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First Edition

A course in precalculus is designed to prepare college students for the level of algebraic skills and knowl-
edge that is expected in a calculus class. Such courses, standard at two-year and four-year colleges, review
the material of algebra and trigonometry, emphasizing those topics with which familiarity is assumed in
calculus. Key unifying concepts are those of functions and their graphs.

The present book is designed as a supplement to college courses in precalculus. The material is divided
into forty-four chapters, and covers basic algebraic operations, equations, and inequalities, functions and
graphs, and standard elementary functions including polynomial, rational, exponential, and logarithmic func-
tions. Trigonometry is covered in Chapters 20 through 29, and the emphasis is on trigonometric functions as
defined in terms of the unit circle. The course concludes with matrices, determinants, systems of equations,
analytic geometry of conic sections, and discrete mathematics.

Each chapter starts with a summary of the basic definitions, principles, and theorems, accompanied by
elementary examples. The heart of the chapter consists of solved problems, which present the material in
logical order and take the student through the development of the subject. The chapter concludes with sup-
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Preliminaries

The Sets of Numbers Used in Algebra

The sets of numbers used in algebra are, in general, subsets of R, the set of real numbers.

Natural Numbers N
The counting numbers, e.g., 1,2, 3,4, ...

Integers Z
The counting numbers, together with their opposites and 0, e.g., 0, 1,2,3, ... —1, =2, =3, ...

Rational Numbers Q
The set of all numbers that can be written as quotients a/b, b # 0, a and b integers, e.g., 3/17, 10/3, —=5.13, . ..

Irrational Numbers H
All real numbers that are not rational numbers, e.g., 7, \/5 , 2/5 , /3, ...

EXAMPLE 1.1 The number —5 is a member of the sets Z, Q, R. The number 156.73 is a member of the sets @, R. The
number 57 is a member of the sets H, R.

Axioms for the Real Number System

There are two fundamental operations, addition and multiplication, that have the following properties (a, b, ¢
arbitrary real numbers):

Closure Laws
The sum a + b and the product a - b or ab are unique real numbers.

Commutative Laws
a + b = b + a: order does not matter in addition.
ab = ba: order does not matter in multiplication.

Associative Laws

a+ (b + c)=(a+ b)+ c: grouping does not matter in repeated addition.

a(bc) = (ab)c: grouping does not matter in repeated multiplication.

Note (removing parentheses): Since a + (b + ¢) = (a + b) + ¢, a + b + ¢ can be written to mean either
quantity

Also, since a(bc) = (ab)c, abc can be written to mean either quantity.

Distributive Laws
a(b + ¢) = ab + ac; also (@ + b)c = ac + bc: multiplication is distributive over addition.

Identity Laws
There is a unique number O with the property that0 + a = a + 0 = a.
There is a unique number 1 with the property that 1 -a =a -1 = a.
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Inverse Laws

For any real number a, there is a real number —a such thata + (—a) = (—a) + a = 0.
For any nonzero real number a, there is a real number a~! such that aa™! = a™'la = 1.
—a is called the additive inverse, or negative, of a.

a~!is called the multiplicative inverse, or reciprocal, of a.

EXAMPLE 1.2 Associative and commutative laws: Simplify (3 + x) + 5.

B+x)+5=x+3)+5 Commutative law
=x+@B+)5) Associative law
=x+8

EXAMPLE 1.3 FOIL (First Outer Inner Last). Show that (a + b) (¢ + d) = ac + ad + bc + bd.

(a+b)(ct+d=alc+d+ blc+d by the second form of the distributive law
=ac + ad + bc + bd by the first form of the distributive law

Zero Factor Laws

1. For every real number a, a - 0 = 0.
2. If ab = 0, then eithera = Qor b = 0.

Laws for Negatives

1. =(—a)=a

2. (—a)(—b)=ab

3. —ab = (—a)b = a(—b) = —(—a)(—b)
4. (=Da = —a

Subtraction and Division
Definition of Subtraction: « — b =a + (—b)

Definition of Division: % =qg+b=a-b " Thus,b'=1-b""=1+b=

S| -

Note: Since 0 has no multiplicative inverse, a + 0 is not defined.

Laws for Quotients

| _a_—a_a __~a
b b b —b
, Za_a
T - b
a_c
3574 if and only if ad = bc.
4. % = %, for k any nonzero real number. (Fundamental principle of fractions)

Ordering Properties
The positive real numbers, designated by R*, are a subset of the real numbers with the following properties:

1. If a and b are in R*, then so are a + b and ab.
2. For every real number a, either a is in R*, or a is zero, or —a is in R*.

If ais in R, a is called positive; if —a is in R, a is called negative.
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The number a is less than b, written a < b, if b — a is positive. Then b is greater than a, written b > a. If a
is either less than or equal to b, this is written a = b. Then b is greater than or equal to a, written b = a.
EXAMPLE 1.4 3 <5 because 5 — 3 = 2 is positive. =5 < 3 because 3 — (—5) = 8 is positive.

The following may be deduced from these definitions:

1. a > 0if and only if a is positive.
2. If a # 0, then > > 0.
3. fa<b,thena+c<b+ec.

4 Tfa<b, then 3¢ <bc ifc>0
' ’ ac>bc if ¢ <0

e

For any real number a, eithera > 0, ora = 0,ora < 0.
6. fa<band b <c,thena <c.

The Real Number Line

Real numbers may be represented by points on a line / such that to each real number a there corresponds
exactly one point on /, and conversely.

EXAMPLE 1.5 Indicate the set {3, —5, 0, 2/3, \/g, —1.5, —ar} on a real number line.

-5 -n -1.5 0 23 b 3
L 1 1l t L 4 1 1 4 g1 1 let § I I 15,
-5 -4 -3 -2 -1 0 1 2 3 4

Figure 1-1

Absolute Value of a Number
The absolute value of a real number a, written |a, is defined as follows:

la| = a ifa=0
—a if a<0

Complex Numbers

Not all numbers are real numbers. The set C of numbers of the form a + bi, where a and b are real and
i> = —1, is called the complex numbers. Since every real number x can be written as x + 0i, it follows that

every real number is also a complex number.

1
EXAMPLE 1.6 3++—4 =3+2i, —5i, 2rmi, 7 + gi are examples of nonreal complex numbers.

Order of Operations
In expressions involving combinations of operations, the following order is observed:

1. Perform operations within grouping symbols first. If grouping symbols are nested inside other grouping
symbols, proceed from the innermost outward.

2. Apply exponents before performing multiplications and divisions, unless grouping symbols indicate
otherwise.

3. Perform multiplications and divisions, in order from left to right, before performing additions and sub-
tractions (also from left to right), unless operation symbols indicate otherwise.
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EXAMPLE 1.7 Evaluate (2) —5 — 3%, (b) 3 — 4[5 — 62 — )1, (©) [3 — 8 -5 — (=1 — 2+ 3)] - (3% — 522
() -5-3=-5-9=-14
(b) 3 —4[5— 62— 8)]=3—4[5— 6(—6)]
=3 — 4[5+ 36]
=3 —4[41] =3 — 164 = — 161
© B—8:5—(-1-2-3)]-(3—-52=[3-8-5-(-1—6)](9— 25
=B-@-5 - (Dl (-16
=[3—40+7]-256
= —30-256 = —7, 680

SOLVED PROBLEMS

1.1. Prove the extended distributive law a(b + ¢ + d) = ab + ac + ad.

alb+c+d)=allb+ c)+d] Associative law
alb + ¢) + ad Distributive law

ab + ac + ad Distributive law

1.2. Prove that multiplication is distributive over subtraction: a(b — ¢) = ab — ac.

alb —c) =a[b + (—¢)] Definition of subtraction

ab + a(—c) Distributive law

=ab + (—ac) Laws for negatives
=ab — ac Definition of subtraction
1.3. Show that —(a + b) = —a — b.
—(a+b)=(—1)a+ b) Laws for negatives
=(—Da+ (Db Distributive law
= (—a) + (=b) Laws for negatives
=—-a-—»b Definition of subtraction
.a c
1.4. Show that if — = — then ad = bc.
b d
c
Assume that % = 2 . By the definition of division, Z = ; means ab~! = c¢d~!. Hence,
ad =ad -1 Identity law
= adbb™! Inverse law
= ab'db Associative and commutative laws

cd™'db By hypothesis

c-1-b Inverse law

= bc Identity and commutative laws

1.5. Prove thatifa < b,thena +c¢<b + c.

Assume that a < b. Then b — a is positive. Butb —a =b —a + 0 = b — a + ¢ + (—c) by the identity and inverse
laws. Sinceb —a+c+ (—c)=b —a+ c—c=b + c — (a + c) by the definition of subtraction, the associative
and commutative laws, and Problem 1.3, it follows that b + ¢ — (a + ¢) is positive. Hence a + ¢ < b + c.
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1.6. Identify as a member of the sets N, Z, Q, H, R, or C:

1.7.

1.8.

(a)
(d)

(a)
(b)
(©)

(@)

(e

~7 (b) 0.7 © 7
© V-7

—7 is a negative integer; hence it is also rational, real, and complex. —7 is in Z, Q, R, and C.

=1

0.7 = 7/10; hence it is a rational number, hence real and complex. 0.7 is in Q, R, and C.

ﬁ ; is an irrational number; hence it is also real and complex. ﬁ ;isin H, R, and C.

7
0 is not defined. This is not a member of any of these sets.

/=7 is not a real number, but it can be written as i\/; ; hence, it is a complex number. v—7 isin C.

Identify as true or false:

(a)
(@
(b
(©)

-7<-8 (b)y 7 =22/7 (c) x*=0 for all real x.

Since (—8) — (—7) = —1 is negative, —8 << —7, so the statement is false.
Since 77 is an irrational number and 22/7 is rational, the statement is false.

This follows from property 2 for inequalities; the statement is true.

Rewrite the following without using the absolute value symbol, and simplify:

(a)
(d

(@
(c)
(d)
(e)

13 =3 (®) 1B1-=15l © 12—
[x = 5]ifx>5 (e) x+6lifx<—6

3—=35=[-21=2 ®) Bl -5=3-5=-2

Since 2 < 7,2 — mis negative. Hence |2 — 7| = -2 —m) =7 — 2.

Given that x > 5, x — 5 is positive. Hence |[x — 5| = x — 5.

Given that x < —6,x — (—6) = x + 6 is negative. Hence Ix + 6l = —(x + 6) = —x — 6.

SUPPLEMENTARY PROBLEMS

1.9. Identify the law that justifies each of the following statements:

1.10.

(@ x+3)+5=2x+@3+)5) b)) 2x+ (5 +3x)=2x+(B3x+5)
© Px+y)=x>-x+x-y (d) 100[0.01(50 — x)] = [100(0.01)](50 — x)
(e) Ifa+b=0,thenb = —a. ) If(x—5)(x+3)=0,theneitherx —5=0orx+3=0.
Ans. (a) Associative law for addition (b) Commutative law for addition
(c) Distributive law (d) Associative law for multiplication
(e) Inverse law for addition (f) Zero factor law
Are the following statements true or false?
(a) 3is areal number. (b) w=3.14
) kx—=5=x+5 (d) Every rational number is also a complex number.
Ans. (a) true; (b) false; (c) false; (d) true
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1.11. Place the correct inequality sign between the following:
1
(a 9?7-8 (b)y w24 (¢) £7033
3
22
@ om (€ —14147 -2
Ans. (a) >;(b) <;(c) >;(d) >;(e) >

a c¢
1.12. Show that if ad = bc, then Z = E (Hint: Assume that ad = bc; then start with ab~! and transform it into cd ™!
in analogy with Problem 1.4.)

a ak
1.13. Show that b = bk follows from the law that if and only if ad = bc.

= a
Ul o

1.14. Rewrite the following without using the absolute value symbol, and simplify:
@ 1=5)~[-(-9 ® —|V2-14]
() 16 —x, ifx>6. d —|—4 -

Ans. (@) 14:(0) 14—2,(0) x— 6:(d) —4 — 2

1.15. Evaluate (a) 2-3 — 45?2 (b) 7+ 3[2(5 —8) — 4] () {4-8—6[7—(5—28)7]})?
Ans. (a) —94;(b) —23;(c) 1936

1.16. Consider the set {-5. —3. 0. /5. 7, 30, J/625}

(a) Which members of this set are members of N?
(b) Which members of this set are members of Z?
(¢) Which members of this set are members of Q?

(d) Which members of this set are members of H?

Ans. (@) V625 () —5.0,4/625: () —5.-3.0, %0, J625: () 5.

1.17. A et is closed under an operation if the result of applying the operation to any members of the set is also a
member of the set. Thus, the integers Z are closed under +, while the irrational numbers H are not, since, for
example, m +(—) = 0 which is not irrational. Identify as true or false:

(a) Z is closed under multiplication.
(b) H is closed under multiplication.
(c) N is closed under subtraction.
(d) @ is closed under addition.

(e) @ is closed under multiplication.

Ans. (a) true; (b) false; (c) false; (d) true; (e) true



Polynomials

Definition of a Polynomial

A polynomial is an expression that can be written as a term or a sum of more than one term of the form
ax'ixh: ... x"» where the a is a constant and the Xps .o, X, are variables. A polynomial of one term is called

a monomial. A polynomial of two terms is called a binomial. A polynomial of three terms is called a trinomial.

EXAMPLE 2.1 5, —20, m, t, 3x%, —15x%?, %xy“zw are monomials.
EXAMPLE 2.2 x + 5, x> — y% 3x°y — \/3x3z are binomials.
EXAMPLE 2.3 x + y + 4z,5x> =3x + 1, x> — y3 + £, 8xyz — 5x%y + 20Au are trinomials.

The Degree of a Term

The degree of a term in a polynomial is the exponent of the variable, or, if more than one variable is present,
the sum of the exponents of the variables. If no variables occur in a term, it is called a constant term. The
degree of a constant term is 0.

EXAMPLE 2.4 (a) 3x® has degree 8; (b) 12xy’z” has degree 5; (c) 7 has degree 0.

The Degree of a Polynomial
The degree of a polynomial with more than one term is the largest of the degrees of the individual terms.

EXAMPLE 2.5 (a) x* + 3x?> — 250 has degree 4; (b) x3y> — 30x* has degree 5; (¢) 16 — x — x'° has degree 10;
(d) x* + 3x%h + 3xh? + k3 has degree 3.

Like and Unlike Terms

Two or more terms are called like terms if they are both constants, or if they contain the same variables raised
to the same exponents, and differ only, if at all, in their constant coefficients. Terms that are not like terms
are called unlike terms.

EXAMPLE 2.6 3x and 5x, —16x%y and 2x?y, tu® and 611’ are examples of like terms. 3 and 3x, x*> and y%, a’b? and a’b®
are examples of unlike terms.

Addition

The sum of two or more polynomials is found by combining like terms. Order is unimportant, but polyno-
mials in one variable are generally written in order of descending degree in their terms. A polynomial in one
variable, x, can always be written in the form:

ax*+a _x""'+..-+tax+a
n n—1 1 0
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This form is generally referred to as standard form. The degree of a polynomial written in standard form is
immediately seen to be n.

EXAMPLE 2.7 503 + 6x* — 8x 4+ 2x2 = 6x* + 5x° + 2x? — 8x (degree 4)

EXAMPLE2.8 (X*—32+8&x+ 7N+ (—-5%—-12x+3)=x*—-3x2+8+7—-53—12x+3
= —4x = 3x* —4x + 10

Subtraction

The difference of two polynomials is found using the definition of subtraction: A — B = A + (—B). Note that
to subtract B from A, write A — B.

EXAMPLE 2.9 (P—5y+T7) — (B2 —5y+12) =02 — 5y +7) + (=32 + 5y — 12)
=y’ =5y +7—-3+5y—12
=-2y>-5

Multiplication

The product of two polynomials is found using various forms of the distributive property as well as the first
law of exponents: x*x? = x4 *+?

EXAMPLE 2.10 BOx* =52+ Tx+2)=x-3x - 52+ - Tx+x>-2
=3x" — 58 + Tx* + 2x°

EXAMPLE 2.11  Multiply: (x +2y)(¢ — 32 + 1?)

(x + 2y)(F° — 3x%y + 1) = (x + 20)x8° — (x + 2y)3x%y + (x + 2y)x)?
= x* + 2% — 313y — 6x%? + x%y? + 2x)°
=x* — Xy — 5x%? + 2xy?

Often a vertical format is used for this situation:
X = 3x%y + xy?
x + 2y
x* = 3%y + xB?
2x3y — 6x%y? + 2xy?
Xt — Xy — 5x%? + 2x°

The FOIL (First Outer Inner Last) Method
The FOIL (First Outer Inner Last) method for multiplying two binomials:

(a + b)(c +d) =ac + ad + bc + bd

First Outer Inner Last

EXAMPLE 2.12 (2x + 3)(4x + 5) =8> + 10x + 12x + 15 = 8x* + 22x + 15

Special Product Forms

(a + b)a — b) = a*> — b? Difference of two squares
(a+b?=(a+b)a+b)=a*+ 2ab+ b? Square of a sum
(a—b)?=(a—b)a—Db)=ad>— 2ab + b? Square of a difference



CHAPTER 2 Polynomials

(a—b)a*+ ab+ b?) =a®>— b Difference of two cubes
(a +b)a*—ab+ b)) =a> + b’ Sum of two cubes
(a + b)? = (a + b)(a + b)? Cube of a sum
= (a + b)(a* + 2ab + b?) = a* + 3a®b + 3ab* + b’
(a — b)® = (a — b)(a — b)? Cube of a difference

= (a — b)(a* — 2ab + b?) = a® — 3a®’b + 3ab*> — b’

Factoring

Factoring polynomials reverses the distributive operations of multiplication. A polynomial that cannot be
factored is called prime. Common factoring techniques include: removing a common factor, factoring by
grouping, reverse FOIL factoring, and special factoring forms.

EXAMPLE 2.13 Removing a monomial common factor: 3x° — 24x* 4+ 12x3 = 3x3(x*> — 8x + 4)

EXAMPLE 2.14 Removing a nonmonomial common factor:

12(x*> — 1)*QGBx + 1) + 8x(x* — 1)’Bx +1)* = 4(x* — 1)’Bx + D3[B(x* — 1) + 2x(3x + 1)]

=4(x2 — 1)*Gx + 1)39x% + 2x — 3)

It is important to note that the common factor in such problems consists of each base to the lowest exponent present in
each term.
EXAMPLE 2.15 Factoring by grouping:

3x2 + dxy — 3xt — 4ty = (3x* + 4xy) — Bxt + 41y) = x(Bx + 4y) — t3x + 4y) = Bx + 4y)(x — )
Reverse FOIL factoring follows the patterns:

X+ @+bx+ab=x+a)(x+b)
acx? + (bc + ad)xy + bdy* = (ax + by)(cx + dy)

EXAMPLE 2.16 Reverse FOIL factoring:
(a) To factor x> — 15x + 50, find two factors of 50 that add to —15: —5 and —10.
x> — 15x + 50 = (x — 5)(x —10)
(b) To factor 4x> + 11xy + 6y?, find two factors of 4 - 6 = 24 that add to 11:8 and 3.
4x% + 11xy + 6y = 4x> + 8xy + 3xy + 6y? = 4x(x+ 2y) + 3y(x + 2y) = (x + 2y)(4x + 3y)

Special Factoring Forms

a’> — b*=(a+ b)a—b) Difference of two squares
a® + b? is prime. Sum of two squares

a? + 2ab + b* = (a + b)? Square of a sum

a*> — 2ab + b*> = (a — b)? Square of a difference

a+ b= (a+ b)a®> — ab + b?) Sum of two cubes
@ — b= (a— b)a®+ ab + b?) Difference of two cubes

General Factoring Strategy

Step 1: Remove all factors common to all terms.
Step 2: Note the number of terms.
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If the polynomial remaining after step 1 has two terms, look for a difference of two squares, or a sum or dif-
ference of two cubes.

If the polynomial remaining after step 1 has three terms, look for a perfect square or try reverse FOIL factoring.
If the polynomial remaining after step 1 has four or more terms, try factoring by grouping.

SOLVED PROBLEMS

2.1. Find the degree of: (a) 12; (b) 35x% (c) 3x3 — 5x* + 3x> + 9; (d) x® — 64

(a) This polynomial has one term and no variables. The degree is 0.

(b) This polynomial has one term. The exponent of the variable is 3. The degree is 3.

(c) This polynomial has four terms, of degrees 3,4,2,0, respectively. The largest of these is 4, hence the degree
of the polynomial is 4.

(d) This polynomial has two terms, of degrees 8 and 0, respectively. The largest of these is 8, hence the degree
of the polynomial is 8.

2.2. Find the degree of (a) x%y b) xy —y* +7 (c) x* + 4x3h + 6x%h* + 4xh® + h*

(a) This polynomial has one term. The sum of the exponents of the variables is 2 + 1 = 3, hence the degree of
the polynomial is 3.

(b) This polynomial has three terms, of degrees 2,3,0, respectively. The largest of these is 3, hence the degree of
the polynomial is 3.

(c) This polynomial has five terms, each of degree 4, hence the degree of the polynomial is 4.

23. fA=x>—6x+ 10and B=3x>—7x>+ x + 1,find (a) A + B(b)A — B.

(A A+B=x*—-6x+10)+ B> —7x>+x+ 1)
=x2—6x+10+3x° —Tx*+x+1
=3x3 — 6x* — 5x + 11

(b) A—-B

xZ—6x+10)— Bx* — T2+ x +1)
X—6x+10—-33+Tx*—x—1
=-33+82—Tx+9

2.4. Add8x* — yand x2 — S5xy? + y°.

B = y) + (=52 + ) =83 =y  + 2 — 502 + y? = 8x3 4+ X2 — 5x)?

2.5. Subtract 8x* — y? from x> — 5xy? + y°.

@WRP=502+yY)— B8P —y)=x2 - 502+ y -8 + )y = =83 + x2 — 5xy? + 2)°

2.6. Simplify: 3x> = 5x — 5x + 8 — (8 = 5x2 + B3x> — x + 1)))
32 —=5x—5x+8 -8 —5x2+0Bx2—x+ 1)) =3x2—5x—5x+8 -8 —5x2+3x>—x+ 1))
=32 —-5%x—5x+8—(—2x* —x +9))
=32 —-5x—5x+ 8+ 22+ x—9)
=3x2—5x —(2x* + 6x —1)
=x>—1lx+1
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2.7. Multiply: (a) 12x*(x*> — xy + ¥?); (b) (a + b)(2a — 3); (¢) (3x — 1)(4x*> — 8x + 3)
(a) 12x2(x2 —xy +y?) = 12x2 - &% — 12x% - xy + 1227 - y? = 12x* — 123y + 12x%y?
(b) (a + b)2a — 3) =a(Ra — 3) + bQRa — 3)
= 2a> — 3a + 2ab —3b
©) Bx—DEx*>—8 +3)=0Cx— D4x> —Bx — )8 +(3x — 1)3
=123 —4x> — 24x*>+ 8x +9x — 3
=12x3—28x>+ 17x — 3

2.8. Multiply, using the vertical scheme: (4p — 3¢)(2p* — p’q + pq* —24°)

2 = pq+ pg -2

4 — 3¢q

8p 4p’q +4p’4* — 8pq’
—6p’q +3p’¢> — 3pg’ + 64"

8p* — 10p’q + Tp*q* — 11pg® + 64*

4

2.9. Multiply:
(@) (cx — d)(cx + d); (b) Bx — 5)%; (¢) (2t — 5)(4 + 10t + 25);
(d) 4200 = x5 () [(r—s) +Alr—s) — 1]
@ (cx—dyex+d)=(cxP— =22 — &P
(b) (3x —5)>=(3x)> —2(3x)-5 + 52 =9x> — 30x + 25
() 2t—5@Ar+10t+25 =21 —5=8—-125 using the difference of two cubes pattern.

@ 4(—2x)1 —x»)3 = —8x(1 — x?)}
= —8x(1 — 3x> + 3x* — x9) using the cube of a difference pattern.
= —8x + 24x* — 24x° + 8’

@ [r—s)+al(r—s)—=@F—sP—F~=r—-2rs+s— 1 using the difference of two squares
pattern, followed by the square of a difference pattern.

2.10. Perform indicated operations: (a) (x + h)*> — (x — k)% (b) (1 + n)*.
@ (c+ R — @ —hP = (+ 3K + 352 + 1) — (S — 3x%h + 3 — i)
=x3+ 3x%h + 3xh* + WP — x> + 3x%h — 3xh?* + WP
= 6x%h + 2h3
) (L+ 0 =1+ PP =1 +2+22=(1+20°+ 201 + 202 + ¢
=1+ 4+42+22 +4P + =1 + 4t + 682 + 48 + 1

2.11. Factor: (a) 15x* — 10x> + 25x% (b) x> + 12x + 20; (¢) 9x* — 25y%

(d) 6x° — 48x* — 54x3; (e) 5x* + 13xy + 6y*; (f) P(1 +r) + P(1 + r)r; (g) x* — 64,
(h) 3(x + 3)%(x — 8)* + 4(x + 3)*(x — 8)% (1) x* — y* + x> — xp% (§) x0 — 64y°
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(a) 15x*— 1023 + 25x% = 5x*(3x> — 2x + 5). After removing the common factor, the remaining polynomial
is prime.

(b) x* 4+ 12x + 20 = (x + 10)(x + 2) using reverse FOIL factoring.
(¢) 9x* — 25y? = (3x)> — (5y)*> = (Bx — 5y)(3x + 5y) using the difference of two squares pattern.

(d) 6x° — 48x* — 54x3 = 6x° (x> — 8x — 9) = 6x3 (x — 9)(x + 1) removing the common factor, then using
reverse FOIL factoring.

(e) 5x* + 13xy + 6y?> = (5x + 3y)(x + 2y) using reverse FOIL factoring.

® PA+r)+ PA+rr=P1+r( +r)= P~ + r)% Here, the common factor P(1 + r) was removed
from both terms.

(g) x*— 64 = (x — 4)(x*> + 4x + 16) using the difference of two cubes pattern.
(h) Removing the common factor from both terms and combining terms in the remaining factor yields:
B3x+ 32 (x—8)*+4(x+ 3P (x— 83 =(x+ 3% (x — 8)°[3(x — 8) +4(x + 3)]
=@x+32x—83(Tx—12)
() x—y+x-n?=a—y)+ - x?)
= (2 = )+ + 22— y)
= (2 =) +y? + x)
= (@ =)+ + Y+ x)

G) x® = 64y° = (& — 8y)(XP + 8y®) = (x — 2y)(x? + 2xy + 4?)(x + 2y)(x? — 2xy + 4y?)

A special factoring technique that is occasionally of use involves adding a term to make a polynomial into a
perfect square, then subtracting that term immediately. If the added term is itself a perfect square, then the
original polynomial can be factored as the difference of two squares. Illustrate this technique for (a) x* + 4y*;
(b) x* + 2x%y* + 9y*.

(a) Since x* + 4y* = (¥ + (2y%)?, adding 2x*(2y?) = 4x%y*> makes the polynomial into a perfect square. Then
subtracting this quantity yields a difference of two squares, which can be factored:
X4 Ayt =Xt Ay + 4yt — dxy?
= (2 +2y°)7 = Quy)?
= (2% + 2y? — 2xy)(x* + 2y% + 2xy)

(b) If the middle term of this polynomial were 6x%y” instead of 2x?y?, the polynomial would be a perfect
square. Therefore, adding and subtracting 4x%y? yields a difference of two squares, which can be factored:

x4 2622 + 9yt = 1t + 6xy? + 9yt — 4x%y?
= (2 + 3y?)? — 2xy)?
= (&% + 3y? — 2xy)(x? + 3y + 2xy)

SUPPLEMENTARY PROBLEMS

2.13.

2.14.

Find the degree of (a) 8; (b) 8x7; (¢) 5x*> — 5x + 5;(d) 57% — 57 + 5;(e) x> + 2xy + y> — 6x + 8y + 25
Ans. (@) 0; (b) 7; (¢) 2; (d) 0; (e) 2

Let P be a polynomial of degree m and Q be a polynomial of degree n. Show that (a) PQ is a polynomial of
degree m + n; (b) the degree of P + Q is less than or equal to the larger of m, n.
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2.15. LetA =x>—xy + 2y, B=x— % C=2x> — 5x + 4, D = 3x* — 2y%. Find
(a) A+ D; (b) BD; (c) B— Cx;(d) x?A%> — B% (e) AD — B?
Ans.  (a) 4x* — xy; (b) 3x° — 2x%y? — 3223 4+ 2% (¢) — X3 — y® + 5x% — 4x;
(d) =2y + 5xfy? — 2% + 4%yt — 50,

(e) 3x* — 3x%y + 4x?y? + 2xy> — 4yt — 10 + 2x3)3 — y°

2.16. Using the definitions of the previous problem, subtract C from the sum of A and D.

Ans. 2x*—xy+5x—4

2.17. Perform indicated operations: (a) — (x — 5)% (b) 2x— (x — 3)% (¢) 5a(2a — 1)> — 3 (a — 2)%;
) — (4x + 1)} —2(dx + 1)
Ans. (a) —x*+ 10x — 25;(b) — x>+ 8x — 9;(c) 17a®> — 2a*> — 31a + 24;
(d) — 64x> — 80x> — 28x — 3

2.18. Perform indicated operations: (a) —3(x — 2)% (b) —3 — 4(x + 4)% (¢) 4(x + 3)? — 3(x — 2)%
@ @x+3)Nx+4) —@x+5%6€ —(x+2)°—(x+2)2-5x+2)+10
Ans. (a) —3x%+ 12x — 12; (b) —4x? — 32x — 67; (c) x* + 36x + 24;
(@ —3x—13;(e) —x* —7x> = 21x — 12

2.19. Perform indicated operations: (a) (x — h)*> + (y — k)% (b) (x + h)* — x*;
(¢) R — (R —x)%(d) (ax + by + ¢)?
Ans. (a) x> — 2xh + h> + y*> — 2yk + k*; (b) 4x°h + 6x2h> + 4xh> + bt

(c) 2Rx — x%; (d) a®x + b*y* + ¢* +2abxy + 2acx + 2bcy

2.20. Factor: (a) x> — 12x + 27; (b) 22 + 10x + 25: (¢) x* — 62 + 9: (d) »* — 64;
(e) 3x% — 7x —10; (f) 3x® + 15x2 —18x; (g) x° + x% (h) 4x* — x2 —18; (i) x* — 11xH? + y*
Ans. (@) (x —3)(x—9);(b) (x +5)% () (> —3)%(d) (x — D + 4x + 16);
() Bx —10)(x + 1); (f) 3x(x + 6)(x — 1); (g) x*(x + D)(* —x + 1);
(h) (x> +2)(2x — 3)(2x + 3); (i) (> — 3xy — y)(x2 + 3xy — )

2.21. Factor: (a) 7 + 6t — 27; (b) 4x® — 20x> — 24x; (c) 3x% —x — 14;(d) 5x* — 3x — 14; (e) 4x® — 37x* + 9;
() (r— 2P — (x = 2% () ¥ — 6x+9 —y2 — 2yz — 2 (h) 16x* — xD)? + y*
Ans. (@) (t+ 9 — 3);(b) 4x(x + 1)(x — 6); (c) Bx — T)(x + 2); (d) 5x + T(x — 2);
() (4 = D =9 (H) (x =27 (x =3)(g) r =3 -y - =3 +y+2);
(h) (4x% + y? = 3xy)(4x? + y* + 3xy)

2.22. Factor: (a) x> — 6xy + 9y% (b) x* —5x2 + 4;(c) x* —3x> —4;(d) ¥* + > + x> — y%

(€) P+ Pr+(P+ Pr)r +[P + Pr+ (P + Prrlr; () a®% — 64y (g) a®%® + 64y°
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(@) (x—3y% ) x— D&+ Dx —2)(x +2);(c) (x — 2)(x + 2)(x* + 1);
) ¢+ —xy +y*+x—yse) P+ 1)}
(0 (ax — 2y)(ax + 2y)(a@®? + 2axy + 4y*)(a’x* — 2axy + 4y?);

(2) (@** + 4y (a*x* — 4a>x*y? + 16y%)

2.23. Factor: (a) x° (x + 2)°> + x* (x + 2)*; (b) 5x* 3x — 5)* + 12x° Bx — 5)%;
(©) 20x + 3)(x + 5)*+ 4(x + 3)2(x + 5)% (d) 3(5x + 2)2(5)(Bx — 4)* + (5x + 2)*(4)(3x — 4)*(3);

(€) 5(x* + 4)*(8x — 1)2(2x) + 2(x* + 4)’(8x — 1)(8)

Ans.

(@) x(x + 22x + 2); (b) ¥*(Bx — 5Q27x — 25); (¢) 2(x + 3)(x + 5Gx + 11);
(d) 3(5x + 2)2(3x — 4Y(35x — 12); (e) 2(:x> + 4)*(8x — 1)(48x> — 5x + 32)

Polynomials



Exponents

Natural Number Exponents
Natural number exponents are defined by:

X"=xx-.--x (n factors of x)

EXAMPLE 3.1 (a) x° = xxxxx; (b) Sx*yz’ = Sxxxxyzzz; (¢) 5a°b + 3(2ab)’ = Saaab + 3(2ab)(2ab)(2ab)

Zero as an Exponent
x% = 1 for x any nonzero real number. 0° is not defined.

Negative Integer Exponents
Negative integer exponents are defined by:

=Ly I numb
X X" Or x any nonzero real numoer.

07" is not defined for n any positive integer.

1 1 _ 4 1 1 1 1
-5 — . -3 —4. — . -3 — — . -2 — — .
EXAMPLE 3.2 (a)x 50 4y 4 R (© 5 5= 5 @ 4 4 TS
11, 277

. . =2 4 =
Gty T 2 G

_ 4 1
(&) 3x72y* + 2(3x) 2 =3 ~;y4 +2

Rational Number Exponents
x'_ the principal nth root of x, is defined, for n an integer greater than 1, by:

If n is odd, x'* is the unique real number y which, when raised to the nth power, gives x. If n is even,
then,

if x > 0, x" is the positive real number y which, when raised to the nth power, gives x.
ifx =0, x" = 0.
if x < 0, x7 is not a real number.

Note: The principal nth root of a positive number is positive.

EXAMPLE 3.3 (a) 81 = 2; (b) (—8)" = —2; (c) —83 = —2; (d) 16" =2;
(e) (—16)"is not a real number; (f) —16'* = —2

X" is defined by: x™" = (x""y", provided x'" is real.
1

x*m/n —
xm/n

_ 1 1 1 1
EXAMPLE 3.4 (a) 125%3 = (1251/3)2 =52=125;(b) 874 = W = W = ? = E;

(c) (—64)is not a real number.
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Laws of Exponents

For a and b rational numbers and x and y real numbers (avoiding even roots of negative numbers and divi-
sion by 0):

xaxb — xa+b (xy)a — xaya (xa)b — xab
X — ya—b Lu — 1 X “ — x4
PO xb xba y,ooy
OT- 0 el
y x y*"’l x’l
In general, x™" = (x'"y" = (x™!", provided x'"* is real.

Unless otherwise specified, it is generally assumed that variable bases represent positive numbers. With
this assumption, then, write (x")'" = x. However, if this assumption does not hold, then:

M = x if n is odd, or if n is even and x is nonnegative

(Ml = |x] if n is even and x is negative
EXAMPLE 3.5 If x is known positive: (a) (x)? = x; (b) ()" = x; (c) (1" = x% (d) %) = x*
EXAMPLE 3.6 For general x: (a) (x?)"2 = Ixl; (b) (x)'® = x; (c) ()" = Ix¥?l = 2% (d) (x©)? = ¥

Scientific Notation

In dealing with very large or very small numbers, scientific notation is often used. A number is written in sci-
entific notation when it is expressed as a number between 1 and 10 multiplied by a power of 10.

EXAMPLE 3.7 (a) 51,000,000 = 5.1 X 107; (b) 0.000 000 000 0352 = 3.52 X 10~

(50, 000, 000)(0.000 000 000 6) (5 X 10)(6 X 10719 30 X 1073
2 (20, 000)* B (2 X 10%3 8 X 1012

=375 X 10715

SOLVED PROBLEMS

In the following, bases are assumed to be positive unless otherwise specified:

(4x’y*)?

3.1. Simplify (a) 2(3x%y)* (x%*)?; (b) 20"

@eyR 166108 gy
203 (140312 = 9 . 334613 . 48,6 — 14,9, Y T ox
(a) 2(3x%y)° (x*yY) 2 3x%7 - X%y 54x'%y?; (b) 2094 2x3y12 30

- - . Ky Py
3.2. Simplify and write with positive exponents: (a) oy ; (b)

© O +y)7%

Wy
s e _ _ Put \3
@ Gy @ (2 +y s M (H5)
x2y73 1 (x2y73)72 x74y6
= 23y 3-3 = yly 6=~ _.(p _ A (—12),,6—(—16) — 8,22.
() 0y} x0Ty Xy xyé’( ) By +  x 1yl X y XY

_ 1 1 PN _ _ 125x10
© @@+ y)2= = (d) Gx=)72(Sy™) = 37105y ™12 = 9;2 ;

T+ y)r x4+ 2+ y4;
1 2 1 Put \ 3 45u3\3 42\3 _ 641°
72+722:74+ 7272+74:7+7+7; ( ) :< ):<7):7
(@) (x YU =x 2y Y x* Xy ® 483 But u u?
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3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

Simplify: (a) x1/2x1/3; (b) x2/3/x5/8; (C) (x4y4)71/2; (d) (x4 + y4)71/2
(@) x2x13 = x12+ 13 = 4506, (b) X258 = 23 =518 = 124, (c) (XAy4)—1/2 - x—zy—z - x%yz;
1

+ MN—=1/2 =+

@ o+ =
8x2y2/3)23

Simplify: (a) 3x¥3y¥*(2x°3y'2)3; (b) ( 0 {/ ))3
(@) 3x2/3y3/4(2x5/3y1/2)3 - 3x2/3y3/4 . 8x y3/2 = 4173 9/4;
N (8x2y2/3)2/3 B 82/3x4/3y4/9 B 4x4/3y4/9 B ) B )
(b) 2(x3’4y)3 - 2x9’4y3 - 2x9/4y3 - x9/4—4/3y3—4/9 - x11/12y23/9

Simplify: (a) X0 + x + 3); (b) (2 + ¥y (0) (¢ =y (d) (2 + )
(a) x2/3(x2 + x + 3) = x2/3x2 + x2/3x + 3x2/3 = x8/3 + x5/3 + 3x2/3

(b) (xl/Z + yl/2)2 = (x1/2)2 + 2x1/2yl/2 + (y1/2)2 =x+ 2x1/2y1/2 + y

(C) (X]/3 — y|/3)2 = (x1/3)2 — 2xl/3y|/3 + (y1/3)2 = x2/3 — 2x1/3y1/3 + y2/3

(d) This expression cannot be simplified.

Factor: (a) x™* 4+ 3x72 4+ 2; (b) x¥* 4+ x!» — 6; (c) x'3 + 7x¥3 4+ 12473
(@) x*+3x24+2=(x2+ 1)(x"?+ 2) using reverse FOIL factoring.
(b) x*? 4 x13 — 6 = (x' + 3)(x'® — 2) using reverse FOIL factoring.

(©) xMB 4+ Tx¥3 + 12683 = xB(x2 4+ Tx + 12) = x*3(x + 3)(x + 4) removing the monomial common factor,
then using reverse FOIL factoring.

Remove common factors: (a) (x +2)72 + (x + 2)73% (b) 6x°y 3 — 3y 49,
(©) 43x +2)3(x + 573 — 3(x + 5)7*Bx + 2)* (d) 5x°(Bx + 1)?? + 3x*Bx + 1)*3

The common factor in such problems, just as in the analogous polynomial problems, consists of each base
raised to the smallest exponent present in each term.

@ @+ 2+ @+2) =@+ [x+2) 2"V + 1=+ 3@ +2+1)=@x+2)3(x+3)
(b) 6x7y73 = 3y ™40 = 33y ™42y 3 T Y — x675) = 33y 42y — x)
(€) 4(Bx+2)3(x+5) 3 —3(x + 5 *Gx + 2)* = 33x + 23(x + 5)Y[4(x + 5) — Bx + 2)]
=3(3x + 2)%(x + 5)7*(x + 18)
(d) 5833x + 1P + 3x23x + 1) = x2(3x + 1)?[5x + 3(3x + 1)¥3 23]
= x*(Bx + 1)?A[5x + 3(3x + 1)]
= x2(3x + 1)?3(14x + 3)

)lln

simplify: (@) %55 (b) 2+ 2~ 0% @) (2

xPta

Py =xPtD-w-9 = xpta-rta = x4

(a)

PHEINP—1N2 — 20+ 1320 — 1) — 2 +2)+2p—2) — L4p
(b) PP =x X x

1/n
xmn mn(1/n m
@)(, R N S
x"

xnz(lln) x"




3.9.

3.10.
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Simplify, without assuming that variable bases are positive:
(@) (MY (b) (P29 (0) (Y525 (@) [x(x + h)H]"?
(a) (X4)1/4 — le, (b) (x2y4z6)”2 — (x2)1/2(y4)1/2(z6)1/2 — |x| |y2| |ZS| — |x|y2|z3|; (C) (x3y6z9)”3 — (XS)IB(_)’())IB(ZQ)IB — xyzz3;

(d) [x(x + h)2]1/2 — xl/Z[(x + h)2]1/2 — xl/2|x + Al

(a) Write in scientific notation: The velocity of light is 186,000 mi/sec. (b) Find the number of seconds in a
year and write the answer in scientific notation. (c) Express the distance light travels in 1 year in scientific
notation.

(a) Moving the decimal point to the right of the first nonzero digit is a shift of 5 places: thus,
186,000 miles/sec = 1.86 X 10° mi/sec.

(b) 1 year = 365 days X 24 hours/day X 60 minutes/hour X 60 seconds/minute
= 31,536,000 seconds = 3.15 X 107 seconds.

(c) Since distance = velocity X time, the distance light travels in 1 year
= (1.86 X 10° mi/sec) X (3.15 X 107 sec) = 5.87 X 10'? mi.

SUPPLEMENTARY PROBLEMS

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

(%)

(2 3 4)2

Simplify:(a) (xy*)*(3x%)%; (b)

Ans. (a) 27x'%; (b) %

3x3y 2\ 2
implify: -3)=2(4x—3y2)~ 1
Simplify: (a) 2(xy~7)"*(4x>y*)~!; (b) ( 2xy*5>

xy*

Ans. (a) 7; 4

3t 2 a% \ 3"
Simplify, assuming all variable bases are positive: (a) (8y*z4)3; (b) (100x3y*)~172; (¢) ( > 1 (d) (ﬁ)

9y* 125x°
Ans. () 4% (b) 1 XA Toar © 7 @ 3,5‘

Simplity, assuming all variable bases are positive:
() (x4 328 x69)23; (b) (9xBy)~ 12 (16x—4y3)¥2

64y
Ans. (a) 4x%136; (b) 3 ):0

Calculate: (a) 2572 — 16712, (b) (25 — 16)""%;(c) 16+ + 16734

Ans. @) —55: (0) 3:(0) 2

0,5 \ -2 2x2y~4\3/5 p— 1
Simplify: (2) 2+ 30 + (v + 9% ) () s @ (2220 @ 2L
3x3y~3 x7y0 g(xPlaya =1
pxp/q -1
Ans. (a) 3;(b) 64 ,6,( 9 5 6,(d)

. ey m Yy . . .
Derive the laws );,,, = and (%) = (;) from the definition of negative exponents and standard fraction

operations.
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3.18.

3.19.

3.20.

3.21.

3.22.

3.23.

3.24.

3.25.

3.26.

Perform indicated operations: (a) (x? + y"2)(x!2 — y!2); (b) (x! + y3)(x'? — y!3);

(©) (X3 + YB3 — xIBylB 4 \2B): () (x13 + yIB) (23 + xIBylB 4 2. (&) (x23 — y23)3
Ans. (a) xX—y; (b) x2/3 — y2/3; (C) x+ y; (d) x+ 2x2/3y1/3 + 2xl/3y2/3 + y; (C) xz — 3x4/3y2/3 + 3x2/3y4/3 — yz
Remove common factors: (a) x 8y~7 + x77y78; (b) x3y3 — x7232% (c) xP T + xP,

(d) 402 + 42Gx + 55 + (Bx + 5y + 4)3x

Ans. (@) x 8y 8y + x); (b) x Y2y — x); (¢) xP(x? + 1); (d) Bx + 5)B? + 4)2(13x> + 15x + 16)
Remove common factors: (a) x> + 2x™* + 2x73; (b) 6x2(x*> — 1)¥2 + x3(x* — 1)'2(6x);

(© —4x (1 — 1) + x 4601 — )% (d) x4(1 — 207 — dx~5(1 — 2x)" 12

Ans. (a) x73(1 + 2x + 2x3); (b) 6x%(x2 — D'"2(2x% — 1); (¢) 2x75(1 — x®)%(5x% — 2); (d) x7>(1 — 2x%)72(9x — 4)
Remove common factors:

@ —(x—2)2@x— 73 —=3x —2)7'Gx — 7)*3);

(b) —4(> — 42O + 47 + 3G — 4740 + 422

Ans. (@) —(x — 2)72Bx — 7)*(12x — 25); (b) (x> — 4)75(x* + 4)*(2x)(—x2 — 28)

Remove common factors:

(@) 3(x +3)%Bx — D2 + (x + 3)3<%)(3x — 1)712(3);
3 12 43 (4 13(2).
(b) 2(2)( + 3)23Bx + H¥3(2) + (2x + 3) (3>(3x + 4H1B3(3);

© —%(4x2 — )78l + ) + (42 — 1)*3/2(%)(1 + 227 15(2x)

Ans. (a) %(x + 3)’Bx — D)7"2(7x + 1); (b) 2x + 3)2(Bx + 4)3(17x + 24);
(c) %x(4)c2 — 1721 + x2)71B3(=5x2 — 10)
Simplify and write in scientific notation: (a) (7.2 X 1073)(5 X 10'?);

(3 X 107%)(6 X 1073}
(9 X 107122

(b) (7.2 X 1073) + (5 X 10"); (¢)
Ans.  (a) 3.6 X 10'% (b) 1.44 X 10715 (c) 8 X 10

There are approximately 6.01 X 10?3 atoms of hydrogen in one gram. Calculate the approximate mass in grams
of one hydrogen atom.

Ans.  1.67 X 107 grams

According to the United States Department of Commerce, the U.S. Gross Domestic Product (GDP) for 2006
was $13,509,000,000,000. According to the United States Bureau of the Census, the U.S. population was
300,000,000 (October 2006). Write these figures in scientific notation and use the result to estimate the GDP
per person as of 2006.

Ans. 13509 X 103,3 X 108, 4.503 X 10* or $45,030
In 2007, the federal debt limit was raised to $8,965,000,000,000. Meanwhile, the U.S. population had increased

to 301,000,000. Write these figures in scientific notation and use the result to estimate each U.S. inhabitant’s
share of the debt.

Ans.  8.965 X 10'2,3.01 X 108,2.9784 X 10* or $29,784



CHAPTER 4

Rational and Radical
Expressions

Rational Expressions

A rational expression is one which can be written as the quotient of two polynomials. (Hence any polynomial
is also a rational expression.) Rational expressions are defined for all real values of the variables except those
that make the denominator equal to zero.

X2 —5x+6

P18 (x # *1) are examples

2
EXAMPLE 4.1 % (v # 0); S E =2y - Sy - 3R B - T

of rational expressions.

Fundamental Principle of Fractions
For all real numbers a, b, k (b, k # 0)

a _ ak , ... . ak _ a .
ey (building to higher terms) bk b (reducing to lower terms)
: -2y +y o (k=) x—y
EXAMPLE 4.2 Reducing to lowest terms: o Tty xTy

Operations on Rational Expressions
Operations on rational expressions (all denominators assumed # 0):

(g*‘_é a _c _ ac Q_Q_Q.(g)*‘_gd ad
b)) ~a b d_ bd b d b \d b ¢ bec
a,b_axb a_,c_ad _ bc _ ad = bc
c~c c b~ d bd~ bd bd

Note: In addition of expressions with unequal denominators, the result is usually written in lowest terms,
and the expressions are built to higher terms using the lowest common denominator (LCD).

.5 6 _ 5  6x _ 57— 6x
EXAMPLE 4.3 Subtraction: xTyZ — xTy“ = xTy4 - xTy“ = T
Complex Fractions
Complex fractions are expressions containing fractions in the numerator and/or denominator. They can be
reduced to simple fractions by two methods:

Method 1: Combine numerator and denominator into single quotients, then divide.

X a x(a—1) —alx — 1)
x—1 a-1 x-—Da-1  xa—x—ax+a ., _
X —a X —a T - D@—-1 - (x —a)

a— x 1 —1

EXAMPLE 4.4

Ta-Da@—-1) *—a (x—-Da-1
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Method 2: Multiply numerator and denominator by the LCD of all internal fractions:

Xy Xy -y oE -ty ki —y)

B4y @ -yt 2yt

EXAMPLE 4.5 X

J’_
2= =l

+

Sol= <

ol [ex

|| i
-

Method 2 is more convenient when the fractions in numerator and denominator involve very similar
expressions.

Rational Expressions
Rational expressions are often written in terms of negative exponents.

EXAMPLE 4.6 Simplify: x 3y’ — 3x™ 4

This can be done in two ways, either by removing the common factor of x4y>, as in the previous chapter, or by rewriting
as the sum of two rational expressions:

y5 xy5_3y6
35 _ah6 2 > W
I P

Radical Expressions
For n a natural number greater than 1 and x a real number, the nth root radical is defined to be the principal nth

root of x:
n
\/); = xlin

If n = 2, write Vxin place of Vx.
The symbol V' is called a radical, n is called the index, and x is called the radicand.

Properties of Radicals

(WVxy = x, if Wx is defined V= x,ifx =0
x" = x,ifx < 0, nodd W=|x
abZ%% W:%
wa _ Va

b b

Unless otherwise specified, it is normally assumed that variable bases represent nonnegative real
numbers.

,if x < 0, neven

Simplest Radical Form
Simplest radical form for radical expressions:

1. No radicand can contain a factor with an exponent greater than or equal to the index of the radical.
2. No power of the radicand and the index of the radical can have a common factor other than 1.

3. No radical appears in a denominator.

4. No fraction appears in a radical.

EXAMPLE 4.7

(a) V16x3 violates condition 1. It is simplified as follows:

V1 6x3y° = \3/8x3y3 S22y = \3/8x3y3 S V/2y? = 2xyV2y2




CHAPTER 4 Rational and Radical Expressions

(b) \6/t5 violates condition 2. It is simplified as follows:
23
Vi = Ve =\VVe=Vi
violates condition 3. It is simplified as follows:
122 122 \V/3x3)2 Rvis \/3x3y? B 12:x2V/3x%y2 B 4x\/3x%y?
V2Ixy?:  V2Ix?r V32 /81ty 3xy Y
3x

(d) 4 57)/2 violates condition 4. It is simplified as follows:

f_Js ﬂ_d%xy_%my
5)’3 B 5)73 53y - 54y4 - Sy

Satisfying condition 3 is often referred to as rationalizing the denominator.

12x2

© \/27xy?

The conjugate expression for a binomial of form a + b is the expression @ — b and conversely.

EXAMPLE 4.8 Rationalize the denominator: ——— 4

Vix -2

Multiply numerator and denominator by the conjugate expression for the denominator:
x-4 _ x4 Vat2 G-HVrtd o
= : = — = Vx+2
Vri-2 V-2 Vx+2 X
Expressions are not always written in simplest radical form. Often it is important to rationalize the numerator.

Vx—Va

X —a

EXAMPLE 4.9 Rationalize the numerator:

Multiply numerator and denominator by the conjugate expression for the numerator.

\[—\/;:\f—\/;.\/;c-i-\/;: X —a _ 1
T A Ve G- a(Var Va) Vit Va

Conversion of Radical Expressions
Conversion of radical expressions to exponent form:

For m, n positive integers (n > 1) and x = 0 when n is even,

¢ K = xm/n

n
Conversely, x"" = Vx™"

Also, x"" = (%)m
EXAMPLE 4.10 (a) Vi = x'3; (b) V¥ = ¥ (¢) Vx® = 172

Operations with Complex Numbers

Complex numbers can be written in standard form a + bi. In this form, they can be combined using the
operations defined for real numbers, together with the definition of the imaginary unit i: > = —1. The con-
jugate of a complex number z is denoted 7. If z = a + bi,thenz = a — bi

EXAMPLE 4.11 (a) Write 4 — V —25 in standard form. (b) Find the conjugate of 3 — 7i. (c) Simplify (3 + 4i)>.
@d4—-V-25=4—-V25V-1=4-15i
(b) The conjugate of 3 — 7iis 3 — (—=7i)or 3 + 7i.

() B3+4)=32+2-3-4i+@Ai)P?=9+24i+162=9+24i — 16 = —7 + 24i
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SOLVED PROBLEMS

5x2—8x + 3 (b)x3—a3 ( (x + h)? — &2
252 — 9 X—a ¢ h

(a) First factor numerator and denominator, then reduce by removing common factors:

4.1. Reduce to lowest terms: (a)

52— 8 +3  (Gx—3)x—-1 x—1

25x2—9  (5x—3)Bx+3) Sx+3

P - G—au?+ax+

3
b)) S5=¢ = Y —a =x2+ ax + a?

()(x+h)2—x2:x2+2xh+h2—x2:2xh+h2:h(2x+h)
¢ h h h h

=2x+nh

4.2. Explain why every polynomial is also a rational expression.

A rational expression is one which can be written as the quotient of two polynomials. Every polynomial P can be
written as P/1, where numerator and denominator are polynomials; hence every polynomial is also a rational
expression.

4.3. Perform indicated operations:

2 —Tx+ 12 ¥ — 622+ 9x X2 — 4y?
@ x*—9 R ®) xy + 202 T3+ 2
1 1 2 3 dx — 2
(C)x+h_§ (d)x—1+x+1_x2—1

(a) Factor all numerators and denominators, then reduce by removing any common factors.

R-Tx+12 ¥ -6+ 9% (=3 —4 xx—3°  (x—3)
x> =9 B—42 @ =3Nx+3) R2x—4) xx+3)

(b) Change division to multiplication, then proceed as in (a).

X -4y _ X4y 1 _ = 2y)(x + 2y) 1
— = (X2 = 3xy + 2)?) = . = .
xy + 2y? xy + 20?2 x* — 3xy + 2y? yx + 2y) (x = y)x — 2y)
-1
yx =)

(c) Find the lowest common denominator, then build to higher terms and perform the subtraction.

1 1 x x+th) x—&+h  —p

X+h X xx+h xx+h  x(x+h  x(x+h

(d) Proceed as in (c).

2, 3 _4x-2_ 26+ 1D 3x—-hH -2
x—1 x+1 2—1 G—Dx+D x—-—Dx+1) G-Dx+1D

20+ D 3@ - D - (@ —2) 242+ 3x— 3 — 4yt 2
N x—Dx+ 1) - x—Dx+1D
xt+ 1 1
x—Dx+1) x-—-1

4.4. Write each complex fraction as a simple fraction in lowest terms:

2

X X X 2 1 1

Yty — 1 x+1 T2 3 ¥~ a

@ —5 (b) % © * @ ¥—¢
x—1 x+1 x X
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(a) Multiply numerator and denominator by y, the only internal denominator:
x? x?
Y v

¥ P

y + V2 + X2

y3

y +

A
y

(b) Multiply numerator and denominator by (x — 1)(x + 1), the LCD of the internal fractions:

X X X X
x—l_x-i-l_x—l_x-‘rl.(x_l)(x"'1)_X(x“‘])_x(x_])_x2+x—x2+x_£_l
X X T X X T a-Da+l) xxt DFxxr— 1) 24a+2—x 22 X
x—1 x+1 x—1 x+1

(c) Combine numerator and denominator into single quotients, then divide:

2__, 2 3xt+t2) 2-3x—6
x+2 _x+2 x+2 _ x+2 _ =3x—4_ 4-x
4 4 X2 4 — x2 x+2 7 X
x o F X x X

_—3x—4 x —3x% — 4x

xt+2 4-2 (x+2@ -0

(d) Proceed as in (c):

1 1 a X a—x
X a_ax " ax_ a _a—-x., _—G-a 1 1
x—a~- x—a ~x-a- ax TWw—-a= ax xX—a_ " ax
o (x+ h2—x2
4.5. Simplify: (a) 3(x + 3)’Qx — 1)™* = 8 (x + 3)’2x —1)? (b) —

(a) Remove the common factor (x + 3)? (2x — 1) first:
3x +3)22x — D™ = 8x + 3P2x — D70 = (x + 3%2x — D[B32x — 1) — 8(x + 3)]
(x + 3)2x — D73 [—2x — 27]

(x + 3)2(2x + 27)
2x — 1y

1minate negative exponents, then multi numerator an enominator x“(x + , the of the
(b) Elimi gative exp h ltiply d denominator by x*(x + h)?, the LCD of th

internal denominators:
1 1

x+m?2—x? @+h? ¥ XFx+h) -+ 22—k -2

h h .xz(x +h? h(x + h)? hx*(x + h)?
_ —xh— R _M=2x—h _ —2x—h
hx*(x + h)?  hx*(x + h)? xX*(x + h)?

