation
field will carry the tail bits if we do hit an instance of a large positive sum
adding a similarly large negative x;. Doing much better than this requires a
completely different approach to taking a sum.

The ultimate solution to the problem of summation of gigantic lists of
floating-point numbers involves binning the numbers in the set by magnitude,
and summing using accumulators in each bin, jumping up to the next bin
any time a bin’s sum gets too big. The most extreme version of this is to
use one accumulator for each exponent value, tracking over 2000 separate
accumulators for a double-precision sum. Compromise versions with hundreds
of accumulators spread over tens of bins work almost as well (the mapping
of bin to accumulator need not be one-to-one). At a cost of a significant
amount of complexity, memory, and speed, you can approach a correct sum of
a set of numbers. This type of algorithm is so expensive that it is rarely used
except when exact reproducibility of floating-point calculations is desired [31].
Unless your set is pathological, double-word arithmetic will deliver a correct
sum almost all the time.
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9.4 Interval Arithmetic

When you need to know exactly where a real-numbered quantity could be in
a floating-point calculation chain, interval arithmetic is the solution. Interval
arithmetic is precisely vague: it will not tell you exactly where a number is,
but it will tell you exactly where that number is not.

Like double-word arithmetic, interval arithmetic uses two floating-point
numbers to represent each quantity, but the meaning of these numbers is
different. For interval arithmetic, the pair of numbers instead represents the
minimum and maximum of a confidence interval. Operations in interval arith-
metic are performed so that the interval continues to represent the outer limits
of where that quantity might be. The lower end of the interval and the upper
end of the interval are moved independently based on the operation in ques-
tion. Intervals are generally constructed as closed intervals, with the exception
of zero which gets special treatment: An interval containing both zeros is a
closed interval at zero, while an interval containing only one of the zeros is an
open interval at zero.

For example, the sum of two numbers in interval arithmetic is the interval
between the sum of the lower ends of the interval and the sum of the upper
ends of the interval:

[2,3] 4+ [1,4] = [3,7]

Products of intervals can behave similarly, although negative numbers in in-
tervals can cause this to need a bit of care:

[—3,4] x [1,7] = [~21, 28]

The ceiling of the interval becomes the maximum of the products of endpoints
of the respective intervals, while the floor of the interval is the minimum of
the products of endpoints. Operations on pairs of intervals always produce
a wider result than the inputs, while operations that involve a constant (or
some unary operations) can make the interval narrower:

1+0.02 x [1,2] = [1.02,1.04]

Rounding modes for interval arithmetic also need to be set to handle the
“precisely vague” nature of interval arithmetic. The lower endpoint of the re-
sulting interval must be rounded down, and the upper endpoint of the resulting
interval must be rounded up:

[0.01,0.03] x [—0.4,3.0] = [RD(0.03 x —0.4),RU(0.03 x 3.0)]

This use of rounding modes keeps the contract that the real-valued result
must be within that interval, but there is a general tendency for intervals in
interval arithmetic to widen over a calculation chain, and rounding is one of
the fundamental mechanisms that makes that happen.
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Due to the need to switch rounding modes and the corner cases around
operations, interval arithmetic is slow. It is slower than double-word arith-
metic, which does not require rounding mode switching, and many operations
contain branching conditions that can cause CPUs to slow down significantly.
However, interval arithmetic can be helpful in testing and development envi-
ronments, where it can help to identify points where computations introduce
uncertainty into the final results of a calculation. Herbie, the numerical accu-
racy tool from Section 9.1, uses interval arithmetic internally for this purpose.

Interval arithmetic can also identify the ranges of calculations, allowing
you to do further optimization. When given a limited input space, many cal-
culations have a significantly restricted output space. This can work to your
advantage to simplify expressions, use narrower formats, or create approxi-
mations targeted to specific regions. Similarly, if you find that your output
space is wider than you expect, interval arithmetic helps you identify where
that happens and where you might need to insert a check for an infinity or a
NaN.

9.5 Error Analysis

Error analysis is the bread and butter of many parts of numerical analysis, and
it is an available tool for developers if needed, but is relatively mathematically
trick. There are two types of error analysis that answer the question “how bad
could my calculation possibly get?”

With y = f(x) as computed in floating point, forward error analysis looks
for Ay such that:

Ay =y — f(z)]

In other words, a forward error analysis looks at the error that could show up
in the calculation of y compared to the ideal f(z). In practice, this type of
analysis can be difficult to perform, and may also be somewhat meaningless
since you have to track the precision of f(x) itself to know if your forward
error is within acceptable bounds.

A simpler (in floating point) and more useful measure is given by a back-
ward error analysis, which looks for Az such that:

fle+Az)=y

In other words, we look at the implied error in the input that is given by
calculating y. We have seen the concepts of rounding and ULPs of precision,
so we perform a backward error analysis by backtracking those errors through
the calculation of f(x). This also allows us to compare Az to the precision we
know we have for x.
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We can perform a backward error analysis by treating rounding as though
it adds some error, €, to the calculation. That rounding error is equal to
half of a ULP for the basic operations. The transcendental functions from
Chapter 7 will have € determined by the accuracy of the math library used
(see Chapter 10). So, when f is a simple product, we get Az for each input
by:

fla,b)=(0+e)(axb)=a(l+e)]b=alb(l+¢)

Thus, the backwards error analysis of this product implies Aa = ea and
Ab = ¢eb. Since € is relative and equal to half a ULP, the implied error on
a is half a ULP. For a more complicated example, consider the difference of
square roots from Section 9.1:

fa)=Va+1-va

Adding an epsilon to propagate backward at each point of rounding;:

~(1+a) [1+e)VI+ea)e+D) - (1+ea)Ve]
Pushing down toward x:

~(l+tea)l+e)Vl+tea)e+l)—(1+ea)l+ea)
=1+e+e+ee)V/(I+e)(z+1)— (14€ + e+ er1e4)V

Since € values are small, we will drop the second-order terms €1¢e5 and €1¢4, as
well as dropping subsequent second-order terms:

y~ (14+e +e)vV/(1+e)(x+1)—(1+e +e)VT

If we want to think about error when z is large, we can use the simplifying
assumption that (z 4+ 1) ~ :

~(1+e+e)V(l+e)r— (14 € + eV
[1+61+62) (1+e3)— 1+61+64}f

:\/[(14—514—62)2(14—63) +(14+e+e)?2—2(1+2 +ea+€e4)V1ites|x

Simplifying the e terms while dropping all high-order terms:

y%\/(2+461+262+€3+264*2\/1+63)(E

Since €3 is small, we can even get rid of the radical, as /1 + & — 1 for small

&

~ \/(461 + 265 + €3+ 2€4)

We can now see the problem. There is no factor of x left that determines !
Rethinking this in terms of f(x + Ax), we can see that Ax ~ —z. To first
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order, x doesn’t matter in terms of producing a result. This mathematically
confirms what we saw in Figure 9.1.
After we do the algebra from Section 9.1, noting that f(z) in real terms
. _ 1 .
can also be written as f(z) = JaTiros our error analysis looks somewhat
different:

1+4¢€
(1+€2) [(1+63) (1+e4)(x+1)+(1+65)\/5}
1+€1
(I4+e)[(14+e)vVIT+es+1+es|a
].-|—€1
(I1+e)(2+es+es)Vo
N 1+e¢
- (2+2€2+€3+65)\/5
1

(2+2€e2+e3+es)? T
(1+€1)2

~
~

~
~

We get the expression in the radical to find Az:

(2+2€2+€3+65)2CL‘N 4+4€2+2€3+2€5x
(1+e)2 - 14 2¢

This expression is approximating 4z, since vx + 1 + /= = 24/r under our
large  assumption.

Expanding, we will find that the difference between 4 and the expression
of € here is a function of € and is not large, and we can also note that none of
the € values here will be small. All five of the operations here will give half a
ULP of error, since the addition has two values of the same order of magnitude
and all of the other expressions are multiplicative or exact unary operations
(square roots). The only epsilon value that threatens to be large is €4, which
is a second-order piece of error either way. For double precision, € = £2753,
so our outer bound on x, which gives Ax, comes from dividing the previous
expression by four and plugging in the worst-case values of e:

443 %2752 "

This gives our implied error in x from performing this calculation. In a sense,
we are adding 2 ULPs of error to our input by performing this calculation or
removing two bits from the precision of the input.

Error analysis of this form is essentially a manual application of a symbolic
form of interval arithmetic. The algebra can get tricky, but it is possible, using

simplifying assumptions, to get a reasonable first-order idea of what your error
would be from a set of calculations.
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9.6 Avoiding Invalid Operations

When working with floating point, it is natural to think about small errors,
but accidental invalid operations are one of the more spectacular and visible
ways that floating-point calculations can return a result that you would prefer
not to see. In many ways, returning a NaN when you shouldn’t is the ultimate
numerical inaccuracy.

Getting a NaN out of a calculation that shouldn’t produce one is usually
a two-step process:

1. Do a numerical operation that yields either a zero or an infinity (or
in some cases, a negative number).

2. Pass that result into a calculation that can’t accept it.

Looking through the tables of special cases in Chapters 4-7 and referring back
to Table 3.1, it is easy to see how this pattern arises. The first step here is often
the result of an overflow or underflow, although it can be a valid result. The
next step is what turns that result into a problem. Once you have that NaN,
though, it will propagate through the rest of your calculations with very few
exceptions. Specifically, of the operations mentioned in the previous chapters,
only the pow family of functions and the minimum/maximumNumber functions
can swallow a NaN.

Many of the techniques discussed in this chapter can help avoid invalid op-
erations, but it is often up to you to figure out where these could occur. Interval
arithmetic can play a role here, showing you exactly when an interval can pro-
duce an infinity or an otherwise unexpected value, if you know the corners of
the input of your calculation. This can reveal things like asin(z) returning a
value greater than 7 (remember that irrational numbers get rounded) or other
similar arithmetic issues. However, many cases of this sort of issue show up
when numbers exceed the expected range.

Speed and safety have a natural tension in software. Checking bounds at
each numerical operation is often prohibitively expensive. However, a natural
place to put your bounds checks is at the borders of calculations. Checking
that the inputs are in an expected range or checking for problems at the
outputs allow you to centralize handling. NaN propagation is not necessarily
a problem within a floating-point calculation, but becomes a problem any time
you try to do anything with the result.

An fun recent example of this sort of overflow comes to us from the video
game Balatro. Balatro uses double-precision numbers for its scores, but it has
a scoring system that is replete with multipliers such that the user can, with
some difficulty, even overflow the double-precision score. The game displays
animations whose size and position is relative to the player’s score, and these
animations glitch and overflow past their boundaries in the user interface when
player’s the score overflows to infinity.
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9.7 Fast Math Compiler Options

When you do not need precision, compilers have a number of optimizations
that they can do that cause error but make your math faster. What is included
in these fast math settings depends on a balance of speed and accuracy, so they
can be nebulously defined. An “acceptable” optimization in one compiler may
be unacceptable in another compiler or language. Note that these optimization
options are usually disabled unless you request them, even when you set the
compiler to heavily optimize your code, because they change the semantics of
your code.

Many compilers follow the GNU C compiler in terms of what is an accept-
able transformation for fast math. The settings that the GCC turns on are
the following [32]:

e —-fno-math-errno disables reporting of floating-point exceptions in the C
errno field. This is specific to C and C++.

e —ffinite-math-only causes the compiler to assume that numbers are al-
ways finite, and neither infinity nor NaN. This removes a lot of special-case
checks in math libraries.

e —fno-rounding-math allows the compiler to assume that rounding modes
will not change throughout the program, allowing it to do things like con-
stant folding.

e —fno-signaling-nans disables handling of sNaN.

e -fexcess-precision=fast allows the compiler to move your calculations
to a wider floating-point format if that will make them faster. The added
spurious widening and narrowing of the number format can cause extra
rounding.

e —fcx-limited-range simplifies division of complex numbers.

e —funsafe-math-optimizations enables several optimizations that are both
fun and safe. This flag is a combination of several unsafe options in itself:

— -fno-signed-zeros disables the use and special handling of negative
zero. You can still sometimes get negative zeros in this mode, but op-
erators treat them identically to positive zero.

— -fno-trapping-math disables trapping on floating-point exceptions
(even the bad ones).

— -fassociative-math causes the compiler to assume that floating-point
math is associative, enabling the compiler to do algebra as though the
numbers in question were real numbers (i.e., everything discussed in
Section 4.6 is now in the compiler’s hands).
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— —freciprocal-math allows the compiler to compute and use the recip-
rocal of a value instead of using division.

Some of these flags are usually appropriate in numerical code, but not
always all of them. The flags that specify error handling behavior are often
usable in optimized code, where you might prefer to ignore floating-point er-
rors to begin with. Most programs do not change their rounding mode from the
defaults, so ~-fno-rounding-math can usually be safe. Finally, signaling NaNs
are designed to be injected by software and won’t be produced by floating-
point functions, so if you do not plan to inject any, -fno-signaling-nans
can be a small performance boost at no cost. Many of the remaining flags in
this list either explicitly trade off accuracy, such as the flags for associative
math and reciprocals, or restrict the range of usable floating-point values to
make computations faster.

At the time of writing, the Clang compiler goes further than GCC in terms
of fast math options, also adding an option (-fapprox-func) that allows
the compiler to insert inaccurate approximations for the functions found in
Chapter 7. These approximations are often rough versions that are off by
several ULPs compared to the implementations in the standard math library.
In both cases, the compilers will also not be shy about fusing an addition
and a multiplication into an FMA operation, but this is the default compiler
behavior unless it is explicitly disabled via the -ffp-contract flag.

If you do plan to use these flags, it is preferable to also use a flag to set
the target machine architecture, because the performance of some of these
optimizations is worse on more recent architectures than the unoptimized
code. For example, the performance of division in floating point units has
been improving rapidly, so there are many places in which a CPU from 2024 or
later would prefer to do a floating-point division while a CPU from 2014 would
benefit from math on a reciprocal. Compilers will also sometimes not compute
this reciprocal to full machine precision, leaving you with an inaccurate result
that is also slower than the “unoptimized” code. Fast math compiler options
compromise correctness, so make sure that tradeoff is worth it!

Additionally, there are a few processor settings that can be enabled to
balance performance and accuracy at the hardware level. These flags mostly
control behavior around subnormal numbers. Since older hardware will call
microcode to deal with subnormal numbers, and this behavior is slow, many
processors have a setting that allows you to have the processor treat sub-
normal numbers as zero, and to flush any subnormal outputs of functions to
zero. These settings are often called denorms are zero for instructions to
treat subnormal inputs as zero and flush to zero to flush subnormal outputs
to zero. These options help to prevent non-determinism in machine instruc-
tions and keep your code away from slow fallback paths in software. However,
hardware has gotten a lot better at handling subnormal numbers.

If you have the time to work out your code’s performance, it is often better
to avoid instability by just doing the relevant optimizations for yourself and
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avoiding the compiler’s meddling. Options that allow aggressive optimization
will compromise everything they touch from a numerical perspective, when
you would likely prefer to be a bit more surgical. In calculations for which
you would turn on the fast math optimizations, you can often accept far more
error than fast math will give you, and if you can use the techniques discussed
in later chapters to make the speed-error tradeoff for yourself, you will do
significantly better than the compiler while being explicit about how much
error you decide to accept. Of course, this comes at the cost of mental effort,
which also must be balanced in the equation.

Compiler Settings for Fast, Safe Math

Most of the code you write in a simulator or game will be executing a lot, so
it helps to allow your compiler some flexibility to optimize your mathematical
code in your production builds without going quite as far as the full fast math
setting. The settings listed below are recommended to give your compiler
maximum flexibility without compromising your math too significantly.

e —-fno-signaling-nans and avoid using signaling NaNs.

e —-fno-trapping-math and -fno-math-errno to disable anything but ex-
plicit error and exception handling in your optimized builds.

e —-fno-rounding-math in the 99% of cases that do not change rounding
modes (this is actually a compiler default).

Options like the components of -funsafe-math-optimizations and
-fexcess-precision=fast can have significant numerical effects. The as-
sociative math flag in particular is known to be a numerical bugbear that
changes your math significantly. On the other side, ~-fno-signed-zeros is a
candidate for this list if you aren’t going to be relying much on the behavior
of % or similar operations that need the information given by a signed zero.

Check Your Understanding

Problem 9.1. Find the most accurate form of the quadratic formula when
you assume a, b, and c are all positive and of similar magnitude < 2°9.

Problem 9.2. Simplify Algorithm 9.4 to take the product of a double-double
number and a double-precision number.

Problem 9.3. Heron’s rule finds the area of a triangle from its side lengths.
Using a triangle of side lengths a, b, and ¢, Heron’s rule tells us that the area

of the triangle is:
A=/s(s—a)(s—b)(s—c)
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where s is half the perimeter:

a+b+c
2

Perform a backward error analysis of Heron’s rule in a (b and ¢ are symmetric).
What is the backwards error with a relatively large (up to a = b+ ¢)? What
is the backwards error with a relatively small (b~ ¢)?

Problem 9.4. Return to problem 4.3 with Algorithm 9.6. How much more
accurate is the result?

Problem 9.5. Devise a floating-point calculation that varies by more than
1% between a program compiled without fast math and a program compiled
with fast math turned on.

Problem 9.6. Come up with an algorithm for accurately computing the
volume-weighted average price of a stock over a month. The volume-weighted
average price is given by:
VWAP = i
D8
where s; is the number of shares traded on each trade, and p; is the price of
that trade. Over a month, an expected number of 100 million shares trade
hands in popular stock symbols on the US stock exchanges, and each trade
averages about 100 shares at a price between $5.00 and $500.00.
Bonus: Redesign your calculation for any popular cryptocurrency and
check the accuracy of an online source.

Problem 9.7. Extend the compensated summation algorithm (Algo-
rithm 9.6) to use a quad-double sum instead of a double-double sum. Find a
list of numbers that causes Algorithm 9.6 to have significant error while your
extended-precision version is correct. Find a list of numbers on which your
extended-precision version still fails.
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Function Approximation

Function approximation, for many users of math libraries, is like assembly
language. Understanding how it works helps you make intelligent decisions
at a higher level, although you will rarely write your own math libraries. As
discussed before, many platforms use their own math libraries, and this can
introduce subtle errors between platforms. The available math libraries are
often engineered to balance speed and precision for a given platform, language
design philosophy, and application space.

On one end of the spectrum, it is possible to construct very precise approx-
imations that are within half an ULP of the real-valued version of a function
even when using tens of floating point operations to do it. On the other side,
it is also possible to produce very fast approximations with relatively few bits
of accuracy. The former is usually left to math libraries for common functions,
but if you leave this up to dynamic linking, you may be faced with libraries of
varying quality. That can mean that calculations are not repeatable between
machines, and some operating systems and platforms may deliver undesir-
able results. The latter is generally the domain of custom handwritten math
libraries.

