Third Edition

Essential Mathematics
for GAMES and INteractive
Appllcatmns

~ James M.

Lars M. I;IShOI{

//llll_\\ ‘ ‘\
MIPESmaN
Nz 'lla“* V
Wﬂg BRI |
o i':'éu‘hw |
Nauwy

CRC Press
Taylor & Francis Group
AN A K PETE

Essential Mathematics
Games -« Interactive
Applications

Essential Mathematics
Games -« Interactive
Applications

James M. Van Verth
Lars M. Bishop

CRC Press

Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN A K PETERS BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150713

International Standard Book Number-13: 978-1-4822-5095-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To Dad and Mom,
for all your love and support. —Jim

To Jen,
who constantly helps me get everything done, and

to Nadia and Tasha,
who constantly help me avoid getting any of it done on time. —Lars

Contents

Preface Xix
Authors XXii
Infroduction XXV
1. Representing Real Numbers 1
1.1 Introductiont 1

1.2 Preliminary CONCePtSottt ittt eens 2
1.2.1 Fixed-Point Numbersccooiiiiiiiinennenn.. 2

1.2.2 ApproxXimationsc..coeeuieeuneennneenneennnann. 3

1.23 Precisionand Error i 3

1.3 Floating-Point Numbers 5
1.3.1 Review: Scientific Notation 5

1.3.2 Restricted Scientific Notation 5

1.3.3 Binary Scientific Notationccoviiieiinn.... 6

1.4 IEEE 754 Floating-Point Standard 8
1.4.1 Basic Representation. 8

142 RangeandPrecision 10

1.43 Arithmetic Operationsiiiiiiiiinneeeenn.. 11

1.4.3.1 Addition and Subtraction........................ 12

1.4.3.2 Multiplicationoo i 13

1433 RoundingModes oo, 14

144 Special Valuest 15

1.4.4.1 ZRTO .o ve ettt e 15

1.4.4.2 Infinity 16

1443 Nonnumeric Valuesccovvenn... 17

vii

viii Contents

1.45 VerySmall Values, 18

1.45.1 Normalized Mantissas and the Hole at Zero 18

1.4.5.2 Denormals and Gradual Underflow 19

1.4.6 Catastrophic Cancelation 20

1.477 Comparing Floating-Point Numbers 23

1.4.8 Double Precision i 24

1.4.9 Half Precisionttt 24

1.5 Real-World Floating Point i ... 26
1.5.1 Internal FPU Precision oo ... 26

1.5.2 Performance........... i 27

1.5.2.1 Performance of Denormalized Numbers 27

1.5.2.2 Software Floating-Point Emulation 29

1.5.3 IEEE Specification Compliance. 29

1.5.4 Precision in Graphics Processing Units...................... 30

1.6 Code ..o 31
1.7 Chapter SUMMATYottt ettt et e s 31
2. Vectors and Points 33
2.1 IntroducCtionttt 33
2.2 VBCLOTS e ettt ettt et e e e e e e 33
2.2.1 Geometric VECLOTS oot vttt et e 34

222 Real Vector Spacescoouuiuiiiiiiiiiinneeennnn. 36
2221 Definition i 36

2222 Examples...... ... 37

2223 Subspaces 39

2.2.3 Linear Combinations and Basis Vectors 39

2.2.4 Basic Vector Class Implementation 42

225 VectorLength...... i 44

2.2.6 DotProduct 46

2.277 Gram-Schmidt Orthogonalization.......................... 50

228 CrossProduct......... 51

229 TripleProducts. ... 55

2.2.10 GrassmanAlgebra i 58

2.3 POINES ..ot 58
2.3.1 Points as Geometry ... 58

232 Affine SPacesoviit i 60

2.3.3 Affine Combinationsttt 62

234 Point Implementation 63

2.3.5 Polar and Spherical Coordinates 64

24 LINES . .ottt 67
24.1 Definition oo 67

2.4.3 Generalized Line Equation 69

244 Collinear Pointsttt 71

2.5 Planes 71
2.5.1 Parameterized Planes 71

2.5.2 Generalized Plane Equation 72

253 CoplanarPoints 73

2.6 Polygons and Trianglesoiiuininiiiiiinnein... 73
2.7 Chapter SUMMATYttt e ettt et ettt et iee e 76
. Linear Transformations and Matrices 77
3.1 Introductionttt 77
3.2 Linear Transformationscoiiiiiiiinneeeennnn .. 78
3.2.1 Definitionso 78

3.2.2 Linear Transformations and Basis Vectors 79

323 RangeandNull Space.............ooiiiiiiiiiiiinna... 80

3.3 MALIICES . v e vttt 82
33.1 Introduction to Matrices, 82

332 Simple Operationsovvuune it 84
3321 Matrix Addition and Scalar Multiplication 84

3.3.2.2 TranSpoSettt e 84

3.3.3 Vector Representationc.iiiiiiiiinnaa... 85

334 Block Matrices.ottt e 86

3.35 Matrix Product o 87

3.3.6 Transforming VECtOrscuiiiineineiinnennnann. 89

3.3.7 Combining Linear Transformations. 91

33.8 Identity MatrixXttt e 93

3.3.9 Performing Vector Operations with Matrices 94

33.10 Implementationc..uuuieeiiunnneeennnnnneannn 95

3.4 Systems of Linear Equations iiiiiiiineiineann.. 97
34.1 Definitiono 97

3.4.2 Solving Linear Systemsccouiiiiiiinneaan. 98

343 Gaussian Elimination, 100

3.5 MatrixX InVerseot 103
351 Definition o 103

352 SimpleInverses 105

3.6 Determinantout ot 106
3.6.1 Definition 106

3.6.2 Computing the Determinant 108

3.6.3 Determinants and Elementary Row Operations 110

3.64 Adjoint MatrixandInverse........... 112

Contents

ix

x Contents

3.7 Eigenvalues and Eigenvectorsouiiinieiiennn .. 113
3.8 Chapter SUMMArYttt e 114
4. Affine Transformations 115
4.1 IntrodUCtionttt e 115
4.2 Affine Transformations. ittt 116
4.2.1 Matrix Definition. 116
422 Formal Definitiont 118
423 Formal Representationoouiiiinneenneenn.. 119
4.3 Standard Affine Transformations.cciiineen ... 120
4.3.1 Translationttt e 120
432 ROtationciiiii 122
433 Scaling .. .oo 130
434 Reflection........ ... i i 131
435 Shear. . ..o 134

4.3.6 Applying an Affine Transformation around an Arbitrary
Point 136
4.3.77 Transforming Plane Normals 138
4.4 Using Affine Transformations 139
4.4.1 Manipulation of Game Objectsccon.... 139
4.4.1.1 Local and World Coordinate Frames 139
44.1.2 Placing Objectsooiiii i 140
4.42 Matrix Decomposition o i, 143
443 Avoiding Matrix Decomposition 145
4.5 Object Hierarchiesccuiuiiiiiniine i, 147
4.6 Chapter SUMMATYttt ettt e e e e et 149
5. Orientation Representation 151
5.1 Introduction i e 151
5.2 Rotation MatriCescouuiiine ettt 152
5.3 Euler Anglesooiiiiii 152
5.3.1 Definition 152
532 Format Conversioniiiiinininnnnnnn... 154
533 Concatenationouurietiine i e 155
5.34 VectorRotation, 155
5.3.5 OtherIssues 156
5.4 Axis—Angle Representationoouiiiiiiiiininaenn.. 157
5.4.1 Definitiono . 157
5.4.2 Format COnVversioncc.uuuuieeeeuunnnneeennnn. 158
543 Concatenationttt 160
544 VectorRotationiiiiiiiiniiinnann.. 160

545 Axis—Angle Summary........ ... i 161

5.5 QUALEINIONS . . .ottt et et e e e e e 161
5.5.1 Definition 161

552 Quaternions as Rotations 162

5.5.3 Addition and Scalar Multiplication 163

554 Negationuuiiiinit 163

5.5.5 Magnitude and Normalization 164

55.6 DotProduct 164

5.5.7 Format Conversionuuuuieeeeeunnnneeennnn. 165

5.5.8 Concatenationiiiiiiiii i 168

5.59 IdentityandInverse..............coouuiiiiiniiineinnnenn.. 170

5.5.10 Vector Rotationttt 171

5.5.11 Shortest Pathof Rotation 174

5.5.12 Quaternions and Transformations 175

5.6 Chapter SUMMAryoiiin i 175
6. Interpolation 177
6.1 Introduction i 177
6.2 Interpolation of Position........... i 178
6.2.1 General Definitionsoiiinnieiiiin ., 178

6.2.2 Linear Interpolation. i, 180

6.2.2.1 Definition 180

6.2.2.2 Piecewise Linear Interpolation 182

6.2.3 Hermite CUrvesuuuiiiiiiin i, 183

6.2.3.1 Definition 183

6.2.3.2 Manipulating Tangents. 186

6.2.3.3 Automatic Generation of Hermite Curves 188

6.2.34 Natural End Conditions 190

6.2.4 Catmull-Rom Splinescooiiiiiiiiniinnnenn.. 191

6.2.5 Kochanek—Bartels Splinescoiivin.... 193

6.2.6 Bézier Curves.ottt 195

6.2.6.1 Definition 195

6.2.6.2 Piecewise Bézier Curves 197

6.27 Other Curve TYPes. . .« i ettt 198

6.3 Interpolation of Orientation iiiuiiiiiiennnn... 200
6.3.1 General DiscusSionviiiiii i 201

6.3.2 Linear Interpolation.............. 202

6.3.3 Spherical Linear Interpolation 206
6.3.3.1 CubicMethods, 208

6.3.4 Performance Improvements 209

6.4 Sampling CUIVeSottt e e e e 210
6.4.1 Forward Differencing i, 211

6.4.2 Midpoint Subdivision i 214

6.4.3 ComputingArcLength 216

Contents

xi

xii

Contents

6.5 Controlling Speed alonga Curve.ooviiiiiinneinn... 219
6.5.1 Moving at Constant Speed, 219

6.5.2 Moving at Variable Speed i 223

6.6 Camera Controlt 225
6.7 Chapter Summary i 229
7. Viewing and Projection 231
7.1 Introduction oot 231
7.2 View Frame and View Transformation 232
7.2.1 Defininga Virtual Camera, 232

7.2.2 Constructing the View-to-World Transformation.............. 234

7.2.3 Controllingthe Camera...............oooiiiiiiinneeenn... 235

7.2.4 Constructing the World-to-View Transformation 238

7.3 Projective Transformation oo, 239
7.3.1 Definition 239

7.3.2 Normalized Device Coordinates 241

733 ViewFrustum........... . 242

7.3.4 Homogeneous Coordinates.c.oooeuuieennnen... 245

7.3.5 Perspective Projection.............. 246

7.3.6 Oblique Perspective.oouiiiiniiiiii i, 252

7.3.7 Orthographic Parallel Projection 254

7.3.8 Oblique Parallel Projection. 256

7.4 Culling and CLHPPING. . . .o vttt e 258
741 WhyCullorClip? ... 258

742 Culling 261

743 General Plane Clippingooviiinni i, 262

7.4.4 Homogeneous Clippingc.ooiiiiiiiiiinnenn.. 265

74.5 ExtractingClipPlanes, 267

7.5 Screen Transformationc..oouniiiininiineineenn.. 268
7.5.1 Pixel Aspect Ratio 270

7.6 Picking 271
7.7 Management of Viewing Transformations 273
7.8 Chapter SUMMArYttt e 274
8. Geometry and Programmmable Shading 275
8.1 Introductiont iit 275
8.2 Color Representationuuiiiiiuinneeeiinneeeennn.. 276
82.1 RGBColorModeloouuuuiiiiiiiiiiiiiiiiaanan.. 276

822 Colorsas “Points” 271

8.2.3 Color-Range Limitationcooviiiviineennnn... 277

824 Operationson Colorsciiiiiiiiiiinnnaaan. 278

825 AlphaValues 279

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.2.6 Remapping Colors into the UnitCube 280
8.2.7 Color Storage Formatsc..oiiiiiiiiinaaa.. 283
8.2.8 Nonlinear Color........ ...t 284
Points and Vertices i i il 286
8.3.1 Per-Vertex Attributes 286
8.3.2 AnODbject’s VertiCesvvuneiiietiie i 287

8.3.2.1 Vertex Buffers.......... i 288
Surface Representationooouuniinniin i 290
8.4.1 Vertices and Surface Ambiguity 290
842 Triangles. 291
8.4.3 Connecting Vertices into Triangles 291

8.4.3.1 Index Buffers i 293
844 Drawing GEOmetryooiiiiiuinniiinniinnean. 293
Rendering Pipeline il 294
8.5.1 Fixed-Function versus Programmable Pipelines 296
Shaders 296
8.6.1 Using Shaders to Move from Vertex to Triangle to

Fragment 296
8.6.2 Shader Input and Output Values............................ 297
8.6.3 Shader Operations and Language Constructs 297
8.6.4 Other Shader Typescovviine e 298
Vertex Shaders 298
8.7.1 Vertex ShaderInputs 298
8.7.2 Vertex Shader Outputs.oouiiiiniiin .. 299
8.7.3 Basic Vertex Shaders, 299
Fragment Shaders i 300
8.8.1 Fragment Shader Inputs 300
8.8.2 Fragment Shader Outputscc.o i, 300
8.8.3 Linking Vertex and Fragment Shaders 301
8.8.4 Compiling, Linking, and Using Shaders 301
8.8.5 Setting Uniform Values............... oiiiiii.. 302
Basic Coloring Methodst 304
8.9.1 Per-Object Colorscouuiniiiii i 304
8.9.2 Per-Triangle Colors ovttin e i 305
8.9.3 Per-Vertex Colorsc.uuuuuiiiiiiiiiiiiiiiiaa... 305
8.9.4 Sharp Edges and Vertex Colorscovivirnn.... 307
8.9.5 Limitations of Basic Shading Methods 308
Texture Mappingcvvvu ettt e e 308
8.10.1 Inmtroductioncoouuuiiiiininneiiiiinn 308
8.10.2 Shading via Image Lookup........... 309
8.10.3 Texture Images............coouiiiiiiiniiiiiin, 310
8.10.4 Texture Samplersttt 312

8.10.4.1 Texture Samplers in Application Code............. 312

Contents ~ xiii

xiv Contents

8.11 Texture Coordinatesouuueeeemunine e, 313
8.11.1 Mapping Texture Coordinates onto Objects 314

8.11.2 Generating Texture Coordinates 315

8.11.3 Texture Coordinate Discontinuities 315

8.11.4 Mapping Outside the Unit Square 316

8.11.5 Texture Samplers in ShaderCode 322

8.12 Steps of TeXturingttt 323
8.12.1 Other Forms of Texture Coordinates 323

8.12.2 From Texture Coordinates to a Texture Sample Color.......... 325

8.13 Limitations of Static Shading............. 325
8.14 Chapter SUMMArYouuu ittt 326
. Lighting 327
9.1 Introduction o 327
9.2 Basics of Light ApproxXimationcoiiiiiiiinnnnnn.... 328
9.3 Measuring Light 329
9.4 Typesof Light Sourcesoiuiiiiiniin i, 333
9.4.1 PointLights 334

9.4.2 Spotlights 339

9.4.3 Directional Lights i 341

9.4.4 AmbientLights 343

9.4.5 Other Types of Light Sources.............................. 343

9.5 Surface Materials and Light Interaction 343
9.5.1 Diffuse 345

9.5.2 Specular 347

953 EmISSION............oooiiiiiiii 351

954 Ambient 351

9.5.5 Combined Lighting Equation.............................. 353

9.6 Lightingand Shading i i 355
9.6.1 Flat-Shaded Lighting 356

9.6.2 Per-Vertex Lighting 356

9.6.2.1 Generating Vertex Normals 358

9.6.2.2 SharpEdges i 360

9.6.3 Per-Fragment Lighting 360

9.7 Texturesand Lighting i 363
9.7.1 Basic Modulation i 364

9.7.2 Specular Lighting and Textures 365

973 Texturesas Materials............. o i il 366

9.8 Advanced Lighting 367
9.8.1 Normal Mappingooiiiiii i 367

9.8.1.1 Generating Normal Maps 369

9.8.2 Reflective Objects il 369

9.8.3 Transparent Objects.......... ...t iiiiiinneennnn.. 371

9.8.4 AreaLights il 371

9.8.5 Physically Based Lighting. 371

9.8.6 High Dynamic Range Lighting. 372

9.8.7 Deferred Lighting and Shading 373

9.8.8 Shadows 373

9.9 Chapter SUMMAryoouieinne ittt 374
10. Rasterization 375
10.1 Introduction il 375
10.2 Displays and Framebuffers, 376
10.3 Conceptual Rasterization Pipeline 377
10.3.1 Rasterization Stages.t 377

10.4 Determining the Fragments: Pixels Covered by a Triangle 378
10.4.1 Fragments i 378

1042 Depth Complexitycoouuuiiiiiinneennnn.. 379

10.4.3 Converting Triangles to Fragments 379

10.4.4 Handling Partial Fragments 381

10.5 Determining Visible Geometryooiviiineinnennn.... 382
10.5.1 Depth Buffering i 383

10.5.1.1 Computing Per-Fragment Depth Values 385

10.5.1.2 Numerical Precision and z-Buffering 389

10.5.2 Depth Buffering in Practice 390

10.6 Computing Fragment Shader Inputs 391
10.6.1 Uniform Values 392

10.6.2 Per-Vertex Attributescooo i, 392

10.6.2.1 Constant Depth Interpolation................ 392

10.6.2.2 Perspective-Correct Interpolation 394

10.6.3 Indirect Per-Fragment Values 397

10.7 Rasterizing TeXturesuuuiiiiiineiiiiinneeeenn.. 397
10.7.1 Texture Coordinate Review 398

10.7.2 Mapping a CoordinatetoaTexel 398

10.7.2.1 Magnifying a Texture 398

10.7.2.2 Texture Magnification in Practice 402

10.7.2.3 Minifyinga Texture 403

10.7.3 Mipmappingovvvie et e 405

10.7.3.1 Texturing a Fragment with a Mipmap......... 408

10.7.3.2 Texture Filtering and Mipmaps 410

10.7.3.3 Mipmapping in Practice 411

10.8 From FragmentstoPixels 413
10.8.1 Pixel Blending i i 414

10.8.1.1 Pixel Blending and Depth Buffering.......... 415

10.8.1.2 Premultiplied Alpha 416

10.8.1.3 Blending in Practice 418

Contents xv

xvi Contents

11.

12.

10.8.2 Antialiasing.............oi it 419

10.8.2.1 Supersampled Antialiasing 423

10.8.2.2 Multisampled Antialiasing 425

10.8.3 Antialiasing in Practice, 426

10.9 Chapter SUMMATIYttt ittt et ee 426
Random Numbers 427
11.1 Introduction i 427
11.2 Probability 427
11.2.1 Basic Probability i 428

11.22 Random Variables 430

11.2.3 Mean and Standard Deviation.......................... 433

11.2.4 Special Probability Distributions 434

11.3 Determining Randomness 437
11.3.1 Chi-Square Testouuieinii i 438

11.3.2 Spectral Test 444

11.4 Random Number Generatorsc..uuuuuuununnnnnn. 444
11.4.1 Linear Congruential Methods 447

11.4.1.1 Definition.........o 447

11.4.1.2 Choosing the Modulus 447

11.4.1.3 Choosing the Multiplier 449

11.4.1.4 Summary ... 450

11.42 Lagged Fibonacci Methods 450

11.43 CarryMethods i 451

1144 Xorshift. ... oo i 452

11.4.5 Other Alternativesoviuuiiinnineenn... 453

11.4.6 Setting Initial State i 454

1147 Conclusions i, 455

11.5 Special Applicationsttt e 455
11.5.1 Integers and Ranges of Integers 455

11.5.2 Floating-Point Numbers 456

11.5.3 Shuffling o i 456

11.54 Nonuniform Distributions 457

11.5.5 Spherical Sampling i 458

11.5.6 DiscSamplingoouiiiiiiiiiiiiii i, 461

11.5.7 Noise and Turbulence, 462

11.6 Chapter SUMMATYttt e 465
Intersection Testing 467
12.1 Introduction i e 467
12.2 Closest Point and Distance Testso ... 468
12.2.1 Closest Pointon Line to Point 468

12.2.2 Line-Point Distance., 469

12.3

12.4

12.5

12.2.3 Closest Point on Line Segment to Point 470
12.2.4 Line Segment—Point Distance 472
12.2.5 Closest Points between Two Lines 473
12.2.6 Line-Line Distanceoooiiiiiii.... 475
12.2.7 Closest Points between Two Line Segments 475
12.2.8 Line Segment-Line Segment Distance 477
12.2.9 General Linear Componentsc.oouueeeon... 477
Object Intersectionvuu it e 478
12.3.1 Spheres 480
12.3.1.1 Definition............... oo 480
12.3.1.2 Sphere—Sphere Intersection 483
12.3.1.3 Sphere—Ray Intersection 484
12.3.1.4 Sphere—Plane Intersection 484
12.3.2 Axis-Aligned Bounding Boxes 486
12.3.2.1 Definition. ... 486
12.3.2.2 AABB-AABB Intersection 487
12.3.2.3 AABB-Ray Intersection 489
12.3.2.4 AABB-Plane Intersection 491
12.3.3 Swept Spherest 492
12.3.3.1 Definition. 492
12.3.3.2 Capsule—Capsule Intersection 495
12.3.3.3 Capsule-Ray Intersection 495
12.3.3.4 Capsule—Plane Intersection 495
12.3.4 Object-Oriented Boxes, 496
12.34.1 Definition. i 496
12.34.2 OBB-OBB Intersection 498
12.3.4.3 OBB-Ray Intersection 500
12344 OBB-Plane Intersection.................... 502
12.3.5 Triangleso 503
12.3.5.1 Triangle-Triangle Intersection. 503
12.3.5.2 Triangle-Ray Intersection 504
12353 Triangle—Plane Intersection 507
A Simple Collision Systemo it 507
12.4.1 Choosing a Base Primitive 507
12.4.2 Bounding Hierarchies 508
12.4.3 Dynamic Objectsoiiiiiiiiiiii 510
12.4.4 Performance Improvements 511
12.45 Related Systemsouuiiiiiiia 514
12.4.6 Section SUMMArYottuin e, 516

Chapter SUMMArYiiit i 516

Contents

xvii

Xviii

Contents

13. Rigid-Body Dynamics
13.1 Introduction e
13.2 Linear Dynamicsottt
13.2.1 Moving with Constant Acceleration.
13.2.2 Forceso
13.23 LinearMomentumttt
13.2.4 Moving with Variable Acceleration
13.3 Numerical Integrationc..ouiieineinneinnennnenn.
13.3.1 Definition i
1332 Euler’'sMethod i,
13.3.3 Runge—Kutta Methods
13.3.4 VerletIntegrationc.cuuuuiiiineiunnennn...
13.3.5 Implicit Methods i,
13.3.6 Semi-Implicit Methods,
13.4 Rotational Dynamics i i
13.4.1 Definitiono i
13.4.2 Orientation and Angular Velocity
13.4.3 TOTrQUE . . .o
13.4.4 Angular Momentum and Inertia Tensor
13.4.5 Integrating Rotational Quantities
13.5 Collision Response,
13.5.1 Contact GEnerationeuuuuuuunnnnnnnnn
13.5.2 Linear Collision Response
13.5.3 Rotational Collision Response
13.5.4 Extending the System
13.5.4.1 Friction........ i
13.54.2 RestingContact............cooviiineenn...
13.543 Constraints................,
13.544 MultiplePoints
13.6 Efficiencyo
13.7 Chapter Summary
References
Index

519

519
520
520
522
523
524
525
525
527
530
531
533
535
536
536
536
537
539
541
542
543
545
549
550
551
552
553
553
554
555

557

565

Preface

Writing a book is an adventure. To begin with, it is a toy and an amusement; then it becomes a
mistress, and then it becomes a master, and then a tyrant. The last phase is that just as you are
about to be reconciled to your servitude, you kill the monster, and fling him out to the public.

Sir Winston Churchill

The Adventure Begins

As humorous as Churchill’s statement is, there is a certain amount of truth to it; writing
this book was indeed an adventure. There is something about the process of writing, par-
ticularly a nonfiction work like this, that forces you to test and expand the limits of your
knowledge. We hope that you, the reader, benefit from our hard work.

How does a book like this come about? Many of Churchill’s books began with his
experience—particularly his experience as a world leader in wartime. This book had a
more mundane beginning: two engineers at Red Storm Entertainment, separately, asked
Jim to teach them about vectors. These engineers were 2D game programmers, and 3D
was not new, but was starting to replace 2D at that point. Jim’s project was in a crunch
period, so he didn’t have time to do much about it until proposals were requested for the
annual Game Developers Conference. Remembering the engineers’ request, he thought
back to the classic “Math for SIGGRAPH” course from SIGGRAPH 1989, which he had
attended and enjoyed. Jim figured that a similar course, at that time titled “Math for Game
Programmers,” could help 2D programmers become 3D programmers.

The course was accepted, and together with a cospeaker, Marcus Nordenstam, Jim
presented it at GDC 2000. The following years (2001-2002) Jim taught the course alone, as
Marcus had moved from the game industry to the film industry. The subject matter changed
slightly as well, adding more advanced material such as curves, collision detection, and
basic physical simulation.

It was in 2002 that the seeds of what you hold in your hand were truly planted. At GDC
2002, another GDC speaker, whose name, alas, is lost to time, recommended that Jim turn
his course into a book. This was an interesting idea, but how to get it published? As it
happened, Jim ran into Dave Eberly at SIGGRAPH 2002, and he was looking for someone

Xix

xx Preface

to write just that book for Morgan Kaufmann. At the same time, Lars, who was working
at Numeric Design Limited at the time, was presenting some of the basics of rendering
on handheld devices as part of a SIGGRAPH course. Jim and Lars discussed the fact that
handheld 3D rendering had brought back some of the “lost arts” of 3D programming, and
that this might be included in a book on mathematics for game programming.

Thus, a coauthorship was formed. Lars joined Jim in teaching the GDC 2003 version of
what was now called “Essential Math for Game Programmers,” and simultaneously joined
Jim to help with the book, helping to expand the topics covered to include numerical rep-
resentations. As we began to flesh out the latter chapters of the outline, Lars was finding
that the advent of programmable shaders on consumer 3D hardware was bringing more and
more low-level lighting, shading, and texturing questions into his office at NDL. Accord-
ingly, the planned single chapter on texturing and antialiasing became three, covering a
wider selection of these rendering topics.

By early 2003, we were furiously typing the first full draft of the first edition of this
book, and by GDC 2004 the book was out. Having defeated the dragon, we retired to our
homes to live out the rest of our quiet little lives.

Or so we thought.

The Adventure Continues

Response to the first edition was quite positive and the book continued to sell well beyond
the initial release. Naturally, thoughts turned to what we could do to improve the book
beyond what we already created.

In reviewing the topic list, it was obvious what the most necessary change was. Within a
year or so of the publication of the first edition, programmable shading had revolutionized
the creation of 3D applications on game consoles and on PC. While the first edition had
provided readers with many of the fundamentals behind the mathematics used in shaders,
it stopped short of actually discussing them in detail. It was clear that the second edition
needed to embrace shaders completely, applying the mathematics of the earlier chapters to
an entirely new set of rendering content. So the single biggest change in the second edition
was a move to a purely shader-based rendering pipeline.

We also sent out the book to reviewers to ask them what they would like to see added.
The most common request was information about random numbers. So a brand new chapter
on probability and random numbers was added.

And so, with those changes, we again wearily returned home.

The Adventurers Resume the Quest

And here we are yet once more. For the third edition, further refinements were necessary.
With the advent of DirectX 10 and the OpenGL Core Profile, the trend is to remove even
more of the old nonshader graphics pipelines, and the text needed to be updated to reflect
that. In real-time graphics, there is a push for more realistic materials and lighting, and that
chapter has been updated as well. In addition, the entire book was revised to add corrections
and make the content flow better. We hope you’ll find our efforts worthwhile.

All three times, the experience has been fascinating, sometimes frustrating, but ultimately
deeply rewarding. Hopefully, this fascination and respect for the material will be conveyed

to you, the reader. The topics in this book can each take a lifetime to study to a truly great
depth; we hope you will be convinced to try just that, nonetheless!

Enjoy as you do so, as one of the few things more rewarding than programming and
seeing a correctly animated, simulated, and rendered scene on a screen is the confidence
of understanding how and why everything worked. When something in a 3D system goes
wrong (and it always does), the best programmers are never satisfied with “I fixed it, but
I’m not sure how”’; without understanding, there can be no confidence in the solution, and
nothing new is learned. Such programmers are driven by the desire to understand what went
wrong, how to fix it, and learning from the experience. No other tool in 3D programming
is quite as important to this process as the mathematical bases! behind it.

Those Who Helped Us along the Road

In a traditional adventure the protagonists are assisted by various characters that pass in and
out of the pages. Similarly, while this book bears the names of two people on the cover, the
material between its covers bears the mark of many, many more. We thank a few of them
here.

The folks at our publisher, AK Peters, were extremely patient with both of us as we
made up for being more experienced this time around by being busier and less responsive!
Special thanks go to our executive editor, Rick Adams, our production editor, Laurie
Oknowsky, project editor, Jennifer Stair, and project manager, Viswanath Prasanna, and
all the great staff at CRC Press and Datapage.

In addition, we acknowledge the editors at Morgan Kaufman who helped us publish the
first two editions: Tim Cox, Troy Lilly, Stacie Pierce, and Richard Camp were patient and
helpful in the daunting task of leading two first-time authors through the process. Laura
Lewin, Chris Simpson, Georgia Kennedy, and Paul Gottehrer were all patient, professional,
and flexible when we most needed it.

Our reviewers were top-notch. Fabian Giesen and Robin Green provided thorough feed-
back for the third edition. Erin Catto and Chad Robertson reviewed the entire second edition
of the book. Robert Brown, Matthew McCallus, Greg Stelmack, and Melinda Theilbar
were invaluable for their comments on the random numbers chapter. Dave Eberly provided
an in-depth review of the first edition. Ian Ashdown, Steven Woodcock, John O’Brien,
J.R. Parker, Neil Kirby, John Funge, Michael van Lent, Peter Norvig, Tomas Akenine-
Moller, Wes Hunt, Peter Lipson, Jon McAllister, Travis Young, Clark Gibson, Joe Sauder,
and Chris Stoy each reviewed parts of the first edition or the proposals for them. Despite
having tight deadlines, they all provided page after page of useful feedback, keeping us
honest and helping us generate a better arc to the material. Several of them went well above
and beyond the call of duty, providing detailed comments and even rereading sections of
the book that required significant changes. Finally, thanks also to Victor Brueggemann and
Garner Halloran, who asked Jim the questions that started this whole thing off 11 years ago.

Jim and Lars acknowledge the folks at their jobs at Google and NVIDIA Corporation,
who were very understanding with respect to the time-consuming process of creating a book.

! Vector or otherwise.

Preface xxi

XXii

Preface

Also, thanks to the talented engineers at these and previous companies who provided the
probing discussions and great questions that led to and continually fed this book.

In addition, Jim thanks Mur and Fiona, his wife and daughter, who were willing to put
up with this a third time after his long absences the first and second times through; his
sister, Liz, who provided illustrations for an early draft of this text; and his parents, Jim and
Pat, who gave him the resources to make it in the world and introduced him to the world of
computers so long ago.

Lars thanks Jen, his wife, who somehow had the courage to survive a second and a third
edition of the book even after being promised that the first edition “was it”’; and his parents,
Steve and Helene, who supported, nurtured, and taught him so much about the value of
constant learning and steadfast love.

And lastly, we once again thank you, the reader, for joining us on this adventure. May
the teeth of this monster find fertile ground in your minds, and yield a new army of 3D
programmers.

Additional material is available from the authors’ own website: www.essentialmath.com.

Authors

James M. Van Verth is a software engineer at Google, Chapel Hill, NC, where he works
on GPU support for the Skia 2D Graphics Library. Prior to that, he worked for Insomniac
Games, Durham, NC, NVIDIA; Durham, NC; and Red Storm Entertainment, Cary, NC,
in various roles. For the past 17 years he also has been a regular speaker at the Game
Developers Conference, teaching the all-day tutorials “Math for Game Programmers” and
“Physics for Game Programmers,” on which this book is based. His background includes a
BA in math/computer science from Dartmouth College, Hanover, NH, an MS in computer
science from the State University of New York at Buffalo, and an MS in computer science
from the University of North Carolina at Chapel Hill.

Lars M. Bishop is an engineer in the Handheld Developer Technologies group at NVIDIA,
Durham, NC. Prior to joining NVIDIA, Lars was the chief technology officer at Numerical
Design Limited, Chapel Hill, NC, leading the development of the Gamebryo3D cross-
platform game engine. He received a BS in math/computer science from Brown University,
Providence, RI, and an MS in computer science from the University of North Carolina at
Chapel Hill. His outside interests include photography, drumming, and playing bass guitar.

XXiii

Infroduction

The (Continued) Rise of 3D Games

Over the past two decades or so (driven by increasingly powerful computer and video game
console hardware), three-dimensional (3D) games have expanded from custom-hardware
arcade machines to the realm of hardcore PC games, to consumer set-top video game con-
soles, and even to handheld devices such as personal digital assistants (PDAs) and cellular
telephones. This explosion in popularity has led to a corresponding need for programmers
with the ability to program these games. As a result, programmers are entering the field
of 3D games and graphics by teaching themselves the basics, rather than a classic college-
level graphics and mathematics education. At the same time, many college students are
looking to move directly from school into the industry. These different groups of program-
mers each have their own set of skills and needs in order to make the transition. While every
programmer’s situation is different, we describe here some of the more common situations.

Many existing, self-taught 3D game programmers have strong game experience and an
excellent practical approach to programming, stressing visual results and strong optimiza-
tion skills that can be lacking in college-level computer science programs. However, these
programmers are sometimes less comfortable with the conceptual mathematics that form
the underlying basis of 3D graphics and games. This can make developing, debugging, and
optimizing these systems more of a trial-and-error exercise than would be desired.

Programmers who are already established in other specializations in the game industry,
such as networking or user interfaces, are now finding that they want to expand their abilities
into core 3D programming. While having experience with a wide range of game concepts,
these programmers often need to learn or refresh the basic mathematics behind 3D games
before continuing on to learn the applications of the principles of rendering and animation.

On the other hand, college students entering (or hoping to enter) the 3D games industry
often ask what material they need to know in order to be prepared to work on these games.
Younger students often ask what courses they should attend in order to gain the most useful
background for a programmer in the industry. Recent graduates, on the other hand, often
ask how their computer graphics knowledge best relates to the way games are developed
for today’s computers and game consoles.

XXV

XXVi

Introduction

We have designed this book to provide something for each of these groups of readers.
We attempt to provide readers with a conceptual understanding of the mathematics needed
to create 3D games, as well as an understanding of how these mathematical bases actually
apply to games and graphics. The book provides not only theoretical mathematical back-
ground, but also many examples of how these concepts are used to affect how a game looks
(how it is rendered) and plays (how objects move and react to users). Each type of reader
is likely to find sections of the book that, for him or her, provide mainly refresher courses,
anew understanding of the applications of basic mathematical concepts, or even completely
new information. The specific sections that fall into each category for a particular reader
will, of course, depend on the reader.

How to Read This Book

Perhaps the best way to discuss any reader’s approach to reading this book is to think in
terms of how a 3D game or other interactive application works at the highest level. Most
readers of this book likely intend to apply what they learn from it to create, extend, or fix
a 3D game or other 3D application. Each chapter in this book deals with a different topic
that has applicability to some or all of the major parts of a 3D game.

Game Engines

An interactive 3D application such as a game requires quite a large amount of code to do
all of the many things asked of it. This includes representing the virtual world, animating
parts of it, drawing that virtual world, and dealing with user interaction in a game-relevant
manner. The bulk of the code required to implement these features is generally known
as a game engine. Game engines have evolved from small, simple, low-level rendering
systems in the early 1990s to massive and complex software systems in modern games,
capable of rendering detailed and expansive worlds, animating realistic characters, and
simulating complex physics. At their core, these game engines are really implementations
of the concepts discussed throughout this book.

Initially, game engines were custom affairs, written for a single use as a part of the game
itself, and thrown away after being used for that single game project. Today, game devel-
opers have several options when considering an engine. They may purchase a commercial
engine from another company and use it unmodified for their project. They may purchase
an engine and modify it very heavily to customize their application. Finally, they may write
their own, although most programmers choose to use such an internally developed engine
for multiple games to offset the large cost of creating the engine.

In any of these cases, the developer must still understand the basic concepts of the game
engine. Whether as a user, a modifier, or an author of a game engine, the developer must
understand at least a majority of the concepts presented in this book. To better understand
how the various chapters in this book surface in game engines, we first present some
common modules one might find in a game engine (though not necessarily in this order):

1. Move and place objects in the scene.

2. Animate the characters in the scene based on animator-created sequences (e.g.,
soccer players running downfield).

Introduction xxvii

3. Draw the current configuration of the game’s scene to the screen.

4. Detect collisions between the characters and objects (e.g., the soccer ball entering
the goal or two players sliding into one another).

5. React to these collisions and basic forces, such as gravity in the scene, in a
physically correct manner (e.g., the soccer ball in flight).

All of these steps will need to be done for each frame to present the player with a
convincing game experience. Thus, the code to implement the steps above must be correct
and optimal.

Chapters 1-6:The Basics

Perhaps the most core parts of any game engine are the low-level mathematical and geomet-
ric representations and algorithms. The pieces of code will be used by each and every step
listed above. Chapter 1 provides the lowest-level basis for this. It discusses the practicalities
of representing real numbers on a computer, with a focus on the issues most likely to affect
the development of a 3D game engine for a PC, console, or handheld device.

Chapter 2 provides a focused review of vectors and points, objects that are used in all
game engines to represent locations, directions, velocities, and other geometric quantities
in all aspects of a 3D application. Chapters 3 and 4 review the basics of linear and affine
algebra as they relate to orienting, moving, and distorting the objects and spaces that make
up a virtual world. And Chapter 5 introduces the quaternion, a very powerful nonmatrix
representation of object orientation that will be pivotal to the later chapters on animation
and simulation.

The game engine’s module 2, animating characters and other objects based on data
created by computer animators or motion-captured data, is introduced in Chapter 6. This
chapter discusses methods for smoothly animating the position, orientation, and appearance
of objects in the virtual game world. The importance of good, complex character and
object animation in modern engines continues to grow as new games attempt to create
smoother, more convincing representations of athletes, rock stars, soldiers, and other human
characters.

Three-dimensional engine code that implements all of these fundamental objects must
be built carefully and with a good understanding of both the underlying mathematics and
programming issues. Otherwise, the game engine built on top of these basic objects or
functions will be based upon a poor foundation. Many game programmers’ multiday debug-
ging sessions have ended with the realization that the complex bug was rooted in an error
in the engine’s basic mathematics code.

Some readers will have a passing familiarity with the topics in these chapters. However,
most readers will want to start with these chapters, as many of the topics are covered in
more conceptual detail than is often discussed in basic graphics texts. Readers new to the
material will want to read in detail, while those who already know some linear algebra can
use the chapters to fill in any missing background. All of these chapters form a basis for the
rest of the book, and an understanding of these topics, whether existing or new, will be key
to successful 3D programming.

XXviii

Introduction

Source Code

Name

Source Code

Name

Chapters 7-10: Rendering

Chapters 7-10 apply the foundational objects detailed in Chapters 1-6 to explain module 3
of the game engine: the rendering or drawing pipeline, perhaps the best-known part of any
game engine. In some game engines, more time and effort are spent designing, program-
ming, and tuning the rendering pipeline than the rest of the engine in its entirety. Chapter 7
describes the mathematics and geometry behind the virtual cameras used to view the scene
or game world. Chapter 8 describes the representation of color and the concept of shaders,
which are short programs that allow modern graphics hardware to draw the scene objects
to the display device. Chapter 9 explains how to use these programmable shaders to imple-
ment simple approximations of real-world lighting. The rendering section concludes with
Chapter 10, which details the methods used by low-level rendering systems to draw to
the screen. An understanding of these details can allow programmers to create much more
efficient and artifact-free rendering code for their engines.

Chapters 11-13: Randomness, Collision, and Physics

Chapter 11 covers one element for adding realism to games: random numbers. Everything
up to this point has been carefully determined and planned by the programmer or artist.
Adding randomness adds the unexpected behavior that we see in real life. Gunshots are not
always exact, clouds are not perfectly spherical, and walls are not pristine. This chapter
discusses how to handle randomness in a game, and how we can get effects such as those
discussed above.

Module 4, detecting collisions, is discussed in Chapter 12. This chapter describes the
mathematics and programming behind detecting when two game objects touch, intersect,
or penetrate. Many genres of game have exacting requirements when it comes to collision,
be it a racing game, a sports title, or a military simulation.

Finally, module 5, reacting in a realistic manner to physical forces and collisions, is cov-
ered in Chapter 13. This chapter describes how to make game objects behave and react in
physically convincing ways.

Put together, the chapters that form this book are designed to give a good basis for the
foundations of a game engine, details on the ways that engines represent and draw their
virtual worlds, and an introduction to making those worlds seem real and active.

Interactive Demo Applications and Support Libraries

Three-dimensional games and graphics are, by their nature, not only visual but also dynamic.
While figures are indeed a welcome necessity in a book about 3D applications, interac-
tive demos can be even more important. It is difficult to truly understand such topics as
lighting, quaternion interpolation, or physical simulation without being able to see them
work firsthand and to interact with these complex systems. The website for this book
(www.essentialmath.com) includes a collection of source code and demonstrations that are
designed to illustrate the concepts in a way that is analogous to the static figures in the book
itself. Whenever a topic is illustrated with an interactive demo, a special icon like the one
seen next to this paragraph will appear in the margin.

In addition to the source code for each of the demos, the website includes the supporting
libraries used to create the demos, with full source code. Often, code from these supporting

libraries is excerpted in the book itself in order to explain how the particular concept is
implemented. In such situations, again an icon will appear in the margin to note this. This
source code is designed to allow readers to modify and experiment themselves, as a way of
better understanding the way the code works.

The source code is written entirely in C++, a language that is likely to be familiar to most
game developers. C++ was chosen because it is one of the most commonly used languages in
3D game development and because vectors, matrices, quaternions, and graphics algorithms
decompose very well into C++ classes. In addition, C++’s support of operator overloading
means that the math library can be implemented in a way that makes the code look very
similar to the mathematical derivations in the text. However, in some sections of the text,
the class declarations as printed in the book are not complete with respect to the code on the
website. Often, class members that are not relevant to the particular discussion (especially
member variable accessor and “housekeeping” functions) have been omitted for clarity.
These other functions may be found in the full class declarations/definitions in the source
code on the website.

Note that we have modified our mathematical notation slightly to allow our equations to
be as compatible as possible with the code. Mathematicians normally start indexing with 1,
for example, Pp, P2, ..., P,. This does not match how indexing is done in C++: P[0] is
the first element in the array P. To avoid this disconnect, in our equations we will be using
the convention that the starting element in a list is indexed as O; thus, Pg, Pq, ..., P,—1. This
should allow for a direct translation from equation to code.

Math Libraries

All of the demos use a shared core math library called IvMath, which includes C++
classes that implement vectors and matrices of different dimensions, along with a few other
basic mathematical objects discussed in the book. This library is designed to be useful to
readers beyond the examples supplied with the book, as the library includes a wide range
of functions and operators for each of these objects, some of which are beyond the scope
of the book’s demos.

The animation demos use a shared library called TvCurves, which includes classes
that implement spline curves, the basic objects used to animate position. IvCurves is built
upon IvMath, extending this basic functionality to include animation. As with TvMath,
the IvCurves library is likely to be useful beyond the scope of the book, as these classes
are flexible enough to be used (along with TvMath) in other applications.

Finally, the simulation demos use a shared library called IvCol1lision, which imple-
ments basic object intersection (collision) data structures and algorithms. Building on the
IvMath library, this set of classes and functions not only forms the basis for the later demos
in the book, but also is an excellent starting point for experimentation with other forms of
object collision and physics modeling.

Engine and Rendering Libraries

In addition to the math libraries, the website includes a set of classes that implement a simple
gamelike application framework, basic rendering, input handling, and timer functionality.
All of these functions are grouped under the heading of game engine functionality, and
are located in the IvEngine library. The engine’s rendering code takes the form of a

Introduction xxix

xxx Introduction

set of renderer-abstraction classes that simplify the interfaces between the C++ classes in
IvMath and the C-based, low-level rendering application programmer interfaces (APIs).
This code is included as a part of the rendering library IvGraphics. It includes renderer
setup, basic render-state management, and rendering of simple geometric primitives, such
as spheres, cubes, and boxes.

Since this book focuses on the mathematics and concepts behind 3D games, we chose
not to center the discussion around a large-scale, general 3D game engine. Doing so would
introduce an extra layer of indirection that would not serve the conceptual requirements of
the book. Valuable real estate in chapters would be spent on background in the use of a par-
ticular engine — the one written for the book. For an example and discussion of a full game
engine, the reader is encouraged to read Jason Gregory’s Game Engine Architecture [63].

We have opted to implement our rendering system and examples using two standard
SDKs: the multiplatform OpenGL [135] and the popular Direct3D DX11. We also use
the GLFW utility toolkit to implement windowing setup and input handling for OpenGL,
neither of which is a core topic of this book.

Supplementary Material

In addition to the sample code, we have included some useful reading material on the website
for those who haven’t absorbed enough of our luminous prose. This includes supplemental
material that unfortunately didn’t make its way into the book proper due to space consid-
erations, plus slides and notes from years of GDC tutorials that cover topics well beyond
those presented in this book. Again, these can be found at www.essentialmath.com.

References and Further Reading

Hopefully, this book will leave readers with a desire to learn even more details and the
breadth of the mathematics involved in creating high-performance, high-quality 3D games.
Wherever possible, we have included references to other books, articles, papers, and web
sites that detail particular subtopics that fall outside the scope of this book. The full set of
references may be found at the back of the book.

We have attempted to include references that the vast majority of readers should be
able to locate. When possible, we have referenced recent or standard industry texts and
well-known conference proceedings. However, in some cases we have included references
to older magazine articles and technical reports when we found those references to be
particularly complete, seminal, or well written. In some cases, older references can be
easier for the less experienced reader to understand, as they often tend to assume less
common knowledge when it comes to computer graphics and game topics.

In the past, older magazine articles and technical reports were notoriously difficult for
the average reader to locate. However, the Internet and digital publishing have made great
strides toward reversing this trend. For example, the following sources have made several
classes of resources far more accessible:

¢ The magazine most commonly referenced in this book, Game Developer, is sadly
now defunct. However, many of the articles from past issues are available on

Gamasutra, at www.gamasutra.com/topic/game-developer. Several other technical
magazines also offer such websites.

* Most papers and technical reports are often available on the Internet. The two most
common methods of finding these resources are via publication portals such as
Citeseer (www.citeseer.com) and via the authors’ personal homepages (if they have
them). Most of the technical reports referenced in this book are available online
from such sources. Owing to the dynamic nature of the Internet, we suggest using a
search engine if the publication portals do not succeed in finding the desired article.

e Technical societies are now placing major historical publications into their
“digital libraries,” which are often made accessible to members. The Association
for Computing Machinery (ACM) has done this via its ACM Digital Library, which
is available to ACM members. As an example, the full text of the entire collection
of papers from all SIGGRAPH conferences (the conference proceedings most fre-
quently referenced in this book) is available electronically to ACM SIGGRAPH
members. Many of these papers are available at the authors’ websites as well.

For further reading, we suggest several books that cover topics related to this book
in much greater detail. In most cases they assume that the reader is familiar with the
concepts discussed in this book. Jason Gregory’s Game Engine Architecture [63] dis-
cusses the design and implementation of a full game engine. For graphics and physically
based lighting, Akenine-Mdller et al. [1] is an excellent source for real-time systems, and
Pharr and Humphreys [121] for offline systems. Books by Gino van den Bergen [149] and
Christer Ericson [41] cover topics in interactive collision detection. Finally, Millington [109]
provides a more advanced discussion of a wide range of physical simulation topics.

Introduction xxxi

) Representing Real
Numibers

1.1 Introduction

Most basic undergraduate computer architecture books [139] present the basics of integral
data types (e.g., int and unsigned int, short, etc., in C/C+4+) but give only brief
introductions to floating-point and other nonintegral number representations. Since the
mathematics of 3D graphics are generally real-valued (as we shall see from the ubiquity of
R, R?, and R3 in the coming chapters), it is important for anyone in the field to understand
the features, limitations, and idiosyncrasies of the standard computer representations of
these nonintegral types. While it’s possible to use real numbers successfully without any
understanding of how they are implemented, this can lead to subtle bugs and performance
problems at inopportune stages during the development of an application.

This chapter will focus on the IEEE floating-point format and its variants, which is
the standard computer representation for real numbers. It will cover the associated bitwise
formats, basic operations, features, and limitations. By design, we’ll begin with general
mathematical discussions of number representation and transition toward implementation-
related topics of specific relevance to 3D programmers. Most of the chapter will be spent
on the ubiquitous IEEE floating-point numbers, especially discussions of floating-point
limitations that often cause issues in 3D pipelines. It will also present a brief case study of
floating-point-related performance issues in a real application.

We assume that the reader is familiar with the basic concepts of integer and whole-
number representations on modern computers, including signed representation via two’s
complement, range, overflow, common storage lengths (8, 16, and 32 bits), standard C
and C++ basic types (int, unsigned int, short, etc.), and type conversion. For an
introduction to these concepts of binary number representation, we refer the reader to a
basic computer architecture text, such as Stallings [139].

2 Representing Real Numbers

1.2 Preliminary Concepts

The issues described above relating to storage of integers (such as overflow) are still
important when considering real numbers. However, real-number representations add
additional complexities that will result in implementation trade-offs, subtle errors, and
difficult-to-trace performance issues that can easily confuse the programmer.

1.2.1 Fixed-Point Numbers

Fixed-point numbers are based on a very simple observation with respect to computer
representation of integers. In the standard binary representation, each bit represents twice
the value of the bit to its right, with the least significant bit representing 1. The following
diagram shows these powers of 2 for a standard 8-bit unsigned value:

27 |26 [25 |24 |23 |22 |2t |20

12816432168 |4]2 |1

Just as a decimal number can have a decimal point, which represents the break between
integral and fractional values, a binary value can have a binary point, or more generally a
radix point (a decimal number is referred to as radix 10, a binary number as radix 2). In the
common integer number layout, we can imagine the radix point being to the right of the
last digit. However, it does not have to be placed there. For example, let us place the radix
point in the middle of the number (between the fourth and fifth bits). The diagram would
then look like this:

23 (22|20 |20 2=t |22 |23 |24

1

1 (1 |1
8 |14 |12 |1.5 17 |35 |16

Now, the least significant bit represents 1/16. The basic idea behind fixed point is one
of scaling. A fixed-point value and an integer with the same bit pattern are related by an
implicit scaling factor. This scaling factor is fixed for a given fixed-point format and is the
value of the least significant bit in the representation. In the case of the preceding format,
the scaling factor is 1/16. The spacing between each representable number can be seen
in Figure 1.1, where a representable value lies on each vertical line. Each value is spaced
exactly 1/16 apart, which is consistent with our scaling factor.

The standard nomenclature for a fixed-point format is A-dot-B, where A is the number
of integral bits (to the left of the radix point) and B is the number of fractional bits (to the
right of the radix point). For example, the 8-bit format described above would be referred

0.0 1.0

Figure 1.1. Representable values for 4-dot-4 fixed point between 0 and 1.

1.2 Preliminary Concepts

to as 4-dot-4. Regular 32-bit integers could be referred to as 32-dot-0 because they have
no fractional bits. More generally, the scaling factor for an A-dot-B format is simply 272,
Note that, as expected, the scaling factor for a 32-dot-0 format (integers) is 20 = 1. No
matter what the format, the radix point is locked, or fixed, at B bits from the least significant
bit—thus the name “fixed point.”

1.2.2 Approximations

While computer representations of whole numbers (unsigned int) and integers (int)
are limited to a finite subset of their pure counterparts, in each case the finite set is contigu-
ous; that is, if 7 and i 4 2 are both representable, then i + 1 is also representable. So inside
the range defined by the minimum and maximum representable integer values, all integers
can be represented exactly. This is possible because any finitely bounded range of integers
contains a finite number of elements.

When dealing with real numbers, however, this is no longer true. A subset of real
numbers can have infinitely many elements even when bounded by finite minimal and
maximal values. As a result, no matter how tightly we bound the range of real numbers
(other than the trivial case of R, = Ruax) that we choose to represent, we will be unable
to represent all the values within that range.

As an example, suppose that we choose to represent real numbers as a fixed-point number,
where the first m bits represent the integer value, and the last bits represent the fractional
value. The smallest possible fraction we can represent is 1/2", and the next largest is 2/2".
We can’t represent 3 /21 —it falls between those two values, so we’ll either need to round
up or round down. Hence, issues of both range and precision will be constant companions
over the course of our discussion of real-number representations.

1.2.3 Precision and Error

In order to adequately understand the representations of real numbers, we need to under-
stand the concept of precision and error. Imagine a generic function Rep(A), which returns
the value in a numerical representation that is closest to the value A. In a perfect system,
Rep(A) = A for all values of A. As we’ve seen, however, even limiting our range to finite
extremes will not allow us to represent all real numbers in the bounded range exactly.
Rep(A) will be a many-to-one mapping, with infinitely many real numbers A mapping to
each distinct value returned by Rep(A), and only one represented exactly. In other words,
for almost all real values A, Rep(A) # A, or |Rep(A) — A| # 0. The representation in such
a case is an approximation of the actual value.

By making use of |Rep(A) — A|, we can measure the error in the approximation. The
simplest way to represent this is absolute error, which is defined as

AbsError = |Rep(A) — A|

This is simply the number line distance between the actual value and its representation.
While this value does correctly signify the difference between the two values, it doesn’t
quantify another important factor in representation error—the scale at which the error affects
computation.

To better understand this, imagine a system of measurement that is accurate to within a
kilometer. Such a system might be considered suitably accurate for measuring the distance

3

4 Representing Real Numbers

(149,597,871 km) between the earth and the sun. However, it would likely be woefully
inaccurate at measuring the size of an apple (0.00011 km), which would be rounded to
0km! Intuitively, this is obvious, but in both cases, the absolute error of representation is
less than 1 km. Clearly, absolute error is not sufficient in all cases.

Relative error takes the scale of the value being approximated into account. It does so
by dividing the absolute error by the actual value being represented, making it a measure of
the ratio of the error to the magnitude of the value being approximated. More specifically,
it is defined as

Rep(A) —A
RelError = ‘EP() ‘

A

As such, relative error is dimensionless; even if the values being approximated have units
(such as kilometers), the relative error has no units. However, due to the division, relative
error cannot be computed for a value that approximates 0.

Revisiting our previous example, the relative errors in each case would be

(approximately)
1km -9
RelErrorsy, = |———— | ~ 7 x 10
149,597,871 km
RelE _10.0001Tkm|
CEEITOTApPle = 16,0001 1 km |

Clearly, relative error is a much more useful error metric in this case. The earth—sun distance
error is tiny (compared to the distance being measured), while the size of the apple was
estimated so poorly that the error had the same magnitude as the actual value. In the former
case, a relatively close representation was found, while in the latter case, the representation
is all but useless.

Taking another example, let’s look at the absolute and relative errors for our 4-dot-4
fixed-point representation. We know that our representable values are separated by a step
size of 1/16. That means that any real value within the range of this fixed-point format is
no more than 1/32 from a representable value. And so our absolute error is bounded by a
constant, or

1
0 < |Rep(A)—A| < —
< |Rep(A) |_32

Dividing this by A, we can see that our relative error is not well bounded:

Rep(A) — A 1
0< p(A) -

A 32|A|
Our relative error grows in inverse proportion to the magnitude of A. This is one char-
acteristic of fixed-point numbers: absolute error is bounded but relative error can vary

greatly.

1.3 Floating-Point Numbers

1.3 Floating-Point Numbers

1.3.1 Review: Scientific Notation

In order to better introduce floating-point numbers, it is instructive to review the well-known
standard representation for real numbers in science and engineering: scientific notation.
Computer floating point is very much analogous to scientific notation.

Scientific notation (in its strictest, so-called normalized form) consists of two parts:

1. A decimal number, called the mantissa, such that
1.0 < |mantissa| < 10.0

2. An integer, called the exponent

Together, the exponent and mantissa are combined to create the number

mantissa x 10¢Ponent

Any decimal number can be represented in this notation (other than 0, which is simply
represented as 0.0), and the representation is unique for each number. In other words, for
two numbers written in this form of scientific notation, the numbers are equal if and only
if their mantissas and exponents are equal. This uniqueness is a result of the requirements
that the exponent be an integer and that the mantissa be “normalized” (i.e., have magnitude
in the range [1.0, 10.0]). Examples of numbers written in scientific notation include

102 = 1.02 x 102
243,000 = 2.43 x 10°
—0.0034 = —3.4 x 1073

Examples of numbers that constitute incorrect scientific notation and their correct form
include

Incorrect Correct

11.02 x 10® | 1.102 x 10*
092x107%2| 92 x 1073

1.3.2 Restricted Scientific Notation

For the purpose of introducing the concept of finiteness of representation, we will briefly
discuss a contrived, restricted scientific notation. We extend the rules for scientific
notation:

1. The mantissa must be written with a single, nonzero integral digit.

2. The mantissa must be written with a fixed number of fractional digits (we define
this as M digits).

5

6 Representing Real Numbers

3. The exponent must be written with a fixed number of digits (we define this as
E digits).

4. The mantissa and the exponent each have individual signs.

For example, the following number is in a format with M = 3, E = 2:

+1.12[3] x 1oi

Limiting the number of digits allocated to the mantissa and exponent means that any
value that can be represented by this system can be represented uniquely by six decimal
digits and two signs. However, this also implies that there are a limited number of values
that could ever be represented exactly by this system, namely:

(exponents) x (mantissas) x (exponent signs) X (mantissa signs)
= (10%) x (9 x 10%) x (2) x (2)
= 3,600,000

Note that the leading digit of the mantissa must be nonzero (since the mantissa is normal-
ized), so that there are only nine choices for its value [1, 9], leading to 9 x 10 x 10 x 10 =
9,000 possible mantissas.

This makes both the range and precision finite. The minimum and maximum expo-
nents are

+(10F —1) = £(10> — 1) = +99
The largest mantissa value is
10.0 — (107™) = 10.0 — (107%) = 10.0 — 0.001 = 9.999

Note that the smallest allowed nonzero mantissa value is still 1.000 due to the requirement
for normalization. This format has the following numerical limitations:

Maximum representable value: 9.999 x 10%

Minimum representable value: —9.999 x 10%°

Smallest positive value: 1.000 x 107

While one would likely never use such a restricted form of scientific notation in practice,
it demonstrates the basic building blocks of binary floating point, the most commonly used
computer representation of real numbers in modern computers.

1.3.3 Binary Scientific Notation

There is no reason that scientific notation must be written in base-10. In fact, in its most basic
form, the real-number representation known as floating point is similar to a base-2 version

1.3 Floating-Point Numbers

of the restricted scientific notation given previously. In base-2, our restricted scientific
notation would become

SignM x mantissa x 2518"E > exponent

where exponent is an E-bit integer, and SignM and SignE are independent bits representing
the signs of the mantissa and exponent, respectively.

Mantissa is a bit more complicated. It is a 1-dot-M fixed-point number whose most
significant bit is always 1. Hence, the resulting Mantissa is in the range

1
1.0 < Mantissa < (2.0 — 2M>

Put together, the format involves M + E + 3 bits (M + 1 for the mantissa, E for the
exponent, and 2 for the signs). Creating an example that is analogous to the preceding
decimal case, we analyze the case of M = 3, FE = 2:

Any value that can be represented by this system can be represented uniquely by 8 bits.
The number of values that ever could be represented exactly by this system is

(exponents) x (mantissas) X (exponent signs) X (mantissa signs)
=2 x(1x2)xQ2)x(2)
=27 =128

This seems odd, as an 8-bit number should have 256 different values. However, note
that the leading bit of the mantissa must be 1, since the mantissa is normalized (and the
only choices for a bit’s value are 0 and 1). This effectively fixes one of the bits and cuts the
number of possible values in half. We shall see that the most common binary floating-point
format takes advantage of the fact that the integral bit of the mantissa is fixed at 1.

In this case, the minimum and maximum exponents are

+2fF -1 =x02*’-1) =43
The largest mantissa value is
20-2"M=20-27%=1875
This format has the following numerical limitations:
Maximum representable value: 1.875 x 23 = 15
Minimum representable value: —1.875 x 23 = —15

Smallest positive value: 1.000 x 273 = 0.125

7

8 Representing Real Numbers

0.0 1.0

Figure 1.2. Representable values for our 8-bit floating point between O and 1.

If we look at the representable values of this format between 0 and 1 (Figure 1.2), we see
that the relative spacing is much different than our fixed-point format. The values are close
together near 0, and spread farther and farther apart as we move away from 0. Also notice
that we cannot represent O with our current format. There is also a large gap between the
smallest representable positive number and O—this is known as the hole at zero. We will
discuss how to handle both of these cases later.

From the listed limits, it is quite clear that a floating-point format based on this simple
8-bit binary notation would not be useful to most real-world applications. However, it does
introduce the basic concepts that are shared by real floating-point representations. While
there are countless possible floating-point formats, the universal popularity of a single set
of formats (those described in the IEEE 754 specification [4]) makes it the obvious choice
for any discussion of the details of floating-point representation. In the remainder of this
chapter, we will explain the major concepts of floating-point representation as evidenced
by the IEEE standard format.

1.4 |EEE 754 Floating-Point Standard

By the early to mid-1970s, scientists and engineers were very frequently using floating
point formats to represent real numbers; at the time, higher powered computers even
included special hardware to accelerate floating-point calculations. However, these same
scientists and engineers were finding the lack of a floating-point standard to be problematic.
Their complex (and often very important) numerical simulations were producing different
results, depending only on the make and model of computer upon which the simulation was
run. Numerical code that had to run on multiple platforms became riddled with platform-
specific code to deal with the differences between different floating-point processors and
libraries.

In order for cross-platform numerical computing to become a reality, a standard was
needed. Over the course of the next decade, a draft standard for floating-point formats and
behaviors became the de facto standard on most floating-point hardware. Once adopted,
it became known as the IEEE 754 floating-point standard [83]. It was further revised in
2008 [4], and it forms the basis of almost every hardware and software floating-point system
on the market.

While the history of the standard is fascinating [87], this section will focus on explaining
part of the standard itself, as well as using the standard and one of its specified formats to
explain the concepts of modern floating-point arithmetic.

1.4.1 Basic Representation

The IEEE 754-2008 standard specifies three binary basic formats, two decimal basic for-
mats, one binary interchange format, and one decimal interchange format. For our purposes,
we will focus on three of these: a 32-bit single-precision format for floating-point num-
bers (also known as binary32), a 64-bit double-precision format (binary64), and a 16-bit

1.4 IEEE 754 Floating-Point Standard 9

half-precision interchange format (binaryl6). The first two define both the format and
mathematical operations; the last is only intended for use as a storage format.

It is the single-precision format that is of greatest interest for most games and interactive
applications and is thus the format that will form the basis of most of the floating-point
discussion in this text. The three formats are fundamentally similar, so all of the concepts
regarding single precision are applicable to double precision and half precision as well.

The following diagram shows the basic memory layout of the IEEE single-precision
format, including the location and size of the three components of any floating-point system:
sign, exponent, and mantissa:

Sign | Exponent | Mantissa

1 bit | 8bits 23 bits

The sign in the IEEE floating-point format is represented as an explicit bit (the high-
order bit). Note that this is the sign of the number itself (the mantissa), not the sign of
the exponent. Differentiating between positive and negative exponents is handled in the
exponent itself (and is discussed next). The only difference between X and —X in IEEE
floating point is the high-order bit. A sign bit of 0 indicates a positive number, and a sign
bit of 1 indicates a negative number.

This sign bit format allows for some efficiencies in creating a floating-point math system
in either hardware or software. To negate a floating-point number, simply flip the sign bit,
leaving the rest of the bits unchanged. To compute the absolute value of a floating-point
number, simply set the sign bit to 0 and leave the other bits unchanged. In addition, the sign
bits of the result of a multiplication or division are simply the exclusive-OR of the sign bits
of the operands.

The exponent in this case is stored as a biased number. Biased numbers represent both
positive and negative integers (inside of a fixed range) as whole numbers by adding a fixed,
positive bias. To represent an integer I, we add a positive bias B (that is constant for the
biased format), storing the result as the whole number (nonnegative integer) W. To decode
the represented value / from its biased representation W, the formula is simply

I=W-B
To encode an integer value, the formula is
W=I+B
Clearly, the minimum integer value that can be represented is
I=0-B=-B

The maximal value that can be represented is related to the maximum whole number that
can be represented, W,,,,. For example, with an 8-bit biased number, that value is

=Wy —B=2—1)—B

10 Representing Real Numbers

Most frequently, the bias chosen is as close as possible to W,,,./2, giving a range that is
equally distributed to about zero. Over the course of this chapter, when we are referring to
a biased number, the term value will refer to I, while the term bits will refer to W.

Such s the case with the IEEE single-precision floating-point exponent, which uses 8 bits
of representation and a bias of 127. This would seem to lead to minimum and maximum
exponents of —127 (= 0 — 127) and 128 (= 255 — 127), respectively. However, for reasons
that will be explained, the minimum and maximum values (—127 and 128) are reserved for
special cases, leading to an exponent range of [—126, 127]. As a reference, these base-2
exponents correspond to base-10 exponents of approximately [—37, 38].

The mantissa is normalized (in almost all cases), as in our discussion of decimal scien-
tific notation (where the units digit was required to have magnitude in the range [1, 9]).
However, the meaning of “normalized” in the context of a binary system means that the
leading bit of the mantissa is always 1. Unlike a decimal digit, a binary digit has only one
nonzero value. To optimize storage in the floating-point format, this leading bit is omitted,
or hidden, freeing all 23 explicit mantissa bits to represent fractional values (and thus these
explicit bits are often called the “fractional” mantissa bits). To decode the entire mantissa
into a rational number (ignoring for the moment the exponent), assuming the fractional bits
(as a 23-bit unsigned integer) are in F, the conversion is

F
1.0+ 508

So, for example, the fractional mantissa bits
11100000000000000000000, = 734003219

become the rational number

7340032.0
1.0+ o3 T 1.875

1.4.2 Range and Precision

The range of single-precision floating point is by definition symmetric, as the system uses
an explicit sign bit—every positive value has a corresponding negative value. This leaves
the questions of maximal exponent and mantissa, which when combined will represent the
explicit values of greatest magnitude. In the previous section, we found that the maximum
base-2 exponent in single-precision floating point is 127. The largest mantissa would be
equal to setting all 23 explicit fractional mantissa bits, resulting (along with the implicit 1.0
from the hidden bit) in a mantissa of

23
Zl 1 1
— 2 2 22

The minimum and maximum single-precision floating-point values are then

1
+ <2.o - 223) x 277 & 43402823466 x 10

The precision of single-precision floating point can be loosely approximated as follows:
for a given normalized mantissa, the difference between it and its nearest neighbor is 2723

1.4 IEEE 754 Floating-Point Standard

To determine the actual spacing between a floating-point number and its neighbor, the
exponent must be known. Given an exponent E, the difference between two neighboring
single-precision values is

8 = 2F x 278 = 2E-23

However, we note that in order to represent a value A in single precision, we must find
the exponent E4 such that the mantissa is normalized (i.e., the mantissa My is in the range
1.0 < My < 2.0), or

A
o<Al 59
2F

Multiplying through, we can bound |A| in terms of 254

ﬂ <20
2B 7
Al <284 % 2.0

ZEA <Al < 2EA+1

1.0

IA

2Ea

IA

As aresult of this bound, we can roughly approximate the entire exponent term 254 with |A|
and substitute to find an approximation of (5,), the distance between neighboring floating-
point values around |A|, as

28 Al

_ Ex-23 _
8p =2 T 923 T 923

From our initial discussion on absolute error, we use a general bound on the absolute
error equal to half the distance between neighboring representation values:

1Al 1Al

AbsErrora & 8p X 5= X —

2 2%

This approximation shows that the absolute error of representation in a floating-point
number is directly proportional to the magnitude of the value being represented. Having
approximated the absolute error, we can approximate the relative error as

AbsErrors |A] | _g
RelErrory = A N oy A = 2~ 6x 10

The relative error of representation is thus generally constant, regardless of the magnitude
of A. This is the opposite of what we saw with fixed-point numbers.

1.4.3 Arithmetic Operations

In the subsequent sections, we discuss the basic methods used to perform common arith-
metic operations upon floating-point numbers. While few users of floating point will ever
need to implement these operations at a bitwise level themselves, a basic understanding
of the methods is a pivotal step toward being able to understand the limitations of floating

11

12 Representing Real Numbers

point. The methods shown are designed for ease of understanding and do not represent the
actual, optimized algorithms that are implemented in hardware.

The IEEE standard specifies that the basic floating-point operations of a compliant
floating-point system must return values that are exactly equivalent to the result computed
and then rounded to the available precision. The following sections are designed as an
introduction to the basics of floating-point operations and do not discuss the exact meth-
ods used for rounding the results. At the end of the section, there is a discussion of the
programmer-selectable rounding modes specified by the IEEE standard.

The intervening sections include information regarding common issues that arise from
these operations, because each operation can produce problematic results in specific
situations.

1.4.3.1 Addition and Subftraction

In order to add a pair of floating-point numbers, the mantissas of the two addends first must
be shifted such that their radix points are lined up. In a floating-point number, the radix points
are aligned if and only if their exponents are equal. If we raise the exponent of a number by 1,
we must shift its mantissa to the right by 1 bit. For simplicity, we will first discuss addition
of a pair of positive numbers. The standard floating-point addition method works (basically)
as follows to add two positive numbers A = Sy x My x 254 and B = S x Mp x 28, where
S4 = Sp = 1.0 due to the current assumption that A and B are nonnegative.

1. Swap A and B if needed so that E4 > Ep.

2. Shift Mp to the right by E4 — Ep bits. If E4 # Ep, then this shifted Mp will not be
normalized, and Mp will be less than 1.0. This is needed to align the radix points.

3. Compute My, p by directly adding the shifted mantissas M4 and Mp.
4. Set Eoyp = Eg.

5. The resulting mantissa M4 p may not be normalized (it may have an integral value
of 2 or 3). If this is the case, shift M4 p to the right 1 bit and add 1 to E44 p.

Note that there are some interesting special cases implicit in this method. For example,
we are shifting the smaller number’s mantissa to the right to align the radix points. If
the two numbers differ in exponents by more than the number of mantissa bits, then the
smaller number will have all of its mantissa shifted away, and the method will add 0 to
the larger value. This is important to note, as it can lead to some very strange behavior in
applications. Specifically, if an application repeatedly adds a small value to an accumulator,
as the accumulator grows there will come a point at which adding the small value to the
accumulator will result in no change to the accumulator’s value (the delta value being added
will be shifted to zero each iteration)!

Floating-point addition must take negative numbers into account as well. There are three
distinct cases here:

* Bothoperands positive. Add the two mantissas as is and set the result sign to positive.

1.4 IEEE 754 Floating-Point Standard

* Both operands negative. Add the two mantissas as is and set the result sign to
negative.

* One positive operand and one negative operand. Negate (two’s complement) the
mantissa of the negative number and add.

In the case of subtraction (or addition of numbers of opposite sign), the result may have
a magnitude that is significantly smaller than either of the operands, including a result
of 0. If this is the case, there may be considerable shifting required to reestablish the
normalization of the result, shifting the mantissa to the left (and shifting zeros into the
lowest-precision bits) until the integral bit is 1. This shifting can lead to precision issues
(see Section 1.4.6) and can even lead to nonzero numbers that cannot be represented by the
normalized format discussed so far (see Section 1.4.5).

‘We have purposefully omitted discussion of rounding, as rounding the result of an addi-
tion is rather complex to compute quickly. This complexity is due to the fact that one of
the operands (the one with the smaller exponent) may have bits that are shifted out of the
operation, but must still be considered to meet the IEEE standard of “exact result, then
rounded.” If the method were simply to ignore the shifted bits of the smaller operand, the
result could be incorrect. You may want to refer to Hennessy and Patterson [78] for details
on the floating-point addition algorithm.

1.4.3.2 Multiplication

Multiplication is actually rather straightforward with IEEE floating-point numbers. Once
again, the three components that must be computed are the sign, the exponent, and the
mantissa. As in the previous section, we will give the example of multiplying two floating-
point numbers, A and B.

Owing to the fact that an explicit sign bit is used, the sign of the result may be computed
simply by computing the exclusive-OR of the sign bits, producing a positive result if the
signs are equal and a negative result otherwise. The result of the multiplication algorithm
is sign-invariant.

To compute the initial exponent (this initial estimate may need to be adjusted at the end
of the method if the initial mantissa of the result is not normalized), we simply sum the
exponents. However, since both E4 and Ep contain a bias value of 127, the sum will contain
a bias of 254. We must subtract 127 from the result to reestablish the correct bias:

Esxp = Es+Ep—127

To compute the result’s mantissa, we multiply the normalized source mantissas M4 and
Mp as 1-dot-23 format fixed-point numbers. The method for multiplying two X-dot-Y bit
format fixed-point numbers is to multiply them using the standard integer multiplication
method and then divide the result by 2¥ (which can be done by shifting the result to the right
by Y bits). For 1-dot-23 format source operands, this produces a (possibly unnormalized)
3-dot-46 result. Note from the format that the number of integral bits may be 3, as the
resulting mantissa could be rounded up to 4.0. Since the source mantissas are normalized,
the resulting mantissa (if it is not 0) must be >1.0, leading to three possibilities for the

13

14 Representing Real Numbers

mantissa Maxp: it may be normalized, it may be too large by 1 bit, or it may be too large
by 2 bits. In the latter two cases, we add either 1 or 2 to E4«p and shift M «p to the right
by 1 or 2 bits until it is normalized.

1.4.3.3 Rounding Modes

The IEEE 754-2008 specification defines five rounding modes that an implementation must
support. These rounding modes are

e Round toward nearest, ties to even.

* Round toward nearest, ties away from 0.
¢ Round toward O (truncation).

¢ Round toward —oo (floor).

¢ Round toward oo (ceiling).

The specification defines these modes with specific references to bitwise rounding
methods that we will not discuss here, but the basic ideas are quite simple.

Round toward nearest, ties to even (also known as bankers’ rounding) is the default
rounding mode. This rounds to the nearest representable value—if there is a tie, it chooses
the one with a zero least significant bit 0. Round toward nearest, ties away from O is
similar, but chooses the value with the largest magnitude.

For the last three, we break the mantissa into the part that can be represented (the leading
1 along with the next 23 most significant bits), which we call M, and the remaining lower
order bits, which we call R. Round toward 0 is also known as truncation and is the simplest
to understand; in this mode, M is used and R is simply ignored or truncated. Round toward
Fo00 are modes that round toward positive (c0) or negative (—oo) based on the sign of the
result and whether R = 0 or not, as shown in the following tables.

Round toward oo |

R=0|R#0
M>0| M |[M+1
M<0| M M

Round toward —oo

R=0|R#0
M>0| M M
M<0| M |M+1

1.4 IEEE 754 Floating-Point Standard

One possible use for setting the rounding mode is for interval arithmetic, where you
track an upper and lower bound for each calculation, and use ceiling and floor modes,
respectively. It also is used in converting floating-point values to a string. However, in most
cases, there’s no reason to change the rounding mode from the default.

1.4.4 Special Values

One of the most important parts of the IEEE floating-point specification is its definition
of numerous special values. While these special values co-opt bit patterns that would
otherwise represent specific floating-point numbers, this trade-off is accepted as worth-
while, owing to the nature and importance of these special values.

1.4.4.1 Zero

The representation of 0.0 in floating point is more complex than one might think. Since the
high-order bit of the mantissais assumed to be 1 (and has no explicit bitin the representation),
it is not enough to simply set the 23 explicit mantissa bits to O, as that would simply
represent the number 1.0 x 2E~!?7. It is necessary to define zero explicitly, in this case
as a number whose exponent bits are all 0 and whose explicit mantissa bits are 0. This is
sensible, as this value would otherwise represent the smallest possible normalized value.
Note that the exponent bits of 0 map to an exponent value of —127, which is reserved for
special values such as 0. All other numbers with exponent value —127 (i.e., those with
nonzero mantissa bits) are reserved for a class of very small numbers called denormals,
which will be described later.

Another issue with respect to floating-point zero arises from the fact that IEEE floating-
point numbers have an explicit sign bit. The IEEE specification defines both positive and
negative 0, differentiated by only the sign bit. This allows certain computations to continue
to propagate the sign bit even for results of 0. To avoid very messy code, the specifi-
cation does require that 40 and —O0 are treated as equal in comparisons. However, the
bitwise representations are distinct, which means that applications should never use bitwise
equality tests with floating-point numbers! The bitwise representations of both zeros are

0.0 0{00000000{00000000000000000000000
+0.0 =
S|Exponent Mantissa
0.0 1{00000000{00000000000000000000000
S|Exponent Mantissa

The standard does list the behavior of positive and negative zero explicitly, including the
definitions:

(+0) = (+0) = (+0)
—(+0)=(-0)

15

16

Representing Real Numbers

Also, the standard defines the sign of the result of a multiplication or division operation
as negative if and only if exactly one of the signs of the operands is negative. This includes
zeros. Thus,

(+0)(+0) = +0

(=0)(=0)=+0
(=0)(+0) = -0
(—0)P = -0
(+0)P = 40
(—0)N =+0
(+0)N = -0

where P > Qand N < 0.

1.4.4.2 Infinity

At the other end of the spectrum from zero, the standard also defines positive infinity (c0g)
and negative infinity (—00y,), along with rules for the behavior of these values. In a sense
the infinities are not pure mathematical values. Rather, they are used to represent values
that fall outside of the range of valid exponents. For example, 1.0 x 1038 is just within the
range of single-precision floating point, but in single precision,

(1.0 x 10%)? = 1.0 x 107 ~ ooy,

The behavior of infinity is defined by the standard as follows (the standard covers many
more cases, but these are representative):

oofp — P = oo

P
- = _|_()
fp
—P
L 0
Ofp
P
J0 Ofp
P
o= o

where
0 <P <oop

The bitwise representations of +00g, use the reserved exponent value 128 and all
explicit mantissa bit zeros. The only difference between the representations of the two

1.4 IEEE 754 Floating-Point Standard

infinities is, of course, the sign bit. The representations are diagrammed as follows:

0| 11111111 | 00000000000000000000000
OOfp =
S | Exponent Mantissa
1|11111111 | 00000000000000000000000
—Op =
S | Exponent Mantissa

To test for infinite values, in C99 you can use the isinf () macro (also provided by
many C++ compilers), and in C++11 the std: :isinf () function.

Floating-point numbers with exponent values of 128 and nonzero mantissa bits do not
represent infinities. They represent the next class of special values—nonnumerics.

1.4.4.3 Nonnumeric Values
All the following function call examples represent exceptional cases:

Function Call Issue

arcsine(2.0) Function not defined for argument.
sqrt(—1.0) Result is imaginary.

0.0/0.0 Result is indeterminate.

00 — 00 Result is indeterminate.

In each of these cases, none of the floating-point values we have discussed will accu-
rately represent the situation. Here we need a value that indicates the fact that the desired
computation cannot be represented as a real number. The IEEE specification includes a
special set of values for these cases, known collectively as not a numbers (NaNs). The
general format is

O] 11111111 | [23 low-order bits not all 0]
NaN =

S | Exponent Mantissa

The leading bit of the mantissa controls which type of NaN it is; the remainder of the bits
can be used to indicate which error triggered the NaN.

If the leading bit of the mantissa is 1, then they are quiet NaNs, or QNaNs (Kahan
[87] simply calls them NaNs). These represent indeterminate values and are quietly passed
through later computations (generally as QNaNs). They are not supposed to signal an
exception, but rather allow floating-point code to return the fact that the result of the desired
operation was indeterminate. Floating-point implementations (hardware or software) will
generate QNaNs in cases such as those in our comparison.

If the leading bit is a 0, and the remaining bits are not all O, then this is a signalling NaN,
or SNaN. These represent unrecoverable mathematical errors and signal an exception

17

18 Representing Real Numbers

(if exceptions are disabled, they are converted to QNaNs). These are less interesting to
us, as most floating-point units (FPUs) are designed not to generate SNaNs, and there have
been issues in the support for SNaNs in current compilers [87]. As a result, SNaNs are
encountered very rarely.

Any calculation with a NaN will generate a NaN as a result, and any comparison will
return false. In the latter case, this means you can run into some odd situations, as this table
shows:

Comparison | Result
NaN >=P False
NaN <= P False

NaN == NaN | False

In this case, NaN is neither less than, greater than, nor equal to P, and NaN is not even
equal to itself! If you see a situation like this, it’s very likely a NaN has ended up in your
calculations somewhere. To test for NaN values, in C99 you can use the i snan () macro
(also provided by many C++ compilers), and in C++-11 the std: : isnan () function.

1.4.5 Very Small Values

1.4.5.1 Normalized Mantissas and the Hole at Zero

As we saw in Figure 1.2, one side effect of the normalized mantissa is very interesting
behavior near 0. To better understand this, let us look at the smallest normalized value
(we will look at the positive case; the negative case is analogous) in single-precision floating
point, which we will call Fj,;,. This would have an exponent of —126 and zeros in all
explicit mantissa bits. The resulting mantissa would have only the implicit leading bit set,
producing a value of

Fp = 20 x 27126 _ 9=126

The largest value smaller than this in a normalized floating-point system would be 0.0. The
smallest value larger than F,,;, is found by setting its least significant mantissa bit to 1. This
value, which we will call F.,;, would be simply

Frext = (20 + 2—23) x 2—126 — 2—126 + 2—149 = Fpin +2—149

So the distance between F,;, and its nearest smaller neighbor (0.0) is 2-126

between Fy;; and Fey; is only 2-149,

In fact, F,,;, has a sequence of approximately 223 larger neighbors that are each a distance
of 27149 from the previous. This leaves a large set of numbers between 0.0 and F,;,, that
cannot be represented with nearly the accuracy as the numbers slightly larger than F;,.
This gap in the representation is often referred to as the hole at zero. The operation of
representing numbers in the range (—Fyin, Fmin) With O is often called flushing to zero.

, and the distance

1.4 IEEE 754 Floating-Point Standard 19

One problem with flush-to-zero is that the subtraction of two numbers that are not equal
can result in 0. In other words, with flush-to-zero,

A—B=0+A=B
How can this be? See the following example:

A= 2—126 X (20 +2—2 +2—3)
B = 27126 X (20)

Both of these are valid single-precision floating-point numbers. In fact, they have equal
exponents: —126. Clearly, they are also not equal floating-point numbers: A’s mantissa has
two additional 1 bits. However, their subtraction produces:

A—B =212 20 42724273 - (27126 x 2%))
=271 % (@0 +272+27H - 2%)
=271 x @22 +277)
= 27128 204271

which would be returned as zero on a flush-to-zero floating-point system. While this is a
contrived example, it can be seen that any pair of nonequal numbers whose difference has a
magnitude less than 27126 would demonstrate this problem. There is a solution to this and
other flush-to-zero issues, however.

1.4.5.2 Denormals and Gradual Underflow

To solve the problem of the hole at zero, the IEEE specification specifies behavior for
very small numbers known as gradual underflow. The idea is quite simple. Rather than
require every floating-point number to be normalized, the specification reserves numbers
called denormals (or denormalized numbers or subnormals) with nonzero explicit mantissa
bits and an exponent of —127. In a denormal, the implicit high-order bit of the mantissa
is 0. This allows numbers with magnitude smaller than 1.0 x 27126 to be represented.
In a denormal, the exponent is assumed to be —126 (even though the actual bits would

represent —127), and the mantissa is in the range [2%, 1-— 2%]. The smallest nonzero value

that can be represented with a denormal is 2723 x 27126 = 27149 filling in the hole at zero.

Note that all nonzero floating-point values are still unique, as the specification only allows
denormalized mantissas with an exponent of —126, the minimum valid exponent. Figure 1.3
shows the resulting spacing in our 8-bit floating-point format. Note that support for denor-
mals is, technically, a trade-off. By co-opting what would be the smallest exponent (—127)
to represent denormals, we have traded away some precision in the range [27127,27126) in
order to avoid a huge precision loss in the range (0,27 '%7).

0.0 1.0

Figure 1.3. Representable values for our 8-bit floating point including 0 and denormals.

20 Representing Real Numbers

As a historical note, gradual underflow and denormalized value handling were perhaps
the most hotly contested of all sections in the IEEE floating-point specification. Flush-to-
zero is much simpler to implement in hardware, which also tends to mean that it performs
faster and makes the hardware cheaper to produce. When the IEEE floating-point standard
was being formulated in the late 1970s, several major computer manufacturers were using
the flush-to-zero method for dealing with underflow. Changing to the use of gradual under-
flow required these manufacturers to design FPU hardware or software that could handle the
unnormalized mantissas that are generated by denormalization. This would lead to either
more complex FPU hardware or a system that emulated some or all of the denormalized
computations in software or microcode. The former could make the FPUs more expensive
to produce, while the latter could lead to greatly decreased performance of the floating-
point system when denormals are generated. However, several manufacturers showed that
it could be implemented in floating-point hardware, paving the way for this more accurate
method to become part of the de facto (and later, official) standard. However, performance
of denormalized values is still an issue, even today. We will discuss a real-world example
of denormal performance in Section 1.5.2.

1.4.6 Catastrophic Cancelation

We have used relative error as a metric of the validity of the floating-point representation of
a given number. As we have already seen, converting real numbers A and B into the closest
floating-point approximations Ag, and By, generally results in some amount of relative
representation error, which we compute as

A—A
RelErry = ’ 2 ﬁ)‘

B — By,

RelErrg = ’

These relative representation errors accurately represent how well Ag, and By, represent
A and B, but the result of adding or subtracting Az, and By, may contain a much greater level
of relative error. The addition or subtraction of a pair of floating-point numbers can lead to
a result with magnitude much smaller than either of the operands. Subtracting two nearly
(but not exactly) equal values will result in a value whose magnitude is much smaller than
either of the operands.

Recall that the last step in adding or subtracting two floating-point numbers is to renor-
malize the result so that the leading mantissa bitis 1. If the result of an addition or subtraction
has much lower magnitude (smaller exponent) than the operands, then there will be some
number N of leading mantissa bits that are all 0. The mantissa must be shifted left N bits
so that the leading bit is 1 (and the exponent decremented by N, of course), renormalizing
the number. Zeros will be shifted into all of the N lowest-order (explicit) mantissa bits.
It is these zeros that are the cause of the error; that is, the zeros that are shifted into the
lower order bits are not actual data. Thus, the N least significant mantissa bits may all be
wrong. This can greatly compound relative error.

1.4 IEEE 754 Floating-Point Standard

As an example, imagine that we are measuring the distances between pairs of points
on the real-number line. Each of these pairs might represent the observed positions of two
characters A and B in a game at two different times, ¢ and 7 + 1. We will move each character
by the same amount § between ¢ and 7 + 1. Thus, A’ =A + § and B'= B + 4. If we use the
values

A=15
B=10"
§=15

we can clearly see that in terms of real numbers,

A =30
B’ =10,000,001.5

However, if we look at the single-precision floating-point representations, we get

!
Al =30
/
B}, = 10,000,002.0

A’ is represented exactly, but B is not, giving a relative error of representation for B}p of
0.5
107
=5x1078

RelErrg = ‘

This is quite a small relative error. However, if we compute the distances A’ — A and
B’ — B in floating point, the story is very different:

Al —Ap=30-15 —15=34
B, — By = 10,000,002.0 — 107 =2.0

In the case of A’ — A, we get the expected value, 8. But in the case of B’ — B, we get a
relative error of

RelErr =

20-15
1.5

0.3

21

22 Representing Real Numbers

The resulting error is much larger in the B case, even though A’ — A = B’ — B. What is
happening here can be seen by looking at the bitwise representations:

Exponent Mantissa Bits
B = 23 100110001001011010000000
B = 23 100110001001011010000010
B —B = 23 000000000000000000000010
Normalized = 1 100000000000000000000000

In the case of B'— B, almost all of the original mantissa bits in the operands were
canceled out in the subtraction, leaving the least significant bits of the operands as the most
significant bits of the result. Basically none of the fractional bits of the resulting mantissa
were actual data—the system simply shifted in zeros. The precision of such a result is very
low, indeed. This is catastrophic cancelation; the significant bits are all canceled, causing a
catastrophically large growth in the representation error of the result.

The best way to handle catastrophic cancelation in a floating-point system is to avoid it.
Numerical methods that involve computing a small value as the subtraction or addition of
two potentially large values should be reformulated to remove the operation. An example
of a common numerical method that uses such a subtraction is the well-known quadratic

formula:
—B++/B?—4AC
2A

Both of the subtractions in the numerator can involve large numbers whose addition/
subtraction can lead to small results. However, revising the formula can lead to better-
conditioned results. One possible refactoring tries to avoid cancelation by replacing the
subtraction with an addition:

2C
—B¥+/B?—4AC

However, if B2 is large compared to 4AC, for the second root we’ll again end up dividing
by a very small number. The solution is to rewrite the equation as

0= % (B + sgn(B)\/M)

X0 = Q/A
x1=C/Q

where xo and x; are the roots, and sgn () is the sign of B.

1.4 IEEE 754 Floating-Point Standard

1.4.7 Comparing Floating-Point Numbers

Another consequence of relative representation error is that even without catastrophic can-
celation, there will still be some error that creeps into our calculations over time. This is
known as floating-point drift. In general, we have enough precision (in particular for games)
that even if our answer is not precise to the least significant bit, it won’t affect the placement
of an object or the animation of a character. However, often we want to compare a result
v with a fixed value k to see if we’ve hit a certain value (a common example is 0). We
may want to catch a situation where we’re dividing by that value and so avoid catastrophic
cancelation, or we may want to see if an object has hit a certain position or speed. Because
of the error, checking equality directly in this case will not work—instead we want to add
a certain uncertainty to the check.
One possibility is to check against a constant small value €

lv—kl <e

However, as we’ve seen, this is absolute error. With floating point, absolute error can vary
greatly depending on the magnitude of the value, so choosing a single € for all possible
values will not work. In that case, doing a check using relative error seems appropriate:

v—k
k

<e€

We can remove the division by multiplying by |k|:
lv—k| < |k|e
It’s possible that v is much larger than k, so we should choose the maximum of both, or
[v—k| < max (|v], [k]e

For many cases this will work. However, Ericson [41] points out that for values less than 1
we’ll be scaling our value € down, thereby reducing the uncertainty we were trying to
introduce. His solution is to do an absolute check for values less than 1, which can be
achieved by

[v—k| < max (|v], k|, 1)e

For systems without a fast max function, the following approximation is suggested:
[v—k| < (v[+ k| + De

Our final function becomes

inline bool IvAreEqual(float a, float b, float epsilon)
{

return (IvAbs(a - b) <= epsilon* (IvAbs(a) + IvAbs(b) + 1.0f));
}

Dawson [29] further refines this by noting that strictly speaking, we need a different €
for the absolute check, based on the relative expected magnitudes of v and k. His solution

23

24 Representing Real Numbers

performs the absolute check first, and then if it fails, tries the relative check. In our library,
we use the Ericson approximation because it is fast and does not require knowing the
expected magnitude of the inputs, making it more general. However, those who have better
knowledge of their inputs and need tighter control over their floating-point error should
consider Dawson’s approach. See [29] for more details.

Finally, it’s possible that in performance-critical code, the relative check may still be too
slow. Performing the absolute check can be fine as long as you know the relative magnitude
of your inputs and can choose an appropriate epsilon. The key point to remember is that com-
paring values directly is never appropriate—always perform some sort of bounded check.

1.4.8 Double Precision

As mentioned, the IEEE 754 specification supports a 64-bit double-precision floating-point
value, known in C/C++ as the intrinsic double type. The format is completely analogous
to the single-precision format, with the following bitwise layout:

Sign | Exponent | Mantissa

1 bit | 11 bits 52 bits

Double-precision values have a range of approximately 10%® and can represent values
smaller than 107398, A programmer’s common response to the onset of precision or range
issues is to switch the code to use double-precision floating-point values in the offending
section of code (or sometimes even throughout the entire system). While double precision
can solve almost all range issues and many precision issues (though catastrophic cancela-
tion can still persist) in interactive 3D applications, there are several drawbacks that should
be considered prior to its use:

* Memory. Since double-precision values require twice the storage of single-precision
values, memory requirements for an application can grow quickly, especially if
arrays of values must be stored as double precision.

® Performance. Operations on some hardware FPUs can be significantly slower
when computing double-precision results. Additional expense can be incurred for
conversion between single- and double-precision values.

* Platform issues. Not all platforms support double precision.

The latter two are less of an issue than they were in the past for desktop central processing
units (CPUs), but can still cause problems on certain mobile platforms and on graphics
processing units (GPUs). The key takeway is when developing a real-time application, it is
good to be aware whether your particular platform supports double precision, and what the
relative cost is compared to single precision.

1.4.9 Half Precision

Half-precision floating-point numbers refer to floating-point values that can fit in 16 bits
of storage. They were originally introduced by Nvidia in the Cg shading language as £p16,

1.4 IEEE 754 Floating-Point Standard 25

and became a de facto standard on GPUs and for many graphics SDKs because they offer
a dynamic range of values, but without the storage cost of single precision. Since GPUs
often handle large amounts of parallel computations on large datasets, minimizing memory
usage and bus traffic by using a data type that is half the size is a significant optimization.

With the release of IEEE 754-2008, IEEE floating point now supports this 16-bit
floating-point format, calling it binary16. In the standard, it is defined as an interchange
format—it is meant for storage, not for computation. As one might expect, it has a similar
layout as the other IEEE 754 formats:

Sign | Exponent | Mantissa

1 bit | 5 bits 10 bits

It has a biased exponent, normalized mantissa, and the standard extrema values of 400,
NaN, and denormals. Note that while support for IEEE-style specials and denormals is
common on current GPU half-precision implementations, it is not universal, especially if
your application must run on older GPUs as well. Applications need to be mindful that
very small and very large values may be handled differently on different GPU platforms,
not unlike the pre-IEEE 754 floating-point situation. A discussion of how a real application
had to deal with these differences in exceptional behaviors may be found in “GPU Image
Processing in Apple’s Motion” in Pharr [120].

The reduced size of half precision comes with significantly reduced precision and range
when compared to even a single-precision 32-bit floating-point format. Assuming IEEE-
style specials and denormals, the extrema of binaryl16 are

Maximum representable value: 65,504
Smallest positive value: 2723 ~ 3.0 x 1078

Largest consecutive integer: 2,048

These limits can be reached with surprising ease if one is not careful, especially when
considering the squaring of numbers. The square of any value greater than around 255 will
map to infinity when stored in half precision. And if one is using half precision as a form
of integer storage, repeated incrementation will fail at a value that is well within common
usage: 2,048. Above 2,048, odd integers simply cannot be represented, with these holes
in the set of integers getting larger and larger as the value rises. Thus, binary16 val-
ues are not recommended for counting items. Some of the issues associated with these
reduced limits may be found in the article “A Toolkit for Computation on GPUs” in
Fernando [45].

How then are half-precision values usable? The answer is one of real-world use cases.
binaryl6 values are most frequently used on GPUs in shader code that generates the
final color drawn to the screen. In these cases, color-related values were historically limited
to values between 0.0 and 1.0. The ability to use the much larger range afforded by floating
values makes possible high-end rendering effects as bright light “blooming,” glare, and
other so-called high dynamic range (HDR) effects.

26 Representing Real Numbers

That said, many GPUs these days support single-precision IEEE 754 32-bit floating-
point values, so it may seem that binary16 is no longer necessary. However, on mobile
hardware there is a high level of customer expectation for 3D graphics, combined with
a huge rise in screen pixel densities and an unfortunate lack of increased memory. With
a certain technique called deferred rendering (see Chapter 8), the buffer representing the
screen data can get quite large, and having a format that is half the size makes this approach
possible. It also helps with the number one performance issue on mobile today: memory
bandwidth. Because of this, the binary16 format is likely to continue to be popular for
some time on mobile GPUs.

1.5 Real-World Floating Point

While the IEEE floating-point specification does set the exact behavior for a wide range
of the possible cases that occur in real-world situations, in real-world applications on real-
world platforms, the specification cannot tell the entire story. The following sections will
discuss some issues that are of particular interest to 3D game developers.

1.5.1 Internal FPU Precision
Some readers will likely try some of the exceptional cases themselves in small test appli-
cations. In doing so, they may find some surprising behavior. For example, examine the
following code:
main ()
{

float fHuge = 1.0e30f; // valid single precision

fHuge *= 1.0e38f; // result = infinity
fHuge /= 1.0e38f; // 2?22

Stepping in a debugger, the following can happen on many major compilers and
systems:

1. After the initial assignment, fHuge = 1.0e30, as expected.
2. After the multiplication, fHuge = oof, as expected.

3. After the division, fHuge = 1.0e30!

This seems magical. How can the system divide the single value oog, and get back the
original number? A look at the assembly code gives a hint. The basic steps the compiler
generates are as follows:

1. Load 1.0e30 and 1. 0e38 into the FPU.

2. Multiply the two loaded values and return oog,, keeping the result in the FPU
as well.

1.5 Real-World Floating Point

3. Divide the previous result (still in the FPU) by 1 . 0e3 8 (still in the FPU), returning
the correct result.

The important item to note is that the result of each computation was both returned and
kept in the FPU for later computation. This step is where the apparent magic occurs. The
FPU in this case uses high-precision (sometimes as long as long double) registers in
the FPU. The conversion to single precision happens during the transfer of values from the
FPU into memory. While the returned value in £Big was indeed ooy, the value retained
in the FPU was higher precision and was the correct value, 1. 0e68. When the division
occurs, the result is correct, not 0oy,.

However, an application cannot count on this result. If the FPU had to flush the inter-
mediate values out of its registers, then the result of the three lines above would have
been quite different. For example, if significant floating-point work had to be computed
between the above multiplication and the final division, the FPU might have run out of
registers and had to evict the high-precision version of £Huge. This can lead to odd behav-
ior differences, sometimes even between optimized and debugging builds of the same
source code.

In addition, there is a trend away from using higher precision registers in doing floating-
point computations. For example, the Intel SSE (Streaming SIMD Extensions) and AVX
(Advanced Vector eXtensions) coprocessors store temporary results with the same precision
as the source data: 32 bits for single precision and 64 bits for double precision. While the
x87 FPU does have 80-bit registers, the default for the Microsoft 64-bit compiler is to use
SSE/AVX for general floating-point computations. Similarly, some GPUs and mobile CPUs
have no extra internal precision for calculations. For these reasons, it is more likely that
what you see in the debugger is what is stored internally.

1.56.2 Performance

The IEEE floating-point standard specifies behavior for floating-point systems; it does not
specify information regarding performance. Just because a floating-point implementation
is correct does not mean that it is fast. Furthermore, the speed of one floating-point oper-
ation (e.g., addition) does not imply much about the speed of another (e.g., square root).
Finally, not all input data are to be considered equal in terms of performance. The following
sections describe examples of some real-world performance pitfalls found in floating-point
implementations.

1.5.2.1 Performance of Denormalized Numbers

Around the time that the first edition of this book was being created, one of the authors was
in the midst of creating a demo for a major commercial 3D game engine. He found that in
some conditions the performance of the demo dropped almost instantaneously by as much
as 20 percent. The code was profiled and it was found that one section of animation code
was suddenly running 10 to 100 times slower than in the previous frames. An examination
of the offending code determined that it consisted of nothing more than basic floating-point
operations, specifically, multiplications and divisions. Moreover, there were no loops in the
code, and the number of calls to the code was not increasing. The code itself was simply
taking 10 to 100 times longer to execute.

27

28 Representing Real Numbers

Further experiments outside of the demo found that a fixed set of input data (captured
from tests of the demo) could always reproduce the problem. The developers examined
the code more closely and found that very small nonzero values were creeping into the
system. In fact, these numbers were denormalized. Adjusting the numbers by hand even
slightly outside of the range of denormals and into normalized floating-point values instantly
returned the performance to the original levels. The immediate thought was that exceptions
were causing the problem (floating-point exceptions can cause multiple-order-of-magnitude
performance drops in floating-point code). However, all floating-point exceptions were
disabled (masked) in the test application.

To verify the situation, the developers wrote an extremely simple test application.
Summarized, it was as follows:

float TestFunction(float fvalue)
{
return fValue;

}

main ()
{
int 1i;
float fTest;
// Start "normal" timer here
for (1 = 0; 1 < 10000; i++)
{
// 1.0e-36f is normalized in single precision
fTest = TestFunction(l.0e-36f);
}
// End "normal" timer here
// Start "denormal" timer here
for (1 = 0; 1 < 10000; i++)
{
// 1.0e-40f is denormalized in single precision
fTest = TestFunction(l.0e-40f);
}

// End "denormal" timer here

Having verified that the assembly code generated by the optimizer did indeed call the
desired function the correct number of times with the desired arguments, they found that
the denormal loop took 30 times as long as the normal loop (even with exceptions masked).
A careful reading of Intel’s performance recommendations [84] for the Pentium series
of CPUs found that any operation (including simply loading to a floating-point register)
that produced or accepted as an operand a denormal value was run using so-called assist
microcode, which is known to be much slower than standard FPU instructions. Intel had
followed the IEEE 754 specification, but had made the design decision to allow exceptional
cases such as denormals to cause very significant performance degradation.

One possible solution is to disable denormals in your application. However, doing this
across the board may cause unexpected precision errors. The correct solution is to determine
where the denormals are coming from and change the calculation if necessary. In this case,

1.5 Real-World Floating Point 29

the values in question were known to be normalized to be between 0.0 and 1.0. As a result,
it was more than safe to simply clamp small values to 0.

This historical example was run on a older generation Intel CPU, but even on modern
processors denormal performance can still be an issue. However, starting with the Sandy
Bridge series, Intel has taken steps to improve this by adding some hardware support for
denormals in the AVX floating-point path. At the time of printing, it is still not as fast as
disabling them entirely [30], but it may mean that, in the future, denormals will not be as
much of a performance issue.

1.5.2.2 Software Floating-Point Emulation

Applications should take extreme care on new platforms to determine whether or not the
platform supports hardware-assisted floating point. In order to ensure that code from other
platforms ports and executes without major rewriting, some compilers supply software
floating-point emulation libraries for platforms that do not support floating point in hard-
ware. This lack of support is less true than it used to be, but was especially common on
popular embedded and handheld chipsets such as the early ARM processors [7]. These
processors have no FPUs, but C/C++ floating-point code compiled for these devices will
generate valid, working emulation code. The compilers will often do this silently, leaving
the uninformed developer with a working program that exhibits horrible floating-point
performance, in some cases hundreds of times slower than could be expected from a
hardware FPU. And even though the current ARM processors do have floating-point
hardware, for backwards compatibility certain compiler settings still use the old software
library.

It’s also worth reiterating that not all FPUs support both single and double precision at
the same performance. For example, on the ARMv7, the NEON SIMD extension (similar
to SSE) is a fast path that supports only single-precision floating point. The only way to
get double-precision floating support in hardware is to use the slower VFP floating-point
processor. Even worse, other processors have only provided single-precision hardware
support, with software support for double precision. As a result, use of double precision
can lead to much slower code. Because of this, it is important to remember that double
precision can be introduced into an expression in subtle ways. For example, remember that
in C/C++, floating-point constants are double precision by default, so whenever possible,
explicitly specify constants as single precision, using the f suffix. The difference between
double- and single-precision performance can be as simple as 1. 0 instead of 1.0f.

1.5.3 |EEE Specification Compliance

While major floating-point errors in modern processors are relatively rare (even Intel was
caught off guard by the magnitude of public reaction to what it considered minor and rare
errors in the floating-point divider on the original Pentium chips), this does not mean that
it is safe to assume that all FPU in modern CPUs are always fully compliant to IEEE
specifications and support both single and double precision. The greatest lurking risk to
modern developers assuming full IEEE compliance is conscious design decisions, not errors
on the part of hardware engineers. However, in most cases, for the careful and attentive
programmer, these processors offer the possibilities of great performance increases to 3D
games.

30 Representing Real Numbers

As more and more FPUs were designed and built for multimedia and 3D applications
(rather than the historically important scientific computation applications for which ear-
lier FPUs were designed), manufacturers began to deviate from the IEEE specification,
optimizing for high performance over accuracy. This is especially true with respect to the
“exceptional” cases in the spec, such as denormals, infinity, and NaNs.

Hardware vendors make the argument that while these special values are critically impor-
tant to scientific applications, for 3D games and multimedia they generally occur only in
error cases that are best handled by avoiding them in the first place.

An important example of such design decisions involved Intel’s Streaming SIMD Exten-
sions (SSE) [84], a coprocessor that was added to the Pentium series with the advent of the
Pentium III. The original coprocessor was a special vector processor that executes paral-
lel math operations on four floating-point values, packed into a 128-bit register. The SSE
instructions were specifically targeted at 3D games and multimedia, and this is evident from
even a cursory view of the design. Several design decisions related to the special-purpose
FPU merit mentioning here:

* The original SSE (Pentium III) instructions can only support 32-bit floating-point
values, not doubles.

* Denormal values can be (optionally) rounded to O (flushed to zero), disabling
gradual underflow.

¢ Full IEEE 754 behavior can be supported as an option, but at less than peak
performance.

With the move from SSE to AVX, these differences from the standard have for the most
part been removed, but as we mentioned above, performance of denormals can still be an
issue [30].

A similar example is the ARM NEON coprocessor, which is also a SIMD design.
While VFP, the scalar floating-point coprocessor, is IEEE 754 compliant, NEON’s vector
design does not support double-precision floating point, denormals, or NaNs.

1.5.4 Precision in Graphics Processing Units

As mentioned in Section 1.4.9, GPUs were early adopters of half-precision formats for
reducing bus traffic and processing time. For the most part (other than storage formats),
these have been replaced in the desktop world with single-precision floating point and
in some cases double-precision, particularly with the increase in GPU computing. In the
mobile world, however, formats smaller than single precision are still common. The lower
precision can be a sizable performance upgrade not just because of the cost of operations,
but because the shader compiler may be able to fit more values in limited register space.
This can cause big differences in the compiled result.

Because of this, in OpenGL and DirectX11, programmers can specify the minimum
precision they need for program variables on the GPU. The GPU will then use this to
schedule tasks appropriately. In OpenGL ES [129], these are specified as

1.7 Chapter Summary 31

Identifier Range Precision

lowp (=2,2) | 278 (absolute)

mediump | (—2",2'%) | 2710 (relative)

highp |[(=202,292) | 276 (relative)

Note that 1owp has an absolute precision bound—this is because it’s most often imple-
mented as a fixed-point format. Both mediump and highp are usually implemented using
floating point, with mediump being roughly half precision and highp most likely single
precision. However, note that the range and precision required are less than the half- and
single-precision formats, respectively, so the GPU manufacturer may use a nonstandard
format, such as 20- or 24-bit. Alternatively, they could be implemented in the same way,
using either single precision for both or a slightly smaller format. The best one can know
is that mediump may be faster than highp—the only way to be sure is to consult your
hardware guides or test in a GPU program.

1.6 Code
Source Code

While this text’s companion CD-ROM and web site do not include specific code that
demonstrates the concepts in this chapter, source code that deals with issues of floating- ™=
point representation may be found throughout the math library IvMath. For example,
the source code for IvMatrix33, IvMatrix44, IvVector3, IvVector4, and
IvQuat includes sections of code that avoid denormalized numbers and comparisons to
exact floating-point zero.

CPU chipset manufacturers Intel, AMD, and ARM have been focused on 3D graphics
and game performance and have made public many code examples, presentations, and
software libraries that detail how to write high-performance floating-point code for their
processors. Many of these resources may be found on their developer web sites [3, 7, 84].

1.7 Chapter Summary

In this chapter, we have discussed the details of how computers represent real numbers.
These representations have inherent limitations that any serious programmer must under-
stand in order to use them efficiently and correctly. Floating point presents subtle limitations,
especially issues of limited precision. We have also discussed the basics of error metrics
for number representations.

Hopefully, this chapter has instilled two important pieces of information in the reader.
The first and most basic piece of information is an understanding of the inner workings
of the number systems that pervade 3D games. This should allow the programmer to truly
comprehend the reasons why the math-related code behaves (or, more importantly, why it
misbehaves) as it does. The second piece of information is an appreciation of why one should
pay attention to the topic of floating-point representation in the first place—namely, to better
prepare the 3D game developer to do what is needed at some point in the development of

32 Representing Real Numbers

a game: optimize or fix a section of slow or incorrect math code. Better yet, it can assist
the developer to avoid writing this potentially problematic code in the first place.

For further reading, Kahan’s papers on the history and status of the IEEE floating-point
standard ([87] and related papers and lectures by Kahan, available from the same source)
offer fascinating insights into the background of modern floating-point computation. In
addition, back issues of Game Developer magazine (such as [76]) provide frequent dis-
cussion of number representations as they relate to computer games. Dawson’s series of
blog posts on floating point ([29, 30], and others) cover many of the topics we have pre-
sented here, with a focus on optimization. Finally, for a general discussion of optimization
including floating point, see [48].

2.1 Introduction

The two building blocks of most objects in our interactive digital world are points and
vectors. Points represent locations in space, which can be used either as measurements on
the surface of an object to approximate the object’s shape (this approximation is called
a model), or as simply the position of a particular object. We can manipulate an object
indirectly through its position or by modifying its points directly. Vectors, on the other hand,
represent the difference or displacement between two points. Both have some very simple
properties that make them extremely useful throughout computer graphics and simulation.

In this chapter, we’ll discuss the properties and representation of vectors and points,
as well as the relationship between them. We’ll present how they can be used to build up
other familiar entities from geometry classes: in particular, lines, planes, and polygons.
Because many problems in computer games boil down to examples in applied algebra,
having computer representations of standard geometric objects built on basic primitives is
extremely useful.

It is likely that the reader has a basic understanding of these entities from basic math
classes, but the symbolic representations used by the mathematician may be unfamiliar or
forgotten. We will review them in detail here. We will also cover linear algebra concepts—
properties of vectors in particular—that are essential for manipulating three-dimensional
(3D) objects. Without a thorough understanding of this fundamental material, any work in
programming 3D games and applications will be quite confusing.

2.2 \ectors

One might expect that we would cover points first since they are the building blocks of our
standard model, but in actuality the basic unit of most of the mathematics we’ll discuss in

C) Vectors and Points

33

34 Vectors and Points

this book is the vector. We’ll begin by discussing the vector as a geometric entity since that’s
primarily how we’ll be using it and it’s more intuitive to think of it that way. From there
we’ll present a set of vectors known as a vector space and show how using the properties of
vector spaces allows us to manipulate vectors in the computer. We’ll conclude by discussing
operations that we can perform on vectors and how we can use them to solve certain problems
in 3D programming.

2.2.1 Geometric Vectors

A geometric vector v is an entity with magnitude (also called length) and direction and is
represented graphically as a line segment with an arrowhead on one end (Figure 2.1). The
length of the segment represents the magnitude of the vector, and the arrowhead indicates
its direction. A vector whose magnitude is 1 is a unit or normalized vector and is shown
as V. The zero vector 0 has a magnitude of O but no direction.

A vector does not have a location or position in space. To make some geometric cal-
culations easier to understand, we may draw two vectors as if they were attached or
place a vector relative to a location in space. Despite this, it is important to remember
that two vectors with the same magnitude and direction are equal, no matter where they
are drawn on a page. For example, in Figure 2.1, the leftmost and rightmost vectors are
equal.

In games, we use vectors in one of two ways. The first is as a representation of direction.
For example, a vector may indicate direction toward an enemy, toward a light, or perpen-
dicular to a plane. The second meaning represents change. If we have an object moving
through space, we can assign a velocity vector to the object, which represents a change in
position. We can displace the object by adding the velocity vector to the object’s location
to get a new location. Vectors also can be used to represent change in other vectors. For
example, we can modify our velocity vector by adding another to it; the second vector is
called acceleration.

We can perform arithmetic operations on vectors just as we can with real numbers. One
basic operation is addition. Geometrically, addition combines two vectors together into a
new vector. If we think of a vector as an agent that changes position, then the new vector
u = v+ w combines the position-changing effect of v and w into one entity.

As an example, in Figure 2.2, we have three locations, P, Q, and R. There is a vector v
that represents the change in position or displacement from P to Q and a vector w that

f

Figure 2.1. Vectors.

L 4 >®

pr u R

Figure 2.2. Vector addition.

V+W

\4

Figure 2.3. Vector addition and subtraction.

represents the displacement from Q to R. If we want to know the vector that represents the
displacement from P to R, then we add v and w to get the resulting vector u.

Figure 2.3 shows another approach, which is to treat the two vectors as the sides of a
parallelogram. In this case, the sum of the two vectors is the long diagonal of the paral-
lelogram. Subtraction, or v — w, is shown by the other vector crossing the parallelogram.
Remember that the difference vector is drawn from the second vector head to the first vector
head—the opposite of what one might expect.

The algebraic rules for vector addition are very similar to those for real numbers:

1. v+w = w4 v (commutative property).
2. u+(v+w) = (u+v)+ w (associative property).
3. v+ 0 = v (additive identity).

4. For every v, there is a vector —v such that v 4+ (— v) = 0 (additive inverse).

We can verify this informally by drawing a few test cases. For example, if we examine
Figure 2.3 again, we can see that one path along the outside of the parallelogram repre-
sents v 4+ w and the other represents w + v. The resulting vector is the same in both cases.
Figure 2.4 presents the associative property in a similar fashion.

2.2 Vectors

35

36 Vectors and Points

u+v+w

Figure 2.4. Associative property of vector addition.

Figure 2.5. Scalar multiplication.

The other basic operation is scalar multiplication, which changes the length of a vector
by multiplying it by a single real value, also known as a scalar (Figure 2.5). Multiplying a
vector by 2, for example, makes it twice as long. Multiplying by a negative value changes
the length and points the vector in the opposite direction (the length remains nonnegative).
Multiplying by 0 always produces the zero-length vector 0.

The algebraic rules for scalar multiplication should also look familiar:

5. (ab)v = a(bv) (associative property).

6. (a+ b)v = av + bv (distributive property).
7. a(v+w) = av + aw (distributive property).
8. 1-v = v (multiplicative identity).

As with the additive rules, diagrams can be created that provide a certain amount of
intuitive understanding.

2.2.2 Real Vector Spaces
2.2.2.1 Definition

Mathematicians like to find patterns and create abstractions. So it was with geometric
vectors—they noticed that other areas of mathematics had similar properties, so they created
the notion of a linear space or vector space to generalize these properties. Informally,

a vector space is a collection of entities (called vectors, naturally) that meet the rules for
addition and scalar multiplication that we just defined for geometric vectors.

Why is this important to us? First of all, since it is an abstraction, we can use it for
manipulating higher dimensional vectors than we might be able to conceive of geometri-
cally. It also can be used for representing entities that we wouldn’t normally consider as
vectors but that follow the same algebraic rules, which can be quite powerful. There are
certain properties of vector spaces that will prove to be quite useful when we cover matrices
and linear transformations. Finally, it provides a means for representing our geometric enti-
ties symbolically, which allows us to do algebra and provides us a way to store vectors in
the computer.

To simplify our approach, we are going to concentrate on a subset of vector spaces known
as real vector spaces, so called because their fundamental components are drawn from R,
the set of all real numbers. We usually say that such a vector space V is over R. We also
formally define an element of R in this case as a scalar.

In order for a set of elements V to be a vector space, we need to define two specific
operations on the elements that follow certain algebraic axioms. As we indicated, the
two operations are addition and scalar multiplication, and the axioms are properties 1-8,
presented above. We’ll define these operations so that the vector space V has closure with
respect to them; that is, applying this operation to elements in our vector space ends up with
a result in our vector space. More formally,

1. ForanyuandvinV,u+ visin V (additive closure).

2. ForanyainRand vin V, av is in V (multiplicative closure).

So we formally define a real vector space as a set V over R with closure with respect to
addition and scalar multiplication on its elements, where axioms 1-8 hold for all u, v, w, 0
inV and all a, b in R.

2222 Examples

As we might expect, by this definition, our geometric vectors do make up a vector space.
Another example of a real vector space is simply R. Real numbers are closed under addition
and multiplication, and those operations have exactly the properties described above.

A vector space we’ll be using throughout the book is the set of all ordered pairs
of real numbers, called R%. For now we can think of this as informally representing
two-dimensional (2D) space—for example, diagrams on an infinitely extending, flat page.
Symbolically, this is represented by

R? = {(x,y) | x,y € R}

In this context, the symbol | means “such that” and the symbol € means “is a member of.”
So we read this as “the set of all possible pairs (x, y), such that x and y are members of the
set of real numbers.” As mentioned, this is a set of ordered pairs; (1.0, —0.5) is a different
member of the set from (— 0.5, 1.0).

2.2 Vectors

37

38 Vectors and Points

For this to be a vector space, we must also define addition:

(x0,y0) + (x1,y1) = (X0 +x1,¥0 + Y1)

and scalar multiplication:
a(xo, o) = (axo, ayo)

Using these definitions and the preceding algebraic axioms, it can be shown that R? is a
vector space.
Two more vector spaces are R3 and R*, defined as follows:

R = {(x,y,2) | x,,z € R}
R* = {(w,x,5,2) | w,x,y,z € R}

with addition and scalar multiplication operations similar to those of R.

Like R? these are ordered lists, where two members with the same values but differing
orders are not the same. Again informally, we can think of elements in R? as representing
positions in 3D space, which is where we will be spending most of our time. Correspond-
ingly, R* can be thought of as representing a fourth-dimensional space, which is difficult to
visualize spatially! (hence our need for an abstract representation) but is extremely useful
for certain computer graphics concepts.

We can extend our definitions to R", a generalized n-dimensional space over R:

Rn = {(XO,-u,xn—l) |an~--9xn—l € R}

The members of R” are referred to as an n-tuple.
Generalized over R”, we have

u+V = (MO" . -,un—l)+(V0,- . "Vn—l)
= (uo+v0,--->Up—1+Vn—1)
and
av =a(vy,...,Vp—1)
= (aV(),. . -,avn—l)

Itis important to understand that—despite the name—a vector space does not necessarily
have to be made up of geometric vectors. What we have described is a series of sets of
ordered lists, possibly with no relation to a geometric construct. While they can be related
to geometry, the term vector, when used in describing members of vector spaces, is an
abstract concept. As long as a set of elements can be shown to have the preceding arithmetic
properties, we define it as a vector space and any element of a vector space as a vector. It is
perhaps more correct to say that the geometric representations of 2D and 3D vectors that
we use are visualizations that help us better understand the abstract nature of R? and R3,
rather than the other way around.

! Unless you are one of a particularly gifted pair of children [116].

2.2.2.3 Subspaces

Suppose we have a subset W of a vector space V. We call W a subspace if it is itself a vector
space when using the same definition for addition and multiplication operations. In order
to show that a given subset W is a vector space, we only need to show that closure under
addition and scalar multiplication holds; the rest of the properties are satisfied because
W is a subset of V. For example, the subset of all vectors in R* with z = 0 is a subspace,
since

(x0,0,0) + (x1,¥1,0) = (xo +x1,¥0 +¥1,0)
a(xo, yo, 0) = (axo, ayo, 0)

The resulting vectors still lie in the subspace R3 with z = 0.

Note that any subspace must contain 0 in order to meet the conditions for a vector
space. So the subset of all vectors in R3 with z = 1 is not a subspace since 0 cannot be
represented. And while R? is not a subspace of R? (since the former is a set of pairs and the
latter a set of triples), it can be embedded in a subspace of R* by a mapping, for example,
(x,y) = (x,,0).

2.2.3 Linear Combinations and Basis Vectors

Our definitions of vector addition and scalar multiplication can be used to describe some
special properties of vectors. Suppose we have a set S of n vectors, where S = {vop, ...,v,—1}.
We can combine these to create a new vector v using the expression

v=apvo+aivi+---+ap—1Va—1

for some arbitrary real scalars ay, . .., a,—1. This is known as a linear combination of all
vectors v; in S.

If we take all the possible linear combinations of all vectors in S, then the set T' of vectors
thus created is the span of S. We can also say that the set S spans the set 7. For example,
vectors vo and v; in Figure 2.6 span the set of vectors that lie on the surface of the page
(assuming your book is held flat).

We can use linear combinations to define some properties of our initial set S. Suppose
we can find a nonzero vector v; in S that can be represented by a linear combination of other
members of S. In other words,

Vi=aovo+---+aj—1Vi-1 + ai+1Vi+1 + -+ ap—1Vu—1

Another way to think of this is that if we were to remove v;, then S would still span the
same space. If such a v; exists, then we say that S is linearly dependent. If we can’t find
any such v;, then the vectors vy, . .., v,_1 are linearly independent.

An example of a linearly dependent set of vectors can be seen in Figure 2.7. Vector vy
is equal to the linear combination —1 vy +0- vy, or just —vj. Two linearly dependent
vectors v and w are said to be parallel, that is, w = av.

A set of vectors 8 in a vector space V is defined as a basis if 8 both spans V and is
linearly independent. Each element of 8 is called a basis vector. A basis is special for two
reasons. First, because it spans its vector space, we can produce any vector in V by using

2.2 Vectors

39

40 Vectors and Points

> V

Figure 2.6. Two vectors spanning a plane.

vl)

Vi

Figure 2.7. Linearly dependent set of vectors.

linear combinations of the vectors in the basis. Second, because the vectors in a basis are
linearly independent, there is only one set of coefficients ag, ay, . . ., a, that can produce a
given vector in V.

There is an infinite number of bases for a given vector space, but they will always have
the same number of elements. We formally define a vector space’s dimension as equal to the
number of basis vectors required to span it. So, for example, any basis for R will contain
three basis vectors, and so it is (as we’d expect) a 3D space.

Among the many bases for a vector space, we define one as the standard basis. In general

for R”, this is represented as {eo, ..., e,—1}, where
ey = (1,0,...,0)
e =(0,1,...,0)

et = (0,0,...,1)

As mentioned above, one property of a basis B is that for every vector v in V,
there is a unique linear combination of the vectors in 8 that equal v. So, using a

general basis 8 = {bg,b1,...,b,_1}, there is only one list of coefficients ay,...,a,—1
such that

v =aobo+aiby +---+a,_1b,_1

Because of this, instead of using the full equation to represent v, we can abbreviate it by using
only the coefficients ay, . ..,a,—1 and store them in an ordered n-tuple as (ao, . ..,an—1).
Note that the coefficient values will be dependent on which basis we’re using and will almost
certainly be different from basis to basis. The ordering of the basis vectors is important:
a different ordering will not necessarily generate the same coefficients for a given vector.
For most cases, though, we’ll be assuming the standard basis.

Let’s take as an example R3, the vector space we’ll be using most often. In this case, the
standard basis is three vectors {eg, €1, ez}, or as this basis is often represented, i, j, and k.
Their corresponding geometric representations can be seen in Figure 2.8. Note that these
vectors are of unit length and perpendicular to each other (we will define perpendicular
more formally when we discuss dot products).

Using this basis, we can uniquely represent any vector v in R? by using the formula
Vv = agi+a1j+ark. As with the basis vectors, in R3 we usually replace the general
coefficients ap, a, and ap with x, y, and z, so

v=xi+yj+zk

We can think of x, y, and z as the amounts we move in the i, j, and k directions, from the
tail of v to its tip (see Figure 2.8). Since the i, j, and k vectors are known and fixed, we just
store the x, y, and z values and use them to represent our vector numerically. In this way,
a 3D vector v is represented by an ordered triple (x,y,z). These are known as the vector
components.

We can do the same for R? by using as our basis {i, j}, where i = (1,0) and j = (0, 1),
and representing a 2D vector as the ordered pair (x, y).

By doing this, we have also neatly solved the problem of representing our geometric
vectors algebraically. By using a standard basis, we can use an ordered triple to represent

k

N
T T T T TN
I
1
I
|

—_———— =N

Figure 2.8. Standard 3D basis vectors.

2.2 Vectors

41

42 Vectors and Points

Source Code

IvMath
Filename

IvVector3

the same concept as a line segment with an arrowhead. And by setting a correspondence
between our algebraic basis and our geometric representation, we can guarantee that the
ordered triple we use in one circumstance will be the same as the one we use in the other.
Because of this, when working with vectors in R? and R3, we will use the two representations
interchangeably.

Using our new knowledge of bases, it’s now possible to show that our previous definitions
of addition and scalar multiplication for R? are valid. For example, if we add two 3D vectors
vo and v; together and expand and rearrange terms, we get

Vo + V1 = (xoi + yoj + z0K) + (x1i + y1j + z1Kk)
= xoi +x1i+yoj +y1j + 20k + 21k
= (xo +x)i+ (o +y1)j+ (20 +z1)k

If we remove 1, j, and k to create ordered triples, we find the expected result that to add
two vectors, we take each component in xyz order and add them:

(x0, y0,20) + (x1,¥1,21) = (X0 + X1, Y0 +¥1,20 +21) (2.1
Scalar multiplication works similarly:

av = a(xi+ yj+ zKk)
= a(xi) + a(yj) + a(zk)
= (ax)i+ (ay)j + (ax)k

And again, pulling out i, j, and k follows what we defined previously:

a(x,y,z) = (ax,ay, az) 2.2)

2.2.4 Basic Vector Class Implementation
Now that we’ve presented an algebraic representation for vectors, we can talk about how
we will store them in the computer. As we’ve mentioned many times, if we know the basis
we’re using to span our vector space, all we need to represent a vector are the coefficients
of the linear combination. In our case, we’ll assume the standard basis and thus store the
components x, y, and z.

The following are some excerpts from the included C++ math library. For a vector
in R3, our bare-bones class definition is

class IvVector3

{

public:
inline IvVector3 () {}
inline IvVector3(float xvVal, float yvVal, float zval)
x(xval),
y(yval),

z(zvVal)

inline ~IvVector3 () {}

IvVector3 (const IvVector3& vector);

IvVector3& operator=(const IvVector3& vector);
float x,y.,z;

We can observe a few things about this declaration. First, we declared our member
variables as a type £loat. This is the single-precision IEEE floating-point representa-
tion for real numbers, as discussed in Chapter 1. While not as precise as double-precision
floating point, it has the advantage of being compact and compatible with standard rep-
resentations on most graphics hardware. We are also explicitly specifying the dimension
in the class name. Each vector class will have slightly different operations available, so
we have made the choice to clearly distinguish between them. See [128] for a different
approach that uses templates to abstract both dimension and underlying type.

Another thing to notice is that, like many vector libraries, we’re making our member
variables public. This is not usually recommended practice in C++; usually the data are
hidden and only made available through an accessor. One motivation for such data hiding
is to avoid unexpected side effects when changing a member variable, but this not an issue
here since the data are so simple. However, this breaks another motivation for data hiding,
which is that you can change your underlying representation without modifying nonlibrary
code. For example, you may wish to use one of the platform-specific instruction sets for
performing floating operations in parallel, such as SSE/AVX on Intel-based processors and
NEON on ARM-based processors. In general, however, it’s been found that using a standard
serial implementation for vectors works well for most cases, and it’s better to save this kind
of optimization for specific instances. For this reason, and for clarity, we have chosen not
to implement an SSE or NEON implementation, but see [47] for one possible solution.

The class has a default constructor and destructor, which do nothing. The constructor
could initialize the components to 0, but doing so takes time, which adds up when we
have large arrays of vectors (a common occurrence), and in most cases we’ll be setting the
values to something else anyway. For this purpose, there is an additional constructor that
takes three floating-point values and uses them to set the components. We can use the copy
constructor and assignment operator as well.

Now that we have the data set up for our class, we can add some operations to them. The
corresponding operator for vector addition is

IvVector3 operator+ (const IvVector3& v0, const IvVector3& vl)
{
return IvVector3(vO0.x + vl.x, vOy + vly, v0.z + vl.z);

}

Scalar multiplication is also straightforward:

IvVector3
operator*(float a, const IvVector3& vector)
{
return IvVector3(a*vector.x, a*vector.y, a*vector.z);

}

2.2 Vectors

43

44 Vectors and Points

Similar operators for postmultiplication and -division by a scalar are also provided within
the library; their declarations are

IvVector3 operator*(const IvVector3& vector, float scalar);
IvVector3 operator/(const IvVector3& vector, float scalar);
IvVector3& operator*=(IvVector3& vector, float scalar);
IvVector3& operator/=(IvVector3& vector, float scalar);

Now that we have a numeric representation for vectors and have covered the algebraic
form of addition and scaling, we can add some new vector operations as well. As before,
we’ll focus primarily on the case of R3. Vectors in R? and R* have similar properties; any
exceptions will be discussed in the particular parts.