4.6. Write in simplest radical form:
(@ V2083y*z7 (b)) V108x(x + y)*  (c) 4 /g—; (d) 3/927’“;
(a) Remove the largest possible perfect square factor, then apply the rule Vab = VaVb:
V20345 = Viaxdy's - 5xz = Viaxdy'zh - Vxz = 2022V 5xz

(b) Remove the largest possible perfect cube factor, then apply the rule Vab = VaV/p:

V10855(x + y)6 = V27 (x + y)S Va2 = 3x(x + y)* - Va2

(c) Build to higher terms so that the denominator is a perfect square, then apply

\/5 _3x Sy \/ISxy _ \/15xy _ \/15xy
Sy Sy Sy 25y? 25,2 5y

ER
SIS
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3
(d) Build to higher terms so that the denominator is a perfect cube, then apply \3/;3 = é:
\3/5 \/ 2wt 3z 6x4y z Vex'yz B VX - 6xy%z _ xVexyz
9yz 9yz22 3y% \/27y 2 N N 3yz T 3y

4.7. Rationalize the denominator:

@ x3y2 ® \/); © \/ \f @ 52 16y2
a
Vaxy? Vx+1 Vi - Vh V= 2Vy

(a) Build to higher terms so that the denominator becomes the cube root of a perfect cube, then reduce:

x3y2 x3y2 \3/4x2y B x3y2‘3/4x2y B x3y2‘3/4x2y B xzy \3/4x2y
N 2

Ve Vagr Vaey  Vhey | 29
(b) Build to higher terms using Vi - 1, the conjugate expression for the denominator:

Ve Ve Va-1_x-Va
Vi+1l Vx+1l V-1 *¥—1

(c) Proceed as in (b):

Vit Vi Vat Vi Vit Vi Vit ViR xt oV
Vi- Vi Vi- Vi Vit Vi o xTh x

(d) Proceed as in (b):

K2 — 16y 2162 Vix+2Vy @@ - 160(Vx +2VYy)

Vai-2Vy Va-2Vy Va2V x =4y =+ 4(Va+ 2VY)
4.8. Rationalize the numerator:
w Vi Ver Vi Verh- Ve
Vi + 1 Vx - Vh h

(a) Build to higher terms using Vi

Vix Vx  Vx_ o«

Ve+l Vat+tl Vi x+Va

(b) Build to higher terms using Vi - \/E, the conjugate expression for the numerator:

Vx+ Vi _Nx+Vh Vx=Vn_  x—h x—h

Vi- Vi Vi Vi Vi- Vi (Ve- Vir a2Vt
(c) Proceed as in (b):

Vi+h=Vrx_Vi+h—Vx Vax+h+ Vx_  x+h-x
h h Vi+h+ Ve Vx+h+ Vo

_ h _ |
MVx+h+ Vo Vi+h+ Vax

4.9. Write in exponent notation: (a) V xy? (b) Vab(x — yy
(a) \ /x 3 — (xy3)1/2 — x1/2y3/2; (b) \3/a2b(x _ y)s — [azb(x _ y)5]1/3 — a2/3b1/3(x _ y)5/3



4.10.

4.11.
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Write as a sum or difference of terms in exponential notation:

x—1 X —6x2+3x+ 1
(a) (b)
2 6V
x—1 _ x-—1 X 1 _
(a) szzﬁ_ﬁ:xm_xm
b X6 +3x+1_F-62+3x+1_ X 6x% 3x 1
() 6V - 6253 T 6B 6B 6

s sl s, 1 55
6x4 xB3 + X —+ 6

Write as a single fraction in lowest terms. Do not rationalize denominators.

2
V-1 -—X
2 * 2 -1 X2+ 9712 — \Vx2 49
(a) x— 2+ (b) © 2

Vx—2

(2 — 9)1A3— (4x)<%)(x2 — 9)-232w)

x> —1 x

(d) [(x2_9)1/3]2
@ Visae 2 _Ni-2, 2 _Ny-2:Vx-2 2 _x-2+2
V=2 ! Vx -2 V-2 Vio2 Va2

_ X

Vx—2
(b) Multiply numerator and denominator by Vx> — 1, the only internal denominator:

\/xz_l_xiz \/x2_1_x72
=1 _ Vei—1 V¥ —-1_ 2-1-x 1

x2—1 x2—1 V-1 @ -1V -1 - _()C2 — 1)32

(¢) Rewrite in exponent notation, then remove the common factor (x> + 9)~? from the numerator:

x2(x2 + 9)71/2 — \/xz +9 B x2(x2 + 9)71/2 — (xz + 9)1/2 B (xz + 9)71/2[x2 — (xz + 9)1]

x2 2

x? X
= xr-9 -9

- (x2 + 9)1/2x2 xz(xz + 9)1/2

d) Eliminate negative exponents, then multiply numerator and denominator by 3(x> — 9)¥3, the only internal
g p ply y y

denominator:
2y gusa D@D
@2 - 93 — () — 9By & T3 T30 gpn
(2 — 9)IAP = (2 — 9y
4x)(2
&2 = 9)%3 - % 32 — 9
= (xz —_ 9)2/3 ’ 3()(2 —_ 9)2/3
9 —9) — 87
=@ op
_ _x*—8l
3(x2 — 9)4/3

4.12. Letz =4 — 7iand w = —6 + 5i be two complex numbers. Find

@ z+w ®w-z ©@w D% () w-i
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@ z+tw=@-TH)+(—-6+5)=4—-T7i—6+5i=-2-2i

b w—z=(-6+5)—@4—-T7)=—-6+5—-4+7i=—-10+ 12i

(¢c) Use FOIL: wz = (=6 + 5i)(4 — 7i) = —24 + 42i + 20i — 35> = —24 + 62i + 35 = 11 + 62i

(d) To write the quotient of two complex numbers in standard form, multiply numerator and denominator of
the quotient by the conjugate of the denominator:

w_—6+5 _ —6+5 4+7 —59—22i —59-—22i —59 — 22 59 22,

T 4—7i  4—7 4+7 16 —492 16+ 49 65 o 765 ~ 65"

(&) w?—iz=(=6+ 502 —id — T7i)=36—60i +25% —i(4+7i)=36—60i —25—4i +7 =18 — 64i

SUPPLEMENTARY PROBLEMS

4.13.

4.14.

4.15.

4.16.

4.17.

Reduce to lowest terms:

=y b B2 +r+1 2 + 1)3Bx2 — X202 + 1)2 x+ h?—x
@ G ey O uizerarg © @+ 1 ) h
x4y 241 32 — X )
Ans. (a) oy (b) R S (©) P (d) 3x* +3xh + h

Perform indicated operations:
1 3 3 5 3 x—1

@ G e+ G-bDa+d ta-na+rn Ox—2Tiva T er4
3x — 1 2x — 5 , X2 —5x+ 4
© &2 +4)2 P+ 4 @ "= 3x+2) X — 6x? + 8x
1 ) T3 +5x2+36x+12 283 =52+ 1lx—21 X —2x+ 1
Ans. @ et 1y ® ¥ — 16 > © (2 + 4)? H@ x
Write as a simple fraction in lowest terms:
1 n 1 2x 2a
t— 1 i+1 oxtl a+l (07 = 4’2x) — PG — 4*(2v)
(a) 1 1 (b) X —a © @@ — 45
t I
27 ] 2 ) —4x3 — 8x
Ans @ e - ® G e @ @ =gy

Write as a simple fraction in lowest terms:

x+5—-@x+5" x+ !t —=x! X2 — a2
(@) x+5)° ; (b) 7, ©) ~—%—a
-4 —x, -1 X —a
Ans. (@) x + 5% (b) x(x + h)’ © ax?

2 M
Write in simplest radical form: (a) V/48x%7z8  (b) + ;f;z (c) ———
2
2

V3onyz MV -2

2y2Z ’ (C CZ — v2

Ans. (a) 2x22V/3:33; (b)
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1 (b)WJrz
Va- Vb V-1

\f+\/ x+3Vx+2

4.18. Rationalize the denominator: (a)

Ans. a—b ®) x—1
. . Vx+1— Va+1 \/x+ \[ \/—\/
4.19. Rationalize the numerator: (a) X —a X —a

Ans. (a)

1 —1 1
; (b) ; ()
Y+ 1+ Va+1 \/;‘Vx+h(\/§+\/x+h)c\7)c3+\3/)$+\3/cﬁ

3x2 — 2x, 473 — 5% — 8 + 1
— (b) T
xVx 2x°

4.20. Write as a sum or difference of terms in exponential notation: (a)

Ans. (a) 3x"2 — 2x712; (b) 2483 — %x” — 4x%3 + %x*m

4.21. Write as a simple fraction in lowest terms. Do not rationalize denominators.

x2 - 2x
2xV4 — X2 + sz %x(xz + 4)1/2(x2 _ 9)—2/3 _ x(x2 _ 9)1/3(x2 + 4)—1/2
@) . (®) e
Ans. () & —x* + 35x

(4 — x2)3/2’ (b) 3(x2 _ 9)2/3()(2 + 4)3/2

4.22. Write as a simple fraction in lowest terms. Do not rationalize denominators:

x(%)(x2 + 9)7122x) — Vx2 4+ 9 (2 — 1) — x( )(x — D"2(2x)
) . (b) o

(@ = D¥@x) — (@2 + 93 ) = DA
(©)

(xz _ 1)8/3
-9 —2x3 — 38x
Ans. () 202+ 9)1/2’( ) ( 1)5/2’( <) 302 — 1)
4.23. Letz =5 — 2i,w = —3 + i. Write in standard form for complex numbers:

(@ z+w; (b) z — w; (c) zw; d) ziw

Ans. () 2 — i (b) 8 = 3i:(©) —13 + 11is () —1¢ + 1o
4.24. Write in standard form for complex numbers:
(a) 52—-4-1-10 (b) ® (o) (1 +2i)3 (@ (1 — D2+ 3i) — (4 + 5)/(6%)

Ans.  (a) iV15; (b) —lor—1+ 0i;(c) —11 — 2i;(d) % - %j

4.25. For z, w complex numbers, show:

@ ztw=z+w ®z-w=z-w @©@w=zw (@ Iw =7z/w
(e) z = zif and only if z is a real number.



Linear and Nonlinear Equations

Equations

An equation is a statement that two expressions are equal. An equation containing variables is in general
neither true nor false; rather, its truth depends on the value(s) of the variable(s). For equations in one vari-
able, a value of the variable which makes the equation true is called a solution of the equation. The set
of all solutions is called the solution set of the equation. An equation which is true for all those values of
the variable for which it is meaningful is called an identity.

Equivalent Equations
Equations are equivalent if they have the same solution sets.

EXAMPLE 5.1 The equations x = -5 and x + 5 = 0 are equivalent. Each has the solution set {-5}.

EXAMPLE 5.2 The equations x = 5 and x> = 25 are not equivalent; the first has the solution set {5}, while the sec-
ond has the solution set {-5, 5}.

The process of solving an equation consists of transforming it into an equivalent equation whose solution is
obvious. Operations of transforming an equation into an equivalent equation include the following:

1. ADDING the same number to both sides. Thus, the equations @ = b and a + ¢ = b + ¢ are equivalent.

2. SUBTRACTING the same number from both sides. Thus, the equations a = banda —c = b — c are
equivalent.

3. MULTIPLYING both sides by the same nonzero number. Thus, the equations a = b and ac = bc(c # 0)
are equivalent. b

4. DIVIDING both sides by the same nonzero number. Thus, the equations a = b and% = o(c # 0)are
equivalent.

5. SIMPLIFYING expressions on either side of an equation.

Linear Equations

A linear equation is one which is in the form ax + b = 0 or can be transformed into an equivalent equation
in this form. If @ # 0, a linear equation has exactly one solution. If a = 0 the equation has no solutions un-
less b = 0, in which case the equation is an identity. An equation which is not linear is called nonlinear.

EXAMPLE 5.3 2x + 6 = 0 is an example of a linear equation in one variable. It has one solution, —3. The solution set
is {-3}.

EXAMPLE 5.4 x? = 16 is an example of a nonlinear equation in one variable. It has two solutions, 4 and —4. The solu-
tion set is {4, —4}.

Linear equations are solved by the process of isolating the variable. The equation is transformed into equiv-
alent equations by simplification, combining all variable terms on one side, all constant terms on the other,
then dividing both sides by the coefficient of the variable.
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EXAMPLE 5.5 Solve the equation 3x — 8 = 7x + 9.

3x —8=7x+9 Subtract 7x from both sides.

—4x—8=9 Add 8 to both sides.
—4x =17 Divide both sides by —4 .
x=-1 Solution set: {—%

Quadratic Equations

A quadratic equation is one which is in the form ax?> + bx + ¢ = 0, (@ # 0) (standard form), or which can
be transformed into this form. There are four methods for solving quadratic equations.

1. FACTORING. If the polynomial ax? + bx + c has linear factors with rational coefficients, write it in fac-
tored form, then apply the zero-factor property that AB = O only if A = Oor B = 0.

2. SQUARE RoOT PROPERTY. If the equation is in the form A? = b, where b is a constant, then its solutions
are foundas A = VbandA = — \/l;, generally written A = £V b.

3. COMPLETING THE SQUARE.
a. Write the equation in the form x*> + px = ¢.
b. Add p?/4 to both sides to form x*> + px + p*/4 = g + p?/4.
c. The left side is now a perfect square. Write (x + p/2)? = g + p*/4 and apply the square root property.

4. QUADRATIC FORMULA. The solutions of ax?> + bx + ¢ = 0, (a # 0) can always be written as:
—b + Vb?> — 4dac
2a

In general, a quadratic equation is solved by first checking whether it is easily factorable. If it is, then the fac-
toring method is used; otherwise the quadratic formula is used.

X =

EXAMPLE 5.6 Solve3x> +5x+2 =0

3+ 5x+2=0 Polynomial is factorable using integers
BGx+2)x+1)=0 Apply the zero-factor property
3x+2=0 or x+1=0
= _2 or =1
X 3 x=-
EXAMPLE 5.7 Solvex’> +5x+2 =10
X2+5x+2=0 Polynomial is not factorable, use formula
5 V52 —4-1-2 _ _ _
x = 21 a=1,b=5c=2
-5+ V17
X=5

In the quadratic formula, the quantity %> — 4ac is called the discriminant. The sign of this quantity deter-
mines the number of solutions of a quadratic equation:

SIGN OF DISCRIMINANT NUMBER OF REAL SOLUTIONS

positive 2
Zero 1
negative 0

Occasionally complex solutions are of interest. Then the discriminant determines the number and type of
solutions:

SIGN OF DISCRIMINANT NUMBER AND TYPE OF SOLUTIONS

positive 2 real solutions
Zero 1 real solution
negative 2 imaginary solutions
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EXAMPLE 5.8 For x?> — 8x + 25 = 0, find (a) all real solutions; (b) all complex solutions.

Use the quadratic formula witha = 1, b = -8, ¢ = 25.

—(—8) £ —8)?2—-4-1-25 —(—8) £ —8)2—4-1-25
@ .o C® V(le) O ) V<2.1>
8 = V-36 8 + —-36
X=—F7"— x=>=Y 27
2 2
No real solution x =4 * 3]

Many equations which are not at first glance linear or quadratic can be reduced to linear or quadratic equa-
tions, or can be solved by a factoring method.

EXAMPLE 5.9 Solve x> —5x>—4x +20 =10
X-5x-4x+20=0 Factor by grouping

xX(x-5)-4x-5)=0

x=-5x-49)=0

x=-5x-2)x+2)=0
x=5orx=2o0orx=-2

Equations Containing Radicals

Equations containing radicals require an additional operation: In general, the equation a = b is not equiva-
lent to the equation a" = b"; however, if n is odd, they have the same real solutions. If # is even, all solutions
of a = b are found among the solutions of a” = b". Hence it is permissible to raise both sides of an equation
to an odd power, and also permissible to raise both sides to an even power if all solutions of the resulting equa-
tion are checked to see if they are solutions of the original equation.

EXAMPLE 5.10 Solve Vx +2=x — 4
Vx+2=x—4 Square both sides.

(Vx + 2 = (x — 47
x+2=x>—-8x+16
0=x>—9x+ 14
0=(x—-20x—7)

x=2 or x=17
Check:x = 2:V2 +2 =2 — 4 x=7V1+2=7-4
2# -2 3=3
Not a solution 7 is the only solution

Applications: Formulas, Literal Equations,
and Equations in More Than One Variable
In these situations, letters are used as coefficients rather than particular numbers. However, the procedures
for solving for a specified variable are essentially the same; the other variables are simply treated as constants:

EXAMPLE 5.11 Solve A = P + Prt for P.

This equation is linear in P, the specified variable. Factor out P, then divide by the coefficient of P.

A=P+ Prt
A=P1+n
A _
Ten P
p A

T 1+
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EXAMPLE 5.12 Solve s = %gt2 for ¢.
This equation is quadratic in 7, the specified variable. Isolate #2, then apply the square root property.

1

s=§gt2
25 _ 5
g—t

2s

=+, [=

= =\z¢

Frequently, but not always, in applied situations, only the positive solutions are retained: r = V2s/g.

Applications: Word Problems

Here, a situation is described and questions are posed in ordinary language. It is necessary to form a model
of the situation using variables to stand for unknown quantities, construct an equation (later, an inequality or
system of equations) that describes the relation among the quantities, solve the equation, then interpret the
solution to answer the original questions.

EXAMPLE 5.13 Aright triangle has sides whose lengths are three consecutive even integers. Find the lengths of the sides.

Sketch a figure as in Fig. 5-1:

Let  x = length of shortest side

x+4 .
X x+ 2 = length of next side
x +4 = length of hypotenuse
x 42
Figure 5-1

Now apply the Pythagorean theorem: In a right triangle with sides a, b, ¢, a> + b*> = ¢* Hence,
X+ (x+2)72=(x+4)7
X+ +4dx+4=x>+8x+ 16
23 +4x+4=x>+8x+ 16
X*-4x-12=0
(x—6)(x+2)=0
x=6 or x=-2

The negative answer is discarded. Hence, the lengths of the sides are: x = 6, x + 2 = §, and x + 4 = 10.

SOLVED PROBLEMS

X3, X
5.1. Solve: 3 2 = 2 ]
x  3x X . . .
54" 2 — 3 Multiply both sides by 40, the LCD of all fractions.
x 3% _on _an. X
40 §—40-7—80 40 ]

8x — 30x = 80 — 5x
—17x = 80

80
17

X = —
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5.2. Solve:2(3x +4) + 5(6x-7)=7G5x—-4) + 1 + x
Remove parentheses and combine like terms.
2B8x +4) +506x-7)=T6x-4)+1+x
6x + 8 +30x-35=35x-28+1+x
36x—27 = 36x-27

This statement is true for all (real) values of the variable; the equation is an identity.

5.3. Solve: 5x = 2x— (1 -3x)
Remove parentheses, combine like terms, and isolate the variable.
S5x=2x-1+3x
Sx=5x-1
0=-1

The statement is true for no value of the variable; the equation has no solution.

54. Solve: X172 — 7
x—3

Multiply both sides by x — 3, the only denominator; then isolate x. Note: x # 3.

x+5 _ _
(x—3)x_3—7(x 3)
x+5=7x-21
—6x = —26
_13
T3
. _ < 6x
5.5.Solve.x+l—5 e

Multiply both sides by x + 1, the only denominator. Note: x # —1.

6 —5— 6x
x+ 1 x+1
(x+1)-x_?_1=5(x+1)—(x+1)xifcl
6=5x+5—6x
1=—x
x=-1

In this case, since x # —1, there can be no solution.

5.6. Solve: (x + 5>+ 2x-7)* =82
Remove parentheses and combine like terms; the resulting quadratic equation is factorable.
(x+ 5%+ (2x-7)% =82
X2+ 10x + 25 + 4x* — 28x + 49 = 82
5x>—18x—8=10
Gx+2)x—4)=0

x=—2 or x =4

5
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5.7. Solve: 5x> + 16x+2 =0

This is not factorable in the integers; use the quadratic formula, witha = 5,b = 16, ¢ = 2.
Sx2+16x+2=0

-16 = V16> —4-5-2

2-5
_ —16 + V216
r= 10
_ —16+ 6V6
r= 10
-8 +3V6
X=—s

5.8. Solve x> — 8x + 13 = 0 by completing the square.

=8 +13=0
2 —8c=-13 [}(-8) =(-42=16

X -8 +16=3 Add 16 to both sides.
x—472=3
x—4==\V3
x=4t\/§
5.9. Solve:%+xi1=4

2 3
xtyrr =4

O+ D2+ 2 + D = da(x + 1)

x(x T+ Ak Tl Al

2(x + 1) + 3x = 4x? + 4x
5x+2=4x + 4x
0=4x>—x—2

This is not factorable in the integers; use the quadratic formula, witha = 4,b = -1, ¢ = -2.

—(=D = V(=1 - 4#(=2)
24
1+ V33

8

X =

5.10. Find all solutions, real and complex, for X —64=0.
First factor the polynomial as the difference of two cubes.
X-43=0
x-H2+4x+16)=0
x=4orx>+4x+16=0

Now apply the quadratic formula to the quadratic factor, witha = 1, b = 4, ¢ = 16.

—4+= V4 —4-1-16

r= 21

4+ /48

xX=—F=""—
2

—4 + 43

L= 4E4V3
2

x=-2+2i\3

Solutions: 4, —2 =+ 2iV/3.
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5.11. Solve: x*-5x>-36 =0

This is an example of an equation in quadratic form. It is convenient, although not necessary, to introduce the sub-
stitution u = x2. Then u?> = x* and the equation becomes:

w-5u-36=0 This is factorable in the integers.
u-9Du+4)=0
u=9 or u=-4
Now undo the original substitution x> = u.
*=9 or ¥*=-+4

x==x3 no real solution

5.12. Solve: x*? —x"-6=0

This equation is in quadratic form. Introduce the substitution u = x'3. Then u> = x*”* and the equation becomes:
w-u-6=0
wu-3)u+2)=0
u=3 or u=-2
Now undo the original substitution x'* = u.
W =3 or yB=_2
x=233 x = (=2)?
x =27 =-8
513. Solve: V2xr = Vax + 1 + 1
Square both sides, noting that the right side is a binomial.
Vo= Vx+1+1
(V2 = (Vax + 1+ 1
=x+1+2Ve+1+1
Now isolate the term containing the square root and square again.
x—2=2Vx+1
(x =27 =QVx+ 1)
X —dx+4=4x+1)
X —dx+4=4x+4
X*—=8x=0
x(x —8) =0
x=0 or x=8 Checkx=0V20=V0+1+1? x=8V2:8=V8+1+1?
0+1+1 4=3+1
Not a solution 8 is the only solution

5.14. Solve the literal equation S = 2xy + 2xz + 2yz for y.

This equation is linear in y, the specified variable. Since all terms involving y are already on one side, get all terms
not involving y on the other side, then divide both sides by the coefficient of y.

S = 2xy + 2xz + 2yz
S — 2xz = 2xy + 2yz
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S — 2xz =y2x + 22)

S — 2xz
2x+217y
S - 2xz
y_2x+2z
1 1 _ 1
5.15. Solveﬁ-i-a— fforf.

This equation is linear in f, the specified variable. Multiply both sides by pgf, the LCD of all fractions, then di-
vide both sides by the coefficient of f.

1

Ty

<=
Q=

mﬁ%+mﬁé:pﬁ%

qf + pf = pq

fla +p) = pq
/4
f_q+p

1
5.16. Solve s = Egﬂ — vyt + s, fort.
This equation is quadratic in ¢, the specified variable. Get the equation into standard form for quadratic equations:
1,
s—zgt = vt + 8,

%gﬂ—vot—i-so—s:O

Now apply the quadratic formula with a = %g, b= —vy,c=35,— 5.

—(—vy) £ \/(—v0)2 - 4(%g)(s0 — )
1= 1
2(52)
vo £ Vg — 2g(sy — 5)

8

=

5.17. $9000 is to be invested, part at 6% interest, and part at 10% interest. How much should be invested at each rate
if a total return of 9% is desired?

Use the formula I = Prt with 7 understood to be one year. Let x = amount invested at 6%; a tabular arrangement

is helpful:

P: AMOUNT INVESTED r: RATE OF INTEREST I: INTEREST EARNED
First account X 0.06 0.06x
Second account 9000 — x 0.1 0.1(9000 — x)

Total investment 9000 0.09 0.09(9000)
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5.18.

5.19.

Since the interest earned is the total of the interest on the two investments, write:

0.06x + 0.1(9000 — x) = 0.09(9000)
Solving yields:
0.06x + 900 — 0.1x = 810
—0.04x = -90
x = 2250
Therefore, $2250 should be invested at 6% and 9000 — x = $6750 should be invested at 10%.

A box with a square base and no top is to be made from a square piece of cardboard by cutting out a 3-inch
square from each corner and folding up the sides. If the box is to hold 75 cubic inches, what size piece of
cardboard should be used?

Figure 5-2

Sketch a figure (see Fig. 5-2).
Let x = length of side of original piece. Then x — 6 = length of side of box.
Use volume = (length)(width)(height):

3x-6)2 =75

(x—6)> =25

x—6==%5
x=6%5

Thus, x = 11 in or x = 1 in. Clearly, the latter does not make sense; hence, the dimensions of the original card-
board must be 11 in square.

Two people have a walkie-talkie set with a range of % mi. One of them starts walking at noon in an easterly
direction, at a rate of 3 mph. Five minutes later the other person starts walking in a westerly direction, at a rate
of 4 mph. At what time will they reach the range of the device?

Use distance = (rate)(time). Let = time since noon. A tabular arrangement is helpful.

TIME WALKED RATE OF WALKING DISTANCE

First person t 3 3t
Second person - 4 4(t — 6%)




5.20.

5.21.
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Since the distances add up to the total distance of % mi, this yields:

3t+4(t*65f0)=%

ST U
n=li2

7

The time will be noon plus 5 hours, or approximately 12:09 p.m.

A container is filled with 8 liters of a 20% salt solution. How many liters of pure water must be added to
produce a 15% salt solution?

Let x = the number of liters of water added. A tabular arrangement is helpful.

AMOUNT OF SOLUTION PERCENTAGE OF SALT AMOUNT OF SALT

Original solution 8 0.2 (0.2)8
Water X 0 0
Mixture 8 +x 0.15 0.15(8 + x)

Since the amounts of salt in the original solutions and the added water must add up to the amount of salt in the
mixture, this yields:

(0.2)8§ + 0 =0.15(8 + x)
1.6 =12 + 0.15x

0.4 = 0.15x
x = % or 2% liters

Machine A can perform a job in 6 hours, working alone. Machine B can complete the same job in 10 hours,
working alone. How long would it take the two machines, working together, to complete the job?

Use quantity of work = (rate)(time). Note that if a machine can do a job in x hours, it performs 1/x of the work
in one hour; that is, its rate is 1/x job per hour. Let ¢ = the time worked by each machine. A tabular arrange-
ment is helpful.

RATE TIME QUANTITY OF WORK
Machine A 1/6 t /6
Machine B 1/10 t /10

Since the quantity of work performed by the two machines totals to one entire job, this yields:

Pt
g-{—m—l

30-L +30--L =30
6 10 ~

5t + 3t =30

8¢ = 30

15

4

The time would be 3% hours.
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SUPPLEMENTARY PROBLEMS

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.

X _5x_ 2 _112
Solve: 3 ) 3(x 4)+5 Ans. 47
Solve: 7(x — 6) — 6(x + 3) = 5(x — 6) — 2(3 + 2x) Ans. No solution.

4 x—4

_7x(x*2):7x*2 Ans. 7

Solve: %

Find all real solutions:
(@ x2— 9% =36;(b) 3x2=2x+8;(c) 4x2 +3x +5=0;(d) 22 —5=2x + 3;
@ (x—8)x+6)=32;f) 8x2 —3x+4=3x2+12;(g) x—52=7;(h) 4x2+3x—5=0

Ans.  (a) {—3,12}; (b) {—% 2}; (c) no real solutions; (d) {—2, 4};

-3+ V89 -3 — \/89}
8 k

(©) {~8,10}; (O {—L%}(g)s + /7 (h) { g

Solve:

(a) Vx+9=-6 (b) V5x+9=—6 Ans. (a) —45 (b) No solution.

Find all real solutions:
(@ x—2—6=0;(b) 2 —3xB —4=0c) ¥+ 63— 16=0
Ans. (@) {—V3, V3L b) {-1,64}: © {-2, V2}

Solve: (@) x — Vx=12:(b) V2x+ 1+ 1 =x(c) Vadx+1— V2x—3=2
Ans. (a) {16}; (b) {4}; () {2.6}

Find all complex solutions for x> — 5x%> + 4x — 20 = 0 Ans.  5,2i, —2i

U N | _
Solve.p+q—ff0rq. Ans. q—p_f
1 _ —RC + VR(C? — 4LC
Solve: LI + RI + c- 0 for 1. Ans. I = SLC
Solve: (x — h)* + (y — k)?> = r*fory. Ans. y=k* Vr2—(x— h?

x +
Solve for y in terms of x: (a) 3x — 5y = 8;(b) x> — 2xy + y*> = 4;(c) % =5 x=Vy>—2

Ans. (a)y=3x5_8;(b)y=x+20ry=x—2;(c)y=%x;(d)y=1i VX2 + 1

A rectangle has perimeter 44 cm. Find its dimensions if its length is 5 cm less than twice its width.

Ans.  Width = 9 cm, length = 13 cm

Solve the walkie-talkie problem (5.19) if the two people start walking at the same time, but the second person
walks north.

Ans. Exactly 12:09 p.m.
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5.37.

5.38.

5.39.

5.40.

541.
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A shop wishes to blend coffee priced at $6.50 per pound with coffee priced at $9.00 per pound in order to yield
60 pounds of a blend to sell for $7.50 per pound. How much of each type of coffee should be used?

Ans. 36 pounds of the $6.50-per-pound coffee, 24 pounds of the $9.00-per-pound coffee.

A container is filled with 8 centiliters of a 30% acid solution. How many centiliters of pure acid must be added
to produce a 50% acid solution?

Ans. 3.2cl

A chemistry stockroom has two alcohol solutions, a 30% and a 75% solution. How many deciliters of each
must be mixed to obtain 90 deciliters of a 65% solution?

Ans. 20 dl of the 30% solution, 70 dl of the 75% solution

A 6-gallon radiator is filled with a 40% solution of antifreeze in water. How much of the solution must be
drained and replaced with pure antifreeze to obtain a 65% solution?

Ans. 2.5 gallons

Machine A can complete a job in 8 hours, working alone. Working together with machine B, the job can be
completed in 5 hours. How long would it take machine B, working alone, to complete the job?

Ans. 13% hours

Machine A can do a job, working alone, in 4 hours less than machine B. Working together, they can complete
the job in 5 hours. How long would it take each machine, working alone, to complete the job?

Ans. Machine A: 8.4 hours; machine B: 12.4 hours, approximately
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Linear and Nonlinear
Inequalities

Inequality Relations

The number a is less than b, written a < b, if b — a is positive. Then b is greater than a, written b > a. If a
is either less than or equal to b, this is written a = b. Then b is greater than or equal to a, written b = a.
Geometrical Interpretation: If a < b, then a is to the left of b on a real number line (Fig. 6-1). If @ > b, then
a is to the right of b.

EXAMPLE 6.1

a :1 c b
Figure 6-1

In Fig. 6-1,a <dand b > c. Also,a < cand b > d.

Combined Inequalities and Intervals

If a < x and x < b, the two statements are often combined to write: a < x < b. The set of all real numbers x
satisfying a < x < b is called an open interval and is written (a,b). Similarly, the set of all real numbers x
satisfying the combined inequality a = x =< b is called a closed interval and is written [a,b]. The following
table shows various common inequalities and their interval representations.

Inequality | Notation Graph
a<x<b (a,b) :S % >
a<x<bh [a.b] ‘{1 i > X
a<x<b (a,b] ‘(I ;} >x
a<x<b [a,b) :L; 7;) >
x>a (a,eo) ‘(1 >
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Inequality | Notation Graph
x2a [a,=) :l; >x
x<b (~w0,b) ;/, >
x<b (~e0,b] >

Inequality Statements Involving Variables

An inequality statement involving variables, like an equation, is in general neither true nor false; rather, its truth
depends on the value(s) of the variable(s). For inequality statements in one variable, a value of the variable
that makes the statement true is a solution to the inequality. The set of all solutions is called the solution set
of the inequality.

Equivalent Inequalities
Inequalities are equivalent if they have the same solution sets.

EXAMPLE 6.2 The inequalities x < —5 and x + 5 < 0 are equivalent. Each has the solution set consisting of all real
numbers less than —35, that is, (—%,—5).

The process of solving an inequality consists of transforming it into an equivalent inequality whose solution is obvious.
Operations of transforming an inequality into an equivalent inequality include the following:

1. ADDING OR SUBTRACTING: The inequalities a < b,a + ¢ < b + ¢, and a — ¢ < b — ¢ are equivalent, for ¢ any
real number.

2. MULTIPLYING OR DIVIDING BY A POSITIVE NUMBER: The inequalities a < b, ac < bc, and a/c < b/c are equivalent,
for ¢ any positive real number.

3. MULTIPLYING OR DIVIDING BY A NEGATIVE NUMBER: The inequalities a < b, ac > bc, and a/c > b/c are equivalent,
for ¢ any negative real number. Note that the sense of an inequality reverses upon multiplication or division by a
negative number.

4. SIMPLIFYING expressions on either side of an inequality.

Similar rules apply for inequalities of the form a > b and so on.

Linear Inequalities

A linear inequality is one which is in the form ax + b < 0,ax + b > 0,ax + b =0, orax + b = 0, or can
be transformed into an equivalent inequality in this form. In general, linear inequalities have infinite solu-
tion sets in one of the forms shown in the table above. Linear inequalities are solved by isolating the vari-
able in a manner similar to solving equations.

EXAMPLE 6.3 Solve: 5 — 3x > 4.
5—-3x>4

—3x> -1

x <

W=

Note that the sense of the inequality was reversed by dividing both sides by —3.
An inequality that is not linear is called nonlinear.
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Solving Nonlinear Inequalities

An inequality for which the left side can be written as a product or quotient of linear factors (or prime quad-
ratic factors) can be solved through a sign diagram. If any such factor is not zero on an interval, then it is
either positive on the whole interval or negative on the whole interval. Hence:

1. Determine the points where each factor is 0. These are called the critical points.

2. Draw a number line and show the critical points.

3. Determine the sign of each factor in each interval; then, using laws of multiplication or division, deter-
mine the sign of the entire quantity on the left side of the inequality.

4. Write the solution set.

EXAMPLE 6.4 Solve: (x — 1)(x +2) > 0

The critical points are 1 and —2, where, respectively, x — 1 and x + 2 are zero. Draw a number line showing the critical
points (Fig. 6-2). These points divide the real number line into the intervals (—,—2), (—=2,1), and (1,%). In (—2°,—2),
x — 1 and x + 2 are negative; hence the product is positive. In (—2,1), x — 1 is negative and x + 2 is positive; hence the
product is negative. In (1,%°), both factors are positive; hence the product is positive.

Signofx-1 - - +
Signofx+2 - + +
Sign of product4+ - +
| ! | I l l 1 |
: = = I i | 1 ] | ! | 1 >
-3 -2 -1 0 1 2
Figure 6-2

The inequality holds when (x — 1)(x + 2) is positive. Hence the solution set consists of the intervals: (—o,—2) U (1,%).

SOLVED PROBLEMS

6.1. Solve:3(y —5) —4(+6)=7
Eliminate parentheses, combine terms, and isolate the variable:
3y =5 —-4@(+6)=7
3y—15—-4y—-24=7
—-y—39=7
—y =46
y=—46

The solution set is [ —46,%).

2x — 3 5x + 4 3x
3 6 7%

6.2. Solve:

Multiply both sides by 24, the LCD of all fractions, then proceed as in the previous problem.

2x — 3 S5x + 4 3x
3T TSy
2% — 3 Sx + 4
24~(x3 )—24~(x6 )>120—24~3§x

16x — 24 — 20x — 16 > 120 — 9x



6.3.

6.4.

6.5.

6.6.
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—4x — 40 > 120 — 9x
5x > 160
x> 32

The solution set is (32,).

Solve: =8 <2x—7=5
A combined inequality of this type can be solved by isolating the variable in the middle.

-8 <2 —-T7=5
—1<2x=12

—%<x56

The solution set is (—%,6].

Solve: 0 <3 —5x =10

The solution set is [—%, %)

A chemical solution is to be kept between —30 and —22.5°C. To what range in Fahrenheit degrees does this
correspond?

Write —30 < C < —22.5and use C = 3(F — 32).
-30 < C<-225
—30 < %(F*32) <25
—54 < F—32<—405

22 < F<-85
The range is between —22 and —8.5°F.

Solve: x2 — 8x = 20

Get 0 on the right side, put the left side into factored form, then form a sign diagram.
*—=8x—-20=0
x—10)x+2)=<0

The critical points are 10 and —2, where, respectively, x — 10 and x + 2 are zero. Draw a number line showing
the critical points (Fig. 6-3).

Signofx-10 - - +
Signofx+2 - + +
Sign of result + - +
1 L1 1 | ] ] ] 1 ] ] 1
I I I 1 I | 1 1 { 1 | I >
-2 0 10

Figure 6-3
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6.7.

6.8.

6.9.

The critical points divide the real number line into the intervals (—o,—2), (—2,10), and (10,%). In (—%,—2),
x — 10 and x + 2 are negative, hence the product is positive. In (—2,10), x —10 is negative and x + 2 is positive;
hence the product is negative. In (10,%), both factors are positive; hence the product is positive. The equation
part of the inequality is satisfied at both critical points, and the inequality holds when (x + 2)(x — 10) is negative;
hence the solution set is [—2,10].

Solve: 2x* + 2 = 5x

Get 0 on the right side, put the left side into factored form, then form a sign diagram
2> —=5x+2=0
x=2)2x—-1)=0

Draw a number line showing the critical points % and 2 (Fig. 6-4).

Signof x -2 - - +
Sign of 2x -1 - + +
Sign of result + - +
| 1 l | l | l | 1 ] i |
I | 1 I ‘l 1 I 1 1T 1 1 >
3 2
Figure 6-4

The critical points divide the real number line into the intervals (—, %), (%, 2), and (2,%). The product has sign,
respectively, positive, negative, positive in these intervals. The equation part of the inequality is satisfied at both
critical points, and the inequality holds when (2x — 1)(x — 2) is positive, hence the solution set is
(—.3] U [2,).

Solve: x* < x* + 6x
Get 0 on the right side, put the left side into factored form, then form a sign diagram.
X —x—6x<0
x(x =3)x+2)<0

Draw a number line showing the critical points —2, 0, and 3 (Fig. 6-5).

Sign of x - - + +
Signofx-3 - - - +
Signofx+2 -~ + + +
Sign of result — + - +
———t—————+—t—t++++>
-2 0 3

Figure 6-5

The critical points divide the real number line (Fig. 6-5) into the intervals (—, —2), (—2, 0), (0, 3), and (3, ).
The product has sign, respectively, negative, positive, negative, positive in these intervals. The inequality holds
when x(x — 3)(x + 2) is negative, hence the solution set is (—, —2) U (0, 3).

+
X —

9}

Solve: =0

w

Draw a number line showing the critical points —5 and 3 (Fig. 6-6).



6.10.

6.11.
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Signofx-3 - - +
Signofx+5 - + +
Sign of result 4 - +
e
-5 0 3
Figure 6-6

The critical points divide the real number line into the intervals (—, —5), (—5, 3), and (3, «). The quotient has
sign, respectively, positive, negative, positive in these intervals. The equation part of the inequality is

satisfied at the critical point —5, but not at the critical point 3, since the expression xtS is not defined there.

x+5 x=3
po— is negative; hence the solution set is [—5, 3).

The inequality holds when

2x
x—3

Solve: =3

The solution of this inequality statement differs from that of the corresponding equation. If both sides were
multiplied by the denominator x — 3, it would be necessary to consider separately the cases where this is positive,
Zero, or negative.

It is preferable to get O on the right side and combine the left side into one fraction, then form a sign diagram.

2x
x—3 3=0
2x 3 —3) =0
x—3 x—3
9 —x
x—3 =0
Draw a number line showing the critical points 3 and 9 (Fig. 6-7).
Signofx-3 - + +
Signof 9-x + + -
Signof result - + -
] l } } } | l | | _— | |
LI i LI I 1 I LI I I >
3 9

Figure 6-7

The critical points divide the real number line into the intervals (—, 3), (3, 9), and (9, ). The quotient has
sign, respectively, negative, positive, negative in these intervals. (Note the reversal of signs in the chart for

9 — x.) The equation part of the inequality is satisfied at the critical point 9, but not at the critical point 3, since

9 — 9 —
= ;C is not defined there. The inequality holds when P ;C

the expression

is (3, 9].

is positive, hence the solution set

(= 2)"P2x + 3)° _

Solve: = S + 4)

Draw a number line showing the critical points —5,—%, and 2 (Fig. 6-8). Note that the factor x*> + 4 has no critical
point; its sign is positive for all real x; hence it has no effect on the sign of the result.
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6.12.

6.13.

Sign of521c+3/23 + + + +
Sign of x-z)3 - - - +
Sign of (x+5)" — + + +
Sign of result  + - - +
1 1 | 1 | | | | 1
i 1 i I L 3 1 I i ! % >
-5 -3 0 2
Figure 6-8

The critical points divide the real number line into the intervals (—00,—5),(—5,—%),(—%, 2), and (2,%). The
quotient has sign, respectively, positive, negative, negative, positive in these intervals. (Note that the factor
(2x + 3)?is positive except at its critical point.) The equation part of the inequality is satisfied at the critical points
—% and 2, but not at the critical point —5. The inequality holds when the expression under consideration is positive;
hence the solution set is (—o0, —5) U {—%} U [2, ).

For what values of x does the expression V9 — x? represent a real number?

The expression represents a real number when the quantity 9 — x? is nonnegative. Solve the inequality statement
9 —x2=0,o0r (3 — x)(3 + x) = 0, by drawing a number line showing the critical points 3 and —3 (Fig. 6-9).

Signof3+x - + +
Signof3—-x + + -
Sign of result — + -
———— 1+ttt
-3 0 3
Figure 6-9

The critical points divide the real number line into the intervals (—o, —3), (—3, 3), and (3, o). The product has
sign, respectively, negative, positive, negative in these intervals. The equation part of the inequality is satisfied at
the critical points, and the inequality holds when 9 — x? is positive, hence the expression V9 — x? represents a
real number when x is in [—3, 3].

. / X 9
For what values of x does the expression 2 =06 Fx represent a real number’

The expression represents a real number when the quantity under the radical is nonnegative. Solve the inequality
m = (0 by drawing a number line showing the critical points —35, 0, and 2 (Fig. 6-10).

Sign of x - - + +
Signof2-x + + + -
Signof5+x -~ + + +
Sign of result + - + -
L1 I l i 1 i | | | |
Tttt
-5 0 2
Figure 6-10

The critical points divide the real number line into the intervals (—, —5), (=5, 0), (0, 2), and (2, ). The quotient
has sign, respectively, positive, negative, positive, negative in these intervals. The equation part of the inequality
is satisfied only at the critical point 0, and the inequality holds when the quantity under the radical is positive; hence
the entire expression represents a real number when x is in (—%, —5) U [0, 2).
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SUPPLEMENTARY PROBLEMS

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

2x+7 _5x — 3.
5 S 2

Solve: (a) (b) 0.052x — 3) + 0.02x > 15;(c) 4(5x — 6) —3(6x — 3) >2x + 1
Ans. (a) (%00); (b) (126.25, ©); (¢c) No solution

S5x — 6
4

Solve: (a) —0.01 <x—5<001;(b) + = <T@ —6<3-T7x=8

Ans. (2) (4.99,5.01); (b) [53) (0) [-2.2

Solve: (a) 5x —x2<6;(b) (x+6)>=2x— 1)) (c) P+ (t+ 12> (t+2)?

Ans. (a) (—%,2) U (3,%); (b) [—3,7]; (c) (—o, —1) U (3, )

Solve: (@) 2= 15(b)  + 1< 1:©) § < L@ 5 = 1;(©) =1

1 —x*
Ans. (a) [—1,1]; (b) no solution; (c) (—,0) U (1,%); (d) (—,—1] U [1,%); (e) (—o,—1) U {0} U (1,%)
—9x2 X2 — 4x

=0 = T >
2_9=-00© 3, ;=0

x +

Solve: (a) 5 >~ 3; (b)

Ans. (@) (=%,0) U (5,2 (b) (=%, =3) U {0} U (3,%); (¢) (=%, =2) U [0,2) U [4, )

For what values of x do the following represent real numbers ? (a) Vx> — 25; (b) /i I i

Ans. () (—o, =5] U [5, ®); (b) (—=, —4) U [4, »)

For what values of x do the following represent real numbers?

(@) ————: (b)) ——
Ve —16 V36 — 2

Ans. (a) (—o%,—4) U (4,%); (b) (—6,6)



Absolute Value in Equations
and Inequalities

Absolute Value of a Number
The absolute value of a real number a, written lal, was defined (Chapter 1) as follows:

a ifa=0
o = { ]
—a ifa<O0

Absolute Value, Interpreted Geometrically
Geometrically, the absolute value of a real number is the distance of that number from the origin (see Fig. 7-1).

€«—|-5|=5—>€— 4l =4—>

| [ 1 1 1 } l | l l 1
i LR J 1 I 1 I I 1 I >
6 -4 -2 0 2 4

Figure 7-1

Similarly, the distance between two real numbers a and b is the absolute value of their difference: la — bl
or |b —al.

Properties of Absolute Values

EXAMPLE 7.1 (a) I-51 =151 = 5; (b) -6l = 6; V (—6)2 = V36 = 6, thus, -6l = V (—6)2
EXAMPLE 7.2 (a) -5x% = =51l = 5x2; (b) 13yl = 13llyl = 3yl
EXAMPLE 7.3 Triangle inequality: I5 + (-7)| =2 = I5I+ -7l =5+7 =12

Absolute Value in Equations
Since lal is the distance of a from the origin,

1. The equation lal = b is equivalent to the two equations @ = b and a = —b, for b > 0. (The distance of a
from the origin will equal b precisely when a equals b or —-b.)
2. The equation lal = |bl is equivalent to the two equations a = b and a = —b.
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EXAMPLE 7.4 Solve:Ix +31=5
Transform into equivalent equations that do not contain the absolute value symbol and solve:
x+3=5 or x+3=-5
x=2 x=-8
EXAMPLE 7.5 Solve: Ix—4l =13x + 1l
Transform into equivalent equations that do not contain the absolute value symbol and solve:

x—4=3x+1 or x—-4=-Bx+1)

2x=15 x—4=-3x-1
x:—% 4x =3
_3
Ty

Absolute Value in Inequalities
For b >0,

1. The inequality lal < b is equivalent to the double inequality —b < a < b. (Since the distance of a from the
origin is less than b, a is closer to the origin than b; see Fig. 7-2.)

£L a # )
~b 0 b
Figure 7-2

2. The inequality lal > b is equivalent to the two inequalities @ > b and a < —b. (Since the distance of a from
the origin is greater than b, a is farther from the origin than b; see Fig 7-3.)

a a

—— e

~b 0 b
Figure 7-3

EXAMPLE 7.6 Solve: Ix—5/>3
Transform into equivalent inequalities that do not contain the absolute value symbol and solve:
x—-5>3 or x-5<-3

x>8 x<?2

SOLVED PROBLEMS

7.1. Solve: Ix—=71=2
Transform into equivalent equations that do not contain the absolute value symbol and solve:
x=7=2 or x=7=-2
x=9 x=15

7.2. Solve: Ix + 51 = 0.01
x+5=0.01 or x+5=-001
x = —4.99 x=—5.01
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7.3. Solve: 16x + 71 = 10

6x+7=10 or 6x+7=-10

6x =3 6x = —17
_1 _ 17
) * 6

7.4. Solve:5lxI-3 =06

First isolate the absolute value expression, then write the two equivalent equations that do not contain the
absolute value symbol.

5[« =9
9
i =3
9 _9
x=73 or x=—3
7.5. Solve:315-2xI +4 =9
First isolate the absolute value expression.
3|5 —2x| =5
|5 —2x| = %

Now write and solve the two equivalent equations that do not contain the absolute value symbol.

_S B
5—2x—3 or 5—2x= 3
_ _10 _h. - 20
2x = 3 2x = 3
=3 _10
T3 T3

7.6. Solve: I5x -3 = -8

Since the absolute value of a number is never negative, this equation has no solution.

7.7. Solve: [2x - 5| = 8x + 3l

Transform into equivalent equations that do not contain the absolute value symbol and solve:
2x —5=8x+3 or 2x—5=—B8x +3)

—6x = 8 2x—5=-8—3

10x = 2

[
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7.8. Solve: lx +51>3

7.9.

7.10.

7.11.

7.12.

Transform into equivalent inequalities that do not contain the absolute value symbol and solve:

x+5>3 or x+5<-3

x> =2 x< -8

Solution: (—o%,—8)U(—2,%)

Solve: Ix -3l = 10
Transform into an equivalent double inequality and solve:
—-10=x—-3=10
-7T=x=13

Solution: [—7,13]

Solve: 42x — 71 + 5 <19
Isolate the absolute value symbol, then transform into an equivalent double inequality and solve:

4l2x — 7| < 14
‘Zx — 7’<%

7 7
§<2X 7<§

7 21
§<2X<7

7 21
4_<x< 4

Solution: (% %71)

Solve: I5x — 31 > -1

Since the absolute value of a real number is always positive or zero—hence, always greater than any negative
number—all real numbers are solutions.

Write as an inequality statement with and without the absolute value symbol and graph the solutions on a
number line: The distance between x and a is less than &.

In terms of the absolute value symbol, this statement becomes Ix — al < 3. Rewrite as a double linequality and
solve:

—d<x—a<3d
a—-9d<x<a+3
The graph is shown in Fig. 7-4:

X
1
1

L
\ o

a-=0 a+é

2

Figure 7-4
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SUPPLEMENTARY PROBLEMS

7.13. Prove: labl = lallbl. (Hint: Consider the cases separately for various signs of a and b.)
7.14. (a) Prove: for any real number x, —lxl = x = Ixl. (b) Use part (a) to prove the triangle inequality.

7.15. Write as an equation or inequality and solve:
(a) The distance between x and 3 is equal to 7. (b) 5 is twice the distance between x and 6.
(c) The distance between x and —3 is more than 2.

Ans. (a) be = 31=7;{=4,10}; (b) 5=2lx — 6l; {4, 2}; () b + 31> 2; (—,—5) U (—1,%)

7.16. Solve: (a) |x + 8| =5;(b) |x + 5] <8 (c) x—3| =4
Ans. (a) {—13,=3};(b) (—13,3);(c) (—°,—1] U [7,%)

7.17. Solve: (a) [x| + 8 = 5;(b) 2|x| + 5=8;(c) [x + 8| —5>1
Ans. (a) no solution; (b) [—3,3]; (¢) (—,—14) U (—2,%)

7.18. Solve: 15 —2d =3l + 1l Ans. {-8,%}
7.19. Solve: 13 — 5x = 9 Ans. (o0, =] U [£, =)
7.20. Solve 3x + 4l +5 <1 Ans. No solution

7.21. Solve: (a) 0 <Ix—51<& () 0<R2x+3l = 7;(c) 0<Ix—¢cl =3
Ans. (a) (-3,5) U (5,13); (b) [-5, —=3/2) U (—3/2,2];(c) [c —8,¢) U (¢, c + 8]



CHAPTER 8

Analytic Geometry

Cartesian Coordinate System

A Cartesian coordinate system consists of two perpendicular real number lines, called coordinate axes, that
intersect at their origins. Generally one line is horizontal and called the x-axis, and the other is vertical and
called the y-axis. The axes divide the coordinate plane, or xy-plane, into four parts, called quadrants, and num-
bered first, second, third, and fourth, or I, II, III, and I'V. Points on the axes are not in any quadrant.

One-to-One Correspondence
A one-to-one correspondence exists between ordered pairs of numbers (a,b) and points in the coordinate
plane (Fig. 8-1). Thus,
1. To each point P there corresponds an ordered pair of numbers (a,b) called the coordinates of P. a is
called the x-coordinate or abscissa; b is called the y-coordinate or ordinate.
2. To each ordered pair of numbers there corresponds a point, called the graph of the ordered pair. The
graph can be indicated by a dot.
y

IT I
P(a,b)
> &
I v
Figure 8-1

Distance between Two Points
The distance between two points P (x,,y,) and P,(x,,y,) in a Cartesian coordinate system is given by the dis-
tance formula:

dP,p,) = \/(xz —x)?+ (3 — )2
EXAMPLE 8.1 Find the distance between (—3,5) and (4,—1).
Label P,(x,,y,) = (=3,5) and P,(x,,y,) = (4,—1). Then substitute into the distance formula.
d(P,Py) = V(x, — x)2 + (v, — y))?
= V4 = (=3P + [(-]) = 5P
— V7 E (68 = V&S
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Graph of an Equation

The graph of an equation in two variables is the graph of its solution set, that is, of all ordered pairs (a,b) that
satisfy the equation. Since there are ordinarily an infinite number of solutions, a sketch of the graph is gen-
erally sufficient. A simple approach to finding a sketch of a graph is to find several solutions, plot them, then
connect the dots with a smooth curve or line.

EXAMPLE 8.2 Sketch the graph of the equation x — 2y = 10.

Form a table of values; then plot the points and connect them. The graph is a straight line, as shown in Fig. 8-2.

1Y

Figure 8-2

Intercepts
The coordinates of the points where the graph of an equation crosses the x-axis and y-axis have special names:

1. The x-coordinate of a point where the graph crosses the x-axis is called the x-intercept of the graph. To
find it, set y = 0 and solve for x.

2. The y-coordinate of a point where the graph crosses the y-axis is called the y-intercept of the graph. To
find it, set x = 0 and solve for y.

EXAMPLE 8.3 In the previous example, the x-intercept of the graph is 10, since the graph crosses the x-axis at (10,0);
and the y-intercept is —5, since the graph crosses the y-axis at (0,—5).

EXAMPLE 8.4 Find the intercepts of the graph of the equation y = 4 — x2.

Set x = 0; then y = 4 — 0% = 4. Hence the y-intercept is 4.

Sety = 0.1f 0 = 4 — x2, then x*> = 4; thus x = *2. Hence 2 and —?2 are the x-intercepts.

Symmetry

Symmetry is an important aid to graphing more complicated equations: A graph is

1. Symmetric with respect to the y-axis if (—a,b) is on the graph whenever (a,b) is on the
graph. (y-axis symmetry)

2. Symmetric with respect to the x-axis if (a, —b) is on the graph whenever (a,b) is on the graph.
(x-axis symmetry)

3. Symmetric with respect to the origin if (—a,—b) is on the graph whenever (a,b) is on the
graph. (origin symmetry)

4. Symmetric with respect to the line y = x if (b,a) is on the graph whenever (a,b) is on the graph.

Tests for Symmetry
Tests for symmetry (Fig. 8-3):

1. If substituting —x for x leads to the same equation, the graph has symmetry with respect to the y-axis.

2. If substituting —y for y leads to the same equation, the graph has symmetry with respect to the x-axis.

3. If simultaneously substituting —x for x and —y for y leads to the same equation, the graph has symme-
try with respect to the origin.
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Terminology Test Ilustration
y
A
The graph is sym- The equation is
metric with respect to | unchanged when x s (-a.b) (@b)
the y-axis replaced by —x > x
y
L A
The eraph is svm. The equation is
grap Y unchanged when y is T @h
metric with respect to \
the x-axis replaced by -y > x
/4"‘b)
y
A
The graph is sym- The equation is .
metric with respect to unchanged when xis (a.b)
the origin replaced by —x and ) > x
y is replaced by -y (-a.-b)
y
A /y=x
ion i ab) /
The graph is sym- Thehequat(lion ;s /,
metric with respectto | UnCRanged when x ~ [ (ba)
the line v = x and y are inter- > x
Y changed /
/
7
/7

Figure 8-3
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Note: a graph may have none of these three symmetries, one, or all three. It is not possible for a graph to have
exactly two of these three symmetries.

The fourth symmetry is less commonly tested:

4. If interchanging the letters x and y leads to the same equation, the graph has symmetry with respect to
the line y = x.

EXAMPLE 8.5 Test the equation y = 4 — x? for symmetry and draw the graph.

Substitute —x for x: y = 4 — (—x)> = 4 — x% Since the equation is unchanged, the graph has y-axis symmetry (see
Fig. 8-4).