For this reason, it is useful to understand and appreciate function approx-
imation and the tradeoffs that you can make when selecting math libraries,
and if you find yourself spending a lot of computer time on one single function,
there is usually a nice spot on the speed—accuracy tradeoff curve that you can
find with a bit of human time.

10.1 Accuracy of Approximations

We can look at accuracy of approximations using a number of different metrics.
Generally, functions are approximated over a range of values of interest. Over
that range, the most common measure of accuracy to optimize is the maximum
error of the function over that range. Expressed mathematically, the error of
an approximation f(z) against f(z) is computed as:

Eninimae = max |f(x) — f(2)|
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By minimizing this measure of error, we are minimizing the maximum error,
giving this form of problem its name: A “minimax” problem. Our goal is
to minimize the maximum error. This metric does not care about average
error, only the error at the specific point(s) where it reaches its worst value.
This is also referred to as the £°° norm in mathematical contexts. Minimax
error is often the default objective function when you intend to produce an
approximation that is very close to your target function. For this reason,
several methods require the use of minimax error [24].

It is also possible to consider the root-mean-squared error (RMS error, also
£? norm), although this is not common for function approximations:

B

Erms = / [f(x) - f(x)}2 dx

(e

where @ and S are the bounds of the range of interest. Root-mean-squared
error penalizes your function for being slightly wrong at certain points, with
increasing penalty for large errors. Unlike minimax error, the RMS error metric
does pay attention to every point on the function, but it is often harder to
work with when doing function approximations, since you have to deal with
the integral in the square root.

For approximations that cover a widely varying range, it can be more
helpful to consider the accuracy of the approximation relative to the value of
the function. An absolute error of 0.1 has a very different meaning when a
function’s value is 0.0001 than it does when a function’s value is 100. Relative
accuracy is often measured in bits:

Applying this formula, a function whose value is 100 with absolute error of
0.1 is accurate to 9.96 bits. In many cases, this metric of accuracy lines up
better with the idea of floating point than metrics of absolute error, although
approximations that operate only on the mantissa bits of a number can gen-
eralize well to a wide range when constructed using minimax error. However,
this metric of accuracy can give useless numbers when f(z) is near zero if you
really care about absolute error, as even a small absolute error in that range
results in a large relative error. It is also possible to remove the log from the
accuracy format and measure accuracy as a fraction or percentage of error.
An additional wrinkle to deal with in floating point is that your number
space is not continuous. Some baseline error that comes from using a float-
ing point number system, related to the quantization of the number space.
This quantization can also cause some additional approximation error, since
constants and coefficients also have to be rounded to fit into floating-point
numbers, and each internal partial result is also rounded. For this reason, the

f(z) = f(x)
)

Ap = —max <log2 %
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optimal coefficients for a floating-point approximation are often subtly differ-
ent than the optimal coefficients for an approximation using the real numbers.
A function that is accurate to the full width of a floating-point format and
rounded to the right value for a given rounding mode is called a “correctly
rounded” function. Correctly rounded functions return the same result as if
you had computed the function at infinite precision and then converted to
floating point at the end, and have an error of half a ULP using default
rounding. A weaker term, “faithful rounding” refers to functions that produce
a correct result within one ULP. Many math libraries stop at faithful rounding,
but recent advances are making correctly rounded math libraries possible.

10.2 Polynomial Approximations

We have a few basic arithmetic operations that are capable of computing poly-
nomials, but cannot compute transcendental functions like exp(z) or sin(z)
directly. A logical solution to this problem is to construct a polynomial that
approximates a target transcendental function.

Polynomial approximations of transcendental functions have been studied
since the Taylor series. A Taylor series is often a poor approximation, because
it is defined by the behavior of a function only at a specific point (z = 0 in
this example):

fx) = f(0) + £'(0)x

f// 0)z f/// f(n
0 O Z

Going to order infinity, the Taylor series of f perfectly matches f, but essen-
tially categorizes its behavior based on its curvature around one point.

If you cut off the Taylor series at the nth coefficient, you get a polynomial
that approximates a function f with error of order n. However, the order of
the error says nothing about the constant on that error, and Taylor series
are prone to diverge for functions that are infinitely differentiable. Notably,
most functions of interest to approximate are infinitely differentiable. At the
exact chosen point, the Taylor series is a phenomenal approximation, but as
we move away from it, the approximation gets worse. Ideally, we would like
our approximation to have roughly equal error in a region of interest rather
than error that grows as we move away from a point. As an example, the
Taylor series of % about x =1 is shown in Figure 10.1.

The Taylor series is an alternative way to express a function that gives
you a polynomial representation. In mathematical terms, the Taylor series
expansion is actually a change of basis for a function (a basis is a representation
space, and a change of basis is akin to a generalization of the idea of a change
of coordinates). Another change of basis for a function that you might be
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FIGURE 10.1

Even-order Taylor series from order 2 to order 10 of % about z = 1, plotted in
the region between 1 and 2 against the actual function (in black). Although
higher-order approximations stay near % for longer, they all blow up as x — 2,
with higher-order approximations blowing up faster.

familiar with is the Fourier series:

fl@)=ao+ Z ay cos(nz) + Z by sin(nx)

n=1 n=1

For a Fourier series, we don’t think of the function in terms of powers of x
any more, but in terms of waves of cos(nz) and sin(nz). Like a Taylor series,
a Fourier series can break down a function into different constituent parts.
A Taylor series breaks down a function by its curvature, and a Fourier series
breaks down a function based on its oscillatory components. The Fourier series
is also relatively useless for approximation, both because it needs a high order
to closely approximate a function, and also because it requires a trigonometric
function to compute.

However, a less-known relative of the Fourier series is very useful for numer-
ical approximations, namely the Chebyshev series, which is built on win-
dowed polynomials first described by Russian mathematician Pafnuty Cheby-
shev. Before going on to describe them mathematically, a plot of the first
6 Chebyshev polynomials is shown in Figure 10.2. In the region [—1,1], the
Chebyshev polynomial of order n crosses zero n times, and touches either
y=1ory = —1a total of (n + 1) times. In other words, the Chebyshev
polynomials are a generic type of minimax polynomial in this region. They
are also the polynomials with the highest leading coefficient that stay in this
region, and they have a number of other very neat mathematical properties.
All of this leads to the fact that the Chebyshev polynomials in the region
[—1,1] are another way to decompose a function in that region [33].

Mathematically, the Chebyshev polynomials are solutions to the equation:

T, (cos(0)) = cos(nh)
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FIGURE 10.2
Plot of Chebyshev polynomials of order 0-5. Each polynomial crosses y = 0
a number of times equal to its order, and touches either y =1 or y = —1 a

number of times equal to its order plus one.

Or they can be expressed by the recursion:

To(l')
Ty ()
Tn-&-l(x)

1
22Ty () — Th—1(x)

In turn, an function in the region [—1, 1] can be expressed as a sum of Cheby-
shev polynomials, with coefficients computed similarly to Fourier series coef-
ficients:

f@) = $eoTo(x) + > cnT(2)
n=0

For completeness, it is possible to calculate the ¢,, terms by doing a Chebyshev
transform directly using the following integral:

_g f(-r)Tn(x) -
o= /md

™
-1

Chebyshev approximations of functions are rarely computed this way, however,
as this is usually harder than other methods. Still, this formula can be useful
for high-order approximations, where other approaches become more difficult.

The method of Chebyshev approximation expands to arbitrary regions
by mapping the target region into the region [—1,1]. When the Chebyshev
series of f is cut off, you get a polynomial approximation of f that is ex-
actly equal to f at the zeros of that Chebyshev polynomial. For this reason,
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the zeros of the Chebyshev polynomial when mapped into a region are often
called “Chebyshev points” or “Chebyshev nodes”, and we actually calculate
Chebyshev approximations by solving an equation.

In the region [—1, 1], the zeros of the Chebyshev polynomial (Chebyshev
zeros) of order n can be found at:

k-1
mk:cos(Qw) (k=1,2,...,n)
n

The extrema of the Chebyshev polynomials are also called “Chebyshev nodes”
sometimes, but we will refer to them as Chebyshev extrema. They are at
the x values:

) = COS (iﬂ) (k=0,1,2,...,n) (10.1)

We can get a good order-N approximation of a function by solving for
a polynomial where f equals that polynomial at the Chebyshev zeros. In
equation form, we can create a polynomial approximation of f by solving for
the a’s in the system of equations given by:

N 1

ki 72
f _—E n" f = s wh k—_|21V+l
(.’I;k) a xk or Ii COS( n ) €1 ( )<y ) )

n=0

This polynomial will be equal to the polynomial gathered by computing a
Chebyshev series and truncating due to another fascinating property of the
Chebyshev polynomials: The sum of all Chebyshev polynomials of degree
greater than n is 0 at the Chebyshev zeros of order n, so a Chebyshev approx-
imation to order (n — 1) is exact at those values of .

As an example of this process, we will construct a third-order approxima-
tion for sin(z). We will begin by constraining the window. As we can see from
Figure 10.3, we only need to approximate the region [0, %], since sine is peri-
odic, and that period is constructed out of four windows that are symmetric
to the behavior in this region, so we can extend our approximation to work
for any input with only a quarter of a period. We first map the Chebyshev
zeros from the region [—1,1] to the region [0, Z]:

k-1
Tk = — {cos ( 2 77) + 1} = {1.51101, 1.08596, 0.484839, 0.0597849 }
n

Then we solve:

sin(1.51101) = ag + a1 (1.51101) 4 a2(1.51101) + a3(1.51101)3
sin(1.08596) = ag + a1 (1.08596) + a2(1.08596)2 + a3(1.08596)3
sin(0.484839) = ap + a;(0.484839) + a5(0.484839)? + a3(0.484839)3
sin(0.0597849) = ag + a;(0.0597849) + a2(0.0597849)? + a3(0.0597849)>
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FIGURE 10.3
Plot of one full period of sin(x) showing the windows in which the function
is symmetric. Every gray box has the same curvature, but is flipped in the x
and y directions.

The resulting equation is:
sin(z) ~ —0.00113088 4 1.0227z — 0.0664781z% — 0.1142632>

Graphically, this generates an approximation that is shown in Figure 10.4,
which is a lot closer than the Taylor series. Unlike the Taylor series, Chebyshev
approximations do not have divergence problems.

However, while a Chebyshev approximation will be close to minimax er-
ror, the error is somewhat imbalanced throughout the window. Looking at
Figure 10.4 again, we can see that the error is larger when f(z) is larger. This
is a non-optimality of Chebyshev approximations, but if we want to balance
the error to truly minimize the minimax error, we need another trick.
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FIGURE 104

Left: Third order Chebyshev approximation of sin(x) (black dashed line) com-
pared against the function (gray). The approximation lines up nearly perfectly.
Right: Error of the approximation.
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That trick is the Remez exchange algorithm. The first step of the Remez
algorithm is similar to the construction of a Chebyshev approximation, but
adds an extra variable to the system of equations to solve representing an
alternating error term, F, and solves that system at the Chebyshev extrema
rather than at the Chebyshev zeros. In other words, instead of solving for the
places where the approximation is exactly equal to the function, we try to
solve for the locations of maximum error. This makes intuitive sense given
that we care more about maximum error than exactness [34].

Starting with the set of xj given by Equation 10.1, we solve the system:

N
flee) =Y anay + (-1)*E (k=0,1,...,N+1) (10.2)
n=0

Solving at the extrema means that we use N + 2 equations to solve for an
approximation of order N, but we also simultaneously solve for a minimax
error at each Chebyshev extremum. The effect of this is that we balance the
error at the Chebyshev extrema, but in exchange for that guarantee, this initial
approximation has no guarantee that the Chebyshev extrema will be the local
maxima of the error. Remez’s insight is that we can refine our approximation
by doing the following:

Find the actual local maxima of error in our approximation.
Replace the set of z; with the x values of the local maxima.

Solve the system of equations given in Equation 10.2 again to get
new a,, and E.

4. Repeat from (1) until convergence.

For sin(z) at third order, the resulting equation (converging in double precision
after only one round) is:

sin(z) ~ —0.00135867 + 1.02523z — 0.07069712> — 0.1124912

A comparison of error for our Remez approximation against the Chebyshev
approximation from before can be found in Figure 10.5. The error from the
Remez approximation is larger early in the range, but is smaller later. By
balancing error, the maximum error is reduced compared to the unbalanced
Chebyshev approximation. However, if we are interested in a different metric
of accuracy than minimax error, a Remez approximation may be suboptimal.

The Chebyshev and Remez approximations are a starting point for many
polynomial approximations used today. Like we saw with reciprocal, sine, and
square root, most functions have a small window in which we need to actually
approximate, due to periodicity and exponent-related algebra. However, trans-
lating from infinite-precision coefficients to coefficients that work in floating
point is a separate undertaking. All of the coefficients from Chebyshev and
Remez approximations are heavily interrelated, and so an accurate quantiza-
tion cannot consider them separately. A proper quantization needs to consider
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FIGURE 10.5
Error of Remez (black) and Chebyshev (gray) approximations of sin(x). The
Remez error is more balanced across the domain.

that when one coefficient is rounded up, another coefficient will likely need to
be rounded down to compensate.

Floating-Point Aware Polynomial Approximation

A simplistic approach to quantizing the coefficients of a polynomial approxi-
mation is to look at the space of all floating point numbers near each coefficient
and pick the combination that is the most accurate. This can mean considering
a few hundred or a few thousand possibilities.

More recently, numerical analysts have started to work directly with the
bits of floating-point numbers instead of producing floating point approxi-
mations by computing in infinite precision and then quantizing. The naive
approach of quantizing coefficients separately can end up rounding several
coefficients in the same direction, which introduces error into an approxima-
tion. Similarly, the optimal approximation when coefficients are quantized and
rounding occurs between operations can be far enough from the Remez coeffi-
cients that you will not be able to find them by simply rounding each Remez
coefficient in both directions and seeing which ones are the best [35].

Two types of solvers are used for these approximations, either lin-
ear programming (LP) solvers, which can solve generic linear optimiza-
tion problems in a quantized number space (with great effort), or solvers
based on integer relation algorithms. Integer relation algorithms, such as the
Lenstra—Lenstra—Lovasz (LLL) lattice basis reduction algorithm, find “nice”
quantizations for sets of real numbers while maintaining a relation between
them. This class of algorithms is not NP-hard. In the linear programming
approach, the solver is given a bit more freedom at a cost of compute and
algorithm complexity, while the LLL approach quantizes something that has
been pre-made.

Tools like sollya allow you to use these algorithms without having to
program them. Sollya’s fpminimax computes polynomial approximations by
starting with Remez, and then quantizing coefficients with LLL. This method
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allows the creation of coefficient sets that give precise results without doing
too many extended-precision operations that cost efficiency [36]. This takes
the guesswork out of quantization.

There are several LP solvers that can be programmed to work on floating
point numbers with great difficulty. As a practical matter, some solvers are
also better at certain problems than other solvers, and this means that it is
tougher to take a generic approach to solver-based quantizations.

Given the problem of approximating a function today, the following ap-
proach is suggested:

1. Range Restriction: Look for periodic behavior or fractal behavior
in a function or in parts of a function to find the smallest possible
range under which function evaluations can be restricted.

2. Approximation: Use a tool like sollya to construct a minimax
approximation of the restricted function on that range.

3. Function Wrapping: Handle special cases, including invalid cases
and infinities, as needed, using separate logic in a wrapper function
around the range-restricted approximant.

10.3 Newton-Raphson and Iterative Methods

Functional iteration methods are a complement to polynomial approximations.
In general, a functional iteration method takes a “guess” x( that is close
to some target, and refines it into a better guess using a crafted iteration
function. Successive uses of an iterative method will converge toward a correct
result, often quickly. As we saw in Section 4.2, some functions that are hard to
evaluate can be reformulated as refinement iterations that are easy to compute.

Newton-Raphson iteration (also called Newton’s method) is the basic
form of this. Theoretically, Newton-Raphson finds zeros of a function f based
on an initial guess, xo. We then refine that guess by walking down the slope

of f:

f(xi)
f'(@s)
When we reach a value of z for which f(xz) = 0, we stop there automatically,
but until we get there, we step toward the nearest zero of f. In itself, this is
not necessarily useful unless we can craft f so that its zeros are meaningful,
and start with xg close enough to that zero that we have a chance to find it.
For example, to compute %, we can choose:

Tit1 = Tj —



134 Floating Point Numerics for Games and Simulations

This function only reaches zero at x = %. The Newton-Raphson iteration is

then:
1_p
Ti 2
Tit1 = Tj — ——7 =z, +z; — Dx; :xi(2—Dazi)
3

3

This form of iteration allows us to turn a reciprocal calculation into a sequence
of steps where each step needs a multiplication and an FMA.

A famous example of Newton’s method is the Babylonian square root,
which turns a square root into an iterative algorithm of the four basic arith-

metic operations, using f(z) = 2% — a:

mf—A T; A 1 n A
Tit1 = T — =z;— | = — == |z + —
T o, ‘ 2 27 2\

However, Newton’s method is most often useful for reciprocals and reciprocal
roots, and the function f(z) must be carefully chosen to avoid divergence and
oscillation. Calculation of square root by Newton-Raphson usually involves
calculating inverse square root and then multiplying it by the original number.

A typical example of divergence of Newton’s method, although an imprac-
tical one, is f(z) = ¥/z. This function obviously has a zero only at = = 0, but
the Newton-Raphson iteration looks like:

€.

R 2
1..—2/3
3%;

Titl = Xi — =z — 3x; = =215

If you start iterating, even arbitrarily close to = 0, this iteration will diverge.
This is a pathological example, but it illustrates that the choice of f must be
deliberate to get good results. A final issue that limits the effectiveness of this
method is that we often need to compute transcendental functions to use it.
For example, we can attempt to apply Newton’s method to compute natural
logarithms by calculating with f(x) = exp(z) — A:

exp(z;) — A A
Litl =i — — ——F—~ = Ti —
exp(z;) exp(x;)

This function should converge to z = In(a), but we need to compute exp(z;)
to get there, and that takes as much computing power as computing the log
directly for each iteration. We will only be able to compute In(x) this way if
we are willing to wait, and an approximation of exp(z;) will not work. You
may have noticed that we have chosen f so that there is always only one
zero of the function and that the arithmetic cancels nicely. That is not an
accident—that is by design—and to use Newton-Raphson, you have to design
things similarly.