2.2.5 \Vector Length

We have mentioned that a vector is an entity with length and direction but so far haven’t
provided any means of measuring or comparing these quantities in two vectors. We’ll see
shortly how the dot product provides a way to compare vector directions. First, however,
we’ll consider how to measure a vector’s magnitude.

There is a general class of size-measuring functions known as norms. A norm ||v|| is
defined as a real-valued function on a vector v with the following properties:

1. |lv|]l >0, and ||v|] = Oif and only if v = 0.
2. |lav]l = lalllv].
30 v+wll < (vl + (Iwll.

We use the ||v|| notation to distinguish a norm from the absolute value function |a|.
An example of a norm is the Manhattan distance, also called the £; norm, which is just
the sum of the absolute values of the given vector’s components:

IVlle, = Ivi

i

This measures the distance from one end of the vector to the other as if we were traveling
along a grid of city streets.

One that we’ll use more often is the Euclidean norm, also known as the £> norm or just
length. If we give no indication of which type of norm we’re using, this is usually what
we mean.

We derive the Euclidean norm as follows. Suppose we have a 2D vector u = xi + yj
(Figure 2.9). Recall the Pythagorean theorem x> + y*> = d>. Since x is the distance along i
and y is the distance along j, then the length d of u is

lull = d =V +y?

2.2 Vectors

X ;

l<

Figure 2.9. Length of 2D vector.

A similar formula is used for a vector v = (x, y, z), using the standard basis in R>:

IVl = Vx> +y? +22 (2.3)

And the general form in R” with respect to the standard basis is

VI = B+

We’ve mentioned the use of unit-length vectors as pure indicators of direction, for exam-
ple, in determining the viewing direction or relative location of a light source. Often, though,
the process we’ll use to generate our direction vector will not automatically create one of
unit length. To create a unit vector v from a general vector v, we normalize v by multiplying
it by 1 over its length, or

A v
V= ——
vl

This sets the length of the vector to ||v|| - 1/|v]|, which is our desired value 1.
Our implementations of length methods (for R?) are as follows:

float
IvVector3::Length() const
{
return IvSgrt(x*x + y*y + z*z);

}

float
IvVector3: :LengthSquared() const
{

return xX*x + y*y + z*z;

}

IvVector3&
IvVector3: :Normalize ()
{
float lengthsg = x*x + y*y + z*z;

45

46 Vectors and Points

ASSERT(!IsZero(lengthsg));
if (IsZero(lengthsg))
{

x =y =12z = 0.0f;

return *this;

float recip = IVvRecipSqgrt(lengthsqg);
X *= recip;
Yy *= recip;
z *= recip;

return *this;

Note that in addition to the mathematical operations we’ve just described, we have
defined a LengthSquared () method. Performing the square root can be a costly oper-
ation, even on systems that have a special machine instruction to compute it. Often we’re
only doing a comparison between lengths, so it is better and certainly faster in those cases to
compute and compare length squared instead. Both length and length squared are increasing
functions starting at 0, so when only performing a comparison, the results will be the same.

The length methods also introduce some new functions that will be useful to us throughout
the math library. We use our own square root functions IvSqgrt () and IvRecipSqgrt ()
instead of sgrtf () and 1.0£f/sqgrtf (). There are a number of reasons for this choice.
As mentioned, the standard library implementation of square root is often slow. Rather
than use it, we can use an approximation on some platforms, which is faster and accurate
enough for our purpose. On other platforms, there are internal assembly instructions that
are not used by the standard library. In particular, there may be an instruction that performs
1.0f/sqgrtf () (also known as the reciprocal square root) directly, which is faster than
calculating the square root and performing the floating-point divide. Defining our own
layer of indirection gives us flexibility and ensures that we can guarantee ourselves the
best performance.

2.2.6 Dot Product

Now that we’ve considered vector length, we can look at vector direction. The function we
will use for this is called the dot product, or less commonly, the Euclidean inner product
(see below for the formal definition of inner products). It is probably the most useful vector
operation for 3D games and applications.

Given two vectors v and w with an angle 6 between them, the dot product ve«w is
defined as

vew = |V][[|w] cos 6 (2.4)

Using Equation 2.4, we can find a coordinate-dependent definition in R* by examining a
triangle formed by v, w, and v — w (Figure 2.10). The law of cosines gives us

2 2 2
IV —wIl= = [Iv[I” + [Iw]I” = 2[lv[l[[w]| cos &

Figure 2.10. Law of cosines.

We can rewrite this as
2 2 2
=2 villwlicos & = [lv —w[" = [[V]* — [Iw]|
Substituting in the definition of vector length in R? and expanding, we get

—2[[VII[IW]l €088 = (v — wy)? + (vy — wy)? 4 (v, — w,)?
—(v)%—i—vg —l—vg) —(w)zc +w§+w§)
=2|v[lIw]l cos @ = —2vywy — 2vywy — 2V, W,

IVIIWI oS 6 = vews + vywy +vow,
So, to compute the dot product in R3, multiply the vectors componentwise, and then add
Ve W = VyWy +VyWy + VW,

Note that for this definition to hold, vectors v and w need to be represented with respect to
the standard basis {i, j, k}. The general form for vectors v and w in R", again with respect
to the standard basis, is

VeW=vowo+viwi+--+v,_1Wy—1
For vectors u, v, w, and scalar a, the following algebraic rules apply:
1. Vvew = wev (symmetry).
2. (W4 V)eW = uew+Vew (additivity).
3. a(vew) = (av) « W = Vv (aw) (homogeneity).?
4. vev >0 (positivity).

5. vev = 0if and only if v = 0 (definiteness).

2 Note that the leading scalar does not apply to both terms on the right-hand side; assuming so is a common
mistake.

22

Vectors

47

48 Vectors and Points

Also note that we can relate the dot product to the length function by noting that
vev=|v|? (2.5)

As mentioned, the dot product has many uses. By Equation 2.4, if the angle between two
vectors v and w in standard Euclidean space is 90 degrees, then vew = 0. So, we define
that two vectors v and w are perpendicular, or orthogonal, when v« w = 0. Recall that we
stated that our standard basis vectors for R3 are orthogonal. We can now demonstrate this.
For example, taking i« j we get

iej=(1,0,0).(0,1,0)
=0+0+40
=0

It is possible, although not always recommended, to use Equation 2.4 to test whether
two unit vectors v and W are pointing generally in the same direction. If they are, cos 6
is close to 1, so 1 —VeWw is close to 0 (we use this formula to avoid problems with
floating-point precision). Similarly, if 1+ VW is close to 0, they are pointing in oppo-
site directions. Performing this test only takes six floating-point addition and multiplication
operations. However, if v and w are not known to be normalized, then we need a different
test: ||v]|?||w||> — (v « w)>. This takes 18 operations.

Note that for unit vectors,

1—(FeWw)? =1—cos?0

— sin? 6
and for nonunit vectors,

IVI2IWI? = (v e w)? = V2 W]I*(1 — cos?)

2 2 a2
= [[v[I*[lw]* sin® &

So assuming we use this, the method we use to test closeness to zero will have to be different
for both cases.

In any case, using dot product for this test is not really recommended unless your vectors
are prenormalized and speed is of the essence. As 6 gets close to 0, cos changes very
little. Due to the lack of floating-point precision, the set of angles that might be considered 0
is actually broader than one might expect. As we will see, there is another method to test for
parallel vectors that is faster with nonunit vectors and has fewer problems with near-zero
angles.

A more common use of the dot product is to classify values of the angle between two
vectors. We know that if ve w > 0, then the angle is less than 90 degrees; if ve w < 0, then
the angle is greater than 90 degrees; and if v« w = 0, then the angle is exactly 90 degrees
(Figure 2.11). As opposed to testing for parallel vectors, this will work with vectors of any
length.

For example, suppose that we have an artificial intelligence (AI) agent that is looking
for enemy agents in the game. We can compute a vector v pointing in the direction the Al is

wev>0

> wev=0

w,ev<0

Figure 2.11. Dot product as measurement of angle.

[Iv]] cos(6)/]wl]

Figure 2.12. Dot product as projection.

looking and a vector t that points toward an object in our scene. If v« t < 0, then the object
is behind us and therefore not visible to our Al

Equation 2.4 allows us to use the dot product in another manner. Suppose we have two
vectors v and w, where w # 0. We define the projection of v onto w as

VeW

—F W
lIwi?

This gives the part of v that is parallel to w, which is the same as dropping a perpendicular
from the end of v onto w (Figure 2.12).
We can get the part of v that is perpendicular to w by subtracting the projection:

prijV =

VeW
perpyv=vV— ——W
v lIwi|

2.2 Vectors

49

50 Vectors and Points

Both of these equations will be very useful to us. Note that if w is normalized, then the
projection simplifies to

Projgv = (Ve W)W

The corresponding library implementation of dot product in R? is as follows:

float
IvVector3::Dot(const IvVector3& other)
{

return x*other.x + y*other.y + z*other.z;

}

2.2.7 Gram-Schmidt Orthogonalization

The combination of dot product and normalization allows us to define a particularly useful
class of vectors. If a set of vectors 8 are all unit vectors and pairwise orthogonal, we say
that they are orthonormal. Our standard basis {i, j, k} is an example of an orthonormal set
of vectors.

In many cases, we start with a general set of vectors and want to generate the closest
possible orthonormal one. One example of this is when we perform operations on currently
orthonormal vectors. Even if the pure mathematical result should not change their length
or relative orientation, due to floating-point precision problems the resulting vectors may
be no longer orthonormal. The process that allows us to create orthonormal vectors from
possibly nonorthonormal vectors is called Gram—Schmidt orthogonalization.

This works as follows. Suppose we have a set of nonorthogonal vectors v, ..., V,_|
in R”, and from them we want to create an orthonormal set wy, ..., w,_1. We’ll use the
first vector from our original set as the starting vector for our new set so

Wop =V

Now we want to create a vector orthogonal to wy, which points generally in the direc-
tion of vi. We can do this by computing the projection of v on wgy, which produces the
component vector of v| parallel to wy. The remainder of v; will be orthogonal to wy, so

W] = V| — PIOjy, Vi

V] e W

=v]— wo

lIwoll?
We perform the same process for wy: we project vo on wg and wy to compute the parallel

components and then subtract those from v, to generate a vector orthogonal to both wy
and wy:

W2 = V2 — Projy, V2 — Projy, V2
V2 ¢ W(V2 e W

— Wwo — w
llwoll? w1l

=V 1

In general, we have

i—1

W, =V; —projiji
—v— Z Vi oW]

= Wj
lIw;ll?

Unfortunately, when working with floating-point arithmetic, the standard Gram—Schmidt
method amplifies rounding error and is not numerically stable, producing nonorthogonal
vectors. A better approach (known as modified Gram—Schmidt, or MGS) projects our target
vector against the first vector, subtracts that from the target, and then takes the result and
projects that against the next vector, and so on. For example, for w, we would use

ti=vo— projwovz

W2 = t; — projy, ti
Or in general, to produce w;:

t| = V; — projy, Vi

th =1t — prijltl

w, =ti_| — priji_lt,'_l

The end result will be an orthogonal set of possibly non—unit-length vectors. To create
an orthonormal set, we can either normalize the resulting w; vectors at the end or normalize
as we go, the latter of which simplifies the projection calculation to (v; « W;) W;.

One final note: while Gram—Schmidt orthogonalization is relatively efficient, a faster
alternative for vectors in R is to use a vector triple product. See Section 2.2.9 for more
details.

2.2.8 Cross Product

Suppose we have two vectors v and w and want to find a new vector u orthogonal to both.
The operation that computes this is the cross product, also known as the vector product.
There are two possible choices for the direction of the vector, each the negation of the other
(Figure 2.13); the one chosen is determined by the right-hand rule. Hold your right hand
so that your forefinger points forward, your middle finger points out to the left, and your
thumb points up. If you roughly align your forefinger with v, and your middle finger with
w, then the cross product will point in the direction of your thumb (Figure 2.14). The length
of the cross product is equal to the area of a parallelogram bordered by the two vectors
(Figure 2.15). This can be computed using the formula

v > wll = [lv][[|w] sin6 (2.6)

2.2 Vectors

51

52 Vectors and Points

4

Figure 2.13. Two directions of orthogonal 3D vectors.

Figure 2.14. Cross product direction.

w

Figure 2.15. Cross product length equals area of parallelogram.

where 6 is the angle between v and w. Note that the cross product is not commutative, so
order is important:

VXW=—(WXYV)

Also, if the two vectors are parallel, sin & = 0, so we end up with the zero vector.

It is a common mistake to believe that if v and w are unit vectors, the cross product will
also be a unit vector. A quick look at Equation 2.6 shows this is true only if sin6 is 1, in
which case 6 is 90 degrees.

The formula for the cross product is

VX W = (VyW; — WyVz, Vi Wy — Wrly, ViWy — WyVy)

Certain processors can implement this as a two-step operation, by creating two vectors and
performing the subtraction in parallel:

VXW= (Vywz, VzWx, Vny) - (Wsza WzVx, WxVy)
For vectors u, v, w, and scalar a, the following algebraic rules apply:

I. vxw=—-wxuv.
2. ux(v+w)=(uxv)+(uxw).
3. W+ v)xw=Wmxw)+(Vvxw).
4. a(vxw)=(av) X w =V X (aw).
5. vx0=0xv=0.

6. vxv=0.

The cross product is not associative. For example, in general
VX(VXW) A (VXV)Xw=0

There are two common uses for the cross product. The first, and most used, is to generate
a vector orthogonal to two others. Suppose we have three points P, O, and R, and we want
to generate a unit vector n that is orthogonal to the plane formed by the three points (this
is known as a normal vector). Begin by computing v = (Q — P) and w = (R — P). Now
we have a decision to make. Computing v x w and normalizing will generate a normal in
one direction, whereas w x v and normalizing will generate one in the opposite direction
(Figure 2.16). Usually we’ll set things up so that the normal points from the inside toward
the outside of our object.

Like the dot product, the cross product can also be used to determine if two vectors
are parallel by checking whether the resulting vector is close to the zero vector. Deciding
whether to use this test as opposed to the dot product depends on what your data are. The
cross product takes nine operations. We can test for zero by examining the dot product of

2.2 Vectors

53

54 Vectors and Points

VXW

Figure 2.16. Computing normal for triangle.

T

Figure 2.17. Perpendicular vector.

the result with itself ((v x w) « (v x w)). If it is close to 0, then we know the vectors are
nearly parallel. The dot product takes an additional 5 operations, or total of 14, for our test.
Recall that testing for parallel vectors using the dot product of nonnormalized vectors takes
18 operations; in this case, the cross product test is faster.

The cross product of two vectors is defined only for vectors in R3. However, in R2,
we can define a similar operation on a single vector v, called the perpendicular. This
is represented as v*. The result of the perpendicular is the vector rotated by 90 degrees.
As with the cross product, we have two choices: in this case, counterclockwise or clockwise
rotation. The standard definition is to rotate counterclockwise (Figure 2.17), soif v = (x, y),
vi=(- v, X).

The perpendicular has similar properties to the cross product. First, it produces a vector
orthogonal to the original. Also, when used in combination with the dot product in R? (also
known as the perpendicular dot product),

vt ew = ||v]||w] sin6

where 6 is the signed angle between v and w. That is, if the shortest rotation to get from
v to w is in a clockwise direction, then 6 is negative. And similar to the cross product,
the absolute value of the perpendicular dot product is equal to the area of a parallelogram
bordered by the two vectors.

It is possible to take pseudo—cross products in dimensions greater than three by using
n— 1 vectors in an n-dimensional space,> but in general they won’t be useful to us.

3 “You can take the cross product of three vectors in 4-space, but you’ll need a bigger hand” [81].

22

Our IvVector3 cross product method is

IvVector3
IvVector3::Cross(const IvVector3& other)
{
return IvVector3(y*other.z - other.y*z,
z*other.x - other.z*x,
x*other.y - other.x*y);

2.2.9 Triple Products

In R3, there are two extensions of the two single operation products called triple products.
The first is the vector triple product, which returns a vector and is computed as u x (v X w).

A special case is w X (v x w) (Figure 2.18). Examining this, v x w is perpendicular to
both v and w. The result of w x (v X w) is a vector perpendicular to both w and (v x w).
Therefore, if we combine normalized versions of w, (v x w), and w X (v X w), we have
an orthonormal basis (all are perpendicular and of unit length). As mentioned, this can be
more efficient than Gram—Schmidt for producing orthogonal vectors, but of course it only
works in R3.

The second triple product is called the scalar triple product. It (naturally) returns a
scalar value, and its formula is u« (v x w). To understand this geometrically, suppose we
treat these three vectors as the edges of a slanted box, or parallelopiped (Figure 2.19). Then
the area of the base equals ||[v x w||, and |lul|| cos & gives the (possibly negative) height of
the box. So,

Ue(vxw)=|ul|lvxwl|cosé

or area times height equals the signed volume of the box.

In addition to computing volume, the scalar triple product can be used to test the
direction of the angle between two vectors v and w, relative to a third vector u that is
linearly independent of both. If ue (v x w) > 0, then the shortest rotation from v to w is

wx (Vxw)

Figure 2.18. Vector triple product.

Vectors

55

56 Vectors and Points

v

Figure 2.19. Scalar triple product equals signed volume of parallelopiped.

vxd

|| .

v

Figure 2.20. Scalar triple product indicates left turn.

in a counterclockwise direction (assuming our vectors are right-handed, as we will discuss
shortly) around u. Similarly, if we(v x w) <0, the shortest rotation is in a relative
clockwise direction.

For example, suppose we have a tank with current velocity v and desired direction d of
travel. Our tank is oriented so that its current up direction points along a vector u. We take
the cross product v x d and dot it with u. If the result is positive, then we know that d lies
to the left of v (counterclockwise rotation), and we turn left. Similarly, if the value is less
than 0, then we know we must turn right to match d (Figures 2.20 and 2.21).

If we know that the tank is always oriented so that it lies on the xy plane, we can simplify
this considerably. Vectors v and d will always have z values of 0, and u will always point
in the same direction as the standard basis vector K. In this case, the result of ue (v x d) is
equal to the z value of v x d. So the problem simplifies to taking the cross product of v and
d and checking the sign of the resulting z value to determine our turn direction.

Finally, we can use the scalar triple product to test whether ordered vectors in R are
left-handed or right-handed. We can test this informally for our standard basis by using
the right-hand rule. Take your right hand and point the thumb along k and your fingers
along i. Now, rotating around your thumb, sweep your fingers counterclockwise into j
(Figure 2.22). This 90-degree rotation of i into j shows that the basis is right-handed.

-]

vxd

Figure 2.21. Scalar triple product indicates right turn.

=

Figure 2.22. Right-handed rotation.

‘We can do the same trick with the left hand rotating clockwise to show that a set of vectors is
left-handed.

Formally, if we have three basis vectors {vg, vy, v>2}, then they are right-handed if
vo e (V1 X v2) > 0, and left-handed if vpe (Vi X v2) < 0. If vg« (v] X Vv2) = 0, we’ve got
a problem—our vectors are linearly dependent and hence not a basis.

While the scalar triple product only applies to vectors in R3, we can use the perpendicular
dot product to test vectors in R? for both turning direction and right- or left-handedness.
For example, if we have two basis vectors {vo, v} in R?, then they are right-handed if
V(J)‘ « V1 > 0 and left-handed if V(J)‘ evy < 0.

For vectors u, v, and w in R3, the following algebraic rules regarding the triple products
apply:

I. ux(vxw)=(uewW)v— (UeV)W.
2. (UX V)XW= (ueW)V—(VeW)U

3. e (VXW)=We(UXV)=Ve(WXxu).

2.2 Vectors 57

58 Vectors and Points

2.2.10 Grassman Algebra

An alternative to the cross product was developed by Grassman in 1844 and further refined
by Clifford in 1878. This is called the exterior product or wedge product. The wedge product
of two vectors in R3 produces—rather than a vector—a new entity called a bivector, which
can be thought to represent the parallelogram in Figure 2.15 or, more specifically, a family
of parallelograms with equal orientation and area. The wedge product of a vector and
bivector produces a trivector, which represents a family of signed volumes. As one might
expect, these operations are closely related to the cross product and scalar triple product,
respectively. The combination of scalars, vectors, bivectors, and trivectors plus the wedge
operator is called an exterior or Grassman algebra for R3.

Advantages of Grassman algebra are that it can provide a different geometric under-
standing of a problem, and it allows us to have an associative algebra that includes vectors.
It’s also possible to extend the wedge product to dimensions beyond R, which we cannot
do with the cross product. That said, Grassman algebra has not yet been widely adopted
in the game industry or graphics circles, and while it can provide a new perspective on a
problem, it is generally not necessary for the simple cases we’ll be discussing in this book.
For those with further interest, we recommend [95] as a good introduction.

2.3 Points

Now that we have covered vectors and vector operations in some detail, we turn our attention
to a related entity: the point. While the reader probably has some intuitive notion of what
a point is, in this section we’ll provide a mathematical representation and discuss the
relationship between vectors and points. We’ll also discuss some special operations that
can be performed on points and alternatives to the standard Cartesian coordinate system.
Within this section, it is also assumed that the reader has some general sense of what
lines and planes are. More information on these topics follows in subsequent sections.

2.3.1 Points as Geometry

Everyone who has been through a first-year geometry course should be familiar with the
notion of a point. Euclid describes the point in his work Elements [43] as “that which has
no part.” Points have also been presented as the cross section of a line, or the intersection
of two lines. A less vague but still not satisfactory definition is to describe them as an
infinitely small entity that has only the property of location. In games, we use points for
two primary purposes: to represent the position of game objects and as the basic building
block of their geometric representation. Points are represented graphically by a dot.

Euclid did not present a means for representing position numerically, although later
Greek mathematicians used latitude, longitude, and altitude. The primary system we use
now—Cartesian coordinates—was originally published by Rene Descartes in his 1637 work
La geometrie [33] and further revised by Newton and Leibniz.

In this system, we measure a point’s location relative to a special, anchored point,
called the origin, which is represented by the letter O. In R?, we informally define two
perpendicular real-number lines or axes—known as the x- and y-axes—that pass through
the origin. We indicate the location of a point P by a pair (x,y) in R?, where x is the
distance from the point to the y-axis, and y is the distance from the point to the x-axis.

Another way to think of it is that we count x units along the x-axis and then y units up
parallel to the y-axis to reach the point’s location. This combination of origin and axes is
called the Cartesian coordinate system (Figure 2.23).

For R3, three perpendicular coordinate axes—ux, y, and z—intersect at the origin. There
are corresponding coordinate planes xy, yz, and xz that also intersect at the origin. Take the
room you’re sitting in as our space, with one corner of the room as the origin, and think

y-axis

<=

x-axis

Figure 2.23. Two-dimensional Cartesian coordinate system.