Substitute —y for y: —y = 4 — x% y = —4 + x2. Since the equation is changed, the graph does not have x-axis symme-
try. It is not possible for the graph to have origin symmetry; see the previous note. Since the graph has y-axis symme-
try, it is only necessary to find points with nonnegative values of x, and then reflect the graph through the y-axis.

x{{0|1]2]|3| 4 2
ylal3]o]-s]-12 3/ 1 3"
-2
-4
Figure 8-4

Circle

A circle with center C(h,k) and radius r > 0 is the set of all points in the plane that are r units from C
(Fig. 8-5).

y
ﬁ P(x.y)

r

C(h,k)

~— )x

Figure 8-5

Equation of a Circle
The equation of a circle with center C(h,k) and radius » > 0 can be written as (standard form)

= hP+ (v =2 =P
If the center of the circle is the origin (0,0), this reduces to
X2+ y2 =2

If r = 1 the circle is called a unit circle.
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Midpoint of a Line Segment

The midpoint of a line segment with endpoints P,(x,,y,) and P,(x,,y,) is given by the midpoint formula:

X+ x oyt )’2>

Midpoint of P,P, = ( )

SOLVED PROBLEMS

8.1. Prove the distance formula.

InFig. 8-6, P, and P, are shown. Introduce Q(x,, y,) as shown. Then the distance between P, and Q is the difference
in their x-coordinates, Ix2 — xll; similarly, the distance between @ and P, is the difference in their
y-coordinates, ly, — y/|. In the right triangle P,P,Q, apply the Pythagorean theorem: &= Ix, — xll2 +ly, — y1|2 =
(x, — x)* + (y, — y,)% since lal® = a? by the properties of absolute values. Hence, taking the square root and noting
that d, the distance, is always positive, d(P,,P,) = \/()c2 —x)?+ (O, — ¥

Yy
A
Py(x3,y,)

d lys — 4l
x

Py Ty —x)  Qryy)

Figure 8-6

8.2. Find the distance d(P,P,) given
(@) P, (=5,—4), P(=8,0); (b) P,2V2,2V/2), P(0,5V2); () P,(x,x?), Py(x + I,(x + h)?)
(a) Substitute x, = =5,y = —4,x, = =8, y, = 0 into the distance formula:
d=V(, = x)?+ 0, = )P
VI(=8) = (=5)P + [0 — (-4
V9 +16=V25=5

(b) Substitute x; = 2\/5, v = 2\/5, x,=0,y,= 5\61nto the distance formula:
d= V0= x)?+ (v, — )2
= V0 - 2V22 + 5V2 - 2V2y
= V(-2V2p + 3Va2p
= V8 +18= V2

(c) Substitute x, = x,y, = X2, X,=x+hy =+ h)? into the distance formula and simplify.
d= \/(xz —x)? + (v, — )
= V& + h = xp + [(x + hp — 2P
= ViE + @+ R

= VI + 42h? + 4xh® + bt
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8.3. Analyze intercepts and symmetry, then sketch the graph:

(a)
(a)

(b)

(©)

y=12—4x;(b) y=x>+3;(c) y* + x =5;(d) 2y = x.

Setx = 0,theny = 12 — 4 - 0 = 12. Hence 12 is the y-intercept.

Sety = 0, then 0 = 12 — 4x; thus x = 3. Hence 3 is the x-intercept.

Substitute —x for x: y = 12 — 4(—x); y = 12 + 4x. Since the equation is changed, the graph (see Fig. 8-7)
does not have y-axis symmetry.

Substitute —y for y: —y = 12 — 4x; y = —12 + 4x. Since the equation is changed, the graph does not have
X-axis symmetry.

Substitute —x for x and —y fory: —y = 12 — 4(—x); y = — 12 — 4x. Since the equation is changed, the graph
does not have origin symmetry.

Form a table of values; then plot the points and connect them. The graph is a straight line.

y
w
x{{-1|0 1 ;2|3 |[4]S5 10
ylli6]12| 8| 4]0 ]|-4|-8
5
X
-1 1 2 3N ¢4

Figure 8-7

Setx = 0, then y = 0> + 3 = 3. Hence 3 is the y-intercept.

Sety = 0, then 0 = x?> + 3. This has no real solution; hence there is no x-intercept.

Substitute —x for x: y = (—x)> + 3 = x*> + 3. Since the equation is unchanged, the graph (Fig. 8-8) has
y-axis symmetry.

Substitute —y for y: —y = x> + 3; y = —x?> — 3. Since the equation is changed, the graph does not have
X-axis symmetry.

It is not possible for the graph to have origin symmetry. Since the graph has y-axis symmetry, it is only
necessary to find points with nonnegative values of x, and then reflect the graph through the y-axis.

12)’
xfol1]2]3] 4 12
yll3lal7]12] 19 6
4
2

X

-3 -2 -1 1 2 3

Figure 8-8

Setx =0, theny?> + 0 = 5;thusy = = \[5 Hence = \@ are the y-intercepts.

Sety = 0, then x = 5; hence 5 is the x-intercept.

Substitute —x for x: y> — x = 5. Since the equation is changed, the graph (see Fig. 8-9) does not have y-axis
symmetry.

Substitute —y for y: (—y)> + x = 5; y> + x = 5. Since the equation is unchanged, the graph has x-axis
symmetry.

It is not possible for the graph to have origin symmetry. Since the graph has x-axis symmetry, it is only
necessary to find points with nonnegative values of y, and then reflect the graph through the x-axis.
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4
«lfs]4|1]<]-11 \z

yjlof1{2)31| 4 -10-7.5-5-2.5 y
/4

Figure 8-9

(d) Setx = 0, then 2y = 0% thus y = 0. Hence 0 is the y-intercept.
Sety = 0, then 2 - 0 = x%; thus x = 0. Hence O is the x-intercept.
Substitute —x for x: 2y = (—x)%; 2y = —x°. Since the equation is changed, the graph (Fig. 8-10) does not
have y-axis symmetry.
Substitute —y for y: 2(—y) = x% 2y = —x>. Since the equation is changed, the graph does not have x-axis
symmetry.
Substitute —x for x and —y for y: —2y = (—x)3; 2y = x°. Since the equation is unchanged, the graph has origin
symmetry.
From a table of values for positive x, plot the points and connect them, then reflect the graph through the origin.

y
ol 1 [ 2] 3 4 10
5
y il 0 1 4 27 32 x
3 2 1 2 3

Figure 8-10

8.4. Analyze intercepts and symmetry, then sketch the graph:
(@) y=Id — 4;(b) 4x* + y>=36;(c) Ixl + Iyl =3;(d) x*y = 12.

(a) Proceeding as in the previous problem, the x-intercepts are +4 and the y-intercept is —4. The graph has
y-axis symmetry. Form a table of values for positive x, plot the points and connect them, then reflect the
graph (Fig. 8-11) through the y-axis.

Figure 8.11

(b) The x-intercepts are =3 and the y-intercepts are *=6.
The graph has x-axis, y-axis, and origin symmetry. Form a table of values for positive x and y, plot the points
and connect them, then reflect the graph (Fig. 8-12), first through the y-axis, then through the x-axis.
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Y||6| ./32=~56 | y20~44 | O

Figure 8-12

Y

\ x

j
(c) The x-intercepts are *3 and the y-intercepts are *3.

The graph has x-axis, y-axis, and origin symmetry. Form a table of values for positive x and y, plot the points
and connect them, then reflect the graph (Fig. 8-13), first through the y-axis, then through the x-axis.

Yy
xiff0j 17123
2
312{110
Y 1
X
/

Figure 8-13

(d) There are no x- or y-intercepts.
The graph has y-axis symmetry. Form a table of values for positive x, plot the points and connect them, then

reflect the graph (Fig. 8-14) through the y-axis.
2 4

x 0 1] 2 3 4

y|| undefined | 12} 3| 4/3| 3/4

P N w0

-4 -2
Figure 8-14

8.5. Find the center and radius for the circles with the following equations:

(@) 32 = 9:(b) (x = 37 + (v + 27 = 25:(¢) (v + 5 +(y + 3P= 21
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(a) Comparing the given equation with the form x> + y? = 12, the center is at the origin. Since /2 = 9, the
radius is V9 = 3.

(b) Comparing the given equation with the form (x — h)> + (y — k)*> = 2, h = 3 and —k = 2; hence the center
is at (h,k) = (3,—2). Since 1* = 25, the radius is V25 = 5.

(¢) Comparing the given equation with the form (x — k) + (y — k)* = 12, —h = 5 and —k = 3; hence the
center is at (h,k) =(—5, —%). Since r? = 21, the radius is V 21.

8.6. Find the equations of the following circles: (a) center at origin, radius 7; (b) center at (2,—3), radius \/ﬁ;
(c) center at (—5'V/2, 0), radius 5V/2.
(a) Substitute r = 7 into x> + y> = r2. The equation is x> + y? = 49.
(b) Substitute h = 2,k = =3, =\ 14 into (x — B2 + (y — k)2 = A
The equation is (x — 2)> + [y — (=3)]? =(V14)or (x —2)? + (v + 372 = 14.
(c) Substitute h =—5V/2, k=0, r =5V 2 into (x — h)> + (y — k> = 1.
The equation is [x — (=5 V2)12 + (y — 0)2 = (5V2)%20r (x + 5V2)2 + y2 = 50.

8.7. Find the center and radius of the circle with equation x> + y*> — 4x — 12y = 9.
Complete the square on x and y.
2 —dx 42— 12y =9 Lol =4 fenf =36
X —4x+4+y - 12y +36 =4+36+9 Add 4 + 36 to both sides
(x =2+ (y—67=49

Comparing this equation with the form (x — h)?> + (y — k)*> = 12, the center is at (h,k) = (2,6) and the radius is 7.

8.8. Prove the midpoint formula.

InFig. 8-15, P (x.,y,) and P,(x,.y,) are given. Let (x,y) be the unknown coordinates of the midpoint M. Project the
points M, P, P,to the x-axis as shown.

y

M(x,y)
Pi(x1,y1 2/A Pabay)

> x

Figure 8-15

From plane geometry it is known that the projected segments are in the same ratio as the original segments. Hence
the distance from x, to x is the same as the distance from x to x,. Thus, x, — x = x — x,. Solving for x yields

—2x=—x1—x2
7xl+x2
T
»nty
5

Similarly, it can be shown by projecting onto the y-axis that y =
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8.9.

8.10.

8.11.

8.12.

Find the midpoint M of the segment P P, given P (3,—8), P,(—6,6).

Substitute x, = 3,y, = —8,x, = —6, y, = 6 into the midpoint formula. Then

XX oy Ty [(3+(=6) (=8 +6 _(_;_1)
2 2 N 2 ’ 2 N 2’

are the coordinates of M.

Find the equation of a circle given that (0,6) and (8,—8) are the endpoints of a diameter.

Step 1. The center is the midpoint of the diameter. Find the coordinates of the center from the midpoint

formula.
x +x, 9y, ty 6 + (—8
( 1 2 1 2) (0 + 8 ( )) @, 1)

2 2 22

Step 2. The radius is the distance from the center to either of the given endpoints. Find the radius from the
distance formula.

Vi, =22 + (5 =y = V4 = 02 + [(=1) — 6 = V16 + 49 = V65

Step 3. Substitute the calculated radius and coordinates of the center into the standard form for the equation of a

circle. r = V65, (h, k) = (4,—1).
G+ + (O —k2=r
(c =42+ [y = (=D = (V65

x—42+ @+ 1)2=265

Show that the triangle with vertices A(1,3), B(—1,2), C(5, —5) is a right triangle.

Step 1. First find the lengths of the sides from the distance formula

dAB) =V, —x 2+ —y2=VI-)-1P+@2-32=V5=c¢

dB.C) = Vi, —x)2 + (0, —y)r = V5 = (=R + [(=5) = 2 = V85 = a

dAC) = Vg —x)2 + (0, — 2= VG — 12+ [(—5) — 3= V80 = b

Step 2. Apply the converse of the Pythagorean theorem.

Since a2 = (V/85)2 = 85 and b2 + ¢2 = (\V80)2 + (V/5)2 = 80 + 5 = 85, the relation a® = b? + ¢2 is
satisfied; hence the triangle is a right triangle.

Show that P(—12,11) lies on the perpendicular bisector of the line segment joining A(0,—3) and B(6,15).

The perpendicular bisector of a segment consists of all points that are equidistant from its endpoints. Thus if
PA = PB, then P lies on the perpendicular bisector of AB. From the distance formula,

dAP) = Vi, — 1P + (0, — y? = VI(=12) = 0F + [11 — (=3)] = /340 = PA

dP.B) = V(x, — )2 + (o, — y2 = VI6 — (=12)]2 + (15 — 11)2 = V340 = PB

Hence PA = PB and P lies on the perpendicular bisector of AB.



CHAPTER 8 Analytic Geometry

8.13. Find an equation for the perpendicular bisector of the line segment joining A(7,—8) and B(—2, 5).

The perpendicular bisector of a segment consists of all points that are equidistant from its endpoints. Thus if
PA = PB, then P lies on the perpendicular bisector of AB. Let P have the unknown coordinates (x,y). Then, from
the distance formula, PA = PB if

PA=Vax-72+1[y—(-8P2=Vix— (=22 + (y— 52 = PB
Squaring both sides and simplifying yields
=7+ — (=8P =x— (=P + -5’
X —1dx+49+y?+ 16y + 64 =x>+4x +4 +y>— 10y + 25
18x — 26y = 84
9x — 13y =42

This is the equation satisfied by all points equidistant from A and B. Hence, it is the equation of the
perpendicular bisector of AB.

SUPPLEMENTARY PROBLEMS

8.14. Describe the set of points that satisfy the relations: (a) x = 0; (b) x>0; (c) xy<0;(d) y> 1.
Ans. (a) All points on the y-axis; (b) all points to the right of the y-axis;

(c) all points in the second and fourth quadrants; (d) all points above the line y = 1.

8.15. Find the distance between the following pairs of points: (a) (0,—7) and (7,0); (b) (—3 \[3,—3) and (3 \@, 3),
Ans. (a) 7V2; (b) 12

8.16. Find the length and the midpoint of the line segment with the given endpoints:
(2) A(L,8), B(~3.4); (b) AG,~7), B0.8); (¢) A(1,V/2), B(—1.5V/2)
Ans. (a) length 4\6, midpoint (—1,6); (b) length 3V 26, midpoint (%, %), (c) length 6, midpoint (0,3 \/i)

8.17. Analyze the following for symmetry. Do not sketch graphs:
(@) xy? = 4;(b) ¥y = 4, (c) [xy| = 4 (D) x> + xy =4
@x2+y+y=4Ox2+xy+y2=4
Ans. (a) x-axis symmetry; (b) origin symmetry; (c) x-axis, y-axis, origin symmetry;

(d) origin symmetry; (e) y-axis symmetry; (f) origin symmetry

8.18. Analyze symmetry and intercepts, then sketch graphs 1y
of the following:

(a) 3x+4y+12=0 (b) y» =10+ x
) y¥»—x*=9 @yl —Ixl =3

Ans. (a) Fig. 8-16: x-intercept —4, y-intercept —3, no symmetry

Figure 8-16
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(b) Fig. 8-17: x-intercept — 10, y-intercepts * V' 10, y —
Xx-axis symmetry 2

(c) Fig. 8-18: no x-intercept, y-intercept =3,

y
X-axis, y-axis, origin symmetry N—/
2
x
-4 -2 2 4
-2
/:\
Figure 8-18
(d) Fig. 8-19: no x-intercept, y-intercepts *3, y
X-axis, y-axis, origin symmetry 6
4
2
X
-3-2-1 1 2 3
-2
/ \
-6
Figure 8-19
8.19. Analyze symmetry and intercepts, then sketch graphs of the following: y
(@ x+y=0;0)y+ x| =4@ 2 =4y 4
@ [y| +x2=45() x| = H%H) —x* =4 5
Ans. (a) Fig. 8-20: x-intercepts 0, y-intercept 0, origin symmetry
X
-4 2 2 4
-2
-4

Figure 8-20
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(b) Fig. 8-21: x-intercepts *4, y-intercept 4, y
y-axis symmetry 4
3
2
1
X
-6 -2 2 4\ 6
-1
-2
Figure 8-21
(c) Fig. 8-22: x-intercept 0, y-intercept 0, x-axis, y
y-axis, origin symmetry 2
1
6 4 =2 2 4 67
-1
-2
Figure 8-22
(d) Fig. 8-23: x-intercepts *2, y-intercepts *4, x-axis, y
y-axis, origin symmetry 15
10
5
X
-6 4 2\ 4 6

-15
Figure 8-23

(e) Fig. 8-24: x-intercept 0, y-intercept 0, x-axis,
y-axis, origin symmetry

Figure 8-24
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(f) Fig. 8-25: no intercepts, x-axis symmetry y

— N

432 123 e

2

4
Figure 8-25

8.20. Find the equations of the following circles: (a) center (5,—2), radius W; (b) center (%,—%), diameter 3;
(c) center (3,8), passing through the origin; (d) center (—3,—4), tangent to the y-axis.
Ans. (@) =52+ @ +22=VI10;00) (x = + (y+3) =%
© =32+ —8*=73(d) x+3)?*+(@+42=9

8.21. Find the equations of the following circles: (a) center (5,2), (3,—1) is a point on the circle;
(b) (5,—5) and (—3,—9) are end points of a diameter.
Ans. (@) x =52+ (@ —22=13;(b) x— 12+ (y + 72 =20
8.22. For the following equations, determine whether they represent circles, and if so, find the center and radius:
(@) >+ 2+ 8 +2y=5;(b) ¥*+y>—4x — 8y +20=0; (c) 22> + 2y> — 6x + 14y = 3;
(d) x>+ y*+ 12x + 20y + 200 = 0
Ans. (a) circle; center (—4, —1), radius \/ﬁ; (b) this is not a circle; the graph consists only of the point (2,4);

(c) circle, center (%,f%), radius 4; (d) this is not a circle; there are no points on the graph.
8.23. Show that the triangle with vertices (—10,7), (—6,—2), and (3,2) is isosceles.
8.24. Show that the triangle with vertices (4, \/g), (5,0), and (6, \/g) is equilateral.
8.25. Show that the triangle with vertices (6,9), (1,1), and (9,—4) is an isosceles right triangle.
8.26. Show that the quadrilateral with vertices (—3,—3), (5,—1), (7,7), and (—1,5) is a rhombus.
8.27. Show that the quadrilateral with vertices (7,2), (10,0), (8,—3), and (5,—1) is a square.

8.28. (a) Find the equation of the perpendicular bisector of the line segment with endpoints (—2,—5) and (7,—1).

(b) Show that the equation of the perpendicular bisector of the line segment with endpoints (x,,y,) and (x,,y,)

X —X y—y _ __ . . .
¥ = + o 0, where (x,y) are the coordinates of the midpoint of the segment.

can be written

Ans. (a) 18x + 8y =21
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Functions

Definition of Function

A function f from set D to set E is a rule or correspondence that assigns to each element x of set D exactly
one element y of set E. The set D is called the domain of the function. The element y of E is called the image
of x under £, or the value of fat x, and is written f(x). The subset R of E consisting of all images of elements
of D is called the range of the function. The members of the domain D and range R are referred to as the input
and output values, respectively.

EXAMPLE 9.1 Let D be the set of all words in English having fewer than 20 letters. Let f be the rule that assigns
to each word the number of letters in the word. Then E can be the set of all integers (or some larger set); R is the set
{x e NI1 =x < 20}. fassigns to the word “truth” the number 5; this would be written f(truth) = 5. Moreover, f(a) = 1
and f (president) = 9.

Note that a function assigns a unique function value to each element in its domain; however, more than one element may
be assigned the same function value.
EXAMPLE 9.2 Let D be the set of real numbers and g be the rule given by g(x) = x> + 3. Find: g(4), g(—4),
g(a) + g(b), g(a + b). What is the range of g?
Find values of g by substituting for x in the rule g(x) = x> + 3:
ghH=42+3=19 g—=dH=0-49+3=19
ga)+gb)=a*+3+P+3=a>+b+6
gla+by=(a+b?+3=a*+2ab+b*+3

The range of g is found by noting that the square of a number, x2, is always greater than or equal to zero.
Hence g(x) = x> + 3 = 3. Thus, the range of g is {y € Rly = 3}.

Function Notation
A function is indicated by the notation f: D — E. The effect of a function on an element of D is then written
f:x = f(x). A picture of the type shown in Fig. 9-1 is often used to visualize the function relationship.

f

f(x)

D E
Figure 9-1

Domain and Range

The domain and range of a function are normally sets of real numbers. If a function is defined by an expression
and the domain is not stated, the domain is assumed to be the set of all real numbers for which the expression
is defined. This set is called the implied domain, or the largest possible domain, of the function.




CHAPTER 9 Functions

EXAMPLE 9.3 Find the (largest possible) domain for (a) f(x) = i ; 2; (b) gx) = Vx — 5;(c) h(x) =x*—4
(a) The expression x—3 is defined for all real numbers x except when x + 6 = 0, that is, when x = —6. Thus the

x +
domain of fis {x € Rlx # —6}.

(b) The expression Vx — 5 is defined when x — 5 = 0, that is, when x = 5. Thus the domain of g is {x € Rlx = 5}.
(c) The expression x*> — 4 is defined for all real numbers. Thus the domain of / is R.

Graph of a Function
The graph of a function f'is the graph of all points (x,y) such that x is in the domain of f, and y = f(x).

Vertical Line Test

Since for each value of x in the domain of f there is exactly one value of y such that y = f(x), a vertical line
x = ¢ can cross the graph of a function at most once. Thus, if a vertical line crosses a graph more than once,
the graph is not the graph of a function.

Increasing, Decreasing, and Constant Functions

1. If, for all x in an interval, as x increases, the value of f(x) increases, thus, the graph of the function
rises from left to right, then the function f'is called an increasing function on the interval. A function
that is increasing throughout its domain is referred to as an increasing function. Algebraically, then,
Jfis increasing on (a, D) if for all x,, x, in (a, b), when x, < x,, f(x,) < f(x,).

2. If, for all x in an interval, as x increases, the value of f(x) decreases, thus, the graph of the function
falls from left to right, then the function fis called a decreasing function on the interval. A function
that is decreasing throughout its domain is referred to as a decreasing function. Algebraically, then,
fis decreasing on (a, b) if for all x|, x, in (a, b), when x, < x,, f(x,) > f(x,).

3. If the value of a function does not change on an interval, thus, the graph of the function is a horizontal
line segment, then the function is called a constant function on the interval. A function that is constant
throughout its domain is referred to as a constant function. Algebraically, then, fis constant on (a, b) if
for all x|, x, in (a, b), f(x,) = f(x,).

EXAMPLE 9.4 Given the graph of f(x) shown in Fig. 9-2, assuming the domain of fis R, identify the intervals on
which fis increasing or decreasing:

y

2

15
10

5 23
X
-2 2 4 6
Figure 9-2

As x increases through the domain of £, y decreases until x = 2, then increases. Thus the function is decreasing on (—,2)
and increasing on (2,%).

Even and Odd Functions

1. If, for all x in the domain of a function f, f(—x) = f(x), the function is called an even function. Since, for
an even function, the equation y = f(x) is not changed when —x is substituted for x, the graph of an even
function has y-axis symmetry.
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2. If, for all x in the domain of a function f, f(—x) = —f(x), the function is called an odd function. Since, for
an odd function, the equation y = f(x) is not changed when —x is substituted for x and —y is substituted
for y, the graph of an odd function has origin symmetry.

3. Most functions are neither even nor odd.

EXAMPLE 9.5 Determine whether the following functions are even, odd, or neither:

(@) flx) = 7% (b) gx) =4x+ 6 (¢) h(x) = 6x — Vx d) Fix) = ﬁ

(a) Consider f(—x). f(—x) = 7(—x)*> = 7x% Since f(—x) = f(x), fis an even function.

(b) Consider g(—x). g(—x) = 4(—x) + 6 = —4x + 6. Also, —g(x) = —(4x + 6) = —4x — 6. Since neither g(—x) = g(x)

nor g(—x) = —g(x) is the case, the function g is neither even nor odd.
(c) Consider A(—x). h(—x) = 6(—x) — V—x = —6x + Vx. Thus, h(—x) = —h(x) and / is an odd function.

. . 4 _ 4
(d) Consider F(—x). F(—x) = ———©¢ = — ¢

function F is neither even nor odd.

. Since neither F(—x) = F(x) nor F(—x) = —F(x) is the case, the

Average Rate of Change of a Function
Let f'be a function. The average rate of change of f(x) with respect to x over the interval [a,b] is defined as

Change in f(x) _ f(b) — f(a)

Change in x b—a

Over an interval from x to x + & this quantity becomes

Jax+h —f®
h

which is referred to as the difference quotient.

EXAMPLE 9.6 Find the average rate of change of f(x) = x? on the interval [1,4].

f@ —f a2
Calculate: i-1 ~ 3 =3.

EXAMPLE 9.7 Find the difference quotient for f(x) = x2.

fot+h) —f0) G+ - 24+ b+ —x_ b+ R

h h h h

= 2x + h,forh # 0.

Independent and Dependent Variables

In applications, if y = f(x), the language “y is a function of x” is used. x is referred to as the independent
variable, and y as the dependent variable.

EXAMPLE 9.8 In the formula A = w72, the area A of a circle is written as a function of the radius r. To write the radius

. . . . A A .. .. ..
as a function of the area, solve this equation for r in terms of A, thus: 2 = —, r = t\/;. Since the radius is a positive

e
quantity, r = \/g gives r as a function of A.

SOLVED PROBLEMS

9.1. Which of the following equations defines y as a function of x?
@ y=2+40) x=y+5(@ y=Vx—5@d y=5) 2> —) =36
(a) Since for each value of x there is exactly one corresponding value of y, this defines y as a function of x.

(b) Letx = 6. Then 6 = y> + 5; thus y> = 1 and y = *1. Since for at least one value of x there correspond two
values of y, this equation does not define y as a function of x.
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9.2.

9.3.

9.4.

9.5.

(c) Since for each value of x there is exactly one corresponding value of y, this defines y as a function of x.
Note that the radical symbol defines y as the positive square root only.

(d) Since for each value of x there is exactly one corresponding value of y, namely 5, this defines y as a function of x.

(e) Letx = 10. Then 10> — y? = 36, thus y* = 64 and y = *8. Since for at least one value of x there
correspond two values of y, this equation does not define y as a function of x.

Given f(x) = x* — 4x + 2, find (a) f(5); (b) f(=3); (¢) f(a); (d) f(a + b); (e) f(a) + f(b).

Replace x by the various input values provided:

@ f6)=52—-4-5+2=T;(b) f(—=3)= (-3 —4(=3)+2=23;(c) fla)=a®> —4a +2

(d) Here x is replaced by the entire quantity a + b.
fla+b)=@+bP?—4(a+b)+2=a>+2ab+b*—4a—4b+2

(e) Here x is replaced by a and by b, then the results are added. f(a) = a®> — 4a + 2; f(b) = b> — 4b + 2;
hence f(a) + fb)=a*>—4a+2+b* —4b+2=a>+b*—4a—4b+ 4

Given g(x) = —2x? + 3x, find and simplify (a) g(h); (b) g(x + h); (c) M

(a) Replace x by h. g(h) = —2h* + 3h.
(b) Replace x by the entire quantity x + h.

gx+h)=—=2(x+ h?+3x+ h) = —2x* — 4xh — 2h* + 3x + 3h
(c) Use the result of part (b).

gx + h) —glx)  [2(x + h)? + 3(x + h)] — (—2x* + 3x)
h N h

_ —2x% — 4xh — 2h* + 3x + 3h + 2x* — 3x
h
_ —dxh — 2 + 3h _

= 5 —4x —2h + 3

Given f(x) = %and g(x) = 4 — x% find (a) f(a)g(b); (b) f(g(a)); (c) g(f(b)).

1 4 - p
;)(4 - =T

(b) To find f(g(a)), first substitute a into the rule for g to obtain g(a) = 4 — a?, then substitute this into the rule

for f'to obtain f(g(a)) = f(4 — a®) = m-

(a) To find f(a)g(b), substitute, then multiply: fla) = é; g(b) = 4 — b* hence f(a)g(b) = <

(c) To find g(f(b)), first substitute b into the rule for f to obtain f(b) = #, then substitute this into the rule for g to
. (1) _ 1)
obtain g(f(b)) = g v 4 — »)

Find the domain for each of the following functions: (a) f(x) = 3x — x%; (b) f(x) = ﬁ;

2—3x+2 3[x + 1
© f) =555 @ ) = Va + 5:() f) = Va2 — 8x + 12 () f0) =[5 .
X+ 2x 24x X 8
(a) This is an example of a polynomial function. Since the polynomial is defined for all real x, the domain of
the function is all real numbers, R.

(b) The expression ﬁ is defined for all real numbers except if the denominator is 0. This occurs when

x2 — 9 = 0; thus x = *=3. The domain is therefore {x € Rlx # *=3}.
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9.7.

9.8.

CHAPTER 9 Functions

(c) The expression on the right is defined for all real numbers except if the denominator is 0. This occurs when
X3+ 2x2 — 24x = 0, or x(x — 4)(x + 6) = 0, thus x = 0, 4, —6. The domain is therefore {x € Rlx # 0,4, —6}.

(d) The expression Vx + 5 is defined as long as the expression under the radical is nonnegative. This occurs
when x + 5 = 0 or x = —5. The domain is therefore {x € Rlx = —5}, or the interval [—5, ).

(e) The expression on the right is defined as long as the expression under the radical is nonnegative.
Solving x> — 8x + 12 = 0 by the methods of Chapter 6, x =< 2 or x = 6 is obtained. The domain is

therefore {x € Rlx = 2 or x = 6}.

(f) The cube root is defined for all real numbers. Thus the expression on the right is defined for all real
numbers except if the denominator is 0. This occurs when x* — 8 = 0 or (x — 2)(x? + 2x + 4) = 0, thus
only when x = 2. The domain is therefore {x € Rlx # 2}.

Write the circumference C of a circle as a function of its area A.

In Example 9.5 the radius r of a circle was expressed as a function of its area A: r = \/g Since C = 2, it

follows that C = 277\/% expresses C as a function of A.

A theater operator estimates that 500 tickets can be sold if they are priced at $7 per ticket, and that for each $.25
increase in the price of a seat, two fewer seats will be sold. Express the revenue R as a function of the number n

of $.25 price increases of a ticket.

The price of a ticket is 7 + 0.25n and the number of tickets sold is 500 — 2n. Since revenue = (number of seats
sold) X (price per seat), R = (7 + 0.251)(500 — 2n).

A field is to be marked off in the shape of a rectangle, with one side formed by a straight river. If 100 feet is
available for fencing, express the area A of the rectangle as a function of the length of one of the two equal sides x:

100 - 2x

Figure 9-3

Since there are two sides of length x, the remaining side has length 100 — 2x.
Since Area = length X width for a rectangle,
A = x(100 —2x).

9.9. Arectangle is inscribed in a circle of radius r (see Fig. 9-4). Express the area A of the rectangle as a function of

one side x of the rectangle.

Figure 9-4

From the Pythagorean theorem, it is clear that the sides of the rectangle are related by x> + y? = (2r)2. Thus

y= V42 — x2and A = xV4rZ — 2.
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9.10. A right circular cylinder is inscribed in a right circular cone of height H and base radius R (Fig. 9-5). Express the

9.11.

9.12.

volume V of the cylinder as a function of its base radius r.

A
A
I
|
"
l H
b
I
C F__ID BY
~—R—>
Figure 9-5

In the figure, a cross-section through the axis of the cone and cylinder is shown. Triangle ADC is similar to triangle

. L . EF _ AD h _H .
EFC, hence ratios of corresponding sides are equal. In particular, FC = DC thus, R—r" R Solving for h,
h= %(R — 7). Since for a right circular cylinder, V = wr2h, the volume of this cylinder is V = W%(R - .

Let F(x) = mx, G(x) = x>

(a) Show that F(kx) = kF(x). (b) Show that F(a + b) = F(a) + F(b). (c) Show that neither of these relations
holds in general for the function G.

(a) F(kx) = m(kx) = mkx = kmx = kF(x)
(b) F(a + b) = m(a + b) = ma + mb = F(a) + F(b)

(c) For the function G, compare G(kx) = (kx)> = k*x* with kG(x) = kx°. These are only equal for the special cases
k = 0or k = 1. Similarly, compare G(a + b) = (a + b)*> = a* + 2ab + b* with G(a) + G(b) = a* + b2
These are only equal in case a = 0 or b = 0.

Make a table of values and draw graphs of the following functions: (a) f(x) = 4;

() £ = 5300 f) = 4x = 2% (@) f) =

i >
{ 4e=0 ‘i lix_l_j _,
—4 ifx <0 YT . )

x+2 ifx=—1

(a) Form a table of values; then plot the points and connect them. The graph (Fig. 9-6) is a horizontal
straight line.

y
6
x{{-210 2| 4
5
yil 4] 4 4 4
3
x
-2 -1 1 2 3 4

Figure 9-6
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(b) Form a table of values; then plot the points and connect them. The graph (Fig. 9-7) is a straight line.

X -2 0 4
y -1 3 u 19
3 5 5

1
)
'\
Y R e
%)
=

x
Figure 9-7
(c) Form a more extensive table of values; then plot the points and connect them. The graph (Fig. 9-8) is a
smooth curve.
4y
X
x| 4| =2 4| 6 | 8 -4 -2 2 A & 8
yi-=321|-12 0] -12]-32 -10
-20
-30
Figure 9-8

(d) Form a table of values. The graph (Fig. 9-9) is discontinuous at the point where x = 0.

y
4
2
1 ) 2 2"
-2
Figure 9-9

(e) Form a table of values. The graph (Fig. 9-10) is discontinuous at the point where x = 2. Note that the graph
consists of three separate “pieces,” since the rule defining the function does so also.

x| -3

-2

y|-1

y
4

Figure 9-10
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9.13. Find the range for each of the functions defined in the previous problem.

(a) f(x) = 4. The only possible function value is 4, hence the range is {4}.

b) fx) = 4x5+ 3. Setk = 4+ 3 and solve for x in terms of k to obtain x = Sk 4_

restrictions on k, hence the range is R.

3. There are no

(¢) f(x) = 4x — x* Set k = 4x — x* and solve for x in terms of k to obtain x = 2 = V4 — k. This expression
represents a real number only if k£ =< 4; hence the range is (—,4].

4 ifx=
(@) fx) = { 4 %fx -0 The only possible function values are 4 and —4; hence the range is the set {4,—4}.
—4 ifx
4 ifx =2
(e f(x)=4q —=x if—1<x<2.

x+2 ifx=-1

Ifx = —1,x + 2 = 1; thus f can take on any value in (—, 1]. If —1 <x <2, —2 < —x < 1; this adds nothing to
the range. If x = 2, f(x) = 4; hence the range consists of the set union (—, 1] U {4}.

3 — 5x

9.14. Find the average rate of change for (a) f(x) = 7x + 12 on [2,8]; (b) f(x) = g on [—5,0]
@ f® ~fQ) (78419~ (7-2+1) 682 _,
8§ —2 6 N 6 N
<3 —5A0) B <3 —5(—5)> 3 28
py O =SS 9 9 9 9 259 5
(b) 0— (-5 5 - 5 -5 9
9.15. Find the difference quotient for (a) f(x) = x%; (b) f(x) = é
Je+h —f «+h % P32+ 3R+ B -
(a) = =
h h h
2 2 3
:w:a)ﬁ_’_&xh_’_;ﬂ
1 1
b fae+h) —f) @+hr ¥ -+ h 22— — R
®) 7 = h T e+ b e+ by
_ =2xh—h* _ —2x—h

T oh(x + h)? T 3(x + h)?

SUPPLEMENTARY PROBLEMS

9.16. Let F be any function whose domain contains —x whenever it contains x. Define:

o0 = FOHFCD Ly PO = P

(a) Show that g is an even function and /4 is an odd function.

(b) Show that F(x) = g(x) + h(x). Thus, any function can be written as the sum of an odd function and an even
function.

(c) Show that the only function which is both even and odd is f(x) = 0.

9.17. Are the following functions even, odd, or neither?

X
¥+ 1

X

(@) ) = ) ) =

3(0) f) = Il — %; @ fo) =@ =1+ @&+1)

Ans. (a) odd; (b) neither; (¢) even; (d) odd
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Find the domain for the following functions:

@ 09 = Vi = 3:0) £ = V3~ 5 0) ) = i (@) S = e

Ans. (a) [3,%); (b) (=,3];(c) (3,%);(d) (—=,3)

Find the domain for the following functions:

2
(@) 200 =t =3 (0) 200 = 21 (@) g0 = |52 (@ g9 = VAT O

Ans. (a) R; (b) {xeRIx # 3};(c) (1,2) U [3, »); (d) [9, »)

The income tax rate in a certain state is 4% on taxable income up to $30,000, 5% on taxable income between
$30,000 and $50,000, and 6% on taxable income over $50,000. Express the income tax 7(x) as a function of
taxable income x.

0.04x if 0 < x =< 30,000
Ans.  T(x) = § 1200 + 0.05(x — 30,000) if 30,000 < x = 50,000
2200 + 0.06(x — 50,000) if 50,000 < x

(a) Express the length of a diagonal d of a square as a function of the length of one side s. (b) Express d as a
function of the area A of the square. (c) Express d as a function of the perimeter P of the square.

Ans. (a) d(s) = sV2;(b) d(A) = V24; (c) d(P) = P \f

(a) Express the area A of an equilateral triangle as a function of one side s. (b) Express the perimeter of the
triangle P as a function of the area A.

Ans. (a) A(s) = s>V/3/4; (b) P(A) = (6VA)/V3

An equilateral triangle of side s is inscribed in a circle of radius r.

(a) Express s as a function of r. (b) Express the area A of the triangle as a function of r. (c) Express the area A
of the triangle as a function of a, the area of the circle.

3r\f()A()_3a\f

Ans.  (a) s(r) = rV3;(b) A() =

(a) Express the volume V of a sphere as a function of its radius r. (b) Express the surface area S of the sphere as
a function of r. (c) Express r as a function of S. (d) Express V as a function of S.

/ [ ¢3
Ans. (a) V(r) = *7TI" (b) S(r) = 4mr?; (c) K(S) = %; (d) V(S) =% %T

A right circular cylinder is inscribed in a sphere of radius R. (R is a constant.)
(a) Express the height & of the cylinder as a function of the radius r of the cylinder.
(b) Express the total surface area S of the cylinder as a function of r.

(c) Express the volume V of the cylinder as a function of r.

Ans. (a) h(r) = 2VR* — 1% (b) S(r) = 47rVR> — P2 + 2% (¢) V(r) = 2nPPVR? — 72
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9.26. Which of Figs. 9-11 to 9-14 are graphs of functions?
(a) Figure 9-11 (b) Figure 9-12

\

X
X
Figure 9-11 Figure 9-12
(c) Figure 9-13 (d) Figure 9-14
y y
\ \_/ X
Figure 9-13 Figure 9-14

Ans. (a) and (c) are graphs of functions; (b) and (d) fail the vertical line test and are not graphs of functions.

9.27. Givenf(x) = x> — 3x + 1, find (a) £(2); (b) f(—3); (c) w

Ans. (@) —1;() 195(c) 1 + h

9.28. Given f(x) = y — x. find (a) f(2); (b) f(=3): (©) w
Ans. @ =3 0) 5© 3517

9.29. The distance s an object falls from rest in time # seconds is given in feet by s(r) = 1672 Find (a) s(2); (b) s(3);
s(3.01) — s(3)
.01
Ans. (a) 64 feet; (b) 144 feet; (c) 96.16 feet

3xx_+ 31, find and write in simplest form: (a) f( f(b)); (b) w

9.30. Given f(x) =

—10

Ans. (a) b; (b) m

Jf@ —fla fa+h - f®
x—a +© A

9.31. Given f(x) = x%, find and write in simplest form: (a) f( f(b)); (b)
Ans. (@) b*; (b) x+a;(c) 2x+ h

9.32. Given f(x) = . find and write in simplest form: (a) f(f(b)): (b) f (x))c — ];(a); o 1t h})l —/®
-
x(x + h)

Ans. (a) b; (b) ;—xl; (©
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Given f(x) = ﬁ’ find and write in simplest form: (a) f( f(b)); (b) w
b+b = ax
Ans. (a) 1 + 3b2 + b4’ (b) (] —+ xz)(l + a2)

Find the average rate of change for f(x) = 9x — 7 on the interval [0,5].

Ans. 9

(a) Find the average rate of change for f(x) = V/x on the interval [4,9].

(b) Find the difference quotient for f(x) = V/x. Rationalize the numerator in the answer.

Ans. (a) l'(b) Vx+h— Vx _ 1
' 5 h Vx+ h+ Vx

Find the average rate of change for f{x) = x> — 6x + 9 (a) on the interval [0,6]; (b) on the interval [1,7].

Ans. (a) 0;(b) 2

Find the average rate of change for f(x) = ﬁ on the interval [0,5].
1
Ans. — 66
Find the difference quotient for (a) f(x) = T _)f_ K (b) f(x) = V2x — 1. Rationalize the numerator in the answer.
V2 + ) -1 - Vax—1 2

(a) L : (b) _
@+ Dx+hr+1) h V2 + ) — 1+ V2x — 1




CHAPTER 10

Linear Functions

Definition of Linear Function

A linear function is any function specified by a rule of form f:x — mx + b, where m # 0. If m = 0, the
function is not considered to be a linear function; a function f(x) = b is called a constant function. The
graph of a linear function is always a straight line. The graph of a constant function is a horizontal
straight line.

Slope of a Line

The slope of a line that is not parallel to the y-axis is defined as follows (see Figs. 10-1 and 10-2): Let
(x;,y,) and (x,,y,) be distinct points on the line. Then the slope of the line is given by

Y, =¥, changeiny rige
X, 7 X, changeinx  Tun

m =
2

(a) Positive slope (line rises) (Fig. 10-1) (b) Negative slope (line falls) (Fig. 10-2)

y

A

/ (\) 2
Xy -y
A (x,0y,) > 1 l-\ (;z,yzs

P )X
e P N
XX

> ]

L

Figure 10-1 Figure 10-2

EXAMPLE 10.1 Find the slope of the lines through (a) (5,3) and (8,12); (b) (3,—4) and (—5,6).

. Y7 12 -3
(a) Identify (x,,y)) = (5,3) and (x,,y,) = (8,12). Then m = X, X, =g_35 - 3.

. Y7y 6 —(—4) 5
(b) Identify (x,,y,) = (3,—4) and (x,,y,) = (=5,6). Thenm = X, = %, =—5-3 - &

Horizontal and Vertical Lines

1. Ahorizontal line (a line parallel to the x-axis) has slope 0, since any two points on the line have the same
y coordinates. A horizontal line has an equation of the form y = k. (See Fig. 10-3.)

2. A vertical line (a line parallel to the y-axis) has undefined slope, since any two points on the line have the
same x coordinates. A vertical line has an equation of the form x = k. (See Fig. 10-4.)
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(a) Horizontal line (b) Vertical line
y y
A A
(hk) "
> > x
Figure 10-3 Figure 10-4

Equation of a Line
The equation of a line can be written in several forms. Among the most useful are:

1. SLOPE-INTERCEPT FORM: The equation of a line with slope m and y intercept b is given by y = mx + b.
2. POINT-SLOPE FORM: The equation of a line passing through (x,,y,) with slope m is given by
Y = Y, = mlx — xp).
3. STANDARD FORM: The equation of a line can be written as Ax + By = C, where A, B, C are integers
with no common factors; A and B are not both zero.

. . . . . 2
EXAMPLE 10.2 Find the equation of the line passing through (—6,4) with slope 3.

Use the point-slope form of the equation of a line: y — 4 = _%[x — (—06)]. This can then be simplified to slope-intercept
form: y = _%x + 8. In standard form, this would become 2x — 3y = —24.

Parallel Lines

If two nonvertical lines are parallel, their slopes are equal. Conversely, if two lines have the same slope, they
are parallel; two vertical lines are also parallel.

EXAMPLE 10.3 Find the equation of a line through (3,—8) parallel to 5x + 2y = 7.

First find the slope of the given line by isolating the variable y: y = —%x + % Thus the given line has slope —%. Hence
the desired line has slope —% and passes through (3,—8). Use the point-slope form to obtain y — (—8) = —% x—=13),
which is written in standard form as 5x + 2y = —1.

Perpendicular Lines

If a line is horizontal, any line perpendicular to it is vertical, and conversely. If two nonvertical lines, with
slopes m, and m,, are perpendicular, then their slopes satisfy m m, = —1 orm, = —1/m,.

EXAMPLE 10.4 Find the equation of a line through (3,—8) perpendicular to 5x + 2y = 7.

The given line was found in the previous example to have slope —%. Hence the desired line has slope% and passes through
(3,—8). Use the point-slope form to obtainy — (—8) = %(x — 3), which is written in standard form as 2x — 5y = 46.

SOLVED PROBLEMS

fa+h) = f6)
——————— =m

10.1. For any linear function of form f(x) = mx + b show that n

Given f(x) = mx + b, it follows that f(x + h) = m(x + h) + b, hence
mx + mh+b—mx—>b _ mh

fx+h) = fx)  Imlx +h) +b] — [mx +b] _
h - h - h "
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10.2.

10.3.

10.4.

10.5.

10.6.

10.7.

Which of the following rules represent linear functions?
(@ fo) =2 (b) f() = 2x+7 © f0) =2 +7
X) =3 X) =3x X =30

Only (b) represents a linear function. The rule in (a) represents a constant function, while the rule in (c) is referred
to as a nonlinear function.

Find the equation of the horizontal line through (5,—3).

A horizontal line has an equation of the form y = k. In this case, the constant k must be —3. Hence the required
equationisy = —3.

Find the equation of the vertical line through (5,—3).

A vertical line has an equation of the form x = h. In this case, the constant 42 must be 5. Hence the required
equation is x = 5.

Find the equation of the line through (—6,8) with slope % Write the answer in slope-intercept form and also in
standard form.

Use the point-slope form of the equation of a line, with m = % and (x,,y,) = (—6,8). Then the equation of the line
can be written:

y =8 =20 (—6)]

Simplifying, this becomes y = %x + % in slope-intercept form, and —3x + 4y = 50 in standard form.

Find the equation of the line through the points (3,—4) and (—7,2). Write the answer in slope-intercept form
and also in standard form.

First, find the slope of the line: Identify (x,y,) = (3,—4) and (x,,y,) = (—=7,2). Then

V=Y 2—(=4) 3
m = = - =

X, = X -7-3 5

Now, use the point-slope form of the equation of a line, with m = —%. Choose either of the given points, say,
(3,—4) = (x,,y,)- Then the equation of the line can be written:
_ 3
yo (=5 =3

Simplifying, this becomes y = — %x - % in slope-intercept form and 3x + 5y = —11 in standard form.

(a) Show that the equation of a line with x-intercept a and y-intercept b, where neither a nor b is 0, can be

written as g + % = 1. (This is known as the rwo-intercept form of the equation of a line.) (b) Write the

equation of the line with x-intercept 5 and y-intercept —6 in standard form.

(a) The line passes through the points (a,0) and (0,b). Hence its slope can be found from the definition of

"N _b-=0_ b, . . . .
L% 0=a @ Using the slope-intercept form, the equation of the line can be

written as y = — %x + b, or gx + y = b. Dividing by b yields% +

slope as m =

% = 1 as required.

Xy - 1. Clearing of fractions yields 6x — 5y = 30 in standard form

(b) Using the result of part (a) gives 3 5

as required.
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It is shown in calculus that the slope of the line drawn tangent to the parabola y = x? at the point (a,a?) has
slope 2a. Find the equation of the line tangent to y = x? (a) at (3, 9); (b) at (a, a?).

(a) Since the line has slope 2 - 3 = 6, use the point-slope form to find the equation of a line through (3,9) with
slope 6:y =9 =6(x —3)ory =6x — 9.

(b) Since the line has slope 2a, use the point-slope form to find the equation of a line through (a,a?) with slope
2

2a:y — a®> = 2a(x — a) ory = 2ax — a>.
Prove that two nonvertical lines are parallel if and only if they have the same slope. (See Fig. 10-5.)
Let /, and [, be two different lines with slopes, respectively, m, and m,, and y-intercepts, respectively, b, and b,.

y I,

A

©,b,)

12

—

> x

Figure 10-5
Then the lines have equations y = mx + b, and y = m,x + b,. The lines will intersect at some point (x,y) if and
only if for some x the values of y are equal, that is,
mx + bl =myx + bz; thus, (m1 - mz)x = b2 - b1

This is possible, that is, the lines intersect, if and only if m, # m,. Hence the lines are parallel if and only if m, = m,.

Find the equation of the line through (5,—3) parallel to (a) y = 3x — 5; (b) 2x + 7y = 4; (c) x = — 1.

(a) Any line parallel to the given line will have the same slope as the given line. Since the given line is written
in slope-intercept form, its slope is clearly seen to be 3. The equation of a line through (5,—3) with slope 3
is found from the point-slope form to be y — (—3) = 3(x — 5). Simplifying yields y = 3x — 18.

(b) Itis possible to proceed as in (a); however, the equation of the given line must be analyzed to find its slope.
An alternative method is to note that any line parallel to the given line can be written as 2x + 7y = C. Then,
since (5,—3) must satisfy the equation, 2 - 5 + 7(—3) = C; hence C = —11 and 2x + 7y = —11 is the
required equation.

(c) Proceeding as in (b), note that any line parallel to the given line must be vertical, hence must have an
equation of the form x = A. In this case, 4 = 5; hence x = 5 is the required equation.

Prove that if two lines with slopes m, and m, are perpendicular, then m m, = —1. (Fig. 10-6.)

2

The slopes of the lines must have opposite signs. In the figure, m, is chosen (arbitrarily) positive and m, is chosen
negative.

AN 1

Figure 10-6
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10.12.

10.13.

10.14.

10.15.

10.16.

Since [, has slope m,, a run of 1 (segment PB) yields a rise of i, along [, (segment CB). Similarly, since /, has slope
m,, arun of 1 yields a (negative) rise of m, along L,, thus segment AB has length —m,. Since the lines are perpendicular,
the triangles PCB and APB are similar. Hence ratios of corresponding sides are equal; it follows that

CB _ PB
PB  AB
mo_
1 —m,
mm, = —1

Find the equation of the line through (8,—2) perpendicular to (a) y = %x +2;,b)x+3y=6;(c)x=7

(a) Any line perpendicular to the given line will have slope m satisfying gm = —1; thus,m = 75 . The equation
of a line through (8,—2) with slope —3 1@ found from the point-slope form tobe y — (—2) = %(x — 8).
Simplifying yields 5x + 4y = 32.

(b) First, determine the slope of the given line. Isolating the variable y, the equation is seen to be equivalent to
y= —%x + 2; hence the slope is —%. Any line perpendicular to the given line will have slope m satisfying
—%m = —1; thus, m = 3. The equation of a line through (8,—2) with slope 3 is found from the point-slope
form to be y — (—2) = 3(x — 8). Simplifying yields y = 3x — 26.

(c) Since the given line is vertical, any line perpendicular to the given line must be horizontal, hence must
have an equation of the form y = k. In this case, k = —2; hence y = —2 is the required equation.

Find the rule for a linear function, given f(0) = 5 and f(10) = 12.

Since the graph of a linear function is a straight line, this is equivalent to finding the equation of a line in
slope-intercept form, given a y-intercept of 5. Since the line passes through (0,5) and (10,12), the slope is
12-5_ 7
10-0 " 10

determined; m =

fx) = 5x + 5.

Hence the equation of the line is y = Ox + 5 and the rule for the function is

Find a general expression for the rule for a linear function, given f(a) and f(b).

Since the graph of a linear function is a straight line, this is equivalent to finding the equation, in slope-intercept form,
of a line passing through (a, f(a)) and (b, f(b)). Clearly, a line passing through these two points will have

:f(b) — fl@

slope m — . From the point-slope form, the equation of the line can be written as y — f(a) =

f) —f@) ) ~ f@)

P— (x—a)ory= b —a (x — a) + f(a). Thus the rule for the function is

b
flx )*f( )= f( ) (x —a) + fla)

Find the rule for a linear function, given f(10) = 25,000 and f(25) = 10,000.

Apply the formula from the previous problem with ¢ = 10 and b = 25. Then

10,000 — 25,000

f) = ——s =5 (& = 10) + 25,000

—1000x + 35,000

Suppose the cost of producing 50 units of a given commodity is $27,000, while the cost of producing
100 units of the same commodity is $38,000. If the cost function C(x) is assumed to be linear, find a rule
for C(x). Use the rule to estimate the cost of producing 80 units of the commodity.

This is equivalent to finding the equation of a straight line passing through (50,27000) and (100,38000). The
38,000 — 27,000

slope of this line is m = 100 = 50

= 220; hence from the point-slope form the equation of the line is
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y — 27,000 = 220(x — 50). Simplifying yields y = 220x + 16,000; thus, the rule for the function is
C(x) = 220x + 16,000.

The cost of producing 80 units of the commodity is given by C(80) = 220 - 80 + 16,000 or $33,600.

If the value of a piece of equipment is depreciated linearly over a 20-year period, the value V(f) can be
described as a linear function of time ¢.

(a) Find a rule for V(#) assuming that the value at time ¢ = 0 is V|, and that the value after 20 years is zero.
(b) Use the rule to find the value after 12 years of a piece of equipment originally valued at $7500.

(a) This is equivalent to finding the equation of a line of form V = mt + b, where the V-interceptis b = V,,,
00—V, 1%
and the line passes through (0,V,)) and (20,0). The slope is given by m = 207_00 = —78; hence the equation
V
0

. _ Y .. __0
isV= 201 + V, and the rule for the function is V(z) 20

(b) In this case, V,, = 7500 and the value of V(12) is required. Since the rule for the function is now
V(r) = —%l + 7500 = 7500 — 375¢, V(12) = 7500 — 375 - 12 = 3000 and the value is $3000.

1+ Vv,

SUPPLEMENTARY PROBLEMS

10.18.

10.19.

10.20.

10.21.

Write the following equations in standard form:

@ y=3—2() y=—p+8()y=3x—3

Ans. (@) 3x —y=2;(b) x + 2y = 16;(c) 10x — 15y =9

Write the following equations in slope-intercept form:
() 2x + 6y = 7;(b) 3x — 5y = 15;(c) 3x + 3y =3

Ans. @ y=-w+gab) y=x—3()y=—p+3

Find the equation of a line in standard form given:

(a) The line is horizontal and passes through (%, %)

(b) The line has slope —0.3 and passes through (1.3,—5.6).

(c) The line has x-intercept 7 and slope —4.

(d) The line is parallel to y = 3 — 2x and passes through the origin.

(e) The line is perpendicular to 3x — 5y = 7 and passes through (—%, %)
(f) The line passes through (a,b) and (c,d).

Ans. (a) 4y=3 (b) 30x + 100y = —521 (c) 4x+y=128
d 2x+y=0 (e) 10x + 6y = —9 ® b—dx+t(c—ay=0b—-—da+ (c—a)b
Find the equation of a line in slope-intercept form given:

(a) The line is horizontal and passes through (—3,8).
(b) The line has slope —% and passes through (—5,1).

(c) The line has x-intercept —2 and slope %
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10.22.

10.23.

10.24.

10.25.

10.26.

10.27.

10.28.

10.29.

10.30.

(d) The line is parallel to 2x + 5y = 1 and passes through (2,—8).

(e) The line is perpendicular to y = %x — 1 and passes through (6,0).

Ans. (a) y = 8; by y=—3— 1% ©y=%+1
y=-x-% @y=-w+16

Find the slope and the y-intercept for (a) y =5 — 3x;(b)2x + 6y = 9; (c)x + 5 = 0.

Ans. (a) slope —3, y-intercept 5; (b) slope —_%, y-intercept %; (c) slope undefined, no y-intercept

Find the possible slopes of a line that passes through (4,3) so that the portion of the line in the first quadrant
forms a triangle of area 27 with the positive coordinate axes.

Ans. —% or —%
Repeat problem 10.23 except with the triangle having area 24.

Ans. —% is the only possible slope.

Recall from geometry that the line drawn tangent to a circle is perpendicular to the radius line drawn to the
point of tangency. Use this fact to find the equation of the line tangent to

(a) the circle x> + y> = 25 at (—3,4)
(b) the circle (x — 2)> + (y + 4)> = 4at (2,—2)
Ans. (a)3x — 4y = =25;(b)y = =2

It is shown in calculus that the slope of the line drawn tangent to the curve y = x* at the point (a,a’) has slope
3a?. Find the equation of the line tangent to y = x* at (a) (2,8); (b) (a,a®).

Ans. (a)y = 12x — 16; (b) y = 3a*x — 2a°

The line drawn perpendicular to the tangent line to a curve at the point of tangency is called the normal line.
Find the equation of the normal line to y = x* at (2,8). (See the previous problem.)

1 49
Ans. y=—px+ ¢

An altitude of a triangle is a line drawn from a vertex of the triangle perpendicular to the opposite side of
the triangle. Find the equation of the altitude drawn from A(0,0) to the side formed by B(3,4) and
C(5,—2).

Ans. x—3y=0

A median of a triangle is a line drawn from a vertex of the triangle to the midpoint of the opposite side of
the triangle. Find the equation of the median drawn from A(5,—2) to the side formed by B(—3,9) and
C4,-7).

Ans. 2x+3y=4

Find a rule for a linear function given f(5) = —7 and f{—5) = 10.

Ans. f(x) = —%x + %



CHAPTER 10 Linear Functions

10.31. Find a rule for a linear function given f(0) = a and f(c) = b.

b—a

Ans. f(x) =~

x+a

10.32. In depreciation situations (see Problem 10.17), it is common that a piece of equipment has a residual value
after it has been linearly depreciated over its entire lifetime.

(a) Find a rule for V(#), the value of a piece of equipment, assuming that the value at time t = 0 is V|, and that
the value after 20 years is R.

(b) Use the rule to find the value after 12 years of a piece of equipment originally valued at $7500, assuming
that it has a residual value after 20 years of $500.