When Newton-Raphson does work, however, it works fast. When it con-
verges, Newton-Raphson has quadratic convergence, meaning that it squares
the error at each step. This practically means converging at an exponential
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rate, doubling the number of correct bits in your result at each iteration. To
show the convergence speed, we can consider the error term for step ¢ for some
f(z) that has a zero at z = &:

€it1 = Tit1 — &
We can abbreviate the Newton-Raphson iteration to g:

Tiy1 = g(x;) = ;i — ){,((ﬁ_))

Since we know that Newton-Raphson is stationary at « = £, we can say that:
Tit1 — &= g(z;) — 9(§)

We can take a Taylor series expansion of g about &, stopping with a second-
order remainder (Rs):

Tit1 —&=9g(&) + g (&) (w: — &) + Rz — g(§)

Taylor’s theorem indicates that there is a constant ¢ for which Ry = ¢(z; — &)

g1 — €= g(€) + g/ () (xi — &) + c(zi — €)* — g(¢)

We can also expand the derivative of g, which cancels nicely:

L PR S @) f@) @)
9@ =1 GRS ACE

That means that since f(§) = 0, ¢’'(§) = 0. This should not be surprising given
that the iteration is stationary at x = £. So with the g(§) terms canceling,
and the ¢’(£) term going to zero, we are left with:

Tiy1 — & = c(z; — §)°

2
€i+1 = C€;

Within a constant factor, we square our error at each iteration. That constant
is usually 1 for the useful Newton-Raphson methods.

However, Newton-Raphson iterations can still be affected by rounding and
quantization error, which can cause iterative approximations to reach an accu-
racy floor before getting to the level of being correctly rounded [37]. Consider
the division iteration:

Tit1 = .Ti(2 — Dxl)

Generally, when we have a good guess at z; = %, Dx; will be very close to
1, meaning that 2 — Dx; will also be very close to 1. That means an effective
loss of precision for this part of the calculation since the implied bit of the
significand is far away from the bits where the action is, leading to a number
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of leading zeros in the mantissa. A much more precise number is the error of
Dzx;, which is very close to 0:

EZ:].—Dxl

That means that we can likely get a better approximation by first computing
the error, and then using an FMA operation to update z;:

Tip1 = T + Eiw;

Instead of using an FMA to get an imprecise 2 — Dx; and multiplying it by
x; (where both operations are nearly guaranteed to be inexact), we can use a
pair of FMAs to keep more bits of precision through the calculation. This is
another example of doing algebra to keep calculations precise.

There are higher-order methods with faster convergence than Newton-
Raphson, but they are rarely used in practice. Halley’s method (the same
Halley as the comet) is the second-order version of Newton-Raphson, which
has cubic convergence, tripling the number of correct bits at each iteration:

3 2f () f' (21)
2f"(xi)? — f(xa) f" (21)

This iteration is much more complicated than the Newton-Raphson iteration
step and will usually take more operations unless f is very carefully chosen,
but if you can find a way to make the hard parts cancel out, it will converge
quickly.

Newton-Raphson and its higher-order variants have one final advantage
in that they self-correct for quantization error. Quantization can result in a
Newton-Raphson iteration being slightly larger or slightly smaller than ex-
pected, but when that occurs, the next iteration takes the actual value com-
puted at the previous round into account. In that sense, there is no translation
problem for Newton-Raphson methods when moving from a method made in
the land of the real numbers to a method made in floating point as long as
any constants in the iteration can be represented exactly.

Newton-Raphson takes some care to deploy, and in the context of function
approximation, that usually means crafting a very simple function that nicely
cancels out transcendental parts of function calculations or other “hard” parts.
However, when it is able to be deployed, it can converge to very accurate
results quickly, with the only limits on its accuracy coming from the precision
of the arithmetic used to compute the iteration. Polynomial approximations
can take a long time to compute to reach a correctly rounded result, while a
combination of a Remez approximation for an initial guess with a well-designed
Newton-Raphson iteration can get there more efficiently. The hardest part is
finding the iteration algorithm.

Tit1 = L4
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10.4 Lookup Tables and Interpolation

A tempting alternative to function approximation is to use lookup tables
(LUTs). However, it is usually not the fastest solution for a given accuracy
level unless you have hardware that is built to support your lookup table ap-
proach (e.g., on a GPU) or construct your lookup table with some intelligence.
Some situations exist where you have a function with a limited input space, ex-
treme nonlinearities, and a difficult computation path. In these circumstances,
the use of lookup tables can be the fastest way to build an algorithm.

The core idea of using a lookup table to compute a function is that you are
turning an arithmetic problem into a memory lookup. This means that the
exact computing platform being used can affect whether lookup tables are a
good idea. In general, GPUs are built to support lookup tables and CPUs are
terrible at computing them. With floating-point inputs, any lookup table has
to cover the entire dynamic range of input while maintaining high precision—
even restricting the domain of the table to [0, 1] means accepting a quarter of
all possible floating point numbers. Practically, this means using some form
of interpolation.

On CPUs, function approximations based on lookup tables are usually
undesirable, since the CPU cache hierarchy can cause table lookups to have
performance that is highly variable. Additionally, the use of lookup tables
causes you to consume a limited global resource, memory bandwidth, to per-
form a computation that could otherwise be done on a core. It also adds
variance to the performance of a calculation, which is often undesirable in
itself. As an example, cache and memory access latencies for several CPUs are
shown in Table 10.1. As a result, lookup tables on CPUs can be a dubious
idea, especially when you don’t control the other programs running on the
machine or its design.

Thanks to the cache hierarchy, the performance of lookup tables varies
greatly depending on the frequency at which the function is called. An in-
frequently called function or a large lookup table will very often fetch from
main memory or from far down in the cache hierarchy, causing both a local
slowdown while the memory fetch occurs and a global slowdown since you
are hogging shared resources. Conversely, small lookup tables that are used
frequently can often reside in core-local caches with plenty of available band-
width and fast access times. Lookup table size has a pseudo-quadratic effect
on speed. When your lookup table is larger, it occupies more room in a cache
and each cache line of the lookup table is touched less frequently since you will
only look up one entry per use of the table. Finally, the cache hierarchy makes
lookup tables look good in benchmarks. A microbenchmark does nothing but
call a single function, which leads to your lookup table staying as close to the
CPU as possible, while in a real program, it will often be further down the
cache hierarchy than you want.
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TABLE 10.1

Cache and memory sizes and access latency on the AMD Zen 4 client architec-
ture and the P-Core on Intel’s Meteor Lake client platform. The Zen 4 device
was tested with DDR5 memory, while the Meteor Lake device had LPDDRb5x

memory, another source of variance.

Memory Layer Zen 4 [38] Meteor Lake [39]
Size Latency Size Latency

Caches

L1 Data Cache (local) 32 kB 0.7 ns 48 kB 1ns

L2 Cache (local) 1 MB 2.5 ns 2 MB 3.3 ns

L3 Cache (global) 4 MB/core 89ns 3 MB/core 15ns

Main Memory

DDRb5 Large 75 ns

LPDDRb5x Large 170 ns

In the best case, a small lookup table that is accessed frequently can be
accessed in 4 CPU clock cycles, during which time a modern CPU can perform
16 or more vector arithmetic instructions. In the worst case, larger lookup
tables can occupy the compute time of more than 5000 individual FMAs.
This leads to a few guidelines as to when CPU lookup tables are useful as
approximators [40]:

1. When a lookup table is one cache line, it is equivalent to accessing
a variable or coefficient.

2. When a full-system benchmark indicates that the lookup table is
faster than the calculation you would otherwise do, use it.

3. When you cannot come up with any other way to evaluate the
function, use a lookup table.

On GPUs, there is usually a section of fast memory reserved for constants
and lookup tables. These caches are also often used for textures, and can be
quite large. They also are used for an important part of a rendering pipeline:
Color grading. In rendering and video editing, color grading can involve very
difficult nonlinear functions that have to be evaluated for every pixel and are
often driven by artistic taste, so it helps to use a relatively small lookup table
that is precomputed once, mapping from an input color to an output color.
Using a lookup table mapping also allows artists to “draw” this mapping
function instead of trying to construct something numerically.

Finally, if you happen to be building hardware or working with other
exotic computing devices, lookup tables are often the best way to evaluate
functions. For hardware, ROM is relatively cheap, and there are many ways
that you can compress a lookup table to make it fit in a smaller memory
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FIGURE 10.6

Comparison of a lookup table with no interpolation, taking the value of the
nearest lookup table point, against linear interpolation of a lookup table for
f(z) = sin(z), where both plots show the approximation (dashed black line)
plotted against the function (gray line).

or circuit area, usually using arithmetic operations to combine several small
lookup tables [41].

Using lookup tables with floating point values goes hand-in-hand with in-
terpolation. Floating point values will often lie between the cells of a lookup
table, so interpolation allows you to construct a synthetic value from the neigh-
boring points on the lookup table. A visual example of linear interpolation is
shown in Figure 10.6.

The most common form of interpolation, linear interpolation (lerp), is
done by taking a weighted average of the two nearest lookup table outputs,
weighted by the distance to each one. Taking that distance as a parameter (t)
where ¢ is normalized so that 0 < ¢ < 1, linear interpolation computes:

lerp(a,b,t) =a(l —1t)+ bt

For lookup table entries (zo, f(xo)) and (x1, f(z1)), given an input z, the
formula to linearly interpolate f(z) incorporates that normalization:

fla)~ L@@ )+ fa)o —2) oy Fe) = flwo)

1 — X 1 — 2o
This allows you to smear your way between two y values smoothly, but does
not account for any curvature in the function you may be approximating. Lin-
ear interpolation also has many uses outside of lookup table approximations,
since it is a general way to smooth out the transition between two points.
For smooth functions, the error of linear interpolations is bounded by the
granularity of the lookup table and the amount of curvature of the function
(i.e., the function’s second derivative). As expected, linear interpolation is a
first-order approximator, and has second-order error. Our error is:

f(z1) = f(z0)

Tl — Zo

E(z) = f(z) — f(z0) — (r — x0)
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There is some point x = & between xg and z; at which we reach the worst
error in the window. This point can be a local minimum for E or a local
maximum depending on whether we overestimate or underestimate by linearly
interpolating. If we take a Taylor series expansion of E around £ with second-
order error, we get:

B(z) = E(€) + E'(§)(z — §) + c(z — §)?
Since E(€) is the point of the worst error, E'(£) = 0:
E(z) = B() + c(x — €)?

We know the value of E(x) at a few values of x. Specifically, we know that
E(xq) = 0. Plugging ¢ into this formula, we get:

E(xz0) = 0= E(£) + c(z9 — £)°
So our maximum error is proportional to (¢ — &£)2:
B(§) = —c(zo — €)°

Thus, we have second-order error when we use linear interpolation as a method
of approximation.

When you have functions that are either concave or convex—where the
curvature of the function only goes one way—the error of a lookup table
constructed out of points y = f(z) will be unbalanced. For a convex function,
a lookup table with linear interpolation will always overestimate, while for a
concave function, a lookup table will always underestimate. it is possible to
have better accuracy by constructing the table in an error-aware way. Instead
of sampling f(z) exactly for each lookup table point, it is possible to balance
error on these functions by moving the corresponding lookup table points up
or down. With this correction, lookup table error can be halved.

It is also useful to use lookup tables with higher-order approximations
in each table row, and lookup tables can be used for domain separation of
inputs. That way, lookup tables can be used in combination with minimax
approximations, like Remez approximations, to get the best of both worlds.
This can also be done with higher-order interpolation algorithms such as spline
interpolation. A low-order polynomial approximation in each cell of a small
lookup table can produce a good compromise of performance and accuracy.

It is possible to extend linear interpolation into more dimensions by inter-
polating in one dimension at a time, interpolating between the results at each
step. For example, if you have a two-dimensional input, we now take the near-
est four table entries and interpolate first in the  dimension to get two extreme
values of f(x,y0) and f(x,y1), then we interpolate between those values. This
is called bilinear interpolation, and a graphical representation of what is
happening is shown in Figure 10.7. Mathematically, with lookup table entries
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FIGURE 10.7

Graphical view of bilinear interpolation. We start with four sample points
from our lookup table, then linearly interpolate in one dimension to get two,
then linearly interpolate the final point.

(z0, Yo, f(x0,%0)), (x1,90, f(x1,%0)), (xo,y1, f(w0,y1)), and (21,91, f(x1,91)),
we compute:

f(zo,y0)(x — o) + f(21,%0) (21 — T)

f(xvy()) ~ p—
1— o
flx, ) = f(zo,y1)(x — x0) + f(21,91) (21 — T)
1 — Xo

Then the final step is:

F(@,90)(y — vo) + f(@,y1)(y1 — y)
Y1 — Yo

flz,y) =

A similar, albeit far more ugly, derivation shows that the error of bilinear
interpolation is also second-order. It is also possible to do trilinear interpo-
lation by taking eight lookup table entries, reducing them to four values by
interpolating in the x direction, reducing those to two points by interpolating
in y, and performing a final interpolation in z. This scales up to n dimensions
with 2" lookup table entries.

Higher-order interpolation using splines (see Section 11.2) or polynomials
is another technique in this toolbox that helps to improve accuracy, but is more
computationally expensive than linear interpolation. Polynomial interpolation
is not automatically continuous at the breakpoints between segments, but
spline interpolation is easy to make continuous at these points. These methods
trade off speed for accuracy or speed for table size.

A combination of lookup tables plus interpolation makes for an alluring
method for function approximation, but can be surprisingly slow when func-
tions can be approximated by other methods. The major advantage of lookup
table approximations is that they allow you to approximate a function without
any closed-form representation. Finally, lookup tables can give fast, accurate
results when the hardware is available to support them.
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10.5 Comparison of Math Libraries

Most math libraries do not provide correctly rounded approximations of tran-
scendental functions, but get close enough to be useful. Due to dynamic link-
ing, this can mean that code does not reproduce when moved between com-
puters. If one computer’s math library has a different accuracy level than the
one on which a piece of software was tested and developed, that can cause
“floating point error”, even though the error is unrelated to the number for-
mat or the basic operations themselves. If you care about or need numerical
accuracy, Statically linking your own selection of math library can help to
avoid any headaches about this.

Compilers, chip vendors, and operating systems provide a default math
library. These libraries are often designed to balance performance and accu-
racy, frequently eschewing “correctly rounded” for “good enough”. The main
exception to this philosophy is the LLVM math library, which favors correctly
rounded functions. A few of the common math libraries are listed here, with
a summary of their accuracy at the time of writing [20]:

e GNU-libc math contains a default math library for GCC, and has error
under 4 ULPs for most functions.

e LLVM libc math is the default library for LLVM, and uses correctly
rounded functions. LLVM’s math functions are consistent across platforms
when compiled.

e Intel’s IML is very close to correctly rounded, with worst-case error close
to 0.5 ULP for most functions.

e Apple Libm is faithfully rounded, providing error under 1 ULP.

e Microsoft UCRT math has comparable accuracy to GNU libm, with some
functions having error bounds of 4 ULPs.

e CUDA Libm, Nvidia’s library for CUDA, is slightly worse in worst-case
accuracy than GNU Libm.

¢ ROCm Libm, for AMD GPUs, is comparable to CUDA Libm in accuracy.

The variability between these default libraries should indicate that if you
would like consistent results, it is a good idea to statically link one of them or
to use a custom math library.

There are several math libraries that are specifically made for gaming ap-
plications. These math libraries do not differentiate themselves in accuracy,
but do provide more features than others. Many of these libraries will contain
extensive libraries for geometry functions like shape intersections and quater-
nion rotations in addition to elementary functions. These math libraries fre-
quently have SIMD as a first-class citizen, and only use single-precision floats.
Accuracy of these libraries is usually worse than the generic math libraries.
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e DirectXMath from Microsoft is a SIMD-focused library that is intended to
be used for graphics applications and games. Direct XMath provides a num-
ber of fast estimators (third and fourth order approximations) for functions
like the trigonometric functions as well as the “accurate” versions (~10th
order approximations).

e GLM is the math library that ships with OpenGL and is intended for SIMD
and graphics applications. Its accuracy and implementations are similar to
DirectXMath.

Finally, several math libraries provide correctly rounded functions, but are
sometimes incomplete and usually are slower than the default libraries. Some
of these libraries have fast and slow paths, which can cause certain inputs to
take significantly longer than other inputs. However, these libraries usually
come with proofs of correctness and proofs of accuracy for functions. The
major correctly rounded math libraries are:

e CRLibm is a now-deprecated library (as of 2015) of correctly rounded func-
tions from the INRIA research institution. The functions in CRLibm come
with corresponding computer proofs in Gappa of their accuracy.

e CORE-MATH is a project from INRIA that is a successor to the CR-
Libm project. The CORE-MATH project uses tools like Sollya to construct
correctly rounded functions and corresponding proofs of correctness and ac-
curacy.

e RLibm is a project from Rutgers University that provides alternative cor-
rectly rounded implementations of transcendental functions. Unlike CORE-
MATH and CRLibm, the functions in RLibm are constructed using linear
programming solvers, leading to very different solutions.

e GNU MPFR is a correctly rounded library from GNU for a type arbitrary-
precision arithmetic called multiple-precision floating point. MPFR is not
intended for default floating point formats, but its implementations have
been adapted.

The use of correctly rounded functions often carries a performance hit, al-
though CORE-MATH and LLVM have been able to produce implementations
that are competitive in benchmarks with less-accurate math libraries. Still,
the variance in performance caused by having fast and slow paths can be
significant when determinism is important.

Math library developers have generally used the techniques discussed in
this chapter (and offshoots of those techniques) to develop these libraries.
Some will use extended precision in certain calculations, but in most cases,
quantization error causes problems before you get to a correctly rounded im-
plementation unless that is an explicit goal. Correctly rounded functions and
new techniques are still active areas of research, so libraries will likely improve
over time, albeit slowly.
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10.6 Floating Point Bit Hacks

Finally, some of the most fun and interesting approximations are rather bad
approximations, but they take advantage of bit hacks that are available with
the floating point number system. A piece of code made famous by the source
code of Quake III has captured the imagination of systems programmers and
future numerical analysts alike [42]. A pseudocode version of this cryptic al-
gorithm can be found in Algorithm 10.1.