4
4
7/
7z
7
. 7/
- _ z-axis s |
| 7 |
! 2 Sl ‘
l , m———
1 7/ hl
| e |
| 7 |
| 7 |
I ! I
| F———
! L v ’—-‘7
l : 1 it 1| | /
| | | 1 | /
| | | 1 | /
F——_ ! I (s
/ —-—=1 1O | |/
/ : |D\|J\ 1/
/ -———
/ | y—ax1s/|
/ | /)
c | a
—— | /
~~~~~ /o
| - / |
| ! is T T ——— / |
| | x-axis -
I ! ! |
| | l
I I !
| | 1 |
| | | |
(S | | |
-—q l |
| e |
7 - |
| 7 ————
| pd
| //
b

Figure 2.24. Three-dimensional Cartesian coordinate system.

2.3 Points

59



60 Vectors and Points

of the walls and floor as the three coordinate planes (assume they extend infinitely). The
edges where the walls and floor join together correspond to the axes. We can think of a 3D
position as being a real-number triple (x, y, z) corresponding to the distance of the point to
the three planes, or counting along each axis as before.

In Figure 2.24, you can see an example of a 3D coordinate system. Here the axis pointing
up is called the z-axis, the one to the side is the y-axis, and the one aimed slightly out of the
page is the x-axis. Another system that is commonly used in graphic books has the y-axis
pointing up, the x-axis to the right, and the z-axis out of the page. Some graphics developers
favor this because the x- and y-axes match the relative axes of the 2D screen, but most of
the time we’ll be using the former convention for this book.

Both of the 3D coordinate systems we have described are right-handed. As before, we
can test this via the right-hand rule. This time point your thumb along the z-axis, your fingers
along the x-axis, and rotate counterclockwise into the y-axis. As with left-handed bases,
we can have left-handed coordinate systems (and will be using them later in this book),
but the majority of our work will be done in a right-handed coordinate system because of
convention.

2.3.2 Affine Spaces

We can provide a more formal definition of coordinate systems based on what we already
know of vectors and vector spaces. Before we can do so, though, we need to define the
relationship between vectors and points. Points can be related to vectors by means of an
affine space. An affine space consists of a set of points W and a vector space V. The relation
between the points and vectors is defined using the following two operations: For every
pair of points P and Q in W, there is a unique vector v in V such that

v=Q-—P

Correspondingly, for every point P in W and every vector v in V, there is a unique point Q
such that

O=P+v 2.7

This relationship can be seen in Figure 2.25. We can think of the vector v as acting as a
displacement between the two points P and Q. To determine the displacement between two
points, we subtract one from another. To displace a point, we add a vector to it and that
gives us a new point.

®0

P

Figure 2.25. Affine relationship between points and vectors.



We can define a fixed-point O in W, known as the origin. Then using Equation 2.7, we
can represent any point P in W as

P=0+v

or, expanding our vector using n basis vectors that span V:

P=0O+aypvo+a1vi+---+a,_1V,_1 2.8)
Using this, we can represent our point using an n-tuple (ao, . . .,a,—1) just as we do for
vectors. The combination of the origin O and our basis vectors (vo, . .., V,—1) is known as

a coordinate frame.

Note that we can use any point in W as our origin and—for an n-dimensional affine
space—any 7 linearly independent vectors as our basis. Unlike the Cartesian axes, this basis
does not have to be orthonormal, but using an orthonormal basis (as with vectors) does make
matching our physical geometry with our abstract representation more straightforward.
Because of this, we will work with the standard origin (0,0, . .., 0), and the standard basis
{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)}. This is known as the Cartesian frame.

In R3, our Cartesian frame will be the origin O = (0, 0, 0) and the standard ordered basis
{i, j, k} as before. Our basis vectors will lie along the x-, y-, and z-axes, respectively. By using
this system, we can use the same triple (x,y, z) to represent a point and the corresponding
vector from the origin to the point (Figure 2.26).

To compute the distance between two points, we use the length of the vector that is
their difference. So, if we have two points Py = (xg, yo,20) and P = (x1,y1,21) in R3, the
difference is

vV =Py — Py = (x1 —x0,y1 —Y0,21 — 20)

and the distance between them is

dist(P1, Po) = IVl = v/(x1 —x0)2 + (1 — Y0)* + (z1 — 20)2

k

Figure 2.26. Relationship between points and vectors in Cartesian affine frame.

2.3 Points

61



62 Vectors and Points

This is also known as the Euclidean distance. In the R3 Cartesian frame, the distance
between a point P = (x,y, z) and the origin is

dist(P, 0) = /x> +y2 + 22

2.3.3 Affine Combinations

So far the only operation that we’ve defined on points alone is subtraction, which results in
a vector. However, there is a limited addition operation that we can perform on points that
gives us a point as a result. It is known as an affine combination, and has the form

P =aoPo+aPy+- -+ aPg (2.9)
where
apgt+ar+---+a =1 (2.10)

So, an affine combination of points is like a linear combination of vectors, with the added
restriction that all the coefficients need to add up to 1. We can show why this restriction
allows us to perform this operation by rewriting Equation 2.10 as

a=1—-a — - —a
and substituting into Equation 2.9 to get

P=(0—-a— - —a)Po+aP1+- -+ aPk
=Po+ai(P1—Po)+- -+ ar(Pr — Po) (2.11)

If we setu; = (P — Py), up = (P2 — Pp), and so on, we can rewrite this as
P =Py+aju +au+---+aiug

So, by restricting our coefficients in this manner, it allows us to rewrite the affine
combination as a point plus a linear combination of vectors, a perfectly legal operation.

Looking back at our coordinate frame Equation 2.8, we can see that it too is an affine
combination. Just as we use the coefficients in a linear combination of basis vectors to
represent a general vector, we can use the coefficients of an affine combination of origin
and basis vectors to represent a general point.

An affine combination spans an affine space, just as a linear combination spans a vector
space. If the vectors in Equation 2.11 are linearly independent, we can represent any point
in the spanned affine space using the coefficients of the affine combination, just as we did
before with vectors. In this case, we say that the points Py, P1, . . ., Pk are affinely indepen-
dent, and the ordered points are called a simplex. The coefficients are called barycentric
coordinates. For example, we can create an affine combination of a simplex made of three
affinely independent points Py, P, and P». The affine space spanned by the affine combi-
nation agPg + a1 P1 + a2 P3 is a plane, and any point in the plane can be specified by the
coordinates (ag, ay, ay).



Figure 2.27. Convex versus nonconvex set of points.

We can further restrict the set of points spanned by the affine combination by considering
properties of convex sets. A convex set of points is defined such that a line drawn between
any pair of points in the set remains within the set (Figure 2.27). The convex hull of a set
of points is the smallest convex set that includes all the points. If we restrict our coeffi-
cients (ag, ...,a,—1) such that 0 < ag,...,a,—1 < 1, then we have a convex combination,
and the span of the convex combination is the convex hull of the points. For example, the
convex combination of three affinely independent points spans a triangle. We will discuss
the usefulness of this in more detail when we cover triangles in Section 2.6.

If the barycentric coordinates in a convex combination of n points are all 1/n, then the
point produced is called the centroid, which is the mean of a set of points.

2.3.4 Point Implementation

Using the Cartesian frame and standard basis in RS, the x, y, and z values of a point P in
R3 match the x, v, and z values of the corresponding vector P — O, where O is the origin
of the frame. This also means that we can use one class to represent both, since one can
be easily converted to the other. Because of this, many math libraries don’t even bother
implementing a point class and just treat points as vectors.

Other libraries indicate the difference by treating them both as 4-tuples and indicate a
point as (x,y,z, 1) and a vector as (x,y, z,0). In this system if we subtract a point from a
point, we automatically get a vector:

(x0,¥0,20, 1) — (x1,y1, 21, 1) = (X0 — x1, Y0 — ¥1,20 — 21, 0)

Similarly, a point plus a vector produces a point:

(x0, ¥0, 20, 1) + (x1,¥1,21,0) = (x0 +x1,¥0 +y1,20 + 21, 1)

Even affine combinations give the expected results:
n—1 n—1 n—1
Zai(xi,yi,zl', D Zaixi, Zaiyi,
i=0 i=0 i=0
n—1 n—1
= (D ami, Y _ai,
i=0 i=0 j

3
|
—_
3
|
—

aizi,

™

Il
=}

)

a;zi, 1

™M
(=} —
~_—

2.3 Points

Source Code

IvMath

Filename

IvVector3



64  Vectors and Points

In our case, we will not be using a separate class for points. There would be a certain
amount of code duplication, since the ITvPoint3 class would end up being very similar to
the TvVector3 class. Also to be considered is the performance cost of converting points
to vectors and back again. Further, to maintain type correctness, we may end up distorting
equations unnecessarily; this obfuscates the code and can lead to a loss in performance as
well. Finally, most production game engines don’t make the distinction, and we wish to
remain compatible with the overall state of the industry.

Despite not making the distinction in the class structure, it is important to remember that
points and vectors are not the same. One has direction and length and the other position, so
not all operations apply to both. For example, we can add two vectors together to get a new
vector. As we’ve seen, adding two points together is only allowed in certain circumstances.
So, while we will be using a single class, we will be maintaining mathematical correctness
in the text and writing the code to reflect this.

As mentioned, most of what we need for points is already in the IvVector3 class.
The only additional code we’ll have to implement is for distance and distance squared
operations:
float
Distance( const IvVector3& pointl,

const IvVector3& point2 )

{
float x = pointl.x - point2.x;
float y = pointl.y - point2.y;
float z = pointl.z - point2.z;

return IvSgrt( x*x + y*y + z*z );

float
DistanceSquared( const IvVector3& pointl,
const IvVector3& point2 )

{
float x = pointl.x - point2.x;
float y = pointl.y - point2.y;
float z = pointl.z - point2.z;

return ( X*X + y*y + z*z );

2.3.5 Polar and Spherical Coordinates
Cartesian coordinates are not the only way of measuring location. We’ve already mentioned
latitude, longitude, and altitude, and there are other, related systems. Take a 2D point P and
compute the vector v = P — O. We can specify the location of P using the distance r from
P to the origin, which is the length of v, and the angle 6 between v and the positive x-axis,
where 6 > 0 corresponds to a counterclockwise rotation from the axis. The components
(r,0) are known as polar coordinates. They’re particularly useful when thinking about
rotations of points, as we’ll discuss in Chapter 4.

It is easy to convert from polar to Cartesian coordinates. We begin by forming a
right triangle using the x-axis, a line from P to O, and the perpendicular from P to the



y-axis

L

Figure 2.28. Relationship between polar and Cartesian coordinates.

x-axis

x-axis (Figure 2.28). The hypotenuse has the length » and is 6 degrees from the x-axis.
Using simple trigonometry, the lengths of the other two sides of the triangle, x and y, can
be computed as

x =rcosf (2.12)

y=rsinf

From Cartesian to polar coordinates, we reverse the process. It’s easy enough to generate
r by computing the distance between P and O. Finding 6 is not as straightforward. The
naive approach is to solve Equation 2.12 for 6, which gives us § = arccos (x/r). However,
the acos () function under C++- only returns an angle in the range of [0, i), so we’ve lost
the sign of the angle. Since

y  rsinf
x - rcos6
sin 6

- cosd
=tan0

an alternate choice would be arctan (y/x), but this doesn’t handle the case when x = 0. To
manage this, C4++ provides a library function called atan2 (), which takes y and x as
separate arguments and computes arctan (y/x). It has no problems with division by 0 and
maintains the signed angle with a range of [—m, w]. We’ll represent the use of this function
in our equations as arctan 2(y, x). The final result is

r = \/x2 +y2
6 = arctan 2(y, x)
If r is 0, 6 may be set arbitrarily.

The system that extends this to three dimensions is called spherical coordinates. In this
system, we call the distance from the point to the origin p instead of . We create a sphere

2.3 Points

65



66 Vectors and Points

of radius p centered on the origin and define where the point lies on the sphere by two
angles, ¢ and 6. If we take a vector v from the origin to the point and project it down to
the xy plane, 6 is the angle between the x-axis and rotating counterclockwise around z. The
other quantity, ¢, measures the angle between v and the z-axis. The three values, p, ¢, and
0, represent the location of our point (Figure 2.29).

Spherical coordinates can be converted to Cartesian coordinates as follows. Begin by
building a right triangle as before, except with its hypotenuse along p and base along the
z-axis (Figure 2.30). The length z is then p cos ¢. To compute x and y, we project the vector
v down onto the xy plane, and then use polar coordinates. The length r of the projected
vector V' is p sin ¢, so we have

Xx = psin¢gcosH
y = psin¢gsind

Z=pcos¢

z-axis

x-axis

Figure 2.29. Spherical coordinates.

z-axis

y-axis

x-axis

Figure 2.30. Relationship between spherical and Cartesian coordinates.



To convert from Cartesian to spherical coordinates, we begin by computing p, which
again is the distance from the point to the origin. To find ¢, we need to find the value of
p sin ¢. This is equal to the projected xy length r since

F = A /x2 _|_y2
= \/(p sin ¢ cos0)2 + (p sin ¢ sin H)2

= \/(p sin ¢)2( cos? 6 + sin” 0)
= psin¢

And since, as with polar coordinates,

r_ psing
7 pcose
= tan ¢

we can compute ¢ = arctan 2(r, z). Similarly, 6 = arctan 2(y, x). Summarizing:

p=\Vx2+y24+72
¢ = arctan?2 (x/)c2 +y2,z)

6 = arctan 2(y, x)

2.4 Lines
2.4.1 Definifion

As with the point, a line as a geometric concept should be familiar. Euclid [43] defines a
line as “breadthless length” and a straight line as that “which lies evenly with the points on
itself.” A straight line also has been referred to as the shortest distance between two points,
although in non-Euclidean geometry this is not necessarily true.

From first-year algebra, we know that a line in R? can be represented by the slope-
intercept form

y=mx+b (2.13)

where m is the slope of the line (it describes how y changes with each step of x), and b is the
coordinate location where the line crosses the y-axis (called the y-intercept). In this case,
x varies over all values and y is represented in terms of x. This general form works for all
lines in R? except for those that are vertical, since in that case the slope is infinite and the
y-intercept is either nonexistent or all values along the y-axis.

Equation 2.13 has a few problems. First of all, as mentioned, we can’t easily represent a
vertical line—it has infinite slope. And, it isn’t obvious how to transform this equation into
one useful for three dimensions. We will need a different representation.

2.4 Lines

67



68 Vectors and Points

2.4.2 Parameterized Lines

One possible representation is known as a parametric equation. Instead of representing the
line as a single equation with a number of variables, each coordinate value is calculated by
a separate function. This allows us to use one form for a line that is generalizable across all
dimensions. As an example, we will take Equation 2.13 and parameterize it.

To compute the parametric equation for a line, we need two points on our line. We
can take the y-intercept (0, b) as one of our points, and then take one step in the positive x
direction, or (1, m + b), to get the other. Subtracting point 1 from point 2, we get a 2D vector
d = (1, m), which is oriented in the same direction as the line (Figure 2.31). If we take this
vector and add all the possible scalar multiples of it to the starting point (0, b), then the
points generated will lie along the line. We can express this in one of the following forms:

L(t) = Py + (P — Po) (2.14)
= (1 —1)Py+tP;
=Po+td (2.15)

The variable 7 in this case is called a parameter.

We started with a 2D example, but the formulas we just derived work beyond two
dimensions. As long as we have two points, we can just substitute them into the preceding
equations to represent a line. More formally, if we examine Equation 2.14, we see it
matches Equation 2.11. The affine combination of two unequal or noncoincident points
span a line. Equation 2.15 makes this even clearer. If we think of Pg as our origin and d as
a basis vector, they span a one-dimensional (1D) affine space, which is the line.

Since our line is spanned by an affine combination of our two points, the logical next
question is: What is spanned by the convex combination? The convex combination requires
that ¢ and (1 —1) lie between 0 and 1, which holds only if ¢ lies in the interval [0, 1].
Clamping ¢ to this range gives us a line segment (Figure 2.32). The edges of polygons are
line segments, and we’ll also be using line segments when we talk about bounding objects
and collision detection.

If we clamp ¢ to only one end of the range, usually specifying that t > 0, then we end up
with a ray (Figure 2.33) that starts at Py and extends infinitely along the line in the direction

Figure 2.31. Line.

Figure 2.32. Line segment.



2.4 Lines

Figure 2.33. Ray.

of d. Rays are useful for intersection and visibility tests. For example, Py may represent . coqe
the position of a camera, and d is the viewing direction.

In code, we’ll be representing our lines, rays, and line segments as a point on the line P
and a vector d; so, for example, the class definition for a line in R3 is gﬁ:zgemm
IvRay3
class IvLine3
{
public:

IvLine3 ( const IvVector3& direction, const IvVector3& origin );

IvVector3 mDirection;
IvVector3 mOrigin;
Y

2.4.3 Generadlized Line Equation

There is another formulation of our 2D line that can be useful. Let’s start by writing out the
equations for both x and y in terms of ¢:

x = P, +1tdy
y= Py + tdy
Solving for ¢ in terms of x, we have
f= (x—Py)
dx

Substituting this into the y equation, we get

—d (x—Py)

+Py
YT, Y

‘We can rewrite this as

_0-P) G-PY
d, d,

==C—dﬁx-¥(dQY4—Q%fk-—6&fE)

=ax+by+c (2.16)

0

69



70  Vectors and Points

where

a=—d,
b=d,
¢ =dyPy —dyPy, = —aP; — bP,

We can think of @ and b as the components of a 2D vector n, which is perpendicular to
the direction vector d, and so is orthogonal to the direction of the line (Figure 2.34). This
gives us a way of testing where a 2D point lies relative to a 2D line. If we substitute the
coordinates of the point into the x and y values of the equation, then a value of 0 indicates
it’s on the line, a positive value indicates that it’s on the side where the vector is pointing,
and a negative value indicates that it’s on the opposite side. If we normalize our vector, we
can use the value returned by the line equation to indicate the distance from the point to
the line.

To see why this is so, suppose we have a test point Q. We begin by constructing the
vector between Q and our line point P, or Q — P. There are two possibilities. If Q lies on
the side of the line where n is pointing, then the distance between Q and the line is

d=|Q— Pl cosb

where 6 is the angle between n and Q — P. But since n « (Q — P)=||n||[|Q — P| cos 6, we
can rewrite this as

_n.(@-P

]|

d

If O is lying on the opposite side of the line, then we take the dot product with the negative

of n, so
g The@—P)
| —ml
_n.(Q—P)
[In]|

Since d is always positive, we can just take the absolute value of n+ (Q — P) to get

_ In.@-P)

]|

d (2.17)

n=(a, b)

Figure 2.34. Normal form of 2D line.



If we know that n is normalized, we can drop the denominator. If O = (x,y) and (as we’ve
stated) n = (a, b), we can expand our values to get

d=alx—Py)+bly—Py)
= ax + by —aP, — bPy
=ax+by+c

If our n is not normalized, then we need to remember to divide by ||n|| to get the correct
distance.

2.4.4 Collinear Points

Three or more points are said to be collinear if they all lie on a line. Another way to think
of this is that despite there being more than two points, the affine space that they span is
only 1D.

To determine whether three points Py, Py, and P; are collinear, we take the cross product
of P1 — Py and P, — Py and test whether the result is close to the zero vector. This is
equivalent to testing whether basis vectors for the affine space are parallel.

2.5 Planes

Euclid [43] defines a surface as “that which has length and breadth only,” and a plane surface,
or just a plane, as “a surface which lies evenly with the straight lines on itself.” Another
way of thinking of this is that a plane is created by taking a straight line and sweeping each
point on it along a second straight line. It is a flat, limitless, infinitely thin surface.

2.5.1 Parameterized Planes

As with lines, we can express a plane algebraically in a number of ways. The first follows
from our parameterized line. From basic geometry, we know that two noncoincident points
form a line and three noncollinear points form a plane. So, if we can parameterize a line as
an affine combination of two points, then it makes sense that we can parameterize a plane
as an affine combination of three points Py, P1, and P;, or

P(s,t) = (1 —s—1)Py+sP1 +1tP>

Alternatively, we can represent this as an origin point plus the linear combination of two
vectors:

P(s,t) = Py +s(P1 — Po) +t(P2 — Pg)
=Po+su+1rv

As with the parameterized line equation, if our points are of higher dimension, we can
create planes in higher dimensions from them. However, in most cases, our planes will be
firmly entrenched in R>.

2.5 Planes

71



72 Vectors and Points

Figure 2.35. Normal form of plane.

2.5.2 Generalized Plane Equation

We can define an alternate representation for a plane in R>, just as we did for a line
in R?. In this form, a plane is defined as the set of points perpendicular to a normal vector
n = (a, b, c) that also contains the point Py = (xq, yo,z0), as shown in Figure 2.35. If a
point P lies on the plane, then the vector v = P — Py also lies on the plane. For v and n to
be orthogonal, then n« v = 0. Expanding this gives us the normal-point form of the plane
equation, or

a(x —x0) +b(y —yo) +c(z—20) =0
We can pull all the constants into one term to get

0 = ax+ by + cz — (axo + byo + cz0)
=ax+by+cz+d

So, extending Equation 2.16 to three dimensions gives us the equation for a plane in R3.

This is the generalized plane equation. As with the generalized line equation, this
equation can be used to test where a point lies relative to either side of a plane. Again,
comparable to the line equation, it can be proven that if n is normalized, |ax + by + cz 4 d|
returns the distance from the point to the plane.

Testing points versus planes using the general plane equation happens quite often. For
example, to detect whether a point lies inside a convex polyhedron, you can do a plane test
for every face of the polyhedron. Assuming the plane normals point away from the center
of the polyhedron, if the point is on the negative side of all the planes, then it lies inside.
We may also use planes as culling devices that cut our world into half-spaces. If an object
lies on one side of a plane, we consider it (say, for rendering purposes); otherwise, we
ignore it. The distance property can be used to test whether a sphere is intersecting a plane.
If the distance between the sphere’s center and the plane is less than the sphere’s radius,
then the sphere is intersecting the plane.

Given three points in R3, P, 0, and R, we generate the generalized plane equation as
follows. First, we compute two vectors u and v, where

u=Q0-P
v=R-P

Now we take the cross product of these two vectors to get the normal to the plane:

n=uxy



2.6 Polygons and Triangles

We usually normalize n at this point so that we can take advantage of the distance-measuring
properties of the plane equation. This gives us our values a, b, and c. Taking P as the point
on the plane, we compute d by

d = —(aPy +bP, + cP.)

We can also use this to convert our parameterized form to the generalized form by starting
1 Source Code
W1th.the cross product ‘step'. , ' ' ' e
Since we’ll be working in R’ most of the time and because of its useful properties, we’ll roacn
be using the generalized plane equation as the basis for our class:

IvPlane

class IvPlane
{
public:
IvPlane( float a, float b, float c, float d );

IvVector3 mNormal;
float mOffset;
Y

And while we’ll be using this as our standard plane, from time to time we’ll be making use
of the parameterized form, so it’s good to keep it in mind.

2.5.3 Coplanar Points

Four or more points are said to be coplanar if they all lie on a plane. Another way to think
of this is that despite the number of points being greater than three, the affine space that
they span is only 2D.

To determine whether four points Py, Py, P2, and P3 are coplanar, we create vectors
Py — Py, P, — Py, and P3 — Py, and compute their triple scalar product. If the result is
near 0, then they may be coplanar, if they’re not collinear. To determine if they are collinear,
take the cross products (P; — Po) X (P2 — Pg) and (P1 — Pg) x (P3 — Pp). If both results
are near 0, then the points are collinear instead.

2.6 Polygons and Triangles

Source Code

. . . . . . Library
The current class of graphics processors wants their geometric data in primarily one form: ruacn

points. However, having just a collection of points is not enough. We need to organize these
points into smaller groups, for both rendering and computational purposes.

A polygon is made up of a set of vertices (which are represented by points) and edges
(which are represented by line segments). The edges define how the vertices are connected
together. A convex polygon is one where the set of points enclosed by the vertices and edges
is a convex set; otherwise, it’s a concave polygon.

The most commonly used polygons for storing geometric data are friangles (three ver-
tices) and quadrilaterals (four vertices). While some rendering systems accept quadrilaterals
(also referred to as just quads) as data, most want geometry grouped in triangles, so we’ll
follow that convention throughout the remainder of the book. One advantage triangles have
over quadrilaterals is that three noncollinear vertices are guaranteed to be coplanar, so they

73



74 Vectors and Points

can be used to define a single plane. If the three vertices of a triangle are collinear, then
we have a degenerate triangle. Degenerate triangles can cause problems on some hardware
and with some geometric algorithms, so it’s often desirable to remove them by checking
for collinearity of the triangle vertices, using the technique described previously.

If the points are not collinear, then as we’ve stated, the three vertices Py, P, and P, can
be used to find the triangle’s incident plane. If we set u = P; — Pg and v = P, — Py, then
we can define this via the parameterized plane equation P(s, t) = Py + su + tv. Alternately,
we can compute the generalized plane equation by computing the cross product of u and v,
normalizing to get the normal n, and then computing d as described in Section 2.5.2.

It’s often necessary to test whether a 3D point lying on the triangle plane is inside or
outside of the triangle itself (Figure 2.36). We begin by computing three vectors vg, v,
and v,, where

vo =P — Py
vi =P, — Py
vo=Py— P>

We take the cross product of vo and v| to get a normal vector n to the triangle. We then
compute three vectors from each vertex to the test point:

wo =P — Py
w; =P—P;
w)=P—P

If the point lies inside the triangle, then the cross product of each v; with each w; will
point in the same direction as n, which we can test by using a dot product. If the result is
negative, then we know they’re pointing in opposite directions, and the point lies outside.
For example, in Figure 2.36, the normal vector to the triangle, computed as vo x vy, points
out of the page. But the cross product vy x wy points into the page, so the point lies outside.

We can speed up this operation by projecting the point and triangle to one of the xy, xz,
or yz planes and treating it as a 2D problem. To improve our accuracy, we’ll choose the one
that provides the maximum area for the projection of the triangle. If we look at the normal n

Figure 2.36. Point in triangle test.



2.6 Polygons and Triangles 75

for the triangle, one of the coordinate values (x, y, z) will have the maximum absolute value;
that is, the normal is pointing generally along that axis. If we drop that coordinate and
keep the other two, that will give us the maximum projected area. We can then throw out a
number of zero terms and end up with a considerably faster test. This is equivalent to using
the perpendicular dot product instead of the cross product. More detail on this technique
can be found in Section 12.3.5.

Another advantage that triangles have over quads is that (again, assuming the vertices
aren’t collinear) they are convex polygons. In particular, the convex combination of the
three triangle vertices spans all the points that make up the triangle. Given a point P inside
the triangle and on the triangle plane, it is possible to compute its particular barycentric
coordinates (s, t), as used in the parameterized plane equation P(s,t) = Py + su+v. If we
compute a vector w = P — Py, then we can rewrite the plane equation as

P=Py+su+trv

W = su-+1v
If we take the cross product of v with w, we get

VXW=VX(su+1tv)
=s(vxu)+HvxV)

=s(vxu)
Taking the length of both sides gives
v xwil = [s[llvxul
The quantity ||[v X u|| = ||lu x v||. And since P is inside the triangle, we know that to meet

the requirements of a convex combination, s > 0; thus,

_ lvxw]

[la > v

A similar construction finds that

_ lhaxw|
flu vl

Note that this is equivalent to computing the areas a and b of the two subtriangles shown
in Figure 2.37 and dividing by the total area of the triangle ¢, so

e |



76 Vectors and Points

Figure 2.37. Computing barycentric coordinates for points in a triangle.

where
1
a=~lluxw|
2

1
b=~
S v wi

1
c=Sluxv]
2

These simple examples are only a taste of how we can use triangles in mathematical cal-
culations. More details on the use and implementation of triangles can be found throughout
the text, particularly in Chapters 8 and 12.

2.7 Chapter Summary

In this chapter, we have covered some basic geometric entities: vectors and points. We
have discussed linear and affine spaces, the relationships between them, and how we can
use affine combinations of vectors and points to define other entities, like lines and planes.
We’ve also shown how we can use our knowledge of affine spaces and vector properties to
compute some simple tests on triangles. These skills will prove useful to us throughout the
remainder of the text.

For those interested in reading further, Anton and Rorres [6] is a standard reference
suggested for many first courses in linear algebra. Other texts with slightly different
approaches are Axler [8] and Friedberg et al. [51]. Information on points and affine spaces
can be found in deRose [32], as well as in Schneider and Eberly [133].



6) Linear

Transformations
and Matrices

3.1 Introduction

In Chapter 2 we discussed vectors and points and some simple operations we can apply
to them. Now we’ll begin to expand our discussion to cover specific functions that we
can apply to vectors and points, functions known as transformations. In this chapter, we’ll
discuss a class of transformations that we can apply to vectors called linear transforma-
tions. These encompass nearly all of the common operations we might want to perform on
vectors and points, so understanding what they are and how to apply them is important.
We’ll define these functions and how distinguished they are from the other more general
transformations.

Properties of linear transformations allow us to use a structure called a matrix as a
compact representation for transforming vectors. A matrix is a simple two-dimensional
(2D) array of values, but within it lies all the power of a linear transformation. Through
simple operations we can use the matrix to apply linear transformations to vectors. We can
also combine the two transformation matrices to create a new one that has the same effect
of the first two. Using matrices effectively lies at the heart of the pipeline for manipulating
virtual objects and rendering them on the screen.

Matrices have other applications as well. Examining the structure of a matrix can tell us
something about the transformation it represents, for example, whether it can be reversed,
what that reverse transformation might be, or whether it distorts the data that it is given.
Matrices can also be used to solve systems of linear equations, which is useful to know for
certain algorithms in graphics and physical simulation. For all of these reasons, matrices
are primary data structures in graphics application programmer interfaces (APIs).

77



78 Linear Transformations and Matrices

3.2 LinearTransformations

Linear transformations are a very useful and important concept in linear algebra. As one
of a class of functions known as transformations, they map vector spaces to vector spaces.
This allows us to apply complex functions to, or transform, vectors. Linear transformations
perform this mapping while also having the additional property of preserving linear com-
binations. We will see how this permits us to describe a linear transformation in terms of
how it affects the basis vectors of a vector space. Later sections will show how this in turn
allows us to use matrices to represent linear transformations.

3.2.1 Definitions

Before we can begin to discuss transformations and linear transformations in particular,
we need to define a few terms. A relation maps a set X of values (known as the domain)
to another set Y of values (known as the range). A function is a relation where every value
in the first set maps to one and only one value in the second set, for example, f(x)=sinx.
An example of a relation that is not a function is +4/x, because there are two possible results
for a positive value of x, either positive or negative.

A function whose domain is an n-dimensional space and whose range is an
m-dimensional space is known as a transformation. A transformation that maps from R”"
to R™ is expressed as 7 : R" — R™. If the domain and the range of a transformation are
equal (i.e., 7 : R" — R"), then the transformation is sometimes called an operator.

An example of a transformation is the function

flxy) =x*+2y
which maps from R? to R. Another example is
[y =x"+2y+ 2

which maps from R3 to R.
For an example with a multidimensional range, we can define a transformation from R?
to R? by using two functions f(a, b) and g(a, b) as follows:

T (a,b) = (f(a,b),g(a, b)) (3.1

A linear transformation T is a mapping between two vector spaces V and W, where for
all vin V and for all scalars a:

1. T(vo+v1)=T(vo)+ 7 (vy) forall vo, vy in V.
2. T(av) =aT(v)forallvin V.

To determine whether a transformation is linear, it is sufficient to show that

T(ax+y)=a7xX)+7(y) 3.2)



3.2 Linear Transformations

An example of a linear transformation is 7 (x) = kx, where k is any fixed scalar. We can
show this by

T(ax+y) = k(ax +y)
= akx + ky
=aT(x)+7(y)

On the other hand, the function g(x) = x2 is not linear because, for a =2, x = 1,
andy = 1:

g2()+1) = )+ 1)

=32=9
# 2(g(1)) +g(1)
=2(1>)+1>=3

As we might expect, the only operations possible in a linear transformation are
multiplication by a constant and addition.

3.2.2 Llinear Transformations and Basis Vectors
Using standard function notation to represent linear transformations (as in Equation 3.1)
is not the most convenient or compact format, particularly for transformations between
higher-dimensional vector spaces. Let’s examine the properties of vectors as they undergo
a linear transformation and see how that can lead us to a better representation.

Recall that we can represent any vector X in an n-dimensional vector space V as

X = XoVo +X1V1 + -+ Xp—1Vn—1

where {vg,Vvy,...,V,_1} is a basis for V.

Now suppose we have a linear transformation 7 : V — W that maps from V to an
m-dimensional vector space W. If we apply our transformation to our arbitrary vector X,
then we can use Equation 3.2 to rewrite it as follows:

T(x) =T xoVo+X1Vi 4+ +X—1Vp_1)
=x07 (vo) +x17 (V1) + - - +x0—17 (V1) (3.3)

We end up with a linear combination using the original components and the transformed
basis vectors. So, if we know how our linear transformation affects our basis for V, then
we can calculate the result of the linear transformation for any arbitrary vector in V given
only the components for that vector. This is extraordinarily powerful, as we’ll see when we
discuss matrices.

Let’s break this down further. For a member v; of V’s basis, we can represent 7 (v;) in
terms of the basis {wo, Wi, ..., w,,_1} for W, again as a linear combination:

T(vj) = ao jwo + a1, jWi +- -+ am—1,jWm—1

79



80 Linear Transformations and Matrices

We will be assuming that {wg, ..., W,,_1} is the standard basis for W. In that case, this
simplifies to

T(vj) =(aoj,aij, ... am-1;) 3.4

Combining Equations 3.3 and 3.4 gives us

T (x) = x0(a0,0,a1,0 - - - »Am—1,0)
+x1(ao,1,a1,15 - - > Am—1,1) (3.5
+Xp—1(A0n—1,A1n—15 - - - » Am—1,0—1)

If we set b = 7 (x), then for a given component of b

bi = ajpxo +aij1x1 +- -+ ain-1%n—1 (3.6)
Knowing this, we can precalculate and store the components (ao;,ai, . . .,0m—1)
for each of the n transformed basis vectors and use Equation 3.5 to transform a general

vector X.
Let’s look at an example taking a transformation from R? to R?, using the standard basis
for both vector spaces:

T(a,b) =(a+b,b)
If we look at how this affects our standard basis for R?, we get

7(1,0)=(140,0)=(1,0)
70,H)=0+11)=1,1

Transforming an arbitrary vector in R2, say (2, 3), we get

T(2,3) = 27(1,0)+37(0, 1)
=2(1,0)+3(1, 1)
= (5,3)

which is what we expect.

3.2.3 Range and Null Space

It should be made clear that applying a linear transformation to a basis does not necessarily
produce a basis for the new vector space. It only shows where the basis vectors end up in



3.2 Linear Transformations

the new vector space—in our case in terms of the standard basis. In fact, a transformed
basis may be no longer linearly independent. Take as another example

T(a,b) =(a+b,0) 3.7
Applying this to our standard basis for R?, we get

7(1,0)=(140,0)=(1,0)
7(0,1)=(0+1,0)=(1,0)

The two resulting vectors are clearly linearly dependent, and as we expect, they only span
the space of 2D vectors with a zero y component.

So while a transformation maps from one vector space to another, it’s possible that it
may not map to all the vectors in the destination. We formally define the range R(7) of a
linear transformation 7 : V — W as the set of all vectors in W that are mapped to by at
least one vector in V, or

R(T) ={T(x)|x € V}

The dimension of R(7T) is called the rank of the transformation.
Correspondingly, we define the null space (or kernel) N(T') of a linear transformation
T :V — W as the set of all vectors in V that map to 0, or

N(T) = {x | T(x) = 0}

The dimension of N(7') is called the nullity of the transformation.

The range and null space have two important properties. First of all, they are both vector
spaces, and in fact, the null space is a subspace of V and the range is a subspace of W.
Second,

nullity(T) + rank(T) = dim(V)

To get a better sense of this, let’s look again at the transformation in Equation 3.7.
It’s range space is of the form (x,0), so it can be spanned by the vector (1,0) and has
dimension 1. The transformation will produce the vector (0, 0) only when a = —b. So the
null space has a basis of (1, —1) and is also one-dimensional (1D). As we expect, they add
up to 2, the dimension of our original vector space (Figure 3.1).

This transformation and the example in the previous section illustrate one useful property.
If the rank of a linear transformation 7" equals the number of elements in a transformed basis
B, then we can say that 8 is linearly independent. In fact, the rank is equal to the number of
linearly independent elements in §, and those linearly independent elements will span the
range of 7. Knowing when a transformed basis is linearly independent will be important
when we discuss linear systems, matrix inverses, and the determinant.

In summary, knowing that we can represent a linear transformation in terms of the
transformed basis vectors is a very powerful tool. As we will now see, it is precisely this
property of linear transformations that allows us to represent them concisely by using a
matrix.

81



82 Linear Transformations and Matrices

Range (y=0)

Figure 3.1. Range and null space for transformation 7 (a, b) = (a + b, 0).

3.3 Matrices

3.3.1 Introduction to Matrices

A matrix is a rectangular, 2D array of values. Throughout this book, most of the values
we use will be real numbers, but they could be complex numbers or even vectors. Each
individual value in a matrix is called an element. Examples of matrices are

oo 0 35 —I15 2 -

A=|01 0| B= c=|0 2
2 52 1

00 1 6

A matrix is described as having m rows by n columns, or being an m X n matrix.
A row is a horizontal group of elements from left to right, while a column is a vertical,
top-to-bottom group. Matrix A in our example has three rows and three columns and is a
3 x 3 matrix, whereas matrix C is a 3 x 2 matrix. Rows are numbered 0 to m — 1,! while
columns are numbered O to n— 1. An individual element of a matrix A is referenced
as either (A);; or just a;;, where i is the row number and j is the column. Looking at
matrix B, element b1 ¢ contains the value 2 and element bg | equals 35.

If an individual matrix has an equal number of rows and columns, that is, if m = n, then
it is called a square matrix. In our example, matrix A is square, whereas matrices B and C
are not.

! As a reminder, mathematical convention starts with 1, but we’re using 0 to be compatible with C++.



If all elements of a matrix are O, then it is called a zero matrix. We will represent a
matrix of this type as 0 and assume a matrix of the appropriate size for the operation we are
performing.

If two matrices have an equal number of rows and columns, then they are said to be the
same size. If they are the same size and their corresponding elements have the same values,
then they are equal. Below, the two matrices are the same size, but they are not equal.

0 0
3 21 #12 =3
-3 3

The set of elements where the row and column numbers are the same (e.g., row 1,
column 1) is called the main diagonal. In the next example, the main diagonal is in bold.

3 -5 0 1

0 2 6 O
U=

0 0 1 -8

0 0 o0 1

The trace of a matrix is the sum of the main diagonal elements. In this case the trace is
342414+1=17.

In matrix U, all elements below the diagonal are equal to 0. This is known as an upper
triangular matrix. Note that elements above the diagonal don’t necessarily have to be
nonzero in order for the matrix to be upper triangular, nor does the matrix have to be
square.

If elements above the diagonal are 0, then we have a lower triangular matrix:

3000
2 2 0
L=
0 3 10
-6 1 0 1

Finally, if a square matrix’s nondiagonal elements are all 0, we call the matrix a
diagonal matrix:

S O O W
S O NN O
oS = O O
- o O O

It follows that any diagonal matrix is both an upper triangular and a lower triangular
matrix.

3.3 Matrices

83



84 Linear Transformations and Matrices

3.3.2 Simple Operations
3.3.2.1 Matrix Addition and Scalar Mulfiplication
We can add and scale matrices just as we can do for vectors. Adding two matrices together,

S=A+B
is done componentwise like vectors; thus,
Sij = aij+bij

Clearly, in order for this to work, A, B, and S must all be the same size (also known
as conformable for addition). Subtraction works similarly but, as with real numbers and
vectors, is not commutative.

To scale a matrix,

P=sA
each element is multiplied by the scalar, again like vectors:
Dij = Saij

Matrix addition and scalar multiplication have their algebraic rules, which should seem
quite familiar at this point:

1. A+B=B+A.

2. A+HB+C) =A+B)+C.
3. A+0=A.

4. A+(—A)=0.

5. a(A+B) =aA +aB.

6. a(bA) = (ab)A.

7. (a+b)A =aA+bA.

8. IA=A.

As we can see, these rules match the requirements for a vector space, and so the set of
matrices of a given size is also a vector space.

3.3.2.2 Transpose

The transpose of a matrix A (represented by AT) interchanges the rows and columns of A.
It does this by exchanging elements across the matrix’s main diagonal, so (AT); j = A



3.3 Matrices

An example of this is

2 -1
2 0 6
0 2 | =
-1 2 3
6 3
As we can see, the matrix does not have to be square, so an m x n matrix becomes an n x m
matrix. Also, the main diagonal doesn’t change, or is invariant, since (AT),-,,- = (A);,.

A matrix where (A); ; = (A);,; (i.e., cross-diagonal entries are equal) is called a symmetric
matrix. All diagonal matrices are symmetric. Another example of a symmetric matrix is

3 1 2 3
1 2 =5 0
2 =5 1 -9
3 0 -9 1

The transpose of a symmetric matrix is the matrix again, since in this case (AT)j,,- =
(A)ij = (A)j,;.

A matrix where (A); j = —(A);; (i.e., cross-diagonal entries are negated and the diagonal
is 0) is called a skew symmetric matrix. An example of a skew symmetric matrix is

0 1 2
-1 0 =5
-2 5 0

The transpose of a skew symmetric matrix is the negation of the original matrix, since in
this case (AT);; = (A);j = —(A);,.
Some useful algebraic rules involving the transpose are

1. ATHYT =A
2. (@aAT) = aAT
3. (A+B)Y = AT + BT

where a is a scalar and A and B are conformable for addition.

3.3.3 Vector Representation

If a matrix has only one row or one column, then we have a row or column matrix,
respectively:

05 025 1 -1 -3
6.9

85



86 Linear Transformations and Matrices

These are often used to represent vectors. There is no particular standard as to which one
to use. Historically, the OpenGL specification and its documentation used columns and
DirectX used rows. Currently, however, you can use either convention in both APIs. In this
text, we will assume that vectors are represented as column matrices (also known as column
vectors). First of all, most math texts use column vectors and we wish to remain compatible.
In addition, the classical presentation of quaternions (another means for performing some
linear transformations) uses a concatenation order consistent with the use of column matrices
for vectors.

The choice to represent vectors as column matrices does have some effect on how we
construct and multiply our matrices, which we will discuss in more detail in the following
parts. In the cases where we do wish to indicate that a vector is represented as a row matrix,
we’ll display it with a transpose applied, like b .

3.3.4 Block Matrices

A matrix also can be represented by submatrices, rather than by individual elements. This
is also known as a block matrix. For example, the matrix

2 3
-3
0
also can be represented as
A 0
o 1
where
2 3
A=
-3 2
and
0
0=
0

We will sometimes use this to represent a matrix as a set of row or column matrices.
For example, if we have a matrix A,

ap,0 4do,1 4oz
ao adil di2

ao a1 axp



we can represent its rows as three vectors,

and represent A as

a = [ ao azi

Q = [ ap,o 4o,1 4oz }

a = [ ao ail a2 }

azpn }

Similarly, we can represent a matrix B with its columns as three vectors

bo

bo= | bipo

bao

by = | b1

b, =

and subsequently B as

[bo b, bz}

As mentioned earlier, the transpose notation tells us whether we’re using row or column

vectors.

3.3.5 Matrix Product

The primary operation we will apply to matrices is multiplication, also known as the matrix
product. The product is important to us because it allows us to do two essential things. First,
multiplying a matrix by a compatible vector will transform the vector. Second, multiplying
matrices together will create a single matrix that performs their combined transformations.
We’ll discuss exactly what is occurring when we cover vector transformations below, but

for now we’ll just define how to perform matrix multiplication.

3.3 Matrices

87



88 Linear Transformations and Matrices

As with real numbers, the product C of two matrices A and B is represented as
C=AB

Computing the matrix product is not as simple as multiplying real numbers, but is not that
bad if you understand the process. To calculate a given element ¢;; in the product, we take
the dot product of row i from A with column j from B. We can express this symbolically as

n—1
Cij = Zai,kbk,/
k=0

As an example, we’ll look at computing the first element of a 3 x 3 matrix:

apo 4o, 4o2 €0,0

boo
big - -+ | =

byo
To compute the value of cg o, we take the dot product of row 0 from A and column 0 from B:

0,0 = ao,0bo,0 +ao,1b1,0 +ap2b2p

Expanding this for a 2 x 2 matrix:

[ aoo do,1 ] [ boo bo,1 ] _ [ a0,0b0,0 +ao,1b1,0  ao0bo,1 +ao,1b1,1 ]

aip ai bip b1 a1 oboo+ai1bro  aiobo +ai1bi

If we represent A as a collection of rows and B as a collection of columns, then

ag . ageby apeb;
7 | |Po bi| =

a; al e b() al e b]
There is a restriction on which matrices can be multiplied together; in order to perform
a dot product, the two vectors have to have the same length. So, to multiply together two
matrices, the number of columns in the first (i.e., the width of each row) has to be the same
as the number of rows in the second (i.e., the height of each column). This is known as
being conformable for multiplication. Because of this restriction, only square matrices can

be multiplied by themselves.
We can also multiply by using block matrices:

A B
C D

E F
G H

AE+BG AF+BH
CE+DG CF+DH

Note that this is only allowable if the submatrices are conformable for addition and
multiplication.



In general, matrix multiplication is not commutative. As an example, if we multiply a
row matrix by a column matrix, we perform a dot product:

[1 2} [i]=1-3~|—2-4=11

Because of this, you may often see a dot product represented as
a.b=a’b

If we multiply them in the opposite order, we get a square matrix:

HIERE

Even multiplication of square matrices is not necessarily commutative:
3 6 1L 0| |9 6
4 8|1 1] |12 8
1 0 36| |3 6
11 ][4 8] |7 14

Aside from the size restriction and not being commutative, the algebraic rules for matrix
multiplication are very similar to those for real numbers:

1. A(BC) = (AB)C

2. a(BC) = (aB)C

3. AB+C)=AB+AC
4. (A+B)C =AC+BC
5. (AB)Y =BTAT

where A, B, and C are matrices conformable for multiplication and a is a scalar. Note that
matrix multiplication is still associative (rules 1 and 2) and distributive (rules 3 and 4).

3.3.6 Transforming Vectors

As previously indicated, matrices can be used to transform vectors. We do this by multiplying
the matrix by a column matrix representing the vector we wish to transform, or simply

b = Ax

3.3 Matrices

89



90 Linear Transformations and Matrices

Let’s expand our terms and examine the components of the matrix and each vector:

by ao ap,l -+ aAgp—1 X0
by aip ayl o Alp—1 X1
bu—1 An—10 Am—11 ' Gm—ln—1 Xp—1

Note that x has n components and the resulting vector b has m. In order for the multiplication
to proceed, matrix A must be m x n. This represents a transformation from an n-dimensional
space V to an m-dimensional space W. As with general matrix multiplication, the number
of columns in A must match the number of elements in X, and the number of elements in
the result b will equal the number of rows in A.

Recall that for a linear transformation, if we know where the basis of a vector space is
mapped to, we know where the remainder of the vectors are mapped. Let’s use this fact
to see how this operation performs a linear transformation. Suppose that we know that our
standard basis {eg, ej,...,e,—1}in V is transformed to {ag, ay, ..., a,_1} in W, again using
the standard basis. We will store, in order, each of these transformed basis vectors as the
columns of A, or

A=[ao ai - A,

Using our matrix multiplication definition to compute the product of A and a vector x
in V, we see that the result for element i in b is

b; = ajpxo+aj1x1 + -+ aip_1xp-1

This is exactly the same as Equation 3.6. So, by setting up our matrix with the transformed
basis vectors in each column, we can use matrix multiplication to perform linear transfor-
mations. We will use this important fact throughout the book to build our transformation
matrices.

Column vectors aren’t the only possibility. We can also premultiply by a vector by treating
it as a row matrix:

el =xTA
or, expanded:
ap,o aop,1 s ag,n—1
ato a1 s arn—1
|:CO [& D Cn—l} = [)C() Xy - xm—l]
adm—-1,0 Am-1,1 - Am—1n—1

In this case, the rows of A are acting as our transformed basis vectors, and the number of
components in x! must match the number of rows in our matrix.



At this point, we can define some additional properties for matrices. The column space
of a matrix is the vector space spanned by the matrix’s column vectors and is the range of the
linear transformation performed by postmultiplying by a column vector. Correspondingly,
the row space is the vector space spanned by the row vectors of the matrix and, as we’d
expect, is the range of the linear transformation performed by premultiplying by a row
vector. As it happens, the dimensions of the row space and column space are equal and that
value is called the rank of the matrix. The matrix rank is equal to the rank of the associated
linear transformation.

The column space and row space are not necessarily the same vector space. As an
example, take the matrix

oS O O
(e R
S = O

When postmultiplied by a column vector, it maps a vector (x, y, z) in R? to a vector (y, z, 0) on
the xy plane. Premultiplying by a row vector, on the other hand, maps (x, y, z) to (0, x, y) on
the yz plane. They have the same dimension, and hence the same rank, but they are not the
same vector space.

This makes a certain amount of sense. When we multiply by a row vector, we use the
row vectors of the matrix as our transformed basis instead of the column vectors. To achieve
the same result as the column vector multiplication, we need to change our matrix’s column
vectors to row vectors by taking the transpose:

s

S = O
- O O

0
0 =[y10}
0

We can now see the purpose of the transpose: it exchanges a matrix’s row space with its
column space.

Like a linear transformation, a matrix also has a null space, which is all vectors x in V
such that

Ax =10

In the preceding example, the null space N is all vectors with zero y and z components.
As with linear transformations, dim() + rank (A) = dim(V).

3.3.7 Combining Linear Transformations

Suppose we have two transformations, S : U — Vand7 : V — W, and we want to perform
one after the other; namely, for a vector x, we want the result 7 (S(x)). If we know that we
are going to transform a large collection of vectors by S and the resulting vectors by 7,
it will be more efficient to find a single transformation that generates the same result so that

3.3 Matrices

91



92 Linear Transformations and Matrices

we only have to transform the vectors once. This is known as the composition of S and T
and is written as

(T o S)(x) = T(S(x))

Composition (or alternatively, concatenation) of transformations is done via generalized
matrix multiplication.

Suppose that matrix A is the corresponding transformation matrix for S and B is the
corresponding matrix for 7. Recall that in order to set up A for vector transformation,
we pretransform the standard basis vectors by S and store them as the columns of A. Now
we need to transform those vectors again, this time by 7. We could either do this explicitly
or use the fact that multiplying by B will transform vectors in V by 7. So we just multiply
each column of A by B and store the results, in order, as columns in a new matrix C:

C=BA

If U has dimension n, V has dimension m, and W has dimension /, then A will be an m x n
matrix and B will be an / x m matrix. Since the number of columns in B matches the number
of rows in A, the matrix product can proceed, as we’d expect. The result C will be an / x n
matrix and will apply the transformation of A followed by the transformation of B in a
single matrix—vector multiplication.

This is the power of using matrices as a representation for linear transformations. By con-
tinually concatenating matrices, we can use the result to produce the effect of an entire series
of transformations, in order, through a single matrix multiplication. Note that the order does
matter. The preceding result C will perform the result of applying A followed by B. If we
swap the terms (assuming they’re still conformable under multiplication),

D =AB

and matrix D will perform the result of applying B followed by A. This is almost certainly
not the same transformation.

For the discussion thus far, we have assumed that the resulting matrix will be applied to
a vector represented as a column matrix. It is good to be aware that the choice of whether
to represent a vector as a row matrix or column matrix affects the order of multiplications
when combining matrices. Suppose we multiply a column vector u by three matrices, where
the intended transformation order is to apply My, then M1, and finally M>:

v = Mpu
w=Mv 3.8)
X = Mow

If we take Equation 3.8 and substitute M;v for w and then Mou for v,we get
x = MpM;v

= M2M1M0u
=M.u



3.3 Matrices 93

Doing something similar for a row vector a’,
b" =a’Ny
¢ =p'N

d’ =N,
and substituting,

d’ =b'N|N,
= a’ NoN;N,

= aTNr

the order difference is quite clear. When using row vectors and concatenating, matrix order
follows the left-to-right progress used in English text. Column vectors work right to left
instead, which may not be as intuitive. We will just need to be careful about our matrix
order and transpose any matrices that assume we’re using row vectors.

There are two other ways to modify transformation matrices that aren’t used as often.
Instead of concatenating two transformations, we may want to create a new one by adding
two together: Q(x) = S(x) + 7 (x). This is easily done by adding the corresponding matrices
together, so the matrix that performs Q is C = A 4+ B. Another means we might use for
generating a new transformation from an existing one is to scale it: R(x) = s -7 (x). The
corresponding matrix is created by scaling the original matrix: D = sA.

3.3.8 Identity Matrix

We know that when we multiply a scalar or vector by 1, the result is the scalar or vector
again:

l-x=x

Similarly, in matrix multiplication there is a special matrix known as the identity matrix,
represented by the letter I. Thus,

A-I=1-A=A

The identity matrix maps the basis vectors of the domain to the same vectors in the range;
it performs a linear transformation that has no effect on the source vector, also known as
the identity transformation.

All identity matrices have a similar form: a diagonal square matrix, where the diagonal
isall 1s:



94  Linear Transformations and Matrices

If a particular n x n identity matrix is needed, it is sometimes referred to as I,,. Take as an
example I3:

I; =

S O =
S = O
- O O

Rather than referring to it in this way, we’ll just use the term I to represent a general
identity matrix and assume it is the correct size in order to allow an operation to proceed.

3.3.9 Performing Vector Operations with Matrices

Recall that if we multiply a row vector by a column vector, it performs a dot product. For
example, in R3:

wliy = WxVx +WyVy + WV, = VeW
And multiplying them in the opposite order produces a square matrix (again in R?):
ViWy  VxWy VW
T=vw = VyWx  VyWy o VyWg

ViWx  ViWy o VW

This square matrix T is known as the outer product or tensor product v ® w. We can use it
to rewrite vector expressions of the form (u « w)v as

(wew)v = (VR W)u
In particular, we can rewrite a projection by a unit vector as
(We V)V = (VR V)u

This will prove useful to us in Chapter 4.

We can also perform our other vector product, the cross product, through a matrix
multiplication. If we have two vectors v and w and we want to compute v X w, we can
replace v with a particular skew symmetric matrix, represented as v:

Multiplying by w gives
0 —v Vy Wy VyWz — Wy vy
v, 00— wy | = | vowy —wpug
—Vy Vy 0 Wy VeWy — WyVy

which is the formula for the cross product. This will also prove useful to us in subsequent
chapters.



3.3 Matrices

1 Source Code
3.3.10 Implementation

One might expect that the most natural data format for, say, a 3 x 3 matrix would be Iviath

IvMatrix33
. ix44
class IvMatrix33 IvMatrix

{
float mbata[3][3];
Y

However, the memory layout of such a matrix may not be ideal for our purposes. In C
or C4++, 2D arrays are stored in what is called row major order, meaning that the matrix is
stored in memory in a row-by-row order. If we use a 1D array to represent our matrix data
instead,

class IvMatrix33
{

float mv[9];
}s

the index order for a 3 x 3 row major matrix is

o W o
RCTN G-

2
5
8

The indexing operator for a row major matrix (we have to use operator () because
operator [] only works for a single index) is

float&
IvMatrix33::operator () (unsigned int row, unsigned int col)
{

return mV[col + 3*row];

}

So why won’t this work for us? The problem is that in OpenGL and now by default in
DirectX, matrices are stored column by column instead of row by row. This is a format
known as column major order. Writing out our indices in column major order gives us

0 3 6
1 4 7
2 5 8

Notice that the indices are the transpose of row major order. The indexing operator becomes

floaté&
IvMatrix33::operator () (unsigned int row, unsigned int col)
{

return mvV[row + 3*col];

}

95



96 Linear Transformations and Matrices

Alternatively, if we want to use 2D arrays:

float&
IvMatrix33::operator () (unsigned int row, unsigned int col)
{

return mV[col] [row];

}

It’s common to find references describing a matrix intended to be used with row vectors
(i.e., its transformed basis vectors are stored as rows) as being in row major order and,
similarly, referring to a matrix intended to be used with column vectors as being in column
major order. This is incorrect terminology. Row and column major order refer only to
the storage format, namely, where an element a;; will lie in the 1D representation of the
matrix. Whether your matrix library intends for vectors to be pre- or postmultiplied should
be independent of the underlying storage.

The reason for the confusion is probably historical. In Silicon Graphics International’s
first APIL, IRIS GL, matrices were stored in row major order and the API assumed row
vectors. When SGI opened up IRIS GL to create OpenGL, they adopted column vectors
instead. However, the underlying hardware didn’t change, so in order to remain compat-
ible, they had to transpose every matrix before sending it to the hardware. Rather than do
that explicitly, they pretransposed the matrix in the storage format; that is, they used column
major order. The end result was that the underlying memory representation was exactly the
same. Versions of Direct3D prior to DirectX 10 ended up adopting the IRIS GL convention,
so the row vector/row major and column vector/column vector pairings became set in
people’s minds. However, there is no reason why you couldn’t store a matrix intended for
use with row vectors in column major order, and vice versa.

Using column major format and column vectors, matrix—vector multiplication becomes

IvVector3
IvMatrix33::operator*( const IvVector3& vector ) const
{

IvVector3 result;

result.x = mV[0]*vector.x + mV[3]*vector.y + mV[6]*vector.z;
result.y = mV[1l]*vector.x + mV[4]*vector.y + mV[7]*vector.z;
result.z = mV[2]*vector.x + mV[5]*vector.y + mV[8]*vector.z;

return result;

And matrix—matrix multiplication is similar, expanding this across the three columns of
the right-hand matrix.
Matrix addition is just

IvMatrix33
IvMatrix33::operator+( const IvMatrix33& other ) const
{

IvMatrix33 result;



3.4 Systems of Linear Equations

for (int i = 0; 1 < 9; ++1)
{

result.mv[i] = mV[i]+other.mV[i];
}

return result;

And again, scalar multiplication of matrices is similar.

This concludes our main discussion of linear transformations and matrices. The remain-
der of the chapter will be concerned with other useful properties of matrices: solving
systems of linear equations, determinants, and eigenvalues and eigenvectors.

3.4 Systems of Linear Equations
3.4.1 Definition

Other than performing linear transformations, another purpose of matrices is to act as a
mechanism for solving systems of linear equations. A general system of m linear equations
with n unknowns is represented as

bo = appxo +ao,1x1 + - - - + Ao p—1Xn—1

by = aypxo+ayxi+- -+ app1xXa—1 (3.9

bm—1 = @m-10X0 + Am—1,1X1 + - + An—1,n—1Xn—1
The problem we are trying to solve is: Given ag, . . . , @&m—1,,—1 and bo, . . ., by, —1, what
are the values of x, . .., x,—1? For a given linear system, the set of all possible solutions is

called the solution set.
As an example, the system of equations
xo+2x =1
3xg—x1 =2
has the solution set {xo = 5/7,x1 = 1/7}.

There may be more than one solution to the linear system. For example, the plane
equation

ax+by+cz=—d

has an infinite number of solutions: the solution set for this example is all the points on the
particular plane.

Alternatively, it may not be possible to find any solution to the linear system. Suppose
that we have the linear system

xo+x1 =1
X0 +x1 =2

There are clearly no solutions for x and y. The solution set is the empty set.

97



98 Linear Transformations and Matrices

Let’s reexamine Equation 3.9. If we think of (xq,...,x,—1) as elements of an
n-dimensional vector x and (by, . .., b;,—1) as elements of an m-dimensional vector b, then
this starts to look a lot like matrix multiplication. We can rewrite this as

ap,0 apl 0 Aop—1 X0 by
aio ail o Aip—1 X by
An—1,0 Am—1,1 -+ Gm-1p—1 Xn—1 b1
or our old friend
Ax=b

The coefficients of the equation become the elements of matrix A, and matrix multiplication
encapsulates our entire linear system. Now the problem becomes one of the form: Given A
and b, what is x?

3.4.2 Solving Linear Systems
One case is very easy to solve. Suppose A looks like

I ap1 --- aop—1
0 1 - apu
o 0 ... 1

This is equivalent to the linear system

by = xo+ap1x1+ -+ apu—1xp—1
by =x1+---+aip—1x,-1

bu—1 = Xn—1

We see that we immediately have the solution to one unknown via x,_; = b,,—1. We can
substitute this value into the previous m — 1 equations and possibly solve for another x;.
If so, we can substitute that x; into the remaining unsolved equations and so on up the chain.
If there is a single solution for the system of equations, we will find it; otherwise, we will
solve as many terms as possible and derive a solution set for the remainder.

This matrix is said to be in row echelon form. The formal definition for row echelon
form is

1. If arow is entirely zeros, it will be below any nonzero rows of the matrix; in other
words, all zero rows will be at the bottom of the matrix.



3.4 Systems of Linear Equations

2. The first nonzero element of a row (if any) will be 1 (called a leading I).

3. Each leading 1 will be to the right of a leading 1 in any preceding row.

If the following additional condition is met, we say that the matrix is in reduced row
echelon form.

4. Each column with a leading 1 will be 0 in the other rows.

The process we’ve described gives us a clue about how to proceed in solving general
systems of linear equations. Suppose we can multiply both sides of our equation by a series
of matrices so that the left-hand side becomes a matrix in row echelon form. Then we can
use this in combination with the right-hand side to give us the solution for our system of
equations.

However, we need to use matrices that preserve the properties of the linear system;
the solution set for both systems of equations must remain equal. This restricts us to
those matrices that perform one of three transformations called elementary row operations.
These are

1. Multiply a row by a nonzero scalar.
2. Add a nonzero multiple of one row to another.

3. Swap two rows.

These three types of transformations maintain the solution set of the linear system while
allowing us to reduce it to a simpler problem. The matrices that perform elementary row
operations are called elementary matrices.

Some simple examples of elementary matrices include one that multiplies row 2 by a
scalar a:

_ 0 _
0 a O
0
one that adds k times row 2 to row 1:
_ . _
01 0
0
and one that swaps rows 2 and 3:
_ 0 0 _
00
0

99



100 Linear Transformations and Matrices

Source Code
IvMath

IvGaussianElim

3.4.3 Gaussian Elimination

In practice we don’t solve linear systems through matrix multiplication. Instead, it is more
efficient to iteratively perform the operations directly on A and b. The most basic method
for solving linear systems is known as Gaussian elimination, after Karl Friedrich Gauss,
a prolific German mathematician of the eighteenth and nineteenth centuries. It involves
concatenating the matrix A and vector b into a form called an augmented matrix and then
performing a series of elementary row operations on the augmented matrix, in a particular
order. This will either give us a solution to the system of linear equations or tell us that
computing a single solution is not possible; that is, there is either no solution or an infinite
number of solutions.

To create the augmented matrix, we take the original matrix A and combine it with our
constant vector b, for example,

1 2 313
4 5 6|2
7 8 9

The vertical line within the matrix indicates the separation between A and b. To this
augmented matrix, we will directly apply one or more of our row operations.

The process begins by looking at the first element in the first row. The first step is called
a pivoting step. At the very least, we need to ensure that we have a nonzero entry in the
diagonal position, so if necessary, we will swap this row with one of the lower rows that has
a nonzero entry in the same column. The element that we’re swapping into place is called
the pivot element, and swapping two rows to move the pivot element into place is known
as partial pivoting. For better numerical precision, we usually go one step further and swap
with the row that contains the element of largest absolute value. If no pivot element can be
found, then there is no single solution and we abort.

Now let’s say that the current pivot element value is k. We scale the entry row by 1/k to
set the diagonal entry to 1. Finally, we set the column elements below the diagonal entry
to 0 by adding appropriate multiples of the current row. Then we move on to the next
row and look at its diagonal entry. At the end of this process, our matrix will be in row
echelon form.

Let’s take a look at an example. Suppose we have the following system of linear
equations:

x =3y + z =5
2x =y + 2z =5
3x 46y + 9z =3

The equivalent augmented matrix is

1 -3 1|5
2 -1 2|5
3 6 9|3



3.4 Systems of Linear Equations

If we look at column 0, the maximal entry is 3, in row 2. So we begin by swapping row 2
with row O:

6 9
2 -1 2
-3 1

We scale the new row 0 by 1/3 to set the pivot element to 1:

2 3|1
2 —1
-3 1

Now we start clearing the lower entries. The first entry in row 1 is 2, so we scale row 0
by —2 and add it to row 1:

12 31
0 -5 —4
1 -3 115

We do the same for row 2, scaling by —1 and adding:

1 2 31
0 -5 —4/3
0 -5 —2|4

We are done with row 0 and move on to row 1. Row 1, column 1, is the maximal entry in
the column, so we don’t need to swap rows. However, it isn’t 1, so we need to scale row 1
by —1/5:

1 2 3 1
0 1 4/5|-3/5
0 -5 —2 4

We now need to clear element 1 of row 2 by scaling row 1 by 5 and adding:

1 2 3 1
0 1 4/5|-3/5

0 0 2 1

Finally, we scale the bottom row by 1/2 to set the pivot element in the row to 1:

1 2 3 1
0 1 4/5|-3/5
00 1 1/2

101



102 Linear Transformations and Matrices

This matrix is now in row echelon form. We have two possibilities at this point. We could
clear the upper triangle of the matrix in a fashion similar to how we cleared the lower triangle,
but by working up from the bottom and adding multiples of rows. The solution x to the
linear system would end up in the right-hand column. This is known as Gauss—Jordan
elimination.

But let’s look at the linear system we have now:

x+2y+3z=1
y+4/5z=-3/5
z=1/2

As expected, we already have a known quantity: z. If we plug z into the second equation,
we can solve for y:

y=-3/5-4/5; (3.10)
=—-3/5-4/5(1/2) (3.11)
=1 (3.12)

Once y is known, we can solve for x:

x=1-2y—3z (3.13)
—1-2(—1)=3(1/2) (3.14)
—3/2 (3.15)

So our final solution for x is (3/2, —1, 1/2).

This process of substituting known quantities into our equations is called back
substitution.

A summary of Gaussian elimination with back substitution follows:

for p =1 ton do
// find the element with largest absolute value in col p

// if max is zero, stop!
// if max element not in row p, swap rows

// set pivot element to 1
multiply row p by 1/A[p][p]

// clear lower column entries
for r = p+1 to n do
subtract row p times A[r,p] from current row,
so that element in pivot column becomes 0

// do backwards substitution
for row = n-1 to 1
for col = row+l to n
// subtract out known gquantities
blrow] = bl[row] - A[row] [col]*b[col]



3.5 Matrix Inverse

The pseudocode shows what may happen when we encounter a linear system with no
single solution. If we can’t swap a nonzero entry in the pivot location, then there is a
column that is all zeros. This is only possible if the rank of the matrix (i.e., the number of
linearly independent column vectors) is less than the number of unknowns. In this case,
there is no solution to the linear system and we abort.

In general, we can state that if the rank of the coefficient matrix A equals the rank of
the augmented matrix A|b, then there will be at least one solution to the linear system. If
the two ranks are unequal, then there are no solutions. There is a single solution only if the
rank of A is equal to the minimum of the number of rows or columns of A.

3.5 Matrix Inverse

This may seem like a lot of trouble to go to solve a simple equation like b = Ax. If this
were scalar math, we could simply divide both sides of the equation by A to get

x=b/A

Unfortunately, matrices don’t have a division operation. However, we can use an equivalent
concept: the inverse.

3.5.1 Definition
In scalar multiplication, the inverse is defined as the reciprocal:

or

Correspondingly, for a given matrix A, we can define its inverse A~! as a matrix such that
A-AT' =1

and
AT A=1

There are a few things that fall out from this definition. First of all, in order for the first
multiplication to occur, the number of rows in the inverse must be the same as the number
of columns in the original matrix. For the second to occur, the converse is true. So, the
matrix and its inverse must be square and the same size. Since not all matrices are square,
it’s clear that not every matrix has an inverse.

Second, the inverse of the inverse returns the original matrix. Given

A—l . (A—l)—l =1
and

AN A=1

103



104 Linear Transformations and Matrices

then
A HTT=A

Even if a matrix is square, there isn’t always an inverse. An extreme example is the
zero matrix. Any matrix multiplied by this gives the zero matrix, so there is no matrix
multiplication that will produce the identity. Another set of examples is matrices that have
a zero row or column vector. Multiplying by such a row or column will return a dot product
of 0, so you’ll end up with a zero row or column vector in the product as well—again,
not the identity matrix. In general, if the null space of the matrix is nonzero, then the matrix
is noninvertible; that is, the matrix is only invertible if the rank of the matrix is equal to the
number of rows and columns.

Given these identities, we can now solve for our preceding linear system. Recall that the
equation was

Ax=Db
If we multiply both sides by A~!, then
A'Ax=A"1p
Ix=A"'b
x=A"'b

Therefore, if we could find the inverse of A, we could use it to solve for x. This is not
usually a good idea, computationally speaking. It’s usually cheaper to solve for x directly,
rather than generating the inverse and then performing the matrix multiplication. The latter
can also lead to increased numerical error. However, sometimes finding the inverse is a
necessary evil.

The left-hand side of the above derivation shows us that we can think of the inverse A~
as undoing the effect of A. If we start with Ax and premultiply by A~!, we get back x, our
original vector.

We can find the inverse of a matrix using Gaussian elimination to solve for it column by
column. Suppose we call the first column of A~! x(. We can represent this as

X) = A7180

where, as we recall, eg = (1,0, ..., 0). Multiplying both sides by A gives
AXo = €

Finding the solution to this linear system gives us the first column of A~!. We can do the
same for the other columns, but using e, €2, and so on. Instead of solving these one at a
time, though, it is more efficient to create an augmented matrix with A and e, ..., e,_1 as
columns on the right, or just I. For example,

411 00
-9 10 1 0
110 01



3.5 Matrix Inverse

If we use Gauss—Jordan elimination to turn the left-hand side of the augmented matrix into
the identity matrix, then we will end up with the inverse (if any) on the right-hand side. From
here we perform our elementary row operations as before. The maximal entry is already in
the pivot point, so we scale the first row by 1/2:

10 212 00
39/ 0 10
0 1] 0 01

The nonpivot entries in the first column are 0, so we move to the second column. Scaling
the second row by 1/3 to set the pivot point to 1 gives us

10 212 0 0
01 =3/ 0 1/3 0
00 1|0 0 1

Again, our nonpivot entries in the second column are 0, so we move to the third column.
Our pivot entry is 1, so we don’t need to scale. We add —2 times the last row to the first row
to clear that entry, then 3 times the last row to the second row to clear that entry, and get

1 00[1/2 0 -2
010[0 13 3
0010 o0 1

The inverse of our original matrix is now on the right-hand side of the augmented matrix.

3.5.2 Simple Inverses
Gaussian elimination, while useful, is unnecessary for computing the inverse of many of
the matrices we will be using. The majority of matrices that we will encounter in games
and three-dimensional (3D) applications have simple inverses, and knowing the form of the
matrix can make computing the inverse trivial.

One case is that of an orthogonal matrix, where the component row or column vectors
are orthonormal. Recall that this means that the vectors are of unit length and perpendicular.
If a matrix A is orthogonal, its inverse is the transpose:

ATl =AT
One example of an orthogonal matrix is

-1

0 0 1 01 0
1 00 =0 0 1
010 1 00

105



106 Linear Transformations and Matrices

Another simple case is a diagonal matrix with nonzero elements in the diagonal. The
inverse of such a matrix is also diagonal, where the new diagonal elements are the reciprocal
of the original diagonal elements, as shown by the following:

-1

a 0 0 1Ja 0 0
0 b 0 =0 1/ 0
00 ¢ 0 0 1/c

The third case is a modified identity matrix, where the diagonal is all 1s, but one column
or row is nonzero. One such 3 x 3 matrix is

[ R
S = O
— =

For a matrix of this form, we simply negate the nonzero nondiagonal elements to invert it.
Using the previous example,

-1

1 0 «x 1 0 —x
01 vy =10 1 —y
0 0 1 0 0 1

Finally, we can combine this knowledge to take advantage of an algebraic property of
matrices. If we have two square matrices A and B, both of which are invertible, then

(AB)"' =B 'A"!

So, if we know that our current matrix is the product of any of the cases we’ve just discussed,
we can easily compute its inverse using the preceding formula. This will prove to be useful
in subsequent chapters.

3.6 Determinant
3.6.1 Definition

The determinant is a scalar quantity created by evaluating the elements of a square matrix.
In real vector spaces, it acts as a general measure of how vectors transformed by the matrix
change in size. For example, if we take the columns of a 2 x 2 matrix (i.e., the transformed
basis vectors) and use them as the sides of a parallelogram (Figure 3.2), then the absolute
value of the determinant is equal to the area of a parallelogram. For a 3 x 3 matrix, the
absolute value of the determinant is equal to the volume of a parallelepiped described by
the three transformed basis vectors (Figure 3.3).

The sign of the determinant depends on whether or not we have switched our ordered
basis vectors from being relatively right-handed to being left-handed. In Figure 3.2, the
shortest angle from ag to a; is clockwise, so they are left-handed. The determinant, therefore,
is negative.



3.6 Determinant

> i

Figure 3.2. Determinant of 2 x 2 matrix as area of parallelogram bounded by transformed
basis vectors ag and aj.

i

Figure 3.3. Determinant of 3 x 3 matrix as volume of parallelepiped bounded by trans-
formed basis vectors ag, a;, and aj.

We represent the determinant in one of two ways, either det (A) or |A|. The first is more
often used with a symbol, and the second when showing the elements of a matrix:

1 -3 1
det(A)=|2 -1 2
369

The diagrams showing area of a parallelogram and volume of a parallelepiped should
look familiar from our discussion of cross product and triple scalar product. In fact, the
cross product is sometimes represented as

VXW=| v v, v,

Wy Wy W,

107



108 Linear Transformations and Matrices

while the triple product is represented as

Uy Uy U
Ue(VXW)=| v, vy Vg

Wy Wy Wy

Since det (A7) = det (A), this representation is equivalent.

3.6.2 Computing the Determinant

There are a few ways of representing the determinant computation for a specific matrix A.
A standard recursive definition, choosing any row i, is

n—1
det(A) = > a;j(— 1) det (Aj)
j=0

Alternatively, we can expand by column j instead:

n—1
det(A) = Y aij(—1) ) det (A;)
i=0

In both cases, A; j is the submatrix formed by removing the ith row and jth column from A.
The base case is the determinant of a matrix with a single element, which is the element
itself.

The term det (A, j) 1s also referred to as the minor of entry a;j, and the term
(= D)D) det (AiJ) is called the cofactor of entry a; ;.

The first formula tells us that for a given row i, we multiply each row entry a;; by the
determinant of the submatrix formed by removing row i and column j and either add or
subtract it to the total depending on its position in the matrix. The second does the same but
moves along column j instead of row i.

Let’s compute an example determinant, expanding by row 0:

1 1 2
det 2 4 -3 =7
6 -5

The first element of row O is 1, and the submatrix with row 0 and column O removed is

o

The second element is also 1. However, we negate it since we are considering row 0 and
column 1: 0+ 1 = 1, which is odd. The submatrix is A with row 0 and column 1 removed:

2



3.6 Determinant

The third element of the row is 2, with the submatrix

)

We don’t negate it since we are considering row 0 and column 2: 0 4+ 2 = 2, which is even.
So, the determinant is

4 -3
-5

2 3
-5

2 4
36

det(A) = 1-

=1

In general, the determinant of a 2 x 2 matrix is

det Q a Z D = a-det([d])—b-det ([c]) = ad — be

Cc

And the determinant of a 3 x 3 matrix is

ISR ()
()

a(ei — fh) — b(di — fg) + c(dh — eg)

S

a
det d
8

S 0

or

There are some additional properties of the determinant that will be useful to us. If we
have two n x n matrices A and B, the following hold:

1. det(AB) = det(A)det(B).

1

2. det(A—hH = ERTINE

We can look at the value of the determinant to tell us some features of our matrix. First
of all, as we have mentioned, any matrix that transforms our basis vectors from right-
handed to left-handed will have a negative determinant. If the matrix is also orthogonal,
we call a matrix of this type a reflection. We will learn more about reflection matrices in
Chapter 4.

Then there are matrices that have a determinant of 1. The matrices we will encounter most
often with this property are orthogonal matrices, where the handedness of the resulting basis
stays the same (i.e., a right-handed basis is transformed to a right-handed basis). Figure 3.4

109



110 Linear Transformations and Matrices

Source Code
IvMath

Filename

IvGaussianElim

> i

Figure 3.4. Determinant of example 2 x 2 orthogonal matrix.

provides an example. Our transformed basis vectors are (—+/2/2, +/2/2) and (v/2/2,/2/2).
They remain orthonormal, so their area is just the product of the lengths of the two vectors,
or 1 x 1 or 1. This type of matrix is called a rotation. As with reflections, we’ll see more of
rotations in Chapter 4.

Finally, if the determinant is 0, then we know that the matrix has no inverse. The obvious
case is if the matrix has a row or column of all Os. Look again at our formula for the
determinant. Suppose row i is all Os. Multiplying all the submatrices against this row and
summing together will clearly give us O as a result. The same is true for a zero column.
The other and related possibility is that we have a linearly dependent row or column vector.
In both cases the rank of the matrix is less than n—the size of the matrix—and therefore
the matrix does not have an inverse. So, if the determinant of a matrix is 0, we know the
matrix is not invertible.

3.6.3 Determinants and Elementary Row Operations

For 2 x 2 and 3 x 3 matrices, computing the determinant in this manner is a simple pro-
cess. However, for larger and larger matrices, our recursive definition becomes unwieldy,
and for large enough n, will take an unreasonable amount of time to compute. In addition,
computing the determinant in this manner can lead to floating-point precision problems.
Fortunately, there is another way.

Suppose we have an upper triangular matrix U. The first part of the determinant sum
is Mo,oﬁo,o- The other terms, however, are 0, because the first column with the first row
removed is all 0s. So the determinant is just

det (U) = 190000

If we expand the recursion, we find that the determinant is the product of all the diagonal
elements, or

det (U) = uppu11 - .. Unn



3.6 Determinant

As we did when solving linear systems, we can use Gaussian elimination to change our
matrix into row echelon form, which is an upper triangular matrix. However, this assumes
that elementary row operations have no effect on the determinant, which is not the case.
Let’s look at a few examples.

2 —4
-1 1

Suppose we have the matrix
The determinant of this matrix is —2. If we multiply the first row by 1/2, we get

S

which has a determinant of —1. Multiplying a row by a scalar £ multiplies the determinant
by k as well.
Now suppose we add two times the first row to the second one. We get

1 -2
1 -3
which also has a determinant of —1. Adding a multiple of one row to another has no effect

on the determinant.
Finally, we can swap row 1 with row 2:

1 -3

1 -2
which has a determinant of 1. Swapping two rows or two columns changes the sign of
the determinant.

The effect of elementary row operations on the determinant can be summarized as
follows:

Operation Effect
Multiply row by k Multiplies determinant by k
Add multiple of one row to another No effect
Swap rows Changes sign of determinant

Therefore, our approach for calculating the determinant for a general matrix is this:
As we perform Gaussian elimination, we keep a running product p of any multiplies we do
to create leading 1s and negate p for every row swap. If we find a zero column when we
look for a pivot element, we know the determinant is O and return such.

111



112 Linear Transformations and Matrices

Let’s suppose our final product is p. This represents what we’ve multiplied the
determinant of our original matrix by to get the determinant of the final matrix A’, or

p-det (A) = det (A")
SO

det (A) = - det (A")
p

We know that the determinant of A’ is 1, since the diagonal of the row echelon matrix is
all Is. So our final determinant is just 1 /p. However, this is just the product of the multiplies
we do to create leading 1s, and —1 for every row swap, or

1 1 1

p= oo — (=1
P0,0 P1,1 Pn.n

where k is the number of row swaps. Then,

1 k
; = P0,0,P1,15- - apn,n(_l)

So all we need to do is multiply our running product by each pivot element and negate for
each row swap. At the end of our Gaussian elimination process, our running product will
be the determinant we seek.

soucecoce 3.6.4  Adjoint Matrix and Inverse

:
Tviath Recall that the cofactor of an entry a; is

Filename

IvMatrix33

Cij = (=)™ det (Ay))

For an n x n matrix, we can construct a corresponding matrix where we replace each
element with its corresponding cofactor, or

Coo Coi - Con-i
Cio Cii - Ciaa
Cict1 Coo1p oo Cuoipn

This is called the matrix of cofactors from A, and its transpose is the adjoint matrix A2di,
Gabriel Cramer, a Swiss mathematician, showed that the inverse of a matrix can be
computed from the adjoint by

Al !

— 7Aadj
det (A)



3.7 Eigenvalues and Eigenvectors

Many graphics engines use Cramer’s method to compute the inverse, and for 3 x 3
and 4 x 4 matrices it’s not a bad choice; for matrices of this size, Cramer’s method is
actually faster than Gaussian elimination. Because of this, we have chosen to implement
IvMatrix33::Inverse () using an efficient form of Cramer’s method.

However, whether you’re using Gaussian elimination or Cramer’s method, you’re prob-
ably doing more work than is necessary for the matrices we will encounter. Most will be in
one of the formats described in Section 3.5.2 or a multiple of these matrix types. Using the
process described in that section, you can compute the inverse by decomposing the matrix
into a set of these types, inverting the simple matrices, and multiplying in reverse order
to compute the matrix. This is often faster than either Gaussian elimination or Cramer’s
method and can be more tolerant of floating-point errors because you can find near-exact
solutions for the simple matrices.

3.7 Eigenvalues and Eigenvectors

There are two more properties of a matrix that we can find useful in certain circumstances:
the eigenvalue and eigenvector. If we have an n x n matrix A, then a nonzero vector X is
called an eigenvector if there is some scalar value A such that

Ax = AX (3.16)

In this case, the value A is the eigenvalue associated with that eigenvector.
We can solve for the eigenvalues of a matrix by rewriting Equation 3.16 as

Ax = Mx (3.17)

or
AW —A)x =0

It can be shown that there is a nonzero solution of this equation if and only if
det(AI-A)=0

This is called the characteristic equation of A. Expanding this equation gives us an n-degree
polynomial of A, and solving for the roots of this equation will give us the eigenvalues of
the matrix.

Now, for a given eigenvalue there will be an infinite number of associated eigenvectors,
all scalar multiples of each other. This is called the eigenspace for that eigenvalue. To
find the eigenspace for a particular eigenvector, we simply substitute that eigenvalue into
Equation 3.17 and solve for x.

In practice, solving the characteristic equation becomes more and more difficult the
larger the matrix. However, there is a particular class of matrices called real symmetric
matrices, so called because they only have real elements and are diagonally symmetric.
Such matrices have a few nice properties. First of all, their eigenvectors are orthogonal.
Secondly, it is possible to find a matrix R, such that RTARisa diagonal matrix D. It turns
out that the columns of R are the eigenvectors of A, and the diagonal elements of D are the
corresponding eigenvectors. This process is called diagonalization.

113



114 Linear Transformations and Matrices

There are a number of standard methods for finding R. One such is the Jacobi method,
which computes a series of matrices to iteratively diagonalize A. These matrices are then
concatenated to create R. The problem with this method is that it is not always guaranteed
to converge to a solution. An alternative is the Householder—QR /QL method, which simi-
larly computes a series of matrices, but this time the end result is a tridiagonal matrix. From
this we can perform a series of steps that factor the matrix into an orthogonal matrix Q and
upper triangular matrix R (or an orthogonal matrix Q and a lower triangular matrix L). This
will eventually diagonalize the matrix, again allowing us to compute the eigenvectors and
eigenvalues. This can take more steps than the Jacobi method, but is guaranteed to complete
in a fixed amount of time.

For 3 x 3 real symmetric matrices, Eberly [38] has a method that solves for the roots
of the characteristic equation. This is considerably more efficient than the Householder
method, and is relatively straightforward to compute.

3.8 Chapter Summary

In this chapter, we’ve discussed the general properties of linear transformations and how
they are represented and performed by matrices. Matrices also can be used to compute
solutions to linear systems of equations by using either Gaussian elimination or similar
methods. We covered some basic matrix properties, the concepts of matrix identity and
inverse (and various methods for calculating the latter), and the meaning and calculation of
the determinant. This lays the foundation for what we’ll be discussing in Chapter 4: using
matrix transformations to manipulate models in a 3D world.

For those who are interested in reading further, Anton and Rorres [6] is a standard refer-
ence for many first courses in linear algebra. Other texts with slightly different approaches
include Axler [8] and Friedberg et al. [51]. More information on Gaussian elimination and
its extensions, such as ‘lower upper’ or LU decomposition, can be found in Anton and
Rorres [6] as well as in the Numerical Recipes series [126]. Finally, Blinn has an excellent
article in his collection Notation, Notation, Notation [13] on the geometry underlying 2 x 2
matrix operations.



€ Affine
Transformations

4.1 Infroduction

Now that we’ve chosen a mathematically sound basis for representing geometry in our game
and discussed some aspects of matrix arithmetic, we need to combine them into an efficient
method for placing and moving virtual objects or models. There are a few reasons we seek
this efficiency. Suppose we wish to build a core level in our game space, say the office
of a computer company. We could build all of our geometry in place and hard-code all of
the locations. However, if we have a number of objects that are duplicated throughout the
space—computers, desks, and chairs, for example—it would be more memory-efficient to
create one master copy of the geometry for each type of object. Then, for each instance of
a particular object, we can specify just a position and orientation and let the rendering and
simulation engine handle the placement.

Another, more obvious reason is that objects in games generally move so that setting
them at a fixed location is not practical. We will need to have some means to specify, for a
model as a whole, its position and orientation in space.

There are a few characteristics we desire in our method. We want it to be fast and work
well with our existing data and math library. We want to be able to concatenate a series
of operations so we can perform them with a single operation, just as we did with linear
transformations. Since our objects consist of collections of points, we need our method to
work on points in an affine space, but we’ll still need to transform vectors as well. The
specific method we will use is called an affine transformation.

115



116 Affine Transformations

4.2 Affine Transformations

4.2.1 Matrix Definition

In Chapter 3 we discussed linear transformations, which map from one vector space to
another. We can apply such transformations to vectors using matrix operations. There is
a nearly equivalent set of transformations that map between affine spaces, which we can
apply to points and vectors in an affine space. These are known as affine transformations,
and they too can be applied using matrix operations, albeit in a slightly different form.

In the simplest terms, an affine transformation on a point can be represented by a matrix
multiplication followed by a vector add, or

Ax+y

where the matrix A is an m X n matrix, y is an m-vector, and x consists of the point
coordinates (xg, . . ., Xp—1)-
We can represent this process of transformation by using block matrices:

Ay x| | Ax+y

= 4.1
o7 1 1 1 -1

As we can see, in order to allow the multiplication to proceed, we’ll represent our point
with a trailing 1 component. However, for the purposes of computation, the vector 07,
the 1 in the lower right-hand corner of the matrix, and the trailing 1s in the points are
unnecessary. They take up memory and using the full matrix takes additional instructions to
multiply by constant values. Because of this, an affine transformation matrix is sometimes
represented in a form where these constant terms are implied, either as anm x (n + 1) matrix
or as the matrix multiplication plus vector add form above.
If we subtract two points in an affine space, we get a vector:

v=Py— P
| % x|
IS 1
_ X0 — X1
B 0

As we can see, a vector is represented in an affine space with a trailing 0. As previously
noted in Chapter 2, this provides justification for some math libraries to use the trailing 1
on points and trailing 0 on vectors. If we multiply a vector using this representation by our
(m—+1) x (n+ 1) matrix,

v

0

we see that the vector is affected by the upper left m x n matrix A, but not the vector y.
This has the same effect on the first n elements of v as multiplying an n-dimensional vector
by A, which is a linear transformation. So, this representation allows us to use affine
transformation matrices to apply linear transformations on vectors in an affine space.

Ay
o7 1

Av
0




4.2 Affine Transformations

Suppose we wish to concatenate two affine transformations S and 7, where the matrix
representing S is

Ay
L OT 1 -
and the matrix representing 7 is
"B ]
L OT 1 -

As with linear transformations, to find the matrix that represents the composition of S
and 7, we multiply the matrices together. This gives

-

Finding the inverse for an affine transformation is equally as straightforward. Again,
we can use a process similar to the one we used with linear transformation matrices.

Starting with
-1
B I 0
o7 1

we multiply by both sides to remove the y component from the leftmost matrix:

Ay
o7 1

AB Az+y

4.2
o : 4.2)

Ay
o7 1

Ay
of 1

—1
I -y Ay Ay |-y I O
o7 1 o7 1 o7 1 I o7 1
—1
A 0 Ay |-y
07 1 07 1 o 1

We then multiply by both sides to change the leftmost matrix to the identity:

A7l 0 A 0 Ay Al 0 I -y
= 4.3)
o 1 or 1 o7 1 o 1 or 1
Ayl ATt -Aly
0" 1 o7 1

thereby giving us the inverse on the right-hand side.

When we’re working in R3, A will be a 3 x 3 matrix and y will be a 3-vector; hence, the
full affine matrix will be a 4 x 4 matrix. Most graphics libraries expect transformations to
be in the 4 x 4 matrix form, so if we do use the more compact forms in our math library to
save memory, we will still have to expand them before rendering our objects. Because of
this, we will use the 4 x 4 form for our following discussions, with the understanding that
in our ultimate implementation we may choose one of the other forms for efficiency’s sake.

117



118 Affine Transformations

4.2.2 Formal Definition

While the definition above will work for most practical purposes, to truly understand what
our matrix form does requires some further explanation. We’ll begin by formally defining
an affine transformation. Recall that linear transformations preserve the linear operations
of vector addition and scalar multiplication. In other words, linear transformations map
from one vector space to another and preserve linear combinations. Thus, for a given linear
transformation S:

S(apvo+aivi+- -+ an—1Vp—1) = aoS(vo) +a1S(v) + - - -+ a,—1S(vu_1)

Correspondingly, an affine transformation 7 maps between two affine spaces A and B and
preserves affine combinations. For scalars ay, . . . ,a,—1 and points Py, ..., P,_1 in A:

T(apPo+---+an—1Pn—1) = agT(Po)+ - - -+ an—17 (Pu—1)

where ag+---+a,—1 = 1.
As with our test for linear transformations, to determine whether a given transforma-
tion 7 is an affine transformation, it is sufficient to test a single affine combination:

T (apPo +a1P1) = apT (Po) + a1 7T (P1)

where ag +a; = 1.

Affine transformations are particularly useful to us because they preserve certain prop-
erties of geometry. First, they maintain collinearity, so points on a line will remain collinear
and points on a plane will remain coplanar when transformed.

If we transform a line:

L(t) = (1 — )Py + P
T(L(1)) = T((1 — )P +1tPy)
= (1 =0T (Po)+1tT(P1)

the result is clearly still a line (assuming 7 (Pg) and 7 (P1) aren’t coincident). Similarly,
if we transform a plane:

P(t) = (1 — s — )Py + sP| +tP>
T(P(1)) = T((1 — s — )Py + sP| +tP2)
=1 =s=—0T(Po)+sT(P1)+tT(P2)

the result is clearly a plane (assuming 7 (Pg), 7 (P1), and 7 (P,) aren’t collinear).

The second property of affine transformations is that they preserve relative proportions.
The point that lies at 7 distance between Py and P; on the original line will map to the point
that lies at 7 distance between 7 (Pg) and 7 (P1) on the transformed line.

Note that while ratios of distances remain constant, angles and exact distances don’t
necessarily stay the same. The specific subset of affine transformations that preserve these
features is called rigid transformations; those that don’t are called deformations. It should
be no surprise that we find rigid transformations useful. When transforming our models,



4.2 Affine Transformations

in most cases we don’t want them distorted unrecognizably. A bottle should maintain its
size and shape—it should look like a bottle no matter where we place it in space. However,
the deformations have their use as well. On occasion we may want to make an object larger
or smaller or reflect it across a plane, as in a mirror.

To apply an affine transformation to a vector in an affine space, we can apply it to the
difference of two points that equal the vector, or

TWM=TP-0)=TP)-T(Q)

So, as we’ve seen above, an affine transformation that is applied to a vector performs a
linear transformation.

4.2.3 Formal Representation

Suppose we have an affine transformation that maps from affine space A to affine space B,
where the frame for A has basis vectors (vo, . .., V,—1) and origin Oy4, and the frame for B
has basis vectors (wo, . .., Wy—1) and origin Op. If we apply an affine transformation to a
point P = (xp, ..., x,—1) in A, this gives

T(P)=Tkxovo+ -+ Xx,—-1Vp—1 + 04)
=x07 (vo)+ -+ X117 (vp_1) + T (04)

As we did with linear transformations, we can express a given 7 (v) in terms of B’s frame:
T(vj) = ao,jWo +ai jwi+- -+ am—1,jWm—1
Similarly, we can express 7 (O4) in terms of B’s frame:
T(04) = yoWo +y1W1 + -+ Ym—1Wm—1+ Op
Again, as we did with linear transformations, we can rewrite this as a matrix product.

However, unlike linear transformations, we write a mapping from an n-dimensional affine
space to an m-dimensional affine space as an (m + 1) x (n + 1) matrix:

ap,0wo aop,1 Wo s ao,n—1Wwo Yowo X0
aowi ap, 1wy s apn—1Wi1 Y1iwi1 X1
Am—-1,0"m—1 Am—1,1Wm—-1 - AGm—1n—1Wm—1 Ym—1Wm—1 Xn—1
L 0 0 cee 0 Op 1L 1 |

The dimensions of our matrix now make sense. The n + 1 columns represent the n trans-
formed basis vectors plus the transformed origin. We need m + 1 rows since the frame of B
has m basis vectors plus the origin Op.

119



120 Affine Transformations

We can pull out the frame terms to get

ao,0 ao,1 T ao,n—1 Yo X0
aro at T ain—1 J1 X1
[Wo Wi oo Wy Op
adm—1,0 dm—-1,1 - Am—1n—1 Ym—1 Xn—1
0 0 cee 0 I | L1 ]

So, similar to linear transformations, if we know how the affine transformation affects
the frame for A, we can copy the transformed frame in terms of the frame for B into the
columns of a matrix and use matrix multiplication to apply the affine transformation to an
arbitrary point.

4.3 Standard Affine Transformations

Now that we’ve defined affine transformations in general, we can discuss some specific
affine transformations that will prove useful when manipulating objects in our game. We’ll
cover these in terms of transformations from R3 to R3, since they will be the most common
uses. However, we can apply similar principles to find transformations from R? to R? or
even R* to R* if we desire.

Since affine spaces A and B are the same in this case, to simplify things we’ll use the
same frame for each one: the standard Cartesian frame of (i, j, k, O).

4.3.1 Translation

The most basic affine transformation is franslation. For a single point, it’s the same as
adding a vector t to it, and when applied to an entire set of points it has the effect of moving
them rigidly through space (Figure 4.1). Since all the points are shifted equally in space,
the size and shape of the object will not change, so this is a rigid transformation.

We can determine the matrix for a translation by computing the transformation for each
of the frame elements. For the origin O, this is

T7(0)=t+0

For a given basis vector, we can find two points P and Q that define the vector and compute
the transformation of their difference. For example, for i:

TH=T(FP-0)
=TP)-T7(Q)
=t+P)-1t+0)
=P-Q

=1



4.3 Standard Affine Transformations

y

Figure 4.1. Translation.

The same holds true for j and K, so translation has no effect on the basis vectors in our
frame. We end up with a 4 x 4 matrix:

1 0 0 #
0 1 0 g
0 0 1 ¢
0 0 0 1
Or, in block form:
T, — I t
Tlom o

Translation only affects points. To see why, suppose we have a vector v, which equals
the displacement between two points P and Q, that is, v = P — Q. If we translate P — Q,
we get

trans(P— Q) = (P+t)—(Q +1t)
=P-0)+t—-1t)

=V

This fits with our geometric notion that points have position and hence can be translated in
space, while vectors do not and cannot.

121



122 Affine Transformations

We can use Equation 4.3 to compute the inverse translation transformation:

1 I -1t
T, = o | 4.4)
I —t
= 4.5)
0" 1
=T (4.6)

So, the inverse of a given translation negates the original translation vector to displace the
point back to its original position.

4.3.2 Rotation

The other common rigid transformation is rotation. If we consider the rotation of a vector,
we are rigidly changing its direction around an axis without changing its length. In R?, this is
the same as replacing a vector with the one that’s 0 degrees counterclockwise (Figure 4.2).

In R, we usually talk about an axis of rotation. In his rotation theorem, Euler showed
that when applying a rotation in three-dimensional (3D) space, there is a linear set of points
(i.e., a line) that does not change. This is called the axis of rotation, and the amount we
rotate around this axis is the angle of rotation. A helpful mnemonic is the right-hand rule:
if you point your right thumb in the direction of the axis vector, the curl of your fingers
represents the direction of positive rotation (Figure 4.3).

For a given point, we rotate it by moving it along a planar arc a constant distance
from another point, known as the center of rotation (Figure 4.4). This center of rotation is
commonly defined as the origin of the current frame (we’ll refer to this as a pure rotation)
but can be any arbitrary point. We can think of this as defining a vector v from the center
of rotation to the point to be rotated, rotating v, and then adding the result to the center of
rotation to compute the new position of the point. For now we’ll only cover pure rotations;
applying general affine transformations about an arbitrary center will be discussed later.

To keep things simple, we’ll begin with rotations around one of the three frame axes,
with a center of rotation equal to the origin. The following system of equations rotates a

>

> X

Figure 4.2. Rotation of vector in R?.



4.3 Standard Affine Transformations 123

Figure 4.3. Axis and plane of rotation.

Figure 4.4. Rotation of point in R

vector or point counterclockwise (assuming the axis is pointing at us) around Kk, or the
z-axis (Figure 4.5¢):

x' =xcosf —ysiné
y = xsinf +ycosé 4.7

’
Z =z

Figure 4.6 shows why this works. Since we’re rotating around the z-axis, no z values will
change, so we will consider only how the rotation affects the xy values of the points. The
starting position of the point is (x, y), and we want to rotate that 6 degrees counterclockwise.
Handling this in Cartesian coordinates can be problematic, but this is one case where polar
coordinates are useful.

Recall that a point P in polar coordinates has representation (r, ¢), where r is the distance
from the origin and ¢' is the counterclockwise angle from the x-axis. We can think of this

! We're using ¢ for polar coordinates in this case to distinguish it from the rotation angle 6.



124  Affine Transformations

z
o z
ny A
RN
N
A
v N
A
1 1
1 1
I )
1 -
-
X
y
(@
z
A
e
n
N
PN
\\
N
1 b
1
1 u
I 1
I |
1 -
S x
Jy

(©

Figure 4.5. (a) x-axis rotation, (b) y-axis rotation, and (c) z-axis rotation.

&5

(% 9)

Figure 4.6. Rotation in xy plane.



4.3 Standard Affine Transformations

as rotating an r length radius lying along the x-axis by ¢ degrees. If we rotate this a further
6 degrees, the end of the radius will be at (r, ¢ + 6) (in polar coordinates). Converting to
Cartesian coordinates, the final point will lie at

x' =rcos(p+6)
y =rsin(¢p+6)

Using trigonometric identities, this becomes

x' = rcos¢cosd —rsingsind

y = rcos¢sinf + rsin ¢ cos 6
But rcos ¢ = x, and rsin ¢ =y, so we can substitute and get

x' =xcosf —ysiné

y = xsinf +ycosf
We can derive similar equations for rotation around the x-axis (Figure 4.5a):

X =x
y =ycosf —zsiné
7 =ysinh +zcosH

and rotation around the y-axis (Figure 4.5b):

x =zsinf +xcosb
/

y =Yy

7 =zcos —xsiné

To create the corresponding transformation, we need to determine how the frame ele-
ments are transformed. The frame’s origin will not change since it’s our center of rotation,
so 'y = 0. Therefore, our primary concern will be the contents of the 3 x 3 matrix A.

For this matrix, we need to compute where i, j, and k will go. For example, for rotations
around the z-axis we can transform i to get

x = (1) cosh —(0)sinh = cos b
y = (1)sin6 + (0) cos § = sin 6
/

7 =0

Transforming j and k similarly and copying the results into the columns of a 3 x 3 matrix
gives

cosf® —sinf O
R;=| sin@ cos® O
0 0 1

125



126 Affine Transformations

Similar matrices can be created for rotation around the x-axis:

1 0 0
Ri=| 0 cosf® —sinf

0 sinf® cosd

and around the y-axis:

cosd@ O sinf
0 1 0

—sin® 0 cos®

Ry

One thing to note about these matrices is that their determinants are equal to 1, and
they are all orthogonal. For example, look at the component 3-vectors of the z-axis rotation
matrix. We have (cos 8, sin8,0), (—siné,cos 8, 0), and (0, 0, 1). The first two lie on the xy
plane and so are perpendicular to the third, and they are perpendicular to each other. All
three are unit length and so form an orthonormal basis.

The product of two orthogonal matrices is also an orthogonal matrix; thus, the product
of a series of pure rotation matrices is also a rotation matrix. For example, by concatenating
matrices that rotate around the z-axis, then the y-axis, and then the x-axis, we can create
one form of a generalized rotation matrix:

CyCz —CySz Sy
RRR; = | SxSyCz+CxSz —SxSySz+ CxCz —SxCy (4.8)
—CxSyCz 4 5xSz  CxSySz+5xCz  CxCy

where

Cx =cosf, Sx=sin0,
Cy =costly Sy =sin0,
Cz =cosf, Sz=sinb,

Recall that the inverse of an orthogonal matrix is its transpose. Because pure rotation
matrices are orthogonal, the inverse of any rotation matrix is also its transpose. Therefore,
the inverse of the z-axis rotation, centered on the origin, is

cosf® sinfd O
R;'=| —sinf cosf® 0
0 0 1



4.3 Standard Affine Transformations 127

This follows if we think of the inverse transformation as “undoing” the original
transformation. If you substitute —6 for 6 in the original matrix and replace cos(—6)
with cos 6 and sin (—6) with — sin 6, then we have

cos(—6) —sin(—0) O cosf® sind O
sin(—f@) cos(—8) O | = | —sinf cosf O
0 0 1 0 0 1

which, as we can see, results in the immediately preceding inverse matrix.

Now that we have looked at rotations around the coordinate axes, we will consider
rotations around an arbitrary axis. The formula for a rotation of a vector v by an angle 6
around a general axis F is derived as follows. We begin by breaking v into two parts: the
part parallel with ¥ and the part perpendicular to it, which lies on the plane of rotation
(Figure 4.7a). Recall from Chapter 1 that the parallel part v is the projection of v onto I, or

V| = (VeD)I
The perpendicular part is what remains of v after we subtract the parallel part, or
V), =Vv—(Veb)F

To properly compute the effect of rotation, we need to create a two-dimensional (2D) basis
on the plane of rotation (Figure 4.7b). We’ll use v as our first basis vector, and we’ll need
a vector w perpendicular to it for our second basis vector. We can take the cross product
with F for this:

W=FXV| =FXYV

In the standard basis for R2, if we rotate the vector i = (1,0) by 6, we get the vector
(cos 8, sin 6). Equivalently,

Ri = (cos )i+ (sinh)j

If we use v and w as the 2D basis for the rotation plane, we can find the rotation of v
by 6 in a similar manner:

Rv, = (cosO)v) + (sinf)w

The parallel part of v doesn’t change with the rotation, so the final result of rotating v
around F by 6 is

Rv =Rv|+Rv,
= Rv| + (cosO)v, + (sin&)w
= (Ve I)F +C0sO[V— (VeI)F]+sinO(F x v)
= cosOV+[1—cosO](v e+ sinO(F x v) 4.9)

This is one form of what is known as the Rodrigues formula.



128 Affine Transformations

Figure 4.7. General rotation: (a) showing axis of rotation and rotation plane and (b) show-
ing vectors on rotation plane.



4.3 Standard Affine Transformations

The projection (v« F)I can be replaced by the tensor product (f ® £)v. Similarly, the
cross product  x v can be replaced by a multiplication by a skew symmetric matrix ¥v.
This gives

Rv = cosOv + (1 — cos O)(F Q T)v + sin OFv
= [cos A1 + (1 — cos O)(F ® F) + sin OF v

Expanding the terms, we end up with a matrix:
> +c Ixy — sz Ixz+sy

Rig = | y+sz n?4c tyz—sx
Xz —sy tyz+sx 122 +c

where
F=(xy2)
c =cosf
s = sinf
t=1—cosb

As we can see, there is a wide variety of choices for the 3 x 3 matrix A, depending on
what sort of rotation we wish to perform. The full affine matrix for rotation around the
origin is

R 0
o7 1

where R is one of the rotation matrices just given. For example, the affine matrix for rotation
around the x-axis is

1 0 0 0
R, 0 _ 0 cosf —sinf O
o’ 1]_ 0 sinf cosf O
0 0 0 1

This is also an orthogonal matrix and its inverse is the transpose, as before.

Finally, when discussing rotations one has to be careful to distinguish rotation from
orientation, which is to rotation as position is to translation. If we consider the representation
of a point in an affine space,

P=v+0

then we can think of the origin as a reference position and the vector v as a translation that
relates our position to the reference. We can represent our position as just the components

129



130 Affine Transformations

of the translation. Similarly, we can define a reference orientation €29, and any orientation
Q is related to it by a rotation, or

Q = Ry

Just as we might use the components of the vector v to represent our position, we can use the
rotation Ry to represent our orientation. To change our orientation, we apply an additional
rotation, just as we might add a translation vector to change our position:

Q' =RiQ
In this case, our final orientation, using the rotation component, is
RiRg

Remember that the order of concatenation matters, because matrix multiplication—
particularly for rotation matrices—is not a commutative operation.

4.3.3 Scaling

The remaining affine transformations that we will cover are deformations, since they don’t
preserve exact lengths or angles. The first is scaling, which can be thought of as corre-
sponding to our other basic vector operation, scalar multiplication; however, it is not quite
the same. Scalar multiplication of a vector has only one multiplicative factor and changes
a vector’s length equally in all directions. We can also multiply a vector by a negative
scalar. In comparison, scaling as it is commonly used in computer graphics applies a pos-
sibly different but positive factor to each basis vector in our frame.? If all the factors are
equal, then it is called uniform scaling and is—for vectors in the affine space—equivalent
to scalar multiplication by a single positive scalar. Otherwise, it is called nonuniform
scaling. Full nonuniform scaling can be applied differently in each axis direction, so we
can scale by 2 in z to make an object twice as tall, but 1/2 in x and y to make it half
as wide.

A point doesn’t have a length per se, so instead we change its relative distance from
another point Cs, known as the center of scaling. We can consider this as scaling the vector
from the center of scaling to our point P. For a set of points, this will end up scaling their
distance relative to each other, but still maintaining the same relative shape (Figure 4.8).

For now we’ll consider only scaling around the origin, so C; =0 and y=0. For the
upper 3 x 3 matrix A, we again need to determine how the frame basis vectors change,
which is defined as

T (@) = ai
T(j) =bj
T(K) =ck

2 We’ll consider negative factors when we discuss reflections in the following section.



4.3 Standard Affine Transformations

y

Figure 4.8. Nonuniform scaling.

where a, b, ¢ > 0 and are the scale factors in the x, y, z directions, respectively. Writing
these transformed basis vectors as the columns of A, we get an affine matrix of

(=)

Sabc =

S O O 8
oS o ¢ O
S o

- o O O

This is a diagonal matrix, with the positive scale factors lying along the diagonal, so the
inverse is

4.3.4 Reflection

The reflection transformation symmetrically maps an object across a plane or through a
point. One possible reflection is (Figure 4.9a)

I
I
=

n_ el ®
Il
N

~

131



132 Affine Transformations

Figure 4.9. (a) yz reflection and (b) xz reflection.

This reflects across the yz plane and gives an effect like a standard mirror (mirrors don’t
swap left to right, they swap front to back). If we want to reflect across the xz plane instead,
we would use (Figure 4.9b)

!
X
!

/

X
y ==y
7=z

As one might expect, we can create a planar reflection that reflects across a general plane,
defined by a normal fi and a point on the plane Py. For now we’ll consider only planes that
pass through the origin. If we have a vector v in our affine space, we can break it into two
parts relative to the plane normal: the orthogonal part v, which will remain unchanged,
and parallel part v|, which will be reflected to the other side of the plane to become —v;.
The transformed vector will be the sum of v, and the reflected —v (Figure 4.10).

To compute v|;, we merely have to take the projection of v against the plane normal fi, or

V| = (V . ﬁ)ﬁ (4.10)
Subtracting this from v, we can compute v :
VI =V—Yy| 4.11)

We know that the transformed vector will be v — v. Substituting Equations 4.10 and
4.11 into this gives us
T(V) =V] — V||
=V 2V”

= v—2(v.n)h



4.3 Standard Affine Transformations

Figure 4.10. General reflection.

From Chapter 2, we know that we can perform the projection of v on fi by multiplying by
the tensor product matrix i ® A, so this becomes

T(V)=v-—2(h@nN)V
=[I-2(h®Hh)]v

Thus, the linear transformation part A of our affine transformation is [I —2(fi Q n)].
Writing this as a block matrix, we get

I-2®@n) 0
Fp = .
0 1

While in the real world we usually see planar reflections, in our virtual world we can
also compute a reflection through a point. The following performs a reflection through the
origin (Figure 4.11):

X' =—x
/ —y
/
7 ==z
The corresponding block matrix is
. -1 0
0 =
0" 1

Reflections are a symmetric operation; that is, the reflection of a reflection returns the
original point or vector. Because of this, the inverse of a reflection matrix is the matrix
itself.

133



134  Affine Transformations

y -

Figure 4.11. Point reflection.

As an aside, we would (incorrectly) expect that if we can reflect through a plane and a
point, we can reflect through a line. The system

¥ =—x
Y =y
/

7=z

appears to reflect through the z-axis, giving a “funhouse mirror” effect, where right and left
are swapped (if y is left, it becomes —y in the reflection, and so ends up on the right side).
However, if we examine the transformation closely, we see that while it does perform the
desired effect, this is actually a rotation of 180 degrees around the z-axis. While both pure
rotations and pure reflections through the origin are orthogonal matrices, we can distinguish

between them by noting that reflection matrices have a determinant of —1, while rotation
matrices have a determinant of 1.

4.3.5 Shear

The final affine transformation that we will cover is shear (Figure 4.12). Because it affects
the angles of objects it is not used all that often, but we will use it particularly when
discussing oblique projections in Chapter 7. An axis-aligned shear provides a shift in one
or two axes proportional to the component in a third axis. One often sees shear in buildings
that have been affected by an earthquake—the bottom of the building remains fixed, but
the sides have shifted so that they’re now diagonal to the ground. Transforming a square to
a rhombus or a cube to a rhomboid solid is a shear transformation.

There are a number of ways of specifying shear [1, 133]. In our case, we will define a
shear plane, with normal n, that does not change due to the transformation. We define an
orthogonal shear vector s, which indicates how planes parallel to the shear plane will be
transformed. Points on the plane 1 unit of distance from the shear plane, in the direction



4.3 Standard Affine Transformations

y

Figure 4.12. z-shear on shape.

of the plane normal, will be displaced by s. Points on the plane 2 unit of distance from the
shear plane will be displaced by 2s, and so on. In general, if we take a point P and define
it as Po + v, where Py is a point on the shear plane, then P will be displaced by (i « V)s.

The simplest case is when we apply shear perpendicular to one of the main coordinate
axes. For example, if we take the yz plane as our shear plane, our normal is i and the shear
plane passes through the origin O. We know from this that O will not change with the
transformation, so our translation vector y is 0. As before, to find A we need to figure out
how the transformation affects our basis vectors. If we define j as P — O, then

T(H=TwP)-T(0)
But P; and O lie on the shear plane, so
(=P -0
=]
The same is true for the basis vector k. For i, we can define it as Pg — O. We know that Py
is distance 1 from the shear plane, so it will become Py + s, so

T(i) =T (Po)—7(0)
=Py+s—-0
=i+s
The vector s in this case is orthogonal to i; therefore, it is of the form (0, a, b), so our
transformed basis vector will be (1, a, b). Our final matrix A is

1
H, =

- o O

0
a 1
b 0

135



136 Affine Transformations

We can go through a similar process to get shear by the y-axis:

1 ¢ O
H, = 1 0
d 1
and shear by the z-axis:
1 0 e
H=|01/Ff
0 0 1

For shearing by a general plane through the origin, we already have the formula for
the displacement: (fi « v)s. We can rewrite this as a tensor product to get (s ® fi)v. Because
this is merely the displacement, we need to include the original point, and thus our origin-
centered general shear matrix is simply I + s ® fi. Our final shear matrix is

Hﬁ,s =

I+s®n 0
o7 1

The inverse shear transformation is shear in the opposite direction, so the corresponding
matrix is

I-s@n 0
—1 _ _ .
Hﬁ,s - [ OT 1 ‘| - Hn,fs

4.3.6 Applying an Affine Transformation around an Arbitrary Point

Up to this point, we have been assuming that our affine transformations are applied around
the origin of the frame. For example, when discussing rotation we treated the origin as our
center of rotation. Similarly, our shear planes were assumed to pass through the origin. This
doesn’t necessarily have to be the case.

Since we’re no longer transforming around the origin, we need to consider how it is
affected by our transformation. Let’s look at a particular example—the rotation of a point
around an arbitrary center of rotation C. If we look at Figure 4.13, we see the situation. We
have a point C and our origin O. We want to rotate the difference vector v= 0 — C between
the two points by matrix R and determine where the resulting point 7(0), or C + 7 (v),
will be. From that we can compute the difference vector y = 7 (0) — O. From Figure 4.13,
we can see that y = 7 (v) — v, so we can reduce this as follows:

y=T(v)-v
=Rv-—v
=R-Dv



4.3 Standard Affine Transformations

>

Figure 4.13. Rotation of origin around arbitrary center.

It’s usually more convenient to write this in terms of the vector dual to C, which is
X = C — O = —v, so this becomes
y=—-R-Dx
=TI-R)x

We can achieve the same result by translating our center C to the frame origin by —Xx,
performing our origin-centered rotation, and then translating back by x:

M. — I x R 0 I —x
R A O B I L O N L
_-R X I —x
B A O N A
[ R a-Rrx
Sl

Notice that the upper left-hand block R is not affected by this process.

The same construction can be used for all affine transformations that use a center of
transformation: rotation, scale, reflection, and shear. The exception is translation, since
such an operation has no effect: P —x+t+x = P +t. But for the others, using a point
C = (x, 1) as our arbitrary center of transformation gives

A (I-AXx

Me=1ogr

where A is the upper 3 x 3 matrix of an origin-centered transformation. The corresponding
inverse is

A7l 0-A"Dx

M ! =
o7 1

c

137



138 Affine Transformations

4.3.7 Transforming Plane Normals

As we saw in the previous section, if we want to transform a line or plane represented in
parametric form, we transform the points in the affine combination. For example,

TP®) =1 —=s=0T(Po)+sT(P1)+17T(P)

But suppose we have a plane represented using the generalized plane equation. One
way of considering this is as a plane normal (a, b, c) and a point on the plane Py. We
could transform these and try to use the resulting vector and point to build the new plane.
However, if we apply an affine transform to the plane normal (a, b, c¢) directly, we may
end up performing a deformation. Since angles aren’t preserved under deformations, the
resulting normal may no longer be orthogonal to the points in the plane.

The correct approach is as follows. We can represent the generalized plane equation as
the product of a row matrix and column matrix, or

X
Yy
ax+by+cz+d=|a b c d}
z
1
=n’P

Now P is clearly a point, and n is the vector of coefficients for the plane. For points that
lie on the plane,

n'P=0

If we transform all the points on the plane by some matrix M, then to maintain the
relationship between n’ and P, we’ll have to transform n by some unknown matrix Q, or

(Qn)’(MP) =0

This can be rewritten as

n’Q'MP =0

One possible solution for this is if
I1=Q0™™M

Solving for Q gives

Q= (m)
So, the transformed plane coefficients become

T
n = (M”) n

The same approach will work if we’re transforming the plane normal and point as described
earlier. We transform the point Pg by M and the normal by (M~1)7. Note that we’ve picked



4.4 Using Affine Transformations

one particular solution out of many, so our transformed normal will be orthogonal to the
transformed plane but likely no longer normalized. If the result is required to be unit length,
we must be sure to normalize it afterwards.

In many cases the inverse matrix M~! may not exist. So, if we’re just transforming a
normal vector (a, b, ¢), we can use a different method. Instead of M_l, we use the adjoint
matrix from Cramer’s rule. Normally we couldn’t proceed at this point: if the inverse doesn’t
exist, we end up dividing by a zero determinant. However, even when the inverse exists, the
division by the determinant is a scale factor. So, we can ignore it in all cases and just use
the adjoint matrix directly, because we’re going to normalize the resulting vector anyway.

4.4 Using Affine Transformations
4.4.1 Manipulation of Game Objects

The primary use of affine transformations is for the manipulation of objects in our game
world. Suppose, from our earlier hypothetical example, we have an office environment
that is acting as our game space. The artists could build the basic level—the walls, the
floor, the ceilings, and so forth—as a single set of triangles with coordinates defined to
place them exactly where we might want them in the world. However, suppose we have a
single desk model that we want to duplicate and place in various locations in the level. The
artist could build a new version of the desk for each location in the core-level geometry,
but that would involve unnecessarily duplicating all the memory needed for the model.
Instead, we could have one version, or master, of the desk model and then set a series of
transformations that indicate where in the level each copy, or instance, of the desk should
be placed [142].

Before we can begin to discuss how we specify these transformations and what they
might mean, we need to define the two different coordinate frames we are working in: the
local coordinate frame and the world coordinate frame.

4.4.1.1 Local and World Coordinate Frames

When artists create an object or we create an object directly in a program, the coordinates
of the points that make up that object are defined in that particular object’s local frame.
This is also commonly known as local space. In addition, often the frame is named after
the object itself, so you might also see terms like model space or camera space.

The orientation of the basis vectors in the local frame is usually set so that the engineers
know which part of the object is the front, which is the top, and which is the side. This
allows us to orient the object correctly relative to the rest of the world and to translate
it in the correct direction if we want to move it forward. The convention that we will be
using in this book is one where the x-axis points along the forward direction of the object,
the y-axis points toward the left of the object, and the z-axis points out the top of the
object (Figure 4.14). Another common convention is to use the y-axis for up, the z-axis
for forward, and the x-axis for out to either the left or the right, depending on whether we
want to work in a right- or left-handed frame.

Typically, the origin of the frame is placed in a position convenient for the game, either
at the center or at the bottom of the object. The first is useful when we want to rotate objects
around their centers, the second for placement on the ground.

139



140 Affine Transformations

Figure 4.14. Local object frame.

When constructing our world, we define a specific coordinate frame, or world frame,
also known as world space. The world frame acts as a common reference among all the
objects, much as the origin acts as a common reference among points. Ultimately, in order
to render, simulate, or otherwise interact with objects, we will need to transform their local
coordinates into the world frame.

When an artist builds the level geometry, the coordinates are usually set in the world
frame. Orientation of the level relative to our world frame is set by convention. Knowing
which direction is “up” is important in a 3D game; in our case, we’ll be using the z-axis,
but the y-axis is also commonly used. Aligning the level to the other two axes (in our case,
x and y) is arbitrary, but if our level is either gridlike or box shaped, it is usually convenient
to orient the grid lines or box sides to these remaining axes.

Positioning the level relative to the origin of the frame is also arbitrary but is usually set so
that the origin lies in the center of a box defining our maximum play area. This helps avoid
precision problems, since floating-point precision is centered around 0 (see Chapter 1). For
example, we might have a 300 m by 300 m play area, so that in the xy directions the origin
will lie directly in the center. While we can set things so that the origin is centered in z as
well, we may want to adjust that depending on our application. If our game mainly takes
place on a flat play area, such as in an arena fighting game, we might set the floor so that
it lies at the origin; this will make it simple to place objects and characters exactly at floor
level. In a submarine game, we might place sea level at the origin; negative z lies under the
waterline and positive z above.

4.4.1.2 Placing Objects

If we were to use the objects’ local coordinates directly in the world frame, they would
end up interpenetrating and centered around the world origin. To avoid that situation, we
apply affine transformations to each object to place them at their own specific position and
orientation in the world. For each object, this is known as its particular local-to-world
transformation. We often display the relative position and orientation of a particular
object in the world by drawing its frame relative to the world frame (Figure 4.15). The
local-to-world transformation, or world transformation for short, describes this relative
relationship: the column vectors of the local-to-world matrix A describe where the local



4.4 Using Affine Transformations

Figure 4.15. Local-to-world transformation.

frame’s basis vectors will lie relative to the world space basis, and the vector y describes
where the local frame’s origin lies relative to the world origin.

The most commonly used affine transformations for object placement are translation,
rotation, and scaling. Translation and rotation are convenient for two reasons. First, they
correspond naturally to two of the characteristics we want to control in our objects: position
and orientation. Second, they are rigid transformations, meaning they don’t affect the size
or shape of our object, which is generally the desired effect. Scaling is a deformation but is
commonly useful to change the size of objects. For example, if two artists build two objects
but fail to agree on a relative measure of size, you might end up with a table bigger than
a room, if placed directly in the level. Rather than have the artist redo the model, we can
use scaling to make it appear smaller. Scaling is also useful in fantastical games to either
shrink a character to fit in a small space or grow a character to be more imposing. However,
for most games you can actually get away with not using scaling at all. Objects are often
modeled at world space scale; for example, in our office environment example, desks may
be placed at different orientations and locations, but they are all the same size. A meter in
object space equals a meter in world space.

To create the final world transformation, we’ll be concatenating a sequence of these
translation, rotation, and scaling transformations together. However, remember that con-
catenation of transformations is not commutative. So, the order in which we apply our
transformations affects the final result, sometimes in surprising ways. One basic example is
transforming the point (0, 0, 0). A pure rotation around the origin has no effect on (0, 0, 0),
so rotating by 90 degrees around z and then translating by (y, y, ;) will just act as a transla-
tion, and we end up with (#,, #y, ;). Translating the point first will transform it to (¢, ty,,),
so in this case a subsequent rotation of 90 degrees around z will have an effect, with the
final result of (—¢y, z,, ;). As another example, look at Figure 4.16a, which shows a rotation
and translation. Figure 4.16b shows the equivalent translation and rotation.

Nonuniform scaling and rotation are also noncommutative. If we first scale (1, 0, 0) by
(8x, Sy, 57), we get the point (sy, 0, 0). Rotating this by 90 degrees around z, we end up with
(0, sx, 0). Reversing the transformation order, if we rotate (1, 0, 0) by 90 degrees around z,
we get the point (0, 1, 0). Scaling this by (sy, sy, 57), we get the point (0, sy, 0). Note that in

Source Code

Interaction

141



142 Affine Transformations

(a) (b)

Figure 4.16. (a) Rotation, then translation and (b) translation, then rotation.

(@) (b)

Figure 4.17. (a) Scale, then rotation and (b) rotation, then scale.

the second case we rotated our object so that our original x-axis lies along the y-axis and
then applied our scale, giving us the unexpected result. Figure 4.17a and b shows another
example of this applied to an object.

The final combination is scaling and translation. Again, this is not commutative. Remem-
ber that pure scaling is applied from the origin of the frame. If we translate an object from
the origin and then scale, there will be additional scaling done to the translation of the object.
So, for example, if we scale (1, 1, 1) by (sx, sy, s;) and then translate by (1, £, £;), we end
up with (fx + sy, ty + Sy, t; + 5;). If instead we translate first, we get (¢, + 1,4, + 1,1, + 1),
and then scaling gives us (Sxty + Sx, Syty + sy, s;1; + 57). Another example can be seen in
Figure 4.18a and b.

Generally, the desired order we wish to use for these transforms is to scale first, then
rotate, then translate. Scaling first gives us the scaling along the axes we expect. We can



4.4 Using Affine Transformations

Figure 4.18. (a) Scale, then translation and (b) translation, then scale.

then rotate around the origin of the frame, and then translate it into place. This gives us the
following multiplication order:

M = TRS

4.4.2 Matrix Decomposition

It is sometimes useful to break an affine transformation matrix into its component basic
affine transformations. This is called matrix decomposition. We performed one such
decomposition when we pulled the translation information out of the matrix, effectively
representing our transformation as the product of two matrices:

Ay I y A 0
o7 1 of 1] o7 1

Suppose we continue the process and break down A into the product of more basic affine
transformations. For example, if we’re using only scaling, rotation, and translation, it would
be ideal if we could break A into the product of a scaling and rotation matrix. If we know
for a fact that A is the product of only a scaling and rotation matrix, in the order RS, we
can multiply it out to get

rii rp riz 0 s 0 0 O syl Syriz szriz 0
my rp rn3 0 sy, 00 | Sxrat syrn 823 0
r3i r3p r33 0 0 0 Sz 0 N Sxr31 SyV32 §z133 0

0 0 0 1 0 0 0 1 0 0 0 1

In this case, the lengths of the first three column vectors will give our three scale factors,
Sx, Sy, and 5. To get the rotation matrix, all we need to do is normalize those three vectors.

143



144  Affine Transformations

Unfortunately, it isn’t always that simple. As we’ll see in Section 4.5, often we’ll be
concatenating a series of TRS transformations to get something like

M =T,R,S; - - Ti1R1S1ToRpSo

In this case, even ignoring the translations, it is impossible to decompose M into the form
RS. As a quick example, suppose that all these transformations with the exception of S;
and Ry are the identity transformation. This simplifies to

M = SRy

Now suppose S scales by 2 along y and by 1 along x and z, and Ry rotates by 60 degrees
around z. Figure 4.19 shows how this affects a square on the xy plane. The sides of the
transformed square are no longer perpendicular. Somehow, we have ended up apply-
ing a shear within our transformation, and clearly we cannot represent this by a simple
concatenation RS.

One solution is to decompose the matrix using a technique known as singular value
decomposition, or simply SVD. Assuming no translation, the matrix M can be represented
by three matrices L, D, and R, where L and R are orthogonal matrices, D is a diagonal
matrix with nonnegative entries, and

M =LDR
An alternative formulation to this is polar decomposition, which breaks the nontransla-
tional part of the matrix into two pieces: an orthogonal matrix Q and a stretch matrix S,
where

S = UTKU

Matrix U in this case is another orthogonal matrix, and K is a diagonal matrix. The stretch
matrix combines the scale-plus-shear effect we saw in our example: it rotates the frame

-

Figure 4.19. Effect of rotation, then scale.



4.4 Using Affine Transformations

to an orientation, scales along the axes, and then rotates back. Using this, a general affine
matrix can be broken into four transformations:

M = TRNS

where T is a translation matrix, Q has been separated into a rotation matrix R and a reflection
matrix N = &1, and S is the preceding stretch matrix.

Performing either SVD or polar decomposition is out of the purview of this text. As we’ll
see, there are ways to avoid matrix decomposition at the cost of some conversion before
we send our models down the graphics pipeline. However, at times we may get a matrix of
unknown structure from a library module that we don’t control. For example, we could be
using a commercial physics engine or writing a plug-in for a 3D modeling package such as
Max or Maya. Most of the time a function is provided that will decompose such matrices
for us, but this isn’t always the case. For those times and for those who are interested in
pursuing this topic, more information on decompositions can be found in Goldman [56],
Golub and Van Loan [57], and Shoemake and Duff [138].

4.4.3 Avoiding Matrix Decomposition

In the preceding section, we made no assumptions about the values for our scaling factors.
Now let’s assume that each scaling matrix performs a uniform scale. Looking at just the
rotation and scaling transformations, we have

M =R,S,---R;S|RySy

Since each scaling transformation is uniformly scaling, we can simplify this to
M =R,0,---Ri01Rgoy

Using matrix algebra, we can shuffle terms to get

M =R, ---RiRgo,---0100
=Ro
=RS

where R is a rotation matrix and S is a uniform scaling matrix. So, if we use uniform scaling,
we can in fact decompose our matrix into a rotation and scaling matrix, as we just did.

However, even in this case, the decomposition takes three square roots and nine scaling
operations to perform. This leads to an alternate approach to handling transformations.
Instead of storing transformations for our objects as a single 4 x 4 or even 3 x 4 matrix,
we will break out the individual parts: a scale factor s, a 3 x 3 rotation matrix R, and a
translation vector t. To apply this transformation to a point P, we use

Rx +t
T(P) = SRX +

Note the similarity to Equation 4.1. We’ve replaced A with sR and y with t. In practice we
ignore the trailing 1.

Source Code
[ Dermo

Centered

Source Code
[ Dermo

Separate

145



146 Affine Transformations

Concatenating transformations in matrix format is as simple as performing a
multiplication. Concatenating in our alternate format is a little less straightforward but
is not difficult and actually takes fewer operations on a standard floating-point processor:

s’ = 8150
R'=R|Ry 4.12)
t'=t; +s51Ritg

Computing the new scale and rotation makes a certain amount of sense, but it may not
be clear why we don’t add the two translations together to get the new translation. If we
multiply the two transforms in matrix format, we have the following order:

M =T RS ToRpSo

But since Ty is applied after Rg and Sp, they have no effect on it. So, if we want to find
how the translation changes, we drop them:

M’ =TR;S$ T

Multiplying this out in block format gives us

wo| L ul[Roo][sr0][1 @
J A U 1 S U O L O I LA
_ [ R t s1I sity
B TR L O B I L
_ [ siRy siRito+t
o7 1

We can see that the right-hand column vector y is equal to Equation 4.12. To get the
final translation, we need to apply the second scale and rotation before adding the second
translation. Another way of thinking of this is that we need to scale and rotate the first
translation vector into the frame of the second translation vector before they can be combined
together.

There are a few advantages to this alternate format. First of all, it’s clear what each
part does—the scale and rotation aren’t combined into a single 3 x 3 matrix. Because of
this, it’s also easier to change individual elements. We can update rotation, scale through
a simple multiplication, or even just set them directly. Surprisingly, on a serial processor
concatenation is also cheaper. It takes 48 multiplications and 32 adds to do a traditional
matrix multiplication, but only 40 multiplications and 27 adds to perform our alternate
concatenation. This advantage disappears when using vector processor operations, however.
In that case, it’s much easier to parallelize the matrix multiplication (16 operations on some
systems), and the cost of scaling and rotating the translation vector becomes more of an
issue.

Even with serial processors our alternate format does have one main disadvantage, which
is that we need to create a 4 x 4 matrix to be sent to the graphics application programming



4.5 Object Hierarchies

interface (API). Based on our previous explorations of the transformation matrix, we can
create a matrix from our alternate format quite quickly, scale the three columns of the
rotation matrix, and then copy it and the translation vector into our 4 x 4:

S1r0,0  Sro,1 Sro2 Iy

sr1,0 Sri1 Sr12 ly

sr0 S Shp I
0 0 0 1

Which representation is better? It depends on your application. If all you wish to do is an
initial scale and then apply sequences of rotations and translations, the 4 x 4 matrix format
works fine and will be faster on a vector processor. If, on the other hand, you wish to make
changes to scale as well, using the alternate format should at least be considered. And,
as we’ll see, if we wish to use a rotation representation other than a matrix, the alternate
formation is almost certainly the way to go.

4.5 Object Hierarchies

In describing object transformations, we have considered them as transforming from the
object’s local frame (or local space) to a world frame (or world space). However, it is
possible to define an object’s transformation as being relative to another object’s space
instead. We could carry this out for a number of steps, thereby creating a hierarchy of
objects, with world space as the root and each object’s local space as a node in a tree.

For example, suppose we wish to attach an arm to a body. The body is built with its
origin relative to its center. The arm has its origin at the shoulder joint location because
that will be our center of rotation. If we were to place them in the world using the same
transformation, the arm would end up inside the body instead of at the shoulder. We want
to find the transformation that modifies the arm’s world transformation so that it matches
the movement of the body and still remains at the shoulder. The way to do this is to define
a transformation for the arm relative to the body’s local space. If we combine this with the
transformation for the body, this should place the arm in the correct place in world space
relative to the body, no matter its position and orientation.

The idea is to transform the arm to body space (Figure 4.20a) and then continue the
transform into world space (Figure 4.20b). In this case, for each stage of transforma-
tion we perform the order as scale, rotate, and then translate. In matrix format the world
transformation for the arm would be

W= TbodbeodySbodyTarmRarmSarm

As we’ve indicated, the body and arm are treated as two separate objects, each with its own
transformations, placed in a hierarchy. The body transformation is relative to world space,
and the arm transformation is relative to the body’s space. When rendering, for example,
we begin by drawing the body with its world transformation and then drawing the arm with
the concatenation of the body’s transformation and the arm’s transformation. By doing this,
we can change them independently—rotating the arm around the shoulder, for example,

Source Code

Hierarchy

147



148 Affine Transformations

(b)

Figure 4.20. (a) Mapping arm to body’s local space and (b) mapping body and arm to
world space.

without affecting the body at all. Similar techniques can be used to create deeper hierarchies,
for example, a turret that rotates on top of a tank chassis, with a gun barrel that elevates up
and down relative to the turret.

One way of coding this is to create separate objects, each of which handles all the work of
grabbing the transformation from the parent objects and combining to get the final display
transform. The problem with this approach is that it generates a lot of duplicated code.
Using the tank example, the code necessary for handling the hierarchy for the turret is
going to be almost identical to that for the barrel. What is usually done is to design a data
structure that handles the generalized case of a hierarchy of frames and use that to manage
our hierarchical objects. We’ve implemented an example using one such data structure.

There are a few caveats to be aware of when managing hierarchies. One common
approach is to store the local and world transformations as members of a base class, and



4.6 Chapter Summary

then derive subclasses from that, stored in a tree. A further addition is to store a dirty
bit—when you change a local transformation, you set the bit. When it’s time to update the
world transformations and any bounding information (see Chapter 12), you only update
those below a node that’s been marked dirty.

This all seems very reasonable on the surface, but it wreaks havoc with modern proces-
sors. First of all, to check the dirty bit you must load it into memory and then branch on
the result. Most of the time the dirty bit will not be set, and due to branch misprediction the
processor will stall. In this case it can be faster to not branch at all and just always update.
Secondly, because our subclass will probably have additional members, the specific data
we’re focused on accessing and updating—all the local and world transformations—will
probably not be located near each other in memory. Add in the fact that we are using nodes
in a tree that are most likely allocated from a heap, and data locality becomes even more
unlikely. This means that our data cache will be spending a good part of time loading mem-
ory we won’t even use, and will have to access memory frequently to get the data we want.
If our interest is speed (and it usually is), it is far better to store the transformations and any
bounding information separately, and run our update step on just that data. See [2] or our
example for more details.

4.6 Chapter Summary

In this chapter we’ve discussed the general properties of affine transformations, how they
map between affine spaces, and how they can be represented and performed by matrices
at one dimension higher than the affine spaces involved. We’ve covered the basic affine
transformations as used in interactive applications and how to combine three of them—
scaling, rotation, and translation—to manipulate our objects within our world. While it
may be desirable to separate a given affine transformation back into scaling, rotation, and
translation components, we have seen that it is not always possible when using nonuniform
scaling. Separating components in this manner may not be efficient, so we have presented
an alternative affine transformation representation with the three components separated.
Finally, we have discussed how to construct transformations relative to other objects, which
allows us to create jointed, hierarchical structures.

For those interested in reading further, information on affine algebra can be found in
deRose [32], as well as in Schneider and Eberly [133]. And the standard affine transfor-
mations are described in most graphics textbooks, such as Moller et al. [1] and Hughes
et al. [82].

149






@ Orientation
Representation

5.1 Introduction

In Chapter 4 we discussed various types of affine transformations in R? and how they can
be represented by a matrix. In this chapter we will focus specifically on orientation and the
rotation transformation. We’ll look at four different orientation formats and compare them
on the basis of the following criteria:

* Represents orientation/rotation with a small number of values
* Can be concatenated efficiently to form new orientations/rotations

* Rotates points and vectors efficiently

The first item is important if memory usage is an issue, either because we are working with
a memory-limited machine such as a mobile device, or because we want to store a large
number of transformations, such as in animation data. In either case, any reduction in rep-
resentation size means that we have freed-up memory that can be used for more animations,
for more animation frames (leading to a smoother result), or for some other aspect of the
game. Rotating points and vectors efficiently may seem like an obvious requirement, but
one that merits mentioning; not all representations are good at this. Similarly, for some
representations concatenation is not possible.

There are two other criteria we might consider for an orientation format that we will
not discuss here: how well the representation can be interpolated and how suitable it is for
numeric integration in physics. Both of these topics will be discussed in Chapters 6 and 13,
respectively.

151



152 Orientation Representation

As we’ll see, there is no one choice that meets all of our requirements; each has its
strengths and weaknesses in each area, depending on our implementation needs.

5.2 Rotation Matrices

Since we have been using matrices as our primary orientation/rotation representation, it is
natural to begin our discussion with them.

For our first desired property, memory usage, matrices do not fare well. Euler’s rotation
theorem states that the minimum number of values needed to represent a rotation in three
dimensions is three. The smallest possible rotation matrix requires nine values, or three
orthonormal basis vectors. It is possible to compress a rotation matrix, but in most cases
this is not done unless we’re sending data across a network. Even then it is better to convert
to one of the more compact representations that we present in the following sections, rather
than compress the matrix.

However, for the second two properties, matrices do quite well. Concatenation is done
through a matrix—matrix multiplication, and rotating a vector is done through a matrix—
vector multiplication. Both of these are reasonably efficient on a standard floating-point
processor. But on a processor that supports SSE or NEON instructions, which can perform
matrix and vector operations in parallel, both of these operations can be performed even
faster. Most graphics hardware has built-in circuitry that performs similarly. And as we’ve
seen, 4 x 4 matrices can be useful for more than just rotation. Because of all these reasons,
matrices continue to be useful despite their memory footprint.

5.3 Euler Angles

5.3.1 Definition

We’ve just stated that the minimum number of values needed to represent a rotation in
three-dimensional (3D) space is three. As it happens, these three values can be the angles
of three sequential rotations around a set of orthogonal axes. In Chapter 4, we used this as
one means of building a generalized rotation matrix. Our chosen sequence of axes in this
case was z-y-x, so, for example, the values (0, 7 /4, 7/2) represent a rotation of 0 radians
around the z-axis, followed by a rotation of 7 /4 radians (or 45 degrees) around the y-axis,
and concluding with a rotation of v /2 radians (90 degrees) around the x-axis. Angles can be
less than 0 or greater than 27, to represent reversed rotations and multiple rotations around a
given axis. Note that we are using radians rather than degrees to represent our angles; either
convention is acceptable, but the trigonometric functions used in C or C++ expect radians.

The order we’ve given is somewhat arbitrary, as there is no standard order that is used for
the three axes. We could have used the sequence x-y-z or z-x-y just as well. We can even use
the same axis for the first and third rotations, so y-z-y is a valid sequence. However, an axis
rotation sequence such as z-y-y is not permitted, because duplicating an axis in sequence is
redundant and doesn’t add an additional degree of freedom. If the three axes are different,
they can also be referred to as Tait—Bryan angles, whereas if an axis is repeated, they are
referred to as classic Euler angles.

These rotations are performed around either the world axes or the object’s model axes.
When the angles represent world axis rotations, they are usually called fixed angles or
extrinsic rotations (Figure 5.1). The most convenient way to use extrinsic rotations is to



5.3 Euler Angles

X

Figure 5.1. Order and direction of rotation for z-y-x extrinsic Euler angles.

create an x, y, or z rotation matrix for each angle and apply it in turn to our set of vertices.
So an y-z-x extrinsic representation can be concatenated into a single matrix R = R,R;R,,
in matrix form.

A sequence of model axis rotations, in turn, is said to consist of intrinsic rotations.
Intrinsic Tait—Bryan angles are commonly known as roll, pitch, and heading, after the three
axes in a ship or an airplane. Heading is also sometimes referred to as yaw. Roll represents
rotation around the forward axis, pitch rotation around a side axis, and heading rotation
around the up axis (Figure 5.2). Whether a given roll, pitch, or heading rotation is around
x, y, or z depends on how we’ve defined our coordinate frame. Suppose we are using a
coordinate system where the z-axis represents up, the x-axis represents forward, and the
y-axis represents left. Then heading is rotation around the z-axis, pitch is rotation around
the y-axis, and roll is rotation around the x-axis. They are commonly applied in the order
roll-pitch-heading, so the corresponding intrinsic rotations for our case are x-y-z.

To create a rotation matrix that applies intrinsic rotations, we concatenate in the reverse
order of extrinsic rotations. To see why, let’s take our set of x-y-z intrinsic rotations. We begin
by applying the R, matrix, to give us a rotation around x. We then want to apply a rotation
around the object’s initial model y-axis. However, because of the x rotation, the y-axis has
been transformed to a new orientation. So, if we concatenate as we normally would, our
rotation will be about the transformed y-axis, which is not what we want. To avoid this,
we transform by R, first, then by R, giving R;R,. The same is true for the z rotation:
We need to rotate around z first to ensure we rotate around the original model z-axis, not
the transformed one. The resulting matrix is

Rintrinsic = RnyRz

So x-y-z intrinsic angles are the same as z-y-x extrinsic angles.

153



154  Orientation Representation

C| D

Pitch

Roll

Figure 5.2. Roll, pitch, and rotations relative to model coordinate axes.

5.3.2 Format Conversion

By concatenating three general axis rotation matrices and expanding out the terms, we can
create a generalized rotation matrix. The particular matrix will depend on which axis rota-
tions we’re using and whether they are extrinsic or intrinsic. For z-y-x extrinsic rotations or
Xx-y-z intrinsic rotations, the matrix looks like

CyCz —CySz Sy
R=RR)R; = | SxSyCz+CxSz —SxSySz+CxCz —SxCy
—CxSyCz +8x8z  CxSySz+ SxCz CxCy

where

Cx =cosf, Sx = sinby
Cy =cosfly Sy =sinb,
Cz=cosf, Sz=sinb,

This should look familiar from Chapter 4.

When possible, we can save some instructions by computing each sine and cosine using
a single sincos () call. This function is not supported on all processors, or even in all
math libraries, so we have provided a wrapper function IvSinCosf () (accessible by
including IvMath.h) that will calculate it depending on the platform.

We can convert from a matrix back to a possible set of extrinsic rotations by inverting this
process. Note that since we’ll be using inverse trigonometric functions there are multiple



5.3 Euler Angles 155

resulting angles. We’ll also be taking a square root, the result of which could be positive or
negative. Hence, there are multiple possibilities of intrinsic or extrinsic rotations for a given
matrix—the best we can do is find one. Assuming we’re using z-y-x extrinsic rotations,
we can see that sin 6y is equal to Rq,. Finding cos 6y, can be done by using the identity

cosfy =4/1— sin? 6y. The rest falls out from dividing quantities out of the first row and
last column of the matrix, so

sin 6, = Rp
costy =4/1— sin? Oy
sinfy = —Ry2/ cos 0,

cos 0, = Ryy/ cos by

sin6; = —Ro1/ cos b,

cos 6, = Rgp/ cos 0,
Note that we have no idea whether cos 6 should be positive or negative, so we assume
that it’s positive. Also, if cos@y = 0, then the x- and z-axes have become aligned (see

Section 5.3.5) and we can’t distinguish between rotations around x and rotations around z.
One possibility is to assume that rotation around z is 0, so

sinf, =0
cosf, =1
sind, = Ry
cosby = Ry

Calling arctan?2 () for each sin—cos pair will return a possible angle in radians, generally
in the range [—m, r]. Note that we have lost one of the few benefits of Euler angles, which
is that they can represent multiple rotations around an axis by using angles greater than 27
radians, or 360 degrees. We have also lost any notion of “negative” rotation.

5.3.3 Concatenation

Clearly, Euler angles meet our first criterion for a good orientation representation: they
use the minimum number of values. However, they don’t really meet the remainder of
our requirements. First of all, they don’t concatenate well. Adding angles doesn’t work:
Applying (r/2, /2, w/2) twice doesn’t end up at the same orientation as (7, , 7). The
most straightforward method for concatenating two Euler angle triples is to convert each
sequence of angles to a matrix, concatenate the matrix, and then convert the matrix back to
Euler angles. This will take a large number of operations, and will only give an approximate
result, due to the ill-formed nature of the matrix to Euler conversion.

5.3.4 Vector Rotation

Euler angles also aren’t the most efficient method for rotating vectors. Recall that to rotate
a vector around z uses the formula

R (x,y,0) = (xcos@ —ysin6,xsinf +ycosH)



156 Orientation Representation

Using the angles directly means that for each axis, we compute a sine and cosine and
then apply the preceding formula. Even if we cache the sine and cosine values for a
set of vectors, this ends up being more expensive than the cost of a matrix multiplica-
tion. Therefore, when rotating multiple vectors (in general the break-even point is five
vectors), it’s more efficient to convert to matrix format.

5.3.5 Other Issues

As if all of these disadvantages are not enough, the fatal blow is that in certain cases Euler
angles can lose one degree of freedom. We can think of this as a mathematical form of gimbal
lock. In aeronautic navigational systems, there is often a set of gyroscopes, or gimbals, that
control the orientation of an airplane or rocket. Gimbal lock is a mechanical failure where
one gimbal is rotated to the end of its physical range and it can’t be rotated any further,
thereby losing one degree of freedom. While in the virtual world, we don’t have mechanical
gyroscopes to worry about, a similar situation can arise.

Suppose we are using x-y-z extrinsic rotations and we consider the case where, no matter
what we use for the x and z angles, we will always rotate around the y-axis by 90 degrees.
This rotates the original world x-axis—the axis we first rotate around—to be aligned with
the world negative z-axis (Figure 5.3). Now any rotation we do with 8, will subtract from
any rotation to which we have applied 6,. The combination of x and z rotations can be
represented by one value 6, — 6,, applied as the initial x-axis rotation. Instead of using
(0y,m/2,0;), we could just as well use (6x — 0,,7/2,0) or (0, /2,60, — 6y). Another way to
think of this is: were this in matrix form we would not be able to extract unique values for
0, and 6,. We have effectively lost one degree of freedom.

To try this for yourself, take an object whose orientation can be clearly distinguished,
like a book.! From your point of view, rotate the object clockwise 90 degrees around

z World z
4 A

A
X

Figure 5.3. Demonstration of mathematical gimbal lock. A rotation of 90 degrees around y
will lead to the local x-axis aligning with the —z world axis, and a loss of a degree of
freedom.

! Or a close friend.



5.4 Axis—Angle Representation 157

>

*ﬁ| -
-

N

=>

Figure 5.4. Effect of gimbal lock. Rotating the box around the world x-axis, then the world
y-axis, then the world z-axis ends up having the same effect as rotating the box around just
the y-axis.

an axis pointing forward (roll). Now rotate the new top of the object towards you by
90 degrees (pitch). Now rotate the object counterclockwise 90 degrees around an axis
pointing up (heading). The result is the same as pitching the object downward 90 degrees
(see Figure 5.4).

Still, in some cases Euler angles do provide an intuitive representation for orientation.
For example, in a hierarchical system it is very intuitive to define rotations at each joint as
a set of Euler angles and to constrain certain axes to remain fixed. An elbow or knee joint,
for instance, could be considered a set of Euler angles with two constraints and only one
axis available for applying rotation. It’s also easy to set a range of angles so that the joint
doesn’t bend too far one way or the other. However, these limited advantages are not enough
to outweigh the problems with Euler angles. So in most cases, Euler angles are used as a
means to semi-intuitively set other representations (being aware of the dangers of gimbal
lock, of course), and our library will be no exception.

5.4 Axis-Angle Representation
5.4.1 Definition

Recall from Chapter 4 that we can represent a general rotation in R by an axis of rotation,
and the amount we rotate around this axis by an angle of rotation. Therefore, we can
represent rotations in two parts: a 3-vector r that lies along the axis of rotation, and a
scalar 6 that corresponds to a counterclockwise rotation around the axis, if the axis is
pointing toward us. Usually, a normalized vector t is used instead, which constrains the



158 Orientation Representation

>

Figure 5.5. Axis—angle representation. Rotation by r by angle 6 rotates v into w.

four values to three degrees of freedom, corresponding to the three degrees of freedom
necessary for 3D rotations.

Generating the axis—angle rotation that takes us from one normalized vector V to another
vector w is straightforward (Figure 5.5). The angle of rotation is the angle between the two
vectors:

6 = arccos (Ve W) 5.1

The two vectors lie in the plane of rotation, and so the axis of rotation is perpendicular to
both of them:

A

r=vxw (5.2)

Normalizing r gives us f. Near-parallel vectors may cause us some problems either because
the dot product is near 0, or normalizing the cross product ends up dividing by a near-zero
value. In those cases, we set 0 to 0 and t to any arbitrary, normalized vector.

5.4.2 Format Conversion

To convert an axis—angle representation to a matrix, we can use the derivation from
Chapter 4:

?+c Xy —sz txz+Ssy
Rig = | my+sz ty?+c tyz—sx (5.3)
Xz —sy tyz+sx 2 +¢

where
F=(y2)
c =cosf
s =sinf
t=1-—cosf

Converting from a matrix to the axis—angle format has similar issues as the Euler angle
format, since opposing vectors T and —F can be used to generate the same rotation by



5.4 Axis—Angle Representation

rotating in opposite directions, and multiple angles (0 and 27, for example) applied to the
same axis can rotate to the same orientation. The following method is from Eberly [36].

We begin by computing the angle. The sum of the diagonal elements, or trace of a
rotation matrix R, is equal to 2 cos 6 + 1, where 6 is our angle of rotation. This gives us an
easy method for computing 6:

6 = arccos <;(trace(R) — 1))

There are three possibilities for 6. If 6 is 0, then we can use any arbitrary unit vector as our
axis. If 6 lies in the range (0, ), then we can compute the axis by using the formula

R —R” =25in6S (5.4)

where S is a skew symmetric matrix of the form

0 —z y
S = z 0 —x
-y X 0

The values x, y, and z in this case are the components of our axis vector . We can compute r
as (Ry1 — R12, R — R20, R10 — Ro1), and normalize to get F.

If 6 equals , then R — R7” = 0, which doesn’t help us at all. In this case, we can use
another formulation for the rotation matrix, which only holds if 6 = 7:

1 —2y% —272 2xy 2xz
R=1+28= 2xy 1—2x%—272 2yz
2xz 2yz 1 —2x% —2y?

The idea is that we can use the diagonal elements to compute the three axis values. By
subtracting appropriately, we can solve for one term, and then use that value to solve for
the other two. For example, Rog — R11 — R22 + 1 expands to

Roo—Rii —Ryp+1=1-2y? =222 — 1+ 22> +222 — 1+ 28 +2)* + 1

= 4x?

So,

1
x= E\/ROO—RH —Ryp+1 (5.5)

and consequently,

Roi

2x

;= o2
2x

159



160 Orientation Representation

To avoid problems with numeric precision and square roots of negative numbers, we’ll
choose the largest diagonal element as the term that we’ll solve for. So, if Roo is the largest
diagonal element, we’ll use the preceding equations. If Ry is the largest, then

1
y= E\/R“ —Roo — R +1
Ro1
X=—
2y
_ R

2y

Finally, if Ry; is the largest element we use

1
7= E\/Rzz—Roo—Rn-H

_ R

2z
_ R
y= 2z

5.4.3 Concatenation

Concatenating two axis—angle representations is not straightforward. One method is to
convert them to two matrices or two quaternions (see below), multiply, and then convert
back to the axis—angle format. As one can easily see, this is more expensive than just
concatenating two matrices. Because of this, one doesn’t often perform this operation on
axis—angle representations.

5.4.4 Vector Rotation

For the rotation of a vector v by the axis—angle representation (f,6), we can use the
Rodrigues formula that we derived in Chapter 4:

Rv = cosOv +[1 —cos 0](v « F)F + sin O(F x V)

If we precompute cos6 and sinf and reuse intermediary values, we can compute this
relatively efficiently. We can improve this slightly by using the identity

FX(EXV)=(VeF)If — (FeT)V
= (VeP)F—V
and substituting to get an alternate Rodrigues formula:
Rv=v+ ({1 —cosO)[F x (F x V)] +sinf(F x v)

Inboth these cases, the trade-off is whether to store the results of the transcendental functions
and thereby use more memory, or compute them every time and lose speed. The answer
will depend on the needs of the implementation.



5.5 Quaternions

When rotating two or more vectors, it is more efficient on a serial processor to convert
the axis—angle format to a matrix and then multiply. So if you’re only transforming one
vector, don’t bother converting; otherwise, use a matrix.

5.4.5 Axis-Angle Summary

While being a useful way of thinking about rotation, the axis—angle format still has some
problems. Concatenating two axis—angle representations is extremely expensive. And unless
we store two additional values, rotating vectors requires computing transcendental func-
tions, which is not very efficient either. Our next representation encapsulates some of the
useful properties of the axis—angle format, while providing a more efficient method for
concatenation. It precomputes the transcendental functions and uses them to rotate vectors
in nearly equivalent time to the axis—angle method. Because of this, we have not explicitly
provided an implementation in our library for the axis—angle format.

5.5 Quaternions

5.5.1 Definition

The final orientation representation we’ll consider could be considered a variant of the
axis—angle representation, and in fact when using it for rotation, it’s often simplest to think
of it that way. It is called the quaternion and was created by the Irish mathematician Sir
William Hamilton [69] in the nineteenth century and introduced to computer graphics by
Ken Shoemake [136] in the 1980s. Quaternions require only four values, they don’t have
problems of gimbal lock, the mathematics for concatenation are relatively simple, and if
properly constructed, they can be used to rotate vectors in a reasonably efficient manner.

Hamilton’s original purpose for creating quaternions was to extend complex numbers
beyond two dimensions. Complex numbers have the form

x=a+bi

where i represents the square root of negative 1. The value a is called the real part, and the
value b the imaginary part. We can treat {1, i} as a 2D basis, and thereby map a complex
number to a 2D vector (a, b).

Hamilton tried to extend this to three dimensions, but couldn’t create an algebra (known
as a division algebra) where every value had a multiplicative inverse. During a walk along
the Grand Canal in Dublin, he realized that it was possible if he extended it to four dimensions
rather than three, and so quaternions were discovered.

Hamilton’s general formula for a quaternion q is as follows:

q=w+xi+yj+zk

The quantities 1, Z, j, and k can be thought of as the standard basis for all quaternions, so it
is common to write a quaternion as just

q=Ww,x,y,2)

Source Code

IvMath

| Filename |

IvQuat

161



162  Orientation Representation

The xi + yj + zk part of the quaternion is akin to a vector in R3, so a quaternion also can
be written as

q=mw,v)

where w is called the scalar part and v is called the vector part.

Frequently, we’ll want to use vectors in combination with quaternions. To do so, we’ll
zero out the scalar part and set the vector part equal to our original vector. So, the quaternion
corresponding to a vector u is

qu = (0,u)

Other than terminology, we aren’t that concerned about Hamilton’s intentions for gen-
eralized quaternions, because we are only going to consider a specialized case discovered
by Arthur Cayley [23]. In particular, he showed that quaternions can be used to describe
pure rotations. Later on, Courant and Hilbert [27] determined the relationship between
normalized quaternions and the axis—angle representation.

5.5.2 Quaternions as Rotations

While any quaternion can be used to represent rotation (as we will see later), we will be
primarily using unit quaternions, where

w2+V.V:1

There are three reasons for this. First of all, it makes the calculations for rotation and
conversions more efficient. Secondly, it manages floating-point error. By normalizing, our
data will lie in the range [—1, 1], and floating-point values in that range have a high degree
of relative precision. Finally, it provides a natural correspondence between an axis—angle
rotation and a quaternion. In a unit quaternion, w can be thought of as representing the
angle of rotation 8. More specifically, w = cos (6/2). The vector v represents the axis of
rotation, but normalized and scaled by sin (6/2). So, v = sin (6 /2)f. For example, suppose
we wanted to rotate by 90 degrees around the z-axis. Our axis is (0, 0, 1) and half our angle
is /4 (in radians). The corresponding quaternion components are

4 2
4
x:O-sm(Z):O
y=0-sin<%)=0

. V2
e=1sin(7) =5

giving us a final quaternion of



5.5 Quaternions 163

So, why reformat our previously simple axis and angle to this somewhat strange repre-
sentation, particularly using only half the angle? As we’ll see, precooking the data in this
way allows us to rotate vectors and concatenate with ease.

Our class implementation for quaternions looks like

class IvQuat

{

public:
// constructor/destructor
inline IvQuat() {}

inline IvQuat( float_w, float _x, float _y, float _z )
w(_w), x(x), v(v), z(_z)

{

}

IvQuat (const IvVector3& axis, float angle);

explicit IvQuat (const IvVector3& vector);

inline ~IvQuat () {}

// member variables
float x, y, z, w;
}i

Much of this follows from what we’ve already discussed. We can set our quaternion values
directly, use an axis—angle format, or explicitly use a vector. Recall that in this last case,
we use the vector to set our x, y, and z terms, and set w to 0.

5.5.3 Addition and Scalar Multiplication

Like vectors, quaternions can be scaled and added componentwise. For both operations a
quaternion acts just like a 4-vector, so

W1, x1,¥1,21) + (W2, x2,¥2,22) = (W1 +w2,x1 +x2,y1 +¥2,21 +22)

a(w,x,y,z) = (aw, ax, ay, az)

The algebraic rules for addition and scalar multiplication that apply to vectors and matrices
apply here, so like them, the set of all quaternions is also a vector space. However, the set
of unit quaternions is not, since neither operation maintains unit length. Therefore, if we
use one of these operations, we’ll need to normalize afterwards. In general, however, we
will not be using these operations except in special cases.

5.5.4 Negation

Negation is a subset of scale, but it’s worth discussing separately. One would expect that
negating a quaternion would produce a quaternion that applies a rotation in the opposite
direction—that is, that it would be the inverse. However, while it does rotate in the opposite
direction, it also rotates around the negative axis. The end result is that a vector rotated
by either quaternion ends up in the same place, but if one quaternion rotates by 6 radians
around T, its negation rotates 2t — 6 radians around —f. Figure 5.6 shows what this looks
like on the rotation plane. The negated quaternion can be thought of as “taking the other
way around,” but both quaternions rotate the vector to the same orientation. This will



164  Orientation Representation

Figure 5.6. Comparing rotation performed by a normalized quaternion (left) with its
negation (right).

cause some issues when blending between quaternions but can be handled by adjusting our
values appropriately, which we’ll discuss in Chapter 6. Otherwise, we can use q and —q
interchangeably.

5.5.5 Magnitude and Normalization

As we’ve implied, we will be normalizing quaternions, and will do so as if we were using
4-vectors. The magnitude of a quaternion is therefore as follows:

lall = Vw2 +x2+ )2 +22)
A normalized quaternion q is

q _ q
lqll
Since we’re assuming that our quaternions are normalized, we’ll forgo the use of the

notation q to keep our equations from being too cluttered.

5.5.6 Dot Product

The dot product of two quaternions should also look familiar:
qieq2 = wiwz +x1x02 +y1y2 +2122

As with vectors, this is still equal to the cosine of the angle between the quaternions, except
that our angle is in four dimensions instead of the usual three. What this gives us is a way of
measuring how different two quaternions are. If q; « q> is close to 1 (assuming that they’re
normalized), then they apply very similar rotations. Also, since we know that the negation
of a quaternion performs the same rotation as the original, if the dot product is close to —1,
the two still apply very similar rotations. So parallel normalized quaternions (|q; « q2| ~ 1)
are similar. Correspondingly, orthogonal normalized quaternions (q; « q» = 0) produce
extremely different rotations.



5.5 Quaternions

5.5.7 Format Conversion

Converting from axis—angle format to a quaternion requires multiplying the angle by one-
half, computing the sine and cosine of that result, and scaling the normalized axis vector
by the sine. To convert back, we take the arccos of w to get half the angle, and then use
~/1 —w? to get the length of v so we can normalize it. The full conversion is

6 = 2 arccos (w)

IVl = v1—w?

E=v/|vl

Converting a normalized quaternion to a 3 x 3 rotation matrix takes the following form:

1—-2y? =272 2xy—2wz 2xz+ 2wy
M, = 2xy+2wz 1 —2x2—2z2  2yz—2wx (5.6)
2xz7 —2wy 2yz+2wx 1 —2x% —2y?

If the quaternion is not normalized, it’s easiest to normalize the quaternion first and then
create the matrix.

To compute this on a serial processor we can make use of the fact that there are a lot of
duplicated terms. The following is derived from Shoemake [137]:

IvMatrix33&
IvMatrix33::Rotation( const IvQuat& g )
{

float s, xs, ys, zs, WX, wy, Wz, XX, XY, X2, YV, YZ, 2Z;

// if g is normalized, s = 2.0f
s = 2.0f/( g.x*q.x + g.y*q.y + 9.2*q.z2 + g.w*Qq.w );

Xs = s*Qg.X; vys = s*q.y; Zs = s*J.zZ;
WX = J.W*Xs; wy = g.w*ys; wz = g.w*zs;
XX = .X*XS; Xy = g.xX*ys; Xz = g.xX*zs;
Yy = 4.Y*ys; vz = g.y*zs; ZZ = q.zZ*Zs;
mv[0] = 1.0f - (yy + zz);

mV([3] = xy - wz;

mv[6] = xz + wy;

mv([l] = xy + wz;

mv[4] = 1.0f - (xx + zz);

mv[7] = yz - wx;

mv[2] = xz - wy;

mvV[5] = yz + wx;

mvV[8] = 1.0f - (xx + yy);

return *this;

} // End of Rotation()

165



166 Orientation Representation

If we have a parallel vector processor that can perform fast matrix multiplication, another
way of doing this is to generate two 4 x 4 matrices and multiply them together:

w =z y X w —z y —x
z w =X zZ W —x —

M, = y y

-y X w z -y x w -z

X -y -z W x oy z w

If the quaternion is normalized, the product will be the affine rotation matrix corresponding
to the quaternion.

To convert a matrix to a quaternion, we can use an approach that is similar to converting
from a rotation matrix to axis—angle format. Recall that the trace of a rotation matrix is
2cos6 + 1, where 6 is our angle of rotation. Also, from Equation 5.4, we know that the
vector r = (R2; — Ry2, Roa — R20, R10 — Ro1) will have length 2sin6. If we add 1 to the
trace and use these as the scalar and vector parts, respectively, of a quaternion, we get

q = (2cosf +2,2sin0F) 5.7

Surprisingly, all we need to do now is normalize to get the final result. To see why, suppose
we started with a quaternion

q1 = (cos0,sinOt)

This is close to what we need, which is

qy, = co%ggingf'
qn = S5 85

To get from q; to qy, let’s consider two vectors. If we have a vector wy and a vector
w; rotated 6 degrees from wy, then to find the vector vj, that lies between them on the
rotation plane (i.e., the vector rotated 6/2 degrees from wg), we just need to compute
(w1 4+ wp)/2. If we want a normalized vector, we can skip the division by two and just do
the normalize step.

So to do the same with quaternions, we take as our g the quaternion (1,0), which
represents no rotation. If we add that to q; and normalize, that will give us our desired
result. That boils down to adding 1 to w and normalizing. Equation 5.7 is just that scaled
by 2; the scaling factor drops out nicely when we normalize.

If the trace of the matrix is less than O, then this will not work. We’ll need to use an
approach similar to when we extracted the axis from a rotation matrix. By taking the largest
diagonal element and subtracting the elements from it, we can derive an equation to solve
for a single-axis component (e.g., Equation 5.5). Using that value as before, we can then
compute the other quaternion components from the elements of the matrix.



167

5.5 Quaternions

So, if the largest diagonal element is Rgg, then

1
X = Ex/Roo—Rn —Ryp+1

__ Roi +Rio
Y dx
L= Rz + Ry

4x
Ry1 —Ri2
W= ———-
4x

We can simplify this by noting that
4x* = Roo—Ri1 —Rap + 1
4x*  Roo—Ri1—Rp+1
Ax 4x
. Roo —Ri1 —Ryp +1
4x

Substituting this formula for x, we now see that all of the components are scaled by 1/4x.

We can accomplish the same thing by taking the numerators

X =R —Ri1 —Rpn+1
Yy =Ro1 +Rio
Z =R+ Ry
w =Ry —Rp2

and normalizing.
Similarly, if the largest diagonal element is R, we start with

y=Ri1—Ropo—Rn+1
X = Ro1 +Rio
Z=Ri2+ Ry
w = Rz — Rao

and normalize.
And, if the largest diagonal element is Ro>, we take

Z2=Rp—Roo—Ri1 +1
X = Ro2+ Ry
y=Ry +Rp2
w = Rjo — R

and normalize.



168 Orientation Representation

Converting from an extrinsic Euler angle format to a quaternion requires creating a
quaternion for each rotation around a coordinate axis, and then concatenating them together.
For z-y-x extrinsic rotations, the result is

Oy Oy 0, O 0y 0,

W = COS — COS — COS — — sin — sin — sin —
2 2 2 2 2 2

. Oy 0y 0, O . 0y . 0,
X = SIn — COS = COS — 4+ COS — SIn — SIn —
2 2 2 2 2 2

O . O 0, . Oy Oy . 0,
Yy = €08 — sin —— cos — — sin — cos — sin —
2 2 2 2 2 2

0 0, (%) 0 0 0
Z = COS — COS = sin — + sin — sin - cos —
2 2 2 2 2 2

Converting a quaternion to Euler angles is, quite frankly, an awful thing to do. If it’s
truly necessary (e.g., for an interface), the simplest method is to convert the quaternion to
a matrix, and extract the Euler angles from the matrix.

5.56.8 Concatenation

As with matrices, if we wish to concatenate the transformations performed by two quater-
nions, we multiply them together to get a new quaternion. If we consider the simpler case
of complex numbers, after multiplying the result is

(a+ bi)(c + di) = ac + (ad + bc)i + bdi*
=ac+ (ad + bc)i+ bd(— 1)
= (ac — bd) + (ad + bo)i (5.8)

Multiplying complex numbers is commutative, so order does not matter.
For quaternions, expanding out the terms of the multiplication produces the following
result:

(w2 +x2i +y2j +22k) (w1 +x1i+y1j +21k)
= wawi +woxii +way1 j+wazik
+ xow1i 4 xox18% + x2y15f + X221k (5.9)
+ 2w j + yaxiji+ yoy1j* + oz jk
+ 2owik + zox1 ki + 22y1 kj + 2021 k2

We define the products of the i, j, and k quantities as follows:

=k jk=i ki=j
ji=—k kji=—i ik=—j



5.5 Quaternions

and

Note that multiplying these terms is anticommutative, so here order does matter.
We can use these properties and well-known vector operations to simplify the product to

Q2 - q1 = (Wiw2 — Vi e V2, W1 V2 +W2V] + V2 X V1)

We’ve expressed this in a right-to-left order, like our matrices. This is because the rotation
defined by q; will be applied first, followed by the rotation defined by q,. We’ll see this
more clearly when we look at how we use quaternions to transform vectors. Also note the
cross product; due to this, quaternion multiplication is also not commutative. This is what
we expect with rotations; applying two rotations in one order does not necessarily provide
the same result as applying them in the reverse order. Finally, other than the cross product,
this has a pleasing similarity to Equation 5.8.

Multiplying two normalized quaternions does produce a normalized quaternion. How-
ever, due to floating-point error, it is wise to renormalize the result—if not after every
multiplication, at least often and definitely before using the quaternion to rotate vectors.

A straightforward implementation of quaternion multiplication might look like

IvQuat operator* (IvQuat g2, IvQuat gl)
{
IvVector3 vl(gl.x, gl.y, gl.z);
IvVector3 v2(g2.x, g2.y, d2.z);

float w = gl.w*g2.w - v1.Dot(v2);
IvVector3 v = gl.w*v2 + g2.w*vl + v2.Cross(vl);
IvQuat g(w, Vv);

return qg;

}

Alternatively, we can unroll the operations to get

IvQuat operator* (IvQuat g2, IvQuat qgl)
{
w = g2.w*gl.w - g2.x*qgl.x
- g2.y*ql.y - g2.z*ql.z;
x =qg2.y* gql.z - g2.z*ql.y
+ g2.w*gl.x + gl.w*g2.x;
vy = g2.z*qgl.x - g2.x*ql.z
+ g2.w*gql.y + gl.w*g2.vy;
z = g2.x*ql.y - g2.y*qgl.x
+ g2.w*gl.z + gl.w*g2.z;
return IvQuat (w,x,y,z);

169



170  Orientation Representation

Note that on a scalar processor that concatenating two quaternions can actually be faster
than multiplying two matrices together.

An example of concatenating quaternions is the conversion from z-y-x extrinsic Euler
angles to a quaternion. The corresponding quaternions for each axis are

0 0
q; = (cos EZ,O, 0, sin ;)
9)7 0 . 9)7 0
= [ cos =, 0, sin =,
b 2 2

0 0
Qx = (cos %,sin EX,O, 0)

Multiplying these together in the order q,q,q; gives the result in Section 5.5.7.

5.5.9 Identity and Inverse

As with matrix products, there is an identity quaternion and, subsequently, there are mul-
tiplicative inverses. As we’ve mentioned, the identity quaternion is (1, 0, 0, 0), or (1, 0).
Multiplying this by any quaternion q = (w, v) gives

qQ-(LO=10-w—=0ev,Iv+w0+vx0)
=w,v)
In this case, multiplication is commutative, so q - (1,0) = (1,0)-q = q.
As with matrices, the inverse q ! of a quaternion q is one such that q !q = qq~! =
(1, 0). If we consider a quaternion as rotating 6 degrees counterclockwise around an axis F,

then to undo the rotation we should rotate 6 degrees clockwise around the same axis. This
is the same as rotating —6 degrees counterclockwise: to create the inverse we negate the

angle (Figure 5.7a). So, if
0 0
w,v)=(cos|=|,Fsin | =
2 2

(w,v)"l= (cos (—i) ,Tsin (—i))
=(cos(=),—Fsin( =
2 2

w, V)"l = (w, —v)

then

At first glance, negating the vector part of the quaternion (also known as the conjugate)
to reverse the rotation is counterintuitive. But after some thought this still makes sense
geometrically. A clockwise rotation around an axis turns in the same direction as a
counterclockwise rotation around the negative of the axis (Figure 5.7b).



5.5 Quaternions

(b)

Figure 5.7. (a) Relationship between quaternion and its inverse. Inverse rotates around the
same axis but negative angle. (b) Rotation direction around axis by negative angle is the
same as rotation direction around negative axis by positive angle.

Equation 5.10 only holds if our quaternion is normalized. While in most cases it should
be since we’re trying to maintain unit quaternions, if it is not then we need to scale by 1 over
the length squared, or

qg'=—5w-v) (5.11)

1

2
lall
Avoiding the floating-point divide in this case is another good reason to keep our quater-
nions normalized.

It bears repeating that the negative of a quaternion, where both w and v are negated, is
not the same as the inverse. When applied to vectors, the negative rotates the vector to the
same orientation, but going the other way around the axis.

5.5.10 Vector Rotation

We can use complex numbers to rotate 2D vectors simply by defining one complex number
as cos 8 + sin #i and the other as our 2D vector x + yi, and multiplying to get

(cos 8 +sinBi)(x + yi) = (xcos O — ysin ) + (x sinf + y cos )i

171



172 Orientation Representation

If we consider only the real and imaginary parts, this is exactly the same as Equation 4.7,
restricted to the 2D plane. It follows that quaternions might behave similarly.

If qr is used to concatenate two quaternions q and r, then for a vector p we might
expect qp to rotate the vector by the quaternion, just as it does for complex numbers or
a matrix. Unfortunately for intuition, this is not the case. For one thing, the result of this
multiplication is not a vector (w will not be 0). The actual formula for rotating a vector by
a quaternion is

Rqp = qpq " (5.12)

It may look like the effect of the operation is to perform the rotation and then undo it, but
this is not the case. Remember that quaternion multiplication is not commutative, so if q is
not the identity,

apq ' #qq 'p=p

We can use our rotation formula for axis and angle to show that Equation 5.12 does
rotate a vector. We begin by breaking it out into its component vector operations. Assuming
that our quaternion is normalized, if we expand the full multiplication and combine terms,
we get

Rqp = 2w? — 1)p+2(V e p)V + 2w(V X P) (5.13)

Substituting cos (6/2) for w, and t sin (6/2) for v, we get

Ry () = <20052 <i> - 1) P+ <f'sin (Z) .p> ¢ sin (z)
o) =)

Reducing terms and using the appropriate trigonometric identities, we end up with

Rq(p)= | cos? o — sin? o p + 2 sin? o (Fep)r
4 2 2 2
0\ . [0\ .
+2cos (2> sin <2> (f x p) (5.14)

= cosOp+[1 —cosO](F « p)E + sin O(F x p)

We see that Equation 5.14 is equal to Equation 4.9, so our quaternion multiplication—odd
as it may look—does rotate a vector around an axis by a given angle.

But what exactly is going on here? The explanation lies in how quaternions actually
rotate. Multiplying by a complex number performs a single rotation in the 2D plane. How-
ever, multiplying by a quaternion performs two simultaneous rotations in 4D space through
two orthogonal planes. Since the planes are orthogonal, the two rotations are independent.
If we multiply the quaternion on the left (e.g., qp in Equation 5.12), then both rotations are



5.5 Quaternions

in the same direction (e.g., counterclockwise relative to the two plane normals). Multiplying
the quaternion on the right (e.g., pq~' in Equation 5.12) reverses one of the rotations, but
not the other. We want to use quaternions to rotate a vector in R3, and that only occurs in
one plane; therefore, we need to cancel out one of the 4D rotations. So rotating by an angle
0 around an axis T becomes a three-step process:

1. Create a quaternion that rotates by 6 /2, with one plane orthogonal to f and a second
plane orthogonal to the first.

2. Multiply on the left to rotate through both planes by 6/2.

3. Multiply by the inverse on the right to rotate through the desired plane by 6/2, and
rotate through the other plane by —6/2.

Effectively, the second multiplication doubles one of the rotations and eliminates the other.
And this explains why we need to use the half angle when creating the quaternion—by
doing so we end up with the correct rotation. For more details on this, as well as using
this “sandwiching” technique with quaternions to perform reflections and even perspective
transformations (covered in Chapter 7), see [55].

In our code, we won’t want to use the qpq~! form, since performing both quaternion
multiplications isn’t very efficient. Instead, we’ll use Equation 5.13:

IvVector3
IvQuat::Rotate( const IvVector3& vector ) const
{

ASSERT( IsUnit() );

float vMult = 2.0f* (x*vector.x + y*vector.y + z*vector.z);
float crossMult = 2.0f*w;
float pMult = crossMult*w - 1.0f;

return IvVector3( pMult*vector.x + vMult*x + crossMult* (y*vector.z - z*vector.y),
pMult*vector.y + vMult*y + crossMult* (z*vector.x - x*vector.z),

pMult*vector.z + vMult*z + crossMult* (x*vector.y - y*vector.x) );

} // End of IvQuat::Rotate()

The operation count is more than that of matrix multiplication, but comparable to the
Rodrigues formula for axis—angle representation.
An alternate version,

qu:(v.p)v+w2p+2w(vxp)+vx(vxp)

is useful for processors that have fast cross product operations.

Neither of these formulas is as efficient as matrix multiplication, but for a single vector it
is more efficient to perform these operations rather than convert the quaternion to a matrix
and then multiply. However, if we need to rotate multiple vectors by the same quaternion,
matrix conversion becomes worthwhile.

173



174  Orientation Representation

To see how concatenation of rotations works, suppose we apply a rotation from one
quaternion followed by a second rotation from another quaternion. We can rearrange
parentheses to get

1

qrpr Hg ™! = (qr)p(qr)”!

As we see, concatenated quaternions will apply their rotation, one after the other. The order
is right to left, as we have stated.

If we substitute —q in place of q in Equation 5.12, we can see in another way how
negating the quaternion doesn’t affect rotation. By Equation 5.11, (—q)~! = —q~!, so

R_q(p) = —qp(—q)"
=qpq~"

The two negatives cancel, and we’re back with our familiar result.
Similarly, if q is a nonunit quaternion, we can show that the same result occurs as if the

quaternion were normalized:
A (1.
(sq)p 54

|
=s—qpq
N

1

(sq)p(sq) "

apq~

5.5.11 Shortest Path of Rotation

As with the axis—angle format, it is often useful to create a quaternion that rotates a vector v
into another vector v, although in this case we’ll use a different approach discussed by
Baker and Norel [9] that also avoids some issues with numerical error when v and v, are
nearly collinear.

We begin by taking the dot product and cross product of the two vectors:

Vi e vy = [[vi[[[[v2] cos &
vi x V2 = [[vill|v2]l sin OF

where t is our normalized rotation axis. Using these as the scalar and vector parts,
respectively, of a quaternion and normalizing gives us

q1 = (cos0,sin OF)

This should look familiar from our previous discussion of matrix-to-quaternion conversion.
As before, if we add 1 to w,
qn = (cosH + 1,sin 6F)

and normalize, we get



5.6 Chapter Summary 175

Note that we haven’t handled the case where the two vectors are parallel. In this case,
there are an infinite number of possible rotation axes, and hence an infinite number of pos-
sible quaternions. A stop-gap solution is to pick one by taking the cross product between
one of the vectors and a known vector such as i or j. While this will work, it may lead to
discontinuities—something we’ll discuss in Chapter 6 when we cover interpolation.

5.5.12 Quaternions and Transformations

While quaternions are good for rotations, they don’t help us much when performing trans-
lation and scale. Fortunately, we already have a transformation format that quaternions fit ™"
right into. Recall that in Chapter 4, instead of using a generalized 4 x 4 matrix for affine
transformations, we used a single scale factor s, a 3 x 3 rotation matrix R, and a translation

vector t. Our formula for transformation was

p = R(sp) +t
We can easily replace our matrix R with an equivalent quaternion r, which gives us
p =ripr !+t

Concatenation using the quaternion is similar to concatenation with our original sepa-
rated format, except that we replace multiplication by the rotation matrix with quaternion
operations:

s’ = 8180
r =rirg

t' =t +ri(sito)r;’

Again, to add the translations, we first need to scale ty by s and then rotate by the quater-
nion ry.

As with lone quaternions, concatenation on a serial processor can be much cheaper in
this format than using a 4 x 4 matrix. However, transformation of points is more expensive.
As was the case with simple rotation, for multiple points it will be better to convert the
quaternion to a matrix and transform them that way.

5.6 Chapter Summary

In this chapter we’ve discussed four different representations for orientation and rotation:
matrices, Euler angles, axis and angle, and quaternions. In the introduction we gave three
criteria for our format: it may be informative to compare them along with their usefulness
in interpolation.

As far as size, matrices are the worst at nine values, and Euler angles are the best at
three values. However, quaternions and axis—angle representation are close to Euler angles
at four values, and they avoid the problems engendered by gimbal lock.

For concatenation, quaternions take the fewest number of operations, followed closely by
matrices, and then by axis—angle and the Euler representations. The last two are hampered



176 Orientation Representation

by not having low-cost methods for direct concatenation, and so the majority of their expense
is tied up in converting to a more favorable format.

When transforming vectors, matrices are the clear winner. Assuming precached sine and
cosine data, Euler angles are close behind, while axis—angle representation and quaternions
take a bit longer. However, if we don’t precache our data, the sine and cosine computations
will probably take longer, and quaternions come in second.

Finally, it is worth noting that due to floating-point error, the numbers representing
our orientation may drift. The axis—angle and Euler angle formats do not provide an intu-
itive method for correcting for this. On the other hand, matrices can use Gram—Schmidt
orthonormalization and quaternions can perform a normalization step. Quaternions are a
clear winner here, as normalizing four values is a relatively inexpensive operation.

For further reading about quaternions, the best place to start is with the writings of
Shoemake, in particular [136]. Hamilton’s original series of articles on quaternions [69] are
in the public domain and can be found by searching online. Courant and Hilbert [27] cover
applications of quaternions, in particular to represent rotations. Finally, we recommend two
books that provide further insights into quaternions, by Hanson [71] and Goldman [55].



G Inferpolation

6.1 Introduction

Up to this point, we have considered only motions (more specifically, transformations) that
have been created programmatically. In order to create a particular motion (e.g., a submarine
moving through the world), we have to write a specific program to generate the appropriate
sequence of transformations for our model. However, this takes time and it can be quite
tedious to move objects in this fashion. It would be much more convenient to predefine our
transformation set in a tool and then somehow regenerate it within our game. An artist could
create the sequence using a modeling package, and then a programmer would just write
the code to play it back, much as a projector plays back a strip of film. This process of
pregenerating a set of data and then playing it back is known as animation.

The best way to understand animation is to look at the art form in which it has primarily
been used: motion pictures. In this case, the illusion of motion is created by drawing or
otherwise recording a series of images on film and then projecting them at 24 or 30 frames
per second (for film and video, respectively). The illusion is maintained by a property of
the eye—brain combination known as persistence of motion: the eye—brain system sees two
frames and invisibly (to our perception) fills in the gaps between them, thus giving us the
notion of smooth motion.

We could do something similar in our game. Suppose we had a character that we want
to move around the world. The artist could generate various animation sets at 60 frames per
second (f.p.s.), and then when we want the character to run, we play the appropriate running
animation. When we want the character to walk, we switch to the walking animation. The
same process can be used for all the possible motions in the game.

However, there are a number of problems with this. First, by setting the animation set
to a rate of 60 f.p.s. and then playing it back directly, we have effectively locked the frame

177



178 Interpolation

rate for the game at 60f.p.s. as well. Many monitors and televisions can run at 120 Hz,
and when running in windowed mode, the graphics can be updated much faster than that.
It would be much better if we could find some way to generate 120 f.p.s. or more from a
60 f.p.s. dataset. In other words, we need to take our initial dataset and generate a new one
at a different rate. This is known as resampling.

This brings us to our second problem. Storing 60 f.p.s. per animation adds up to a lot of
data. As an example, if we have 10 data points per model that we’re storing, with 16 floats
per point (i.e., a 4 x 4 matrix), that adds up to about 38 KB/s of animation. A minute of
animation adds up to over 2 MB of data, which can be a serious hit, particularly if we’re
running on a low-memory platform such as a mobile phone. It would be better if we could
generate our data at a lower rate, say 10 or 15 f.p.s., and then resample up to the speed we
need. This is essentially the same problem as our first one—it’s just that our initial dataset
has fewer samples.

Alternately, we could take another cue from movie animation. The primary animators on
a film draw only the important, infrequent “key” frames that capture the essential flow of an
animation. The work of generating the remaining “in-between” frames is left to secondary
animators, who generate these intermediate frames from the supplied key frames. These
artists are known as ’tweeners. In our case, we could store key frames that represent the
essential positions of our motion. These key frames would not have to be separated by a
constant time interval, rather at smaller intervals when the positions are changing quickly,
and at larger intervals when the positions change very slowly. The resampling function
would act as our ’tweener for this key frame data.

Fortunately, we have already been introduced to one technique for doing all of this,
albeit in another form. This method is known as interpolation, and we first saw it when
generating a line from two points. Interpolation takes a set of discrete sample points at given
time intervals and generates a continuous function that passes through the points. Using
this, we can pick any time along the domain of the function and generate a new point so that
we might fill in the gaps. We’re using the interpolation function to sample at a different rate.

An alternative is approximation, which uses the points to guide the resulting function. In
this case, the function does not pass through the points. This may seem odd, but it can help
us better control the shape of the function. However, the same principle applies: we generate
a function based on the initial sample data and resample later at a different frame rate.

In this chapter, we’ll be relying heavily on concepts from calculus—in particular limits,
derivatives, and integrals—so it may be worthwhile reviewing them before proceeding
(we have a review article on our web site, www.essentialmath.com). We’ll be breaking
our discussion of interpolation and approximation into three parts. First, we’ll look at
some techniques for interpolating and approximating position. Next, we’ll look at how we
can extend those techniques for orientation. Finally, we’ll look at some applications, in
particular, the motion of a constrained camera.

6.2 Interpolation of Position

6.2.1 General Definitions

The general class of functions we’ll be using for both interpolating and approximating
are called parametric curves. We can think of a curve as a squiggle in space, where the



6.2 Interpolation of Position

parameter controls where we are in the squiggle. The simplest example of a parametric
curve is our old line equation,

L(t) = Po+ (P1 — Po)t

Here ¢ controls where we are on the line, relative to Py and P;.

When curves are used for animation, our parameter is usually represented by u or 7.
We can think of this as representing time, although the units used don’t necessarily have
any relationship to seconds. In our discussion we will use u as the parameter to a uniform
curve Q such that Q(0) is the start of the curve and Q(1) is the end. When we want to use a
general parameterization, we will use 7. In this case, we usually set a time value #; for each
point P;; we expect to end up at position P; in space at time #;. The sequence fg, t1, ...,
is sorted (as are the corresponding points) so that it is monotonically increasing.

We can formally define a parametric curve as a function Q(u) that maps an interval of
real values (represented by the parameter u, as above) to a continuous set of points. When
mapping to R3, we commonly use a parametric curve broken into three separate functions,
one for each coordinate: Q(u) = (x(u), y(u), z(1)). This is also known as a space curve.

The term continuous in our definition is a difficult one to grasp mathematically. Infor-
mally, we can think of a continuous function as one that we can draw without ever lifting
the pen from the page—there are no gaps or jumps in the function. Formally, we represent
that by saying that a function f is continuous at a value xy if

lim £ = (x0)

In addition, we say that a function f (x) is continuous over an interval (a, b) if it is continuous
for every value x in the interval. We can also say that the function has positional, or C°,
continuity over the interval (a, b).

This can be taken further: a function f(x) has tangential, or C!, continuity across an
interval (a, b) if the first derivative f’(x) of the function is continuous across the interval.
In our case, the derivative Q'(u) for parameter u is a tangent vector to the curve at location
Q(u). Correspondingly, the derivative of a space curve is Q'(u) = (x'(w), Y’ (u), Z'(w)).

Occasionally, we may be concerned with C2 continuity, also known as curvature continu-
ity. A function f(x) has C2 continuity across an interval (a, b) if the second derivative f”(x)
of the function is continuous across the interval. Higher orders of continuity are possible,
but they are not relevant to the discussion that follows.

A few more definitions will be useful to us. The average speed r we travel along a curve
is related to the distance d traveled along the curve and the time it takes to travel that
distance, namely,

r=d/u

The instantaneous speed at a particular parameter u is the length of the derivative
vector Q’(u).

A parametric curve Q(u) is defined as smooth on an interval [a, b] if it has a continuous
derivative on [a, b] and Q’'(u) # 0 for all u in (a, b). For a given point P on a smooth curve
QO(u), we define a circle with first and second derivative vectors equal to those at P as

179



180 Interpolation

the osculating! circle. If the radius of the osculating circle is p, the curvature k at Pis 1/p.
The curvature at any point is always nonnegative. The higher the curvature, the more the
curve bends at that point; the curvature of a straight line is 0.

In general, it is not practical to construct a single, closed-form polynomial that uses all
of the sample points—most of the curves we will discuss use at most four points as their
geometric foundation. Instead, we will create a piecewise curve. This consists of curve
segments that each apply over a sequential subset of the points and are joined together to
create a function across the entire domain. How we create this joint determines the type of
continuity we will have in our function as whole. We can achieve C° continuity by ensuring
that the endpoint of one curve segment is equal to the start point of the next segment. In
general, this is desirable.

We can achieve C! continuity over the entire piecewise curve by guaranteeing that
tangent vectors are equal at the end of one segment and the start of the next segment.
A related form of continuity in this case is G! continuity, where the tangents at a pair of
segment endpoints are not necessarily equal but point in the same direction. In many cases
G' continuity is good enough for our purposes. And as one might expect, we can achieve
C? continuity by guaranteeing that the second derivative vectors are equal at the end of one
segment and the start of the next segment.

6.2.2 Linear Interpolation
6.2.2.1 Definition

The most basic parametric curve is our example above: a line passing through two points.
By using the parameterized line equation based on the two points, we can generate any point
along the line. This is known as linear interpolation and is the most commonly used form
of interpolation in game programming, mainly because it is the fastest. From our familiar
line equation,

O(u) = Py +u(Py — Po)
W€ can rearrange to get
Ow) = (1 —u)Py + uP

The value u is the factor we use to control our interpolation, or parameter. Recall that
if u is 0, Q(u) returns our starting point Py, and if u is 1, then Q(u) returns Pp, our
endpoint. Values of u between 0 and 1 will return a point along the line segment PyP;.
When interpolating, we usually care only about values of u within the interval [0, 1] and,
in fact, state that the interpolation is undefined outside of this interval.

It is common when creating parametric curves to represent them as matrix equations.
As we’ll see later, it makes it simple to set certain conditions for a curve and then solve for
the equation we want. The standard matrix form is

Ow)=U-M-G

where U is a row matrix containing the polynomial interpolants we’re using: 1, u, u?, u?,

and so on; M is a matrix containing the coefficients necessary for the parametric curve; and

! So called because it “kisses” up to the point.



6.2 Interpolation of Position

G is a matrix containing the coordinates of the geometry that defines the curve. In the case
of linear interpolation,

U= |u 1}
—1 1
M =
10
G = X0 Yo 20
X1 Y12

Note that the columns of M are the (u, 1) coefficients for Pg and Py, respectively.
With this formulation, the result UMG will be a 1 x 3 matrix:

UMG = [x) y@) ()]
= {(1 —wxo+uxy (I—wyo+uyr (1 —u)zo+uz;

This is counter to our standard convention of using column vectors. However, rather than
write out G as individual coordinates, we can write G as a column matrix of n points, where
for linear interpolation this is

Py
Py

G =

Then, using block matrix multiplication, the result UMG becomes
UMG = (1 —u)Py + uP

This form allows us to use a convenient shorthand to represent a general parameterized
curve without having to expand into three essentially similar functions.

Recall that in most cases we are given time values 7y and ¢ that are associated with points
Py and P, respectively. In other words, we want to start at point Py at time fo and end up
at point P at time 1. These times are not necessarily 0 and 1, so we’ll need to remap our
time value 7 in the interval [#g, #1] to a parameter u in the interval [0, 1], which we’ll use
in our original interpolation equation. If we want the percentage u that a time value ¢ lies
between ty and ¢{, we can use the formula

t—1o
= 6.1
" h—1 ©.1)

Using this parameter u with the linear interpolation will give us the effect we desire. We
can use this approach to change any curve valid over the interval [0, 1] and using u as a
parameter to be valid over [#y, 1] and using ¢ as a parameter.

181



182 Interpolation

Source Code

Linear

6.2.2.2 Piecewise Linear Inferpolation

Pure linear interpolation works fine if we have only two values, but in most cases, we will
have many more than two. How do we interpolate among multiple points? The simplest
method is to use piecewise curves; that is, we linearly interpolate from the first point to the
second, then from the second point to the third, and so on, until we get to the end. For each
pair of points P; and P;;1, we use Equation 6.1 to adjust the time range [#;,#;11] to [0, 1]
so we can interpolate properly.

For a given time value ¢, we need to find the stored time values #; and #;11 such that
t; <t <tiy1. From there we look up their corresponding P; and P;; values and interpo-
late. If we start with n+4 1 points, we will end up with a series of n segments labeled
00,01, ..,0n—1. Each Q; is defined by points P; and P;;| where

Qi(w) = (1 —w)P; +uPjiy;

and Q;(1) = Q;+1(0). This last condition guarantees C 0 continuity. This is expressed as code
as follows:

IvVector3 EvaluatePiecewiseLinear( float t, unsigned int count,
const IvVector3* positions,
const float* times)

// handle boundary conditions

if ( t <= times[0] )
return positions[0];
else if ( t >= times[count-1]1 )

return positions|[count-1];

// find segment and parameter
unsigned int i;

for (i = 0; i < count-1; ++i )
{
if ( t < times[i+1] )
break;
}
float t0 = times[i];
float tl = times[i+1];
float u = (t - t0)/(tl - t0);
//evaluate

return (1-u)*positions[i] + u*positions[i+1];

In the pseudocode we found the subcurve by using a straight linear search. For large sets
of points, using a binary search will be more efficient since we’ll be storing the values in
sorted order. We can also use temporal coherence: since our time values won’t be varying
wildly and most likely will be increasing in value, we can first check whether we lie in the
interval [#;, #;41] from the last frame and then check subsequent intervals.

This works reasonably well and is quite fast, but as Figure 6.1 demonstrates, will lead to
sharp changes in direction. If we treat the piecewise interpolation of n 4 1 points as a single
function f(r) over [f9,t,], we find that the derivative f'(¢) is discontinuous at the sample



6.2 Interpolation of Position

Figure 6.1. Piecewise linear interpolation.

P, Q, P

P

Figure 6.2. Hermite curve.

points, so f(¢) is not C! continuous. In animation this expresses itself as sudden changes in
the speed and direction of motion, which may not be desirable. Despite this, because of its
speed, piecewise linear interpolation is a reasonable choice if the slopes of the piecewise
line segments are relatively close. If not, or if smoother motion is desired, other methods
using higher-order polynomials are necessary.

6.2.3 Hermite Curves
6.2.3.1 Definition

The standard method of improving on piecewise linear equations is to use piecewise cubic
curves. If we control the curve properly at each point, then we can smoothly transition from
one point to the next, avoiding the obvious discontinuities. In particular, what we want to
do is to set up our piecewise curves so that the tangent at the end of one curve matches
the tangent at the start of the next curve. This will remove the first-order discontinuity
at each point—the derivative will be continuous over the entire time interval that we are
concerned with.

Why a cubic curve and not a quadratic curve? Take a look at Figure 6.2. We have set
two positions Py and Py, and two tangents P( and P/ . Clearly, a line won’t pass through the
two points and also have a derivative at each point that matches its corresponding tangent
vectors. The same is true for a parabola. The next order curve is cubic, which will satisfy
these conditions. Intuitively, this makes sense. A line is constrained by two points, or one

Source Code

Hermite

183



184 Interpolation

point and a vector; a parabola can be defined by three points, or by two points and a tangent;
and a cubic curve can be defined by four points, or two points and two tangents.

Using our given constraints, or boundary conditions, let’s derive our cubic equation.
A generalized cubic function and corresponding derivative are

O(u) = au® +bu’ +cu+D 6.2)

Q'(u) = 3au” + 2bu+ ¢ (6.3)

We’ll solve for our four unknowns a, b, ¢, and D by using our four boundary conditions.
We’ll assume that when u =0, Q(0) =Py and Q'(0) = P(’). Similarly, at u=1, Q(1)=P;
and Q'(1) =P]. Substituting these values into Equations 6.2 and 6.3, we get

Q0)=D = Py 6.4)
O(l)=a+b+c+D =P (6.5)
Q'(0) =c =P (6.6)
Q()=3a+2b+c=P| (6.7)

We can see that Equations 6.4 and 6.6 already determine that ¢ and D are P, and Py,
respectively. Substituting these into Equations 6.5 and 6.7 and solving for a and b gives

a=2(P)—P)+Py,+P
b = 3(P; — Py) — 2P, — P}
Substituting our now known values for a, b, ¢, and D into Equation 6.2 gives
O(u) = [2(Py — P1) +P) +P] u® + [3(P1 — Po) — 2P) — P} ] u* + Pju+ Py
This can be rearranged in terms of the boundary conditions to produce our final equation:
O(u) = Qu® — 3u* + )Py 4 (— 2u® + 3u*)Py + (u® — 2u* + )Py + (u® — u*)P]

This is known as a Hermite curve. We can also represent this as the product of a matrix
multiplication, just as we did with linear interpolation. In this case, the matrices are

U= u?* u 1

[ 2 2 1 1
3 3 -2 -1
M =
0 0 1 0
1 0 0 0
b,
P
G=|"'
P
P




6.2 Interpolation of Position 185

We can use either formulation to build piecewise curves just as we did for linear inter-
polation. As before, we can think of each segment as a separate function, valid over the
interval [0, 1]. Then to create a C! continuous curve, two adjoining segments Q; and Q;41
would have to have matching positions such that

0i(1) = Qi+1(0)

and matching tangent vectors such that
Qi) = Q41 (0)

What we end up with is a set of sample positions {Py, . . . , P,}, tangent vectors {P6, e, P;,},
and times {tg, . . ., #,}. At a given point adjoining two curve segments Q; and Q;y1,

0i(1) = Qi11(0) = Piyy
Qi) = Qi (0) =Py,

Figure 6.3 shows this situation in the piecewise Hermite curve.

The above assumes that our time values occur at uniform intervals; that is, there is a
constant At between g and 71, and #; and #;, and so forth. However, as mentioned under
linear interpolation, the difference between time values #; to t;41 may vary from segment to
segment. The solution is to do the same thing we did for linear interpolation: if we know
that a given value ¢ lies between ¢; and 741, we can use Equation 6.1 to normalize our time
value to the range O < u < 1 and use that as our parameter to curve segment Q;.

This is equivalent to using nonuniform Hermite splines, where the final parameter value
is not necessarily equal to 1. These can be derived similarly to the uniform Hermite splines.
Assuming a valid range of [0, #], their general formula is

203 372 —213 372
Q(l): T_T+1 P0+ 73“1‘72 Pl
o i fy
3 2 3 2
t 2t t t t
gt Py + 3—2>P’1
oo o

In our case, for each (¢, #;11) pair, tf = t;y1 — t;.

Figure 6.3. Piecewise Hermite curve. Tangents at P; match direction and magnitude.



186 Interpolation

6.2.3.2 Manipulating Tangents

The tangent vectors are used for more than just maintaining first derivative continuity across
each sample point. Changing their magnitude also controls the speed at which we move
through the point and consequently through the curve. They also affect the shape of the
curve. Take a look at Figure 6.4. The longer the vector, the faster we will move and the
sharper the curvature. We can create a completely different curve through our sample points,
simply by adjusting the tangent vectors.

There is, of course, no reason that the tangents Q}(1) and Q; +1(0) have to match. One
possibility is to match the tangent directions but not the tangent magnitudes—this gives
us G! continuity. The resulting function has a discontinuity in its derivative but usually
still appears smooth. It also has the advantage that it allows us to control how our curve
looks across each segment a little better. For example, it might be that we want to have
the appearance of a continuous curve but also be able to have more freedom in how each
individual segment is shaped. By maintaining the same direction but allowing for differ-
ent magnitudes, this function provides for the kind of flexibility we need in this instance
(Figure 6.5).

Another possibility is that the tangent directions don’t match at all. In this case, we’ll
end up with a kink, or cusp, in the whole curve (Figure 6.6). While not physically realistic,

(a)

Figure 6.4. Hermite curve with (a) small tangent and low curvature and (b) large tangent
and higher curvature.

Figure 6.5. Piecewise Hermite curve. Tangents at P; have the same direction but differing
magnitudes.



6.2 Interpolation of Position

Figure 6.6. Piecewise Hermite curve. Tangents at P; have differing directions and
magnitudes.

Figure 6.7. Possible interface for Hermite curves, showing in—out tangent vectors.

it does allow for sudden changes in direction. The combination of all the possibilities at
each sample point—equal tangents, equal tangent directions with nonequal magnitudes, and
nonequal tangent directions—gives us a great deal of flexibility in creating our interpolating
function across all the sample points. To allow for this level of control, we need to set two
tangents at each internal sample point P;, which we’ll express as P;, | (the “incoming”
tangent) and Pl’-’0 (the “outgoing” tangent). Alternatively, we can think of a curve segment
as being defined by two points P; and P;y1, and two tangents Plf’0 and P; 1

One question remains: How do we generate these tangents? One simple answer is that
most existing tools that artists will use, such as Autodesk’s Maya and 3D Studio Max,
provide ways to set up Hermite curves and their corresponding tangents. When exporting
the sample points for subsequent animation, we export the tangents as well. Some tweaking
may need to be done to guarantee that the curves generated in internal code match that in
the artist program; information on a particular representation is usually available from the
manufacturer.

Another common way of generating Hermite data is using in-house tools built for a
specific purpose, for example, a tool for managing paths for cameras and other animated
objects. In this case, an interface will have to be created to manage construction of the path.
One possibility is to click to set the next sample position, and then drag the mouse away
from the sample position to set tangent magnitude and direction. A line segment with an
arrowhead can be drawn showing the outgoing tangent, and a corresponding line segment
with a tail drawn showing the incoming tangent (Figure 6.7).

We will need to modify the tangents so that they can have either different magnitudes
or different directions. Many drawing programs control this by allowing three different
tangent types. For example, Corel Paint Shop Pro refers to them as symmetric, asymmetric,

187



188 Interpolation

Source Code

AutoHermite

and cusp. With the symmetric node, clicking and dragging on one of the segment ends
rotates both segments and changes their lengths equally, to maintain equal tangents. With
an asymmetric node, clicking and dragging will rotate both segments to maintain equal
direction but change only the length of the particular tangent clicked on. And with a cusp,
clicking and dragging a segment end changes only the length and direction of that tangent.
This allows for the full range of possibilities in continuity previously described.

6.2.3.3 Automatic Generation of Hermite Curves

Suppose we don’t need the full control of generating tangents for each sample position.
Instead, we just want to automatically generate a smooth curve that passes through all the
sample points. To do this, we’ll need to have a method of creating reasonable tangents for
each sample. One solution is to generate a quadratic function using a given sample point
and its two neighbors, and then take the derivative of the function to get a tangent value at
the sample point. A similar possibility is to take, for a given point P;, the weighted average
of (Pi+1 — P;) and (P; — P;—1). However, for both of these it still will be necessary to set a
tangent for the two endpoints, since they have only one neighboring point.

Another method creates tangents that maintain C? continuity at the interior sample points.
To do this, we’ll need to solve a system of linear equations, using our sample points as the
known quantities and the tangents as our unknowns. For simplicity’s sake, we’ll assume
we’re using uniform curves, and begin by computing the first derivative of the Hermite
uniform curve Q:

Ql(u) = (61> — 6u)P; + ( — 61 + 6u)Piy1 + Bu> — 4u+ DP, + Bu® — 2u)P}, |
and from that the second derivative Q”:
Qi () = (12u — 6)P; + (— 12u+ 6)Pi1| + (6u — HP; + (6u — 2)P;

At a given interior point P;;1, we want the incoming second derivative Pz/'/+1 | to equal
the outgoing second derivative P;ﬁIr 10- We'll assume that each curve segment has a valid
parameterization from O to 1, so we want

Q/(1) = Q4 (0)
6P; — 6P;y1 +2P; + 4P, | = —6P; | +6P; 12 — 4P/ | — 2P},

This can be rewritten to place our knowns on one side of the equation and unknowns on
the other:

2P+ 8P}, | +2P},5 = 6[(Piy2 — Piy1) + (Pis1 — Pi)]
This simplifies to
Pi+4P; | + P, =3(Pis2— Pi)

Applying this to all of our sample points {Py, ..., P,} creates n — 1 linear equations. This
can be written as a matrix product as follows:



0
0

0
0

1
4

0
1

Py
P

P/

n—

/
L Prl -

1

[ 3(P—Py) ]
3(P3—Py)
3(Pn—l _Pn—3)
L 3(Pn_Pn—2) i

6.2 Interpolation of Position

This means we have n — 1 equations with n+ 1 unknowns. To solve this, we will need
two more equations. We have already constrained our interior tangents by ensuring C?
continuity; what remains is to set our two tangents at each extreme point. One possibility
is to set them to given values v and v, or

Qy(0) =Py =vo

Q_i(D=P,=v

(6.8)
(6.9)

This is known as a clamped end condition, and the resulting curve is a clamped cubic spline.
Our final system of equations is

1
1
0

0
0
0

0
0
0

0
1
4

0
0
1

1
0
0

4
1
0

1
4
0

0
1

Py
P

P/

P/

n

1

n—1

Vo
3(P2 — Po)
3(P3—Py)

3(Pn—l _Pn—3)
3(Pn - Pn—2)

Vi

Solving this system of equations gives us the appropriate tangent vectors. This is not as
bad as it might seem. Because this matrix (known as a tridiagonal matrix) is sparse and
extremely structured, the system is very easy and efficient to solve using a modified version

of Gaussian elimination known as the Thomas algorithm.

If we express our tridiagonal matrix generally as

bo
ai

0

co
by

az

0
C1

by

0
0

2

an—2

0
0

bn—2
an—1

0

0
0
0

Cn—-2
bnfl

An

Cn—1

by

o
[ X0 1 d;
X1 ds

Xp—1 dyp2
| Xn | dn—1
L dn

189



190 Interpolation

Then we can forward substitute to create array A’ as follows:

/_
a;=0
/_
b =1
¢ :
’ i » i=0
¢ = .
5 C‘,’la l1<i<n-—1
i i i
o . i=0
d={ 7
[ di—d,{,lai ol <i<
b~ - =t=n
,,

Here A’ and the others represent a modification of their respective counterparts, not a
derivative.
We can then solve for x by using back substitution:

!
X, =d,

xi=di—cixip1 ;3 0<i<n-—1

This is significantly faster than blindly applying Gaussian elimination. In addition to the
speed-up, we can also use less space than Gaussian elimination by storing our matrix as
three n + 1-length arrays: a, b, and c. So the fact that our matrix is tridiagonal leads to a
great deal of savings.

6.2.3.4 Natural End Conditions
Source Code

In the preceding examples, we generated splines assuming that the beginning and end

Autonermite tangents were clamped to values set by the programmer or the user. This may not be
convenient; we may want to avoid specifying tangents at all. An alternative approach is to
set conditions on the end tangents, just as we did with the internal tangents, to reduce the
amount of input needed.

One such possibility is to assume that the second derivative is O at the two extremes;
that is, Q;(0)=Q,/_,(1)=0. This is known as a relaxed or natural end condition, and
the spline created is known as a natural spline. As the name indicates, this produces a
very smooth and natural-looking curve at the endpoints, and in most cases, this is the end
condition we would want to use.

With a natural spline, we don’t need to specify tangent information at all—we can
compute the two unconstrained tangents from the clamped spline using the second deriva-
tive condition.

At point Py, we know that

0 = Qg(0)
= —6P) + 6P| — 4P — 2P|

As before, we can rewrite this so that the unknowns are on the left side and the knowns on
the right:

4P| + 2P} = 6P| — 6P



6.2 Interpolation of Position

or
ZP(’) +P] =3(P; — Po) (6.10)
Similarly, at point P,,, we know that

0=Q,_i(1)
= 6P,_| — 6P, +2P,_, +4P!

n

This can be rewritten as
P;,_l + ZP;, =3P, —P,_1) (6.11)

We can substitute Equations 9.12 and 9.13 for our first and last equations in the clamped
case, to get the following matrix product:

21 0 0 .- 0 0 [ 3 —Py) |
14 1 0 -0 of[P] 3(Py — Po)
01 4 1 - 0 0| P 3(P3—Py)
00 - 1 4 1 0 [P_,| |3Pui—Pus)
00 -0 1 4 1||P | 3(Py — Po_s)
00 -0 0 1 2 | 3Py —Pu) |

Once again, by solving this system of linear equations, we can find the values for our
tangents.

6.2.4 Catmull-Rom Splines

An alternative for automatic generation of a parametric curve is the Catmull-Rom spline.
This takes a similar approach to some of the initial methods we described for Hermite
curves (tangent of parabola, weighted average), where tangents are generated based on the
positions of the sample points. The standard Catmull-Rom splines create the tangent for a
given sample point by taking the neighboring sample points, subtracting to create a vector,
and halving the length. So, for sample P;, the tangent P; is

1
P = i(PiJr] —Pi1)

If we substitute this into our matrix definition of a Hermite curve between P; and P;. 1, this
gives us

2 =2 1 1 P;

-3 3 -2 -1 Piy
0 0 1 0f|5Py1—Piip)
1 0 0 0f| i®Ps2—P)

Oiw)= ¥ u?* u 1

Source Code
Catmull

191



192 Interpolation

We can rewrite this in terms of P;_1, P;, P11, and P;y; to get

-1 3 =3 1] [P
1l 2 =5 4 —1|]| P
Oiw) = |u® uw® u 1|z '
21-1 0 1 0| |Piy

0 2 0 0] |Pir2

This provides a definition for curve segments Q1 to 9, >, so it can be used to generate a
C! curve from P; to P,—_1. However, since there is no P_; or P,41, we once again have the
problem that curves Qp and O, are not valid due to undefined tangents at the endpoints.
And as before, these either can be provided by the artist or programmer, or automatically
generated. Parent [117] presents one technique. For Py, we can take the next two points, P
and P;, and use them to generate a new phantom point, Py + (P — P3). If we subtract Py
from the phantom point and halve the length, this gives a reasonable tangent for the start of
the curve (Figure 6.8). The tangent at P,, can be generated similarly.

Since our knowns for the outer curve segments are two points and a tangent, another
possibility is to use a quadratic equation to generate these segments. We can derive this in
a similar manner as the Hermite spline equation. The general quadratic equation will have
the form

Q) = au” +bu+C (6.12)
For the case of Qg, we know that

Q0(0)=C =Py
Oo(l)=a+b+C =P
Q)(1)=2a+b =P,

1
= (P, P
2(2 0)

Solving for a, b, and C and substituting into Equation 6.12, we get

1 1 3 1
Oo(u) = (2P0 — P+ 2P2) u? + <—2P() + 2P| — 2P2) u+ Py

Figure 6.8. Automatic generation of tangent vector at Py, based on positions of P; and P;.



6.2 Interpolation of Position

Rewriting in terms of Py, Py, and P, gives

0oty = ( L2 3+1P+( 2+2>P+12 L) p
w=|-u"—-u —u u —u"—~u
0 ) ) 0 1 ) ) 2

As before, we can write this in matrix form:

-3 4 —1| |P;

N =

Qo(u) = [uz u 1}

A similar process can be used to derive Q,,_1:

1 =2 1| [Py
—1 0 1| (P
0o 2 o] P,

Qn71(u)=[u2 u 1}

6.2.5 Kochanek-Bartels Splines
An extension of Catmull-Rom splines are Kochanek—Bartels splines [91]. Like Catmull—
Rom splines, the tangents are generated based on the positions of the sample points. *®"*e*
However, rather than generating a single tangent at each point, Kochanek—Bartels splines
separate the incoming and outgoing tangents. In addition, rather than using a fixed function
based on the preceding and following points, the tangents are computed from a weighted
sum of two vectors: the difference between the following and current point P;+| — P;, and
the difference between the current point and the preceding point P; — P;_1.

The weights in this case are based on three parameters: tension (represented as t),
continuity (represented as y), and bias (represented as ). Because of this, they are also
often called TCB splines.

The formulas for the tangents at a sample P; on a Kochanek—Bartels spline are as follows:

1—1)(1—y)1 - 1—1)1 1
[ = d =X 27/)( 'B)(Pi+1 _Pi)+( 7)( -;)/)( +ﬁ)(Pi_Pi—1)
1-1)1 1— 1—7)(1—y)1
P, = (I —7X ﬂ;V)( ﬂ)(Pl_+1 _Pi)+( 7)( 2J/)( +’3)(Pi—Pi—])

Note that each of these parameters has a valid range of [—1, 1]. Also note that if all are
set to 0, then we end up with the formula for a Catmull-Rom spline.

Each parameter has a different effect on the shape of the curve. For example, as the
tension at a given control point varies from —1 to 1, the curve passing through the point will
change from a very rounded curve to a very tight curve. One can think of it as increasing
the influence of the control point on the curve (Figure 6.9a).

Continuity does what one might expect—it varies the continuity at the control point.
A continuity setting of 0 means that the curve will have C! continuity at that point. As the
setting approaches —1 or 1, the curve will end up with a corner at that point; the sign of the
continuity controls the direction of the corner (Figure 6.9b).

193



194 Interpolation

SAVAN
e

Figure 6.9. Kochanek-Bartels curves. (a) Effect of low versus high tension at central
point, (b) effect of low versus high continuity at central point, and (c) effect of low versus
high bias at central point.

Bias varies the effect of P;;1 and P;_; on the tangents. A bias near —1 means that
P;y1 — P; will have the most effect on the tangents; this is called undershooting. If the bias
is near 1, then P; — P;_ will have the most effect; this is called overshooting (Figure 6.9c).

Note that these splines have the same problem as Catmull-Rom splines with undefined
tangents at the endpoints, as there is only one neighboring point. As before, this can be
handled by the user setting these tangents by hand or building quadratic curves for the
first and last segments. The process for generating these is similar to what we did for
Catmull-Rom splines.

Kochanek—Bartels splines are useful because they provide more control over the resulting
curve than straight Catmull-Rom splines, and are often used in three-dimensional (3D)
packages as an interface to Hermite splines. Because of this, it is useful to be aware of them
for use in internal tools and for handling when exporting from commercial software.



6.2 Interpolation of Position

6.2.6 Bézier Curves
6.2.6.1 Definition

The previous techniques for generating curves from a set of points meet the functional
requirements of controlling curvature and maintaining continuity. However, other than
Hermite curves where the tangents are user-specified, they are not so good at providing a
means of controlling the shape that is produced. It is not always clear how adjusting the
position of a point will change the curve produced, and if we’re using a particular type of
curve and want to pass through a set of fixed points, there is usually only one possibility.

Bézier curves were created to meet this need. They were devised by Pierre Bézier for
modeling car bodies for Renault and further refined by Forrest, Gordon, and Riesenfeld.
A cubic Bézier curve uses four control points: two endpoints Py and P3 that the curve
interpolates, and two points Py and P; that the curve approximates. Their positions act,
as their name suggests, to control the curve. The convex hull, or control polygon, formed
by the control points bounds the curve (Figure 6.10). Another way to think of it is that the
curve mimics the shape of the control polygon. Note that the four points in this case do
not have to be coplanar, which means that the curve generated will not necessarily lie on
a plane either.

The tangent vector at point P points in the same direction as the vector P; — Py. Simi-
larly, the tangent at P3 has the same direction as P3 — P,. As we will see, there is a definite
relationship between these vectors and the tangent vectors used in Hermite curves. For
now, we can think of the polygon edge between the interpolated endpoint and neighboring
control point as giving us an intuitive sense of what the tangent is like at that point.

So far we’ve only shown cubic Bézier curves, but there is no reason why we couldn’t use
only three control points to produce a quadratic Bézier curve (Figure 6.11) or more control
points to produce higher-order curves. A general Bézier curve is defined by the function

Q) = Pilyi(w)
i=0

where the set of P; are the control points, and

Ty = ") ul @ =y
l

Figure 6.10. Examples of cubic Bézier curve showing convex hull.

Source Code

Bézier

195



196 Interpolation

Figure 6.11. Example of quadratic Bézier curve showing convex hull.

ny n!
i) ilm=0)!

The polynomials generated by J,,; are also known as the Bernstein polynomials, or Bernstein
basis.

In most cases, however, we will use only cubic Bézier curves. Higher-order curves
are more expensive and can lead to odd oscillations in the shape of the curve. Quadratic
curves are useful when processing power is limited (a classic example is the game Quake 3)
but don’t have quite the flexibility of cubic curves. For example, they don’t allow for the
familiar S shape in Figure 6.10b. To generate something similar with quadratic curves
requires two piecewise curves, and hence more data.

The standard representation of an order n Bézier curve is to use an ordered list of points
Po, ..., P, as the control points. Using this representation, we can expand the general
definition to get the formula for the cubic Bézier curve:

where

Ow) = (1 —u)*Py + 3u(l — )Py + 3u*(1 — u)Ps + u’ Ps (6.13)

The matrix form is

|
W
w
o
o o o
T
[\

We can think of the curve as a set of affine combinations of the four points, where the
weights are defined by the four basis functions J3 ;. We can see these basis functions graphed
in Figure 6.12. At a given parameter value u, we grab the four basis values and use them to
compute the affine combination.

As hinted at, there is a relationship between cubic Bézier curves and Hermite curves.
If we set our Hermite tangents to 3(P; — Pg) and 3(P3 — P»), substitute those values into
our cubic Hermite equation, and simplify, we end up with the cubic Bézier equation.



6.2 Interpolation of Position 197

0 1

Figure 6.12. Cubic Bézier curve basis functions.

Figure 6.13. Example interface for Bézier curves.

6.2.6.2 Piecewise Bézier Curves

As with linear interpolation and Hermite curves, we can interpolate a curve through more
than two points by creating curve segments between each neighboring pair of interpolation
points. Many of the same principles apply with Bézier curves as did with Hermite curves.
In order to maintain matching direction for our tangents, giving us G' continuity, each
interpolating point and its neighboring control points need to be collinear. To obtain equal
tangents, and therefore C! continuity, the control points need to be collinear with and
equidistant to the shared interpolating point. Drawing a line segment through the three
points gives a three-lobed barbell shape, seen in Figure 6.13.

The barbell makes another very good interface for managing our curves. If we set up our
interpolating point as a pivot, then we can grab one neighboring control point and rotate it
around to change the direction of the tangent. The other neighboring control point will rotate
correspondingly to maintain collinearity and equal distance, and thereby C! continuity.
If we drag the control point away from our interpolating point, that will increase the length
of our tangent. We can leave the other control point at the original distance, if we like, to cre-
ate different arrival/departure speeds while still maintaining G' continuity. Or, we can match
its distance from the sample as well, to maintain C 1 continuity. And of course, we can move
each neighboring control point independently to create a cusp at that interpolating point.



198 Interpolation

This seems very similar to our Hermite interface, so the question may be, why use
Bézier curves? The main advantage of the Bézier interface over the Hermite interface is
that, as mentioned, the control points act to bound the curve, and so give a much better idea
of how the shape of the curve will change as we move the control points around. Because
of this, many drawing packages use Bézier curves instead of Hermite curves.

While in most cases we will want to make use of user-created data with Bézier curves, it
is sometimes convenient to automatically generate them. One possibility is to use the mod-
ification of the matrix technique we used with Hermite curves. Alternatively, Parent [117]
provides a method for automatically generating Bézier control points from a set of sample
positions, as shown in Figure 6.14. Given four points P;_1, P;, Piy1, and Py, we want to
compute the two control points between P; and P; ;. We compute the tangent vector at P;
by computing the difference between P;; and P;_;. From that we can compute the first
control point as P; + 1/3(P;+1 — P;—1). The same can be done to create the second control
point as P;;1 — 1/3(Pj+2 — P;). This is very similar to how we created the Catmull-Rom
spline, but with tangents twice as large in magnitude.

6.2.7 Other Curve Types

souce Code  The first set of curves we looked at were interpolating curves, which pass through all the
given points. With Bézier curves, the resulting curve interpolates two of the control points,
while approximating the others. B-splines are a generalization of this—depending on the
form of the B-spline, all or none of the points can be interpolated. Because of this, in
a B-spline all of the control points can be used as approximating points (Figure 6.15).
In fact, B-splines are so flexible they can be used to represent all of the curves we have

1/3(P

. =P) 1/3(P,-P,)

i+2

i+1

i-1 Pi+2

Figure 6.14. Automatic construction of approximating control points with Bézier curve.

Figure 6.15. B-spline approximating curve.



6.2 Interpolation of Position

described so far. However, with flexibility comes a great deal of complexity. Because of
this, B-splines are not yet in common usage in games, either for animation or surface
construction.

B-splines are computed similarly to Bézier curves. We set up a basis function for each
control point in our curve, and then for each parameter value u, we multiply the appropriate
basis function by its point and add the results. In general, this can be represented by

Q) =>_ PiBi(u)
i=0

where each P; is a point and B; is a basis function for that point. The basis functions in
this case are far more general than those described for Bézier curves, which gives B-splines
their flexibility and their power.

Like our previous piecewise curves, B-splines are broken into smaller segments. The
difference is that the number of segments is not necessarily dependent on the num-
ber of points, and the intermediary point between each segment is not necessarily one
of our control points. These intermediary points are called knots. If the knots are
spaced equally in time, the curve is known as a uniform B-spline; otherwise, it is a
nonuniform B-spline.

B-splines are not often used for animation; they are more commonly used when building
surface representations. A full description of the power and complexity of B-splines is out
of the purview of this text, so for those who are interested, more information on B-splines
and other curves can be found in Bartels et al. [10], Hughes et al. [82], and Rogers [130].

Another issue is that the curves we have discussed so far have the property that any affine
transformation on the set of points (or tangents, in the case of Hermite curves) generating
the curve will transform the curve accordingly. So, for example, if we want to transform
a Bézier curve from the local frame to the view frame, all we need to do is transform the
control points and then generate the curve in the view frame.

However, this will not work for a perspective transformation (see Chapter 7), due to
the need for a reciprocal division at each point on the curve. The answer is to apply a
process similar to the one we will use when transforming points, by adding an additional
parameterized function w(u) that we divide by when generating the points along the curve.
This is known as a rational curve.

There are a number of uses for rational curves. The first has already been stated: we can
use it as a more efficient method for projecting curves. But it also allows us to set weights
w; for the control points so that we can direct the curve to pass closer to one point or
another. Another use of rational curves is to create conic section curves, such as circles
and ellipses. Nonrational curves, since they are polynomials, can only approximate conic
sections.

The most commonly used of the rational curves are nonuniform rational B-splines, or
NURBS. Since they can produce conic as well as general curves and surfaces, they are
extremely useful in computer-aided design (CAD) systems and modeling for computer
animation. Like B-splines, rational curves and particularly NURBS are not yet used much
in games because of their relative performance cost and because of concern by artists about
lack of control.

199



200 Interpolation

6.3 Interpolation of Orientation

So far in our exploration of animation we’ve considered only interpolation of position. For
a coordinate frame, this means only translating the frame in space, without considering
rotation. This is fine for moving an object along a path, assuming we wanted it to remain
oriented in the same manner as its base frame; however, generally we don’t. One possibility
is to align the forward vector of the object to the tangent vector of the curve, and use either
the second derivative vector or an up vector to build a frame. This will work in general for
airplanes and missiles, which tend to orient along their direction of travel. But suppose we
want to interpolate a camera so that it travels sideways along a section of curve, or we’re
trying to model a helicopter, which can face in one direction while moving in another.
Another reason we want to interpolate orientation is for the purpose of animating a
character. Usually characters are broken into a scene-graph-like data structure, called the
skeleton, where each level, or bone, is stored at a constant translation from its parent, and
only relative rotation is changed to move a particular node (Figure 6.16). So to move a

Figure 6.16. Example of skeleton showing relationship between bones.



6.3 Interpolation of Orientation 201

Figure 6.17. Relative bone poses for bending arm.

forearm, for example, we rotate it relative to an upper arm (Figure 6.17). Accordingly,
we can generate a set of key frames for an animated character by storing a set of poses
generated by setting rotations at each bone. To animate the character, we interpolate from
one key frame rotation to another.

As we shall see, when interpolating orientation we can’t quite use the same techniques as
we did with position. Rotational space doesn’t behave in the same way as positional space;
we’ll be more concerned with interpolating along the surface of a sphere instead of along
a line. As part of this, we’ll revisit the representations we covered in Chapter 5, discussing
the pros and cons of each representation for handling the task of interpolation.

6.3.1 General Discussion

Our interpolation problem for position was to find a space curve—a function given a time
parameter that returns a position—that passes through our sample points and maintains our
desired curvature at each sample point. The same is true of interpolating orientation, except
that our curve doesn’t pass through a series of positions, but a series of orientations.

We can think of this as wanting to interpolate from one coordinate frame to another.
If we were simply interpolating two vectors vi and v2, we could find the rotation between
them via the axis—angle representation (6,T), and then interpolate by rotating v; as

v(t) = R(t0,T)v

In other words, we linearly interpolate the angle from O to 6 and continually apply the
newly generated rotation to vj to get our interpolated orientations. But for a coordinate
frame, we need to interpolate three vectors simultaneously. We could use the same process



202 Interpolation

Source Code
[Dermo |

Euler

Source Code
[ Dermo

LerpSlerp

for all three basis vectors, but it’s not guaranteed that they will remain orthogonal. What
we would need to do is find the overall rotation in axis—angle form from one coordinate
frame to another, and then apply the process described. This is not a simple thing to do, and
as it turns out, there are better ways.

However, for Euler angles and axis—angle formats, we can use this to interpolate simple
cases of rotation around a single axis. For instance, if we’re interpolating from (90, 0, 0)
to (180, 0, 0), we can linearly interpolate the first angle from 90 degrees to 180 degrees.
Or, with an axis—angle format, if the rotation is from the reference orientation to another
orientation, again we only need to interpolate the angle. Using this method also allows for
interpolations over angles greater than 360 degrees. Suppose we want to rotate twice around
the z-axis and represent this as only two values. We could interpolate between the two x-y-z
Euler angles (0, 0, 0) and (0, 0, 4). As we interpolate from O to 1, our object will rotate
twice. More sample orientations are needed to do this with matrices and quaternions.

But extending this to more complex cases does not work. Suppose we are using Euler
angles, with a starting orientation of (0, 90, 0) and an ending orientation of (90, 45, 90).
If we linearly interpolate the angles to find a value halfway between them, we get (45, 67.5,
45). But this is wrong. One possible value that is correct is (90, 22.5, 90). The consequence
of interpolating linearly from one sequence of Euler angles to another is that the object
tends to sidle along, rotating around mostly one axis and then switching to rotations around
mostly another axis, instead of rotating around a single axis, directly from one orientation
to another.

We can mitigate this problem by defining Hermite or higher-order splines to better control
the interpolation, and some 3D modeling packages provide output to do just that. However,
you may not want to dedicate the space for the intermediary key frames or the processing
power to perform the spline interpolation, and it’s still an approximation. For more complex
cases, the only two formats that are practical are matrices and quaternions, and as we’ll see,
this is where quaternions truly shine.

There are generally two approaches used when interpolating matrices and quaternions
in games: linear interpolation and spherical linear interpolation. Both methods are usually
applied piecewise between each orientation sample pair, and even though this will gener-
ate discontinuities at the sample points, the artifacts are rarely noticeable. While we will
mention some ways of computing cubic curves, they generally are just too expensive for
the small gain in visual quality.

6.3.2 Linear Interpolation

By using the scalar multiplication and addition operations, we can linearly interpolate
rotation matrices and quaternions just as we did vectors. Let’s look at a matrix example
first. Consider two orientations: one represented as the identity matrix and the other by a
rotation of 90 degrees around the z-axis. Using linear interpolation to find the orientation
halfway between the start and end orientations, we get

1 1
100 010 Il
1 1 L
5[0 T oj+5[-1 0 0l=|-5 30
00 1 00 1 0 0 1



6.3 Interpolation of Orientation 203

The result is not a well-formed rotation matrix. The basis vectors are indeed perpendicular,
but they are not unit length. In order to restore this, we need to perform Gram—Schmidt
orthogonalization, which is a rather expensive operation to perform every time we want to
perform an interpolation.

With quaternions we run into some problems similar to those encountered with matrices.
Suppose we perform the same interpolation, from the identity quaternion to a rotation
of 90 degrees around z. This second quaternion is («/5/2, 0,0, ﬁ/Z). The resulting
interpolated quaternion when ¢ = 1/2 is

(V2 V2

1
= 2(1,0,0,0)+ - XZ.0,0, X2
r=3 T3\ 2 2
2
Lﬁ’o’o,ﬁ
4 4

The length of r is 0.9239—-clearly, not 1. With matrices, we had to reorthogonalize after per-
forming linear interpolation; with quaternions we will have to renormalize. Fortunately, this
is acheaper operation than orthogonalization, so when interpolating orientation, quaternions
are our preferred format.

In both cases, this happens because linear interpolation has the effect of cutting across
the arc of rotation. If we compare a vector in one orientation with its equivalent in the other,
we can get some sense of this. In the ideal case, as we rotate from one vector to another, the
tips of the interpolated vectors trace an arc across the surface of a sphere (Figure 6.18). But
as we can see in Figure 6.19, the linear interpolation is following a line segment between
the two tips of the vectors, which causes the interpolated vectors to shrink to a length of 1/2
at the halfway point, and then back up to 1.

Another problem with linear interpolation is that it doesn’t move at a constant rate of
rotation. Let’s divide our interpolation at the ¢ values 0, 1/4, 1/2, 3/4, and 1. In the ideal
case, we’ll travel one-quarter of the arc length to get from orientation to orientation.

However, when we use linear interpolation, the ¢ value doesn’t interpolate along the arc,
but along the chord that passes between the start and end orientations. When we divide

Figure 6.18. Ideal orientation interpolation, showing intermediate vectors tracing a path
along the arc.



204 Interpolation

Figure 6.19. Linear orientation interpolation, showing intermediate vectors tracing a path
along the line.

Figure 6.20. Effect of linear orientation interpolation on arc length when interpolating
over 1/4 intervals.

the chord into four equal parts, the corresponding arcs on the surface of the sphere are
no longer equal in length (Figure 6.20). Those closest to the center of interpolation are
longer. The effect is that instead of moving at a constant rate of rotation throughout the
interpolation, we will move at a slower rate at the endpoints and faster in the middle. This
is particularly noticeable for large angles, as the figure shows. What we really want is a
constant change in rotation angle as we apply a constant change in ¢.

One way to solve both of these issues is to insert one or two additional sample orienta-
tions and use quadratic or cubic interpolation. However, these are still only approximations
to the spherical curve, and they involve storing additional orientation key frames.

Even if you are willing to deal with nonconstant rotation speed, and eat the cost of
orthogonalization, linear interpolation does create other problems. Suppose we use linear
interpolation to find the orientation midway between these two matrices:

0 1 100—1
fOIO—f-EOl 0 =
1 0 1 0 O

(6.14)

S O O
S = O
S O O



6.3 Interpolation of Orientation 205

This is clearly not a rotation matrix, and no amount of orthogonalization will help us.
The problem is that our two rotations (a rotation of /2 around y and a rotation of —m /2
around y, respectively) produce opposing orientations—they’re 180 degrees apart. As we
interpolate between the pairs of transformed i and k basis vectors, we end up passing through
the origin.

Quaternions are no less susceptible to this. Suppose we have a rotation of 7z radians coun-
terclockwise around the y-axis, and a rotation of 7 radians clockwise around y. Interpolating
the equivalent quaternions gives us

1 1
= ~(0,0,1,0)+ =(0,0,—1,0
r 2( )+2( )
=(0,0,0,0

Again, no amount of normalization will turn this into a unit quaternion. The problem here
is that we are trying to interpolate between two quaternions that are negatives of each other.
They represent two rotations in the opposite direction that rotate to the same orientation.
Rotating a vector 180 degrees counterclockwise around y will end up in the same place
as rotating the same vector 180 degrees clockwise (or —180 degrees counterclockwise)
around y. Even if we considered this an interpolation that runs entirely around the sphere,
it is not clear which path to take—there are infinitely many.

This problem with negated quaternions shows up in other ways. Let’s look at our first
example again, interpolating from the identity quaternion to a rotation of /2 around z.
Recall that our result with r =1/2 was (2 + ﬁ/4, 0,0, ﬁ/4). This time we’ll negate the
second quaternion, giving us a rotation of —3 /2 around z. We get the result

1 1{ V2 V2
=-(1,0,0,0)+ - { ——,0,0, ———
r 2( )+2 ( 5 5 )

2 —
:< ﬁsosoa_ﬁ>
4 4

This new result is not the negation of the original result, nor is it the inverse. What is
happening is that instead of interpolating along the shortest arc along the sphere, we’re
interpolating all the way around the other way, via the longest arc. This will happen when
the dot product between the two quaternions is negative, so the angle between them is
greater than 90 degrees.

This may be the desired result, but usually it’s not. What we can do to counteract it is to
negate the first quaternion and reinterpolate. In our example, we end up with

1 1 V2 V2
=—(-1,0,0,00+= [ ——=,0,0, ——
r 2( )+2 ( > > )

(_2+«/§ ~/§>

50909_7
4 4



206 Interpolation

Source Code
LerpSlerp

This gives us the negation of our original result, but this isn’t a problem as it will rotate to
the same orientation.

This also takes care of the case of interpolating from a quaternion to its negative, so, for
example, interpolating from (0, 0, 1, 0) to (0,0, —1,0) is

1 1
=--(0,0,1,0)+ =(0,0,—1,0
r 5 )+ 5( )
= (0909_1’0)

Negating the first one ends up interpolating to and from the same quaternion, which is a
waste of processing power, but won’t give us invalid results. Note that we will have to do
this even if we are using spherical linear interpolation, which we will address next. All in
all, it is better to avoid such cases by culling them out of our data beforehand.

6.3.3 Spherical Linear Interpolation
To better solve the nonconstant rotation speed and normalization issues, we need an inter-
polation method known as spherical linear interpolation (usually abbreviated as slerp?).
Slerp is similar to linear interpolation except that instead of interpolating along a line, we’re
interpolating along an arc on the surface of a sphere. Figure 6.21 shows the desired result.
When using spherical interpolation at quarter intervals of ¢, we travel one-quarter of the
arc length to get from orientation to orientation. We can also think of slerp as interpolating
along the angle, or in this case, dividing the angle between the orientations into quarter
intervals.

One interesting aspect of orientations is that operations appropriate for positions move up
one step in complexity when applied to orientations. For example, to concatenate positions
we add, whereas to concatenate orientations we multiply. Subtraction becomes division,

Figure 6.21. Effect of spherical linear interpolation when interpolating at quarter intervals.
Interpolates equally along arc and angle.

2 As Shoemake [136] says, because it’s fun.



6.3 Interpolation of Orientation

and scalar multiplication becomes exponentiation. Using this knowledge, we can take our
linear interpolation function for two rotations P and Q,

lerp (P, Q,t) = P+ (P — Q)¢
and convert it to the slerp function,
slerp (P, 0,1) = P(P~'Q)f

For matrices, the question is how to take a matrix R to a power . We can use a method
provided by Eberly [36] as follows. Since we know that R is a rotation matrix, we can
pull out the axis v and angle 6 of rotation for the matrix as we’ve described, multiply 6
by # to get a percentage of the rotation, and convert back to a matrix to get R’. This is an
extraordinarily expensive operation. However, if we want to use matrices, it does give us the
result we want of interpolating smoothly along arc length from one orientation to another.

For quaternions, we can derive slerp in another way. Figure 6.22 shows the situation.
We have two quaternions p and q, and an interpolated quaternion r. The angle between
p and q is 6, calculated as 6 = arccos (p « q). Since slerp interpolates the angle, the angle
between p and r will be a fraction of 6 as determined by ¢, or 6. Similarly, the angle
between r and q will be (1 —1)6.

The general interpolation of p and q can be represented as

r =a(p+b()q (6.15)

The goal is to find two interpolating functions a(f) and b(¢) so that they meet the criteria
for slerp.

We determine these as follows. If we take the dot product of p with Equation 6.15
we get

per=a®pep+bHpeq
cos (t0) = a(t) + b(t) cos 6

Figure 6.22. Construction for quaternion slerp. Angle 6 is divided by interpolant ¢ into
subangles 0 and (1 — ¢)6.

207



208 Interpolation

Similarly, if we take the dot product of q with Equation 6.15 we get
cos (1 —1)0 = a(t) cos 6 + b(t)
We have two equations and two unknowns. Solving for a(¢) and b(t) gives us

cos (t6) —cos (1 — )0 cos O

a(t) =
(1+cos?0)

b(t) = cos (1 — 16 — cos (t6) cos 6
(1+cos?0)

Using trigonometric identities, these simplify to

in (1 —1)0
atry = U= 10
sin 6
in (10
biry = 2019
sin 0
Our final slerp equation is
in((1 —1)0 in (¢0
Slerp(p. q, 1) = S (L= 00)p +5in (19)q (6.16)

sin 6

As we can see, this still is an expensive operation, consisting of three sines and a floating-
point divide, not to mention the precalculation of the arccosine. But at 16 multiplications,
8 additions, 1 divide, and 4 transcendentals, it is much cheaper than the matrix method.
It is clearly preferable to use quaternions versus matrices (or any other form) if you want
to interpolate orientation.

One thing to notice is that as 6 approaches O (i.e., as p and q become close to equal),
sin € and thus the denominator of the slerp function approach 0. Testing for equality is not
enough to catch this case, because of finite floating-point precision. Instead, we should
test cos 6 before proceeding. If it’s close to 1 (greater than 1 — €, say), then we use linear
interpolation or /erp instead, since it’s reasonably accurate for small angles and avoids the
undesirable case of dividing by a very small number. It also has the nice benefit of helping
our performance; lerp is much cheaper. In fact, it’s generally best only to use slerp in the
cases where it is obvious that rotation speed is changing.

Just as we do with linear interpolation, if we want to make sure that our path is taking the
shortest route on the sphere and to avoid problems with opposing quaternions, we also need
to test cos 0 to ensure that it is greater than 0 and negate the start quaternion if necessary.
While slerp does maintain unit length for quaternions, it’s still useful to normalize afterwards
to handle any variation due to floating-point error.

6.3.3.1 Cubic Methods

Just as with lerp, if we do piecewise slerp we will have discontinuities at the sample
orientations, which may lead to visible changes in orientation rather than the smooth curve



6.3 Interpolation of Orientation 209

we want. And just as we had available when interpolating points, there are cubic methods
for interpolating quaternions. One such method is squad, which uses the formula

squad(p, a, b, q, 1) = slerp(slerp(p, q, ?), slerp(a, b, 1), 2(1 — 1)) (6.17)

This is a modification of a technique of using linear interpolation to do Bézier curves,
described by Boehm [18]. It performs a Bézier interpolation from p to q, using a and b as
additional control points (or control orientations, to be more precise).

We can use similar techniques for other curve types, such as B-splines and Catmull-Rom
curves. However, these methods usually are not used in games. They are more expensive
than slerp (which is expensive enough), and most of the time the data being interpolated
have been generated by an animation package or exist as samples from motion capture.
Both of these tend to smooth the data out and insert additional samples at places where
orientation is changing sharply, so smoothing the curve isn’t that necessary. For those who
are interested, Shoemake [136, 137] covers some of these spline methods in more detail.

But beyond the simple cost of operations, blending more than two quaternions with
slerp is order dependent—that is, we will most likely get a different result if we blend
p with q, then with r, versus blending p with r, then q. This becomes an important issue
when smoothly blending between animation sets (walking to running, for example). We’d
be blending between two animation keys as well as between the two sets, giving us an
interpolation between four different quaternions. No matter the order, given four orienta-
tions and four weights, we want to end up with the same result, and because of this need,
linear interpolation is the only solution.

Source Code
6.3.4 Performance Improvements

As we’ve seen, using slerp for interpolation, even when using quaternions, can take quite rerssiers
a bit of time—something we don’t usually have. A typical character can have 70+ bones,
all of which are being interpolated once a frame. If we have a team of characters in a
room, there can be up to 20 characters being rendered at one time. The less time we spend
interpolating, the better.

The simplest speedup is to use lerp plus normalization all the time. It’s very fast: ignoring
the setup time (checking angles and adjusting quaternions) and normalization, only 12 basic
floating-point operations are necessary on a serial processor, and on a vector processor this
drops to 3. We do have the problems with inconsistent rotational speeds, but for animation
data this is not an issue for two reasons. First of all, in animation data the angles between
the keys are usually less than 90 degrees, so any error is not visually apparent. Secondly,
as Blow [15] points out, it’s not clear that slerp is the correct solution for animation data
in any case. The assumption of slerp is that you want uniform angular speed between
orientations, but it’s highly likely that’s not the case with key-framed data. And if slerp is
as much of an approximation of the correct result as lerp, one might as well pick the more
efficient method. So in most cases, lerp is a fine solution.

However, if we need to interpolate angles larger than 90 degrees or we are truly concerned
with accurate orientations, then we need to try something else. One solution is to improve
the speed of slerp. If we assume that we’re dealing with a set of stored quaternions for key-
framed animation, there are some things we can do here. First of all, we can precompute
6 and 1/sin 6 for each quaternion pair and store them with the rest of our animation data.



210 Interpolation

Source Code

IvCurves
Filename

IvHermite

In fact, if we’re willing to give up the space, we could prescale p and q by 1/sinf and
store those values instead. This would mean storing up to two copies for each quaternion:
one as the starting orientation of an interpolation and one as the ending orientation. Finally,
if # is changing at a constant rate, we can use forward differencing to reduce our operations
further. Shoemake [137] states that this can be done in eight multiplies, six adds, and two
table lookups for the two remaining sines.

Another possibility is to use an alternative slerp formula derived by Blow [15], namely,

/_ 4= (peqp
la—(Peqpll
slerp(p, q’, t) = cos (t6)p + sin (10)q’

The idea here is that we create an orthonormal basis by orthogonalizing q against p,
then sweep an angle 0 from p to q' to get our final result. Normalizing q' is much
cheaper than dividing by sin 6, and sin (t9) and cos (#0) can be approximated in a single
library call.

A third alternative is also proposed by Blow [14]. His idea here is that instead of trying
to change our interpolation method to fix our variable rotation speeds, we adjust our ¢
values to counteract the variations. So, in the section where an object would normally
rotate faster with a constantly increasing ¢, we slow ¢t down. Similarly, in the section where
an object would rotate slower, we speed ¢ up. Blow uses a cubic spline to perform this
adjustment:

! =2k’ =3kt + (1 + k)t
where
k = 0.5069269(1 — 0.7878088 cos §)>

and cos 6 is the dot product between the two quaternions. This technique tends to diverge
from the slerp result when ¢ > 0.5, so Blow recommends detecting this case and swapping
the two quaternions (i.e., interpolate from q to p instead of from p to q). In this way our
interpolant always lies between 0 and 0.5.

The nice thing about this method is that it requires very few floating-point operations,
doesn’t involve any transcendental functions or floating-point divides, and fits in nicely
with our existing lerp functions. It gives us slerp interpolation quality with close to lerp
speed, which can considerably speed up our animation system.

Further possibilities are provided by Busser [20], who approximates a(¢) and b(¢) in
Equation 6.15 by polynomial equations, and Thomason [145], who explores a variety of
techniques. Whether these would be necessary would depend on your data, although in
practice we’ve found Blow’s second approach to be sufficient.

6.4 Sampling Curves

Given a parametric curve, it is only natural that we might want to determine a point on
it, or sample it. We’ve already stated one reason when motivating interpolation in the
introduction: we may have created a curve from a low-resolution set of points, and now



6.4 Sampling Curves

want to resample at a higher resolution to match frame rate or simply to provide a better-
quality animation. Another purpose is to sample the curve at various points, or tesselate it,
so that it might be rendered. After all, artists will want to see, and thus more accurately
control, the animation paths that they are creating. Finally, we may also want to sample
curves for length calculations, as we’ll see later.

Sampling piecewise linear splines is straightforward. For rendering we can just draw lines
between the sample points. For animation, the function EvaluatePiecewiseLinear
will do just fine in computing the ’tween points. A similar approach works well when
slerping piecewise quaternion curves.

Things get more interesting when we use a cubic curve. For simplicity’s sake, we’ll only
consider one curve segment Q and a parameter u within that segment—determining those
are similar to our linear approach. The most direct method is to take the general function for
our curve segment Q(u) = au® +bu? + cu+ D and evaluate it at our u values. Assuming
that we’re generating points in R, this will take 11 multiplies and 9 adds per point (we save
3 multiplies by computing u> as u « u?).

An alternative which is slightly faster is to use Horner’s rule [80], which expresses the
same cubic curve as

Ow) = ((au+b)u+cu+D

This will take only nine multiplies and nine adds per point. In addition, it can actually
improve our floating-point accuracy under certain circumstances, and on many systems
the au + b can be performed as a series of multiply—add instructions, if not as a single-vector
operation.

One issue with Horner’s method, however, is that for deeply pipelined processors it can
stall the pipeline waiting for one result before proceeding to the next step. For example, we
must wait for au 4+ b before calculating (au + b)u + ¢. Estrin’s scheme [42] can manage
this better at the cost of a few more operations:

O(w) = (au+byu? +cu+D

This can be staged as

to=au-+b
t1=u2
ty=cu+D

O(u) = tot; +t

As with Horner’s method, many of these steps can be performed as a series of multiply—add
operations.

6.4.1 Forward Differencing

Previously we assumed that there is no pattern to how we evaluate our curve. Suppose we
know that we want to sample our curve at even intervals of u, say at a time step of every A.
This gives us a list of n+ 1 parameter values: 0, &, 2h, . .., nh. In such a situation, we can
use a technique called forward differencing.

211



212 Interpolation

For the time being, let’s consider computing only the x values for our points. For a given
value x;, located at parameter u, we can compute the next value x;; at parameter u + h.
Subtracting x; from x;1, we get

Xig1 — X = x(u+h) — x(u) = Ax; ()
We’ll label this difference between x;41 and x; as Axj(u). For a cubic curve this equals
Axi(u) = a(u+h)? +bu+h)? +cu+h) +d— (@ +bu* + cu+d)
= a(u® + 3hu® 4+ 30%u + h>) + b(u? + 2hu+h*) + cu+h)+d
—a® — b —cu—d
= au® + 3ahu® + 3ah*u+ ah® + bu® + 2bhu + bh* + cu+ch+d
—ad —bu* —cu—d
= 3ahu?® + 3ah*u + ah® + 2bhu + bh? + ch
= (Bah)u?* + (3ah* + 2bh)u + (ah® + bh* + ch)

Pseudocode to compute the set of values might look like the following:

u = 0;
x = d;
output (x) ;
dxl = ah”™3 + bh"2 + ch;
for (i =1; 1 <= n; i++ )
{
u += h;
x += dx1;
output (x) ;
dxl = (3ah)u”2 + (3ah™2 + 2bh)u + (ah”™3 + bh"2 + ch);

}

While we have removed the cubic equation, we have introduced evaluation of a quadratic
equation Axj(u). Fortunately, we can perform the same process to simplify this equation.
Computing the difference between Axj(u + h) and Ax1(u) as Axa(u), we get

Axo(u) = Axy(u+ h) — Ax1(u)
= Bah)(u + h)> + Bah® + 2bh)(u + h) + (ah® + bh> + ch)
— [(Bah)u® + (Bah* + 2bh)u + (ah® + bh* + ch))
= 3ahu?® + 6ah’u+ 3ah’® + (3ah* + 2bh)u + 3ah® + 2bh?
+ (ah® + bh? + ch) — [(Bah)u® + 3ah® + 2bh)u + (ah® + bh?* + ch)]
= 6ah’u + (6ah’ + 2bh?)

This changes our pseudocode to the following:

0;
a;

o
non



6.4 Sampling Curves 213

output (x) ;
dxl = ah”™3 + bh"2 + ch;
dx2 = 6ah”3 + 2bh"2;
for (1 = 1; 1 <= n; 1i++)
{
u += h;
x += dx1;
output (x) ;
dx1l += dx2;
dx2 = 6ah”2u + (6ah”3 + 2bh"2);

We can carry this one final step further to remove the linear equation for Ax,. Computing
the difference between Ax>(u + h) and Axo(u) as Axz(u), we get

Ax3(u) = Axp(u+h) — Axo(u)
= 6ah’(u+ h) + (6ah’ + 2bh?)
— 6ah®u+ (6ah® + 2bh?)
= 6ah’u+ 6ah® + (6ah® + 2bh?)
— 6ah®u + (6ah® + 2bh?)
= 6ah’

Our final code for forward differencing becomes the following:

x = d;

output (x) ;

dxl = ah”3 + bh"2 + ch;
dx2 = 6ah”3 + 2bh"2;

dx3 = 6ah”3;

for (1 = 1; i <=n; i++ )
{

x += dx1;

output (x) ;
dxl += dx2;
dx2 += dx3;

We have simplified our evaluation of x from three multiplies and three adds, down to
three adds. We’ll have to perform similar calculations for y and z, with differing deltas and
a, b, c, and d values for each coordinate, giving a total of nine adds for each point.

Note that forward differencing is only possible if the time steps between each point are
equal. Because of this, in general we can’t use it for animating along a curve, as time
between frames may vary from frame to frame. In this case, the appropriate Horner’s rule
for our degree of polynomial is the most efficient solution. Another issue to be aware of is
as the value i gets small, floating-point error may accumulate and cause the endpoint to be
miscalculated. In this case, one of the other subdivision methods may be more appropriate.



214 Interpolation

Source Code
IvCurves

IvBezier

6.4.2 Midpoint Subdivision

An alternative method for generating points along a curve is to recursively subdivide the
curve until we have a set of subcurves, each of which can be approximated by a line
segment. This subdivision is usually set to stop at a certain resolution that depends on our
needs. This may end up with a more accurate and more efficient representation of the curve
than forward differencing, since more curve segments will be generated in areas with high
curvature (areas that we might cut across with forward differencing) and fewer in areas with
lower curvature.

We can perform this subdivision by taking a curve Q(#) and breaking it into two new
curves L(s) and R(t), usually at the midpoint Q(1/2). In this case, L(s) is the subcurve of
QO(u) where 0 < u < 1/2, and R(¢) is the subcurve where 1/2 < u < 1. The parameters s
and ¢ are related to u by

s =2u

t=2u—1

Each subcurve is then tested for relative “straightness”—if it can be approximated well
by a line segment, we stop subdividing; otherwise, we keep going. The general algorithm
looks like the following:

void
RenderCurve( Q )
{
if ( Straight( Q ) )
DrawLine( Q(0), Q(1) );
else
{
MidpointSubdivide( Q, &L, &R );
RenderCurve( L );
RenderCurve( R );

There are a few ways of testing how straight a curve is. The most accurate is to measure
the length of the curve and compare it to the length of the line segment between the curve’s
two extreme points. If the two lengths are within a certain tolerance €, then we can say the
curve is relatively straight. This assumes that we have an efficient method for computing
the arc length of a curve. We discuss some ways of calculating this in the next section.

Another method is to use the two endpoints and the midpoint (Figure 6.23a). If the
distance between the midpoint and the line segment formed by the two endpoints is close to 0,
then we can usually say that the curve is relatively close to a line segment. The one exception
is when the curve crosses the line segment between the two endpoints (Figure 6.23b), which
will result in a false positive when clearly the curve is not straight. To avoid the worst
examples of this case, Parent [117] recommends performing forward differencing down to
a certain level and only then adaptively subdividing.

The convex hull properties of the Bézier curve lead to a particularly efficient method
for testing straightness, with no need to calculate a midpoint. If the interior control points
are incident with the line segment formed by the two exterior control points, the area of
the convex hull is 0, and the curve generated is itself a line segment. So for a cubic Bézier



6.4 Sampling Curves

(b)

Figure 6.23. Midpoint test for curve straightness. (a) Total distance from endpoints to
midpoint (black dot) is compared to distance between endpoints. (b) Example of midpoint
test failure.

|
|
|
|
|

@)

P

2

Figure 6.24. Test of straightness for Bézier curve. Measure distance of P; and P; to line
segment PyP3.

curve, we can test the squared distance between the line segment formed by Py and P3 and
the two control points P; and P, (Figure 6.24). If both squared distances are less than some
tolerance value, then we can say that the curve is relatively straight.

How we subdivide the curve if it fails the test depends on the type of curve. The simplest
curves to subdivide are Bézier curves. To achieve this, we will generate new control points
for each subcurve from our existing control points. So for a cubic curve, we will compute
new control points Ly, Lp, L3, and L4 for curve L, and new control points Ry, Ry, R3,
and R4 for curve R. These can be built by using a technique devised by de Casteljau. This
method—known as de Casteljau’s method—geometrically evaluates a Bézier curve at a
given parameter u, and as a side effect creates the new control points needed to subdivide
the curve at that point.

Figure 6.25 shows the construction for a cubic Bézier curve. Ly and R3 are already known:
They are the original control points Py and P3, respectively. Point L; lies on segment PyP
at position (1 — u)Pg + uP;. Similarly, point H lies on segment P{P; at (1 — u)P| + uP;,
and point Ry at (1 — u)P> + uP3. We then linearly interpolate along the newly formed line
segments L{H and HR, to form L, = (1 —u)L; +uH and Ry = (1 — u)H + uR;. Finally,
we split segment LrR; to find Q(u) = L3 = Ry = (1 —u)L> + uR;.

Using the midpoint to subdivide is particularly efficient in this case. It takes only six
adds and six multiplies (to perform the division by 2).

LO = PO;
R3 = P3;
L1 = (PO + P1) *0.5f;

215



216 Interpolation

Figure 6.25. De Casteljau’s method for subdividing Bézier curves.

H = (P1 + P2) *0.5f;
R2 = (P2 + P3) *0.5f;
L2 = (L1 + H) *0.5f;
R1 = (H + R2) *0.5f;
L3 = RO = (L2 + R1) *0.5f;

Subdividing other types of curves, in particular B-splines, can be handled by using an
extension of this method devised by Boehm [17]. More information on Boehm subdivision
and knot insertion can be found in Bartels et al. [10].

6.4.3 Computing Arc Length

We can informally define s, the arc length between points Q(u1) and Q(u3) on a continuous
curve Q, as the distance along the curve between those two points. Atfirst glance, computing
the length of a curve may not appear to be very related to sampling and tessellation. However,
as mentioned above, some methods for subdividing a curve require knowing the arc lengths
of subsections of that curve. Also, as we’ll see, some arc length methods require sampling
the curve to obtain their results.

The most accurate method of computing the length of a smooth curve Q(u) from Q(a)
to Q(b) is to directly compute the line integral:

b
s=/ | Q' w)]| du

Unfortunately, for most cubic polynomial curves, itis not possible to find an analytic solution
to this integration. For quadratic curves, there is a closed-form solution, but evaluating the
resulting functions is more expensive than using a numerical method that gives similar
accuracy. In any case, if we wish to vary our curve types, we would have to redo the
calculation and so it is not always practical.

The usual approach is to use a numerical method to solve the integral. There are many
methods, which Burden and Faires [19] cover in some detail. In this case, the most effi-
cient for its accuracy is Gaussian quadrature, since it attempts to minimize the number of



6.4 Sampling Curves

function evaluations, which can be expensive. It approximates a definite integral from —1
to 1 by a weighted sum of unevenly spaced function evaluations, or

n

1
/ S@ds > ()

i=1

The actual ¢; and x; values depend on n and are carefully selected to give the best
approximation to the integral. The first few values are

Xi Ci
2 +4/1/3 1
3 0 8/9

+/3/5 5/9
4 40.3399810436 0.6521451549
+0.8611363116 0.3478548451
5 0.0000000000  0.5688888889
+0.5384693101  0.4786286705
+0.9061798459  0.2369268850

Burden and Faires [19] describe in detail how these are derived for arbitrary values of n.
The restriction that we have to integrate over [—1, 1] is not a serious obstacle. For a
general definite integral over [a, b], we can remap to [—1, 1] by

b 1 _ —
/ Fod =/ 7 ((b a)t—i—b—l—a) b adt
a -1 2 2

Guenter and Parent [67] describe a method that uses Gaussian quadrature in combination
with adaptive subdivision to get very efficient results when computing arc length. Similar
to using adaptive subdivision for rendering, we cut the current curve segment in half. We
use Gaussian quadrature to measure the length of each half, and compare their sum to the
length of the entire curve, again computed using Gaussian quadrature. If the results are close
enough, we stop and return the sum of lengths of the two halves. Otherwise, we recursively
compute their lengths via subdivision.

There are other arc length methods that don’t involve computing the integral in this
manner. One is to subdivide the curve and use the sums of the lengths of the line segments
created to approximate arc lengths at each of the subdivision points. We can create a sorted
table of pairs (u;, s;), where u; is the parameter for each subdivision, and s; is the corre-
sponding length at the point Q(u;). Since both u and len are monotonically increasing, we
can sort by either parameter. An example of such a table can be seen in Table 6.1.

To find the length from the start of the curve for a given u, we search through the table
to find the two neighboring entries with parameters uy and ug41 such that uy < u < uyq.

217



218 Interpolation

Table 6.1. Mapping Parameter Value to

Arc Length
u s

0.0 0.0
0.1 0.2
0.15 0.3
0.29 0.7
0.35 0.9
0.56 1.1
0.72 1.6
0.89 1.8
1.00 1.9

Since the entries are sorted, this can be handled efficiently by a binary search. The length
then can be approximated by linearly interpolating between the two entries:

U1 — U U — Ug
~ Sk + Sk+1

Uk4+1 — Uk U1 — Uk
A higher-order curve can be used to get a better approximation.

To find the length between two parameters a and b where a < b, we compute the length
for each and subtract one from the other, or

length(Q, a, b) = length(Q, b) — length(Q, a)

If we are using cubic Bézier curves, we can use a method described by Gravesen [61].
First of all, given a parameter u#, we can subdivide the curve (using de Casteljau’s method)
to be the subcurve from [0, u]. The new control points for this new subcurve can be used
to calculate bounds on the length. The length of the curve is bounded by the length of
the chord PyP3 as the minimum, and the sum of the lengths of the line segments PyP1,
P1 P>, and P,P3 as the maximum. We can approximate the arc length by the average of the
two, or

Lmin = ||P3 _P()”
Liax = |P1 — Poll + ||P2 — P1|| + ||P3 — P3|

1
L~ E(Lmin + Lmax)

The error can be estimated by the square of the difference between the minimum and
maximum:

E = (Lypax — Lmin)2

If the error is judged to be too large, then the curve can be subdivided and the
length becomes the sum of the lengths of the two halves. Gravesen [61] states that for
m subdivisions the error drops to 0 as 274",



6.5 Controlling Speed along a Curve 219

A final alternative is presented by Vincent and Forsey [140]. Their method notes that
for three neighboring curve points Py, P, and P, the length of arc through them can be
approximated by D> + (D> — D1)/3, where

Dy = ||PoP2 ||
Dy = ||PoP1| + P12

This assumes that P is relatively equidistant from Py and P,, and the arc has low curvature.
To improve accuracy, estimates for a given segment (say, P1P;) can be computed using the
neighboring point on either side (i.e., in our case, one estimate is computed using Py and
another using P3). These are averaged to give the final result.

The general algorithm begins by sampling an odd number of points across the curve. For
each interior segment, it determines if more samples need to be taken due to high curvature.
If so, it computes those recursively until a low-enough curvature is reached. Otherwise, it
computes the segment length and returns. For general curves, this technique is slightly more
expensive than Gaussian quadrature, but it does handle certain pathological cases (such as
cusps) better.

6.5 Controlling Speed along a Curve
6.5.1 Moving at Constant Speed e

One common requirement for animation is that the object animated move at a constant
speed along a curve. However, in most interesting cases, using a given curve directly will Spesacont=et
not achieve this. The problem is that in order to achieve variety in curvature, the first
derivative must vary as well, and hence the distance we travel in a constant time will
vary depending on where we start on the curve. For example, Figure 6.26 shows a curve
subdivided at equal intervals of the parameter u. The lengths of the subcurves generated
vary greatly from one to another.

Ideally, given a constant rate of travel r and time of travel ¢, we’ll want to cover a distance
of s =rt. So given a starting parameter u; on the curve, we want to find the parameter u;
such that the arc length between Q(u1) and Q(uy) equals s.

We’ve already discussed a number of methods for computing the arc length of a curve.
Regardless of the method we use, we’ll assume we have some function G(u) that returns
the length s from Q(0) to Q(u). So, for the case where u; =0, we can use the inverse
function G~ (s) to determine the parameter u,, given an input length s. This is known as
a reparameterization by arc length. Unfortunately, in general the arc length function for

Figure 6.26. Parameter-based subdivision of curve, showing nonequal segment lengths.



220 Interpolation

a parameterized curve is impossible to invert in terms of a finite number of elementary
functions, so numerical methods are used instead.
One way is to note that finding u; is equivalent to the problem of finding the solution u
of the equation
s — length(uy,u) =0 (6.18)

A method that allows us to solve this is Newton—Raphson root finding. Burden and
Faires [19] present a derivation for this using the Taylor series expansion.

Suppose we have a function f(x) where we want to find p such that f(p) = 0. We begin
with a guess for p, which we’ll call x, such that f'(x) # 0 and |p — x| is relatively small.
In other words, x may not quite be p but it’s a pretty good guess. If we use x as a basis for
the Taylor series polynomial, we get

1
F) =fG)+ & —=Xf (%) + F— X’ (E(x)

We assume that £(x) is bounded by x and x, so we can ignore the remainder of the terms.
If we substitute p for x, then f(p) =0 and

1
0=f@®+p -2 @+ (- % (E(x))

Since |p — x| is relatively small, we assume that (p — X)? is small enough that we can ignore
it, and so

0~ f@)+(p—2f (x)
Solving for p gives us

J&)

F@®
This gives us our method. We make an initial guess X at the solution and use the result of
Equation 6.19 to get a more accurate result p. If p still isn’t close enough, then we feed it
back into the equation as x to get a still more accurate result, and so on until we reach a
solution of sufficient accuracy or after a given number of iterations is performed.

For our initial guess in solving Equation 6.18, Eberly [35] recommends taking the ratio
of our traveled length to the total arc length of the curve and mapping it to our parameter
space. Assuming our curve is normalized so that u is in [0, 1], then pseudocode for our
root-finding method will look like the following:

pPAT— (6.19)

float FindParameterByDistance( float ul, float s )
{
// ensure that we remain within valid parameter space
if (s > ArcLength(ul,1.0f))
return 1.0f;

// get total length of curve
float len = ArcLength(0.0f,1.0f);



float FindParameterByDistance (

6.5

// make first guess
float p = ul + s/len;
for (int i = 0;

{

i < MAX_ITER; ++1i)
// compute function value and test against zero
float func = ArcLength(ul,p) - s;
if ( fabsf(func) < EPSILON )
{
return p;

}

// perform Newton-Raphson iteration step
p -= func/Length(Derivative (p)) ;

// done iterating,
return p;

return last guess

Controlling Speed along a Curve 221

The first test ensures that the distance we wish to travel is not greater than the remaining
length of the curve. In this case, we assume that this is the last segment of a piecewise curve
and just jump to the end. A more robust implementation should subtract the remaining
length from the distance and restart at the beginning of the next segment.

Computing the derivative of the curve is simple, as this is easily derived from the defi-

nition of the curve, as we did for clamped and natural splines. However, there is a serious
problem if Length (Derivative (p) ) is zero or near zero. This will lead to a division
by zero and we will end up subtracting infinity or NaN from p, which will give us a garbage
result.

The solution is to use an alternative root-finding technique known as bisection. It makes

use of the mean value theorem, which states that if you have a function f(x) that’s con-
tinuous on [a, b] and f(a)f(b) < O (i.e., f(a) and f(b) have opposite signs), then there is
some value p between a and b where f(p) = 0. This is definitely true in our case. The
length of the curve is monotonically increasing, so there will be only one zero. If it’s not at
the beginning, then f(a) = length(a) — s = —s, which is less than 0. If it’s not at the end,
then f(b) = length(b) — s, which is greater than 0. Our endpoints have differing signs, so
we can use the bisection method.

This is solved by doing a binary search: we cut the problem interval in two and search

float ul, float s )
// set endpoints for bisection

float a = ul;

float b = 1.0f;

further in the more fruitful half. The problem with bisection is that it converges consider-
ably slower than Newton—Raphson, so sometimes we want to use Newton—Raphson and
sometimes bisection. Therefore, our hybrid approach will look like (for brevity’s sake we
have only included the parts that are different) the following:



222 Interpolation

// ensure that we remain within valid parameter space
// get total length of curve
// make first guess

for (int i = 0; i < MAX_ITER; ++1i)
{

// compute function value and test against zero

// update endpoints for bisection
if (func < 0.0f)

a = p;
else

b = p;

// compute speed
speed = Length (Derivative (p));
if (bisection)
// do bisection step
p = 0.5f* (a+b);
else
// perform Newton-Raphson iteration step
p -= func/speed;

// done iterating, return last guess
return p;

The only remaining question is how we determine to use bisection over Newton—
Raphson. One obvious possibility is to check whether the speed is zero, as that got us
into trouble in the first place. However, that’s not enough. If the speed is nonzero but suf-
ficiently small, func/speed could be sufficiently large to cause us to step outside the
bisection interval or even the valid parameter space of the curve. So that gives us our test:

if p - func/speedis less than a or greater than b, use bisection. We can write this as
follows:
if (p - func/speed < a || p - func/speed > b)
// do bisection step
else

// perform Newton-Raphson iteration step

Multiplying by speed and rearranging terms gives us the following:

if ((p-a)*speed < func || (p-b)*speed > func)
// do bisection step

else
// perform Newton-Raphson iteration step



6.5 Controlling Speed along a Curve 223

Press et al. [126] further recommend the following so as to be floating-point safe:

if (((p-a)*speed - func)*((p-b)*speed - func) > 0.0f)
// do bisection step

else
// perform Newton-Raphson iteration step

That should solve our problem.

A few other implementation notes are in order at this point. As we’ve seen, computing
ArcLength () can be a nontrivial operation. Because of this, if we’re going to be calling
FindParameterByDistance () many times for a fixed curve, it is more efficient to
precompute ArcLength (0.0£f, 1.0f) and use this stored value instead of recom-
puting it each time. Also, the constants MAX_ITER and EPSILON will need to be tuned
depending on the type of curve and the number of iterations we can feasibly calculate due
to performance constraints. Reasonable starting values for this tuning process are 32 for
MAX_ITER and 1.0e-06f for EPSTILON.

As a final note, there is an alternative approach if we’ve used the table-driven method
for computing arc length. Recall that we used Table 6.1 to compute s given a parameter u.
In this case, we invert the process and search for the two neighboring entries with lengths
sj and sj41 such that 5; <5 < sj11.

Again, we can use linear interpolation to approximate the parameter u, which gives us
length s as

Sjt1—S s —8j
~ W J

j Uj+1
Sj+1 = 8j Sj+1 = Sj
To find the parameter b given a starting parameter a and a length s, we compute the length
at @ and add that to s. We then use the preceding process with the total length to find
parameter b.

The obvious disadvantage of this scheme is that it takes additional memory for each curve.
However, it is simple to implement, somewhat fast, and does avoid the Newton—Raphson
iteration needed with other methods.

6.5.2 Moving at Variable Speed

In our original equation for computing the desired distance to travel, s = rt, we assumed
that we were traveling at a constant rate of speed. However, it is often convenient to have
an adjustable rate of speed over the length of the curve. We can represent this by a general
distance—time function s(¢), which maps a time value 7 to the total distance traveled from #.
As an example, Figure 6.27 shows s(t) = rt as a distance—time graph.

Other than traveling at a constant rate, the most common distance—time function is known
as ease-in/ease-out. Here, we start at a zero rate of speed, accelerate up to a constant nonzero
rate of speed in the middle, and then decelerate down again to a stop. This feels natural,
as it approximates the need to accelerate a physical camera, move it, and slow it down to a
stop. Figure 6.28 shows the distance—time graph for one such function.

Parent [117] describes two methods for constructing ease-in/ease-out distance—time func-
tions. One is to use sinusoidal pieces for the acceleration/deceleration areas of the function



224 Interpolation

Distance
<%

Time

Figure 6.27. Example of distance—time graph: moving at constant speed.

Distance

Time

Figure 6.28. Example of distance—time graph: ease-in/ease-out function.

and a constant velocity in the middle. The pieces are carefully chosen to ensure C' continu-
ity over the entire function. The second method involves setting a maximum velocity that
we wish to attain in the center part of the function and assumes that we move with constant
acceleration in the opening and closing ease-in/ease-out areas. This gives a velocity—time
curve as in Figure 6.29. By integrating this, we get a distance—time curve. By assuming
that we start at the beginning of the curve, this gives us a piecewise curve with parabolic
acceleration and deceleration.

However, there is no reason to stop with an ease-in/ease-out distance—time function. We
can define any curve we want, as long as the curve remains within the positive d and ¢ axes
for the valid time and distance intervals. One possibility is to let the user trace out a curve,
but that can lead to invalid inputs and difficulty of control. Instead, animation packages such
as those in 3D Studio Max and Maya allow artists to create these curves by setting keys
with particular arrival and departure characteristics. Standard parlance includes such terms
as fast-in, fast-out, slow-in, and slow-out. /n and out in this case refer to the incoming and
outgoing speed at the key point, respectively; fast means that the speed is greater than 1, and
slow that it is less than 1. An example curve with both fast-in/fast-out and slow-in/slow-out
can be seen in Figure 6.30. There also can be linear keys, which represent the linear rate



6.6 Camera Control

<
T
|
|

Velocity

Time

Figure 6.29. Example of velocity—time function: ease-in/ease-out with constant
acceleration/deceleration.

\

Distance

Time

Figure 6.30. Example of distance-time graph: fast-out/fast-in followed by slow-out/
slow-in.

seen in Figure 6.27, and step-keys, where distance remains constant for a certain period of
time and then abruptly changes, as in Figure 6.31. Alternatively, the user may specify no
speed characteristics and just expect the program to pick an appropriately smooth curve.

With all of these, the final distance—time curve can be easily generated with the techniques
described in Section 6.2.3. More detail can be found in Van Verth [151].

6.6 Camera Control

One common use for a parametric curve is as a path for controlling the motion of a virtual
camera. We’ll discuss camera models in more detail in Chapter 7, but for now assume that a
camera is like any other object, with a position and orientation. In games controlling camera
motion comes into play most often when setting up in-game cinematics, where we want
to play a series of scripted events in engine while giving a game a cinematic feel via the
clever use of camera control. For example, we might want to have a camera track around
a pair of characters as they dance about a room. Or, we might want to simulate a crane
shot zooming from a far point of view right down into a close-up. While either of these

Source Code

CameraControl

225



226 Interpolation

(o)
Q
=
[+
s
B
A o— 0
[ 4 L 4 >
Time

Figure 6.31. Example of distance—time graph: step-key transition.

could be done programmatically, it would be better to provide external control to the artist,
who most likely will be setting up the shot. The artist sets the path for the camera—all the
programmer needs to do is provide code to move the camera along the given path.

Determining the position of the camera isn’t a problem. Given the start time ¢, for the
camera and the current time 7., we compute the parameter t = t. — f; and then use our time
controls together with our curve description to determine the current position at Q(¢).

Computing orientation is another matter. The most basic option is to set a fixed orientation
for the entire path. This might be appropriate if we are trying to create the effect of a panning
shot, but is rather limiting and somewhat static. Another way would be to set orientations
at each sample time as well as positions, and interpolate both. However, this can be quite
time-consuming and may require more keys to get the effect we want.

A further possibility is to use the Frenet frame for the curve. This is an orthonormal
frame with an origin of the current position on the curve, and a basis {T, N, B}, where T
(the tangent) points in the direction of the first derivative, N (the normal) points roughly in
the direction of the second derivative, and B (the binormal) is the cross product of the first
two. The vector T acts as our camera’s forward (or view direction) vector, N acts as our
side vector, and B acts as our up vector.

For any curve specified by the matrix form Q(u#) =UMG, we can easily compute the
first derivative by using the form Q’(x) = U'MG, where for a cubic curve

U=[3 2 1 0
Similarly, we can compute the second derivative as Q” (1) = U"MG, where

U”=[6u 2 0 0}



6.6 Camera Control 227

As mentioned, we set T = Q'(1). We compute B as the cross product of the first and second
derivatives:

B=Q'uxQ"(u
Then, finally, N is the cross product of the other two:
N=BxT

Normalizing T, N, and B gives us our orthonormal basis.

Parent [117] describes a few flaws with using the Frenet frame directly. First of all, the
second derivative may be 0, which means that B and hence N will be 0. One solution is
to interpolate between two frames on either side of our current location. Since the second
derivative is 0, or near O, the first derivative won’t be changing much, so we’re really
interpolating between two frames in R2. This consists of finding the angle between them
and interpolating along that angle (Figure 6.32). The one flaw with this is that when finding
these frames we’re still using Q”, which may be near 0 and hence lead to floating-point
issues. In particular, if we are moving with linear motion, there will be no valid neighboring
values for estimating Q”.

Then, too, it assumes that the second derivative exists for all values of 7, namely, that Q(¢)
is C2 continuous. Many of the curves we’ve discussed, in particular the piecewise curves,
do not meet this criterion. In such cases, the camera will rather jarringly change orientation.
For example, suppose we have two curve segments as seen in Figure 6.33, where the second

Figure 6.32. Interpolating between two path frames.

Figure 6.33. Frame interpolation issues. Discontinuity of second derivative at point.



228 Interpolation

derivative instantly changes to the opposite direction at the join between the segments. In
the Frenet frame for the first segment, the w vector points out of the page. In the second
segment, it points into the page. As the camera crosses the join, it will instantaneously flip
upside down. This is probably not what the animator had in mind.

Finally, we may not want to use the second derivative at all. For example, if we have a
path that heads up and then down, like a hill on a roller coaster, the direction of the second
derivative points generally down along that section of path. This means that our view up
vector will end up parallel to the ground for that section of curve—again, probably not the
intention of the animator.

A further refinement of this technique is to use something called the parallel trans-
port frame [70]. This is an extension of the interpolation technique shown in Figure 6.32.
We begin at a position with a valid frame. At the next time step, we compute the deriva-
tive, which gives us our view direction vector as before. To compute the other two vectors,
we rotate the previous frame by the angle between the current derivative and the previous
derivative. If the vectors are parallel, we won’t rotate at all, which solves the problem where
the second derivative may be 0. This will generate a smooth transition in orientation
across the entire path, but doesn’t provide much control over expected behavior, other
than setting the initial orientation.

An alternative solution is to adopt a technique from Chapter 7. Again, we use the first
derivative as our forward vector, but instead generate the camera’s up vector from this and
the world up vector. The camera’s side vector is the cross product of these two. This solves
the problem, but does mean that if we have a fixed up vector we can’t roll our camera through
a banking turn—its up vector will remain relatively aligned with the given up vector.

A refinement of this is to allow user-specified up vectors at each sample position, which
default to the world up vector. The program would interpolate between these up vectors just
as it interpolates between the positions. Alternatively, the user could set a path U(¢) that
is used to calculate the up vector: v,, = U(f) — Q(?). The danger here is that the user may
specify two up vectors of opposing directions that end up interpolating to 0, or an up vector
that aligns with the view direction vector, which would lead to a cross product of 0. If the
user is allowed this kind of flexibility, recovery cases and some sort of error message will
be needed.

We can take this one step further by separating our view direction from the Frenet frame
and focusing on a point that we want to keep in the center of the frame. The method for
computing the corresponding orientation can be found in Chapter 7. The choice of what we
use as our so-called look-at point can depend on the camera effect desired. For example, we
might pick a fixed point on the ground and then perform a fly-by. We could use the position
of an object or the centroid of positions for a set of objects. We could set an additional path,
and use the position along that path at our current time, to give the effect of a moving point
of view without tying it to a particular object.

Another possibility is to look ahead along our current path a few steps in time, as if we
were following an object a few seconds ahead of us. So, if we’re at position Q(¢), we use as
our look-at point the position Q(t 4 6). In this situation, we have to be sure to reparameterize
the curve based on arc length, because otherwise the distance ||Q(f) — Q(t 4 61)|| may
change depending on where we are on the curve, which may lead to odd changes in the
view direction.



6.7 Chapter Summary 229

An issue with this technique is that it may make the camera seem clairvoyant, which can
ruin the drama in some situations. Also, if our curve is particularly twisty, looking ahead may
lead to sudden changes in direction. We can smooth this by averaging a set of points ahead
of our position on the curve. How separated the points are makes a difference: too separated
and our view direction may not change much; too close together and the smoothing effect
will be nullified. It’s usually best to make the amount of separation another setting available
to the animator so that he or she can control the effect desired.

6.7 Chapter Summary

In this chapter we have touched on some of the issues involved with using parametric curves
to aid in animation. We have discussed the most commonly used of the many possible curve
types and how to subdivide these curves. Possible interfaces have been presented that allow
animators and designers to create curves that can be used in the games they create. We
have also covered some of the most common animation tasks beyond simple interpolation:
controlling travel speed along curves and maintaining a logical camera orientation.

For rotations, fixed and Euler and axis—angle formats interpolate well only under sim-
ple circumstances. Matrices can be interpolated, but at significantly greater cost than
quaternions. If you need to interpolate orientation, the clear choice is to use quaternions.

For further reading, Rogers and Adams [131] and Bartels et al. [10] present much of this
material in greater detail, in particular focusing on B-splines. Parent [117] covers the use
of splines in animation, as well as additional animation techniques. Burden and Faires [19]
have a chapter on interpolation and explain some of the numerical methods used with curves,
in particular integration techniques and the Newton—Raphson method.

We have not discussed parametric surfaces, but many of the same principles apply:
surfaces are approximated or interpolated by a grid of points and are usually rendered
using a subdivision method. Rogers [130] is an excellent resource for understanding how
NURBS surfaces, the most commonly used parametric surfaces, are created and used.






@ Viewing and
Projection

7.1 Infroduction

In previous chapters we’ve discussed how to represent objects, basic transformations we
can apply to these objects, and how we can use these transformations to move and manip-
ulate our objects within our virtual world. With that background in place, we can begin to
discuss the mathematics underlying the techniques we use to display our game objects on
a monitor or other visual display medium.

It doesn’t take much justification to understand why we might want to view the game
world—after all, games are primarily a visual media. Other sensory outputs are of course
possible, particularly sound and haptic (or touch) feedback. Both have become more
sophisticated and in their own way provide another representation of the relative three-
dimensional (3D) position and orientation of game objects. But in the current market, when
we think of games, we first think of what we can see.

To achieve this, we’ll be using a continuation of our transformation process known as
the graphics pipeline. Figure 7.1 shows the situation. We already have a transformation that
takes our model from its local space to world space. At each stage of the graphics pipeline,
we continue to concatenate matrices to this matrix. Our goal is to build a single matrix to
transform the points in our object from their local configuration to a two-dimensional (2D)
representation suitable for displaying.

The first part of the display process involves setting up a virtual viewer or camera, which
allows us to control which objects lie in our current view. As we’ll see, this camera is just
like any other object in the game; we can set the camera’s position and orientation based
on an affine transformation. Inverting this transformation is the first stage of our pipeline:
it allows us to transform objects in the world frame into the point of view of the camera
object.

231



232  Viewing and Projection

Model World

. L Frustum
—>
View Projection clipping Screen

Figure 7.1. The graphics pipeline.

From there we will want to build and concatenate a matrix that transforms our objects
in view into coordinates so they can be represented in an image. This flattening or projec-
tion takes many forms, and we’ll discuss several of the most commonly used projections.
In particular, we’ll derive perspective projection, which most closely mimics our viewpoint
of the real world.

At this point, it is usually convenient to cull out any objects that will not be visible on
our screen, and possibly cut, or clip, others that intersect the screen boundaries. This will
make our final rendering process much faster.

The final stage is to transform our projected coordinates and stretch and translate them
to fit a specific portion of the screen, known as the viewport. This is known as the screen
transformation.

In addition, we’ll cover how to reverse this process so we can take a mouse click on our
2D screen and use it to select objects in our 3D world. This process, known as picking, can
be useful when building an interface with 3D elements. For example, selecting units in a
3D real-time strategy game is done via picking.

As with other chapters, we’ll be discussing how to implement these transformations
in production code. Because our primary platform is OpenGL, for the most part we’ll be
focusing on its traditional transformation pipeline. However we will also cover the cases
where it may differ from other graphics APIs, particularly Direct3D.

One final note before we begin: There is no standard representation for this process.
In other books you may find these stages broken up in different ways, depending on the
rendering system the authors are trying to present. However, the ultimate goal is the same:
take an object in the world and transform it from a viewer’s perspective onto a 2D medium.

7.2 View Frame and View Transformation

7.2.1 Defining a Virtual Camera

In order to render objects in the world, we need to represent the notion of a viewer. This
could be the main character’s viewpoint in a first-person shooter, or an over-the-shoulder
view in a third-person adventure game, or a zoomed-out wide shot in a strategy game.
We may want to control properties of our viewer to simulate a virtual camera; for example,
we may want to create an in-game scripted sequence where we pan across a screen or follow



7.2 View Frame and View Transformation 233

a set path through a space. We encapsulate these properties into a single entity, commonly
called the camera.

For now, we’ll consider only the most basic properties of the camera needed for render-
ing. We are trying to answer two questions [12]: Where am I? Where am I looking? We can
think of this as someone taking an actual camera, placing it on a tripod, and aiming it at an
object of interest.

The answer to the first question is the camera’s position, £, which is variously called
the eyepoint, the view position, or the view-space origin. As we mentioned, this could be the
main character’s eye position, a location over his shoulder, or a spot pulled back from the
action. While this position can be placed relative to another object’s location, it is usually
cleaner and easier to manage if we represent it in the world frame.

A partial answer to the second question is a vector called the view direction vector, or
v4ir, Which points along the facing direction for the camera. This could be a vector from the
camera position to an object or point of interest, a vector indicating the direction the main
character is facing, or a fixed direction if we’re trying to simulate a top-down view for a
strategy game. For the purposes of setting up the camera, this is also specified in the world
frame.

Having a single view direction vector is not enough to specify our orientation, since
there are an infinite number of rotations around that vector. To constrain our possibilities
down to one, we specify a second vector orthogonal to the first, called the view up vector,
or v, This indicates the direction out of the top of the camera. From these two we can take
the cross product to get the view side vector, or V;g., which usually points out toward the
camera’s right. Normalizing these three vectors and adding the view position gives us an
orthonormal basis and an origin, or an affine frame. This is the camera’s local frame, also
known as the view frame (Figure 7.2).

The three view vectors specify where the view orientation is relative to the world frame.
However, we also need to define where these vectors are from the perspective of the camera.
The standard order used by most viewing systems is to make the camera’s y-axis represent
the view up vector in the camera’s local space, and the camera’s x-axis represent the corre-
sponding view side vector. This aligns our camera’s local coordinates so that x values vary
left and right along the plane of the screen and y values vary up and down, which is very
intuitive.

View up

View point

)\

View side

View direction

Figure 7.2. View frame relative to the world frame.



234 Viewing and Projection

y-axis

y-axis

z-axis x-axis

x-axis e
7
N s
z-axis

(a) (b)

Figure 7.3. (a) Standard view frame axes. (b) OpenGL-style view frame axes.

The remaining question is what to do with z and the view direction. In most systems, the
z-axis is treated as the camera-relative view direction vector (Figure 7.3a). This has a nice
intuitive feel: as objects in front of the viewer move farther away, their z values relative to
the camera will increase. The value of z can act as a measure of the distance between the
object and the camera, which we can use for hidden object removal. Note, however, that
this is a left-handed system, as (Vsige X Vup) o Vair < 0.

A slightly different approach was traditionally suggested for use with OpenGL. The
OpenGL-style view frame is aright-handed system where the camera-relative view direction
is aligned with the negative z-axis (Figure 7.3b). So in this case, the farther away the object
is, its —z coordinate gets larger relative to the camera. This is not as convenient for distance
calculations, but it does allow us to remain in a right-handed coordinate system. This
avoids having to worry about reflections when transforming from the world frame to the
view frame, as we’ll see below. Note that despite the name, we can still use left-handed
systems with OpenGL, just as we can use right-handed systems with Direct3D and other
APIs—we just have to be careful how we construct our projection matrices, as we’ll see.

7.2.2 Constructing the View-to-World Transformation

Now that we have a way of representing and setting camera position and orientation, what
do we do with it? The first step in the rendering process is to move all of the objects in our
world so that they are no longer relative to the world frame, but are relative to the camera’s
view. Essentially, we want to transform the objects from the world frame to the view frame.
This gives us a sense of what we can see from our camera position. In the view frame,
those objects along the line of the view direction vector (i.e., the —z-axis in the case of
the OpenGL-style frame) are in front of the camera and so will most likely be visible in
our scene. Those on the other side of the plane formed by the view position, the view side
vector, and the view up vector are behind the camera, and therefore not visible. In order to
achieve this situation, we need to create a transformation from world space to view space,
known as the world-to-view transformation or, more simply, the view transformation. We
can represent this transformation as My,orig—s view-

However, rather than building this transformation directly, we usually find it easier to

build M;(}rld%view, of Myieyw—worid, first, and then invert to get our final world-to-view



7.2 View Frame and View Transformation 235

frame transformation. In order to build this, we’ll make use of the principles we introduced
in Chapter 4. If we look again at Figure 7.2, we note that we have an affine frame—the
view frame—represented in terms of the world frame.

We can use this information to define the transformation from the view frame to the
world frame as a 4 x 4 affine matrix. The origin E of the view frame is translated to
the view position, so the translation vector y is equal to E — O. We’ll abbreviate this as
Vpos. Similarly, the view vectors represent how the standard basis vectors in view space
are transformed into world space and become columns in the upper left 3 x 3 matrix A. To
build A, however, we need to define which standard basis vector in the view frame maps to
a particular view vector in the world frame.

Recall that in the standard case, the camera’s local x-axis represents Vg, the y-axis
represents V,,, and the z-axis represents Vg4;-. This mapping indicates which columns the
view vectors should be placed in, and the view position translation vector takes its familiar
place in the rightmost column. The corresponding transformation matrix is

C, = ‘A’side Q’up i\’dir Vpos (7.1)
0 0 0 1

Note that in this case we are mapping from a left-handed view frame to the right-handed
world frame, so the upper 3 x 3 is not a pure rotation but a rotation concatenated with a
reflection.

For the OpenGL-style frame, the only change is that we want to look down the
—z-axis. This is the same as the z-axis mapping to the negative view direction vector.
So, the corresponding matrix is

Vside Vup —Vdir Vpos

7.2
0 0 0 1 72

Cogl =

In this case, since we are mapping from a right-handed frame to a right-handed frame, no
reflection is necessary, and the upper 3 x 3 matrix is a pure rotation. Not having a reflection
can actually be a benefit, particularly with some culling methods.

7.2.3 Controlling the Camera

It’s not enough that we have a transformation for our camera that encapsulates position and

orientation. More often we’ll want to move it around the world. Positioning our camera is

a simple enough matter of translating the view position, but controlling view orientation

is another problem. One way is to specify the view vectors directly and build the matrix

as described. This assumes, of course, that we already have a set of orthogonal vectors we

want to use for our viewing system. soure Codo
The more usual case is that we only know the view direction. For example, suppose we

want to continually focus on a particular object in the world (known as the look-at object). **°**

We can construct the view direction by subtracting the view position from the object’s

position. But whether we have a given view direction or we generate it from the look-at

object, we still need two other orthogonal vectors to properly construct an orthogonal basis.

We can calculate them by using one additional piece of information: the world up vector.



236 Viewing and Projection

World up

M

Eyepoint
View direction

i

Figure 7.4. Look-at representation.

This is a fixed vector representing the up direction in the world frame. In our case, we’ll
use the z-axis basis vector k (Figure 7.4), although in general, any vector that we care to
call “up” will do. For example, suppose we had a mission on a boat at sea and wanted to give
the impression that the boat was rolling from side to side, without affecting the simulation.
One method is to change the world up vector over time, oscillating between two keeled-over
orientations, and use that to calculate your camera orientation.

For now, however, we’ll use k as our world up vector. Our goal is to compute orthonor-
mal vectors in the world frame corresponding to our view vectors, such that one of them
is our view direction vector Vg;r, and our view up vector V,, matches the world up vector
as closely as possible. Recall that we can use Gram—Schmidt orthogonalization to create
orthogonal vectors from a set of nonorthogonal vectors, so

Vup = k—(ke i\'dir)e’a'ir
Normalizing gives us V,,. We can take the cross product to get the view side vector:
Vside = Vair ¥ ‘A’up
We don’t need to normalize in this case because the two vector arguments are orthonormal.
The resulting vectors can be placed as columns in the transformation matrix as before.
One problem may arise if we are not careful: What if v4;,- and k are parallel? If they are
equal, we end up with
Vup = k — (ko Vair)Vair
=k-1- ‘A'dir
=0
If they point in opposite directions we get
Vup = k — (k¢ Vair)Vair
=k— (=1 Va
=0

Clearly, neither case will lead to an orthonormal basis.



7.2 View Frame and View Transformation 237

The recovery procedure is to pick an alternative vector that we know is not parallel,
such as i or j. This will lead to what seems like an instantaneous rotation around the z-axis.
To understand this, raise your head upward until you are looking at the ceiling. If you keep
going, you’ll end up looking at the wall behind you, but upside down. To maintain the
view looking right-side up, you’d have to rotate your head 180 degrees around your view
direction.! This is not a very pleasing result, so avoid aligning the view direction with the
world up vector whenever possible. Souree Code
There is a third possibility for controlling camera orientation. Suppose we want to treat
our camera just like a normal object and specify a rotation matrix and translation vector. *°***°"
To do this we’ll need to specify a starting orientation €2 for our camera and then apply
our rotation matrix to find our camera’s final orientation, after which we can apply our
translation. Which orientation is chosen is somewhat arbitrary, but some are more intuitive
and convenient than others. In our case, we’ll say that in our default orientation the camera
has an initial view direction along the world x-axis, an initial view up along the world z-axis,
and an initial view side along the —y-axis. This aligns the view up vector with the world
up vector, and using the x-axis as the view direction fits the convention we set for objects’
local space in Chapter 4.
Substituting these values into the view-to-world matrix for the standard left-handed view
frame (Equation 7.1) gives

010

Q, = -1 0 0 O
01 00

0 0 0 1

The equivalent matrix for the right-handed OpenGL-style view frame (using Equa-
tion 7.2) is

00 —1 0
10 00

Q.=

og! 01 00
00 01

Whichever system we are using, after this we apply our rotation to orient our frame in
the direction we wish and, finally, the translation for the view position. If the three column
vectors in our rotation matrix are u, v, and w, then the final OpenGL-style transformation
matrix is

Myiew—woria = TR ogl

i j Kk vy u v w0 -j k —-i 0
0 0 0 1 0 0 0 1 0 0 0 1

-V W —U Vs
0O 0 O 1

! Don’t try this at home.



238 Viewing and Projection

Source Code
LookAt

7.2.4 Constructing the World-to-View Transformation

Using the techniques in the previous two sections, now we can create a transformation that
takes us from view space to world space. To create the reverse operator, we need only to
invert the transformation. Since we know that it is an affine transformation, we can invert it as

R —(R7 v,
Mivorid— view = T ( pos)
0 1
where R is the upper 3 x 3 block of our view-to-world transformation. And since R is the
product of either a reflection and rotation matrix (in the standard case) or two rotations
(in the OpenGL-style case), it is an orthogonal matrix, so we can compute its inverse by

taking the transpose:

RT _(I{Tvﬁox)
o’ 1

Mworld—> view —

In practice, this transformation is usually calculated directly, rather than taking the
inverse of an existing transformation. One possible implementation for an OpenGL-style
matrix is as follows:

void LookAt ( const IvVector3& eye,
const IvVector3& lookAt,
const IvVector3& up )

// compute view vectors

IvVector3 viewDir = lookAt - eye;
IvVector3 viewSide;

IvVector3 viewUp;

viewDir.Normalize() ;

viewUp = up - up.Dot(viewDir) *viewDir;
viewUp.Normalize () ;

viewSide = viewDir.Cross (viewUp) ;

// now set up matrices

// build transposed rotation matrix
IvMatrix33 rotate;

rotate.SetRows ( viewSide, viewUp, -viewDir );

// transform translation
IvVector3d eyelnv = -(rotate*eye);
// build 4x4 matrix

IvMatrix44 matrix;
matrix.Rotation(rotate) ;

matrix(0,3) = eyelnv.x;
matrix(1,3) = eyelnv.y;
matrix(2,3) = eyelnv.z;

// set view to world transformation
SetViewMatrix( matrix.mv );



7.3  Projective Transformation 239

Note that we use the method IvMatrix33::SetRows () to set the transformed
basis vectors since we’re setting up the inverse matrix, namely, the transpose. There
is also no recovery code if the view direction and world up vectors are collinear—it is
assumed that any external routine will ensure this does not happen. The renderer method
SetViewMatrix () stores the calculated view transformation and is discussed in more
detail in Section 7.7.

7.3 Projective Transformation

7.3.1 Definition

Now that we have a method for controlling our view position and orientation, and for
transforming our objects into the view frame, we can look at the second stage of the graphics
pipeline: taking our 3D space and transforming it into a form suitable for display on a 2D
medium. This process of transforming from R3 to R? is called projection.

We’ve already seen one example of projection: using the dot product to project one
vector onto another. In our current case, we want to project the points that make up the
vertices of an object onto a plane, called the projection plane or the view plane. We do this
by following a line of projection through each point and determining where it hits the plane.
These lines could be perpendicular to the plane, but as we’ll see, they don’t have to be.

To understand how this works, we’ll look at a very old form of optical projection known
as the camera obscura (Latin for “dark room”). Suppose one enters a darkened room on
a sunny day, and there is a small hole allowing a fraction of sunlight to enter the room.
This light will be projected onto the opposite wall of the room, displaying an image of the
world outside, albeit upside down and flipped left to right (Figure 7.5). This is the same
principle that allows a pinhole camera to work; the hole is acting like the focal point of
a lens. In this case, all the lines of projection pass through a single center of projection.
We can determine where a point will project to on the plane by constructing a line through
both the original point and the center of projection and calculating where it will intersect
the plane of projection. The virtual film in this case is a rectangle on the view plane, known
as the view window. This will eventually get mapped to our display.

This sort of projection is known as perspective projection. Note that this relates to
our perceived view in the real world. As an object moves farther away, its corresponding
projection will shrink on the projection plane. Similarly, lines that are parallel in view space
will appear to converge as their extreme points move farther away from the view position.

Figure 7.5. Camera obscura.



240 Viewing and Projection

This gives us a result consistent with our expected view in the real world. If we stand on
some railroad tracks and look down a straight section, the rails will converge in the distance,
and the ties will appear to shrink in size and become closer together. In most cases, since
we are rendering real-world scenes—or at least, scenes that we want to be perceived as real
world—this will be the projection we will use.

There is, of course, one minor problem: the projected image is upside down and back-
wards. One possibility is just to flip the image when we display it on our medium. This is
what happens with a camera: the image is captured on film upside down, but we can just
rotate the negative or print to view it properly. This is not usually done in graphics. Instead,
the projection plane is moved to the other side of the center of projection, which is now
treated as our view position (Figure 7.6). As we’ll see, the mathematics for projection in
this case are quite simple, and the objects located in the forward direction of our view will
end up being projected right-side up. The objects behind the view will end up projecting
upside down, but we don’t want to render them anyway, and as we’ll see, there are ways of
handling this situation.

An alternate type of projection is parallel projection, which can be thought of as a
perspective projection where the center of projection is infinitely distant. In this case, the
lines of projection do not converge; they always remain parallel (Figure 7.7)—hence the
name. The placement of the view position and view plane is irrelevant in this case, but we
place them in the same relative location to maintain continuity with perspective projection.

Parallel projection produces a very odd view if used for a scene: objects remain the same
size no matter how distant they are, and parallel lines remain parallel. Parallel projections
are usually used for computer-assisted design (CAD) programs, where maintaining parallel
lines is important. They are also useful for rendering 2D elements like interfaces; no matter
how far from the eye a model is placed, it always will be the same size, presumably the size
we expect.

A parallel projection where the lines of projection are perpendicular to the view plane
is called an orthographic projection. By contrast, if they are not perpendicular to the view
plane, this is known as an oblique projection (Figure 7.8). Two common oblique projections

Figure 7.7. Orthographic parallel projection.



7.3 Projective Transformation 241

-
-
-
-
-
-
-
-
-
- -
-
-
-
-
-
-
Z

Figure 7.8. Oblique parallel projection.

-7 §>
-
- s
s
s
~ s
- -
_-
/|
s
s
s
s

Figure 7.9. Oblique perspective projection.

are the cavalier projection, where the projection angle is 45 degrees, and the cabinet projec-
tion, where the projection angle is cot~! (1/2). When using cavalier projections, projected
lines have the same length as the original lines, so there is no perceived foreshortening. This
is useful when printing blueprints, for example, as any line can be measured to find the exact
length of material needed to build the object. With cabinet projections, lines perpendicular
to the projection plane foreshorten to half their length (hence the cot™! (1/2)), which gives
a more realistic look without sacrificing the need for parallel lines.

We can also have oblique perspective projections where the line from the center of the
view window to the center of projection is not perpendicular to the view plane. For example,
suppose we need to render a mirror. To do so, we’ll render the space using a plane reflection
transformation and clip it to the boundary of the mirror. The plane of the mirror is our
projection plane, but it may be at an angle to our view direction (Figure 7.9). For now, we’ll
concentrate on constructing projective transformations perpendicular to the projection plane
and examine these special cases later.

As a side note, oblique projections can occur in the real world. The classic pictures we
see of tall buildings, shot from the ground but with parallel sides, are done with a “view
camera.” This device has an accordion-pleated hood that allows the photographer to bend
and tilt the lens up while keeping the film parallel to the side of the building. Ansel Adams
also used such a camera to capture some of his famous landscape photographs.

7.3.2 Normalized Device Coordinates

Before we begin projecting, our objects have passed through the view stage of the pipeline
and so are in view frame coordinates. We will be projecting from this space in R? to the view
plane, which is in R2. In order to accomplish this, it will be helpful to define a frame for the



242 Viewing and Projection

(a) (b)

Figure 7.10. (a) NDC frame in view window and (b) view window after NDC trans-
formation.

space of the view plane. We’ll use as our origin the center of the view window, and create
basis vectors that align with the sides of the view window, with magnitudes of half the width
and height of the window, respectively (Figure 7.10a). For the purposes of this discussion,
we’ll be using the OpenGL-style viewing matrix, where we look down the —z-axis. Within
this frame, our view window is transformed into a square two units wide and centered at
the origin, bounded by thex = 1,x = —1,y = 1, and y = —1 lines (Figure 7.10b).

Using this as our frame provides a certain amount of flexibility when mapping to devices
of varying size. Rather than transform directly to our screen area, which could be of variable
width and height, we use this normalized form as an intermediate step to simplify our
calculations and then do the screen conversion as our final step. Because of this, coordinates
in this frame are known as normalized device coordinates.

To take advantage of the normalized device coordinate frame, or NDC space, we’ll want
to create our projection so that it always gives us the —1 to 1 behavior, regardless of the
exact view configuration. This helps us to compartmentalize the process of projection (just
as the view matrix did for viewing). When we’re done projecting, we’ll stretch and translate
our NDC values to match the width and height of our display.

To simplify this mapping to the NDC frame, we will begin by using a view window in
the view frame with a height of two units. This means that for the case of a centered view
window, xy coordinates on the view plane will be equal to the projected coordinates in the
NDC frame. In this way we can consider the projection as related to the view plane in view
coordinates and not worry about a subsequent transformation.

7.3.3 View Frustum

The question remains: How do we determine what will lie within our view window?
We could, naively, project all of the objects in the world to the view plane and then, when
converting them to pixels, ignore those pixels that lie outside of the view window. However,
for a large number of objects this would be very inefficient. It would be better to constrain
our space to a convex volume, specified by a set of six planes. Anything inside these planes



7.3 Projective Transformation 243

Field of view

View window

z-axis x-axis

Figure 7.11. Perspective view frustum (right-handed system).

will be rendered; everything outside them will be ignored. This volume is known as the
view frustum, or view volume.

To constrain what we render in the view frame xy directions, we specify four planes
aligned with the edges of the view window. For perspective projection each plane is spec-
ified by the view position and two adjacent vertices of the view window (Figure 7.11),
producing a semi-infinite pyramid. The angle between the upper plane and the lower plane
is called the vertical field of view.

There is a relationship between field of view, view window size, and view plane distance:
given two, we can easily find the third. For example, we can fix the view window size, adjust
the field of view, and then compute the distance to the view plane. As the field of view gets
larger, the distance to the view plane needs to get smaller to maintain the view window
size. Similarly, a small field of view will lead to a longer view plane distance. Alternatively,
we can set the distance to the view plane to a fixed value and use the field of view to
determine the size of our view window. The larger the field of view, the larger the window
and the more objects are visible in our scene. This gives us a primitive method for creating
telephoto (narrow field of view) or wide-angle (wide field of view) lenses. We will discuss
the relationship among these three quantities in more detail when we cover perspective
projection.

In our case, the view window size is fixed, so when adjusting our field of view, we
will move the view plane relative to the center of projection. This continues to match our
camera analogy: the film size is fixed and the lens moves in and out to create a telephoto or
wide-angle effect.

Usually the field of view chosen needs to match the display medium, as the user perceives
it, as much as possible. For a standard widescreen monitor placed about 3 ft away, the
monitor only covers about a 40- to 45-degree field of view from the perspective of the user,
so we would expect that we would use a field of view of that size in the game. However,
this constrains the amount we can see in the game to a narrow area, which feels unnatural
because we’re used to a 180-degree field of view in the real world. The usual compromise is
to set the field of view to the range of 60-90 degrees. The distortion is not that perceptible,



244 Viewing and Projection

View window

Figure 7.12. Parallel view frustum (right-handed system).

and it allows the user to see more of the game world. If the display were stretched to cover
more of your personal field of view, as in a dual-monitor system or some virtual reality
systems, a larger field of view would be appropriate. And of course, if the desired effect
is of a telephoto or wide-angle lens, a narrower or wider field of view, respectively, is
appropriate.

For parallel projection, the xy culling planes are parallel to the direction of projection,
so opposite planes are parallel and we end up with a parallelopiped that is open at two ends
(Figure 7.12). There is no concept of field of view in this case.

In both cases, to complete a closed view frustum we also define two planes that constrain
objects in the view frame z direction: the near and far planes (Figure 7.13). With perspective
projection it may not be obvious why we need a near plane, since the xy planes converge
at the center of projection, closing the viewing region at that end. However, as we will see
when we start talking about the perspective transformation, rendering objects at the view
frame origin (which in our case is the same as the center of projection) can lead to a possible
division by zero. This would adversely affect our rendering process. We could also, like
some viewing systems, use the view plane as the near plane, but not doing so allows us a
little more flexibility.

In some sense, the far plane is optional. Since we don’t have an infinite number of objects
or an infinite amount of game space, we could forego using the far plane and just render
everything within the five other planes. However, the far plane is useful for culling objects
and area from our rendering process, so having a far plane is good for efficiency’s sake. It is
also extremely important in the hidden surface removal method of z-buffering; the distance
between the near and far planes is a factor in determining the precision we can expect in
our z values. We’ll discuss this in more detail in Chapter 10.



7.3 Projective Transformation 245

A | Far plane
Near plane

View window

Figure 7.13. View frustum with near plane and far plane.

7.3.4 Homogeneous Coordinates

There is one more topic we need to cover before we can start discussing projection.
Previously we stated that a point in R? can be represented by (x, y, z, 1) without explaining
much about what that might mean. This representation is part of a more general representa-
tion for points known as homogeneous coordinates, which prove useful to us when handling
perspective projections. In general, homogeneous coordinates work as follows: if we have
a standard representation in n-dimensional space, then we can represent the same point in
a (n 4 1)—-dimensional space by scaling the original coordinates by a single value and then
adding the scalar to the end as our final coordinate. Since we can choose from an infinite
number of scalars, a single point in R” will be represented by an infinite number of points
in the (n + 1)-dimensional space: a line. This (n 4+ 1)-dimensional space is called a real
projective space or RP™ In computer graphics parlance, the real projective space RP? is
also often called homogeneous space.

Suppose we start with a point (x, y, z) in R3 and we want to map it to a point (x', ¥, z/, )
in homogeneous space. We pick a scalar for our fourth element w, and scale the other
elements by it, to get (xw, yw, zw, w). As we might expect, our standard value for w will be
1, so (x,y,z) maps to (x,y, z, 1). To map back to 3D space, divide the first three coordinates
by w, so (x',y’,Z/,w) goes to (x'/w,y'/w,Z’ /w). Since our standard value for w is just 1,
we could just drop the w: (x',y’,7/, 1) = (x/,)’,Z’). However, in the cases that we’ll be
concerned with next, we need to perform the division by w.

What happens when w = 0? In this case, a point in RP> doesn’t represent a point in R,
but a vector. We can think of this as a “point at infinity.” While we will try to avoid cases
where w = 0, they do creep in, so checking for this before performing the homogeneous
division is often wise.



246 Viewing and Projection

Source Code
[ Dermo

Perspective

7.3.5 Perspective Projection

Since this is the most common projective transform we’ll encounter, we’ll begin by con-
structing the mathematics necessary for the perspective projection. To simplify things, let’s
take a 2D view of the situation on the yz plane and ignore the near and far planes for now
(Figure 7.14). We have the y-axis pointing up, as in the view frame, and the projection
direction along the negative z-axis as it would be with our OpenGL-style matrix. The point
on the left represents our center of projection, and the vertical line our view plane. The
diagonal lines represent our y culling planes.

Suppose we have a point P, in view coordinates that lies on one of the view frustum
planes, and we want to find the corresponding point Pj that lies on the view plane. Finding
the y coordinate of P; is simple: We follow the line of projection along the plane until we
hit the top of the view window. Since the height of the view window is 2 and is centered on
0, the y coordinate of Py is half the height of the view window, or 1. The z coordinate will
be negative since we’re looking along the negative z-axis and will have a magnitude equal
to the distance d from the view position to the projection plane. So, the z coordinate will
be —d.

But how do we compute d? As we see, the cross section of the y view frustum planes are
represented as lines from the center of projection through the extents of the view window
(1,d) and (—1,d ). The angle between these lines is our field of view 6y,,. We’ll simplify
things by considering only the area that lies above the negative z-axis; this bisects our field
of view to an angle of 6, /2. If we look at the triangle bounded by the negative z-axis,
the cross section of the upper view frustum plane, and the cross section of the projection
plane, we can use trigonometry to compute d. Since we know the distance between the
negative z-axis and the extreme point P; is 1, we can say that

y-axis

Eyepoint

—z-axis
d

Projection plane

Figure 7.14. Perspective projection construction.



7.3 Projective Transformation 247

Rewriting this in terms of d, we get

d =

tan (Of%)
O

— cot (f)
2

So for this fixed-view window size, as long as we know the angle of field of view, we can
compute the distance d, and vice versa.

This gives the coordinates for any point that lies on the upper y view frustum plane; in
this 2D cross section they all project down to a single point (1, —d ). Similarly, points that
lie on the lower y frustum plane will project to (— 1, —d ). But suppose we have a general
point (yy, zy) in view space. We know that its projection will lie on the view plane as well,
S0 its z,4. coordinate will be —d. But how do we find y;,4.?

We can compute this by using similar triangles (Figure 7.15). If we have a point (y,, z,),
the lengths of the sides of the corresponding right triangle in our diagram are y, and —z,
(since we’re looking down the —z-axis, any visible z, is negative, so we need to negate it
to get a positive value). The lengths of the sides of the right triangle for the projected point
are ypq and d. By similar triangles (both have the same angles), we get

Ynde v
d _Zv
Solving for y,4., we get
dyy
Ynde =
-z

y-axis

L ______Q\_______ —

—z-axis

Projection plane

Figure 7.15. Perspective projection of similar triangles.



248 Viewing and Projection

This gives us the coordinate in the y direction. If our view region was square, then we
could use the same formula for the x direction. Most, however, are rectangular to match
the relative dimensions of a computer monitor or other viewing device. We must correct for
this by the aspect ratio of the view region. The aspect ratio a is defined as

where w,, and A, are the width and height of the view rectangle, respectively. We’re going
to assume that the NDC view window height remains at 2 and correct the NDC view width
by the aspect ratio. This gives us a formula for similar triangles of

AXnde Xy
d —Zy
Solving for xy4,:
dx,
Xnde =
—az,

So, our final projection transformation equations are

dx,
Xnde =
—az,
dyy
Ynde =
-2

The first thing to notice is that we are dividing by a z coordinate, so we will not be able
to represent the entire transformation by a matrix operation, since it is neither linear nor
affine. However, it does have some affine elements—scaling by d and d/a, for example—
which can be performed by a transformation matrix. This is where the conversion from
homogeneous space comes in. Recall that to transform from RP3 to R we need to divide
the other coordinates by the w value. If we can set up our matrix to map —z, to our w
value, we can take advantage of the homogeneous divide to handle the nonlinear part of
our transformation. We can write the situation before the homogeneous divide as a series
of linear equations,

, d
X = —X

a
y =dy
7 =dz
w=—z

and treat this as a four-dimensional (4D) linear transformation. Looking at our basis vectors,
eo will map to (d/a,0,0,0), e to (0,d,0,0), e to (0,0,d, —1), and e3 to (0,0, 0, 0), since
w is not used in any of the equations.



7.3  Projective Transformation 249

Based on this, our homogeneous perspective matrix is

S O O Rl

S O 8o
)

o O O O

-1

As expected, our transformed w value no longer will be 1. Also note that the rightmost
column of this matrix is all zeros, which means that this matrix has no inverse. This is to
be expected, since we are losing one dimension of information. Individual points in view
space that lie along the same line of projection will project to a single point in NDC space.
Given only the points in NDC space, it would be impossible to reconstruct their original
positions in view space.

Let’s see how this matrix works in practice. If we multiply it by a generic point in view
space, we get

4 0 0 0 X &
a a
04 0 O wo| | dw
0 0 0 o | | dz
0 0 —1 0 1 —2

Dividing out the w (also called the reciprocal divide), we get

dx,
Xnde =

—az,

dyy
Ynde =

-2y
Znde = —d

which is what we expect.

So far, we have dealt with projecting x and y and completely ignored z. In the preceding
derivation all z values map to —d, the negative of the distance to the projection plane.
While losing a dimension makes sense conceptually (we are projecting from a 3D space
down to a 2D plane, after all), for practical reasons it is better to keep some measure of our
z values around for z-buffering and other depth comparisons (discussed in more detail in
Chapter 10). Just as we’re mapping our x and y values within the view window to an interval
of [—1, 1], we’ll do the same for our z values within the near plane and far plane positions.
We’ll specify the near and far values n and f relative to the view position, so points lying
on the near plane have a z, value of —n, which maps to a z,4. value of —1. Those points
lying on the far plane have a z, value of —f and will map to 1 (Figure 7.16).

We’ll derive our equation for z,4. in a slightly different way than our xy coordinates.
There are two parts to mapping the interval [—n, ] to [—1, 1]. The first is scaling the
interval to a width of 2, and the second is translating it to [—1, 1]. Ordinarily, this would be
a straightforward linear process; however, we also have to contend with the final w divide.



250 Viewing and Projection

y-axis

.
|
|
|
|
|
|
|
|
|
|
|
|
f -
| —z-axis
|

|

' '
-z, = —near —z, = —far
z,=-1 z, =

e ndc

Figure 7.16. Perspective projection: z values.

Instead, we’ll create a perspective matrix with unknowns for the scaling and translation
factors and use the fact that we know the final values for —n and —f to solve for the
unknowns. Our starting perspective matrix, then, is

S O O el
S O & O
S o o

—1

where A and B are our unknown scale and translation factors, respectively. If we multiply
this by a point (0, 0, —n) on our near plane, we get

40 0 0 0 0
0 d 0 _ 0
0 0 B|| -n| | -An+B
0 0 -1 0 1 n
Dividing out the w gives
B
Znde = —A+ —
n

We know that any point on the near plane maps to a normalized device coordinate of
—1, so we can substitute —1 for z,4. and solve for B, which gives us

B=A-1Dn (7.3)



7.3 Projective Transformation

Now we’ll substitute Equation 7.3 into our original matrix and multiply by a point (0, 0, —f )
on the far plane:

4.0 0 0 0 0
0 d 0 0 0| 0
00 A (A—Dn | | —Af+@—1n
0 0 -1 0 1 f

This gives us a z,4. of

n
Znde = —A+ (A — 1)]7

L D+l
(n/f)—1
_n+f
=7
If we substitute this into Equation 7.3, we get
2
=2
n—f
So, our final perspective matrix is
d
Y 0
M 0 4 0 0
persp — +f 2nf
00 7 &
0 0 -1 0

It is important to be aware that this matrix will not work for all viewing systems. For one
thing, the standard left-handed view frame looks down the positive z-axis, so this affects
both our xy and z transformations. For example, in this case we have mapped [—n, —f] to
[—1, 1]. With the standard system we would want to begin by mapping [#,f] to the NDC

251



252 Viewing and Projection

Source Code

Stereo

zrange. In addition, this range is not always set to [—1, 1]. Direct3D, for one, has a mapping
to [0, 1] in the z direction.

Using the standard left-handed view frame and a [0, 1] mapping in z gives us a perspective
transformation matrix of

d
d 90 0 o0
M 0 d4 0 0
pD3D = f if
00 7% —7%
00 1 0

This matrix can be derived using the same principles described above.

When setting up a perspective matrix, it is good to be aware of the issues involved in
rasterizing z values. In particular, to maintain z precision, keep the near and far planes as
close together as possible. More details on managing perspective z precision can be found
in Chapter 10.

7.3.6 Oblique Perspective

The matrix we constructed in the previous section is an example of a basic perspective
matrix, where the direction of projection through the center of the view window is perpen-
dicular to the view plane. A more general example of perspective, based on the deprecated
OpenGL glFrustum () call, takes six parameters: the near and far z distances, as before,
and four values that define our view window on the near z plane: the x interval [/, r] (left,
right) and the y interval [b, f] (bottom, top). Figure 7.17a shows how this looks in R3, and
Figure 7.17b shows the cross section on the yz plane. As we can see, these values need not
be centered around the z-axis, so we can use them to generate an oblique projection.

To derive this matrix, once again we begin by considering similar triangles in the y
direction. Remember that given a point (y,, —z,), we project to a point on the view plane
(dyy/—zy, —d), where d is the distance to the projection. However, since we’re using our
near plane as our projection plane, this is just (ny,/—z,, —n). The projection remains the
same, we’re just moving the window of projected points that lie within our view frustum.

With our previous derivation, we could stop at this point because our view window on
the projection plane was already in the interval [—1, 1]. However, our new view window
lies in the interval [b, t]. We’ll have to adjust our values to properly end up in NDC space.
The first step is to translate the center of the window, located at (¢ 4 b)/2, to the origin.
Applying this translation to the current projected y coordinate gives us

PG
2

We now need to scale to change our interval from a magnitude of (¢ — b) to a magnitude
of 2 by using a scale factor 2/(t — b):

2y 2t+b)

Ynde = —

t—b 2t—b) (74)



7.3 Projective Transformation 253

(Left, top, —near)

t

(Left, bottom, —near) (Right, top, —near)

(Right, bottom, —near)

y-axis

(Top, —near)

(Bottom, —near)

Eyepoint

—z-axi
—near Z-axis

Near plane

(b)

Figure 7.17. (a) View window for general perspective, 3D view. (b) View window for
general perspective, cross section.

If we substitute ny, /—z, for y and simplify, we get

2n(yy/—zv) 2t +D)

t—b  2(t—b)
i 2n(yv/—zy)  (t+b)(—zy/—2y)
T i—b t—b

. 1 2n +t+b
BN RS L

A similar process gives us the following for the x direction:

1 2n r+1
Xnde = — Xyt ——2
—zy \r—1 r—1

Ynde =




254 Viewing and Projection

We can use the same A and B from our original perspective matrix, so our final projection

matrix is
2 +1
=0 5 0
2 t+b
Mobipersp = A
oblpersp — 4f onf
0 0 fo ﬁ
0 0o -1 0

Source Code

A casual inspection of this matrix gives some sense of what’s going on here. We have a
scale in the x, y, and z directions, which provides the mapping to the interval [—1, 1].
In addition, we have a translation in the z direction to align our interval properly. However,
in the x and y directions, we are performing a z-shear to align the interval, which provides
us with the oblique projection.

The equivalent left-handed Direct3D matrix is

2 +1
20 = 0
2 t+b
0 = - 0
MopD3D = f nf
0 0 = -~
0 0 1 0

As unusual as it might appear, there are a number of applications of oblique perspective
projection in real-time graphics. First of all, it can be used in mirrors: we treat the mirror as
our view window, the mirror plane as our view plane, and the viewer’s location as our view
position. If we apply a plane reflection to all of our objects, flipping them around the mirror
plane, and then render with the appropriate visual effects, we will end up with a result in
the view window that emulates a mirror.

Another application is stereo. By using a single view plane and view window, but separate
view positions for each eye that are offset from the standard center of projection, we get
slightly different projections of the world. By using either a red-blue system to color each
view differently, or some sort of goggle system that displays the left and right views in each
eye appropriately, we can provide a good approximation of stereo vision. We have included
an example of this in the sample code.

Finally, this can be used for a system called fishtank VR. Normally we think of VR as
a helmet attached to someone’s head with a display for each eye. However, by attaching a
tracking device to a viewer’s head we can use a single display and create an illusion that
we are looking through a window into a world on the other side. This is much the same
principle as the mirror: the display is our view window and the tracked location of the eye
is our view position. Add stereo and this gives a very pleasing effect.

7.3.7 Orthographic Parallel Projection
After considering perspective projection in two forms, orthographic projection is much

ortnesrapnic easier. Examine Figure 7.18, which shows a side view of our projection space as before,



7.3 Projective Transformation 255

y-axis
(Top, —near)
1
Eyepoint R
—z-axis
(Bottom, —near)
Near plane Far plane

Figure 7.18. Orthographic projection construction.

with the lines of projection passing through the view plane and the near and far planes
shown as vertical lines. This time the lines of projection are parallel to each other (hence
this is a parallel projection) and parallel to the z-axis (hence an orthographic projection).
We can use this to help us generate a matrix similar to the result from the deprecated
OpenGL glOrtho () call. Like the generalized perspective matrix, this also uses six
parameters: the near and far z distances, and four values /, r, b, and ¢ that define our view
window on the near z plane. As before, the near plane is our projection plane, so a point
(vv, zv) projects to a point (y,, —n). Note that since this is a parallel projection, there is no
division by z or scale by d; we just use the y value directly. As with our general perspective
matrix, we now need to consider only values between ¢ and b and scale and translate them
to the interval [—1, 1]. Substituting y, into our range transformation equation (7.4), we get

2y, t+b
t—b t—b
A similar process gives us the equation for x,4.. We can do the same for z,,4., but since our

viewable z values are negative and our values for n and f are positive, we need to negate
our z value and then perform the range transformation. The result of all three equations is

Ynde =

2 +
= 0 0 =5
2 +b
NI B =2 =
ortho =— 2 ftn
00 7= —r

0 0 0 1

There are a few things we can notice about this matrix. First of all, multiplying by this
matrix gives us a w value of 1, so we don’t need to perform the homogeneous division. This
means that our z values will remain linear; that is, they will not compress as they approach
the far plane. This gives us better z resolution at far distances than the perspective matrices.
It also means that this is a linear transformation matrix and possibly invertible.

Secondly, in the x and y directions, what was previously a z-shear in the oblique perspec-
tive matrix has become a translation. Before, we had to use shear, because for a given point



256 Viewing and Projection

the displacement was dependent on the distance from the view position. Because the lines
of projection are now parallel, all points displace equally, so only a translation is necessary.
The left-handed Direct3D equivalent matrix is

2 +1
= 00 =G
2 +b
M N = U -
orthoD3D = 1 n
0 0 = -4
0 0 0 1

7.3.8 Oblique Parallel Projection
Source Code

While most of the time we’ll want to use orthographic projection, we may from time to
tiae time need an oblique parallel projection. For example, suppose for part of our interface
we wish to render our world as a set of schematics or display particular objects with a 2D
CAD/CAM feel. This set of projections will achieve our goal. We will give our projection
a slight oblique angle (cot™! (1/2), which is about 63.4 degrees), which gives a 3D look
without perspective. More extreme angles in x and y tend to look strangely flat.
Figure 7.19 is another example of our familiar cross section, this time showing the
lines of projection for our oblique projection. As we can see, we move one unit in the y
direction for every two units we move in the z direction. Using the formula of tan (6) =
opposite/adjacent, we get

2
tan (0) = 1
t (0) :
co = -
2

1

6 =cot™ —

2

which confirms the expected value for our oblique angle.

y-axis

Eyepoint
@

Projection plane

Figure 7.19. Example of oblique parallel projection.



7.3 Projective Transformation

As before, we’ll consider the yz case first and extrapolate to x. Moving one unit in y and
two units in —z gives us the vector (1, —2), so the formula for the line of projection for a
given point P is

L(t) = P+1(1,-2)
We’re only interested in where this line crosses the near plane, or where
P,—2t=—-n
Solving for ¢, we get
1
t=50+P)
Plugging this into the formula for the y coordinate of L(#), we get
1
y = Py+§(”+Pz)
Finally, we can plug this into our range transformation equation (6.4) as before to get

[yv—i-%(n—i-zv)] _ t+b
t—>b t—>b

Ynde = 2

B 2y, _t+b+zv+n
T t—b t—b 1—b

Once again, we examine our transformation equation more carefully. This is the same as
the orthographic transformation we had before, with an additional z-shear, as we’d expect
for an oblique projection. In this case, the shear plane is the near plane rather than the xy
plane, so we add an additional factor of % to take this into account.

A similar process can be used for x. Since the oblique projection has a z-shear, z is not
affected and so,

2 1 -
=RV =
2 1 t+b—
N L= = =
o= 0 0 -2 _ntf
f—n f—n
0 0 0 1
The left-handed Direct3D equivalent matrix is
2 1 +1—
= AU Bl
o 2 __1L t1+b—n
Mobin3p = -t tl_b t;b
0 0 0 1

257



258 Viewing and Projection

7.4 Culling and Clipping

7.4.1 Why Cull or Clip?

We will now take a detour from discussing the transformation aspect of our pipeline to
discuss a process that often happens at this point in many renderers. In order to improve
rendering, both for speed and appearance’s sake, it is necessary to cull and clip objects.
Culling is the process of removing objects from consideration for some process, whether it
be rendering, simulation, or collision detection. In this case, that means we want to ignore
any models or whole pieces of geometry that lie outside of the view frustum, since they
will never end up being projected to the view window. In Figure 7.20, the lighter objects
lie outside of the view frustum and so will be culled for rendering.

Clipping is the process of cutting geometry to match a boundary, whether it be a polygon
or, in our case, a plane. Vertices that lie outside the boundary will be removed and new ones
generated for each edge that crosses the boundary. For example, in Figure 7.21 we see a
box being clipped by a plane, showing the extra vertices created where each edge intersects
the plane. We’ll use this for any models that cross the view frustum, cutting the geometry

Figure 7.20. View frustum culling.

7
/I

[—————————

I\

Figure 7.21. View frustum clipping.



7.4 Culling and Clipping 259

y-axis