20

Yo
Ans. (a) V(1) =

1+ Vy; (b) $3300



Transformations and Graphs

Elementary Transformations

The graphs of many functions can be regarded as arising from more basic graphs as a result of one or more
elementary transformations. The elementary transformations considered here are shifting, stretching and
compression, and reflection with respect to a coordinate axis.

Basic Function
Given a basic function y = f(x) with the graph shown in Fig. 11-1, the following transformations have eas-
ily identified effects on the graph.

61Y
4
/\ x
-3 - -1 1 2
-2
y=f(x) -4
Figure 11-1

Vertical Shifting
The graph of y = f(x) + k, for k > 0, is the same as the graph of y = f(x) shifted up k units. The graph of
y = f(x) + k, for k <0, is the same as the graph of y = f(x) shifted down k units.

EXAMPLE 11.1 For the basic function shown in Fig. 11-1, graph y = f(x) and y = f(x) + 2 on the same coordinate
system (Fig. 11-2), y = f(x) and y = f(x) — 2.5 on the same coordinate system (Fig. 11-3).

_ y

y=f(x)+2 \/ .
y = f(x/\J /

/\? X TN X

-3 -1 1 2 -3 - -1 \\y 2
-2 “2ly = f(x)-2.5
y=fx)y _, -4

Figure 11-2 Figure 11-3
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Vertical Stretching and Compression

The graph of y = af(x), for a > 1, is the same as the graph of y = f(x) stretched, with respect to the y-axis,
by a factor of a. The graph of y = af(x), for 0 < a < 1, is the same as the graph of y = f(x) compressed, with
respect to the y-axis, by a factor of 1/a.

EXAMPLE 11.2 For the basic function shown in Fig. 11-1, graph y = f(x) and y = 2f(x) on the same coordinate
system (Fig. 11-4); y = f(x) and y = %f(x) on the same coordinate system (Fig. 11-5).

6|7 61Y
y = 2f(x)

x x
-3 - -1 1 2 -3 -1 1 2
¢ - N
y = x = zJ(X
_4 R )
Figure 11-4 Figure 11-5

Horizontal Shifting
The graph of y = f(x + h), for h > 0, is the same as the graph of y = f(x) shifted left h units. The graph of
y = f(x — h), for h > 0, is the same as the graph of y = f(x) shifted right h units.

EXAMPLE 11.3 For the basic function shown in Fig. 11-1, graph y = f(x) and y = f(x + 2) on the same coordinate
system (Fig. 11-6); y = f(x) and y = f(x — 1) on the same coordinate system (Fig. 11-7).

y 6

1 2 -3 - - 1 2 3

=_% x-1)

-4

Figure 11-6 Figure 11-7

Horizontal Stretching and Compression

The graph of y = f(ax), for a > 1, is the same as the graph of y = f(x) compressed, with respect to the
x-axis, by a factor of a. The graph of y = f(ax), for 0 < a < 1, is the same as the graph of y = f(x) stretched,
with respect to the x-axis, by a factor of 1/a.

EXAMPLE 11.4 For the basic function shown in Fig. 11-1, graph y = f(x) and y = f(2x) on the same coordinate sys-
tem (Fig 11-8); y = f(x) and y = f(%x) on the same coordinate system (Fig. 11-9).

61 61
4 y = fG3x) 4
y = f(x)
X X
-3 - - 1 2 3 - -3 - -1 1 2 3
Zlran / -2
4 y = f(x) -4

Figure 11-8 Figure 11-9
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Reflection with Respect to a Coordinate Axis

The graph of y = —f(x) is the same as the graph of y = f(x) reflected across the x-axis. The graph of
y = f(—x) is the same as the graph of y = f(x) reflected across the y-axis.

EXAMPLE 11.5 For the basic function shown in Fig. 11-1, graph y = f(x) and y = —f(x) on the same
coordinate system (Fig. 11-10); y = f(x) and y = f(—x) on the same coordinate system (Fig. 11-11).

y y
y = =f(x)® 8%y = f)
4
y = f(x)
X X
-3 EE -3 -4 -1 1 3
-2
oy = S
Figure 11-10 Figure 11-11

SOLVED PROBLEMS

11.1.

11.2.

11.3.

11.4.

Explain why, for positive &, the graph of y = f(x) + h is displaced up by & units from the graph of y = f(x),
while the graph of y = f(x + h) is displaced /eft by & units.

Consider the point (a, f(a)) on the graph of y = f(x). The point (a, f(a) + h) on the graph of y = f(x) + h can be
regarded as the corresponding point. This point has y-coordinate / units more than that of the original point
(a, f(a)), and thus has been displaced up / units.

It is not helpful to regard the point (a, f(a + h)) as the corresponding point on the graph of y = f(x + h). Rather,
consider the point with x-coordinate a — h; thus y-coordinate f(a — h + h) = f(a). Then the point (a — h, f(a)) is
easily seen to have x-coordinate / units less than that of the original point (a, f(a)); thus, it has been displaced /left h
units.

Explain why the graph of an even function is unchanged by a reflection with respect to the y-axis.

A reflection with respect to the y-axis replaces the graph of y = f(x) with the graph of y = f(—x). Since for an even
function f(—x) = f(x), the graph of an even function is unchanged.

Explain why the graph of an odd function is altered in exactly the same way by reflection with respect to the
x-axis or the y-axis.

A reflection with respect to the x-axis replaces the graph of y = f(x) with the graph of y = —f(x), while a reflection
with respect to the y-axis replaces the graph of y = f(x) with the graph of y = f(—x). Since for an odd function
f(—=x) = —f(x), the two reflections have exactly the same effect.

Given the graph of y = Ixl as shown in Fig. 11-12, sketch the graphs of (a) y = IxI—1; (b) y = Ix — 2I;
©y=k+21—1;(dy=—2xl + 3.

W

BN

Figure 11-12



(a) The graph of y = Ixl — 1 (Fig. 11-13) is
the same as the graph of y = Ixl shifted
down 1 unit.

PN W

-4 -2 / 2 4
-2

Figure 11-13

(c) The graph of y = Ix + 2| — 1 (Fig. 11-15) is
the same as the graph of y = Ixl shifted left
2 units and then down 1 unit.

N W

\ / )
-4 \y 2 4
-1
-2
Figure 11-15
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(b) The graph of y = Ix — 2| (Fig. 11-14) is the
same as the graph of y = Ixl shifted right
2 units.

'S
<

w

Figure 11-14

(d) The graph of y = —2Ixl + 3 (Fig. 11-16) is
the same as the graph of y = Ixl stretched by
a factor of 2, reflected with respect to the
x-axis, and shifted up 3 units.

4,7

N

-1

-2
Figure 11-16

11.5. Given the graph of y = \/x as shown in Fig. 11-17, sketch the graphs of (a) y = V —x; (b) y = —3 Vi

©y="Vx+3(dy=-15Vx—1+2.

y

=N W s U3y

4

6 8

Figure 11-17
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(a) The graph of y = V —x (Fig. 11-18) is the (b) The graph of y = —3\/); (Fig. 11-19) is the
same as the graph of y = Vx reflected with same as the graph of y = Vx stretched by a
respect to the y-axis. factor of 3 with respect to the y-axis and

reflected with respect to the x-axis.

67 17
5 x
2 4 6 8
4 -1
3 -2
2 -3
1 -4
X -5
-8 -6 -4 -2
-1 -6
Figure 11-18 Figure 11-19
(c) The graph of y = % Vx + 3 (Fig. 11-20) is (d) The graphofy=—-15Vx —1+2
the same as the graph of y = \/;c shifted (Fig. 11-21) is the same as the graph of

y= Vx shifted right 1 unit, stretched by a
factor of 1.5 and reflected with respect to
the x-axis, and shifted up 2 units.

left 3 units and compressed by a factor of

2 with respect to the y-axis.

67

y

6 5

> 4

4 3

3

2 2
;.—-——// 1

//l * 1 1 2 3 56
-2 2 2 6 -

- B g

Figure 11-20 Figure 11-21

11.6. Given the graph of y = x3 as shown in Fig. 11-22, sketch the graphs of (a)y = 4 — x3; (b) y = (%x)3 — %
8y

Figure 11-22
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(a) The graph of y = 4 — x* (Fig. 11-23) is the (b) The graph of y = (%xf — %(Fig. 11-24) is
same as the graph of y = x? reflected with

-3
respect to the x-axis and shifted up 4 units. the same as the gr.ap hofy = x stretche.d
by a factor of 2 with respect to the x-axis

and shifted down % unit.

8 8y
6 6
4
2 2

X X
-2 -1 1 \2 -2/4—————4/ 2
-2 -2
-4 -4
-6 -6
-8 -8
Figure 11-23 Figure 11-24

SUPPLEMENTARY PROBLEMS

11.7. Given the graph of y = x!/3 as shown in Fig. 11-25, sketch the graphs of:
@y=2x"3+1;(b) y=2(x+ DV3 () y =2 —x/3;(d) y = (—2x)/3 — 1.

Figure 11-25

Ans. (a) See Fig. 11-26; (b) see Fig. 11-27; (c) see Fig. 11-28; (d) see Fig. 11-29.

y y

4
X 2
2

Figure 11-26 Figure 11-27
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y
4
2
1
I X
-10 -5 5 10
Figure 11-28

s 4 s

-2
-3
4

Figure 11-29

11.8. (a) Describe how the graph of y = If(x)l is related to the graph of y = f(x). (b) Given the graph of y = x? as
shown in Fig. 11-30, sketch first the graph of y = x?> — 4, then the graph of y = x> — 4I.

y
15
12.5
10
7.5
5
2.5
X
-4 -2 2
Figure 11-30

Ans. (a) The portions of the graph above the x-axis are identical to the original, while the portions of the

graph below the x-axis are reflected with respect to the x-axis.

(b) See Figs. 11-31 and 11-32.

y=x2-4

RSV

Figure 11-31

y = |x2-4|

-4 -2
-2.5

-5

Figure 11-32
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11.9. (a) Describe how the graph of x = f(y) is related to the graph of y = f(x). (b) Given the graphs shown in the
previous problem, sketch the graphs of x = y> and x = Iy* — 4I.

Ans. (a) The graph is reflected with respect to the line y = x.
(b) See Figs. 11-33 and 11-34.

x =y x = |y2-4
y y
3
2 2
1 1
X
” 2 4 6 8 )

-2
-3

Figure 11-33 Figure 11-34



Quadratic Functions

Definition of Quadratic Function
A quadratic function is any function specified by a rule that can be written as f:x — ax®> + bx + ¢, where
a # 0. The form ax®> + bx + c is called standard form.

EXAMPLE 12.1 f(x) = x%, f(x) = 3x*> — 2x + 15, f(x) = —3x*> + 5, and f(x) = —2(x + 5)? are examples of quad-
ratic functions. f(x) = 3x + 5 and f(x) = x* are examples of nonquadratic functions.

Basic Quadratic Functions

The basic quadratic functions are the functions f(x) = x? and f(x) = —x2. The graph of each is a parabola
with vertex at the origin (0,0) and axis of symmetry the y-axis (Figs. 12-1 and 12-2).

=

Figure 12-1 Figure 12-2

Graph of a General Quadratic Function

Any quadratic function can be written in the form f(x) = a(x — h)> + k by completing the square. Therefore,
any quadratic function has a graph that can be regarded as the result of performing simple transformations
on the graph of one of the two basic functions, f(x) = x? and f(x) = —x2. Thus the graph of any quadratic
function is a parabola.

EXAMPLE 12.2 The quadratic function f(x) = 2x> — 12x + 4 can be rewritten as follows:

f)=2x>—12x+4
=2(>—6x)+4
=2(x*—6x+9) —18+4
=2(x—372—-14
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Parabola Opening Up

The graph of the function f(x) = a(x — h)*> + k, for positive a, is the same as the graph of the basic quad-
ratic function f(x) = x? stretched by a factor of a (if a > 1) or compressed by a factor of 1/a (if 0 < a < 1),
and shifted left, right, up, or down so that the point (0,0) becomes the vertex (h,k) of the new graph. The
graph of f(x) = a(x — h)* + k is symmetric with respect to the line x = h. The graph is referred to as a
parabola opening up.

Parabola Opening Down

The graph of the function f(x) = a(x — h)*> + k, for negative a, is the same as the graph of the basic
quadratic function f(x) = —x? stretched by a factor of lal (if lal > 1) or compressed by a factor of
1/lal (if 0 < lal < 1), and shifted left, right, up, or down so that the point (0,0) becomes the vertex (h,k) of
the new graph. The graph of f(x) = a(x — h)?> + k is symmetric with respect to the line x = h. The graph
is referred to as a parabola opening down.

Maximum and Minimum Values

For positive a, the quadratic function f(x) = a(x — h)> + k has a minimum value of k. This value is attained
when x = h. For negative a, the quadratic function f(x) = a(x — h)> + k has a maximum value of k. This value,
also, is attained when x = h.

EXAMPLE 12.3 Consider the function f(x) = x> + 4x — 7. By completing the square, this can be written as
f(x)=x>+4x+4 —4 —7 = (x + 2)> — 11. Thus the graph of the function is the same as the graph of f(x) = x? shifted
left 2 units and down 11 units; see Fig. 12-3.

10

Figure 12-3

The graph is a parabola with vertex (—2,—11), opening up. The function has a minimum value of —11. This minimum
value is attained when x = —2.

EXAMPLE 12.4 Consider the function f(x) = 6x — x% By completing the square, this can be written as
f)y=—x*+6x=—(x>—6x) = —(x*>—6x+9) + 9 = —(x — 3)> + 9. Thus the graph of the function is the same
as the graph of f(x) = —x? shifted right 3 units and up 9 units. The graph is shown in Fig. 12-4.
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y
5
X
-2 2 4 8
-0
15
Figure 12-4

The graph is a parabola with vertex (3,9), opening down. The function has a maximum value of 9. This value is attained

when x = 3.

Domain and Range

The domain of any quadratic function is R, since ax®> + bx + cor a(x — h)> + kis always defined for any
real number x. For positive a, since the quadratic function has a minimum value of k, the range is [k,%). For
negative a, since the quadratic function has a maximum value of k, the range is (—,k].

SOLVED PROBLEMS

12.1.

12.2.

2
Show that the vertex of the parabola y = ax?> + bx + c is located at (—%, %).
Completing the square on y = ax?> + bx + ¢ gives, in turn,
y=a(x2+§x>+c
b b? ) b?
- 2, 0 JLZANN
a(x +ax+40l2 4a+c
_ b )2 dac — b?
- a(x tod) T 4a

Thus, the parabola y = ax?> + bx + c is obtained from the parabola y = ax? by shifting an amount —b/2a with
respect to the x-axis and an amount (4ac — b?)/(4a) with respect to the y-axis. Since the vertex of y = ax? is at
(0,0), the vertex of y = ax? + bx + c is as specified.

Analyze the intercepts of the graph of y = ax> + bc + c.

For x = 0, y = c. Hence, the graph always has one y-intercept, at (0,c).

For y = 0, the equation becomes 0 = ax?> + bx + c. The number of solutions of this equation depends on the value of
the discriminant »* — 4ac (Chapter 5). Thus if b — 4ac is negative, the equation has no solutions and the graph has
no x-intercepts. If 4> — 4ac is zero, the equation has one solution, x = —b/2a, and the graph has one x-intercept.

-b + \/b2—4acan _ —b— VD> — 4dac
2a

dx = 2

If b*> — 4ac is positive, the equation has two solutions, x = 2a

and the graph has two x-intercepts.

Note that the x-intercepts are symmetrically placed with respect to the line x = —b/2a.
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12.3. Show that, for positive a, the quadratic function f(x) = a(x — h)> + k has a minimum value of k, attained at x = h.

For all real x, x> = 0. Thus, the minimum value of (x — /)?is 0, and this minimum value is attained at x = h. For
positive a and arbitrary k, it follows that:

x—h?=0
alx —h)?=0
ax—h? +k=k

Thus, the minimum value of a(x —h)? + k is k, attained at x = h.

12.4. Analyze and graph the quadratic function f(x) = 3x? —5.

The graph is a parabola with vertex (0,—5), opening up. The graph is the same as the graph of the basic parabola
y = x? stretched by a factor of 3 with respect to the y-axis, and shifted down 5 units. The graph is shown in
Fig. 12-5.
40
30

20

10

-4 2N\ ] 2 4

Figure 12-5

12.5. Analyze and graph the quadratic function f(x) = —1 — %xz.

The function can be rewritten as f(x) = —%xz — 1. The graph is a parabola with vertex (0,—1), opening down.
The graph is the same as the graph of the basic parabola y = —x? compressed by a factor of 3 with respect to the
y-axis, and shifted down 1 unit. The graph is shown in Fig. 12-6.

=

-2.5
-3
Figure 12-6

12.6. Analyze and graph the quadratic function f(x) = 2x> — 6x.

Completing the square, this can be rewritten:

fo =26 -3 =202 -3c+3)—23=20x-3) -2
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Hence the graph is a parabola with vertex (%,f%) opening up. The parabola is the same as the graph of the basic
parabola y = x? stretched by a factor of 2 with respect to the y-axis, and shifted right % units and down % units.
The graph is shown in Fig. 12-7.

Y
X
-1 1 2 4
-1
-2
-3
-4
-5
Figure 12-7

12.7. Analyze and graph the quadratic function f(x) = %xz + 2x + 3.

Completing the square, this can be rewritten:
B B _1 2
f(x)—z(x +4x)+3—§(x +4x+4)—2+3—§(x+2) +1

Hence the graph is a parabola with vertex (—2,1), opening up. The parabola is the same as the graph of the basic
parabola y = x> compressed by a factor of 2 with respect to the y-axis, and shifted left 2 units and up 1 unit. The
graph is shown in Fig. 12-8.

12
10

> O

-6 -4 -2 2
Figure 12-8

12.8. Analyze and graph the quadratic function f(x) = —2x* + 4x + 5.

Completing the square, this can be rewritten as f{x) = —2(x — 1)? 4+ 7. Hence the graph is a parabola with vertex
(1,7), opening down. The parabola is the same as the graph of the basic parabola y = —x? stretched by a factor
of 2 with respect to the y-axis and shifted right 1 unit and up 7 units. The graph is shown in Fig. 12-9.
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Figure 12-9

State the domain and range for each quadratic function in Problems 12.4—12.8.

In Problem 12.4, the function f(x) = 3x> — 5 has a minimum value of —35. Therefore, the domain is R and the
range is [—5,%).

In Problem 12.5, the function f(x) = —1 — %xz has a maximum value of —1. Therefore, the domain is R and
the range is (—,—1].

In Problem 12.6, the function f(x) = 2x> — 6x has a minimum value of —%. Therefore, the domain is R and the
range is [—%,00).

In Problem 12.7, the function f(x) = %xz + 2x + 3 has a minimum value of 1. Therefore, the domain is R and
the range is [1,%).

In Problem 12.8, the function f(x) = —2x> + 4x + 5 has a maximum value of 7. Therefore, the domain is R and
the range is (—,7].

A field is to be marked off in the shape of a rectangle, with one side formed by a straight river. If
100 feet is available for fencing, find the dimensions of the rectangle of maximum possible area. (See
Problem 9.8.)

Let x = length of one of the two equal sides (Fig. 12-10).

100 - 2x

Figure 12-10

In Problem 9.8, it was shown that the area A = x(100 — 2x). Rewriting this in standard form, this becomes
A = —2x*> + 100x. Completing the square gives A = —2(x — 25)> + 1250. Thus the maximum area of
1250 square feet is attained when x = 25. Thus the dimensions are 25 feet by 50 feet for maximum area.

In the previous problem, what is the domain of the area function A(x)? Graph the function on this domain.

The domain of an abstract quadratic function is R, since ax?> + bx + ¢ is defined and real for all real x. In a
practical application, this domain may be restricted by physical considerations. Here the area must be positive;
hence both x and 100 — 2x must be positive. Thus {x € R | 0 < x < 50} is the domain of A(x). The graph of
A = —2(x — 25)? + 1250 is the same as the graph of the basic parabola y = —x? stretched by a factor of 2 with
respect to the y-axis and shifted right 25 units and up 1250 units. The graph is shown in Fig. 12-11.
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12.12.

12.13.

1200
1000
800
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400
200

X

10 20 30 40 50
Figure 12-11

A projectile is thrown up from the ground with an initial velocity of 144 ft/sec?. Its height h(f) at time ¢ is given
by h(f) = —16¢> + 144¢. Find its maximum height and the time when the projectile hits the ground.

The quadratic function i(f) = —16¢> + 144¢ can be written as h(f) = —16 (z‘ - %)2 + 324 by completing the
square. Thus the function attains a maximum value of 324 (when t= g) that is, the maximum height of the
projectile is 324 feet.

The projectile hits the ground when the function value is 0. Solving — 1672 + 1441 = 0 or —16#(t — 9) = 0 yields
t = 0 (the starting time) or t = 9. Thus the projectile hits the ground after 9 seconds.

A suspension bridge is built with its cable hanging between two vertical towers in the form of a parabola. The
towers are 400 feet apart and rise 100 feet above the horizontal roadway, while the center point of the cable is
10 feet above the roadway. Introduce a coordinate system as shown.

(50,y)

Figure 12-12

(a) Find the equation of the parabola in the given coordinate system.
(b) Find the height above the roadway of a point 50 feet from the center of the span.

(a) Since the vertex of the parabola is at (0,10), the equation of the parabola can be written as y = ax?> + 10.
At the right-hand tower, 200 feet from the center, the cable is 100 feet high; thus, the point (200,100) is
on the parabola. Substituting yields 100 = a(200)? + 10; hence, a = 90/40,000 or 9/4000. The equation
of the parabola is

Ox?

Y= 4000 10

(b) Here the x-coordinate of the point is given as 50. Substituting in the equation yields

9(50)?
Y = 2000 + 10 = 15.625 feet
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12.14. Find two real numbers whose sum is S and whose product is a maximum.

Let one number be x; then the other number must be S — x. Then the product is a quadratic function of x:
P(x) = x(S — x) = —x* + Sx. By completing the square, this function can be written as P(x) = —(x — S/2)*> + S%4.
Thus the maximum value of the function occurs when x = $/2. The two numbers are both S/2.

12.15. A salesperson finds that if he visits 20 stores per week, average sales are 30 units per store each week;
however, for each additional store that he visits per week, sales decrease by 1 unit. How many stores should
he visit each week to maximize overall sales?

Let x represent the number of additional stores. Then the number of visits is given by 20 + x and the corresponding
sales are 30 — x per store. Total sales are then given by S(x) = (30 — x)(20 + x) = 600 + 10x — x% This is a
quadratic function. Completing the square gives S(x) = —(x — 5)> + 625. This has a maximum value when
x = 5; thus, the salesperson should visit 5 additional stores, a total of 25 stores, to maximize overall sales.

SUPPLEMENTARY PROBLEMS

12.16. Show that, for negative a, the quadratic function f(x) = a (x —h)?> + k has a maximum value of k, attained
atx = h.

12.17. Find the maximum or minimum value and graph the quadratic function f(x) = x> + 6x + 9.

Ans. Minimum value: O when x = —3. (See Fig. 12-13.)

y

15

12.5

10

7.
5
2.5
X

-6 -4 -2
Figure 12-13

12.18. Find the maximum or minimum value and graph the quadratic function f(x) = 6x> — 15x.

Ans.  Minimum value: —% when x = % (See Fig. 12-14.)

y

40

30

20

0

1 1 3 4
-10
Figure 12-14
. . . . . _ 3, 4
12.19. Find the maximum or minimum value and graph the quadratic function f(x) = — % T3 + 6.

Ans.  Maximum value: % when x = —g. (See Fig. 12-15.)
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12.20.

12.21.

12.22.

12.23.

12.24.

Figure 12-15

State the domain and range for each quadratic function:

(@ f(x) = 3(x = 2 + 5:(b) f(x) = —%(x +37 = T5(0) f(0) = 6 — x%(d) f(x) = x* — 8x

Ans. (a) domain: R, range [5,%); (b) domain: R, range (—,—7];

(c) domain: R, range (—,6]; (d) domain: R, range [—16,%)

A projectile is thrown up from an initial height of 72 feet with an initial velocity of 160 ft/sec?. Its height ()
at time ¢ is given by h(f) = —16£2 + 160t + 72. Find its maximum height, the time when this maximum
height is reached, and the time when the projectile hits the ground.

Ans. Maximum height: 472 feet. Time of maximum height: 5 seconds.

Projectile hits ground: 5 + V' 118/2 = 10.4 seconds.

1500 feet of chain link fence are to be used to construct six animal cages as in Fig. 12-16.

Figure 12-16

Express the total enclosed area as a function of the width x. Find the maximum value of this area and the
dimensions that yield this area.

Ans.  Area: A(x) = %x(ISOO — 3x). Maximum value: 46,875 square feet. Dimensions: 250 feet by 187.5 feet.

Find two real numbers whose difference is S and whose product is a minimum.

Ans.  S/2 and —S/2

A basketball team finds that if it charges $25 per ticket, the average attendance per game is 400. For each $.50
decrease in the price per ticket, attendance increases by 10. What ticket price yields the maximum revenue?

Ans.  $22.50
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Algebraic Combinations of Functions

Algebraic combinations of functions can be obtained in several ways: Given two functions f'and g, the sum,
difference, product, and quotient functions can be defined as follows:

NAME DEFINITION DOMAIN

Sum (f+ 9k =fx) + gx) The set of all x that are in the domain of both fand g
Difference (f— o = fx) — gx) The set of all x that are in the domain of both fand g
Difference (g —Hx) =gkx) — fx) The set of all x that are in the domain of both fand g
Product (fo)(x) = f(x)gx) The set of all x that are in the domain of both fand g
Quotient (g)(x) = % The set of all x that are in the domain of both fand g,

g( ) with g(x) £ 0
Quotient (?)(x) = % The set of all x that are in the domain of both fand g,

with f(x) # 0

EXAMPLE 13.1 Givenf(x) = x*and g(x) = Vx — 2, find (f+ g)x and (f/g)(x) and state the domains of the functions.

(f + 9 = f(x) + glx) = x> + Vx — 2. Since the domain of fis R and the domain of g is {x € Rlx = 2} the
domain of this function is also {x € Rlx = 2}.

2
(g)(x) = e . The domain of this function is the same as the domain of f + g, with the further restriction that
Vx —2

g(x) # 0, that is, {x e Rlx > 2}.

Definition of Composite Function
The composite function f o g of two functions f'and g is defined by:

foglx) = f(gx)
The domain of f o g is the set of all x in the domain of g such that g(x) is in the domain of f.

EXAMPLE 13.2 Given f(x) = 3x — 8 and g(x) = 1 — x?, find f o g and state its domain.

foglx) = flgx)) = fA — x») = 3(1 — x») — 8 = —5 — 3x2. Since the domains of fand g are both R, the domain of
fogisalsoR.
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EXAMPLE 13.3 Given f(x) = x*>and g(x) = Vx — 5, find f o g and state its domain.

foglx) = flgx) = f( \/x -5 = (\/x — 5)2 = x — 5. The domain of f o g is not all of R. Since the domain of g is
{x € Rlx = 5}, the domain of f o g is the set of all x = 5 in the domain of f, that is, all of {x € Rlx = 5}.

Fig. 13-1 shows the relationships among f; g, and f o g.

Domain fog

Domaing Range g Domain f Range f
Figure 13-1

One-to-One Functions

A function with domain D and range R is called a one-to-one function if exactly one element of set D corre-
sponds to each element of set R.

EXAMPLE 13.4 Letf(x) = x?> and g(x) = 2x. Show that fis not a one-to-one function and that g is a one-to-one function.

The domain of fis R. Since f(3) = f(—3) = 9, that is, the elements 3 and —3 in the domain of f correspond to 9 in the
range, f is not one-to-one.

The domain and range of g are both R. Let k be an arbitrary real number. If 2x = k, then the only x that corresponds to
kis x = k/2. Thus g is one-to-one.

A function with domain D and range R is one-to-one if either of the following equivalent conditions is satisfied.

1. Whenever f(#) = f(v) in R, then u = v in D.
2. Whenever u # v in D, then f(u) # f(v) in R.

Horizontal Line Test

Since for each value of y in the domain of a one-to-one function f there is exactly one x such that y = f(x), a
horizontal line y = ¢ can cross the graph of a one-to-one function at most once. Thus, if a horizontal line
crosses a graph more than once, the graph is not the graph of a one-to-one function.

Definition of Inverse Function

Let f be a one-to-one function with domain D and range R. Since for each y in R there is exactly one x in D
such that y = f(x), define a function g with domain R and range D such that g(y) = x. Then g reverses the
correspondence defined by f. The function g is called the inverse function of f.

Function-Inverse Function Relationship
If g is the inverse function of f, then, by the above definition,

1. g(f(x)) = x for every x in D.
2. f(g(y)) = y for every y in R.
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Notation for Inverse Functions

If fis a one-to-one function with domain D and range R, then the inverse function of f with domain R and
range D is often denoted by f . Then f ! is also a one-to-one function and x = f~!(y) if and only if y = f(x).
With this notation, the function-inverse function relationship becomes:

1. f7Y(f(x)) = x for every x in D.
2. f(f'(y)) = y for every y in R.

Figure 13-2 shows the relationship between fand f .

Domain f Domain f~1
f—l
—_—T T T
~ - e — -
-1 f
Range f Range f
Figure 13-2

To Find the Inverse Function for a Given Function f:

—

. Verify that fis one-to-one.
2. Solve the equation y = f(x) for x in terms of y, if possible. This gives an equation of form

x =0

3. Interchange x and y in the equation found in step 2. This gives an equation of the form

y=f).

EXAMPLE 13.5 Find the inverse function for f(x) = 3x—1.

First, show that f'is one-to-one. Assume f(u#) = f(v). Then it follows that

3u—1=3v -1
3u =3v
u=v

Thus, fis one-to-one. Now solve y = 3x — 1 for x to obtain

y=3x—1
y+1=3x
oyt
T3

Now interchange x and y to obtain y = f~!(x) = X ; 1.

Graph of an Inverse Function
The graphs of y = f(x) and y = f~!(x) are symmetric with respect to the line y = x.
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SOLVED PROBLEMS

13.1.

13.2.

13.3.

13.4.

Given f(x) = ax + band g(x) = cx + d,a, c # 0, find f + g, f —g, fg, f/g and state their domains.

(fto90)=f(x)tgx)=ax+b+cxtd=@+cx+®+d)
(f—9x) =fx) —gx)=(ax+Db) —(cxt+d)y=ax+b—cx—d=@—cx+ (b—4d)
(fo)(x) = f(x)g(x) = (ax + b)(cx + d) = acx®> + (ad + bc)x + bd

Since R is the domain of both fand g, the domain of each of these function is R.
(f19)x) = f(0)/gx) = (ax + b)/(cx + d)

The domain of this function is {x € Rlx # —d/c}.

Givenf(x) = 5 * zand g(x) = 2 find f + g, f— g. fz. f/g and state their domains.
(F+ 00 =0 + g = SEL ¢ 2T VT AECD a0t o
(F- o =9 — gty = SEL 2T I TIESD e b
(o)) = fs) = 5§ = 25

Since the domain of fis {x € Rlx # —2, 2} and the domain of g is {x € Rlx # 0}, the domain of each of these
functions is {x e Rlx # —2,2,0}.

f J&  x+1 .2 x+1 x_ 2+x
g ) = 5 ‘

g) 2 -4

P-4 2 22-38

The domain of this function may not be apparent from its final form. From the definition of the quotient function,
the domain of this function must be those elements of {x € Rlx # —2, 2, 0} for which g(x) is not 0. Since g(x)
is never 0, the domain of this quotient function is {x € Rlx # —2, 2, 0}.

If fand g are even functions, show that f + g and fg are even functions.

(f+ g)(—x) = f(—x) + g(—x) and ( fg)(—x) = f(—x)g(—x) by definition. Since f and g are even functions,

f(—=x) + g(—x) = f(x) + g(x) and f(—x)g(—x) = f(x)g(x). Therefore,

(f + 9(=x) = f(—x) + g(=x) = f(x) + g&x) = (f + g)(x) and
(fe)(—x) = f(=x)g(—x) = f(x)g(x) = (fe)(x),

that is, f + g and fg are even functions.

Givenf(x) = V1 — xand g(x) = Vx*> — 4, find g + f, g — f, gf, f/g and state their domains.

(g + 1)) =g +f) = Va2 —4+ V1 —x

- ) =gx) —f) = Va2 —4 - V1 —x
(8 = g fx) = Va2 —4- V1 —x

Since the domain of fis {x € Rlx = 1} and the domain of g is {x € Rlx = —2 or x = 2}, the domain of each of
these functions is the intersection of these two sets, that is, {x € Rlx = —2}.

(i)()_ﬂﬁ_ V1 -«
8 . _g(x)_\/x2_4

The domain of this function is those elements of {x € Rlx = —2} for which g(x) # 0, that is, {x € Rlx < —2}.
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13.6

13.7.

13.8.

13.9.

13.10.
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Given f(x) = x* and g(x) = 3x + 5, find f o g and g o f and state their domains.

fogl) = flglx) = fBx +5) = (Bx + 5)*
gof®) = g(f(x) = glx*) = 3x* + 5

Since the domains of fand g are both R, the domains of f o g and g ° fare also R.

Given f(x) = Ixl and g(x) = —5, find f o g and g o f'and state their domains.

Jogl) =f(g) =f(=5) =|-5[=5
g o f(x) = g(f) = g(lx) = =5

Since the domains of fand g are both R, the domains of f o g and g o fare also R.

Given f(x) = Vx — 6 and g(x) = x> + 5x, find f o g and g o fand state their domains.

fogl) = flg) = f02 + 50 = V2 + 5x — 6
gof() =gf) =egVx—6=(Vai—62+5Vx—6=x-6+5Vx—-6

Since the domain of g is R, the domain of f o g is the set of all real numbers with g(x) in the domain of f, that is,
gx)=6,orx> +5x=6,0r {xeRlx=1orx= —6}.

Since the domain of fis {x € Rlx = 6}, the domain of g o fis the set of all numbers in this set with f(x) in the
domain of g; this is all of {x € Rlx = 6}.

Given f(x) = Ix — 1l and g(x) = 1/x, find f o g and g o f'and state their domains.
fo s = fige) = £(3) = [+ = 1] or L]
g2 = g(f00) = gx = 1) = [y

Since the domain of g is {x € Rlx # 0}, the domain of f o g is the set of all nonzero real numbers with g(x) in
the domain of f, that is, {x € Rlx # 0}.

Since the domain of fis R, the domain of g o fis the set of all real numbers with f(x) in the domain of g, that is,
{xeRIx # 1}.

Givenf(x) = Vx> + 5and g(x) = V4 — x2 find f o g and g © f and state their domains.

fogl) =fg) =f(Va—)=V(VE—DP+5=V4-2+5=V9-2

gof) =g(f) =gV +5=Va—- (V2 +52=Va—(2+5=V-1-2

Since the domain of g is {x € R1—2 = x = 2}, the domain of f o g is the set of all numbers in this set with f(x)
in the domain of g; this is all of {x € RI—2 = x = 2}. Note that the domain of f o g cannot be determined from
its final form.

Since —1 —x? is negative for all real x, the domain of g o fis empty.

Find a composite function form for each of the following:

1

@ y=Cx=3" ®y=VIi-x ©y= 55 67"
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13.11.

13.12.

13.13.

13.14.

13.15.

(a) Lety =u*and u = 5x — 3. Theny = f(u) and u = g(x); hence y = f(g(x)).
(b) Lety = \/; and u = 1—x. Then y = f(u) and u = g(x); hence y = f(g(x)).
(¢) Lety=u?Pandu = x> — 5x + 6. Then y = f(u) and u = g(x); hence y = f(g(x)).

A spherical balloon is being inflated at the constant rate of 67 ft*/min. Express its radius r as a function of

time ¢ (in minutes), assuming that r = 0 when ¢ = 0.

Express the radius r as a function of the volume V and V as a function of the time 7.

Since V = %771*3 for a sphere, solve for  to obtain r = f(V) = ’ % V is a linear function of ¢ with slope 67;

) 5[3(671) 5[9t
since V= 0whent =0,V = g(t) = 67rt. Hence, r = f(g(?)) = i —\2 feet.

The revenue (in dollars) from the sale of x units of a certain product is given by the function R(x) = 20x — x%200.
The cost (in dollars) of producing x units is given by the function C(x) = 4x + 8000. Find the profit on sales of
X units.

The profit function P(x) is given by P(x) = (R — C)(x). Hence

P(x) = (R — O)x)
=R(x) — C(x)
= (20x — x%200) — (4x + 8000)
=20x — x%/200 — 4x — 8000
= —x2%/200 + 16x — 8000

In the previous problem, if the demand x and the price p (in dollars) for the product are related by the function
x = f(p) = 4000 — 200p, 0 = p = 20, write the profit as a function of the demand p.

F(p) = P o f(p) = P(f(p)) = P(4000 — 200p)
= — (4000 — 200p)*200 + 16(4000 — 200p) — 8000

In the previous problem, find the price which would yield the maximum profit and also find this maximum
profit.

Simplifying, obtain

F(p) = —(4000 — 200p)*/200 + 16(4000 — 200p) — 8000
— (16,000,000 — 1,600,000p + 40,000p?)/200 + 64,000 — 3200p — 8000
= — 80,000 + 8000p — 200p* + 64,000 — 3200p — 8000

= —200p> + 4800p — 24,000

This is a quadratic function. Completing the square yields F(p) = —200(p — 12)> + 4800. The function
attains a maximum value (maximum profit) of $4800 when the price p = $12.

Show that every increasing function is one-to-one on its domain.

Let f be an increasing function, that is, for every a,b in the domain of f, if a < b, then f(a) < f(b). Now, if
u # v, then either u < v or u > v. Thus either f(u) < f(v) or f(u) > f(v); in either case, f(u) # f(v) and fis a one-
to-one function.
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Determine whether or not each of the following functions is one-to-one.

@ f0)=5:(b) f(x) = 5x:(0) f0) =22+ 5:(d) fx) = V=5

(a) Since f(2) = 5 and f(3) = 5, this function is not one-to-one.

(b) Assume f(1) = f(v). Then it follows that Su = 5v; hence u = v. Therefore, fis one-to-one.
(c) Since f(2) = 9 and f(—2) = 9, this function is not one-to-one.

(d) Assume f(u) = f(v). Then it follows that

Vu—5=Vv—25
u—5=v-—3>5
u=v

Therefore, fis one-to-one.

Use the function-inverse function relationship to show that f and g are inverses of each other, and sketch the
graphs of fand g and the line y = x on the same Cartesian coordinate system.

(@) f0) =2x — 3 g(x) =~ ; 3
() f)=x>+3,x=0 gx)=Vx—3,x=3

© fx) = —V4—x,x=4 ) =4— 2 x=0

(a) Note first that Dom f = Range g = R.
Also Dom g = Range f = R.

2x —3+3

g(f() = g2x = 3) = F—5——=

=x

oyt 3 iy +3
feon =1(*5=) = 2(*5-) - 3

=Y

/s
The line y = x is shown dashed in Fig. 13-3. / 74
s/
Figure 13-3
(b) Note first that Dom f = Range g = [0, ). y
Also Dom g = Range f = [3, ). 6 y;
/
gflx) =g* +3)= Va2 +3 -3 4 ) /
/
=Vx=x onl0, ). 2, /
/ X

Fleo) = f(Vy =3) = (Vy = 37 +3) 6 -4 -2/ 2 4 6

=y—3+3=y s/ -2

/
The line y = x is shown dashed in Fig. 13-4. 4 -4
s

Figure 13-4
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(c) Note first that Dom f = Range g = (—, 4].
Also Dom g = Range f = (—, 0].

g(f(x) = g(~\V4 —x) =4 — (=\V4 — xp
=4-4-x)=x

fey)) =f4—y)=-V4-34-»)

=-Vy =y on(—»,0]

The line y = x is shown dashed in Fig. 13-5.

7 -6
Figure 13-5

13.18. The following functions are one-to-one. Find the inverse functions for each.

(@ fx)y=4x—1

©) f)=x*—9,x=0

2

®) [0 =

@ f=4+x+32%x=-3

(a) Sety =4x — 1. (b) Sety = 2/(x + 3).
Solve for x in terms of y. Solve for x in terms of y.
__2
YT x+3
4x — 1=y
4x =y + 1 x+3=%
7y+1

Ty xf%—i’)

(©

Interchange x and y.

y= 1 =

Note:

Dom f = Range f~! = R
Dom f~'= Range f = R
Sety =x*-9,x=0.

Solve for x in terms of y.

(d)

Interchange x and y.

_ 2
y=f'=%-3
Note:
Dom f = Range f~! = (—,—3) U (—3,)
Domf~! = Rangef = (—,0) U (0,)
Sety =4+ (x + 3%, x = 3.

Solve for x in terms of y.

X=9=y 4+ @x+32=y
X*=y+9 (x+3)PF=y—4
x = \/m x+3= —\/m
(since x must be nonnegative) (since x + 3 must be nonpositive)
x=-3- \/m

Interchange x and y.

Interchange x and y.

y=f1x=Vx+9 y=f'x)=-3-Vx—4
Note: Note:
Dom f = Range f~! = [0, =) Dom f = Range f~! = (—o, —3]

Dom f~! = Range f = [—9, =)

Dom f~! = Range f = [4, ®)
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13.19. The function F(x) = (x — 4)? is not one-to-one. Find the inverse of the function defined by restricting the
domain of Fto (a) x =4; (b) x = 4.

(a) First, show that the function f(x) = (x — 4)%, x = 4, is one-to-one.

Assume f(u) = f(v). Then it follows that

(=42 = (v - 47, uv =4
u—4==xVu -4y
u=4=*@w-—4) sincev = 4

Now, since # must be greater than or equal to 4, the positive sign must be chosen.
u=4+v—4=vy
Therefore, fis one-to-one.
Now sety = f(x) = (x — 4)%, x = 4, and solve for x in terms of y.
(x—4?=y
x—4= \fy sincex = 4
x=4+ \/y
Interchange x and y to obtainy = f~!(x) = 4 + V.
Note: Dom f = Range f~! = [4, »). Dom f~! = Range f = [0, «)
(b) First, show that the function f(x) = (x — 4)%, x =< 4, is one-to-one.

Assume f(u) = f(v). Then it follows that

w— 47 =@ — 47 u,v=4
u—4==Vu — 47?
u=4=*4-v since v = 4

Now, since u must be less than or equal to 4, the negative sign must be chosen.
u=4—-@4-v)=v

Therefore, fis one-to-one.

Now sety = f(x) = (x — 4)%, x = 4, and solve for x in terms of y.

(x—4y2=y
x—4=—\fy since x = 4

x=4- \[y

Interchange x and y to obtainy = f~!(x) = 4 — V.

Note: Dom f = Range f ! = (=, 4]. Dom f ! = Range f = [0, ).

SUPPLEMENTARY PROBLEMS

13.20. Show that if fand g are odd functions, then f + g and f — g are odd functions, but fg and f/g are even functions.

3x — 1 _5x+1
3 and g(x) = 3

Ans. fog(x) = gof(x) = xforallxeR.

13.21. Given f(x) =

, find f o g and g ° fand state their domains.
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13.22.

13.23.

13.24.

13.25.

13.26.

13.27.

13.28.

13.29.

13.30.

The revenue (in dollars) from the sale of x units of a certain product is given by the function R(x) = 60x — x%/100.
The cost (in dollars) of producing x units is given by the function C(x) = 15x + 40,000. Find the profit on sales of
X units.

Ans. P(x) = —x¥100 + 45x — 40,000

In the previous problem, suppose that the demand x and the price p (in dollars) for the product are related by
the function x = f(p) = 5000 — 50p 0 = p = 100. Write the profit as a function of the demand p.

Ans.  F(p) = —(5000 — 50p)*/100 + 45(5000 — 50p) — 40,000

In the previous problem, find the price which would yield the maximum profit and also find this maximum profit.

Ans. Price of $55 yields a maximum profit of $10,625.

A 300-foot-long cable, originally of diameter 5 inches, is submerged in seawater. Because of corrosion, the
surface area of the cable diminishes at the rate of 1250 in*/year. Express the diameter d of the cable as a
function of time 7 (in years).

_ o 25t
Ans. d=5 T inches

Show that every decreasing function is one-to-one on its domain.

A function is periodic if there exists some nonzero real number p, called a period, such that f(x + p) = f(x) for
all x in the domain of the function. Show that no periodic function is one-to-one.

Show that the graphs of f~! and f are reflections of each other in the line y = x by verifying the following:
(a) If P(u,v) is on the graph of f, then Q(v,u) is on the graph of f~!. (b) The midpoint of line segment PQ is on
the line y = x. (c). The line PQ is perpendicular to the line y = x.

The following functions are one-to-one. Find the inverse functions for each.

(a) fix) = 5—10x ) f) = 25 © fo) = 1
@ f) =2- 2 ©f@0=Vo-20=x=3  ®fw=3-Vi-2
Ans. @) f0) = 2 ) 10 = 2@ 0 = 2@ W = V2 v

@ f')=VI-—x20=x=3() fFlx) =G — x> +2,x=3
The following functions are one-to-one. Find the inverse function for each.
@f0)=2+Vd—x 0=x=2 b f) =2+ V4-—x —2=x=0
©f=2-Va-—x2 0=x=2 @ fo=2-Va—-x2 —2=x=0
Ans. @) )= Vax— 2 2=x=40) f'0) = —Vadxr — 22 2=x=4
©f'W=Var—»¥ 0=x=2df'W=-Vax-x¥ 0=x=2
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Polynomial Functions

Definition of Polynomial Function

A polynomial function is any function specified by a rule that can be written as f:x - a x" +a_x""' + -+ +
ax + ay, where a, # 0. nis the degree of the polynomial function. The domain of a polynomial function,
unless otherwise specified, is R.

Special Polynomial Functions
Special polynomial function types have already been discussed:

DEGREE EQUATION NAME GRAPH

n=0 fx) = a, Constant function Horizontal straight line
n=1 f) =ax+a, Linear function Straight line with slope a,
n=2 flx) = a2x2 +ax+a, Quadratic function Parabola

Integer Power Functions

If fhas degree n and all coefficients except a, are zero, then f(x) = ax", where a = a, # 0. Thenifn =1,
the graph of the function is a straight line through the origin. If n = 2, the graph of the function is a parabola
with vertex at the origin. If z is an odd integer, the function is an odd function. If # is an even integer, the
function is an even function.

EXAMPLE 14.1 Draw graphs of (a) f(x) = x*; (b) f(x) = x%; (c) f(x) = x7.
(a) Fig. 14-1; (b) Fig. 14-2; (c) Fig. 14-3.

y y y
7 7 7
5 5 5
3 3 3
1 1 1
X b
- 1 - 1 - 1 *
-1 -1 -1
-3 -3 -3
-5 -5 -5
-7 -7 -7

Figure 14-1 Figure 14-2 Figure 14-3
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EXAMPLE 14.2 Draw graphs of (a) f(x) = x*; (b) f(x) = x% (c) f(x) = x%.

(a) Fig. 14-4; (b) Fig. 14-5; (c) Fig. 14-6.

y y y
7 7 7
5 5 5
3 3 3
1 1 1
X x X
-1 1 -1 1 -1 1
-1 -1 -1
-3 -3 -3
-5 -5 -5
-7 -7 -7
Figure 14-4 Figure 14-5 Figure 14-6

Zeros of Polynomials
If f(c) = 0, c is called a zero of the polynomial f(x).

Division of Polynomials

If a polynomial g(x) is a factor of another polynomial £ (x), then f(x) is said to be divisible by g(x). Thus x* — 1
is divisible both by x — 1 and by x?> + x + 1. If a polynomial is not divisible by another, it is possible to apply
the technique of long division to find a quotient and remainder, as in the following examples:

EXAMPLE 14.3 Find the quotient and remainder for 2x* — x> — 2)/(x> + 2x — 1).

Arrange the dividend and divisor in descending powers of the variable. Insert terms with zero coefficients and use the
long division scheme.

2x> — 4x + 9
22—l [ 2+ 00— 2+ 0x—2
24+ 43— 2x2
—4x*+ x>+ Ox
—4x3 — 8x2 + 4x

Divide first term of dividend by first term of divisor

Multiply divisor by 2x?; subtract
Bring down next term; repeat division step

Multiply divisor by —4x; subtract

9x? — 4x — 2 Bring down next term; repeat division step
9x2 + 18x — 9 Multiply divisor by 9; subtract
- 2x+ 7 Remainder; degree is less than degree of divisor

The quotient is 2x> — 4x + 9 and the remainder is —22x + 7. Thus:
%t =2 =2
x>+ 2x -1

—22x + 7

— 942 _ _TelX T S
2x 4x+9+x2+2x—1

Division Algorithm for Polynomials
If f(x) and g(x) are polynomials, with g(x) # O, then there exist unique polynomials g(x) and r(x) such that

- fe _ )
f(x) = glo)g(x) + r(x) and q(x) + 200

gx)
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Either r(x) = 0 (f(x) is divisible by g(x)) or the degree of r(x) is less than the degree of g(x).
Therefore, if the degree of g(x) is 1, the degree of r(x) is 0, and the remainder is a constant polynomial r.
EXAMPLE 14.4 Find the quotient and remainder for (x> — 5x% + 7x — 9)/(x — 4).

Use the long division scheme:
X —x+ 3

x—4|x*—=5x2+ 7x — 9 Divide first term of dividend by first term of divisor
X — 457 Multiply divisor by x?; subtract
—x* + Tx Bring down next term; repeat division step
—x> + 4x Multiply divisor by —x; subtract

3x — 9 Bring down next term; repeat division step

3x — 12 Multiply divisor by 3; subtract
3 Remainder; degree is less than degree of divisor

The quotient is x> — x + 3 and the remainder is the constant 3. Thus

X =52%+7x—9 5 3
T — 4 —x—x+3+x_4

Synthetic Division
Division of a polynomial f(x) by a polynomial of form x — ¢ is accomplished efficiently by the synthetic divi-
sion scheme. Arrange coefficients of the dividend f{x) in descending order in the first row of a three-row array.

¢ anan—l alaO

The third row is formed by bringing down the first coefficient of f{x), then successively multiplying each
coefficient in the third row by ¢, placing the result in the second row, adding this to the corresponding
coefficient in the first row, and placing the result in the next position in the third row.

cla, a, a, a4
ca cb ceech ., cb
n 1 n—2 n—1

a, b b, r

The last coefficient in the third row is the constant remainder; the other coefficients are the coefficients of
the quotient, in descending order.

EXAMPLE 14.5 Use synthetic division to find the quotient and remainder in the previous example.

In this case, ¢ = 4. Arrange the coefficients of x> — 5x* + 7x — 9 in the first row of a three-row array; proceed to bring
down the first coefficient, 1, then multiply by 4, place the result in the second row, add to —5, place the result in the third
row. Continue to the last coefficient of the array.

411 -5 7 -9
4 —4 12
1 -1 3 3

As before, the quotient is x> — x + 3 and the remainder is 3.

Remainder Theorem
When the polynomial f(x) is divided by x — ¢, the remainder is f(c).

EXAMPLE 14.6 Verify the remainder theorem for the polynomial f(x) = x* — 5x> + 7x — 9 divided by x — 4.

Calculate f (4) = 43— 5-42 + 7-4 — 9 = 3. The remainder in division has already been shown to be 3; thus, the con-
clusion of the theorem holds.

Factor Theorem

A polynomial f(x) has a factor of x — ¢ if and only if f(c) = 0. Thus, x — ¢ is a factor of a polynomial if and
only if c is a zero of the polynomial.
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EXAMPLE 14.7 Use the factor theorem to verify that x + 2 is a factor of x* + 32.
Let f(x) = x° + 32; then f(—2) = (—2)° + 32 = 0; hence x — (—2) = x + 2 is a factor of f(x).

Fundamental Theorem of Algebra

Every polynomial of positive degree with complex coefficients has at least one complex zero.

Corollaries of the Fundamental Theorem

1.

Every polynomial of positive degree n has a factorization of the form
Px)=a, (x—r)x—r) - -(x—r)

where the r, are not necessarily distinct. If in the factorization x — r, occurs m times, r, is called a zero
of multiplicity m. However, it is not necessarily possible to find the factorization using exact algebraic
methods.

. A polynomial of degree n has at most n complex zeros. If a zero of multiplicity m is counted as m zeros,

then a polynomial of degree n has exactly n zeros.

Further Theorems about Zeros

Further theorems about zeros of polynomials:

1.

P =axt +a,

If P(x) is a polynomial with real coefficients, and if z is a complex zero of P(x), then the complex con-
jugate 7 is also a zero of P(x). That is, complex zeros of polynomials with real coefficients occur in
complex conjugate pairs.

. Any polynomial of degree n > 0 with real coefficients has a complete factorization using linear and

quadratic factors, multiplied by the leading coefficient of the polynomial. However, it is not necessarily
possible to find the factorization using exact algebraic methods.

X1+ -+ -+ ax + a,is a polynomial with integral coefficients and r = p/q is a
rational zero of P(x) in lowest terms, then p must be a factor of the constant term a, and g must be a
factor of the leading coefficient a .

EXAMPLE 14.8 Find a polynomial of least degree with real coefficients and zeros 2 and 1 — 3i.

By the factor theorem, c is a zero of a polynomial only if x — ¢ is a factor. By the theorem on zeros of polynomials with
real coefficients, if 1 — 3i is a zero of this polynomial, then so is 1 + 3i. Hence the polynomial can be written as

Px) =alx —2)[x — (1 —3)][x — (1 + 30)]

Simplifying yields:

P(x) = a(x — 2)[(x — 1) + 3i][(x — 1) — 3i]
=a(x — 2)[(x — 1)> = 3i)’]
=a(x — 2)(x* — 2x + 10)
= a(x® — 4x* + 14x — 20)

EXAMPLE 14.9 List the possible rational zeros of 3x> + 5x — 8.

From the theorem on rational zeros of polynomials with integer coefficients, the possible rational zeros are:

Factors of —8 = *1,%2,24,%8 = *1, *2, +4, *8§ +l
Factors of 3 +1,*+3 =L =45 =% =0, =7

+; +
3+

4
33

*

w|oo

Note that the actual zeros are 1 and —§.
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Theorems Used In Locating Zeros
Theorems used in locating zeros of polynomials:

1. INTERMEDIATE VALUE THEOREM: Given a polynomial f(x) with a < b, if f(a) # f(b), then f(x) takes on
every value ¢ between a and b in the interval (a,b).

2. COROLLARY: For a polynomial f(x), if f(a) and f(b) have opposite signs, then f(x) has at least one zero
between a and b.

3. DESCARTES’ RULE OF SIGNS: If f(x) is a polynomial with terms arranged in descending order, then the
number of positive real zeros of f(x) is either equal to the number of sign changes between successive
terms of f(x) or is less than this number by an even number. The number of negative real zeros of f(x) is
found by applying this rule to f(—x).

4. If the third line of a synthetic division of f(x) by x — ris all positive for some r > 0, then r is an upper
bound for the zeros of f(x); that is, there are no zeros greater than r. If the terms in the third line of a
synthetic division of f(x) by x — r alternate in sign for some r < 0, then r is a lower bound for the zeros
of f(x); that is, there are no zeros less than r. (0 may be regarded as positive or negative for the purpose
of this theorem.)

Solving Polynomial Equations

Solving polynomial equations and graphing polynomials:
The following statements are equivalent:

1. cis a zero of P(x).

2. c is a solution of the equation P(x) = 0.

3. x — cis a factor of P(x).

4. For real c, the graph of y = P(x) has an x-intercept at c.

Graphing a Polynomial
To graph a polynomial function for which all factors can be found:

1. Write the polynomial in factored form.

2. Determine the sign behavior of the polynomial from the signs of the factors.
3. Enter the x-intercepts of the polynomial on the x-axis.

4. If desired, form a table of values.

5. Sketch the graph of the polynomial as a smooth curve.

EXAMPLE 14.10 Sketch a graph of y = 2x(x — 3)(x + 2).

The polynomial is already in factored form. Use the methods of Chapter 6 to obtain the sign chart shown in Fig. 14-7.

Sign of x - - + +
Signofx-3 - - - +
Signofx+2 - + + +
Sign of result - + - +
11—ttt
-2 0 3

Figure 14-7

The graph has x-intercepts —2,0,3 and is below the x-axis on the intervals (—°, —2) and (0,3) and above the x-axis on
the intervals (—2,0) and (3,%). Form a table of values as shown and sketch the graph as a smooth curve (Fig. 14-8).
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20pY
15
10

-5
-10
-15

Figure 14-8

SOLVED PROBLEMS

14.1. Prove the remainder theorem.

By the division algorithm, there exist polynomials g(x) and r(x) such that f(x) = g(x)(x — ¢) + r(x). Since the
degree of r(x) is less than the degree of x — c, that is, less than 1, the degree of r(x) must be zero. Thus r(x) is a
constant; call it r. Thus, for all x,

J&) = gx)x —c) +r
In particular, let x = c. Then f(c) = g(c)(c — ¢) + r, that s, f(c) = r. Thus,
S = g(x)(x — ¢) + f(c)

In other words, the remainder when f(x) is divided by c is f(c).