Algorithm 10.1 Quake III Bit-hacking Reciprocal Square Root
Input: = > 0 in single-precision float
Output: y = % to 2-3 decimal places

1. ¢ < bitCastiza(x) > Get bits of number to int32
2: 4 < 0xb£3759df — (i > 1) > “Magic” bit hacking
3: y < bitCastr(i) > Return to floating point, 3.5% accuracy
4: 29 < x X 0.5F > Set up for Newton-Raphson
5.y y X (1.bp —x2 X y X ¥) > Refine, 3.5% — 0.17% accurate

6: return y

This is actually two numerical algorithms in one. The second algorithm, at
line 4, is easier to comprehend than the first: It is a Newton-Raphson iteration.
In this case, the refinement iteration, derived from the equation y% —x =0,
is: .
yi-&-l:yi_yT:yi“"%

y*

=i (5 — 3297)

The first section of the algorithm is the tough part. We start by bit casting
the floating point number into integer space. We are not converting, just taking
the bits of the floating point number and working with them as though they
are an integer. If you recall Figure 2.5, this is effectively taking a logarithm
of the floating point number, with an offset and some error. Right shifting by
1 divides this integer by 2, which has an interesting property in logarithmic
space. With our integer i ~ log,(z):

1
i>>1z0g+(x):log2(\/5)
Negating the log should give us:

—(i> 1) & —log, (V) = log, (\}5)
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That seems good. When we move back into floating point space, we will be
undoing the log, so we seem to have constructed % However, floating point
exponents are not represented as signed integers. They are represented as
unsigned integers with a bias. By moving into log space by bit casting to
an integer, we are also operating on our bias. The right shift by 1 takes the
square root of everything about z, including the bias. We started with a bias
of 2127, so now we have a number biased by v/2127. That is where the magic
number comes into play. Breaking down the magic number further into its
single-precision floating point parts:

S Exp Mantissa
0x5£3759df = 0 10111110 01101110101100111011111
+ 203 1.432430148124...

203 % 1.432430148124... ~ 253 x /2 = /2127

This is not a random magic number at all! This is almost equal to the square
root of the exponent bias in single-precision float, which effectively provides
for a clean subtraction of our original number in log space. In order to get
back to a properly biased floating point number, we have to get back to a
bias of 2!27 by multiplying by v/2!27, which is done through an addition in
log space (approximated by an integer addition). The magic number is mostly
just a bias correction. The error in the mantissa of this magic number serves
as a correction factor. Moving to integer space does not take the logarithm of
the mantissa, so the trailing bits of the magic number have been twiddled to
balance the error of this process as much as possible.

The fabled constant from the code of Quake III is not actually the best
constant for this operation, however. Researchers have conducted constant
searches more recently, and have found varying constants that are better by
one metric or another, but it does not appear that the original choice of
constant was optimized to any specific objective function [43]. My assumption
is that the original author (not known to this day, but there are a few suspects)
started with v/2127 and fiddled with bits by hand to balance error in the
approximation.

Modifying this structure with a different manipulation of the input and a
different magic number can give approximations of x® for any integer a. The
general form, which applies to all widths of integer and floating point, is:

x* =~ bitCastp,p [bias + (bitCastrzy/1e4(x) * a)]

This is a neat trick, but it is unlikely to be useful for many values of a, and
isn’t useful for a = —% (the original algorithm) thanks to instructions like
RSQRTSS and VRSQRT148D, which both compute a better approximation and
do it faster [3]. It’s hard to beat the hardware.

This sort of approximation can also apply with a fixed base. Exponentia-
tion can be a relatively slow operation, but treating numbers in approximate
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Algorithm 10.2 Bit-hacking Fast Exponential
Input: double-precision x
Output: double-precision y = e* accurate to within 6.2%

1: < x X 6.497320848556798e15p > “Magic” constant multiplication
2: 1 < toInt64(x) > Convert to fixed point
3: 1+ i+ (1023 < 52) > Add exponent bias
4: y < bitCastp(7) > Take approximate 2% by conversion
5: return y

log space can get us there quickly. For example, exp(z) for any x can be
approximated by Algorithm 10.2.

The magic constant here is equal to [252 x log,(e)] (the mathematical con-
stant e, not an exponent) as calculated in double-precision floating point. This
gives us a number that, when converted to integer, is a fixed-point represen-
tation of [z x logy(e)] with 52 bits (exactly the size of the mantissa) behind
the decimal place. In other words, we are making a fixed-point exponent that
aligns with the exponent field of a double-precision float. From there, biasing
appropriately and then converting back to floating point by bit casting will
give us a correct exponent but a linearized mantissa compared to exp(z).

You can do somewhat better on most error metrics by tuning the constants
in this formula. This algorithm with the most meaningful constants will al-
most always produce an overestimate because the bit cast back to floating
point is linear in the mantissa, while the exponent of the significand has some
curvature. As a result, this magic number approximation will overestimate by
as much as 6.2%, but will almost never underestimate. A better selection of
constants can balance the error here, reaching an error under 3.1%. A similar
function for a fast logarithm in base two, again with untuned but meaningful
constants, is in Algorithm 10.3. With tuned constants, error can drop to 2.7%
or lower.

Algorithm 10.3 Bit-hacking Fast Log Base 2
Input: double-precision x
Output: double-precision y = log,(x) accurate to within 5.4%

1. { < bitCastiga(x) > Bit cast to fixed point
2: 1+ 1 — (1023 < 52) 1> Unbias to get our number in two’s complement
3: y < toDouble(:) > Take approximate log,(z) by conversion
4: y gy /252 > Divide out the fractional bits
5: return y

It should be possible to imagine how one might compute even a function
like pow approximately using a similar method, taking an approximate log of
one argument to get the magic constant for the exponential in this algorithm.
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Bit hacks will not win any awards for accuracy, but can be blazing fast for
transcendental functions that happen to be easier to compute in log space.

Check Your Understanding

Problem 10.1. An ancient Indian approximation for the sinPi function is
given by [44]:
16z(1 — x)
sinPi(z) % ———F——
(z) 5—4x(l —x)

Comparing against the double-precision sinPi function: What is the error of
this approximation using minimax error? What is it using RMS error? What
is the accuracy of this approximation in bits?

Problem 10.2. Construct a fourth-order Remez approximation of f(z) =
log, (x) with z in the region [1, 2], and construct a lookup table approximation
with linear interpolation in the same region. How large of a lookup table do
you need to equal the accuracy of the Remez approximation?

Problem 10.3. Either hacking together a solver, using a solver, or guessing
and checking, tune the constant from the exponential algorithm at the end of
Section 10.6 for z in [—100, 100]. First, find the constant with the best minimax
error. Compute another constant for RMS error in the region. Finally, find a
third constant that produces the best accuracy.

Problem 10.4. Using double precision floating point, construct a third-order
Remez approximation for f(z) = 1/« in the region [1,8], and a Newton-
Raphson refinement step. Adapt your solution to single precision with a wrap-
per that converts the input from single precision to double precision and a final
conversion of the output to single-precision floating point.

Try your solution on every single-precision floating-point number in the
region. How many rounds of Newton-Raphson do you need to reach a correctly
rounded single-precision inverse cube root?

Problem 10.5. Devise a double-precision floating-point bit hack and a
Newton-Raphson refinement step for f(z) = 1/¢/x. What is the maximum
error of your bit hack approach compared to a double-precision computation
in the range between 1 and 2?7 With one round and two rounds of Newton-
Raphson, what is the error? How does the speed compare to the exact version?

Problem 10.6. A common function to find in AI and ML is the “Swish”

function: .
S(z)

T 1+ exp(—x)
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Using any of the methods found in this chapter, make an approximation for
the Swish function, focusing on the domain [—6, 6]. Compare speed and accu-
racy to a version using single-precision floating point, noting that AT and ML
commonly use floating point formats with 4-5 bits of precision.
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Geometry in Floating Point

From collision to rendering, geometric calculations are the most common cal-
culations to find in video games. Many of these calculations are built around
the idea of continuous space. In floating point, however, space is not continu-
ous. This can cause graphical artifacts and glitches, such as holes in the geom-
etry of a solid world that a player can fall through. Shapes will also slightly
deform as they move through space due to rounding and other quantization-
related errors, which can be a source of unexpected behavior in a system.

However, the way floating-point numbers work helps you in many cases.
When division by zero is acceptable, many edge cases can actually be handled
without special-case logic at all.

11.1 Polygons and Transforms

The exact shape of objects in floating point depend on how that shape is
specified. A box specified by its eight vertices will look slightly different than
a rectangle specified by a center point, an orientation, and its dimensions.
Geometric objects are usually specified as collections of triangles for render-
ing, but simulators may use many different representations as required for
computational convenience. Storing a shape as a collection of polygons now
means storing a list of floating-point coordinates that indicate the vertices of
the polyhedron plus a list of indices that specify the vertices used in each face.

It is generally preferable to work with shapes that are closed manifolds,
which allows them to behave well with algorithms and work within the
floating-point number space. This means placing restrictions on the geometry
of shapes: Avoiding internal faces, edges and vertices that don’t line up with
each other, and connections between closed shapes that are joined only at an
edge or a vertex. Meshes that are not manifolds can behave weirdly in floating
point. Figure 11.1 shows how this process happens around a T-junction in a
polygon mesh. For this reason, T-junctions and other structures that create
zero-sized holes are considered bad practice for 3D modelers. They create a
zero-sized hole, breaking the manifold constraint, which in turn becomes a
non-zero-sized hole when transformed. Figure 11.2 shows a repaired version

DOI: 10.1201/9781003565543-11 149


https://doi.org/10.1201/9781003565543-11

150 Floating Point Numerics for Games and Simulations

FIGURE 11.1

T-junction in floating-point geometry (left), which creates a hole when rotated
in one orientation (center), and an overlap in another orientation (right) due
to deformation from rounding.

of the T-junction. If shapes are modeled as manifolds, they will remain closed
and well-behaved despite rounding and other numerical inaccuracies.

Transformations of shapes are usually specified as four-dimensional matrix
multiplications with floating-point matrices and vectors. The use of a fourth
pseudo-dimension allows arbitrary geometric transformations to be done with
invertible matrices, as well as enabling calculations like perspective projection
to be simple matrix algebra. The fourth dimension can be thought of as a
“denominator” coordinate, where the vector (z,y, z, w) indicates the point at
(%7 z, i) This coordinate also allows position vectors to be distinguished
from direction vectors. Position vectors have w = 1, while direction vectors
have w = 0, indicating a point at infinity in the direction of (z,y,z). Most
transformations thus leave the fourth dimension untouched, only using it when
needed. This four-dimensional system of coordinates is called homogeneous
coordinates.

For example, a translation of a shape by a vector ¢ followed by a rota-

tion about the z-axis with angle r is done with the following pair of matrix

FIGURE 11.2

The mesh from Figure 11.1 repaired by adding an extra triangle. Under the
same transformations, rounding still deforms the shape, but there are no holes
or overlaps.
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multiplications:
T 1 0 0 0 1 0 0 ¢, To
y | | 0 cos(r) —sin(r) 0 0 1 0 ¢t Yo
z | | 0 sin(r) cos(r) O 0 0 1 ¢ 20
w 0 0 0 1 0 00 1 1

For reference, Table 11.1 contains a list of some common matrix multiplica-
tions used as geometric transformations.

Matrix multiplication is computed as a series of dot products of the rows
of one matrix with the columns of the other:

Xx|ylz|w | =

=M el Ron N
e o
XXM X

Qo T

w g
Q0 T w

N N N N

Ao T

RPN

In turn, a dot product is a sequence of FMA operations that perform the sum
of an element-wise product over the vector, shown here for 3-element vectors:

a-x = FMA a3, z3,FMA(az, 2, a1 X 21)]

Each additional dimension adds an FMA to the matrix multiplication. Thus,
a general four-by-four matrix multiplication comes down to 64 basic opera-
tions: 48 FMAs and 16 multiplications. This is simplified when you have large
numbers of zeros, as in the matrices in the example above, but the order of
operations can still matter, and there is nominally some rounding between
each one. A matrix-vector product with four dimensions is a combination of
only four dot products, using 16 total operations.

Matrix multiplication is a highly optimized operation in every comput-
ing platform, with special attention paid to four-by-four matrices for obvious
reasons. Matrix layouts and exact sequences of FMA operations are heavily
optimized around loading and storing data to maximize cache efficiency and
make full use of vector-processing units. Graphics calculations are also often
done with a form of fast math, where matrix algebra is allowed, effectively
treating floating point as associative. A string of matrix operations may then
be pre-computed into a single combined transform that is faster to apply. The
final single matrix multiplication decomposes into products and sums, which
are often computed either using FMA operations or dedicated matrix-multiply
units that are available in GPUs [12]. These dedicated units can sometimes
operate in mixed precision, accumulating their results in a wider format than
the input, which prevents error.
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TABLE 11.1

Common transformation matrices for three-dimensional objects in homoge-
neous coordinates. All assume coordinates are stored as column vectors, and
should be transposed for row vectors. Transforms are combined by matrix
multiplication, so an arbitrary rotation is the product of all three rotations.

Transformation Matrix Form
1 0 0 ¢t
. 0 1 0 ¢
Translation by (tz,ty,t.) 00 1 t
0 0 0 1
sz 0 0 0
. 0 s, 0 0
Scaling by (s, Sy, 52) 0 0 s 0
0 0 0 1
[ 1 0 0 0]
. . 0 cos(r) —sin(r) 0
Rotation by r about the z-axis 0 sin(r) cos(r) 0
| 0 0 0 1|
[ cos(r) 0 sin(r) 0]
. . 0 1 0 0
Rotation by r about the y-axis “sin(r) 0 cos(r) 0
i 0 0 0 1|
[ cos(r) —sin(r) 0 0]
Rotation by r about the z-axis sin(r)  cos(r) 00
0 0 1 0
| 0 0 0 1 |
1 sy Sz
Arbitrary shear transformation Syz 1 Sy
Sab shears the a-axis by the b-axis Six Suy 1

Perspective projection

coor
cor o
|
Lo o
coc oo
S el )
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11.2 Splines

An alternative to using polygons based on line segments is to use more pa-
rameters to define curves. This method allows smooth surfaces, which would
ordinarily need a large number of polygons, to be defined with many fewer
control points, as shown in Figure 11.3. An efficient way to do this is to
use a family of geometric objects known as splines. Splines are sequences of
second- or third-order curves that are defined using control points and a set of
polynomial functions that dictate the weighting of each control point at any
given point, so that they are continuous and differentiable across the surface,
making smooth shapes. Second- and third-order curves are used since they
balance visual “smoothness” and algebraic properties (such as differentiabil-
ity for third-order curves) against computational difficulty to compute the
position of the spline.

A spline is then drawn by interpolating between the control points,
weighted by a set of polynomial functions. Multidimensional splines are cre-
ated by having a manifold of control points rather than a sequence, and using
multidimensional weight functions. There are multiple types of splines, where
the type of spline dictates the family of weighting functions to use during in-
terpolation. Since control points are used to define the shape of splines, splines
can be deformed by applying the transformation matrices of Table 11.1 to the
control points, and the spline will follow.

Games don’t often use splines for three-dimensional geometry, but ani-
mated movies and CAD programs will use them to trade off computation
speed for visual accuracy even when the view window is zoomed in. Two-
dimensional graphics like fonts and GUIs will frequently use splines to define
their geometry, allowing artists to create clean curves that render sharply at
any resolution. Games will sometimes also use splines to define movement
paths and represent objects that are “one-dimensional”, such as strings or

FIGURE 11.3

Comparison between a spline curve (left) and a tessellated mesh (right) fol-
lowing the same curve. The spline has four control points and is smoother
than the tessellated version with 12 vertices.
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ropes. Vector drawing systems have Bézier curves as a first-tier primitive,
which are the go-to spline for efficient calculation (Figure 11.3 has a Bézier
curve). CAD programs will often use a more flexible form of spline surface
called a NURBS (Non-Uniform Rational B-Spline) surface, which gives the
user a lot of control to define all types of curves that might be present in a
mechanical part. Both of these fall into the family of splines, but have different
weighting functions for their control points.

By turning fine geometry into coarse-grained curves, splines allow you
to avoid floating-point deformation in objects that need to be represented
accurately. Small deviations in control point locations have less weight on the
shape of objects than deviations in polygon vertices, and the algorithms for
drawing and displaying splines stay accurate with some jitter in operations.
However, this comes at a cost of computing power.

11.3 Bézier Curves and Surfaces

Bézier curves are splines based on the Bernstein polynomials. A Bézier curve
of order n has (n + 1) control points, and uses these control points and the
order-n Bernstein polynomials to define the shape of the curve. The Bernstein
polynomials of order n have the form:

byn(t) = (”)t“(l—t)"—“ v=0,1,...,n

v

When v = 0, the Bernstein polynomial is weighted toward ¢ = 0 and goes
to zero at t = 1. As v increases, the vth Bernstein polynomial of order n
peaks later and later as the (1 — t) factor gets weaker and the ¢ factor gets
stronger, with the polynomial with v = n peaking at ¢ = 1. The third-order
Bernstein polynomials are shown in Figure 11.4, which are the polynomials
used to define a third-order Bézier curve (the most common Bézier curve).
Like the Chebyshev polynomials, the Bernstein polynomials of degree n are
an orthogonal basis for all polynomials of degree n, but they operate in the
window 0 <t < 1.

Described using the Bernstein polynomials, a Bézier curve is defined by
the sum:

x(t) =) cibin(t) 0<t<1

where c; is the ith control point for the curve, and b is the Bernstein polyno-
mial from above. The Bézier curve thus linearly interpolates a weighted av-
erage of the control points, weighted by the Bernstein polynomials. A Bézier
surface, a smoothly curved sheet in three-dimensional space, can be built from
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FIGURE 114
The third-order Bernstein polynomials, which form the basis for the most
common form of Bézier curves.

the one-dimensional curve equation by adding a second dimension to the pa-
rameter space and the space of control points (a tensor product of two Bézier
curves):

x(tu) = Y cijbin(t)bin(u) 0<tu<l

i=0 j=0

A Bézier surface of order n uses an n x n grid of control points, and the
product of two Bernstein polynomials in the two parametric dimensions to
weight the control points.

If a shape needs to be more complicated than a single Bézier curve of
order n can define, multiple Bézier curves can be used to draw it, and can
join smoothly as shown in Figure 11.5, by setting the first two control points
of the joined Bézier curve to continue the curve and keep its first derivative
going. There may be a discontinuity in the second derivative at the point of
the join. A higher-order Bézier curve is also an option, but higher-order curves
take more computing power to draw, so it is more efficient to use a sequence
of third-order curves when you need a continuous and smooth shape than to
use a higher-order Bézier curve. Note that it is impossible to draw a perfect
circle or ellipse with a Bézier curve of any order, but a set of a few Bézier
curves can approximate these shapes very closely [45].

Mirroring the Chebyshev approximation, which is not computed using the
Chebyshev polynomials, Bézier curves are not drawn using the Berenstein
polynomials. The utility of the Bézier curves is that there is a fast algorithm
for rendering them, which is built on recursive linear interpolation. This al-
gorithm is named for its inventor, French physicist Paul De Casteljau. De
Casteljau’s algorithm draws a Bézier curve by interpolating between the
control points to find a new set of n—1 points, and then interpolating between
these new control points to find n — 2 points, and repeating until there is only
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FIGURE 11.5

A pair of joined Bézier curves. The second Bézier curve (control points in
gray) shares a control point with the first curve (black control points) and its
second control point forms a line with the last control points of the first curve.

one point. De Casteljau’s algorithm is described for third-order Bézier curves
in Algorithm 11.1, and a visual example is shown in Figure 11.6. This algo-
rithm has no direct polynomial evaluations, but a look at the math of linear
interpolation will show that it is equivalent [45].