~~~~ X >

~ ——— —z-axis

Projection plane

Figure 7.22. Projection of objects behind the eye.

so that it fits within the frustum. We can think of this as slicing a piece of geometry off for
every frustum plane.

Why should we want to use either of these for rendering? For one thing, it is more
efficient to remove any data that will not ultimately end up on the screen. While copying
the transformed object to the frame buffer (a process called rasterization) is almost always
done in hardware and thus is fast, it is not free. Anywhere we can avoid unnecessary work
is good.

But even if we had infinite rasterization power, we would still want to cull and clip when
performing perspective projection. Figure 7.22 shows one example why. Recall that we
finessed the problem of the camera obscura inverting images by moving the view plane
in front of the center of projection. However, we still have the same problem if an object
is behind the view position; it will end up projected upside down. The solution is to cull
objects that lie behind the view position.

Figure 7.23a shows another example. Suppose we have a polygon edge PQ that crosses
the z = 0 plane. Endpoint P projects to a point P’ on the view plane, and Q to Q'. With
the correct projection, the intermediate points of the line segment should start at the middle
of the view, move up, and wrap around to reemerge at the bottom of the view. In practice,
however, the rasterizing hardware has only the two projected vertices as input. It will take the
vertices and render the shortest line segment between them (Figure 7.23b). If we clip the line
segment to only the section that is viewable and then project the endpoints (Figure 7.23c),
we end with only a portion of the line segment, but at least it is from the correct projection.

There is also the problem of vertices that lie on the z = 0 plane. When transformed to
homogeneous space by the perspective matrix, a point (x, y, 0, 1) will become (x',y’,z’,0).
The resulting transformation into NDC space will be a division by 0, which is not valid.

To avoid all of these issues, at the very least we need to set a near plane that lies in front
of the eye so that the view position itself does not lie within the view frustum. We first cull
any objects that lie on the same side of the near plane as the view position. We then clip any

260 Viewing and Projection

Projection plane

Projection plane

Projection plane

Eye View direction

Near plane

©)

Figure 7.23. (a) Projection of line segment crossing behind view point. (b) Incorrect line
segment rendering based on projected endpoints. (c) Line segment rendering when clipped
to near plane.

objects that cross the near plane. This avoids both the potential of dividing by 0 (although it
is sometimes prudent to check for it anyway, at least in a debug build) and trying to render
any line segments passing through infinity.

While clipping to a near plane is a bare minimum, clipping to the top, bottom, left, and
right planes is useful as well. While the windowing hardware will usually ignore any pixels
that lie outside of a window’s visible region (this is commonly known as scissoring), it is
faster if we can avoid unnecessary rasterization. Also, if we want to set a viewport that
covers a subrectangle of a window, not clipping to the border of the viewport may lead to
spurious geometry being drawn (although most hardware allows for adjustable scissoring
regions; in particular, OpenGL and D3D provide interfaces to set this).

Finally, some hardware has a limited range for screen-space positions, for example, 0 to
4,095. The viewable area might lie in the center of this range, say from a minimum point

7.4 Culling and Clipping 261

of (1,728, 1,808) to a maximum point of (2,688, 2,288). The area outside of the viewable
area is known as the guard band—anything rendered to this will be ignored, since it won’t
be displayed. In some cases we can avoid clipping in x and y, since we can just render
objects whose screen-space projection lies within the guard band and know that they will
be handled automatically by the hardware. This can improve performance considerably,
since clipping can be quite expensive. However, it’s not entirely free. Values that lie outside
the maximum range for the guard band will wrap around. So, a vertex that would normally
project to coordinates that should lie off the screen, say (6,096, 6,096), will wrap to (2,000,
2,000)—right in the middle of the viewable area. Unfortunately, the only way to solve this
problem is what we were trying to avoid in the first place: clipping in the x and y directions.
However, now our clip window encompasses the much larger guard band area, so using the
guard band can still reduce the amount of clipping that we have to do overall.

7.4.2 Culliing

A naive method of culling a model against the view frustum is to test each of its vertices
against each of the frustum planes in turn. We designate the plane normal for each
plane as pointing toward the inside half-space. If for one plane ax 4+ by 4+ cz+d < 0 for
every vertex P = (x,y, z), then the model lies outside of the frustum and we can ignore
it. Conversely, if for all the frustum planes and all the vertices ax+by+cz+d > 0,
then we know the model lies entirely inside the frustum and we don’t need to worry
about clipping it.

While this will work, for models with large numbers of vertices this becomes expensive,
probably outweighing any savings we might gain by not rendering the objects. Instead,
culling is usually done by approximating the object with a convex bounding volume, such
as a sphere, that contains all of the vertices for the object. Rather than test each ver-
tex against the planes, we test only the bounding object. Since it is a convex object and
all the vertices are contained within it, we know that if the bounding object lies outside
of the view frustum, all of the model’s vertices must lie outside as well. More infor-
mation on computing bounding objects and testing them against planes can be found in
Chapter 12.

Bounding objects are usually placed in the world frame to aid with collision detection, so
culling is often done in the world frame as well. One approach generates the clip planes from
the view parameters. We can find each x or y clipping plane in the view frame by using the
view position and two corners of the view window to generate the plane. The two z planes
(in OpenGL-style projections) are z = —near and z = —far, respectively. Transforming
them to the world frame is a simple case of using the technique for transforming plane
normals, as described in Chapter 4. This can work in many cases, but does involve knowing
the view parameters. A better and more general approach generates the clip planes directly
from the transformation matrix, which we discuss in Section 7.4.5.

While view frustum culling can remove a large number of objects from consideration,
it’s not the only culling method. Another is backface culling, which allows us to determine
which polygons are pointing away from the camera (acting as the “back faces" of objects,
hence the name) so we can ignore them. There also are a large number of culling methods
that break up the scene in order to cull objects that aren’t visible. This can help with interior
levels, so you don’t render rooms that may be within the view frustum but not visible

262 Viewing and Projection

because they’re blocked by a wall. Such methods are out of the purview of this book but
are described in detail in many of the references cited in the following sections.

7.4.3 General Plane Clipping
To clip polygons, we first need to know how to clip a polygon edge (i.e., a line segment) to
ctireing g plane. As we’ll see, the problem of clipping a polygon to a plane degenerates to handling
this case. Suppose we have a line segment PQ, with endpoints P and Q, that crosses a plane.
We’ll say that P is inside our clip space and Q is outside. Our clipped line segment will be
PR, where R is the intersection of the line segment and the plane (Figure 7.24).
To find R, we take the line equation P +#(Q — P), plug it into our plane equation
ax +by+cz+d = 0, and solve for ¢. To simplify the equations, we’ll define v = Q — P.
Substituting the parameterized line coordinates for x, y, and z, we get

0 = a(Px +1tvy) + b(Py +tvy) +c(P, +1v) +d
= aP, +tavy + bPy +thvy +cP, +tcv, +d
=aP, +bPy+cP; +d+t(avy + bvy +cv,)

—aPy —bPy—cP, —d
avy +bvy +cv,

And now, substituting in Q — P for v:

L (aPy +bPy +cP, +d)
(@P, +bPy+ P, +d) — (aQy + b0y +cQ, +d)

We can use Blinn’s notation [12], slightly modified, to simplify this to

e BCP
~ BCP—BCQ
Q
R

P

Figure 7.24. Clipping edge to plane.

7.4 Culling and Clipping 263

P P
O\g O\g
—> —>
Output P No output
Q PR

O(\()R\OP O\O\>OQ

—> —>

Output P, R Output R

Figure 7.25. Four possible cases of clipping an edge against a plane.

where BCP is the result from the plane equation (the boundary coordinate) when we test P
against the plane, and BCQ is the result when we test Q against the plane. The resulting
clip point R is

R=P Bep P
=0T BCP—BCQ(Q)

To clip a polygon to a plane, we need to clip each edge in turn. A standard method
for doing this is to use the Sutherland—Hodgeman algorithm [143]. We first test each edge
against the plane. Depending on what the result is, we output particular vertices for the
clipped polygon. There are four possible cases for an edge from P to Q (Figure 7.25). If
both are inside, then we output P. The vertex Q will be output when we consider it as the
start of the next edge. If both are outside, we output nothing. If P is inside and Q is outside,
then we compute R, the clip point, and output P and R. If P is outside and Q is inside, then
we compute R and output just R—as before, Q will be output as the start of the next edge.
The sequence of vertices generated as output will be the vertices of our clipped polygon.

‘We now have enough information to build a class for clipping vertices, which we’ll call
IvClipper. We can define this as

class IvClipper

{

public:
IvClipper ()
{

mFirstVertex = true;

}
~IvClipper () ;

void ClipVertex(const IvVector3& end)

264 Viewing and Projection

inline void StartClip()

{ mFirstVertex = true; }

inline void SetPlane(const IvPlane& plane) {mPlane = plane; }
private:

IvPlane mPlane; // current clipping plane

IvVector3 mStart; // current edge start vertex

float mBCStart; // current edge start boundary condition

bool mStartInside; //
bool mFirstVertex; //

Note that TvClipper: :ClipVertex () takes only one argument: the end vertex
of the edge. If we send the vertex pair for each edge down to the clipper, we’ll end up
duplicating computations. For example, if we clip Py and Py, and then P; and P;, we have
to determine whether P; is inside or outside twice. Rather than do that, we’ll feed each
vertex in order to the clipper. By storing the previous vertex (mStart) and its plane test
information (mBCStart) in our IvClipper class, we need to calculate data only for the
current vertex. Of course, we’ll need to prime the pipeline by sending in the first vertex,

whether
whether

current start vertex is inside
expected vertex is start vertex

not treating it as part of an edge, and just storing its boundary information.

Using this, clipping an edge based on the current vertex might look like the following

code:

void IvClipper::ClipVertex(
{

const

float BCend = mPlane.Test (end) ;

bool endInside = (BCend
if (!mFirstVertex)

{

>= 0);

IvVector3& end)

// if one of the points is inside
if (mStartInside || endInside)

{

// if the start is inside,

if (mStartInside)
Output (mStart);

just output it

// if one of them is outside, output clip point
if (! (mStartInside && endInside))

{
if (endInside)
{

float t = BCend/ (BCend - mBCStart) ;
Output (end - t*(end - mStart));

}

else

{

float t = mBCStart/ (mBCStart - BCend) ;
Output (mStart + t*(end - mStart));

7.4 Culling and Clipping 265

mStart = end;

mBCStart = BCend;
mStartInside = endInside;
mFirstVertex = false;

Note that we generate ¢ in the same direction for both clipping cases—from inside to outside.
Polygons will often share edges. If we were to clip the same edge for two neighboring
polygons in different directions, we may end up with two slightly different points due to
floating-point error. This will lead to visible cracks in our geometry, which is not desirable.
Interpolating from inside to outside for both cases avoids this situation.

To clip against the view frustum, or any other convex volume, we need to clip against
each frustum plane. The output from clipping against one plane becomes the input for
clipping against the next, creating a clipping pipeline. In practice, we don’t store the entire
clipped polygon, but pass each output vertex down as we generate it. The current output
vertex and the previous one are treated as the edge to be clipped by the next plane. The
Output () call above becomes a ClipVertex () for the next stage.

Note that we have only generated new positions at the clip boundary. There are other
parameters that we can associate with an edge vertex, such as colors, normals, and texture
coordinates (we’ll discuss exactly what these are in Chapters 8—10). These will have to
be clipped against the boundary as well. We use the same ¢ value when clipping these
parameters, so the clip part of our previous algorithm might become as follows:

// if one of them is outside, output clip vertex
if (! (mStartInside && endInside))
{

clipPosition = startPosition + t*(endPosition - startPosition);
clipColor = startColor + t*(endColor - startColor);

clipTexture = startTexture + t* (endTexture - startTexture);

// Output new clip vertex

This is only one example of a clipping algorithm. In most cases, it won’t be necessary
to write any code to do clipping. The hardware will handle any clipping that needs to
be done for rendering. However, for those who have the need or interest, other examples
of clipping algorithms are the Liang-Barsky [96], Cohen—Sutherland (found in Hughes
et al. [82] as well as other graphics texts), and Cyrus—Beck [28] methods. Blinn [12]
describes an algorithm for lines that combines many of the features from the previously
mentioned techniques; with minor modifications it can be made to work with polygons.

7.4.4 Homogeneous Clipping

In the presentation above, we clip against a general plane. When projecting, however,
Blinn and Newell [11] noted that we can simplify our clipping by taking advantage of
some properties of our projected points prior to the division by w. Recall that after the

266 Viewing and Projection

division by w, the visible points will have normalized device coordinates lying in the
interval [—1, 1], or
—1<x/w<l
—l=y/w=1
—-l1<z/w<l
Multiplying these equations by w provides the intervals prior to the w division:
—w<x<w
—w<y<w
—w<z<w

In other words, the visible points are bounded by the six planes:

w=x
W= —x
=Y
w=-y
w=7z
w=—z

Instead of clipping our points against general planes in the world frame or view frame,
we can clip our points against these simplified planes in RP3 space. For example, the plane
test for w = x is w — x. The full set of plane tests for a point P are

BCP_, =w+x
BCPy, =w—x
BCP_y =w+y
BCPy=w—y
BCP_, =w+z
BCP, =w—z

The previous clipping algorithm can be used, with these plane tests replacing the
IvPlane: :Test () call. While these tests are cheaper to compute in software, their
great advantage is that since they don’t vary with the projection, they can be built directly
into hardware, making the clipping process very fast.

There is one potential wrinkle to homogeneous clipping, however. Figure 7.26 shows
the visible region for the x coordinate in homogeneous space. However, our plane tests will
clip to the upper triangle region of that hourglass shape—any points that lie in the lower
region will be inadvertently removed. With the projections that we have defined, this will
happen only if we use a negative value for the w value of our points. And since we’ve
chosen 1 as the standard w value for points, this shouldn’t happen. However, if you do have
points that for some reason have negative w values, Blinn [12] recommends the following
procedure: transform, clip, and render your points normally; then multiply your projection
matrix by —1; and then transform, clip, and render again.

7.4 Culling and Clipping

N w-axis 4

x-axis

Figure 7.26. Homogeneous clip regions for NDC interval [—1, 1].

7.4.5 Extracting Clip Planes

With our knowledge of homogeneous clipping, we can now discuss how to extract clip
planes directly from a perspective transformation matrix [64]. Given a perspective trans-
formation matrix P and a point in view space represented as a vector v = (x,, ¥y, Zy, 1),
we can multiply them to get a point in homogeneous space (x, y, z, w) or

x P} Xy plev
y | el [[»w | _|pfev
c| el ||| | plev
w p} 1 plev

As we stated when we clip homogeneous space, we are clipping within the region bounded
by six planes. Let’s take the first one, w = x. This is equivalent to the plane equation
0 = w — x. From our matrix multiplication above, we can substitute for x and w, and so

O=w—x

=pjev—pgeV
From the additivity property of the dot product we can simplify this to
0= (p3T — pg)eVv
Expanding this out, we get a plane equation in terms of v:

0 = (p3,0 — Po,0)xv + (p3,1 — po,)yv + (P32 — Po,2)zv + (P33 — P03)

267

268 Viewing and Projection
where our a, b, c, d values for the plane are

a = (p30 —Poo)

b= (p31—po1)
¢ =(p32—po2)
d = (p33—po3)

So to get our plane constants we only need to subtract the top row from the bottom row.
The other clip planes can be computed similarly:

Homogeneous Plane | Clip Plane Parameters
w=x pl —p}
w=—Xx p3T + pg
w=y pi —pl
w=—y i +p]
w=z p} —p?
w=—z p_{ +pg

Note that the parameters above are for the OpenGL NDC z range of [—1, 1]. For the
Direct3D NDC z range of [0, 1], the last homogeneous plane is w = 0, so the corresponding
clip parameters are just pg.

Given a perspective transformation matrix this will give us our clip planes in view space.
However, this same approach will work if the perspective matrix is concatentated with
other transformations, or even with orthographic projections. So if we want the clip planes
in world space for a general projection, we need only concatenate our world-to-view matrix
with our projection matrix, run this process, and our computed clip plane parameters will
be appropriate for world space.

7.5 Screen Transformation

Now that we’ve covered viewing, projection, and clipping, our final step in transforming
our object in preparation for rendering is to map its geometric data from the NDC frame to
the screen or device frame. This could represent a mapping to the full display, a window
within the display, or an offscreen pixel buffer.

Remember that our coordinates in the NDC frame range from a lower left corner of
(—1,—1) to an upper right corner of (1, 1). Real device space coordinates usually range
from an upper left corner (0, 0) to a lower right corner (wy, hs), where wy (screen width)
and h; (screen height) are usually not the same. In addition, in screen space the y-axis is
commonly flipped so that y values increase as we move down the screen. Some windowing
systems allow you to use the standard y direction, but we’ll assume the default (Figure 7.27).

What we’ll need to do is map our NDC area to our screen area (Figure 7.28). This consists
of scaling it to the same size as the screen, flipping our y direction, and then translating it
so that the upper left corner becomes the origin.

7.5 Screen Transformation 269

(w,h)

Figure 7.27. View window in standard screen-space frame.

Figure 7.28. Mapping NDC space to screen space.

Let’s begin by considering only the y direction, because it has the special case of the axis
flip. The first step is scaling it. The NDC window is two units high, whereas the screen-
space window is &g high, so we divide by 2 to scale the NDC window to unit height, and
then multiply by 4 to scale to screen height:

_h
y = 2yndc

Since we’re still centered around the origin, we can do the axis flip by just negating:

/7 hS
Y = =35 Yndc

2
Finally, we need to translate downwards (which is now the positive y direction) to map
the top of the screen to the origin. Since we’re already centered on the origin, we need to
translate only half the screen height, so

h hg

Vs = _ESYndc + 5

270 Viewing and Projection

Another way of thinking of the translation is that we want to map the extreme point —#,/2
to 0, so we need to add h/2.
A similar process, without the axis flip, gives us our x transformation:
Xs = %xndc + %

This assumes that we want to cover the entire screen with our view window. In some
cases, for example, in a split-screen console game, we want to cover only a portion of
the screen. Again, we’ll have a width and height of our screen-space area, w; and A, but
now we’ll have a different upper left corner position for our area: (sy,sy). The first part
of the process is the same; we scale the NDC window to our screen-space window and flip
the y-axis. Now, however, we want to map (— wy/2, —hs/2) to (sx, sy), instead of (0,0).
The final translation will be (wg/2 + sy, hg/2 +sy). This gives us our generalized screen
transformation in xy as

Wy Wy

Xs = ixndc + ?s =+ Sx (7.5)
L (7.6)

Vs =) Yndc > Sy .

Our z coordinate is a special case. As mentioned, we’ll want to use z for depth testing,
which means that we’d really prefer it to range from 0 to d;, where d; is usually 1. This
mapping from [—1, 1] to [0, d] is

= et 2 (1.7
s =) Zndc B .

We can, of course, express this as a matrix:

0 0 F4sy
hy hy
M 0 -5 0 2 + Sy
ndc— screen = d, d,
0 0 3 3
0 0 0 1

7.5.1 Pixel Aspect Ratio

Recall that in our projection matrices, we represented the shape of our view window by
setting an aspect ratio a. Most of the time it is expected that the value of a chosen in the
projection will match the aspect ratio wy/hy of the final screen transformation. Otherwise,
the resulting image will be distorted. For example, if we use a square aspect ratio (a = 1.0)
for the projection and a standard aspect ratio of 4:3 for the screen transformation, the image
will appear compressed in the y direction. If your image does not quite look right, it is good
practice to ensure that these two values are the same.

An exception to this practice arises when your final display has a different aspect ratio
than the offscreen buffers that you’re using for rendering. For example, NTSC televisions

have 448 scan lines, with 640 analog pixels per scan line, so it was common practice to
render to a 640 x 448 area and then send that to the NTSC converter to be displayed. Using
the offscreen buffer size would give an aspect ratio of 10:7. But the physical CRT television
screen has a 4:3 aspect ratio, so the resulting image would be distorted, producing stretching
in the y direction. The solution was to set a = 4/3 despite the aspect ratio of the offscreen
buffer. The image in the offscreen buffer was compressed in the y direction, but is then
proportionally stretched in the y direction when the image is displayed on the television,
thereby producing the correct result.

7.6 Picking

Now that we understand the mathematics necessary for transforming an object from world
coordinates to screen coordinates, we can consider the opposite case. In our game we may
have enemy objects that we’ll want to target. The interface we have chosen involves tracking
them with our mouse and then clicking on the screen. The problem is: How do we take our
click location and use that to detect which object we’ve selected (if any)? We need a method
that takes our 2D screen coordinates and turns them into a form that we can use to detect
object intersection in 3D game space. Effectively we are running our pipeline backwards,
from the screen transformation to the projection to the viewing transformation (clipping is
ignored as we’re already within the boundary of our view window).

For the purposes of discussion, we’ll assume that we are using the basic OpenGL per-
spective matrix. Similar derivations can be created using other projections. Figure 7.29 is
yet another cross section showing our problem. Once again, we have our view frustum,
with our top and bottom clipping planes, our projection plane, and our near and far planes.
Point P; indicates our click location on the projection plane. If we draw a ray (known
as a pick ray) from the view position through P, we pass through every point that lies
underneath our click location. So to determine which object we have clicked on, we need
only generate this point on the projection plane, create the specific ray, and then test each
object for intersection with the ray. The closest object to the eye will be the object we’re
seeking.

y
A
-
)
o7
T -z
¢
d
B S

Projection plane

Figure 7.29. Pick ray.

7.6 Picking 271

Source Code

Picking

272 Viewing and Projection

To generate our point on the projection plane, we’ll have to find a method for going
backwards from screen space into view space. To do this we’ll have to find a means to
“invert” our projection. Matrix inversion seems like the solution, but it is not the way to go.
The standard projection matrix has zeros in the rightmost column, so it’s not invertible. But
even using the z-depth projection matrix doesn’t help us, because (1) the reciprocal divide
makes the process nonlinear, and in any case, (2) our click point doesn’t have a z value to
plug into the inversion.

Instead, we begin by transforming our screen-space point (xs, ys) to an NDC space point
(Xndes Ynde)- Since our transform from NDC to screen space is affine, this is easy enough: we
need only invert our previous Equations 7.5 and 7.6. That gives us

2(xs — 5x)
Xnde = ———— — 1
Wy
2(ys —sy)
Ynde = _% +1
s

Now the tricky part. We need to transform our point in the NDC frame to the view frame.
We’ll begin by computing our z,, value. Looking at Figure 7.29 again, this is straightforward
enough. We’ll assume that our point lies on the projection plane so the z value is just the z
location of the plane or —d. This leaves our x and y coordinates to be transformed. Again,
since our view region covers a rectangle defined by the range [—a, a] (recall that a is our
aspect ratio) in the x direction and the range [—1, 1] in the y direction, we only need to scale
to get the final point. The view window in the NDC frame ranges from [—1, 1] in y, so no
scale is needed in the y direction and we scale by a in the x direction. Our final equations
of screen space to view space are

a
Xy = —(xs —sx)—1
Wg
2
W = _;@s —s5)+1
s
Ty = —d

Since this is a system of linear equations, we can express this as a 3 x 3 matrix:

2 2
Xy VT‘E 0 _V\%Sx -1 Xs
W | = 0 _h%- h%sy +1 Vs
< 0 0 —d 1

From here we have a choice. We can try to detect intersection with an object in the view
frame, we can detect in the world frame, or we can detect in the object’s local frame. The
first involves transforming every object into the view frame and then testing against our
pick ray. The second involves transforming our pick ray into the world frame and testing
against the world coordinates of each object. For simulation and culling purposes, often
we're already pregenerating our world location and bounding information. So, if we’re
only concerned with testing for intersection against bounding information, it can be more

7.7 Management of Viewing Transformations

efficient to go with testing in world space. However, usually we test in local space so we
can check for intersection within the frame of the stored model vertices. Transforming
these vertices into the world frame or the view frame every time we did picking could be
prohibitively expensive.

In order to test in the model’s local space, we’ll have to transform our view-space point by
the inverse of the viewing transformation. Unlike the perspective transformation, however,
this inverse is much easier to compute. Recall that since the view transformation is an
affine matrix, we can invert it to get the view-to-world matrix Myjey—sworid- SO, multiplying
M,yiew—worid by our click point in the view frame gives us our point in world coordinates:

Pw = Mview—>w0rld Pv

We can transform this and our view position E from world coordinates into model
coordinates by multiplying by the inverse of the model-to-world matrix:

Py = Mworldamodel Py,
El = Mworld%model E

Then, the formula for our pick ray in model space is
R(r) = E; +1(P; — Ey)

We can now use this ray in combination with our objects to find the particular one the
user has clicked on. Chapter 12 discusses how to determine intersection between a ray and
an object and other intersection problems.

7.7 Management of Viewing Transformations

Up to this point we have presented a set of transformations and corresponding matrices

Source Code

IvGraphics

without giving some sense of how they would fit into a game engine. While the thrust of

this book is not about writing renderers, we can still provide a general sense of how some
renderers and application programming interfaces (APIs) manage these matrices, and how
to set transformations for a standard API.

The view, projection, and screen transformations change only if the camera is moved. As
this happens rarely, these matrices are usually computed once, stored, and then concatenated
with the new world transformation every time a new object instance is rendered. How this is
handled depends on the API used. The most direct approach is to concatenate the newly set
world transform matrix with the others, creating a single transformation all the way from
model space to prehomogeneous divide screen space:

Minodel—screen = Mude—s screen o Mprojection o Myvorid—view ® Mmodel—world

Multiplying by this single matrix and then performing three homogeneous divisions per
vertex generates the screen coordinates for the object. This is extremely efficient, butignores
any clipping we might need to do. In this case, we can concatenate up to homogeneous
space, also known as clip space:

Model— clip = M, projection ® Myvorid—view Mmodel—world

IvRenderer

273

274 Viewing and Projection

Then we transform our vertices by this matrix, clip against the view frustum, perform
the homogeneous divide, and either calculate the screen coordinates using Equations 7.5
through 7.7 or multiply by the NDC to the screen matrix, as before.

With more complex renderers, we end up separating the transformations further. For
example, in Chapter 9 we will need to handle some calculations in world space or view
space. For that purpose we’ll need to store concatenated matrices that only include the
transformations up to that point.

This leaves the NDC-to-screen-space transformation. Usually the graphics API will not
require a matrix but will perform this operation directly. In the xy directions the user is
only expected to provide the dimensions and position of the screen window area, also
known as the viewport. In OpenGL this is set by using the call glViewport (). For
the z direction, OpenGL provides a function glDepthRange (), which maps [—1, 1] to
[near, far], where the defaults for near and far are 0 and 1, respectively. Similar methods
are available for other APIs.

In our case, we have decided not to overly complicate things and are providing simple
convenience routines in the TvRenderer class:

SetWorldMatrix ()
SetViewMatrix ()
SetProjectionMatrix ()
SetViewport ()

The first three routines update an internal copy of the given matrix in IvRenderer,
and then concatenate all three together into a fourth internal matrix that contains the full
transformation matrix from model to homogeneous space. Setting the world matrix also
updates a fifth matrix called the normal matrix, which contains the inverse transpose of the
world matrix, suitable for transforming normals into world space. All of these matrices are
then available to be loaded into our rendering system when needed (we’ll discuss how in
Chapter 8). The last routine passes the viewport parameters directly to our API.

7.8 Chapter Summary

Manipulating objects in the world frame is only useful if we have appropriate techniques
for presenting those data. In this chapter we have discussed the viewing, projection, and
screen transformations necessary for rendering objects on a screen or image. While we
have focused on OpenGL as our rendering API, the same principles apply to Direct3D or
any other rendering system. We transform the world to the perspective of a virtual viewer,
project it to a view plane, and then scale and translate the result to fit our final display. We
also covered how to reverse those transformations to allow one to select an object in view
or world space by clicking on the screen. In the following chapters we will discuss how to
use the data generated by these transformations to actually set pixels on the screen.

For those who are interested in reading further, most graphics textbooks—such as
Akenine-Moller et al. [1] and Hughes et al. [82]—describe the graphics pipeline in great
detail. In addition, one of Blinn’s collections [12] is almost entirely dedicated to this subject.
Various culling techniques are discussed in Akenine-Moller et al. [1]. Finally, the OpenGL
graphics system specification [135] discusses the particular implementation of the graphics
pipeline used in OpenGL.

(:) Geometry and
Programmable
Shading

8.1 Introduction

Having discussed in detail in the preceding chapters how to represent, transform, view, and
animate geometry, the next three chapters form a sequence that describes the second half
of the rendering pipeline. The second half of the rendering pipeline is specifically focused
on visual matters: the representation, computation, and usage of color.

This chapter will discuss how we connect the points we have been transforming and
projecting to form solid surfaces, as well as the extra information we use to represent
the unique appearance of each surface. All visual representations of geometry require the
computation of colors; this chapter will discuss the data structures used to store colors and
perform basic color computations.

Having shown how to build these renderable surface objects and described the methods
of storing and computing colors, we will then lay out the foundations of the rest of the ren-
dering section: the programmable shading and rasterization pipeline. Note that this chapter,
unlike the others in the rendering section, is by comparison devoid of pure mathematics.
This chapter serves to lay out the fundamental pipeline within which the mathematical
work is done: the rendering pipeline. The stages of the framework described in this chapter
will be detailed in the later chapters (and to some degree in the previous viewing chapter),
where the fascinating mathematical issues that arise within them can be explored. By its
nature, this chapter focuses on the framework itself, the rendering pipeline, and its two most
interesting components, the programmable vertex and fragment shader units.

We will also introduce some of the simpler methods of using this programmable pipeline
to render colored geometry by introducing the basics of a common high-level shading lan-
guage, OpenGL’s GLSL. Common inputs and outputs to and from the shading pipeline will
be discussed, concluding in a detailed introduction to the most complex and powerful

275

276 Geometry and Programmable Shading

of programmable shader source values—image-based texturing. However, this chapter
includes only the most basic of programmable shaders, seeking mainly to introduce the
rendering pipeline itself.

In Chapter 9, we will simultaneously explain the mathematics of real-time light sim-
ulation for rendering and demonstrate how to use the programmable shading pipeline
to implement dynamic coloring of surfaces. In this chapter we will mix geometric intu-
itions, the basics of light-related physics, and simulated lighting equations and common
approximations thereof with a discussion of more advanced uses of programmable shading.

As the concluding chapter in this sequence, Chapter 10 covers details of the final step
in the overall rendering pipeline—rasterization, or the method of determining how to draw
the colored surfaces as pixels on the display device. This will complete the discussion of
the rendering pipeline.

In each section in these chapters we will relate the basic programming concepts, data
structures, and functions that affect the creation, rendering, and coloring of geometry.
As we move from geometry representation through shading, lighting, and rasterization,
implementation information will become increasingly frequent, as the implementation of
the final stages of the rendering pipeline is very much system dependent. While we will
select a particular rendering application programming interface (API) (the book’s basic Iv
engine) and shading language (OpenGL’s GLSL), the basic rendering concepts discussed
will apply to most rendering systems.

As a note, we use the phrase implementation to refer to the underlying software or
driver that maps our application calls to a given standard rendering API such as OpenGL or
Direct3D into commands for a particular piece of graphics hardware (a graphics processing
unit, or GPU, a term coined to recognize the CPU-like rising complexity and performance
of modern graphics hardware). OpenGL and Direct3D implementations for a particular
piece of graphics hardware are generally supplied with the device by the hardware vendor.
A low-level hardware driver is not something that users of these APIs will have to write or
even use directly. In fact, the main purpose of OpenGL and other such APIs is to provide
a standard interface on top of these widely varying hardware/software three-dimensional
(3D) systems. To avoid doubling the amount of implementation-related text in these chap-
ters, most of the code examples in this and the following rendering chapters will describe
the book’s Iv rendering APIs, supplied as full source code on the book’s accompany-
ing CD-ROM. Interested readers may look at the implementations of the referenced Iv
functions to see how each operation can be written in OpenGL or Direct3D.

8.2 Color Representation
8.2.1 RGB Color Model

To represent color, we will use the additive RGB (red, green, blue) color model that is
almost universal in real-time 3D systems. Approximating the physiology of the human
visual system (which is tuned to perceive color based on three primitives that are close
to these red, green, and blue colors), the RGB system is used in all common display
devices used by real-time 3D graphics systems. Color cathode ray tubes (or CRTs, such as
traditional televisions and computer monitors), flat-panel liquid crystal displays (LCDs),
plasma displays, and video projector systems are for the most part based upon the additive

8.2 Color Representation 277

RGB system. While some colors cannot be accurately displayed using the RGB model,
it does support a very wide range of colors, as proven by the remarkable color range and
accuracy of modern television and computer displays. For a detailed discussion of color
vision and the basis of the RGB color model, see Malacara [97].

The RGB color model involves mixing different amounts of three predefined primary
colors of light. These carefully defined primary colors are each named by the colors that
most closely match them: red, green, and blue. By mixing independently controlled levels
of these three colors of light, a wide range of brightnesses, tones, and shades may be created.
In the next few sections we will define much more specifically how we build and represent
colors using this method.

8.2.2 Colors as "Points”

The levels of each of the three primary colors are independent. In a sense, this is similar
to a subset of points in R3, but with a “frame” consisting of the red, green, and blue axes
(or components), and an origin representing black. While these can be thought of as a frame
for our particular display device’s color space, they are not a frame in any true sense for
color in general. The behavior of colors does not always map directly into the concept of a
real affine space. However, many of the concepts of real vector and affine spaces are useful
in describing color representation and operations.
Our colors will be represented by points in 3-space, with the following frame vectors:

(1,0,0) — red
(0,1,0) — green
0,0,1) — blue

Often, as a form of shorthand, we will refer to the red component of a color C as C, and to
the green and blue components as C, and Cp, respectively.

8.2.3 Color-Range Limitation

The theoretical RGB color space is semi-infinite in all three axes. There is an absolute zero
value for each component, bounding the negative directions, but the positive directions
are (theoretically) unbounded. Throughout much of the discussions of coloring, lighting,
and shading, we will implicitly assume (or actually declare in the shading language) that
the colors are nonnegative real values, potentially represented in the shading system as
floating-point numbers.

However, the reality of physical display devices imposes severe limitations on the final
output color space. When limited to the colors that can be represented by a specific display
device, the RGB color space is not infinite in any direction. Real display devices, such as
CRTs (standard tube monitors), LCD panel displays, and video projectors all have limits of
both brightness and darkness in each color component; these are basic physical limitations
of the technologies that these displays use to emit light. For details on the functionality and
limitations of display device hardware, Hearn and Baker [73] detail many popular display
devices.

Displays have minimum and maximum brightnesses in each of their three color axes,
defining the range of colors that they can display. This range is generally known as a

278 Geometry and Programmable Shading

display device’s gamut. The minimum of all color components combine to the device’s
darkest color, which represents black, and the maximum of all color components combine
to the device’s brightest color, which represents white. While it might be possible to create
extrema that are not pure black and pure white, these are unlikely to be useful in a general
display device.

Every display device is likely to have different exact values for its extrema, so it is con-
venient to use a standard color space for all devices as sort of normalized device colors.
This color space is built such that

(0,0,0) — darkest black
(1,1, 1) — brightest white

In the rest of this chapter and the following chapter we will work in these normalized
color coordinates. This space defines an RGB color cube, with black at the origin, white
at (1,1, 1), gray levels down the main diagonal between them (v, v,v), and the other six
corners representing pure, maximal red (1, 0, 0), green (0, 1, 0), blue (0,0, 1), cyan (0, 1, 1),
magenta (1,0, 1), and yellow (1, 1, 0).

When discussing colors, we often refer to their luminance. More specifically, when using
this term with a normalized device color, we mean a mapping from the color to a specific
gray value’s v—this is known as relative luminance. The larger our component values, in
general the closer to a luminance of 1 (which again represents pure white) we will get. We
will describe this mapping below, and define luminance more formally in Chapter 9.

The following sections will describe some of the point and vector operations (and point-
and vector-like operations) we will apply to colors, as well as discuss how these abstract
color points map onto their final destinations, namely, hardware display devices.

8.2.4 Operations on Colors

Adding RGB colors is done using vector addition; the colors are added componentwise.
Adding two colors has the same effect as combining the light from two colored light
sources, for example, adding red (R = (1,0, 0)) and green (G = (0, 1, 0)) gives yellow:

R+G=(1,0,00+(0,1,0) = (1,1,0)

The operation of adding colors will be used through our lighting computations to represent
the addition of light from multiple light sources and to add the multiple forms of light that
each source can apply to a surface.

Scalar multiplication of RGB colors (sC) is computed in the same way as with vectors,
multiplying the scalar times each component, and is ubiquitous in lighting and other color
computations. It has the result of increasing (s > 1.0) or decreasing (s < 1.0) the luminance
of the color by the amount of the scalar factor. Scalar multiplication is most frequently used
to represent light attenuation due to various physical and geometric lighting properties.

One important vector operation that is used somewhat rarely with colors is vector length.
While it might seem that vector length would be an excellent (if expensive) way to com-
pute the luminance of a color, the nature of human color perception does not match the
Euclidean norm of the linear RGB color space. Luminance is a “norm” that is affected by
human physiology. The human eye is most sensitive to green, less to red, and least sensitive

8.2 Color Representation 279

to blue. As a result, the equal weighting given to all components by the Euclidean norm

means that blue contributes to the Euclidean norm far more than it contributes to luminance.
Although there are numerous methods used to compute the luminance of RGB colors as

displayed on a screen, a common method (assuming nonnegative color components) is

luminance(C) = 0.2126C, +0.7152C,; + 0.0722Cy,

or basically, the dot product of the color with a luminance reference color. The three color-
space transformation coefficients used to scale the color components are basically constant
for modern, standard monitors and HDTV screens. However, they may not apply to older
NTSC television screens, which use a different set of luminance conversions. Discussion
of these may be found in Poynton [124]. Note that luminance is not equivalent to perceived
brightness. The luminance as we’ve computed it is linear with respect to the source linear
RGB values. Brightness as perceived by the human visual system is nonlinear and subject
to the overall brightness of the viewing environment, as well as the viewer’s adaptation to it.
See Cornsweet [26] for a related discussion of the physiology of human visual perception.

An operation that is rarely applied to geometric vectors but is used very frequently with
colors is componentwise multiplication. Componentwise multiplication takes two colors
as operands and produces another color as its result. We will represent the operation of
componentwise multiplication of colors as “o”, or in shorthand by placing the colors next
to one another (as we would multiply scalars), and the operation is defined as follows:

CoD = CD = (C,D;, CyDy. CyDy)

This operation is often used to represent the filtering of one color of light through an object
of another color, such as white light passing through a stained glass window. In such a
situation, one operand is assumed to be the light color, while the other operand is assumed
to be the amount of light of each component that is passed by the filter. Another use of com-
ponentwise color multiplication is to represent the reflection of light from a surface—one
color represents the incoming light and the other represents the amount of each compo-
nent that the given surface reflects (the surface’s reflectivity). We will use this frequently
in Chapter 9 when computing lighting. For example, a color C and a filter (or surface)
F = (1,0,0) result in

CoF =(C,,0,0)

or the equivalent of a pure red filter; only the red component of the light was passed, while
all other light was blocked.

8.2.5 Alpha Values

Frequently, RGB colors are augmented with a fourth component, called alpha. Such colors
are often written as RGBA colors. Unlike the other three components, the alpha component
does not represent a specific color basis, but rather defines how the combined color interacts
with other colors. The most frequent use of the alpha component is an opacity value, which
defines how much of the surface’s color is controlled by the surface itself and how much
is controlled by the colors of objects that are behind the given surface. When alpha is at

280 Geometry and Programmable Shading

Source Code

ColorRemapping

its maximum (we will define this as 1.0), then the color of the surface is independent of
any objects behind it. The red, green, and blue components of the surface color may be
used directly, for example, in representing a solid concrete wall. At its minimum (0.0),
the RGB color of the surface is ignored and the object is invisible, as with a pane of clear
glass, for instance. At an intermediate alpha value, such as 0.5, the colors of the two objects
are blended together; in the case of alpha equaling 0.5, the resulting color will be the
componentwise average of the colors of the surface and the object behind the surface.

We will discuss the uses of the alpha value when we cover mixing colors or color blending
in Chapter 10. In a few cases, rendering APIs handle alpha a little differently from other
color components (mention will be made of these situations as needed). In addition, it is
often convenient to multiply the RGB values of a color by the alpha value, and store those
new values along with the original alpha. This is known as premultiplied alpha, and makes
it easier to perform more advanced blending operations. This will be covered in more detail
when discussing blending.

8.2.6 Remapping Colors into the Unit Cube

Although devices cannot display colors outside of the range defined by their (0,0,0)...
(1,1, 1) cube, colors outside of this cube are often seen during intermediate color compu-
tations such as lighting. In fact, the very nature of lighting can lead to final colors with
components outside of the (1, 1, 1) limit. During lighting computations, these are gener-
ally allowed, but prior to assigning final colors to the screen, all colors must be within
the normalized cube. This requires either the hardware, the device driver software, or the
application to somehow remap or limit the values of colors so that they fall within the
unit cube.
The simplest and easiest method is to clamp the color on a per-component basis:

safe(C) = (clamp(C,), clamp(Cy), clamp(Cyp))
where
clamp(x) = max (min (x, 1.0), 0.0)

However, it should be noted that such an operation can cause significant perceptual changes
to the color. For example, the color (1.0, 1.0, 10.0) is predominantly blue, but its clamped
version is pure white (1.0, 1.0, 1.0). In general, clamping a color can lead to the color
becoming less saturated, or less colorful. While this might seem unsatisfactory, it actually
can be beneficial in some forms of simulated lighting, as it tends to make overly bright
objects appear to “wash out,” an effect that can perceptually appear rather natural under the
right circumstances.

Another, more computationally expensive method is to rescale all three color components
of any color with a component greater than 1.0 such that the maximal component is 1.0.
This may be written as

(max (Cr, 0)7 max (Cga 0)’ max (Cb7 0))
max (Cp, Cg, Cp, 1)

safe(C) =

Note the appearance of 1 in the max function in the denominator to ensure that colors
already in the unit cube will not change—it will never increase the color components.