14.2. Find the quotient and remainder when 2x* + 3x?> — 13x + 5 is divided by 2x — 3. Use the long division scheme:

X +3x -2
2x — 3 |2x3 + 3x*» — 13x + 5 Divide first term of dividend by first term of divisor
2x3 — 3x2 Multiply divisor by x%; subtract
6x* — 13x Bring down next term; repeat division step
6x2 — 9x Multiply divisor by 3x; subtract

—4x + 5 Bring down next term; repeat division step
—4x + 6 Multiply divisor by —2; subtract
—1 Remainder; degree is less than degree of divisor

The quotient is x* + 3x — 2 and the remainder is —1.

14.3. Find the quotient and remainder when 3x° — 7x* 4+ 5x> + 6x — 6 is divided by x> — x + 2.

Use the long division scheme:

2 _
X =x+2|3 =T+ gjz + 6x — 2 Divide first term of dividend by first term of divisor
38 =3x8 + 6x2 Multiply divisor by 3x?; subtract
—4x3 — x* + 6x — 6  Bring down next term; repeat division step
— 453 + 4x — 8  Multiply divisor by —4; subtract

—x*+ 2x + 2 Remainder; degree is less than degree of divisor

The quotient is 3x*> — 4 and the remainder is —x> + 2x + 2.
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14.5.

14.6.

14.7.

14.8.

14.9.
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Find the quotient and remainder when 2x* 4+ 5x2 — 10x + 9 is divided by x + 2.

Use the synthetic division scheme. Note that in dividing by x — ¢, the coefficient c is placed in the upper-left
corner and used to multiply the numbers generated in the third line. In division by x + 2, that is, x — (—2),
use ¢ = —2.

-2 2 5 -10 9
-4 -2 24
2 1 —-12 33

The quotient is 2x*> + x — 12 and the remainder is 33.

Find the quotient and remainder when —37 + 10#* + 1572 + 187 — 6 is divided by ¢t — 4.
Use the scheme for synthetic division by ¢ — ¢, with ¢ = 4. Enter a zero for the missing coefficient of .
4 -3 10 0 15 18 -6

—-12 -8 —-32 —-68 —200
-3 -2 -8 —-17 =50 —206

The quotient is —3#* — 22 — 872 — 17t — 50 and the remainder is —206.

Find the quotient and remainder when 2x* — 5x2 + 6x — 3 is divided by x — 1.

Use the scheme for synthetic division by x — ¢, with ¢ = %

il 2 -5 6 -3
1 -2 2
2 -4 4 -1

The quotient is 2x*> — 4x + 4 and the remainder is —1.

Find the quotient and remainder when 3x* + 8x3 — x* + 7x + 2 is divided by x + 2.
Use the scheme for synthetic division by x — ¢, with ¢ = —%.

-3l 38 -1 7 2
10 62

2 -4 5

3
3

36 -5 ¥ %

The quotient is 3x* + 6x*> — 5x + % and the remainder is —%.

Prove the factor theorem.

By the remainder theorem, when f(x) is divided by x — ¢, the remainder is f(c).

Assume c is a zero of f(x); then f(c) = 0. Therefore, f(x) = g(x)(x — ¢) + f(c) = g(x)(x — ¢), thatis, x — c is
a factor of f(x).

Conversely, assume x — c is a factor of f(x); then the remainder when f(x) is divided by x — ¢ must be zero.
By the remainder theorem, this remainder is f(c); hence, f(c) = 0.

Show that x — a is a factor of x” — " for all integers n.

Let f(x) = x" — a"; then f(a) = a" — a" = 0. By the factor theorem, since a is a zero of f(x), x — a is a factor.
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14.10. Use the quadratic formula and the factor theorem to factor (a) x> — 12x + 3; (b) x> — 4x + 13.

(a) The zeros of x> — 12x + 3, that is, the solutions of x> — 12x + 3 = 0, are found from the quadratic
formula. Usinga = 1, b = —12, ¢ = 3 yields

—(—12) = V(—12)2 - +
. (—12) (—12) 4(1)(3):12_2 132:6i\/3—3

2(1)

Since the zeros are 6 = /33, the factors arex — (6 + \/g) andx — (6 — V33). Thus
212 +3=1[x— 6+ V33— (6~ V33 or[x —6) — V33][(x — 6) + V33]

(b) Proceeding as in (a), use the quadratic formula witha = 1, b = —4, ¢ = 13 to obtain
_—=H VA A3 a2 V36
x = 2(0) = > =2x3

Since the zeros are 2 * 3i, the factors are x — (2 + 3i) and x — (2 — 3i). Thus

X =4x+ 13 =[x — 2+ 3)][x — 2 — 3] or [(x — 2) — 3i][(x — 2) + 3i]

14.11. Write the polynomial P(x) = x* — 7x* 4+ 13x> + 3x — 18 as a product of first-degree factors, given that 3 is a
zero of multiplicity 2.

Since 3 is a zero of multiplicity 2, there exists a polynomial g(x) with P(x) = (x — 3)?g(x). To find g(x), use
the scheme for synthetic division by x — ¢, with ¢ = 3, twice:

31 -7 13 3 -18
3 -12 3 18
31 -4 1 6 0
3 -3 —6
1 -1 -2 0

Thus
PxX)=x—-—3)x—3)(x2—x—2)
=x—3)x —3)x—2)x+1

14.12. Write the polynomial P(x) = 2x* + 2x> — 40x — 100 as a product of first-degree factors, given that —3 — i is
a zero. Find all zeros of P(x).

Since P(x) has real coefficients and —3 — i is a zero, —3 + i is also a zero. Therefore, there exists a polynomial
g(x) with P(x) = [x — (=3 — D)][x — (=3 + i)]g(x). To find g(x), use the scheme for synthetic division by x — ¢
with, inturn,¢ = —3 —iandc = =3 + i.

-3-il 2 2 —40 —100
—6—2 10+ 10i 100
34 2 —4-2i =30 +10i O
— 6 +2 30— 10
2 -10 0

Thus
Px)=[x—(=3—D]x — (=3 + )]2x — 10)

and the zeros of P(x) are —3 * i and 5.
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14.14.

14.15.

14.16.

14.17.
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Find a polynomial P(x) of lowest degree, with real coefficients, such that 4 is a zero of multiplicity 3, —2 is a
zero of multiplicity 2, 0 is a zero, and 5 + 2i is a zero.

Since P(x) has real coefficients and 5 + 2i is a zero, 5 — 2i is also a zero. Thus, write

P(x) = alx — 43[x — (—=2)]2(x — O)[x — (5 + 2D)][x — (5 — 20)]
=alx — 4)3(x + 2)%[(x — 5) — 2i][(x — 5) + 2i]

a(x — 4)3(x + 2)2x(x2 — 10x + 29)

Here a can be any real number.

Find a polynomial P(x) of lowest degree, with integer coefficients, such that _%, %, and f% are zeros.

o33 ()]
_ a(3x3— 2)<4x4— 3><2x;- 1>
_ 24b<3x3— 2>(4x4— 3)<2x2+ 1)

=b(Bx —2)4x — 3)2x + 1)

Write
P(x)

Here b can be any integer.

Show that f(x) = x> — 5 has a zero between 1 and 2.

Since f(1) = 13 = 5 = —4 and f(2) = 2* — 5 = 3, f(1) and f(2) have opposite signs. Hence the polynomial
has at least one zero between 1 and 2.

Show that f(x) = 2x* + 3x* + x> — 2x — 8 has a zero between —2 and —1.
Use the scheme for synthetic division with ¢ = —2 and ¢ = —1.
-2/ 231 -2 -8 -1 23 1-2 -8
-4 2 —6 16 -2 -1 0 2
2-1 3 -8 8 2 1 0 -2 —6

Since f(—2) = 8§ and f(—1) = —6, f(—2) and f(—1) have opposite signs. Hence the polynomial has at least
one zero between —2 and —1.

Use Descartes’ rule of signs to analyze the possible combinations of positive, negative, and imaginary zeros
for f(x) = x* — 3x* + 2x + 8.

The coefficients of f(x) exhibit two changes of sign. Thus there could be two or zero positive real zeros for f.
To find the possible number of negative zeros, consider f(—x).

f(=x)=(=x = 3(—x)?>+2(—x) + 8= —x*—3x> —2x+ 8

The coefficients of f(—x) exhibit one change of sign. Thus there must be one negative real zero for f.
Since there are either three or one real zeros, there can be either no or two imaginary zeros.
The table indicates the possible combinations of zeros:

POSITIVE NEGATIVE IMAGINARY

2 1 0
0 1 2
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14.18.

14.19.

14.20.

14.21.

Use Descartes’ rule to signs of analyze the possible combinations of positive, negative, and imaginary zeros
for f(x) = —2x% 4+ 3x% — 3x3 + 5x2 — 6x + 9.

The coefficients of f(x) exhibit five changes of sign. Thus there could be five or three positive real zeros for f
or one positive real zero for f.
To find the possible number of negative zeros, consider f(—x).

f(=x) = =2(=x)° + 3(=x) — 3(—=x)* + 5(—=x)> — 6(—=x) + 9

—2x6 —3x5 +3x33 + 522+ 6x+ 9

The coefficients of f(—x) exhibit one change of sign. Thus there must be one negative real zero for f. Since there
are either six, four, or two real zeros, there can be either no, two, or four imaginary zeros. The table indicates the
possible combinations of zeros:

POSITIVE NEGATIVE IMAGINARY
5 1 0
3 1 2
1 1 4

Use Descartes’ rule of signs to show that f(x) = x> + 7 has no positive real zeros and must have a real
negative zero.

Since f(x) exhibits no changes of sign, there can be no positive real zeros. To find the possible number of negative
zeros, consider f(—x).

) =(=xP3+T7==-x*+7
The coefficients of f(—x) exhibit one change of sign. Thus there must be one negative real zero for f.

Use Descartes’ rule of signs to show that f(x) = x* + 2x? + 1 has no real zeros.

Since f(x) exhibits no changes of sign, there can be no positive real zeros. To find the possible number of negative
zeros, consider f(—x).

f(=x)=(—x)*+2(—x)>+1=x*+22+1

Since f(—x) exhibits no changes of sign, there can be no negative real zeros. Since 0 is not a zero, there can be
no real zeros of f(x).

Find the smallest positive integer and the largest negative integer that are, respectively, upper and lower
bounds for the zeros of f(x) = x> + 2x*> — 3x — 5.

Use the scheme for synthetic division by x — ¢, with ¢ = successive positive integers (only the last line in the
synthetic division is shown).

1 2 -3 =5
11 3 0 -5
2 1 4 5 5

Since the last line in synthetic division by x — 2 is all positive and the last line in synthetic division by x — 1 is
not, 2 is the smallest positive integer that is an upper bound for the zeros of f.
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Use the scheme for synthetic division by x — ¢, with ¢ = successive negative integers (only the last line in the
synthetic division is shown).

Since the last line in synthetic division by x + 3 alternates in sign (recall that O can be regarded as positive or
negative in this context) and the last line in synthetic division by x + 2 does not, —3 is the largest negative
integer that is a lower bound for the zeros of f.

Use the corollary of the intermediate value theorem to locate, between successive integers, the zeros of fin the
previous problem.

From the synthetic divisions carried out in the previous problem, since f(1) and f(2) have opposite signs, there is
a zero of fbetween 1 and 2. Similarly, since f(—1) and f(—2) have opposite signs, there is a zero of f between
—1 and —2. Finally, since f(—2) and f(—3) have opposite signs, there is a zero of fbetween —2 and —3.

Use the corollary of the intermediate value theorem to locate, between successive integers, the zeros of
f) =x* = 3x* — 6x% + 33x — 35.

Use the scheme for synthetic division by x — ¢, with ¢ = successive positive integers, then 0, then successive
negative integers (only the last line in the synthetic divisions is shown).

1 -3 —6 33 -35
1 1 -2 -8 25 —10
2 1 -1 -8 17 -1
3 1 0 -6 15 10
4 1 1 -2 25 65
5 1 2 4 53 230
0 1 -3 —6 33 -35
-1 1 —4 -2 35 —70
-2 |1 -5 4 25 —85
-3 |1 -6 12 -3 —26
-4 |1 -7 22 =55 185

Since f(2) and f(3) have opposite signs, there is a zero of fbetween 2 and 3. No other positive real zeros can be
isolated from the data in the table (5 is an upper bound for the positive real zeros).

Since f(—3) and f(—4) have opposite signs, there is a zero of f between —3 and —4. No other negative real
zeros can be isolated from the data in the table (—4 is a lower bound for the negative real zeros).

List the possible rational zeros of x> — 5x> + 7x — 12.

From the theorem on rational zeros of polynomials with integer coefficients, the possible rational zeros are:

Factors of —12 _ %1, £2, £3, £4, 6, £12
Factorsof 1 +1

= *1,*2,£3,%£4, +6, £12
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14.25.

14.26.

14.27.

List the possible rational zeros of 4x> + 5x*> + 7x — 18.
From the theorem on rational zeros of polynomials with integer coefficients, the possible rational zeros are:

Factors of —18 _ *1, £2, 23, 6, £9, =18 1 .3.9 .1 .3.9
Factors of 4 +1,+2, +4 B M Rty Ml Rl Rl

Find all zeros of f (x) = x*> + 3x2 — 10x — 24.

From Descartes’ rule of signs, the following combinations of positive, negative, and imaginary zeros are possible.

POSITIVE NEGATIVE IMAGINARY
1 2 0
1 0 2

From the theorem on rational zeros of polynomials with integer coefficients, the possible rational zeros are
*1,£2,£3,+4 £6, £8, £12, =24,

Use the scheme for synthetic division by x — ¢, with ¢ = successive positive integers from this list (only the last
line in the synthetic division is shown).

1 3 -10 —24
1 |1 4 —6 -30
2 |1 5 0 —24
301 6 8 0

Thus, 3 is a zero and the polynomial can be factored as follows:

fx)=@x—3)(x*+6x+38)
=x—-3)x+2)x+4

Hence the zeros are 3, —2, and —4.

Find all zeros of f(x) = 3x* + 16x* + 20x> — 9x — 18.

From Descartes’ rule of signs, the following combinations of positive, negative, and imaginary zeros are possible.

POSITIVE NEGATIVE IMAGINARY
1 3 0
1 1 2

From the theorem on rational zeros of polynomials with integer coefficients, the possible rational zeros are

I+
o

.|.
0
I+
&

Factorsof 18 _ =1, 22, =3 = 1, %2, 3, 26, £9, £18, =1 +2

Factor of 3 +1, *3 —3 73

N

Use the scheme for synthetic division by x — ¢, with ¢ = successive positive integers from this list (only the last
line in the synthetic division is shown).

‘3 6 20 -9  —18

1 ‘ 3 19 39 30 12
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Since f(0) and f(1) have opposite signs, the positive zero is between 0 and 1.
Now use the scheme for synthetic division by x — ¢, with ¢ = successive negative integers from the list (only
the last line in the synthetic division is shown).

3 16 20 -9 —18
-1/3 13 7 —16 -2
-2 |3 10 0 -9 0

Thus, —2 is a zero and the polynomial can be factored as follows:
J =@+ 2)33 + 1062 - 9)
The possible rational zeros of the depressed polynomial 3x* + 10x?> — 9 that have not been eliminated are

—3,—9,and i%. Synthetic division by x — ¢, with ¢ = —3, yields (only the last line in the synthetic division
is shown):

Thus, —3 is a zero and the polynomial can be factored as follows:
) =@+ 2 +3)GB2+x—3)

+ /37

The remaining zeros can be found by solving 3x?> + x — 3 = 0 by the quadratic formula to obtain _IT
in addition to —2 and —3.

Find all zeros of f(x) = 4x* — 4x3 — 7x*> — 6x + 18.

From Descartes’ rule of signs, the following combinations of positive, negative, and imaginary zeros are
possible.

POSITIVE NEGATIVE IMAGINARY
2 2 0
2 0 2
0 2 2
0 0 4

From the theorem on rational zeros of polynomials with integer coefficients, the possible rational zeros are

1 3 9 1 3 9
*1, £2, +3, =6, £9, £18, *5, E5, g, g L T

Use the scheme for synthetic division by x — ¢, with ¢ = successive positive integers from this list (only the
last line in the synthetic division is shown).

4 —4 -7 —6 18
1 |4 0 =17 —13 5
2 |4 4 1 —4 10
3 14 8 17 45 153

3 is an upper bound for the positive zeros of f. Now use the scheme for synthetic division by x — ¢, with
¢ = successive positive rational numbers from this list (only the last line in the synthetic division is shown).
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4 -4 -7 -6 18
14 -2 -8 -10 13
3la 2 -4 -2 0

Thus, % is a zero and the polynomial can be factored as follows:
F) = (x - %)(4;& + 22— dx — 12) = 2x — 3H2F + 2 — 2x — 6)
The only possible rational zero of the depressed polynomial 2x* + x> —2x — 6 that has not been eliminated

from consideration is % Synthetic division by x — ¢, with ¢ = %, yields (only the last line in the synthetic
division is shown):

‘2 1 -2 -6
2

f

2 4 4 0

Thus, % is a double zero of the original polynomial, which can be factored as follows:
fx) = 2x — 3) <x — %) 22+ 4x +4) = 2x — 3)2(x% + 2x + 2)

The remaining zeros can be found by solving x> + 2x + 2 = 0 by the quadratic formula to obtain —1 * i in
addition to the double zero %

14.29. Sketch the graphs of the following polynomial functions:
@ f)=2x" -9 (b) f(x) =5 (x + 1)
©) fx)= f% (x+3P+4 d) f(x) =x*+3x>— 10x — 24
(€) f(x) = 3x* + 16x* + 20x> — 9x —18 () f(x) = 4x* — 4 — T2 —6x + 18

(a) The graph of f(x) = 2x* — 9 is the same as 2.y
the graph of f(x) = x* stretched by a factor / X
of 2 with respect to the y-axis and shifted -2
down 9 units (see Fig. 14-9). -4

Figure 14-9

(b) The graph of f(x) =3 (x + 1)*is the same as the
graph of f(x) = x* shifted 1 unit to the left and 5.7
compressed by a factor of 3 (see Fig. 14-10).

s X
-3 ~2 -1 1

Figure 14-10
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(c) The graph of f(x) = f% x + 3)® + 4is the g Y
same as the graph of f(x) = x? shifted 7
3 units to the left, compressed by a factor 6
of 2, reflected with respect to the y-axis, 5
and shifted up 4 units (see Fig. 14-11). 4
3
2
1
X
-5 -4 -3 -2 -1 0 1

Figure 14-11

(d) In Problem 14-26 it was shown that f(x) = x> + 3x> — 10x — 24 = (x — 3)(x + 2)(x + 4). Use the
methods of Chapter 6 to obtain the sign chart shown in Fig. 14-12.

Signofx —3 - - - +
Signofx +2 - - + +
Signofx +4 - + + +
Sign of result - + _ +

| } | 1 I [ i | |

———t—t————t——1—

-4 -2 3
Figure 14-12

The graph has x-intercepts —4, —2, 3 and is below the x-axis on the intervals (—, —4) and (—2, 3) and
above the x-axis on the intervals (—4, —2) and (3, ). Form a table of values and sketch the graph as a
smooth curve.

See Fig. 14-13 and the accompanying table.

80 Y
x| 5| 4| 3|2 =1 60
y || 24 0 6 01 -12 40
20
X 0 1 2 3 4 . x
~4 -2 2 4
yll-24|-30|-24| 0| 48 \_2@.\/
-40
Figure 14-13
. -1+ V37
(e) InProblem 14-27 it was shown that f(x) = (x + 2)(x + 3)(3x> + x — 3). It was further shown thatT

are zeros of the polynomial, hence; by the factor theorem, f(x) can be completely factored as

6

70 =+ 206+ 3(x ‘”6\/5)@ . —1—\/37>3

For graphing purposes, the irrational zeros may be approximated as 0.85 and —1.2. A sign chart shows that
the graph has x-intercepts —3, —2, —1.2, 0.85 and is below the x-axis on the intervals (—3,—2) and
(—1.2,0.85) and above the x-axis on the intervals (—o°, —3), (—2,—1.2), and (0.85,%). Form a table of
values and sketch the graph as a smooth curve.
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See Fig. 14-14 and the accompanying table.

y

30

xi|l~41-3]-21{-1 0 1 20
y || 82 0 0{-21{-18] 12 10

o x
N > 1
10
-20

Figure 14-14

(f) In Problem 14-28 it was shown that f(x) = (2x — 3)> (x> + 2x + 2). Thus the graph of the polynomial has
an x-intercept at x = % and is above the x-axis for all other values of x. Form a table of values and sketch
the graph as a smooth curve.

See Fig. 14-15 and the accompanying table.

y
70
x{|{-15|-1]-05]| 0 60
50
yll 45|25] 20|18 40
x|| 05 1| 15] 2 30
yll 13| 5| of10 10\
X
-2 -1 1 2 3

Figure 14-15

SUPPLEMENTARY PROBLEMS

14.30. Find the quotient and remainder for the following:
@ Gx*+x2—=8x+2/(x*—=3x+1) B EF+x*+33—-2—x—-3)/x*+x+1)
(c) (& —3x2+ 8x—7I2x —5) d ®—x* =83 +x+2/(x+3)
Ans. (a) Quotient: 5x> + 15x + 41, remainder: 100x — 39; (b) quotient: x> + 2x — 3, remainder: 0,

(c) quotient: %xZ — %x + 2 remainder: ?; (d) quotient: ¥ — 3x* + 8x* — 32x? + 96x — 287, remainder: 863

14.31. Given f(x) = x* + 23 + 6x> + 8x + 8, find (a) f(—3); (b) f(2i); (c) f(3 — i); (d) f(—1 +i).
Ans. (a) 65; (b) 0;(c) 144 — 192i;(d) 0.

14.32. Find a polynomial P(x) of lowest degree, with integer coefficients, such that% and —3 — 2i are zeros.

Ans.  P(x) = a(5x> + 27x> + 47x — 39), where a is any integer.

14.33. Show that x + a is a factor of x" + a" for all odd n.
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14.34. Show that x + a is a factor of x” — a” for all even n.
14.35. Assuming the validity of the fundamental theorem of algebra, prove the first corollary stated above.

14.36. Prove: If P(x) is a polynomial with real coefficients, then if z is a complex zero of P(x), then the complex
conjugate Z is also a zero of P(x). Hint: Assume that z is a zero of P(x) = a x" + ct,H)c"*1 +tax + a
and use the facts that @ = a if a is real and thatz + w = Z + W and zw = Zw for all complex numbers.

14.37. Locate the zeros of f(x) = 6x> + 32x> + 41x + 12 between successive integers.

Ans. The zeros are in the intervals (—4,—3), (—2,—1), and (—1,0).

14.38. Find all zeros exactly for the following polynomials:
(a) 263 — 5x* — 2x + 2;(b) x* + 2x3 — 2x> — 6x — 3;(c) x* — x* — 3x* + 17x — 30;
(d X +53+6x;(6) 3x°—2x* — 9 + 6x2 — 12x + 8

Ans. (a) {3,1=V/3}: (b) {—1(double),= V/3}; () {2,—3,1+2i};
@ {0.£iV2,%iV3}; () {2.2,+i}

14.39. Solve the polynomial equations:
(@ x*—19x—-30=0 (b) 4x3 + 40x = 22x> + 25
(©) X —5x* —4x3 + 3632 +27x — 135=0 (d) —12x* — 8x3 +49x> +39x — 18 = 0

Ans. (@) p—&—zﬁ}xb){%ﬁ‘;i};@){3;—2¢i}xd){zg—%

14.40. Using the information in the previous problem, draw graphs of
(@ f(x) =x—19x — 30 (b) f(x) = 4x* — 22x* + 40x — 25
(©) f(x) = x5 — 5x* — 43 + 36x% + 27x — 135 (d) fx) = —12x* — 8x* + 49x* + 39x — 18
Ans. (a) Fig. 14-16; (b) Fig. 14-17; (c) Fig. 14-18; (d) Fig. 14-19.

y
-~
60 /
40 X
-2 -1 1
20 3
J— x -5
-4~ —NQ 2 4 6
40 -10
-60

Figure 14-16 Figure 14-17
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y y
/ >0 /\
. X
-2 -1 1 3 4
50 -2 ¥ 1
-50
-100 -100
-150 -150
-200 -200
Figure 14-18 Figure 14-19

14.41. From a square piece of cardboard 20 inches on a side, an open box is to be made by removing squares of side
x and turning up the sides. Find the possible values of x if the box is to have volume 576 cubic inches. (See

Fig. 14-20.)
X
- = X
I
|
|
I | x
IE 20— 2x 3 20-2x
«< >

20
Figure 14-20

Ans. 4inches, or 8 — V28 = 2.7 inches.

20 -2x

14.42. Asilo is to be built in the shape of a right circular cylinder with a hemispherical top (see Fig. 14-21). If the
total height of the silo is 30 feet and the total volume is 1008 cubic feet, find the radius of the cylinder.

Figure 14-21

Ans. 6 feet.



Rational Functions

Definition of Rational Function

P(x
A rational function is any function which can be specified by a rule written as f(x) = %, where P(x) and

Q(x) are polynomial functions. The domain of a rational function is the set of all real numbers for which
O(x) # 0. The assumption is normally made that the rational expression P(x)/Q(x) is in lowest terms, that
is, P(x) and Q(x) have no factors in common. (See below for analysis of cases where this assumption is not
made.)

2y = G DE b 3x
-9 x(x — 2)(x + 3) X2+ 4
functions. The domains are, respectively, for f,{x € Rlx # 0}, for g, {x € Rlx # *3}, for h, {x € Rlx # 0,2,—3}, and
for k, R (since the denominator polynomial is never 0).

EXAMPLE 15.1 f(x) = %, gx) = 2 and k(x) = are examples of rational

Graph of a Rational Function

The graph of a rational function is analyzed in terms of the symmetry, intercepts, asymptotes, and sign be-
havior of the function.

1. If O(x) has no real zeros, the graph of P(x)/Q(x) is a smooth curve for all real x.
2. If Q(x) has real zeros, the graph of P(x)/Q(x) consists of smooth curves on each open interval that does
not include a zero. The graph has vertical asymptotes at each zero of Q(x).

Vertical Asymptotes

The line x = a is a vertical asymptote for the graph of a function f'if, as x approaches a through values that
are greater than or less than a, the value of the function grows beyond all bounds, either positive or negative.
The cases are shown in the following table, along with the notation generally used:

NOTATION MEANING GRAPH
liﬂmf fx) = = As x approaches a from the left, y
e f(x) is positive and increases
beyond all bounds.
JRNEEE X
Figure 15-1
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NOTATION MEANING GRAPH
li)mf f(x) = —o | Asxapproaches a from the left, Y
e f(x) is negative and decreases X
beyond all bounds. a
Figure 15-2
lim f(x) = o As x approaches a from the right, y
e f(x) is positive and increases
beyond all bounds.
X
a
Figure 15-3
l_i)m+ f(x) = —o | As x approaches a from the right, Yy
T f(x) is negative and decreases
beyond all bounds. S ;
Figure 15-4
3

EXAMPLE 15.2 Explain why the line x = 2 is a vertical asymptote for the graph of f(x) = -

Consider the values of y = f(x) near x = 2, as shown in the table:

X 1 1.9 1.99 1.999 3 2.1 2.01 2.001

y -3 | =30 —300 —3000 3 30 300 3000

Clearly, as x approaches 2 from the left, f(x) is negative and decreases beyond all bounds, and, as x approaches 2 from
the right, f(x) is positive and increases beyond all bounds, that is, lin; f(x) = —»and ll)n% f(x) = ©. Thusx =2isa
vertical asymptote for the graph. ! !

Horizontal Asymptotes

The line y = a is a horizontal asymptote for the graph of a function fif, as x grows beyond all bounds, either
positive or negative, f(x) approaches the value a. The cases are shown in the following table, along with the
notation generally used:
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NOTATION MEANING GRAPH
ligrgc fx) =a As x increases beyond all bounds, y
! f(x) approaches the value a. [In the
figure, f(x) < a for large positive
values of x.]
/ x
Figure 15-5
ll_I}I}Q f&x)=a As x increases beyond all bounds, Y
! f(x) approaches the value a. [In the
figure, f(x) > a for large positive
values of x.] N
/
X
Figure 15-6
grym f&x)=a As x decreases beyond all bounds, Y
! f(x) approaches the value a. [In the
figure, f(x) < a for large negative
values of x.]
N\ x
Figure 15-7
grpm f&x) =a As x decreases beyond all bounds, y
! f(x) approaches the value a.
[In the figure, f(x) > a for large
negative values of x.]
A\ x
Figure 15-8
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Finding Horizontal Asymptotes
Let

_ P ax"+t - tax+aq
oo = Ox) b x"+ -+ +bx+ b,

witha # Oand b, # 0.Then

1. If n < m, the x axis is a horizontal asymptote for the graph of f.

2. If n = m, the line y = a /b, is a horizontal asymptote for the graph of f.

3. If n > m, there is no horizontal asymptote for the graph of f. Instead, as x — % and as x — — o, either
Jfx) = wor f(x) = —o.

2x + 1

EXAMPLE 15.3 Find the horizontal asymptotes, if any, for f(x) = j—

Since the numerator and denominator both have degree 1, the quotient can be written as

2x+ 1 -5 2+
f(x):xx +xx =
1 —

S| —

For large positive or negative values of x, this is very close to %, the ratio of the leading coefficients, thus f(x) — 2. The
line y = 2 is a horizontal asymptote.

Oblique Asymptotes
Let

P(x) ax" + -+ ax + a,
Q(X) mx lx 0

witha, # Oand b, # 0. Then, if n = m + 1, f(x) can be expressed using long division (see Chapter 14) in
the form:
R(x)

f(x)=ax+b+@

where the degree of R(x) is less than the degree of Q(x). Then, as x — % or x = —, f(x) = ax + b and
the line y = ax + b is an oblique asymptote for the graph of the function.

X+ 1

EXAMPLE 15.4 Find the oblique asymptote for the graph of the function f(x) = FER—

3x—1
X4+ x—2
line y = x — 1 is an oblique asymptote for the graph of the function.

Use the long division scheme to write f(x) =x — 1 + .Hence, as x — @ orx — —, f(x) = x — 1, and the

Graphing a Rational Function

P(x)
00’

1. Find any x-intercepts for the graph [the real zeros of P(x)] and plot the corresponding points. Find the
y-intercept [ f(0), assuming O is in the domain of f] and plot the point (0, f(0)). Analyze the function for
any symmetry with respect to the axes or the origin.

2. Find any real zeros of Q(x) and enter any vertical asymptotes for the graph on the sketch.

3. Find any horizontal or oblique asymptote for the graph and enter this on the sketch.

To sketch the graph of a rational function y = f(x) =
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4. Determine whether the graph intersects the horizontal or oblique asymptote. The graphs of y = f(x) and

y = ax + b will intersect at real solutions of f(x) = ax + b.
. Determine, from a sign chart if necessary, the intervals in which the function is positive and negative.
Determine the behavior of the function near the asymptotes.

6. Sketch the graph of fin each of the regions found in step 5.

EXAMPLE 15.5 Sketch the graph of the function f(x) = —12/x.

1.

The graph has no x-intercepts or y-intercepts. Since f(—x) = —f(x), the function is odd and the graph has origin

symmetry.

. Since 0 is the only zero of the denominator, the y-axis, x = 0, is the only vertical asymptote.

. Since the degree of the denominator is greater than the degree of the numerator, the x-axis, y = 0, is the horizontal
asymptote.

. Since there is no solution to the equation —12/x = 0, the graph does not intersect the horizontal asymptote.

. If x is negative, f(x) is positive. If x is positive, f(x) is negative. Hence, Xli)n&f f(x) = ©and xli)n& fx) = —co.

. Sketch the graph (Fig. 15-9).

10

-25
-50
-75

-100
Figure 15-9

SOLVED PROBLEMS

15.1. Find any vertical asymptotes for the graph of

@ f0) = o) f0) = 52

© fw = 521 @ 0 = 53

x*—4
(a) Since the real zeros of x> — 4 are =2, the vertical asymptotes are x = *2.

(b) Since x> + 4 has no real zeros, there are no vertical asymptotes.

(c) Since the real zeros of x> — x — 2 are 2 and —1, the vertical asymptotes are x = 2 and x = —1.
(d) Since the only real zero of x* + 8 is —2, the only vertical asymptote is x = —2.
X2 —x

15.2. Find any vertical asymptotes for the graph of f(x) = 21

It would seem as if the graph has vertical asymptotes x = * 1, since these are the real zeros of the denominator
polynomial. However, the expression for the function is not in lowest terms, in fact,

o oxx— D) X
fO=GFna-1 xrrix*!

Since, as x — 1% orx — 17, the function value does not increase or decrease beyond all bounds, the line x = 1
is not a vertical asymptote, and the only vertical asymptote is x = —1.
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15.3.

15.4.

15.5.

Find any horizontal asymptotes for the graph of

4 o _ _ 3+ 5x+2
i ®) f0) = © f0) = 37— @ f®) =457

(a) fx) =
(a) Since numerator and denominator both have degree 2, the quotient can be written as

4x2 2+ 4 4
f(x):%+xx2 - 4
1+;

For large positive or negative values of x, this is very close to %, the ratio of the leading coefficients, thus
f(x) = x — 4. The line y = 4 is a horizontal asymptote.

(b) Since the degree of the numerator is greater than the degree of the denominator, the graph has no
horizontal asymptote.

(c) Since the degree of the numerator is less than the degree of the denominator, the x-axis, y = 0, is the
horizontal asymptote.

(d) Since numerator and denominator both have degree 2, the quotient can be written as

=W
+
N

2
X

+
3x2+5x+2;4x2+1:3
2

X x2 4

fx) =

J’_
%, -

For large positive or negative values of x, this is very close to %, the ratio of the leading coefficients; thus
fx) — %. The liney = % is a horizontal asymptote.

Find any oblique asymptotes for the graph of

X2 X X2 —5x+3 2 —x
@f@="g  Of@=Fg ©fm="5"g" @ f0 = 37517
(a) Use the synthetic division scheme to write f(x) = x — 4 + T +6 T Hence, as x — ® or x —> —x,

f(x) > x — 4, and the line y = x — 4 is an oblique asymptote for the graph of the function.

(b) Since the degree of the numerator is not equal to 1 more than the degree of the denominator, the graph
does not have an oblique asymptote. However, if the synthetic division scheme is used to write

—64
x + 4

f&x)=x*—4x +16 +

then, as x = ® or x = —oo, f(x) = x> — 4x + 16. The graph of f then is said to approach asymptotically

the curve y = x2 — 4x + 16. s

(c) Use the long division scheme to write f(x) = %x - % + o _4 5 Hence, as x = © or x — —©,
fx) — %x - %, and the line y = %x - %is an oblique asymptote for the graph of the function.
(d) Use the long division scheme to write f(x) = 2x — 4 + % Hence, as x = @ or x — —®,

f(x) > 2x — 4, and the line y = 2x — 4 is an oblique asymptote for the graph of the function.

_ 4

Sketch a graph of f(x) = T+

Apply the steps listed above for sketching the graph of a rational function.

Since f(0) = 2, the y-intercept is 2. Since f(x) is never 0, there is no x-intercept. The graph has no symmetry
with respect to axes or origin.

Since x + 2 = 0 when x = —2, this line is the only vertical asymptote.
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Since the degree of the denominator is greater than the degree of the numerator, the x-axis is the horizontal

asymptote.

Since f(x) = 0 has no solutions, the graph does not cross its horizontal asymptote.

A sign chart shows that the values of the function are negative on (—,—2) and positive on (—2,%). Thus,
li = —o© li = oo,

Aim f) and lim f(x)

The graph is shown in Fig. 15-10.

40

20

-8 -6 -IN-_2 2 4

~-20

-40
Figure 15-10

15.6. Sketch a graph of f(x) = —%.
The graph has no x- intercepts or y-intercepts. Since f(—x) = f(x), the function is even and the graph has
y-axis symmetry.
Since x> = 0 when x = 0, the y-axis is the only vertical asymptote.
Since the degree of the denominator is greater than the degree of the numerator, the x-axis is the horizontal

asymptote.
Since f(x) = 0 has no solutions, the graph does not cross its horizontal asymptote.
Since x? is never negative, the function values are negative throughout the domain. Thus, li%n(}i f(x) = —oand
. X
= —00
Xlgr(}+ fx) .

The graph is shown in Fig. 15-11.

y
X
-4 4
Figure 15-11
15.7. Sketch the graph of f(x) = + g
Since f(0) = —%,the y-intercept is —%. Since f(x) = 0if x = —3, the x-intercept is —3. The graph has no symmetry

with respect to axes or origin.
Since x — 2 = 0 when x = 2, this line is the only vertical asymptote.
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Since the numerator and denominator both have degree 1, and the ratio of leading coefficients is %, or 1, the
line y = 1 is the horizontal asymptote.

Since f(x) = 1 has no solutions, the graph does not cross its horizontal asymptote.

A sign chart shows that the values of the function are positive on (—2e,—3) and (2,%°) and negative on (—3, 2).
Thus, Xliﬁnzli f(x) = —»and ’\_liﬁrrzlA flx) = .

The graph is shown in Fig. 15-12.

-5
~-10
-15

-20
Figure 15-12

2x
x> =4
Since f(0) = 0, and this is the only zero of the function, the x-intercept and the y-intercept are both 0, that is,
the graph passes through the origin. Since f(—x) = —f(x), the function is odd and the graph has origin
symmetry.
Since x> — 4 = 0 when x = *2, these lines are vertical asymptotes for the graph.
Since the degree of the denominator is greater than the degree of the numerator, the x-axis is the horizontal
asymptote.
Since f(x) = 0 has the solution 0, the graph crosses its horizontal asymptote at the origin.
A sign chart shows that the values of the function are positive on both (—2,0) and (2,%) and negative on both
(—o0,—2) and (0,2). Thus, A_lﬁirpz?f(x) = —oand XLier+f(x) = = also, Xliﬁrrzlif(x) = —oand xliﬂnzl_f(x) = o,

The graph is shown in Fig. 15-13.

15.8. Sketch the graph of f(x) =

10

|

!
Y]
134
[~

-5

-10
Figure 15-13



15.9. Sketch the graph of f(x) =

15.10. Sketch the graph of f(x) =

CHAPTER 15 Rational Functions

—2y2
X2 =4

Since f(0) = 0, the x-intercept and the y-intercept are both 0, that is, the graph passes through the origin. Since
f(—x) = f(x), the function is even and the graph has y-axis symmetry.

Since x> — 4 = 0 when x = *2, these lines are vertical asymptotes for the graph.

Since the numerator and denominator both have degree 2, and the ratio of leading coefficients is —%, or —2,

the line y = —2 is the horizontal asymptote.

Since f(x) = —2 has no solutions, the graph does not cross its horizontal asymptote.

A sign chart shows that the values of the function are positive on (—2,2) and negative on (—%,—2) and (2,%).
Thus, Xgrzlz fx) = — andxgrpz‘f(x) = =, also Xlijr} f(x) = o and Xler%‘f(x) = —ox,

Moreover, since the behavior near the asymptote x = 2 shows that the function values are large and negative
for x greater than 2, and since the graph does not cross its horizontal asymptote, the graph must therefore approach
the horizontal asymptote from below for large positive x. The behavior for large negative x is the same, since the
function is even.

The graph is shown in Fig. 15-14.

y
10
X
A ZL : V. R
-10
-20
Figure 15-14

=4
Since f(0) = 0, and this is the only zero of the function, the x-intercept and the y-intercept are both O; that is, the
graph passes through the origin. Since f(—x) = —f(x), the function is odd and the graph has origin symmetry.
Since x> — 4 = 0 when x = *2, these lines are vertical asymptotes for the graph.
Since the degree of the numerator is 1 more than the degree of the denominator, the graph has an oblique
asymptote. Long division shows that

3
fo = xzx— 47 * x24f4

Thus, as x — %, f(x) — x, and the line y = x is the oblique asymptote.

Since f(x) = x has the solution 0, the graph crosses the oblique asymptote at the origin.
A sign chart shows that the values of the function are positive on (—2,0) and (2,%) and negative on (—%,—2)
and (0,2): E@Tf(x) = —ooand Lirgz+f(x) = oo; also, liﬁrrzlif(x) = —ooand ILH21+ flx) = .

Moreover, since the behavior near the asymptote x = 2 shows that the function values are large and positive
for x greater than 2, and since the graph does not cross its oblique asymptote here, the graph must therefore
approach the oblique asymptote from above for large positive x. Since the function is odd, the graph must
therefore approach the oblique asymptote from below for large negative x.

The graph is shown in Fig. 15-15.
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Figure 15-15
2
15.11. Sketch a graph of f(x) = ngﬁ

Since f(0) = 0, the y-intercept is 0. Since x> + x = 0 when x = 0 and —1, these are both x-intercepts. The
graph passes through the origin. There is no obvious symmetry.

Since x> — 3x+ 2 = 0 when x = 1 and 2, these lines are vertical asymptotes.

Since the numerator and denominator both have degree 2, and the ratio of leading coefficients is %, or 1, the
line y = 1 is the horizontal asymptote.

Since f(x) = 1 has the solution % the graph crosses the horizontal asymptote at (%1)

A sign chart shows that the values of the function are negative on (—1,0) and

(1,2), and positive on (—%,—1), (0,1), and (2,%). Thus, len}f f(x) = © and xllrlf+f(x) = —x;

also, Xli}n}f(x) = —ooand Xli)nzkf(x) = oo,

Moreover, since the behavior near the asymptote x = 2 shows that the function values are large and positive
for x greater than 2, and since the graph does not cross its horizontal asymptote here, the graph must therefore
approach the horizontal asymptote from above for large positive x. Similarly, the graph must approach
the horizontal asymptote from below for large negative x.

The graph is shown in Fig. 15-16.

AN
X
-4 -2 2 4
-5
-10
-15 {\
Figure 15-16
15.12. Sketch hf()—xz;g
.12. Sketch a grap ofx—x2+4.
Since f(0) = f%, the y-intercept is f% Since x> — 9 = 0 when x = =3, these are both x-intercepts. Since

f(—x) = f(x), the function is even and the graph has y-axis symmetry.

Since x> + 4 has no real zeros, the graph has no vertical asymptotes.

Since the numerator and denominator both have degree 2, and the ratio of leading coefficients is %, or 1, the
line y = 1 is the horizontal asymptote.
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Since f(x) = 1 has no solutions, the graph does not cross the horizontal asymptote.
A sign chart shows that the values of the function are positive on (—2,—3) and (3,%) and negative on (—3,3).
The graph is shown in Fig. 15-17.

2)’
-6 - 6
1
-3
Figure 15-17

15.13. To understand an example of the special case when the numerator a;ld denominator of a rational expression
. xt—4
have factors in common, analyze and sketch a graph of f(x) = ———— .
X 3x + 2
Factoring numerator and denominator yields

G-+ x42
0= =a -1 " x—1

forx # 2

Thus, the graph of the function is identical with the graph of g(x) = (x + 2)/(x — 1), except that 2 is not in the
domain of f. Draw a graph of y = g(x). The graph of y = f(x) is conventionally shown as the graph of g with a
small circle centered at (2,4) to indicate that this point is not on the graph.

Since g(0) = —2, the y-intercept is —2. Since g(x) = 0 if x = —2, the x-intercept is —2. The graph has no
symmetry with respect to axes or origin.

Since x — 1 = 0 when x = 1, this line is the only vertical asymptote.

Since the numerator and denominator both have degree 1, and the ratio of leading coefficients is {, orl,

the line y = 1 is the horizontal asymptote.

Since g(x) = 1 has no solutions, the graph does not cross its horizontal asymptote.

A sign chart shows that the values of the function are positive on (—,—2) and (1,%°) and negative on (—2,1).
Thus, Xli}nly g(x) = —ooand Xli}nly g(x) = oo,

The graph is shown in Fig. 15-18.

Figure 15-18
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SUPPLEMENTARY PROBLEMS

15.14. Find all intercepts for the graphs of the following rational functions:

42 — 1
X+ 4°

X
x2

(@) flx) =

_ 3
2_:‘4; ®) f(x) = (©) fx) = 5— ix; d fo) = @ N

x —5x2+ 4
Ans. (a) x-intercept: 0, y-intercept: 0; (b) x-intercept: = %, y-intercept: —i;

(c) x-intercept: 1, y-intercept: none; (d) x-intercept: —3, y-intercept: 241

15.15. Find all horizontal and vertical asymptotes for the graphs in the previous problem.

(a) horizontal: y = 2, vertical: x = —4; (b) horizontal: y = 4, vertical: none;

(c) horizontal: y = 0, vertical: x = 0, x = 4; (d) horizontal: y = 0, vertical: x =

I+
=
I
I+
(V]

15.16. (a) State intercepts and asymptotes and sketch the graph of f(x) = T 2_x X
(b) Show that f is one-to-one on its domain and that f(x) = f~!(x).
Ans. (a) Intercepts: the origin. 2 0)’
Asymptotes: x = 2,y = 2. 15
The graph is shown in Fig. 15-19.
10
5
-2 2 4 6
-5
-10
-15
-20
Figure 15-19
2
15.17. State intercepts and asymptotes and sketch the graph of f(x) = xzf 5
Ans. Intercepts: the origin. 20.Y
Asymptotes: x = 2,y = 2x + 4. 15 \/
The graph is shown in Fig. 15-20. P
10 -
5’ - ’
-l - |
-z 2 4 6
-5
-10
~-15
-20

Figure 15-20
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15.18. State intercepts and asymptotes and sketch the graph of f(x) = ﬁ
Ans. Intercepts: (0,3). 20,7
Asymptotes: x =2,y = 0.
The graph is shown in Fig. 15-21. 15
10
5
] X
-1 1 2 3 4 5
Figure 15-21
15.19. State intercepts and asymptotes and sketch the graph of f(x) = ﬁ
Ans. Intercepts: (0,—2).
Asymptotes: x = =1,y = 0. 10 y
The graph is shown in Fig. 15-22.
5
X
-4 -2 2 4
ﬁ
-fo
Figure 15-22
15.20. Find all vertical and oblique asymptotes for the graphs of the following rational functions:
R _ X = 4x 8 -1 _ X =5 +6 XX = 2
@ f0) = 5 0) 00 = 5@ [0 = 5@ S =0 [0 = e
Ans. (a) vertical: x = —2, oblique: y = x — 2; (b) vertical: x = 1, oblique: y = x — 3;
(c) vertical: none, oblique: y = 8x; (d) vertical: x = 0, x = —1, oblique:y = x — 1;
(e) vertical: x = —6, oblique: none, however, the graph approaches asymptotically the graph
ofy =x*>— 6x + 34
3
15.21. State intercepts and asymptotes and sketch the graph of f(x) = 2 x_ T 6 y
Ans. Intercepts: the origin. 4
Asymptotes: x = *1,y = x. =
The graph is shown in Fig. 15-23. 2 pid
i d X
-4 -2 17 2 4
P 7 |-2
y
Z ~4
-6

Figure 15-23
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15.22. State intercepts and asymptotes and sketch the graph of f(x) = 2 3:_6 I
Ans. Intercepts: the origin. 1 y
Asymptotes: y = 0. =
The graph is shown in Fig. 15-24. 1
0.5
-10 -5 5 10

-1.
Figure 15-24
. X=X -x+1
15.23. State intercepts and asymptotes and sketch the graph of f(x) = T er1
Ans. Intercepts: (0,1), (1,0), (—1,0). y
Asymptotes: y = x —1. 4

The graph is shown in Fig. 15-25.

Figure 15-25

15.24. A field is to be marked off in the shape of a rectangle of area 144 square feet.
(a) Write an expression for the perimeter P as a function of the length x.

(b) Sketch a graph of the perimeter function and determine approximately from the graph the dimensions for
which the perimeter is a minimum.

Ans. (a) P(x) = 2x + @ 14 OP

120
(b) See Fig. 15-26. Dimensions: 12 feet by 12 feet. 100

80
60
40
20
x

0 5101520
Figure 15-26
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Algebraic Functions; Variation

Definition of Algebraic Function

An algebraic function is any function for which the rule is a polynomial or can be derived from polynomi-
als by addition, subtraction, multiplication, division, or raising to an integer or rational exponent.

EXAMPLE 16.1 Examples of algebraic functions include:

(a) Polynomial functions, such as f(x) = 5x* - 3x
(b) Rational functions, such as f(x) = 12/x?
(c) Absolute value functions, such as f(x) = lx - 3I, since Ix = 31 = V (x — 3)?

(d) Other functions involving rational powers, such as f(x) = \/;c, Jx) = \V);, Jx) =1 \/,;, f(x)="V1 — x2,and so on

Variation

The term variation is used to describe many forms of simple functional dependence. The general pattern is
that one variable, called the dependent variable, is said to vary as a result of changes in one or more other
variables, called the independent variables. Variation statements always include a nonzero constant multiple,
referred to as the constant of variation, or constant of proportionality, and often denoted k.

Direct Variation
To describe a relation of the form y = kx, the following language is used:

1. y varies directly as x (occasionally, y varies as x).
2. yis directly proportional to x.

EXAMPLE 16.2 Given that p varies directly as g, find an expression for p in terms of g if p = 300 when g = 12.

1. Since p varies directly as g, write p = kq.
2. Since p = 300 when g = 12, substitute these values to obtain 300 = k(12), or k = 25.
3. Hence p = 25¢ is the required expression.

Inverse Variation
To describe a relation of the form xy = k, or y = k/x, the following language is used:

1. y varies inversely as x.
2. yis inversely proportional to x.

EXAMPLE 16.3 Given that s varies inversely as ¢, find an expression for s in terms of ¢ if s = 5 when ¢ = 8.

1. Since s varies inversely as ¢, write s = k/t.
2. Since s = 5 when t = 8, substitute these values to obtain 5 = k/8, or k = 40.
3. Hence s = 40/t is the required expression.
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Joint Variation
To describe a relation of the form z = kxy, the following language is used:

1. z varies jointly as x and y.
2. z varies directly as the product of x and y.

EXAMPLE 16.4 Given that 7 varies jointly as x and y and z = 3 when x = 4 and y = 5, find an expression for z in terms
of xand y.

1. Since z varies jointly as x and y, write z = kxy.
2. Since z = 3 when x = 4 and y = 5, substitute these values to obtain3 = k-4 -5, ork = 2‘%.
3. Hencez = %xy.

Combined Variation
These types of variation can also be combined.

EXAMPLE 16.5 Given that z varies directly as the square of x and inversely as y and z = 5 whenx = 3 and y = 12,
find an expression for z in terms of x and y.

2
1. Write z = ﬁ.
Y 2
2. Since z = 5 when x = 3 and y = 12, substitute these values to obtain 5 = k - ]37 or k = 20/3.
20x?

3. Hence z = 3y

SOLVED PROBLEMS

16.1. State the domain and range, and sketch a graph for:
@ f) = Vx; (b) f) = Vi (©) f) = Va; (d) fo) = Vo

(a) Domain [0, =) 3
Range: [0, =) 5.5
The graph is shown in Fig. 16-1. :
2
1.5
1
0.5
x
2 4 6 8
Figure 16-1
(b) Domain: R 2 y
Range: R
The graph is shown in Fig. 16-2. 1
X
-7.5 -5 -2.5 2.5 5 7.5
-2

Figure 16-2
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(¢) Domain: [0, o) 175 Y
Range: [0, )
The graph is shown in Fig. 16-3. 1.5
1.25
1
0.75
0.5
0.25
X
2 4 6 8
Figure 16-3
L y
(d) Domain: R 1.5
Range: R
The graph is shown in Fig. 16-4. 1
0.5
x
-7.5 -5 -2.5 2.5 5 7.5
-0.5
-1.5
Figure 16-4
16.2. State the domain and range, and sketch a graph for:
@ f@) = 1UVx () fx) =1V
(a) Domain: (0, ) 6y
Range: (0, =) 5
The graph is shown in Fig. 16-5.
4
3
2
1
X
0 2 4 6 8
Figure 16-5
. y
(b) Domain: {x € Rlx # 0} 6
Range: {y e Rly # 0} 4
The graph is shown in Fig. 16-6.
2 g
X
=1 5= > 2.5 5 7.5
-4
-6

Figure 16-6
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16.3. Analyze and sketch a graph for (a) f(x) = V9 — x% (b) f(x) = = V9 — X%

(a) Ify="V9 — x>, thenx? + > =9,y = 0. T4
Thus, the graph of the function is the 3.5
upper half (semicircle) of the graph of
X +y2=0. 2.5
The domain is {x € Rl -3 = x = 3} and 5
the range is {y e RI0 =y = 3}.

The graph is shown in Fig. 16-7. 1. i
0.5

-3 -2 -1 0 1
Figure 16-7

b)Ify=—V9 — x2, thenx> + y> =9,

w

y = 0. Thus, the graph of the function
is the lower half (semicircle) of the
graph of x> + y? = 9.

The domain is {x € RI-3 = x = 3}
and the range is {y e RI-3 =y = 0}.
The graph is shown in Fig. 16-8.

Figure 16-8

16.4. If s varies directly as the square of x and s = 5 when x = 4, find s when x = 20.

1. Since s varies directly as the square of x, write s = kx?.

2. Since s = 5 when x = 4, substitute these values to obtain 5 = k - 42, or k = ]57).

3. Hence s = 5x%16. Thus, when x = 20, s = 5(20)%/16 = 125.
16.5. If y is directly proportional to the cube root of x and y = 12 when x = 64, find y when x = é
1. Since y is directly proportional to the cube root of x, write y = k.
2. Since y = 12 when x = 64, substitute these values to obtain 12 = k64 = 4k, or k = 3.
3. Hencey = 3Vh. Thus, when x = é,y = 3V1/8 = %

16.6. If I is inversely proportional to the square of 7, and / = 100 when ¢ = 15, find / when r = 12.
1. Since / is inversely proportional to the square of ¢, write I = 7’;
2. Since I = 100 when ¢t = 15, substitute these values to obtain 100 = 1L52 or k = 22,500.

22,500 22,500
2 . Thus, when t = 12,1 = ——— = 156.25.

. H I=
3. Hence 2

16.7. If u varies inversely as the cube root of x, and u = 56 when x = -8, find ¥ when x = 1000.

1. Since u varies inversely as the cube root of x, write u =

ﬁ‘»
>‘< .

56 = % ork=-112.

V-8

2. Since u = 56 when x = -8, substitute these values to obtai

=

—112 —112
. Thus, when x = 1000, u =
Vi /1000

3. Hence u = =-11.2.
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If z varies jointly as x and y, and z = 3 whenx = 4 and y = 6, find z when x = 20 and y = 9.
1. Since z varies jointly as x and y, write z = kxy.
2. Since z = 3 when x = 4 and y = 6, substitute these values to obtain3 = k-4 - 6ork = é

3. Hence z = xy/8. Thus, whenx =20 andy = 9, z = (20 - 9)/8 = 22.5.

If P varies jointly as the square of x and the fourth root of y, and P = 24 when x = 12 and y = 81, find P
when x = 1200 and y = 1=.

1. Since P varies jointly as the square of x and the fourth root of y, write P = kx? \‘V;.
2. Since P = 24 when x = 12 and y = 81, substitute these values to obtain 24 = k- 122 V/81 ork = 7.

2Vy (12002V/1/16

3. Hence P = 13 . Thus, when x = 1200 and y = %, P 13

= 40,000.

Hooke’s law states that the force F needed to stretch a spring x units beyond its natural length is directly
proportional to x. If a certain spring is stretched 0.5 inches from its natural length by a force of 6 pounds,
find the force necessary to stretch the spring 2.25 inches.

1. Since F is directly proportional to x, write F' = kx.
2. Since F = 6 when x = 0.5, substitute these values to obtain 6 = k(0.5) or k = 12.

3. Hence F = 12x. Thus, when x = 2.25, F = 12(2.25) = 27 pounds.

Ohm’s law states that the current / in a direct-current circuit varies inversely as the resistance R. If a resistance
of 12 ohms produces a current of 3.5 amperes, find the current when the resistance is 2.4 ohms.

1. Since I varies inversely as R, write I = k/R.
2. Since I = 3.5 when R = 12, substitute these values to obtain 3.5 = k/12 or k = 42.

3. Hence I = 42/R. Thus, when R = 2.4, = 42/2.4 = 17.5 amperes.

The pressure P of wind on a wall varies jointly as the area A of the wall and the square of the velocity v of the
wind. If P = 100 pounds when A = 80 square feet and v = 40 miles per hour, find P if A = 120 square feet
and v = 50 miles per hour.

1. Since P varies jointly as A and v, write P = kAv?.

2. Since P = 100 when A = 80 and v = 40, substitute these values to obtain 100 = k - 80 - 40% or
k = 1/1280.

3. Hence P = Av*/1280. Thus, when A = 120 and v = 50, P = 120 - 50%/1280 = 234.375 pounds.

The weight w of an object on or above the surface of the earth varies inversely as the square of the distance d
of the object from the center of the earth. If an astronaut weighs 120 pounds at the surface of the earth, how
much (to the nearest pound) would she weigh in a satellite 400 miles above the surface? (Use 4000 miles as
the radius of the earth.)

1. Since w varies inversely as the square of d, write w = k/d>.

2. Since w = 120 at the surface of the earth, when d = 4000, substitute these values to obtain 120 = k/40002,
ork=1.92 X 10°.

3. Hence w = 1.92 X 10%d>. Thus, when d = 4000 + 400 = 4400, w = 1.92 X 10%4400?, or approximately
99 pounds.
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16.14.