Algorithm 11.1 De Casteljau’s Algorithm for Third-order Bézier Curves

Input: t where 0 <t <1, a set of four control points cg, ..., c3

Output: point x at position ¢ along the Bézier curve defined by cg,...,c3
1. ag « lerp(co,cy,t) > First set of interpolations
2: aj < lerp(cy,ca,t)
3: ag < 1erp(c2,03, )
4: by + lerp(ag,as,t) > Second set of interpolations
5 by +— lerp(al, ag,t)
6: x < lerp(bg, by,t) > Final interpolation
7: return x

While Algorithm 11.1 is relatively short, each linear interpolation takes
two FMA operations in each dimension, so a two-dimensional Bézier curve
needs 24 FMA operations to find each point along the line. The link between

t=20.3 t=20.5 t=0.7

FIGURE 11.6
Finding three points along a Bézier curve using De Casteljau’s algorithm.
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a change in ¢ and movement in space is also not linear, so programs that render
Bézier curves or surfaces must account for the fact that they need to move at
a non-constant velocity. However, Bézier curves stay within the convex hull of
their control points, so calculations such as collision detection can operate on
the control points rather than the curve itself. Generalizing Algorithm 11.1
is a matter of adding or removing interpolation rounds to fit the order of the
curve (or looping for variable order), so drawing a Bézier curve of order n is
an O(n?) operation.

11.4 B-Splines and NURBS

Bézier curves use the Bernstein polynomials, which are nonzero throughout
the entire range of the curve. This means that increasing the number of con-
trol points in one spline causes an increased computation cost, and complex
shapes have to be constructed out of multiple Bézier curves. The family of
B-splines address this problem by using windowed polynomials that decay to
zero outside of a short range. This allows a single B-spline to represent a shape
of high complexity by adding more control points to one spline.

A B-spline starts with a vector of values of ¢ called knots, which are the
values of the parameter ¢ where the polynomial segments of the spline are
stitched together. Like Bézier curves, ¢ usually ranges from zero to one, but
B-splines do not require any specific range. In computer systems, it may be
better to use integer knot positions so that they are represented exactly. The
knot vector of a B-spline is the sorted collection of all of the knots:

T= {t05t17t27"'5tm}

A B-spline with degree n can have more than m knots. The typical form of a
B-spline has (m+mn+ 1) knots spaced equidistantly across the range of ¢ with
(n + 1) stacked knots at the endpoints of the spline covering the boundary
conditions. This is called a cardinal B-spline. An example of a cardinal
B-spline, showing its control points and knots, is shown in Figure 11.7.

The B-splines use a basis function that is defined recursively in the order
of the spline, and is based on the position of the knots:

Bio(t) = 1 <t <t
B0\ = 0 otherwise

t—t; t; —t
*—Bin-1(t) + LBHan(t)

Bin(t)= —— "
() titn —t; tivny1 — tiva

The basis for the zeroth-order B-splines is a function that is one in the cor-
responding segment of the spline and zero everywhere else. This makes a
zeroth-order B-spline equivalent to a piecewise function in ¢, and a first-order
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FIGURE 11.7
A cardinal B-spline of order 3 with 9 control points and 13 knots. The knots
and control points are labeled, with knots in gray and control points in black.

B-spline a polygon of the control points. The higher-order B-splines then lin-
early interpolate between the lower-order knots, as shown in Figure 11.8. Like
Bézier curves, most uses of B-splines opt for a third-order spline. The basis
functions Cardinal B-splines are shown in Figure 11.9.

Finally, the spline itself is constructed as the weighted average of its control
points, weighted by the B functions that vary with our parameter, ¢:

X(t) = Z CiBi}n(t)

The windowing caused by the definition of the B polynomials means that the
evaluation of this sum is now O(nm), since each possible value of ¢ has only
n nonzero B functions. The evaluation is no longer quadratic in the number
of control points.

Increasing Order

FIGURE 11.8

Cardinal B-splines sharing the same control points (black points) going from
order 1 to order 5 (light to dark). The line gets more curved and individual
control points are less prominent for higher-order curves.
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FIGURE 11.9
Basis functions used for cardinal B-splines of orders 1-3 with 8 control points.
The sum of all basis functions is 1 for all values of ¢.

A non-uniform rational B-spline (NURBS) generalizes further, and adds
a weight to each control point (making the spline non-uniform). Since the
weighted B functions are no longer guaranteed to sum to one, we then have
to divide by the sum of the weights to normalize (making them rational):

o

Il
=]

C; W; Bi,n (t)
x(t) =+

> wiBin(t)
1=0

Like a Bézier curve, this generalizes to multi-dimensional surfaces by taking
a cross product of NURBS splines [46], resulting in surfaces like Figure 11.10:

ko1
2. 2 CijwiiBin(t), Bjn(u)

=0 j5=0

There is an equivalent algorithm to De Casteljau’s algorithm for quickly
drawing NURBS splines and surfaces. De Boor’s algorithm is this extension,
and applies to general B-splines. Extending De Boor’s algorithm to NURBS
is relatively simple when using homogeneous coordinates. This algorithm, in
an optimized version, is given in Algorithm 11.2. In this algorithm, lines 1-5
find the relevant set of control points and knots, and store weighted control
points as homogeneous coordinates. Lines 6-11 of this algorithm are similar
to Algorithm 11.1 in function, although we have changed the interpolation to
fit the basis functions for a B-spline and generalized to n dimensions. Finally,
we re-normalize away from homogeneous coordinates to get the final result.
Note that if we don’t use homogeneous coordinates, we reduce to drawing a
B-spline (all w; = 1).

Due to their flexibility and the ability to create arbitrary shapes with a
single spline surface, NURBS is the default form of spline used for rendering
and graphics. The use of weighting means that geometric shapes like circles
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FIGURE 11.10
Example NURBS surface from a control point mesh. Each horizontal and
vertical slice of the surface is a NURBS curve.

are much easier to represent with NURBS, and also that a NURBS surface can
have both sharp corners and smooth curves, depending on the weight assigned
to each control point. This allows generic geometry to be represented with a
minimum number of weighted control points on a single spline.

The arrangement of arithmetic operations in De Casteljau’s algorithm and
De Boor’s algorithm allows for the additions in each linear interpolation step
to have orders-of-magnitude similar to the control points. Objects that are
small and near the origin will usually be more precisely drawn, but the error
will scale with the size of the curve and distance from the origin.

11.5 Faraway Objects and Floating Point

Recalling Figure 9.2, geometry loses resolution as we move away from the
origin of our coordinate system. This also happens within camera calculations,
where the origin of the calculation effectively moves to the position of the
camera. As geometry gets further from the origin, it naturally loses resolution.
This shows up in graphics pipelines in several places, and we will be exploring
its effects on simulations further in Chapter 12.

This effect can also deform geometry, like the rotations of Figure 11.2,
and affect how shapes behave under other transformations. Objects that are
small and far from the origin do not benefit from the full precision of the
number system. Further, operations that lose ULPs of precision can cause
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Algorithm 11.2 De Boor’s Algorithm for NURBS Curves
Input: ¢t where 0 < ¢t < 1, a NURBS curve of order n defined by a set

of control points {cq,...,cn}, weights {wo,...,w;,}, and knots T =
{to, ... tm}
Output: point x at position ¢ along the NURBS curve
1. k < findIndex(¢,T) > Binary search T to find span containing ¢
2: Make set D = {do,...,d,} > Holds working set of control points
3: for j from 0 up to n do > Gather in homogeneous coordinates
4: d; < concat(Cjir—n X Wjtkh—n, Wjth—n)
5: end for
6: for r from 1 up to n do > n rounds of linear interpolation
7: for j from n down to (r — 1) do > Interpolate between knots
8: z2 4 (t —tjrh—n)/(tjth—r+1 — tjth—n)
9: dj — lerp(dj,l, dj, Z)
10: end for
11: end for
12: {x,w,} + d, > Our final result is at the nth d
13: return x/w, > Renormalize from homogeneous coordinates

greater visual distortion on objects with lower resolution, as the operations
round further from the exact answer.

Several steps in a rendering pipeline, such as z-buffering and z-culling, rely
on precisely knowing the distance between the camera and the objects in the
scene [47]. Recalling Table 11.1, the third row of the perspective projection
matrix calculates and saves a signed distance from the camera along the neg-
ative z-axis. However, this row is usually scaled so that nearby objects that
are still far enough from the camera to render have a value of z = 0, while
faraway objects approach z = 1. That scale factor comes in using a near view
plane setting the minimum draw distance and the far view plane setting the
maximum draw distance. Using f as the distance to the far plane and n as the
distance to the near plane along the negative z axis, a common z-axis scaling
function looks like:

. f (n
_ ")
: f—n\z
This function maps the z range to Z so that z = —f gives 2 =1, and z = —n

gives Z = 0, and operates quickly as a matrix multiplication in homogeneous
coordinates. However, this scaling compresses the range of z values and also
operates non-linearly in z, both of which introduce aliasing in Z when con-
sidered in floating point. A graph of this function and a quantized version is
shown in Figure 11.11. Faraway objects, which have the widest z range, will
be compressed into a narrow range of Z values that are close to one. That
introduces an effect called z-fighting, which can create graphical glitches as
shown in Figure 11.12.
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FIGURE 11.11

Plot of the z-axis mapping function used to normalize z values in perspective
projections. Left: The mapping function over its entire range with f = 1000
and n = 10. Right: A zoomed-in version of the range of z < —980, with the
exact function in gray and a 16-bit quantized version in black, showing how
z-fighting arises.

N

Small Scene Scaled-up Scene
Camera Close Camera Far

FIGURE 11.12

Top: Side view of a scene with a camera looking at two planes that are at
different z values. Bottom Left: Camera views when close to the planes, with
no z-fighting. Bottom Right: View when the scene is scaled up so that the
camera is far away, where the overlap between the planes exhibits a graphical
glitch from z-fighting.
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A very simple solution to this problem is to use a linear mapping for Z:

z—n

f—n
However, the advantage of the previous solution is that it can be done using the
perspective projection matrix and a matrix multiply, while the new calculation
for Z needs to use a separate calculation. This also does not solve the issue
of aliasing due to range compression: The z range of interest is still between
n and f, while 2 still ranges between 0 and 1. While the Z range probably
has more numbers in it, they are concentrated toward zero and many will be
inaccessible from the linear map.

A better solution to this is to use log-scaling in the normalization, which
matches the scaling function to the density of the floating point numbers,
minimizing the chance of collision. Most importantly, it expands the range of
z values from 2 € [0,1] to log 2 € [0, —o0] (a closed interval since infinity is a
number), with large numbers for nearby objects, and values approaching zero
as z grows:

2:

log 2 = alog(bz + 1)

where a and b are constants related to the positions of the view planes. This
technique is present in several game engines, with an early example coming
from Just Cause 2, an open-world game with a long rendering distance [48].
The use of the log scale is more expensive than the use of the linear scaling,
but it mitigates issues from z-fighting because there are at least as many
floating-point numbers in the range of log Z as there are in the range of the
negative z axis. Log scaling does not eliminate z-fighting, since certain values
of a and b can still cause two values of z to map to one value of Z, but it does
alleviate the problem.

11.6 Intersection Finding and Collision Detection

Finding the intersections between shapes is a basic function involved in col-
lision detection, which in turn is one of the major consumers of computing
power from games to molecular dynamics simulations. To save computing
power, collision detection usually uses simple shapes, like spheres or bounding
boxes that surround more complex geometry. These shapes are also usually
convex, which simplifies the mathematics of collisions significantly. Collision
detection then reduces to finding the times and places when these bounding
shapes intersect [49].

This can then be done by stopping at discrete points in time (frames) and
checking collisions statically by finding where the edges of one shape intersect
with the other shape, or it can be done by calculating the movement path of
the vertices of each shape relative to the rest of the objects in the scene and
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finding the time when that movement path intersects with other objects. The
latter approach is more expensive, but more accurate, and prevents artifacts
like objects “phasing” through each other if they would only collide at a point
between two frames.

In both cases, the problem of collision detection reduces to finding the
intersection of a ray with an object. The second object is usually either a
sphere or a set of planes. In the case of a ray and a plane, we define the ray
as:

r(t)=p+tv 0<t¢

One of the simplest shapes in collision detection is an axis-aligned bound-
ing box (abbreviated AABB). The boundaries of the box are defined by six
numbers: Zmin, Tmax, Ymins Ymax, Zmin, ad 2Zmax. Finding a collision is as sim-
ple as solving for the values of ¢ where the ray reaches each of these bounds,
as shown in Figure 11.13. There is a collision if there exists a value of ¢ for
which all dimensions of r are within the bounds that specify the bounding
box. In equation form, for one dimension, the intersections with both bounds
are:

Tmin — Pz Tmax — Pz

——" L t =

Tmax
min Vg Vg

There is no problem if v, = 0 here. If the = velocity of the shape is zero, we
will divide by zero and properly indicate that the ¢ value of the collision is
infinity. However, if (zpyin — pz) is also zero, indicating that the initial point
of the ray is right on the boundary of the bounding box and is parallel to
the x-axis, we will have a case of %7 which will give us NaN. Thus, NaN is
guaranteed to indicate an intersection with the plane, while an infinity will
indicate no intersection—we would like edges of bounding boxes to indicate
collision to close gaps that might exist between two adjacent bounding boxes.
If we ensure that the v vector and the bounds of the bounding boxes cannot

be negative zero, then we will also never produce negative infinity.

FIGURE 11.13
A ray passing through an axis-aligned bounding box. Any collision occurs
when all dimensions of the ray are between the bounds of the bounding box.
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To complete our intersection check, we need to sort the intersection times.
If we enter the z, y, and z bounds of the bounding box before leaving any
of them, we will indicate a collision. Otherwise, we indicate no collision. We
need to sort as though the ordering looks like:

NaN < n < oo

This can be done by sorting using the minimum function to find the minimum
of numbers and the maximumNumber function to find the maximum. We can
complete this calculation without branching for any numerical special cases.
Tangent lines and other weird edge cases are handled by the number system.

Expanding to generic bounding boxes, a bounding box is usually defined
by six planes, organized in pairs. This is similar to the axis-aligned case, but
our intersection between the ray and the plane is now more difficult. Given a
point a that is on the plane and a unit normal vector that is perpendicular to
the plane, n, the equation for finding the intersection of a plane finds the time
where the vector between a and r(t) is perpendicular to n. That guarantees
that r(¢) is on the plane as shown in Figure 11.14. We can find that point
with a dot product:

r(t)—a]-n=0

Rearranging and substituting for r(t), we find the ¢ value by:

(P—a)'n

t=

We get the same edge cases here as in the axis-aligned case. In fact, this
equation is a generalized form of the intersection with an axis-aligned plane.
It has the same edge cases: We will get a NaN if we have v going along the
plane and p sitting on the plane, and we will get infinity if v is parallel to

FIGURE 11.14

A ray passing through a triangular section of a plane in 3D space. The normal
vector for the plane is the dashed arrow, and the point a is at its base. Note
that the normal vector to the plane is perpendicular to the vector from a to
the intersection point.



166 Floating Point Numerics for Games and Simulations

the plane and p is not on the plane. Using the sorting method above, we can
compute collisions for arbitrary bounding boxes without any branching by
allowing floating point to handle the (in this case, literal) edge cases.

The same goes for collision with a sphere. A sphere is defined by a center
point, ¢, and a radius, and we are looking for the value of ¢ that minimizes
the distance between r(t) and the center point. If that distance is less than or
equal to the radius, we have a collision. The distance is:

d(c,r(t)) = V(P + vt —c)?

We find the point of minimum distance by taking the derivative in ¢ and
setting equal to zero:

v-(vt+p-—c)

er(t) = T

d’ will never go to zero based on the denominator, so we get a zero when:
O=v-(vt+p—c)=|vf’t+v-(p—c)
Thus, the value of ¢ that gets closest to the center of the sphere is:

;v (—p)

v[?

If v is a unit vector, there is no division here at all. We would normally assume
that a ray has nonzero velocity, but if it does, this calculation will yield a NaN,
which will allow us to safely assume that the point of closest interaction is at
t = 0. In most architectures, this check and replacement can be done without
branching by using AND masks or conditional instructions. Note that there
is no chance of ¢ = oo here. This also extends simply to a “capsule” shape,
which is another shape that is commonly used in collision detection defined
by a line segment and a radius [49], and can be thought of as a sphere that is
extruded in space along that line segment.

Using simplified shapes and compound objects constructed of multiple
simplified shapes allows for fast collision detection, and working in floating
point allows the number system to handle the special cases. This is an instance
where you can simplify the code and gain performance by allowing the number
system to do what it does best.

11.7 The Gilbert—Johnson—Keerthi Algorithm

With arbitrary convex shapes, the Gilbert—Johnson—Keerthi (GJK) distance
algorithm is used to find collisions by finding the minimum distance between



Geometry in Floating Point 167

two convex shapes [50]. GJK is computationally intensive compared to the
methods mentioned before in this chapter, and works on the principle of find-
ing the origin inside a synthetic shape that is constructed by the Minkowski
difference of the two shapes being collided. Minkowski subtraction is the pro-
cess of subtracting every point in a shape from every point in another shape,
as shown in Figure 11.15. If the Minkowski difference contains the origin, the
shapes are overlapping in space. This is too computationally expensive to use
directly, but the GJK algorithm operates on this principle without computing
a full Minkowski difference.

For each shape, we define a support function that finds the point that is
further from the center of the shape in a given direction. For polygon geometry,
when the polygon is represented as a set of vertices P = {py, ..., Ppn} centered
at the origin, this is always one of the vertices from the set, specifically the one
whose dot product with the vector pointing in that direction is maximized:

S(P,v) = arg I;léi]))((p V)
For smooth objects, we instead have to find the point somewhere on the surface
that maximizes this dot product. The difference between the support function
of one shape in the +v direction and the other shape in the —v direction
gives one of the points on the edge of the Minkowski difference of the shapes.
Once we have the support function, the GJK algorithm makes use of that
support function to construct geometric simplexes in Minkowski difference
space to find the intersection of the shapes. A simplex is the simplest shape in
a given number of dimensions that encloses space, and as such is a shape
with exactly one more point than the number of dimensions: A simplex in one
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FIGURE 11.15

Two examples of Minkowski difference of shapes on cartesian plane with axes.
Left: Minkowski difference of two shapes that do not collide. Right: Difference
of two shapes that are overlapping.
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dimension is a line segment, which extends to a triangle in two dimensions
and a tetrahedron in three dimensions.