8.2 Color Representation

While this method does tend to avoid changing the overall saturation of the color, it can
produce some unexpected results. The most common issue is that extremely bright colors
that are scaled back into range can actually end up appearing darker than colors that did not
require scaling. For example, comparing the two colors C = (1, 1,0) and D = (10, 5, 0), we
find that after scaling, D = (1, 0.5, 0), which is significantly darker than C. As a result, this
is almost never used in practice.

Scaling works best when it is applied equally (or at least coherently) to all colors in a
scene, not to each color individually. There are numerous methods for this, but one such
method involves finding the maximum color component of any object in the scene, and
scaling all colors equally such that this maximum maps to 1.0. This is somewhat similar to
a camera’s auto exposure system. By scaling the entire scene by a single scalar, color ratios
between objects in the scene are preserved. Figure 8.1 shows two different color-range
limitation methods for the same source image. In Figure 8.1a, we clamp the values that are
too large to display. Note that this results in a loss of image detail in the brightest sections
of the image, which become pure white. In Figure 8.1b, we rescale all of the colors in the
image based on the maximum value method described above. The details in the brightest
areas of the screen are retained. However, even this method is not perfect. The rescaling of
the colors does sacrifice some detail in the darker shadows of the image.

Figure 8.1. Color-range limitation methods: (a) image colors clamped and (b) image colors
rescaled.

281

282 Geometry and Programmable Shading

A more advanced method generally known as fone mapping uses nonlinear functions
(often based on luminance) to remap an image. The simplest is global tone mapping, which
applies the same function to all colors in an image. Local tone mapping, on the other hand,
remaps regions of an image differently; a very bright section of the scene may be darkened
to fit the range (e.g., a bright, cloud-streaked sky), while the shadowed sections of the
image actually may be scaled to be brighter so that details are not lost in the shadows. The
scaling may be different for different sections of the image, but the remapping is done in a
regionally coherent method so that the relative brightnesses of related objects are reasonable.
Regionally coherent means that we take the brightness of the region surrounding any point
on the screen and try to keep the relative bright—dark relationships. A common trick in a
daytime image of buildings and sky would be to darken the sky to fit in range and brighten
the buildings to be less in shadow. While we are applying different scalings to different parts
of the image (darkening to the sky and brightening to the buildings), the relative brightnesses
within the buildings’ region of the image are kept intact, and the relative brightnesses within
the sky’s regions of the image are kept intact. Thus, the sky and the buildings each look like
what we’d expect, but the overall image fits within the limited brightness range.

These techniques are often used in high dynamic range (HDR) rendering, in which wide
orders of magnitude exist in the computed lighting, but are then mapped down to the unit
cube in a manner that forms a vibrant image. Figure 8.2 shows the same image for Figure 8.1,

JaNA il
Lok

Figure 8.2. A tone-mapped image.

8.2 Color Representation 283

but tone-mapped to retain details in both the shadows and highlights. The shadowed and
highlighted areas are processed independently to avoid losing detail in either.

HDR rendering is now a standard feature in 3D games and other applications as GPU
feature sets and performance have improved. Many examples of HDR rendering may be
found at the developers’ web sites of the major GPU vendors [3, 112].

8.2.7 Color Storage Formats

A wide range of color storage formats are used by modern rendering systems, both floating
point and fixed point (as well as one or two hybrid formats). Common RGBA color formats
include:

¢ Single-precision floating-point components (128 bits for RGBA color).
¢ Half-precision floating-point components (64 bits for RGBA color).

* 16-bit unsigned integer components (64 bits for RGBA color).

¢ 8-bit unsigned integer components (32 bits for RGBA color).

¢ Shared exponent extended-range formats. In the most common of these formats,
red, green, and blue represent 0-dot-8 fixed-point mantissas, while a final 8-bit
shared exponent is used to scale all three components. This is not as flexible as
a floating-point value per color component (since all components share a single
exponent), but it can represent a huge dynamic range of colors using only 32 bits
for an RGB color.

In general, the floating-point formats are used as would be expected (in fact, on modern
systems, the single-precision floating-point colors are now IEEE 754 compliant, making
them useful for noncolor computations as well). However, the integer formats have a special
mapping in most graphics systems. An integer value of 0 maps to 0, but the maximal value
maps to 1.0. Thus, the integer formats are slightly different than those seen in any fixed-point
format.

While a wide range of color formats are available to applications, a small subset of
them cover most use cases. Internal to the programmable rendering pipeline, floating-point
values are the most popular intermediate result format. As mentioned in Chapter 1, these
can be of high, medium, or low precision (or even fixed point), depending on the platform
and how they are specified by the programmer.

However, floating-point values are not the most popular format for shading output, the
values that are stored in the frame buffer or other image buffer. Perhaps the most popular
format for final color storage is unsigned 8-bit values per component, leading to 3 bytes per
RGB color, a system known as 24-bit color or, in some cases, by the misnomer true color.
With an alpha value, the format becomes 32 bits per pixel, which aligns well on modern
32- and 64-bit CPU architectures. Another format that is sometimes used, particularly on
extremely low-memory systems (such as mobile devices), has 5 bits each for red and blue
and 6 bits for green, or 16 bits per pixel. This system, which sometimes goes by the name
high color, is interesting in that it includes different amounts of precision for green than for

284 Geometry and Programmable Shading

red or blue. As we’ve discussed, the human eye is most sensitive to green, so the additional
bit in the 16-bit format is assigned to it. This does have the downside that it is not possible
to exactly represent grayscale values—the closest representable values tend to be tinted
slightly green or magenta.

The historical reasons for using these lower-precision formats are storage space require-
ments, computational expense, and the fact that display devices often have the ability to
display only 5-8 bits of precision per component. Even 32 bits per pixel requires one-quarter
the amount of storage that is needed for floating-point RGBA values. Using full floating-
point numbers for output colors (the colors that are drawn to the output LCD or CRT screen)
is actually overkill, due to the limitations of current display device color resolution. For
example, a good quality LCD display has a dynamic range (the ratio of luminance between
the brightest and darkest levels that can be displayed by the devices) of around 1,000:1.
This ratio means that current display devices cannot deliver anywhere near the eye’s full
range of perceived brightness or darkness. There are display technologies that can represent
more than 24-bit color, but these are still the exception, rather than the rule. As these display
devices become more common, device-level color representations will require more bits per
component in order to avoid wasting the added precision available from these new displays.

Research has shown that the human visual system (depending on lighting conditions,
etc.) can perceive between 1 million and 7 million colors, which leads to the (erroneous)
theory that 24-bit color display systems, with their 224 22 16.7 million colors, are more than
sufficient. While it is true that the number of different color “names” in a 24-bit system
(where a color is named by its 24-bit RGB triple) is a greater number than the human visual
system can discern, this does not take into account the fact that the colors being generated
on current display devices do not map directly to the 1 million to 7 million colors that
can be discerned by the human visual system. In addition, in some color ranges, different
24-bit color names appear the same to the human visual system (the colors are closer to one
another than the human eye’s just noticeable difference, or JND). In other words, 24-bit
color wastes precision in some ranges, while lacking sufficient precision in others. Current
24-bit “true color” display systems are not sufficient to cover the entire range of human
vision, either in range or in precision. As mentioned above, once the so-called deep color
displays that support 10, 12, or 16 bits per color component become more ubiquitous, this
will be less of an issue.

8.2.8 Nonlinear Color

In our discussion so far, we have assumed that color values act linearly; that is, the output
value increases as a linear function of the given input color value. Physically if one were to
simulate light that would produce an accurate result. However, when dealing with both dis-
play technology and human perception, that is not the case. Let’s look at display technology
first.

When CRT displays were more prevalent, it was noted that an increase in voltage did
not produce an equivalently linear increase in phosphor output; rather, it behaved with a
roughly exponential scale or

o=r

Different monitor technologies could have a different y value, or simply be calibrated
differently—hence each monitor would be described as having a particular gamma.

8.2 Color Representation 285

To correct for the nonlinear response, the input color values need to have a corresponding
inverse correction applied. The end result is linear inputs producing a linear response:

0= (11/1/))/

This is called gamma correction.

With the rapid growth of web technology in the late 1990s, it became clear that the large
preponderance of different color spaces and gamma values was having a negative effect
on both good color reproduction and network bandwidth. To reconstruct a color correctly,
one would have to bake the original monitor’s parameters into the image, which would
both increase the size of the image and take time converting to the destination monitor’s
parameters.

In 1996, Microsoft and Hewlett-Packard proposed a new color-space standard. The
idea was that all new monitors would use the same color parameters, with a gamma of
approximately 2.2. In this way, there would be no need to convert from one color space to
another—the same color values would produce the same result on all monitors. Hence, there
would be no need to attach the original color parameters, and no time taken for conversion.
This new standard is called sSRGB, and while there are other RGB color spaces in play
(Adobe RGB, for example), SRGB is currently the de facto standard for artists working
with real-time systems.

What this means for games is that any color values you are given are probably in SRGB.
Since this is a nonlinear format, linearly interpolating or blending colors as is will not
produce the correct result—one way or another, you will have to convert to linear color,
blend, then convert back to SRGB.

To convert from sRGB to the linear RGB equivalent, we use the formula

%VSZ Csrgb < 0.04045
Clinear = 24
(%) Cyrgp > 0.04045

and to convert back from linear to SRGB, we use

12.92 Ciinear Clinear < 0.0031308
e { 1,055 Clinear />4 = 0,055 Clinear > 0.0031308
. linear . linear .
Note that this is not a pure exponential. Both curves have a small linear piece to prevent the
slope of the SRGB curve from becoming infinite near 0.

A more efficient solution might seem to be to convert all color inputs to linear, store
them internally as linear, and then when we are done rendering, convert the resulting image
back to sSRGB. The problem is—particularly when using 8-bit color components—that we
need more bits to represent the same values in linear as we do in sSRGB. Consider 1, the
smallest possible positive 8-bit value. This represents a color component value of 1/255, or
0.00392157. Converting this from sRGB to linear, we end up with 0.000303527. Rounding
to the closest 8-bit value, we end up with 0. As it happens, the first seven color values will
end up being rounded to 0, which is a significant loss of information. We would need 13 bits
per color channel in order to represent these same distinct values in a linear format as we

286 Geometry and Programmable Shading

do in SRGB. And at the high end, an 8-bit value of 254 represents 254/255, or 0.996078.
Converting from sRGB to linear, and then back to 8-bit values, gives 253. We actually need
fewer bits to represent the higher bits in linear—and we’ve just added more to represent the
low end, wasting many unnecessary bits.

Another question might be: Since CRTs are rarely used these days and modern LCD
displays have closer to linear response, why not change the standard? One unhelpful answer
might be that changing an established standard is not that easy. But there is another reason:
the SRGB color space also roughly follows the human eye’s response curve to luminance.
Our eyes can distinguish better between darker tones than we can brighter ones. So sSRGB
colors naturally dedicate more bits to colors at the dark end of the space where the just
noticable difference between colors is smaller, and fewer to the colors at the brighter end
where the JND is larger. Were we to use linear 24-bit colors, we would notice distinct
jumps in the dark values known as banding. Using sRGB, particularly with 24-bit color,
has compressed our colors to match our visual response.

Fortunately, in most modern hardware there is an easier and more efficient solution
than having to explicitly convert from and to sSRGB. In both OpenGL and Direct3D it is
possible to specify sSRGB format for both input and output images. The system will then,
upon reading a color from an image, efficiently convert it to linear RGB, and upon writing,
convert it back. Our temporary variables should be in floating point or 16-bit fixed point,
which is enough to handle the extra precision needed without having to add those bits to
our storage formats. This way our programs can continue to assume linear colors without
worrying about the headaches and inefficiencies of conversion.

8.3 Points and Vertices

So far, we have discussed points as our sole geometry representation. As we begin to
abstract to the higher level of a surface, points will become insufficient for representing the
attributes of an object or, for that matter, the object itself. The first step in the move toward a
way of defining an object’s surface is to associate additional data with each point. Combined
together (often into a single data structure), each point and its additional information form
what is often called a vertex. In a sense, a vertex is a heavy point: a point with additional
information that defines some properties of the surface around it.

8.3.1 Per-Vertex Attributes

Within a vertex, the most basic value is the position of the vertex, generally a 3D point that
we will refer to as Py in later sections.

Other than vertex position, perhaps the most basic of the standard vertex attributes are
colors. Common additions to a vertex data structure, vertex colors are used in many different
ways when drawing geometry. Much of the remainder of this chapter will discuss the various
ways that per-vertex colors can be assigned to geometry, as well as the different ways that
these vertex colors are used to draw geometry to the screen. When referring to a color
attribute we will use Cy (and will sometimes specifically refer to the vertex alpha as Ay,
even though it is technically a component of the overall color).

Another data element that can add useful information to a vertex is a vertex normal.
This is a unit-length 3-vector that defines the orientation of the surface in an infinitely

8.3 Points and Vertices

small neighborhood of the vertex. If we assume that the surface passing through the vertex
is locally planar (at least in an infinitely small neighborhood of the vertex), the surface
normal is the normal vector to this plane (recall the discussion of plane normal vectors from
Chapter 2). In most cases, this vector is defined in the same space as the vertices, generally
model (aka object) space. As will be seen later, the normal vector is a pivotal component in
lighting computations. We will generally refer to the normal as fiy.

A vertex attribute that we will use frequently later in this chapter is a texture coordinate.
This will be discussed in detail in the sections in this chapter on texturing and in parts of
the following two chapters; basically, a set of texture coordinates is a real-valued 2-vector
(most frequently, although they also may be scalars or 3-vectors) per vertex that defines
the position of the vertex within a smooth parameterization of the overall surface. These
are used to map two-dimensional (2D) images onto the surface in a shading process known
as texturing. A vertex may have more than one set of texture coordinates, representing the
mapping of the vertex in several different parameterizations.

Finally, owing to the general and extensible nature of programmable shading, an object’s
vertices may have other sets of per-vertex attributes. Most common are additional values
similar to the ones listed above: per-vertex color values, per-vertex directional vectors of
some sort, or per-vertex texture coordinates. However, other programmable shaders could
require a wealth of different vertex attributes; most shading systems support scalar vertex
attributes as well as generic 2D, 3D, and 4D vectors. The meaning of these vectors is
dependent upon the shading program itself.

8.3.2 An Object's Vertices

For any geometric object, its set of vertices can be represented as an array of structures.
Each array element contains the value for each of the vertex attributes supported by the
object. Note that for a given object, all of the vertices in the array have the same type of
structure. If one vertex has a particular attribute, they all will contain that attribute (likely
with a different value). An example of the vertex structure for an object with position values,
a color, and one set of texture coordinates is shown below.

struct IVTCPVertex

{
IvVector2 texturecoord;
IvColor color;
IvVector3 position;

i
A smaller, simpler vertex with just position and normal might be as follows:

struct IvNPVertex
{
IvVector3 normal;
IvVector3 position;
}i

Along with the C or C++ representation of a vertex, an application must be able to
communicate to the rendering API how the vertices are laid out. Each rendering API uses

287

288 Geometry and Programmable Shading

its own system, but two different methods are common; the simpler (but less flexible)
method is for the API to expose some fixed set of supported vertex formats explicitly and
use an enumerated type label to represent each of these formats. All of an application’s
geometry must be formatted to fit within the fixed set of supported vertex formats in this
case. The more general system is for an API to allow the application to specify the type
(float, etc.), usage (position, color, etc.), dimension (1D, 2D, etc.), and stride (bytes between
the attribute for one vertex and the next) of each active attribute. This system is far more
flexible, but can greatly increase the complexity of the rendering API implementation. The
latter is common in modern graphics APIs, such as Direct3D and OpenGL. The former
method is used in Iv for the purposes of simplicity and ease of cross-platform support. Iv

uses the following enumeration to define the vertex formats it supports:

enum IvVertexFormat

{

kCPFormat, // color, position

kNPFormat, // normal, position

kTCPFormat, // texture coord, color, position
kCNPFormat, // color, normal, position
kTNPFormat // texture coord, normal, position

This enumeration is used in various places in the Iv rendering engine to declare the

format of a given vertex or array of vertices to the system.

Some rendering APIs allow for the vertex attributes to be non interleaved; that is, the
application keeps independent packed arrays of each vertex attribute. This so-called struc-
ture of arrays format has fallen out of favor, as the interleaved formats provide better cache
coherence—in an interleaved format, accessing one attribute in a vertex is likely to load the
entire vertex into cache. We will assume an interleaved vertex format for the remainder of

the rendering discussions.

8.3.2.1 Vertex Buffers

Programmable shaders and graphics rendering pipelines implemented entirely in dedicated
hardware have made it increasingly important for as much rendering-related data as possible
to be available to the GPU in device local memory, rather than system memory. Modern
graphics APIs all include the concept of a vertex buffer or vertex buffer object, an opaque

handle that represents source vertex data resident in GPU memory.

In order to use vertex buffers to render an object, an application must make calls to
the rendering API to allocate enough storage for the object’s array of vertices in GPU
memory. Then, some method is used to transfer the vertex array from system memory to
GPU memory. Having transferred the data, the application can then use the opaque handle
to render the geometry at peak performance. Note that once vertex array data are in GPU
memory, it is usually computationally expensive to modify them. Thus, vertex buffers are
most frequently used for data that the CPU does not need to modify on a per-frame basis.
Over time, as programmable shaders have become more and more powerful, there have
been fewer and fewer (if any) per-vertex operations that need to be done on the CPU, thus

making it more easily possible to put all vertex data in static vertex buffers.

8.3 Points and Vertices

A common vertex buffer creation sequence in many APIs is to create the vertex buffer,
passing in the vertex format and number of vertices, and any associated vertex data. After
creation, the given vertex array data are transferred to GPU-accessible memory, and the
vertex buffer can be used repeatedly without any further need to copy data to the GPU.
In Iv, the sequence is as follows:

IvResourceManager& manager;
//

// Create vertex data with 1024 vertices
// Each vertex has a color and position
IvCPVertex verts([1024];
// Loop over all 1024 vertices in verts and
// £ill in the data...
//
// Create the vertex buffer and upload the vertex data
IvVertexBuffer* buffer
= manager.CreateVertexBuffer (kCPFormat, 1024, verts, kImmutableUsage) ;

Once this process is complete, the vertex buffer is filled with data and ready to be used to
render.

The last parameter to CreateVertexBuffer is a hint that will be passed to the
graphics driver so it can efficiently allocate and manage the vertex buffer memory. In this
case, we have indicated with kImmutableUsage that we never want to change our vertex
data. However, at times we need to be able to update the data contained inside, usually once
a frame. Most graphics APIs also allow for a client to request to map or lock a vertex buffer,
which returns a pointer to system memory that can be loaded with new data. Finally, the
buffer is unmapped or unlocked, which releases access to the system memory pointer and
(if needed) transfers the vertex data to GPU-accessible memory. It’s also common to allow
for uploading to subsets of the full buffer, but in our case we are going to simplify our
implementation and only lock the entire buffer. The corresponding sequence is as follows:

IvResourceManager& manager;
/7

// Create vertex data with 1024 vertices
// Each vertex has a color and position
IvVertexBuffer* buffer
= manager.CreateVertexBuffer (kCPFormat, 1024, NULL, kDynamicUsage) ;
// Lock the vertex buffer and cast to the correct
// vertex format
IvCPVertex* verts = (IvCPVertex*) buffer->BeginLoadData() ;
// Loop over all 1024 vertices in verts and
// £ill in the data...
//
// Unlock the buffer, so it can be used
buffer->EndLoadData () ;

Note that in the CreateVertexBuffer function we have specified NULL for our
original buffer data, and a new usage parameter. In the first case, we are going to use

289

290 Geometry and Programmable Shading

the pointer that BeginLoadData gives us, so we don’t need to specify an initial data
pointer here—the driver will automatically create a vertex buffer of the correct size. The
parameter kDynamicUsage indicates that we are going to be changing the vertex buffer
around once a frame, and allows us to use the BeginlL.oadData-EndLoadData inter-
face (which kImmutableUsage does not). A third alternative is kDefaultUsage,
which splits the difference between the other two: it allows us to use the locking—unlocking
interface, but tells the driver we will rarely be updating the texture. There are other
usage patterns available in both OpenGL and Direct3D, but these three are the most
commonly used.

8.4 Surface Representation

In this section we will discuss another important concept used to represent and render
objects in real-time 3D graphics: the concept of a surface and the most common rep-
resentation of surfaces in interactive 3D systems, sets of triangles. These concepts will
allow us to build realistic-looking objects from the sets of vertices that we have discussed
thus far.

In Chapter 2 we introduced the concept of a triangle, a subset of a plane defined by
the convex combination of three noncollinear points. In this chapter we will build upon
this foundation and make frequent use of triangles, the normal vector to a triangle, and
barycentric coordinates. A quick review of the sections of Chapter 2 covering these topics
is recommended.

While most of the remainder of this chapter focuses only on the assignment of colors to
objects for the purposes of rendering, the object and surface representations we will discuss
are useful for far more than just rendering. Collision detection, picking, and even artificial
intelligence all make use of these representations.

8.4.1 Vertices and Surface Ambiguity

Unstructured collections of vertices (sometimes called point clouds) generally cannot rep-
resent a surface unambiguously. For example, draw a set of 10 or so dots representing
points on a piece of paper. There are numerous ways one could connect these 2D points
into a closed curve (a 1D surface) or even into several smaller curves. This is true even
if the vertices include normal vectors, as these normal vectors only define the orienta-
tion of the surface in an infinitely small neighborhood of the vertex. Without additional
structure, either implicit or explicit, a finite set of points rarely defines an unambiguous
surface.

A cloud of points that is infinitely dense on the desired surface can represent that surface.
Obviously, such a directly stored collection of unstructured points would be far too large
to render in real time (or even store) on a computer. We need a method of representing an
infinitely dense surface of points that requires only a finite amount of representational data.

There are numerous methods of representing surfaces, depending on the intended use.
Our requirements are that we can make direct use of the conveniently defined vertices that
our geometry pipeline generates, and that the representation we use is efficient to render.
As it turns out, we have already been introduced to such a representation in one of the
earliest sections of the book: planar triangles.

8.4 Surface Representation 291

8.4.2 Triangles

The most common method used to represent 3D surfaces in real-time graphics systems is
simple, scalable, requires little additional information beyond the existing vertices, and
allows for direct rendering algorithms; it is the approximation of surfaces with simple
shapes, or fessellation. The shape almost always used is a triangle. Tessellation refers not
only to the process that generates a set of triangles from a surface but also to the triangles
and vertices that result.

Triangles, each represented and defined by only three points (vertices) on the surface,
are connected point to point and edge to edge to create a piecewise flat (or faceted) approx-
imation of the surface. By varying the number and density of the vertices (and thus the
triangles) used to represent a surface, an application may make any desired trade-off between
compactness/rendering speed and accuracy of representation. Representing a surface with
more and more vertices and triangles will result in smaller triangles and a smoother surface,
but will add rendering expense and storage overhead owing to the increased amount of data
representing the surface.

One concept that we will use frequently with triangles is that of barycentric coordinates.
From the discussion in Chapter 2, we know that any point in a triangle may be represented
by an element of R? (s, 1) such that 0.0 < s,7 < 1.0. These coordinates uniquely define
each point on a nondegenerate triangle (i.e., a triangle with nonzero area). We will often use
barycentric coordinates as the domain when mapping functions defined across triangles,
such as color.

8.4.3 Connecting Vertices into Triangles

To create a surface representation from the set of vertices on the surface, we will simply
“connect the dots.” That is, we will generate additional information for rendering that joins
sets of three vertices by spanning them with a triangle. As an example, Figure 8.3a depicts
a fan-shaped arrangement of six triangles (defining a hexagon) that meet in a single point.
The vertex array for this geometry is an array of seven vertices: six around the edge and

(a) (b)
(0,1,2), (0,2,3), (0,3,4), (0,4,5), (0,5,6), (0,6,1)
(c)

Figure 8.3. A hexagonal configuration of triangles: (a) configuration, (b) seven shared
vertices, and (c) index list for shared vertices.

292 Geometry and Programmable Shading

one in the center. Figure 8.3b shows these seven vertices, numbered with their array indices
in the vertex array. However, this array alone does not define any information about the
triangles in the object.

One solution allowed by most APIs is to pass in a list of vertices and treat every three
vertices as representing a triangle—this is called a triangle list. However, in our exam-
ple above that would mean duplicating vertices, so a triangle list with 7 triangles would
use a vertex array with 37 vertices. This is generally suboptimal for memory usage, bus
traffic, and processing time (this last because we have to transform each vertex more than
once).

Indexed geometry, or an indexed triangle list, is a better solution. It defines an object
with two arrays: the vertex array we have already discussed, and a second array of integral
values for the triangle connectivities, called the index (or element) array. The index array
is an array of integers that represent indices (offsets) into the vertex array; there are three
times as many indices in the index array as there are triangles in the object. Each set of
three adjacent indices represents a triangle. The indices are used to look up vertices in the
vertex array; the three vertices are joined into a triangle. Figure 8.3¢ shows the index list
for the hexagon example.

Note the several benefits of indexed geometry. First, vertices can be reused in as many
triangles as desired simply by using the same index value several times in the index array.
This is shown clearly by the hexagon example. One of the vertices (the central vertex)
appears in every single triangle! If we had to duplicate a vertex each time it was used
in a triangle, the memory requirements would be much higher, since even small vertex
structures take more space than an index value. Index values are generally 16- or 32-bit
unsigned integers. A 16-bit index value can represent a surface made up of up to 65,536
vertices, more than enough for the objects in many applications, while a 32-bit index array
can represent a surface with more than 4 billion vertices (essentially unlimited).

Most rendering APIs support a wide range of nonindexed and indexed geometry. Tri-
angle lists, such as the ones we’ve just introduced, are simple to understand but are not
as optimal as other representations. The most popular of these more optimal representa-
tions are triangle strips, or tristrips. In a triangle strip, the first three vertices represent
a triangle, just as they do in a triangle list. However, in a triangle strip, each additional
vertex (the fourth, fifth, etc.) generates another triangle out of itself and the two indices
that preceded it (e.g., 0-1-2, 1-2-3, 2-3-4, ...). This forms a ladderlike strip of triangles
(note that each triangle is assumed to have the reverse orientation of the previous triangle—
counterclockwise, then clockwise, then counterclockwise again, etc.). Then, too, whereas
triangle lists require 37 indices to generate T triangles, triangle strips require only 7 + 2
indices to generate 7 triangles. An example of the difference between the size of index
arrays for triangle lists and triangle strips is shown in Figure 8.4. Much research has gone
into generating optimal strips by maximizing the number of triangles while minimizing
the number of strips, since there is a two-vertex overhead to generate the first triangle in
a strip. The longer the strip, the lower the average number of indices required per strip.
Most consumer 3D hardware that is available today renders triangle strips at peak perfor-
mance, because each new triangle reuses two previous vertices, requiring only one new
vertex (and in the case of indexed primitives, one new index) per triangle. This minimizes
transform work on the GPU, as well as potential traffic over the bus that connects the CPU to
the GPU.

8.4 Surface Representation 293

1 3 5 7 9

Index array for triangle list:
0,1,2, 1,3,2, 2,3,4, 3,5,4, 4,5,6, 5,7,6, 6,7,8,7,9,8
(24 indices)

Index array for triangle strip:
0,1,2,3,4,5,6,7,8,9
(10 indices)

Figure 8.4. The same object as a triangle list and a triangle strip.

8.4.3.1 Index Buffers

Most GPUs can link vertices and indices into triangles without any CPU intervention. Thus,
it is useful to be able to place index arrays into GPU-accessible memory. These objects
are called index buffers, and they are directly analogous to the vertex buffers discussed
previously. The only difference is that the format of an index buffer is far more limited;
in Iv, only 32-bit indices are supported and are assumed. Iv code to create and fill an
index buffer is shown below.

IvResourceManager& manager;

//
// Create an index buffer with 999 indices
// With triangle lists, this would be 333 triangles
unsigned int indices[999];
// Loop over all 999 indices and fill in the data...
//
IvIndexBuffer* buffer = manager.CreateIndexBuffer
(999, indices, kImmutableUsage) ;

We can, similar to vertex buffers, also use BeginLoadData and EndLoadData for
index buffers with dynamic and default usage.

8.4.4 Drawing Geometry

The final step toward rendering geometry from an application point of view is to pass
the required information into the rendering API to initiate the draw operation. Submitting ®**c"*in
geometry to the rendering API generally takes the form of a draw call. APIs differ on which

subset of the geometry information is passed to the draw call and which is set as the current

state beforehand, but the basic pieces of information that define the inputs to the draw call

include at least the array of vertices, array of indices, type of primitive (list, strip, etc.),

and rendering state defining the appearance of the object. Some APIs may also require

the application to specify the location of each component (normal, position, etc.) within

294 Geometry and Programmable Shading

the vertex structure. The Iv rendering engine sets up the geometry and connectivity, and
renders in a single call, as follows:

IvRenderer& renderer;
IvVertexBuffer* vertexBuffer;
IvIndexBuffer* indexBuffer;
//

renderer.Draw (kTriangleListPrim, vertexBuffer, indexBuffer);

Note the enumerated type used to specify the primitive. In this case, we are drawing
an indexed triangle list (kTriangleListPrim), but we could have specified a triangle
strip (kTriangleStripPrim) or other primitive as listed in IvPrimType, assuming
that the index data were valid for that type of primitive (each primitive type uses its index
list a little differently, as discussed previously).

Once the geometry is submitted for rendering, the work really begins for the imple-
mentation and 3D hardware itself. The implementation passes the object geometry through
the rendering pipeline and finally (if the geometry is visible) onto the screen. The follow-
ing sections will detail the most common structure of the rendering pipeline in modern
graphics APIs.

8.5 Rendering Pipeline

The basic rendering pipeline is shown in Figure 8.5. The flow is quite simple and will be
the basis for much of the discussion in this chapter. Some of the items in the diagram will
not yet be familiar. In the remainder of this chapter we will fill in these details. The flows
are as follows:

1. Primitive processing. The pipeline starts with the triangle indices, which deter-
mine on a triangle-by-triangle basis which vertices in the array are required to
define each triangle.

2. Per-vertex operations. All required vertices (which contain surface positions
in model space along with the additional vertex attributes) are processed as
follows:

a. The positions are transformed into homogeneous space using the model view
and projection matrices.

b. Additional per-vertex items such as lit vertex colors are computed based on the
positions, normals, and so forth.

3. Triangle assembly. The transformed vertices are grouped into triples representing
the triangles to be rendered.

4. Triangle clipping. Each homogeneous-space triangle is clipped or culled as
required to fall within the view rectangle.

8.5 Rendering Pipeline 295

Index and vertex arrays |:>| Primitive processing |

Required source vertices

Vertex uniform values |:>| Per-vertex operations |

U Transformed and shaded vertices
Index array |:>| Triangle assembly |
U Triangles (shaded vertex triples)
View frustum |:>| Triangle clipping |
U Clipped triangles (shaded vertex triples)

Viewport |:>| Viewport transform |

U Screen-Space triangles (shaded vertex triples)

| Fragment generation |

U Unshaded fragments

Fragment uniform values |:>| Fragment processing |

U Shaded fragments

Blending information |:>| Output processing |

U Rendered image colors

Figure 8.5. Details of the basic rendering pipeline.

5. Viewport transform. The resulting clipped triangles are transformed into screen
space.

6. Fragment generation. Triangles are “sampled,” generating pixel-aligned samples,
called fragments.

7. Fragment processing. The final color and other properties of the surface are
computed for each fragment.

8. Output processing. The final fragments are combined with those from other
objects that are a part of the scene to generate the final rendered image.

The rendering section of this book covers all of these steps in various levels of detail. In
this chapter we have already discussed the basics of indexed triangle primitives (primitive
processing and triangle assembly). In Chapter 7 we discussed projection of vertices (per-
vertex operations), clipping and culling (triangle clipping), and transformation into screen
space (viewport transform). In this chapter we will provide an overview of other per-vertex
operations and fragment processing. In Chapter 9, we will provide details on how light—
surface interaction can be simulated in per-vertex operations and fragment processing.

296 Geometry and Programmable Shading

Finally, the details of how fragments are generated and processed (fragment generation and
processing), as well as how they are output to the device (output processing), are discussed
in Chapter 10.

8.5.1 Fixed-Function versus Programmable Pipelines

The above pipeline has been common to rendering systems and APIs for over a decade.
Initially, the major rendering APIs such as OpenGL Lx (and OpenGL ES 1x) and
Direct3D’s DX3 through DX7 implemented each stage with basically fixed functionality,
modified only by a limited number of settings and switches. As features multiplied in com-
mercial 3D systems, the switches and settings became more and more complex and often
began to interact in confusing ways.

As a result, starting with APIs like OpenGL 2.0 and Direct3D’s DX8, graphics systems
have added flexibility. The APIs included new interfaces that allowed several of the most
important fixed-function stages to be replaced with application-provided shader code. The
major stages that were replaced with programmability were the per-vertex operations and
fragment processing. Later, support for shaders in the triangle assembly stage was added
as well. With the advent of Direct3D’s DX10, the OpenGL Core interface, and the mobile
3D API OpenGL ES 2.0 (along with other APIs of that generation), the fixed-function
per-vertex and fragment stages are eschewed entirely; only shaders are supported.

The two major high-level shading languages used for interactive 3D graphics are
Microsoft’s HLSL (High-Level Shading Language) and OpenGL’s GLSL (GL Shading
Language) [132]. While both of these languages have significant differences, they are
remarkably similar. They all have the basic feel of C or C++, and thus switching between
them is generally quite easy. Since OpenGL’s GLSL is widely available, has been supported
for some time by both OpenGL and OpenGL ES (the latter with some limitations, known
as GLSL ES), and is quite clean, we will use it exclusively for in-text shading language
examples. However, HLSL is capable of the same operations in relatively similar ways.

The remainder of this book will deal exclusively with shader-based pipelines. For the
examples we will use, shaders are more illustrative and simpler. As we shall see in the
lighting chapter (Chapter 9), high-level shading languages make it possible to directly
translate shading and lighting equations into shader code. This is the additional value of
shaders; while they make complex effects possible, they also make simple shading equations
quite efficient by avoiding all of the conditionals and flag checking required by a fixed-
function pipeline’s settings.

8.6 Shaders

8.6.1 Using Shaders to Move from Vertex to Triangle to Fragment

The core shader types are vertex shaders (VSs) and fragment shaders (FSs), also known in
some APIs as pixel shaders. They are, at their core function, very similar. In fact, on modern
processors they are executed on the same hardware units—this is called unified shader
hardware. They each take input values that represent a single entity, and output values
that define additional properties of that entity. In the case of a vertex shader, the entity
in question is a vertex, or source surface position and additional attributes as discussed
previously in this chapter. In the case of a fragment shader, the entity is a fragment or

sample representing an infinitesimally small region of the surface being rendered. When
we discuss rasterization in Chapter 10, we will see that there is actually a much more precise
definition of a fragment, but for now, the basic concept is that it is a sample somewhere
on the surface of the object, generally at a point in the interior of one of the triangles, not
coincident with any single vertex defining the surface.

The “one in, one out” nature of both types of shader is an inherent limitation that is
simplifying yet at times frustrating. A vertex shader has access to the attributes of the current
vertex only. It has no knowledge of surface continuity and cannot access other vertex array
elements. Similarly, the fragment shader receives and can write to only the properties of the
current fragment and cannot change the screen-space position of that fragment. It cannot
access neighboring fragments or the source vertices of the triangle that contains the fragment.
The sole deviation from this standard is that in many shading systems, the fragment shader
can generate one or zero fragments. In other words, the fragment shader can choose to “kill”
the current fragment, leaving a hole in the surface. This is useful for creating intratriangle
cutouts to the surface.

Looking at the pipeline depicted in Figure 8.5 in reverse (bottom to top), from a single-
shaded fragment backwards gives an understanding of the overall pipeline as a function.
Starting from the end, the final, shaded fragment was computed in the fragment shader
based on input values that are interpolated to the fragment’s position within the triangle that
contains it. This containing triangle is based upon three transformed and processed vertices
that were each individually output from the vertex shader. These vertices were provided,
along with the triangle connectivity, as a part of the geometry object being drawn. Thus,
the entire shading pipeline is, in a sense, one long function.

8.6.2 Shader Input and Output Values

Both vertex and fragment shaders receive their inputs in roughly the same types, the most
common being floating-point scalars (£1oat in GLSL), vectors (vec2, vec3, and vec4
in GLSL), matrices (mat2, mat3, mat4, etc., in GLSL), and arrays of each of these types
of values. Colors are an extremely common type passed in to both forms of shaders and
are generally represented in the shaders as floating-point 4-vectors, just as discussed in the
introductory material in this chapter (although they are usually accessed in the shader as
v.r, v.g, etc., instead of v.x, v.y, etc.). Signed and unsigned integers and associated
vectors and arrays are often supported as well.

One additional type of input to a shader is a texture sampler, which represents image-
based lookup within the shader. This is an extremely powerful shader input and will garner
its own section later in this chapter and in the chapters to come. Most modern graphics
systems and APIs allow samplers as inputs to both vertex and fragment shaders. However,
for the purposes of this book, we will discuss them as inputs to fragment shaders, where
they are more commonly used.

8.6.3 Shader Operations and Language Constructs

The set of shader operations in modern shading languages is generally the same in both
vertex and fragment shaders. The operations and functions are too broad to list here, but
include the most common infix operations (addition, subtraction, multiplication, division,
negation) for scalar, vector, and matrix types and the sensible mixing thereof. A wide range

8.6 Shaders

297

298 Geometry and Programmable Shading

of standard mathematical functions are also available, such as dot and cross products, vector
normalization, trigonometric functions, and so forth.

Functions, procedures, conditionals, and loops are also provided in the high-level shading
languages. However, since shaders are in essence SIMD (single-instruction multiple-data)
systems, looping and branching can be expensive, especially on older hardware. However,
the overall shading languages are exceedingly powerful. A full list of functionality for
GLSL can be found on the OpenGL reference card [66].

8.6.4 Other Shader Types

In recent years, other shader types have been introduced that expand the functionality of the
basic rendering pipeline, and most of which fall between the vertex and fragment shader
stages.

The geometry shader executes during the triangle assembly stage. It takes vertices as
input, and can modify them into more complex primitives. For example, you could send
a 2D rectangle as two vectors: a 2-vector to the center of the rectangle, and a 2-vector
representing the horizontal and vertical half-extents. In geometry shader this would be
turned into a quad, with two triangles and four vertices. In this way you could upload less
vertex data to the GPU, and thereby save transfer time.

Tessellation shaders also execute during the triangle assembly stage. They fall between
the vertex shader and the geometry shader, and provide a more efficient way to create
a large number of primitives from a given input. There are three stages: a user-defined
tesselation control shader that controls the level of tesselation, a fixed-function tessellation
primitive generator that performs the tesselation, and a user-defined tesselation evaluation
shader that takes the output of the tesselation and produces the final vertex values. This can
be used to generate the level of detail for objects, or to tessellate (or triangulate) curves and
curved surfaces.

Finally, the compute shader lies outside of the standard graphics pipeline, and allows the
programmer to treat the GPU as a general processor and run highly parallel computations.

At the time of printing, geometry and tessellation shaders are not generally supported in
OpenGL ES. And for the purposes of simplicity, we will focus only on vertex and fragment
shaders in this text. However, once these are understood, the reader is advised to investigate
the other shader types.

8.7 \ertex Shaders

8.7.1 Vertex Shader Inputs

Vertex and fragment shaders do have slightly different sources of input, owing to their
different locations in the rendering pipeline. Vertex shaders receive three basic sources of
input: per-vertex attributes, per-object uniforms, and global constants. The first two can
be thought of as properties of the geometry object being rendered, while the lattermost are
properties and limits of the rendering hardware.

The per-vertex attributes are the elements of the object’s vertex structure described
above and will likely differ from vertex to vertex. In past versions of OpenGL, some
per-vertex attributes corresponding to some of the fixed-function pipeline were standard
and accessed via built-in variables in the vertex shader. These have been deprecated in the

8.7 Vertex Shaders

current OpenGL Core Profile, were never supported in OpenGL ES 2.0 or greater, and are
also not available in DirectX’s HLSL. For this reason, the Iv library has its own system for
managing standard variables such as position, normal vector, color, and texture coordinates.

A mapping needs to be defined between the register locations of the vertex inputs in
the shader and the position of the attributes in the vertex layout. OpenGL and DirectX
have different mechanisms for managing this; since Iv has a fixed set of vertex layouts,
it handles this internally. For GLSL the user only needs to declare the input variables
in the shader with the correct keywords (IV_POSITION, IV_COLOR, IV_NORMAL,
IV_TEXCOORDO). These match similar keywords in HLSL.

The per-object uniforms can be thought of as global variables and are the same value
(or uniform) across the entire object being drawn. As with attributes, some uniforms were
standard in OpenGL but are no longer; common examples include the model view and
projection matrices. So again, Iv has defined a standard set of uniforms, which are explicitly
set by the application.

The constants are provided by the rendering API and represent hardware limits that may
be of use to shaders attempting to deal with running on different platforms. Constants are
just that—constant over all rendered objects.

8.7.2 Vertex Shader Outputs

One required vertex shader output value is the homogeneous (postprojection transform)
vertex position. It must be written by all vertex shaders. The projected positions are required
in order to generate screen-space triangles from which fragment samples can be generated.

Vertex shaders provide their other output values by writing to specific variables (in older
versions of GLSL these were called varyings). Standard (or built-in) vertex output variables
differ by API and shading language. User-defined or custom vertex shader outputs may be
declared as well, although platforms may differ in the limited number of custom output
parameters that can be used.

8.7.3 Basic Vertex Shaders

The simplest vertex shader simply transforms the incoming model-space vertex by the
model view and projection matrix, and places the result in the required output register, as
follows:

// GLSL
uniform matd IvModelViewProjectionMatrix;
layout (location = IV_POSITION) in vec3 position;
void main()
{
gl_Position = IvModelViewProjectionMatrix * position;

}

The layout keyword in GLSL indicates the location for a particular vertex attribute
within our vertex data. As mentioned, for GLSL Iv provides an internal mapping to the
correct attribute location, similar to that found in Direct3D. So this shader uses a vertex input
(position) placed at the Iv IV_POSITION attribute location, a standard Iv uniform
(IvModelViewProjectionMatrix), and a standard OpenGL vertex shader output

299

300 Geometry and Programmable Shading

(g1_Position). It transforms a floating-point 4-vector (vec4) by a floating-point 4 x 4
matrix (mat4) and assigns the result to a 4-vector. However, this simple vertex shader
provides no additional information about the surface—no normals, colors, or additional
attributes. In general, we will use more complex vertex shaders.

8.8 Fragment Shaders

8.8.1 Fragment Shader Inputs

Unlike vertex shaders, which are invoked on application-supplied vertices, fragment shaders
are invoked on dynamically generated fragments. Thus, there is no concept of per-fragment
attributes being passed into the fragment shader by the application.

Instead, shader-custom output values written by the previous shader in the pipeline
(usually a vertex shader) are simply interpolated and provided as inputs to the linked frag-
ment shader. They must be declared in the fragment shader using the same name and type
as they were declared in the previous shader, so they can be linked together. Some of the
built-in output values written by a shader are provided in a similarly direct manner. How-
ever, others are provided in a somewhat different manner as is appropriate to the primitive
and value. For example, in GLSL, the vertex shader built-in output position (which is spec-
ified in homogeneous coordinates) and the fragment shader’s built-in fragment coordinate
(which is in a window-relative coordinate) are in different spaces.

Fragment shaders support constants and uniforms. A set of fragment shader—relevant
constants may be provided by the implementation. In addition, fragment shaders can access
uniform values in the same way they are accessed in vertex shaders. Fragment shaders also
support an extremely powerful type of uniform value: texture image samplers (as men-
tioned above, most implementations support texture samplers in vertex shaders as well).
These types of uniforms are so useful that we will dedicate entire sections to them in several
of the rendering chapters.

8.8.2 Fragment Shader Outputs

The basic goal of the fragment shader is to compute the color of the current fragment.
The entire pipeline, in essence, comes down to this single output value per fragment. The
fragment shader cannot change the other values of the fragment, such as the position of
the fragment, which remains locked in screen space. However, some shading systems do
allow for a fragment to cancel itself, causing that fragment to go no further in the rendering
pipeline. This is useful for cutout effects, but can have performance consequences on some
architectures.

Each shading language defines a variable into which the final color must be written; in
GLSL, this variable has its default specification at output location 0. An extremely basic
shader that takes an application-set per-object color and applies it to the entire surface is
shown below.

// GLSL

uniform vecd objectColor;
out vecd fragColor;

void main()

8.8 Fragment Shaders

{

fragColor = objectColor;

}

The fragment shader above is compatible with the simple vertex shader above—the two
could be linked and used together.

Note that in the latest shading systems, a shader may output more than one color or value
per fragment. This functionality is known as multiple render targets (MRTs) and will not
be discussed in this text, as it does not directly affect the basic pipeline or mathematics of
the system. However, the technique is extremely powerful and allows for many high-end
rendering effects to be done efficiently. One example is deferred lighting, which we discuss
briefly in Chapter 9. For more details and examples of the use of MRTs, see Gray [62].

8.8.3 Linking Vertex and Fragment Shaders

As described above, the triangle assembly stage takes sets of three processed vertices and
generates triangles in screen space. Fragments on the surface of these triangles are generated,
and the fragment shader is invoked upon each of these fragments. The connection between
vertices and fragments is basically unbounded. Three vertices generate a triangle, but that
triangle may generate many fragments (as will be discussed in Chapter 10). Or, the triangle
may generate no fragments at all (e.g., if the triangle is outside of the view rectangle).

In defining the values and types in its output parameters, the vertex shader also provides
one-half of the interface between itself and the fragment shader. In many cases, vertex
and fragment shaders are written independently. As long as the input values required by a
fragment shader are all supplied by a given vertex shader, those two shaders may be “linked”
at runtime and used together. This ability to reuse a vertex or fragment shader with more
than one of the other type of shader cuts down on the number of shaders that need to be
written, avoiding a combinatorial explosion.

Real applications like large-scale 3D games often spend a lot of development time having
to manage the many different shaders and shading paths that exist in a complex rendering
engine. Some applications use very large shaders that include all of the possible cases,
branching between the various cases using conditionals in the shader code. This can lead to
large, complex shaders with a lot of conditionals (known as ubershaders) whose results will
differ only at the per-object level, a potentially wasteful option. Other applications generate
shader source code in the application itself, as needed, compiling their shaders at runtime.
This can be problematic as well, as the shader compilation takes significant CPU cycles
and can stall the application visibly. Finally, some applications use a hybrid approach,
generating the required shaders offline and keeping them in a lookup table, loading the
required shader based on the object being rendered.

8.8.4 Compiling, Linking, and Using Shaders

Programmable shaders are analogous to many other computer programs. They are written
in a high-level language (GLSL, in our case), built from multiple source files or sections
(e.g., a vertex shader and a fragment shader), compiled into the GPU’s microcode, and
linked (the vertex shader together with the fragment shader). The resulting program then
can be used.

Source Code

BasicShaders

301

302 Geometry and Programmable Shading

This implies several stages. The first stage, compilation, can be done at runtime in the
application, or may be done as an offline process. The availability of runtime compila-
tion is at this point universally expected. OpenGL and OpenGL ES 3.0 drivers include a
GLSL compiler. Direct3D ships a runtime compiler as an independent library. And while
OpenGL ES 2.0 doesn’t require one, all vendors provide one. Hence, we will assume the
availability of a runtime compiler in our Iv code examples. In either case, the source vertex
and fragment shaders must be compiled into compiled shader objects. If there are syntax
errors in the source files, the compilation will fail.

A pair of compiled shaders (a vertex shader and a fragment shader) must then be linked
into an overall shader or program. Most platforms support performing this step at runtime.
Linking can fail if the vertex shader does not declare all of the input parameters that the
fragment shader requires.

For details of how OpenGL and Direct3D implement shader compilation and linking,
see the source code for Iv. Depending on the rendering API, some or all of these steps
may be grouped into fewer function calls. In order to compile and link source shaders into
a program in Iv, the steps are shown below. Iv supports loading and compiling shaders
from text file or from string. The latter case is useful for simple shaders, as they can be
simply compiled into the application itself as a static string, per the following code:

// Shader compilation code
IvShaderProgram* LoadProgram(IvResourceManager& manager)
{
IvVertexShader* vertexShader
= manager.CreateVertexShaderFromFile ("vert.txt");
IvFragmentShader* fragmentShader
= manager.CreateFragmentShaderFromFile ("frag.txt") ;

IvShaderProgram* program
= manager.CreateShaderProgram(vertexShader, fragmentShader) ;

return program;

The resulting program object then must be set as the current shading program before an
object can be rendered using it. In Iv, the code to set the current shading program is as
follows. Other APIs use similar function calls, as follows:

IvRenderer& renderer;
IvShaderProgram* program;

//

// Shader apply code
renderer.SetShaderProgram(program) ;

8.8.5 Setting Uniform Values

As mentioned previously, uniform shader parameters form the most immediate application-
to-shader communication. These values provide the global variables required inside of a
shader and can be set on a per-object basis. Since they cannot be set during the course of

8.8 Fragment Shaders

a draw call, there is no way to change uniforms at a finer grain than the per-object level.
Only vertex and fragment shader input variables will differ at that fine-grained level.

The most flexible way to set a uniform value for a shader is to query the uniform value
by name from the application. Rendering APIs that support high-level shading languages
commonly support some method of mapping string names for uniforms into the uniforms
themselves. The exact method differs from API to API—in particular, Direct3D 11 only
allows this kind of access via an auxiliary library.

However, querying by string can be expensive and should not be done every time an
application needs to access a uniform in a shader. As a result, the rendering APIs can, given
a string name and a shading program object, return a handle or pointer to an object that
represents the uniform. While the initial lookup still requires a string match, the returned
handle allows the uniform to be changed later without a string lookup each time. In Iv, the
query function is as follows:

IvShaderProgram* program;
//

IvUniform* uniform = program->GetUniform("myShaderUniformName") ;

The handle variable uniform now represents that uniform in that shader from this point
onward. Note that uniforms are in the scope of a given shading program. Thus, if you need
to set a uniform in multiple shading programs, you will need to query the handles and
set the values independently for each shading program, even if the uniform has the same
name in all of the programs. Although the application will generally know the type of the
uniform already (since the application developer likely wrote the shader code), rendering
APIs make it possible to retrieve the type (float; integer; Boolean; 2-, 3-, and 4- vectors of
each; and float matrices) and array count (one or more of each type) for a uniform. Finally,
the rendering API will include functions to set (and perhaps get) the values of each uniform.
Iv code that demonstrates querying the type and count of a uniform as well as setting the
value is as follows. The code below queries a handle for a uniform that is known to be a
two-element array of 4D vectors, perhaps representing a pair of basis vectors.

IvUniform* uniform;
//

IvUniformType uniformType = uniform->GetTypel() ;
unsigned int uniformCount = uniform->GetCount () ;

// We're expecting an array of two float vector-4's
if ((uniformType == kFloat4Uniform) &&
(uniformCount == 2))

// Set the vectors to the Z and X axes
uniform->Setvalue (IvVector4 (0, 0, 1, 0), 0);
uniform->SetValue (IvVector4 (1, 0, 0, 0), 1);

A more efficient alternative to querying by name is to use a similar structure to vertex
and index buffers called a uniform buffer (in OpenGL) or constant buffer (in Direct3D).

303

304 Geometry and Programmable Shading

Source Code

UniformColors

These are simply other buffers of values that can be transferred to the GPU and shared
among vertex and fragment shaders. If we have a common set of uniforms used by many
shaders (for example, transformation matrices), we can place them in a uniform buffer, and
have each shader access that uniform buffer. Then when the values change, we only need to
update the uniform buffer once, rather than having to update each uniform independently
for each shading program.

The downside of uniform buffers is that the shader programs need a little more knowledge
about the layout of the uniform data, and hence are less flexible than simply querying by
name. You also need to update the entire buffer even if you’re changing only one variable. For
this reason, shader programmers usually create multiple uniform buffers, each containing
variables that require different rates of update (for example, per frame vs. per object).
In our case, we would like the flexibility and are working with only one or two shader
programs at a time, so we will continue querying by name—but for more complex and
performance-critical shaders, uniform buffers are essential.

Regardless of access method, these uniform interfaces make it possible to pass a wide
range of data items down from the application code to a shader. We will use uniforms
extensively in Chapter 9 as we discuss lighting. Uniforms will form the basis of how we
pass information regarding the number, type, and configuration of lights and surfaces to the
shaders that will actually compute the lit colors.

8.9 Basic Coloring Methods

The following sections describe a range of simple methods to assign colors to surface
geometry. Note that the cases described below are designed to best explain how to pass
the desired colors to the fragment shader and are overly simplified. These basic methods
can be (and will be in later sections and chapters) used to pass other noncolor values into
the fragment shader for more complex shading. However, this initial discussion will focus
simply on passing different forms of color values to the fragment shader, which will in turn
simply write the color value being discussed directly as its output.

The simplest and generally highest-performing methods of coloring geometry are to use
constant colors. Constant colors involve passing through colors that were assigned to the
geometry prior to rendering. These colors may have been generated by having an artist
assign colors to every surface during content creation time. Alternatively, an offline process
may have been used to generate static colors for all geometry. With these static colors
assigned, there is relatively little that must be done to select the correct color for a given
fragment. Constant colors mean that for a given piece of geometry, the color at a fixed point
on the surface will never change. No environmental information like dynamic lighting will
be factored into the final color.

The following examples will show simple cases of constant color. These will serve as
building blocks for later dynamic coloring methods, such as lighting.

8.9.1 Per-Object Colors

The simplest form of useful coloring is to assign a single color per object. Constant coloring
of an entire object is of very limited use, since the entire object will appear to be flat, with
no color variation. At best, only the filled outline of the object will be visible against the

8.9 Basic Coloring Methods

backdrop. As a result, except in some special cases, per-object color is rarely used as the
final shading function for an object.

Per-object color requires no special work in the vertex shader (other than basic pro-
jection). The vertex—fragment shader pair below implements per-object colors. The appli-
cation need only specify the desired color by setting the color into the named uniform
objectColor. The objectColor uniform must be declared in the fragment shader,
and the application must set its value for the current object prior to rendering the object;
it is not a built-in uniform.

// GLSL
uniform matd IvModelViewProjectionMatrix;
layout (location = IV_POSITION) in vec3 position;

void main()
{
gl_Position = IvModelViewProjectionMatrix * vecd (position, 1.0);

}

// GLSL
uniform vecd objectColor;
out vecd fragColor;

void main() // fragment shader
{

fragColor = objectColor;
}

8.9.2 PerTriangle Colors

Another primitive-level coloring method is per-triangle coloring, which simply assigns a
color to each triangle. This is also known as faceted, or flat, shading, because the resulting
geometry appears planar on a per-triangle basis. Technically, this requires adding a color
attribute for each triangle. However, explicit per-triangle attributes are not supported in
most current rendering systems. As a result, in order to support per-triangle colors, render-
ing APIs tend to allow for a mode in which the color value computed for one of a triangle’s
vertices is used as the input value for the entire triangle, with no interpolation.

There are two common ways of specifying flat shading in programmable shading APIs.
The original method was to use a shader-external render-state setting to place the rendering
pipeline in flat-shaded mode. This was used in older versions of OpenGL and Direct3D,
but is no longer available as a core feature in the latest versions. The current method of
specifying per-triangle constant colors is built into the shading language itself, whereby an
input value is declared in the shader with a f1lat or nointerpolation modifier. Such
values will not be interpolated before being passed down to the fragment shader.

8.9.3 Per-Vertex Colors

Many of the surfaces approximated by tessellated objects are smooth, meaning that the goal
of coloring these surfaces is to emphasize the smoothness of the original surface, not the
artifacts of its approximation with flat triangles. This fact makes flat shading a very poor

Source Code

VertexColors

305

306 Geometry and Programmable Shading

choice for many tessellated objects. A shading method that can generate the appearance
of a smooth surface is needed. Per-vertex coloring, along with a method called Gouraud
shading (after its inventor, Henri Gouraud), does this. Gouraud shading is based on the
existence of some form of per-vertex colors, assigning a color to any point on a triangle by
linearly interpolating the three vertex colors over the surface of the triangle. As with the
other shading methods we have discussed, Gouraud shading is independent of the source of
these per-vertex colors; the vertex colors may be assigned explicitly by the application, or
generated on the fly via per-vertex lighting or other vertex shader. This linear interpolation
is both simple and smooth and can be expressed as a mapping of barycentric coordinates
(s, 1) as follows:

Color(0,T,(s,1)) = sCy1+tCyy+ (1 —s—1)Cy3s

Examining the terms of the equation, it can be seen that Gouraud shading is simply an
affine transformation from barycentric coordinates (as homogeneous points) in the triangle
to RGB color space.

An important feature of per-vertex smooth colors is that color discontinuities can be
avoided at triangle edges, making the piecewise-flat tessellated surface appear smooth.
Internal to each triangle, the colors are interpolated smoothly. At triangle edges, color dis-
continuities can be avoided by ensuring that the two vertices defining a shared edge in one
triangle have the same color as the matching pair of vertices in the other triangle. It can be
easily shown that at a shared edge between two triangles, the color of the third vertex in
each triangle (the vertices that are not an endpoint of the shared edge) does not factor into
the color along that shared edge. As a result, there will be no color discontinuities across
triangle boundaries, as long as the shared vertices between any pair of triangles are the
same in both triangles. In fact, with fully shared, indexed geometry, this happens automati-
cally (since colocated vertices are shared via indexing). Figure 8.6 allows a comparison of
geometry drawn with per-face colors and with per-vertex colors.

Per-vertex colors are generated in the vertex shader, through either computation or direct
use of per-vertex attributes, or a combination of both. In the fragment shader, the vertex

(a) (b)

Figure 8.6. (a) Flat (per-face) and (b) Gouraud (per-vertex) shading.

8.9 Basic Coloring Methods 307

color input value (which has been interpolated to the correct value for the fragment using
Gouraud interpolation) is used directly.

// GLSL

uniform mat4 IvModelViewProjectionMatrix;

layout (location = IV_COLOR) in vec4 inColor;
layout (location = IV_POSITION) in vec3 position;
out vecd color;

void main() // vertex shader

{
gl_Position = IvModelViewProjectionMatrix*vec4 (position,1.0);
color = inColor;

}

// GLSL
in vec4 color;
out vecd fragColor;

void main() // fragment shader
{

fragColor = color;
}

8.9.4 Sharp Edges and Vertex Colors
Source Code

Many objects that we render will contain a mixture of smooth surfaces and sharp edges.
One need only look at the outlines of a modern automobile to see this mixture of sloping *®#e°
surfaces (a rounded fender) and hard creases (the sharp edge of a wheel well). Such an object
cannot be drawn using per-triangle colors, as per-triangle colors will correctly represent the
sharp edges, but will not be able to represent the smooth sections. In these kinds of objects,
some sharp geometric edges in the tessellation really do represent the original surface
accurately, while other sharp edges are designed to be interpolated across to approximate a
smooth section of surface.

In addition, the edge between two triangles may mark the boundary between two different
colors on the surface of the object, such as an object with stripes painted upon it. In this
context, a sharp edge is not necessarily a geometric property. It is nothing more than an
edge that is shared by two adjacent triangles where the triangle colors on either side of the
edge are different. This produces a visible, sharp line between the two triangles where the
color changes.

In these situations, we must use per-vertex interpolated colors. However, interpolating
smoothly across all triangle boundaries is not the desired behavior with a smooth/sharp
object. The vertices along a sharp edge need to have different colors in the two triangles
abutting the edge. In general, when Gouraud shading is used, these situations require
coincident vertices to be duplicated, so that the two coincident copies of the vertex can
have different colors. Figure 8.7 provides an example of a cube drawn with entirely shared
vertices and with duplicated vertices to allow per-vertex, per-face colors. Note that the
cube is not flat-shaded in either case—there are still color gradients across each face. The
example with duplicated vertices and sharp shading edges looks more like a cube.

308 Geometry and Programmable Shading

Source Code

BasicTexturing

(@ (b)

Figure 8.7. Sharp vertex discontinuities: (a) shared vertices lead to smooth-shaded edges,
and (b) duplicated vertices allow the creation of sharp-shaded edges.

8.9.5 Limitations of Basic Shading Methods

Real-world surfaces often have detail at many scales. The shading/coloring methods de-
scribed so far require that the fragment shader compute a final color based solely on sources
assigned at tessellation-level features, either per triangle or per vertex. While this works
well for surfaces whose colors change at geometric boundaries, many surfaces do not fit this
restriction very well, making flat shading and Gouraud shading ineffective at best. While
programmable shaders can be used to compute very complex coloring functions that change
at a much higher frequency than per-vertex or per-triangle methods, doing so based only
on these gross-scale inputs can be difficult and inefficient.

For example, imagine a flat sheet of paper with text written on it. The flat, rectangular
sheet of paper itself can be represented by as few as two triangles. However, in order to use
Gouraud shading (or even more complex fragment shading based on Gouraud-interpolated
sources) to represent the text, the piece of paper would have to be subdivided into triangles
at the edges of every character written on it. None of these boundaries represents geometric
features, but rather are needed only to allow the color to change from white (the paper’s
color) to black (the color of the ink). Each character could easily require hundreds of
vertices to represent the fine stroke details. This could lead to a simple, flat piece of paper
requiring tens of thousands of vertices. Clearly, we require a shading method that is capable
of representing detail at a finer scale than the level of tessellation.

8.10 Texture Mapping

8.10.1 Introduction

One method of adding detail to a rendered image without increasing geometric complexity
is called texture mapping, or more specifically image-based texture mapping. The physical
analogy for texture mapping is to imagine wrapping a flat, paper photograph onto the
surface of a geometric object. While the overall shape of the object remains unchanged,
the overall surface detail is increased greatly by the image that has been wrapped around
it. From some distance away, it can be difficult to even distinguish what pieces of visual
detail are the shape of the object and which are simply features of the image applied to the
surface.

8.10 Texture Mapping 309

A real-world physical analogy to this is theatrical set construction. Often, details in the
set will be painted on planar pieces of canvas, stretched over a wooden frame (so-called
flats), rather than built out of actual, 3D wood, brick, or the like. With the right lighting
and positioning, these painted flats can appear as very convincing replicas of their real,
3D counterparts. This is the exact idea behind texturing—using a 2D, detailed image placed
upon a simple 3D geometry to create the illusion of a complex, detailed, fully 3D object.

An example of a good use of texturing is a rendering of a stucco wall; such a wall appears
flat from any significant distance, but a closer look shows that it consists of many small
bumps and sharp cracks. While each of these bumps could be modeled with geometry,
this is likely to be expensive and unlikely to be necessary when the object is viewed from
a distance. In a 3D computer graphics scene, such a stucco wall will be most frequently
represented by a flat plane of triangles, covered with a detailed image of the bumpy features
of lit stucco.

The fact that texture mapping can reduce the problem of generating and rendering com-
plex 3D objects into the problem of generating and rendering simpler 3D objects covered
with 2D paintings or photographs has made texture mapping very popular in real-time 3D.
This, in turn, has led to the method being implemented in display hardware, making it
even less expensive computationally. The following sections will introduce and detail some
of the concepts behind texture mapping, some mathematical bases underlying them, and
basics of how texture mapping can be used in 3D applications.

8.10.2 Shading via Image Lookup

The real power of texturing lies in the fact that it uses a dense plane of samples (an image)
as its means of generating color. In a sense, texturing can be thought of as a powerful,
general function that maps 2-vectors (the texture coordinates) into a vector-valued out-
put (most frequently an RGBA color). To the shader it is basically irrelevant how the
function is computed. Rather than directly interpolating colors that are stored in the ver-
tices, the interpolated per-vertex texture coordinate values serve only to describe how an
image is mapped to the triangle. While the mapping from the surface into the space of the
image is linear, the lookup of the image value is not. By adding this level of indirection
between the per-vertex values and the final colors, texturing can create the appearance of
a very complex shading function that is actually no more than a lookup into a table of
samples.
The process of texturing involves defining three basic mappings:

1. To map all points on a surface (smoothly in most neighborhoods) into a 2D (or in
some cases, 1D or 3D) domain

2. To map points in this (possibly unbounded) domain into a unit square (or unit
interval, cube, etc.)

3. To map points in this unit square to color values

The first stage will be done using a modification of the method we used for colors with
Gouraud shading, an affine mapping. The second stage will involve methods such as min,

310 Geometry and Programmable Shading

max, and modulus. The final stage is the most unique to texturing and involves mapping
points in the unit square into an image. We will begin our discussion with a definition of
texture images.

8.10.3 Texture Images

The most common form of texture images (or fextures, as they are generally known) are
2D, rectangular arrays of color values. Every texture has a width (the number of color
samples in the horizontal direction) and a height (the number of samples in the vertical
direction). Textures are similar to almost any other digital image, including the screen,
which is also a 2D array of colors. Just as the screen has pixels (for picture elements),
textures have texels (texture elements). While most graphics systems allow 1D textures
(linear arrays of texels) and 3D textures (cubes or rectangular parallelepipeds of texels, also
known as volume textures), by far the most commonly used are 2D, image-based textures.
Textures can also be stored in arrays to support such features as cube mapping (six textures
representing the faces of a cube surrounding an object). Cube mapping will come up again
when we cover environment maps in Chapter 9. However, our discussion of texturing will
focus entirely on single 2D textures.

We can refer to the position of a given texel via a 2D value (x, y) in texel units. (Note
that these coordinates are (column, row), the reverse of how we generally refer to matrix
elements in our row major matrix organization.) Figure 8.8 shows an example of a common
mapping of texel coordinates into a texture. Note that while the left-to-right increasing
mapping of x is universal in graphics systems, the mapping of y is not; top to bottom is used
in Direct3D, and bottom to top is used in OpenGL.

As with most other features, while there are minor differences between the render-
ing APIs regarding how to specify texture images, all of the APIs require the same basic
information:

¢ The per-texel color storage format of the incoming texture data
¢ The width and height of the image in texels

¢ An array of width x height color values for the image data

Put together, these define the image data and their basic interpretation in the same way
that an array of vertices, the vertex format information, and the vertex count define vertex
geometry to the rendering pipeline. As with vertex arrays, the array of texel data can be quite
sizable. In fact, texture image data are one of the single-largest consumers of memory-related
resources.

Rendering APIs generally include the notion of an opaque handle to a device-resident
copy of a texture. For peak performance on most systems, texture image data need to
reside in GPU device memory. Thus, in a process analogous to vertex buffer objects,
rendering APIs include the ability to transfer a texture’s image data to the device mem-
ory once. The opaque handle then can be used to reference the texture in later drawing
calls, using the already-resident copy of the texture image data in GPU memory. In Iv,
we use an object to wrap all of this state: TvTexture, which represents the texture
image itself and the texture sampler state. Like most other resources (e.g., vertex and

8.10 Texture Mapping 311

x=0, y=Height-1 x = Width-1, y = Height-1

x=0,y=0 x=Width-1,y=0

x=26

Figure 8.8. Texel-space coordinates in an image.

index buffers), IvTexture objects are created via the IvResourceManager object, as
follows:

IvResourceManager* manager;
// image data

void* data;

//

const unsigned int width = 256;
const unsigned int height = 512;
IvTexture* texture = manager->CreateTexture (kRGBA32TexFmt,
width, height,
data, kImmutableUsage) ;

//
The preceding code creates an immutable texture object with a 32-bit-per-texel RGBA

texture image that has a width of 256 texels and a height of 512 texels, and takes a pointer
to the image data.

312 Geometry and Programmable Shading

If we create with default or dynamic usage, we can similarly lock or map the texture
analogous to our vertex and index buffers in order to fill the texture with texel data. The
corresponding code to fill an RGBA texture with bright red texels is as follows:

IvTexture* texture;

//

{
IvTexture* texture = manager->CreateTexture (kRGBA32TexFmt,
width, height,
NULL, kDynamicUsage) ;
const unsigned int width = texture->GetWidth() ;
const unsigned int height = texture->GetHeight();

IvTexColorRGBA* texels = texture->BeginLoadDatal() ;

for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
IvTexColorRGBA& texel = texels[x + y * width];
texel.r = 255;
texel.g = 0;
texel.b = 0;
texel.a = 255;

/..
texture->EndLoadData () ;

8.10.4 Texture Samplers

Textures appear in the shading language in the form of a texture sampler object. Texture
samplers are passed to a fragment shader as a uniform value (which is ahandle that represents
the sampler). The same sampler can be used multiple times in the same shader, passing
different texture coordinates to each lookup. So, a shader can sample a texture at multiple
locations when computing a single fragment. This is an extremely powerful technique that
is used in many advanced shaders. From within a shader, a texture sampler is a sort of
function object that can be evaluated as needed, each time with unique inputs.

8.10.4.1 Texture Samplers in Application Code

Atthe application C or C++- level, there is considerably more to a texture sampler. A texture
sampler at the API level includes at least the following information:

* The texture image data
¢ Settings that control how the texture coordinates are mapped into the image

e Settings that control how the resulting image sample is to be post processed before
returning it to the shader

8.11 Texture Coordinates

All of these settings are passed into the rendering API by the application prior to using the
texture sampler in a shader. As with other shader uniforms, we must include application C
or C++ code to link a value to the named uniform; in this case, the uniform value represents
a texture image handle. We will cover each of these steps in the following sections.

The book’s rendering API uses the IvTexture object to represent texture samplers
and all of their related rendering state. The code examples in the following section below
all describe the IvTexture interfaces.

8.11 Texture Coordinates

While textures can be indexed by 2D vectors of nonnegative integers on a per-texel basis
(texel coordinates), textures are normally addressed in a more general, texel-independent
manner. The texels in a texture are most often addressed via width- and height-independent
U and V values. These 2D real-valued coordinates are mapped in the same way as texel
coordinates, except for the fact that U and V are normalized, covering the entire texture
with the O-to-1 interval. Figure 8.9 depicts the common mapping of UV coordinates into
a texture. These normalized UV coordinates have the advantage that they are completely
independent of the height and width of the texture, meaning that the texture resolution can
change without having to change the mapping values. Almost all texturing systems use

u=0.0,v=1.0 u=1.0,v=10

u=0.0,v=0.0 u=1.0,v=00

Figure 8.9. Mapping U and V coordinates into an image.

313

314 Geometry and Programmable Shading

these normalized UV coordinates at the application and shading language level, and as a
result, they are often referred to by the generic term of fexture coordinates, or texture UVs.

8.11.1 Mapping Texture Coordinates onto Objects

The texture coordinates defined at the three vertices of a triangle define an affine mapping
from barycentric coordinates to UV space. Given the barycentric coordinates of a point in
a triangle, the texture coordinates may be computed as

[u] _ [(uyr —uy3) (uy2 —uy3) uys ;

v (vv1—vv3) (v2—vy3) Vy3

Although there is a wide range of methods used to map textures onto triangles (i.e., to
assign texture coordinates to the vertices), a common goal is to avoid distorting the texture.
In order to discuss texture distortion, we need to define the U and V basis vectors in UV
space. If we think of the U and V vectors as 2-vectors rather than the point-like texture
coordinates themselves, then we compute the basis vectors as

e, = (1,0)—(0,0)
e, =(0,1)—(0,0)

The e, vector defines the mapping of the horizontal dimension of the texture (and its length
defines the size of the mapped texture in that dimension), while the e, vector does the same
for the vertical dimension of the texture.

If we want to avoid distorting a texture when mapping it to a surface, we must ensure
that the affine mapping of a texture onto a triangle involves rigid transforms only. In other
words, we must ensure that these texture-space basis vectors map to vectors in object space
that are perpendicular and of equal length. We define ObjectSpace() as the mapping of a
vector in texture space to the surface of the geometry object. In order to avoid distorting
the texture on the surface, ObjectSpace() should obey the following guidelines:

ObjectSpace(e,) « ObjectSpace(e,) = 0
|ObjectSpace(e,)| = |ObjectSpace(e,)|

In terms of an affine transformation, the first constraint ensures that the texture is not
sheared on the triangle (i.e., perpendicular lines in the texture image will map to perpendic-
ular lines in the plane of the triangle), while the second constraint ensures that the texture is
scaled in a uniform manner (i.e., squares in the texture will map to squares, not rectangles,
in the plane of the triangle). Figure 8.10 shows examples of texture-to-triangle mappings
that do not satisfy these constraints.

Note that these constraints are by no means a requirement—many cases of texturing will
stray from them, through either artistic desire or the simple mathematical inability to satisfy
them in a given situation. However, the degree that these constraints do hold true for the
texture coordinates on a triangle gives some measure of how closely the texturing across
the triangle will reflect the original planar form of the texture image.

Nonuniform scale Nonperpendicular

/ &> 3
Original texture g
'

Nonperpendicular

Skewed mappings

Figure 8.10. Examples of skewed texture coordinates.

8.11.2 Generating Texture Coordinates

Texture coordinates are often generated for an object by some form of projection of the
object-space vertex positions in R3 into the per-vertex texture coordinates in R?. All texture
coordinate generation—in fact, all 2D texturing—is a type of projection. For example,
imagine the cartographic problem of drawing a flat map of the earth. This problem is
directly analogous to mapping a 2D texture onto a spherical object. The process cannot be
done without distortion of the texture image. Any 2D texturing of a sphere is an exercise in
matching a projection of the sphere (or unwrapping it) onto a rectangular image (or several
images) and the creation of 2D images that take this mapping into account. For example,
a common, simple mapping of a texture onto a sphere is to use U and V as longitude and
latitude, respectively, in the texture image. This leads to discontinuities at the poles, where
more and more texels are mapped over smaller and smaller surface areas as we approach
the poles.

The artist must take this into account when creating the texture image. Except for purely
planar mappings (such as the wall of a building), most texturing work done by an artist is an
artistic cycle between generating texture coordinates upon the object and painting textures
that are distorted correctly to map in the desired way to those coordinates.

8.11.3 Texture Coordinate Discontinuities

As was the case with per-vertex colors, there are situations that require shared, collocated
vertices to be duplicated in order to allow the vertices to have different texture coordinates.
These situations are less common than in the case of per-vertex colors, due to the indirection
that texturing allows. Pieces of geometry with smoothly mapped texture coordinates can
still allow color discontinuities on a per-sample level by painting the color discontinuities

Texture Coordinates

315

316 Geometry and Programmable Shading

Source Code

TextureAddressing

u=0.0 U =0.875

U=0.125 u=0.75

V=1

U=025 U=0.625 c a n

Uz 05 Nutrition
=0. Facts
1 f and

U=0375 o o

information

Shared vertex UVs Texture image

Figure 8.11. Texturing a can with completely shared vertices.

into the texture. Normally, the reason for duplicating collocated vertices in order to split
the texture coordinates has to do with topology.

For example, imagine applying a texture as the label for a model of a tin can. For
simplicity, we shall ignore the top and bottom of the can and simply wrap the texture as
one would a physical label. The issue occurs at the texture’s seam. Figure 8.11 shows a
tin can modeled as an eight-sided cylinder containing 16 shared vertices—8 on the top and
8 on the bottom. The mapping in the vertical direction of the can (and the label) is simple,
as shown in the figure. The bottom eight vertices set V =0.0 and the top eight vertices
set V =1.0. So far, there is no problem. However, problems arise in the assignment of U.
Figure 8.12 shows an obvious mapping of U to both the top and bottom vertices—U starts
at 0.0 and increases linearly around the can until the eighth vertex, where it is 0.875, or
1.0 —-0.125.

The problem is between the eighth vertex and the first vertex. The first vertex was
originally assigned a U value of 0.0, but at the end of our circuit around the can, we would
also like to assign it a texture coordinate of 1.0, which is not possible for a single vertex.
If we leave the can as is, most of it will look perfectly correct, as we see in the front view
of Figure 8.12. However, looking at the back view in Figure 8.12, we can see that the face
between the eighth and first vertex will contain a squashed version of almost the entire
texture, in reverse! Clearly, this is not what we want (unless we can always hide the seam).
The answer is to duplicate the first vertex, assigning the copy associated with the first face
U = 0.0 and the copy associated with the eighth face U = 1.0. This is shown in Figure 8.13
and looks correct from all angles.

8.11.4 Mapping Outside the Unit Square

So far, our discussion has been limited to texture coordinates within the unit square, 0.0 < u
and v < 1.0. However, there are interesting options available if we allow texture coordinates
to fall outside of this range. In order for this to work, we need to define how texture

8.11 Texture Coordinates 317

Front side Back side
(appears to be correctly mapped) (incorrect, due to shared
vertices along the label “seam”)

Figure 8.12. Shared vertices can cause texture coordinate problems.

> UH P

Front side Back side
(correct: unchanged from (correct, due to doubled
previous mapping) vertices along the label “seam”

Figure 8.13. Duplicated vertices used to solve texturing issues.

318 Geometry and Programmable Shading

coordinates map to texels in the texture when the coordinates are less than 0.0 or greater
than 1.0. These operations are per sample, not per vertex, as we shall discuss.

The most common method of mapping unbounded texture coordinates into the texture is
known as texture wrapping, texture repeating, or texture tiling. The wrapping of acomponent
u of a texture coordinate is defined as

wrap(u) = u — |u]

The result of this mapping is that multiple “copies” of the texture cover the surface, like
tiles on a bathroom floor. Wrapping must be computed using the per-sample, not per-vertex,
method. Figure 8.14 shows a square whose vertex texture coordinates are all outside of the
unit square, with a texture applied via per-sample wrapping. Clearly, this is a very different
result than if we had simply applied the wrapping function to each of the vertices, which
can be seen in Figure 8.15. In most cases, per-vertex wrapping produces incorrect results.
Wrapping is often used to create the effect of a tile floor, paneled walls, and many other
effects where obvious repetition of a texture is required. However, in other cases wrapping
is used to create a more subtle effect, where the edges of each copy of the texture are not
quite as obvious. In order to make the edges of the wrapping less apparent, texture images
must be created in such a way that the matching edges of the texture image are equal.
Wrapping creates a toroidal mapping of the texture, as tiling matches the bottom edge
of the texture with the top edge of the neighboring copy (and vice versa), and the left
edge of the texture with the right edge of the neighboring copy (and vice versa). This is
equivalent to rolling the texture into a tube (matching the top and bottom edges), and then
bringing together the ends of the tube, matching the seams. Figure 8.16 shows this toroidal
matching of texture edges. In order to avoid the sharp discontinuities at the texture repetition
boundaries, the texture must be painted or captured in such a way so it has toroidal topology;

Figure 8.14. An example of texture wrapping.

8.11 Texture Coordinates

(-1,2) (2,2)

(-1,2) (2,2)

Per-pixel wrapping
(correct)

(-1,-1) 2-1
Original UVs

Per-vertex wrapping
(incorrect)

Texture image

Figure 8.15. Computing texture wrapping.

that is, the neighborhood of its top edge is equal to the neighborhood of its bottom edge,
and the neighborhood of its left edge must match the neighborhood of its right edge. Also,
the neighborhood of the four corners must be all equal, as they come together in a point
in the mapping. This can be a tricky process for complex textures, and various algorithms
have been built to try to create toroidal textures automatically. However, the most common
method is still to have an experienced artist create the texture by hand to be toroidal.

The other common method used to map unbounded texture coordinates is called texture
clamping, and is defined as

clamp(u) = max(min(u, 1.0), 0.0)

Clamping has the effect of simply stretching the border texels (left, right, top, and bottom
edge texels) out across the entire section of the triangle that falls outside of the unit square.
An example of the same square we’ve discussed, but with texture clamping instead of

319

320 Geometry and Programmable Shading

Figure 8.16. Toroidal matching of texture edges when wrapping.

(-1,2) (2,2)

Texture image

(-1,-1) (2,-1)

Figure 8.17. An example of texture clamping.

wrapping, is shown in Figure 8.17. Note that clamping the vertex texture coordinates is very
different from texture clamping. An example of the difference between these two operations
is shown in Figure 8.18. Texture clamping must be computed per sample and has no effect
on any sample that would be in the unit square. Per-vertex coordinate clamping, on the

8.11 Texture Coordinates

(-1,2) (4,2)

(-1,2) (4,2)

(-1,-1) (4,-1)
Per-pixel clamping
(correct)

(0,1) (1,1)

(-1-1) (4-1)
Original UVs

(0,0) (1,0)
Per-vertex clamping
(incorrect)

Texture image

Figure 8.18. Computing texture clamping.

other hand, affects the entire mapping to the triangle, as seen in the lower-right corner of
Figure 8.18.

Clamping is useful when the texture image consists of a section of detail on a solid-
colored background. Rather than wasting large expanses of texels and placing a small copy
of the detailed section in the center of the texture, the detail can be spread over the entire
texture, but leaving the edges of the texture as the background color.

On many systems clamping and wrapping can be set independently for the two dimen-
sions of the texture. For example, say we wanted to create the effect of a road: black asphalt
with a thin set of lines down the center of the road. Figure 8.19 shows how this effect can
be created with a very small texture by clamping the U dimension of the texture (to allow
the lines to stay in the middle of the road with black expanses on either side) and wrapping
in the V dimension (to allow the road to repeat off into the distance).

Most rendering APIs (including the book’s Iv interfaces) support both clamping and
wrapping independently in U and V. In Iv, the functions to control texture coordinate

321

322 Geometry and Programmable Shading

U clamping
(-5,10) > (5,10)

Texture image V wrapping

(-5,0) (5,0)
Textured square

Figure 8.19. Mixing clamping and wrapping in a useful manner.

addressing are SetAddressingU and SetAddressingV. The road example above
would be set up as follows using these interfaces:

IvTexture* texture;

//

texture->SetAddressingU (kClampTexAddr) ;
texture->SetAddressingV (kWrapTexAddr) ;

/7

8.11.5 Texture Samplers in Shader Code

Using a texture sampler in shader code is quite simple. As mentioned in Section 7.10.4,
a fragment shader simply uses a declared texture sampler as an argument to a lookup
function. The following shader code declares a texture sampler and uses it along with a set
of texture coordinates to determine the fragment color:

// GLSL

layout (location = IV_POSITION) in vec4d position;
layout (location = IV_TEXCOORDO) in vec2 texCoord0;
out vec2 texCoords;

void main() // vertex shader

8.12 Steps of Texturing 323

// Grab the first set of texture coordinates

// and pass them on

texCoords = texCoordOl;

gl_Position = IvModelViewProjectionMatrix * position;

}

// GLSL - fragment shader
uniform sampler2D texture;
int vec2 texCoords;
out vecd fragColor;

void main ()

{
// Sample the texture represented by "texture"
// at the location "texCoords"
fragColor = texture(texture, texCoords) ;

This is a simple example: the value passed in for the texture coordinate could be com-
puted by other means, either in the vertex shader (and then interpolated automatically as
an input value to the fragment shader) or in the fragment shader. However, applications
should take care to remember that the vertex and fragment shaders are invoked at different
frequencies. When possible, it is generally better to put computations that can be done in
the vertex shader in the vertex shader. If a computation can be done in either the vertex or
fragment shader with no difference in visual outcome, it may increase performance to have
the shader units compute these values only at each vertex.

8.12 Steps of Texturing

Unlike basic, per-vertex (Gouraud) shading, texturing adds several levels of indirection
between the values defined at the vertices (the UV values) and the final sample colors. This
is at once the very power of the method and its most confusing aspect. This indirection means
that the colors applied to a triangle by texturing can approximate an extremely complex
function, far more complex and detailed than the planar function implied by Gouraud
shading. However, it also means that there are far more stages in the method whereupon
things can go awry. This section aims to pull together all of the previous texturing discussion
into a simple, step-by-step pipeline. Understanding this basic pipeline is key to developing
and debugging texturing use in any application.

8.12.1 Other Forms of Texture Coordinates

Real-valued, normalized texture coordinates would seem to add a continuity that does
not actually exist across the domain of an image, which is a discrete set of color val-
ues. For example, in C or C++ one does not access an array with a floating-point
value—the index must first be rounded to an integer value. For the purposes of the
initial discussion of texturing, we will leave the details of how real-valued texture coor-
dinates map to texture colors somewhat vague. This is actually a rather broad topic

324 Geometry and Programmable Shading

and will be discussed in detail in Chapter 10. Initially, it is easiest to think of the
texture coordinate as referring to the color of the closest texel. For example, given
our assumption, a texture coordinate of (0.5,0.5) in a texture with width and height
equal to 128 texels would map to texel (64, 64). This is referred to as nearest-neighbor
texture mapping. While this is the simplest method of mapping real-valued texture
coordinates into a texture, it is not necessarily the most commonly used in modern
applications. We shall discuss more powerful and complex techniques in Chapter 10,
but nearest-neighbor mapping is sufficient for the purposes of the initial discussion of
texturing.

While normalized texture coordinates are the coordinates that most graphics systems
use at the application and shading language level, they are not very useful at all when
actually rendering with textures at the lowest level, where we are much more concerned
with the texels themselves. We will use them very rarely in the following low-level rendering
discussions. We notate normalized texture coordinates simply as (u, v).

The next form of coordinates is often referred to as texel coordinates. Like texture
coordinates, texel coordinates are represented as real-valued numbers. However, unlike
texture coordinates, texel coordinates are dependent upon the width (Wyexnre) and height
(Myexture) Of the texture image being used. We will notate texel coordinates as (ésexel, Viexel)-
The mapping from (u, v) to (Usexel, Viexel) 18

(Urexels Viexel) = (U Wrextures V - Prexture)

Figure 8.20 shows the coordinates for some texels. Note the edges of each texel lie on
integer boundaries in texel coordinate space, and their centers are at the half coordinates.

(l,§ (§,§
22 22
[] []
Texel
Texel centers ®
(1,1)
[] []
@1 @1
2’2 2’2

(0,0)=(w)

texture’ " texture

Figure 8.20. Texel coordinates and texel centers.

8.13 Limitations of Static Shading 325

8.12.2 From Texture Coordinates to a Texture Sample Color

Texturing is a function that maps per-vertex 2-vectors (the texture coordinates), a texture
image, and a group of settings into a per-sample color. The top-level stages are as follows:

1. Map the barycentric s and ¢ values into # and v values using the affine mapping
defined by the three triangle-vertex texture coordinates: (up,vi), (uz,v2), and

(u3,v3):

v |~ vi—v3) (n—v3) v3

[u}_l(m-%) (uz —u3z) u3 j

2. Using the texture coordinate mapping mode (either clamping or wrapping), map
the U and V values into the unit square:

Uynit»> Vunit = wrap(u), wrap(v)
or
Uynits Vunit = Clamp(“), Clamp(v)

3. Using the width and height of the texture image in texels, map the U and V values
into integral texel coordinates via simple scaling:

Wings Vint = |Uunir X width], | Vunir X height |
4. Using the texture image, map the texel coordinates into colors using image lookup:
Cr = Image(uint, Vint)

These steps compose to create the mapping from a point on a given triangle to a color value.
The following inputs must be configured, regardless of the specific graphics system:

* The texture coordinate being sampled (from interpolated vertex attributes, inter-
polated from a computation in the vertex shader, or computed in the fragment
shader)

¢ The texture image to be applied

* The coordinate mapping mode

8.13 Limitations of Static Shading

The shaders shown in this chapter are about as simple as shaders can possibly be. They
project geometry to the screen and directly apply previously assigned vertex colors and
textures to a surface. All of the methods described thus far assign colors that do not change

326 Geometry and Programmable Shading

for any given sample point at runtime. In other words, no matter what occurs in the scene,
a fixed point on a given surface will always return the same color.

Real-world scenes are dynamic, with colors that change in reaction to changes in lighting,
position, and even to the surfaces themselves. Any shading method that relies entirely on
values that are fixed over both time and scene conditions will be unable to create truly con-
vincing, dynamic worlds. Methods that can represent real-world lighting and the dynamic
nature of moving objects are needed.

Programmable shading is tailor-made for these kinds of applications. A very popular
method of achieving these goals is to use a simple, fast approximation of real-world lighting
written into vertex and fragment shaders. Chapter 9 will discuss in detail many aspects
of how lighting can be approximated in real-time 3D systems. The chapter will detail
more and more complex shaders, adding increasing realism to the rendered scene. The
shaders presented will use dynamic inputs, per-vertex and per-pixel math, and textures
to simulate the dynamic and complex nature of real-world lighting. Shaders provide an
excellent medium for explaining the mathematics of lighting, since in many cases, the
mathematical formulas can be directly reflected in shader code. Finally, we will discuss the
benefits and issues of computing lighting in the vertex or fragment shaders.

8.14 Chapter Summary

In this chapter we have discussed the basics of procedural shading and the most common
inputs to the procedural shading pipeline. These techniques and concepts lay the foundation
for the next two chapters, which will discuss popular shading techniques for assigning
colors to geometry (dynamic lighting), as well as a detailed discussion of the low-level
mathematical issues in computing these colors for display (rasterization). While we have
already discussed the basics of the extremely popular shading method known as texturing,
this chapter is not the last time we shall mention it. Both of the following two chapters will
discuss the ways that texturing affects other stages in the rendering pipeline.

For further reading, popular graphics texts such as Hughes et al. [82] detail other aspects
of shading, including methods used for high-end offline rendering, which are exactly the
kinds of methods that are now starting to be implemented as pixel and vertex shaders in real-
time hardware. Shader books such as Engel [40] and Pharr [120] also discuss and provide
examples of specific programmable shaders that implement high-end shading methods and
can serve as springboards for further experimentation.

@ Lighting

9.1 Introduction

Much of the way we perceive the world visually is based on the way objects in the world
react to the light around them. This is especially true when the lighting around us is changing
or the lights or objects are moving. Given these facts, it is not surprising that one of the
most common uses of programmable shading is to simulate the appearance of real-world
lighting.

The coloring methods we have discussed so far have used colors that are statically
assigned at content creation time (by the artist) or at the start of the application. These
colors do not change on a frame-to-frame basis. At best, these colors represent a snapshot
of the scene lighting at a given moment for a given configuration of objects. Even if we only
intend to model scenes where the lights and objects remain static, these static colors cannot
represent the view-dependent nature of lighting with respect to shiny or glossy surfaces.

Clearly, we need a dynamic method of rendering lighting in real time. At the highest
level, this requires two basic items: a mathematical model for computing the colors gen-
erated by lighting and a high-performance method of implementing this model. We have
already introduced the latter requirement; programmable shading pipelines were designed
specifically with geometric and color computations (such as lighting) in mind. In this chap-
ter we will greatly expand upon the basic shaders, data sources, and shader syntax that
were introduced in Chapter 8. However, we must first address the other requirement—the
mathematical model we will use to represent lighting.

The following sections will discuss the details of a basic set of methods for approxi-
mating lighting for real-time rendering, as well as examples of how these methods can be
implemented as shaders. At the end of the chapter we will introduce several more advanced
lighting techniques that take advantage of the unique abilities of programmable shaders.

327

328 Lighting

We will refer to fixed-function lighting pipelines in many places in this chapter. Fixed-
function lighting pipelines were the methods used in rendering application programming
interfaces (APIs) to represent lighting calculations prior to the availability of programmable
shaders. They are called fixed-function pipelines because the only options available to users
of these pipelines were to change the values of predefined colors and settings. No other
modifications to the lighting pipeline (and thus the lighting equation or representation)
were available. In comparison, shaders make it possible to implement the exact lighting
methods desired by the particular application (though many applications continue to use
the simple but efficient lighting models found in the fixed-function pipeline).

@.2 Basics of Light Approximation

The physical properties of light are incredibly complex. Even relatively simple scenes never
could be rendered realistically without—for lack of a better term—cheating. In a sense,
all of computer graphics is little more than cheating—finding the cheapest-to-compute
approximation for a given situation that will still result in a realistic image. Even non-real-
time, photorealistic renderings are only approximations of reality, trading off accuracy for
ease and speed of computation.

Real-time renderings are even more superficial approximations. Light in the real world
reflects, scatters, refracts, and otherwise bounces around the environment. Historically,
real-time three-dimensional (3D) lighting often modeled only direct lighting, the light that
comes along an unobstructed path from light source to surface. Worse yet, many legacy real-
time lighting systems did not support automatic shadowing. Shadowing involves computing
light-blocking effects from objects located between the object being lit and the light source.
These were ignored or loosely approximated in the name of efficiency. However, despite
these limitations, even basic lighting can have a tremendous impact on the overall impression
of a rendered 3D scene.

Lighting in real-time 3D generally involves data from at least three different sources:
light emitter properties (the way the light sources emit light), the surface configuration
(vertex position, normal vector), and the surface material (how the surface reacts to light).
We will discuss each of these sources in terms of how they affect the lighting of an object
and will then discuss how these values are passed to the shaders we will be constructing. All
of the shader concepts from Chapter 8 (vertex and fragment shading, attributes, uniforms
and input/output variables, etc.) will be pivotal in our creation of a lighting system.

For the purposes of introducing a real-time lighting equation, we will start by discussing
an approximate lighting model. Initially, we will speak in terms of lighting a sample, or a
generic point in space that may represent a fragment in a triangle or a vertex in a tessellation.
We will attempt to avoid the concepts of fragments and vertices during this initial discussion,
preferring to refer to a general point on a surface, along with a local surface normal and a
surface material. (As will be detailed later, a surface material contains all of the information
needed to determine how an object’s surface reacts to lighting.) Once we have introduced
the concepts, however, we will discuss how fragment and vertex shaders can be used to
implement this model, along with the trade-offs of implementing it in one shading unit or
another. As already mentioned, this simple lighting model does not accurately represent
the real world—there are many simplifications required for real-time lighting performance.
However, while simple, we will be applying physically based principles to our system,

9.3 Measuring Light

—
=>
<>

Figure 9.1. The basic geometry of lighting.

introducing these concepts at a very basic level. Later in the chapter we’ll discuss some
ways to improve this model to make it appear more realistic.

The geometry of our simple lighting model can be seen in Figure 9.1. We consider a
portion of a surface, with normal fi. We illuminate this with one or more lights, and indicate
the direction of a ray of light by the light direction vector 1. Note that 1 points toward the
light—this is to simply some of our calculation. Finally, we indicate the direction toward
the viewer with the view direction vector v. We will see how all of these can be used to
create a reasonable lighting approximation in later sections.

Our discussion of light sources will treat light from a light source as a collection of rays,
or in some cases simply as vectors. These rays represent infinitely narrow “shafts” of light,
or an amount of light energy per second in a given direction. This representation of light
will make it much simpler to approximate light—surface interaction. Our light rays will
often have RGB (red, green, blue) colors or scalars associated with them that represent the
intensity (and in the case of RGB values, the color) of the light in a given direction. While
this value is often described in rendering literature as brightness, this term is descriptive
rather than physically based—as we will see, the correct term is radiance.

2.3 Measuring Light

In order to understand the mathematics of lighting, it is helpful to know more about how
light is actually measured. The simplest way to appreciate how we measure light is in terms
of an idealized lightbulb and an idealized surface being lit by that bulb. To explain the
radiance of a lit surface, we need to measure the following:

¢ The amount of light generated by the bulb
* The amount of light generated by the bulb in a particular set of directions
¢ The amount of light reaching the surface from the bulb

* The amount of light reaching or leaving the surface in a particular set of directions

Each of these is measured and quantified differently.

329

330 Lighting

First, we need a way of measuring the amount of light being generated by the light-
bulb. The number most people think of with respect to lightbulbs is electrical wattage. For
example, we think of a 100-watt lightbulb as being much brighter than a 25-watt lightbulb,
and this is generally true when comparing bulbs of the same kind. The wattage in this
case is a measure of the electrical power consumed by the bulb in order to create light.
It is not a direct measure of the amount of light actually generated by the bulb. In other
words, two lightbulbs may consume the same wattage (say, 100 watts) but produce different
amounts of light—one type of bulb simply may be more efficient at converting electricity
to light. For example, a 40-watt compact fluorescent bulb usually appears far brighter than
a 40-watt incandescent bulb.

So rather than using electrical power to measure light output, we use a different form
of power: light energy per unit time. This quantity is called radiant flux. Because radiant
flux is power, the unit of radiant flux is also the watt. But to be clear, this is not the watts
of electrical power that the bulb consumes, but the watts of light produced. Radiant flux is
generally represented in equations as ®.

Light energy can be emitted from a lightbulb in all directions, but it can be useful to
measure power in a given direction or set of directions. To represent this, we use the concept
of a solid angle. This can be thought of as a cone emitting from a central point, or a localized
bundle of directions. Solid angles are measured in steradians, the value of which for a given
solid angle is simply the cross-sectional area of the cone or bundle as it passes through a
unit sphere (see Figure 9.2). A unit sphere has a total surface area of 4, so there are 4
steradians in a sphere. Our measure of light in a given direction, then, is the density of
the radiant flux per solid angle, or radiant intensity. This is measured in watts/steradian.
Radiant intensity is generally represented as /.

We are, of course, interested in the light interacting with a surface. One measure is
the radiant flux per area of the surface, or radiant flux density. If we’re considering light
arriving at a surface, we call the radiant flux density irradiance; if it’s leaving a surface,
we call it radiant exitance. All are measured in watts per meter squared. Irradiance is

Figure 9.2. Geometry of a solid angle.

9.3 Measuring Light

an important quantity because it measures not only the light power (in watts), but also the
area over which this power is distributed (in square meters). Given a fixed amount of radiant
flux, increasing the surface area over which it is distributed will decrease the irradiance
proportionally. We will see this property again later, when we discuss the irradiance from
a point light source. We represent irradiance in our equations with the term E.

Finally, we want to measure the contribution to radiant flux density from a given set
of directions (e.g., from a light), and the resulting flux density leaving in a given set of
directions (e.g., toward the viewer). The quantity used to measure this is radiance, which
is defined as radiant flux density per unit solid angle, and measured in watts per steradian
per projected area. Radiance thus takes into account how the reflected light is received and
spread directionally. We represent radiance in our equations as L.

For irradiance and radiance, we have assumed (implicitly) that the surface in question
is perpendicular to the light direction. However, the irradiance incident upon a surface is
proportional to the radiant flux incident upon the surface, divided by the surface area over
which it is distributed. If we define an infinitesimally narrow ray of light with direction 1
to have radiant flux & and cross-sectional area da (Figure 9.3), then the irradiance E
incident upon a surface whose normal fi = lis

(o}
E o« —
da

However, if fi ;éi (i.e., the surface is not perpendicular to the ray of light), then the config-
uration is as shown in Figure 9.4. The surface area intersected by the (now oblique) ray of

da

—

=>

da

Figure 9.3. A shaft of light striking a perpendicular surface.

331

332 Lighting

90-6

oa'

Figure 9.4. The same shaft of light at a glancing angle.

light is represented by §a’. From basic trigonometry and Figure 9.4, we can see that

da
sin(% —0)
da

cosf
da

l.ni

8a =

And, we can compute the irradiance E’ as follows:

E' Al
da’'

(i.ﬁ)

x d

da
o) P4

X <8a>(.n)

x ®(1+0)

So when computing irradiance and radiance, we’ll have to keep this projected area in
mind. Note that if we evaluate for the original special case fi = 1, the result is E/ = E, as
expected. Also, for radiance we can apply this projection to either area or solid angle—it is
often convenient to do the latter.

9.4 Types of Light Sources

Of the terms we’ve presented, irradiance and radiance are the most important to us.
We’ll discuss this in more detail when covering light reflection off of a surface later in
this chapter, but we’ll need to keep these quantities in mind when creating our light source
models.

The preceding quantities are radiometric; that is, they are based on physical properties.
For more detailed information, see Cohen and Wallace [24] or Pharr and Humphreys [121].
The field of photometry studies the measurement of analogous quantities that include a
physiological weighting based on the human eye’s response to different wavelengths of
light. The photometric equivalent of radiant flux is luminous flux, and is measured in
lumens. This quantity is generally listed on boxes of commercially available lightbulbs,
near the wattage rating. The equivalent of irradiance is illuminance and the equivalent of
radiance is luminance.

The unit of luminance is the nit, and this value is the closest of those we have discussed
to representing brightness. However, brightness is a perceived value and is not linear with
respect to luminance, due to the response curve of the human visual system. For details of
the relationship between brightness and luminance, see Cornsweet [26].

9.4 Types of Light Sources

The next few sections will discuss some common types of light sources that appear in real-
time 3D systems. Each section will open with a general discussion of a given light source,
followed by coverage in mathematical terms, and close with the specifics of implementation
in shader code (along with a description of the accompanying C code to feed the required
data to the shader). Initially, we will look at one light source at a time, but will later discuss
how to implement multiple simultaneous light sources.

For each type of light source, we will be computing two important quantities: the unit
vector 1 and the value L. As we mentioned above, the vector 1 is the light direction vector—it
points from the current surface sample pomt Py toward the source of the light. This can
also be seen in lighting equations as L or &; we will be using 1to distinguish it from the
radiance L.

The value L represents the radiance from the light source across all wavelengths at the
given surface location Py. In our case, we will not be tracking a full spectrum of values,
just the standard RGB colors. This is a sparse sampling of the full visible spectrum, but for
our purposes it will be sufficient. One simplification we will start with is assuming that our
light values are bounded and normalized to lie within [0, 1], where a value of 1 represents
our maximum representable value. We’ll discuss how to handle more realistic semi-infinite
values later. Finally, any color values we use are physical quantities, and so are assumed to
be linear, not SRGB.

As Pharr and Humphreys [121] point out, strictly speaking, radiance is not the cor-
rect term for the output of the infinitely small (or punctual) light sources that we will be
covering—rather, we should be using irradiance. However, much of the physically based
lighting literature uses radiance in its equations, so we will abuse notation slightly for our
discussion and note the places where this may affect our equations. However, it is good
to be aware that there are assumptions in the literature that lights have a nonzero volume,
which can have practical implications in more complex lighting models for both rendering
and our equations. For the simplified light sources we are using, we will state that L then

333

334 Lighting

Source Code

PointLight

represents the radiance reflected from a white matte surface that is perpendicular to the
light source. Or, to put it another way, L is the color produced if you were to shine the light
straight at a white wall.

The values 1 and L do not take any information about the surface orientation or material
itself into account, only the relative positions of the light source and the sample point with
respect to each other. As we’ve seen above, we’ll need to modify L based on the surface
orientation (i.e., the surface normal); this will become more relevant when we discuss
reflection models.

9.4.1 Point Lights

A point or positional light source (also known as a local light source to differentiate it from
an infinite source) is similar to a bare lightbulb, hanging in space. It illuminates equally in
all directions. A point light source is defined by its location, the point P. The light source
direction produced is

Pp —Py

j=—— "
|PL — Pyl

This is the normalized vector that is the difference from the sample position to the light
source position. It is not constant across all samples, but rather forms a vector field that
points toward Py, from all points in space. This normalization operation is one factor that
often makes point lights more computationally expensive than some other light types. While
this is not a prohibitively expensive operation to compute once per light, we must compute
the subtraction of two points and normalize the result to compute this light vector for
each lighting sample for every frame. Figure 9.5 shows the basic geometry of a point light.

We specify the location of a point light in the same space as the vertices, using a
3-vector. It is more straightforward to represent this in world space, but for certain shader
calculations it can be more convenient to represent it in view space. The position of the light

\PL@

Light rays

Figure 9.5. The basic geometry of a point light.

9.4 Types of Light Sources

can be passed down as a uniform to the shader, but note that we cannot use that position
directly as 1. We must compute the value of 1 per sample using the position of the current
sample, which we will define to be the 3-vector surfacePosition. In a vertex shader,
this would be the vertex position attribute, while in the fragment shader, it would be an
interpolated input value representing the surface position. Because 1is a linear value, when
using fragment shaders it can be computed in the vertex shader for each vertex in the trian-
gle, and interpolated for each fragment. However, because vector length is not interpolated
correctly during linear interpolation (see Chapter 6), we still need to normalize the result
in the fragment shader.
We define a standard structure in GLSL code to hold the L and 1 values:

struct lightSamplevValues {
vec3 L;
vec3 dir;

}i
And we define a function for each type of light that will return this structure:

// GLSL Code
uniform vec3 pointLightPosition;

// Later, in the code, we must compute L per sample...
// as described above, surfacePosition is passed in from a
// per-vertex attribute or a per-fragment input value
lightSampleValues computePointLightValues (in vec3 surfacePosition)
{
lightSampleValues values;
values.dir = normalize(pointLightPosition - surfacePosition) .xyz;
// we will add the computation of values.L later

return values;

A point light has a nonconstant function defining L. This nonconstant intensity function
approximates a basic physical property of light known as the inverse-square law: our ideal-
ized point light source radiates a constant amount of radiant flux @ at all times. In addition,
this light power is evenly distributed in all directions from the point source’s location. Thus,
any cone-shaped subset (i.e., a solid angle) of the light coming from the point source rep-
resents a constant fraction of this radiant flux (we will call this ®,,.). An example of this
conical subset of the sphere is shown in Figure 9.6.

Irradiance is measured as radiant flux per unit area. If we intersect the cone of light with
a plane perpendicular to the cone, the intersection forms a disc (see Figure 9.6). This disc
is the surface area illuminated by the cone of light. If we assume that this plane is at a
distance d from the light center and the radius of the resulting disc is r, then the area of the
disc is wr%. The irradiance Ey is proportional to

power Dcone
E; = x 7

area wr

335

336 Lighting

i

Figure 9.6. The inverse-square law.

However, at a distance of 2d, then the radius of the disc is 2r (see Figure 9.6). The resulting
radius is 7 (2r)2, giving an irradiance E»,4 proportional to

D cone _ Deone _ Eq

T w@r? 4nr? T 4

~

Exq

Doubling the distance divides (or attenuates) the irradiance by a factor of 4, because the
same amount of light energy is spread over four times the surface area. This is known as
the inverse-square law (or more generally as distance attenuation), and it states that for a
point source, the irradiance decreases with the square of the distance from the source. As an
example of a practical application, the inverse-square law is the reason why a candle can
illuminate a small room that is otherwise completely unlit, but will not illuminate an entire
stadium. In both cases, the candle provides the same amount of radiant flux. However, the
actual surface areas that must be illuminated in the two cases are vastly different due to
distance.

For infinitely small lights like our point light radiance is proportional to irradiance, so
the inverse-square law results in a basic L for a point light equal to

1
L:ﬁ

9.4 Types of Light Sources

where [is the base radiant intensity and
d = |PL— Py]|

which is the distance between the light position and the sample position.

While exact inverse-square law attenuation is technically correct for an infinitely small
light source, it does not always work well artistically or perceptually. For example, a real
lightbulb has an inverse-linear attenuation for objects relatively close to the light. The
approximate rule for nonpoint lights is that the attenuation is roughly inverse-linear up to
a distance away of five times the largest dimension of the light. Secondly, for distances
less than 1 unit from the light, the attenuation starts to approach infinity. This can produce
undesirable bright spots on objects. As a result, many lighting pipelines support a more
general distance attenuation function for point lights: a general quadratic. Under such a
system, the function L for a point light is

1
L=—
kc+kld+kqd2

The distance attenuation constants k¢, k;, and k, are defined per light and determine the
shape of that light’s attenuation curve. Figure 9.7 is a visual example of constant, linear,
and quadratic attenuation curves. The spheres in each row increase in distance linearly from
left to right. One common set of values that provides good results is

1

L=— 1
1 +d2 ©-D

This function has a maximum value of 1, and is somewhat constant close to the light, while
taking on the attributes of the inverse-quadratic function at distance.

One problem with both these approaches is that there is still some contribution from the
light even at very far distances. To limit the number of lights that irradiate a certain object
we would like to only consider those within a certain range r, and beyond that range have
any light’s contribution be equal to 0. Because of this, other attenuation functions are used.
One common solution is from Dietrich [34]:

d2
L = max (1—2,O>I
r

This does have an issue in that there is a discontinuity at maximum range—one solution is
to simply square the attenuation factor. This function does tend to flatten out the attenuation
term, but has the advantage that it can be computed quite efficiently using two multiplies,
a dot product, and a subtraction. However, in our case, we can use Equation 9.1, above. For
our simple examples we are not concerned with lighting at distance, and we would like to
keep closer to a physically based result.

Ideally, the distance value d should be computed in world coordinates (post-model
transform); regardless, a consistent specification of the space used is important, as there
may be scaling differences between model space, world space, and view space, which
would change the scale of the attenuation. Most importantly, model-space scaling often
differs per object, meaning the different objects whose model transforms have different

337

338 Lighting

Constant

Linear

Quadratic

Figure 9.7. Distance attenuation.

scale would be affected differently by distance attenuation. This would not look correct.
Distance attenuation must occur in a space that uses the same scale factor for all objects in
a scene. One thing to be careful of when lighting in view space is when there is any scaling
applied in the world-to-view transformation. For example, if we were to make the main
character appear like he or she was shrinking by slowly scaling up the view transformation
for a first-person camera, that would affect the computed distances between lights and
surface positions, causing the attenuation to change. If a game uses this effect, the simplest
solution is to compute attenuation in world space.

9.4 Types of Light Sources 339

We can store the light’s intensity in a single 3-vector uniform. Since the attenuation must
be computed per sample and involves the length of the Py — Py vector, we merge the L
shader code into the previous I shader code as follows:

// GLSL Code
uniform vec3 pointLightPosition;
uniform vec3 pointLightIntensity;

lightSampleValues computePointLightValues (in vec3 surfacePosition)
{

lightSamplevValues values;

vec3 lightVec = pointLightPosition - surfacePosition;

values.dir = normalize(lightVec) ;

// Compute 1 + dist squared

float distAtten = 1.0 + dot(lightvVec);

values.L = pointLightIntensity / distAtten;

return values;

Some systems compute L in the vertex shader and then pass it the fragment shader to be
interpolated (similar to what can be done for i). This is not strictly correct in most cases as
the standard attenuation is inverse-quadratic and sharply changes near the light. However,
for nearly linear attenuation functions or objects far from the light, the difference can be
quite small, so if speed is a concern, it is a possibility.

9.4.2 Spotlights
Source Code

A spotlight is like a point light source with the ability to limit its light to a cone-shaped
region of the world. The behavior is similar to a theatrical spotlight with the ability to focus °°®i9"*
its light on a specific part of the scene.

In addition to the position Py, that defined a point light source, a spotlight can be defined
by a direction vector d and two scalar cone angles 6 and ¢. These additional values define
the direction of the cone and the behavior of the light source as the sample point moves
away from the central axis of the cone. The infinite cone of light generated by the spotlight
has its apex at the light center Py, an axis d (pointing toward the base of the cone), and
a half angle of ¢. The angle 6 is used to control how sharp the transition from the bright
center spot to the edge of the cone is. If 6 is 0, then you will get a soft spotlight. If 6 is equal
to ¢, then you will get a very hard edge. For values in between, the spotlight will be at its
brightest up to an angle of 6 from the center (effectively acting like a point light), then will
smoothly transition to no output at an angle of ¢. Figure 9.8 illustrates this configuration.

The light vector is equivalent to that of a point light source:

Pp—Py

j=—_L—°V
|PL — Pyl

For a spotlight, L is based on the point light function but adds an additional term to
represent the focused, conical nature of the light emitted by a spotlight:

__ spot (i, a 0, ¢)I
1 +dist?

340 Lighting

Figure 9.8. The basic geometry of a spotlight.

where
1 if (—led) > cos®
spot (i, d,o, @) = { smoothstep(cos ¢, cos 0, . &) if cosf > (— le &) > cos ¢
0 otherwise

where smoothstep(s, f, x) is a GLSL function that performs a cubic interpolation of 3t> — 2¢3
with t = (x —s5)/(f —), clamped to the interval [0, 1]. The end result is to blend smoothly
from 1 down to 0 as (— Ie a) sweeps from cos 6 to cos ¢.

As can be seen, the spot () function is O when the sample point is outside of the cone.
It makes use of the fact that the light vector and the cone vector are normalized, causing
(—ied)tobe equal to the cosine of the angle between the vectors. We must negate 1 because
it points toward the light, while the cone direction vector d points away from the light.
Computing the cone term first can allow for performance improvements by skipping the
rest of the light calculations if the sample point is outside of the cone. In fact, some graphics
systems even check the bounding volume of an object against the light cone, avoiding any
spotlight computation on a per-sample basis if the object is entirely outside of the light
cone.

9.4 Types of Light Sources

The multiplication of the spot () term with the distance attenuation term means that the
spotlight will attenuate over distance within the cone. In this way, it acts exactly like a point
light with an added conic focus. The fact that both of these expensive attenuation terms
must be recomputed per sample makes the spotlight the most computationally expensive
type of standard light in most systems. When possible, applications attempt to minimize
the number of simultaneous spotlights (or even avoid their use altogether).

Spotlights with circular attenuation patterns are not universal. Another popular type of
spotlight (see Warn [154]) models the so-called barn door spotlights that are used in theater,
film, and television. However, because of these additional computational expenses, conical
spotlights are by far the more common form in real-time graphics systems.

As described previously, Ifora spotlight is computed as for a point light. In addition, the
computation of L is similar, adding an additional term for the spotlight angle attenuation.
The spotlight-specific attenuation requires two new uniform values per light, specifically:

* spotLightDir: A unit-length 3-vector representing the spotlight direction.

* spotLightCosOuterInner: The cosines of the half-angle of the spotlight’s
outer and inner cones.

These values and the previous formulas are then folded into the earlier shader code for
a point light, giving the following computations:

// GLSL Code

uniform vec3 spotLightPosition;

uniform vec3 spotLightIntensity;

uniform vec3 spotLightDir; // unit-length
uniform vec2 spotLightCosOuterInner;

lightSamplevValues computeSpotLightValues (in vec3 surfacePosition)
{
lightSamplevValues values;
vec3 lightVec = spotLightPosition - surfacePosition;
values.dir = normalize(lightVec) ;
// Compute 1 + dist squared
float distAtten = 1.0 + dot(lightvVvec);
float spotAtten = dot(-spotLightDir, values.dir);
spotAtten = smoothstep (spotLightOuterInner.x, spotLightOuterInner.y, spotAtten);
values.L = spotLightIntensity * spotAtten / distAtten;

return values;

9.4.3 Directional Lights
Source Code
A directional light source (also known as an infinite or distant light source) is similar to

341

the light of the sun as seen from the earth. Relative to the size of the earth, the sun seems Pirectiorattion

almost infinitely far away, meaning that the rays of light reaching the earth from the sun
are nearly parallel to one another, independent of position on the earth. Consider the source
and the light it produces as a single vector. A directional light is defined by a point at

342 Lighting

\Inﬁnitely distant)
PL @

Light rays

Figure 9.9. The basic geometry of a directional light.

infinity, Pr. The light source direction is produced by turning the point into a unit vector
(by subtracting the position of the origin and normalizing the result):

P -0

jo fL=0
P — Ol

Figure 9.9 shows the basic geometry of a directional light. Note that the light rays are the
negative (reverse) of the light direction vector 1, since 1 points from the surface to the light
source.

Dividing a value of / by a distance function to compute L for a directional light is not
practical, as our distance is infinity. Consider the sun again. Because it is so far away and the
size of the scene is small relative to that distance, the difference in attenuation for objects
in our scene is practically negligible; that is, all contribution from the light will be nearly
the same across the scene. So we will simply say that the value L for a directional light is
constant for all sample positions.

Since both L and light vector 1 are constant for a given light (and independent of the
sample point Py), directional lights are the least computationally expensive type of light
source. Neither 1 nor L needs to be recomputed for each sample, making them considerably
cheaper than either the point light or spotlight. As a result, we can pass both of these values
to the shader (fragment or vertex) as uniforms and use them directly.

// GLSL Code

uniform vec3 dirLightDirection;
uniform vec3 dirLightRadiance;

// Later, in the code, we can use these values directly...
lightSamplevalues computeDirLightValues ()
{

lightSamplevalues values;

values.dir = dirLightDirection;

values.L = dirLightRadiance;

return values;

9.5 Surface Materials and Light Interaction 343

9.4.4 Ambient Lights

Ambient light is the term used in real-time lighting as an umbrella under which all forms
of indirect lighting are grouped and approximated. Indirect lighting is light that is incident
upon a surface not via a direct ray from light to surface, but rather via some other, more
complex path. In the real world, light can be scattered by particles in the air, and light
can reflect multiple times around a scene prior to reaching a given surface. Accounting
for these multiple bounces and random scattering effects can be difficult to do in a real-
time rendering system, so many systems approximate this by using a single constant value
for ambient light. This is the least physical of all of our approximations and accounts for
some of the most important (although subtle) visual differences between the real world and
cheap renders. In particular, it makes the scene lack a certain level of variability that we
expect in reality—corners look brighter than they should, and flat surfaces look a little too
uniform. We’ll discuss some methods for calculating more realistic indirect lighting later
in the chapter.

The ambient light represents the radiance of the light from all sources that is to be scat-
tered through the scene. Often a different ambient light is set per room or area, and the engine
can interpolate between them as the player moves from space to space. Ambient light has
no direction, so there is no associated I Hence, we can’t use our 1ightSampleValues
structure and will have to separate our use of the ambient term as a special step in our
calculations. We’ll represent the light’s contribution with a single uniform:

// GLSL Code
uniform vec3 ambientLightRadiance;

9.4.5 OtherTypes of Light Sources

The light sources above are only a few of the most basic that are seen in modern lighting
pipelines, although they serve the purpose of introducing shader-based lighting quite well.
There are many other forms of lights that are used in shader-based pipelines. We will discuss
several of these at a high level and provide more detailed references in the advanced lighting
sections at the end of the chapter.

9.5 Surface Materials and Light Interaction

Source Code

Having discussed the various ways in which the light sources in our model generate light
incident upon a surface, we must complete the model by discussing how this incoming light "ontinecorpenents
is converted (or reflected) into outgoing light as seen by the viewer or camera. This section
will discuss a common real-time model of light—surface interaction.
In the presence of lighting, there is more to surface appearance than a single color.
Surfaces respond differently to light, depending upon their composition, for example, unfin-
ished wood, plastic, or metal. Gold-colored plastic, gold-stained wood, and actual gold all
respond differently to light, even if they are all the same basic color. Most real-time 3D
lighting models take these differences into account with the concept of a material.
How a material is defined depends on the needs of the system—in particular making a
trade-off between simplicity and physical accuracy. In our case, we are going to use a very
simple model, and discuss later some possibilities for improvement. Our material will have

344 Lighting

two major parts: any light the surface itself emits, and a representation of how the surface
reflects any incoming light.

To see how we will use these components, let’s consider the lighting process itself. The
general equation that describes the outgoing radiance from a surface (called the rendering
equation) is

Lo(@s) = Le(wo) + / Fl@r 00) 0 L) (f «) do; 92)
Q

This looks a bit like notation salad, but it is actually quite simple. We are trying to compute
the outgoing radiance L, from a surface in the direction w,. Part of that is any radiance
that the surface emits itself in that direction, or L.(w,). The remainder is radiance from
light that strikes the surface. Consider a tiny hemisphere €2 over the surface point. For
all directions w; in €2, we take the incoming radiance L;(w;), project it onto the surface
(via e w;), and then use the function f(w;, w,), known as the bidirectional reflection
distribution function, or BRDF, to compute the proportion reflected in direction w, (recall
that the operator o means componentwise multiplication). Adding this up gives us the total
radiance in direction w,.

The emulation of a given surface’s reflective properties is handled almost entirely by
the BRDF. As mentioned, it gives the proportion of outgoing light in the direction w, to
incoming light in direction w;. More formally, it is the ratio of the change in outgoing radi-
ance to the change in incoming irradiance, or dL,/dE;, and hence has units of steradians !,
In order for our equation to represent a physically based lighting model, the BRDF must
meet a few properties. First, the result must always be greater than 0. Second, the reflection
should be the same in both directions, or

Sfwi, wo) = fwo, ;)

This is called reciprocity. Finally, it must be energy preserving, so that the total energy
reflected can’t be greater than the total energy received. In our case, we can represent
this as

/f(wi,wo)(ﬁ-wi)dwi <1
Q

Note that this only says that the integral over a hemisphere of directions is less than or equal
to 1—for a given direction the value of the BRDF could be greater than 1. Within these
restrictions, BRDFs can be quite general in their reflective properties. However, we will be
implementing a simplified version with two parts: a diffuse term, which represents highly
scattered light, and a specular term, which represents narrowly reflected light. Even with
this simplification, we will be meeting the conditions above to make it as physically based
as possible.

The integral in Equation 9.2 is not practically solvable for a general scene. The incoming
radiance includes any lights in the scene, but realistically includes light reflected off of
other surfaces as well, and solving this for all the interreflections between surfaces can get
quite complicated. In our case, we will simplify things considerably by using our ambient
light to represent any interflections, and only consider incoming light from the idealized
light sources we have discussed (ignoring any emissive surfaces in the scene other than the

9.5 Surface Materials and Light Interaction 345

one under consideration). In this case, we end up with the following equation for light in
the view direction V:

lights
L) = L.(V)+rs(¥) oL, + Z 7f(;,9) o L; max (0, fi 1) 9.3)

1

The derivation of the final term is due to Hoffman [79]. The summation indicates that we
are adding over all lights, and L; and 1; are the incoming radiance and light direction vector
for each light at the surface point. Clamping 1 « I; to be positive acts as a self-shadowing
term—the assumption here is that we are simulating opaque surfaces. As far as the ambient
term, L, represents ambient light, and the function r, we will explain when we discuss the
special case of the reflection of ambient light below.

Given this lighting equation, we now have the parts of our surface material. The f @, %)
term, or BRDF, broken into the diffuse and specular parts, represents how the surface reflects
general light. The L,(V), or emissive, term represents the light generated by the surface.
And for our simple model, the r,(V) term represents how the surface reflects our simplified
indirect or ambient lighting. We will now discuss each in turn.

9.5.1 Diffuse

The diffuse reflection term of the BRDF treats the surface as a pure diffuse (or matte)
surface, sometimes called a Lambertian reflector. Lambertian surfaces reflect light equally
in all directions. These surfaces have the property that their outgoing radiance is indepen-
dent of both the direction of any incoming radiance and the view direction. Hence, the
corresponding BRDF will be constant.

When a surface receives light, a portion of the light energy, dependent on wavelength,
will be reflected, and a portion will be absorbed. We represent this by assigning a diffuse
color My to the surface. This will be modulated, or multiplied componentwise, with the
irradiance on the surface to compute the total amount of radiant exitance. However, what
we want is outgoing radiance. Since the surface reflects equally in all directions, we only
need to divide by the projected solid angle of a hemisphere, or 7. Our final BRDF is

.~ My
Jav,) = —
T

Substituting this into the nonemissive part of our lighting equation and simplifying, we end
up with
L,(¥) =MyoL;max (0,n. 1;)

which is the base formula for Lambertian reflectance. Figure 9.10 provides a visual
example of a sphere lit by a single light source that involves only diffuse lighting.

One thing to note is that the 1/7 term in our BRDF has been canceled by the 7 term
in our simple lighting equation. This is common when using physically weighted BRDFs
with infinitely small light sources. Whenever you use such a BRDF with punctual lights,
you must be sure that you haven’t lost or added a 7 term somewhere. To keep it a little
clearer, it can be helpful in formulas to continue to multiply radiance by 7, and keep the
7 term in the denominator of the BRDF, but be sure to remove them for efficiency’s sake
when writing code.

346 Lighting

Figure 9.10. Sphere lit by diffuse light.

The shader code to compute the diffuse component is as follows. We will
store the diffuse color of an object’s material in the 4-vector shader uniform value
materialDiffuseColor. The diffuse material color is a 4-vector because it includes
the alpha component of the surface as a whole. Note that adding the suffix .rgb to the
end of a 4-vector creates a 3-vector out of the red, green, and blue components of the
4-vector. We separate out the BRDF calculation both to make it easier to replace if we wish
to and because we’ll be using it in the combined shader below. We also clamp the result
of e ii to the interval [0, 1] to meet our self-shading criteria, and to avoid any issues with
floating-point precision.

We assume that the surface normal vector at the sample point, n, is passed into the
function. This value may be either a per-vertex attribute in the vertex shader, an interpolated
input value in the fragment shader, or perhaps even computed in either shader. The source
of the normal is unimportant to this calculation.

// GLSL Code
uniform vec4d materialDiffuseColor;

// surfaceNormal is assumed to be unit-length
vec3 computeDiffuseBRDF (in vec3 surfaceNormal,
in vec3 lightDir,
in vec3 viewDir)

9.5 Surface Materials and Light Interaction 347

{

return materialDiffuseColor.rgb;
}
vec3 computeDiffuseComponent (in lightSampleValues light,
in vec3 surfaceNormal,
in vec3 viewDir)

return light.L * computeDiffuseBRDF (surfaceNormal, light.dir, viewDir)
* clamp (dot (surfaceNormal, light.dir), 0.0, 1.0);

9.5.2 Specular

A perfectly smooth mirror reflects all of the light from a given direction 1out along a single
direction, the reflection direction ¥. While few surfaces approach completely mirrorlike
behavior, most surfaces have at least some mirrorlike component to their lighting behavior.
As a surface becomes rougher (at a microscopic scale), it no longer reflects all light from 1
out along a single direction F, but rather in a distribution of directions centered about . This
tight (but smoothly attenuating) distribution around t is often called a specular highlight
and is often seen in the real world. A classic example is the bright white “highlight” reflec-
tions seen on smooth, rounded plastic objects. The specular component of real-time lighting
is an entirely empirical approximation of this reflection distribution, specifically designed
to generate these highlights.

Because specular reflection represents mirrorlike behavior, the intensity of the term
is dependent on the relative directions of the light (i), the surface normal (), and the
viewer (V). Prior to discussing the specular term itself, we must introduce the concept of
the light reflection vector £. Computing the reflection of a light vector 1 about a plane
normal i involves negating the component of 1 that is perpendicular to fi. We do this by
representing 1 as the weighted sum of fi and a unit vector p that is perpendicular to 1 (but
in the plane defined by fi and 1) as follows and as depicted in Figure 9.11:

1=0A+1,p

The reflection of 1 about # is then

=>

Figure 9.11. The relationship between the surface normal, light direction, and reflection
vector.

348 Lighting

We know that the component of 1 in the direction of fi (/) is the projection of onto A, or

So, the reflection vector I equals

t=1ln—1p

= (1« f)h — w,p
=d.0)h—A—d.0)h)
=(l.)h—1+d.0)h
=2(0.0)A—1

Computing the view vector involves having access to the camera location, so we can
compute the normalized vector from the current sample location to the camera center. In
an earlier section, view (or camera) space was mentioned as a common space in which
we could compute our lighting. If we assume that the surface sample location is in view
space, this simplifies the process, because the center of the camera is the origin of view
space. Thus, the view vector is then the origin minus the surface sample location, that is, the
zero vector minus the sample location. Thus, in view space, the view vector is simply the
negative of the sample position treated as a vector and normalized. That said, if we already
have the position in world space (e.g., if we are calculating distance for point lights), it may
be more efficient to pass in the eye position in world space as a uniform and subtract the
sample position in world space from that.

We wish to create a distribution that reaches its maximum when the view vector V is
equal to T, that is, when the viewer is looking directly at the reflection of the light vector.
The standard distribution that uses the reflection vector in this way is known as the Phong
distribution. It falls off toward O rapidly as the angle between the two vectors increases,
with a “shininess” control that adjusts how rapidly it attenuates. The term is based on the
following formula:

(Fe V)™ = (cosB)"

where 6 is the angle between t and V. The shininess factor mg controls the size of the
highlight; a smaller value of mg leads to a larger, more diffuse highlight, which makes the
surface appear more dull and matte, whereas a larger value of mg leads to a smaller, more
intense highlight, which makes the surface appear shiny. This shininess factor is considered
a property of the surface material and represents how smooth the surface appears.

One issue with the Phong distribution is that it does not work well on flat surfaces,
for example, a ground surface with a light in the distance. The specular spot produced

9.5 Surface Materials and Light Interaction 349

will be circular, when we’d expect an elliptical result. Jim Blinn’s modification, known
as the Blinn—Phong distribution, is much better at reproducing this effect. Rather than
computing F directly, this method uses what is known as a halfway vector. The halfway
vector is the vector that is the normalized sum of 1 and ¥:

1+9

fo ot
1+ v|

The resulting vector bisects the angle between 1 and ¥. This halfway vector is equivalent
to the surface normal i that would generate t such that ¥ = V. In other words, given fixed
light and view directions, h is the surface normal that would produce the maximum specular
intensity. So, the highlight is brightest when i = h. Figure 9.12 is a visual representation
of the configuration, including the surface orientation of maximum specular reflection. The
resulting distribution is

(fi «)"

We have substituted m,, for mg, to indicate that a slightly different exponent is needed to
get similar results between the Phong and Blinn—Phong distributions.
Assuming the Blinn—Phong distribution, a potential BRDF for specular lighting is

fd,9) = My(h«v)"

Like the diffuse term, the specular term includes a specular color defined on the mate-
rial (M;), which allows the highlights to be tinted a given color. Plastic and clear-coated
surfaces (such as those covered with clear varnish), whatever their diffuse color, tend to
have highlights that match the incoming light’s color, while metallic surfaces tend to have
highlights that match the diffuse color, modulated with the light’s color. For a more detailed
discussion of this and several other (more advanced) specular reflection methods, see Pharr
and Humphreys [121] or Akenine-Moller et al. [1]. We will also have a general overview
of these at the end of the chapter.