16.15.

16.16.

16.17.

The volume V of a given mass of gas varies directly as the temperature 7 and inversely as the pressure P. If a
gas has volume 16 cubic inches when the temperature is 320°K and the pressure is 300 pounds per square
inch, find the volume when the temperature is 350°K and the pressure is 280 pounds per square inch.

1. Since V varies directly as T and inversely as P, write V = kT/P.
2. Since V = 16 when T = 320 and P = 300, substitute these values to obtain 16 = k - 320/300 or k = 15.
3. Hence V = 157/P. Thus, when T = 350 and P = 280, V = 15 - 350/280 = 18.75 cubic inches.

If y varies directly as the square of x, what is the effect on y of doubling x?
1. Since y = kx?, write k = y/x?.
2. While x and y vary, k remains constant; hence for different x and y values, y,/x? = y,/x3, or y, = y x3/x2.

3. Hence, if x, = 2x,,y, = y,(2x)%x3 = 4y,. Thus, if x is doubled, y is multiplied by 4.

If y varies inversely as the cube of x, what is the effect on y of doubling x?
1. Since y = k/x3, write k = x%y.
2. While x and y vary, k remains constant; hence for different x and y values, x}y, = x3y,, ory, = y x3/x3.

3. Hence, if x, = 2x,,y, = yle/(le)3 = y,/8. Thus, if x is doubled, y is divided by 8.

The strength W of a rectangular beam of wood varies jointly as the width w and the square of the depth d, and
inversely as the length L of the beam. What would be the effect on W of doubling w and d while decreasing L
by a factor of 20%?

1. Since W = kwd?*/L, write k = WL/(wd?).
2. For different values of the variables, k remains constant, hence WILI/(wldf) = Wsz/(wzdé).

3. Hence, if w, = 2w,,d, = 2d,,and L, = L, - 0.2L, = 0.8L, write:
WL, 3 W,(0.8L)) 4 solve for I bt W, — WL, (2w1)(2d1)2
W1d12 = (2w1)(2d1)2 and solve for W, to obtain W, = W1d12 70.8L1

multiplied by 10.

= 10W,. Thus, W would be

SUPPLEMENTARY PROBLEMS

16.18.

State the domain and range and sketch a graph of the following functions:
(@fx) = Vx—2 ®fx)=-1U/Vx+3 ©fx) = V4 — (x + 2)?

Ans. (a) Domain: R, Range R y
The graph is shown in Fig. 16-9.

-5 -2.5 .5 5 7.5 10
-1

Figure 16-9
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(b) Domain: {x € Rlx > -3} 1,7
Range: {y e Rly < 0}
The graph is shown in Fig. 16-10. o) 4 5 x
Figure 16-10

(¢) Domain: {x e RI4 = x = 0}
Range: {ye RI0 =y = 2}
The graph is shown in Fig. 16-11.

Figure 16-11

If y varies directly as the fourth power of x, and y = 2 when x = %, find y when x = 2.

Ans. 512

If y varies inversely as the square root of x, and y = 2 when x = %, find y when x = 2.

Ans. 1

If a spring of natural length 5 centimeters is displaced 0.3 centimeter from its natural length by a weight
of 6 pounds, use Hooke’s law (Problem 16-10) to determine the weight necessary to displace the spring
1 centimeter.

Ans. 20 pounds

Newton’s law of cooling states that the rate r at which a body cools is directly proportional to the difference
between the temperature T of the body and the temperature 7, of its surroundings. If a cup of hot coffee at
temperature 140° is in a room at temperature 68° and is cooling at the rate of 9° per minute, find the rate at
which it will be cooling when its temperature has dropped to 116°.

Ans.  6° per minute.

Kepler’s third law states that the square of the time 7 required for a planet to complete one orbit around
the sun (the period, that is, the length of one planetary year) is directly proportional to the cube of the
average distance d of the planet from the sun. For the planet Earth, assume d = 93 X 10° miles and

T = 365 days. Find (a) the period of Mars, given that Mars is approximately 1.5 times as distant from the
sun as Earth; (b) the average distance of Venus from the sun, given that the period of Venus is
approximately 223 Earth days.

Ans. (a) 671 Earth days; (b) 67 X 10° miles
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16.24.

16.25.

The resistance R of a wire varies directly as the length L and inversely as the square of the diameter d.
A 4-meter-long piece of wire with a diameter of 6 millimeters has a resistance of 600 ohms. What diameter
should be used if a 5-meter piece of this wire is to have a resistance of 1000 ohms?

Ans. V27 = 5.2 millimeters

Coulomb’s law states that the force F of attraction between two oppositely charged particles varies jointly as
the magnitudes ¢, and g, of their electrical charges and inversely as the square of the distance d between the
particles. What is the effect on F of doubling the magnitude of the charges and halving the distance between
them?

Ans. The force is multiplied by a factor of 16.



Exponential Functions

Definition of Exponential Function

An exponential function is any function for which the rule specifies the independent variable in an exponent.
A basic exponential function has the form F(x) = a*, a > 0, a # 1. The domain of a basic exponential func-
tion is considered to be the set of all real numbers, unless otherwise specified.

EXAMPLE 17.1 The following are examples of exponential functions:

(@) f) =2 () f0) = (3)':© fw) =47 (@) fG) = 27

Properties of Exponents

Properties of exponents can be restated for convenience in terms of variable exponents. Assuming a, b > 0,
then for all real x and y:

a‘ad = ax+y (ab)x = a'b*

a’

(al))X = qgb*

The Number e

The number e is called the natural exponential base. It is defined as nli_r)r}@ (1 + %)n e is an irrational number

with a value approximately 2.718 281 828 459 045. . . .

Exponential Growth and Decay

Applications generally distinguish between exponential growth and decay. A basic exponential growth
function is an increasing exponential function; an exponential decay function is a decreasing exponential
function.

Compound Interest

If a principal of P dollars is invested at an annual rate of interest r, and the interest is compounded »n times
per year, then the amount of money A(¢) generated at time ¢ is given by the formula:

A(t) = P(l + %)’
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Continuous Compound Interest

If a principal of P dollars is invested at an annual rate of interest r, and the interest is compounded continu-
ously, then the amount of money A(#) available at any later time ¢ is given by the formula:

A(f) = Per

Unlimited Population Growth

If a population consisting initially of N, individuals also is modeled as growing without limit, the population
N(¢) at any later time ¢ is given by the formula (k is a constant to be determined):

N() = Njek

Alternatively, a different base can be used.

Logistic Population Growth

If a population consisting initially of N individuals is modeled as growing with a limiting population (due
to limited resources) of P individuals, the population N(¢) at any later time ¢ is given by the formula (k is a
constant to be determined):

N,P
N, + (P — Nye k

N() =

Radioactive Decay

If an amount Q, of a radioactive substance is present at time # = 0, then the amount Q(7) of the substance pres-
ent at any later time ¢ is given by the formula (k is a constant to be determined):

1) = Qe

Alternatively, a different base can be used.

SOLVED PROBLEMS

17.1 Explain why the domain of a basic exponential function is considered to be R. What is the range of the
function?

Consider, for example, the function f(x) = 2*. The quantity 2~ is defined for all integer x; for example, 23 = §,
273 = % 20 =1, and so on. Moreover, the quantity 2* is defined for all noninteger rational x, for example,
212 = \/i, 2513 = \3/2?, 2734 = I/W, and so on.

To define the quantity 2* for x an irrational number, for example, 2V2 use the nonterminating decimal
representing \/5, that is, 1.4142 . . ., and consider the rational powers 2!, 214, 2141/ 21.414 /214142 " and o on.

It can be shown in calculus that each successive power gets closer to a real number, which is defined as 2\/5.
This process can be applied to define the quantity 2* for x any irrational number, hence, 2+ is defined for all real
numbers x. The domain of f(x) = 2+ is considered to be R, and similarly for any exponential function
fx)y=a,a>0,a+ 1.

Since 2+ is positive for all real x, the range of the function is the positive numbers, (0,%).

17.2. Analyze and sketch the graph of a basic exponential function of form f(x) = a*,a > 1.

The graph has no obvious symmetry. Since a® = 1, the graph passes through the point (0,1). Since a! = a, the
graph passes through the point (1,a).
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It can be shown that, if x; <X, then a* < a*, that is, the function is increasing on R; hence the term exponential
growth function. Therefore, the basic exponential function is a one-to-one function.

It can further be shown that as x — %, a* — %, and as x - — %, a* — 0. Thus, the negative x-axis is a horizontal
asymptote for the graph.

Since a* is positive for all real x (see the previous problem), the range of the function is (0,%).

The graph is shown in Fig. 17-1.

> _ad

(1,a)
o,
/ > x
Figure 17-1

17.3. Analyze and sketch the graph of a basic exponential function of form f(x) = a*, a < 1.

The graph has no obvious symmetry. Since a® = 1, the graph passes through the point (0,1). Since a'! = a, the
graph passes through the point (1,a).

It can be shown that, if x, <X, then a*' > a*, that is, the function is decreasing on R; hence the term exponential
decay function.

It can further be shown, that as x — %, a* — 0, and as x —> —, a* — . Thus, the positive x-axis is a horizontal
asymptote for the graph.

Since a* is positive for all real x, the range of the function is (0,%).

The graph is shown in Fig. 17-2.

0.,1)

. 1.a

>

Figure 17-2

17.4. Show that the graph of f(x) = a=*, a > 1, is an exponential decay curve.

Let b = 1/a. Then, since a > 1, it follows that b < 1. Moreover, a—*= (1/b)~* = b*. Since the graph of
f(x) = b*, b < 1, is an exponential decay curve, so is the graph of f(x) = a™*, a > 1.
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17.5. Sketch a graph of (a) f(x) = 2 (b) f(x) = 2~

(a) Form a table of values. (b) Form a table of values.
X y X y
-2 i -3 8
1
-1 2 -2 4
0 1 - 2
1 2 0 1
1
2 4 1 3
3 8 2 1
4
Domain: R, Range: (0,%) Domain: R, Range: (0,%0)
Asymptote: negative x axis. Asymptote: positive x axis.
The graph is shown in Fig. 17-3. The graph is shown in Fig. 17-4.
gy v
6
4
2
/ x ‘\ x
-2 -1 1 2 3 -3 -2 -1 1 2
Figure 17-3 Figure 17-4

17.6. Explain the definition of the natural exponential base e.

1

Consider the following table of values for the quantity (1 + ﬁ)n.

n 1 10 100 1000 10,000 100,000 1,000,000

(1 +%)n 2 | 2.59374246 | 2.70481383 | 2.71692393 | 2.71814593 | 2.71826824 | 2.71828047

As n — %, the quantity (1 + %)n does not increase beyond all bounds, but seems to approach a value.

In calculus it is shown that this value is an irrational number, called e, with a decimal approximation of
2.718 281 828 459 045. . . In calculus this number and the exponential functions f(x) = e*, f(x) = e, and so
on, are shown to have special properties.

17.7. Derive the formula A(f) = P(1 + r/n)" for the amount of money resulting from investing a principal P for a
time ¢ at an annual rate r, compounded n times per year.

First assume that the amount P is invested for one year at the simple interest rate of r. Then the interest after one
year is I = Prt = Pr(1) = Pr. The amount of money present after one year is then

A=P+I=P+Pr=P(1 +r).
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If this amount is then invested for a second year at the simple interest rate of r, then the interest after the second
year is P(1 + r)r(1) = P(1 + r)r. The amount of money present after two years is then

A=P(1+7r+P1+nr=P1+n1+r=P1+rp

Thus the amount present at the end of each year is multiplied by a factor of 1 + r during the next year.
Generalizing, the amount present at time 7, assuming compounding once per year, is

Aty = P(1 + ry

Now assume that interest is compounded » times per year. The interest after one compounding period is then
I = Pr/n. The amount of money present after one compounding period is

A=P+I=P+ Prin=PQ1 +r/n)

Thus, the amount present at the end of each compounding period is multiplied by a factor of 1 + r/n during the
next period. Hence the amount present after one year, n compounding periods, is

A =P + riny
and the amount present at time ¢ is given by

A(t) = P((1 + r/n)"y = P(1 + r/n)"

Derive the formula A(f) = Pe" for the amount of money resulting from investing a principal P for a time 7 at an
annual rate r, compounded continuously.

Continuous compounding is understood as the limiting case of compounding n times per year, as n — %. From
the previous problem, if interest is compounded n times per year, the amount present at time ¢ is given by
A(t) = P(1 + r/ny". If n is allowed to increase beyond all bounds, then

A() = ,,li_IJo]cP(l + r/n)"
= limP(1 + rin)min
= imP[(1 + riny"]"
= lim P[(1 + riny"rrt
= P[ Jim (1 + r/ny’r}"

= Pe'

Calculate the amount of money present if $1000 is invested at 5% interest for seven years, compounded

(a) yearly; (b) quarterly; (c) monthly; (d) daily; (e) continuously.

(a) Use A(t) = P(1+ r/n)" with P = 1000, »r = 0.05,t = 7,and n = 1.
A(7) = 1000(1 + 0.05/1)1'7 = $1407.10

(b) Use A(r) = P(1 + r/ny* with P = 1000, r = 0.05,¢t = 7,and n = 4.
A(7) = 1000(1 + 0.05/4)*"7 = $1415.99

(c) Use A(t) = P(1 + r/n)* with P = 1000, r = 0.05,¢t=7,and n = 12.
A(7) = 1000(1 + 0.05/12)12°7 = $1418.04

(d) Use A(r) = P(1 + r/ny* with P = 1000, r = 0.05, ¢t = 7, and n = 365.
A(7) = 1000(1 + 0.05/365)%% 7 = $1419.03

(e) Use A(t) = Pe" with P = 1000, r = 0.05, and t = 7.

A(7) = 1000 - %97 = $1419.07

Note that the difference in interest that results from increasing the frequency of compounding from daily to
continuously is quite small.
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17.10. Simplify the expressions:

(a) (#)2 _ (%)2 ®) (e" + e )(er + i;:)+_e(—ix)2_ e (ef — e™)

@ (“5) - (“7) (€ + 2e%e™ + (€7 (€92 = 2efet + ()

2 2 4 4
_ e H 2t e TP+ 2 -
4
_4 _
=7= 1
) (erteette) — (e —ee —e™) >+ 2ee + e ™ — > + Qe — e ™
(e* + e ™)? (e¥ + e™)?
_ 4
(e* + e™)?

For an alternate form, regard the last expression as a complex fraction and multiply numerator and

denominator by e?* to obtain
4 4e* _ 4ex

(e + e e + e (e + 1)

17.11. Find the zeros of the function f(x) = xe=* — e~*.

Solve xe=* — e=* = ( by factoring to obtain

ex—1)=0
e*=0o0orx—1=0
x=1

Since e~* is never 0, the only zero of the function is 1.

17.12. The number of bacteria in a culture is counted as 400 at the start of an experiment. If the number of bacteria
doubles every 3 hours, the number of individuals can be represented by the formula N(f) = 400(2)"/3. Find the
number of bacteria present in the culture after 24 hours.

N(24) = 400(2)*/3 = 400 - 28 = 102,400 individuals

17.13. Human populations can be modeled over short periods by unlimited exponential growth functions. If a country
has a population of 22 million in 2000 and maintains a population growth rate of 1% per year, then its
population in millions at a later time, taking r = 0 in 2000, can be modeled as N(¢) = 22¢00!. Estimate the
population in the year 2010.

In the year 2010, = 10. Hence N(10) = 220100 = 24 3. Hence the population is estimated to be 24.3 million.

17.14. Aherd of deer is introduced onto an island. The initial population is 500 individuals, and it is estimated that the
long-term sustainable population is 2000 individuals. If the size of the population is given by the logistic growth

function
2000

N@) = 1 + 3¢-005

estimate the number of deer present after (a) 1 year; (b) 20 years; (c) 50 years.
Use the given formula with the given values of .

2000 s
(@) t=1:NQ) = T & 300050 =~ 520 individuals
2000 e
(b) t = 20: N(ZO) = W =~ 950 individuals
(©) 1 =50:N50) = —2290___ _ 1600 individuals

1+ 3670‘05(50)
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17.15. Draw a graph of the function N(¢) from the previous problem.

Use the calculated values. Note also that N(0) is given as 500, and that as r — oo, since e=%%" — 0, the value of
the function approaches 2000 asymptotically. The graph is shown in Fig. 17-5.

N@®
2000

1500

1000

500

t
0 20 40 60 80 100

Figure 17-5

17.16. A certain radioactive isotope decays according to the formula Q(7) = Q,e~0%%, where ¢ is the time in years and
Q, is the number of grams present initially. If 20 grams are present initially, approximate to the nearest tenth of
a gram the amount present after 10 years.

Use the given formula with Q, = 20 and 7 = 10: Q(10) = 20 - ¢~003410 = 14.2 grams.

17.17. 1If a radioactive isotope decays according to the formula Q(r) = @, - 277, where ¢ is the time in years and Q) is
the number of grams present initially, show that the amount present at time t = T is Q,/2. (T is called the half-
life of the isotope.)

Use the given formula with # = T. Then Q(T) = Q- 277" = Q- 271 = Q. /2.

SUPPLEMENTARY PROBLEMS

17.18. Sketch a graph of the functions (a) f(x) = 1 — e~ and (b) f(x) = 272
Ans. (a) Fig. 17-6; (b) Fig. 17-7.

y

. Figure 17-7
Figure 17-6

X —x\2
17.19. Simplify the expression <%) + (7

Ans eX + e or e + 1
. 2 2€2x
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17.20.

17.21.

17.22.

17.23.

17.24.

17.25.

17.26.

17.27.

17.28.

17.29.

Prove that the difference quotient (see Chapter 9) for f(x) = e* can be written as

e — 1
h

Find the zeros of the function f(x) = —x%~* + 2xe™.

Ans. 0,2

$8000 is invested in an account yielding 5.5% interest. Find the amount of money in the account after one year
if interest is compounded (a) quarterly; (b) daily; (c) continuously.

Ans. (a) $8449.16; (b) $8452.29; (c) $8452.32

In the previous problem, find the annualized percentage rate for the account (this is the equivalent rate without
compounding that would yield the same amount of interest).

Ans. (a) 5.61%; (b) 5.65%; (c) 5.65%

How much would have to be invested at 5.5% compounded continuously to obtain $5000 after 10 years?

Ans. $2884.75

A family has just had a new child. How much would have to be invested at 6%, compounded daily, in order to
have $60,000 for her college education in 17 years?

Ans.  $21,637.50

If the number of bacteria in a culture is given by the formula Q(f) = 250 - 3"/4, where ¢ is measured in days,
estimate (a) the initial population; (b) the population after 4 days; (c) the population after 14 days.

Ans. (a) 250; (b) 750; (c) 11,700

8000

5+ 30037
estimate (a) the initial population; (b) the population after 10 years; (c) the long-term limiting value of the

population.

If the population of trout in a lake is given by the formula N(¢) = where ¢ is measured in years,

Ans. (a) 1600; (b) 1960; (c) 4000

If a radioactive isotope decays according to the formula Q(f) = Q, - 2712 where t is measured in years, find
the portion of an initial amount remaining after (a) 1 year; (b) 12 years; (c) 100 years.

Ans. (2) 0.94Q,; (b) 0.50,; () 0.003Q,

The half-life (see Problem 17.17) of Carbon-14 is 5730 years.
(a) If 100 grams of Carbon-14 were present initially, how much would remain after 3000 years?
(b) If a sample contains 38 grams of Carbon-14, how much was present 4500 years ago?

Ans. (a) 69.6 grams; (b) 65.5 grams
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Logarithmic Functions

Definition of Logarithmic Function

A logarithmic function, f(x) = log_x, a > 0, a # 1, is the inverse function to an exponential function
F(x) = a*. Thus, if y = log, x, then x = @". That is, the logarithm of x to the base a is the exponent to which
a must be raised to obtain x. Conversely, if x = a’, then y = log_ x.

EXAMPLE 18.1 The function f(x) = log, x is defined as f:y = log, x if 2» = x. Since 2* = 16, 4 is the exponent to
which 2 must be raised to obtain 16, and log, 16 = 4.

EXAMPLE 18.2 The statement 10° = 1000 can be rewritten in terms of the logarithm to the base 10. Since 3 is the
exponent to which 10 must be raised to obtain 1000, log,, 1000 = 3.

Relation between Logarithmic and Exponential Functions

log a* = x as.s = x
EXAMPLE 18.3 log,5® = 3; 5% = 25
Properties of Logarithms
(M, N positive real numbers)
log,1 =0 log,a =1
log,(MN) = log, M + log, N log, (M?) = plog, M

log, (%) = log,M — log, N

EXAMPLE 18.4 (a)log, 1 = O (since 5=1) (b) log, 4 = 1 (since 4 = 4)
(c) log, 6x = log, 6 + log, x = 1 + log,x (d) log, x® = 6 log, x

— X 1) _
(e) log, ,(2%) = log, ,75 = l0g, , x — lOgl/z(E) = log,,x —1

Special Logarithmic Functions

log,, x is abbreviated as log x (common logarithm).
log, x is abbreviated as In x (natural logarithm).

SOLVED PROBLEMS

18.1. Write the following in exponential form:
(a) log, 8 = 3; (b) log,s 5 = 5; () log,, 55 = —2;
(d) logy3 = —%(e) log,c = d; (f) log, &> +5x —6) =y — C
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18.2.

18.3.

18.4.

18.5.

(a) Ify = log, x, then x = & Hence, if 3 = log, 8, then 8 = 2°.
(b) If y = log, x, then x = . Hence, if% = log,, 5, then 5 = 25!/2,
(c) If =2 = log,, 15, then j55 = 1072

(d) If =3 = log, 7, then 8 2% = .

(e) If d = log, c, then b? = c.

(f) Ify — C = log,(x* + 5x — 6), then &’ ~ € = x> + 5x — 6.

Write the following in logarithmic form:

(a) 35 =243; (b) 673 = 55; (c) 256% = 64;

@ (3) 7 =32 ur=p;(® e tt=y-C

(a) If x = @, then y = log_ x. Hence if 243 = 3%, then 5 = log, 243.
(b) If x = @, then y = log_ x. Hence if 372 = 673, then —3 = log, o
(c) If 64 = 256", then log,, 64 = 3.

(@ 1f32 = (}) 7, then log,,, 32 = —5.

(e) If p = u™, thenlog, p = m.

(f) fy— C=e""? thenlog,(y — C) = atr + b.

Evaluate the following logarithms:
(a) log, 49; (b) log, 256; (¢) log,,0.000001; (d) log,, é; (e) log,s 125

(a) The logarithm to base 7 of 49 is the exponent to which 7 must be raised to obtain 49. This exponent is 2;
hence log, 49 = 2.

(b) The logarithm to base 4 of 256 is the exponent to which 4 must be raised to obtain 256. This exponent is 4;
hence log, 256 = 4.

(c) Setlog,,0.000001 = x. Then log, 107% = x. Rewritten in exponential form, 10* = 107°. Since the
exponential function is a one-to-one function, x = —6; hence log , 0.000001 = —6.

(d) Set 10g27% = x. Rewritten in exponential form, 27* = é, or (3% = 3% = 372, Since the exponential function

. . 2 1 2
is a one-to-one function, 3x = —2, x =—3, hence log,, 5 = —3.

(e) Setlog,, 125 = x. Rewritten in exponential form, (é)x = 125, or (571)* = 57* = 53. Since the exponential

function is a one-to-one function, —x = 3, x = —3; hence log ;125 = —3.

(a) Determine the domain and range of the logarithm function to base a.
(b) Evaluate log,(—25).

(a) Since the logarithm function is the inverse function to the exponential function with base a, and since the
exponential function has domain R and range (0,%°), the logarithm function must have domain (0,%°) and
range R.

(b) Since —25 is not in the domain of the logarithm function, log,(—25) is undefined.

Sketch a graph of f(x) = a*,a > 1,f 7 '(x) = log,, x, and the line y = x on the same Cartesian coordinate system.

Note: The graph is shown in Fig. 18-1.



The domain of fis R and the range of fis (0,%°).

The points (0,1) and (1,a) are on the graph of f.

The negative x axis is an asymptote.

The domain of £~ is (0,%°) and the range of f~!is R.
The points (1,0) and (a,1) are on the graph of f~ 1.
The negative y axis is an asymptote.

18.6. Sketch a graph of
(a) f(x) = log, x

(a) Form a table of values.

x y
1
3 -1
1 0
5 1
25 2

Domain: (0,%), range: R
Asymptote: negative y-axis.
The graph is shown in Fig. 18-2.

Figure 18-2

18.7. Prove the logarithmic—exponential function relations.

(a) If y = log, x, then x = ¢*. Hence x = @’ = a"°%~.

CHAPTER 18 Logarithmic Functions

(b)
(b)

Figure 18-1

gx) =log,,, x

Form a table of values.

x y
1 1
3
1 0
4 | —1

16 -2

Domain: (0,%0), range: R
Asymptote: positive y-axis.
The graph is shown in Fig. 18-3.

.5 5 7.5 10 12.5 15

Figure 18-3

(b) Similarly, reversing the letters, if x = log, y, then y = a*. Hence x = log, y = log  a*.
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18.8.

18.9.

18.10.

18.11.

18.12.

Show that if log, u = log, v, then u = v.

Since the exponential function, f(x) = «*, is a one-to-one function, its inverse function, f~!(x) = log, x, is also a
one-to-one function and (f o f ~)(x) = f( f ~!(x)) = f(log, x) = a'°&* = x.

Hence, if log u = log_ v, then g% * = g% v and u = v.

Evaluate, using the logarithmic—exponential function relations:

(a) log, 3% (b) log, 256; (c) log, \3/;; (d) log 0.00001;

(e) 553 (f) €™ (g) @lom (2= 5+ 0 (h) 36los7

Ans. (a) log, 3° = 5; (b) log, 256 = log, 28 = 8;
(©) loga\’f = log, a*3 = §; (d) log 0.00001 = log,,10~% = —5;
(e) 583 = 3;(f) 7 = elot. 7™ = g,

(g) alog“ (x2—5x+6) — x2 — Sx + 6; (h) 3610g67 — (62)10357 — 6210g67 = (6log6 7)2 — 72 = 49

Prove the properties of logarithms.

The properties log, 1 = 0 and log, a = 1 follow directly from the logarithmic—exponential relations, since
log, 1 =log, "= 0andlog,a =log, a' = 1.

To prove the other properties, let u = log, M and v = log, N. Then M = a" and N = a".
Therefore MN = a"a’; thus MN = a"*. Rewriting in logarithmic form, log, MN = u + v.
Hence log, MN = log, M + log, N.

Similarly, % = %, thus% = a"". Rewriting in logarithmic form, log, % =u— v

Hence log (M) = log, M — log, N.

Finally M” = (a")’ = a"; thus M" = a". Rewriting in logarithmic form, log, M" = pu.
Hence log, M" = p log, M.

Use the properties of logarithms to rewrite in terms of logarithms of simpler expressions:

1 xy.b 1 2 1): 1 x3(x+5) d) 1 x2+y2. 1 Sx + 1
(@) log, 7 (b) log,(x* — 1); (¢) %% — 4y 4)2,() 0g\/ "y () In(Ce™ ™)

Ans. (a) log, % =log xy —log, z =log, x +log, y — log, z

(b) log, @®-1)= log [(x — D)(x + 1)] = log (x — 1) + log,_ (x + 1) Note: The properties of
logarithms can be used to transform expressions involving logarithms of products, quotients, and
powers. They do not allow simplification of logarithms of sums or differences.

x3(x + 5)
a (x — 4)?

X +y 2y 1 -
(d) log, Xy > log, v |T3 [log, (x* + y») —log, (xy)] = ) [log (x* + y») — log x — log, y]

(e) n(Ce**H=InC+mme**'=1InC+ 5x +1

(c) log = log, X3+ log, (x +5) — log, (x — 42 =3 log, x + log (x +5) — 2 log, (x — 4)

Write as one logarithm:
(@) 3log,u — log, v; (b) %loga 5 —3log,x —4log, y; () %loga (x —3) +3log,x + 2log, (1 + x);

(d) 3llog, x + 3log,y — Slog, (z = 2% (e) sIn(x + 1) =3In(x — 1) + In C

3

Ans.  (a) 3log, u —log, v =1log, u®— log v =log, u7
3

(b) %loga 5—3log,x —4log,y = 10gﬂ\3/ — log, (x*y*) = log, \3/§
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(0) slog, (x — 3) + 3log, x + 2 log, (1 + x) = log,(x — 3)" + log x* + log (1 + x)?
= logam + log x’(1 + x)?
= log,[}(1 + x? Vx — 3]
(d) 3 [logx + 3log,y — 5log,(z — 2)] = 5 [log,xy* — log,(z — 2)°]
:%{log 0? } = log, x7y3
“(z—2p ‘

(z =2y
© ‘G + 1) — L nGx — 1)+lnC=%ln(§; i)-i—lnC

_ [x — 1 _ [x — 1
=In x+1+lanlnC T E 1

SUPPLEMENTARY PROBLEMS

18.13. Write in exponential form:

18.14.

18.15.

18.16.

18.17.

18.18.

18.19.

1
(@) log, 10 = 3 () 10g7$ =-2(0) IOguW T2

Ans.

1

(2) 10003 = 10; (b) 72 =453 (c) u™ 2= —~

<

Write in logarithmic form:
@ (1) =64 ) 5= Vex() mr=T
Ans. (a) log,, 64 = —3;(b) ln\s/(; = %; (c) log, T=—p

Evaluate:

(a) In Ce™; (b) log, 3 (¢) log,(—100); (d) log, s, 5

Ans. (a) In C — ar; (b)—%; (¢) undefined; (d) 3

(a) Evaluate log, 81; (b) Evaluate log, é; (c) Show that loga% = —log N
Ans. (a) 4; (b) —4

(a) Evaluate log, 125; (b) Evaluate log,,; 5; (c) Show that log b =

log,a

Ans. (a) 3;(b) %

Write in terms of logarithms of simpler expressions:

. a a 2. e*
(@) log,a(x — r)(x — s); (b) logax3y4, (¢) In - m, (d) In 3

Ans.

+ Va2 —x

— E*X

(@) 1 +log (x —r) +log (x —s);(b) 2—3logx—4logy
(¢) In(a + Va> — x») — In(a — Va*> — x?), or (after rationalizing the denominator)
2In(a + Va*> —x*) —2Inx;

(d) In(e* —e™) —In2

Evaluate (a) 101/210g3; (b) 53loss7; (¢) 273105

Ans.

(@ V/3; (b) 343; (c) 1z
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18.20. Write as one logarithm:

(@ 2Inx—8Iny + 4Inz (b) log(1 —x) + log(x — 3);
In(x + h) — Inx

(©) Y — (d) xInx — (x — DIn(x — 1);
—b + Vb2 — dac —b — Vb — dac
(e) log + log
¢ 2a ¢ 2a
2.4
Ans. (a)ln %; (b) undefined (there is no value of x for which both logarithms are defined);

+ )\ x
©mn(“E)" @ @ 1 log.a

18.21. Givenlog, 2 = 0.69, log, 3 = 1.10, and log 5 = 1.61, use the properties of logarithms to evaluate:

6 1 5
(a) log, 30; (b) log, 7; (c) log, ;(d) log (| ——
5 NG ( 6)

Ans. (a) 3.40; (b) 0.18; (¢) —1.36; (d) undefined

18.22. Sketch graphs of:
(@) f(x) = log,(x + 2); (b) F(x) =3 —log, x; (¢) g(x) = Inl; (d) G(x) = —In (—x);
Ans. (a) Fig. 18-4; (b) Fig 18-5; (c) Fig. 18-6; (d) Fig. 18-7

y y
2
1 8
/ X 6
-2 2 4 6 8 10
-1 4
-2
2
-3
X
-4 2 4 6 8 4 16
Figure 18-4 Figure 18-5
Y
2 B/
4
1
X 3
-10 -5 5 10
-2
-3
-4
-5

Figure 18-6 Figure 18-7



CHAPTER 19

Exponential and
Logarithmic Equations

Exponential Equations
Exponential equations are equations that involve a variable in an exponent. The crucial step in solving exponen-
tial equations is generally to take the logarithm of both sides to an appropriate base, commonly base 10 or base e.

EXAMPLE 19.1 Solve e¢* = 2.
er=2 Take logarithms of both sides
In(e*) = In(2) Apply the function-inverse function relation

x=1In2

Logarithmic Equations

Logarithmic equations are equations that involve the logarithm of a variable or variable expression. The cru-
cial step in solving logarithmic equations is generally to rewrite the logarithmic statement in exponential
form. If more than one logarithmic expression is present, these can be combined into one by using proper-
ties of logarithms.

EXAMPLE 19.2 Solve log, (x — 3) = 4

log,(x —=3) =14 Rewrite in exponential form
24=x-3 Isolate the variable
x=2+3
x=19

Change-of-Base Formula
Logarithmic expressions can be rewritten in terms of other bases by means of the change-of-base formula:

log, x

log, x = log, a

EXAMPLE 19.3 Find an expression, in terms of logarithms to base e, for log, 10, and give an approximate value for
the quantity.

From the change-of-base formula, logs 10 = % ~ 1.43.

Logarithmic Scales

Working with numbers that range over very wide scales, for example, from 0.000 000 000 001 to
10, 000, 000, 000, can be very cumbersome. The work can be done more efficiently by working with the log-
arithms of the numbers (as in this example, where the common logarithms range only from —12 to + 10).
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Examples of Logarithmic Scales

1. Sounp INTENSITY: The decibel scale for measuring sound intensity is defined as follows:

D = 10logt
0

where D is the decibel level of the sound, / is the intensity of the sound (measured in watts per square
meter), and I, is the intensity of the smallest audible sound.

2. EARTHQUAKE INTENSITY: There is more than one logarithmic scale, called a Richter scale, used to
measure the destructive power of an earthquake. A commonly used Richter scale is defined as follows:

~ 210 E
R—310gE0

where R is called the (Richter) magnitude of the earthquake, E is the energy released by the earthquake
(measured in joules), and E,, is the energy released by a very small reference earthquake.

SOLVED PROBLEMS

19.1. Prove the change-of-base formula.
Lety = log, x. Then, rewritten in exponential form, x = a”. Taking logarithms of both sides to the base b yields:

log, x = log, a*
= ylog, a by the properties of logarithms

Hence,

log, x log, x
Yy =7 b thatis, log, x = b

og,a’ log, a
19.2. Solve 2* = 6.

Take logarithms of both sides to base e (base 10 could equally well be used, but base e is standard in most
calculus situations).

In2* = 1n6
xIn2 = 1n6
_In6
X =12 Exact answer
x = 2.58 Approximate answer

Alternatively, take logarithms of both sides to base 2 and apply the change of base formula:

log, 2" = log, 6

x = log, 6
x = In6 by the-of-base formula
In2

19.3. Solve 2%~ 4 = 15.

Proceed as in the previous problem.

In2*-4=1n15
Bx —4In2 =1n15
3xIn2 —4In2 = In 15
3xIn2 =1In15 +41In2
_ 15 + 41n2
3In2

x = 2.64 Approximate answer

Exact answer
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194. Solve 54~ *=73*1
Proceed as in the previous problem.
]n54—x = In 73x+l
4—-—xIm5=0Cx+ DIn7
4In5 —xIn5 =3xIn7 + In7
4In5 — In7 = xIn5 + 3x1n7

_4In5 — In7 Exact
X =105+ 3In7 xactanswer

x = 0.60 Approximate answer
19.5. Solve2*—27*=1.
Before taking logarithms of both sides it is crucial to isolate the exponential form:

1

2¥ — = 1 Multiply both sides by 2*
X . x x.i_ x
2025 = 2 =2

22 —-1=2

22 -22-1=0
This equation is in quadratic form. Introduce the substitution u = 2*. Then u? = (2*)? and the equation becomes:
w—u—1=0
Now apply the quadratic formula witha = 1,6 = —1, ¢ = —1.

(=D = V(=12 — 4(1)(—1)
2(1)
1+\V5

2
Now undo the substitution 2* = u and take logarithms of both sides.

1+V5

2

1+V5

xIn2 = In 3

x=1In (Hz\@)/ln 2 o In (1_2\/5)/1112

2 =

Note that since % is negative, it is not in the domain of the logarithm function. Hence the only solution
. + .
isx = In <12\/§>/ In2 or, approximately, 0.69.

et — e .
prarmper il for x in terms of y.

First note that the left side is a complex fraction (since e™* = 1/e*) and write it as a simple fraction.

19.6. Solve

e — /e _
e + e Y
e¥(e* — 1/e”) _

e*(e* + 1/e¥) Y

@P -1
e +1 7
e —1

y

e+ 1
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Now, isolate the exponential form e%*.

e —1=yEe*+1)
e® — 1
er — ery

e*(1 = y)

ey +y
1+y
1+y
1+y
i

Taking logarithms of both sides yields:

1 +y, . .
=y is positive, that is, for —1 <y < 1.

This is valid as long as the expression

19.7. Solvelog, 3x — 4) = 5.

Rewrite the logarithm statement in exponential form, then isolate the variable.

25=3x—4
32=3x—4
x=12

19.8. Solvelog x + log (x + 3) = 1.

Use the properties of logarithms to combine the logarithmic expressions into one expression, then rewrite the
logarithm statement in exponential form.

loglx(x+3)]=1
10! =x(x+3)
x2+3x=10

This quadratic equation is solved by factoring:

x+35Hx—-2)=0
x=—-5orx=2

Since —5 is not in the domain of the logarithm function, the only solution is 2.

19.9. Solve for y in terms of x and C: In (y + 2) = x + In C.

Use the properties of logarithms to combine the logarithmic expressions into one expression, then rewrite the
logarithm statement in exponential form.

Iny +2) —InC=x
y+2
ln( C >=x
y+2
c ¢
Ce* — 2

<
Il
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19.10. A certain amount of money P is invested at an annual rate of interest of 4.5%. How many years (to the
nearest tenth of a year) would it take for the amount of money to double, assuming interest is compounded
quarterly?

Use the formula A(¢) = P(l + %)m from Chapter 17, with n = 4 and r = 0.045, to find t when A(f) = 2P.
4
M:pQ+9%g

B 0.045 \*
2= (1 + )

To isolate ¢, take logarithms of both sides to base e.

n2 = a1+ 055
(= In2
4 ln<l + 70'045)
4
t = 15.5 years

19.11. In the previous problem, how many years (to the nearest tenth of a year) would it take for the amount of money
to double, assuming interest is compounded continuously?

Use the formula A(f) = Pe" from Chapter 17, with r = 0.045, to find r when A(r) = 2P.

2P = PeO‘MSt
2 = 00451

To isolate ¢, take logarithms of both sides to base e.

In2 = 0.045¢
~ In2
T 0.045
t = 15.4 years

19.12. Aradioactive isotope has a half-life of 35.2 years. How many years (to the nearest tenth of a year) would it take
before an initial quantity of 1 gram decays to 0.01 gram?

Use the formula Q(1) = Qe * from Chapter 17.
First, determine k by using ¢ = 35.2, 0, = 1, and 0(35.2) = Q /2 = 1/2.

12 = 1e74652

To isolate k, take logarithms of both sides to base e.

In(1/2) = —k(35.2)
_In(1/2)

k =

Thus, for this isotope, the quantity remaining after ¢ years is given by:

—tIn2

0() = Qe 2
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19.13.

19.14.

To find the time required for the initial quantity to decay to 0.01 gram, use this formula with Q(r) = 0.01,
Q, = 1 and solve for ¢.

—tIn2

0.01 = 1e %2

To isolate ¢, take logarithms of both sides to base e.

_ —tln2
In0.01 = 350
= —35.21n0.01
In2

t = 233.9 years

(a) Calculate the decibel level of the smallest audible sound, 7, = 10~'? watts per square meter.
(b) Calculate the decibel level of a rock concert at an intensity of 10! watts per square meter.

(c) Calculate the intensity of a sound with decibel level 85.

Use the formula D = 10 log ]L
0

I
(a) Set/ = I, Then D = 10log 7 = 10log 1 = 0.
0

-1
(b)Set /= 10" and I, = 10~". Then D = 10 log % = 101og 10" = 10 - 11 = 110 decibels.

(c) Set D = 85 and I, = 107'2. Then 85 = 10 log ﬁ Solving for [ yields:

I
8.5 = logm
I
Toe = 107
I=10"12- 1085
1=10735

I = 3.2 X 10~* watts/square meter

() Find the Richter scale magnitude of an earthquake that releases energy of 1000E,,. (b) Find the energy released
by an earthquake that measures 5.0 on the Richter scale, given that £, = 10*4° joules. (c) What is the ratio in
energy released between an earthquake that measures 8.1 on the Richter scale and an aftershock measuring
5.4 on the scale?

— 20 E
Use the formula R = 3 log E,;
o 1000E, o 2
(a) Set E = 1000E,. Then R = glog E, = glogIOOO =3 3 =2
2. E . .
(b) SetR=5.Then5 = glogf. Solving for E yields:
0
15 E
2 E,
E
= = 10|5/2
E,
E=E, 1075
— 10440 . 1075

=~ 7.94 X 10" joules
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(c) First, solve the formula for E in terms of R and R,

lo £ _3R
)
E — 103R2
E, 10
E = E 10?2

Then set R; = 8.1 and R, = 5.4 and find the ratio of the corresponding energies E, and E,.

E, = EJ0*/2  E, = E10%/2
E, = EJ0*8D2  E = E 103542
EI/EZ = (E0103(8A1)/2)/(E0103(54)/2)

E,/E, = 101215/10%!
E,/E, = 10%%5/1
E,/E, = 11,200/1

U

The energy released by the earthquake is more than 11,000 times the energy released by the aftershock.

SUPPLEMENTARY PROBLEMS

19.15. Show that a® = ef!n¢,

19.16. Solve (a) €™ 3 =10;(b) 5°"*=20""3 (c) 4"~ > = 12.

_ 3+ Inl0 _ ) _3In5 +3In20 _ .
Ans. (a) x = —s = 1.06; (b) x = 20 —n5 9.97,

©x=1%]1+ li’nf;x ~2.67, —0.67

19.17. Solve in terms of logarithms to base 10: (a) 2* — 6(27*) = 6; (b) H %

Ans. (a) x = log(3 + \/E)/logZ; (b) x = (log3)/2

19.18. Solve: (a) log, (x —2) +log, (x —4) =2;(b)2Inx —In(x + 1) =3
34 A\/6 3
Ans. (@) x =3+ V10 = 6.16; (b) x = % ~ 21.04
19.19. Solve for ¢, using natural logarithms: (a) Q = Qoe"’; (b) A = P(l + %)m.

Ans. (a) t = lln g; (b) = In(A/P)

k0, nin(l + r/n)
19.20. Solve for ¢, using natural logarithms: (a) I = Z(l — ‘R’/L) (b) N = NP
20. , using g - R N, + (P — Npe
A I 1 N(P Ny
ns. (@) t= R ny— RI’( )t = (P N
19.21. Solve for x in terms of y: (a) MT[ = y; (b) Lex =y.

Ans. (@ x=In(y * Vy>?—1);(b) x =In(y + \/YZTI)
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19.22.

19.23.

19.24.

19.25.

19.26.

How many years would it take an investment to triple at 6% interest compounded quarterly?

Ans. 18.4 years

At what rate of interest would an investment double in eight years, compounded continuously?

Ans. 8.66%

If a sample of a radioactive isotope decays from 400 grams to 300 grams in 5.3 days, find the half-life of this
isotope.

Ans. 12.8 days

If the intensity of one sound is 1000 times the intensity of another sound, what is the difference in the decibel
level of the two sounds?

Ans. 30 decibels

Newton’s law of cooling states that the temperature T of a body, initially at temperature 7, placed in a
surrounding medium at a lower temperature 7, is given by the formula T = T + (T, — T )e ™. If a cup
of coffee, at temperature 160° at 7 a.m., is brought outside into air at 40°, and cools to 140° by 7:05 a.m.,
(a) find its temperature at 7:10 a.m. (b) At what time will the temperature have fallen to 100°?

Ans. (a) 123°;(b) 7:19 a.m.
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Trigonometric Functions

Unit Circle

The unit circle is the circle U with center (0,0) and radius 1. The equation of the unit circle is x> + y*> = 1.

The circumference of the unit circle is 27r.

EXAMPLE 20.1 Draw a unit circle and indicate its intercepts (see Fig. 20-1).

y
A

©,1

(1,0

AR
N

S»x

(O)_l)

Figure 20-1

Points on a Unit Circle

A unique point P on a unit circle U can be associated with any given real number ¢ in the following manner:

1. Associated with ¢ = 0 is the point (1,0).
2. Associated with any positive real number ¢ is the

point P(x,y) found by proceeding a distance I#l in the

counterclockwise direction from the point (1,0) (see Fig. 20-2).
3. Associated with any negative real number ¢ is the point P(x,y) found by proceeding a distance I#l in the

clockwise direction from the point (1,0) (see Fig.

y
t positive A

Izl
P(t)=(x, y

> x

(1,0)

Figure 20-2

20-3).

> <

t negative

T0) > x

P(t)=(x,y) lel

Figure 20-3
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Definition of the Trigonometric Functions

If ¢ is a real number and P(x,y) is the point, referred to as P(f), on the unit circle U that corresponds to P, then
the six trigonometric functions of +—sine, cosine, tangent, cosecant, secant, and cotangent, abbreviated sin,
cos, tan, csc, sec, and cot, respectively—are defined as follows:

sint =y csct=%(ify # 0)

cost = x seth%(ifx # 0)
_ Y. _X .

tans = o (if x # 0) cott—y(lfy# 0)

EXAMPLE 20.2 If ¢is a real number such that P(%, —%) is the point on the unit circle that corresponds to ¢, find the six
trigonometric functions of 7.

y
A

Figure 20-4

Since the x coordinate of P is % and the y coordinate of P is —ﬁ, the six trigonometric functions of ¢ are as follows:

sint =y = _4 cost = x = 3 tant = y_ a4
RS s T TS Tx 3/5 0 3
ser=lo L _ .5 wer=lo 1 s o= 5o 305 3

y —4/5 4 X 3/5 3 y —4/5 4

Symmetries of the Points on a Unit Circle

For any real number ¢, the following relations can be shown to hold:
1. P(t + 2m) = P(¢).

2. If P(¢) = (x,y), then P(—1t) = (x,—y).

3. If P(¥) = (x,y), then P(t + 7) = (—x,—y).

Periodic Functions

A function f'is called periodic if there exists a real number p such that f(t + p) = f(¢) for every real number ¢
in the domain of f. The smallest such real number is called the period of the function.

Periodicity of the Trigonometric Functions
The trigonometric functions are all periodic. The following important relations can be shown to hold:

sin(z + 27) = sint cos(t + 27) = cost tan(z + 7r) = tant
csc(t + 2) = csct sec(t + 27) = sect cot(t + ) = cott

Notation

Notation for exponents: The expressions for the squares of the trigonometric functions arise frequently. (sinz)?
is generally written sin?¢, (cos?)? is generally written cos?#, and so on. Similarly, (sin)® is generally written
sin®#, and so on.
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Identities
An identity is an equation that is true for all values of the variables it contains, as long as both sides are
meaningful.

Trigonometric Identities

1. PYTHAGOREAN IDENTITIES. For all ¢ for which both sides are defined:

cos?t + sin’t = 1 1 + tan?t = sec?t cot’t + 1 = csc?t
cos?t = 1 — sin®t tan®t = sec?t — 1 cot?’t = csc?t — 1
sin’t = 1 — cos?t 1 = sec?t — tan?t 1 = csc?t — cot?t

2. RECIPROCAL IDENTITIES. For all ¢ for which both sides are defined:

N | _ 1 _ 1
sint =~ cost = o7 tant =

_ 1 _ 1 _ 1
e e sect = o7 cotr = =

3. QUOTIENT IDENTITIES. For all f for which both sides are defined:

sin ¢ cott = cost
cost sint

tant =
4. IDENTITIES FOR NEGATIVES. For all ¢ for which both sides are defined:

sin(—f) = —sint cos(—1) = cost tan(—r) = —tant

csc(—1) = —csct sec(—1) = sect cot(—t) = —cott

SOLVED PROBLEMS

20.1. Find the domain and range of the sine and cosine functions.

For any real number 7, a unique point P(f) = (x,y) on the unit circle x> + y?> = 1 is associated with 7. Since
sint = y and cost = x are defined for all ¢, the domain of the sine and cosine functions is R. Since y and x
are coordinates of points on the unit circle, =1 =y =1 and —1 = x = 1, hence the range of the sine and
cosine functions is given by —1 =< sint = [ and —1 =< cost = 1, thatis, [—1,1].

20.2. For what values of ¢ is the y-coordinate of P(f) equal to zero?

See Fig. 20-5.

y
A

0,1
(-1,0), (1,0)
t=mx, 3%, 5%, .. t=0,2n74rx, ...
t=-x,-3% -5*|, . t=-2xR, 4%, ~6W, ...
0-1)

Figure 20-5
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20.3.

20.4.

20.5.

20.6

By definition, P(0) = (1,0). Since the perimeter of the unit circle is 27, if  is any positive or negative integer
multiple of 27, then again P(r) = (1,0).

Since 7 is half the perimeter of the unit circle, P(7) is halfway around the unit circle from (1,0); that is,
P() = (—1,0). Furthermore, if 7 is equal to 7 plus any positive or negative integer multiple of 27, then again
P(t) = (—1,0).

Summarizing, the y-coordinate of P(¢) is equal to zero if ¢ is any integer multiple of 7r; thus, nr.

For what values of 7 is the x-coordinate of P(¢) equal to zero?

See Fig. 20-6. Since the perimeter of the unit circle is 277, one-fourth of the perimeter is 77/2. Thus P(7/2) is one-
fourth of the way around the unit circle from (1,0); that is, P(7/2) = (0,1). Also, if ¢ is equal to 77/2 plus any
positive or negative integer multiple of 277, then again P(¢) = (0,1).

Next, if t = m + @/2, or 37w/2, then ¢ is three-fourths of the way around the unit circle from (1,0); that is,
P@B3m/2) = (0,—1). And if 7 is equal to 37 /2 plus any positive or negative integer multiple of 27, then again
P@ = (0,—1).

Summarizing, the x-coordinate of P(¢) is equal to zero if ¢ is 77/2 or 377/2 plus any integer multiple of 277; thus,
w/2 + 2mnor3w/2 + 2mn.

>

t=1/2, 1/242n, 7/24H4x, ...
t = ’/2-27, n/2-4R, W2-6X, ... ©,1)

(-1,0) (1,0)

> o

t=3n/2, 3n/242x, 30/2+4%,
t = 3n/2-2m, 3n/2-4, 3n/2-6x, ... | @D

Figure 20-6

Find the domains of the tangent and secant functions.

For any real number ¢, a unique point P(f) = (x, y) on the unit circle x> + y> = 1 is associated with ¢. Since tanz
is defined as y/x and sect is defined as 1/x, each function is defined for all values of ¢ except those for which
x = 0. From Problem 20.3, these values are 7w/2 + 27n or 37/2 + 27rn, n any integer. Thus, the domains of the
tangent and secant functions are {t € Rlt # /2 + 27n, 3w/2 + 2mwn}, n any integer.

Find the domains of the cotangent and cosecant functions.

For any real number ¢, a unique point P(f) = (x, y) on the unit circle x> + y?> = 1 is associated with ¢. Since
cottis defined as x/y and cst ¢ is defined as 1/y, each function is defined for all values of 7 except those for which
y = 0. From Problem 20.2, these values are n7r, for n any integer. Thus, the domains of the cotangent and cosecant
functions are {f € Rlt # n}, n any integer.

Find the ranges of the tangent, cotangent, secant, and cosecant functions.

For any real number ¢, a unique point P(f) = (x, y) on the unit circle x> + y?> = 1 is associated with . Since
tant is defined as y/x and cott is defined as x/y, and, since, for various values of ¢, x may be greater than y, less
than y, or equal to y, tant = y/x and cott = x/y may assume any real value. Thus, the ranges of the tangent and
cotangent functions are both R.
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Since sect is defined as 1/x and csct is defined as 1/y, and for any point on the unit circle, —1 = x = 1 and
—1 =y = 1,itfollows that [1/x] = 1 and I1/yl = 1, thatis, Isectl = 1 and Icsct| = 1. Thus, the ranges of the
secant and cosecant functions are both (—, —1] U [1, o).

20.7. Find the six trigonometric functions of 0.

See Fig. 20-7.

Y
P0) =(1,0)
> X
Figure 20-7
Since P(0) = (1, 0) = (x, y), it follows that
sin(0) =y=0 csc(0) = 1/y = 1/0 is undefined
cos(0) =x =1 sec()=1/x=1/1=1
tan(0) = y/x=0/1=0 cot(0) = x/y = 1/0 is undefined

20.8. Find the six trigonometric functions of 7 /2.

See Fig. 20-8. Since the circumference of the unit circle is 27r, P(7/2) is one-fourth of the way around the unit
circle from (1, 0). Thus P(7/2) = (0, 1) = (x, y) and it follows that

sin(r/2) =y =1 cse(w/2)y=1/y=1/1=1
cos(m/2)=x=0 sec(m/2) = 1/x = 1/0 is undefined
tan(7r/2) = y/x = 1/0 is undefined cot(r/2) =x/ly=0/1=0
y
Apw2) = ©.1)
> X

Figure 20-8
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20.9. If P(¢) is in a quadrant, it is said that ¢ is in that quadrant. For ¢ in each of the four quadrants, derive the
following table showing the signs of the six trigonometric functions of .

QUADRANT I QUADRANT I QUADRANT III QUADRANT IV

sint
cost
tant
csct
sect
cott

+ 4+ + 4+ ++

Since sint = y and csc t = 1/y, and y is positive in quadrants I and II, and negative in quadrants III and IV, the
signs of sint and csct are as shown.

Since cost = x and sect = 1/x, and x is positive in quadrants I and IV, and negative in quadrants II and III, the
signs of cos? and sect are as shown.

Since tant = y/x and cott = x/y, and x and y have the same signs in quadrants I and III and opposite signs in
quadrants IT and IV, the signs of tant and cott are as shown.

20.10. Find the six trigonometric functions of /4.

See Fig. 20-9. Since 7/4 is one-half the way from 0 to 77/2, the point P(7/4) = (x, y) lies on the line y = x.
Thus the coordinates (x, y) satisfy both x> + y> = 1 and y = x. Substituting yields:

X+x2=1
22 =1
x2=1/2

x=1\V2 since x is positive

P(r/4) = (x.y)

Figure 20-9

Hence P(7r/4) = (x,y) = (1/\6,1/\6). Hence it follows that:

sin(% =y=% csc(%)=%=ﬁ= 2
cos(%) :x:% sec(%) :%:ﬁ: 2
tan(%):%:MZI cot(Z)—;—i;\\g—l
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20.11. Prove the symmetry properties listed on page 177 for points on a unit circle.
(a) For any real number #, P(t + 27) = P(1).
(b) If P(¢) = (x,y), then P(—1t) = (x,—Y).
(c) If P(t) = (x,y), then P(t + ) = (—x,—y).

(a) Let P() = (x, ). Since the circumference of the unit circle is precisely 27r, the point P(¢ + 277) is obtained by going
exactly once around the unit circle from P(#). Thus the coordinates of P(¢t + 27r) are the same as those of P(?).

(b) See Fig. 20-10.

P =(xy)

P0)=(1,0
;)x( )

P(-0) = (x,~y)

Figure 20-10

Let P(f) = (x, y). Since P(f) and P(—t) are obtained by going the same distance around the unit circle from the
same point, P(0), the coordinates of the two points will be equal in absolute value. The x-coordinates of the two
points will be the same; however, since the two points are reflections of each other with respect to the x-axis,
the y-coordinates of the points will be opposite in sign. Hence the coordinates of P(—1) are (x,—y).

(c) See Fig. 20-11.

P(0)=(1,0
;&( )

P(t + 1) = (—x~y)

Figure 20-11

Let P(¢) = (x, y). Since P(t + ) is obtained by going halfway around the unit circle from P(¢), the two points
are at opposite ends of a diameter, hence they are reflections of each other with respect to the origin. Hence
P+ m) = (—x, —y).