A version of the GJK algorithm for finding collisions in two dimensions
is given in Algorithm 11.3. We start constructing simplexes out of the points
that we get by subtracting the support functions of the two objects. At each
step, if we do not cross the origin, we are done because we have gone as far
as possible in that direction and there is no chance of catching the origin (see
line 8). From there, we add the new support point to the simplex and check if
it contains the origin. The check also tells us which direction to search next.
A visual example of how the GJK algorithm works is in Figure 11.16.

The main complexity of the GJK algorithm (beyond the idea of support
functions) is in handling the simplex. For the case of a simplex that does not
have enough dimensions, we gather points in the simplex until we have a sim-
plex to check (see lines 17-19). Once we have a triangle in two dimensions or a
tetrahedron in three, we check for the origin behind each edge of the triangle
(or equivalently, each face of the tetrahedron). If the origin is beyond one of
the edges, we start a new simplex from that edge, and if we find that the
origin is not behind any of the edges, we know that it is inside the simplex.
An extension to three dimensions involves adding another case to the HAN-
DLESIMPLEX function for tetrahedral simplexes that looks like the currently
written case where the simplex is a triangle.

The origin cannot lie behind the vertices of the simplex during this check.
When we choose support points at line 6, we then do a check (lines 7-8) to

xa/ ; Xp Xp* *x2 X7

v

Step 1 Step 2 Step 3 Step 4

FIGURE 11.16

Steps of the GJK algorithm looking for a collision. Step 1: Start with an
arbitrary support point, then find the direction to the origin. Step 2: Find the
support point in the given direction, and using the line created between those
two support points, find a normal vector pointing toward the origin. Step 3:
Add the support point in that direction to create a simplex, then look for the
origin, and find it past the edge from x; to xs. Step 4: Replace x¢ with a new
support point, and find the origin in the resulting simplex, which indicates a
collision.
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ensure that we have crossed the origin, and if we had chosen a support point
that did not cross the origin, that check would fail. At each iteration, we can
also rule out the entire area behind the support points taken from the simplex
in the previous iteration, because we otherwise would have chosen a different
normal vector. The algorithm given here still checks the region behind that
edge of the triangle.

Finally, there is a helper function given in lines 32-39 that finds a normal
vector of a line segment that is facing a certain direction. This is one of several
ways to do this calculation. In three (or more) dimensions, it is easy to do
this using a “triple product”. The vector perpendicular to a line from a to b
in the direction of a point c is given by:

n=[b-a)x(c—a)]x(b—a)

The GJK algorithm extends beyond polygons by varying the support func-
tion, and can support shapes like spheres, capsules, and splines. However, these
shapes that are infinitely smooth can sometimes have problems stopping and
can run into numerical instability. A polygon has a discrete set of points that
the support function can identify, so it is relatively easy to determine when
you have searched enough simplexes. When you have an infinite number of
points, you may be waiting a long time for the volume of the test simplex
to converge to zero, or you might choose to stop early and sacrifice accuracy
for speed. As the volume of the simplex gets smaller and smaller, numerical
instability also matters: Rounding and cancellation can both cause the GJK
algorithm to take steps backward. Recent efforts have improved the stability
of the GJK algorithm, but it is still too computationally intensive for certain
kinds of smooth surfaces to be used in situations other than those that need
very high accuracy [51].

The computation time required for the GJK algorithm means that it is
only used when accuracy is paramount: If drawing a number of bounding
boxes around a pair of objects can also work, the GJK algorithm is a far more
expensive way to check for collisions. The GJK algorithm and its family of
related algorithms have one final limitation: They do not work on shapes that
are in motion. The GJK algorithm detects collisions only of static objects,
so you will not get a precise time during which a collision occurred during a
simulation.

When speed and accuracy are both important, it is possible to combine
a rough check using a set of bounding shapes with a fine collision check that
uses GJK only when the rough check indicates a possible collision. This way,
almost all collision checks can be rejected easily, and near-misses are still found
accurately.
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Algorithm 11.3 The GJK Collision Algorithm in Two Dimensions
Input: Shapes A and B and their respective support functions
Output: Boolean result indicating whether A and B have collided

1: Pick direction vector d > Arbitrary first choice to search
2: x + S(A,d) — S(B,—d) > First support point
3: Create set of points X = {x} > Will hold our simplex
4: d + —x > Point from x toward the origin
5: loop

6: x + S(A,d) — S(B,—d) > Create support points
T: if x-d <0 then

8: return FALSE > New support point did not cross origin
9: end if

10: Add x to X

11: (d,r) + HANDLESIMPLEX(X)

12: if r then
13: return TRUE > Origin was in the simplex
14: end if
15: end loop

16: procedure HANDLESIMPLEX(X)

17: if |X| =2 then > Simplex is a line segment
18: n < NORMALFACING(xg, x1, O) > Normal toward origin
19: return (n, FALSE)

20: else if | X| = 3 then > Simplex is a triangle
21: for ¢ from 0 to 2 do

22: j (i+1) mod 3, k< (i+2) mod3

23: n < —NORMALFACING(x;,%;,X;) > Outward-facing normal
24: if n- (—x;) > 0 then > Origin is in the direction of n
25: Remove x; from X

26: return (n, FALSE)

27: end if

28: end for

29: return (anything, TRUE) > Origin was in the simplex

30: end if
31: end procedure

32: procedure NORMALFACING(a, b, c)

33: t<—b-—a > Vector pointing along the line segment
34: u<c—a > Vector pointing to target
35: n < (%7 —ltt—‘l) > Get unit normal vector by rotating t 90 degrees
36: if n-u <0 then

37: n< —n > Switch normals if n points the wrong way

38: end if
39: end procedure
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Check Your Understanding

Problem 11.1. Derive a transformation matrix for an arbitrary three-axis
rotation. Perform an error analysis to determine how many ULPs of error this
arbitrary rotation can induce in a vertex, assuming trigonometric functions
have up to 4 ULPs of error and rotation angles are given exactly.

Problem 11.2. Create an algorithm that finds the axis-aligned bounding box
of an arbitrary NURBS surface. Make a third-order NURBS surface with up to
25 control points inside the cube between (0,0,0) and (1, 1,1) that maximizes
the worst-case distance between the bounding box and the actual shape of the
NURBS surface.

Problem 11.3. Bresenham’s line drawing algorithm [52] is a common method
for drawing straight lines using discrete pixels. Extend Bresenham’s line draw-
ing algorithm based on De Casteljau’s algorithm to draw a Bézier curve. Use
your algorithm to create images of curves:
A third-order curve with control points {(0, 3), ( ( (
A second-order curve with control points {( 2) )
A third-order curve with control points {(0,0), (2,2), (4,2), (
A fourth-order curve with control points {(3,0), (1,2), (4,3), (
The letter “Q” constructed out of several third-order curves

Problem 11.4. Create an algorithm for turning a third-order Bézier curve
into a B-spline of the same shape, creating a knot vector and control points
for the new curve. Extend your algorithm to turn a set of connected Bézier
curves into a single B-spline.

Hint: This is easiest if you do not use a cardinal B-spline. Find the most
convenient knot vector before working on solving for the new control points.

Problem 11.5. Derive a support function for convex NURBS splines in two-
dimensional space. Build a version of the GJK algorithm for NURBS using this
function. Simulate a realistic collision between two (convex) NURBS shapes.
Qualitatively compare the result to a version of the collision simulator that
uses a bounding box and one that uses the GJK algorithm on the polygon
defined by the control points of the spline. Quantitatively compare the com-
puting time of the three algorithms.
Challenge version: Do this for NURBS surfaces in three dimensions.
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Numerical Integration

Numerical integration is involved in almost every video game. Any time a
player needs to press a button to accelerate their character, it is backed by
numerical integration. Particle simulations, fabric simulations, and fluid simu-
lations also use numerical integration, so even completely static environments
can see some use of numerical integration. It is also the backbone of most
scientific simulations, which start with a given set of initial conditions and see
how a series of forces interact over time on those conditions.

However, numerical integration can be a challenging piece to get right,
especially with long-running physics simulations or simulations that need a
high degree of accuracy. Error in numerical integration is self-compounding.
Each tick depends on the values in the previous tick, so small errors accumulate
over time into large problems. Quantization also introduces a new layer to
integration, since we are necessarily doing addition of a small delta to a larger
quantity.

12.1 Simulation Accuracy and Error

When simulating physics in floating point, we are introducing two types of
discontinuity: A discrete time dimension, stepping frame by frame, and quan-
tized space dimensions. Physics is continuous in both time and space. By
discretizing in the time dimension and quantizing in the numerical dimension,
we introduce two different types of errors that can both cause deviations from
the real physics. Many discussions of the stability of numerical methods focus
only on the physics implications of discrete time, but quantized space can also
have interesting implications. In floating point, we are virtually guaranteed
to have inexact calculations, and thus rounding, as part of physics simula-
tions, because we are working with small changes in position and velocity
during each timestep. A visual example of these types of error is shown in
Figure 12.1.

There are two interesting ways to consider simulation accuracy, both of
which can affect the aesthetics of a given simulation. These two accuracy
calculations are the error of the solution at each timestep and the error in
conservation of energy between timesteps. Short simulations, such as character
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Continuous Path Discretized Quantized

FIGURE 12.1
Comparison of a motion path when discretized and quantized from the con-
tinuous version.

jumps, and simulations that “blow up” to infinity or tend toward zero may
prefer to have better accuracy at the expense of conservation of energy, while
long oscillating simulations will often benefit from a numerical solution that
preserves conservation of energy well. However, conservation of energy may
sometimes be more important, especially for long-running simulations that
could end up having exponential runaway otherwise.

Discretization error is a commonly studied property of numerical systems
and simulations, and is also known to numerical analysts as “truncation er-
ror”, although we will refer to it as discretization error to avoid confusion
since discretization error has nothing to do with rounding by truncation. Dis-
cretization error is inherent in the nature of taking discrete time steps, and
naturally decreases as the size of simulation timesteps decreases. For this rea-
son, when evaluating accuracy of integration methods, we can characterize
them by the order of the discretization error they produce. The worst algo-
rithms have discretization error that is linear in the size of the timestep, and
better algorithms will have higher-order error.

A visual example of discretization error is shown in Figure 12.2 using a
mass-spring system. Discretization error in simulations is path-dependent: Its
future values are tightly related to its past values. This means that due to the
compounding of results, discretization error tends to produce large artifacts,
like significantly changing a movement path from what you might expect [53].
Discretization will also usually cause energy to fail to be conserved in a sim-
ulation, unless specifically accounted for in the algorithm used. Overshoots
and undershoots caused by discretization can significantly increase or reduce
the amount of total energy in a physical system by adding excess kinetic or
potential energy. In the example from Figure 12.2, we can see that as the
frame rate decreases (and as h increases), the simulation overshoots more and
more, getting close to instability at h = 0.6.

However, when we introduce floating point quantization, we introduce
the possibility of a small constant error term at each timestep related to
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FIGURE 12.2

Example of discretization error in a simulation of a mass-spring system error
with varying timestep size (h) compared to the continuous solution. The z
axis is time, and the y axis is position of the mass on the spring. Simulations
were done with leapfrog integration (see Section 12.4).

inexactness and rounding. When default rounding is used, rounding direc-
tion is essentially random when the numbers used have sufficient precision,
so quantization error will often cancel out as the simulation runs. This is not
guaranteed, though. As the precision of the calculation decreases, for example
when you put it in the distance of a scene, the calculation loses precision,
which will start to cause quantization error to become correlated with the
calculation. When this happens, the compounding blowup from quantization
error can be jarring, and can also cause instability. The normal result is that
quantization error adds some amount of Brownian motion to your simulation,
but as updates get closer to one ULP, the jitter becomes less and less random.
An example of quantization error is shown in Figure 12.3.

Interestingly, while discretization error decreases as the timestep size in-
creases, quantization error increases. With shorter timesteps, the relative mag-
nitude of updates decreases when compared to the values being updated. In
floating point, you can create a worse simulation by increasing frame rate!

A concept that is often confused with numerical accuracy is the concept of
numerical stability. Stability is a property of numerical integration algorithms
that has a set of several technical definitions, and does not say much about
accuracy in a strict sense. Many criteria for numerical stability are concerned
with what happens when time goes to infinity. In other words, if your simula-
tion always ends up reaching 0 or infinity correctly, it’s stable, no matter the
path it took to get there. Quantization can also cause instability by moving
past points where the system would otherwise be stationary.
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FIGURE 12.3

Examples of quantization error in a simulation of a mass-spring system error
with h = 0.2 compared to the unquantized version, starting with five signifi-
cant bits (ULP of - times the end state size) and going to 1.

12.2 Euler Integration

Euler integration (Euler’s method) is the naive approach to numerical inte-
gration, so we will discuss a general version before thinking about a physics-
specific version [54]. Given a first-order vector-valued differential equation:

y =f(t,y)

Euler’s method computes a discretized version of y by evaluating f at each
chosen point, moving straight down that path for a small amount of time, h,
and then repeating:

vit1 =yi +£(t,yi)h (12.1)

Essentially, Euler’s method takes the derivative in the differential equation
and makes it represent the slope of the system for a small, finite step rather
than having it represent an instantaneous slope. As h goes to 0, the iteration of
Euler’s method converges to the original differential equation. Euler’s method
has the power to also be used on higher-order scalar differential equations by
using a vector of derivatives. Taking a function of the form:

a ™Y@y = f (t,a,a’,a”, ...,a("))

We write the higher-order differential equation in the following form:
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And then discretize that system of equations using the method we saw previ-
ously:

Qi1 a; + ajh
aj ai, +al’h
al(»i)l al(»n) +f (t,a, a,a’, ...,a(")) h

In physical systems, the first equation covers the change in position over time,
the second equation the change of velocity, and so on. For games, the system
of equations often stops at position and velocity. This means that Euler’s
method as used in games is usually written as:

Tiy1 =z + f(zi,v5,0)h
Vi+1 = U5 + g(xi,vi,t)h

where g(z;,v;,t) is the entity’s acceleration, which is a function of their posi-
tion and a combination of the forces acting on the entity and the user’s inputs
(especially for players) over time, and the function f(x;,v;,t) is usually just
the entity’s velocity, but can have some modifications for collision detection or
other effects. Most objects in many games are affected by gravity, the player
has some acceleration from the controller, and other forces like object colli-
sions can also accelerate an entity. In reality, most games will have two or
three position and velocity dimensions, meaning a system of 4 or 6 equations,
but the relation between the equations holds the same as for one dimension.

Continuing with the example of Figure 12.2, damped mass-spring system,
we have the following f and g:

flz,v,t) =
E_&zﬁ(l_x)_ﬁ

m m m

g(z,v,1)

The f function is straightforward. The first term of the g function handles the
spring force, with the spring constant k£ = 5, and a mass, m of 0.5. The second
term is a damping function that models friction in the mass-spring system,
whose value is dependent on v, with a damping constant of % This system,
in physical terms, is an underdamped mass-spring system. It settles at z = 1,
but overshoots a bit and oscillates with a period of 2?” ~ 2. You may notice
that ¢ is dependent on velocity. This form works for Euler’s method, but we
will need to do some algebra for later methods.

The results of Euler integration of this system are shown in Figure 12.4.
With A = 0.01, equivalent to 100 FPS if we take one unit of time as one sec-
ond, this simulation is okay, and lines up with the real system. With h = 0.05,
we start to see some divergence, as the Euler system clearly has extra energy.
When we get to h = 0.1, there is significant divergence, and with h = 0.2, we
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FIGURE 124

Euler integration of the mass-spring system from Figure 12.2, compared
against the analytical solution. Even at h = 0.1, we get significant devia-
tion, and we are unstable by h = 0.2.

are already unstable. However, quantization hits hard when you have to use
such small timesteps. You will necessarily be adding small quantities to large
quantities, so your updates are at risk of cancellation. Figure 12.5 demon-
strates Euler’s method with quantization, showing the importance of having
enough precision for smaller timesteps. As is shown in the figure, rounding
causes energy conservation issues on its own, with the simulations at 6 bits of
significance having faster motion and wrong final settling points.

While Euler’s method is a classic and it is both easy and fast, there are few
circumstances in which you should be using Euler’s method. Other methods
with better numerical properties are equally fast and equally simple. Keeping
Euler’s method stable is often too much of a chore.

h =0.01, ULP = ; h = 0.05, ULP = L

PN
¢ A e s e et
/7 p—
;
/

h =0.01, ULP = L h = 0.05, ULP = ;1o

FIGURE 12.5

Euler integration of the mass-spring system from Figure 12.2 with rounding.
The simulations with h = 0.01 are less accurate than the ones with h = 0.05.
Both simulations with 6 bits of significance settle at the wrong final position.
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12.3 Adding Energy Conservation to Euler

One of the many foibles of Euler’s method is that it does not conserve en-
ergy. However, with a slight modification, Euler’s method becomes energy-
conserving in some limited circumstances. The modified algorithm is known
as semi-implicit Euler, and only applies to second-order physical systems
(more rigorously, to Hamiltonian systems). Unlike Euler’s method, it does not
generalize to systems of general differential equations. Thankfully, game en-
gines are built on second-order physics simulations. The modification is simple
and clever: Instead of updating position and velocity simultaneously, we com-
pute one of them forward (“explicitly”) and we compute the other one looking
backward (“implicitly”) [55]. In equation form the two alternatives are:

Tit1 = X; + f(?]i, t)h Vig1 = v; + g(xi, t)h

12.2
Vig1 = U + g(Tiy1,)h g1 = 5 + f(vigr1,t)h (12:2)

The left alternative does an implicit computation of velocity, while the left
side does an implicit computation of position. Implicit velocity is the more
common case, and usually the more useful one.

This may seem like a simple change, but we are now staggering the com-
putation of velocity and position, either using the old velocity to compute the
new position and then computing the new velocity with the new position, or
using the old position to compute velocity and using that velocity to compute
a new position. The forward-looking update adds energy to the system, and
the backwards-looking update subtracts a corresponding amount of energy.
The position update operates only on potential energy and the velocity up-
date operates only on kinetic energy. Semi-implicit Euler with implicit velocity
will thus over-estimate potential energy and then under-estimate the resulting
kinetic energy.

The mathematical term for energy-conserving approximations is that they
are symplectic. Symplectic methods do not actually fully conserve energy,
but they do conserve a relation that approximates energy. The rigorous deriva-
tion of the concept of a symplectic integrator depends on Hamiltonian me-
chanics, but we do not need it to get an intuitive understanding. Energy con-
servation is approximately correct to the order of the approximation. Since
semi-implicit Euler is a first-order algorithm, it will conserve energy to first
order, only successfully conserving energy when energy is constant.