.Y

<>

Surface orientation resulting
in maximum specular
reflection (defined by h)

Figure 9.12. The specular halfway vector.

350 Lighting

There is one problem with our equation above. Recall that we want a BRDF to be
energy preserving—that the total weighting of all incoming irradiance must be no greater
than 1. However, the Blinn—Phong distribution is not energy preserving—as [52] shows, its
maximum reflectance is

827"/ 4 my)

(M +2)(me +4)
We would need to divide by that factor in order to normalize our reflectance to be less than
or equal to 1. A reasonable approximation to this normalization factor, presented by [1], is
to multiply by (my + 8)/(87). Substituting and canceling terms, this produces a BRDF of

my + 8

£09) = M (i « by
8
Our final specular reflection term is then
8 . .
L, = ma8+ MsoL; (ﬁ . h)mo‘ max (0, ne 1)

Note that the standard Phong or Blinn—Phong lighting equations would not have the
max (0, i .ii) term. In the traditional form, we would have to check whether 1 « ii > 0,
and not generate specular lighting otherwise (simply clamping the specular term to be
greater than 0 could allow objects whose normals point away from the light to generate
highlights, which is not correct). However, treating in the fashion that we do both removes
an unnecessary conditional and allows us to incorporate it as part of a general BRDF.

In our pipeline, we will store the specular color of an object’s material in the first three
elements of the 4-vector shader uniform value materialSpecularColorExp. Rather
than perform any normalization in the shader, we will store the color as the preweighted
value m"T%MS. The specular exponent material property will be stored in the a value. The
end result can be seen in Figure 9.13.

Assuming we have a surfacePosition in camera space, the shader code to compute
the specular component is as follows:

// GLSL Code
uniform vec4 materialSpecularColorExp;

vec3 computeSpecularBRDF (in vec3 surfaceNormal,
in vec3 lightDir,
in vec3 viewDir)

vec3 halfVector = normalize(viewDir + light.dir);
float nDotH = clamp (dot (surfaceNormal, halfVector), 0.0, 1.0);
return materialSpecularColorExp.rgb

* pow (nDotH, materialSpecularColorExp.a) ;

}

vec3 computeSpecularComponent (in lightSampleValues light,
in vec3 surfaceNormal,
in vec3 viewDir)

return light.L * computeSpecularBRDF (surfaceNormal, viewDir, light)
* clamp (dot (surfaceNormal, light.dir), 0.0, 1.0);

9.5 Surface Materials and Light Interaction 351

Figure 9.13. Sphere lit by specular light.

9.5.3 Emission
Emission, or emissive light, is the radiance produced by the surface itself, in the absence
of any light sources. Put simply, it is the color and intensity with which the object “glows.”
Because this is purely a surface-based property, only surface materials (not lights) contain
emissive colors. We will represent the emissive value of a material as a color M,. As
we mentioned, one approximation that is made in real-time systems is the (sometimes
confusing) fact that this “emitted” light does not illuminate the surfaces of any other objects.
In fact, another common (and perhaps more descriptive) term used for emission is self-
illumination. The fact that emissive objects do not illuminate one another avoids the need
for the graphics systems to take other objects into account when computing the light at a
given point.

We will store the emissive color M, in the 3-vector shader uniform value
materialEmissiveColor.

954 Ambient

As mentioned in Section 9.4, we treat the basic ambient light source slightly differently
from other light sources because it has no inherent direction. Hence, we introduced the
ambient term r,(V) o L, in Equation 9.3. Here L, represents the radiance contribution from

352 Lighting

Figure 9.14. Sphere lit by ambient light.

our ambient light, and r, is a reflection function dependent on only the view direction
(again, because we have no corresponding D). In practice, r,(V) is commonly set to be a
constant, the ambient color M,. Most often M, is equal to the diffuse color M;—another
possibility recommended by [25] is to use a weighted blend of both diffuse and specular
colors.

Since M., M,, and L, are all constant, it would be most efficient to store them in a
single uniform. However, as we’ll see later, for more advanced systems the ambi-
ent light value is not constant, so to be more general, we will keep them sep-
arate. We will store the ambient color of an object’s material in the 3-vector
shader uniform value materialAmbientColor, and the ambient light’s value in
ambientLightRadiance. Figure 9.14 provides a visual example of a sphere lit purely
by ambient light.

The shader code to compute the ambient component is as follows:

// GLSL Code
uniform vec3 materialAmbientColor;
uniform vec3 ambientLightRadiance;

vec3 computeAmbientComponent ()
{

return ambientLightRadiance * materialAmbientColor;
}

9.5 Surface Materials and Light Interaction

9.5.5 Combined Lighting Equation

Having covered materials, lighting components, and light sources, we now have almost
enough information to evaluate our full lighting model for a given light at a given point.
The one piece remaining is to create a combined BRDF for diffuse and specular lighting.
The obvious approach is to simply add their BRDFs together:

8 .
Mo 8 & By,
8

o My
fAv)=—+
T
The problem is that while the diffuse and specular terms are normalized, the total is not,
and so again we're potentially adding energy into our system. The solution is to do a
weighted sum:

8 . .
Mo 8 o hymen,

A A M,
J(%)) =kd7”’ +ky

where kg+k; < 1. This gives us an energy-preserving BRDF. In practice,
kg =1—ks, and both can be multiplied into materialDiffuseColor and
materialSpecularColor, respectively. Our final lighting equation is then

Cy=M,+M,0L,
lights

+5 {((1 kM) + e S

8

(o h)™ (kM) | o L; max (0,1 1) 9.4)
Ay = Mapha
where the results are

1. Cy, the computed, lit RGB color of the sample

2. Ay, the alpha component of the RGBA color of the sample

The shader code to compute this for a single light, based upon the shader functions
already defined previously, is as follows:

// GLSL Code

vec3 computelLitColor (in lightSamplevValues light,
in vecd4d surfaceNormal,
in vec3 viewDir)

vec3 brdf = computeDiffuseBRDF (surfaceNormal, light.dir, viewDir)
+ computeSpecularBRDF (surfaceNormal, light.dir, viewDir);
return light.L * brdf * clamp(dot (surfaceNormal, light.dir), 0.0, 1.0);
}

/7

uniform vec3 materialEmissiveColor;
uniform vec4 materialDiffuseColor;

353

354

Lighting

Source Code
MultipleLights

vecd finalColor;

finalColor.rgb = materialEmissiveColor

computeAmbientComponent ()

computeLitColor (light, normalize (normal),
normalize(viewDir)) ;

finalColor.a = materialDiffuseColor.a;

+
+

For a visual example of all of these components combined, see the lit sphere in
Figure 9.15.

Most interesting scenes will contain more than a single light source. In order to imple-
ment this equation in shader code, we need to compute L and 1 per active light. The shader
code for computing these values requires source data for each light. In addition, the type
of data required differs by light type. The former issue can be solved by passing arrays of
uniforms for each value required by a light type. The elements of the arrays represent the
values for each light, indexed by a loop variable. For example, if we assume that all of our
lights are directional, the code to compute the lighting for up to eight lights, again using
some of the previous uniforms and routines, might be as follows:

// GLSL Code
uniform int dirLightCount;
uniform vec3 dirLightDirection[8];
uniform vec3 dirLightRadiance[8];
lightSamplevValues computeDirLightValues(in int i)
{

lightSamplevValues values;

values.dir = dirLightDirection[i];

values.L = dirLightRadiancel[i];

return values;

int 1i;
vecd finalColor;
vec3 normalizedNormal = normalize (normal) ;
vec3 normalizedViewDir = normalize(viewDir) ;
finalColor.rgb = materialEmissiveColor
+ computeAmbientComponent () ;
finalColor.a = materialDiffuseColor.a;
for (1 = 0; i < dirLightCount; i++)
{
lightSamplevValues light = computeDirLightValues (i) ;
finalColor.rgb += computeLitColor (lightValues, normalizedNormal,
normalizedviewDir) ;

The code becomes even more complex when we must consider different types of light
sources. One approach to this is to use independent arrays for each type of light and iterate
over each array independently. The complexity of these approaches and the number of
uniforms that must be sent to the shader can be prohibitive for some systems. As a result, it
is common for rendering engines to either generate specific shaders for the lighting cases

9.6 Lighting and Shading 355

Figure 9.15. Sphere lit by a combination of ambient, diffuse, and specular lighting.

they know they need, or generate custom shader source code in the engine itself, compiling
these shaders at runtime as they are required. An alternative approach is to use deferred
lighting, which we’ll discuss below.

Clearly, many different values and components must come together to light even a single
sample. This fact can make lighting complicated and difficult to use at first. A completely
black rendered image or a flat-colored resulting object can be the result of many possible
errors. However, an understanding of the lighting pipeline can make it much easier to
determine which features to disable or change in order to debug lighting issues.

9.6 Lighting and Shading

Thus far, our lighting discussion has focused on computing color at a generic point on
a surface, given a location, surface normal, view vector, and surface material. We have
specifically avoided specifying whether these code snippets in our shader code examples
are to be vertex or fragment shaders. Another aspect of lighting that is just as important
as the basic lighting equation is the question of when and how to evaluate that equation to
completely light a surface. Furthermore, if we do not choose to evaluate the full lighting
equation at every sample point on the surface, how do we interpolate or reuse the explicitly
lit sample points to compute reasonable colors for these other samples?

Ultimately, a triangle in view is drawn to the screen by coloring the screen pixels covered
by that triangle (as will be discussed in more detail in Chapter 10). Any lighting system

356 Lighting

must be teamed with a shading method that can quickly compute colors for each and every
pixel covered by the triangle. These shading methods determine when to invoke the shader
to compute the lighting and when to simply reuse or interpolate already computed lighting
results from other samples. In most cases, this is a performance versus visual accuracy
trade-off, since it is normally more expensive computationally to evaluate the shader than
it is to reuse or interpolate already computed lighting results.

The sheer number of pixels that must be drawn per frame requires that low- to mid-
end graphics systems forego computing more expensive lighting equations for each pixel
in favor of another method. For example, a sphere that covers 50 percent of a mid-sized
1,280 x 1,024 pixel screen will require the shading system to compute colors for over a
half-million pixels, regardless of the tessellation. Next, we will discuss some of the more
popular methods. Some of these methods will be familiar, as they are simply the shading
methods discussed in Chapter 8, using results of the lighting equation as source colors.

9.6.1 Flat-Shaded Lighting

Historically, the simplest shading method applied to lighting was per-triangle, flat shading.
This method involved evaluating the lighting equation once per triangle and using the
resulting color as the constant triangle color. This color is assigned to every pixel covered
by the triangle. In older, fixed-function systems, this was the highest-performance lighting—
shading combination, owing to two facts: the more expensive lighting equation needed only
to be evaluated once per triangle, and a single color could be used for all pixels in the triangle.
Figure 9.16 shows an example of a sphere lit and shaded using per-triangle lighting and flat
shading.

To evaluate the lighting equation for a triangle, we need a sample location and sur-
face normal. The surface normal used is generally the triangle face normal (discussed in
Chapter 2), as it accurately represents the plane of the triangle. However, the issue of
sample position is more problematic. No single point can accurately represent the light-
ing across an entire triangle (except in special cases); for example, in the presence of
a point light, different points on the triangle should be attenuated differently, accord-
ing to their distance from the light. While the centroid of the triangle is a reasonable
choice, the fact that it must be computed specifically for lighting makes it less desir-
able. For reasons of efficiency (and often to match with the graphics system), the most
common sample point for flat shading is one of the triangle vertices, as the vertices
already exist in the desired space. This can lead to artifacts, since a triangle’s vertices
are (by definition) at the edge of the area of the triangle. Flat-shaded lighting does not
match quite as well with modern programmable shading pipelines, and the simplicity of
the resulting lighting has meant that it is of somewhat limited interest in modern rendering
systems.

9.6.2 Per-Vertex Lighting

Flat-shaded lighting suffers from the basic flaws and limitations of flat shading itself;
the faceted appearance of the resulting geometry tends to highlight rather than hide the
piecewise triangular approximation. In the presence of specular lighting, the tessellation is
even more pronounced, causing entire triangles to be lit with bright highlights. With moving
lights or geometry, this can cause gemstonelike flashing of the facets. Unless the goal is

9.6 Lighting and Shading 357

Figure 9.16. Sphere lit and shaded by per-triangle lighting and flat shading.

an old-school gaming effect, for smooth surfaces such as the sphere in Figure 9.16, this
faceting is often unacceptable.

The next logical step is to use per-vertex lighting with Gouraud interpolation of the result-
ing color values. The lighting equation is evaluated in the vertex shader, and the resulting
color is passed as an interpolated input color to the simple fragment shader. The fragment
shader can be extremely simple, doing nothing more than assigning the interpolated input
color as the final fragment color.

Generating a single lit color that is shared by all colocated vertices leads to smooth
lighting across surface boundaries. Even if colocated vertices are not shared (i.e., each
triangle has its own copy of its three vertices), simply setting the normals to be the same
in all copies of a vertex will cause all copies to be lit the same way. Figure 9.17 shows an
example of a sphere lit and shaded using per-vertex lighting.

Per-vertex lighting only requires evaluating the lighting equation once per vertex. In
the presence of well-optimized vertex sharing (where there are more triangles than ver-
tices), per-vertex lighting can actually require fewer lighting equation evaluations than does
true per-triangle flat shading. The interpolation method used to compute the per-fragment
input values (Gouraud) is more expensive computationally than the trivial one used for
flat shading, since it must interpolate between the three vertex colors on a per-fragment
basis. However, modern shading hardware is heavily tuned for this form of fragment input
interpolation, so the resulting performance of per-vertex lighting is generally close to peak.

358 Lighting

Figure 9.17. Sphere lit and shaded by per-vertex lighting and Gouraud shading.

Gouraud-shaded lighting is a vertex-centric method—the surface positions and normals
are used only at the vertices, with the triangles serving only as areas for interpolation. This
shift to vertices as localized surface representations lends focus to the fact that we will need
smooth surface normals at each vertex. The next section will discuss several methods for
generating these vertex normals.

9.6.2.1 Generating Vertex Normals

In order to generate smooth lighting that represents a surface at each vertex, we need to
generate a single normal that represents the surface at each vertex, not at each triangle.
There are several common methods used to generate these per-vertex surface normals at
content creation time or at load time, depending upon the source of the geometry data.

When possible, the best way to generate smooth normals during the creation of a tessel-
lation is to use analytically computed normals based on the surface being approximated by
triangles. For example, if the set of triangles represent a sphere centered at the origin, then
for any vertex at location Py, the surface normal is simply

. Py—0
n=————
I[Py — Ol

This is the vertex position, treated as a vector (thus the subtraction of the origin) and
normalized. Analytical normals can create very realistic impressions of the original surface,

as the surface normals are pivotal to the overall lighting impression. Examples of surfaces

9.6 Lighting and Shading 359

for which analytical normals are available include implicit surfaces and parametric surface
representations, which generally include analytically defined normal vectors at every point
in their domain.

In the more common case, the mesh of triangles exists by itself, with no available
method of computing exact surface normals for the surface being approximated. In this
case, the normals must be generated from the triangles themselves. While this is unlikely
to produce optimal results in all cases, simple methods can generate normals that tend to
create the impression of a smooth surface and remove the appearance of faceting.

One of the most popular algorithms for generating normals from triangles takes the mean
of all of the face normals for the triangles that use the given vertex. Figure 9.18 demonstrates
a two-dimensional (2D) example of averaging triangle normal vectors. The algorithm may
be pseudocoded as follows:

for each vertex V
{
vector V.N = (0,0,0);
for each triangle T that uses V
{
vector F
V.N += F;
}
V.N.Normalize() ;

= TriangleNormal (T) ;

Basically, the algorithm sums the normals of all of the faces that are incident upon the
current vertex and then renormalizes the resulting summed vector. Since this algorithm
is (in a sense) a mean-based algorithm, it can be affected by tessellation. Triangles are
not weighted by area or other such factors, meaning that the face normal of each triangle
incident upon the vertex has an equal “vote” in the makeup of the final vertex normal. While
the method is far from perfect, any vertex normal generated from triangles will by its nature
be an approximation. In most cases, the averaging algorithm generates convincing normals.

\ [

Triangles (side view)

True triangle normals T Averaged vertex normals

Figure 9.18. Averaging triangle normal vectors.

360 Lighting

Source Code
[Derno |

PerFragment

Note that in cases where there is no fast (i.e., constant-time) method of retrieving the set
of triangles that use a given vertex (e.g., if only the OpenGL/Direct3D-style index lists are
available), the algorithm may be turned “inside out” as follows:

for each vertex V
V.N = (0,0,0);
for each triangle T

// V1, V2, V3 are the vertices used by the triangle
vector F = TriangleNormal (T) ;

V1.N += F;
V2.N += F;
V3.N += F;

for each vertex V

V.N.Normalize() ;

Basically, this version of the algorithm uses the vertex normals as accumulators, looping
over the triangles, adding each triangle’s face normal to the vertex normals of the three
vertices in that triangle. Finally, having accumulated the input from all triangles, the algo-
rithm goes back and normalizes each final vertex normal. Both algorithms will result in
the same vertex normals, but each works well with different vertex/triangle data structure
organizations.

9.6.2.2 Sharp Edges

As with Gouraud shading based on fixed colors, Gouraud-shaded lighting with vertices
shared between triangles generates smooth triangle boundaries by default. In order to rep-
resent a sharp edge, vertices along a physical crease in the geometry must be duplicated so
that the vertices can represent the surface normals on either side of the crease. By having
different surface normals in copies of colocated vertices, the triangles on either side of an
edge can be lit according to the correct local surface orientation. For example, at each vertex
of a cube, there will be three vertices, each one with a normal of a different face orientation,
as we see in Figure 9.19.

9.6.3 Per-Fragment Lighting

There are significant limitations to per-vertex lighting. Specifically, the fact that the lighting
equation is evaluated only at the vertices can lead to artifacts. Even a cursory evaluation of the
lighting equation shows that it is highly nonlinear. However, Gouraud shading interpolates
linearly across polygons. Any nonlinearities in the lighting across the interior of the triangle
will be lost completely. These artifacts are not as noticeable with diffuse and ambient lighting
as they are with specular lighting, because diffuse and ambient lighting are closer to linear
functions than is specular lighting (owing at least partially to the nonlinearity of the specular
exponent term and to the rapid changes in the specular halfway vector h with changes in
viewer location).

9.6 Lighting and Shading 361

Figure 9.19. One corner of a faceted cube.

For example, let us examine the specular lighting term for the surface shown in
Figure 9.20. We draw the 2D case, in which the triangle is represented by a line seg-
ment. In this situation, the vertex normals all point outward from the center of the triangle,
meaning that the triangle is representing a somewhat curved (domed) surface. The point
light source and the viewer are located at the same position in space, meaning that the view
vector Vv, the light vector 1, and the resulting halfway vector h will all be equal for all points
in space. The light and viewer are directly above the center of the triangle. Because of this,
the specular components computed at the two vertices will be quite dark (note the specular
halfway vectors shown in Figure 9.20 are almost perpendicular to the normals at the ver-
tices). Linearly interpolating between these two dark specular vertex colors will result in a
polygon that is relatively dark.

However, if we look at the geometry that is being approximated by these normals
(a domed surface as in Figure 9.20), we can see that in this configuration the interpo-
lated normal at the center of the triangle would point straight up at the viewer and light. If
we were to evaluate the lighting equation at a point near the center of the triangle in this case,
we would find an extremely bright specular highlight there. The specular lighting across
the surface of this triangle is highly nonlinear, and the maximum is internal to the triangle.
Even more problematic is the case in which the surface is moving over time. In rendered
images where the highlight happens to line up with a vertex, there will be a bright, linearly
interpolated highlight at the vertex. However, as the surface moves so that the highlight
falls between vertices, the highlight will disappear completely. This is a very fundamental

362 Lighting

Viewer A @ Point light

Approximated
(smooth) surface

rimele miangt: I
of single triangle |
|
I
l
Correct lighting of _‘ _
smooth surface

Figure 9.20. Per-vertex lighting can miss specular highlights.

problem with approximating a complex function with a piecewise linear representation. The
accuracy of the result is dependent upon the number of linear segments used to approximate
the function. In our case, this is equivalent to the density of the tessellation.

If we want to increase the accuracy of lighting on a general vertex-lit surface, we must
subdivide the surface to increase the density of vertices (and thus lighting samples). How-
ever, this is an expensive process, and we may not know a priori which sections of the
surface will require significant tessellation. Dependent upon the particular view at runtime,
almost any tessellation may be either overly dense or too coarse. In order to create a more
general, high-quality lighting method, we must find another way around this problem.

The solution is to evaluate the lighting equation once for each fragment covered by the
triangle. This is called per-fragment lighting, or traditionally Phong shading (named after
its inventor, Bui Tuong Phong [122]). The difference between per-vertex and per-fragment
lighting may be seen in Figures 9.20 and 9.21. For each sample across the surface of a
triangle, the vertex normals, positions, reflection, and view vectors are interpolated, and
the interpolated values are used to evaluate the lighting equation. However, since triangles
tend to cover more than 1-3 pixels, such a lighting method will result in far more lighting
computations per triangle than do per-triangle or per-vertex methods.

Per-fragment lighting changes the balance of the work to be done in the vertex and
fragment shaders. Instead of computing the lighting in the vertex shader, per-fragment
lighting uses the vertex shader only to set up the source values (surface position, surface
normal, view vector) and pass them down as input values to the fragment shader. As always,
the fragment shader inputs are interpolated using Gouraud interpolation and passed to each
invocation of the fragment shaders. These interpolated values now represent smoothly

9.7 Textures and Lighting 363
Viewer A @Point light

[N
I=n

A

h=
‘ Interpolated
A

A
V=

vertex normal

=

l/‘i- ~1

Phong shading of
single triangle _

I

I

I

I

|

Correct lighting of _
smooth surface

Figure 9.21. Per-fragment lighting of the same configuration.

interpolated position and normal vectors for the surface being represented. It is these values
that are used as sources to the lighting computations, evaluated in the fragment shader.

There are several issues that make per-fragment lighting more computationally expensive
than per-vertex lighting. The first of these is the actual normal vector interpolation, since as
we saw in Chapter 6, basic barycentric interpolation of the three vertex normals will almost
never result in a normalized vector. As a result, the interpolated normal vector will have to
be renormalized per fragment, which is much more frequently than per vertex. The same
is true of the view vector and the light vector.

Furthermore, the full lighting equation must be evaluated per sample once the inter-
polated normal is computed and renormalized. Not only is this operation expensive, but
also it is not a fixed amount of computation. As we saw above, in a general engine, the
complexity of the lighting equation is dependent on the number of lights and numerous
graphics engine settings. This resulted in per-fragment shading being rather unpopular in
game-centric consumer 3D hardware prior to the advent of pixel and vertex shaders. How-
ever, modern devices have become fast and flexible enough for per-fragment lighting to
become the de facto standard for lighting quality.

9.7 Textures and Lighting

Source Code

Of the methods we have discussed for coloring geometry, the two most powerful are textur-

ing and dynamic lighting. However, they each have drawbacks when used by themselves. *oerestarisneing
Texturing is normally a static method and looks flat and painted when used by itself in

a dynamic scene. Lighting can generate very dynamic effects, but provides only gradual

changes in detail. It is only natural that graphics systems would want to use the results of

both techniques together on a single surface.

364 Lighting

(a) (b) ()

Figure 9.22. Textures and lighting combined via modulation: (a) sphere with pure lighting,
(b) sphere with pure texturing, and (c) same sphere with lighting and texturing combined.

9.7.1 Basic Modulation

The simplest methods of merging these two techniques involve simply viewing each of
the two methods as generating a color per sample and merging them. With texturing, this
is done directly via texture sampling; with lighting, it is done by evaluating the lighting
equation. These two colors must be combined in a way that makes visual sense. The most
common way of combining textures and lighting results is via multiplication, or modulation.
In modulate lighting-texture combination, the texture color at the given sample Cr and the
final lit or interpolated color are combined by per-component multiplication. This is similar
to multiplying our BRDF by the incoming irradiance. If we set our material colors to white,
our texture can act as a global material color. We’ll discuss better ways to handle this in
Section 9.7.3.

Assuming that our lighting values range between O and 1, the visual effect here is that
the lit colors darken the texture (or vice versa). As a result, texture images designed to be
used with modulate mode-texture combination are normally painted as if they were fully
lit. The colors, representing the lighting in the scene, darken these fully lit textures to make
them look more realistic in the given environment (Figure 9.22). The result of modulation
can be very convincing, even though the lighting is rather simple and the textures are static
paintings. In the presence of moving or otherwise animated lights, the result can be even
more immersive, as the human perceptual system is very reliant upon lighting cues in the
real world. This is, in a sense, using the texture as a factor in some or all of the surface
material colors.

Assuming for the moment that the lit color is computed and stored in 1itColor, either
by computation in the fragment shader or passed down as an input component, a simple
textured, lit fragment shader would be as follows:

// GLSL - fragment shader
uniform sampler2D texture;
in vec2 texCoords;
out vecd fragColor;

void main()
{
// lit color is in vec3 litColor

9.7 Textures and Lighting

vec3 litColor;
/...

// Sample the texture represented by "texture"
// at the location "texCoords"
fragColor.rgb = 1litColor * texture2D (texture, texCoords);

Until the advent of programmable shaders, modulation was the most popular and often
the only method of combining lighting and textures.

9.7.2 Specular Lighting and Textures

As mentioned, if lit vertex colors are clamped to the range [0, 1], the full lighting
equation (9.4) combined with the texture via multiplication can only darken the texture.
While this looks correct for diffuse or matte objects, for shiny objects with bright specular
highlights, it can look very dull. It is often useful to have the specular highlights “wash out”
the texture. We cannot simply add the full set of lighting because the texture will almost
always wash out and can never get darker. To be able to see the full range of effects with our
limited light values requires an approximation where the diffuse colors darken the texture
while the specular components of color add highlights. This is only possible if we split our
general lighting calculation into separate diffuse and specular components.

Because the specular term is added after the texture is multiplied, this mode (sometimes
called modulate with late add) causes the diffuse terms to attenuate the texture color, while
the specular terms wash out the result. The differences between the separate and combined
specular modes can be very striking, as Figure 9.23 makes clear.

The shader code to compute this involves computing the emissive, ambient, and dif-
fuse lighting components into one color (which we’ll call diffuseLighting) and

Figure 9.23. Combining textures and lighting: (a) specular vertex color added to diffuse
vertex color, then modulated with the texture and (b) diffuse vertex color modulated with
the texture, then specular vertex color added.

365

366 Lighting

the specular component into another (which we’ll call specularLighting)
computed these independently, we merge them as follows:

// GLSL - fragment shader
uniform sampler2D texture;
in vec2 texCoords;
out vecd fragColor;

void main()

{
vec3 diffuselLighting;
vec3 specularLighting;

/7

// Sample the texture represented by "texture"

// at the location "texCoords"

fragColor.rgb = diffuselLighting * texture2D (texture, texCoords)
+ specularLighting;

. Having

In this case, the texture is providing a scaling factor for only the emissive, ambient, and
diffuse material color. While not physically correct, the effect is simple to add to an existing

lighting and texture shader and can make for a much more dynamic result.

9.7.3 Textures as Materials

The next step in using textures and lighting together involves using multiple textures on
a single surface. As shown in the previous section, a texture can be used to modulate one
or more material colors on a surface. In fact, textures also can be used to replace one or
more surface material components. Common surface material colors to be replaced with

textures are:

e Material diffuse color. Often called a diffuse map, this is extremely similar to

basic modulation, as shown above. Frequently, the diffuse map is also applied as
the ambient material color.

Material specular color. This is frequently replaced with either an RGB texture (a
specular map) or a single-channel grayscale texture, which is called a gloss map.
The gloss map is a powerful technique: Wherever it is close to full brightness, the
object appears glossy, because specular highlights can be seen at those points on
the surface. Wherever it is close to black, the specular highlights do not appear. As
a result, it can be used to mark shiny or worn sections of an object, independent of
the color. Frequently, gloss maps are created in such a way that they are brightest
on the edges and exposed areas, parts of a surface likely to be worn down by the
elements and naturally polished.

Material specular exponent. This can be replaced by a single-channel grayscale
texture, which is called a roughness map. This allows the artists to model small

9.8 Advanced Lighting 367

changes across the surface in the size of the specular highlight for Phong lighting
and for material roughness for more advanced lighting models.

e Material emissive color. Often called a glow map, this texture can be used to
localize self-illumination of an object. These maps are frequently used to mark
windows in nighttime views of vehicles or buildings, or taillights and running lights
of vehicles.

Since multiple textures can be used in a single shader, any or all of these components can
be easily replaced by individual textures. The uniform material color vectors simply become
texture sampler uniforms. Many of these textures can reuse the same texture coordinates,
as the mappings of each texture can be the same. Finally, optimizations are common. For
example, it is common to use an RGBA texture in which the RGB components are used as
the diffuse map, and the alpha component is used as a single-channel gloss map. The ease
of painting these components into a single texture can assist the artists, and the reuse of an
otherwise unused texture component can save graphics processing unit (GPU) resources.
An example of a fragment shader using RGBA diffuse and gloss maps is shown below.

// GLSL - fragment shader
uniform sampler2D texture;
in vec2 texCoords;
out vecd fragColor;

void main ()

{
vec3 diffuseLighting;
vec3 specularLighting;

//
vecd diffuseAndGlossMap = texture2D (texture, texCoords);

// Sample the texture represented by "texture"
// at the location "texCoords"
fragColor.rgb = diffuselLighting * diffuseAndGlossMap.rgb
+ specularLighting * diffuseAndGlossMap.a;

9.8 Advanced Lighting

Programmable shaders make an almost endless array of lighting effects possible. We will
discuss a few of these methods and mention several others, citing references for additional
information. Like the methods mentioned in the previous sections, many of these methods
involve using textures as sources to the lighting equation.

9.8.1 Normal Mapping
Source Code

So far, we have shown how one or more textures can be used to replace material colors or
intensities in the lighting equation. However, even more advanced techniques are based on "or"ering
the fact that textures can be used to store more general values than mere colors. The most

368 Lighting

popular of these techniques are bump mapping and normal mapping. As the names suggest,
these methods simulate bumpy surfaces by storing the detailed “height offsets” (bump
mapping) or normal vectors (normal mapping) for the surface in a texture. One of the basic
limitations of dynamic lighting as discussed so far is that while we can evaluate lighting on a
per-fragment basis, the source values describing the geometry of the surface are interpolated
from per-vertex values—the position and normal. As a result, a rough or bumpy surface
requires a very high density of vertices. We can simulate this effect at a finer level by adding
bumpy, prelit colors to the diffuse map texture, but in the presence of moving or changing
lighting conditions, the static nature of this trick is obvious and jarring. Bump mapping,
the first of these techniques to be available, was actually present in some fixed-function
rendering hardware in the late 1990s. However, bump mapping, since it represented a local
height offset and generated surface normals implicitly by looking at the difference in height
values between neighboring texels, was limited to surfaces that looked embossed. Very
sharp changes in surface orientation were difficult with bump mapping. For a discussion of
these limitations, see Theodore [144].

In order to add more detail to the lighting at this fine level, we must be able to generate
a surface normal per fragment that contains real information (not just interpolated infor-
mation) for each fragment. By storing the normal in a texture, we can generate normals
that change very rapidly per fragment and respond correctly to changing lighting config-
urations. The normal vectors across the surface are stored in the RGB components of the
texture (either as signed fixed-point values or as floating-point values). The exact space in
which the normals are stored in the texture differs from method to method. Conceptually,
the simplest space is object space, in which normals are computed in the model or object
space of the geometry being mapped and then stored as (x,y, z) inthe R, G, and B com-
ponents of the texture, respectively. Object-space normal maps can be sampled as a regular
texture into a vec3 and then used in the same way as one would use normals passed into a
fragment shader as an input value. An example of the effect that normal mapping can have
on a simple object is shown in Figure 9.24.

(@ (b)

Figure 9.24. Normal mapping applied to simple objects: (a) low triangle—count object
with diffuse map and per-vertex lighting and (b) same object with diffuse map and per-
fragment normal mapping.

9.8 Advanced Lighting 369

An example of an object-space normal map in use in a fragment shader is shown below.
Note that since the sampled normal comes from the texture in object space, we must either
do the transformation of the normal into world space in the fragment shader, or transform
the light information into object space and light in object space. We pick the former (which
is simpler to understand, but more expensive computationally) and transform the normal
into world space using the TvNormalMatrix uniform, which IvRenderer will set up
automatically based on our world matrix (see Chapter 7).

// GLSL Code

uniform sampler2D normalMap;

uniform mat3 IvNormalMatrix;

in vec2 texCoords;

out vecd fragColor;

{
lightSamplevValues lightValues;
// compute light values

vec3 normal = texture2D(normalMap, texCoords) ;

normal = normalize(IvNormalMatrix * normal) ;
vec3 normalizedViewDir = normalize(viewDir) ;

fragColor.rgb = materialEmissiveColor + computeAmbientComponent () ;
fragColor.rgb += computeLitColor (lightValues, normal, normalizedViewDir) ;
fragColor.a = materialDiffuseColor.a;

While object-space normal maps are conceptually easier to understand, the more common
method now uses something called rangent space. If we store a normal and a single tangent
vector (which is orthogonal to the normal) for each vertex, in the shader we can take a cross
product of the two to produce a third orthogonal vector called the bitangent. This orthogonal
basis plus the vertex position gives us a per-vertex coordinate frame that is the tangent space
for that vertex. A texture can then store normals relative to this tangent space across the
entire surface, and hence is known as a tangent space normal map. There are advantages
and disadvantages to both object-space normal mapping and tangent space normal maps,
which are discussed in various articles on normal mapping [45, 120].

9.8.1.1 Generating Normal Maps

Normal maps are rarely painted by an artist. The complexity of these maps and the esoteric
spaces in which they reside mean that most normal maps are generated automatically from
the geometry itself via commercial or open-source tools. Some real-time 3D engines and
middleware provide tools that automatically convert a very high-polygon-count object (mil-
lions of triangles) into a low polygon-count geometry object and a high-resolution normal
map. Put together, the low-resolution geometry object and the high-resolution normal map
can be used to efficiently render what appears to be a very convincing facsimile of the
original object.

9.8.2 Reflective Objects

While specular lighting can provide the basic impression of a shiny object, large expanses of
areflective surface are more convincing if they actually appear to reflect the other geometry

370 Lighting

in the scene. The best-known method for this is the (generally) non-real-time method of
recursive ray tracing, which is not yet suitable for general interactive systems. However,
we can once again use a mixture of lightinglike computations and textures to create very
convincing reflections.

Environment mapping is a technique that uses a texture or set of textures that represents
an “inside looking out” representation of the entire scene in all directions. It can be thought
of as a spherical or cube-shaped set of images that represent a panorama of the scene. These
images can be statically drawn offline, or on modern systems can even be rendered every
frame to better represent the current scene. The environment map can be thought of as
infinitely large or infinitely distant. Thus, any normalized direction vector maps to a single,
fixed location in the environment map.

Environment maps are applied to a surface dynamically—they are not sampled via a
priori texture coordinates; the mapping of the environment map will change as the scene
and the view change. The most common method used is to compute the reflection of the
view vector in a manner similar to that used for specular lighting earlier in this chapter. The
reflected view vector represents the direction that the viewer sees in the reflective surface.
By sampling the environment map in this view direction, we can apply what appears to be
a convincing reflection to a surface with little more than a vector computation (per vertex
or per fragment) and a texture lookup (per fragment). Figure 9.25 shows how this effect
can be applied to a simple object. Note that in the two views of the object, the environment
map moves like a reflection as the object rotates with respect to the viewer.

(a)

Figure 9.25. Environment mapping applied to simple objects.

9.8 Advanced Lighting 371

9.8.3 Transparent Objects

One aspect of the rendering equation that we have neglected is that light can pass through
objects as well as be reflected or absorbed. This is known as transmission, and can be
incorporated into the rendering equation using an additional scattering function called the
bidirectional transmissive distribution function, or BTDFE. This includes both the partial
absorption of light and the effect of refraction, where light bends as it passes from one
surface type to another (for example, from air to glass).

In real-time systems, transmission is approximated in a variety of ways. The simplest is
to ignore refractive effects and treat the object as a color filter on the background. We have
included a simple approach to this by including an alpha value in our diffuse color. More
complex approaches can take the thickness and other material properties of the object into
account as well.

A common approximation for refraction is to use a distortion map. This indicates a
warping of the background when a transparent or semitransparent object is rendered. It is
commonly used to create heat distortion effects, or refraction through the surface of wavy
glass or water. For more complex effects it’s also possible to create a cubic environment
map, simulating refraction from the center of the object rather than reflection.

Another approximation is for the specific case of subsurface scattering in semitranslucent
surfaces, especially human skin. As one might expect, this is of particular interest to games
because of the need to create more realistic-looking characters. One such technique is
described in d’Eon and Luebke [31].

9.8.4 Area Lights

One thing all of the light sources we have discussed so far have in common is that a single
vector can represent the direct lighting from each source at a particular sample on a surface.
The lights described thus far either are infinitely distant or emit from a single point. Lights
in the real world very often emit light not from a single point, but from a larger area.
For example, the diffused fluorescent light fixtures that are ubiquitous in office buildings
appear to emit light from a large, rectangular surface. There are two basic effects produced
by these area light sources that are not represented by any of our lights above: a solid angle
of incoming light upon the surface, and soft shadows.

One aspect of area light sources is that the direct lighting from them that is incident upon
a single point on a surface comes from multiple directions. In fact, the light from an area
light source on a surface point forms a complex, roughly cone-shaped volume whose apex
is at the surface point being lit. Unless the area of the light source is large relative to its
distance to the surface, the effect of this light coming from a range of directions can be very
subtle. As the ratio of the area of the light source to the distance to the object (the projected
size of the light source from the point of view of the surface point) goes down, the effect
can rapidly converge to look like the single-vector cases we describe above (see [1]).

9.8.5 Physically Based Lighting

The lighting model that we have presented here is extremely simple, which is good for
efficiency, but it is also extremely limited and cannot reproduce a broad range of materi-
als. Because of this, researchers and developers have created more advanced lighting and
reflection models, which more accurately represent real-world surfaces. On the lighting

372 Lighting

side we have area lights, mentioned above. Another common improvement in lighting is
to replace the constant ambient light with a representation that also varies with incoming
direction. One simple example of this is the hemispherical light. It has two colors repre-
senting ambient light from opposing directions, for example, the sky and the ground. Using
the angle between the surface normal and a vector pointing toward the sky, we can blend
between the two colors, giving a different ambient effect on the tops versus the bottoms of
objects. Other examples are radiance or irradiance environment maps. These act like the
reflective environment maps mentioned above, but store incoming radiance or irradiance
in many directions at various points throughout a given space. Implementations of these
include the radiosity normal mapping used by Valve in Half-Life 2 [108], and spherical
harmonics irradiance maps [127]. Note that some implementations store radiance and some
irradiance. We have assumed radiance for our ambient light—if irradiance is used, the
leading = multiplier in the ambient term must be removed.

On the reflection side, there are far better BRDFs for representing materials. The most
frequent change is to the specular term. If we look at our example, we can break it into two
pieces: the reflection value (the specular color, in our case) and the distribution function
(Ne ﬁ)"‘. More advanced models add a third term—a microfaceting value, which models
how tiny ridges in the surface scatter and self-shadow light that strikes the surface. The
reflection value is often replaced with the Fresnel term, which controls how the outgoing
radiance color changes with incoming radiance angles. And finally, the distribution function
is made more complex, again being more flexible with incoming and outgoing angles. The
most standard example of such a model is the Cook and Torrance reflection model [25].

There are also models that improve the diffuse term. The Lambertian model is highly
idealized, and real surfaces rarely behave in such a uniform way. Oren and Nayar [113]
created a new diffuse model that takes this into account, and recent games have used this
to good effect.

The key point is to choose the lighting and reflection model that best suits your game—if
your goal is realism, then one of the above systems is worth looking into. If not, then the
simple model we have presented is a good compromise between realism, easy control, and
efficiency. A good discussion of how a modern engine switched to use physically based
lighting is [92].

9.8.6 High Dynamic Range Lighting
Throughout this chapter, we have assumed that our lighting values lie in the interval [0, 1].
However, in reality lighting values can be quite large, theoretically lying in the interval
[0, 00). Our eyes adapt to this large range of values by adjusting the iris, closing for bright
areas and opening for dark areas. A similar process is done in games, known as high
dynamic range lighting. Rather than limiting our light values to lie in only [0, 1], we allow
a full range of values (to the limits of our floating-point representation). Note this affects
the material values in textures (artists no longer paint them as fully lit, as they can now
be both brightened and darkened) and allows us to get rid of our modulate with late add
approximation for specular highlights.

This does mean we need to correct the resulting lighting to lie within [0, 1] values for
final display. In Chapter 8 we discussed a process called tone mapping that handles just
this issue, dynamically mapping color values as we move between dark and light areas.

9.8 Advanced Lighting 373

Most modern games support some form of HDR lighting with tone mapping, thereby giving
much more realistic results.

9.8.7 Deferred Lighting and Shading

As mentioned, as we introduce multiple light sources the complexity of managing shaders
grows. While we can have one so-called ubershader that handles a fixed number of light
sources, we may have many cases where an object only really needs to be lit by one or
two lights. And light types may vary between spotlights, point lights, and directional lights.
Trying to handle all cases can create an explosion of shaders, while restricting them may
be too limiting.

The other problem is that we can often be lighting objects that are in the back of the
scene, and so are obscured by those closer to the viewer. We could end up lighting them,
and then have those pixels written over by the lighting values for the objects in the front
(see Chapter 10 for more information on this process, known as depth buffering). This is a
waste of processing time.

One solution is to not light our objects as we render them into the scene, but rather to
write out any lighting information per pixel into a temporary image, and then do a pass over
the image for each light or a set of lights, using the stored information to update the image
with lighting. This is known as deferred lighting. Deferred lighting has some advantages in
that it does reduce our lighting calculations only to those areas that are visible, but as we
have seen, there is quite a large amount of information needed for lighting, so the stored
image (or geometry buffer) can get quite large. This makes this approach impractical for
low-memory systems. That said, deferred lighting and its variants have been used to great
effect in many commercial games.

9.8.8 Shadows

Shadows are an extremely important component of real-world lighting. However, while
we think of them as a form of lighting, the challenge in rendering accurate shadows has
little in common with the per-vertex and per-fragment direct lighting formulas we discussed
earlier in this chapter. In a sense, shadowing is much less about lighting than it is about
occlusion or intersection. Diffuse and specular lighting formulas are concerned mainly with
determining how the light incident upon a surface is reflected toward the viewer. Shadowing,
on the other hand, is far more concerned with determining whether light from a given light
source reaches the surface in the first place. Unlike surface lighting calculations, shadowing
is dependent upon all of the objects that might interpose between the light source and the
surface being lit.

Since realistic light sources are area lights, they can be partially occluded and produce
soft-edged shadows. This effect can be very significant, even if the area of the light source
is quite small. Soft edged shadows occur at shadow boundaries, where the point in partial
shadow is illuminated by part of the area light source but not all of it. The shadow becomes
progressively darker as the given surface point is lit by less and less of the area light source.
This soft shadow region (called the penumbra, as opposed to the fully shadowed region,
called the umbra) is highly prized in non-real-time, photorealistic renderings for the realistic
quality it lends to the results. Even when using point or directional lights, emulating soft
shadows can greatly improve the realism of the scene.

374 Lighting

A single surface shader is rarely, if ever, enough to implement shadowing. Shadowing is
generally a multipass technique over the entire scene. The first pass involves determining
which surfaces receive light from a given source, and the second pass involves applying this
shadowing information to the shading of the objects in the scene. The many algorithms used
to approximate real-time shadows differ in their approaches to both passes. With the advent
of high-powered, programmable shading hardware, the push in shadowing methods over
the past decade has focused on leveraging the rendering hardware as much as possible for
both passes, avoiding expensive CPU-based computation. These algorithms have centered
on the concept of using a first pass that involves rendering the scene from the point of
view of the light source, as geometry visible from the point of view of the light is exactly
the geometry that will be lit by that light source. Geometry that cannot be “seen” from a
light’s location is exactly the geometry that will be in shadow. Geometry that falls on the
boundaries of these two cases is likely to be in the penumbra when rendering soft shadows.

Since the real core of shadowing methods lies in the structure of the two-pass algorithms
rather than in the mathematics of lighting, the details of shadowing algorithms are beyond
the scope of this book. A technique known as ray tracing (see Glassner [53]) uses ray—object
intersection to track the way light bounces around a scene. Very convincing shadows (and
reflections) could be computed using ray tracing, and the technique is very popular for non-
real-time rendering. Owing to its computational complexity, this method is not generally
used in real-time lighting (although modern shading languages and shading hardware are
now capable of doing real-time ray tracing in some limited cases). Shadows are sometimes
approximated using other tricks (see [3, 35, 111, 112]). Excellent references for real-time
shadows, both sharp and soft edged, can be found in Fernando and Pharr [45, 120].

9.9 Chapter Summary

In this chapter we have discussed the basics of dynamic lighting, in terms of both geometric
concepts and implementation using programmable shaders. Per-vertex and per-fragment
lighting are very powerful additions to any 3D application, especially when mated with the
use of multiple textures. Correct use of lighting can create compelling 3D environments at
limited computational expense. As we have discussed, judicious use of lighting is important
in order to maximize visual impact while minimizing additional computation.

For further information, there are numerous paths available to the interested reader. The
growing wealth of shader resources includes websites [3, 112] and even book series [40].
Many of these new shaders are based on far more detailed and complex lighting models,
such as those presented in computer graphics conference papers and journal articles like
those of ACM SIGGRAPH or in books such as Akenine-Moller et al. [1] or Pharr and
Humphreys [121].

(D) Rasterization

10.1 Introduction

The final major stage in the rendering pipeline is called rasterization. Rasterization is the
operation that takes screen-space geometry, a fragment shader, and the inputs to that shader
and actually draws the geometry to the low-level two-dimensional (2D) display device.
Once again, we will focus on drawing sets of triangles, as these are the most common
primitive in three-dimensional (3D) graphics systems. In fact, for much of this chapter,
we will focus on drawing an individual triangle. For almost all modern display devices,
this low-level “drawing” operation involves assigning color values to each and every dot,
or pixel, on the display device.

At the conceptual level, the entire topic of rasterization is simply an implementation
detail. Rasterization is required because the display devices we use today are based on a
dense rectangular grid of light-emitting elements, or pixels (a short version of the term
picture elements), each of whose colors and intensities are individually adjustable in every
frame. For historical reasons relating to the way that picture tube-based televisions work,
these displays are called raster displays.

Raster displays require that the images displayed on them be discretized into a rectan-
gular grid of color samples for each image. In order to achieve this, a computer graphics
system must convert the projected, colored geometry representations into the required grid
of colors. Moreover, in order to render real-time animation, the computer graphics system
must do so many times per second. This process of generating a grid of color samples from
a projected scene is called rasterization.

By its very nature, rasterization is time-consuming when compared to the other stages in
the rendering pipeline. Whereas the other stages of the pipeline generally require per-object,
per-triangle, or per-vertex computation, rasterization inherently requires computation of

375

376 Rasterization

some sort for every pixel. At the time of this book’s publication, displays 1,600 pixels wide
by 1,200 pixels high—resulting in approximately 2 million pixels on the screen—are quite
popular. Add to this the fact that rasterization will in practice often require each pixel to be
computed several times, and we come to the realization that the number of pixels that must
be computed generally outpaces the number of triangles in a given frame by a factor of 10,
20, or more.

Historically, in purely software 3D pipelines, it is not uncommon to see as much as 80 to
90 percent of rendering time spent in rasterization. This level of computational demand has
led to the fact that rasterization was the first stage of the graphics pipeline to be accelerated
via purpose-built consumer hardware. In fact, most 3D computer games began to require
some form of 3D hardware by the early 2000s. This chapter will not detail the methods and
code required to write a software 3D rasterizer, since most game developers no longer have
aneed to write them. For the details on how to write a set of rasterizers, see Hecker’s excellent
series of articles on perspective texture mapping in Game Developer Magazine [76].

Despite the fact that few, if any, game developers will need to implement even a sub-
set of the rasterization pipeline themselves in a modern game, the topic of rasterization
is still extremely relevant, even today. The basic concepts of rasterization lead to discus-
sions of some of the most interesting and subtle mathematical and geometric issues in the
entire rendering pipeline. Furthermore, an understanding of these fundamental concepts
can allow a game developer to better understand why and how rendering artifacts and per-
formance bottlenecks occur, even when the rasterization implementation is in dedicated
hardware. Many of these basic concepts and low-level details can have visually relevant
results in almost any 3D game. This chapter will highlight some of the fundamental con-
cepts of rasterization that are most pivotal to a deeper understanding of the process of using
a rendering system, either graphics processing unit (GPU) or computer processing unit
(CPU) based.

10.2 Displays and Framebuffers

Every piece of display device hardware, whether it be a computer monitor, television, or
some other such device, requires a source of image data. For computer graphics systems,
this source of image data is called a framebuffer (so called because it is a buffer of data
that holds the image information for a frame, or a screen’s worth of image). In basic terms,
a framebuffer is a 2D digital image: a block of memory that contains numerical values
that represent colors at each point on the screen. Each color value represents the color of
the screen at a given point—a pixel. Each pixel has red, green, and blue components. Put
together, this framebuffer represents the image that is to be drawn on the screen. The display
hardware reads these colors from memory every time it needs to update the image on the
screen, generally at least 30 times per second and often 60 or more times per second.

As we shall see, framebuffers often include more than just a single color per pixel.
While it is the final per-pixel color that is actually used to set the color and intensity of
light emitted by each point on the display, the other per-pixel values are used internally
during the rasterization process. In a sense, these other values are analogous to per-vertex
normals and per-triangle material colors; while they are never displayed directly, they have
a significant effect on how the final color is computed.

10.3 Conceptual Rasterization Pipeline 377

10.3 Conceptual Rasterization Pipeline

The steps required to rasterize an entire frame are shown in Figure 10.1. The first step is to
clear out any previous image from the framebuffer. This can in some cases be skipped; for
example, if the scene geometry is known to cover the entire screen, then there is no need to
clear the screen. The old image will be entirely overwritten by the new image in such a case.
But for most applications, this step involves using the rendering application programming
interface (API) to set all of the pixels in the framebuffer (in a single function call) to a fixed
color.

The second step is to rasterize the geometry to the framebuffer. We will detail this stage
in the rest of the chapter, as it is the most involved step of the three (by far).

The third step is to present the framebuffer image to the physical display. This stage
is commonly known as swapping or buffer swapping, because historically it frequently
involved (and in many cases still involves) switching between two buffers—drawing to one
while the other is displayed, and then swapping the two buffers after each frame. This is
to avoid flickering or other artifacts during rendering (specifically, to avoid having the user
see a partially rendered frame). However, other techniques described later in the chapter
will require additional work to be done during the presentation step. Therefore, we will
refer to this step by the more general term present.

10.3.1 Rasterization Stages

There are several stages to even a simple rasterization pipeline. It should be noted that while
these stages tend to exist in rasterization hardware implementations, hardware almost never

Projected
geometry

Fragment
shaders

Clear color Iﬁ‘_

Textures

S

1) Clear 2) Rasterize 3) Present to
framebuffer geometry screen

Figure 10.1. The steps to rasterizing a complete frame.

378 Rasterization

follows the order (or even the structure) of the conceptual stages in the list that follows.
This simple pipeline rasterizes a single triangle as follows:

1. Determine the visible pixels covered by the triangle.
2. Compute a color for the visible triangle at each such pixel.

3. Determine a final color for each pixel and write to the framebuffer.
The first stage further decomposes into two separate steps:

1. Determining the pixels covered by a triangle

2. Determining which triangles are the ones visible at each pixel

The rest of this chapter will discuss each of these pipeline stages in detail.

10.4 Determining the Fragments: Pixels Covered
by a Triangle

10.4.1 Fragments

In order to progress any further in the rasterization phase of rendering, we must break
triangles (or more generally, geometry) in screen space into pieces that more directly match
the pixels in the framebuffer. This involves determining the intersection of pixel rectangles
or pixel center points with a triangle. In the color and lighting chapters, we used the
term fragment to represent an infinitesimal piece of surface area around a given point on a
polygonal surface. Fragment shaders were described as being evaluated on these tiny pieces
of surface.

At the rasterization level, fragments have a much more explicit but related definition.
They are the result of the aforementioned process of breaking down screen-space triangles
to match pixels. These fragments can be thought of as pixel-sized pieces of a triangle in
screen space. These can be visualized as a triangle diced into pieces by cutting along pixel
boundaries. Many of these fragments (the interior of a triangle) will be square, the full
size of the pixel square. We call these pixel-sized fragments complete fragments. However,
along the edges of a triangle, these may be multisided polygons that fit inside of the pixel
square and are thus smaller than a pixel. We call these smaller fragments partial fragments.
In practice, these fragments may really be point samples of a triangle taken at the pixel
center (similar to the concept we had of fragments in the lighting and shading chapters), but
the basic idea is that fragments represent the pieces of a triangle that impinge upon a given
pixel. We will think of pixels as being destinations or bins into which we place all of the
fragments that cover the area of the pixel. As such, it is not a one-to-one mapping. A pixel
may contain multiple fragments from different (or even the same) objects, or a pixel may
not contain any fragments in the current view of the scene.

The remainder of this chapter will use this more specific definition of fragments.
Figure 10.2 shows a triangle overlaid with pixel rectangle boundaries. Figure 10.3 shows

10.4 Determining the Fragments: Pixels Covered by a Triangle 379

Figure 10.2. A screen-space triangle to be rasterized.

the same configuration broken into fragments, both complete and partial. The fragments
are separated slightly in the figure to better demonstrate the shapes of the partial fragments.

10.4.2 Depth Complexity

The number of fragments in an entire scene can be much smaller or much greater than the
number of pixels on the screen. If only a subset of the screen is covered by geometry, then
there may be many pixels that contain no fragments from the scene. On the other hand, if a
lot of triangles overlap one another in screen space, then many pixels on the screen may
contain more than one fragment. The ratio of the number of fragments in the scene in a given
frame to the number of pixels on the screen is called the depth complexity or overdraw,
because this ratio represents how many full screens’ worth of geometry comprises the scene.
In general, scenes with a higher depth complexity are more expensive to rasterize. Note that
this is an overall ratio for the whole view; a scene could have a depth complexity of two
even if geometry only covers half of the screen. If, on average, the geometry on the half of
the screen that is covered is four triangles deep, then the depth complexity would be two
fragments per pixel amortized over the entire screen.

10.4.3 Converting Triangles to Fragments

Triangles are convex, no matter how they are projected by a projective transformation
(in some cases, triangles may appear as a line or a point, but these are still convex objects).
This is a very useful property, because it means that any triangle intersects a horizontal
row of pixels (also called a scan line, for historical reasons having to do with CRT-based

380 Rasterization

Complete

fragments
Partial
fragments

N
B
n

Figure 10.3. Fragments generated by the triangle. Complete fragments are dark gray;
partial fragments are light gray.

television displays) in at most one contiguous segment. Thus, for any scan line that intersects
a triangle, we can represent the intersection with only a minimum x value and a maximum
x value, called a span. Thus, the representation of a triangle during rasterization consists
of a set of spans, one per scan line, that the triangle intersects. Furthermore, the convexity
of triangles also implies that the set of scan lines intersected by a triangle is contiguous
in y; there is a minimum and a maximum y for a given triangle, which contains all of the
nonempty spans. An example of the set of spans for a triangle is shown in Figure 10.4.
The dark bands overlaid on the triangle represent the spans of adjacent fragments that will
be used to draw the triangle.

The minimum y pixel coordinate for a triangle y,,;, is simply the minimum y value of
the three triangle vertices. Similarly, the maximum y pixel coordinate y,,,, of the triangle
is simply the maximum y value of the three vertices. Thus, a simple min/max computation
among the three vertices defines the entire range of (Vyuax — Ymin + 1) spans that must be
generated for a triangle.

The leftmost and rightmost fragments of each span may be partial fragments, since the
edge of the triangle may not fall exactly on a pixel boundary. Also, the topmost and bottom-
most spans may contain partial fragments for the same reason. The remaining fragments
for a triangle will be complete fragments.

Generating the spans themselves simply involves intersecting the horizontal scan line
with the edges of the triangle. Owing to the convexity of the triangle, unless the scan line

10.4 Determining the Fragments: Pixels Covered by a Triangle 381

Min.
! Pt

Max. y [\1

Figure 10.4. A triangle and its raster spans.

intersects a vertex, that scan line will intersect exactly two of the edges of the triangle: one
to cross from outside the triangle into it, and one to leave again. These two intersection
points will define the minimum and maximum x values of the span.

10.4.4 Handling Partial Fragments

Complete fragments always continue on to the next stage of the rasterization process.
The fate of partial fragments, however, depends upon the particular rendering system. In
more advanced systems, all partial fragments at a pixel are passed on as partial fragments,
and the visibility and color of the final pixel may be influenced by all of them. However,
simpler rasterization systems do not handle partial fragments, and must decide whenever a
partial fragment is generated whether to drop the fragment or else promote it to a complete
fragment. A common method for solving this is to keep partial fragments if and only if
they contain the pixel’s center point. This is sometimes called point sampling of geometry,
as an entire fragment is generated or not generated based on a single-point sample within
each pixel. Figure 10.5 shows the same triangle as in Figure 10.3, but with the partial
fragments either dropped or promoted to complete fragments, based on whether the fragment
contains the pixel’s center point.

The behavior of such a graphics system when a triangle vertex or edge falls exactly on
a pixel center is determined by a system-dependent fill convention, which ensures that if

382 Rasterization

Figure 10.5. Fragments from Figure 10.3 rasterized using point sampling.

two triangles share a vertex or an edge, only one triangle will contribute a fragment to
the pixel. This is very important, as without a well-defined fill convention, there may be
holes (pixels where both triangles’ partial fragments are dropped) or double-drawn pixels
(where the partial fragments of both triangles are promoted to complete fragments) on the
shared edges between triangles. Holes along a shared triangle edge allow the background
color to show through what would otherwise be a continuous, opaque surface, making
the surface appear to have cracks running through it. Double-drawn pixels along a shared
edge result in more subtle artifacts, normally seen only when transparency or other forms
of blending are used (see Section 10.8.1). For details on implementing point-sampled fill
conventions, see Hecker’s Game Developer Magazine article series [76].

10.5 Determining Visible Geometry

The overall goal in rendering geometry is to ensure that the final rendered images convinc-
ingly represent the given scene. At the highest level, this means that objects must appear to
be correctly obscured by closer objects and must not be obscured by more distant objects.
This process is known as visible surface determination (VSD), and there are numerous, very
different ways of accomplishing it. The methods all involve comparing the depth of surfaces
at one level of granularity or another and rendering them in such a way that the object of
minimum depth (i.e., the closest object) at a given pixel is the one rendered to the screen.
Historically, numerous different methods have been used for VSD. Many of the early
algorithms were based on clever sorting tricks, involving ordering the geometry back to front

10.5 Determining Visible Geometry 383

prior to rasterization. This was an expensive proposition normally computed per frame on
the CPU. By far, the most common method in use today is a rasterization-based method:
the depth buffer. Rasterizers were the first parts of the graphics pipeline to be accelerated
with purpose-built hardware, meaning that a rasterizer-based visible surface determination
system could achieve high performance. The depth buffer is also known as a z-buffer, which
is actually a specific, special case of the more general depth buffering.

10.5.1 Depth Buffering
Source Code

Depth buffering is based on the concept that visibility should be output focused. In other
words, since pixels are the final destination of our rendering pipeline, visibility should be Peeereuefering
computed on a per-pixel (or rather, per-fragment) basis. If the final color seen at each pixel
is the color of the fragment with the minimum depth (of all fragments drawn to that pixel),
the scene will appear to be drawn correctly. In other words, of all the fragments drawn to
a pixel, the fragment with minimum depth should “win” the pixel and select that pixel’s
color. For the purposes of this discussion, we assume point-sampled geometry (i.e., there
are no partial fragments).

Since common rasterization methods tend to render a triangle at a time, a given pixel may
be redrawn several times over the course of a frame by fragments from different triangles.
If we wish to avoid sorting the triangles by depth (and we do), then the fragment that should
win a given pixel may not be the last one drawn to that pixel. We must have some method
of storing the depth of the current nearest fragment at each pixel, along with the color of
that fragment.

Having stored this information, we can compute a simple test each time a fragment is
drawn to a pixel. If the new fragment’s depth is closer than the currently stored depth value at
that pixel, then the new fragment wins the pixel. The color of the new fragment is computed,
and this new fragment color is written to the pixel. The fragment’s depth value replaces the
existing depth value for that pixel. If the new fragment has greater depth than the current
fragment coloring the pixel, then the new fragment’s color and depth are ignored, as the
fragment represents a surface that is behind the closest known surface at the current pixel.
In this case, we know that the new fragment will be obscured at that pixel, because we have
already seen a fragment at that pixel that is closer than the newest fragment. Figure 10.6
represents the rendering of the fragments from two triangles to a small depth buffer. Note
how the closer triangle’s fragment always wins the pixel (the correct result), even if it is
drawn first.

Because the method is per pixel and thus per fragment, the depth of each triangle is
computed on a per-fragment granularity, and this value is used in the depth comparison.
As aresult of this finer subtriangle granularity, the depth buffer automatically handles trian-
gle configurations that cannot be correctly displayed using per-triangle sorting. Geometry
may be passed to the depth buffer in any order. The situation in which this random order
can be problematic is when two fragments at a given pixel have equal depth. In this case,
order will matter, depending on the exact comparison used to order depth (i.e., < or <).
However, such circumstances are problematic with almost any visible surface method.

There are several drawbacks to the depth buffer, although most of these are no longer
significant on modern PCs or game consoles. One of the historical drawbacks of the depth
buffering method is implied in the name of the method; it requires a buffer or array of depth

384 Rasterization

N“
Il
fo o .

\ / Framebuffer

8/18|8|8(8|8|8|8|8|8]|x»
8|wm|8|8[8|8|8|x|x|xw|w
8 ||| ||| ||| |®
S| ||| oo|w|w|oo|w
g ||| n|w|w|w|w
||| n|ow|w|ow]|o|w
g ||| |8 8|w|w|w|oo
8[| |8(8|8|8|xw|xw|w
8w |+>|8[8|8|8|8|8|8|x
8|+~|8(8|8|8(8|8(8[8]|8
8/8|8|8(8|8|8|8|8[8]8

Depth buffer

Figure 10.6. Two triangles rendered to a depth buffer.

values, one per pixel. This is a large block of memory, often requiring as much memory
as the framebuffer itself. Also, just as the framebuffer must be cleared to the background
color before each frame, the depth buffer must be cleared to the background depth, which
is generally the maximum representable depth value. These issues can be significant on
handheld and embedded 3D systems, where GPU memory is limited. Finally (and still
relevant on PCs and consoles), the depth buffer requires the following work:

¢ Computation of a depth value for the fragment
¢ Lookup of the existing pixel depth in the depth buffer
¢ Comparison of these two values

* (For new “winner” fragments only) writing the new depth to the depth buffer

On many GPUs depth buffers are stored in a hierarchical, compressed data structure that
allows for quick rejection tests using a large block of pixels. However, for a basic imple-
mentation, this is computed for each fragment. For most software rasterizers, this additional

10.5 Determining Visible Geometry 385

work per fragment can make depth buffering unsuitable for constant use. Fully software 3D
systems have tended to use optimized geometry sorting wherever possible, reserving depth
buffering for the few objects that truly require it. For example, early third-person-shooter
game rendering engines put enormous work into specialized sorting of the environments,
thereby avoiding any depth buffer testing for them. This left enough CPU cycles to render
the animated characters, monsters, and small objects (which covered far fewer pixels than
the scenery) using software depth buffering.

In addition, the depth buffer does not fix the potential performance problems of high-
depth complexity scenes. We must still compute the depth of every fragment and compare
it to the buffer. However, it can make overdraw less of an issue in some cases, since it is not
necessary to compute or write the color of any fragment that fails the depth test. In fact, some
applications will try to render their depth-buffered scenes in roughly near-to-far ordering
(while still avoiding per-triangle, per-frame sorting on the CPU) so that the later geometry
is likely to fail the depth buffer test and not require color computations.

Depth buffering is extremely popular in 3D applications that run on hardware-accelerated
platforms, as it is easy to use and requires little application code or host CPU computation
and produces quality images at high performance.

10.5.1.1 Computing Per-Fragment Depth Values

The first step in computing the visibility of a fragment using a depth buffer is to compute
the depth value of the current fragment. As we shall see, z,4. (Which appeared to be a rather
strange choice for z back in Chapter 7) will work quite well. However, the reason why z,,4.
works well and the view-space value z, does not is rather interesting.

In order to better understand the nature of how depth values change across a triangle in
screen space, we must be able to map a point on the screen to the point in the triangle that
projected to it. This is very similar to picking, and we will use several of the concepts we
first discussed in Chapter 7. Owing to the nonlinear nature of perspective projection, we will
find that our mapping from screen-space pixels to view-space points on a given triangle is
somewhat complicated. We will follow this mapping through several smaller stages. For the
discussion in this chapter, we’ll be assuming that we are using the OpenGL-style matrices
where we look down the —z axis in view space.

A triangle in view space is simply a convex subset of a plane in view space. As aresult, we
can define the plane of a triangle in view space by a normal vector to the plane i = (a, b, ¢)
and a constant d, such that the points P = (xp, yp, z) in the plane are those that satisfy

axp +by, +czp,+d =0
(a,b,c) e (xp,yp,2p)+d =0 (10.1)
De(Xp,yp,2p)+d =0

Looking back at picking, a point in 2D normalized device coordinates (X,4c, Ynde) maps to
the view-space ray fr such that

T = (Xndc» Ynde _dproj)7 t>0

where d),; is the projection distance (the distance from the view-space origin to the projec-
tion plane). Any point in view space that projects to the pixel at (x,4¢, Ynde) must intersect

386 Rasterization

this ray. Normally, we cannot invert the projection transformation, since a point on the
screen maps to a ray in view space. However, by knowing the plane of the triangle, we can
intersect the triangle with the view ray as follows. All points P in view space that fall in the
plane of the triangle are given by Equation 10.1. In addition, we know that the point on the
triangle that projects to (xp4c, Yndc) must be equal to fr for some ¢. Substituting the vector
tr for the points (x,,yp,zp) in Equation 10.1 and solving for ¢,

fe(m)+d=0
t(ﬁ.r)z—d
—d

= —
Nerl

From this value of #, we can compute the point along the projection ray (x,, yy, z,) = tr that
is the view-space point on the triangle that projects to (Xu4c, Yndc)- This amounts to finding

Xy, yv,2y) =11
= t(Xndcs Ynde> — pmj)
—d(Xndes Yndes _dpmj)
Ner
_ —d(Xndc» Ynde> — proj) (10.2)
fi. (xndcw Yndc» _dpmj)
_d(xndcv Yndc>» _dpmj)
0y Xpde + ﬁy)’ndc - ﬁzdpmj

However, we are only interested in z, right now, since we are trying to compute a per-
fragment value for depth buffering. The z, component of Equation 10.2 is
dproj d

Zy = % = = (10.3)
' Ny Xpde +NyYnde — nzdproj

As a quick check of a known result, note that in the special case of a triangle of constant
depth z, = Zconst, W can substitute

n=(0,0,1)
and
d = —Zconst
Substituted into Equation 10.3, this evaluates to the expected constant z, = Zeops::

7 = dproj(— Zconst)
’ 0 xndge +0 - ynac — 1 'dpraj

_dpmj Zconst
—dpry)
= Zconst

As defined in Equation 10.3, z, is an expensive value to compute per fragment (in the
general, nonconstant depth case), because it is a fraction with a nonconstant denominator.

10.5 Determining Visible Geometry 387

This would require a per-fragment division to compute z,, which is more expensive than
we would like. However, depth buffering requires only the ability to compare depth values
against one another. If we are comparing z, values, we know that they decrease with
increasing depth (as the view direction is —z), giving a depth test of

zy > DepthBuffer — New fragment is visible

Zy < DepthBuffer — New fragment is not visible

However, if we compute and store the reciprocal (the multiplicative inverse) of z,, then a
similar comparison still works in the same manner. If we use the reciprocal of all of the z,
values, we get

1
— < DepthBuffer — New fragment is visible
2y

1 . ..
— > DepthBuffer — New fragment is not visible
2y
If we reciprocate Equation 10.3, we can see that the per-fragment computation becomes
simpler:
1 X0 + ﬁy}’ndc - ﬁzdpmj

2y dproj d

= d dc —
doroj d)" \dproj d)" \dproj d

where all of the parenthesized terms are constant across a triangle. In fact, this forms an
affine mapping of ND coordinates to 1/z,. Since we know that there is an affine mapping
from pixel coordinates (x;, ys) to ND coordinates (x,4c, Ynac), we can compose these affine
mappings into a single affine mapping from screen-space pixel coordinates to 1/z,. As a
result, for a given projected triangle,

1
; =fx;+gys+h (10.4)

v

where f, g, and & are real values and are constant per triangle. We define the preceding
mapping for a given triangle as

RecipZ(x;,ys) = fxs +gys +h

An interesting property of RecipZ(xy, ys) (or of any affine mapping, for that matter) can be
seen from the derivation

RecipZ(xs + 1, y5) — RecipZ(xs, ys) = (f(xs + 1) + gys + 1) — (fxs + gys + h)
=1+ 1) — (fxy)
=f

meaning that

RecipZ(xs + 1,y5) = RecipZ(xs,ys) +f

388 Rasterization

and similarly
RecipZ(xs,ys + 1) = RecipZ(xs,ys) + 8

In other words, once we compute our RecipZ depth buffer value for any starting fragment,
we can compute the depth buffer value of the next fragment in the span by simply adding f.
Once we compute a base depth buffer value for a given span, as we step along the scan
line, filling the span, all we need to do is add f to our current depth between each adjacent
fragment (Figure 10.7). This makes the per-fragment computation of a depth value very
fast indeed. And, once the base RecipZ of the first span is computed, we may add g to
the previous span’s base depth to compute the base depth of the next span. As we saw in
Chapter 6, this technique is known as forward differencing, as we use the difference (or
delta) between the value at a fragment and the value at the next fragment to step along,
updating the current depth. This method will work for any value for which there is an affine
mapping from screen space. We refer to such values as affine in screen space, or screen
affine.

In fact, we can use the z,4. value that we computed during projection as a replacement
for RecipZ. In Chapter 7, on viewing and projection, we computed a z,,4. value that is equal
to —1 at the near plane and 1 at the far plane and was of the form

a+bz 1
Znde = S =a— +b
ZV ZV
(4,0,100)
/\ = (-4:4,100) /\= (4:4,200)

+12.5 +12.5 +12.5 +12.5

(0,4,200) (8,4,300)

Figure 10.7. Forward differencing the depth value.

10.5 Determining Visible Geometry 389

which is an affine mapping of RecipZ. As a result, we find that our existing value z,4. is
screen affine and is suitable for use as a depth buffer value. This is the special case of depth
buffering we mentioned earlier, often called z-buffering, as it uses z,4. directly.

10.5.1.2 Numerical Precision and z-Buffering

In practice, depth buffering in screen space has some numerical precision limitations that
can lead to visual artifacts. As was mentioned earlier in the discussion of depth buffers, the
order in which objects are drawn to a depth buffering system (at least in the case of opaque
objects) is only an issue if the depth values of the two surfaces (two fragments) are equal at
a given pixel. In theory, this is unlikely to happen unless the geometric objects in question
are truly coplanar. However, because computer number representations do not have infinite
precision (recall the discussion in Chapter 1), surfaces that are not coplanar can map to the
same depth value. This can lead to objects being drawn in the wrong order.

If our depth values were mapped linearly into view space, then a 16-bit, fixed-point
depth buffer would be able to correctly sort any objects whose surfaces differed in depth
by about 1/60,000 of the difference between the near and far plane distances. This would
seem to be more than enough for almost any application. For example, with a view distance
of 1km, this would be equal to about 1.5 cm of resolution. Moving to a higher-resolution
depth buffer would make this value even smaller.

However, in the case of z-buffering, representable depth values are not evenly distributed
in view space. In fact, the depth values stored to the buffer are, as we’ve seen, basically 1/z,,
which is definitely not an even distribution of view space z. A graph of the depth buffer value
over view space z is shown in Figure 10.8. This is a hyperbolic mapping of view space z into
depth buffer values—notice how little the depth value changes with a change in z toward

Max. depth value

Depth buffer
value

High depth
buffer Low depth buffer
Min. depth value precision precision
Near plane View space Far plane

z

Figure 10.8. Depth buffer value as a function of view space z.

390 Rasterization

the far plane. Using a fixed-point value for this leads to very low precision in the distance,
as large intervals of z map to the same fixed-point value of inverse z. In fact, a common
estimate is that a z-buffer focuses 90 percent of its precision in the closest 10 percent of
view space z. This means that the fragments of distant objects are often sorted incorrectly
with respect to one another.

One method for handling precision issues that was popular in 3D hardware is known as
the w-buffer. The w-buffer interpolates a screen-affine value for depth (often 1/w) at a high
precision, then computes the inverse of the interpolation at each pixel to produce a value
that is linear in view space (i.e., 1 / %). It is this inverted value that is then stored in the depth
buffer. By quantizing (dropping the extra precision used during interpolation) and storing
a value that is linear in view space, the hyperbolic nature of the z-buffer can be avoided to
some degree. However, as mentioned, w-buffers are no longer supported. They also have a
problem in that the values stored are nonlinear in screen space per primitive, which doesn’t
work well with certain postprocessing algorithms.

Another solution uses floating-point depth buffers, which are available on most plat-
forms. In combination with them, we flip the depth-buffered values such that the depth
values map to 1.0 at the near plane and 0.0 at the far plane, and a comparison of > or
> is used for the depth test [89]. By doing this, the natural precision characteristics of
floating-point numbers end up counteracting some of the hyperbolic nature of z-buffer val-
ues. The increased dynamic range for floating-point values near 0 compensates for the
loss of range in the z value at far distances, effectively acting much like the old w-buffer.
That said, floating-point depth buffers can have other issues, overcorrecting and leaving the
region of the scene closest to the camera with foo little precision. This is particularly notice-
able in rendered scenes because the geometry nearest the camera is the most obvious to
the viewer.

Finally, the simplest way to avoid these issues is to maximize usage of the depth buffer
by moving the near plane as far out as possible so that the accuracy close to the near plane
is not wasted. All of these methods have scene- and application-dependent trade-offs.

10.5.2 Depth Buffering in Practice

Using depth buffering in most graphics systems requires additions to several points in
rendering code:

¢ Creation of the depth buffer when the framebuffer is created
* Clearing the depth buffer each frame

¢ Enabling depth buffer testing and writing

The first step is to ensure that the rendering window or device is created with a depth
buffer. This differs from API to API, with Iv automatically allocating a depth buffer in all
cases. Having requested the creation of a depth buffer (and in most cases, it is just that—a
request for a depth buffer, dependent upon hardware support), the buffer must be cleared
at the start of each frame. The depth buffer is generally cleared using the same function as
the framebuffer clear. Iv uses the IvRenderer function, ClearBuffers, but with a

10.6 Computing Fragment Shader Inputs

new argument, kDepthClear. While the depth buffer can be cleared independently of
the framebuffer using

renderer->ClearBuffers (kDepthClear) ;

if you are clearing both buffers at the start of a frame, it can be faster on some systems to
clear them both with a single call, which is done as follows in Iv:

renderer->ClearBuffers (kColorDepthClear) ;

To enable or disable depth testing we simply set the desired test mode using the
IvRenderer function SetDepthTest. To disable testing, pass kDisableDepth-
Test. To enable testing, pass one of the other test modes (e.g., kLessDepthTest).
By default, depth testing is disabled, so the application should enable it explicitly
prior to rendering. The most common depth testing modes are kLessDepthTest and
kLessEqualDepthTest. The latter mode causes a new fragment to be used if its depth
value is less than or equal to the current pixel depth.

The writing of depth values also can be enabled or disabled, independent of depth testing.
As we shall see later in this chapter, it can be useful to enable depth testing while disabling
depth buffer writing. A call to the TvRenderer function SetDepthWrite can enable
or disable writing the z-buffer.

10.6 Computing Fragment Shader Inputs

The next stage in the rasterization pipeline is to compute the overall color (and possibly other
shader output values) of a fragment by evaluating the currently active fragment shader for the
current fragment. This in turn requires that the input values used by the shader be evaluated
at the current fragment location. These inputs come in numerous forms, as discussed in the
previous two chapters. Common sources include:

¢ Per-object uniform values set by the application

e Per-vertex attributes generated or passed through from the source vertices by the
vertex shader

¢ Indirect per-fragment values, generally from textures

Note that as we saw in the lighting chapter (Chapter 9), numerous sources may exist for a
given fragment. Each of them must be independently evaluated per fragment as a part of
shader input source generation. Having computed the per-fragment source values, a final
fragment color must be generated by running the fragment shader. Chapter 9 discussed
various ways that per-fragment vertex color values, per-vertex lighting values, and texture
colors can be combined in the fragment shader. The shader generates a final fragment color
that is passed to the last stage of the rasterization pipeline, blending (which will be discussed
later in this chapter).

The next few sections will discuss how shader source values are computed per fragment
from the sources we have listed. While there are many possible methods that may be used,

391

392 Rasterization

we will focus on methods that are fast to compute in screen space and are well suited to the
scan line—centric nature of most rasterizer software and even some rasterizer hardware.

10.6.1 Uniform Values

As with all other stages in the pipeline, per-object values or colors are the easiest to rasterize.
For each fragment, the constant uniform value may be passed down to the shader directly.
No per-fragment evaluation or computation is required. As a result, uniform values can
have minimal performance impact on the fragment shading process.

10.6.2 Per-Vertex Attributes

As we’ve discussed previously, per-vertex attributes are variables that are passed to the
fragment shader from the last vertex processing stage (in our case, from the vertex shader).
These values are defined only at the three vertices of each triangle, and thus must be
interpolated to determine a value at each fragment center in the triangle. As we shall see,
in the general case this can be an expensive operation to compute correctly for each of a
triangle’s fragments. However, we will first look at the special case of triangles of constant
depth. The mapping in this case is not at all computationally expensive, making it a tempting
approximation to use even when rendering triangles of nonconstant depth (especially in a
software renderer).

10.6.2.1 Constant Depth Interpolation

To analyze the constant-depth case, we will determine the nature of the mapping of our
constant-depth triangle from pixel space, through NDC space, into view space, through
barycentric coordinates, and finally to the per-vertex source attributes. We start first with a
special case of the mapping from pixel space to view space.

The overall projection equations derived in Chapter 7 (mapping from view space through
NDC space to screen-space pixel coordinates) were all of the form

ax,

Xg=—+Db
2y
C

Vs = &"‘d
2y

where both a, ¢ # 0. If we assume that a triangle’s vertices are all at the same depth (i.e.,
view space z, is equal to a constant z.ons for all points in the triangle), then the projection
of a point in the triangle is

ax, a ,
Xy = +b= xy,+b=ax,+b
Zconst Zconst
C c
Ys = i +d=< >)’v+d=C/)7v+d
Zconst Zconst

10.6 Computing Fragment Shader Inputs

Note that a, ¢ # 0 implies that @, ¢’ # 0, so we can rewrite these such that

xs—b

Xy =
a/

ys_d

/

W =
C

Thus, for triangles of constant depth z¢ops:,

* Projection forms an affine mapping from screen vertices to view-space vertices on
the z, = Zconst plane.

¢ Barycentric coordinates are an affine mapping of view-space vertices (as we saw in
Chapter 2).

* Vertex attributes define an affine mapping from a barycentric coordinate to an
attribute value (e.g., Gouraud shading, as seen in Chapter 8).

If we compose these affine mappings, we end up with an affine mapping from screen-space
pixel coordinates to an attribute value. For example, we can write this affine mapping from
pixel coordinates to color as

Color(xs,ys) = Cyxg + nys + Co
where Cy, Cy, and Cy are all colors (each of which are possibly negative or greater than 1.0).
For a derivation of the formula that maps the three screen-space pixel positions and corre-
sponding trio of vertex colors to the three colors Cy, Cy, and Co, see page 126 of Eberly [35].

From our earlier derivation of the properties of inverse z in screen space, we note that
Color(xs,ys) is screen affine for triangles of constant z:

Color(xs +1,y5) — Color(xs, ys) = (Cx(xs + 1) + Cyys + Co) — (Cxxs + Cyys + Co)
= Cx(xs + 1) — (Cyxs)
=Cy

meaning that
Color(xs + 1,y5) = Color(xs, ys) + Cy
and similarly
Color(x,,ys + 1) = Color(xy, ys) + Cy
As with 1/z, we can compute per-fragment values for per-vertex attributes for a constant-z

triangle simply by computing forward differences of the color of a “base fragment” in the
triangle.

393

394 Rasterization

10.6.2.2 Perspective-Correct Inferpolation

When a triangle that does not have constant depth in camera space is projected using a
perspective projection, the resulting mapping is not screen affine. From our discussion of
depth buffer values, we can see that given a general (not necessarily constant-depth) triangle
in view space, the mapping from NDC space to the view-space point on the triangle is of
the form

—dxpdc

B axnde + byndc + ¢
—dyndc

aXpde + bynde +¢
dprojd

axnde + byndc + ¢

W=

These are projective mappings, not affine mappings as we had in the constant-depth case.
This means that the overall mapping from screen space to linearly interpolated per-vertex
attributes is also projective. In order to correctly interpolate vertex attributes of a triangle
in perspective, we must use this more complex projective mapping.

Most hardware rendering systems now interpolate all per-vertex attributes in a
perspective-correct manner. However, this has not always been universal, and in the case of
older software rendering systems running on lower-powered platforms, it was too expen-
sive. If the per-vertex attributes being interpolated are colors from per-vertex lighting, such
as in the case of Gouraud shading, it is possible to make an accuracy—speed trade-off.
Keeping in mind that Gouraud shading is an approximation method in the first place, there
is somewhat decreased justification for using the projective mapping on the basis of “cor-
rectness.” Furthermore, Gouraud-shaded colors tend to interpolate so smoothly that it can
be difficult to tell whether the interpolation is perspective correct or not. In fact, Heckbert
and Moreton [75] mention that the New York Institute of Technology’s offline renderer
interpolated colors incorrectly in perspective for several years before anyone noticed! As a
result, software graphics systems have often avoided the expensive, perspective-correct
projective interpolation of Gouraud colors and have simply used the affine mapping and
forward differencing.

That said, other per-vertex values, such as texture coordinates, are not as forgiving of
issues in perspective-correct interpolation. The process of rasterizing a texture starts by
interpolating the per-vertex texture coordinates to determine the correct value at each frag-
ment. Actually, itis generally the texel coordinates (the texture coordinates multiplied by the
texture image dimensions) that are interpolated in a rasterizer. This process is analogous to
interpolating other per-vertex attributes. However, because texture coordinates are actually
used somewhat differently than vertex colors in the fragment shader, we are not able to use
the screen-affine approximation described previously. Texture coordinates require the cor-
rect perspective interpolation. The indirect nature of texture coordinates means that while
the texture coordinates change smoothly and subtly over a triangle, the resulting texture
color lookup does not.

The issue in the case of texture coordinates has to do with the properties of affine and
projective transformations. Affine transformations map parallel lines to parallel lines, while

10.6 Computing Fragment Shader Inputs

projective transformations guarantee only to map straight lines to straight lines. Anyone who
has ever looked down a long, straight road knows that the two lines that form the edges of
the road appear to meet in the distance, even though they are parallel. Perspective, being a
projective mapping, does not preserve parallel lines.

The classic example of the difference between affine and projective interpolations of
texture coordinates is the checkerboard square, drawn in perspective. Figure 10.9 shows
a checkered texture as an image, along with the image applied with wrapping to a square
formed by two triangles (the two triangles are shown in outline, or wire frame). When
the top is tilted away in perspective, note that if the texture is mapped using a projective
mapping (Figure 10.10), the vertical lines converge into the distance as expected.

If the texture coordinates are interpolated using an affine mapping (Figure 10.11), we
see two distinct visual artifacts. First, within each triangle, all of the parallel lines remain
parallel, and the vertical lines do not converge the way we expect. Furthermore, note the
obvious “kink” in the lines along the square’s diagonal (the shared triangle edge). This might

Wire-frame view Textured view

Figure 10.9. Two textured triangles parallel to the view plane.

Wire-frame view Textured view

Figure 10.10. Two textured triangles oblique to the view plane, drawn using a projective
mapping.

395

396 Rasterization

Wire-frame view Textured view

Figure 10.11. Two textured triangles oblique to the view plane, drawn using an affine
mapping.

at first glance seem to be a bug in the interpolation code, but a little analysis shows that it is
actually a basic property of an affine transformation. An affine transformation is defined by
the three points of a triangle. As a result, having defined the three points of the triangle and
their texture coordinates, there are no more degrees of freedom in the transformation. Each
triangle defines its transform independent of the other triangles, and the result is a bend in
what should be a set of lines across the square.

The projective transform, however, has additional degrees of freedom, represented by
the depth values associated with each vertex. These depth values change the way the texture
coordinate is interpolated across the triangle and allow straight lines in the mapped texture
image to remain straight on-screen, even across the triangle boundaries.

Fortunately, the solution is relatively simple, if expensive. As we saw from Equation 10.4,
1/z, can be computed using an affine mapping of screen-space positions. Since the texture
coordinates themselves are affine mappings, we can compose them with the 1/z, affine
mapping, and find that ueye;/z, and vserer/z, are affine mappings. Hence, these three quan-
tities (1/zy, Usexel /2y, and Viexer/7y) can be interpolated across the triangle using forward
differencing. At each fragment, the final (#sexer, Viexer) Values can be computed by inverting
1/z, to get z,, and then multiplying that by the interpolated useye; /2y and Viexer /Zy-

The downside of this projective mapping is that it requires the following operations per
fragment for correct evaluation:

1. An affine forward difference operation to update 1/z,

2. An affine forward difference operation to update usexer/zy

3. An affine forward difference operation to update vyexer /2y

4. A division to recover the perspective-correct z, from 1/z,

5. A multiplication of uyy.;/z, by 2z, to recover the perspective-correct ey,

6. A multiplication of vseye;/zy by z, to recover the perspective-correct Veeye

10.7 Rasterizing Textures

Many PC games and some video game consoles in the 1990s used less expensive (and
less correct) approximations of true perspective texturing. However, as mentioned, on
modern hardware rasterization systems per-fragment perspective-correct texturing is sim-
ply assumed. Also, the fact that programmable fragment shaders can allow basically any
per-vertex attribute to be used as a texture coordinate has further influenced hardware ven-
dors in the move to interpolate all vertex attributes in correct perspective. In practice, many
GPUs don’t follow the procedure above for all vertex attributes. Rather, they compute a
single set of barycentric coordinates using a perspective-correct interpolation, and then use
those barycentric coordinates to map each attribute to the correct value.

10.6.3 Indirect Per-Fragment Values

Interpolation of per-vertex attributes is only one possible source of per-fragment values.
Owing to the power of modern fragment shaders, texture coordinates and other values need
not come directly from per-vertex attributes. A texture lookup may be evaluated from a
set of coordinates generated in the fragment shader itself as the result of a computation
involving other per-vertex attributes.

A texture coordinate generated in the fragment shader can even be the result of an earlier
texture lookup in that same fragment shader. In this technique the texture image values in the
first texture are not colors, but rather texture coordinates themselves. This is an extremely
powerful technique called indirect texturing. The first texture lookup forms a table lookup,
or indirection, that generates a new texture coordinate for the second texture lookup.

Indirect texturing is an example of a more general case of texturing in which evaluating
a texture sample generates a “value” other than a color. Clearly, not all texture lookups are
used as colors. However, for ease of understanding in the following discussion, we will
assume that the texture image’s values represent the most common case—colors.

10.7 Rasterizing Textures

The previous section described how to interpolate general per-vertex attributes for use in
a fragment shader, and if these attributes were all we needed, we could simply evaluate or
run the fragment shader and compute the fragment’s color. However, if we have texture
lookups, this is only the first step. Having computed or interpolated the texture coordinate
for a given fragment, the texture coordinate must be mapped into the texture image itself to
produce a color.

Some of the earliest shading languages required that the textures be addressed only
by per-vertex attributes and, in some cases, actually computed the texture lookups before
even invoking the fragment shader. However, as discussed above, modern shaders allow
for texture coordinates to be computed in the fragment shader itself, perhaps even as the
result of a texture lookup. Also, conditionals and varying loop iterations in a shader may
cause texture lookups to be skipped for some fragments. As a result, we will consider the
rasterization of textures to be a part of the fragment shader itself.

In fact, while the mathematical computations that are done inside of the fragment shader
are interesting, the most (mathematically) complex part of an isolated fragment shader
evaluation is the computation of the texture lookups. The texture lookups are, as we shall
see, far more than merely grabbing and returning the closest texel to the fragment center.

397

398 Rasterization

Source Code
[Dermo

TextureFiltering

The wide range of mappings of textures onto geometry and then geometry into fragments
requires a much larger set of techniques to avoid glaring visual artifacts.

10.7.1 Texture Coordinate Review

We will be using a number of different forms of coordinates throughout our discussion of
rasterizing textures. This includes the application-level, normalized, texel-independent fex-
ture coordinates (u,v), as well as the texture size-dependent texel coordinates (isexel, Viexel),
both of which are considered real values. We used these coordinates in our introduction to
texturing.

A final form of texture coordinate is the integer texel coordinate, or texel address. These
represent direct indexing into the texture image array. Unlike the other two forms of coordi-
nates, these are (as the name implies) integral values. The mapping from texel coordinates
to integer texel coordinates is not universal and is dependent upon the texture filtering mode,
which will be discussed below.

10.7.2 Mapping a Coordinate to a Texel

When rasterizing textures, we will find that—due to the nature of perspective projection,
the shape of geometric objects, and the way texture coordinates are generated—fragments
will rarely correspond directly and exactly to texels in a one-to-one mapping. Any rasterizer
that supports texturing needs to handle a wide range of texel-to-fragment mappings. In the
initial discussions of texturing in Chapter 8, we noted that texel coordinates generally include
precision (via either floating-point or fixed-point numbers) that is much more fine-grained
than the per-texel values that would seem to be required. As we shall see, in several cases
we will use this so-called subtexel precision to improve the quality of rendered images in a
process known as fexture filtering.

Texture filtering (in its numerous forms) performs the mapping from real-valued texel
coordinates to final texture image values or colors through a mixture of texel coordinate
mapping and combinations of the values of the resulting texel or texels. We will break down
our discussion of texture filtering into two major cases: one in which a single texel maps to
an area that is the size of multiple fragments (magnification), and one in which a number
of texels map into an area covered by a single fragment (minification), as they are handled
quite differently.

10.7.2.1 Magnifying a Texture

Our initial texturing discussion stated that one common method of mapping these subtexel
precise coordinates to texture image colors was simply to select the texel containing the
fragment center point and use its color directly. This method, called nearest-neighbor
texturing, is very simple to compute. For any (usexer, Viexer) texel coordinate, the integer
texel coordinate (u;,, vins) i the nearest integer texel center, computed via truncation:

(Wint, Vint) = (Ltrexet |5 [Veexet])

Having computed this integer texel coordinate, we simply use a function Image(), which
maps an integer texel coordinate to a texel value, to look up the value of the texel. The
returned color is passed to the fragment shader for the current fragment. While this method

10.7 Rasterizing Textures

Figure 10.12. Nearest-neighbor magnification.

is easy and fast to compute, it has a significant drawback when the texture is mapped in such
a way that a single texel covers more than 1 pixel. In such a case, the texture is said to be
magnified, as a quadrilateral block of multiple fragments on the screen is entirely covered
by a single texel in the texture, as can be seen in Figure 10.12.

With nearest-neighbor texturing, all (#sexel, Viexer) texel coordinates in the square

Tint < Uexel < Iint + 1

Jint < Viexel < Jint + 1

will map to the integer texel coordinates (i, jins) and thus produce a constant fragment
shader value. This is a square of height and width 1 in texel space, centered at the texel
center. This results in obvious squares of constant color, which tends to draw attention to the
fact that a low-resolution image has been mapped onto the surface. See Figure 10.12 for an
example of a nearest-neighbor filtered texture used with a fragment shader that returns the
texture as the final output color directly. In most cases, this blocky result is not the desired
visual impression.

The problem lies with the fact that nearest-neighbor texturing represents the texture
image as a piecewise constant function of (u,v). The resulting fragment shader attribute
is constant across all fragments in a triangle until either u;,; or v;,; changes. Since the
floor operation is discontinuous at integer values, this leads to sharp edges in the function
represented by the texture over the surface of the triangle.

399

400 Rasterization

The common solution to the issue of discontinuous colors at texel boundaries is to treat
the texture image values as specifying a different kind of function. Rather than creating a
piecewise constant function from the discrete texture image values, we create a piecewise
smooth color function. While there are many ways to create a smooth function from a set of
discrete values, the most common method in rasterization hardware is linearly interpolating
between the colors at each texel center in two dimensions. The method first computes
the maximum texel center coordinate (i, Viy;) that is less than (Uexes, Vierer), the texel
coordinate (i.e., the floor of the texel coordinates minus a half-texel offset):

Wint, Vint) = ([Usexet — 0.5], [Viexet — 0.5])

In other words, (i, Viny) defines the minimum (lower left in texture image space) corner
of a square of four adjacent texel centers that “bound” the texel coordinate (Figure 10.13).
Having found this square, we can also compute a fractional texel coordinate 0.0 <
Ufrac, Virae < 1.0 that defines the position of the texel coordinate within the 4-texel square.

(ufmm Vfrac) = (Urexel — Uint — 0.5, Viexel — Vinr — 0.5)

We use Image() to look up the texel colors at the four corners of the square. For ease of
notation, we define the following shorthand for the color of the texture at each of the four
corners of the square (Figure 10.14):

Coo = Image(uins, Vint)

Cio = Image(uins + 1, viny)
Co1 = Image(Uins, vins + 1)
C11 = Image(uip; + 1, vips + 1)

Then, we define a smooth interpolation of the 4 texels surrounding the texel coor-
dinate. We define the smooth mapping in two stages. First, we linearly interpolate

(uint’vint i 1)

0.75

1
1
1
1
1
|
1
|
1
1
1
1
1
1
:
1
' : Pixel mapped into
X : texel space
| |
1

(u, +1v)

int int!

Figure 10.13. Finding the 4 texels that bound a pixel center and the fractional position of
the pixel.

10.7 Rasterizing Textures 401

Pixel mapped into
texel space l_

Figure 10.14. The four corners of the texel-space bounding square around the pixel center.

between the colors along the minimum-v edge of the square, based on the fractional u
coordinate:

Cuinv = Coo(1 — tgrac) + CroUfrac
and similarly along the maximum-v edge:
Crmaxv = Cor(1 — tfrac) + Cr1utfrac
Finally, we linearly interpolate between these two values using the fractional v coordinate:
Crinal = Cminv(1 — Virae) + CMaxv Vfrac

See Figure 10.15 for a graphical representation of these two steps. Substituting these into a
single, direct formula, we get

CFinal = Coo(1 — ufrac)(l - Vfrac) + ClO“fmc(l - Vfrac)
+ Cor(1— ufrac)vfmc + Cllufracvfrac

This is known as bilinear texture filtering because the interpolation involves linear inter-
polation in two dimensions to generate a smooth function from four neighboring texture
image values. It is extremely popular in hardware 3D graphics systems. The fact that we
interpolated along u first and then interpolated along v does not affect the result (other than
by potential precision issues). A quick substitution shows that the results are the same either
way. However, note that this is not an affine mapping. Affine mappings in 2D are uniquely

402 Rasterization

C C

01

Crraey=Co1 - uﬁu) +C

‘MaxV ~ lluﬁac

- Y
CFinal y CMinV(]' 4 V/m) ¥ CMaxVVﬁac ’

C

00

Figure 10.15. Bilinear filtering.

defined by three distinct points. The fourth source point of our bilinear texture mapping
may not fit the mapping defined by the other three points.

Using bilinear filtering, the colors across the entire texture domain are continuous. An
example of the visual difference between nearest-neighbor and bilinear filtering is shown
in Figure 10.16. While bilinear filtering can greatly improve the image quality of magnified
textures by reducing the visual blockiness, it will not add new detail to a texture. If a texture
is magnified considerably (i.e., 1 texel maps to many pixels), the image will look blurry
due to this lack of detail. The texture shown in Figure 10.16 is highly magnified, leading to
obvious blockiness in the left image (a) and blurriness in the right image (b).

10.7.2.2 Texture Magnification in Practice

The Iv APIs use the IvTexture function SetMagFiltering to control texture mag-
nification. Iv supports both bilinear filtering and nearest-neighbor selection. They are each
set as follows:

IvTexture* texture;
/..
{

// Nearest-neighbor
texture->SetMagFiltering (kNearestTexMagFilter) ;

10.7 Rasterizing Textures

@ (b)

Figure 10.16. Extreme magnification of a texture using (a) nearest-neighbor filtering and
(b) bilinear filtering.

// Bilinear interpolation
texture->SetMagFiltering (kBilerpTexMagFilter) ;

/7

10.7.2.3 Minifying a Texture

Throughout the course of our discussions of rasterization so far, we have mainly referred to
fragments by their centers—infinitesimal points located at the center of a square fragment
(continuing to assume only complete fragments for now). However, fragments have nonzero
area. This difference between the area of a fragment and the point sample representing it
becomes very obvious in a common case of texturing.

As an example, imagine an object that is distant from the camera. Objects in a scene are
generally textured at high detail. This is done to avoid the blurriness (such as the blurriness
we saw in Figure 10.16b) that can occur when an object that is close to the camera has a low-
resolution texture applied to it. As that same object and texture is moved into the distance
(a common situation in a dynamic scene), this same, detailed texture will be mapped to
smaller and smaller regions of the screen due to perspective scaling of the object. This is
known as minification of a texture, as it is the inverse of magnification. This results in the
same object and texture covering fewer and fewer fragments.

In an extreme (but actually quite common) case, the entire high-detail texture could be
mapped in such a way that it maps to only a few fragments. Figure 10.17 provides such an
example; in this case, note that if the object moves even slightly (even less than a pixel),
the exact texel covering the fragment’s center point can change drastically. In fact, such a
point sample is almost random in the texture and can lead to the point-sampled color of the
texture used for the fragment changing wildly from frame to frame as the object moves in
tiny, subpixel amounts on the screen. This can lead to flickering over time, a distracting
artifact in an animated, rendered image.

403

404 Rasterization

Pixel centers

|\

Mapping of texture
into screen
coordinates

Figure 10.17. Extreme minification of a texture.

The problem lies in the fact that most of the texels in the texture have an almost equal
“claim” to the fragment, as all of them are projected within the rectangular area of the
fragment. The overall color of the fragment’s texture sample should represent all of the
texels that fall inside of it. One way of thinking of this is to map the square of a complete
fragment on the projection plane onto the plane of the triangle, giving a (possibly skewed)
quadrilateral, as seen in Figure 10.18. In order to evaluate the color of the texture for that
fragment fairly, we need to compute a weighted average of the colors of all of the texels in
this quadrilateral, based on the relative area of the quadrilateral covered by each texel. The
more of the fragment that is covered by a given texel, the greater the contribution of that
texel’s color to the final color of the fragment’s texture sample.

While an exact area-weighted-average method would give a correct fragment color and
would avoid the issues seen with point sampling, in reality this is not an algorithm that is
best suited for real-time rasterization. Depending on how the texture is mapped, a fragment
could cover an almost unbounded number of texels. Finding and summing these texels
on a per-fragment basis would require a potentially unbounded amount of per-fragment
computation, which is well beyond the means of even hardware rasterization systems.
A faster (preferably constant-time) method of approximating this texel averaging algorithm
is required. For most modern graphics systems, a method known as mipmapping satisfies
these requirements.

10.7 Rasterizing Textures

(a) (b)

Figure 10.18. Mapping the square screen-space area of a pixel back into texel space:
(a) screen space with pixel of interest highlighted and (b) texel-space back projection of
pixel area.

10.7.3 Mipmapping

Mipmapping [157] is a texture-filtering method that avoids the per-fragment expense of
computing the average of a large number of texels. It does so by precomputing and storing
additional information with each texture, requiring some additional memory over standard
texturing. This is a constant-time operation per texture sample and requires a fixed amount
of extra storage per texture (in fact, it increases the number of texels that must be stored
by approximately one-third). Mipmapping is a popular filtering algorithm in both hardware
and software rasterizers and is relatively simple conceptually.

To understand the basic concept behind mipmapping, imagine a 2 x 2—texel texture.
If we look at a case where the entire texture is mapped to a single fragment, we could
replace the 2 x 2 texture with a 1 x 1 texture (a single color). One appropriate color would
be the mean of the 4 texels in the 2 x 2 texture. We could use this new texture directly. If we
precompute the 1 x 1-texel texture at load time of our application, we can simply choose
between the two textures as needed (Figure 10.19).

When the given fragment maps in such a way that it only covers one of the 4 texels in
the original 2 x 2-texel texture, we simply use a magnification method and the original
2 x 2 texture to determine the color. If the fragment covers the entire texture, we would use
the 1 x 1 texture directly, again applying the magnification algorithm to it (although with a
1 x 1 texture, this is just the single texel color). The 1 x 1 texture adequately represents the
overall color of the 2 x 2 texture in a single texel, but it does not include the detail of the
original 2 x 2 texel texture. Each of these two versions of the texture has a useful feature
that the other does not.

Mipmapping takes this method and generalizes it to any texture with power of two
dimensions. For the purposes of this discussion, we assume that textures are square (the
algorithm does not require this, as we shall see later in our discussion of mipmapping in
practice). One approach to generating mipmap levels starts by taking the initial texture

Source Code

Mipmapping

405

406 Rasterization

2 x 2 version of
texture is the closest
pixel-to-texel match

1 x 1 version of
texture is the closest
pixel-to-texel match

Screen-space geometry
(same mipmapped texture applied to both squares)

Figure 10.19. Choosing between two sizes of a texture.

image Imageq (abbreviated Ip) of dimension Wiexre = Hiexture = 2L and generates a new
version of the texture by averaging each square of four adjacent texels into a single texel.
This generates a texture image Image; of size

! 1 SL-1

“Wiexture = = Niexture =
2 2

as follows:

I0(2i,2)) + Io(2i + 1,2) + 120, 2 + 1) + Io(2i + 1,2 + 1)
4

Image\ (i,) =

where 0 < i,j < %w,exm,e. Each of the texels in Image; represents the overall color of a
block of the corresponding 4 texels in Imageo (Figure 10.20). Note that if we use the same
original texture coordinates for both versions of the texture, /mage; simply appears as a
blurry version of Imageq (with half the detail of Imageg). If a block of about four adjacent
texels in Imageq covers a fragment, then we can simply use Image| when texturing. But what
about more extreme cases of minification? The algorithm can be continued recursively. For
each image Image; whose dimensions are greater than 1, we can define Image; |, whose
dimensions are half of Image;, and average texels of Image; into Image; 1. This generates
an entire set of L 4 1 versions of the original texture, where the dimensions of Image; are
equal to

Wrexture

i

10.7 Rasterizing Textures 407

1,(0,0)

1,(0,0) +I,(1,0) + 1,(0,1) + 1,(1,1)

1(0,0) =
4
(1,1,1) + (0,0,0) + (0,0,0) + (1,1,1)
1,(0,0) = (L4 l)
4 222

Figure 10.20. Texel-block-to-texel mapping between mipmap levels.

128 x 128

Figure 10.21. Mipmap-level size progression.

This forms a pyramid of images, each one-half the dimensions (and containing one-quarter
the texels) of the previous image in the pyramid. Figure 10.21 provides an example of such
a pyramid. We compute this pyramid for each texture in our scene once at load time or as
an offline preprocess and store each entire pyramid in memory.

This simple method of computing the mipmap images is known as box filtering (as we
are averaging a 2 x 2 “box” of texels into a single texel). Box filtering does not produce
very high-quality mipmaps, as it tends to blur the images too much while still producing
artifacts. Other, more complex methods are more often used to filter each mipmap level
down to the next lower level. One good example is the Lanczos filter; see Turkowski [148] or

408 Rasterization

Wohlberg [159] for details of other image-filtering methods. One must also take care when
generating each level to ensure the calculations are done on linear colors; if the original
texture colors are in SRGB, convert to linear, do any computations, then convert back to
sRGB to store the mipmap values.

10.7.3.1 Texturing a Fragment with a Mipmap

The most simple, general algorithm for texturing a fragment with a mipmap can be sum-
marized as follows:

1. Determine the mapping of the fragment in screen space back into a quadrilateral in
texture space by determining the texture coordinates at the corners of the fragment.

2. Having mapped the fragment square into a quadrilateral in texture space, select
whichever mipmap level comes closest to exactly mapping the quadrilateral to a
single texel.

3. Texture the fragment with the “best match” mipmap level selected in the previous
step, using the desired magnification algorithm.

There are numerous common ways of determining the best-match mipmap level, and
there are numerous methods of filtering this mipmap level into a final fragment texture
value. We would like to avoid having to explicitly map the fragment’s corners back into
texture space, as this is expensive to compute. We can take advantage of information
that other rasterization stages have already computed. As we saw in Sections 10.5.1 and
10.6.2, it is common in rasterization to compute the difference between the value of a
fragment shader input (e.g., the texel coordinates) at a given fragment center and those of
the fragment to the right and below the given fragment, for use in forward differencing. While
we didn’t explicitly say so, those differences can be expressed as derivatives. The listing
that follows is designed to assign intuitive values to each of these four partial derivatives.
For those unfamiliar with 9, it is the symbol for a partial derivative, a basic concept of
multivariable calculus. The d operator represents how much one component of the output
of a vector-valued function changes when you change one of the input components.

OlUse . : i
8"”1 = Change in uye; per horizontal pixel step
Xs
8u . . .
fexel _ Change in uy.,; per vertical pixel step
ays
av . ; i
ate’“?l = Change in vy per horizontal pixel step
Xs
Vrexe . : ;
{;ml = Change in vy per vertical pixel step
Vs

If a fragment maps to about 1 texel, then

Oltsexel 2+ 0Vrexel 2% 1, and Ottsexel 2+ 0Vrexel 2%1
3XS ax‘y ays‘ ayS

10.7 Rasterizing Textures

In other words, even if the texture is rotated, if the fragment is about the same size as the
texel mapped to it, then the overall change in texture coordinates over a single fragment has a
length of about 1 texel. Note that all four of these differences are independent. These partials
are dependent upon Usere; and Vsere;, Which are in turn dependent upon texture size. In fact,
for each of these differentials, moving from Image; to Image;;1 causes the differential to
be halved. As we shall see, this is a useful property when computing mipmapping values.

A common formula that is used to turn these differentials into a metric of pixel-texel
size ratio is described in Heckbert [74], which defines a formula for the radius of a pixel
as mapped back into texture space. Note that this is actually the maximum of two radii, the
radius of the pixel in usey.; and the radius in Vyeye;:

. Oltsexel 2 Vrexel 2 Oltsexel 2 0Vrexel 2
size = max _— + s +
0xg 0xg s dys
We can see (by substituting for the d) that this value is halved each time we move from

Image; to Image;11 (as all of the d values will halve). So, in order to find a mipmap level
at which we map 1 texel to the complete fragment, we must compute the L such that

size
2L
where size is computed using the texel coordinates for Imagep. Solving for L,

L = log, size

This value of L is the mipmap-level index we should use. Note that if we plug in partials
that correspond to an exact one-to-one texture-to-screen mapping,

Oltrexel -1 0Viexel _

, 0. Oltrexel —0, 0Vrexel _
X

0x; 0ys dys

1

we get size = 1, which leads to L = 0, which corresponds to the original texture image as
expected.

This gives us a closed-form method that can convert existing partials (used to interpolate
the texture coordinates across a scan line) to a specific mipmap level L. The final formula is

L = log, | max Buier') + Viexel 2’ Ottrexel ? + Wiexel ?
0xg 0X; s Ay
— 10g2 max OUsexel 2 n IVrexel 2 , IUlsexel 2 + M 2
0.xg 0xg 3y dys
= llogz max Oltyexel 2 + Viexel 2 ’ OUstexel 2 n M 2
2 0xg 0Xs s s

Note that the value of L is real, not integer (we will discuss the methods of mapping this
value into a discrete mipmap pyramid later). The preceding function is only one possible

409

410 Rasterization

option for computing the mipmap level L. Graphics systems use numerous simplifications
and approximations of this value (which is itself an approximation) or even other functions
to determine the correct mipmap level. In fact, the particular approximations of L used
by some hardware devices are so distinct that some experienced users of 3D hardware can
actually recognize a particular piece of display hardware by looking at rendered, mipmapped
images. Other pieces of 3D hardware allow the developer (or even the end user) to bias
the L values used, as some users prefer “crisp” images (biasing L in the negative direction,
selecting a larger, more detailed mipmap level and more texels per fragment), while others
prefer “smooth” images (biasing L in the positive direction, tending toward a less detailed
mipmap level and fewer texels per fragment). For a detailed derivation of one case of
mipmap-level selection, see page 106 of Eberly [35].

Another method that has been used to lower the per-fragment expense of mipmapping
is to select an L value, and thus a single mipmap level per triangle in each frame, and
rasterize the entire triangle using that mipmap level. While this method does not require
any per-fragment calculations of L, it can lead to serious visual artifacts, especially at the
edges of triangles, where the mipmap level may change sharply. Software rasterizers that
support mipmapping often use this method, known as per-triangle mipmapping.

Note that by its very nature, mipmapping tends to use smaller textures on distant objects.
This means that mipmapping can actually increase performance for software rasterizers,
because the smaller mipmap levels are more likely to fit in the processor’s cache than
the full-detail texture. This is true on most GPUs as well, due to the small, on-chip tex-
ture cache memories used to hold recently accessed texture image regions. As GPUs and
software rasterizers are performance-bound to some degree by the memory bandwidth of
reading textures, keeping a texture in the cache can decrease these bandwidth requirements
significantly. Furthermore, if point sampling is used with a nonmipmapped texture, adjacent
pixels may require reading widely separated parts of the texture. These large per-pixel strides
through a texture can result in horrible cache behavior and can impede the performance of
nonmipmapped rasterizers severely. These processor pipeline “stalls” or waits, caused by
cache misses make the cost of computing mipmapping information (at least on a per-triangle
basis) worthwhile, independent of the significant increase in visual quality.

10.7.3.2 Texture Filfering and Mipmaps

The methods described above work on the concept that there will be a single, “best”
mipmap level for a given fragment. However, since each mipmap level is twice the size of
the next mipmap level in each dimension, the closest mipmap level may not be an exact
fragment-to-texel mapping. Rather than selecting a given mipmap level as the best, linear
mipmap filtering uses a method similar to (bi)linear texture filtering. Basically, mipmap
filtering uses the real-valued L to find the pair of adjacent mipmap levels that bound the
given fragment-to-texel ratio, |L| and [L]. The remaining fractional component (L — |L])
is used to blend between texture colors found in the two mipmap levels.

Put together, there are now two independent filtering axes, each with two possible
filtering modes, leading to four possible mipmap filtering modes as shown in Table 10.1.
Of these methods, the most popular is linear—bilinear, which is also known as trilinear
interpolation filtering, or trilerp, as it is the exact 3D analog to bilinear interpolation.
It is the most expensive of these mipmap filtering operations, requiring the lookup of

10.7 Rasterizing Textures

Table 10.1. Mipmap Filtering Modes

Mipmap Filter Texture Filter Result

Nearest Nearest Select best mipmap level and then select closest texel
from it

Nearest Bilinear Select best mipmap level and then interpolate 4 texels
from it

Linear Nearest Select two bounding mipmap levels, select closest texel

in each, and then interpolate between the 2 texels

Linear Bilinear Select two bounding mipmap levels, interpolate 4 texels
from each, and then interpolate between the two results;
also called trilerp

8 texels per fragment, as well as seven linear interpolations (three per each of the two
mipmap levels, and one additional to interpolate between the levels), but it also produces
the smoothest results. Filtering between mipmap levels also increases the amount of texture
memory bandwidth used, as the two mipmap levels must be accessed per sample. Thus,
multilevel mipmap filtering often counteracts the aforementioned performance benefits of
mipmapping on hardware graphics devices.

A final, newer form of mipmap filtering is known as anisotropic filtering. The mipmap
filtering methods discussed thus far implicitly assume that the pixel, when mapped into
texture space, produces a quadrilateral that is fit quite closely by some circle—in other
words, cases in which the quadrilateral in texture space is basically square. In practice, this
is generally not the case. With polygons in extreme perspective, a complete fragment often
maps to a very long, thin quadrilateral in texture space. The standard isotropic filtering
modes can tend to look too blurry (having selected the mipmap level based on the long axis
of the quad) or too sharp (having selected the mipmap level based on the short axis of the
quad). Anisotropic texture filtering takes the aspect ratio of the texture-space quadrilateral
into account when sampling the mipmap and is capable of filtering nonsquare regions in
the mipmap to generate a result that accurately represents the tilted polygon’s texturing.

10.7.3.3 Mipmapping in Practice

The default CreateTexture interface that we saw in Chapter 8 allocates only the base-
level texture data, and no other mipmap levels. To create a texture with mipmaps, we use
CreateMipmappedTexture, as follows:

IvResourceManager* manager;
// image data

const int numLevels = 5;
void* datal[numLevels];

//

{
IvTexture* texture = manager->CreateMipmappedTexture (KRGBA32TexFmt,
width, height,
data, numLevels, kImmutableUsage) ;

411

412 Rasterization

Table 10.2. Mipmap-Level Size Progression

Level Width Height
0 32 8
1 16 4
2 8 2
3 4 1
4 2 1
5 1 1

Notice that we are now passing in an array of image data—each array entry is a mipmap
level. We must also specify the number of levels. We can also use the ITvTexture functions
BeginLoadData and EndLoadData if a mipmapped texture is created with dynamic
or default usage. However, in the case of mipmaps, we use the argument to these functions,
unsigned int level (previously defaulted to 0), which specifies the mipmap level.
The mipmap level of the highest-resolution image is 0. Each subsequent level number (1, 2,
3, ...) represents the mipmap pyramid image with half the dimensions of the previous level.
Some APIs require that a “full” pyramid (all the way down to a 1 x 1 texel) be specified for
mipmapping to work correctly. In practice, it is a good idea to provide a full pyramid for
all mipmapped textures. The number of mipmap levels in a full pyramid is equal to

Levels = log, (max(Wrexture» hrexture)) + 1

Note that the number of mipmap levels is based on the larger dimension of the texture.
Once a dimension falls to 1 texel, it stays at 1 texel while the larger dimension continues to
decrease. So, for a 32 x 8—texel texture, the mipmap levels are shown in Table 10.2.

Note that the texels of the mipmap level images provided in the array passed to
CreateMipmappedTexture or set in the array returned by BeginLoadData must
be computed by the application. ITv simply accepts these images as the mipmap levels and
uses them directly. Once all of the mipmap levels for a texture are specified, the texture may
be used for mipmapped rendering by attaching the texture sampler as a shader uniform. An
example of specifying an entire pyramid follows:

IvTexture* texture;

//

{
for (unsigned int level = 0; level < texture->GetLevels(); level++) {
unsigned int width = texture->GetWidth(level);
unsigned int height = texture->GetHeight (level) ;
IvTexColorRGBA* texels
= (IvTexColorRGBA*)texture->BeginLoadData (level) ;

for (unsigned int y = 0; y < height; y++) {
for (unsigned int x = 0; x < width; x++) {
IvTexColorRGBA& texel = texels([x + y * width];

10.8 From Fragments to Pixels

// Set the texel color, based on
// filtering the previous level...
}
}

texture->EndLoadData (level) ;

In order to set the minification filter, the IvTexture function SetMinFiltering
is used. Iv supports both nonmipmapped modes (bilinear filtering and nearest-neighbor
selection) and all four mipmapped modes. The best-quality mipmapped mode (as described
previously) is trilinear filtering, which is set using

IvTexture* texture;
/7
texture->SetMinFiltering (kBilerpMipmapLerpTexMinFilter) ;

/7

10.8 From Fragments to Pixels

Thus far, this chapter has discussed generating fragments, computing the per-fragment
source values for a fragment’s shader, and some details of the more complex aspects of
evaluating a fragment’s shader (texture lookups). However, the first few sections of the
chapter outlined the real goal of all of this per-fragment work: to generate the final color
of a pixel in a rendered view of a scene. Recall that pixels are the destination values that
make up the rectangular gridded screen (or framebuffer). The pixels are “bins” into which
we place pieces of surface that impinge upon the area of that pixel. Fragments represent
these pixel-sized pieces of surface. In the end, we must take all of the fragments that fall
into a given pixel’s bin and convert them into a single color and depth for that pixel. We
have made two important simplifying assumptions in the chapter so far:

¢ All fragments are opaque; that is, near fragments obscure more distant ones.

¢ All fragments are complete; that is, a fragment covers the entire pixel.

Put together, these two assumptions lead to an important overall simplification: the nearest
fragment at a given pixel completely determines the color of that pixel. In such a system, all
we need do is find the nearest fragment at a pixel, shade that fragment, and write the result to
the framebuffer. This was a useful simplifying assumption when discussing visible surface
determination and texturing. However, it limits the ability to represent some common types
of surface materials. It can also cause jagged visual artifacts at the edges of objects on the
screen. As a result, two additional features in modern graphics systems have removed these
simplifying assumptions: pixel blending allows fragments to be partially transparent, and
antialiasing handles pixels containing multiple partial fragments. We will close the chapter
with a discussion of each.

413

414 Rasterization

Source Code
Blending

10.8.1 Pixel Blending

Pixel blending is a per-fragment, nongeometric function that takes as its inputs the shaded
color of the current fragment (which we will call Cy,.), the fragment’s alpha value (which
is properly a component of the fragment color, but which we will refer to as Ay, for
convenience), the current color of the pixel in the framebuffer (Cgy), and sometimes an
existing alpha value in the framebuffer at that pixel (A4;). These inputs, along with a pair of
blending functions F,. and F 4, define the resulting color (and potentially alpha value) that
will be written to the pixel in the framebuffer, Cp. Note that Cp, once written, will become
Cs in later blending operations involving the same pixel. The general form of blending is

Cp = FsrcCsrc @ Fas Cd&t

where @ can represent +, —, min (), or max (). We can also have a second pair of functions
that affect only A. In most cases in games, however, we use the formula above with &
set to +.

The alpha value, for both the source and the destination, is commonly interpreted as
opacity (we’ll see why when we discuss alpha blending, below). However, alpha can
also be interpreted as fractional coverage of a pixel by a color—alpha in this case is the
percentage of the pixel covered by the color. In general, this interpretation is not used much
in games except possibly in interfaces; it is used more often when using pixel blending
for 2D compositing or layering of images (also known as alpha compositing). We discuss
pixel coverage in more detail in Section 10.8.2. For more information on alpha as coverage,
see [123].

The simplest form of pixel blending is to disable blending entirely (“source replace”
mode), in which the fragment replaces the existing pixel. This is equivalent to

Fsrc =1
Fase = 0
Cp = FyeCye + Fist Cisr = (1)Csrc + (O)Cdsl = Cyre

Pixel blending is more commonly referred to by the name of its most common special
case: alpha blending. Alpha blending involves using the source alpha value Ay as the
opacity of the new fragment to linearly interpolate between Cg, and Cyg:

Fype = Asrc
Fag = (1 _Asrc)
CP = Fsrc Csrc + Fdst Cdst = Asrc Csrc + (1 - Asrc)cdst

Alpha blending requires Cgs; as an operand. Because Cgy is the pixel color (generally
stored in the framebuffer), alpha blending can (depending on the hardware) require that
the pixel color be read from the framebuffer for each fragment blended. This increased
memory bandwidth means that alpha blending can impact performance on some systems
(in a manner analogous to depth buffering). In addition, alpha blending has several other
properties that make its use somewhat challenging in practice.

Alpha blending is designed to compute a new pixel color based on the idea that the new
fragment color represents a possibly translucent surface whose opacity is given by Ag..

10.8 From Fragments to Pixels

Alpha blending only uses the fragment alpha value, not the alpha value of the destination
pixel. The existing pixel color is assumed to represent the entirety of the existing scene at
that pixel that is more distant than the current fragment, in front of which the translucent
fragment is placed. For the following discussion, we will write alpha blending as

Blend(Cyre, Agre, Cast) = (Asre) Core + (1 — Agre) Cage

The result of multiple alpha blending operations is order dependent. Each alpha blending
operation assumes that Cgg, represents the final color of all objects more distant than the
new fragment. If we view the blending of two possibly translucent fragments (C1, A1) and
(C2,A») onto a background color Cy as a sequence of two blends, we can quickly see that,
in general, changing the order of blending changes the result. For example, if we compare
the two possible blending orders, set A} = 1.0, and expand the functions, we get

Blend(C,, Az, Blend(Cy,A1, Cp)) 2 Blend(Cy,Aq, Blend(C3, A3, Cp))
Blend(C, Az, Blend(C1, 1.0, Cy)) = Blend(C1, 1.0, Blend(C, A, Co))
Blend(Cs, Ay, Cy) = C,

These two sides are almost never equal; the two blending orders will generally produce
different results. In most cases, alpha blending of two surfaces with a background color is
order dependent.

10.8.1.1 Pixel Blending and Depth Buffering

In practice, this order dependence of alpha blending complicates depth buffering. The depth
buffer is based on the assumption that a fragment at a given depth will completely obscure
any fragment that is at a greater depth, which is only true for opaque objects. In the presence
of alpha blending, we must compute the pixel color in a very specific ordering. We could
depth sort all of the triangles, but as discussed above, this is expensive and has serious
correctness issues with many datasets. Instead, one option is to use the assumption that
for most scenes, the number of translucent triangles is much smaller than the number of
opaque triangles. Given a set of triangles, one method of attempting to correctly compute
the blended pixel color is as follows:

1. Collect the opaque triangles in the scene into a list, O.

2. Collect the translucent triangles in the scene into another list, T.
3. Render the triangles in O normally, using depth buffering.

4. Sort the triangles in T by depth into a far-to-near ordering.

5. Render the sorted list T with blending, using depth buffering.

This might seem to solve the problem. However, per-triangle depth sorting is still an expen-
sive operation that has to be done on the host CPU in most cases. Also, per-triangle sorting

415

416 Rasterization

cannot resolve all differences, as there are common configurations of triangles that cannot
be correctly sorted back to front. Other methods have been suggested to avoid both of
these issues. One such method is to depth sort at a per-object level to avoid gross-scale
out-of-order blending, and then use more complex methods such as depth peeling [44],
which uses advanced programmable shading and multiple renderings of objects to “peel
away” closer surfaces (using the depth buffer) and generate depth-sorted colors. While quite
complicated, the method works entirely on the GPU, and focuses on getting the closest lay-
ers correct, under the theory that deeper and deeper layers of transparency gain diminishing
returns (as they contribute less and less to the final color).

Depth sorting or depth peeling of pixel-blended triangles can be avoided in some
application-specific cases. Two other common pixel blending modes are commutative,
and are thus order independent. The two blending modes are known as add and modulate.
Additive blending creates the effect of “glowing” objects and is defined as follows:

Fge =1
F dst = 1
Cp = Fre Csrc + Fst Cdst = (I)Csrc + (l)cdst = erc + Cdst

Modulate blending implements color filtering. It is defined as

Fxrc =0
Fast = Cyre
Cp = FyeCype + Fisi Cisr = (O)Csrc + CsreCast = CyreCuse

Note that neither of these effects involves the alpha component of the source or destina-
tion color. Both additive and modulate blending modes still require the opaque objects to
be drawn first, followed by the blended objects, but neither requires the blended objects to
be sorted into a depthwise ordering. As a result, these blending modes are very popular for
particle system effects, in which many thousands of tiny, blended triangles are used to simu-
late smoke, steam, dust, or water. Other and more complex order-independent transparency
solutions are possible; see [107] for one example.

Note that if depth buffering is used with unsorted, blended objects, the blended objects
must be drawn with depth buffer writing disabled, or else any out-of-order (front-to-back)
rendering of two blended objects will result in the more distant object not being drawn. In a
sense, blended objects do not exist in the depth buffer, because they do not obscure other
objects.

10.8.1.2 Premultiplied Aloha

In the above discussion, we have assumed that our colors are stored with straight RGB
values and an associated alpha value. The RGB values represent our base color and the
alpha represents its transparency or coverage; for example, (1, 0, 0, 1/2) represents semi-
transparent red. However, as we mentioned in Chapter 8, a better format for blending is
when we take the base RGB values and multiply them by the alpha value A, or

C'=CA

10.8 From Fragments to Pixels

This is known as premultiplied alpha, and now our RGB values represent the contribution
to the final result. The assumption here is that our alpha value lies in the range [0, 1].
If using 8-bit values for each channel you’ll need to divide by 255 after the multiply. And
when using SRGB be sure to apply the linear-to-sRGB conversion to the premultiplied
color—don’t apply it to the base color and then multiply by alpha.

Using this formulation, alpha blending becomes

Blend(cérc, ASVC’ Cl/jst) = (I)C;rc + (1 - Asrc)cés;

Since C;,, i8 AgreCyre this doesn’t appear to have gained us much, except perhaps saving a
multiply. But premultiplied alpha has a number of significant advantages.

First of all, consider the case where we’re using a texture with bilinear sampling. Suppose
we have a solid (A = 1) red texel right next to a transparent (A = 0) green texel. Using

standard colors, if we bilerp halfway between them, we get

272772
Despite the fact that we are interpolating from solid red to a completely transparent color,

we have somehow ended up with a semitransparent color of yellow. If we use premultiplied
alpha instead, the color values for the transparent color all become 0, so we have

1(1001)+1(0100)— L1y!
2”7 2,,’ — b

1 1 1 1
—(1,0,0,1 -(0,0,0,0)={(=,0,0, =
5)+ 5) (2 2)

which is the premultiplied alpha version of semitransparent red, which is what we want.
Even if we don’t use a completely transparent color, we still get odd results, say

1(1001)—}—1 ()101 = 11O5
2,55 2 77,4_2’2978

which is again much yellower than we’d expect. Using premultiplied alpha colors, we get

L1,0,0,0+2 (0,501) = (2102
2559 2 ,4,,4_2,8,,8

and the contribution from the second color is appropriately reduced. So the first, and most
important, advantage of premultiplied alpha is that it gives proper results from texture
sampling.

The second advantage is that it allows us to expand our simple blending equation to a
much larger set of blending operations, known as the Porter—Duff blending modes [123].
These are not often used in rendering 3D worlds, but they are very common in blending 2D
elements, so knowing how to duplicate those effects for your in-game UI can be useful for
certain effects. An example is the “Src In" operator, which replaces any contribution of the

destination with a proportional fraction of the source, or
(Adst)Clye + (0)Cl

This ends up becoming
(Adxt)A sreCsre

which is not possible with the standard blending modes and straight colors.

417

418 Rasterization

The third advantage allows us to create transparent values with color values greater
than 1, which is useful for creating lighting effects. For example, we could use a premul-
tiplied alpha color of (1, 1, 1, 1/2), which has the straight color equivalent of (2,2, 2, 1/2).
The end result will have twice the contribution to the scene, creating an emissive effect.
Forsyth [49] presents a great use for this in particle effects. Often we want particles to start
out as additive (i.e., sparks) and then become alpha blended (soot and smoke). By using
premultiplied alpha, we can create a single texture that has subareas representing the colors
for the different particle types, and use it with a single blending mode. The spark particles
can use a zero-alpha color with nonzero RGB values, or (R, G, B, 0). The smoke particles
can use a standard premultiplied alpha color, or (RA, GA, BA,A). By using these with the
premultiplied alpha blend equation, the spark areas get added to the scene and the smoke
areas will be alpha blended. For a single particle’s lifetime, all we need to do is shift its
texture coordinates to map from the different areas of the texture, and its visible representa-
tion will slowly change from spark to smoke. And all the particles will composite correctly
with a single texture and a single draw call, without having to switch between additive and
alpha blend modes.

Finally, when using straight colors, blending layers is not associative, so in order to get
the correct result of blending layers A—D, you must blend A with B, then that result with C,
then that result with D. However, there may be times when you want to blend B and C first,
say for some sort of screen-based postprocessing effect. Premultiplied alpha allows you to
do that and add the contributions A and D later. Note again that the order that is set for the
blend operations must be the same—you can’t blend C with B and expect to get the same
result as blending B with C.