20.12. Find the six trigonometric functions of 57 /4.

Smo_m

Since e 4 + ar, and P(z

- (5

trigonometric functions of 577/4 are:

>, it follows that P(STW) = (—L - L) Hence the six
2
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cos(%) =x= —% sec(%) = % = 7—1/1\6 =-\V2

tan(4):§:_i;£=l cot(4):;:_ij£:

1

20.13. Prove the periodicity properties for the sine, cosine, and tangent functions.

Let P(t) = (x, y); then P(t + 27) = P(t) = (x, y). It follows immediately that sin(t + 27) = y = sint and

cos(t + 27) = x = cost.
y_J

Also, P(t + ) = (—x, —y). Hence tan(t + ) = — = ; = tant.
20.14. Prove the reciprocal identities.
Let P(t) = (x, y); then it follows that:
B _1_ 1 R -1
CSCt_y_sint sect = % = os7 cott—y—l-x—l-(tant)—tant
Hence it follows by algebra that:
- - =
sint = 7 cost = . 7 tant = — "o

20.15. Prove the periodicity properties for the cosecant, secant, and cotangent functions.

Use the reciprocal identities and the periodicity properties for sine, cosine, and tangent.
1 1

csc(t + 2m) = m = Sin? = csct
_ 1 D S
sec(t + 2m) = cos(t + 2m) _ cost sect
1 1
cot(t + m) = @ + ) ) = ani cott
20.16. Prove the quotient identities.
Let P(t) = (x, y), then it follows that:
_ Y _ sint _ X _ cost
tant = 5 = 7 and cotr =3 ==
20.17. Find the six trigonometric functions of 57/2.
Since 57” =27 + % and P(%) = (0, 1), it follows that P(%T) = (0,1) and
sin(57w/2) =y =1 csc(5m/2)=1/y=1/1=1
cos(5w/2)=x=0 sec(57/2) = 1/x = 1/0 is undefined

tan(57/2) = y/x = 1/0 is undefined cot(57/2) =x/y=0/1=0

20.18. Prove the identities for negatives,

Let P(f) = (x, y). Then P(—t) = (x, —y) by the symmetry properties of points on a unit circle. It follows that:

. . N 1 _ 1 1 _
sin(—f) = —y = —sint csc(—t) = sn(—p) ~ —sint _ sinf csct
cos(—t) = x = cost sec(—1) = R R S sect

cos(—t)  cost
tan(—t) = Ty = —% = —tant cot(—t) = _iy = —% = —cott
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20.19. Find the six trigonometric functions of —7/4.

Use the identities for negatives and the results of Problem 20.10.

(5= -n()- L (DDl w3 -m(D) -
D))=V DD Vi (3= )

20.20. Prove the Pythagorean identity cos?t + sin’f = 1.

Il
I
—

For any real number 7, a unique point P(f) = (x, y) on the unit circle x> + y*> = 1 is associated with z.
By definition, cost = x and sin? = y; hence for any ¢, (cost)? + (sinf)? = 1, that is,

cos?t + sin*t =1

20.21. Prove the Pythagorean identity 1 + tan?s = sec?s.
Start with cos?t + sin?t= 1 and divide both sides by cos?z. Then it follows that:

cos?t sin’t 1
cos?t cos?t  cos’t

sint\> _ [/ 1 \?
1+ (cost) - (cost)

1 + tan?t = sec?t

20.22. Given sint = % and ¢ in quadrant II, find the other five trigonometric functions of ¢.

1. Cosine. From the Pythagorean identity, cos’t = 1 — sin?z. Since 7 is specified in quadrant II, cos must be
negative (see Problem 20.9). Hence,

cost:-m:_m:_\/g:_f

2. Tangent. From the quotient identity,

1
sint 2 1

LT _N\/3;2 \3

3. Cotangent. From the reciprocal identity,

tanz =

-V3

1
cott = —— =
tant

1 _
-1U\V3

4. Secant. From the reciprocal identity,

_ 1 2
sect = =

1 _
CSL 312 \3

5. Cosecant. From the reciprocal identity,

csct = =2

sint

ISIEE

20.23. Given tant = —2 and ¢ in quadrant IV, find the other five trigonometric functions of 7.

1. Secant. From the Pythagorean identity, sec>t = 1 + tan’t. Since ¢ is specified in quadrant IV, sec must be
positive (see Problem 20.9). Hence,

sect = V1 + tan?t = V1 + (=2)* = Vs
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2. Cosine. From the reciprocal identity,

1 1

COST = Sect = \@
sint
cost hence,

3. Sine. From the quotient identity, tant =
sint = tantcost = (—2)y—— = ———~—

4. Cotangent. From the reciprocal identity,

po L1 _ 1
€0 tant —2 2
5. Cosecant. From the reciprocal identity,
wepo L1 V5
; sint _2/\/5 2

20.24. For an arbitrary value of ¢ express the other trigonometric functions in terms of sint.

1. Cosine. From the Pythagorean identity, cos’t = 1 — sin’z. Hence cost = *V'1 — sin’t.

sin ¢

V1 — sin2t

Using the previous result, tant = =

V1 — sin?t

Lo . sin ¢
2. Tangent. From the quotient identity, tant = oSt

S . t
3. Cotangent. From the quotient identity, cott = %. Hence cotr = =

sint
. L _ 1 _ 1 _ 1
4. Secant. From the reciprocal identity, sect = Cos- Hence sect = ==+ .
+*V1 — sin’t V1 — sin’t
. . . 1
5. Cosecant. From the reciprocal identity, csct = Sint

SUPPLEMENTARY PROBLEMS

20.25. If ¢ is a point on the unit circle with coordinates (—%, —%), find the six trigonometric functions of .

Ans. sint = —12/13, cost = —5/13, tant = 12/5, cott = 5/12, sect = —13/5, csct = —13/12

. . .o . . 2 1 . o . .
20.26. If ¢ is a point on the unit circle with coordinates <7 —7), find the six trigonometric functions of .

VsoVs

Ans. sint = —1/\/5, cos t = 2/\/5, tant = —1/2, cott = —2, sect = \/5/2, csct = —\fS

20.27. Find the six trigonometric functions of .

Ans. sin7 = 0, cos m = —1, tan 7 = 0, cot 7 is undefined, sec = —1, cscr is undefined.

20.28. Find the six trigonometric functions of —7r/2.
Ans. sin(—a/2) = —1, cos(—m/2) = 0, tan(—77/2) is undefined,

cot(—7/2) = 0, sec(—7/2) is undefined, csc(—m/2) = —1

20.29. Find the six trigonometric functions of 77 /4.

Ans. sin(7m/4) = —1/\/2, cos(Tm/4) = /N2, tan(T7/4) = —1,
cot(7m/d) = —1, sec(Tm/4) = V2, csc(Tmld) = —\/2
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20.30. Prove that for all ¢, sin(¢ + 27rn) = sint for any integer value of n.
20.31. Prove the Pythagorean identity cot?s + 1 = csc?t.

20.32. Given cost = 2/5 and ¢t in quadrant I, find the other five trigonometric functions of ¢.

Ans. sint = V21/5, tant = V21/2, cott = 2/ V21, sect = 5/2, csct =5/ V21

20.33. Given tant = —2/3 and ¢ in quadrant IV, find the other five trigonometric functions of ¢.

Ans. sint = —2/V13, cost = 3/ V13, cott = —3/2, sect = V' 13/3, csct = —V13/2

20.34. Given cotr = V/5 and ¢ in quadrant III, find the other five trigonometric functions of .

Ans. sint = —1/\/6, cost = —\@/\/6, tant = 1/\f5, sect = —\/8/\@, csct = —\@

13

20.35. Given sect = —= and t in quadrant II, find the other five trigonometric functions of z.
= 12 -3 __12 - _3 -3
Ans. sint = 13 COst = —73, tant = —7==, cotr = —75, ¢sct = 75

20.36. Given sint = a and t in quadrant II, find the other five trigonometric functions of .

a -V1—a? 1 1
Ans. cost = —V1 — a@? tant = ———, cott = —Qq . seCct = —————, csct =4
2 2

1 —a 1—a

20.37. Given cost = a and ¢t in quadrant IV, find the other five trigonometric functions of z.

. -V1-—a? a 1 1
Ans. sint = —V1 —d tant = ——;——, cott = ——————, sect = ;, CSCl = —————
1 —a? 1 —a

20.38. Given tant = g and ¢ in quadrant II, find the other five trigonometric functions of ¢.

. a 1 1 V& + 1 -Va +1
Ans. sint = ————, cost = —————, cott = @ sect = —Va® + 1, csct = —a
Va* + 1 Va*+ 1

20.39. For an arbitrary value of ¢, express the other trigonometric functions in terms of tant.

tanz?
cott =

1 1
—————— cost= x———, anr
V1 + tan?t V1 + tan’t an
V1 + tan’t
sect = *V1 + tan%t, csct = +————

tant

I+

Ans. sint = t

20.40. For an arbitrary value of ¢, express the other trigonometric functions in terms of cos?.

. V1 — cos?t cost
Ans. sint = =V 1 — cos?t, tant = iT, cott = t————r——r,
V1 — cos?t

! csct = * 1

cost V1 — cos?t

20.41. Show that cosine and secant are even functions.

sect =

20.42. Show that sine, tangent, cotangent, and cosecant are odd functions.



Graphs of Trigonometric
Functions

Graphs of Basic Sine and Cosine Functions

The domains of f(f) = sint and f(f) = cost are identical: all real numbers, R. The ranges of these functions
are also identical: the interval [—1, 1]. The graph of u = sint is shown in Fig. 21-1.

O\ N A\
4n -vn - _0;1 n\/n 3\/6

Figure 21-1

The graph of u = costt is shown in Fig. 21-2.

NIVANEANYANYS
VARV I RVARUL

Figure 21-2

Properties of the Basic Graphs

The function f(#) = sint is periodic with period 2. Its graph repeats a cycle, regarded as the portion of the
graph for 0 = ¢ = 27. The graph is often referred to as the basic sine curve. The amplitude of the basic sine
curve, defined as half the difference between the maximum and minimum values of the function, is 1. The
function f(f) = cost is also periodic with period 2. Its graph, called the basic cosine curve, also repeats a
cycle, regarded as the portion of this graph for 0 = ¢ = 27r. The graph can also be thought of as a sine curve
with amplitude 1, shifted left by an amount 7r/2.

Graphs of Other Sine and Cosine Functions
The graphs of the following are variations of the basic sine and cosine curves.

1. GRAPHS OF u = A sint AND u = A cost. The graph of u = A sint for positive A is a basic sine curve, but
stretched by a factor of A, hence with amplitude A, referred to as a standard sine curve. The graph of
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u = A sint for negative A is a standard sine curve with amplitude |Al, reflected with respect to the x-axis,
called an upside-down sine curve. Similarly, the graph of u = A cost for positive A is a basic cosine
curve with amplitude |Al, referred to as a standard cosine curve. The graph of u = A cost for negative A
is a standard cosine curve with amplitude |Al, reflected with respect to the x-axis, called an upside-down
cosine curve.

2. GRAPHS OF u = sinbt AND u = cosbt (b positive). The graph of u = sinbt is a standard sine curve,
compressed by a factor of b with respect to the x-axis, hence with period 27/b. The graph of u = cosbt
is a standard cosine curve with period 27 /b.

3. GRAPHS OF u = sin(t — ¢) AND u = cos(t — ¢). The graph of u = sin(¢ — ¢) is a standard sine curve
shifted to the right Icl units if ¢ is positive, shifted to the left Icl units if ¢ is negative. The graph of
u = cos(t — c) is a standard cosine curve shifted to the right Icl units if c is positive, shifted to the left Icl
units if ¢ is negative. c is referred to as the phase shift. (Note: The definition of phase shift is not univer-
sally agreed upon.)

4. GRAPHS OF u = sint + d AND u = cost + d. The graph of u = sint + d is a standard sine curve shifted
up ldl units if d is positive, shifted down Idl units if d is negative. The graph of u = cost + dis a
standard cosine curve shifted up Idl units if d is positive, shifted down Idl units if d is negative.

5. GRAPHS OF u = A sin(bt — ¢) + d AND u = A cos(bt — ¢) + d display combinations of the above
features. In general, assuming A, b, c, d positive, the graphs are standard sine and cosine curves,
respectively, with amplitude A, period 27/b, phase shift c/b, shifted up d units.

EXAMPLE 21.1 Sketch a graph of u = 3 cost.
The graph (Fig. 21-3) is a standard cosine curve with amplitude 3 and period 27.

AL

-1
-2

-3
Figure 21-3

EXAMPLE 21.2 Sketch a graph of u = —2 sin2t.
The graph (Fig. 21-4) is an upside-down sine curve with amplitude |—2| = 2 and period 27 /2 = 7.

AWLWAWAY
\WVARVEVAVE

Figure 21-4
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Graphs of the Other Trigonometric Functions

1. TANGENT. The domain of the tangent function is {¢ € Rlt # /2 + 27n, 37w/2 + 27n} and the range is R.
The graph is shown in Fig. 21-5.

“TrTTTr

-74.5

ot
Figure 21-5

2. SECANT. The domain of the secant function is {z € Rlt # /2 + 27rn, 37r/2 + 2mn} and the range is
(—o0, —11U[1, ). The graph is shown in Fig. 21-6.

) U &) UL
AREiAEA

~-%.5¢

. 10 {
Figure 21-6

3. COTANGENT. The domain of the cotangent function is {# € Rlt # nr} and the range is R. The graph is
shown in Fig. 21-7.

10,4
7.

2.

TTHTTY

[Ox RN &2 B ¥ )
~

-7.5}

-10t
Figure 21-7
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4. COSECANT. The domain of the cosecant function is {f € RIt # nr} and the range is (—o°, —1] U [1, o).
The graph is shown in Fig. 21-8.

5

5

U 2.5.

2. m
- 5|t

-7 .5§F

~10t
Figure 21-8

SOLVED PROBLEMS

21.1.

21.2.

Explain the properties of the graph of the sine function.

Recall that sint is defined as the y-coordinate of the point P(f) obtained by proceeding a distance Il around the
unit circle from the point (1,0). (See Fig. 21-9.) As ¢ increases from 0 to 77 /2, the y-coordinate of P(¢) increases
from O to 1; as ¢ increases from 77 /2 through 7 to 37/2, y decreases from 1 through 0 to —1; as ¢ increases from
3w /2 to 2w, y increases from —1 to 0. (See Fig. 21-10.) This represents one cycle or period of the sine function;
since the sine function is periodic with period 27, the cycle shown in Fig. 21-10 is repeated as ¢ increases from
21 to 4, 47 to 67, and so on. For negative ¢, the cycle is also repeated as ¢ increases from —27 to 0, from
—44r to — 277, and so on.

y u
o !
P(t) = (x, y 4 0.5
X t
10 5
-0.5
0,~1
©-1) .
Figure 21-9 Figure 21-10

Explain how to sketch a graph of u = A sin(bt — ¢) + d.

1. Determine amplitude and shape: Amplitude = |Al. If A is positive, the curve is a standard sine curve; if A is
negative, the curve is an upside-down sine curve. The maximum height of the curve is d + |Al, the minimum
isd — IAL

2. Determine period and phase shift: Since sin7 goes through one cycle in the interval 0 = T = 2, sin(bt — ¢)
goes through one cycle in the interval 0 = bt — ¢ = 27r; thatis, ¢/b = t = (¢ + 2m)/b. The graph is a
standard (or upside-down) sine curve with period 277/b and phase shift c/b.

3. Divide the interval from ¢/b to (¢ + 2)/b into four equal subintervals and sketch one cycle of the
curve. For positive A, the curve increases from a height of d to its maximum height in the first subinter-
val, decreases to d in the second and to its minimum height in the third, then increases to d in the fourth.
For negative A, the curve decreases from a height of d to its minimum height in the first subinterval,
increases to d in the second and to its maximum height in the third, then decreases to d in the fourth.

4. Show the behavior of the curve in further cycles as desired.
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21.3.

21.4.

21.5.

Explain the properties of the graph of the cosine function.

Recall that cost is defined as the x-coordinate of the point P(f) obtained by proceeding a distance |#| around the unit
circle from the point (1,0). (See Fig. 21-11.) As ¢ increases from O through 77/2 to 7, the x-coordinate of P(f)
decreases from 1 through 0 to —1; as ¢ increases from 7 through 377 /2, to 277, x increases from —1 through
0 to 1. (See Fig. 21-12). This represents one cycle or period of the cosine function; since the cosine function is
periodic with period 277, the cycle shown in Fig. 21-12 is repeated as ¢ increases from 277 to 477, 477 to 677, and so
on. For negative ¢, the cycle is also repeated as ¢ increases from —27r to 0, from —44r to —277, and so on.

y
o !

P =0, ?/ 4 0.5

1,0) o f

-1

Figure 21-11 Figure 21-12

Explain how to sketch a graph of u = A cos(bt —c) + d.

1. Determine amplitude and shape: Amplitude = IAl. If A is positive, the curve is a standard cosine curve;
if A is negative, the curve is an upside down cosine curve. The maximum height of the curve is d + |Al,
the minimum is d — 1Al.

2. Determine period and phase shift: Since cos 7T goes through one cycle in the interval 0 = T = 217, cos(bt — ¢)
goes through one cycle in the interval 0 = bt — ¢ = 2, thatis, c/b = t = (¢ + 2m)/b. The graph is a
standard (or upside-down) cosine curve with period 277/b and phase shift c/b.

3. Divide the interval from ¢/b to (¢ + 2)/b into four equal subintervals and sketch one cycle of the curve.
For positive A, the curve decreases from its maximum height to a height of d in the first subinterval, and
to its minimum height in the second, then increases to a height of d in the third subinterval and to its
maximum height in the fourth. For negative A, the curve increases from its minimum height to a height of
d in the first subinterval, and to its maximum height in the second, then decreases to a height of d in the
third subinterval and to its minimum height in the fourth.

4. Show the behavior of the curve in further cycles as desired.

Sketch a graph of u = 6 sin %t.

Amplitude = 6. The graph is a standard sine curve. Period = 27 < 1/2 = 4. Phase shift = 0; d = 0. Divide
the interval from O to 44 into four equal subintervals and sketch the curve with maximum height 6 and minimum
height —6. See Fig. 21-13.

Figure 21-13



21.6.

21.7.

21.8.
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Sketch a graph of u = 3 coswrt + 2.

Amplitude = 3. The graph is a standard cosine curve. Period = 27 + 7 = 2. Phase shift = 0; d = 2. Divide
the interval from O to 2 into four equal subintervals and sketch the curve with maximum height 5 and minimum

height —1. See Fig. 21-14.
7
VARIAVAS

Figure 21-14

N W

Y
-1

Sketch a graph of u = 2 sin(5¢ — ).

Amplitude = 2. The graph is a standard sine curve. Period = 27r/5. Phase shift = w/5; d = 0. Divide the interval
from 7r/5 to 37r/5 (= phase shift + one period) into four equal subintervals and sketch the curve with maximum
height 2 and minimum height —2. See Fig. 21-15.

ANN
EVRTAY

Figure 21-15

-1 ( z) 3
Sketch a graph of u = 5 cos 3t + 2 +2.

Amplitude = % The graph is an upside down cosine curve. Period = 2777 Phase shift = (—%) +3=—-""

Divide the interval from —% to 7]% (= phase shift + one period) into four equal subintervals and sketch the

curve with maximum height 2 and minimum height 1. See Fig. 21-16.

214

0.5
= TR 5%’
12 12 4

Figure 21-16
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21.9.

21.10.

21.11.

Sketch a graph of u = Isinzl.

The graph is the same as the graph of u = sint in the intervals for which sint is positive, that is, (0,7),
(2r,37r), (—2,—1r), and so on. In the intervals for which sint is negative, that is, (7,27), (—r,0), and so on,
since Isinfl = —sint in these intervals, the graph is the same as the graph of u = —sinz, that is, the graph of
u = sint reflected with respect to the ¢ axis (Fig. 21-17).

u

-2 ~N T 2r 3n 4n
Figure 21-17

Explain the properties of the graph of the tangent function.

Recall that tant is defined as the ratio y/x of the coordinates of the point P(f) obtained by proceeding a distance
Il around the unit circle from the point (1,0). (See Fig. 21-18.) As ¢ increases from 0 to 7r/4 this ratio increases
from O to 1; as ¢ continues to increase from /4 toward 77/2, the ratio continues to increase beyond all bounds,
as t = /2~ (approaches from the left), tant — . Thus, the line t = 77/2 is a vertical asymptote for the graph.
Since tangent is an odd function, the graph has origin symmetry, the line t = —#/2 is also a vertical asymptote,
and the curve is as shown in Fig. 21-19 for the interval (—/2,7/2). Since the tangent function has period 7, the
graph repeats this cycle for the intervals (7/2,37/2), 37 /2,57/2), (—37/2,—m/2), and so on.

U
y
P =(x,) (IN2,1W2) 1
x = X 7!
2 -1 4 2
1.0 Tor
(1N2,-1N2)
(01—1)
Figure 21-18 Figure 21-19

Sketch a graph of u = tan(t — m/3).

The graph is the same as the graph of u = tant shifted 77/3 units to the right, and has period 7. Since tanT
goes through one cycle in the interval —7/2 < T < /2, tan(t — 7r/3) goes through one cycle in the interval
—m/2<t— /3 <m/2,thatis, —7/6 < t < 577/6. Sketch the graph in this interval and repeat the cycle with
period 7r.

LM

Figure 21-20
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21.12. Explain the properties and sketch the graph of the secant function.

Since sect is the reciprocal of cost, it is convenient to understand the graph of the secant function in terms of the
graph of the cosine function: the secant function is even, has period 277, and has vertical asymptotes at the zeros of
the cosine function, that is, at t = 7/2 + 2an or 377/2 + 2mn, n any integer. Where cost = 1, sect = 1, that is,
for t = 0 + 2rn, n any integer. Where cost = —1, sect = — 1, that is, for t = 7 + 27rn, n any integer. As ¢ increases
from O to 77/2, cost decreases from 1 to 0; thus, sect increases from 1 beyond all bounds; as ¢ increases from
/2 to m, cost decreases from O to —1, thus, sect increases from unboundedly large and negative to — 1. To graph
u = sect, sketch a graph of u = costt (shown as a dotted curve in Fig. 21-21), mark vertical asymptotes through
the zeros, sketch the secant curve increasing from 1 beyond all bounds at ¢ increases from O to 77/2 and increasing
from unboundedly large and negative to —1 as ¢ increases from /2 to m, Use the even property of the function to
draw the portion of the graph for the interval from —7r to 0, then the periodicity of the function to indicate further
portions of the graph.

u
4.
2.
”
7 A RN AR t
/ -2% \N T s N, n
N _ - N
_2.
_4.
Figure 21-21

21.13. Sketch a graph of u = ¢ sint.

Since Isin#fl = 1, 0 = I#l Isin#l = I#, thus —lfl = I#l Isinfl = I#l, for all ¢. Thus the graph of u = ¢ sint lies between
the lines u = tand u = —¢. Moreover, since ¢ sint = Q0 at¢ = nm and t sint = *ratt = nm + /2, the graph of
u = t sint has ¢ intercepts at t = nar and touches the lines at ¢+ = nar + /2. The function is an even function; the
graph is as shown in Fig. 21-22.

Uu
~ P
\\\ L
~ 3n <
\‘\ 2n -7
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«w T 4
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-, - n .7 N 1! U
4 ~
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,// 2% ~
_ ~
e 3r <
Pid ~

Figure 21-22
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SUPPLEMENTARY PROBLEMS
21.14. State the amplitude and period of (a) u = sinrt; (b) u = 2 cost — 4.

Ans. (a) amplitude = 1, period = 2; (b) amplitude = 2, period = 2.

21.15. Sketch a graph of (a) u = sinrt; (b) u = 2 costt — 4.
Ans. (a) Fig.21-23; (b) Fig. 21-24.

U u '
-2n s an
0.5 -1
-2 - ) 3
O —4
-5
Ly -6
Figure 21-23 Figure 21-24

21.16. State the amplitude, period, and phase shift of (a) u = %cos 2t;(b) u= -2 sin(%t - 77) + 4.

Ans. (a) amplitude = %, period = r, phase shift = 0; (b) amplitude = 2, period = 67, phase shift = 3.

21.17. Sketch a graph of (a) u = %cosZt; byu=-2 sin(_%t — 77) + 4.
Ans. (a) Fig.21-25; (b) Fig. 21-26.

6u
5
L u
- n 2n ! 2
1
3 -3r 3n 6n
Figure 21-25 Figure 21-26

21.18. State the period of (a) u = tan%t; (b) u = —sec?2t.

Ans. (a) 2m; (b)m

21.19. Sketch a graph of (a) u = tan%t; (b) u = —sec?2t.
Ans. (a) Fig.21-27; (b) Fig. 21-28.
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7] U
4 4
2 2
t t
-2n T n T T T
2 2
-2
~4
Figure 21-27 Figure 21-28
21.20. Sketch a graph of (a) u = e~ cos2t; (b) u = 2 — Icostl.
Ans. (a) Fig.21-29; (b) Fig. 21-30.
\ Y 2”
\
v 2
AN .5
/T\\ . |
3 \'/"_-E'-‘
._; v s
’ - 11 21tt
’
Vs
Figure 21-29 Figure 21-30

21.21. Explain the properties of the graphs of the cotangent and cosecant functions.



Angles

Trigonometric Angles

A trigonometric angle is determined by rotating a ray about its endpoint, called the vertex of the angle. The
starting position of the ray is called the initial side and the ending position is the terminal side. (See Fig. 22-1.)

side
Figure 22-1

If the displacement of the ray from its starting position is in the counterclockwise direction, the angle is
assigned a positive measure, if in the clockwise direction, a negative measure. A zero angle corresponds to
zero displacement; the initial and terminal sides of a zero angle are coincident.

Angles in Standard Position

An angle is in standard position in a Cartesian coordinate system if its vertex is at the origin and its initial
side is the positive x-axis. Angles in standard position are categorized by their terminal sides: If the terminal
side falls along an axis, the angle is called a quadrantal angle; if the terminal side is in quadrant »n, the angle
is referred to as a quadrant n angle (see Figs. 22-2 to 22-5).

Positive Quadrantal Negative Quadrantal Positive Quadrant Negative Quadrant
Angle Angle IV Angle II Angle

y y y y
A A A A
x —ﬁ»)x X x

Figure 22-2 Figure 22-3 Figure 22-4 Figure 22-5
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Radian Measurement of Angles

In calculus, angles are normally measured in radian measure. One radian is defined as the measure of an
angle that, if placed with vertex at the center of a circle, subtends (intersects) an arc of length equal to the
radius of the circle. In Fig. 22-6, angle 6 has measure 1 radian.

Figure 22-6

Since the circumference of a circle of radius r has length 277, a positive angle of one full revolution corre-
sponds to an arc length of 2777 and thus has measure 27 radians.

m

EXAMPLE 22.1 Draw examples of angles of measures 1, > and 3777- radians.

Measure © Measure 7/2 Measure 3n/2

> ]

Figure 22-7

Arc Length and Radian Measure
In a circle of radius r, an angle of radian measure 0 subtends an arc of length s = rf.

EXAMPLE 22.2 Determine the radius of a circle in which a central angle of 3 radians subtends an arc of length 30 cm.

Since # = 3 and s = 30 cm, 30 cm = 3r; hence r = 10 cm.

Degree Measure

In applications, angles are commonly measured in degrees (°). A positive angle of one full revolution has
measure 360°. Thus, 27 radians = 360°, or

180° = 7 radians

To transform radian measure into degrees, use this relation in the form 180°/7r = 1 radian and multiply
the radian measure by 180°7. To transform degree measure into radians, use the relation in the form
1° = 7r/180 radians and multiply the degree measure by 7/180°. The following table summarizes the meas-
ure of common angles:
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Degree Measure | 0° | 30° |45° | 60° | 90° 120° | 135° | 150° 180° 270° | 360°

Radian Measure | 0 % - — — — T — 2

T T
6 4

EXAMPLE 22.3 (a) Transform 210° into radians. (b) Transform 67 radians into degrees.

1;700 radians = %T radians; (b) 67r radians = 67 - 1§TO = 1080°

(a) 210° = 210° -

Degrees, Minutes, and Seconds
If measurements smaller than a degree are required, the degree may be subdivided into decimal fractions.

Alternatively, a degree is subdivided into minutes (") and seconds (""). Thus, 1° = 60" and 1’ = 60" ; hence,
1°=3600".

EXAMPLE 22.4 Transform 35°24'36" into decimal degrees.

oNAIALN — % 36 \° — o
35°24'36" = (35 2 —3600) 35.41

Terminology for Special Angles

An angle of measure between 0 and 7r/2 radians (between 0° and 90°) is called an acute angle. An angle of
measure 7/2 radians (90°) is called a right angle. An angle of measure between 7/2 and 7 radians
(between 90° and 180°) is called an obtuse angle. An angle of measure 7r radians (180°) is called a straight
angle. An angle is normally referred to by giving its measure; thus = 30° means that  has a measure of 30°.

Complementary and Supplementary Angles

If & and B are two angles such that « + 8 = 7/2, a and 3 are called complementary angles. If « and B are
two angles such that &« + 8 = 7, « and 3 are called supplementary angles.

EXAMPLE 22.5 Find an angle complementary to 6 if (a) § = 7/3; (b) 6 = 37°15'.

i T T _T_7
(a) The complementary angle to 6 is 5~ 0= 2 3 6

(b) The complementary angle to 0 is 90° — 6 = 90° — 37°15’ = 89°60" — 37°15" = 52°45’.

Coterminal Angles

Two angles in standard position are coterminal if they have the same terminal side. There are an infinite
number of angles coterminal with a given angle. To find an angle coterminal with a given angle, add or sub-
tract 277 (if the angle is measured in radians) or 360° (if the angle is measured in degrees).

EXAMPLE 22.6 Find two angles coterminal with (a) 2 radians; (b) —60°.

(a) Coterminal with 2 radians are 2 + 277 and 2 — 27 radians, as well as many other angles.
(b) Coterminal with —60° are —60° + 360° = 300° and —60° — 360° = —420°, as well as many other angles.

Trigonometric Functions of Angles

If 0 is an angle with radian measure ¢, then the value of each trigonometric function of 0 is its value at the
real number 7.

EXAMPLE 22.7 Find (a) cos 90° (b) tan 135°.

T _

2

0; (b) tan 135° = tan(135°- us ) = @ T = |

(a) cos 90° = cos 180°
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Trigonometric Functions of Angles as Ratios

Let 6 be an angle in standard position, and P(x, y) be any point except the origin on the terminal side of 6. If
r = Vx* + y?is the distance from P to the origin, then the six trigonometric functions of 0 are given by:

. y .
sinf = csch = § (ify # 0)
X r .
cost = secd = - (ifx # 0)
tanf = > (fx#0) coth =2 (ify # 0)
X y y

EXAMPLE 22.8 Let 6 be an angle in standard position with P(—3, 4) a point on the terminal side of 6 (see Fig. 22-8).
Find the six trigonometric functions of 6.

<

P(-34
Gl
> o
Figure 22-8

x=—3,y=4,r=\/x2+y=\/(—3)2+42=5;hence
sin0=¥=% 0050:%=%3=—% tan0=§=_43=—%
_r_>5 _r_5 __3 _x_-3__3
cscOfyf4 secﬂfxf_sf 3 cotﬂfyf 2 - 2

Trigonometric Functions of Acute Angles

If 6 is an acute angle, it can be regarded as an angle of a right triangle. If 6 is placed in standard position, and
the sides of the right triangle are named as hypotenuse (hyp), opposite (opp), and adjacent (adj), the lengths
of the adjacent and opposite sides are the x- and y-coordinates, respectively, of a point on the terminal side
of the angle. The length of the hypotenuse is » = Vx? + y% (See Fig. 22-9.)

y
A

P(adj,opp)
hyp

opp
0

ad] >x

Figure 22-9
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For an acute angle 6, the trigonometric functions of 6 are then as follows:

sin0=X=@ cscé’=l=hﬂ
r  hyp Yy  opp
cos(9=£=afdj sec(9=£=hﬂ
" hyp X adj

_ Y _opp _x_ adj
tan@—x— ad; cotO—y—Opp

EXAMPLE 22.9 Find the six trigonometric functions of § as shown in Fig. 22-10.

%5
[

12
Figure 22-10
For 6 as shown, opp = 5, adj = 12, hyp = 13, hence
g _ PP _ 5 _ad 12 _oPP _ 5
sinf = hyp 13 cosf = hyp 13 tan6 = adj — 12
csct‘):hﬂzﬁ sec@zmzﬁ cotOzLdj:Q
opp 5 adj 12 opp 5

Reference Angles

The reference angle for 6, a nonquadrantal angle in standard position, is the acute angle 6, between the
x-axis and the terminal side of 6. Fig. 22-11 shows angles and reference angles for cases 0 < 6 < 27r. To find
reference angles for other nonquadrantal angles, first add or subtract multiples of 27 to obtain an angle coter-
minal with 6 that satisfies 0 < 0 < 27r.

Quadrant I Quadrant II Quadrant II1 Quadrant IV
y y y y
A A A A

g 8 ] 6 )
> o R > o X a =X
A 6z
= 180°- 6 = 0-180° = 360°- 60
Figure 22-11

Trigonometric Functions of Angles in Terms of Reference Angles

For any nonquadrantal angle 6, each trigonometric function of 6 has the same absolute value as the same
trigonometric function of 6,. To find a trigonometric function of 6, find the function of 6,, then apply the
correct sign for the quadrant of 6.
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EXAMPLE 22.10 Find COS%TW.

-7

The reference angle for 3£, a second quadrant angle, is 7 — 3777 g In quadrant II, the sign of the cosine function is

. 37
negative. Hence, cos = —CosS = —~—.

4 4 V2

SOLVED PROBLEMS

22.1. List all angles coterminal with (a) 40°; (b) 2777 radians.

(a) To find angles coterminal with 40°, add or subtract any integer multiple of 360°. Thus, 400° and —320° are
examples of angles coterminal with 40°, and all angles coterminal with 40° can be expressed as 40° + n360°,
where n is any integer.

(b) To find angles coterminal with 277/3, add or subtract any integer multiple of 27r. Thus, 87/3 and —4/3
are examples of angles coterminal with 277/3 and all angles coterminal with 277/3 can be expressed as
2m/3 + 2mn, where n is any integer.

22.2. Find the trigonometric functions of (a) 180°; (b) —360°.

(a) 180° = 7r radians; hence, sin180° = sin7 = 0, cos 180° = cos7 = —1, tan180° = tanw = 0,
cot 180° = cotr is undefined, sec 180° = secm = —1, csc 180° = cscr is undefined.

(b) —360° = —27 radians, hence, sin(—360°) = sin(—2m) = 0, cos(—360°) = cos(—27) = 1,
tan(—360°) =tan(—27) = 0, cot(—360°) = cot(—27) is undefined, sec(—360°) = sec(—2m) = 1,
csc(—360°) = csc(—27) is undefined.

22.3. Find an angle supplementary to 6 if (a) 0 = /3; (b) 6 = 37°15".

T . T 27
—isT — 5 = 5.

(a) Supplementary to 3 3 3

(b) Supplementary to 37°15" is 180° — 37°15' = 179°60" — 37°15’ = 142°45'.

22.4. Transform 5 radians into degrees, minutes, and seconds.

°  900°
First note that 5 radians = 5 - 1§TO =g = 286.4789°. To transform this into degrees and minutes, write
- o 4789° o . 4789° 60" _ o ,
286.4789° = 286° + 10000 — 286° + 10000 1° — 286° + 28.734

To transform this into degrees, minutes, and seconds, write

o ) _ hego ;o 1347 _ o ;o 134" 60" _ ongQ "
286° + 28.734" = 286° + 28' + 1000 = 286° + 28’ + 1000 1 = 286°28'44.04
22.5. Transform 424°34'24" into radians.
. AT AT 34 24 \° o .. . .
First note that 424°34'24" = | 424 + 0 + 3600 =~ 424.57333°. To transform this into radians, write
T

424.57333° = 424.57333° - =~ 7.41 radians.

180°
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22.6. (a) Derive the relationship s = rf. (b) Find the angle in radians subtended by an arc of length 5 cm on a circle
of radius 3 cm. (c) Find the linear distance traveled by a point on the rim of a bicycle wheel of radius 26 in
as the wheel makes 10 rotations.

(a) Draw two circles of radius r, as shown in Fig. 22-12.

51

Figure 22-12

From plane geometry it is known that the ratio of the arc lengths equals the ratio of the angles.

Thus
0

1

S
5.0
Take 6, = 1 radian, then s, = r; hence,% = % that is, s = r6.

(b) Uses = rf withs = 5cm, r = 3 cm, then 5 = 36; thus § = %radians.
(c) First note that 10 rotations represents an angle of 10 - 27 = 207 radians. Hence,
s =rf = 26in - 207 radians = 5207 in = 136 ft.
22.7. Show that the definitions of the trigonometric functions as ratios are consistent with the definitions of the
trigonometric functions of angles.

Let 6 be a nonquadrantal angle in standard position. Choose an arbitrary point Q(x, y) on the terminal side of 6.
(See Fig. 22-13).

—> <

x1y1)
oxy)

Figure 22-13

Then r = Vx* + y2 Let P(x,, y,) be a point on the terminal side of § with V' x? + y* = 1. Then P lies on the
unit circle and sinf = y,. Drop perpendicular lines from P and Q to the x axis at A and B, respectively. Then

triangles OAP and OBQ are similar, and hence ratios of corresponding sides are equal; thus
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Thus sin = y, = 7 and the two definitions are consistent for the sine function. The proof is easily extended to
the other trigonometric functions and to quadrantal angles.

22.8. If 0 is in standard position and (—20,21) lies on its terminal side, find the trigonometric functions of 6.

x=—20andy = 21 hence r = V2 + y> = V/(—20)> + 21% = 29. Therefore,

g Y 21 p_X_~20_ 2 oy _ 21 _ _21
SIMU= 7 =59  COSUTF =59 T 79 My =x=207 20

0=£=§ Ozfzﬂz_g tezﬁz;zo:_ﬁ
Y=y T o0 Sl =X T 0 20 co y <20 21

22.9. If 6 is in standard position and its terminal side lies in quadrant I on the line y = 2x, find the trigonometric
functions of 6.

To find the trigonometric functions of 6, any point on the terminal side of # may be chosen; letx = 1, theny = 2
andr = V22 + ¥ = V12 + 22 = \/5. Therefore

sin0=¥=% c036=§=% tan0=§=%=2
_r_\5s _r_ V5 _ _x_1
csce—y— 5 sech = 3 = 1 —\[5 cott9—y—2

22.10. If 6 is an acute angle, find the other trigonometric functions of 6, given
(a) sin@ = 3;(b) tanh = 3.

(a) Draw a figure. In the right triangle, take opp = 3 and hyp = 5. Then the third side is found from the
Pythagorean theorem: adj = V52 — 3% = 4. See Fig. 22-14.

5
3
]
Figure 22-14
Hence,
g _9PP 3 _adj 4 _opp _3
sinf = hyp =3 cosf = hyp =3 tanf = adj =2
_hyp 5 _hyp 5 _adj 4
csch = opp 3 sec = adj — 4 cotf = opp 3

(b) Draw a figure. In the right triangle, take opp = 2 and adj = 3. Then the third side is found from the
Pythagorean theorem: hyp = V22 + 32 = V13. See Fig. 22-15.

a
3

Figure 22-15
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Hence,
sin0=@= 2 cos@=afdj=i t 6’=@=Z
hyp V13 hyp /13 adj 3
g e Vi3 gt Vi3 adi 3
csch = opp = 2 sech = adj = 3 cotf = opp ~ 2

22.11. Find the trigonometric functions of 30°, 45°, and 60°.

To find the trigonometric functions of 30° and 60°, draw a 30—60° right triangle (Fig. 22-16). Since the side

opposite the 30° angle is one-half the hypotenuse, for 30° take opp = 1, hyp = 2. Then from the Pythagorean
theorem, adj = V3.

30-60° Right Triangle Isosceles Right Triangle
\E 45
1 1
45° .
B 1
Figure 22-16 Figure 22-17
Hence
0 adj 0
sin30° = o2 — 1 cos30e = 2 V3 e SO 1
hyp 2 hyp 2 adj \@
. _hyp 2 ., _hyp 2 o adi V3o
csc30° = opp ~ 1 2 sec30° = adj = \/g cot30° = opp ~ 1~ \[3

Fig. 22-16 can also be used to determine the trigonometric functions of 60°, even though the 60° angle is not in
standard position. Take opp = \/g, adj = 1, and hyp = 2, then

0 adj o
sin60° = hsi = \gg cos60° = ﬁ = % tan 60° = aI()i? = 7\16 - V3
o _hyp 2 ., _hyp 2 o adi g
csc60° = PP~ \/3 ec60° = adj 17 2 cot60° = o = /3

To find the trigonometric functions of 45°, draw an isosceles right triangle (Fig. 22-17). Take opp = 1,
adj = 1, and hyp = \/2, then

) opp 1 adj 1 opp 1
sin45° = —— = —— cos45° = —— = —— tan45° = — =+ =1
hyp /> hyp /> adj 1
., _hyp Voo ., _hyp V2 o adi 1
csc45° = op - 1 \6 sec45° = de 1 = \[2 cot45° = op 1

22.12. Form a table of the trigonometric functions of 0, %, %, %, and - radians.

(SIE}

The trigonometric functions of 0 and 7r/2 radians are the same as the functions of the real numbers 0 and /2,
respectively, calculated in Problems 20.7 and 20.8. The trigonometric functions of /6, /4, and /3 are the

same as the functions of 30°, 45°, and 60°, calculated in Problem 22.11. Summarizing yields the following table
(U stands for undefined):
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0 (radians) 0 (degrees) sin@ cos@ tan@ cotf secO cscf
0 0° 0 1 0 U 1 U
/6 30° 1/2 V3/2 1/\V3 V3 21V3 | 2
/4 45° V2 | V2 1 1 V2 V2
w3 60° V3 | 2 V3 V3 | 2 2/V3
/2 90° 1 0 U 0 U 1
22.13. Show that for any nonquadrantal angle 0, each trigonometric function of 6 has the same absolute value as the

same trigonometric function of its reference angle 0,.

The four possible positions of 6 and 6, are shown in Fig. 22-18.

22.14.

Quadrant 1 Quadrant 11 Quadrant I1I Quadrant IV
y y Y y
APy ey A A
Og 0 > ff N A
0 X " > o
P(x,y
Figure 22-18

In each case, let P(x, y) be a point on the terminal side of # and draw a line from P perpendicular to the x-axis at
A. In triangle OAP, 0, is an acute angle with opp = lyl, adj = Ixl, and hyp = Vx> + y> = r.

Therefore

[¥|

. oyl x|
|sinf| = H =7 T

_ . _x oM _ bl
= sinf, |cosO| = || = = cosf, |tan6| = i x| = tanf,

and similarly for the other trigonometric functions.

Find the reference angle for (a) 480°; (b) —%T radians.

(a) First note that 480° — 360° = 120° is an angle between 0° and 360° coterminal with 480°. Since
90° < 120° < 180°, 120° is a second quadrant angle. Hence the reference angle for 120° and therefore
for 480° is 180° — 120° = 60°.

(b) First note that —%T + 27 = %T is an angle between O and 27 radians coterminal with —%T. Since
T < 5777 < 3777, 5777 is a third quadrant angle. Hence the reference angle for 5777 and therefore for —'%T is
Swm___ ™
4" %
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22.15. Find the trigonometric functions for (a) 480°; (b) —3777 radians.

(a) To find the trigonometric functions of an angle, find the functions of its reference angle and attach the
correct sign for the quadrant. 480° is a second quadrant angle. In quadrant II, sine and cosecant are
positive, and the other trigonometric functions are negative. Using the reference angle found in the
previous problem yields:

c0s480° = —cos60° = —% tan480° = —tan60° = —\/g

sin480° = sin 60° =

1

V3

(b) —3m/4 is a third quadrant angle. In quadrant III, tangent and cotangent are positive, and the other
trigonometric functions are negative. Using the reference angle found in the previous problem yields:

csc480° = csc 60° = sec480° = —sec 60° = —2 cot480° = —cot60°

Sk IS

sin(—3f7T> = —sinZ = - cos(—ﬁ) = —cos T = - tan(—ﬁ) = tan T =1
4 4 \6 4 4 \[2 4 4
csc(—%T) = —csc% =-V2 sec(—%) = —sec% =-V2 cot(—%’) = Cot% =1

V3

. . 1 .
22.16. Find all angles 0, 0 = 6 < 277, such that (a) sinf = 2 (b) sinf = -
The sine function is increasing on the interval from O to 7r/2; thus it is a one-to-one function on this interval. For
values of a in the interval 0 = a =< 1, the notation ¢ = sin™! @ is used to denote the unique value ¢ in the interval

0 = ¢ = 7@/2 such that sin t = a. (See Chapter 25 for a fuller discussion of inverse trigonometric functions.)

(a) From the table in Problem 22.12, smg ; thus, % = sin~! % Since the sine function is positive in

quadrants I and II, there is also an angle 0 in quadrant II with reference angle % and sinf = % This angle
must be m — % =% Then % and %T are the two required angles.

\[

(b) From the table in Problem 22.12, sin% — thus, 3 = = sin~! % Since the sine function is negative

in quadrants III and IV, the required angles are the angles 6, and 6, in these quadrants with reference angle

% and sinf, = sin6, = —73. In quadrant II1, 6, — thus, 0, = 4 . In quadrant IV, 27 — 0, 3

3’ 3
S5

thus, 62 = 3

22.17. Find all angles 0, 0 = § < 27, such that (a) cosf = L\/; (b) cosh = —%.
2
The cosine function is decreasing on the interval from 0O to 77/2; thus it is a one-to-one function on this interval.
For values of a in the interval 0 =< a =< 1, the notation ¢ = cos™! a is used to denote the unique value ¢ in the
interval 0 = ¢t =< 7r/2 such that cost = a.

. T 1 1 . . .. ..
(a) From the table in Problem 22.12, cos—- = thus, = cos~'——. Since the cosine function is positive
4 \fz 4 V2

in quadrants I and IV, there is also an angle 6 in quadrant IV with reference angle and cosf = L\[ This
2

angle must satisfy 27 — 6 = 4, thus, 6 = T Thus 7 2 and 7777 are the two required angles.

(b) From the table in Problem 22.12, cos X 3 %, thus ? = cos! % Since the cosine function is negative in

quadrants II and III, the required angles are the angles 0, and 6, in these quadrants with reference angle % and

cosl, = cosf, = —%. In quadrant I, 7 — 0, = 3 ;thus 0, = 2,;7 . In quadrant I1, 6, — 3 ; thus, 6, = 4;7 .



22.18.

22.19.

22.20.

22.21.

22.22.
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Find all angles 6, 0° < 6 < 360°, such that (a) tanf = \/g; (b) tanf = —1.

The tangent function is increasing on the interval from O to 77/2, thus it is a one-to-one function on this interval.
For nonnegative values of a, the notation ¢ = tan™! a is used to denote the unique nonnegative value ¢ such that
tant = a.

(a) From the table in Problem 22.12, tan% = \/3, thus % = tan~! \/3 Hence 60° is one required angle.

Since the tangent function is positive in quadrants I and III, there is also an angle 0 in quadrant III with
reference angle 60° and tanf = V3.In quadrant ITI, 6 — 180° = 60°; thus # = 240°. The required angles
are 60° and 240°.

(b) From the table in Problem 22.12, tan% = 1; thus % = tan'1. Since the tangent function is negative in

quadrants II and IV, the required angles are the angle 6, and 6, in these quadrants with reference angle

% = 45°. In quadrant II, 180° — 6, = 45° thus 6, = 135°. In quadrant IV, 360° — 6, = 45°; thus 6, = 315°.

Use a scientific calculator to find approximate values for (a) sin 42°; (b) cos 238°;
(c) tan(—61.5°); (d) sec 341°25".

In using a scientific calculator for trigonometric calculations, it is crucial to make certain that the correct
mode (degree mode or radian mode) is selected. Refer to the calculator manual for instructions for choosing the
mode. In this problem, put the calculator in degree mode. (a) sin42° = 0.6691; (b) cos 238° = —0.5299;
(c) tan(—61.5°) = —1.8418; (d) secant cannot be calculated directly on a calculator; use a trigonometric identity:

1 1

41°25") = =
sec(341°25") cos(341°25")  cos(341 + 25/60)°

= 1.055

Use a scientific calculator to find approximate values for (a) sin 3; (b) cos(—5.3);
(¢) tan(2.356); (d) cot(12.3).

See comments in previous problem. In this problem, put the calculator in radian mode. (a) sin 3 = 0.1411;
(b) cos(—5.3) = 0.5544; (c) tan(2.356) = —1.0004; (d) cotangent cannot be calculated directly on a calculator;
use a trigonometric identity:

1

cot(12.3) = m =

—3.6650

Use a scientific calculator to find approximate values for all angles 6, 0 = 6 < 27, such that
(a) sinf = 0.7543 (b) tanf = —4.412.
Put the calculator into radian mode.

(a) First find sin™! 0.7543 = 0.8546. Since the sine function is positive in quadrants I and II, there is also an angle 0
in quadrant II with reference angle 0.8546 and sinf = 0.7543. This angle must be 7 — 0.8546 = 2.2870. Then
0.8546 and 2.2870 are the two required angles.

(b) First find tan~! 4.412 = 1.3479. Since the tangent function is negative in quadrants II and IV, the required
angles are the angles 6, and 0, in these quadrants with reference angle 1.3479. In quadrant II,
7 — 0, = 1.3479; thus 6, = 1.7937. In quadrant IV, 277 — 6, = 1.3479, thus 6, = 4.9353.

Use a scientific calculator to find approximate values for all angles 6, 0° =< § < 360°, such that
(a) cosf = 0.8455; (b) cscH = —3; (c) sech = 0.333.
Put the calculator into degree mode.

(a) First find cos™10.8455 = 0.5633 = 32.27°. Since the cosine function is positive in quadrants I and IV,
there is also an angle 0 in quadrant IV with reference angle 32.27° and cosf = 0.8455. This angle must
satisfy 360° — 6 = 32.27°; thus 6 = 327.73°. Then 32.27° and 327.73° are the two required angles.
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(b) Cosecant cannot be calculated directly on a calculator; use a trigonometric identity. cscf = —3 is
equivalent to 1/(sinf) = —3, thus, sinf = —1.

First find sin™! % = 0.3398 = 19.47°. Since the sine function is negative in quadrants III and 1V, the required
angles are the angles 6, and 6, in these quadrants with reference angle 19.47° and sinf, = sinf, = —%. In
quadrant ITI, 6, — 180° = 19.47°; thus, 6, = 199.47°. In quadrant IV, 360° — 6, = 19.47°; thus 6, = 340.53°.

(c) There is no angle that satisfies secf = 0.333 since 0.333 is not in the range of the secant function. A
calculator will return an error message.

SUPPLEMENTARY PROBLEMS

22.23.

22.24.

22.25.

22.26.

22.27.

22.28.

22.29.

List all angles coterminal with (a) 6 radians; (b) 6 degrees.

Ans. (a) 0 + 2mn, n any integer; (b) 6 + n360°, n any integer

Find the trigonometric functions of 270°.

Ans. sin 270° = —1, cos 270° = 0, tan 270° is undefined, cot 270° = 0, sec 270° is undefined, csc 270° = —

Complete the proof in Problem 22.7 that the definitions of the trigonometric functions as ratios are consistent
with the definitions of the trigonometric functions of angles.

Find (a) sin 120°; (b) cos (C) tan(—45°); (d) cotf, (e) sec 240°%; (f) csc 2;-

ans. @ 20 —%; © 1@ V3 () ~2: (D

2
V3
Find (a) sm 4 ; (b) cos 450°; (¢) tan (d) cot(—720°; (e) sec ; (f) cse(—510°).

2% -2

Ans. (a) —%; ®)0;(c) — \/g; (d) undefined; (¢) — \[3

If 0 is in standard position and (—1, —4) lies on its terminal side, find the trigonometric functions of 6.

=

Ans. sinf = —i, cosf = —#, tan@ = 4, cotf = 1 secl = —V 17, csch = — I

V17 V17 ’ &

If 6 is an acute angle, find the other trigonometric functions of 6, given

) 1
(a) sinf = 13,(b) cosf = ,(c) tanf = 7\/2
Ans. (a) cosf = %, tanf = 1?2, cotf = %, sech = %3, csch = %
(b) sinf = 724, tanf = %, cotf = > , sec = 7 csch = T
V24

(c) sinf = L\[, cosf = \/5, coth = \6, sech = \/g, csch = \/f‘;
3



22.30.

22.31.

22.32.

22.33.
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If 0 is in standard position and its terminal side lies in quadrant II on the line x + 3y = 0, find the
trigonometric functions of 6.

coth = —3, secf = — 10, cscd = V10

P -3 -1
Ans. sinf = cosf = , tanf = 3 3

V10 V10

Find approximate values for all angles 6, 0 =< 6 < 2, such that
(a) sinf = 0.1188; (b) tanf = 8.7601; (c) sechd = —2.3.
Ans. (a) 0.1191, 3.0225; (b) 1.4571,4.5987; (c) 2.0206, 4.2626

Find approximate values for all angles 6, 0° = 6 < 360°, such that
(a) cosf = 0.0507; (b) cotf = 62; (c) cscfd = —5.2.
Ans. (a) 87.09° 272.91°% (b) 0.92°, 180.92° (c) 191.09°, 348.91°

The angular speed w of a point moving in a circle is defined as the quotient 6/, where 0 is the angle in radians
through which the point travels in time ¢.

(a) Find the angular speed of a point that moves through an angle of 4 radians in 6 seconds.
(b) Find the angular speed of a point on the rim of a wheel that travels at 60 rpm (revolutions per minute).

(c) Show that the linear speed v of a point moving in a circle is related to the angular speed by the formula
V= ro.

(d) A caris moving at the rate of 60 miles per hour, and the diameter of each wheel is 2.5 feet. Find the
angular speed of the wheels.

Ans. (a) %rad/sec (b) 1207 rad/min (d) 4224 rad/min



Trigonometric Identities
and Equations

Definition of Identity
An identity is a statement that two quantities are equal that is true for all values of the variables for which
the statement is meaningful.

EXAMPLE 23.1 Which of the following statements is an identity?

(a)x+3:3+x;(b)x+3:5;(c)x~%: 1.

(a) is an identity since it is always true; (b) is not an identity since it is true only if x = 2; (c) is an identity since it is true
unless x = 0, in which case it is not meaningful.

Basic Trigonometric Identities
Basic trigonometric identities are repeated below for reference:

1. PYTHAGOREAN IDENTITIES. For all ¢ for which both sides are defined:

cos?t + sin?t = 1 1 + tan®t = sec?t cot?’t + 1 = csc?t
cos?t = 1—sin®t tan?t = sec?t — 1 cot?t = csc?t — 1
sin?t = 1 — cos?t 1 = sec?t — tan?t 1 = csc?t — cot?t

2. RECIPROCAL IDENTITIES. For all ¢ for which both sides are defined:

sintzﬁ costzﬁ tant=&
csct = L sect = cott = 1
sint cost tant
3. QUOTIENT IDENTITIES. For all ¢ for which both sides are defined:
tant = sgétt cotr = 22
4. IDENTITIES FOR NEGATIVES. For all ¢ for which both sides are defined:
sin(—7) = —sint cos(—1) = cost tan(—r) = —tant

csc(—1) = —csct sec(—1) = sect cot(—1) = —cott
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Simplifying Trigonometric Expressions
The basic trigonometric identities are used to reduce trigonometric expressions to simpler form:

_ 2
EXAMPLE 23.2  Simplify: - — 0%

sin , .
From the Pythagorean identity, 1 — cos’a = sin’a. Hence, L= cos’e _ sin‘a _ sin a.

sina sina

Verifying Trigonometric Identities

To verify that a given statement is an identity, show that one side can be transformed into the other by using
algebraic techniques, including simplification and substitution, and trigonometric techniques, frequently
including reducing other functions to sines and cosines.

EXAMPLE 23.3 Verify that (1 — cos#)(1 + cosf) = sin’6 is an identity.
Starting with the left side, an obvious first step is to perform algebraic operations:
(1 — cos®)(1 + cosf) =1 — cos’d  Algebra
= sin?6 Pythagorean identity

sinzcost
tant

Starting with the left side, an obvious first step is to reduce to sines and cosines:

EXAMPLE 23.4 Verify that = cos?t is an identity.

sintcost sintcost L .
= — uotient identit
tant sint/cost Q y
. . sint
= sintcost + Algebra
. cost
= sintcost  —; Algebra
sint
= cos’t Algebra

Nonidentity Statements

If a statement is meaningful yet not true for even one value of the variable or variables, it is not an identity.
To show that it is not an identity, it is sufficient to find one value of the variable or variables that would make
it false.

EXAMPLE 23.5 Show that sint + cost = 1 is not an identity.

Although this statement is true for some values of ¢, for example ¢ = 0, it is not an identity. For example, choose ¢t = 7r/4. Then

. T T 1 2
sin—- + cos—, = + —= = :\/57&1
V2

4 4

S
S

Inverses of Trigonometric Functions

The trigonometric functions are periodic, and therefore are not one-to-one. However, in the first quadrant,
sine and tangent are increasing functions and cosine is decreasing; hence, in this region the functions are
one-to-one and thus have inverses. For present purposes, the following notation is used:

t = sin"la (read: inverse sine of @) if 0 < ¢ < 7/2 and sint = a.

t = cos™'a (read: inverse cosine of a) if 0 < ¢ < /2 and cost = a.
t = tan"'a (read: inverse tangent of a) if 0 =< ¢ < 77/2 and tans = a.

A complete treatment of inverse trigonometric functions is given in Chapter 25.

EXAMPLE 23.6 Find (a) sin"%g (b) cos™!0 (¢) tan'1.
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°[S

«la

(a) There is exactly one value of ¢ such that sint = \/5/2 and 0 < ¢ < /2, that is, 7r/3. Hence, sin™!

(b) There is exactly one value of ¢ such that cost = 0 and 0 < ¢ =< 7/2, that is, 77/2. Hence, cos™!'0 =

SRR ISIN

(c) There is exactly one value of 7 such that tans = 1 and 0 < ¢ < 7/2, that is, 77/4. Hence, tan™'1 =

Trigonometric Equations

Trigonometric equations can be solved by a mixture of algebraic and trigonometric techniques, including
reducing other functions to sines and cosines, substitution from known trigonometric identities, algebraic
simplification, and so on.