Applying semi-implicit Euler to our mass-spring system may need us to
do a bit of algebra. Since our g function is a function of velocity, we need to
eliminate velocity by plugging v;4; into g and canceling:

h
Vi1 = Vi + 9(Tig1, Vig1, O)h = v; + - k(1 —2i41) — vig]
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Combining the v;;1 terms,

h hk(1 —x;
vt (H>:w+<w+l>
m m

Moving everything to the right side, we get:
7hk(1;mi+l) o Vi k(l — lL’H_l)

Vi + n
1+ 14k 1+ 2

Vit1 =

Semi-implicit Euler preserves conservation of energy in circumstances when
the forces applied to the object do not change over time. It is not a big deal
that there is no simple “v; +...” term on the right side of the equation, all that
matters is that v; 11 varies based on position. However, the other formulation of
semi-implicit Euler, computing velocity first, is okay without rearrangement.
The computational complexity of this iteration is not bad since most of the
terms being multiplied and divided here are constants:

Vig1 =10 + (1 — zi41)

This can be computed with a subtraction, a multiplication, and an FMA. The
full iteration has an additional FMA to update position. This simple change
in Euler’s method gives us much better simulation results, demonstrated in
Figure 12.6.

.
.....

FIGURE 12.6

Semi-implicit Euler integration of the mass-spring system from Figure 12.2
with implicit velocity, compared against the analytical solution. We retain
stability even with h = 0.6, and stay relatively accurate even with a large
simulation timestep.
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Thanks to the conservation of energy, we retain stability longer than any
previous method shown, despite overshooting. The one drawback is the need
to keep simulation equations in this type of canonical form. However, we still
needed to do some algebra here when we have friction forces and other forces
based on the velocity of the object being simulated, making simulator engines
substantially harder to write when these forces are present. To overcome this,
many graphics simulations use a form of dynamics that is based entirely on
position, known as “position-based dynamics” [56]. In this case, the algebraic
manipulation we had to do is built into the physics system.

It is also possible to calculate position implicitly while performing a for-
ward calculation of velocity. For this mass-spring system, it is much simpler to
do so because we don’t need to run the velocity calculation. This simulation
would also be a semi-implicit Euler calculation:

h
Ui+1 = V; + E [k(l — Iz) — 1)1;]
Tit1 = T + Vigp1h

This is a far less common form of calculation, since the algebra we did on
velocity now must be done for position, which can be more complicated when
considering simulations that have collisions or other forces that are position-
dependent. For completeness, simulations with this method are shown in Fig-
ure 12.7. Especially with position-based dynamics, this form of semi-implicit
Euler is not usually used in practice.

[ e S SO
f‘ /'/
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FIGURE 12.7

Semi-implicit Euler integration of the mass-spring system from Figure 12.2
with implicit position, compared against the analytical solution. While the
previous simulation “dragged” behind the real system, this version runs ahead,
and becomes unstable on this system at a lower h.
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12.4 Leapfrog Integration and Velocity Verlet

Leapfrog integration improves on Euler’s method with a simple idea that
takes the idea of semi-implicit Euler one step further. We update velocity on
synthetic half-frames and update position on the whole-number frames. The
iteration loop is:
Vi1 =v1 +g(@i t)h (12.3)
Tiq1 Zl‘i-I—UH_%h
If g depends on v, we need to compute it implicitly at v = v;. In order to
substitute v; for g in our mass-spring system, we use a linear interpolation of
the velocity halfway between the step we have already calculated and the step

we are about to calculate:
Vipl 01
vy = 72

Then we need to do exactly what we did in semi-implicit Euler to isolate the
v; terms:

hk h [+ +vi—1] L hk(1 — @)
. = hlvifl + ’
1+s5- 2 m+ 3

Canonically, the entire acceleration update rule goes into the velocity cal-
culation, while the position update rule becomes a simple move by the calcu-
lated velocity. However, we need to set an initial value for v_ 1 or compute vy,
which is not necessarily equal to vg. The typical method for doing this is fo
do a half-sized round of Euler simply to find v 1 , and then move on to leapfrog
integration for the rest of the simulation. Agaln despite looking complicated,
most of the complexity is in the form of constants, and the compute time is
exactly the same as semi-implicit Euler.

Despite the computation time being the same as semi-implicit Euler,
leapfrog integration is a second-order method. Its accuracy is quite a bit better
than semi-implicit Euler in most cases. Leapfrog integration is also symplectic,
and behaves well for simulations that rely heavily on conservation of energy.

Figure 12.2 from the beginning of the chapter was generated using leapfrog
integration. It is our first second-order method, and as such has better dis-
cretization error scaling than the first-order methods we have discussed. Com-
paring Figure 12.2 to Figure 12.6, it looks like we are actually doing worse
than semi-implicit Euler, given the inaccuracy with A = 0.6, but we are look-
ing at the long-range behavior of the simulator in a periodic system. What
we see here is actually that semi-implicit Euler with implicit velocity actually
has better behavior on periodic systems with large h, due to the fact that
velocity of semi-implicit Euler runs a step ahead, while leapfrog integration
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only runs half a step ahead. Leapfrog integration of periodic systems is stable
only when h < 2 where w is the angular frequency of the oscillation (in this
system, w = 3), and since we are simulating with double precision, we expect
stability to break at a slightly lower h.
If we look at the error of the simulation at a high step rate, we get a com-
parison like Figure 12.8. This shows a significant improvement of accuracy
compared to semi-implicit Euler, as would be expected from a second-order
method when compared to a first-order method. When we consider quanti-
zation, the errors look like Figure 12.9. With enough bits of significance, the
higher-order method performs as expected, but note that the shape of the
error is no longer smooth. As the significance level decreases, the difference
in accuracy between semi-implicit Euler and the leapfrog integration method
decreases, to the point where both reach a wrong settling point and have
comparable levels of error on small motions. The higher-order integrator still
performs better when the simulation moves quickly, but as the dynamics level
out, the error from quantization becomes dominant over the error from dis-

cretization.
14
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FIGURE 12.8

Simulation results using leapfrog integration and semi-implicit Euler using
h = 0.05, with two plots of approximation error at different scales. The black
line is exact, dark gray dots are leapfrog, and light gray dots are semi-implicit

Euler.
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FIGURE 12.9

Comparison of simulation error for semi-implicit Euler and leapfrog integra-
tion with A = 0.05 and varying quantization levels, showing the jitter effect
from rounding. The simulation with only 7 bits of significance has similar per-
formance for the two algorithms, and also has a wrong settling point in both
algorithms.

Instead of doing this level of algebra, it is possible to split the velocity

calculation during leapfrog integration into an iteration with three steps:
Vipl = v+ g(zi v, )2

Tit1 = T4 + ’Ul-_,'_%h (124)
Vi1 = Vi1 + 9(@is1,vigr, t+ h) G
While more computationally intensive at runtime, this allows us to use g as
a function of v; in a straightforward way, and it allows the method to work
with a non-constant timestep. It has the somewhat ferocious name of the
kick-drift-kick formulation of leapfrog integration. In this case, acceleration
feeds to velocity explicitly in the first velocity update step, and implicitly
in the second update step. Practically, this allows the second update step
to look like semi-implicit Euler when acceleration depends on velocity. This
formulation is also a form of velocity Verlet integration, which is one of the
most common forms of numerical integration in game engines today.

Unlike leapfrog integration, which combines these three steps by keeping
the velocity step staggered with the position step, the common form of velocity
Verlet accepts a second-order term in the position calculation to keep the
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updates of position and velocity aligned in time:
Tit1 = T4 + Uih + %g(x“t)hz

g(zi,t) + g(xip1,t +h) (12.5)
+ 5 h

Vi1 = V4

The two-equation form of Verlet assumes that g is independent of velocity,
and there is no easy way in this expression form to perform the transforma-
tions we have before to remove velocity from the equation. This form also
assumes a timestep of a constant size, while the kick-drift-kick form does not
require a constant timestep. Some simulation engines will use the kick-drift-
kick form for this reason, despite the fact that it is slightly more computa-
tionally expensive. However, the two-equation Verlet formulation is a favorite
in game engines that can use a constant simulation frame rate and prefer the
higher-performance variant.

Hacking Velocity-dependent Dynamics into Velocity Verlet

Implementations of velocity Verlet will sometimes add velocity-dependence to
g by using v; and adding a straightforward “acceleration” step between the
updates of position and velocity instead of depending on v;41 [57].

This addition will significantly compromise the numerical accuracy of the
integrator and break its equivalence with leapfrog integration, as well as break-
ing energy conservation. For the kick-drift-kick form:

Vitl =Ui+ai,t%

Ti+1 :xi+vi+%h

Ai+1 = g(l'7;+1,’l)i+%,t + h)
Vit1 = Uiyl + a¢+1%

where we accept a velocity half a step behind for the acceleration calculation,

and for the simplified velocity Verlet form we accept a velocity a full step
behind:
Tit1 = X; + v;h + %aih2

ait1 = g(Tit1,vi,t + h) (12.6)
Vi+1 = U; + %h

Both of these are compromises of numerical accuracy against the avoid-
ance of a need to do algebra, and the compromise is significant. In each of
these cases, the acceleration is calculated as a straightforward computation
based on the forces on the object just like in Euler’s method. However, using
properly implemented leapfrog integration or semi-implicit Euler will usually
give better results, and this actually transforms the symplectic second-order
method of velocity Verlet into a non-energy-conserving first-order method.
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12.5 Predictor-Corrector Methods

Up to now, we have been refining Euler’s method by altering the times at which
we sample and calculate things. Semi-implicit Euler performs a backwards
calculation and a forwards calculation, and velocity Verlet takes velocity at
the midpoint between position updates. Another high-level approach we can
take is that we can spend longer calculating to use a more accurate estimate
of the slope by making and refining our predictions. The general class of
algorithms to do this has the name predictor-corrector methods, since
these methods make several predictions and self-correct each time.

We saw with the leapfrog method that taking velocity samples at the mid-
points between position samples gives us significant improvements in accuracy.
Going back to the original Euler formulation:

v =f(t,y) — yip1=yi+£(tyi)h

We would prefer to compute:
Yir1 =yi+f (t + %,YH%) h

As with leapfrog integration, this approach should square our error and pro-
duce a second-order method out of our original first-order Euler method. The
problem is that we don’t know y, 1 exactly. However, we can just use Euler’s
method to estimate it:

Yipr 2 yi+f(tyi) 5
That gives us the midpoint method for numerical integration:

Yirr=yi+f(t+ Ly +f(t,y:) &) h (12.7)

At each step, we first take half an Euler step forward, but then instead of
using that result, we evaluate f, the slope of the path of y, at that point. We
when discard that Euler step and add our newly computed slope to y;. This
allows us to take our slope calculation at a pseudo-midpoint between y; and
Yi+1-

We have another option to get our midpoint slope, which is to average the
slopes at y; and y;11:

f(t+ 8y~ £ (t,yi) +f§t+ h,yis)

We still have the same problem, which is that we don’t know a;. We can just
estimate it, however, using Euler’s method. We will then discard the result,
as with the midpoint method, and use the estimated future value of y to get
a better iteration step:

Vi1 =yi +£(t,yi)h
(12.8)

h N
Yit1 =Yi + 3 f(t,y:) +f(t+h,yit1)]
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This method is called Heun’s method, after the mathematician who in-
vented it, and is also called the “trapezoid rule” in connection to a method
of integrating functions of known value. Heun’s method can be alternatively
formulated as a combination of Euler’s method (looking forward) and then
the trapezoid rule (looking backward).

Both of these methods build on Euler’s method by using Euler’s method
to find a midpoint value, either of y or f, and plugging that in as our new
increment for the step. Incidentally, both methods are known as the “modi-
fied Euler method” to different people. A graphical representation of what is
happening in each of these methods is shown in Figure 12.10.

Interestingly, on the mass-spring system we have been working with,
Heun’s method and the midpoint method produce exactly the same calcu-
lation. This will be true for several physics systems, especially with time-
independent dynamics. In this case, midpoint integration uses the following
formula for position:

Tip1 =T+ v h =2+ v + Bg(ai,vi)] h

We can rearrange this a bit to see that it is in fact equal to the Heun’s method
formula:

Tip1 = Tit 5 (200 + g(25, 0] = 2% [vi + vi + g(23,00)B] = T+ [vi + Tig]

We can see that we just have v; +0;41 in the parentheses. A big difference be-
tween midpoint and Heun comes from time dependence, but there is no time
dependence here. A similar transformation happens with the velocity formula.
Several example simulations of this system with midpoint/Heun integration
are shown in Figure 12.11. The result is nothing special, but falls in the same
class as velocity Verlet. It is reasonably accurate, but struggles with the pe-
riodic behavior as h increases. You can also see in the figure that for higher

.7 Vieh)2 Xitlg o= ==

Vi+hi2
(transposed)

Xi

Midpoint Method Heun’s Method

FIGURE 12.10

Geometric approaches to second-order predictor-corrector methods. The mid-
point method advances up to the midpoint of the Euler step (solid gray arrow)
to find the derivative at the midpoint, which is used to update position. Heun’s
method advances to the end of the Euler step to find the “next” derivative,
and averages the initial and final derivatives.
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FIGURE 12.11

Midpoint/Heun Euler integration of the mass-spring system from Figure 12.2,
compared against the analytical solution. Note that the frequency of oscillation
increasing as h increases.

h, the frequency of oscillation increases: At h = 0.2, the midpoint method
oscillates slightly faster than the system, and as of h = 0.4, the frequency
difference is prominent. This is due to the fact that midpoint integration adds
energy to the system, just like Euler integration. We have left the realm of
symplectic integrators.

Midpoint integration is also somewhat slower than Euler. We effectively
do two Euler rounds for each simulation step. This will also make midpoint
integration slower than leapfrog integration and even possibly slower than the
velocity Verlet formulations. The benefit of midpoint integration is that it is
not specialized to second-order systems like those alternatives.

12.6 Runge-Kutta Methods

We have done one round of prediction and correction, so why stop there? The
most popular method for simulating differential equations doesn’t: It goes
through another two rounds of correction. Our original motivation was to find
the derivative in the middle of y; and y;41, instead of using the derivative at
the start, to find a good slope between the two points. However, it doesn’t
address the curvature of the space between the two points well. That curvature
is the realm of the higher-order derivatives.

To motivate the Runge-Kutta methods, think about the Taylor series of
y(t): . \

y(t+h) =y() +hy'(t) + 55" () + Ly (1) + -

We know y(¢), and our midpoint-based estimators are good at getting a first
derivative that is as close to hy'(t) + h;y”(t) + --- as possible. However, if
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we keep testing the error of our approximation, we can start to account for
higher-order variance. To get there, we will have to do some calculus when we
substitute based on y’ = f(¢,y). If we expand our Taylor series, the first two
terms are simple, but later terms need to use the chain rule since f depends
on both ¢ and y(t), and they get very complicated:

h2 [df  df
t+h) =yt +hf+ = |5+ T
(o) =y + e+ |G B
n? (@6 (df\®, 3, dfdf [ ddf
T (8 e o S8 o (LR )
+6 dt2+(dy> +dy2 +dtdy+ (dtdy)}
+...

If we want to search further derivatives of the path of y, we need to be able
to probe the field of f to get a combination of derivatives that line up with
parts of this Taylor series.

As before, we will be probing by making predictions (ki, ks, ..., k,) and
stepping forward on our predictions to evaluate the next direction to probe.
In a general form, the first two predictions we can make are a generalization
of the midpoint method:

kv =f£(ti,y:) (Euler)
ko = £(t; + coh,y; + as1k1h) (Generalized Midpoint)

We first try the Euler vector. Every algorithm we have done has started here,
and there are no parametric constants to deal with. The next thing we do is
take ko as the vector at some point down the Euler vector, parametrized by cs
and as;. as1 dictates how far down we go on k7 in y space, and ¢y dictates how
much time we advance. Usually, we will have ¢y = as1, but in a generic form,
we leave the constraint free. We can go further by defining a third probe:

ks = f(t; + csh,yi + [as1k1 + as2ka)h)

Keeping things generic, our third probe line goes forward in time by c3 and
advances down some linear combination of ky and ko, parametrized by as;
and age respectively. Now that we have the idea, there’s no reason we can’t
go further:

ky = £(t; + cah, yi + [as1k1 + asoky + ayzks]h)
ks = f(t; + csh,yi + [as1k1 + asoka + as3ks + asaka)h)

n—1
kp=f <ti +cnyi+h Z anmkm>

m=1
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At each step, we use the information from the previous probes to determine
where to aim next, and sample that vector. Once we have all of our predictions,
we can produce a new value of y as a weighted average of those predictions:

n
Vi1 =yi+h) bk
i=1

Now the only thing that remains is to solve for all the a’s, b’s and ¢’s to
produce a useful method. If you got through all that, you have finally reached
the hard part! This is generally done by solving for a’s, b’s, and ¢’s with a large
system of equations to match some number of terms of the Taylor series from
above. Methods of this generic form are known as Runge—Kutta methods
(RK for short), after the two mathematicians who described the framework
and first applied it.

Just for fun, let’s solve for a second-order Runge-Kutta method. To keep
our error third-order or worse we can put the Runge-Kutta solution on the
left and the second-order Taylor expansion of y on the right side of the equals
sign: )

yi: + h(b1/€1 + bzkz) =y;+ hf(ti,yi) + % |:Z£ + ;l}f,f:|
Simplifying a bit by dropping the constant terms (and putting the derivatives
into nicer notation):

h(biky + boks) = hE(ti, yi) + 2 (£ (ti, yi) + £y (i, y) £ (i, yi)]

The ko term will not expand nicely if we try to just substitute it—=k, depends
on f evaluated at a point dependent on f, and doing that evaluation will not
give us a generic method. However, we have already started taking Taylor
series and dropping high-order terms, so let’s take a first-order Taylor series
of ko around h = 0:

ko = f(ti,yi) + hlcafi(ti,yi) + anfy (ti, yi) £(ti, yi)]

Since we’re going to multiply this series by h, we only need a first-order series
to get a second-order approximation on the left side of the equals sign. k1 =
hf(t;,y;) is also easy to put in exactly without approximating. This gives us
a new equation to solve:

hE(ti,yi) (b1 + ba] + B [bacafi(ti, yi) + boaoi fy (ti, yi) £ (i, yi)]
= hf(t;,y:) + %2 £ (ti,yi) + £ (ti, yi)E (i, yi)]

Isolating the h part and the h2? part, we get a system of two equations with
four variables:

£(ti,yi) b1 + b2] = f(ti,y:)
bocofy(ti, i) + baas fy (i, yi)E(ti, yi) = & [ (ts, i) + £ (8o, ya) £ (ti, i)
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That gives us four simple rules to make a second-order Runge-Kutta method:

by +be=1 (from linear term; coefficient of f)
baco = % (from quadratic term; coefficient of f;)
boao = % (from quadratic term; coefficient of fyf)
by #0 (force nonzero second-order term)

We can choose any set of coefficients we would like within these rules, although
it helps if all of the ¢ and a terms are positive so that we are actually making
predictions.