The only downside of premultiplied alpha is that when using it with 8-bit or smaller
color channels, you end up losing precision. This is only an issue if you plan to use only
the RGB colors in some operation that would scale them up. Otherwise, for best results,
the use of premultiplied alpha is highly recommended.

10.8.1.3 Blending in Practice

Blending is enabled and controlled quite simply in most graphics systems, although there
are many options beyond the modes supported by Iv. Setting the blending mode is done
via the IvRenderer function SetBlendFunc, which sets F,., F 4 and the operator &
in a single function call. To use classic alpha blending (without premultiplied alpha), the
function call is

renderer->SetBlendFunc (kSrcAlphaBlendFunc, kOneMinusSrcAlphaBlendFunc,
kAddBlendOp) ;

Additive mode is set using the call
renderer->SetBlendFunc (kOneBlendFunc, kOneBlendFunc, kAddBlendOp) ;
Modulate blending may be used via the call

renderer->SetBlendFunc (kZeroBlendFunc, kSrcColorBlendFunc, kAddBlendOp) ;

10.8 From Fragments to Pixels

There are many more blending functions and operations available; see the source code for
more details.

Recall that it is often useful to disable z-buffer writing while rendering blended objects.
This is accomplished via depth buffer masking, described previously in the depth buffering
section.

10.8.2 Antialiasing

The other simplifying rasterization assumption we made earlier, the idea that partial frag-
ments are either ignored or “promoted” to complete fragments, induces its own set of issues.
The idea of converting all fragments into all-or-nothing cases was to allow us to assume
that a single fragment would “win” a pixel and determine its color. We used this assumption
to reduce per-fragment computations to a single-point sample.

This is reasonable if we treat pixels as pure point samples, with no area. However,
in our initial discussion of fragments and our detailed discussion of mipmapped textures,
we saw that this is not the case; each pixel represents a rectangular region on the screen
with a nonzero area. Because of this, more than one (partial) fragment may be visible inside
of a pixel’s rectangular region. Figure 10.22 provides an example of such a multifragment
pixel.

Fragments covering
highlighted pixel

]

Figure 10.22. Multiple fragments falling inside the area of a single pixel.

419

420 Rasterization

Point samples of
partial fragments Final on-screen color of pixels

Point samples can fall in Entire pixels may be assigned
unrepresentative parts of pixels an unrepresentative color

Figure 10.23. A point sample may not accurately represent the overall color of a pixel.

Using the point-sampled methods discussed, we would select the color of a single frag-
ment to represent the entire area of the pixel. However, as can be seen in Figure 10.23,
this pixel center point sample may not represent the color of the pixel as a whole. In the
figure, we see that most of the area of the pixel is dark gray, with only a very small square
in the center being bright white. As a result, selecting a pixel color of bright white does not
accurately represent the color of the pixel rectangle as a whole. Our perception of the color
of the rectangle has to do with the relative areas of each color in the rectangle, something
that the single-point sampling method cannot represent.

Figure 10.24 makes this even more apparent. In this situation, we see two examples
of a pixel of interest (the center pixel in each 9-pixel 3 x 3 grid). In both center-pixel
configurations (top and bottom of the left side of the figure), the vast majority of the surface
area is dark gray. In each of the two cases, the center pixel contains a small, white fragment.
The white fragments are the same size in both cases, but they are in slightly different
positions relative to the center pixel in each of the two cases. In the first (top) example,
the white fragment happens to contain the pixel center, while in the bottom case, the white
fragment does not contain the pixel center. The right column shows the color that will be
assigned to the center pixel in each case. Very different colors are assigned to these two
pixels, even though their geometric configurations are almost identical. This demonstrates
the fact that single-point sampling the color of a pixel can lead to somewhat arbitrary results.
In fact, if we imagine that the white fragment were to move across the screen over time,
an entire line of pixels would flash between white and gray as the white fragment moved
through each pixel’s center.

It is possible to determine a more accurate color for the 2 pixels in the figure. If the
graphics system uses the relative areas of each fragment within the pixel’s rectangle to
weight the color of the pixel, the results will be much better. In Figure 10.25, we can see
that the white fragment covers approximately 10 percent of the area of the pixel, leaving

White partial fragment
drawn to screen

White fragment
covers a pixel
center

White fragment moves
(dotted outline shows
previous position)

Fragment no
longer covers a
pixel center

10.8 From Fragments to Pixels

Final on-screen color
of pixels

Figure 10.24. Subpixel motion causing a large change in point-sampled pixel color.

Pixel

Point sz?mple 10% coverage,
location (1,1,1) color

90% coverage, (%,% ,%) color

Screen-space pixel coverage

Figure 10.25. Area sampling of a pixel.

Point-sampled pixel color

Area-sampled pixel color

421

422 Rasterization

the other 90 percent as dark gray. Weighting the color by the relative areas, we get a pixel
color of

Carea = 0.1 x (1.0, 1.0, 1.0) + 0.9 x (0.25,0.25,0.25) = (0.325,0.325,0.325)

Note that this computation is independent of where the white fragment falls within the
pixel; only the size and color of the fragment matter. Such an area-based method avoids
the point-sampling errors we have seen. This system can be extended to any number of
different colored fragments within a given pixel. Given a pixel with area a,;y.; and a set of
n disjoint fragments, each with an area within the pixel a; and a color C;, the final color
of the pixel is then

n n
iz 4 x Ci _ ai

n
= Z x C; = E Fi x C;
Apixel i—1 9pixel P

where F; is the fraction of the pixel covered by the given fragment, or the fragment’s
coverage. This method is known as area sampling. In fact, this is really a special case
of a more general definite integral. If we imagine that we have a screen-space func-
tion that represents the color of every position on the screen (independent of pixels or
pixel centers) C(x,y), then the color of a pixel defined as the region/ <x <r,t <y <b
(the left, right, top, and bottom screen coordinates of the pixel), using this area-sampling
method, is equivalent to

[P [T Cx, y)dxdy _ [P [T Cx, y)dxdy _ [P [CCx, y)dxdy (105)

ftb flr dxdy G- -1 Apixel

which is the integral of color over the pixel’s area, divided by the total area of the pixel.
The summation version of Equation 10.5 is a simplification of this more general inte-
gral, using the assumption that the pixel consists entirely of areas of piecewise constant
color, namely, the fragments covering the pixel.

As a verification of this method, we shall assume that the pixel is entirely covered by a
single, complete fragment with color C(x,y) = Cr, giving

b b b
[f] Cx,y)dxdy _ [;f] Crdxdy e [0 dxdy _ ¢, Cixel
Apixel Apixel Apixel Apixel

=Cr (10.6)

which is the color we would expect in this situation.

While area sampling does avoid completely missing or overemphasizing any single
sample, it is not the only method used, nor is it the best at representing the realities of
display devices (where the intensity of a physical pixel may not actually be constant within
the pixel rectangle). The area sampling shown in Equation 10.5 implicitly weights all regions
of the pixel equally, giving the center of the pixel weighting equal to that of the edges. As a
result, it is often called unweighted area sampling. Weighted area sampling, on the other
hand, adds a weighting function that can bias the importance of the colors in any region of
the pixel as desired. If we simplify the original pixel boundaries and the functions associated

10.8 From Fragments to Pixels

with Equation 10.5 such that boundaries of the pixel are 0 < x,y < 1, then Equation 10.5
becomes

S S Ceyddy _ o fy €,y
[P [7 dxdy 1

Having simplified Equation 10.5 into Equation 10.7, we define a weighting function W (x, y)
that allows regions of the pixel to be weighted as desired:

(10.7)

fol fol W(x, y)C(x, y)dxdy

(10.8)
fol fol W(x,y)dxdy

In this case, the denominator is designed to normalize according to the weighted area.
A similar substitution to Equation 10.6 shows that constant colors across a pixel map to the
given color. Note also that (unlike unweighted area sampling) the position of a primitive
within the pixel now matters. From Equation 10.8, we can see that unweighted area sam-
pling is simply a special case of weighted area sampling. With unweighted area sampling,
W(x,y) =1, giving

fOl fol W(x, y)C(x, y)dxdy
fol fol W(x,y)dxdy
_ Jo Jo (DCCx,y)dxdy
S Jo (havdy
o Jy €O y)dxdy
o oy

o Jy €l y)dxdy
- 1

A full discussion of weighted area sampling, the theory behind it, and numerous com-
mon weighting functions is given in Hughes et al. [82]. For those desiring more depth,
Glassner [54] and Wohlberg [159] detail a wide range of sampling theory.

10.8.2.1 Supersampled Antialiasing

The methods so far discussed show theoretical ways for computing area-based pixel colors.
These methods require that pixel-coverage values be computed per fragment. Computing
analytical (exact) pixel-coverage values for triangles can be complicated and expensive.
In practice, the pure area-based methods do not lead directly to simple, fast hardware
antialiasing implementations.

The conceptually simplest, most popular antialiasing method is known as oversampling,
supersampling, or supersampled antialiasing (SSAA). In SSAA, area-based sampling is
approximated by point sampling the scene at more than one point per pixel. In SSAA, frag-
ments are generated not at the per-pixel level, but at the per-sample level. In a sense, SSAA
is conceptually little more than rendering the entire scene to a larger (higher-resolution)

423

424 Rasterization

framebuffer, and then filtering blocks of pixels in the higher-resolution framebuffer down
to the resolution of the final framebuffer. For example, the supersampled framebuffer may
be N times larger in width and height than the final destination framebuffer on-screen. In
this case, every N x N block of pixels in the supersampled framebuffer will be filtered down
to a single pixel in the on-screen framebuffer.

The supersamples are combined into a single pixel color via a weighted (or in some
cases unweighted) average. The positions and weights used with weighted area versions
of these sampling patterns differ by manufacturer; common examples of sample positions
are shown in Figure 10.26. Note that the number of supersamples per pixel varies from as
few as 2 to as many as 16. M-sample SSAA represents a pixel as an M-element piecewise
constant function. Partial fragments will only cover some of the point samples in a pixel,
and will thus have reduced weighting in the resulting pixel.

Some of the N x N sample grids also have rotated versions. The reason for this is
that horizontal and vertical lines happen with high frequency and are also correlated with
the pixel layout itself. By rotating the samples at the correct angle, all N> samples are
located at distinct horizontal and vertical positions. Thus, a horizontal or vertical edge
moving slowly from left to right or top to bottom through a pixel will intersect each sample
individually and will thus have a coverage value that changes in 1/N? increments. With
screen-aligned N x N sample patterns, the same moving horizontal and vertical edges would
intersect entire rows or columns of samples at once, leading to coverage values that changed
in 1 /N increments. The rotated patterns can take better advantage of the number of available
samples.

M-sample SSAA generates M times (as mentioned above, generally 2—16 times) as
many fragments per pixel. Each such (smaller) fragment has its own color computed by
evaluating per-vertex attributes, texture values, and the fragment shader itself as many as
M times more frequently per frame than normal rendering. This per-sample full rendering

4 samples

2 samples

4 samples, rotated

9 samples

Figure 10.26. Common sample-point distributions for multisample-based antialiasing.

10.8 From Fragments to Pixels

pipeline is very powerful, since each sample truly represents the color of the geometry at
that sample. It is also extremely expensive, requiring the entire rasterization pipeline to be
invoked per sample, and thus increasing rasterization overhead by 2—16 times. For even
powerful 3D hardware systems, this can simply be too expensive.

10.8.2.2 Multisampled Antialiasing

The most expensive aspect of supersampled antialiasing is the creation of individual frag-
ments per sample and the resulting texturing and fragment shading per sample. Another
form of antialiasing recognizes the fact that the most likely causes of aliasing in 3D render-
ing are partial fragments at the edges of objects, where pixels will contain multiple partial
fragments from different objects, often with very different colors. Multisampled antialias-
ing (MSAA) attempts to fix this issue without raising the cost of rendering as much as
does SSAA. MSAA works like normal rendering in that it generates fragments (includ-
ing partial fragments) at the final pixel size. It only evaluates the fragment shader once
per fragment, so the number of fragment shader invocations is reduced significantly when
compared to SSAA.

The information that MSAA does add is per-sample fragment coverage. When a fragment
is rendered, its color is evaluated once, but then that same color is stored for each visible
sample that the fragment covers. The existing color at a sample (from an earlier fragment)
may be replaced with the new fragment’s color. But this is done at a per-sample level.
At the end of the frame, a “resolve” is still needed to compute the final color of the pixel
from the multiple samples. However, only a coverage value (a simple geometric operation)
and possibly a depth value is computed per sample, per fragment. The expensive steps
of computing a fragment color are still done once per fragment. This greatly reduces the
expense of MSAA when compared to SSAA.

There are two subtleties to MSAA worth mentioning. First, since MSAA is coverage
based, no antialiasing is computed on complete fragments. The complete fragment is ren-
dered as if no antialiasing was used. SSAA, on the other hand, antialiases every pixel by
invoking the fragment’s shader several times per pixel. A key observation is that perhaps
the most likely item to cause aliasing in single-sampled complete fragments is texturing
(since it is the highest-frequency value across a fragment). Texturing already has a form of
antialiasing applied: mipmapping. Thus, this is not a problem for MSAA in most cases.

The other issue is the question of selecting the position in the pixel at which to evaluate
a shader on a partial fragment. Normally, we evaluate the fragment shader at the pixel
center. However, a partial fragment may not even cover the pixel center. If we sample the
fragment shader at the pixel center, we actually will be extrapolating the vertex attributes
beyond the intended values. This is particularly noticeable with textures, as we will read
the texture at a location that may not have been mapped in the triangle. This can lead to
glaring visual artifacts. The solution in most 3D MSAA hardware is to select the centroid
of the samples covered by a fragment. Since fragments are convex, the centroid will always
fall inside of the fragment. This does add some complexity to the system, but the number
of possible configurations of a fragment that does not include the pixel center is limited.
The convexity and the fact that the central sample is not touched means that there are a
very limited set of covered-sample configurations possible. The set of possible positions
can be precalculated before the hardware is even built. However, centroid sampling must

425

426 Rasterization

be requested on a per-attribute basis. Otherwise, the hardware will default to using pixel
center sampling.

10.8.3 Antialiasing in Practice

For most rendering APIs, the most important step in using MSAA is to create a framebuffer
for rendering that is compatible with the technique. Whereas depth buffering required
an additional buffer alongside the framebuffer to store the depth values, MSAA requires a
special framebuffer format that includes the additional color, depth, and coverage values per
sample within each pixel. Different rendering APIs and even different rendering hardware
on the same APIs often have different methods for explicitly requesting MSAA-compatible
framebuffers. Some rendering APIs allow the application to specify the number and event
layout of samples in the pixel format, while others simply use a single flag for enabling a
single (unspecified) level of MSAA.

Finally, some rendering APIs can require special flags or restrictions when presenting
an MSAA framebuffer to the screen. For example, sometimes MSAA framebuffers must be
presented to the screen using a special mode that marks the framebuffer’s contents as invalid
after presentation. This takes into account the fact that the framebuffer must be “resolved”
from its multisample-per-pixel format into a single color per pixel during presentation,
destroying the multisample information in the process.

10.9 Chapter Summary

This chapter concludes the discussion of the rendering pipeline. Rasterization provides us
with some of the lowest-level yet most mathematically interesting concepts in the entire
pipeline. We have discussed the connections between mathematical concepts, such as
projective transforms, and rendering methods, such as perspective-correct texturing. In addi-
tion, we addressed issues of mathematical precision in our discussion of the depth buffer.
Finally, the concept of point sampling versus area sampling appeared twice, relating to both
mipmapping and antialiasing. Whether it is implemented in hardware, software, or a mix-
ture of the two, the entire graphics pipeline is ultimately designed only to feed a rasterizer,
making the rasterizer one of the most important, yet least understood, pieces of rendering
technology.

Thanks to the availability of high-quality, low-cost 3D hardware on a wide range of
platforms, the percentage of readers who will ever have to implement their own rasterizer
is now vanishingly small. However, an understanding of how rasterizers function is impor-
tant even to those who will never need to write one. For example, even a basic practical
understanding of the depth buffering system can help a programmer build a scene that avoids
visual artifacts during visible surface determination. Understanding the inner workings of
rasterizers can help a 3D programmer quickly debug problems in the geometry pipeline.
Finally, this knowledge can guide programmers to better optimize their geometry pipeline,
“feeding” their rasterizer with high-performance datasets.

ﬁ) Random Numlbers

11.1 Infroduction

Now that we’ve spent some time in the deterministic worlds of pure mathematics, graphics,
and interpolation, it’s time to look at some techniques that can make our world look less
structured and more organic. We’ll begin in this chapter by considering randomness and
generating random numbers in the computer.

So why do we need random numbers in games? We can break down our needs into a
few categories: the basic randomness needed for games of chance, as in simulating cards
and dice; randomness for generating behavior for intelligent agents, such as enemies and
nonplayer allies; turbulence and distortion for procedural textures; and randomly spreading
particles, such as explosions and gunshots, in particle systems.

In this chapter we’ll begin by covering some basic concepts in probability and statistics
that will help us build our random processes. We’ll then move to techniques for measuring
random data and then basic algorithms for generating random numbers. Finally, we’ll close
by looking at some applications of our random number generators (RNGs).

11.2 Probability

Probability theory is the mathematics of measuring the likelihood of unpredicable behavior.
It was originally applied to games of chance such as dice and cards. In fact, Blaise Pascal
and Pierre de Fermat worked out the basics of probability to solve a problem posed by a
famous gambler, the Chevalier de Mere. His question was, which is more likely, rolling at
least one 6 in 4 throws of a single die, or at least one double 6 in 24 throws of a pair of dice?
(We’ll answer this question at the end of the next section.)

427

428 Random Numbers

These days probability can be used to predict the likelihood of other events such as the
weather (i.e., the chance of rain is 60 percent) and even human behavior. In the following
section we will summarize some elements of probability, enough for simple applications.

11.2.1 Basic Probability

The basis of probability is the random experiment, which is an experiment with a nondeter-
mined outcome that can be observed and reobserved under the same conditions. Each time
we run this experiment we call it a random trial, or just a trial. We call any of the particular
outcomes of this experiment an elementary outcome, and the set of all elementary outcomes
the sample space. Often we are interested in a particular set of outcomes, which we call the
favorable outcomes or an event.

We define the probability of a particular event as a real number from O to 1, where 0
represents that the event will never happen, and 1 represents that the event will always
happen. This value can also be represented as a percentage, from 0 to 100 percent. For a
particular outcome w;, we can represent the probability as P(w;).

The classical computation of probability assumes that all outcomes are equally likely.
In this case, the probability of an event is the number of favorable outcomes for that event
divided by the total number of elementary outcomes. As an example, suppose we roll a fair
(i-e., not loaded) six-sided die. This is our random experiment. The sample space €2 for our
experiment is all the possible values on each side, so 2 = {1,2,3,4,5, 6}. The event we’re
interested in is, how likely is it for a 3 or 4 to come up? Or, what is P(3 or 4)? The number
of favorable outcomes is two (either a 3 or a 4) and the number of all elementary outcomes
is six, so the probability is 2 over 6, or 1/3.

Another classic example is drawing a colored ball out of a jar. If we have 3 red balls,
2 blue balls, and 5 yellow balls, the probability of drawing a red ball out is 3/(3 +2+5),
or 3/10, the probability of drawing a blue ballis 2/10 = 1/5, and the probability of drawing
ayellow ball is 5/10 = 1/2.

However, it’s not always the case that each outcome is equally likely (life is not neces-
sarily fair). Because of this, there are two additional approaches to computing probabilities.
The first is the frequentist approach, which has as its central tenet that if we perform a large
number of trials, the number of observed favorable outcomes over the number of trials will
approach the probability of the event. This also is known as the law of large numbers. The
second is the Bayesian approach, which is more philosophical and is based on the fact that
many events are not in practice repeatable. The probability of such events is based on a
personal assessment of likelihood. Both have their applications, but for the purposes of this
chapter, we will be focusing on the frequentist definition.

As an example of the law of large numbers, look at Figure 11.1. Figure 11.1a shows the
result of a computer simulation of rolling a fair die 1,000 times. Each column represents the
number of times each side came up. As we can see, while the columns are not equal, they
are pretty close. For example, if we divide the number of 3s generated by the total number
of rolls, we get 0.164—pretty close to the actual answer of 1/6.

Figure 11.1b, on the other hand, shows the result of rolling a loaded die, where 6s come
up more often. As we’d expect, the 6 column is much higher than the rest, and dividing
the number of 6s generated by the total gives us 0.286—mnot at all close to the expected
probability. Clearly something nefarious is going on. While we never can be exact about

11.2 Probability 429

300

250

200

150 +— —

Number of rolls

100 +— —

0 T T T T T

Die value

()

300

250 —

200 —

Number of rolls
Q
<)

100 +— —

0 T T T T T

Die value

(b)

Figure 11.1. (a) Simulation results for rolling a fair die 1,000 times and (b) simulation
results for rolling a loaded die 1,000 times.

whether observed results match expected behavior (this is probability, after all), we’ll talk
later about a way to measure whether our observed outcomes match the expected outcomes.

We often consider the probability of more than one trial at a time. If performing the
experiment has no effect on the probability of future trials, we call these independent events
or independent trials. For example, each instance of rolling a die is an independent trial.
Drawing a ball out of the jar and not putting it back is not; future trials are affected by what
happens. For example, if we draw a red ball out of the jar and don’t replace it, the probability

430 Random Numbers

of drawing another red ball is 2/9, as there are now only two red balls and nine balls total
in the jar. These are known as dependent events or dependent trials.

A few algebraic rules for probability may prove useful for game development. First
of all, the probability of an event not happening is 1 minus the probability of the event,
or P(not E) = 1 — P(E). For example, the probability of not rolling a 6 on a fair die is
1-1/6=5/6.

Secondly, the probability of two independent events E and F occurring is P(E) - P(F).
So, for example, the probability of rolling a die twice and rolling a 1 or 2 on the first roll
and a 3, 4, or 6 on the second roll is 2/6-3/6 = 6/36 = 1/6.

Finally, the probability of one event E or another event F' is P(E) 4+ P(F) — P(E and F).
An example of this is considering the probability of rolling an odd number or a 1 on a die.
The probability of rolling an odd number and a 1 is just the probability of rollinga 1, or 1/6
(we can’t use the multiplicative rule here because the events are not independent). So, the
resultis 3/641/6 — 1/6 = 1/2—just the probability of rolling an odd number.

With these rules we can answer Chevalier de Mere’s question. The first part of the
question is, what is the probability of rolling at least one 6 in four throws of a single
die? We’ll represent this as P(E). It’s a little easier to turn this around and ask, what is the
probability of not rolling a 6 in four throws of one die? We can call the event of not throwing
a 6 on the ith roll A;, and the probability of this event is P(A;). Then the probability of all 4 is
P(A1 and A> and A3 and A4). As each roll is an independent event, we can just multiply the
four probabilities together to get a probability of (5/6)*. But this probability is P(not E), so
we must use the “not” rule and subtract the result from 1 to get P(E) = 1 — (5/ 6)*,0r0.518.

The other half of the question is, what is the probability of rolling at least one double
6 in 24 throws of a pair of die? This can be answered similarly. We represent this as P(F).
Again, we turn the question around and compute the probability of the negative: rolling no
double 6s. For a given roll i, the probability of not rolling a double 6 is P(B;) = 35/36.
We multiply the results together to get P(not F) = (35/36)2* and so P(F) = 1 — (35/36)*4,
or 0.491. So, the first event is more likely.

This is just a basic example of computing probabilities. Those interested in computing
the probability of more complex examples are advised to look to the references noted at
the end of the chapter—it can get more complicated than one expects, particularly when
dealing with dependent trials.

11.2.2 Random Variables

As we saw with vectors, mathematicians like abstractions so they can wrap an algebra
around a concept and perform symbolic operations on it. The abstraction in this case is
the random variable. Suppose we have a random experiment that generates values (if not,
we can assign a value to each outcome of our experiment). We call the values generated by
this process a random variable, usually represented by X. Note that X represents all possible
values; a particular result of a random experiment is represented by X;, and a particular value
is represented by x.

If the set of all random values for our given problem has a fixed size,! as in the examples
above, then we say it is a discrete random variable. In this case, we’re interested in the

! Or, is countably infinite, though in games this is rarely considered, if ever.

11.2 Probability 431

1.0

0.8
£ 0.6 1
;é [}
a)
8
~ 04 A

0.2 4

0 T T
1 2 3
(red) (blue) (yellow)
Ball color

Figure 11.2. Probability mass function for drawing one ball out of a jar with three red
balls, two blue balls, and five yellow balls.

probability of a particular outcome x. We can represent this as a function m(x), where the
function’s domain is the sample space 2. As an example, suppose we create such a function
for our jar experiment. We’ll say that red = 1, blue =2, and yellow = 3. The sample space
of our random variable is now 2 = 1,2, or 3. The value of m(x) for each possible x is the
probability that x is the result of the draw out of the jar. The resulting graph can be seen in
Figure 11.2. Notice that m(x) only has a value at 1,2, or 3, and is O everywhere else. This
is known as a probability mass function, or sometimes a probability distribution function.
This function has three important properties: its domain is the sample space of a random
variable; for all values x, m(x) > 0 (i.e., there are no negative probabilities); and the sum
of the probabilities of all outcomes is 1, or

n—1
> mx) =1
i=0

where 7 is the number of elements in 2.

Now, suppose that our sample space has an uncountably infinite number of outcomes.
One example of this is spinning a disc with a pointer: its angle relative to a fixed mark
has an infinite number of possible values. This is known as a continuous random variable.
Another example of a continuous random variable is randomly choosing a value from all
real values in the range [0, 1]. Assuming all numbers have an equal probability, this is known
as a uniform variate, or sometimes as the canonical random variable & [121].

One interesting thing about a continuous random variable is that the probability of a
given outcome x is 0, since the number of possible outcomes we’re dividing by is infinite.
However, we can still measure probabilities by considering ranges of values and use a
special kind of function to encapsulate this. Figure 11.3 shows one such function over the

432 Random Numbers

0.20

0.18
0.16
0.14
0.12

2 0.10 A
0.08
0.06
0.04

0.02 A

0 T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

Figure 11.3. Example of a probability density function.

canonical random variable. This function f(x) is known as a probability density function
(PDF). It has characteristics similar to the probability mass function for the discrete case: all
values f(x) are greater than or equal to 0 and the area under the curve is equal to 1. As with
the discrete case, the second characteristic indicates that the sum of the probabilities for all
outcomes is 1 and can be represented by the integral:

/Oof(x)dx =1

We can also find the probability of a series of random events, say from a to b. In the discrete
case, all we need to do is take the sum across that interval:

b
Pa<w=<b =Y mx)
X=a
In the continuous case, again we take the integral:

b
Pla<x<b) = / fx)dx

Sometimes we want to know the probability of a random value being less than or equal to
some value y. Using the mass function, we can compute this in the discrete case as

,
FO)= Y m(x)

X=X(

11.2 Probability 433

1.2

1.0

0.8 1

0.6

F(x)

0.4 1

0.2

O T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X

Figure 11.4. Corresponding cumulative distribution function for the probability density
function in Figure 11.3.

or in the continuous case using the density function as

y
F(y) = / Fod

This function F(x) is known as the cumulative distribution function (CDF). We can think
of this as a cumulative sum across the domain. Note that because the CDF is the integral of
the PDF in the continuous realm, the PDF is actually the derivative of the CDF.

Figure 11.4 shows the cumulative distribution function for the continuous PDF in
Figure 11.3. Note that it starts at a value of 0 for the minimum in the domain and
increases to a maximum value of 1: all cumulative distribution functions have this property.
We’ll be making use of cumulative distribution functions when we discuss the chi-square
method below.

11.2.3 Mean and Standard Deviation

Suppose we conduct N random trials with the random variable X, giving us results (or sam-
ples) Xo, X1, ..., Xn—1. If we take what is commonly known as the average of the values,
we get the sample mean

1 N-1

X=g52 X

=

434 Random Numbers

We can think of this as representing the center of the values produced. We can get some
sense of spread of the values from the center by computing the sample variance s* as

lel
2 v\2
- —— Y xi-%
’ N—1i_0(‘)

The larger the sample variance, the more the values spread out from the mean. The smaller
the variance, the closer they cluster to the mean. The square root s of this is known as the
standard deviation of the sample.

Note that these values are computed for the samples we record. We can compute similar
values for the mass or density function for X as well, dropping the reference to “sample”
in the definitions.

The expected value or mean of a discrete random variable X with sample space Q2 of
size n and mass function m(x) is

n—1
E(X) = xm(x)
i=0
And for a continuous random variable, it is

o
EX) = / xf (x)dx
—0o0
Both are often represented as u for short. Similar to the sample mean, these represent the
centers of the probability mass and density functions, respectively.
The corresponding spread from the mean is the variance, which is computed in the

discrete case as
n—1

o= (i~ w’mx)

i=0

and in the continuous case as

o0
2 2
o° = / (x — w)f (x)dx
—0o0
As before, the square root of the variance, or o, is called the standard deviation.
We’ll be making use of these quantities below, when we discuss the normal distribution
and the central limit theorem.

11.2.4 Special Probability Distributions

There are a few specific probability mass functions and probability density functions that
are good to be aware of. The first is the uniform distribution. A uniform probability mass
function for n discrete random variables has m(x;) = 1/n for all x;. Similarly, a uniform
probability density function over the interval [a,b] has f(x) = 1/(b—a) foralla <x < b
and f(x) = 0 everywhere else. Examples of uniform probability distributions are rolling a
fair die or drawing a card. On the other hand, the distribution of a loaded die is nonuniform.

11.2 Probability 435

Similarly, our PDF in Figure 11.3 has a nonuniform distribution. Our immediate goal in
building a random number generator is simulating a uniformly distributed random variable,
but as the large majority of situations we deal with will have nonuniform distributions,
simulating those also will be important.

There are two other distributions that are of general interest. The first is a discrete
distribution known as the binomial distribution. Suppose we have a random experiment
where there are only two possible outcomes: success or failure. How we measure success
depends on the experiment: it could be rolling a 2 or 3 on a single die roll, or flipping a
coin so it lands heads, or picking out a red ball. Each time we perform the experiment it
must not affect any other time (i.e., it is independent), and the probabilities must remain
the same each time. Now we repeat this experiment n times, and ask the question, how
many successes will we have? This is another random variable, called the binomial random
variable.

In general, we’re more interested in the probability that we will have k successes, which is

PrX = k) = (Z)p"(l —pyk

n\ _ n!
(k) Tkl (n—k)!

This is known as the binomial coefficient. If we graph the result forn = 8, p = 2/3, and
all values of k from 1 to n, we get a lopsided pyramid shape (Figure 11.5). Note that the
mean lies near the peak of the pyramid. It will only lie at the peak if the result is symmetric,
which only happens if the probability p = 1/2.

This discrete distribution can lead to a continuous density function. Suppose that n gets
larger and larger. As n approaches oo, the discrete distribution will start to approximate a
continuous density function; oddly, this function also becomes symmetric. Now we take

where

0.30

0.254

0.20

0.154 *

Probability

0.10

L |

Number of successes

Figure 11.5. Binomial distribution for » = 8 and p = 2/3.

436 Random Numbers

0.45

0.40

0.35 4

0.30

0.25

S)

0.20

0.15

0.10

0.05

Figure 11.6. The standard normal distribution.

this continuous function and translate it so that the mean lies on 0, and scale it so that the
standard deviation is 1, while maintaining an area of 1 under the curve. What we end up
with is seen in Figure 11.6: the standard normal distribution. This can be represented by
the function

e—x2 /2

f) =

1
V2m
We can also have a general normal distribution where we can specify mean and standard
deviation, also known as a Gaussian distribution or a bell curve:

2 2
e~ —7/20

fx) =

o2

Note that the Gaussian distribution is also the same one used (albeit in 2D) when applying
a blur filter to an image or to generate a mipmap.

Figure 11.7 shows a general normal distribution with a mean of 3.75 and a standard
deviation of 2.4. For any value of p, the binomial distribution of n trials can be approximated
by a normal distribution with & = np and o = np(1 — p). Also, for a further intuitive sense
of standard deviation it’s helpful to note that in the normal distribution 68 percent of results
are within 1 standard deviation around the mean, and 95 percent are within 1.96 standard
deviations.

The interesting thing about the normal distribution is that it can be applied to all sorts of
natural phenomena. Test values for a large group of students will fall in a normal distribution.
Or measurements taken by a large group, say length or temperature, will also fall in a normal
distribution.

With the introduction of the normal distribution we can also draw a better relationship
between the mean and the sample mean. Suppose we take N random samples using a
probability distribution with mean u and standard deviation o. Due to a theorem known as

11.3 Determining Randomness

0.18

0.16

0.14

0.12

0.10

Sx)

0.08

0.06

0.04 /

0.02

0 T T T T
-2 -1 0 1 2 3 4 5 6 7 8

X

Figure 11.7. General normal distribution with mean of 3.75 and standard deviation of 2.4.

the central limit theorem, it can be shown that the sample mean X of our samples should
be normally distributed around the mean p, and that the standard deviation of Xiso / J/N.
So, the average of random samples from a normal distribution is also normally distributed,
and the larger N is, the smaller o/+/N will be. So, what this is saying is that for very large
N, the mean 1 and the sample mean X should be nearly equal. We’ll be making use of this
when we discuss hypothesis testing in the next section.

11.3 Determining Randomness

Up to this point we have been talking about random variables and probabilities while dancing
around the primary topic of this chapter—randomness. What does it mean for a variable to
be random? How can we determine that our method for generating a random variable is,
in fact, random? Unfortunately, as we’ll see, there is no definitive test for randomness, but
we can get a general sense of what randomness is.

We use the term random loosely to convey a sense of nondeterminism and unpredictabil-
ity. Note that human beings are notoriously bad at generating random numbers. Ask a large
group of people for a number between 1 and 10, and the majority of the people will pick 7.
The reason is that they are consciously trying to be random—trying to avoid creating a
pattern, as it were—and by doing so they create a new pattern. The same can happen if
you ask someone to generate a random sequence of numbers. They will tend to mix things
up, placing large numbers after small ones, and avoiding “patterns,” such as having the
same number twice in a row. The problem is that a true random process will generate such
results—streaks happen. So again, by trying to avoid patterns, a new and more subtle pattern
is generated.

This gives us a clue as to how we might define a sequence of random numbers: a sequence
with no discernable pattern. Statistically, when we say a process is random, we mean that it

437

438 Random Numbers

lacks bias and correlation. A biased process will tend toward a single value or set of values,
such as rolling a loaded die. Informally, correlation implies that values within the sequence
are related to each other by a pattern, usually some form of linear equation. As we will see,
when generating random numbers on a computer we can’t completely remove correlation,
but we can minimize it enough so that it doesn’t affect any random process we’re trying to
simulate.

11.3.1 Chi-Square Test

In order to test for bias and somewhat for correlation, we will perform a series of random
experiments with known probabilities and compare the results of the experiments with their
expected distribution. For this comparison, we’ll use a common statistical technique known
as hypothesis testing. The way we’ll use it is to take a set of observed values generated by
some sort of random process (we hope), compare against an expected distribution of values,
and determine the probability that the result is suitably random. Most of the tests we’ll see
below pick a particularly nasty test case and then use hypothesis testing to measure how
well a random number generator does with that case.

The first step of hypothesis testing is to declare a null hypothesis, which, in this case,
is that the random number generator is a good one and our samples approximate the proba-
bility distribution for our particular experiment. Our alternate hypothesis is that the results
are not due to chance—that something else is biasing the experiment.

The second step is to declare a test statistic against which we’ll measure our results. In our
case, the test statistic will be the particular probability distribution for our experiment.

The third step is to compute a p value comparing our test statistic to our samples. This is
another random variable that measures the probability that our observed results match the
expected results. The lower this probability, the more likely that the null hypothesis is not
true for our results. Finally, we compare this p value to a fixed significance level «. If the
p value is less than or equal to «, then we agree that the null hypothesis is highly unlikely
and we accept the alternate hypothesis.

One possibility for our p value is to compare the sample mean for our results with the
mean for our probability distribution. From the central limit theorem, we know that the
sample mean is normally distributed, and the probability of the sample mean lying outside
of 1.96 standard deviations from the mean is around 5 percent. So, one choice is to let
the p value be the probability of our deviation from the sample mean, and our significance
level 5 percent (i.e., if we lie outside two standard deviations we fail the null hypothesis).

However, in our case we’re going to use a different technique known as Pearson’s chi-
square test, or more generally the chi-square (or x?2) test. Chi-square in this case indicates
a certain probability distribution, so there can be other chi-square tests, which we won’t be
concerned with in this text.

To see how the chi-square test works, let’s work through an example. Suppose we want
to simulate the roll of two dice, summed together. The probabilities of each value are as
follows:

Die Value 2 3 4 5 6 7 8 9 10 11 12

Probability | 1/36 | 1/18 | 1/12|1/9|5/36 | 1/6 |5/36 | 1/9 | 1/12| 1/18 | 1/36

11.3 Determining Randomness

So, if we were to perform, say, 360 rolls of the dice, we’d expect that the dice would come
up the following number of times:

DievValue | 2 | 3 |4 | 5|6 | 7|89 |10]11]12

Frequency | 10 | 20 | 30 | 40 | 50 | 60 | 50 | 40 | 30 | 20 | 10

These are the theoretical frequencies for our sample trial. Our null hypothesis is that our
random number generator will simulate this distribution. The alternate hypothesis is that
there is some bias in our random number generator. Our test statistic is, as we’d expect, this
particular distribution. In addition, note that we need a large number of samples in order
for our chi-square test to be valid.

Now take a look at some counts generated from two different random number generators.

Die Value 2131415167189 |10f11]12

Experiment1 | 9 |21 [29 |43 |52 |59 (47 |38 31| 19|12

Experiment2 | 17 |24 | 28 | 29 | 35|76 |46 | 35|32 |23 | 15

First of all, note that neither matches the theoretical frequencies exactly. This is actually
what we want. If one set matched exactly, it would not be very random, and its behavior
would be very predicable. On the other hand, we don’t want our random number generator
to favor one number too much over the others. That may indicate that our dice are loaded,
which is also not very random.

The first step in determining our p value is computing the chi-square value. What we
want to end up with is a value that straddles the two extremes—neither too high nor too low.
Computing it is very simple: for each entry, we just subtract the theoretical value from e;,
the observed value o;, square the result, and divide by the theoretical value. Sum all these
up and you have the chi-square value. In equation form, this is

n 2
(ei — o)

Using this, we can now compute the chi-square values for our two trials. For the first we
get 1.269, and for the second we get 21.65.

Now that we have a chi-square value, we can compute a p value. To do that, we compare
our result against the chi-square distribution. Or more accurately, we compare against the
cumulative distribution function of a particular chi-square distribution.

To understand the chi-square distribution, suppose we have a random process that gen-
erates values with a standard normal distribution (i.e., a mean of 0 and a standard deviation
of 1). Now let’s take k random values and compute the following function:

k
2 2
X ZE Xi
i=1

439

440 Random Numbers

The chi-square distribution indicates how the results from this function will be distributed.
Figure 11.8 shows the probability density function and cumulative density function for
various values of k.

In order to know which chi-square distribution to use, we need to know the degrees of
freedom k in our experiment. This is equal to the number of possible outcomes minus 1.
In our example above, the k value is 11 — 1 = 10. If we now substitute our computed chi-
square value into the appropriate chi-square cumulative density function, that gives us the
probability that we will get this chi-square value or less. This is the p value we’re looking for.
If the resulting p value is very low, say from O to 0.1, then our numbers aren’t very random,
because they’re too close to the theoretical results. If the p value lies in the higher probability
range, say from 0.9 to 1.0, then we know that our numbers aren’t random because one or
more values are being emphasized over the others. What we want is a p value that lies in the
sweet spot of the middle. This is a slightly different approach to hypothesis testing, because
we’re trying to check two conditions here instead of one.

So, how do we calculate the p value? This can be calculated directly, but the process is
fairly complex. Fortunately, tables of pregenerated values are available (e.g., Table 11.1),
and looking up the closest value in a table is good enough for our purposes.

For the particular row that corresponds to our number of degrees of freedom, we find
the entry closest to our value V. The column for that entry gives us the p value. Looking
at the k = 10 column, we see that the chi-square value of 1.269 for experiment 1 produces
a p value of at most 0.01, and the chi-square value of 21.65 for experiment 2 produces
a value between 0.95 and 0.99. So experiment 1 is too close to the expected probability
distribution, and experiment 2 is far away. This fits the way they were generated. The first
set of random numbers we simply chose to be very close to the expected value. The second
set were weighted so that 1 would be more likely to come up on one die and 6 more likely
on the other.

An alternative to looking up the result in a table is to use a statistical package to compute
this value for us. Microsoft Excel has a surprising amount of statistical calculations available,
and the chi-square test is one of those. A quick online search for “chi-square calculator”
also finds a number of Web applications that perform this operation. Note that Excel and
most tables reverse the sense of the p value; that is, rather than compute the probability
that the chi-square value is less than or equal to our computed value, they compute the
probability it will exceed that value. This allows them to use the standard approach to using
p values, where a low p value means that our experiment is biased. Therefore, when using
these packages keep this in mind.

This procedure gives us the basic core of what we need to test our random number gener-
ators: we create a test with random elements and then determine the theoretical frequencies
for our test. We then perform a set of random trials using our random number generator and
compare our results to the theoretical ones using the chi-square test. If the p value generated
is acceptable, we move on; otherwise, the random number generator has failed. Note that if
a generator passes the test, it only means that the random number generator produces good
results for that statistic. If the statistic is one we might use in our game, that might be good
enough. If it fails, it may require more testing, since we might have gotten bad results for
that one run. With this in place, we can now talk about a few of the most basic tests.

The most basic test we can perform is the equidistribution test, which determines whether
our presumably uniform random number generator produces a uniform sequence. Our test

11.3 Determining Randomness 441

0.50

0.40

0.30 -

0.20 -

Probability density

0.10 -

1.0 A

0.80

o

[oX)

(=}
1

0.40

Probability density

Figure 11.8. (a) The chi-square probability density function for values of k from 1 to 4 and
(b) the chi-square cumulative density function for values of k from 1 to 4.

442 Random Numbers

Table 11.1. Chi-Square CDF Values for Various Degrees of Freedom k

p=001 p=005 p=01 p=09 pP=095 p=0.99

k= 0.00016 0.00393 0.01579 2.70554 3.84146 6.63489
k= 0.02010 0.10259 0.21072 4.60518 5.99148 9.21035
k=3 0.1148 0.35184 0.58438 6.25139 7.81472 11.3449
k=4 0.29710 0.71072 1.06362 7.77943 9.48772 13.2767
k=5 0.55430 1.14548 1.61031 9.23635 11.0704 15.0863
k=26 0.8720 1.63538 2.20413 10.6446 12.5916 16.811
k=17 1.23903 2.16734 2.83311 12.0170 14.0671 18.4753
k=38 1.6465 2.73263 3.48954 13.3616 15.5073 20.0901

k=9 2.08789 3.3251 4.16816 14.6837 16.9190 21.6660
k=10 2.55820 3.94030 4.86518 15.9871 18.3070 23.2092
k=11 3.0534 4.57480 5.57779 17.275 19.6751 24.7250

k=12 3.57055 5.22602 6.30380 18.5493 21.0260 26.2170
k=13 4.10690 5.8919 7.04150 19.8119 22.3620 27.6881
k=14 4.66041 6.5706 7.78954 21.064 23.6848 29.1411
k=15 522936 7.26093 8.54675 22.3071 24.9958 30.5780

statistic is that the counts will be the same for all groups. Ideally, we set one bucket for each
possible value, but given that we can have thousands of values, that’s not often practical.
Usually, values are grouped into sequential groups; that is, we might shift a 32-bit random
number right by 24 and count values in 256 possible groups.

The serial test follows onto the equidistribution test by considering sequences of random
numbers. In this case, we generate pairs of numbers (e.g., (xg, x1), (x2,%3), . ..,) and count
how many times each pair appears. Our test statistic is that we expect the count for each
particular pair to be uniformly distributed. The same is true for triples, quadruples, and so
on up, although managing any size larger than quadruples gets unwieldy, and so something
like the poker hand test, below, is recommended.

The poker hand test consists of building hands of cards, ignoring suits, and counting the
number of poker hands, which Knuth [90] represents as follows:

All different abcde

Pair aabcd
Two pair aabbc
Three of akind aaabc
Full house aaabb

Four of akind aaaab
Five of akind aaaaa

Each of these outcomes have different probabilities. We generate numbers between, say,
2 and 13, and track the number of poker hands of each type. Then, as before, we compare
the results with the expected probabilities by performing the chi-square test.

11.3 Determining Randomness 443

There is a simplification of this, where we only count the number of different values in
the poker hand. This becomes

5 values All different

4 values One pair

3 values Two pair, three of a kind
2 values Full house, four of a kind
1 value Five of a kind

This is easier to count, and the probabilities are easier to compute. In general, if we're
generating numbers from 0 to d — 1, with a poker hand of size k, Knuth gives the probability
of r different values as

d(d—l)...(d—r—l—l){ k}
Pr =

dk r

k 1 < - r
== (=7 |
U maser ()

This last term is known as a Stirling number of the second kind, and counts the number of
ways to partition k elements into » subsets.

These three are just a few of the possibilities. There are other tests, many with colorful
names, such as the birthday spacing test or the monkey test. For those who want to create
their own random number generators and need to run them through a series of tests, a few
open-source libraries are available. The first is DIEHARD, created by George Marsaglia,
and so named because a non-English speaker misunderstood the notion of a “battery” of tests.
However, the name is appropriate, as the tests are very thorough. DIEHARD is no longer
maintained, butis available online. For aregularly updated library, there is DieHarder, which
was created by Robert G. Brown of Duke University. In addition to regular maintenance,
this one adds some additional tests suggested by the National Institute of Standards and
Technology, and is released under the GNU Public License. It is also available online and
installable on Linux as a package.

A more recent and rigorous set of tests is TESTUOI [94], which has three increasingly
more stringent batteries of tests called Small Crush, Crush, and Big Crush. It’s also available
online as an open-source package. Any random number generator that passes Crush or even
Small Crush is certainly suitable for games.

Finally, Marsaglia and Tsang created Tuftest [102], a set of three tests that purport
to cover most of the cases necessary for a good random number generator. It’s arguable
whether these three tests are sufficient, but even if you’d rather use Big Crush instead, they
still serve well as a reasonably quick unit test.

In general, however, we will not be creating our own random number generator. In those
cases, a chi-square test is more useful for verifying that your use of a random number gen-
erator matches your expected behavior. For example, suppose you were trying to generate a
particular probability distribution that a designer has created. If your results in-game don’t
match this distribution, you know you’ve done something wrong. The chi-square test allows
you to verify this.

where

444 Random Numbers

11.3.2 Spectral Test

There is one test of random number generators that falls outside of the standard chi-square-
based or other statistical tests, and that is the spectral test. The spectral test is derived
from the fact that researchers noticed that if they constructed points in space using certain
RNGs, those points would align along a fixed number of planes (a statistician would say
that the data are linearly correlated). This means that no point could be generated in the
space between these planes—not very random. For many bad RNGs, this can be seen by
doing a two-dimensional (2D) plot; for others, a three-dimensional (3D) plot is necessary.
Some extreme examples can be seen in Figure 11.9.

In fact, Marsaglia [98] showed that for certain classes of RNGs (the linear congruential
generators, which we’ll cover below) this alignment is impossible to avoid. For a given
dimension k, the results will lie “mainly in the planes,” to quote the title of the article.

The spectral test was created to test for these cases. It takes d-tuples (x;, Xij+1, - - - » Xi+d—1)
of a random sequence and looks for the spacings between them that lie along a
d-dimensional hyperplane. For our purposes, we are not going to implement the spectral
test. It mostly applies to a single class of RNGs, and as we’ll see, a great deal of research
has been done on determining good RNGs, so it’s unlikely that we’ll need a spectral test.
Also, if the spacing between the planes is small enough, it’s unlikely that it will significantly
affect the sort of random data that are generated for games. However, this property of some
RNGs is something to be aware of.

11.4 Random Number Generators

Now that we’ve covered some basic probability and some means of testing randomness, we
can talk about how we generate random numbers. True random generators for computers
are only possible by creating circuitry that depends on some physical phenomenon. One
example is a generator that took video of lava lamps and used that to generate random
numbers over time. Alternatively, we could track the particles generated by a radioactive
isotope. Usually, however, a circuit is built that takes advantage of the fact that power to
the computer has a certain amount of unpredictable noise in it. This noise is amplified and
used to generate random values.

In our case, we can’t assume access to such hardware. Instead, we’ll have to make use
of what is called a pseudorandom number generator. We will start with a set of one or more
numbers and use a deterministic algorithm to generate a sequence of numbers that appear
random. That is, our process is completely predetermined, but the numbers generated fulfill
certain characteristics that make them suitable for simulating actual random processes.
Because of this, pseudorandom number generators are just referred to as random number
generators.

There is another class of RNGs known as quasi-random number generators. These gener-
ate numbers in a way that avoids streaks and clumping, and are primarily used for anumerical
integration technique known as Monte Carlo integration. However, we won’t be considering
those as they tend to be more expensive and we don’t require that kind of precision.

Why study random number algorithms when most languages these days come with a
built-in RNG? The reason is that these built-in RNGs are usually not very random. Under-
standing why they are flawed is important if we intend on using them and working around

11.4 Random Number Generators

250 T+ - s v s
e %o ¢ ‘e e s
® * %% * . .
* * * " ” * 0‘
* * *
i % . * *s .
200, B A
* * . * * .
. s . . > \A
. . * . . .
* L 4 ‘0 “ . * ’4;
* 0‘ * * ‘.
150 o > A * - .
’0 ‘0 . * ’0 ’Q
* . %% ® * *
* * . “ * * ’.
* * * *
* * S
100 4 o Yo % e, e
* * * * * *
* * " 0‘ * .’
(S
* " ” 0. ’0 ” 0‘
* P *
50 o * * . % .
0’ 0. * R 0’ P
" * ‘0 ’. “ ’0 *
. * * *
k¢ . » N . S
0 Y — * *
0 50 100 150 200 250
()
I e S e e e ;
® ® * £ * S * * * N
MRS AR SR I R .
. MRS AR K TSP
200 A AR AR TR ISP ¢
. AR IR RSP O .
o MU AR IR IR JER PN
* * * * o * . . » .
15040 o 0Lt Y e e e
> * * *» * P * * p!
MR R AN *
X * * * * * . * * N .
IR U R S R .
100 . MURANE AN IR S SEPUE N
A ¢ o
¢ o
MRS AR R TSP ¢
! ® * ® S * PS - * N .
50 4 o L 4 L 2 * E3 & 'Y PS * * .
* * * ® S * * * -
3 L 2R R SN o
PO IR AU I IR R
0 MR R R ¢ o
T T T T
0 50 100 150 200 250
(b)

Figure 11.9. Examples of randomly generating points that stay mainly within the planes.

their flaws, and understanding what makes a good generator is important if we want to

create our own.

Our goal in building an RNG is to generate a series or stream of numbers with properties
close to those of actual random events. Because this series of numbers is usually very large,
all of the RNGs that we’re going to discuss can be described by a special type of function

445

446 Random Numbers

known as a recurrence relation. Those with experience in recursion should be familiar with
the concept: the value at a given step n is dependent on values from previous steps (in many
cases, only the immediately previous step). For example, here is the recurrence relation for
the Fibonacci series:

Xp = Xp—1 +Xp—2

To start things off, one or more seed values are set, and these control how the sequence
of numbers will proceed. Again, using our Fibonacci example, using seed values xo = 0
and x; = 1, we get the series

0,1,1,2,3,5,8,13,21,...

The process alone doesn’t produce our sequence—the seed also plays a part. For example,
if we use seed values xo = 2 and x; = 1, we get the Lucas numbers:

2,1,3,4,7,11,18,29,...

So, choosing the proper seed value is very important. If we use the same seed all the time,
we’ll always get the same sequence every time. This can be useful for debugging, so that
we get the same results during each debugging pass, but in the final game we’ll probably
want to randomize this seed value somehow. One common method is to use the operating
system clock value. Another uses the frequency of the user’s keystrokes, mouse movement,
or joystick movement at start-up time to compute a random value for the rest of the game.

The Fibonacci series is infinite, since the values get progressively larger and larger. How-
ever, we will need to limit our results to fit within calculable values on the computer, so we
will take a modulus of anything we compute to ensure that it stays within bounds. Doing
this with Fibonacci gives us

Xn = (Xy—1 +x4—2) modm

The value m is often one more than the largest representable number, although as we’ll see
below, other values work better with certain algorithms.

Another final concept we need to discuss before diving in is the period of a random
number sequence. Because of the modulus, eventually all generators will repeat their values;
you will end up generating your original seed values and the sequence will start again. For
example, take this (very poor) RNG (please):

Xp = (xy,—1+2) mod4
Given a seed value of 0, this will generate the sequence
0,2,0,2,0,2,0,2,...
This is a poor RNG for two reasons. First, as we can see, the values are very regular. But

also, it has a very small period of 2. We want this period to be as large as possible; at the very
least, it should encompass all values (0,...,m — 1), and ideally be much larger than that

11.4 Random Number Generators

so that we can get streaks of numbers and handle large sets of permutations. For example,
a deck of cards has 222 possible permutations; to have the possibility of generating them
all, we would need a random number generator with a period at least that large.

This should give some general sense of the structure of the algorithms we’ll be discussing.
Note that this is by no means an exhaustive list. We are merely trying to present some
standard algorithms to demonstrate the wide variety of possibilities. A few of the generators
we’ll discuss are not very good. This is mainly to show what can go wrong in case you are
tempted to create your own. Also note that when discussing generators in this section, we’ll
only be constructing those that generate unsigned integers. We’ll cover how to create signed
integers, smaller than full integer ranges, and floating-point numbers in Section 11.5.

11.4.1 Linear Congruential Methods

11.4.1.1 Definition

The linear congruential generator (LCQ) is a very popular random number generator. It was
first introduced by D. H. Lehmer in 1949 and is introduced in most algorithm classes and
implemented in most standard libraries. The LCG is represented by the following equation:

X, = (ax,—1 +c¢) mod m
where

0<m
O<a<m

O<c<m

In this case, m is called the modulus, a is called the multiplier, and c is called the increment.
If ¢ is O, this is called a multiplicative congruential method; otherwise, it is a mixed
congruential method.

Note that no matter what the values are, the maximum period is m. This makes sense;
because we’re only tracking one variable, if we ever repeat a value, the sequence will begin
again from that point. So, the maximum we can possibly do is to run through all of the values
between 0 and m — 1 and then start again from the seed. Of course, this is only possible if
¢ # 0. If ¢ = 0, then if our sequence generates 0, we’ll end up with something like

...,4,24,6,0,0,0,0,...

This is because once x is 0, ax mod m will always be 0. So if ¢ = 0, we can only use values
between 1 and m — 1. In this case, if we need 0, we can always subtract 1 from the result.

11.4.1.2 Choosing the Modulus

The first question when constructing an LCG is what the value of m should be. The most
obvious choice, as we stated above, is to use one more than the largest representable integer
value, or, if our word size is w bits, 2". As most adders will wrap values when overflow
occurs, they are automatically performing a modulus 2%, which makes our computation
very efficient.

Source Code
IvRandom

IVLCG64
IvCGPrime

447

448 Random Numbers

However, there are two problems when using a power of 2 for m. First, it can be shown
that if ¢ = 0, then the maximum period is only m/4, and this in turn can only happen if
a mod 8 is 5 and the initial seed is odd. Since we’re multiplying an odd number by an odd
number, the result will be an odd number, and in fact, we’ll get half of the odd numbers
between 1 and 2" — 1. To avoid this, most generators that use m = 2" use an odd value
for ¢, which allows the resulting value to alternate between even and odd, and provides the
full period of m.

However, when our numbers alternate between even and odd, the least significant bit will
alternate between 0 and 1—not very random. This signifies another problem, as pointed
out by Knuth [90]. Suppose that d is a divisor of m (i.e., m mod d = 0) and

Yn—1 = Xp—1 mod d

If d = 2°, we can think of this as representing the eth least significant bits of x,,_1. It can
be shown that
Yn = (ayp—1 +c¢) mod d

In other words, while our random sequence may have a maximum period of m, its least
significant bits have a maximum period of d—they are much less random than the most
significant bits.

This really only comes into play if we’re using our RNG for small value simulations
such as rolling dice. One solution is to shift the result from the RNG to the right so that the
more random bits in the middle word become the new least significant bits and then take
our modulus, which is what we have done in ours.

However, because of these problems, most researchers recommend using a large prime
number for m instead. There is some debate on what that suitable prime number is. One
popular choice for 32-bit numbers is 23! — 1, because it is close to our maximum value of
232 — 1 (which is not prime, by the way). Marsaglia [99] also suggests 232 — 5 and 232 — 2.
However, in general, we simply want a large enough prime for our purposes—the larger
the prime, the larger the period.

The big advantage of the prime value is that it guarantees to give us a full period without
having to use an increment. However, using a prime value has some consequences. First
of all, we need to be sure to store the maximum possible value somewhere, so that we
can compute the floating-point equivalents (see below). We also lose the convenience and
efficiency of letting the hardware magically handle our modulus for us. In fact, rather than
taking advantage of overflow, we have to be careful that it doesn’t take advantage of us. For
example, suppose we have a 4-bit architecture, and are computing the following LCG:

Xy = (3x,—1) mod 13

If x,_1 is 12, then 3x,,_; = 36. But this value doesn’t fit into the word, so it is truncated
to 36 mod 16 = 4. This mod 13 gives a final value of 4. But the actual result should be
36 mod 13 = 10.

To solve this problem, Park and Miller [118] recommend the following replacement
formula, based on Schrage [134], for ax mod m:

ax mod m = a(x mod q) — r(x — q) + md(x)

11.4 Random Number Generators

where —+ is integer division, ¢ = m +a, r = m mod a, and §(x) = (z +~ g) — (az ~m). The
value of §(x) will be either O or 1, and only 1 if a(x mod g) — r(z = g) is less than 0. We can
represent this in code as follows:

X = a*(x%q) - r*(x/q);
if (x <= 0)
X += m;

Note that this only works if » < g; otherwise, overflow will still occur.

Of course, a simpler solution is to do our calculations in a larger word size and truncate
down to our desired, smaller word size (i.e., compute in 64-bit integers for a 32-bit result),
but that assumes this option is available to us.

11.4.1.3 Choosing the Multiplier

So these are our two logical possibilities for a modulus: either a power of 2 or a large prime
number. We’ve already noted that ¢ > 0 is only necessary when using a modulus that is
a power of 2, and in that case any odd number will do (1 is a popular choice). So, the
remaining question is, what do we choose for a, our multiplier?

We want to make our choice to maximize two things: the period of the random sequence
and the randomness of the resulting numbers within that sequence. The most common
measure of this randomness is to use the spectral test, as LCGs are particularly susceptible
to obviously regular patterns unless the values are chosen appropriately.

Let’s consider the maximum period first. We’ve already noted that if m = 2", we want
amod 8 =5 and ¢ to be odd to get the full period. In general, however, we want the
following. Suppose we begin with seed x¢, multiplier a, modulus m, and ¢ = 0. Then we
can find the value at the ith step by calculating

x; = a'xg mod m

Without loss of generality, let’s assume that xop = a. If we have a full period, eventually
we’ll generate a as our current random number, and that starting point is as good as any
other. So, this formula becomes

xi = a1 mod m

In order for us to get a full cycle, a mod m, a*modm,a® modm, . ..,a" ! modm must all

be distinct values. How do we find this a? Fortunately, there is a mathematical entity known
as a primitive element, which has just this property when a and m are relatively prime (that
is, their only common factor is 1). So, for our particular m, we just need to generate all the
primitive elements, and that will give us good values for a.

This gives us a starting point for both cases. However, the number of possible values is
still quite large, and narrowing this down requires the use of the spectral test. Fortunately for
us, many people have already done studies of the primitive elements for specific values of m.
A fairly recent work by L’Ecuyer [93] in particular has laid out tables of possible values for
all of the cases we’re interested in, including the power of 2 cases with no addition. Using a
value from these tables will guarantee excellent results. For our generators, we have chosen
default values of a = 2,862,933,555,777,941,757 for the 2% generator and m of 232 — 5

449

450 Random Numbers

and a of 93,167 for the prime generator. While those values will produce good results,
we of course let users set their own values if they want.

11.4.1.4 Summary

In summary, the LCG is the most commonly taught and used RNG today. It is usually
the basis for RNGs in most math libraries. Although it’s not the best generator, when the
values for a and m are chosen carefully, it can produce results good enough for most games.
However, when using it, one needs to be wary of the limited period, the randomness of
the least significant bits, and the problems with the spectral test. Because of this, we’ll be
looking at some other possibilities for RNGs.

11.4.2 Lagged Fibonacci Methods

The linear congruential methods are reasonable RNGs, but they do have their flaws. The
most major flaw is that when performing the spectral test for k-dimensional points, the best
we can do is to limit the number of distinct hyperplanes that points will fall on to m!/k.
In other words, there will always be points in space that we cannot randomly generate.
The other problem is that the maximum period we can expect is m. Can we do better?

One thing we note about LCGs is that they only make use of the last value—perhaps
we can do better by looking at more than one previous value. We’ve already mentioned the
Fibonacci method, where we take values from the previous two steps. Recall that this has
the recurrence relation

Xp = (Xp—1 + Xp—2) mod m

and requires two seed values. For the traditional Fibonacci sequence, this would be xp = 1
and x; = 1.

Unfortunately, while the standard Fibonacci method has a large period, it has been shown
to not produce very random numbers. There is actually a hidden pattern, where the ratio
between one value and the previous value is approximately the golden ratio: (v/5 + 1)/2.

A better approach is to use a lagged Fibonacci generator, where we look further back
into the sequence for values, and they are not necessarily one after the other. This can be
generalized as

Xn = (xnfj * Xp—k) mod m

where « is any binary operation (addition, subtraction, multiplication, and exclusive-OR
are common choices) and 0 < j < k. Assuming that m = 2" and addition, subtraction, or
exclusive-OR is used, the maximum possible period for lagged Fibonacci generators is
2%=1(2k — 1). For multiplication, this drops to 2~3(2F — 1). However, multiplication has
been shown to mix bits better. In any case, assuming k is large enough, this period can be
much larger than a standard LCG.

There are two decisions that we have to make when dealing with lagged Fibonacci
generators: What are the values of j and k, and how do we initialize the starting k values?
As far as the first question, which will determine the actual maximum period, tables of good
values can be found in Knuth [90]. The choice of our initial values can be even more crit-
ical, as choosing poorly will seriously affect the randomness of the resulting sequence
(e.g., consider what would happen if all the initial values were the same). One good

11.4 Random Number Generators

possibility presented by Mitchell and Moore is to use addition with j = 24 and k = 55.
The values xg . .. x, are initialized with arbitrary integers, but guaranteed to be noneven.
This gives us a period of 2~1(2% — 1), which is quite respectable. In general, however, the
problem of choosing good starting values haunts the Fibonacci generator, so again we will
look for other solutions.

11.4.3 Carry Methods

One of the flaws of the LCG is that it works best with a value m that is prime. This is bad
for two reasons: it’s not cheap to compute and computer word sizes are powers of 2 (which
are definitely not prime). For those values that are a power of 2, the least significant bits
have a lower period than the entire sequence.

One solution was presented by George Marsaglia and Arif Zaman [103], who noted
that with the LCG, the most significant bits get mixed better than the least significant bits.
To mix the least significant bits, they proposed a carry or borrow operation, which takes
part of the result from the previous stage and carries it forward to be applied to the least
significant bits in the next stage. The standard formula for an add-with-carry generator is

Xn = (Xp—k +Xp—r +cp—1) mod m

cn = (Xn—k +Xp—r +Cp—1) +m

Again, -+ represents an integer divide. As we can see, the bits that would normally be cast
out from the modulus operation are added to the next stage, thereby mixing the lower bits.
Something similar can be done with the subtract-with-borrow generator:

Xn = (Xp—k — Xp—r — Cp—1) mod m

n = (Xp—k — Xp—r — Cp—1) ~M

While these generators have large periods, solve the least significant bit issue, and otherwise
show some promise, it was shown that they also fall prey to the same problem of falling
mainly in the planes that linear congruent generators do.

In 1992, George Marsaglia posted a modification of this technique [100], which he
called the mother of all random number generators, also known as the multiply-with-carry
technique. This algorithm also works much better with values of m that are powers of 2.
As before, the idea is to add the high-entropy bits (i.e., those that are changing a lot) to the
low-entropy bits (i.e., those that don’t normally change all that much). If we represent a
32-bit integer x; as two 16-bit integers a;b; (i.e., a is the high bits and b is the low bits), then
a basic example of his algorithm is

xp = 30,903 b1 +an—1

Instead of returning x;, as the result, we return the low bits b,, as a 16-bit integer.
This can easily be represented in C as follows:

k=30903* (k&65535) + (k>>16) ;
return (k&65535) ;

In this case we’re doing a carry mod 216,

Source Code

IvRandom

IvCarryMultiply

451

452 Random Numbers

Source Code

IvRandom
Filename

IvXorshift

This has a period of 23° 16-bit numbers. We can generate 32-bit numbers with the same
period by concatenating two results together.

k=30903* (k&65535) + (k>>16) ;
j=18000* (j&65535) +(j>>16) ;

return ((k << 16) + J);

The multipliers for j and k are chosen to give good results for a modulus of 2.

This can be extended further, giving a period of 2118,
k=30903* (k&65535) + (k>>16) ;
§=18000* (j&65535) + (3>>16) ;
i=29013* (1&65535) + (1>>16) ;
1=30345* (1&65535) + (1>>16) ;
m=30903* (m&65535) + (m>>16) ;
n=31083* (n&65535) + (n>>16) ;
return((k+i+m)<<16)+j+1+n) ;

This is a considerable improvement over the previous two methods: it gives us very large
periods, it does a good job of randomizing the bits, it works well with computer word sizes
and so is good for both floating-point numbers and integers, and it’s very fast. It also only
requires six starting values, as opposed to the large table needed for the lagged Fibonacci
methods. However, it still doesn’t pass all the TestUO1 batteries, so while an improvement,
it’s not ideal.

11.4.4 Xorshift

A more recent set of methods is the xorshift generators, again first presented by George
Marsaglia [101]. The base form is to xor a value with a shifted version of itself a number
of times, for example,

UInt32 x = kNonZeroNumber;
UInt32 xorshift32()
{

x "= (x << a);
x "= (x >> b);
x "= (x << C);
return x;

where a, b, and ¢ are chosen appropriately to guarantee the maximum period, which in
this case will be 232 — 1 (the value 0 is not possible, unless all you want to generate is a
sequence of 0s). We can increase the period by adding more state variables; for example,
the following provides a period of 2!%8 — 1:

UInt32 x, v, 2z, w; // state variables
UInt32 xorshiftl28()

{
UInt32 t;
t = (x << a);

11.4 Random Number Generators

X =Yi Y =2; Z2 =W;
(w >> b) t

w =

(t << ¢);

}

These methods are very fast, but still not ideal as they in general fail the Small Crush suite.

An improvement, suggested by Marsaglia and tested by Sebastiano Vigna, is to mul-
tiply the result of the xorshift by a factor to permute the result. This is known as the
xorshift* algorithm [152], and it produces much better results. For example, the following
21024 _ 1 period algorithm is much better behaved, quite fast, and systematically passes all
the TestUO1 tests (for certain state values it can fail Big Crush, but for most states it passes).

UInt64d sl
int p;
UInt64 xorshiftmull024 ()
{

16 1; // state variables

UInt64 sO0 =
UInt64 sl =
sl "= sl <<
sl "= sl >> 11;
s0 "= s0 >> 30;
return (s[p] =

s[pl;
slp =
31;

(p + 1) & 151;

s0 © s1)*1181783497276652981LL;

}

If space is an issue, then an alternative is the xorshift+ algorithm [153], which adds the last
returned value to the xorshift result:

UInt64 s[2];
UInt64 xorshiftaddl28(void) {
UInt64 sl = s[0];
const UInt64 sO0 =
s[0] = s0;
sl "= sl << 23;
return (s[1l] =

s[11;

// a

(s1 ©~ s0 ~ (sl >> 17) (sO >> 26))) + s0; // b, c

}

This has a period of 2'?® — 1, which Vigna states is not suitable for large-scale parallel
simulations, but should be more than fine for many games (an exception would be card
games—recall that a deck of cards has 222 possible permutations). The main downside of
xorshift* or xorshift+ is that they are designed for 64-bit integers, which are not supported
by older mobile processors. An already mentioned minor issue is that 0 is not part of the
sequence—this can be solved by either subtracting one from the result (and using 26 — 2
as the divisor for computing [0, 1] floating-point ranges) or, if you only need 32-bit values,
using the top 32 bits.

11.4.5 Other Alternatives

For some time, the Mersenne Twister [106] was considered the pinnacle of RNGs. Its
creators’ (Matsumoto and Nishimura) goal was to create a generator with a large period
that passes a large battery of tests, and still is fast enough for practical use. Even today it is
still widely used in many languages and libraries as the standard random number generator.
However, the Mersenne Twister has some issues. While it passes the older DIEHARD tests,
it fails a number of the newer Crush and Big Crush tests. The standard algorithm requires

Source Code

IvRandom

Filename

IvMersenne

453

454 Random Numbers

Source Code

IvRandom
Filename

IVKISS

a starting table of 624 values, which is quite large compared to other methods, and stresses
the CPU cache. It’s period of 2!%937 — 1, while impressive, is unnecessarily excessive for
games. Because of this, while we’ve included an implementation of the Mersenne Twister
for those who want to use it, it’s no longer recommended.

A reasonable alternative for 32-bit processors is the Keep It Simple, Stupid, or KISS
generator. The original was again devised by George Marsaglia with Arif Zaman [104] and
combines a linear congruential generator, a multiply-with-carry generator, and an xorshift
method. By using all three in combination, the intent is to allow the strengths of each
algorithm to compensate for the shortcomings of the others. However, the original algorithm
does not pass all the TestUO1 suite, and in any case the multiply-with-carry generator
assumes 64-bit arithmetic (to manage the carry bits). A 32-bit alternative was proposed by
Jones [86], and replaces the multiply-with-carry generator with an add-with-carry:

static unsigned int x, vy, z, w, c=0;

unsigned int JKISS32()
{

int t;

y "= (y<<5); vy "= (y>>7); vy "= (y<<22);

t = z+w+c; z = w; ¢ = t < 0; w =+t & 2147483647;
x += 1411392427;

return x + y + w;

This has a period of 2'?!, and passes all of TestUO1, which is certainly suitable for games.

As with other methods, %, v, z, and w must be seeded appropriately.

11.4.6 Sefting Initial State

This last point is an important one, especially in algorithms with a large set of state: if we
don’t set up our initial variables well, we won’t get the full period until the algorithm runs
for a while, or “warms up.” And setting the state variables using one seed and feeding it
into another random number generator won’t entirely work. If we start with a 232 bit seed,
that still only gives us a total of 232 possible state values, which for generators with larger
periods will not cover all of the possible starting states.

One solution, assuming that the system supports it, is to use /dev/random. This is a
device on Unix and related platforms (including iOS and Android) that uses the internal state
of various drivers and other operating system-level data to generate random numbers for
cryptological applications. However, reading from it will block until a suitable level of ran-
domness is achieved—because of this, it’s better to use the nonblocking /dev/urandom,
as we don’t need a cryptological level of randomness. It’s not fast enough for a general
random number generator, but it’s certainly suitable for seeding our state. The Windows
equivalent is the system function rand_s.

That said, it’s still useful to have a way to set an initial state deterministically, so that
results can be duplicated during testing and debugging.

11.5 Special Applications

11.4.7 Conclusions

This concludes our discussion of basic random number generators. The question remains:
Which one to use? Obviously, in the best possible cases, we would use xorshift*1,024.
However, as mentioned, this assumes that we have 64-bit operations available. In that
case, the multiply—carry or JKISS32 method might be good enough. And if space and speed
are truly at a premium, a linear congruential method may do the trick—but be careful to
choose one with a good modulus and multiplier.

So to summarize: whenever possible, use a good method that passes a wide battery of
tests; be sure to pick good random seeds; and if you can ever help it, don’t use the default
generator—create your own or use a well-vetted library.

11.5 Special Applications

Up to this point, we’ve been discussing only how to randomly generate uniformly distributed
unsigned integers. However, randomness in a computer game extends beyond this. In this
section we’ll discuss a few of the more common applications and how we can use our
uniform generator to construct them.

11.5.1 Integers and Ranges of Integers

In addition to unsigned integers, it is useful to be able to generate other types of values, and
in various ranges. In this section we’ll discuss some of the possibilities and how to generate
them. For the sake of this discussion, we will assume that we are generating values from
0 to m — 1: if O is not possible with our generator, we can simply subtract 1 from the result
and substitute m — 2 for m — 1.

If our generator has m = 2", then generating signed integers is simply a case of recasting
the unsigned result as signed. The alternative is to do a scale and translate transformation,
s0 y = 2x — m. This assumes that m < 2"~!; otherwise, we’ll end up overflowing.

Another common case is generating a range of integers, say from a to b. If x is the result
of our RNG, we could do

y=xmod (b—a+1)+a

The problem is if the range r = b — a is small and the RNG has poor mixing of the least
significant bits, the result will not be very random. One solution is to shift x to the right
before performing the modulus. Another, of course, is to use a different generator. But if
r is large, then again we need to worry about overflow.

A better solution is to only use the lower k bits of x, where k = [log, (r)], throw out any
values greater than r, and then add a:

unsigned int range = b - a;

unsigned int kmask = NextPowerOf2 (range)-1;
unsigned int y;

do

{

v = (x & kmask) ;
} while (y > range);
return (int) (y + a);

455

456 Random Numbers

This again assumes that you are using a generator with good randomness in the lower bits,
and that b > a. If you’re not sure of the second, you can check for the condition and swap
a and b accordingly.

11.5.2 Floating-Point Numbers

Usually when generating floating-point numbers, we want the range [0, 1]. Commonly, this
is computed as

float £ = float(random()) *RECIP_MAX_RAND;

where RECIP_MAX_RAND is the floating-point representation of 1 over the maximum
possible random number.

An alternative is to set the exponent of the floating-point number to bias + 1 (see
Chapter 1 for the definition of floating-point bias) and take random bits from the inte-
ger to fill the mantissa. This gives a value in the interval [1,2). Subtracting 1 gives us an
interval of [0, 1). For a single-precision floating point this can be computed as

union
{
unsigned int i;
float £;
} floatConv;
floatConv.i = 0x3£80000 | random() » 9;
return floatConv.f - 1.0f;

If the pointer cast does not compile efficiently, we can use a union to do the bit conversion.
Now that we have values from 0 to 1, computing a general random interval [a, b) is
simple:

y = (b-a)u + a;

As mentioned above, we can also use this to generate intervals for integers via casting.

11.5.3 Shuffling

Knowing how to efficiently shuffle a fixed set of data is useful for two reasons. First of all,
it can be used to generate random permutations, which is good for the obvious cases (decks
of cards) and the nonobvious cases (a randomized cycle of idle or fight behaviors for an
Al). Secondly, it often comes up during technical interviews.

The answer (called the Fisher—Yates shuffle [46]) is quite simple, and can be thought
of as a variation on selection sort. We work our way through the list, choosing a random
element to the right of or including the current element, and swapping them:

for (int i = 0; 1 < n; ++1)

{
int randpos = randRange(i, n-1);
swap (a[randpos], alil);

}

We include the current element because doing nothing at all is a suitable random event.

11.5 Special Applications

Note that to produce all the possible permutations, we need a random number generator
with at least that period.

11.5.4 Nonuniform Distributions

Up until now, we’ve only been considering uniform random numbers. However, as we’ve
seen, a large class of random events have nonuniform distributions. How then do we
calculate these?

If we have a discrete random variable and its distribution, then we can create a discrete
CDF and store the results in a table. If we then roll a uniform floating-point number in
the interval [0, 1), we can then find the minimum entry that is greater than that value, and
generate that. Let’s take our ball-drawing problem as an example. Figure 11.10 shows the
CDF for the probability distribution in Figure 11.2. Notice that due to the discrete nature
of the distribution the CDF is a step function. If, for example, we randomly generate the
value 0.43, we find that value in the y-axis, and then trace along horizontally until we hit
a step. Sliding down to the x-axis, we see that step begins at 2, which represents the color
blue, so that is the result of our random variable.

If we have a continuous random variable, this is not as simple. However, we can observe
that what we’re doing with the discrete case is just inverting the CDF. Assuming that there
is an inverse, we can do the same with the continuous CDF, plug in our uniform value, and
take the result as our nonuniform random variable.

If there is no inverse or we don’t know the exact function for either the PDF or the CDF,
then there is one other technique we can try: the rejection method or rejection sampling.
The idea is that we generate values using a PDF that is close to our unknown one, and
then throw out those that don’t match. One example is our solution for computing a range

1.0 *
0.8
2 0.6
2
~ 0.4
® O
0.2
0 T T
1 2 3
(red) (blue) (yellow)
Ball color

Figure 11.10. Discrete cumulative distribution function for the probability mass function
in Figure 11.2.

Source Code
[Derno |

SphereDisc

457

458 Random Numbers

of integer values, above, and we’ll see more examples of this in the next two sections.
However, this may not be the most efficient method, and in games it can be better to find
an approximation of our distribution and use that.

11.5.5 Spherical Sampling

One common example of randomness in a game is generating the initial random direction
for a particle. The most commonly used particle system of this type is spherical, where all
the particles expand from a common point. We can compute the direction vector for this
easily by generating a random point on a unit sphere.

One possible (but wrong) solution for this is to generate random components (vg, v, v2),
where each v; is a floating-point value in the range [—1, 1], and then normalize the result.
This will produce random points on the sphere, but the result will not be evenly distributed
across the surface of the sphere. If we look at Figure 11.11, we can see the result. Because
the initial random numbers generated are within a cube, the result on the sphere is biased
toward the locations closest to the corners.

1.0

- 0.8

- 0.6

- 0.4

- —-0.2

- —0.4

- —0.6

- —0.8

-1.0

T T T T
-10 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1.0

Figure 11.11. Spherical sampling, looking down along z. Result of normalizing random
cube values; the points tend to collect near the “corners.”

11.5 Special Applications

Another possibility is to use rejection sampling. We again generate our three values,
but then test to see if v} +v? +v3 is less than 1. It works fine, but can require a large
number of RNG evaluations, so we’ll consider one other option.

Rather than using Cartesian coordinates, let’s look at spherical coordinates, which may
be a little more natural to use on (say) a sphere. Recall that ¢ is the angle from the z-axis
down, from 0 to & radians, and 6 is the angle from the x-axis, from 0 to 27 radians. Since
we’re talking about a unit sphere, our radius p in this case is 1. So, we could generate two
values &y and & in the interval [0, 1], and compute ¢ = &y and 6 = 2&; 7. From there we
can compute x, y, and z as

X = sin¢ cosf
y =sin¢siné
Z =Ccos¢
However, again we don’t quite get the distribution that we expect. In Figure 11.12, we
see that the points are now clustered around the poles of the sphere. The solution is to

note that we want a latitude—longitude distribution, where z is our latitude and is uniformly
distributed, and 6 is longitude and also uniformly distributed. The radius at our latitude line

1.0

- 0.8

- 0.6

- 0.4

- 0.2

T T T T T T T T T _1'0
-1.0 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1.0

Figure 11.12. Spherical sampling, looking down along z. Result of randomizing spherical
coordinates; the points tend to collect near the poles.

459

460 Random Numbers

will depend on z—we want to guarantee that x> 4+ y? +z> = 1. The following calculation

handles this:
z=1-2¢&
r=v1-z22
0 =2n&
X =rcosf
y=rsiné

The final result can be seen in Figure 11.13.

A similar calculation can be done if we want to generate points on a hemisphere. Instead
of calculating z = 1 — 2&, we want z to vary from O to 1, which is just &.

Whether this spherical coordinate method or rejection sampling is faster depends on the
cost of the square root and trigonometric functions. On one system, for example, four to
five uniform variates can be generated in the time of a single trigonometric call. Profiling
will be required in your particular application to determine which is best.

1.0

- 0.8

- 0.6

- 0.4

- 0.2

-0.2

- —0.4

- —0.6

- —0.8

-1.0

T T T T
-1.0 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1.0

Figure 11.13. Spherical sampling, looking down along z. Result of randomizing latitude
and longitude; the result is correct.

11.5 Special Applications

11.5.6 Disc Sampling

Another particle or ray casting shape that we might use is a cone. We can simulate a cone
by using the cone tip as the source of our ray or particle and randomly selecting a point on
the disc at the other end of the cone. This can be generalized by selecting a point on a unit
disc. Afterwards we can scale the result by the radius of the cone, and then rotate it to be
normal with the cone direction.

To select a point on a unit disc we could use rejection sampling again. The rejection
sampling approach is similar to the 3D case: we generate two random numbers with range
from O to 1. This time if the vector generated has length greater than 1, we try again;
otherwise, we proceed as before.

Alternatively, we can generate a value using polar coordinates. The naive approach is to
generate two values &y and &1 as in the spherical case. This time we want the radius to vary
from O to 1, and 6 to vary from O to 27, and so

r==%

0 =2m&
x =rcosf
y=rsinf

However, we find that we get clustering in the center, as we did in the spherical case
(Figure 11.14). This may be close to what we want if we’re calculating bullet trajectories,

1.0

0.8
0.6
0.4
0.2 1 -
021 ;‘if..
-0.4-
-0.6 1

—-0.8 1

-1.0 : : : e . . .
-10 -08 -06 -04 -02 0 02 04 06 08 10

Figure 11.14. Disc sampling. Result of randomizing polar coordinates; the points tend to
collect at the center.

461

462 Random Numbers

Source Code

Perlin

1.0

0.8
0.6
0.4
0.2
-0.2 1
—0.4
—0.6 -

—-0.8

-1.0 T T T LE— — T T T T
-1.0 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1.0

Figure 11.15. Disc sampling. Result of randomizing polar coordinates with radius
correction; the result is correct.

where we want them to cluster around the aim direction. However, let’s assume this is
undesirable. The insight here is to set » = 1/&. This pushes the values back to the edges of
the disc and gives us uniform sampling across the area of the disc (Figure 11.15).

Again, profiling will be needed to determine if this method or rejection sampling will be
more efficient.

11.5.7 Noise and Turbulence

We will conclude our discussion of random numbers by briefly looking at some common
noise functions and how they can be used to generate procedural textures. The first question
is, why do we want to add randomness to our procedural textures? The main reason is
that the world itself is random. Random bumps against the wall create scuff marks and
divits. The way trees grow depends on rain, wind, and sun. Clouds in turn are dependent
on humidity and wind. So, by adding random elements to textures that simulate natural
features, we make them look less synthetic and more organic.

The common way to apply noise to textures is to build a noise lattice. In this case,
we place random values at regular intervals in the texture space, and then interpolate
between them to obtain the intermediary values. By using an appropriate interpolation
function (usually cubic), we can guarantee that our noise function is continuous and smooth,

11.5 Special Applications

which produces much better visual results. This lattice can be 1D, 2D, 3D, or even 4D.
Higher lattices are not usually used because generation cost gets quite high.

The random function has a couple of competing requirements: it must not produce any
obvious pattern, but it also must not vary every time we generate it, because we need the
noise to be repeatable. The latter requirement is because otherwise the resulting textures
will appear to flicker and move across the surfaces they’re applied to. While this may be
desirable in some cases, we’d like to control the situation. To manage this, most noise
systems pregenerate a table of random values and then hash into the table, where the
hash is usually based on the lattice coordinates. We also want these random values to be
bounded—the most common interval is [—1, 1].

The most basic lattice noise is known as value noise. In this case, we generate random
values at each lattice point and then interpolate between them. An alternative is Ken Perlin’s
original noise function [119], also known as gradient noise. In this case, the position at each
lattice point is set to zero, but the tangent vector is randomized. This can be done generating
a random point on a unit sphere, as we did above. Value noise tends to be lower frequency
(more smooth) and gradient noise tends to be high frequency (more jaggy). Because of this,
it’s also common to combine them to create value—gradient noise.

To create interesting effects, we combine noise functions together. Often, we use the
same noise function, but vary the spacing of the lattice. By doubling the frequency of lattice
points we get what is called a new noise octave. This gives us a higher level of detail,
which we can either use alone or combine with other octaves to get a more naturalistic
effect: the lower octaves provide the broad strokes, while the higher octaves add the fiddly
bits. For example, combining four octaves of gradient noise together gives us a turbulence
function, which is very useful for producing cloud and marble effects. Usually the higher
octaves are divided by their relative frequency before adding to help blend their effect into
the lower-frequency base.

Let’s look at a couple of examples using fragment shaders. Both of these are simplified
from the OpenGL Shading Language text [132]. The first example generates a cloud texture
on our object.

in vec3 localPos;
out vecd fragColor;
void main()
{
vec3 sky = vec3(0.0, 0.3, 0.8);
vec3 cloud = vec3(0.8, 0.8, 0.8);
float turb = (noisel(localPos) + noisel(2.0*localPos)*0.5
+ noisel (4.0*localPos)*0.25 + noisel(8.0*localPos)*0.125);
vec3 color = mix(sky, cloud, turb);
fragColor = vec4(color, 1.0);

Here we see the turbulence calculation. We use our nontransformed position (sent via
a varying variable from the vertex shader) as the hash into our noise function and scale it
to get different frequencies. We’re using 2.0 as our frequency increment here to show the
ideal behavior, but it’s usually recommended to use a nonintegral value to decrease some of
the gridlike behavior often seen with lattice noise. Once the turbulence value is calculated,

463

464 Random Numbers

Figure 11.16. Sky texture generated using Perlin noise in a turbulence function.

we use it as a blending factor between our sky and cloud colors. Figure 11.16 shows
the result.

We can do something similar to generate a marble texture. The base interpolant for
the marble is the sine of the local y coordinate. We then perturb the base position by our
turbulence to remove the regularity of the sine function as follows:

in vec3 localPos;

out vecd fragColor;

void main/()

{
vec3 light = vec3 (0.7, 0.7, 0.7);
vec3 dark = vec3(0.0, 0.0, 0.0);
float turb = (noisel(localPos) + noisel(2.0*localPos)*0.5

+ noisel (4.0*localPos)*0.25 + noisel(8.0*localPos)*0.125);

float interp = sin(6.0*MCposition.y + 8.0*turb)*0.65;
vec3 color = mix(light, dark, interp);
fragColor = vec4d (color, 1.0);

}

Figure 11.17 shows the result.

For both of these cases, we have used the built-in noise function in GLSL. Similar noise
functions are available in HLSL, Cg, and other shading languages. Whether you use this
function or not depends on the speed of your graphics processing unit. In these fragment
shaders we are doing four function calls, which can get rather expensive. Because of this,
graphics engineers often will generate a texture with different noise octave values in each
color component and then do a lookup into that texture.

These examples give just a taste of what is available by making use of noise functions.
Noise is used for generating wood textures, turbulence in fire texture, terrain, and many
other cases. More detail on noise and other procedural generation can be found in Ebert
et al. [39].

11.6 Chapter Summary 465

D ' -

. &/ :
AN N PR By 2

Figure 11.17. Marble texture generated using Perlin noise in a turbulence function.

11.6 Chapter Summary

In this chapter we discussed some basic probability and statistics that will help us build our
random processes. We used some of these statistic measures to create basic techniques for
measuring random data. We also surveyed the most common random number generators, in
particular, the linear congruential generator and the Mersenne Twister. Finally, we wrapped
things up by looking at some examples of using these random number generators, from
simulating arbitrary distributions to building turbulence functions for computer graphics.

Further reading in random numbers is wide and varied. Gonick and Smith [59] is a very
approachable guide to probability and statistics; Grinstead and Snell [65] is recommended
as a more thorough and formal, yet still readable, text. While slightly out of date now,
a standard survey of random number techniques can be found in Knuth [90]. A great deal
of detail is given in this text to demonstrating the correctness of random algorithms and
discussing techniques for measuring randomness. For those interested in unusual random
distributions, particularly for graphics, Pharr and Humphries [121] is an excellent text.
Finally, Ebert et al. [39] is the standard book for studying procedural algorithms.

12.1 Infroduction

In the previous chapters we have been primarily focused on manipulating and displaying our
game objects in isolation. Whether we are rendering an object or animating it, we haven’t
been concerned with how it might be interacting with other objects in our scene. This is
neither realistic nor interesting. For example, you are manipulating an object right now:
this book. You can hold it in your hand, turn its pages, or drop it on the floor. In the latter
case, it stops reacting to you and starts reacting to the floor. If good game play derives from
interesting interactions, then we need some way to detect when two game objects should
be affecting one another and respond accordingly.

In this chapter we’ll be concerned with a very straightforward question: How do we tell
when two geometric entities are intersecting? This knowledge proves useful in many cases
throughout a game engine. The most obvious is collision detection and response. Rather
than have game objects pass through each other, we want them to push against each other
and respond realistically. In the real world, this is a simple problem. Solid objects are solid;
due to their physical properties, they just don’t interpenetrate. But in the virtual world we
have to create these constraints ourselves. Despite the fact that we have completely defined
the geometry of our game objects, we still need to provide methods to detect when they
interpenetrate. Only when we have a way to handle this can we write the code to perform
the proper response.

Another time when we want to detect when two geometric entities interpenetrate is when
we want to cast a ray and see what objects it intersects. One example of this we have seen
already: detecting the object we’ve clicked on by generating a pick ray from a screen-space
mouse click, and determining the first object we hit with that ray. Another way this is
used is in artificial intelligence (Al). In order to simulate whether one Al agent can see

® Infersection Testing

467

468 Intersection Testing

Source Code

IvMath
Filename

IvLine3

another, we cast a ray from the first to the second and see if it intersects any objects. If not,
then we can say that the first agent’s target is in sight.

We have also mentioned a third use of object intersection before: determining which
objects are visible in a view frustum so that we can do quick visibility culling. If they
interpenetrate or are inside the frustum, then we go ahead to the rendering step; otherwise,
they get skipped. This can considerably speed up our rendering.

Due to the variety of shapes and primitives used in a standard game engine, finding
intersections between all of the cases can get quite complex; a single chapter is not enough
to cover everything. Instead, we’ll cover five basic objects, some methods for improving
performance and accuracy, and directions for improvement. We will also briefly discuss
how to use these methods in a simple collision detection system, and how we can apply
similar techniques to our ray casting and frustum culling problems. Details on more complex
systems can be found in the recommended reading at the end of the chapter.

12.2 Closest Point and Distance Tests

As we’ll find, object intersection tests often can be described more easily in terms of a
distance computation between two primitives, such as a point and a line. In particular, we’ll
often want to know if the distance between two primitives is less than some value, such as a
radius. So, before we begin our discussion of determining intersections between bounding
objects, we will cover a selection of useful methods for testing distances between certain
geometric primitives.

Related to that topic is determining the closest points of approach between those same
primitives; if we can find the closest points, the distance between the two primitives is the
distance between those points. Because of this, we’ll first consider closest point problems
followed by how to calculate the distance between the same two primitives.

12.2.1 Closest Point on Line to Point

Our first problem is illustrated in Figure 12.1: Given a point O, and a line L defined by
a point P and a vector v, how do we find the point Q' on the line that is closest to Q?
We approach this by examining the geometric relationships between the point and line.
In particular, we notice that the dotted line segment between Q and Q' is orthogonal to the
line. This line segment corresponds to a line of projection: to find Q’, we need to project Q
onto the line.

To do this, we begin by computing the difference vector w between Q and P, or
w = Q — P. Then we project this onto v, to get the component of w that points along v.
Recall that this is

WeV

projy,w = ——v
vl

We add this to the line point P to get our projected point Q’, or

Q/ —py WOVV
ME

12.2 Closest Point and Distance Tests 469

Figure 12.1. Closest point on a line.

The equivalent code is as follows:

IvVector3 IvLine3::ClosestPoint (const IvVector3& point)
{

IvVector3 w = point - mOrigin;

float vsg = mDirection.Dot (mDirection) ;

float proj = w.Dot (mDirection) ;

return mOrigin + (proj/vsq)*mDirection;

-l 222 Line—POiﬂT DISTOHCG Source Code

As before, we’re given a point Q and a line L defined by a point P and a vector v. In thiS rwacn

case, we want to find the distance between the point and the line. One way is to compute
the closest point on the line and compute the distance between that and Q. A more direct
approach is to use the Pythagorean theorem (Figure 12.2).

We note that w = Q — P can be represented as the sum of two vectors, one parallel
to v(w|) and one perpendicular (w,). These form a right triangle, so from Pythagoras,
w|? = [Iw) >+ [lw_||>. We want to know the length of w_ , so we can rewrite this as

2 2 2
Wil = lIwll”— [lwyl
WeV |2
:w.w—‘ VH
VeV
WeV\?2
ZWOW—() VeV
VeV
(w.v)2
=WeW— ———
VeV

Taking the square root of both sides will give us the distance between the point and
the line.

470 Intersection Testing

Figure 12.2. Computing distance from point to line, using a right triangle.

The equivalent code is as follows:

float IvLine3::DistanceSquared(const IvVector3& point)

{

IvVector3 w = point - mOrigin;

float vsqg mDirection.Dot (mDirection) ;
float wsg = w.Dot (w);
float proj = w.Dot (mDirection) ;

return wsqg - proj*proj/vsdg;

Note that in this case we’re computing the squared distance. In most cases we’ll be using
this to avoid computing a square root. Another optimization is possible if we can guarantee
that v is normalized; in that case, we can avoid calculating and dividing by v e v, since its
value is 1.

soucecode 12.2.3 Closest Point on Line Segment to Point

TvMath Recall that a line segment can be defined as the convex combination of two points Py and

P],OI'

IvLineSegment3

S@) =(1—1)Py+1tP;
where 0 < ¢t < 1. We can rewrite this as
S(t) = Po+t(P1 — Po)
or
St)=P+tv

where as before 0 <t < 1. In this case, v should not be normalized, as its length is the
length of our line segment, and the endpoints are P and P + v.

12.2 Closest Point and Distance Tests 471

Figure 12.3. Three cases when projecting a point onto a line segment.

In the problem of finding the closest point on a line, we computed the projection of the
point onto the line. Doing the same for a line segment gives us three cases (Figure 12.3).
In the first case, the result of projecting Q lies outside the segment but closest to Py. In
the second case, the result of projecting Q; lies outside the segment but closest to Py. In
the third case, the projected O, lies on the segment, and we can use the same projection
calculations that we used with a line.

To determine which case we’re in, we begin by noting that

WeV

VeV

is acting as our parameter ¢ for the projected point, where again w = Q — P. If r < 0, then
the projected point lies beyond Py, and the closest point is Py. Similarly, if # > 1, then the
closest point is Pj.

Testing ¢ directly requires a floating-point division. By modifying our test we can defer
the division to be performed only when we truly need it, that is, when the point lies on the
segment. Since VeV > 0, then we v < 0 in order for < 0. And in order for ¢ > 1, then
WeV > VeV.

The equivalent code is as follows:

IvVector3 IvLineSegment3::ClosestPoint (const IvVector3& point)

{

IvVector3 w = point - mOrigin;

float proj = w.Dot (mDirection) ;

if (proj <= 0)
return mOrigin;

else

{
float vsqg = mDirection.Dot (mDirection) ;
if (proj >= vsqg)

472 Intersection Testing

Source Code
IvMath

IvLineSegment3

return mOrigin + mDirection;
else
return mOrigin + (proj/vsq)*mDirection;

12.2.4 Line Segment-Point Distance

As with lines, we can compute the distance to the line segment by computing the distance
to the closest point on the line segment. If we recall, there are three cases: the closest point
is Py, P1, or a point somewhere else on the segment, which we’ll calculate.

If the closest point is Pg, then we can compute the distance as ||Q — Ppl|. Since
w = Q — Py, then the squared distance is equal to w « w.

If the closest point s P, then the squared distance is (Q — P1) « (Q — P1). However, we're
representing our endpoint as P; = Pg+ v, so this becomes (Q — Py — V)« (Q — Py — V).
We can rewrite this as

distsq(Q, P1) = (@ — Po) = V) « ((Q — Po) — V)
=(W—V)e(W—V)

= WeW—2WeV+VeV

We’ve already calculated most of these dot products when determining whether we’re
closest to Py, so all we need to compute is w « w and add. If the closest point lies elsewhere
on the segment, then we use the line distance calculation just given.

The final code is as follows:

float IvLineSegment3::DistanceSquared(const IvVector3& point)
{

IvVector3 w = point - mOrigin;

float proj = w.Dot (mDirection) ;
if (proj <= 0)
{
return w.Dot (w) ;
}
else
{
float vsg = mDirection.Dot (mDirection) ;
if (proj >= vsqg)
{
return w.Dot(w) - 2.0f*proj + vsqg;
}
else
{
return w.Dot (w) - proj*proj/vsqg;

}

12.2 Closest Point and Distance Tests

12.2.5 Closest Points between Two Lines Source Code
Sunday [141] provides the following construction for finding the closest points between rvuacn
two lines. Note that in this case there are two closest points, one on each line, since there
are two degrees of freedom. The situation is shown in Figure 12.4. Line L is described by

the point Py and the vector u. Correspondingly, line L, is described by the point Qg and the

vector v, or

Li(s) = Pg+ su
Lr(#) = Qo +1v

Vectors u and v are not necessarily normalized.

We’ll define the two closest points that we’re looking for as lying at parameters s. and
t. on the lines, and call them L(s.) and Ly (¢.), respectively. We’ll refer to the vector from
Lo (t;) to Li(sc) as we.

Expanding w., we have

We = Li(s¢) — La(t)
= Po+scu—Qp—t.v
= (Po— Qo) + scu —t.v

We’ll use wy to represent the difference vector Py — Qp, so

W, = Wo + S.u — .V (12.1)

Figure 12.4. Finding the closest points between two lines.

473

474 Intersection Testing

In order for w, to represent the vector of closest distance, it needs to be perpendicular to
both L; and L,. This means that

weeu=0
Weev =0

Substituting in Equation 12.1 and expanding, we get

O=wopeu—+s.uel—7rUeV (12.2)
O=WopeV+sUeV—1 VeV (12.3)

We have two equations and two unknowns s. and #., so we can solve for this system of
equations. Doing so, we get the result that

be —cd
= — 12.4
SC ac—b2 ()
ae — bd
te=—— 12.5
C ac—b2 ()
where
a=u.u
b=uev
C=VeV
d=uewp
e =1VeW

There is one case where we need to be careful. If the two lines are parallel, then u and v
are parallel, so [u« v| = |[ul|||v||. Then the denominator ac — b* equals

ac—b> = (en)(Vev)— (Wev)’
= [l ?vI* = (lalfiviD?
=0

This leads to a division by 0. The problem is that there are an infinite number of pairs of
closest points spaced along each line. In this case, we’ll just find the closest point Q' on L,
to the origin Py of line L; and return Py and Q’.

void ClosestPoints(IvVector3& pointl,
IvVector3& point2,
const IvLine3& linel,
const IvLine3& line2)

IvVector3 wO = linel.mOrigin - line2.mOrigin;

float a = linel.mDirection.Dot(linel.mDirection);
float b = linel.mDirection.Dot(line2.mDirection);
float ¢ = line2.mDirection.Dot(line2.mDirection);

12.2 Closest Point and Distance Tests

float d = linel.mDirection.Dot(w0);
float e = line2.mDirection.Dot(w0);
float denom = a*c - b*b;

if (IsZero(denom))
{
pointl = linel.mOrigin;
point2 = line2.mOrigin + (e/c)*1line2.mDirection;
}
else
{
pointl = linel.mOrigin + ((b*e - c*d)/denom) *linel.mDirection;
point2 = line2.mOrigin + ((a*e - b*d)/denom)*line2.mDirection;
}
}
12.2.6 Line-Line Distance Source Code

From the calculation of closest points between two lines, we know that w, is the vector ruacn

of closest distance. Therefore, its length equals the distance between the two lines. Rather

IvLine3

than compute the closest points directly, we can substitute the values of s, and ¢, into
Equation 12.1 and compute the length of w.. As before, to avoid the square root, we can
use ||W¢||> = W« W, instead.

The code is as follows:

float DistanceSquared(const IvLine3& linel, const IvLine3& line2)
{
// compute parameters
IvVector3 wO = linel.mOrigin - line2.mOrigin;
float a = linel.mDirection.Dot(linel.mDirection);
float b = linel.mDirection.Dot(line2.mDirection);
float ¢ = line2.mDirection.Dot(line2.mDirection);
(
(

float d = linel.mDirection.Dot(w0);
float e = line2.mDirection.Dot(w0) ;
float denom = a*c - b*b;
// if lines parallel
if (IsZero(denom))
{
IvVector3 wc = w0 - (e/c)*line2.mDirection;

return wc.Dot (wc) ;

}

// otherwise

else

{
IvVector3 wc = wO + ((b*e - c*d)/denom)*linel.mDirection

- ((a*e - b*d)/denom)*line2.mDirection;

return wc.Dot (wc) ;

Source Code

12.2.7 Closest Points between Two Line Segments

IvMath

Finding the closest points between two line segments follows from finding the closest points =
between two lines. We compute s. and 7., as we’ve done, but then need to clamp the results 1viinesegnents

475

476 Intersection Testing

to the ranges of s and ¢ defined by the endpoints of the two line segments. As before, we’ll
define our line segments as starting at the source point of the line and ending at that source
point plus the line vector. So for line L;, the two points are Py and Py + u, and for line L,,
the two points are Qg and Qp + v. This gives us parameters 0 and 1 for the locations of the
two endpoints. If our results s, and 7. lie between the values 0 and 1, then our closest points
lie on the two segments, and we’re done.

Otherwise, we need to clamp our parameters to each of the endpoint parameters and
try again. To see how to do that, let’s take a look at the s = 0 endpoint. Remember that
what we want to do is find the smallest possible distance between the two points while not
sliding off the end of the segment; namely, we want to minimize the length of w, while
maintaining s = 0. Since length is always increasing, we’ll use ||w, |2, which will be much
easier to minimize. Remember that

We = W+ S.u — 1.V
Since we’re clamping s, to 0, this becomes
W, = Wo — £,V
Therefore, for this endpoint we try to find the minimum value for
We e We = (Wg —1.V) e (Wg — 1.V) (12.6)

To do this, we return to calculus. To find a minimum value (in this case, there is only one) for
a function, we find a place where the derivative is 0. Taking the derivative of Equation 12.6
in terms of 7., we get the result

0= —2ve(Wg—1.V)

Solving for 7., we get

AL (12.7)
VeV

So, for the fixed point on line L; at s = 0, this gives us the parameter of the closest point
on line L. As we can see, this is equivalent to computing the closest point between a line
and a point, where the line is L, and the point is Py.

For the s = 1 endpoint, we follow a similar process. Our minimization function is

WeeWe = (Wog+Uu—1.V)e(Wg+u—1.v) (12.8)
The corresponding zero derivative function is
0=—-2ve(Wo+u—t.v)

Solving for 7. gives us

VeW) +UeV
cT VeV
Again, this is equivalent to computing the closest point between a line and a point, where
the line is L and the point is Py + v. The solutions for s, when clampingtot =0or¢ =1
are similar.

12.2 Closest Point and Distance Tests

One nice thing about these functions is that they use the a through e values that we’ve
already calculated for the basic line—line distance calculation. So, Equation 12.7 becomes
e
fe=—

c
So, which endpoints do we check? Well, if the parameter s, is less than 0, then the closest
segment point to line L, will be the s = 0 endpoint. And if s, is greater than 1, then the
closest segment point will be at s = 1. Choosing one or the other, we resolve for 7. and
check that it lies between 0 and 1. If not, we perform the same process to clamp z. to either
the r = 0 or + = 1 endpoint and recalculate s, accordingly (with some minor adjustments
to ensure that we keep s, within 0 and 1).

Once again, there is a trick we can do to avoid multiple floating-point divisions. Instead
of computing, say, s. directly and testing against 0 and 1, we can compute the numerator
sy and denominator sp. The initial sp is always greater than 0, so we know that if sy is less
than 0, s, is less than 0 and we clamp to s =0 accordingly. Similarly, if sy is greater than
sp, we know that s, > 1, and we clamp to s = 1. The same can be done for the ¢ values.
Using this, we can recalculate the numerator and denominator when necessary, and do the
floating-point divides only after all the clamping has been done.

For example, the following code snippet calculates the s values:

// clamp s_c to O
if (sN < 0.0f)
{

sN = 0.0f;
EN = e;
th = c;

}
// clamp s_c to 1
else if (sN > sD)
{

sN = sD;
tN = e + b;
tDh = ¢;

The full code is too long to contain here, but can be found at www.essentialmath.com.

12.2.8 Line Segment-Line Segment Distance

Finding the segment-to-segment squared distance is similar to line-to-line distance: we
follow the procedure for closest points between line segments, calculate w, directly from the
final s, and 7., and then compute its length. The full code can be found at www.essentialmath.
com in the TvLineSegment3 friend function DistanceSquared ().

12.2.9 General Linear Components

Testing ray versus ray or line versus line segment is actually a simplification of the
segment—segment closest point and distance determination. Instead of clamping against
both components, we need only clamp against those endpoints that are necessary. So, for

Source Code
IvMath
[Filename |

IvLineSegment3

Source Code

IvMath

[Filename |
IvLine3

IvRay3
IvLineSegment3

477

478 Intersection Testing

example, if we treat Po + su as the parameterization of a line segment, and Qg + ¢v as a line,
then we need only to ensure that s, is between 0 and 1, clamp to the appropriate endpoint,
and adjust 7. accordingly. Similarly, if we’re working with rays, we need only to clamp
Sc or t. to 0.

Implementations of these algorithms can be found in the appropriate classes.

12.3 Object Intersection

Now that we’ve covered some methods for measuring distance between primitives, we can
talk about object intersection. The most direct, and naive, approach to determine whether
two objects are intersecting is to work directly from raw object data. We could start with
a triangle in object A and a triangle in object B and see if they are intersecting. Then we
move to the next triangle in object A and test again. While ultimately this may work (the
exception is if one object is inside the other), it will take a while to do, and most of the time
performing all those tests isn’t even necessary. Take the two objects in Figure 12.5. They
are clearly not intersecting—we can tell that in an instant. But our minds are not considering
each object as a collection of lines and doing individual tests. Rather, we are comparing
them as a whole, as two rough blobs, and determining that the blobs aren’t intersecting. By
using a similar process in our intersection routines, we can save ourselves a lot of time.

For instance, suppose we surround each object with a sphere (Figure 12.6). We can begin
by testing for intersection between the spheres. If the two spheres aren’t intersecting, we
know the objects aren’t either. If the spheres are intersecting, we can try comparing another
simplified version of our object—say, two boxes. The boxes fit the shape of our objects
better, but are still a simpler test than our full triangle—triangle comparison. If the boxes
intersect, only then do we perform our complex collision detection routine.

This technique of using simplified objects to test intersections before performing more
expensive operations is commonly used in game engines, and is necessary to get collision
detection and other intersection-based systems running in real time. The simplified objects

Figure 12.5. Nonintersecting objects.

12.3 Object Intersection 479

Figure 12.6. Nonintersecting objects with bounding sphere.

are known as bounding objects and are named specifically after the basic primitives we
used to approximate the object: bounding spheres and bounding boxes. In games, we can
often get away with ignoring the underlying geometry completely and only using bounding
objects to determine intersections. For example, when handling collisions in this way, either
the action happens so fast that we don’t notice any overlapping objects or objects reacting
to collision when they appear separated, or the error is so slight that it doesn’t matter. In any
case, choosing the side of making the simulation run faster for a better play experience is
usually a good decision.

One thing to note with the following algorithms is that their performance is often
dependent on the platform that they are run on. For example, some systems don’t have
predictive branching, so conditionals are quite slow. So, on such a platform, an algorithm
that calculates unnecessary data may actually turn out to be faster than one that attempts
to avoid this using if-then-else clauses. Even on relatively similar architectures there can
be surprising differences in relative performance. This is shown strikingly by Lofstedt and
Akenine-Moller [105].

To keep things concise, we have chosen a few algorithms that are commonly used and
arerelatively fast on a broad variety of architectures. Other books are more detailed, covering
many different polytopes (the 3D equivalent of polygons) and interactions between all sorts
of bounding objects. In our case, we’ll focus on a few simple shapes, beginning with
the simplest objects and moving on to the most complex, or most expensive, to compute.
However, the reader should be aware of the issues above and may need to explore alternatives
for his or her particular application.

Within each section we’ll only consider three cases of intersection. We’ll first look
at intersections between objects of the same bounding type, which is useful in collision
detection. Second, we’ll cover intersections between a ray and the particular bounding

480 Intersection Testing

Source Code

object, which we’ll need for picking and visibility testing for Al. Finally, we’ll discuss how
to determine intersection between a plane and the bounding object, which can be used for
both culling against frustum planes and collisions with essential planar objects like walls.
In all cases, we aren’t concerned with the exact point of intersection, just whether the items
intersect.

12.3.1 Spheres
12.3.1.1 Definition

weollision The simplest possible bounding object is a sphere. It also has the most compact repre-

Filename

IvBounding
Sphere

sentation: a center point C and a radius r (Figure 12.7). When bounding a rigid object, a
sphere is also independent of the object’s orientation. This allows us to update a sphere
quickly—when an object moves, we need only to update the sphere’s position. If the object
is scaled, we can scale the radius accordingly. The combination of low memory usage,
fast update time, and fast intersection tests makes bounding spheres a first choice in any
real-time system.

The surface of the sphere is defined as all points P such that the length of the vector from
C to P is equal to the radius:

VPe— CO? 4 (Py— G2 4+ (P~ C =1

or

VP—C)e(P=C)=r

Ideally, we’ll want to choose the smallest possible sphere that encompasses the entire
object. Too small a sphere, and we may skip two objects that are actually intersecting. Too
large, and we’ll be unnecessarily performing our more expensive tests for objects that are

Figure 12.7. Bounding sphere.

12.3 Object Intersection 481

clearly separate. Unfortunately, the most obvious methods for choosing a bounding sphere

will not always generate as tight a fit as we might like.

One such method is to take the local origin of the object as our center C, and compute r
by taking the maximum distance from that to all the vertices in the object. There are many
problems with this. The most common is that the local origin could be considerably offset
from the most desirable center point for the object (Figure 12.8a). This could happen if
you have a character whose origin is at its feet, so it can be placed on the ground properly.

An alternate but equivalent situation is where the origin is at a reasonable center point for

the majority of the object’s vertices, but there are one or two outlying vertices that cause

problems (Figure 12.8b).

Eberly [35] provides a number of methods for finding a better fit. One is to average
all the vertex locations to get the centroid and use that as our center. This works well for
the case of a noncentered origin, but still is a problem for an object with outlying points
(Figure 12.8c). The reason is that the majority of the points lie within a small area and thus

weight the centroid in that direction, pulling it away from the extrema.

We could also take an axis-aligned bounding box in the object’s local space and use its
endpoints to compute our sphere position and radius (Figure 12.8d). This tends to center the
sphere better but leads to a looser fit. A compromise method uses the center of the bounding
box as our sphere position, and computes the radius as the maximum distance from the center
to our points. This gives a slightly better result. The code for this last method is as follows:

void
IvBoundingSphere: : Set (

// compute minimal and maximal bounds
IvVector3 min(points([0]), max(points[0]);
for (unsigned int 1 = 1; i < numPoints; ++i)
{
if (points[i].x < min.x)
min.x = points[i].x;
else if (points[i].x > max.x)
max.x = points[i].x;
if (points[i]l.y < min.y)
min.y = points[i].y;
else if (points[i].y > max.y)
max.y = points[i].y;
if (points[i].z < min.z)

min.z = points[i].z;
else if (points[i]l.z > max.z)
max.z = points[i].z;

}

// compute center and radius

mCenter = 0.5f* (min + max) ;
float maxDistance = ::DistanceSquared(mCenter, points[0]
for (unsigned int i = 1; i < numPoints; ++i)
{
float dist = ::DistanceSquared(mCenter, points([i]);

if (dist > maxDistance)
maxDistance = dist;
}

mRadius = ::IvSgrt(maxDistance);

const IvPoint3* points, unsigned int numPoints)

482 Intersection Testing

Figure 12.8. (a) Bounding sphere, offset origin; (b) bounding sphere, outlying point;
(c) bounding sphere, using centroid, object vertices; (d) bounding sphere, using box center,
box vertices; and (e) bounding sphere, smallest possible.

12.3 Object Intersection 483

It should be noted that none of these methods is guaranteed to find the smallest bounding
sphere. The standard algorithm for this is by Welzl [156], who showed that linear pro-
gramming can be used to find the optimally smallest sphere surrounding a set of points
(Figure 12.8e). Many implementations are readily available online: one by Bernd Gaertner
is provided under the GNU General Public License.

While we don’t want to be cavalier about using ridiculously large bounding spheres,
in some cases having the tightest possible fit isn’t that much of an issue. Our objects will
not be generally spherical, and so we’ll be using something more complex for our final
intersection test. As long as our spheres are reasonably close to a good fit, they will act to
cull a great number of obvious cases, which is all we can ask for.

12.3.1.2 Sphere-Sphere Intersection

Determining whether two spheres are intersecting is as simple as their representation. We
need only to determine whether the distance between their centers is less than the sum of
their two radii (Figure 12.9), or

\/(Cl —()e(C1—C) <=r11+n2 (12.9)

The square root operation is expensive, and in any case, it is unnecessary. Since we’re not
looking for the absolute difference, just a relation, we can use

(C1 —C2) o (C1 — C2) <= (r1 +12)° (12.10)

As promised, this gives us an extremely cheap test for culling large numbers of intersections.
This is why bounding spheres are used everywhere in computer graphics and simulation;
we perform an initial fast check with a bounding sphere first before even considering the
more complex cases.

| d |
| e
// \\
- ~
7 N
7 N
Va N
, \
T T =< / N
~
s N \

7/ /N \

4 /AN , \
/ e\ " | ‘
| DI | ‘
| | |
| Cl. | |
\ r! .Cz |
\ ‘__?‘ !

\

\ \ / /

\\)(/ /

~ - /

~ - \
N /
7/
S P
~ 7

Figure 12.9. Sphere—sphere intersection.

484 Intersection Testing

The code is as follows:

bool
IvBoundingSphere: :Intersect(const IvBoundingSphere& other)
{
IvVector3 centerDiff = mCenter - other.mCenter;
float radiusSum = mRadius + other.mRadius;
return (centerDiff.Dot (centerDiff) <= radiusSum*radiusSum) ;

12.3.1.3 Sphere-Ray Infersection

Intersection between a sphere and a ray is nearly as simple. Instead of testing two centers
and comparing the distance with the sum of two radii, we test the distance between a single
sphere center and a ray. If the distance is less than or equal to the sphere’s radius, then the
ray intersects the sphere (Figure 12.10).

We can use the line—point distance measurement described as the basis for this test.
The code is as follows (it assumes an initial nonzero, nonnormalized v):

bool
IvBoundingSphere: :Intersect(const IvRay3& ray)
{

// compute intermediate values

IvVector3 w = mCenter - ray.mOrigin;

float wsg = w.Dot (w) ;

float proj = w.Dot(ray.mDirection) ;

float rsg = mRadius*mRadius;

// if sphere behind ray, no intersection
if (proj < 0.0f && wsg > rsq)
return false;

float vsg = ray.mDirection.Dot (ray.mDirection) ;

// test length of difference vs. radius
return (vsg*wsqg - proj*proj <= vsg*mRadius*mRadius) ;

An additional check has been added since we’re using a ray. If the sphere lies behind
the origin of the ray, then there is no intersection. This is true if the angle between the
difference vector w and the line direction is greater than 90 degrees (proj < 0.0f) and
the line origin lies outside of the sphere (wsq > rsq).

We also remove the need for a floating-point divide by multiplying through by vsq.
This adds two multiplications, but this still should be faster on most floating-point proces-
sors. As before, if we can guarantee that the ray direction vector is normalized, then we can
remove the need for vsq altogether.

12.3.1.4 Sphere-Plane Intersection

Testing whether a sphere lies entirely on one side of a plane can be done quite efficiently.
Recall that we can determine the distance between a point and such a plane by taking the

Figure 12.10. Line—sphere intersection.

12.3 Object Intersection 485

absolute value of the result of the plane equation. If the result is positive and the distance
is greater than the radius, then the sphere lies on the inside of the plane. If the result is
negative, and the distance is greater than the sphere’s radius, then the sphere lies outside of

the plane. Otherwise, the sphere intersects the plane.
The code for this test is as follows:

float

IvBoundingSphere: :Classify(const IvPlane& plane)

{

float distance = plane.test (mCenter) :

if (distance > radius)
{

return distance-radius;
}

else if (distance < -radius

{
return distance+radius;
}
else
{
return 0.0f;

Here we’re returning a signed distance, like the standard plane test. If the sphere intersects,
we return zero. Otherwise, we return the signed distance minus the signed distance of the

radius.

486 Intersection Testing

Source Code

IvCollision
Filename

IVAABB

12.3.2 Axis-Aligned Bounding Boxes
12.3.2.1 Definition

Spheres work well as either cheap culling objects or bounding objects for a small class
of models (i.e., if you’re tossing grenades or writing a billiards game). For more angular
objects, we need a better-fitting bounding surface. One possibility is the bounding box. Just
like the bounding sphere, the ideal bounding box is the smallest possible box that encloses
an object.

The first type we’ll consider is the AABB, or axis-aligned bounding box, so called
because the box edges are aligned to the world axes. This makes representation of the
box simple: we use two points, one each for the minimum and maximum xyz positions
(Figure 12.11). When the object is translated, to update the box we translate the minimum
and maximum points. Similarly, if the object is scaled, we scale the two points relative to
the box center. However, because the box is aligned to the world axes, any rotation of the
object means that we have to recalculate the minimum and maximum points from the object
vertices’ new positions in world space.

The other disadvantage AABBs have is that in many cases, like spheres, they still aren’t
a very close fit to the object they are trying to approximate (Figure 12.12). And for rounded
objects like submarines or organic objects like humans, the fact that they have corners is a
disadvantage as well. However, they are relatively cheap to compute and cheap to test as
well, so they continue to prove useful.

One advantage that world axis-aligned boxes have over a box oriented to the object’s
local space is that we need only recompute them once per frame, and then we can compare
them directly without further transformation, since they are all in the same coordinate frame.
So, while AABBs have a high per-frame overhead (since we have to recalculate them each
time an object reorients), they are extremely cheap to test against one another. As we’ll see,

<~ ~
N
N O Ve Zoar)
I

\N_ 7

(x

z,.)

min® Vmin? “min) O

A

|
|

|

|

|

|

|

|

N |
|

|

|

|

NI

A

Figure 12.11. Axis-aligned bounding box.

12.3 Object Intersection 487

Figure 12.12. Fitting axis-aligned bounding box.

there is a lot more overhead for determining intersection between oriented boxes. Oriented
boxes are generally cheap per frame (they move with the transforms of the object), but are
more expensive to test against one another.

To compute an AABB, we first transform the object into world space. Then we set the
minimum and maximum points to be equal to the first point (in world space, remember) in
the object. Starting with the second point, we compare the xyz values of each point with
those in the minimum and maximum. If any coordinate is less than that in the minimum,
set the minimum coordinate to that value, and the same for the maximum, except use
greater than. When done, this will give you the axis-aligned extrema for your box.
void
IVAABB: :Set(const IvPoint3* points, unsigned int numPoints)

{
ASSERT (points);

// compute minimal and maximal bounds
mMinima.Set (points[0]);
mMaxima.Set (points[0]) ;
for (unsigned int i =

{

1; i < numPoints; ++1)

if (points[i].x < mMinima.x)
mMinima.x = points[i].x;

else if (points[i].x > mMaxima.x)
mMaxima.x = points[i].x;

if (points[i].y < mMinima.y)
mMinima.y = points[i].y;

else if (points([i].y > mMaxima.y)
mMaxima.y = points[i].y;

if (points[i].z < mMinima.z)
mMinima.z = points[i].z;

else if (points([i].z > mMaxima.z)
mMaxima.z = points[i].z;

12.3.2.2 AABB-AABB Intersection

In order to understand how we find intersections between two axis-aligned boxes, we
introduce the notion of a separating plane. The general idea is this: we check the boxes in

488 Intersection Testing

each of the coordinate directions in world space. If we can find a plane that separates the
two boxes in any of the coordinate directions, then the two boxes are not intersecting. If we
fail all three separating plane tests, then they are intersecting and we handle it appropriately.

Let’s look at the process of finding a separating plane between two boxes in the
x direction. Since the boxes are axis aligned, this becomes a one-dimensional (1D) prob-
lem on a number line. The minimum and maximum values of the two boxes become the
extrema of two intervals on the line. If the two intervals are separate, then there is a sep-
arating plane and the two boxes are separate along the x direction. This is the case only
if the maximum value of one interval is less than the minimum value of the other interval
(Figure 12.13). Expressing this for all three axes:

bool
IVAABB: : Intersect (const IVAABB& other)
{
// if separated in x direction
if (mMinima.x > other.mMaxima.x || other.mMinima.x > mMaxima.x)
return false;

// 1f separated in y direction
if (mMinima.y > other.mMaxima.y || other.mMinima.y > mMaxima.y)
return false;

// if separated in z direction
if (mMinima.z > other.mMaxima.z || other.mMinima.z > mMaxima.z)
return false;

// no separation, must be intersecting
return true;

minl maxl min2 max?2

Figure 12.13. Axis-aligned box—box separation test.

12.3 Object Intersection 489

Examining this code makes another advantage of AABBs clear. If we’re using three-
dimensional (3D) objects in an essentially two-dimensional (2D) game, we can ignore
the z-axis and so save a step in our computations. This is not always possible with boxes
aligned to the local axes of an object.

12.3.2.3 AABB-Ray Intersection

Determining intersection between a ray and an axis-aligned box is similar to determining
intersection between two boxes. We check one axis direction at a time as before, except
that in this case, there is a little more interaction between steps.

Figure 12.14 shows a 2D cross section of the situation. The ray R shown intersects
the minimum and maximum x planes of the box at R(s,) and R(z,), respectively, and the
minimum and maximum y planes at R(sy) and R(t,). Instead of testing for extrema overlaps
in the box axes directions, we’ll test whether there is overlap between the line segment from
R(sy) to R(z,) and the line segment from R(sy) to R(ty). This is the same as testing whether
the intervals of the line parameters [sy, #,] and [sy, fy] overlap.

If the ray misses the box, as in the figure, then the [sy,] interval doesn’t overlap
the [sy, #,] interval, just like the preceding box—box intersection. So, if there’s no overlap
(if x < sy, or vice versa), then there’s no intersection, and we stop. If they do overlap, then
we test that overlap interval against the z intersections. If there’s overlap there as well, then
we know that the ray intersects the box.

For each axis, we begin by computing the parameters where the ray (represented by the
point P and vector v) crosses the minimum and maximum planes. So, for example, in the
x direction we’ll calculate intersections with the x = x;,,;, and x = x;,,4x planes. To do this,
we need to solve the following equations:

Py 45V = Xinin
Py + txvy = Ximax

Solving for s, and t,, we get

Xmin — Px

Sy = —————
Vx

Xmax — Py

Ly = —mm—
Vx

To simplify adjustment of our overlap interval, we want to ensure that s, < t,. This can be
handled by checking whether 1/v, < 0; if so, we’ll swap the x,;, and x4, terms.

We’ll track our parameter overlap interval by using two values s,,,,x and f,,;,, initialized
to the maximum interval. For a ray this is [0, oo]; for a line this would be [—o0, 0o]; for
a segment it would be [0, s], where s is the length of the segment. These represent the
maximum s and minimum ¢ values seen so far. As we calculate intersection parameters for
each axis, we’ll sort them so that s < ¢, and then update $;,,4x and t,,in if § > Sy OT t < i
We know that the ray misses the box if we ever find that s,,,, > f,,;,. For example, looking
at Figure 12.14, after doing the x-axis calculations we see that 5,5, = sy and t,,,;,, = ... After
the y-axis parameters are computed, #;, is updated to ty, and sy, Temains sy. But s, > 1y,
so there is no intersection.

490 Intersection Testing

Figure 12.14. Axis-aligned box—ray separation test.

The code, abbreviated for space, is as follows:

bool
IVAABB: :Intersect(const IVvRay3& ray)
{
float maxS = 0.0f; // for line, use -FLT_MAX
float minT = FLT _MAX; // for line segment, use length

// do x coordinate test (yz planes)

// compute sorted intersection parameters
float s, t;

float recipX = 1.0f/ray.mDirection.x;

if (recipX >= 0.0f)

{
s = (mMin.x - ray.mOrigin.x)*recipX;
t = (mMax.x - ray.mOrigin.x)*recipX;
}
else
{
s = (mMax.xXx - ray.mOrigin.x) *recipX;
t = (mMin.x - ray.mOrigin.x)*recipX;
}

// adjust min and max values
if (s > maxS)

maxsS = S;
if (t < minT)

minT = t;

12.3 Object Intersection 491

// check for intersection failure
if (maxS > minT)
return false;

// do y and z coordinate tests (xz & Xy planes)

// done, have intersection
return true;

There’s one special case that is implicitly handled: clearly if v, is O, then there
are no solutions for s, and #,; the ray is parallel to the minimum and maximum planes.
Normally in this case we’d need to test whether P, lies between x,,;, and x,,y. If not, the
ray misses the box and there is no intersection. However, when using the IEEE floating-
point standard, division by zero will return —oo for a negative numerator, and oo for a
positive numerator. Hence, if the ray misses the box, the resulting interval will be either
[—o00, —00] or [00, 0o], which will lead to intersection failure. The only odd case is when
the origin of the ray lies on one of the box planes, so s or ¢ will end up being 0/co = NaN.
This still isn’t a problem, as the subsequent comparisons will fail (because any comparison
involving NaN returns false) and imply intersection, which is correct. More detail can be
found in [5].

12.3.2.4 AABB-Plane Intersection

The most naive test to determine whether a box intersects a plane is to see whether a single
box edge crosses the plane. That is, if two neighboring vertices lie on either side of the plane,
there is an intersection. There are 12 edges, so this requires 24 plane tests. There are two
improvements we can make to this. The first is to note that we need to test only opposing
corners of the box, that is, two vertices that lie at either end of a diagonal that passes
through the box center. This cuts the number of “edges” to be checked down to four. The
second improvement is provided by Akenine-Moller et al. [1], who note that we really need
to test only one: the diagonal most closely aligned with the plane normal. Figure 12.15
shows a cross section of the situation.

Figure 12.15. Axis-aligned box—plane separation test.

492 Intersection Testing

Source Code

IvCollision
Filename

IvCapsule

Code to manage this is as follows. As before, we return zero if there is an intersection,
and the signed distance otherwise.

float
IVAABB: :Classify(const IvPlane& plane)
{
IvVector3 diagMin, diagMax;
// set min/max values for x direction
if (plane.mNormal.x >= 0)
{
diagMin.x = mMin.x;
diagMax.x = mMax.X;
}
else
{
diagMin.x = mMax.x;
diagMax.x = mMin.x;

// ditto for y and z directions

// minimum on positive side of plane, box on positive side
float test = plane.mNormal.Dot(diagMin) + plane.mD;
if (test > 0.0f)

return test;

test = plane.mNormal.Dot (diagMax) + plane.mD;
// min on nonpositive side, max on nonnegative side, intersection
if (test >= 0.0f)
return 0.0f;
// max on negative side, box on negative side
else
return test;

A further optimization is to remove the conditionals for generating the maximal diagonal
by computing a central point and half-extent vectors for the AABB, and using the algorithm
for object-oriented bounding boxes; see Section 12.3.4 for more details.

12.3.3 Swept Spheres
12.3.3.1 Definition

The bounding sphere and the axis-aligned bounding box have one problem: there is no real
sense of orientation. The sphere is symmetric across all axes and the AABB is always aligned
to the world axes. For objects that have definite long and short axes (e.g., a human), this
doesn’t provide for an ideal approximation. The next two bounding objects we’ll consider
are not tied to the world axes at all, which makes them much more suitable for general
models.

The simplest of such bounding regions are the swept spheres. If we consider the sphere
as a region enclosed by a radius around a point, or a zero-dimensional center, the swept
spheres use higher-dimensional centers. One example is the capsule, which is a line segment

12.3 Object Intersection 493

=
A\

surrounded by a radius (Figure 12.16a). Another possibility is the lozenge, which has
a quadrilateral center (Figure 12.16b). For our purposes, we’ll concentrate on capsules
(Eberly [35] provides more information on lozenges and other swept spheres).