Let’s choose by =1, by =0, co = as = %:

ko =1 (i + 2, yi + 28 (ti, y:))
Yir1 = Yi + kah

We can combine these together, and we will get something that looks suspi-
ciously like the midpoint method (see equation 12.7):
Yier=yi+f(ti+ % yi+ LE(ti,y:)) b

The midpoint method is a second-order Runge-Kutta method. Similarly,
choosing b; = by = % with ¢ = ag; = 1 gives us Heun’s rule, which is another
second-order Runge—Kutta method. Incidentally, a mathematician named An-
thony Ralston came up with his own second-order Runge-Kutta method with
minimized bounds on discretization error of a generic system, using b; = i,
by =3, and ¢ = a1 = 2. As you might suspect, Ralston’s RK2 will produce
the same result on our example mass-spring system as the midpoint method
or Heun’s method [58].

The most popular Runge-Kutta method comes from Kutta’s paper in
1901, and is a fourth-order approximation. The fourth-order system of equa-
tions has 11 equations and 13 unknowns, so like the second-order system, there

is a family of possibilities. The most popular one, known as Runge—Kutta
4 (or RK4) has [59]:

02:% ami%
3 =13 azy =0 aze = 3
C4:1 a41:0 a42:0 a43:1
b =§ by =3 b3 = 3 by = ¢

This is often presented in a simplified visualization called a Butcher tableau,
where the a, b, and ¢ constants are laid out as above. The Butcher tableau for
RK4 is:

= N NR O

o=l O O =
Wl O Nl
Wl =

o=
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Each row of the Butcher tableau corresponds to the factors used to calculate
each probe vector, starting with ¢; = 0 for the vector k; (the Euler vector),
indicating that we take our first probe at the start of the time window. The
second row shows co and ao1, which calculate ks, and so on. The final row
of the Butcher tableau, below the line, shows the b’s used for combining the
vectors.

In equation form, RK4 looks like:

ki =£(t,y:)
ko =f (ti+ %, yi+ 5k1)
ks =f (ti+ %, yi + 5ko)
ke =f (t; + h,y; + hk3)
Yir1 = ¥i + %(k1 + 2k + 2ks + ky)

This method has a graphical interpretation shown in Figure 12.12, and there
are enough zeros on the probe directions (a’s) to make the geometry of it
meaningful. We first cast the Euler probe and then run halfway down that line
(c2 and ag1) to find our next vector. We then go down that next line halfway
(cs and agse) to get our next test vector. We then get our final test vector,
which we go down all the way to get our last sample. We then take a weighted
average of our probe results, with the middle two probes having double the
weight of the first and last ones. Intuitively, we are giving the direction of the
field in the middle of the step more weight, while still accounting for the start
and the end to cover curvature.

This is not the only Runge-Kutta method of order 4, although it is prob-
ably the most intuitive fourth order Runge—Kutta method. Anthony Ralston,

FIGURE 12.12

Geometric approach to the common Runge-Kutta 4. The four probes are sent
out in order based on the result of the previous probe, and we take a weighted
average of the samples.
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who computed the minimum-error RK2 iteration we looked at before, also
computed a form of RK4 that minimizes discretization error. Ralston’s method
has the Butcher tableau [58]:

0
2 2
5 5
14—3v5 | —2889+1428v5  3785—1620V5
16 1024 1024
1 —33654+2094v5  —975—3046v5 467 0404203 9685
6040 2552 240 845
2634245 125—1 0005 3426304+1661952v/5  30—4v5
1812 3828 5924 787 123

These are not nearly as nice as his RK2 constants were! All Runge-Kutta
methods take super-linear computation time with respect to their order, but
Ralston’s method is even slower than the classical fourth order Runge—Kutta
algorithm because there are no zero constants. Ralston’s method also isn’t
asymptotically better—it’s still fourth order—and as we saw from the mid-
point/Huen comparison, Ralston’s method will actually produce the same re-
sult on this simulation as the classic RK4. I would not suggest using Ralston’s
RK4 method at all—faster methods are available that are better—but to get
some feel for what’s going on here and the power of general predictor-corrector
methods, a graphical representation of Ralston’s RK4 is in Figure 12.13.

Ralston’s RK4 method also underscores the point that Runge-Kutta meth-
ods of order n only cast n vectors, but may use a number of mathematical
operations proportional to n?: The nth vector has n parameters, which techni-
cally are tunable if you need to do so. Higher-order Runge-Kutta methods—
even ones that have plenty of zeros—scale the compute cost of the integrator
rapidly.

Simulations of RK4 on the mass-spring system are shown in Figure 12.14,
and an accuracy comparison to leapfrog is shown in Figure 12.15. Runge—
Kutta 4 is very accurate for simulating this system, beating out all prior

FIGURE 12.13

Geometric approach to Ralston’s Runge-Kutta 4. The idea of walking down
vectors to find probe points is similar to classic RK4, but the vectors and walk
distances have been tuned.
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FIGURE 12.14

Runge-Kutta 4 integration of the mass-spring system from Figure 12.2 com-
pared against the analytical solution, showing the accuracy of the simulation.
RK4 tracks the correct path closely even with h = 0.4 and h = 0.6.

simulations from this chapter both for stability as h increases and accuracy
with a small h. We do pay for it, though: RK4 requires us to compute and
average 4 different test points to find its final simulation update. This means
using more than 4 times as much compute time as a method like leapfrog
integration. For some simulations, this is the appropriate balance between
compute time and accuracy, but it is certainly biased toward accuracy. For
higher accuracy, fifth- and sixth-order Runge-Kutta methods are available,
and many of these methods have an adaptive step size to reduce overhead.
Under rounding, RK4 continues to perform well unless the time step is
small, and until there are too few bits to support the subtleties of the math
being done. An example of this is shown in Figure 12.16. With only five sig-
nificant bits, RK4 can produce a decent simulation of the mass-spring system.
However, RK4 is not energy-conserving and neither is rounding, so under
heavy quantization, we can see spurious oscillations occur. Part of the reason
for both the good performance and the oscillation is the final averaging step.
When there are enough significant bits, this averaging step reduces quantiza-
tion error by averaging it out. When there is too little significance, RK4 can

0.004
0.002 5.x10 v

0.000/ IR s '-." W

-0.002

-0.004
0 1 2 3 4 5 6 0 1 2 3 4 5 6

FIGURE 12.15

Error of Runge-Kutta 4 (black) compared to leapfrog integration with h =
0.05. The order of magnitude difference is substantially larger than the differ-
ence between leapfrog and implicit Euler.
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FIGURE 12.16

Examples of quantized simulations with Runge-Kutta 4. RK4 still has issues
with high sample rates under quantization. Note that with A = 0.4, both
simulations oscillate due to energy adding from rounding.

often oscillate because inexactness in the averaging step compounds. Quanti-
zation can also add enough error that using a high-order method gains you
nothing. The example in Figure 12.17 shows that the mass-spring system has
no accuracy gain over velocity Verlet until there are at least 11 bits of pre-
cision available. Even though you might prefer RK4’s numerical accuracy for
things like a main character’s clothing, that accuracy may not be available.
If you are doing a simulation where you care about accuracy but don’t need
conservation of energy, it is hard to beat the Runge-Kutta methods, and RK4
in particular has a decent balance of speed and accuracy. It is also a common
method to see in graphics and video game engines. Simulations of dynamic
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FIGURE 12.17

Error of Runge-Kutta 4 (black) compared to leapfrog integration with h =
0.05 under quantization. No significant accuracy difference occurs until 11 bits
of significance, and even then the difference is small compared to unquantized
(see Figure 12.15). Note that the bottom two charts with over 10 bits of
significance have a smaller scale than the top two.
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systems with fewer speed constraints will often use high-order Runge—Kutta
for short-range simulations, but switch to a symplectic method for long-range
simulations where energy conservation comes more into play. However, Runge—
Kutta methods are not limited to RK4 and the second-order methods. A fifth-
order method with adaptive step size and a sixth-order method have gained
popularity in some simulations, but the fourth-order method provides the best
balance of runtime and accuracy [55].

12.7 Direct Calculation of Trajectories

So far, the methods presented in this chapter have related to the numerical
simulations of a generic class of problems in differential equations called initial
value problems. Initial value problems are characterized by systems of differ-
ential equations, such as Newton’s laws of motion, and an initial condition.
Numerical integration extends this idea in that we don’t have a single initial
value but a continuous input, and is unavoidable when we have things like
player controls to consider. However, when we are solving initial value prob-
lems, we are not limited to approximating. If we can constrain the problem
enough, we can calculate a closed-form solution ahead of time, and simply run
that solution.

Projectile motion is a common situation where there is a simple closed-
form solution. The projectile is launched with a specific initial velocity, and
continues moving, only affected by gravity, until it hits something. We can
represent projectile motion by simulating the (fixed) force of gravity on the
projectile as it continues along a linear trajectory in the other dimensions, or
we can simply pre-calculate the positions at each timestep using the equations
for free-fall motion, with = as the distance along the horizontal dimensions and
y as the vertical dimension:

x(t) = xo + v (t — to)

y(t) = yo + oyt —to) + %g(t — 1)’
At each timestep, we advance x and y without using the previous timestep’s
result. Doing the algebra, this equation corresponds perfectly with the velocity
Verlet solution with continuous space, which should be expected given that
this is a simulation of a second-order system with conservation of energy.
However, when quantization is considered, we do not accumulate quantization
error over the flight of the projectile. Instead, quantization error of x is at
most one ULP, and quantization error of y is at most two ULPs throughout
the simulation, and likely less. We don’t mind if we have an underflow or
if a term is swallowed in the sum of position, acceleration, and velocity. We
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will simply re-calculate the next value from scratch in the next iteration. In
graphics terms, that ULP is also likely to be far less than the size of a pixel.

In this case, the closed-form solution is not any faster (or slower) to com-
pute than the solution obtained from numerical integration, but it is more
accurate. In cases of more complex motion, direct calculation can be more
expensive in computational terms than the approximation. In the case of our
mass-spring system, the simulation timesteps for most methods are only a few
multiplications and additions, while a direct calculation for the mass-spring
system requires computing two transcendental functions:

z(t) =1 — exp(—t) cos(3t)

This result will likely be slow, inaccurate, or both. However, direct calculation
is the only method that does not suffer from the accumulation of error over
time.

12.8 Comparison of Numerical Integrators

We have discussed several different numerical integration algorithms, and their
respective tradeoffs. A summary of is in Table 12.1, and a visual comparison

TABLE 12.1
Summary of common methods of numerical integration and their upsides and
downsides, comparing order, RMS error at h = 0.1 when simulated with

double-precision float, and operations per iteration to simulate a mass-spring
system. Starred methods respect energy conservation. The exact number of
ops used by direct calculation depends on math library.

Method Order Error (h=0.1) Iteration Ops
Best-known Methods

Euler (12.1) 1 0.116 4
Semi-implicit Euler* (12.2) 1 0.037 4
Velocity Verlet* (12.4, 12.5) 2 0.005 7
Hacked velocity Verlet (12.6) 1 0.044 6
Midpoint (12.7) 2 0.008 8
Runge-Kutta 4 4 0.00004 22
Less Common Methods

Leapfrog* (12.3) 2 0.005 4
Heun (12.8) 2 0.008 8
Ralston RK2 2 0.008 12
Ralston RK4 4 0.00004 35
Direct Calculation® 00 Near 0 30-60
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Euler’s Method Semi-implicit Euler’s Method
Leapfrog Heun/Midpoint
//
“Hack” Velocity Verlet (12.6) Runge-Kutta 4

FIGURE 12.18

Visual comparison of mass-spring system simulations with h going from 0.05
to 0.6. First-order methods are on the first row, second-order methods on the
second row, and two other methods are on the last row: Velocity Verlet with
the explicit velocity hack (Equation 12.6) and RK4.

of these algorithms on a damped mass-spring system is shown in Figure 12.18.
A plot showing their error as tick size changes is given in Figure 12.19.

We started with Euler’s method, the naive approach to numerical integra-
tion, and noted how it needed a high simulation frame rate to even converge,
let alone producing accurate results, and then we modified it to compute one
term implicitly, generating an algorithm that is more stable and performs well
on periodic simulations. We also saw the tradeoff between discretization and
quantization error that occurs when setting the frame rate, and how high
frame rates can hurt simulation accuracy when quantization comes into play.

From Euler, we looked at ways to perform updates at the midpoints be-
tween our calculations to create second-order approximations. When we spe-
cialize around having an equation for position and an equation for velocity,
we can leapfrog between them, creating the second-order methods of leapfrog
integration and velocity Verlet. When we look more generally, we can attempt
to use Euler-like steps to predict possible next values of our simulation, and
compute our actual next value based on the midpoint of that prediction or the
average of multiple predictions. Finally, we extended the process of prediction
and correction to a set of higher-order methods that have very high numerical
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FIGURE 12.19

Log-scale plot of root-mean-squared error of each simulation run on our mass-
spring system across all the methods discussed in this chapter. At low tick size,
accuracy improves by orders of magnitude as order of the numerical method
increases, and at higher tick size, stability becomes more important.

accuracy. We finished the discussion with a small discussion of direct calcula-
tion, an alternative to simulation when we have a simple closed form.

In some of these cases, specifically the time-staggered approaches of
leapfrog, velocity Verlet, and semi-implicit Euler, we needed to do some alge-
bra to account for velocity-dependent acceleration. In some contexts, this lim-
itation may preclude these methods if this algebra needs to be done program-
matically. Similarly, these methods cannot be adapted to simulate third-order
or higher-order differential equations. The Runge-Kutta family of methods
are more generally applicable.

Referring back to Table 12.1 and Figure 12.18, semi-implicit Euler
and leapfrog integration outperformed other algorithms in terms of the
speed/accuracy tradeoff on our example periodic system. However, Runge-
Kutta 4 still had the best simulation accuracy overall. We can also see this
comparison in another way in the root-mean-squared error of the simulations,
shown in Figure 12.19. With a fast simulation frame rate, RK4’s accuracy
was pixel-perfect, even when zoomed in, while the second-order methods had
RMS error of around 10~# and the first-order methods had error near 102.

We will end with a final visual comparison, in Figure 12.20, of an eccentric
orbit of a planet around a sun. All numerical integration methods have a fail-
ure mode here compared to a direct calculation. Error in the non-symplectic
integrators manifests as energy gain or loss in the system, resulting in the
planet either shooting off into space or crashing into the sun. Error in the
symplectic integrators manifests in an orbital procession, where the orbit’s
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Midpoint Method

Runge—Kutta 4

Semi-implicit Euler

Velocity Verlet

FIGURE 12.20

Direct Calculation

Visual comparison of an eccentric orbit as simulated with the methods from
this chapter. Aside from direct calculation, every method has a failure mode:
Euler and Midpoint add energy to the planet, causing it to break orbit and fly
off. RK4 subtracts energy (very slowly), causing the planet to crash into the
sun and finally become unstable. The symplectic integrators cause a spurious
procession of the orbit, while maintaining orbital altitude.
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altitude stays the same, but it slowly rotates around the sun. This is not a
quantization artifact either: The simulations in Figure 12.20 produce nearly
identical results down to relatively low precision. In many cases, with numer-
ical integration, you will simply have to pick your desired failure modes.

General Recommendations for Numerical Integration

e For accuracy, prefer velocity Verlet or leapfrog integration for long simula-
tions and RK4 for short simulations. Consider higher-order methods (e.g.,
fourth order symplectic or sixth order Runge-Kutta) if these are insufficient.

e For speed, prefer leapfrog integration for the best tradeoffs of speed and
accuracy or alternatively consider semi-implicit Euler.

e When specializing for Newtonian physics, there are more accurate algo-
rithms the same speed as Euler, and there are equally good algorithms that
are faster than midpoint.

e Position-based dynamics greatly simplify the math involved in the semi-
implicit methods, including leapfrog and velocity Verlet.

e Higher-order methods with wide step size get the same accuracy as lower-
order methods with smaller step size.

e For faraway or heavily quantized simulations, a larger simulation tick size
may increase accuracy, and a higher-order algorithm probably won’t.

Check Your Understanding

Problem 12.1. Simulate a predator-prey system. The predators prefer to
stay away from each other and are attracted toward prey. The prey prefer
to run from the predators. Have the predators eat any prey that is within a
radius of them, and have the predators die if they haven’t eaten in a certain
amount of time. Model each of these preferences as a force on the predators
and the prey, but also cap the speed of the predators and the prey. Once
you have your system, simulate with a numerical method of your choice. Find
conditions where the predators eat all the prey. Find conditions where the
prey outlast the predators.

Consider also adding: Herd behavior for prey, impassable obstacles, or food
sources for prey.

Problem 12.2. Make a simulator for a cannonball shot out of a cannon with
Euler integration and single-precision floating point. Move the cannon toward
x = oo until you get a result you didn’t expect. Vary simulation frame rate
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until you get a result that you didn’t expect. Use a second-order method and
see where your error conditions continue.

Problem 12.3. Make a simulation of a rope bridge accounting for the weight
of the planks of the bridge and the tension of the rope between planks (do a
2D side view to make this simpler). Drop a ball on the bridge, and simulate
the collision and forces from the collision. Try making the planks of the bridge
lighter and see what happens to the simulation.

Problem 12.4. Make a simulator for planetary orbits around a star using at
least a symplectic integrator of your choice and a predictor-corrector method,
recreating the results of Figure 12.20. Try a circular orbit and an eccentric
orbit. Find the values of h for each algorithm where the orbit looks visually
stable.

Add a direct calculation of an orbit to your simulator (Hint: Use polar
coordinates and follow Kepler’s equations of motion). Compare the results.

Problem 12.5. Come up with a scheme for a directly computed double jump
in a 2D platforming game, modeling each jump as an instantaneous upward
force, with the double jump canceling downward momentum. Come up with
a scheme for numerical calculation of the same jump using a first- or second-
order method. Which scheme performs faster? Which looks better?

Some games add variable gravity, where gravity increases as a player de-
scends. Incorporate that into your scheme. Compare numerical methods to a
direct calculation.

Problem 12.6. Implement a simulation of a triple pendulum using RK4
and velocity Verlet. Give the pendulum small perturbations. Do the results
match your expectations? Try giving larger and larger permutations until the
pendulum does something unintuitive.
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