Computing the capsule in local space for a set of points is fairly straightforward, but not
as simple as spheres or bounding boxes. Our first step is to compute a bounding box for the
points. If the object is generally axis aligned (not unreasonable considering that the artists
usually build objects in this way), we can use an axis-aligned bounding box. Otherwise, we
may need an oriented bounding box (see Section 12.3.4 on how to compute this). We then
find the longest side. The line that we will use for our baseline segment runs through the
middle of the box. We’ll use the center of one end of the box as our line point A, and the
box axis w as our line vector. We could use the local origin and a coordinate axis for our
line, but while we’re willing to assume axis alignment, we’re not so optimistic as to assume
that the object is centered on a coordinate axis.

Now we need to compute the radius r of the capsule. For each point in the object,
we compute the distance from the point to the line. The maximum distance becomes our
radius. The line combined with the radius gives us a tube with radius » and ends extending
to infinity. All the points in the object just fit inside the tube.

(b)
Figure 12.16. (a) Capsule and (b) lozenge.

494 Intersection Testing

The final part to building the capsule is capping the tube with two hemispheres that just
contain any points near the end of the object. Eberly [35] describes a method for doing this.
The center of each hemisphere is one of the two endpoints of the line segment, so finding
the hemisphere allows us to define the line segment. Let’s consider the endpoint with the
smaller # value—call it L(§p)—shown in Figure 12.17. We want to find the leftmost hemi-
sphere (i.e., the one with the smallest &p) so that all points in the model lie either on the
hemisphere (such as point Py) or to the right of it (point P1). Another way to think of this is
that for each point we’ll compute a hemisphere centered on the line that exactly contains that
point and choose the hemisphere with the smallest &y value. If we do the same at the other
end, with hemispheres oriented the other way and choosing the one with largest parameter
value &1, then all points will be tightly enclosed by the capsule.

To set this up, we first need to transform our points from the local space of the object
to the local space of the line. We’ll build a coordinate frame consisting of the line point
A, normalized line vector w, and two vectors perpendicular to w: @ and V. Subtracting the
line point from the object point and multiplying by a 3 x 3 matrix formed from 1, ¥, and
w transforms the object-space point P to a line-space point P’ with line-space coordinates
(u, v, w). Since W is normalized, a point L(£p) on the line equals (0, 0, &) in line space.

If P’ lies on a hemisphere with radius r and center Xy on the line, the length of a vector
d from Xy to P; should be equal to the radius » (Figure 12.18). Given this and the other
parameters, we should be able to solve for X, and hence &.

The vectord = P’ — Xg. In line space, d = (&, v, w) — (0,0,&) = (u,v,w — &). Ensuring
that ||d|| = r means that

WP+ (w— o) =1’

Figure 12.18. Determining hemisphere center Xy for given point P’.

12.3 Object Intersection

Solving for &y, we get
Eh=w— (:l: r2—(u2+v2))

Since this is a hemisphere, we want Xy to be to the right of P, so w > &, and this becomes

o =w+Vr?— W +v?)

Computing this for every point P in our model and finding the minimum &, gives us our
first endpoint. Similarly, the second endpoint is found by finding the maximum value of

£l =w—Vrt =W +v?)

12.3.3.2 Capsule-Capsule Intersection

Handling capsule—capsule intersection is very similar to sphere—sphere intersection. Instead
of calculating the distance between two points, and determining whether that is less than
the sum of the two radii, we calculate the distance between two line segments and check
against the radii. As before, if the distance is less than the sum of the two radii, we have
intersecting capsules.

bool
IvCapsule: :Intersect (const IvCapsule& other)
{
float radiusSum = mRadius + other.mRadius;
return (mSegment.DistanceSquared(other.mSegment)
<= radiusSum*radiusSum) ;

12.3.3.3 Capsule-Ray Intersection

Capsule—ray intersection follows from capsule—capsule collision. Instead of finding the
distance between two line segments, we need to find the distance between a ray and a line
segment and compare it to the radius of the capsule, as follows:

bool
IvCapsule: :Intersect (const IVRay3& ray)
{
// test distance between line and segment vs. radius
return (ray.DistanceSquared(mSegment) <= mRadius*mRadius);

12.3.3.4 Capsule-Plane Infersection

There are two tests necessary to determine whether a capsule intersects a plane. First of all,
if the two endpoints of the line segment defining the capsule lie on either side of the plane,
then clearly the capsule intersects the plane. However, even if the line segment lies on one
side of the plane, the distance between one of the endpoints and the plane may be less than
the radius. In this case, the capsule and plane would also intersect. Both cases are easy to
test; we already have the pieces in place.

495

496 Intersection Testing

The code is as follows:

float

IvCapsule::Classify(const IvPlane& plane)

{
float sO plane.Test (mSegment.GetEndpoint0());
float sl = plane.Test(mSegment.GetEndpointl ());

// points on opposite sides or intersecting plane
if (s0*sl <= 0.0f)
return 0.0f;

// intersect 1f either endpoint is within radius distance of plane
if(IvAbs(s0) <= mRadius || IvAbs(sl) <= mRadius)
return 0.0f;

// return signed distance
return (IvAbs(s0) < IvAbs(sl) ? s0 : sl);

12.3.4 Object-Oriented Boxes

souce Code 12.3.4.1 Definition

wsimazion WOIld axis-aligned boxes are easy to create and fast to use for detecting intersections, but

are not a very tight fit around objects that are not themselves generally aligned to the world
axes (Figure 12.12). A more accurate approach is to create an initial bounding box that is a
tight fit around the object in local space, and then rotate and translate the box as well as the
object (Figure 12.19). These are known as object-oriented bounding boxes, or OBBs. This
has another advantage in that we don’t have to recalculate the box every time the object
moves, but just transform the initial one. Also, for rigid objects with a large number of
vertices, recomputing the AABB every frame may be too expensive. The disadvantage is
that testing intersections between two object-oriented boxes is more complicated. In the
axis-aligned case, we could simplify our cases down to three tests because of the alignment.

Figure 12.19. Object-oriented bounding boxes.

12.3 Object Intersection 497

Figure 12.20. Properties of OBBs.

In the OBB case, the two can be at any relative orientation to each other, which complicates
the issue considerably.

The representation for an OBB A consists of the center point C,, an orientation
matrix Ry, and an extent vector a (Figure 12.20). The extent vector represents the dif-
ference from the center point to the point of maximum x, y, and z on the box. Note that
the center of the box is not necessarily the same as the local origin of the object, nor does
the orientation of the box have to match the orientation of the object. If either is the case,
some adjusting of the object’s local-to-world transformation will have to be done to gen-
erate the box axes and center location in world space. If the transformation of the box to
object-space orientation is Rpox— objecr and the object’s orientation is Ropject—sworia, then
the box’s local-to-world rotation is

Rpox—worlda = Robject—)world Rbox—)object

To simplify our life, however, we can use boxes aligned to the object’s local coordi-
nates, with a vector d in object space indicating the box center relative to the object center
(as mentioned in Chapter 4, it’s not usually practical to build objects with their bounding
box center as their origin). In either case, any time we need the box center ¢ in world space
we can use

¢ = Ropject—swortad +t

If we’re simply simulating an object using an OBB, aligning it to the local axes may
produce the results we want. However, when using an OBB for culling, we often want a
tighter fit than that. Ideally, we want to find the set of box axes that produce the minimum
volume box, and there are a number of techniques that do just that. The most commonly
used method approximates this by taking a statistical measure of the object known as the
covariance matrix [150].

498 Intersection Testing

The covariance matrix is a 3 x 3 array represented as

Cxx ny sz
C=|Cx G Gy
sz Czy sz

where Cy,, for example, is

1 n
Coy =~ (=D =)

i=1

The value X is the mean of x values of the n points, and y is the corresponding mean of the
y values.

By computing the eigenvectors (called the principal axes) of this matrix, we can deter-
mine the direction of greatest variance, or where the points are most spread out, which will
become our long axis. The other eigenvectors become the directions of the remaining axes
for our OBB. The mean of the points becomes the center of the box, and from there we can
project the points onto the axes to determine the maximum extent along each axis. Code
for this computation can be found in the accompanying example code.

It should be noted that while the principal axes method works reasonably well for general
point clouds, it’s not always optimal, or even close to optimal. For example, a cube centered
on the origin is statistically symmetric, no matter how it’s rotated. So the resulting covari-
ance matrix will have an infinite number of eigenvectors, and the ones chosen may not be
orthogonal to the faces of the cube, which could give you a very poor fit. In 2D, it’s possible
to generate a minimum enclosing box in O(n log (n)) time by computing a convex polygon
enclosing the points (known as a convex hull), producing bounding rectangles coincident
to each face of the polygon, and choosing the rectangle with the smallest area [50]. This is
known as the rotating caliper method. O’Rourke [114] has extended it to 3D with an O(n?)
algorithm, but in practice most people do an approximation by choosing a reasonably long
axis, projecting the points onto an orthogonal plane, and running the 2D algorithm to get
the best fit in the remaining two directions.

12.3.4.2 OBB-0OBB Infersection

There have been many methods for testing intersections between two arbitrarily oriented
boxes, including linear programming techniques and closest-feature tracking. The most
efficient technique known to date, however, uses the concept of separating axes and is due
to Gottschalk et al. [60]. The following discussion is heavily drawn from this paper, with
some additional concepts due to Eberly [35] and van den Bergen [149].

Recall that to test whether two axis-aligned boxes were intersecting, we did three tests,
one for each axis x, y, and z. For each test, we checked the extents of each box along each
of the axis directions. This is equivalent to projecting the box along the basis vectors i, j,
and k. If the intervals of a given projection don’t overlap, then there is a separating plane
normal to the test vector and therefore no intersection. The corresponding axis is known as
a separating axis.

12.3 Object Intersection 499

<>

(R™b) - ¥

A
CcCV

Figure 12.21. Example of OBB separation test.

This works well for axis-aligned boxes, but we need a slightly different test for oriented
boxes. To simplify our equations and improve performance, we’ll use transformations
relative to box A. We end up with a single translation vector ¢ from A to B, where
c= RaT e (Cp — Cp), and a relative rotation matrix R = RZRC,. A’s extent vector remains
the same, since it’s relative to its local space. B’s extent vector becomes R”b.

Now suppose we have a potential separating axis direction v. We want to perform the
same test we did with the AABBs: project each box onto the vector and check to see whether
the projections are separate or not. Another way of representing this is to project the box
centers onto the vector as endpoints, and then project the extent vectors closest to the center
onto the vector as well (Figure 12.21). If the distance between the projected box centers
is less than the sum of the lengths of the projected extents, then there is no intersection.
Expressed mathematically, there is no intersection if

Icov| > [aev+(RTD)ov]|

This works if the extent vectors are aligned appropriately to give us the maximum projected
length, but we can’t make that assumption. Instead, we’ll use a pseudo—dot product that
forces maximum length, so the equivalent to a « v is

|axvy| + |ayvy| + |azv,|

This is legal because the extents can be taken from any of the eight octants, so we can get
any sign we want for any term.
An equivalent equation can be found for (R b) « v. The final separating axis equation is

leavl > > lawil+ Y IR b)vi| (12.11)
i

1

While this gives us our test, there is an infinite number of choices for v, which is not
practical. Gottschalk et al. [60] demonstrate that any separating plane will be either parallel

500 Intersection Testing

to one of the box faces or parallel to an edge from each box. This means that a maximum
of 15 separating axis tests are necessary: 3 against the axes of box A, 3 against the axes of
box B, and 9 cross products using one axis from A and one from B.

The nice thing about this result is that it allows us to simplify our equations considerably.
For example, let’s use the cross product of the local x-axis from A and the local y-axis from
B. In A’s local space, the x-axis of A is i = (1,0,0). If we represent the matrix R as the
three row vectors (r], !, r}), then the y-axis of B in A’s space is (10, 711, 712). Performing
the cross product i x ry, we get

V:(O, _r129r11) (1212)

For the B terms, it’s convenient to transform v to be relative to B’s basis via R :

I'()o(in'l) io(l‘]XI‘o) i.(—rz)
RiGxr)=| rielixr) | = | ier; xry) | = ie0
rye(ixrp) ie(r; xmm) ierg
So, v in B space is
R7v = (= 2,0, ro0) (12.13)

Substituting Equations 12.12 and 12.13 into Equation 12.11 and multiplying out the terms,
the final axis test is

lcari1 — c1riz] > arlria] + azlri] + bolraol + b2 |rool

The test for other axes can be derived similarly. All use the absolute value of elements
from the matrix R, so it is far more efficient to precompute them and then perform the
axis tests. If this is done, the algorithm takes about 200 operations. It can be found in
IvOBB: :Intersect().

One caveat: any implementation of this algorithm needs to take steps to avoid numerical
problems with floating-point precision. In particular, if two edges, one from each box, are
nearly parallel, the resulting cross product will be near zero. This will lead to invalid results
for the separation test. The solution is to detect the condition, and only test against the six
main axes of the boxes. Even in this case, care must be taken, as numeric error can lead to
false negatives.

12.3.4.3 OBB-Ray Infersection

Detecting intersection between a linear component and an oriented box is much simpler than
detecting intersection between two boxes. One method is to transform the ray into the box’s
local space and perform a standard AABB intersection test. To transform the linear compo-
nent, the origin point is transformed by the inverse of the box’s world transform matrix, and
the direction vector by the inverse rotation of the box’s transformation matrix. The newly
transformed line, ray, or line segment can be passed into the appropriate AABB routine.
An alternative is to use a modified version of the AABB algorithm, as described by
Akenine-Mboller et al. [1]. In this case, instead of using planes normal to the three world

12.3 Object Intersection 501

axes, we’ll use planes normal to the three box axes. Recall that these axes are specified as
the three column vectors in our rotation matrix.

Each axis has two parallel planes associated with it. If we treat the box’s center as the
origin of our frame, the extent vector a contains the magnitude of our d values for these
planes. For example, two of the parallel box planes are roox + ri0y + 20z + ax = 0 and
rooXx + rioy + r20z — ax = 0.

If we translate our ray so that its origin is relative to the box origin, we can determine s
and ¢ parameters for the intersections with these planes, just as we did with the axis-aligned
box. In this case, the formulas for s and ¢ for each axis (including the translation) are

_reC=P)-a _r.(C—P)+a
- FjieV B FjieV

3

We also need to modify our test to determine whether the ray is parallel to the current
pair of planes we’re testing. This is easily done by taking the dot product of the direction
vector v and the plane normal and seeing if it is close to zero. If so, the ray is parallel to the
plane, and we need to project the vector C — P onto the current axis, and see if the result
lies outside the extents.

The modified code is as follows:

bool
IVOBB: :Intersect(const IvRay3& ray)
{

float maxS = -FLT_MAX;

float minT = FLT_MAX;

// compute difference vector
IvVector3 diff = mCenter - ray.mOrigin;

// for each axis do

for (int 1 = 0; 1 < 3; ++1i)

{
// get axis i
IvVector3 axis = mRotation.GetColumn(i);
// project relative vector onto axis
float e = axis.Dot(diff);
float £ = ray.mDirection.Dot(axis);

// ray is parallel to plane
if (IsZero(f))
{
// ray passes by box
if (-e - mA[i] > 0 || -e + mA[i] > 0)
return false;

continue;
}
float s = (e - mA[i])/£f;
float t = (e + mA[1])/f;

// fix order

502 Intersection Testing

// adjust min and max values

// check for intersection failure

// done, have intersection
return true;

Performance can be improved here by storing the rotation matrix as an array of three vectors
instead of an TvMatrix33.

12.3.4.4 OBB-Plane Infersection

As we did with OBB-ray intersection, we can classify the intersection between an OBB
and a plane by transforming the plane to the OBB’s frame and using the AABB—plane
classification algorithm. Since the transformation is just a pure rotation and a translation,
we can find the transformed normal by

7 =R7h

We apply the transpose since we’re going from world space into box space. The minimal
and maximal points for the AABB in this case are the extent vector and its negative, a and
—a, respectively.

An alternative, presented by Akenine-Moller et al. [1], is to use the principle of separating
planes again. This time, our test vector will be the plane normal, and we’ll project the box
diagonal on to it. To ensure we get maximum extent, we’ll add the absolute values of the
elements together, similar to what we did before:

r = [(agro) e | + |(airy) e n| + |(azr) e n|

Here, each r; represents a column of the rotation matrix. The box intersects the plane if
the distance between the box center and the plane is less than r.
The resulting code is as follows:

float IvOBB::Classify(const IvPlane& plane)
{
IvVector3 xNormal = ::Transpose(mRotation)*plane.mNormal;
float r = mExtents.x*IvAbs (xNormal.x) + mExtents.y*IvAbs (xNormal.y)
+ mExtents.z*IvAbs (xNormal.z) ;

float d = plane. Test (mCenter) ;
if (IvAbs(d) < r)
return 0.0f;
else if (d < 0.0f)
return d + r;
else
return d - r;

12.3 Object Intersection 503

-l 235 TriOﬂg|eS Source Code
All of the bounding objects we’ve discussed up until now have been approximations to our ratn

base object (assuming our object is more complex than, say, a box or a sphere). To test
actual intersections between objects, we need to get right down to the basic building block
of our geometry: the triangle. As before, we will be representing our triangle as the convex

combination of three points.

12.3.5.1 Triangle-Triangle Intersection
A naive approach to determining triangle—triangle intersection uses the triangle-ray inter-
section test from Section 12.3.5.2. If one of the line segments composing an edge of one
triangle intersects the other triangle, then the two triangles are intersecting. While this
works, there are faster methods. Two commonly used approaches are by Moéller [146] and
Held [77]. However, if we are only concerned with determining whether intersection exists,
and not the segment (or point) of intersection, then there is a faster way, concurrently
discovered by two groups of researchers: Shen et al. [72] and Guigue and Devillers [68].
Figure 12.22 shows the situation. Taking the first triangle P, composed of points Py,
Py, and P,, we compute its plane equation. Recall that the plane equation for a normal
n = (a, b, ¢) and a point on the plane Py = (xo, Yo, zo) is

0 = ax + by + cz — (axo + byo + czp)
or
O=ax+by+cz+d

In this case, the plane normal is computed from (P — Pg) x (P2 — Pp) and normalized, and
the plane point is Py.

Now we take our second triangle Q, composed of points Qg, Q1, and Q>. We plug each
point into P’s plane equation and test whether all three lie on the same side of the plane.
This is true if all three results have the same sign. If they do, there is no intersection and we
quit. Otherwise, we store the results dy, di, and dy generated from the plane equation for
each point and continue.

Figure 12.22. Triangle intersection.

504 Intersection Testing

We now need to test whether the rearranged triangles overlap by checking the intervals
where their edges cross the common line between the two planes. If the interval for P is [i, j]
and Q is [k,], then there is intersection if the intervals overlap, producing the line segment
[RoR1]. Other algorithms compute these intervals directly. However, there is a way to test
this implicitly.

First, we rearrange P’s vertices such that the lone vertex (the one that lies in its own
half-space of Q) is first, or Py. We also permute Q’s vertices so that Py will “see” them in
counterclockwise order. We then do the same for triangle Q, rearranging its vertices such
that its lone vertex is first, and permuting P’s vertices into counterclockwise order relative
to the new Qp.

Now, we make use of a signed distance test to check for interval overlap. If the signed
distance between QyQ; and PyP; is negative, then there is no overlap. Similarly, if the
signed distance between PyoP; and QpQ» is negative, there is no overlap. Otherwise, the
two triangles intersect.

We compute the signed distance between two edges by comparing the distance between
two parallel planes, each containing one of the line segments. The normal n for these
planes can be computed by taking the cross product between the segment vectors, say
n = (Qp — Q1) X (Py — P3). Then, we can compute the signed distance between each plane
and the origin by taking the dot product of the plane normal with a point on each plane
(i.e., dy =neQp and d; = n e« Pgp). Then, the signed distance between the planes is just
do — dy, orne(Qg— Poy).

Note that this will not work if the two lines are parallel. Most of the cases where this
might occur are culled out during the initial steps. The one case remaining is if the two
triangles are coplanar. This is handled by projecting them to 2D and doing a simple test.

12.3.5.2 Triangle-Ray Infersection

There are two possible approaches to determining triangle—ray intersection. The first is to
use the plane equation for the triangle (computed from the three vertices) and determine
the intersection point of the ray with the plane (if any). We can then use a point-in-triangle
test to determine whether the intersection lies within the triangle.

While a relatively simple approach, it has some disadvantages. First of all, we need to
either store the plane equation or, if we’re short on space, compute it every time we wish to
do the intersection test. Second, it’s a two-pass algorithm: compute the plane intersection,
and then test whether it’s in the triangle. Fortunately, we have an alternative. The following
approach, presented by Moller and Trumbore [147], uses affine combinations to compute
the ray—triangle intersection.

‘We define our triangle as having vertices V), V1, and V,. We can define two edge vectors
eo and e (Figure 12.23), where

e =V -V
e =WV-—-Vy

Recall that the point V(y with the vectors ey and e can be used to create an affine combination
that spans the plane of the triangle, with barycentric coordinates (u, v). So, the formula for

12.3 Object Intersection

V,

2

Figure 12.23. Affine space of triangle.

a point 7'(«, v) on the plane is

T(u,v) = Vo + ueg + vey
= Vo+u(Vi— Vo) +v(V2 = Vo)

Rearranging terms, we get
Twu,v)y=0—u—v)Vo+uVy+vVy
We want the contribution of each point to be nonnegative, so for a point inside the triangle,

u=>0

v>0

ut+v<li
If u or v < 0, then the point is on the outside of one of the two axis edges. If u +v > 1, the
point is outside the third edge. So, if we can compute the barycentric coordinates for the
intersection point 7'(u, v), we can easily determine whether the point is outside the triangle.

To compute the u, v coordinates of the intersection point, the result of the line equation
L = P+ td will equal a solution to the affine combination 7'(u, v) (Figure 12.24). So,

P+id=0—-u—v)Vo+uVi+vV;
We can express this as a matrix product:

t
[—dVl—V()Vz—V()] u | =P—-V

v

505

506 Intersection Testing

Figure 12.24. Barycentric coordinates of line intersection.

Using Cramer’s rule, or row reduction, we can solve this matrix equation for (¢, u, v).
The final result is

_qe€
Pe€;
PesS
u =
Ppe€
qod
Vv =
pPe€
where
ee=Vi—Vy
e=V,-W
S =:f’—-Vb
p=dxe;
q=sxe

The final algorithm includes checks for division by zero and intersections that lie outside
the triangle.

bool
TriangleIntersect(const IvVector3& v0, const IvVector3& vl,
const IvVector3& v2, const IvRay& ray)

// test ray direction against triangle
IvVector3 el = vl - v0;

IvVector3 e2 = v2 - v0;

IvVector3 p = ray.mDirection.Cross(e2);
float a = el.Dot(p)

// if result zero, no intersection or infinite intersections
// (ray parallel to triangle plane)

12.4 A Simple Collision System 507

if (IsZero(a))
return false;

// compute denominator
float £ = 1.0f/a;

// compute barycentric coordinates

IvVector3 s = ray.mOrigin - vO0;
u = f*s.Dot (p)
if (u < 0.0f || u > 1.0f) return false;

IvVector3 q = s.Cross(el);
v = f*ray.mDirection.Dot (q) ;
if (v < 0.0f || u+v > 1.0f) return false;

// compute line parameter
t = f*e2.Dot(q);

return (t >= 0);

Parameters u, v, and ¢ can be returned if the barycentric coordinates on the triangle or
the parameter for the exact point of intersection are needed.

12.3.5.3 Triangle-Plane Intersection

We covered triangle—plane intersection when we discussed triangle—triangle intersection.
We take our triangle, composed of points Py, P, and P, and plug each point into the
plane equation. If all three lie on the same side of the plane, then there is no intersection.
Otherwise, there is, and if we desire, we can find the particular line segment of intersection,
as described earlier. If there is no intersection, the signed distance is the plane equation
result of minimum magnitude.

12.4 A Simple Collision System

Now that we have some methods for testing intersection between various primitive types,
we can make use of them in a practical system. The example we’ll consider is collision
detection. Rather than building a fully general collision system, we’ll do only as much as
we need to for a basic game—in our case, we’ll use a submarine game as our example.
This is to keep things as simple as possible and to illustrate various points to consider when
building your own system. It’s also good to keep in mind that a particular subsystem of a
game, whether it is collision or rendering, needs only to be as accurate as the game calls
for. Building a truly flexible collision system that handles all possible situations may be
overkill and eat up processing time that could be used to do work elsewhere.

12.4.1 Choosing a Base Primitive

The first step in building the system is to choose the base bounding shape for our objects.
We’ll see in the following sections how we can use a hierarchy of bounding primitives to
get a better fit to the object’s surface, but for now we’ll consider only one per object. Which

508 Intersection Testing

Source Code

Hierarchy

primitive we choose depends highly on the expected topology we’re trying to approximate
with it. For example, if we’re writing a pool game, using bounding spheres for our balls
makes perfect sense. However, for a human character bounding spheres are not a good
choice because one axis of the object is far longer than the other two—not a good fit. In
particular, getting characters through an interior space might be a tricky proposition unless
all your doorways and hallways are at least 6 ft wide.

Considering that our object is made of triangles, using them should give us the most
accurate results. However, while they are cheap as a one-on-one test, it would be costly to
test every possible triangle—triangle combination between two objects. This becomes more
feasible when we have some sort of culling hierarchy to whittle down the possible triangle
pairs to a few contenders—we’ll discuss that in more detail shortly. However, if we can get
a good fit with a simpler bounding volume, we can get a reasonably accurate measure of
collision by doing a volume—volume test without having to do the full triangle—triangle test.

Since AABBs change size depending on the object’s orientation, they are not usually a
good choice for a base bounding primitive. They are more often used as a culling test, such
as in the sweep-and-prune system described in Section 12.4.4.

Among the primitives we’ve discussed, this leaves us with capsules and OBBs. Which
we choose depends on our performance requirements and how angular our objects are. If
we have mostly boxy objects—Ilike tanks—capsules or even lozenges won’t provide very
compelling collisions. An OBB is a better shape to choose for this situation. For our case,
however, submarines and torpedoes are both generally sausage shaped. If we had to go
with a single bounding object that approximates a submarine, capsules are an excellent
choice.

12.4.2 Bounding Hierarchies

Unless our objects are almost exactly the shape of the bounding primitive (such as our pool
ball example), then there are still going to be places where our test indicates intersection
where there is visibly no collision. For example, the conning tower of our submarine makes
the bounding capsule encompass a large area of empty space at the top of the hull. Suppose
a torpedo is heading toward our submarine and through that area. Instead of harmlessly
passing over the hull as we would expect from the visual evidence, it will explode because
we have detected a collision with the inaccurately large bounding region.

The solution is to use a set of bounding primitives to get a better approximation to the
surface of the object. In our submarine example, we could use one capsule for the main
hull and one for the conning tower. If we are willing to allow a slightly forgiving system,
we could ignore the conning tower for the purposes of collision and get a very nice fit with
the hull capsule. Or we could go the more detailed route and add one for the conning tower,
as well as a third for the periscope (Figure 12.25). To check for intersection, we test each
bounding primitive for the first object against all the primitives in the second, much as we
would have done for the triangles.

To speed this up, we can keep our original bounding capsule and use it as a rough test
before checking further. Better still, we can generate bounding spheres for each object
and test against those instead. It’s a very cheap test and can do a great job of culling large
numbers of cases. We could also generate bounding spheres for each of our smaller capsules
and use these spheres in preliminary culling steps before checking individual capsule pairs.

12.4 A Simple Collision System 509

=

Figure 12.25. Using multiple bounding objects.

Figure 12.26. Using bounding hierarchy.

This gives us a bounding hierarchy for our object (Figure 12.26). We compare the top-
level bounding spheres first. Only if they are intersecting do we then move on to the lower
level of sphere check and capsule check. This can cull out a large number of cases and make
it much more likely that we’ll be testing only the two lower-level capsules that are actually
intersecting.

We can take this technique of using bounding hierarchies further. For example, if we want
to do triangle—triangle intersection testing, we can build a hierarchy to perform coarser but
cheaper intersection tests. If two objects are intersecting, we can traverse the two hierarchies
until we get to the two intersecting triangles (there may be more than two if the objects are
concave). Obviously, we’ll want to create much larger hierarchies in this case. Generating
them so that they are as efficient as possible—they both cull well and have a reasonably
small tree size—is not a simple task. Gottschalk et al. [60] provide some information for
building OBB trees, while Ericson [41] covers the general cases.

Spheres, capsules, AABBs, and OBBs have all been used as primitives for culling
bounding hierarchies. Most tests have been done for hierarchies with triangles as leaf nodes.

510 Intersection Testing

Gottschalk et al. [60] demonstrate that OBBs work better than both AABBs and spheres if
our objects have static geometry. However, if we’re constantly deforming our vertices—for
example, with skinned character models—recomputing the OBBs in the hierarchy is an
expensive step. Using spheres or AABBs can be a better choice in this circumstance.

12.4.3 Dynamic Objects

So far we have been using intersection tests assuming that our objects don’t move between
frames. This is clearly not so. In games, objects are constantly moving, and we need to be
careful when we use static tests to catch collisions between moving objects.

For example, in one frame we have two objects moving toward each other, clearly heading
for a collision somewhere in the center of the screen (Figure 12.27a). Ideally, in the next
frame we want to catch a snapshot of them just as they collide or are slightly intersecting.
However, if we take too large a simulation step, they may pass partially through each other
(Figure 12.27b). Using a frame-by-frame static test, we will miss the initial collision. Worse
yet, if we take a larger step, the two objects will pass right through each other, and we’ll
miss the collision entirely.

One way to catch this is to sweep our bounding primitives along a path and then test
intersection between the swept primitives that we’ve generated. A simple example of this
is testing intersection between two moving spheres. If we sweep a sphere along a line
segment, we get—no surprise—a capsule. Based on the two objects’ velocities, we can
generate capsules for each object and test for intersection. If one is found, then we know
the two objects may collide somewhere between frames and we can investigate further.

‘We generally have to worry about this problem only when the relative velocities of objects
are large enough or the frame times are long enough that one object can move, relative to
another, farther than half its thickness in the direction of travel. For example, a tank with

ﬁ -
B %
(a)
\ /

(b)

Figure 12.27. (a) Potential collision and (b) partially missed collision.

12.4 A Simple Collision System 511

a speed of 30 km/h moves about 0.12 m/frame, assuming 60 frames/s. If the tank is 10 m
long, its movement is miniscule compared to its total length and we can probably get away
with static testing. Suppose, however, that we fire a 1 m long missile at that tank, traveling
at 120 km/h. We also have a bug in our rendering code that causes us to drop to 10 frames/s,
giving us a travel distance of 3 1/3 m. The missile’s path crosses through the tank at an
angle and is already through it by the next frame. This may seem like an extreme example,
but in collision systems it’s often best to plan for the extreme case.

Walls, since they are infinitely thin, also insist on a dynamic test of some kind. In a
first-person shooter you don’t want your players using a cheat to teleport through a wall by
moving too fast. One way to handle this is to do a simple test of the player’s path versus
the nearest wall plane. Another is to create a plane for each wall with the normals pointing
into the room; if a plane test shows that the object is on the negative side of the plane, then
it’s no longer in the room.

Submarines are large and move relatively slowly for their size, so for this collision system
we don’t need to worry about this issue. However, it is good to be aware of it. For more
information on managing dynamic tests, see Millington [109] or Eberly [35].

12.4.4 Performance Improvements
Source Code

Now that we’ve handled questions of which bounding shapes to use on our objects and how
to achieve a tighter fit even with simple primitives, we’ll consider ways of improving our ©wee*u"e
performance. The main way we’ll approach this is to cut down on intersection tests. We’ve
already handled this to some extent at the object level by using a bounding hierarchy to cut
down on intersection tests between primitives. Now we want to look at the world level, by
cutting down on tests between objects. For example, if two objects are relatively small and
at opposite ends of the map from each other, it’s a pretty good bet that they’re not colliding.
The most basic way to check collisions among all objects is the following loop:

for each object i
for each object j, where j <> i
test for collision between i and j

There are a number of problems with this. First of all, we’re doing n(n — 1) tests, which is an
O(n?) algorithm. Half of those tests are duplicates: if we test for collision between objects 1
and 5, we’ll also test for collision between 5 and 1. Also, there may be a number of objects
that we wish to collide with that simply aren’t moving. We don’t want to test collision
between two such static objects. A better loop that handles these cases is as follows:

for each object i
for each object j, where j > i
if (i is moving or j is moving)
test for collision between i and j

There are other possibilities. We can have two lists: one of moving objects called
Colliders and one of moving or static objects called Col1lidables. In the first loop we
iterate through the Colliders and in the second the Collidables. Each Collider
should be tagged after its turn through the loop, to ensure collision pairs aren’t checked

512 Intersection Testing
twice. Still, even with this change, we’re still doing O(nm) tests, where n is the number of
Colliders and m is the number of Collidables. We need to find a way to further
cut down the number of checks.

Most approaches involve some sort of spatial subdivision to do this. The simplest is to
slice the world, along the x-axis, say, by a series of evenly spaced planes (Figure 12.28).
This creates a set of slabs, bounded by the planes along the x direction, and by whatever
bounds we’ve set for our world in the y and z directions. For each slab, we store the set of
objects that intersect it. To test for collisions for a particular object, we determine which
slabs it intersects and then test against only the objects in those slabs. This approach can be
extended to other spatial subdivisions, such as a grid or voxel-based system.

One of the disadvantages of the regular spatial subdivisions is that they don’t handle
clumping very well. Let’s consider slabs again. If our world is fairly sparse, there may be
large numbers of slabs with no objects in them, and a very few with most of the objects in
them. We still may end up doing a large number of checks within each slab, which is the
problem we were trying to avoid.

There is another possibility used by a number of collision detection systems, known as
the sweep-and-prune method. It is similar to the separating axis test that we used for OBBs

(it’s also related to some scan line rasterization algorithms). Instead of using a regular grid

Figure 12.28. Cutting collision space into slabs.

12.4 A Simple Collision System 513

for our world, we’ll use the extents of our objects as our grid. For each object, we project its
extents onto the x-axis. To keep things efficient, we can use our root-level bounding sphere
to compute our extents, which for a sphere with center C and radius » gives us an interval
of [cx —r,cx +7].

Given the extent endpoint pairs for each object, we’ll mark them with a pointer to the
object and indicate for each value whether it is the low (start) or high (finish) endpoint.

Finally, we sort all endpoints from low to high.

Once the sorted list of endpoints is created, the collision detection process runs as

follows:

for each endpoint do
if a start point

if object is moving
check collisions against all objects in list

else

check collisions against moving objects in list
add corresponding object to list
else if a finish point

remove corresponding object from list

Figure 12.29 shows how this works. We sweep from left to right along the x-axis and use
the sorted endpoints to test intersections of intervals before the more complex intersection

tests.

'

Figure 12.29. Dividing collision space by sweep-and-prune.

x-axis

514 Intersection Testing

Normally this would be an €2(n log n) algorithm due to the sorting operation. However,
if the time step is small enough, the relative position of the objects won’t have changed that
much from frame to frame—this is referred to as remporal coherence. Any changes that do
happen will be rare but localized. Therefore, if we use a sorting algorithm that works best
on mostly sorted lists, such as bubble or insertion sort, we can get linear time for our sort
and hence an O(n) algorithm. Another alternative to get O(n) time is to use a radix sort,
assuming that we have a small number of possible positions and they are easily bucketed.

This algorithm is still not as efficient as it might be. If our objects are highly localized
(or clumped) in the x direction, but separated in the y direction, then we still may be doing
a high number of unnecessary intersection tests. To solve this, we can extend our data
structure to perform sweep-and-prune in the y and z directions as well, effectively creating
a dynamic voxel space.

12.4.5 Related Systems

The other two systems we mentioned earlier were ray casting, for picking and Al tests, and
frustum culling. Both systems can benefit from the techniques described in our collision
system, in particular the use of bounding hierarchies and spatial partitioning.

Consider the case of ray casting. Instead of testing the ray directly against the object,
we can take the ray and pass it through the hierarchy until (if we desire) we get the exact
triangle of intersection. Further culling of testing can be done by using a spatial partitioning
system such as voxels or k-d trees to consider only those objects that lie in the areas of the
spatial partitioning that intersect the ray.

When handling frustum culling, the most basic approach involves testing an object
against the six frustum planes. If, after this test, we determine that the object lies outside
one of the planes, then we consider it outside the frustum and do not render it. As with ray
casting, we can improve performance by using a bounding hierarchy at progressive levels to
remove obvious cases. We can also use a spatial partition again, and consider only objects
that lie in the areas of the partition within the view frustum.

However, there is one aspect of frustum culling of which we need to be careful. This
also applies to any intersection test that requires determining whether we are inside a
convex object. Consider the situation shown in Figure 12.30. The bounding sphere is near
the corner of the view frustum and clearly intersecting two planes. By using the scheme
described, this sphere would be considered as intersecting the frustum, but it is clearly not.
An alternative is shown in Figure 12.31a. Instead of using the frustum, we trace around
the frustum with the bounding sphere to get a rounded, larger frustum.! This represents the
maximum extent that a bounding sphere can have and still be inside the frustum. Instead
of testing the sphere, we can test its center against this shape. In practice, we can just push
out the frustum planes by the sphere radius (Figure 12.31b), which is close enough. Similar
techniques can be used for other bounding objects; see Akenine-Moller et al. [1] and Watt
and Policarpo [155] for more details.

! This process is also known as convolution.

12.4 A Simple Collision System 515

Figure 12.30. False positive for frustum intersection.

()

Figure 12.31. (a) Expanding view frustum for simpler inclusion test. (Continued)

516 Intersection Testing

(b)

Figure 12.31. (Continued) (b) Expanding view frustum for simpler inclusion test.

12.4.6 Section Summary

The proceeding material should give some sense of the decisions that have to be made when
handling collision detection or other systems that involve object intersection: pick base
primitives, choose when you’ll use them, consider whether to manage dynamic intersec-
tions, and cull unnecessary tests. However, this shouldn’t be taken as the only approach.
There are many other possible algorithms that handle much more complex cases than these.
For example, there are systems, such as the University of North Carolina’s I-COLLIDE,
that track closest pairs of objects. This allows for considerable culling of intersection tests.
There are also more sophisticated methods for managing spatial partitions, such as portals,
octrees, BSP trees, and k-d trees. Whether the algorithmic complexity is necessary will
depend on the application.

12.5 Chapter Summary

Testing intersection between geometric primitives is a standard part of any interactive appli-
cation. This chapter has presented a few examples to provide a taste of how such algorithms
are created. Most derive from a careful use of the basic properties of vectors and points as
presented in Chapter 2. Using our intersection methods wisely allows us to build an effi-
cient system for detecting collision between objects, casting rays for Al visibility checks
and picking, and frustum culling.

12.5 Chapter Summary 517

For those who are interested in reading further, a more thorough presentation of geometric
distance and intersection methods can be found in Schneider and Eberly [133]. These
techniques fall under a general class of algorithms known as computational geometry; good
references are Preparata and Shamos [125] and O’Rourke [115]. Two different approaches to
building collision detection systems can be found in van den Bergen [149] and Ericson [41].
Finally, use of intersection techniques in rendering, plus information on more complex
spatial partitioning techniques, can be found in both Akenine-Moller et al. [1] and Watt and
Policarpo [155].

(B Rigid-Body Dynamics

13.1 Introduction

In many games, we move our objects around using a very simple movement model. In such
a game, if we hold down the up arrow key, for example, we apply a constant forward
translation, once a frame, to the object until the key is released, at which point the object
immediately stops moving. Similarly, we can apply a constant rotation to the object if the
left arrow key is held, and again, it stops upon release. This is fine for something with fast
action, like a platform game or a first-person shooter, where we want quick response to our
input. As soon as we hit a key, our character starts moving and stops immediately upon
release. This can be thought of as an application of the theories of Aristotle, where pushing
or pulling an object immediately affects its speed.

But suppose we want to do a more realistically styled game, for example, a submarine
game. Submarines don’t start and stop on a dime. When the propeller starts turning, it takes
some time for the submarine to start forward. And they don’t really have instantaneous
brakes—when the engine is shut off, they will drift for quite a while before stopping.
Turning is much the same—they will respond slowly to application of the rudder and then
straighten out over time.

Even in a fast-action game, we may want to model how objects in the world react to our
main character. When we push an object, we don’t expect it to stop instantly when we stop
pushing, nor do we expect it to keep moving forever. If we knock a chair over, we don’t
expect it to fall straight back and then stick to the floor; we expect it to turn, depending on
where we hit it, and then bounce and possibly roll once. We want the game world to react
to our character as the real world reacts to us, in a physically correct manner.

For both of these cases, we will want a better model of movement, known as a physically
based simulation. One chapter is hardly enough space to encompass this broad topic, which

519

520 Rigid-Body Dynamics

covers the preceding effects as well as objects deforming due to contact, fluid simulation,
and soft-body simulations such as cloth and rope. Instead, we’ll concentrate on a simplified
problem that is useful in many circumstances: objects that don’t deform (known as rigid
bodies) and move based on Newton’s laws of motion (known as dynamics). We’ll discuss
techniques for translating rigid bodies through space in a physically based manner (linear
dynamics) and then how to encompass rotational effects (rotational dynamics). Finally,
we’ll discuss some methods for resolving contacts and dealing with simple constrained
movement within our simulation, again covering linear and rotational effects in turn.

The convention in physics is to represent some vector quantities by capital letters.
To maintain compatibility with physics texts, we will use the same notation and assume that
the reader can distinguish between such quantities and the occasional matrix by context.

13.2 Linear Dynamics

13.2.1 Moving with Constant Acceleration

Let’s consider our object’s movement through our game world as a function X(¢), which
represents the position of the object for every time ¢. If we plot just the x values against
t for the simple motion model described above, we would end up with a graph similar to
that in Figure 13.1. Notice that we travel in a straight line for a while and then turn sharply
in another direction, or we hold position. This is like our piecewise linear interpolation,
except that in this case, the future x values are unknown; they are determined by the input
of the player. For a given frame i, this can be represented by a line equation

Xi(hi) = X; + hyv;

where X; represents the position at the start of frame i, v; is a vector generated from the
player input that points along each line segment, and %; is our frame time. We’ll simplify
things further by considering just the function on the first line segment, from time ¢ > 0:

X(1) = Xo + 1vo

where Xy = X(0).
If we take the derivative of this function with respect to 7, we end up with

ax X'(1) (13.1)
— = =V .
dt 0

This derivative of the position function is known as velocity, which is usually measured
in meters per second, or m/s. For our simple motion model, we have a constant velocity
across each segment. If we continue taking derivatives, we find that the second derivative
of our position function is zero, which is what we’d expect when our velocity is constant.
As mentioned, this motion model is known as kinematics.

13.2 Linear Dynamics

>t

Figure 13.1. Graph of current motion model, showing x coordinate of particle as a function
of time.

Now let’s assume that our second derivative, instead of being zero, is a constant nonzero
function. To achieve this, we’ll change our velocity function to

v(t) =vp+ra (13.2)

Now v(?) is also an affine function, this time with a constant derivative vector a, called
acceleration, or

dv feon
S =V =a (13.3)

The units for acceleration are usually measured in meters per second squared, or m/s.

Our original function X(¢) used a constant v, so now we’ll need to rewrite it in terms
of v(¢). Since v is changing at a constant rate across our time interval, we can instead use
the average velocity across the interval, which is just one-half the starting velocity plus the
ending velocity, or

_ 1
V= —(vo+v())
2
Substituting this into our original X(¢) gives us
1
X(0)=Xo+1)5(Vo+v(®)
Substituting in for v(¢) gives the final result of

1
X(1) = Xo+1tvo + Etza (13.4)

521

522 Rigid-Body Dynamics

x()

Figure 13.2. Parabolic path of object with initial velocity and affected only by gravity.

Our equation for position becomes a quadratic equation, and our velocity is represented as
a linear equation:

1
Pi(t) = Pi+1tvi + Etza,-
vi(t) = vi+1a;

So, given a starting position and velocity and an acceleration that is constant over the
entire interval [0, 7], we can compute any position within the interval. As an example, let’s
suppose we have a projectile, with an initial velocity vy and initial position Py. We represent
acceleration due to gravity by the constant g, which is 9.8 m/s?. This acceleration is applied
only downward, or in the —z direction, so ais the vector (0, 0, —g). If we plot the z component
as a function of ¢, then we get a parabolic arc, as seen in Figure 13.2. This function will
work for any projectile (assuming we ignore air friction), from a thrown rock (low initial
velocity) to a cannonball (medium initial velocity) to a bullet (high initial Velocity).1

Within our game, we can use these equations on a frame-by-frame basis to compute the
position and velocity at each frame, where the time between frames is %;. So, for a given
frame i + 1,

1
2
Xit1 = Xi +hivi + Ehi a;
Viy1 = Vi +ha;
This process of motion with nonzero acceleration is known as dynamics.

13.2.2 Forces

One question that has been left open is how to compute our acceleration value. We do so
based on a vector quantity known as a force. Forces cause change in an object’s motion, push-
ing or pulling it around, either to speed it up or slow it down. So, for example, to throw a ball,
your hand and arm exert a certain force on it, to begin its motion through the air. That force,
when applied, produces an acceleration directly proportional to the object’s mass, measured
in kilograms. The proportional relationship is shown in Newton’s second law of motion:

F =ma

The unit for force ends up being kg-m/s> or newton (N), in homage to its creator.

! In most cases, this last is approximated by a line equation for efficiency reasons.

13.2 Linear Dynamics

In the previous section we represented gravity as an acceleration, but in truth, it is a force
whose value is always proportional to the mass of the object. For an object with mass m on
the earth, its magnitude is mg and its direction points to the center of the earth. In games
and other small-scale simulations, we usually assume the world is locally flat, and so the
gravity vector points in the —z direction. Other possible forces include the friction caused
by air or water molecules pushing against an object to slow it down, or the thrust generated
by a rocket engine or propeller, or simply the normal force of the ground pushing up to
counteract gravity (there has to be such a force, otherwise we’d sink into the earth). In
general, if something is pushing or pulling on an object, there is a force there.

Usually we have more than one force applied to an object at a time. Taking our ball
example, we have the initial force when the ball is thrown, force due to gravity, and forces
due to air resistance and wind. After the ball leaves your hand, that pushing force will be
removed, leaving only gravity and air effects. Forces are vectors, so in both cases we can
add all forces on an object together to create a single force that encapsulates their total effect
on the object. We then scale the total force by 1/m to get the acceleration for Equation 13.4.

For simplicity’s sake, we will assume for now that our forces are applied in such a way
that we have no rotational effects. In Section 13.4 we’ll discuss how to handle such cases.

13.2.3 Linear Momentum
As we’ve seen, the relationship between acceleration and velocity is

dv
a=—
dt

There is a corresponding related entity P for a force F, which is

dv dP
F=ma=m—=—
dt dt

The quantity P = mv is known as the linear momentum of the object, and it represents
the tendency for an object to remain in its current linear motion. The heavier the object or
faster it is moving, the greater the force needed to change its velocity. So, while a pebble
at rest is easier to kick aside than a boulder, this is not necessarily true if the pebble is shot
out of a gun.

An important property of Newtonian physics is the conservation of momentum. Suppose
we take a collection of objects and treat them as a single system of objects. Now consider
only the forces within the system, that is, only those forces acting between objects. Newton’s
third law of motion states that for every action, there is an equal and opposite reaction. So, for
example, if you push on the ground due to gravity, the ground pushes back just as much,
and the forces cancel. Due to this, within the system, pairwise forces between objects will
cancel and the total force is zero. If the external force is 0 as well, then

dP

inz
dt

0

so P is constant. No matter how objects may move within the system, the total momentum
must be conserved. This property will be useful to us when we consider collisions.

523

524 Rigid-Body Dynamics

13.2.4 Moving with Variable Acceleration

There is a problem with the approach that we’ve been taking so far: we are assuming
that total force, and hence acceleration, is constant across the entire interval. For more
complex simulations this is not the case. For example, it is common to compute a drag
force proportional to but opposite in direction to velocity:

Fyrag = —mpv (13.5)

This can provide a simple approximation to air friction; the faster we go, the greater the
friction force. The quantity p in this case controls the magnitude of drag. An alternative
example is if we wish to model a spring in our system. The force applied depends on
the current length of the spring, so the force is dependent on position:

Fspring = —kX

The spring constant k fulfills a similar role to p: it controls the proportion of force depen-
dent on the position. In both of these cases, since acceleration is directly dependent on the
force, it will vary over the time interval as velocity or position vary. It is no longer constant.
So for these cases, Equations 13.2 and 13.4 are incorrect.

In order to handle this, we’ll have to use an alternative approach. We begin by deriving
a function for velocity in terms of any acceleration. Rewriting Equation 13.3 gives us

dv=adt

To find v we take the indefinite integral or antiderivative of both sides:

[av=[aa

For example, if we assume as before that a is constant, we can move it outside the

integral sign:
/dv = a/dt

v=ta+c¢

And integrating gives us

We can solve for ¢ by using our velocity vy at time ¢ = 0:

c=vgp—0-a

= VO
So, our final equation is as before:

v(t) =vp+1ra

13.3 Numerical Integration 525

We can perform a similar integration for position. Rewriting Equation 13.1 gives
dX = v(t)dt

‘We can substitute Equation 13.2 into this to get

dX =vy+tadt

Integrating this, as we did with velocity, produces Equation 13.4 again.

For general equations we perform the same process, reintegrating dv to solve for v(z)
in terms of a(¢). So, using our drag example, we can divide Equation 13.5 by the mass m
to give acceleration:

dv

= — = — t
a=— pv(?)

Rearranging this and integrating gives

/dv = /—,ov(t)dt

We can consult a standard table of integrals to find that the answer in this case is
V(1) = vge !

where, as before, vog = v(0).

While this particular equation was relatively straightforward, in general calculating an
exact solution is not as simple as the case of constant acceleration. First of all, differential
equations in which the quantity we’re solving for is part of the equation are not always
easily—if at all—solvable by analytic means. In many cases, we will not necessarily be
able to find an exact equation for v(¢), and thus not for X(¢). And even if we can find a
solution, every time we change our simulation equations, we’ll have to integrate them again,
and modify our simulation code accordingly. Since we’ll most likely have many different
possible situations with many different applications of force, this could grow to be quite
a nuisance. Because of both these reasons, we’ll have to use a numerical method that can
approximate the result of the integration.

13.3 Numerical Integration
13.3.1 Definition

The solutions for v and X that we’re trying to integrate fall under a class of differential
equation problems called initial value problems. In an initial value problem, we know the
following about a function y(#):

1. An initial value of the function yo = y(#p).
2. A derivative function f(z,y) = y'(¢).

3. A time interval h.

526 Rigid-Body Dynamics

The problem we’re trying to solve is, given these parameters, what is the value at y(zo + h)?
For our purposes, this actually becomes a series of initial value problems: At each frame
our previous solution becomes our new initial value y;, and our interval s; will be based
on the current frame time. Once computed, our new solution will become the next initial
value y;+1. More specifically, the initial value y; is our current position X; and current
velocity v;, stored in a single 6-vector as

X;

Vi

Y =

So, how do we evaluate the derivative function f(z,y)? This will be another vector
quantity:

X;
fry)=| "
Vi

The value of our derivative for X; is our current velocity v;. Our derivative for v; is the
acceleration, which is based on the current total force. To compute this total force, it is con-
venient to create a function called CurrentForce (), which takes X and v as arguments
and combines any forces derived from position and velocity with any constant forces, such
as those created from player input. We’ll represent this as F;, (¢, X, v) in our equations.
So, given our current state, the result of our function f(z,y) will be

y' =f@y) = v
Froi(ti, Xi, Vi) /m

The function f(¢,y) is important in understanding how we can solve this problem. For
every point y it returns a derivative y’. This represents a vector field, where every point
has a corresponding associated vector. To get a sense of what this looks like, let’s take
as an example a planet revolving in a perfectly circular orbit. Figure 13.3 shows a two-
dimensional (2D) plot of the vector field of position and velocity, accentuating certain lines
of flow. If we start at a particular point and follow the vector flow, this will trace out one

possible solution (or level curve) to the differential equation, starting at that initial value.

Figure 13.3. Orbit example, showing some level curves and idealized integration path.

13.3 Numerical Integration 527

This gives us a sense of what our general approach will be. We’ll start at y; and then, using
our derivative function, take steps in time to generate new samples that approximate the
function, until we generate an approximation for y; 1. In a way, we are doing the opposite of
what we were doing when we were interpolating. Instead of generating an approximation to
an unknown function based on known sample points, we’re generating approximate sample
points based on the derivative of an unknown function. Different integration techniques are
different forms of this approach, some more accurate than others.

13.3.2 Euler’s Method
Source Code

Assuming our current time is ¢ and we want to move ahead 4 in time, we could use Taylor’s mrEmr—
series to compute y(t 4 h): Force

h? W
YO+ =yO+hy' O+ Sy O+ + O

n!

We can rewrite this to compute the value for time step i 4 1, where the time from ¢; to
tit1 is h;:

hzz ” hzr'l (n)

Yi+1 = Yi+hiy; +
This assumes, of course, that we know all the values for the entire infinite series at time
step i, which we don’t—we have only y; and y;. However, if /; is small enough and all
values of y/ are bounded, we can use an approximation instead:

Yit1 A Yi+hiy;
~ yi +hif (i, yi)
Another way to think of this is that we have a function f(7;, y;) that, given a time #; and initial
value y;, can compute tangents to the unknown function’s curve. We can start at our known

initial value, and step A; distance along the tangent vector to get to the next approximation
point in the vector field (Figure 13.4).

Figure 13.4. Orbit example, showing Euler step.

528 Rigid-Body Dynamics

Separating out position and velocity gives us
Xip1 ~ Xi +hiX]
~ X;+ hjv;
Vipl R Vi + v,
~ Vi + hiFior(ti, Xi, vi) /m

This is known as Euler’s method.

To use this in our game, we start with our initial position and velocity. At each new frame,
we grab the difference in time between the previous frame and current frame and use that
as h;. To compute f(¢;,y;) for the velocity, we use our CurrentForce () method to add
up all of the forces on our object and divide the result by the mass to get our acceleration.
Plugging in our current values, we use the preceding formulas to generate our new position
and velocity. In code, this looks like the following:

void
SimObject::Integrate(float h)
{

IvVector3 accel;

// compute acceleration

accel = CurrentForce(mTime, mPosition, mVelocity) / mMass;
// clear small values

accel.Clean() ;

// compute new position, velocity
mPosition += h*mVelocity;
mVelocity += h*accel;

// clear small values
mVelocity.Clean() ;

It’s important to compute the new velocity after the new position in this case, so that we
don’t overwrite the velocity prematurely.

Note that we clear near-zero values in the new velocity. This prevents little shifts in
position due to tiny changes in velocity, such as those generated after an object has slowed
down due to drag. While technically accurate, they can be visually distracting, so after a
certain point we clamp our velocity to zero. The same is done with acceleration.

For many cases, this works quite well. If our time steps are small enough, then the
resulting approximation points will lie close to the actual function and we will get good
results. However, the ultimate success of this method is based on the assumption that the
slope at the current point is a good estimate of the slope over the entire time interval 4.
If not, then the approximation can drift off the function, and the farther it drifts, the worse
the tangent approximation can get. We can see this with our orbit example in Figure 13.5.
The first step in our approximation takes us to an orbit with a larger radius, and the next
step to a larger radius still. Once the error grows, in many cases further steps don’t get us
back, and we continue to drift off of the actual solution.

13.3 Numerical Integration 529

Figure 13.5. Orbit example, showing continuation of Euler’s method.

For Euler’s method, we say that the error is directly dependent on the time step, or O(h).
So, one potential solution to this problem is to decrease the time step, for example, take a
step of h/2, followed by another step of #/2. While this may solve some cases, we may
need to take a smaller time step, say /#/4. And this may still lead to significant error. In the
meantime, we are grinding our simulation to a halt while we recalculate quantities four or
eight, or however many times for a single frame.

So, what’s happening here? First, some situations that can lead to problems with Euler’s
method are characterized by large forces. If we examine the remaining terms of the Taylor
expansion,

h? h!

éy§’+...+jy§”)+...

we can see why this could cause a problem. When we set up our approximation, we assumed
that 7; was small and y/’ bounded. A large force leads to a large acceleration, which leads
to a larger difference between our approximation and the actual value. Larger values of 4;
will magnify this error. Also, if the force changes quickly, this means that the magnitude
of the velocity’s second derivative is high, and so we can run into similar problems with
velocity. This is known as truncation error, and as we can see, due to the hl2 /2 factor in the
the second derivative term, the truncation error for Euler’s method is O(h%). Accumulating
this across all iterations we end up with the global error O(h).

However, our particular example falls into a class of differential equations known as
stiff systems. Situations that can lead to stiffness problems are often characterized by large
spring and damping forces, such as in a stiff spring (hence the name). Such systems tend to
have terms with rapidly decaying values, such as e~ #'—exactly the situation with our orbit
example. These terms tend to 0 as ¢ approaches infinity but, as we’ve seen, won’t always
converge with a numerical method. The larger p is, the smaller # must be. This can also
affect systems where we wouldn’t expect the term to contribute that much. For example,
suppose the solution to our system is y(r) = 1 4+e2%%_ As 7 increases from 0, y(r) quickly
approaches 1. However, approximating this with a numerical method without taking care
to control the error can lead the ¢ 2% term to dominate the calculations, which leads to
invalid results.

530 Rigid-Body Dynamics

Source Code

Force

Due to these issues, Euler’s method is not a very robust integrator. It is, however, quite
cheap and easy to implement, which is why a lot of simple physics engines use it. Fortunately,
there are other methods that we can try.

13.3.3 Runge-Kutta Methods

So far we’ve been using the derivative at the beginning of the interval as our estimate of
the average tangent. A better possibility may be to take the derivative in the middle of the
interval. To do this, we first use Euler’s method to take a step halfway into the interval; that
is, we integrate using a step size of #/2. Given our estimated position and velocity at the
halfway point, we calculate f(z, y) at this location. We then go back to our original starting
location, and use the derivatives we calculated at the midpoint to move across the entire
interval. This method is known as the midpoint method.

Figure 13.6 shows how this works with our original function. In Figure 13.6a, the arrow
shows our initial half-step, and the line our estimated tangent. Figure 13.6b uses the tangent
we’ve calculated with our full time step, and our final location. As we can see, with this
method we are following much closer to the actual solution and so our error is much less
than before. The order of the error for the midpoint method is dependent on the square of
the time step, or O(h?), which for values of / less than 1 is better than Euler’s method.
Instead of approximating the function with a line, we are approximating it with a quadratic.

While the midpoint method does have better error tolerance than Euler’s method, as we
can see from our example, it still drifts off of the desired solution. To handle this, we’ll
have to consider some methods with better error tolerances still.

Both the midpoint method and Euler’s method fall under a larger class of algorithms
known as Runge—Kutta methods. Whereas both of our previous techniques used a single
estimate to compute a tangent for the entire interval, others within the Runge—Kutta family
compute multiple tangents at fixed time steps across the interval and take their weighted
average.

One possibility is to take the derivative at the end of the interval, and average with
the derivative at the beginning. Like the midpoint method, we can’t actually compute the
derivative at the end of the interval, so we’ll approximate it by performing normal Euler

'
172

(a) (b)

Figure 13.6. (a) Orbitexample, showing first step of midpoint method: getting the midpoint
derivative. (b) Orbit example, stepping with midpoint derivative to next estimate.

13.3 Numerical Integration 531

integration and computing the derivative at that point. This is known as the modified Euler’s
method. Interestingly, the error for this approach is still O(h?), due to the fact that we’re
taking an inaccurate measure of the final derivative. Another approach is Heun’s method,
which takes 1/4 of the starting derivative, and 3/4 of an approximated derivative 2/3 along
the step size. Again, its error is O(h?), or no better than the midpoint method.

The standard O(h*) method is known as Runge—Kutta order four, or simply RK4. RK4
can be thought of as a combination of the midpoint method and modified Euler, where we
weight the midpoint tangent estimates higher than the endpoint estimates. Representing this
with our function notation, we get

u; = hif(t;, y:)
hi 1
w = hf |1+ S Yitom
hi 1
uz = hif <ti + El,yl' + 2112)

uy = hif(t; + h,yi +u3)

1
Yitl1 =Yi+ 6[!!1 +2up + 2u3 + uy]

Clearly, improved accuracy doesn’t come without cost. To perform standard Euler
requires calculating a result for f(¢,y) only once. Midpoint, modified Euler, and Heun’s
need two calculations, and RK4 takes four. While achieving the level of error tolerance
of RK4 would require many more evaluations of Euler’s method, using RK4 still adds
both complexity and increased simulation time that may not be necessary. It does depend
on your application, but for simple rigid-body simulations with fast frame rates and low
accelerations, Euler’s method or one of the other two Runge—Kutta methods will probably
be suitable.

13.3.4 Verlet Integration

There is another class of integration methods, known as Verlet methods, that is commonly
used in molecular dynamics. Verlet methods have come to the attention of the games commu-
nity because they can be useful in simulating collections of small, unoriented masses known
as particles—in particular, when constrained distances between particles are required [85].
Such systems of constrained particles can simulate soft objects such as cloth, rope, and
dead bodies (this last one is also known as rag-doll physics).

The most basic Verlet method can be derived by adding the Taylor expansion for the
current time step to the expansion for the previous time step:

/’12
y(t+h)+y(t —h) = y(0) +hy' (1) + ?)’”(t) +--

h2
+YO = by O+ Ty (O =

Source Code

Force

532 Rigid-Body Dynamics

Solving for y(z + h) gives us
y(t+h) = 2y(1) = y(t — h) + h*y" (1) + O(h*)
Rewriting in our stepwise format, we get
Yirl =2yi—yio1 + by}

This gives us an O(h?) solution for integrating position from acceleration, without involv-
ing velocity at all. This can be a problem if we want to use velocity elsewhere in our
calculations, but we can estimate it as

Xiy1 —Xi)
Vi= ———
2h;
One question may be, how do we find the first y;_;? The standard method is to start the
process off with one pass of standard Euler or other Runge—Kutta method and store the
initial position and integrated position. From there we’ll have two positions to apply to our
Verlet integration.

Standard Verlet has a few advantages: It is time invariant, which means that we can run
it forwards and then backwards and end up in the same place. Also, the lack of velocity
means that we have one less quantity to calculate. Because of this, it is often used for
particle systems, which generally are not dependent on velocity. However, if we want to
apply friction based on velocity or when we want to handle spinning rigid objects, the lack
of velocity and angular velocity makes it more difficult. There are ways around this, as
described in Jakobson [85], but in most cases it will be easier to use a method that allows
us to track both velocity terms. One other disadvantage is that our velocity estimation is
(1) not very accurate and (2) one time step behind our position.

If you wish to use Verlet methods and require velocity, you have two choices. Leapfrog
Verlet tracks velocity, but at half a time step off from the position calculation:

t+ﬁ = t—ﬁ + ha()
\4) =V) a

X(t+h)=X(@)+hv <t+ z)

Like with standard Verlet, we can start this off with a Runge—Kutta method by computing
velocity at a half-step and proceed from there. If velocity on a whole step is required, it can
be computed from the velocities, but as with standard Verlet, one time step behind position:

vi = (Vit1/2 = Vi-1/2)
2
As with standard Verlet, leapfrog Verlet is an O(h%) method.
The third, and most accurate, Verlet method is velocity Verlet:

2
X(+h)=X@)+hv(t)+ %a(r)

h
v(t+h) =v(t)+ > [a() +a(t + h)]

13.3 Numerical Integration 533

Unlike with the previous Verlet methods, we now have to compute the acceleration twice:
once at the start of the interval and once at the end. This can be done in a stepwise manner by

Vit1/2 =Vi+ i
23,’
Xit1 = Xi+hiviz1)2
hi
Vit+1 = Vir12+ 2a

In between the position calculation and the velocity calculation, we recompute our forces
and then the acceleration a;y;. Note that in this case the forces can be dependent only
on position, since we have added only half of the acceleration contribution to velocity.
In the case of molecular dynamics or particles, this isn’t a problem since most of the forces
between them will be positional, but again, for rigid-body problems this is not the case.
While Verlet integration has good stability characteristics, its main problem for our
purposes is the estimated velocity, as mentioned above. While it works well for particle
systems, it isn’t as good for rigid bodies. As such, we’ll look elsewhere for our solution.

13.3.5 Implicit Methods

All the methods we’ve described so far integrate based on the current position and velocity.
They are called explicit methods and make use of known quantities at each time step, for
example, Euler’s method:

Yit1 = Yi+hy;

But as we’ve seen, even higher-order explicit methods don’t handle extreme cases of stiff
equations very well.
Implicit methods make use of quantities from the next time step:

Yit1 = Yi+hiyjy

This particular implicit method is known as backward Euler. The idea is that we are going
to grab the derivative at our destination rather than at our current position. That is, we are
going to find a y; 1 with the derivative that, if we were to run the simulation backwards,
would end up at y;.

Implicit methods don’t add energy to the system, but instead lose it. This doesn’t guaran-
tee us more accuracy, but it does avoid simulations that spin out of control—instead, they’ll
dampen down to an equilibrium state. Since, in most cases, we’re going to add a damping
factor anyway, this is a small price to pay for a more stable simulation. An example of using
this is our old orbit example (Figure 13.7). Here we see the effect of losing energy—instead
of spiraling outward, we spiral inward toward the center of the orbit. Better than Euler’s
method, but still not ideal.

This sounds good in theory, but in practice, how do we calculate y;_ ;? One way is to
solve for it directly. For example, let’s consider air friction. In this example, our force is
directly dependent on velocity, but in the opposing direction. Considering only velocity,

Vitl = Vi —hpviqg

534 Rigid-Body Dynamics

Figure 13.7. Implicit Euler. The arrows point backwards to indicate that we are getting the
derivative from the next time step.

Solving for v;41 gives us

Vi

1+hp

Viyl =

We can’t always use this approach. Either we will have a function too complex to solve
in this manner, or we’ll be experimenting with a number of functions and won’t want to
take the time to solve each one individually. Another way is to use a predictor—corrector
method. We move ahead one step using an explicit method to get an approximation. Then
we use that approximation to calculate our y; . This will be more accurate than the explicit
method alone, but it does involve twice the number of calculations, and we’re depending
on the accuracy of the first approximation to make our final calculation.

Another, more accurate approach is to rewrite the equation so that it can be solved as
a linear system. If we represent y;; as y; + Ay;, and ignore the factor ¢, we can rewrite
backwards Euler as

yi+ Ay =y +hf(y; + Ayi)
or
Ay; = hif(y; + Ay))

We can approximate f(y; + Ay;) as f(y;) + f'(y;) Ay;. Note that f'(y;) is a matrix since f(y;)
is a vector. Substituting this approximation, we get

Ay; ~ hi((y:) +£'(y) Ayi)
Solving for Ay; gives
1 -1
Ay; ~ <h~I _f/(Yi)) f(yi)
4

In most cases, this linear system will be sparse, so it can be solved in near-linear time. More
information can be found in Witkin and Baraff [158].

13.3 Numerical Integration 535

While implicit methods do have some characteristics that we like—they’re good for
forces that depend on stiff equations—they do tend to lose energy and may dampen more
than we might want. Again, this is better than explicit Euler, but it’s not ideal. Theyre also
more complex and more expensive than explicit Euler. Fortunately, there is a solution that
provides the simplicity of explicit Euler with the stability of implicit Euler.

13.3.6 Semi-Implicit Methods

Up to this point, we have been treating position and velocity as independent variables while
integrating; that is, we act as if they are one six-element vector that gets integrated at once.
However, the fact is that position is dependent on how velocity changes. We can make use
of this relationship and create a very stable integrator for dynamics. The trick is to run an
explicit Euler step for velocity, and then an implicit Euler step for position:

Vitl X Vit

~ Vi + hiF:(ti, X, vi) /m
Xit1 ~ X; + hiX!

~ Xi+ hiviyi

Note that the position update is using the new velocity, not the old one. This is called semi-
implicit or symplectic Euler. Note that position is integrated using implicit Euler, which
makes this particularly good for position-dependent forces. Thus, this method gives us the
advantages of both explicit and implicit methods, plus it also has an additional advantage:
it conserves energy over time, which keeps things very stable.

Let’s look at our orbit example again, this time using semi-implicit Euler (Figure 13.8).
We note that it follows the path exactly, rather than converging or diverging. Admittedly,
this example is a bit contrived, but it shows the power of using a semi-implicit method.

Because it is a first-order Euler method it’s still not as accurate in some cases as RK4, but
it is cheap and stable. And in games, it’s far more important to have a stable solution than a
100 percent correct one. This integration technique is also very easy to adapt to rotational
dynamics. This makes it suitable for most of our needs beyond the most egregious cases,
and thus will be the method we use for our examples.

h’a

hw

Figure 13.8. Semi-implicit Euler. The gray arrows indicate the original velocity and its
modification by acceleration.

536 Rigid-Body Dynamics

13.4 Rotational Dynamics

13.4.1 Definition

The equations and methods that we’ve discussed so far allow us to create physical simu-
lations that modify an object’s position. However, one aspect of dynamics we’ve passed
over is simulating changes in an object’s orientation due to the application of forces, or
rotational dynamics. When discussing rotational dynamics, we use quantities that are very
similar to those used in linear dynamics. Comparing the two,

Linear Rotational
Position X Orientation or g
Velocity v Angular velocity w
Force F Torque t

Linear momentum P Angular momentum L

Mass m Inertia tensor J

We’ll discuss each of these quantities in turn.

13.4.2 Orientation and Angular Velocity

Orientation we have seen before; we’ll represent it by a matrix 2 or aquaternion q. The angu-
lar velocity w represents the change in orientation. It is a vector quantity, where the vector
direction is the axis we rotate around to effect the change in orientation, and the length of
the vector represents the rate of rotation around that axis, in radians per second.

The orientation and angular velocity are applied to an object around a point known as
the center of mass. The center of mass can be defined as the point associated with an object
where, if you apply a force at that point, it will move without rotating. One can think of
it as the point where the object would perfectly balance. Figure 13.9 shows the center of
mass for some common objects. The center of mass for a seesaw is directly in the center,
as we’d expect. The center of mass for a hammer, however, is closer to one end than the
other, since the head of the hammer is more massive than the handle.

For our objects, we’ll assume that we have some sense of where the center of mass
is—it’s set by either the artist or some other means. One possibility discussed shortly is
to compute the center of mass directly from our model data. Other choices are to use the

/\

Figure 13.9. Comparing centers of mass. The seesaw balances close to the center, while
the hammer has a center of mass closer to the end.

13.4 Rotational Dynamics

local model origin or the bounding box center (or centroid) as an approximation. Once the
center of mass is determined, it is usually convenient to translate our object so that we can
treat the local model origin as the center of mass, and therefore use the same orientation
and position representation for both simulation and rendering.

Itis possible to convert from angular velocity to linear velocity. Given an angular velocity
w, and a point at displacement r from the center of mass, we can compute the linear velocity
at the point by using the equation

V=wXTr (13.6)

This makes sense if we look at a rotating sphere. If we look at various points on the sphere
(Figure 13.10a), their linear velocity is orthogonal to both the axis of rotation and their
displacement vector, and this corresponds to the direction of the cross product. The length
of v will be

VIl = llellr] sin@

where 6 is the angle between w and r. This also makes sense. As the rate of rotation |||
increases, we’d expect the linear velocity of each point on the object to increase. As we
move out from the equator, a rotating point has to move a longer linear distance in order to
maintain the same angular velocity relative to the center (Figure 13.10b), so as ||r|| increases,
|lv]] will increase. Finally, the linear velocity of a point as we move from the equator to the
poles will decrease to zero (Figure 13.10c), and the quantity sin @ provides this.

13.4.3 Torque

Up until now we’ve been simplifying our equations by applying forces only at the center
of mass, and therefore generating only linear motion. On the other hand, if we apply an
off-center force to an object, we expect it to spin. The rotational force created, known as
torque, is directly dependent on the location where the force is applied. The farther away
from the center of mass we apply a given force, the larger the torque. To compute torque,
we take the cross product of the vector from the center of mass to the force application
point, and with the corresponding force (Figure 13.11), or

t=rxF (13.7)

The direction of T combined with the right-hand rule tells us the direction of rotation the
torque will attempt to induce. If you align your right thumb along the direction of torque,
your curled fingers will indicate the direction of rotation—if the vector is pointing toward
you, this is counterclockwise around the axis of torque. The magnitude of T provides the
magnitude of the corresponding torque.

To compute the total torque, we need to compute the corresponding torque for each
application of force, and then add them up. Adding the offsets and taking the cross product
of the resulting vector with the total force will not compute the correct result, as shown by
Figure 13.12. The sum of the offsets is 0, producing a torque of 0, which is clearly not the
case—the true total torque as shown will start the circle rotating counterclockwise.

537

538 Rigid-Body Dynamics

Figure 13.10. (a) Linear velocity of points on the surface of a rotating sphere. Velocity
is orthogonal to both angular velocity vector and displacement vector from the center of
rotation. (b) Comparison of speed of points on surface of rotating disk. Points farther from
the center of rotation have larger linear velocity. (c) Comparison of speed of points on
surface of rotating sphere. Points closer to the equator of the sphere have larger linear
velocity.

13.4 Rotational Dynamics

Figure 13.11. Computing torque. Torque is the cross product of displacement vector and
force vector.

A > F

2

Figure 13.12. Adding two torques. If forces and displacements are added separately and
then the cross product is taken, total torque will be 0. Each torque must be computed and
then added together.

13.4.4 Angular Momentum and Inertia Tensor

Recall that a force F is the derivative of the linear momentum P. There is a related
quantity L for torque, such that

dL

T
Like linear momentum, the angular momentum L describes how much an object tends to
stay in motion, but in rotational motion rather than linear motion. The higher the angular
momentum, the larger the torque needed to change the object’s angular velocity. Recall that
linear momentum is equal to the mass of the object times its velocity. Angular momentum

is similar, except that we use angular velocity, and the rotational equivalent of mass, the
inertia tensor matrix:

I=Jo (13.8)

Why use a matrix I instead of a scalar, as we did with mass? The problem is that
while shape has no effect (other than, say, for friction) on the general equations for linear

539

540

Rigid-Body Dynamics

dynamics, it does have an effect on how objects rotate. Take the classic example of a figure
skater in a spin. As she starts the spin, her arms are out from her sides, and she has a low
angular velocity. As she brings her arms in, her angular velocity increases until she opens
her arms again to gracefully pull out of the spin. Torque is near zero in this case (ignoring
some minimal friction from the ice and air), so we can consider angular momentum to be
constant. Since angular velocity is clearly changing and mass is constant, the shape of the
skater is the only factor that has a direct effect to cause this change.

So, to represent this effect of shape on rotation, we use a 3 x 3 symmetric matrix, where

Ixx _Ixy _Ixz

I=| -1 Ly =1y

=Ly Iy I

We need these many factors because, as we’ve said, rotation depends heavily on shape
and each factor describes how the rotation changes around a particular axis. The diagonal
elements are called the moments of inertia. If we’re in the correct coordinate frame, then
the nondiagonal elements, or products of inertia, are 0. For such a frame, the axes are
called the principal axes. For example, if the object is symmetric, the principal axes lie
along the axes of symmetry and through the center of mass. We’ll see next how to handle
the case if our object is not in the principal axes frame.

The following are some examples of simple inertia tensors for objects with constant
density and mass m:

* Sphere (radius of r):

%mr2 0 0
2 2
0 smr
0 0 ims?

%mr2 0 0
0 %mr2 + %md2 0
0 0 imr2 + l—lzmd2

* Box (Xdim X Ydim X Zdim):

1172m(yc21im + thlim) 0 0
0 TIZm(xzziim + Zcziim) 0
0 0 %m(xﬁim +yt%im)

For many purposes, these can be reasonable approximations. If necessary, it is possible to
compute an inertia tensor and center of mass for a generalized model, assuming a constant

13.4 Rotational Dynamics 541

density. A number of methods have been presented to do this, in increasing refinement
[16, 37, 88, 110]. The general concept is that in order to compute these quantities, we need
to do a solid integral across our shape, which is a triple integral across three dimensions.
If we assume constant density, then for a polytope this is equivalent to adding up tetrahedra,
where each tetrahedron consists of one of the polygonal faces and a shared central point.
Code to perform this operation is available at www.geometrictools.com, for those who
desire it.

13.4.5 Integrating Rotational Quantities
Source Code

As with linear dynamics, we use our angular velocity to update to our new orientation.
Ideally, we could use Euler’s method directly and compute our new orientation as Torase

Qi1 = @+ ho;

However, this won’t work, mainly because we are trying to combine vector and matrix
quantities. What we need to do is compute a matrix that represents the derivative and use
that with Euler’s method.

Recall that the column vectors of a rotation matrix are three orthonormal vectors. We need
to know how each vector will change with time; that is, we need the linear velocity at each
vector tip. What we want to do is convert the angular velocity into linear velocities that
affect each of our basis vectors. We can apply Equation 13.6 to each of our basis vectors to
compute this, and then use the matrix generated to integrate orientation. One way would be
to take the cross product of w with each column vector, but instead we can take our three
angular velocity values, and create a skew symmetric matrix @, where

0 —w3 W)
o= w3 0 —w (13.9)
—wy W] 0

If we multiply this by our current orientation matrix, this will take the cross product of @
with each column vector, and we end up with the derivative of orientation in matrix form.
Using this with Euler’s method, we end up with

Q11 = &y + h(wn) (13.10)

If we’re using a quaternion representation for orientation, we use a similar approach. We
take our angular velocity vector and convert it to a quaternion w, where

w = (0, w)

We can multiply this by one-half of our original quaternion to get the derivative in quaternion
form, giving us, again with Euler’s method,

1
Qui1 =qu+h (2wnqn) (13.11)

A derivation of this equation is provided by Witkin and Baraff [158] or Hanson [71], for
those who are interested.

542 Rigid-Body Dynamics

Using either of these methods allows us to integrate orientation. As far as updating
angular velocity, computing acceleration for rotational dynamics is rather complicated,
so we won’t be using angular acceleration at all. Instead, since torque is the derivative
of angular momentum, we’ll integrate the torque to update angular momentum, and then
compute the angular velocity from that. As when we integrated force, we’ll need a function
to compute total torque across the entire interval, called CurrentTorque (). For both
methods, we’ll have to modify our input variables to take into account orientation and
angular velocity, as well as position and velocity.

To find the angular velocity, we rewrite Equation 13.8 to solve for w:

o=I"L (13.12)

When computing the angular velocity in this way, there is one detail that needs to be
managed carefully. The inertia tensor is in the model space of the object. However, angular
momentum is integrated from torque, which is computed in world space, and we want our
resulting angular velocity to also be in world space. To keep things consistent, we need
a way to convert our model space I™! to world space. If we’re using a rotation matrix to
represent orientation, we can use it to transform L from world to model space, apply the
inverse inertia tensor, and then transform back into world space. So, for a given time step,

wip1 = L I7'Q] Ly, (13.13)

If we’re using quaternions, the most efficient way to handle this is to convert our quaternion
to a matrix, and then compute Equation 13.13.

Using semi-implicit Euler and quaternions, the full code for handling rotational quantities
looks like the following:

// compute new angular momentum, orientation

mAngMomentum += h*CurrentTorque(mTranslate, mVelocity,
mRotate, mAngVelocity) ;

mAngMomentum.Clean () ;

// update angular velocity

IvMatrix33 rotateMat (mRotate) ;

IvMatrix33 worldMomentsInverse =
rotateMat*mMomentsInverse*: :Transpose (rotateMat) ;

mAngVelocity = worldMomentsInverse*mAngMomentum;

mAngVelocity.Clean() ;

IvQuat w = IvQuat(0.0f, mAngVelocity.x,

mAngVelocity.y, mAngVelocity.z);

mRotate += h*0.5f*w*mRotate;

mRotate.Normalize() ;

mRotate.Clean() ;

13.5 Collision Response

Up to this point, we haven’t considered collisions. Our objects are moving gracefully
through the world, speeding up or slowing down as we adjust our forces—all of which is
accurately modeled, except that the objects go right through each other. Not a very realistic

13.5 Collision Response 543

or fun game. Instead, we’ll need a way to simulate the two objects bouncing away from
each other due to the collision. We can do so by using the methods we’ve discussed in
Chapter 12 in combination with some new techniques.

13.5.1 Contact Generation

For the purposes of this discussion, we’ll assume a simple collision model, where the objects
are convex and there is a single collision point. To perform our collision response properly,
we have to know two things about the collision. The first is the point of contact between
the two objects A and B—in other words, the point on the objects where they just touch
(Figure 13.13). Since the two objects are just touching, there is a tangent plane that passes
between the two, which also intersects both at that point. This is represented in the figure
as a line. The second thing we need to know is the normal i to that plane. We’ll choose our
normal to point from A, the first object, to B, the second.

Our main problem in figuring out collision location is that we’re trying to detect collisions
within an interval of time. In one time step, two objects may be completely separate; in the
next, they are colliding. In fact, in most cases when collision is detected, we have missed
the initial point of collision and the objects are already interpenetrating (Figure 13.14).
Because of this, there is no single point of collision.

One possibility for finding the exact point when initial collision occurs is to do a binary
search within the time interval. We begin by running our simulation and then testing for
collisions. If we find one, and the two objects involved are interpenetrating, we step the
entire simulation back half a time step and check again. If there is still penetration, we go
back a quarter of the original time step; otherwise, we go forward a quarter of the original
time step. We keep doing this, ratcheting time forward or back by smaller and smaller
intervals until we get an exact point of collision (unlikely) or we reach a certain level of
iteration. At the end of the search, we’ll either have found the exact collision point or
be reasonably close.

Figure 13.13. Point of collision. At the moment of impact between two convex objects,
there is a single point of collision. Also shown is the collision plane and its normal.

544 Rigid-Body Dynamics

Figure 13.14. Penetrating objects. Determining penetration distance and collision normal.

This technique has a few flaws. First of all, it’s slow. Chances are that every time you get
a collision, you’ll need to run the simulation at least two or three additional times to get a
point where the objects are just touching. In addition, in order for detection to be perfectly
accurate, you need to rerun the simulation for all the objects, because their position at the
time of the collision will be slightly different than their position at the end of the time
interval. This may affect which objects are colliding. So, you need to run the simulation
back, determine the collision point, apply the collision response, and then run the simulation
forward until you hit another collision, do another binary search, and so on. In the worst
case, with many colliding objects, your simulation will get bogged down, and you’ll end up
with long frame times. The accuracy of this method may be suitable for offline simulation,
but it’s not good for interactivity.

Another possibility is to ignore it, approximate the contact point and normal, and let the
collision response push the two objects apart. This can work, but if the response is too slow,
the two objects may remain interpenetrated for a while. This can look quite odd and may
ruin the illusion of reality.

The third alternative begins by looking at the overlap between the two objects. The
longest distance along that overlap is known as the penetration distance. We can push the
two objects apart by the penetration distance until they just touch, and then use the point
and normal from that intersection for collision calculations.

For example, take two spheres (Figure 13.14), with centers C, and Cj and radii 7, and r.
If we subtract one center C, from the other center Cp,, we get the direction for our collision
normal. The penetration distance p is then the sum of the two radii minus the length of this
vector, or

p=a+r)—C—Call (13.14)

We can move each sphere in opposite directions along this normal by the distance p/2,
which will move them to a position where they just touch. This assumes that both objects
can move—if one is not expected to move, like a boulder or a church, we translate the other
object by the entire normal length. So, for two moving objects A and B, the formula is

mTranslate -= 0.5f*penetration*centerDiff;
other->mTranslate += 0.5f*penetration*centerDiff;

13.5 Collision Response 545

Once we’ve pushed them apart, the collision point is where our center difference vector
crosses the boundary of the two spheres. We can compute this point by halving the difference
vector and adding it to the old C,. We finish up by normalizing the difference vector to get
our collision normal.

Handling penetration distance for capsules is just as simple. Instead of using the center
points to compute the collision normal, we use the closest points on the line segments
that define each capsule. The penetration distance becomes the sum of the radii minus the
distance between these points. For bounding boxes, Eberly [35] provides a method that
computes the penetration distance between two oriented boxes.

This technique does have some flaws. First, pushing the two objects apart by the entire
penetration distance may look too abrupt. Instead, we can push them apart by a fraction
of the penetration distance and assume that the collision response will separate them the
rest of the way. The slight interpenetration will only be noticeable for one or two frames.
Second, if objects are moving fast enough and the collision is detected too late, the two
objects may pass through each other. If this case is not handled in the collision detection,
we will get some very odd results when the objects are pushed apart. Finally, because we’re
pushing objects away from each other instantaneously, we may end up with situations where
two objects collide, and one of them is moved into a third, causing a new interpenetration.
Because we may have already tested for collision between the second pair of objects, we’ll
miss this collision. If we’re expecting a large number of collisions between close objects,
this simple system may not be practical.

As a final note on contact generation, usually the collision detection system will gen-
erate a pair of contact features, one for each object, per collision. There may be multiple
contacts per object (think of a book resting on its edge, or even its face), and there may
be dependencies between many objects that control how contacts are resolved (think of a
stack of boxes). We’ll briefly discuss how to manage such problems later, but for our main
thread of discussion we’ll concentrate on single points of contact.

13.5.2 Linear Collision Response
Source Code

Whatever method we use, we now have two of the properties of the collision we need
to compute the linear part of our collision response: a collision normal fi and a collision *"eettision
point P. The other two elements are the incoming velocities of the two objects, v, and vj.
Using this information, we are finally ready to compute our collision response.
The technique we’ll use is known as an impulse-based system. The idea is that near the
time of collision, the forces and position remain nearly constant, but there is a discontinuity
in the velocity. At one point in time, the velocities of the objects are heading toward one
another; in the next infinitesimal moment later, they are heading away. How much and in
what relation the velocities change depends on the magnitude and direction of the incoming
velocities, the direction of the collision normal, and the masses of the two objects.
Let’s look again at the simple case of our two spheres A and B (Figure 13.15a). For now,
let’s assume their masses are equal. We again see our two incoming velocities v, and v, and
our collision normal fi. The idea is that we want to modify our velocity by an impulse that is
normal to the point of collision. The impulse will act to push the two objects apart—if the
masses are equal, it will be equal in magnitude, but opposite in direction for each object.
So, we need to generate a scale factor j for our collision normal, and then add the scaled

546 Rigid-Body Dynamics

ab

(c)

Figure 13.15. (a) Computing collision response. Calculating relative velocity. (b) Collision response.
Computing relative velocity along normal. (c) Collision response. Adding impulses to create outgoing
velocities.

collision normal jfi and —jfi to v, and v} to get our outgoing velocities. So, in order to
compute the impulse vector, we need to compute this factor j.

To begin our computation,we need the relative velocity v,;, which is just v, — v,
(Figure 13.15a). From that, we’ll compute the amount of relative velocity that is applied
along the collision normal (Figure 13.15b). Recall that the dot product of any vector with
a normalized vector gives the projection along the normal vector, which is just what we
want. So,

Vi = (Vgp o MR

At this point, we do one more test to see if we actually need to calculate an impulse vector.
If the relative velocity along the collision normal is negative, then the two objects are
heading away from each other and we don’t need to compute an impulse. We can break out
of the collision response code and proceed to the next collision. Otherwise, we continue
with computing j.

13.5 Collision Response 547

In order to compute a proper impulse, two conditions need to be met. First of all, we need
to set the ratio of the outgoing velocity along the collision normal to the incoming velocity.
We do this by setting a coefficient of restitution €:

/
v, = —€V,

or
(V,— V) el = —€(V4— Vp) o (13.15)

Each object will have its own value of €. This simulates two different physical properties.
First of all, when one object collides with another, some energy is lost, usually in the form
of heat. Second, if the object is somewhat soft or sticky, or inelastic, the bonding forces
between it and its target will decrease the outgoing velocities. Elastic in this case doesn’t
refer to the stretchiness of the object, but how resilient it is. A superball is not very malleable,
but has very elastic collisions. So, the quantity € represents how much energy is lost and
how elastic the collision between the two objects is. If both objects have an € of 1, then
they will bounce away from each other with the same relative velocity they had coming in.
If both objects have an € of 0, they will stick together like two clay balls and move as one.
Values in between will give a linear range of elastic responsiveness. Values greater than 1
or less than O are not permitted. An € greater than 1 would add energy into the system, so
a ball bouncing on a flat surface would bounce progressively higher and higher. An € less
than 0 means that the objects would be highly attracted to each other upon collision and
would lead to undesirable interpenetrations.

Even if energy is not quite conserved (technically it is, but we’re not tracking the heat
loss), then momentum is. Because of this, the total momentum of the system of objects
before and after the collision needs to be equal. So,

N ,
mgVg +jn = mgVv,

or
/ J oA
V,=Vs+-—n (13.16)
mg
Similarly,
mpvp —jii = meZ
or
/ J 4
vV, =Vp—-—n (13.17)
mp

With this, we finally have all the pieces that we need. If we substitute Equations 13.16
and 13.17 into Equation 13.15 and solve for j, we get the final impulse factor equation:

. _(1 +6u)Vab°ﬁ
Ja = 1 1
(5)

The equation for jj, is similar, except that we substitute €, for €,.

(13.18)

548 Rigid-Body Dynamics

Now that we have our impulse values, we substitute them back into Equations 13.16 and
13.17, respectively, to get our outgoing velocities (Figure 13.15c). Note the effect of mass
on the outgoing velocities. As we expect, as the mass of an object grows larger, it grows
more resistant to changing its velocity due to an incoming object. This is counteracted by j,
which grows as relative velocity increases, or as the combined masses increase.

Our final algorithm for collision response between two spheres is as follows:

float radiusSum = mRadius + other->mRadius;
collisionNormal = other->mTranslate - mTranslate;
float distancesqg = collisionNormal.LengthSquared() ;
// if distance squared < sum of radii squared, collision!
if (distancesqg <= radiusSum*radiusSum)
{
// handle collision
// penetration is distance - radii
float distance = ::IvSgrt(distancesq);
penetration = radiusSum - distance;
collisionNormal.Normalize() ;

// collision point is average of penetration
collisionPoint = 0.5f* (mTranslate + mRadius*collisionNormal)
+ 0.5f* (other->mTranslate - other->mRadius*collisionNormal) ;

// push out by penetration
mTranslate -= 0.5f*penetration*collisionNormal;
other->mTranslate += 0.5f*penetration*collisionNormal;

// compute relative velocity
IvVector3 relativeVelocity = mVelocity - other->mVelocity;

float vDotN = relativeVelocity*collisionNormal;
if (vDotN < 0)
return;

// compute impulse factor
float modifiedvel = vDotN/(l.0f/mMass + 1.0f/other->mMass);
float jl = -(1.0f+mElasticity) *modifiedvel;

float j2 = -(1.0f+other->mElasticity) *modifiedvel;

// update velocities
mVelocity += jl/mMass*collisionNormal;
other->mvelocity -= j2/other->mMass*collisionNormal;

In this simple example, we have interleaved the sphere collision detection with the
computation of the collision point and normal. This is for efficiency’s sake, since both
use the sum of the two radii and the difference vector between the two centers for their
computations. As mentioned above, a more complex collision system will generate contact
pairs to be fed to the collision response system.

13.5 Collision Response 549

13.5.3 Rotational Collision Response
Source Code

This is all well and good, but most objects are not spheres, which means that they have
a visible orientation. When one collides with another at an offset to the center of mass, feteettision
we would expect some change in angular velocity as well as linear velocity. In addition,
any incoming angular velocity should affect the collision as well. A cue ball with spin
(or English) applied causes a much different effect on a target pool ball than a cue ball with
no spin—and the cue ball’s response is different as well.
As with linear and rotational dynamics, the way we handle rotational collision response
is very similar to how we handle linear collision response. We need to modify only a few
equations and recalculate our impulse factor j.
One modification we have to make is the effect of angular velocity on the incoming
velocity. Up to this point, we’ve assumed that when the two objects strike each other, their
surfaces are not moving, so the velocity at the collision point is simply the linear velocity.
However, if one or both of the objects are rotating, then there is an additional velocity factor
applied at the point of collision, as one surface passes by the other. Recall that Equation 13.6
allows us to take an angular velocity w and a displacement from the center of mass r and
compute the linear velocity contributed by the angular velocity at the point of displacement.
Adding this to the original incoming velocities, we get

Vo = Vgt wg XTIy
Vp =Vp+wp XTp
Now the relative velocity v, at the collision point becomes
Vab = Vg — Vp
and Equation 13.15 becomes
V), — V) = —€(Vg — Vp) (13.19)

The other change needed is that in addition to handling linear momentum, we also need
to conserve angular momentum. This is a bit more complex than the equations for linear
motion, but the general concept is the same. The outgoing angular momentum should equal
the sum of the incoming angular momentum and any momentum imparted by the collision.
For object A, this is represented by

Liw, 41, % ji = L), (13.20)
or

Wl = wa + 1,1 (r, x ji) (13.21)
For object B, this is

Lwp — 13 X ji = L), (13.22)

or

w), = wp — I, (1} x ji) (13.23)

550 Rigid-Body Dynamics

Just as with linear collision response, we can substitute Equations 13.21 and 13.23 into
13.19, and together with Equations 13.16 and 13.17, solve for j to get

—(14€)vy on

J =
(L + L) + [(I;l(ra X N)) X Iy —|—(I;1(rb X M) XTp|en

mg mp

(13.24)

Using this modified j value we calculate new angular momenta using Equations 13.20
and 13.22, and from that calculate angular velocity as we did with angular dynamics, using
Equation 13.8. We use this same j for our linear collision response as well. And of course,
as before, we’ll use different es for the two objects.

‘We change our linear collision—handling code in three places to achieve this. First of all,
the relative velocity collision incorporates incoming angular velocity, as follows:

// compute relative velocity

IvVector3 rl = collisionPoint - mTranslate;

IvVector3 r2 = collisionPoint - other->mTranslate;

IvVector3 vell = mVelocity + Cross(mAngularVelocity, rl);

IvVector3 vel2 = other->mVelocity + Cross(other->mAngularVelocity, r2);
IvVector3 relativeVelocity = vell - vel2;

Then, we add angular factors to our calculation for j, as follows:

// compute impulse factor
float denominator = (1.0f/mMass
+ 1.0f/other->mMass) * (collisionNormal .Dot (collisionNormal)) ;

// compute angular factors

IvVector3 crossl = Cross(rl, collisionNormal) ;
IvVector3 cross2 = Cross(r2, collisionNormal) ;

crossl = mWorldMomentsInverse*crossl;

cross2 = other->mWorldMomentsInverse*cross2;

IvVector3 sum = Cross(crossl, rl) + Cross(cross2, r2);
denominator += (sum.Dot(collisionNormal)) ;

float modifiedvel = vDotN/denominator;

Finally, in addition to linear velocity, we recalculate angular velocity, as follows:

// update angular velocities

mAngularMomentum += Cross(rl, jl*collisionNormal) ;

mAngularVelocity = mWorldMomentsInverse*mAngularMomentum;
other->mAngularMomentum += Cross(r2, j2*collisionNormal) ;
other->mAngularVelocity = mWorldMomentsInverse*other->mAngularMomentum;

13.5.4 Extending the System

Everything up to this point will provide a reasonable rigid-body simulation, with moving
and colliding bodies. However, there may be some additional features we may want to add.

13.5 Collision Response

The following present some possible solutions for expanding and extending our simple
system.

13.5.4.1 Friction
Source Code

Another factor in changing an object’s motion during a collision is the frictional force
between the two objects. For example, the transfer of English between billiard balls is due "
to the friction between the balls as they strike. A simple way to simulate this is to use the
Coloumb friction model. In this model, there are two cases to consider—if the objects are

moving relative to each other (dynamic or kinetic friction), or if they’re not (static friction).

Static friction opposes a tangential force up to a certain threshold, after which the object

starts moving and dynamic friction applies. For simplicity’s sake we’ll consider only the

dynamic case, particularly since we’re only assuming objects with nonzero relative velocity.

Figure 13.16 shows the updated situation. We’ve added a new unit vector t, which is
orthogonal to fi. Its direction is the projection of v, onto the tangent line between the two
objects, or
Vab — (Vap « DR

t= .
”Vab —(Vap o n)n||

Our frictional force Fy will oppose the relative velocity along the tangent line, so

Fr = —fit
The magnitude of Fy is proportional to any external forces along the collision normal. This
is intuitive if we think of the friction increasing as we push two objects together—the harder

we push, the harder it is to slide them against each other. The proportion is controlled by
the dynamic friction constant piy, SO

Jie = 1k || Fal

ab

Figure 13.16. Computing collision response with friction.

551

552 Rigid-Body Dynamics

In our impulse collision system, ||F,|| gets replaced by the impulse generated by the
collision, or

S =

J A
—n
m

So the impulse produced by dynamic friction is

Jr =~ t

m

Two cases to be careful of here are when vy, is 0, or v, and fi are parallel. In the former
case, the objects are not moving relative to each other. In the latter, they are hitting dead
on. In both cases, there won’t be any dynamic friction due to the relative velocity, though
in the first case there may be some static friction due to external forces, which may become
dynamic friction if the static friction threshold is exceeded.

13.56.4.2 Resting Confact

The methods we described above handle the case when two objects are heading toward
each other along the collision normal. Obviously, if they re heading apart, we don’t need to
consider these methods—they are separating. However, if their relative velocity along the
normal is 0, then we have what is called a resting contact. A simple example of a resting
contact is a box sitting on the floor; it has no downward velocity, and yet it is in contact
with the floor.

While in general we wouldn’t expect that we would have to handle a resting contact,
consider the case when the box is being affected by gravity. After one time step it will have
a downward velocity into the floor, and then we’ll have to handle it as a colliding contact.
However, doing so will lead to the box leaping up into the air as we subtract out the initial
velocity and then add the response due to the impulse. The box will fall again due to gravity,
and then bounce up, and we’ll get a very jittery result. Obviously, we’d like to deal with the
resting contact before this occurs.

One solution is to compute a force that counteracts the force of gravity. This is known
as a constraint force, as we’re constraining the box from passing through the floor. This
is certainly a reasonable solution in the absence of other forces, but suppose we now have
two boxes stacked on top of one another. We’ll need some way to transfer that constraint
force up to the next box to make sure they both don’t move, in addition to preventing
interpenetration between the boxes. When using constraint forces, things can get very
complicated very fast.

A less accurate but more tractable alternative is to use a modification of our impulse
method. This is known as a microimpulse engine, as our impulses due to resting contact will
be very small. The key to a microimpulse engine is to add the right amount of correction
to ensure that objects don’t pass through each other and don’t bounce. Millington [109]
detects the case that we described above by comparing the velocity generated from the
current frame to the object’s current velocity. If it’s less, then we continue with normal
collision resolution; otherwise, we know it’s the resting case. Catto [22] does something
similar, but uses an iterative process to lower the impulse value (see below). In either case,
it requires only minor tweaks to our basic algorithm to get some very nice results. Note that

13.5 Collision Response 553

while we have ignored static friction in our simple model, in this case we will have to deal
with it—to keep boxes from sliding down shallow inclines, for example.

13.5.4.3 Constraints

As mentioned, resting contact can be thought of as a constraint on our system, as it is
preventing us from pushing an object through a surface. There are other constraints we
can set up similarly. For example, suppose we have a collection of particles, and we want
to keep each of them a fixed distance away from their neighbors, say in a grid. This is
particularly useful when trying to simulate cloth. We can also have joint contraints, which
keep two points coincident while allowing the remainder of the objects to swing free. And
the list goes on. Any case that describes a fixed relationship between two objects can be
modeled as a constraint.

Constraints are particularly useful in modeling a class of objects known as soft bodies.
We’ve already mentioned cloth, above. Similar principles can be applied to simulate rope.
When we build a simple hierarchical system, we get a skeleton that can be used to simulate a
dead or unconscious figure, known as rag-doll physics. Therefore, contraints are extremely
powerful in creating a new sort of interaction in our world.

We could implement these constraints as springs, but as we’ve seen, stiff springs cause us
a lot of problems when integrating. An alternative is to compute the exact force to keep the
two objects constrained, as was suggested with resting contact. However, as before, with
multiple objects this can get quite complex and requires yet another system to be added to
our simulation engine.

Fortunately, impulses can work in this case, too. As mentioned, collision and resting
contact are just two kinds of constraint. To model others, we just need to compute the
necessary impulse to keep the two objects from breaking the constraint condition and no
more. This has the noted advantage that it works well with our existing impulse system
for collisions and resting contacts. It’s also usually simpler to compute an impulse that
keeps two objects constrained than a force, as we’re removing one level of indirection from
position and orientation.

For those interested, details for building various types of constraint systems can be found
in Catto [21], Jakobson [85], Millington [109], and Witkin and Baraff [158].

13.5.4.4 Multiple Points

The final issue we’ll discuss is how to manage multiple constraints and contacts, both
on one object and across multiple objects. In reality, our constraint forces and contact
impulses are occurring simultaneously, so the most accurate way to handle this is to build
a large system of equations and solve for them all at once. This is usually a quite complex
process, in both constructing the equations and solving them. While it often ends up as
a linear system, using Gaussian elimination is too expensive due to the large numbers of
equations involved. Instead, an iterative process such as the Gauss—Seidel or Jacobi method
is used. In principle, this is similar to Newton’s method in that it involves computing
an initial approximation and then refining that approximation to converge on the final
answer.

An alternative, suggested in different ways by Catto [22] and Millington [109], is to
continue to update impulses sequentially. However, instead of updating once per contact

554 Rigid-Body Dynamics

pair, we take a page from the iterative methods and update each pair as necessary, until a
certain level of convergence is reached. Millington’s method is to iterate through the contact
pairs, finding the ones with the deepest penetration and resolving them first. One set of pairs
may be revisited because it is affected by one or more other sets of pairs. In this way the
impulses are iteratively adjusted until hopefully they converge on a reasonable solution.

Catto’s method, on the other hand, involves updating the impulse values at each contact
pair for several iterations, then applying the impulses when done. This has the advantage
that it can cut down on jitter. Normally, impulses are required to be positive, so what
happens is that any correction in the negative direction will be clamped to zero. This
means that we can get overcorrection where objects bounce into the air briefly and then
settle back down, much as we saw with resting contact. Instead, Catto recommends accu-
mulating the impulse value, including the incorporation of negative values. He has also
found that doing this while clamping the accumulated impulse is equivalent to an itera-
tive matrix method known as projected Gauss—Seidel, which is a common variant used for
solving constraint systems. This provides an excellent mathematical justification for this
approach.

As before, details on solving these issues can be found in Catto [22], Jakobson [85],
Millington [109], and Witkin and Baraff [158]. Golub and Van Loan [57] have information
on Gauss—Seidel and Jacobi methods.

13.6 Efficiency

Now that we have a simple simulation system, some notes on using it efficiently may be
appropriate. The first rule is that this is a game. Don’t waste time with any more processing
power than you need to get the effect you want. While a fully realistic simulation may be
desirable, it can’t take too much processing power away from the other subsystems, for
instance, graphics or artificial intelligence. How resources are allocated among subsystems
in a game depends on the game’s focus. If a simpler solution will come close enough to the
appearance of realism, then it is sometimes better to use that instead.

One way to reduce the amount of resources used is to simplify the problem. So far we’ve
been assuming that we’re building a truly 3D game, where the objects need to move in three
degrees of freedom. If, however, you were building a tank game, it’s highly unlikely that
the tank would leave the ground. In most cases, land warfare games take place on a 2D
map, with some height variation, so with the exception of projectiles, the entire situation is
really a 2D problem. You don’t have to consider gravity, as angular dynamics is constrained
to just rotation around z, and thus you really need only one factor for your moments of
inertia. This considerably simplifies the angular dynamics equations. The same is true for a
first-person shooter; in general, characters will interact as cylinders sliding on a flat floor,
with vertical walls as boundaries. In this case, we can simplify the collision problem to
circles on a 2D plane.

Another way to improve efficiency is to run simulation code only on some of the objects
in the world. For example, we could restrict full simulation to those objects that are vis-
ible or near the player. We could use a simplified simulation model for the other objects
or not move them at all. We could also not simulate objects that aren’t currently mov-
ing, and begin simulation only when forces are applied or another object collides with

13.7 Chapter Summary 555

them. When using this technique, we need to be careful about discontinuities in the sim-
ulation. We don’t want a falling object that passes out of view to stop in midair, only to
start falling again when it’s visible again. Nor do we want objects to jerk, move strangely,
or jump position as one simulation model ceases and another takes over. While managing
these discontinuities can be tricky, using such restrictions can also gain quite a performance
boost.

Simplifying the forces computed during simulation is another place to find speed
improvements. We’ve alluded to this before. In a truly complete simulation we would
compute a gravitational force, a normal force to keep the object from sinking through the
ground, and a static frictional force to keep the object from sliding down any inclines.
In most cases, we can assume that the sum of all these forces is zero and ignore them
completely. We really haven’t covered friction in any detail, but it’s a similar case. We
could compute a complex equation for an object that handles all contact points, current
surface area, and whether we are moving or at rest, or we could just use a drag coefficient
multiplied by velocity. If your game calls for the full friction model, then by all means do
it, but in many cases, it can be overkill.

13.7 Chapter Summary

The use of physical simulation is becoming an important part of providing realistic motion in
games and other interactive applications. In this chapter we have described a simple physical
simulation system, using basic Newtonian physics. We covered some techniques of numeric
integration, starting with Euler’s method, and discussed their pros and cons. Using these
integration techniques, we have created a simple system for linear and rotational rigid-body
dynamics. Finally, we have shown how we can use the results of our collision system to
generate impulses for collision response.

The system we’ve presented is a very simple one—we’ve barely scratched the surface of
what is possible in terms of physical simulation. For those who are interested in proceeding
further, Millington [109] presents the gradual development of a simple physics engine that
is suitable for game engines. Eberly [37] presents a more complete look at the mathematics
in game physics, including the use of physics in graphics shaders. Burden and Faires [19]
and Golub and Ortega [58] have more descriptions of numerical integration techniques and
managing error bounds. Finally, Witkin and Baraff [158], Jakobson [85], and Catto [21]
describe different methods for building constraint systems.

References

[1] Tomas Akenine-Mdller, Eric Haines, and Naty Hoffman. Real-Time Rendering. CRC
Press, Boca Raton, FL, 3rd edition, 2008.

[2] Tony Albrecht. Pitfalls of object oriented programming. http://research.scee.net/files/
presentations/gcapaustralia09/Pitfalls_of_Object_Oriented_Programming_GCAP_
09.pdf.

[3] AMD. AMD developer support web site. http://www.amd.com.

[4] American National Standards Institute and Institute of Electrical and Electronic
Engineers. IEEE standard for floating-point arithmetic. IEEE Standard 754-2008,
New York, 2008.

[5] Amy Williams, Steve Barnes, H. Keith Morley, and Peter Shirley. An efficient and
robust ray-box intersection algorithm. Journal of Graphics Tools, 10(1):49-54, 2005.

[6] Howard Anton and Chris Rorres. Elementary Linear Algebra: Applications Version.
John Wiley & Sons, New York, 11th edition, 2014.

[7] ARM. ARM developer support web site. http://www.arm.com.

[8] Sheldon Axler. Linear Algebra Done Right. Springer-Verlag, New York, 2nd edition,
1997.

[9] Martin Baker and Michael Norel. EuclideanSpace web site. http://www.
euclideanspace.com.

[10] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduction to
Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufman
Publishers, San Francisco, 1987.

[11] J. F. Blinn and M. E. Newell. Clipping using homogeneous coordinates. In Computer
Graphics (SIGGRAPH ’78 Proceedings), pages 245-251. ACM, New York, 1978.

[12] Jim Blinn. A Trip Down the Graphics Pipeline. Morgan Kaufmann Publishers,
San Francisco, 1996.

[13] Jim Blinn. Notation, Notation, Notation. Morgan Kaufmann Publishers, San
Francisco, 2002.

[14] Jonathan Blow. Hacking quaternions. Game Developer, March 2002.

[15] Jonathan Blow. Understanding slerp, then not using it. Game Developer, February
2004.

557

558 References

[16] Jonathan Blow and Atman J. Binstock. How to find the inertia tensor (or other mass
properties) of a 3D solid body represented by a triangle mesh. Technical report,
http://number-none.com, 2004.

[17] W. Boehm. Inserting new knots into b-spline curves. Computer Aided Design,
12(4):199-201, 1980.

[18] W.Boehm. On cubics: A survey. Computer Graphics and Image Processing, 19:201—
226, 1982.

[19] Richard L. Burden and J. Douglas Faires. Numerical Analysis. PWS Publishing
Company, Boston, 5th edition, 1993.

[20] Thomas Busser. Polyslerp: A fast and accurate polynomial approximation of
spherical linear interpolation (slerp). Game Developer, February 2004.

[21] Erin Catto. Iterative dynamics with temporal coherence. Technical report, Crystal
Dynamics, 2005.

[22] Erin Catto. Fast and simple physics using sequential impulses. Game Developers
Conference 2006 Tutorial: Physics for Game Programmers, 2006.

[23] Arthur Cayley. The Collected Mathematical Papers of Arthur Cayley. Cambridge
University Press, Cambridge, 1889-1897.

[24] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis.
Morgan Kaufman Publishers, San Francisco, 1993.

[25] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM
Transactions on Graphics, 1(1):7-24, 1982.

[26] T. N. Cornsweet. Visual Perception. Academic Press, New York, 1970.

[27] R.Courantand D. Hilbert. Methods of Mathematical Physics, volume 1. Wiley-VCH,
Germany, 1989 (reprint).

[28] M. Cyrus and J. Beck. Generalized two- and three-dimensional clipping. Computers
and Graphics, 3:23-28, 1978.

[29] Bruce Dawson. Comparing floating point numbers, 2012 edition. http://randomascii.
wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/.

[30] Bruce Dawson. That’s not normal: The performance of odd floats.
http://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-
odd-floats/.

[31] Eugene d’Eon and David Luebke. Advanced techniques for realistic real-time skin
rendering. In Hubert Nguyen, editor, GPU Gems 3, pages 293-345. Addison-Wesley,
Reading, MA, 2007.

[32] Tony deRose. Three-dimensional computer graphics: A coordinate-free approach.
Technical report, University of Washington, 1993.

[33] Rene Descartes. La geometrie (The Geometry of Rene Descartes). Dover Publica-
tions, New York, 1954.

[34] Sim Dietrich. Attenuation maps. In Mark DeLoura, editor, Game Programming
Gems, pages 543-548. Charles River Media, Hingham, MA, 2000.

[35] David H. Eberly. 3D Game Engine Design. Morgan Kaufmann Publishers, San
Francisco, 2001.

[36] David H. Eberly. Rotation representations and performance issues. Technical report,
Geometric Tools, 2002.

[37] David H. Eberly. Game Physics. Morgan Kaufmann Publishers, San Francisco,
2003.

[38] David H. Eberly. Eigensystems for 3 x 3 symmetric matrices (revisited). Technical
report, Geometric Tools, 2006.

[39] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven
Worley. Texture and Modelling: A Procedural Approach. Morgan Kaufmann, San
Francisco, 3rd edition, 2003.

[40] Wolfgang Engel, editor. GPU Pro: Advanced Rendering Techniques. CRC Press,
Boca Raton, FL, 2010.

[41] Christer Ericson. Real-Time Collision Detection. Morgan Kaufmann, San Francisco,
2004.

[42] Gerald Estrin. Organization of computer systems—The fixed plus variable structure
computer. In Proceeding of the Western Joint Computer Conference, pages 33-40,
1960.

[43] Euclid. The Elements. Dover Publications, New York, 1956.

[44] Cass Everitt. Interactive order-independent transparency. Technical report, NVIDIA,
2001.

[45] Randima Fernando, editor. GPU Gems: Programming Techniques, Tips, and Tricks
for Real-Time Graphics. Addison-Wesley, Reading, MA, 2004.

[46] Ronald A. Fisher and Frank Yates. Statistical Tables for Biological, Agricultural and
Medical Research. Oliver and Boyd, London, 1938.

[47] Agner Fog. C++ vector class library. http://www.agner.org/optimize/#vectorclass.

[48] Agner Fog. Optimizing software in c++. Technical report, Technical University of
Denmark, 2014.

[49] Tom Forsyth. Premultiplied alpha. http://home.comcast.net/~tom_forsyth/blog.wiki.
html.

[50] H. Freeman and R. Shapira. Determining the minimum-area encasing rectangle for
an arbitrary closed curve. Communications of the ACM, 8(7):409—413, 1975.

[51] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence. Linear Algebra.
Prentice-Hall, Englewood Cliff, NJ, 1979.

[52] Fabian Giesen. Phong normalization factor derivation. http://www.farbrausch.de/
~fg/stuff/phong.pdf.

[53] Andrew S. Glassner, editor. An Introduction to Ray Tracing. Academic Press, Boston,
1989.

[54] Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann
Publishers, San Francisco, 1994.

[55] Ron Goldman. Rethinking Quaternions: Theory and Computation. Morgan and
Claypool Publishers, San Rafael, CA, 2010.

[56] Ronald N. Goldman. Decomposing linear and affine transformations. In David
Kirk, editor, Graphics Gems III, pages 108-116. Academic Press, San Diego,
1992.

[57] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, 1993.

[58] Gene H. Golub and James M. Ortega. Scientific Computing and Differential
Equations: An Introduction to Numerical Methods. Academic Press, Boston,
1992.

[59] Larry Gonick and Woollcott Smith. The Cartoon Guide to Statistics. Harper Collins,
New York, 1993.

References

559

560 References

[60] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical structure for
rapid interference detection. In Computer Graphics (SIGGRAPH 96 Proceedings),
pages 171-180, 1996.

[61] Jens Gravesen. The length of bezier curves. In Graphics Gems V, pages 199-205.
Academic Press, San Diego, CA, 1998.

[62] Kris Gray. The Microsoft DirectX 9 Programmable Graphics Pipeline. Microsoft
Press, Redmond, WA, 2003.

[63] Jason Gregory. Game Engine Architecture. AK Peters/CRC Press, Boca Raton, FL,
2nd edition, 2014.

[64] Gil Gribb and Klaus Hartmann. Fast extraction of viewing frustum planes from the
worldview-projection matrix, 2001. http://www8.cs.umu.se/kurser/SDVO51/HT12/
lab/plane_extraction.pdf.

[65] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. American
Mathematical Society, Providence, RI, 2003.

[66] Khronos Group. OpenGL 4.5 reference card. https://www.khronos.org/files/opengl45-
quick-reference-card.pdf.

[67] Brian Guenter and Richard Parent. Computing the arc length of parametric curves.
IEEE Computer Graphics and Applications, 10(3):72-78, 1990.

[68] Philippe Guigue and Olivier Devillers. Fast and robust triangle-triangle overlap using
orientation predicates. Journal of Graphics Tools, 8(1):25-32, 2003.

[69] William Hamilton. On quaternions, or on a new system of imaginaries in algebra.
Philosophical Magazine, 1844—1850 (available online).

[70] A. Hanson and H. Ma. Parallel transport approach to curve framing. Technical
Report 425, Indiana University Computer Science Department, 1995.

[71] Andrew Hanson. Visualizing Quaternions. Morgan Kaufmann, San Francisco, 2006.

[72] Hao Shen, Phen Ann Heng, and Zesheng Tang. A fast triangle-triangle overlap test
using signed distances. Journal of Graphics Tools, 8(1):17-24, 2003.

[73] Donald Hearn and M. Pauline Baker. Computer Graphics. Prentice-Hall, Upper
Saddle River, NJ, 2nd edition, 1996.

[74] Paul Heckbert. Texture mapping polygons in perspective. Technical report, New
Institute of Technology, 1983.

[75] Paul Heckbert and Henry Moreton. Interpolation for polygon texture mapping and
shading. In David Rogers and Rae Earnshaw, editors, State of the Art in Computer
Graphics: Visualization and Modeling, pages 101-111. Springer-Verlag, Berlin,
1991.

[76] Chris Hecker. Under the hood/behind the screen: Perspective texture mapping
(series). Game Developer Magazine, 1995-1996.

[77] Martin Held. Erit—A collection of efficient and reliable intersection tests. Journal
of Graphics Tools, 2(4):25-44, 1997.

[78] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, San Francisco, 5th edition, 2011.

[79] Naty Hoffman. Background: Physics and math of shading. In SIGGRAPH 2013
Course: Physically Based Shading in Theory and Practice, 2013.

[80] Wiliam George Horner. A new method of solving numerical equations of all orders,
by continuous approximation. Philosophical Transactions, 308-335, 1819.

[81] John F. Hughes. Personal communication, 1993.

[82] John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley,
Steven K. Feiner, and Kurt Akeley. Computer Graphics: Principles and Practice.
Addison-Wesley, Reading, MA, 3rd edition, 2013.

[83] Institute of Electrical and Electronics Engineers. IEEE standard for binary floating-
point arithmetic. ANSI/IEEE Standard 754-1985, New York, 1985.

[84] Intel. Intel developer support web site. http://developer.intel.com.

[85] Thomas Jakobson. Advanced character physics. In Proceedings of Game Developers
Conference, 2001.

[86] DavidJones. Good practice in (pseudo) random number generation for bioinformatics
applications. Technical report, UCL Bioinformatics Group, 2010.

[87] William Kahan. Lecture notes on the status of IEEE-754, 1996. Postscript file
accessible electronically at http://http.cs.berkeley.edu/~wkahan/ieee754status/
ieee754.ps.

[88] Michael Kallay. Computing the moment of inertia of a solid defined by a triangle
mesh. Journal of Graphics Tools, 11(2):51-57, 2006.

[89] Brano Kamen. Maximizing depth buffer range and precision. http://outerra.blogspot.
com/2012/11/maximizing-depth-buffer-range-and.html.

[90] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, 3rd edition, 1993.

[91] Doris H. U. Kochanek and Richard H. Bartels. Interpolating splines with local
tension, continuity, and bias control. In Computer Graphics (SIGGRAPH 84
Proceedings), pages 33—41, 1984.

[92] Sébastien Lagarde and Charles de Rousiers. Moving frostbite to physically based
rendering, 2014. http://www.frostbite.com/2014/1 1/moving-frostbite-to-pbr/.

[93] Pierre L’Ecuyer. Tables of linear congruential generators of different sizes and good
lattice structure. Mathematics of Computation, 68(225):249-260, 1999.

[94] Pierre L’Ecuyer and Richard Simard. TestuOl: A C library for empirical test-
ing of random number generators. ACM Transactions on Mathematical Software,
33(4): 2007.

[95] Eric Lengyel. Fundamentals of grassman algebra. Game Developers Conference
2012, 2012. http://www.terathon.com/gdc12_lengyel.pdf.

[96] Yu-Dong Liang and Brian Barsky. A new concept and method for line clipping.
ACM Transactions on Graphics, 3(1):1-22, 1984.

[97] D. Malacara. Color Vision and Colorimetry: Theory and Applications. SPIE Press,
Bellingham, WA, 2nd edition, 2011.

[98] George Marsaglia. Random numbers fall mainly in the planes. Proceedings of the
National Academy of Sciences USA, 61:25-28, 1968.

[99] George Marsaglia. Remarks on choosing and implementing random number
generators. Communications of the ACM, 36(7):105-108, 1993.

[100] George Marsaglia. Yet another RNG. Sci. Stat. Math., August 1, 1994.

[101] George Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1-9,
2003.

[102] George Marsaglia and Wai Wan Tsang. Some difficult-to-pass tests of randomness.
Journal of Statistical Software, 7(3):1-9, 2002.

[103] George Marsaglia and Arif Zaman. A new class of random number generators.
Annals of Applied Probability, 1(3):462-480, 1991.

References

561

562 References

[104] George Marsaglia and Arif Zaman. The kiss generator. Technical report, Department
of Statistics, Florida State University, 1993.

[105] Marta Lofstedt and Tomas Akenine-Moller. An evaluation framework for ray-
triangle intersection algorithms. Journal of Graphics Tools, 10(2):13-26, 2005.

[106] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions on
Modelling and Computer Simulation, 8:3-30, 1998.

[107] Morgan McGuire and Louis Bavoil. Weighted blended order-independent trans-
parency. Journal of Computer Graphics Techniques (JCGT), 2(2):122-141,
2013.

[108] Gary McTaggert. Half-Life 2/Valve source shading. Game Developers Conference
2004, 2004.

[109] Ian Millington. Game Physics Engine Development. CRC Press, Boca Raton, FL,
2nd edition, 2010.

[110] Brian Mirtich. Fast and accurate computation of polyhedral mass properties. Journal
of Graphics Tools, 1(2):31-50, 1996.

[111] Hubert Nguyen. Casting shadows. Game Developer Magazine, March 1999.

[112] nVidia. nVidia developer support web site. http://developer.nvidia.com.

[113] Michael Oren and Shree K. Nayar. Generalization of Lambert’s reflectance model.
In Proceedings of the 2 1st Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’94), pages 239-246, 1994.

[114] Joseph O’Rourke. Finding minimal enclosing boxes. International Journal of
Computer and Information Sciences, 14(3):183—-199, 1985.

[115] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press,
Cambridge, United Kingdom, 2000.

[116] Lewis Padgett. Mimsy were the borogroves. In Science Fiction Hall of Fame,
volume 1, Doubleday & Company Inc., Garden City, NY, 1943.

[117] Rick Parent. Computer Animation: Algorithms and Techniques. Morgan Kaufmann
Publishers, San Francisco, 3rd edition, 2012.

[118] Stephen K. Park and Keith W. Miller. Random number generators: Good ones are
hard to find. Communications of the ACM, 31(10):1192-1201, 1988.

[119] Ken Perlin. An image synthesizer. In Computer Graphics (SIGGRAPH ’85 Proceed-
ings), pages 287-296, 1985.

[120] Matt Pharr, editor. GPU Gems 2: Mapping Computational Concepts to GPUs.
Addison-Wesley, Reading, MA, 2005.

[121] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann, San Francisco, 2004.

[122] Bui Tuong Phong. Illumination for computer generated pictures. Communications
of the ACM, 18(6):311-317, 1975.

[123] Thomas Porter and Tom Duff. Compositing digital images. In Proceedings of the 1 1th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
'84), pages 253-259, 1984.

[124] Charles Poynton. Charles Poynton’s color FAQ. http://www.poynton.com/.

[125] Franco P. Preparata and Michael lan Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, Berlin, 1991.

[126] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C : The Art of Scientific Computing. Cambridge University
Press, New York, 3rd edition, 2007.

[127] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance envi-
ronment maps. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’01), pages 497-500, 2001.

[128] Nathan Reed. On vector math libraries. http://www.reedbeta.com/blog/2013/12/28/
on-vector-math-libraries.

[129] Robert J. Simpson, editor. The OpenGL ES® shading language. Technical report,
Khronos Group, Inc., 2014.

[130] David F. Rogers. An Introduction to NURBS: With Historical Perspective. Morgan
Kaufmann Publishers, San Francisco, 2000.

[131] David F. Rogers and J. Alan Adams. Mathematical Elements for Computer Graphics.
McGraw-Hill, New York, 1990.

[132] Randi Rost. OpenGL® Shading Language. Addison-Wesley Professional, Reading,
MA, 2004.

[133] Philip J. Schneider and David H. Eberly. Geometric Tools for Computer Graphics.
Morgan Kaufmann Publishers, San Francisco, 2002.

[134] I. Schrage. A more portable Fortran random number generator. ACM Transactions
on Mathematical Software, 5(2):132—-138, 1979.

[135] Mark Segal and Kurt Akeley. The OpenGL® graphics system: A specification (ver-
sion 4.5 (core profile)—October 30, 2014). Technical report, Khronos Group, Inc.,
2014.

[136] Ken Shoemake. Animating rotation with quaternion curves. In Computer Graphics
(SIGGRAPH ’85 Proceedings), volume 19, pages 245-254, 1985.

[137] Ken Shoemake. Quaternion calculus for animation. In Math for SIGGRAPH (ACM
SIGGRAPH 89 Course Notes 23), pages 187-205, 1989.

[138] Ken Shoemake and Tom Duff. Matrix animation and polar decomposition. In
Proceedings of Graphics Interface *92, pages 258-264, 1992.

[139] William Stallings. Computer Organization and Architecture. Prentice Hall, Upper
Saddle River, NJ, 9th edition, 2012.

[140] Stephen Vincent and David Forsey. Fast and accurate parametric curve length
computation. Journal of Graphics Tools, 6(4):29—-40, 2001.

[141] Dan Sunday. Distance between lines and segments with their closest point of
approach. Technical report, http://geometryalgorithms.com, 2001.

[142] I. E. Sutherland. Sketchpad: A man—machine graphical communications system.
In IFIPS Proceedings of the Spring Joint Computer Conference, 1963.

[143] LE. Sutherland and G.W. Hodgeman. Reentrant polygon clipping. Communications
of the ACM, 17(1):32-42, 1974.

[144] Steve Theodore. Why be normal? Game Developer Magazine, October 2004.

[145] Andy Thomason. Faster quaternion interpolation using approximations. In Kim
Pallister, editor, Game Programming Gems 5. Charles River Media, Hingham, MA,
2005.

[146] Tomas Moller. A fast triangle—triangle intersection test. Journal of Graphics Tools,
2(2):25-30, 1997.

References

563

564 References

[147]
[148]
[149]

[150]

[151]
[152]
[153]
[154]
[155]

[156]

[157]
[158]

[159]

Tomas Moller and Ben Trumbore. Fast, minimum storage ray/triangle intersection.
Journal of Graphics Tools, 2(1):21-28, 1997.

Ken Turkowski. Filters for common resampling tasks. In Andrew S. Glassner, editor,
Graphics Gems, pages 147—165. Academic Press Professional, San Diego, 1990.
Gino van den Bergen. Collision Detection in Interactive 3D Environments. Morgan
Kaufmann Publishers, San Francisco, 2003.

James M. Van Verth. Using the covariance matrix for better fitting bounding objects.
In Andrew Kirmse, editor, Game Programming Gems 4. Charles River Media,
Hingham, MA, 2004.

James M. Van Verth. Spline-based time control for animation. In Kim Pallister, editor,
Game Programming Gems 5. Charles River Media, Hingham, MA, 2005.
Sebastiano Vigna. An experimental exploration of Marsaglia’s xorshift generators,
scrambled. Computing Research Repository, abs/1402.6246, 2014.

Sebastiano Vigna. Further scramblings of Marsaglia’s xorshift generators. Comput-
ing Research Repository, abs/1404.0390, 2014.

David R. Warn. Lighting controls for synthetic images. In Computer Graphics
(SIGGRAPH ’83 Proceedings), 1983.

Alan Watt and Fabio Policarpo. 3D Games: Real-Time Rendering and Software
Technology, volume 1. Addison-Wesley, Harlow, UK, 2001.

E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, Lec-
ture Notes in Computer Science, New Results and New Trends in Computer Science,
volume 555, pages 359-370. Springer-Verlag, New York, 1991.

Lance Williams. Pyramidal parametrics. In Computer Graphics (SIGGRAPH ’83
Proceedings), 1983.

Andrew Witkin and David Baraff. Physically based modelling: Principles and
practice, SIGGRAPH 2001 course notes, 2001.

George Wohlberg. Digital Image Warping. IEEE Computer Society Press,
Los Alamitos, CA, 1990.

Essential Mathematics for Games

Completely revised to fix errors and make the content flow better, this third edition

reflects the increased use of shader graphics pipelines, such as in DirectX 11,

OpenGL ES (GLES), and the OpenGL Core Profile. It also updates the material on
real-time graphics with coverage of more realistic materials and lighting.

The book covers the low-level mathematical and geometric representations and
algorithms that are the core of any game engine. It also explores all the stages of
the rendering pipeline. The authors explain how to represent, transform, view, and
animate geometry. They then focus on visual matters, specifically the representa-
tion, computation, and use of color. They also address randomness, intersecting
geometric entities, and physical simulation.

Features

Explains how the mathematical concepts apply to major parts of 3D games
Covers the entire rendering pipeline, from representation and

animation to light simulation and rasterization

Shows how to display and manipulate game objects

Presents techniques that make games look less structured and more organic
Includes source code, demos, tutorial slides, and other materials

on a supplementary website

This updated book provides you with a conceptual understanding of the mathe-
matics needed to create 3D games as well as a practical understanding of how
these mathematical bases actually apply to games and graphics. It not only
includes the theoretical mathematical background but also incorporates many
examples of how the concepts are used to affect how a game looks and plays.

ISBN: 978-1-4822-5092-3

|| ”| ‘ |||“| ‘ i
7

LA U

q

	Front Cover
	Dedication
	Contents
	Preface
	Authors
	Introduction
	Chapter 1 Representing Real Numbers
	Chapter 2 Vectors and Points
	Chapter 3 Linear Transformations and Matrices
	Chapter 4 Affine Transformations
	Chapter 5 Orientation Representation
	Chapter 6 Interpolation
	Chapter 7 Viewing and Projection
	Chapter 8 Geometry and Programmable Shading
	Chapter 9 Lighting
	Chapter 10 Rasterization
	Chapter 11 Random Numbers
	Chapter 12 Intersection Testing
	Chapter 13 Rigid- Body Dynamics
	References
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2015-09-16T08:35:10+0000
	Preflight Ticket Signature