1. BASIC TRIGONOMETRIC EQUATIONS are equations of the form sint = a, cost = b, tant = c. These are
solved by using inverses of trigonometric functions to express all solutions in the interval [0, 277) and
then extending to the entire set of solutions. Some problems, however, specify that only solutions in the
interval [0, 277) are to be found.

2. OTHER TRIGONOMETRIC EQUATIONS are solved by reducing to basic equations using algebraic and
trigonometric techniques.

EXAMPLE 23.7 Find all solutions of cost = 3.

First find all solutions in the interval [0, 277): Start with

1 _ =«
— -1= — 4
t=cos 'y =73

Since cosine is positive in quadrant I and IV, there is also a solution in quadrant IV with reference angle 77/3, namely
27 — /3 = 57/3.
Extending to the entire real line, since cosine is periodic with period 27, all solutions can be written as
/3 + 2mn, 57/3 + 2mn, n any integer.
EXAMPLE 23.8 Find all solutions in the interval [0, 277) for 5 tant = 3 tant — 2.
First reduce this to a basic trigonometric equation by isolating the quantity tant.

2tant = —2

tant = —1

Now find all solutions of this equation in the interval [0, 277). Start with tan~! 1 = 77/4. Since tangent is negative in quad-

rants II and IV, the solutions are the angles in these quadrants with reference angle 7/4. These are m — /4 = 37/4 and
27 — wl4 =Ta/4.

SOLVED PROBLEMS

23.1. Verify that csct — sint = cott cost is an identity.

Starting with the left side, an obvious first step is to reduce to sines and cosines:

. 1 . . . .
cscr — sing = — sint Reciprocal identity
. 1 — sin’t
csct — sint = ————— Algebra
sint
= cos’t Pythagorean identit
sint ythag y
cost
= ——- cost Algebra
sint

= cottcost Quotient identity
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23.2. Verify that sin*6 — cos*# = sin’0 — cos?0 is an identity.

Starting with the left side, an obvious first step is to express the fourth powers in terms of squares:

sin*@ — cos*0 = (sin?0)? — (cos26)? Algebra
= (sin?0 — cos?6)(sin’6 + cos?6) Algebra
= (sin’0 — cos?6)(1) Pythagorean identity
= sin%0 — cos?6 Algebra
. L
23.3. Verify that = cosx T 1T+ cosx — 2csc?x is an identity.

Starting with the left side, an obvious first step is to combine the two fractional expressions into one:

1 1 (I + cosx) + (1 — cosx)

1 — cosx +

1 + cosx (I — cosx)(1 + cosx)
-2
1 — cos’x
Now apply a Pythagorean identity:
2 2 . .
1= cosx _ sin’x Pythagorean identity
= 2csc’x  Reciprocal identity
. 1 — cosf _ sinf . . .
23.4. Verify that sn®  — 1+ cosg San identity.

Often in this context squares of sines and cosines are easier to work with than the functions themselves. Starting
with the right side, it is effective to multiply numerator and denominator by the expression 1 — cos6. (This is
analogous to the operations in rationalizing the denominator.)

sin 6 sinf(1 — cos0)
1+ cos® (1 + cos®)(1 — cosb) Algebra
sinf(1 — cos#@)
T o0 Algebra
sinf(1 — cosf) o
- sinze Pythagorean identity
- lsi+350 Algebra

. tanx + tany
23.5. Verify that =
1 — tanxtany

sinxcosy + cosxsiny . .
: —— is an identity.
COSXCOosy — sinxsiny

Starting with the left side, reduce to sines and cosines, then simplify the complex fraction that results by multiplying
numerator and denominator by cosxcosy, the LCD of the internal fractions:

siny

cosy

sinx
cosx

tanx + tany

Quotient identity

1 — tanxtany sinxsiny

T COSXCOSYy

sin x sy
cosx COSy COSXCOSYy

= Sinxsiny  COSXCOSy Algebra

"~ cosxcosy

sinxcosy + cosxsiny

= : - Algebra
cosxcosy — sinxsiny
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23.6.

23.7.

23.8.

23.9.

23.10.

23.11.

Show that V1 — cos?t = sint is not an identity.

From the Pythagorean identity, the statement is generally true if the left and right sides have the same sign. To
show that it is not an identity, choose a value of ¢ for which sint is negative, for example, + = 37/2. Then

V1 = cos?3m/2 = V1 — 02 = 1 butsin3a/2 = —1.

Show that (sinf + cosf)?> = sin?6 + cos?6 is not an identity.

This statement arises from the very common algebraic error of confusing (a + b)? with a®> + b% To show that it
is not an identity, choose any value of 6 for which neither sin6 nor cos# is zero, for example, 8 = /6.

Then (sin + cos ) = (L4 M3 -4+ 2V3

6 3 but sin?Z + cos®> T = 1 (from the Pythagorean

4 6 6

2772
identity).

Simplify the expression V25 — x? by making the substitution x = 5 sinu, —

=u=

(SIE}
SIE|

Making the substitution and factoring the expression under the radical yields an expression that can be simplified
by applying a Pythagorean identity:

V25 — 2 = V25 — (5sinu)? = V25 — 25sinPu = V25(1 — sin®u) = V/25cos?u = 5|cos u|

The last expression can be further simplified by observing that the restriction —% =u= % confines u to

quadrants I and IV in which cos# is never negative. In this region, 5 Icosul = 5 cosu.

by making the substitution x = 4 tanu, T <ou< %

Simplify the expression 2

1
V16 + x2

Proceed as in the previous problem:

1 1 1 1 1

1 — = = = =
Vie + 2 Ve + (4 tanu)? V16 + 16tan’u \/16(1 + tan’u) V 16 sec’u 4|secu|

The last expression can be further simplified by observing that the restriction —% <u< % confines u to

1 cosu

quadrants I and IV, in which secu is never negative. In this region, =
4|secu|  4secu 4

Find all solutions for sint = 73

For this basic trigonometric equation, begin by finding all solutions in the interval [0, 277). Start with

t=sin*'\/3=£
2 3

Since sine is positive in quadrants I and II, there is also a solution in quadrant II with reference angle 7/3, namely,
T — /3 =27/3.

Extending to the entire real line, since sine is periodic with period 27r, all solutions can be written as

/3 + 2mn, 27/3 + 2rn, n any integer.

Find all solutions for 3 — 4cos20 = 0.

First reduce this to a basic trigonometric equation by isolating the quantity cos#.

cos?f =

Al

V3
2

cosf = =
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Since cos“T3 = %, there are four solutions in the interval [0, 277), namely,%(positive cosine), m — % = %T
(negative cosine), m + % = %T (negative cosine), and 27 — % = HTW (positive cosine). Extending to the

entire real line, since cosine is periodic with period 277, all solutions can be written as w/6 + 27n, 57/6 + 2mn,
77/6 + 2mn, 117/6 + 27rn, n any integer.

Find all solutions for 2cos2x — 1 = 0.

Reducing to a basic trigonometric equation yields cos2x = % To solve this, begin with 2x = cos™! % Thus, in the

interval [0, 277), 2x = % and 2x = 27 — % = STW; extending to the entire real line yields 2x = % + 27rn and
2x = 5777 + 2mn. Hence, isolating x, all solutions are given by x = % + n, Bl + 7rn, n any integer.

Find all solutions on the interval [0, 27) for 2 sin?u + sinu = 0.

This is an equation in quadratic form in the quantity sinu. It is most efficiently solved by factoring
(alternatively: make the substitution v = sinu):

sinu(2sinu + 1) =0
sinu =0 or 2sinu+1=0

sinu = 1
“=
. . . . 1 . Tx 117 .
sinu = 0 has solutions 0 and 7 on the interval [0, 277). Sinu = ) has solutions 3 and 6 Oon the interval.

Solutions: 0, 7, 7% HTW
Find all angles in the interval [0°, 360°) that satisfy 2 sin?6 = 1 — cos6.
First, use a Pythagorean identity to reduce to one trigonometric function:
2(1 — cos?0) = 1 — cos@
This is an equation in quadratic form in cos 6. Reduce to standard form:
2 —2cos?0 =1 — cosh
2 cos?0 —cosf —1=0
This is most efficiently solved by factoring:
(2cosf + 1)(cosfd — 1) =0
2cosf +1=0 or cosd —1=0
1

cosf = ) cosf =1

cosf = —% has solutions in quadrants I and III. Since cos“% = % = 60°, in the interval [0°, 360°) the required

angles are 180° — 60° = 120° and 180° + 60° = 240°. The only solution of cosf = 1 in the interval is 0°.

Solutions: 0° 120°, 240°

Find all solutions on the interval [0, 277) for sin x + cosx = 1.

As remarked in Problem 23.4, squares of sines and cosines are often easier to work with than the functions
themselves. Isolate sin x and square both sides. Recall (Chapter 5) that raising both sides of an equation to an even
power is permissible if all solutions to the resulting equation are checked to see whether they are solutions of the
original equation.
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sinx = 1 — cosx
sin®x = (1 — cosx)?
=1—2cosx + cosx
Now use a Pythagorean identity to reduce to one trigonometric function:
1 —cos?x = 1 — 2 cosx + cos’x
This is an equation in quadratic form in cosx. Reduce to standard form:
0 =2 cos’x — 2 cosx
Solve by factoring:
2cosx(cosx—1)=0
2cosx=0 or cosx—1=0

cosx =0 cosx =1

On the interval [0, 277), cosx = 0 has solutions % and 3777; cosx = 1 has solution 0. It is necessary to check each

of these solutions in the original equation:

NP — 19 _m T T _ 1o _ 3w . 37 3 _ o,
Check: x =0:sin 0 + cos 0 = 1?7 X 2.sm2+0052 17 X 5 -sinsy +c0s2 1?
0+1=1 1+0=0 -1+0#1
A solution A solution Not a solution

Solutions: 0, %

23.16. Find approximate values for all solutions to tan’t — tant — 6 = 0.
This is an equation in quadratic form in the quantity tanz. It is most efficiently solved by factoring:
tan’t — tant — 6 = 0
(tant — 3)(tant +2) =0
tant —3 =0 or tanr +2 =0
tant = 3 tant = —2

Use the calculator to find approximate values for solutions of these equations: tan# = 3 has solutions in
quadrants I and III; since tan™' 3 = 1.2490, the solutions in the interval [0, 27) are 1.2490 and
7 + 1.2490 = 4.3906. tant = —2 has solutions in quadrants II and IV; since tan™! 2 = 1.1071,
these solutions are  — 1.1071 = 2.0344 and 27 — 1.1071 = 5.1761. Extending to the entire real line, all
solutions are given by 1.2490 + 2mn, 2.0344 + 2mn, 4.3906 + 2mn, 5.1761 + 2rn, n any integer.
More compactly, since tangent has period 7, all solutions can be written as 1.2490 + mn, 2.0344 + 7rn, n any
integer.

23.17. Find approximate values for all solutions on the interval [0, 27) for 3 sin>x — 5 sin x = 2.
This is an equation in quadratic form in the quantity sin x. It is most efficiently solved by factoring:
3sin’x —5sinx —2=0
(Bsinx + D)(sinx —2)=0
3sinx+1=0 or sinx —2=0

. 1 .
sinx = —3 sinx =2
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Use the calculator to find approximate values for solutions of these equations: sinx = f_% has solutions in
quadrants III and IV; since sin”é = 0.339, the solutions in the interval [0, 277) are 77 + 0.3398 = 3.4814 and
27 — 0.3398 = 5.9434. sin x = 2 has no solutions, since 2 is not in the range of the sine function; a calculator
will return an error message.

Solutions: 3.4814, 5.9434.

23.18. Find approximate values for all angles in the interval [0°, 360°) that satisfy 3 cos?A + 5cos A — 1 = 0.

This is an equation in quadratic form in the quantity cos A. Since it is not factorable in the integers, use the

quadratic formula, witha = 3,b =5,c = —1.
A= -5+ V52 —403)(—1)
COSA = 2.3
-5+ V37
COSA = ——F——

6

Using a calculator to approximate these values yields cos A = 0.1805 and cos A = —1.8471. The first of these
-5+ V

%) = 1.3893 = 79.6°, the solutions are 79.6° and
360° — 79.6° = 280.4°. cos A = —1.8471 has no solutions, since —1.8471 is not in the range of the cosine

function; a calculator will return an error message.

has solutions in quadrants I and I'V; since cos"(

Solutions: 79.6°, 280.4°.

SUPPLEMENTARY PROBLEMS

23.19. Simplify (a) sin®xcot’x (b) cost(1 + tan?¢)

cosf cos 6
D T="6ng " T+ sind

(c) (cotB + csch)(cotd — csch)

Ans. (a) cos’x; (b) sect; (¢) —1;(d) 2 tanf

23.20. Simplify (a) cscxtanux; (b)1 — _sinfx
’ 1 + cosx’

© sin*u — cos*u_ (d) X sinx

sinu + cosu’ cscx cosx

Ans. (a) secx; (b) cosx; (¢c) sinu — cosu; (d) 2tanx

23.21. Verity that the following are identities:

cos’x 1 + sinx cosx , 1 + sinf
- (b) cosx T T+ sinx = 2secx  (c) (secB + tanB)* = 1= sinB

(a) — sinx =

sinx

23.22. Verify that the following are identities:

1 1
— . 2, — + 2 — — . R
tant; (b) sec’x — (1 tan x) 2tanx; (c) tant ant R

cost
csct — sint

(a)
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23.23. Verity that the following are identities:

sin’t — cos’t

. 1-2 2y + 4y) = sin’x: A
(a) sin x( cos*x + cos*x) = sin’x; (b) Sinf — cost

=1 + sintcost;

tanu — cotu

2 2, —
C) sin“u — cos“u =
© tanu + cotu

23.24. Verify that In (cscx) = —In (sinx) is an identity.

23.25. Simplify the following algebraic expressions by making the indicated substitution:

1 . . T T
(a) —————, substitute x = 2 sinu, —5 = u =
xV4 — x? 2 2
(4x? + 9)%? . 3 T T
(b) = substitute x = §tan u, =% <u< 5
x2 — a* . T
() — 5 substitute x = a,secu,a>0,0 =u< 5
Ans. (a) % secu cscu; (b) 18 sec?u cscu; (c) sinu
23.26. Show that the following are not identities:
(a) secl = Vian?0 + 1; (b) cos260 = 2 cosh
23.27. Find all solutions:
(a) 4sinx+2\/=0 (b) tan3zr =1 (c) 2 cos*u = cosu

(d) 4 —sin?0 =1 () Insinx =20
Ans. (a) x = 4m/3 + 2mn, S7/3 + 2mn; (b) t = w/12 + nw/3

(©) u=m2 + 2mn, 37w/2 + 27n, w/3 + 27n, 57/3 + 27n; (d) no solution; (¢) x = 7/2 + 27n

23.28. Find all solutions on the interval [0, 277).

1 + sinx COS X

(a) 2cos?40 = 1; (b) cosx T T sinx - 4; (c) 2 cos’x + 3 sinx = 3;(d) tanx — secx = 1
_m 3w Sm Tm 97 1lm 137w 15w, _m 57, _m 57 _
Ans. @ =96 76 16" 16" 16" 16 16 16 ¥~ 3733 ©@ ¥ =g "gn g @ x=m

23.29. Find approximate values for all solutions on the interval [0°, 360°).
(a) 4sin?A —4sinA — 1 =0; (b) 2cos’2A +3cos2A —1=0.
Ans. (a) 191.95° 348.05°% (b) 36.85° 143.15°,216.85°, 323.15°



CHAPTER 24

Sum, Difference, Multiple,
and Half-Angle Formulas

Sum and Difference Formulas
Sum and difference formulas for sines, cosines, and tangents: Let # and v be any real numbers; then

sin(u + v) = sinu cosv + cosu siny sin(u — v) = sinu cosv — coSu Sinv

cos(u + v) = cosu cosv — sinu siny cos(u — v) = cosu cosv + sinu siny

tanu + tanv _ tanu — tanv
— tanlu —v) = ———  —

+v) = =
tan(u + v) 1 — tanutanv 1 + tanutanv

EXAMPLE 24.1 Calculate an exact value for sin %

Noting that ILTZ = % - %, apply the difference formula for sines:

i T (T T
sin{5 = sin| 3 4

VB 11
2 a2 2\

Vio1 Ve- Vi
2V2 4

Cofunction Formulas
Cofunction formulas for the trigonometric functions: Let 6 be any real number; then

N _ T o T _
sm<2 - 0> = cos6 cos<2 0> sin 6 tan<2 0> cotf

T T T
csc(2 - 0) = sect sec(2 - 0> = csco cot(2 - 6’) = tan6

Double-Angle Formulas
Double-angle formulas for sines, cosines, and tangents: Let 6 be any real number; then

sin26 = 2sinfcosf c08260 = cos?0 — sin’0 tan26 = Lﬂez
1 — tan-0
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Also,
c0s20 = 2cos?0 — 1 =1 — 2sin%60

EXAMPLE 24.2 Given cos6 = 3, find cos26.

1

Use a double-angle formula for cosine: cos26 = 2cos?0 — 1 = 2(%)2 —1=—3

Half-Angle Identities

Half-angle identities for sine and cosine: Let u be any real number; then

1 — cos2u 5 _ 1+ cos2u
= —F cos’uy = —————

in2
si-u D) D)

Half-Angle Formulas
Half-angle formulas for sine, cosine, and tangent: Let A be any real number; then

. A /1 — cosA A _ /1 + cosA A _ 1 — cosA
siny = () — cosy = (%) — tan2 = () 1T cosA

_ 1 — cosA
sinA

sin A
1 + cosA

The sign of the square root in these formulas cannot be specified in general; in any particular case, it is de-
termined by the quadrant in which A/2 lies.

EXAMPLE 24.3 Given cosf = %, 3777 < 6 < 27, find sing and cosg.
3

Use the half-angle formulas for sine and cosine. Since > < 0 < 2m, dividing all sides of this inequality by 2 yields

3777 < % < ar. Therefore, g lies in quadrant II and the sign of sing is to be chosen positive, while the sign of cosg is

R el B o __1+5_ 5
sy = 2 ~\6 27 2~ V6

Product-To-Sum Formulas
Let u and v be any real numbers:

to be chosen negative.

sinucosv = %[sin (u +v) + sin(u — v)] cosusiny = %[sin (u +v) — sin(u — v)]

COSUCOSYV = %[cos (u +v) + cos(u — v)] sinusiny = %[cos (u —v) — cos(u + v)]

Sum-To-Product Formulas
Let a and b be any real numbers:

sina + sinb = ZSinucosa —b cosa + cosh = 2cos? t bcosa —b
2 2 2 2
a+b . a—>b a+b . a—>b

sina — sinb = 2cos sin 3 cosa — cosh = —2sin > sin

2 2
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EXAMPLE 24.4 Express sin 10x — sin6x as a product.

Use the formula for sina — sinb with a = 10x and b = 6x.

10x + 6x in 10x — 6x
2 ° 2

sin 10x — sin6x = 2cos = 2cos 8xsin2x

SOLVED PROBLEMS

24.1. Derive the difference formula for cosines.

Let u and v be any two real numbers. Shown in Fig. 24-1 is a case for which u, v, and u — v are positive.

y
A

y
P(v) = ' VA
() = (cos v, sin v v (. — v) = (cos (u— V), sin( u — v))
P(u) = (cos u, sin u)
Uu—-v
X Py
\ (70) (1,0)

Figure 24-1

The arc with endpoints P(u) and P(v), shown on the left-hand unit circle, has length # — v. The arc with endpoints
(1, 0) and P(u — v), shown on the right-hand unit circle, has the same length. Since congruent arcs on congruent
circles have congruent chords, the distance from P(v) to P(«) must equal the distance from (1, 0) to P(u — v).
Hence, from the distance formula,

\/(cosu — cosv)? + (sinu — sinv)? = \/(cos(u — ) — 12 + (sin(u — v) — 0)?
Squaring both sides and expanding the squared expressions yields:
cos’u — 2 cosu cosv + cos?v + sinu — 2 sinu sinv + sin?v = cos*(u — v) — 2 cos(u — v) + 1 + sin®(u — v)

Since cos?u + sinu = 1, cos?>v + sin?v = 1, and cos*(u — v) + sin’(u — v) = 1 (applying the Pythagorean
identity three times), this simplifies to:

2 —2cosucosv — 2sinu siny =2 — 2 cos(u — v)
Subtracting 2 from each side and dividing by —2 yields:
cosu cosv + sinu sinv = cos(u — v)

as required. The proof can be extended to cover all cases, u and v any real numbers.

24.2. Derive
(a) the sum formula for cosines; (b) the cofunction formulas for sines and cosines.
(a) Start with the difference formula for cosines and replace v with —v.
cos(i — v) = cosu cosv + sinu sinv

cos[u — (—v)] = cosu cos(—v) + sinu sin(—v)
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Now apply the identities for negatives, cos(—v) = cosv and sin(—v) = —sinv, and simplify:
cos(u + v) = cosu cosv + sinu(—sinv)

cos(u + v) = cosu cosv — sinu sinv

(b) Use the difference formula for cosines, with u = % andv = 6:

T _ T LT
cos(i — 9) = 085 cosf + sin ) sin 6

Since cos(7r/2) = 0 and sin(7/2) = 1, it follows that

cos(% - 0) = 0cosf + 1sinf = sinf.

Now replace 6 with 7/2 — 0 :

COS|:

(SR
|
7N\
(SIE}
|
S
~_
—_
Il
2.
=
7N\

)
|
S
N~~~

Simplifying yields

cosf = sin(% - 0)

24.3. Derive the difference formula for sines.

Start with a cofunction formula, for example, sinf = cos(g - 0) and replace 0 with u — v:

sin(u — v) = cos[% - (u — v)] = cos(% —u+ v) = cos[(% - u) + v]
In the last expression, apply the sum formula for cosines with u replaced by #/2 — u.
sin(w — v) = cos[(z - u) + v} = cos(; — u) cosv — s1n(§ - u) sinv = sinucosv — cosusinv
using the cofunction formulas again at the last step.
24.4. Derive the difference formula for tangents.

Start with the quotient identity for tan(u — v).

sin(u — V) sinucosv — cosusinv
cos(u — v) cosucosv + sinusiny

tan(u — v) =

To obtain the required expression in terms of tangents, divide numerator and denominator of the last expression
by the quantity cos u cosv and apply the quotient identity again:

sinucosv _ cosusiny sinu _ siny
) | _ sinucosy — cosusiny _ cOSucosyv COSUCOSV _  COSlU cosv _ tanu — tanv
an(u = v) cosucosv + sinusiny COS I COS V sinusinv 1+ sinu sinvy 1 + tanutanv
COS U COSV COSUCOSV coSu COSV

24.5. Given sinx = %, x in quadrant I, and cosy = %, y in quadrant IV, find (a) cos(x + y); (b) tan(x + y);
(c) the quadrant in which x + y must lie.

(a) From the sum formula for cosines, cos(x + y) = cosx cosy — sinx siny. sin x and cosy are given; cosx
and siny must be determined.

Since sinx = 3/5 and x is in quadrant I, cosx = +V'1 — (3/5)*> = 4/5. Since cosy = 2/3 and y is in

quadrant IV, siny = — V1 — (2/3)* = *(\/5)/3. Hence,

3 \f5>:8+3\@

_ .42
cos(x + y) = cosxcosy — sinxsiny = 3373 3 15
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(b) tan(x + y) can be found from the sum formula for tangents, using the given quantities and noting that

siny  —(V53 /5

cosy 2/3 2
3. (Vs
tanx + tany 4 2 _6—4\[5

1 — tanxtany | 3< \f5> 8 +3V5

sinx _ 3/5 3
cosx — 4/5 4

. Hence,

tanx = and tany =

tan(x + y) =

4

2

(c) Since cos(x + y) is positive and tan(x + y) is negative, x + y must lie in quadrant I'V.

24.6. Derive the double-angle formulas for sine and cosine.
Start with the sum formulas for sines and let u = v = 6. Then
sin260 = sin(f + 6) = sinf cosf + cosf sinh = 2sinf cosh
Similarly for cosines:
c0s20 = cos(@ + 0) = cosf cos® — sinf sinf = cos’H — sin’H
To derive the other forms of the double-angle formula for cosine, apply Pythagorean identities.
c0s26 = cos?0 — sin’0 = 1 — sin?6 — sin?0 = 1 — 2 sin’0
Also

c0s20 = cos?0 — sin’6 = cos?0 — (1 — cos?6) = 2 cos?6 — 1

24.7. Given tant = %, t in quadrant III, find sin2f and cos2z.

From the given information, it follows that sect = — V1 + tan’s = — V1 + (%)2 = —%. Hence,
cost = —% and sint = —%. Now apply the double-angle formulas for sine and cosine:
o _ _l)(_%) _ 336
sin2t = 2sintcost = 2( 25 25) = 625
. 24) ( 7 ) 527
— 2. _ 2, — (22 _ (L Yo 2&l
cos2t = cos’t sin*t ( 25 25 625

. . 2 2
To check this, note that sin?2¢ + cos?2t = (%) + (%) = 1 as expected.

24.8. Derive the half-angle identities.

Start with the double-angle formulas for cosine, and solve for cos?6 and sin?6. Then

2cos’0 — 1 = cos20 1 — 2sin%0 = cos20
2co0s20 = 1 + cos26 —2sin%6 = cos 20 — 1
cos?f = w 2sin?0 =1 — cos20
sin2f = | ;0520

24.9. Use a double-angle identity to derive an expression for cos 4 ¢ in terms of cost.

cosdt = cos2(2f) = 2cos?2t — 1 = 2(2cos?t — 1) — 1

2(4cos*t — 4cos?t + 1) — 1

8cos*t — 8cos?t + 1
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24.10. Use a half-angle identity to derive an expression for cos*z in terms of cosines with exponent 1.

Applying a half-angle identity once yields:

1+ cosZt)2 _ 1+ 2cos2t + cos?2t

4, — 202 —
cos*t = (cos*t) ( 2 2

Applying the identity again, this time to cos?2t, yields:

1 + cos2(2r)

4, _ 1 + 2cos2t + cos®2t _ 1 + 2cos2r + 5
costt = _
4 4
_ 2+ 4cos2t + 1 + cosdt
8
_ 3 + 4cos2t + cosdt
8

24.11. Derive the half-angle formulas.

In each case, start with the half-angle identities and set A = 26, thus, § = 4. Then

A _ 1+ cosA SlI12A 1 - cosA
2 2 2

cosé _ 4+ |1+ cosA sm 1 — cosA cosA
2~ 2

For tangent, the derivation is more complicated. First derive the first form of the formula by starting with the
quotient identity:

COS

A /1 — cosA cosA
A _ ) /1 — cosA
2 cos% /1 + cosA cosA I+ cosA

Note that for all three formulas the sign cannot be determined in general, but depends on the quadrant in which
A/2 lies. To derive the second form of the half-angle formula for tangents and eliminate the sign ambiguity in
this single case, eliminate the fraction under the radical symbol:

A _ 1 — cosA _ 1 —cosA 1 —cosA _ (I = cosA)
tan5 = £\ /-—— = = . =+ |
2 1 + cosA 1+ cosA 1 — cosA 1 — cos?A
_ A —cosAP 11— cosal
- sinZA _| sinA |
cosA

Thus tan% and 1_ST are always equal in absolute value. To show that in fact these quantities are always

equal, it is sufficient to show that they have the same sign for any value of A between 0 and 277, which can be
done as follows: First note that 1 — cos A is never negative, so the sign of the fractional expression depends only
on the sign of sin A. If 0 = A = 7, both sin A and tan(A/2) are nonnegative; if 7 = A = 2, both are nonpositive.
Summarizing,

tané 1 — cosA
2 sinA

The derivation of the third form is left to the student (Problem 24.26).
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Giventanu =4, 7 < u < 3£, find tan%.
Use the half-angle formula for tangent. Since 7 < u < 37#, u lies in quadrant III and the signs of sinu and cos u

are to be chosen negative. To find sinu and cosu, use a Pythagorean identity.

secu = = V1 + tanZu = — V1 + 2= -\V17

Hence

1 1 . 1
cCosSuU = —— = ——— and sinu = cosutanu = -4 =

4
e~ /g Vi T v

From the half-angle formula for tangent,

u_1—cosu 1 =-CEVUVIDH V17T +1

tan+

2 sinu _4/(\ /]7) 4

Derive the product-to-sum formulas.
Start with the sum and difference formulas for sine, and add left sides and right sides:

sin(u + v) = sinucosv + cosusinv
sin(u — v) = sinucosv — cosusinv

sin(u + v) + sin(u — v) = 2sinucosv
Dividing both sides by 2 yields

sinucosv = %[sin(u + v) + sin(u — v)]

as required.
Now start with the difference and sum formulas for cosine, and add left sides and right sides:

cos(u — v) = cosucosv + sinusinvy

cos(u + v) = cosucosv — sinusiny

cos(u — v) + cos(u + v) = 2cosucosv
Dividing both sides by 2 yields
COSUCOSY = %[cos (u —v) + cos(u + v)]

as required.
The other two formulas are obtained similarly, except that the two sides are subtracted instead of being added.

Use a product-to-sum formula to rewrite cos5x cosx as a sum.

Use cosucosv = %[cos(u — v) + cos(u + v)] with u = 5x and v = x. Then

cosSx cosx = %[cos(Sx — x) + cos(5x + x)] = %(cos 4x + cos6x)

Derive the sum-to-product formulas.

Start with the product-to-sum formula sinucosv = %[sin(u + v) + sin(u — v)]. Make the substitution

a=u+vandb=u—v.Thena + b =2uanda — b = 2v, hence u =#andv =4 ; b.
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Thus sin b 052 - b_ %[sina + sinb]. Multiplying by 2 yields sina + sinb = 2sin“— b s 8 > b

as required.

The other three sum-to-product formulas are derived by performing the same substitutions in the other three
product-to-sum formulas.

24.16. Use a sum-to-product formula to rewrite sin S5u + sin 3u as a product.

a+bcosa—b
2 2

Use sina + sinb = 2sin with a = 5Su and b = 3u. Then

sin5u + sin3u = ZSinsu ; 3u cos du ; 3u _ 2sinducosu

24.17. Verify the identity sin30 = 3sinf — 4sin’6.

Starting with the left side, use the sum formula for sines to get an expression in terms of sinf.

sin36 = sin(f + 26) Algebra
= sinf cos26 + cos@ sin 20 Sum formula for sines
= sinf(1 — 2 sin®Q) + cos - 2 sinf cosh Double-angle formulas
= sinf — 2 sin’0 + 2 sinf cos’6 Algebra
= sinf — 2 sin0 + 2 sinf(1 — sin’6) Pythagorean identity
= sinf — 2 sin*6 + 2 sinf — 2 sin’0 Algebra
= 3sinf — 4 sin’6 Algebra

24.18. If f(x) = sin x, show that the difference quotient for f(x) can be written as sin x(%) + cos xSi%h.

(See Chapter 9.)

f&x+ h) — fx) _ sin(x + h) — sinx

A n Substitution

_sinxcosh + cosxsinh — sinx .
= Sum formula for sine

h
sinx(cosh — 1) + cosxsinh
= 7 Algebra
= sinx(%) + cosx SI;:h Algebra

24.19. Verify the reduction formulas: (a) sin(@ + 7) = — sin6; (b) tan(@ + %) = —cot6.

(a) Apply the sum formula for sines, then substitute known values:

sin(@ + ) = sinfcos7 + cos@sin7T = sinf(—1) + cosB(0) = —sin6

(b) Proceeding directly as in (a) fails because tan(7r/2) is undefined. However, first applying a quotient
identity eliminates this difficulty.

) (g AN sm(@ + E) B sm@cosf + cosesmi B sin(0) + cosO(1) _ cosd iy
mrT )" T\ cosfcos” — sinfsin®  cosf(0) — sinf(1)  —sinf O
cos(0 + E) cosfcos5 — sinfsin
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24.20. Find all solutions on the interval [0, 277) for cos ¢t — sin 27 = 0.

First use the double-angle formula for sines to obtain an equation involving only functions of ¢, then solve by
factoring:
cost — sin2t = 0
cost — 2sintcost = 0
cost(l — 2sint) = 0
cost=0 or 1—2sint=0
The solutions of cos r = 0 on the interval [0, 277) are 77/2 and 37r/2. The solutions of 1 — 2 sin ¢t = 0, that is,
sin ¢ = 1/2, on this interval, are 77/6 and 57/6.

57 3w

. o 17
Solutions: g, E, ?, 7

24.21. Find all solutions on the interval [0, 277) for cos5x — cos3x = 0.
First use a sum-to-product formula to put the equation into the form ab = 0.

cosS5x — cos3x =0

Ca 5x+3x)‘(5x—3x>_
2sm< 3 sin 3 =0

—2sin4xsinx = 0

sindxsinx = 0
sindx = 0 or sinx = 0

The solutions of sin4x = 0 on the interval [0, 277) are O, 7w/4, 7/2, 37/4, 7, S7/4, 37/2, and 77/4. The solutions
of sin x = 0 on this interval are O and 7, which have already been listed.

SUPPLEMENTARY PROBLEMS

24.22. Derive the sum formulas for sine and tangent.
24.23. Derive the cofunction formulas (a) for tangents and cotangents; (b) for secants and cosecants.

24.24. Use sum or difference formulas to find exact values for (a) sm (b) cos 105°; (¢) tan(

12’ 12)

1+V3 V2+Ve 1-V3 Va-Ve  1-\V3 B
e o e 4 ()1+\f PVI2

24.25. Givensinu = —%, u in quadrant III, and cosv = %, v in quadrant IV, find (a) sin(u + v); (b) cos(u — v);
(c) tan(v — u).

6+7\fb -3V21 + 2V7. -6 —-7V3 32V21 + 75V7
0 ® 20 (3\ﬁ_2\/ 61

24.26. Derive (a) the double-angle formula for tangents; (b) the third form of the half-angle formula for tangents.

Ans. (a)

Ans. (a)

24.27. Given sect = 73,— <t < mr, find (a) sin 2¢; (b) tan 2¢; (c) cos 5 (d) tanf

Ans. ()—4\/@)4\/()\/@\/
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24.28.

24.29.

24.30.

24.31.

24.32.

24.33.

24.34.

24.35.

24.36.

Use a double-angle identity to derive an expression for (a) sin4x in terms of sin x and cosx;
(b) cos6u in terms of cosu.

Ans. (a) sindx = 4 sin x cos x (1 — 2 sin®x); (b) cos 6u = 32 cos®u — 48 cos*u + 18 cos?u + 1

Use a half-angle identity to derive an expression in terms of cosines with exponent 1 for (a) sin?2¢ cos?2t;

(b) sin* g
Ans. (a) 1 — gosSt; (b) 3 — 4cosg + cos2x

Complete the derivations of the product-to-sum and sum-to-product formulas (see Problems 24.13 and 24.14).

(a) Write sin 12077t + sin 1107t as a product. (b) Write sin 77-Tnxcos kﬂ-Tnz as a sum.

Ans. (a) 2sin 1157t cos 57rt; (b) sm—(x + ki) + sm—(x — kt)

Verify that the following are identities: (a) i i :E gi; gg: %z = tanx; (b) tanz = cscu — cotu;

cosa — cosbh (a + b)
- = —tan

a = =
(¢) 1 + tanatan+ = sina — sinb 2

2 sec a; (d)

Verify the reduction formulas:

(a) sin(nm + 0) = (—1)"sin@, for n any integer; (b) cos(n7 + 6) = (—1)" cos0, for n any integer.

If f(x) = cos x, show that the difference quotient for f(x) can be written as

cosx(COSh - 1) — inx sinh
s h h

Find all solutions on the interval [0, 277) for the following equations:
(a) sin26 — sind = 0; (b) cosx + cos3x = cos2x.

7w @ 3w 57 Sw Im
Ans.  (a) 0,3777, 3’(b)Z§TT’T’T

Find approximate values for all solutions on the interval [0°, 360°) for cosx = 2cos2x.

Ans. 32.53°,126.38°,233.62°, 327.47°



Inverse Trigonometric Functions

Periodicity and Inverses

The trigonometric functions are periodic; hence, they are not one-to-one, and no inverses can be defined for
the entire domain of a basic trigonometric function. By redefining each trigonometric function on a carefully
chosen subset of its domain, the new function can be specified one-to-one and therefore has an inverse function.

Redefined Trigonometric Functions
The table shows domains chosen on which each trigonometric function is one-to-one:

Function Function

fx) = Domain Range fx)= Domain Range

i [—3 1} ~1,1 (— —ﬂu(o —oo, —1]U[1,

sin x ) [—1,1] cscx L : (=, =1JU[1, »)

oS x [0, 7] [—1,1] | secx {0, %)U[ﬂ', 32”) (o, —1]U[l, =)
T T

tan x (—5, §> R cotx [0, 7] R

Note that in each case, although the domain has been restricted, the entire range of the original function is
retained.

Note also that in each case the restricted domain (sometimes called the principal domain) is the result of
a choice. Other choices might be possible, and in the case of the secant and cosecant functions, no uni-

versal agreement exists. The choice used here is the one most commonly made in elementary calculus
texts.

Definitions of Inverse Trigonometric Functions

1. INVERSE SINE f(x) = sin~'x is defined by y = sin™'x if and only if x = sin y with —1 = x =< 1 and
5 =y= % The values the function takes on lie in quadrants I and TV.

2. INVERSE COSINE f(x) = cos™ x is defined by y = cos™'x if and only if x = cos y with —1 = x = 1 and
0 = y = 7. The values the function takes on lie in quadrants I and II.

3. INVERSE TANGENT f(x) = tan™ 'x is defined by y = tan~'x is and only if x = tan y with x € R and
—% <y < % The values the function takes on lie in quadrants I and IV.

4. INVERSE COTANGENT f(x) = cot™'x is defined by y = cot™'x if and only if x = cot y with x € R and
0 <y < 7. The values the function takes on lie in quadrants I and II.
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5. INVERSE SECANT f(x) = sec” 'x is defined by y = sec™'x if and only if x = sec y with either x = 1 and

O=y< % orx=—-landm =y < 777 The values the function takes on lie in quadrants I and III.

6. INVERSE COSECANT f(x) = csc™ x is defined by y = csc™'x if and only if x = csc y with either x = 1 and
O0<y= % orx=-—land 7 <y= —%. The values the function takes on lie in quadrants I and III.

EXAMPLE 25.1 Evaluate (a) sin™! = (b) sin™ 1( %)
(a) y = sin”! %is equivalent to siny = %, —% =y= % The only solution of the equation on the interval is g, hence
sin*'l =T
2 6
(1) 1w @ . .
(b) y = sin 2 is equivalent to siny = 3 75 =y= > The only solution of the equation on the
interval is —g, hence sin™ ‘( %) = —%. Note that this value is in quadrant IV.

EXAMPLE 25.2 Evaluate (a) cos™' %; (b) cos"(—%).

(a) y = cos™! 1 is equivalent to cosy = 1 , 0 = y = 7. The only solution of the equation on the interval is - hence

2 3 k
cos™! 1L_m
sy =3
by y= cos"(—%) is equivalent to cosy = —l 0 = y = 7. The only solution of the equation on the interval is =~ 3 ;
hence cosfl(f ;) = 2% Note that this value is in quadrant II.

Alternative Notation
The inverse trigonometric functions are also referred to as the arc functions. In this notation:

sin"!x = arcsin x cos”x = arccosx tan~!x = arctan x
csc”lx = arcescx sec”lx = arcsecx cot™'x = arccot x

EXAMPLE 25.3 Evaluate arctan 1.

T« y < T The only solution of the equation on the interval is z

= = tan—'11i i = :
y =arctan 1 =tan"'l is equivalent to tany = 1, 2 2 4

T
hence arctan 1 = e

Phase-Shift Identity

Let A be any positive real number and B and x be any real numbers. Then

Acos bx + Bsin bx = Ccos(bx — d)

where C = VA% + B?andd = tan™! E.

A

EXAMPLE 25.4 Write sinx + cosx in the form Ccos (bx — d).

HereA=B=1;hence C = VA2 + B2 = V1> + 12= V2and d = tan‘l% = % It follows from the phase-shift
identity that sinx + cosx = \[2(:05 (x - %)
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SOLVED PROBLEMS

25.1. Sketch a graph of the sine function showing the interval of redefinition.

The redefined sine function is restricted to the domain [—/2, 77/2]. Draw a graph of the basic sine function, with
the portion in this interval emphasized (see Fig. 25-1).

S 7 N x
2n \/11 T \y

Figure 25-1

25.2. Sketch a graph of the cosine function showing the interval of redefinition.

The redefined cosine function is restricted to the domain [0, 7r]. Draw a graph of the basic cosine function, with
the portion in this interval emphasized (see Fig. 25-2).

~ TN s

Figure 25-2

25.3. Sketch a graph of the inverse sine function.

The domain of the inverse sine function is the range of the (redefined) sine function: [—1, 1]. The range of
the inverse sine function is the domain of the redefined sine function: [—/2, 7/2]. The graph of the inverse
sine function is the graph of the redefined sine function, reflected in the line y = x. Form a table of values (see
the table of values for the trigonometric functions in Problem 22.12) and sketch the graph (Fig. 25-3).

)
3
b2
x|l -1 5| T3 210 n
a
r _T | _r
yil 72 3 317610
1 0.5 0.5 1T
Bl L2 1
X 1 5 5 2
_r
mlon| o mloz ¢
vl 2 3 2| 6
_r
2
Figure 25-3

25.4. Sketch a graph of the inverse cosine function.

The domain of the inverse cosine function is the range of the (redefined) cosine function: [—1, 1]. The range of
the inverse cosine function is the domain of the redefined cosine function: [0, 77]. The graph of the inverse cosine
function is the graph of the redefined cosine function, reflected in the line y = x. Form a table of values (see the
table of values for the trigonometric functions in Problem 22.12) and sketch the graph (Fig. 25-4).
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Y
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Figure 25-4

25.5. Sketch a graph of the tangent function showing the interval of redefinition.
The redefined tangent function is restricted to the domain (—/2, 7/2). Draw a graph of the basic tangent
function, with the portion in this interval emphasized (see Fig. 25-5).
y
4

-2

-4

Figure 25-5

25.6. Sketch a graph of the inverse tangent function.

The domain of the inverse tangent function is the range of the (redefined) tangent function: R. The range of
the inverse tangent function is the domain of the redefined tangent function: (—/2, 7/2). The graph of the
inverse tangent function is the graph of the redefined tangent function, reflected in the line y = x. Since the
graph of the redefined tangent function has asymptotes at x = *1r/2, the reflected graph will have asymptotes
aty = *=r/2. Form a table of values (see the table of values for the trigonometric functions in Problem 22.12)
and sketch the graph (Fig. 25-6).

x 1
SV 0 T T T I
V&) y
L3
Y r_w Tlo 3
3 4 6 . ) .
-4 -2 2 4 "
X 1 n
3 1 — w
A/— »/3 4
Y n n T
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Figure 25-6
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25.7. Sketch a graph of the secant function showing the interval of redefinition.

The redefined secant function is restricted to the domain [0, 77/2) U [, 37/2). Draw a graph of the basic secant
function, with the portion in this interval emphasized.

v
4
2

X
45 L " kL
2 2 2

._2 b

-4
Figure 25-7

25.8. Sketch a graph of the inverse secant function.

The domain of the inverse secant function is the range of the (redefined) secant function: (—o0, —1JU[1, o). The
range of the inverse secant function is the domain of the redefined secant function [0, 7/2) U [, 377/2). The graph
of the inverse secant function is the graph of the redefined secant function, reflected in the line y = x. Since the
graph of the redefined secant function has asymptotes at x = 77/2 and x = 37/2, the reflected graph will have
asymptotes at y = /2 and y = 37/2. Form a table of values (see the table of values for the trigonometric functions
in Problem 22.12) and sketch the graph (Fig. 25-8).
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Figure 25-8

25.9. Analyze the application of the function-inverse function relation to (a) the sine and inverse sine functions,
(b) the cosine and inverse cosine functions, (c) the tangent and inverse tangent functions, and (d) the secant and
inverse secant functions.

The function-inverse function relation (Chapter 13) states that if g is the inverse function of f, then g( f(x)) = x

for all x in the domain of f, and f(g(y)) = y for all y in the domain of g. Hence

(a) sin~!(sinx) = x for all x,—% =x= %; sin(sin"'y) = yforally, -1 =y = 1.

(b) cos (cosx) = xforall x, 0 =x = ; cos(cos”ly) =yforally, —1=y=1.

(¢) tan~!(tan x) = x for all x, f% <x< %; tan(tan~'y) = y for all y € R.

(d) sec”!(secx) =xforallx,0 <x < %orﬂ' <x= 3777; sec(sec”ly) = yforally=1lory < —1.



CHAPTER 25 Inverse Trigonometric Functions

25.10. Simplify: (a) sm(sm 1\[> (b) sm(sm ‘*) (c) sin(sin™!2).

25.11.

25.12.

(a) Since —1 = Vi3n < 1, \/3/2 is in the domain of the inverse sine function. Hence, applying the function-

V)V e V3 _

3 5 Alternatively, note that sin~! —~ = -, hence

inverse-function relation, sin(sin*1 5 3 ,

sin(sin*1 %) = sin% = %

(b) Since —1 = % =1, % is in the domain of the inverse sine function. Hence, applying the function-inverse-
function relation, sm(sm*1 %) = %

(c) Since 2> 1, 2 is not in the domain of the inverse sine function. Hence, sin(sin~' 2) is undefined.

Simplify: (a) tan~ (tan ) (b) tan~ (tan (—%)>;(C) tan”(tan%r)

(a) Since —m/2 < 7/6 < /2, 7/6 is in the domain of the restricted tangent function. Hence, applying the

. . . . T T
function-inverse-function relationship, tan™! tang) =%

. T 1
Alternatively, note that tan— = ——,
6 3

(b) Since —m/2 < —1/4 < /2, —1/4 is in the domain of the restricted tangent function. Hence, applying the

1 T
hence tanfl(tanﬂ) -t =T
6 V3 6

L . . . 1
function-inverse-function relationship, tan"(tan (_Z)) =

(c) Since 27/3 > m/2, 27/3 is not in the domain of the restricted tangent function, and the function-inverse-
function relation cannot be used. However, 277/3 is in the domain of the general tangent function, thus:

tanfl(tanzl) = tan*'(—\/g) = —%

3

Simplify: (a) cos(sm lé) (b) sm(cos 1( %));(c) tan(secfl(fé)) (d) cot(cos™! 3)

(a) Since % is in the domain of the inverse sine function, let u = sin™! % Then, by the definition of the inverse
sine, sinu = %, —% sSu=-—+ 2 It follows from the Pythagorean identities that

2
cos(sm ‘*) =cosu = V1 — sin2u = |1 — (%)

Note that the positive sign is taken on the square root since ¥ must be in quadrant I or IV, where the sign
of the cosine is positive.
. 2. . . . . 2 L
(b) Since -3 is the domain of the inverse cosine function, let u = cosfl(fg). Then, by the definition of the

inverse cosine, cosu = —§, 0 = u = . It follows from the Pythagorean identities that

2
sin(cosfl(—%» =sinu = V1 — cos’u =+/1 — (—%) = —

Note that the positive sign is taken on the square root since # must be in quadrant I or II, where the sign of
the sine is positive.

(c) Since —% is in the domain of the inverse secant function, let u = sec*'( %) Then, by the definition of

5 3
the inverse secant, secu = — 7 = u < ~5- (since sec u is negative). If follows from the Pythagorean
identities that

tan(secfl(fé)) = tanu = Vsecu — 1 = (7%)2 -1 = @

2
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Note that the positive sign is taken on the square root since # must be in quadrant III, where the sign of
the tangent is positive.

(d) Since 3 is not in the domain of the inverse cosine in function, cot(cos~' 3) is undefined.

25.13. Simplify: (a) sin(sin‘l 1 + sin~! %), (b) tan (cos‘l % — sin”! %)

3

T
=uv= X From the sum

(SIE

(a) Letu = sin™! landv = sin”! ;. Then sinu = %and siny = %, -
formula for sines, it follows that

. (. 1 . 2 . . .
sm(sm‘1 3 + sin™! §) = sin(u + v) = sinucosv + cosusinv

Now sin u and sin v are given. Proceeding as in the previous problem,
2 2
cosu = V1 — sinfu = 1_(%>:27\f2 cosv = V1 — sin?y = 1—(%)=¥
Hence

2V2 2

V5 +4V2
9

“[%

. . 1 . 2 . . 1
sm(sm‘1§ + sm‘lg) = sinucosv + cosusiny = 3

(b) Letu = cos“%andv = sin“é. Then cosu = %,05 u =1,and siny = %, —% =y = % From

the difference formula for tangents, if follows that

tan(cosfl 3 g é) = tan(u — v) = 20U — tany
5 6 1 + tanu tanv

From the Pythagorean and quotient identities

sinu _ V1 —coslu _ V1I—(@GI5 4
3

tanu = = = 3/5

cosu cosu

sinv _ siny 5/6 5

oSV N1 —siny V1 - Gl V11

tanv

Hence

tan(cosflg B Sinflé) _ _tanu — tany _ V _ 4V11 — 15 _ 125V 11 — 432
6 1 + tanu tanv N (4)( 5 > 3V11 + 20 301

5
11
5
3NV

W[

25.14. Simplify (a) 005(2 cos™! 1%), (b) sin(% sin"(—%)).

(a) Letu = cos™! % Then cosu = %, 0 = u = 7. From the double-angle formula for cosines, it follows that
5

"33 ()
1 =) = = 2, — = =) — = ——
cos(Zcos 3 cos2u = 2cos’u — 1 =2 3 1

(b) Letu = sin“(—%). Then sinu = —215, —% = u = 0 (since sin u is negative). From the half-angle

formula for sines, it follows that

sin (%Sin_l<_%)) = sin (%u) = —W

= 0. From the Pythagorean identity,

NSTES

L . T
where the negative sign is taken on the square root since vy =

hence

sin(lsinfl(—l)) = —\/m = _\/1_% -1
2 25 2 2 V50

COS = %
=25
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25.15. Find an algebraic expression for sin(cos™'x).

Let u = cos™! x. Then cos u = x, 0 < u < 7. It follows from the Pythagorean identities that

sin(cos~'x) = sinu = V1 - cosu = V1-2x
where the positive sign is taken on the square root, since ¥ must be in quadrant I or II, where the sign of the sine
is positive.
25.16. Derive the phase-shift formula.

Given a quantity of form Acosbx + Bsinbx with A any positive real number and B and x any real numbers, let
C= VA’ + B*and d = tan™! g From the Pythagorean and quotient identities, cosd = ————— and

VA? + B?
sind = L. From algebra, it follows that:

VA2 + B

\/A2 2
Acosbx + Bsinbx = ﬂ(Acosbx + Bsinbx) = VA2 + Bz(#cosbx + Lsinbx)
VA? + B? VA? + B? VA2 + B?

Hence,
Acosbx + Bsinbx = VA? + B*cosd cosbx + sind sin bx)
By the difference formula for cosine, the quantity in parentheses must equal cos(bx — d), hence,

Acosbx + Bsinbx = VA% + B%cos(bx — d) = Ccos(bx — d)

25.17. (a) Use the phase-shift formula to rewrite \/icos 3x + \/isin 3x.

(b) Draw a graph of f (x) = \/icos 3x + \/2 sin 3x using the result of part (a).

(a) LetA = B = V2, then VA2 + B2 = V(V2) + (V2)® = 2 and

tan ™! B_ tan~! ﬁ =tan~'1 = T It follows that

A V2 4
\60053x + \6sin3x = 2003(3x - E)

4

%) note amplitude = 2. The graph (Fig 25-9) is a basic cosine curve.

Period = 2777 Phase shift = % +3 = 12 Divide the interval from —= 2

into four equal subintervals and sketch the curve with maximum height 2 and minimum height —2.

2\/\4
VYA

Figure 25-9

(b) Tosketchy = f(x) = 2003<3x —

to 4 (— phase shift + one period)

[
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SUPPLEMENTARY PROBLEMS

. \@) _< \@) _< 1 ) _( 2 >
. i _ V). i V2. 1 ). I
25.18. Evaluate: (a) sin ( > ; (b) cos > ; () tan Vi) (d) sec V3

Ans. @ ~Ti0) i) ~Tid) T

25.19. Evaluate: (a) sin(sin ]l> (b) cos(cos 1(—%));(0) tan( tan~'0); (d) sec(sec*1%>

Ans. (a) %; (b) —é; (c) 0;(d) not defined

25.20. Evaluate: (a) sin“(sm ) (b) cos~!(cos1); (c) tan™ (tan5 ) (d) sec ‘(sec(—%))

Ans. @) Tib) L) — T (@) 2

25.21. Evaluate: (a) cos(sin*1 g); (b) sin(tan~12); (¢) tan(sec™!(—3)); (d) cos(tanfl(fi))

: 12
Ans. (a) @; (b) %; © V3 %
25.22. Evaluate: (a) sm(sm 1% + cos” 1*) (b) cos(cos 1% — sin 1%) (©) tan(tan 1% + sin 1275)
Ans. (a) 2 +29\F () 65’()
25.23. Evaluate: (a) 008(251n l;) (b) sec(ztan 11) © Sm(; cos 17) @ sec(ésinﬂ %)

18 — 6\V5

Ans @ GO 3O @ S

25.24. Simplify: (a) sin(cos™'x); (b) cos(tan™'x); (c) tan(2 cos™'x); (d) cos(% sinflx)

— 32 )
Ans. @) V1= 2% (b) \/%; (© zxzﬁ; ) W
X

25.25. (a) Show thatfor —1 = x = 1, —% = sin"'x + cosT'x = % (b) Show that sin(sin™'x + cos™'x) = 1.

(c) From (a) and (b), deduce that for —1 =x =< 1, sin"'x + cos™x = %

25.26. By making the substitution u = sin~ ]* , simplify: (a) V9 — x% (b)) ———

Vo

Ans. (a) 3 cosu; (b) 3 sinu tanu

. I V1 +
25.27. By making the substitution # = tan~ IZ’ simplify; (a) V16 + x%; (b) ———5—— 6+
cos’u

Ans. (a) 4 secu; (b) 16 sin’u

25.28. By making the substitution u = sec 11X > simplify: (a) x = xVx? — 4;(b) (x> — 4)*?

Ans. (a) 4 tanu secu; (b) 8tan’u
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25.29. Giveny = 3 sin”!(x — 5), (a) state the possible values of x and y; (b) solve for x in terms of y.

Ans (Q)4=x=6, 37/2=y=37w/2;(b)x =135 + sin(y/3)

25.30. Use the phase-shift formula to rewrite:

(a) 6 cos3x — 6sin 3x; (b) 3cosdx + \@sin4x; () 3 cos%x + 4sin%x

Ans. (a) 6\6008<3X + %) (b) 2\/3005(4x - %) (©) SCOS(%X — tan™! %)



CHAPTER 26

Triangles

Conventional Notation for a Triangle
The conventional notation for a triangle ABC is shown in Fig. 26-1.

Right Triangle Acute Triangle Obtuse Triangle

Figure 26-1

A triangle that contains no right angle is called an oblique triangle. The six parts of the triangle ABC are the
three sides a, b, and c, together with the three angles «, 3, and vy.

Solving a Triangle

Solving a triangle is the process of determining all the parts of the triangle. In general, given three parts of a
triangle, including at least one side, the other parts can be determined. (Exceptions are cases where two pos-
sible triangles are determined or where no triangle can be shown to be consistent with the given data.)

Right Triangles

Here one part is known from the outset to be an angle of 90°. Given either two sides, or one side and one of
the acute angles, the other parts can be determined using the definitions of the trigonometric functions for
acute angles, the Pythagorean theorem, and the fact that the sum of the three angles in a plane triangle is 180°.

EXAMPLE 26.1 Given a right triangle ABC with ¢ = 20 and & = 30°, solve the triangle.
Here it is assumed that y = 90°.

Solve for B:

Sincea + B+ y = 180°% B = 180° — @ — y = 180° — 30° — 90° = 60°.

Solve for a:

In the right triangle ABC, sin o = %, hence a = ¢ sin @ = 20sin30° = 10.

Solve for b:

From the Pythagorean theorem, ¢> = a*> + b*; hence b = V2 — o> = V20> — 10> = V300 = 10V3
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Oblique Triangles
Oblique triangles are solved using the law of sines and the law of cosines. Normally five cases are recognized
on the basis of which parts are given: AAS (two angles and a nonincluded side are given), ASA (two angles

and an included side), SSA (two sides and a nonincluded angle), SAS (two sides and an included angle), and
SSS (three sides).

Law of Sines
In any triangle, the ratio of each side to the sine of the angle opposite that side is the same for all three sides:

a b a c b c

sina  sinf sina  siny sinB _ siny
Law of Cosines

In any triangle, the square of any side is equal to the sum of the squares of the other two sides, diminished
by twice the product of the other two sides and the cosine of the angle included between them:

a’> = b* + 2 — 2bc cosa
b? = a* + ¢ — 2ac cos B3
2 =a*+ b*> — 2abcosy

Accuracy in Computations

In working with approximate data, the number of significant digits in a result cannot be greater than the number
of significant digits in the given data. In interpreting calculator results for angles, the following table is useful:

NUMBER OF SIGNIFICANT DEGREE MEASURE OF
DIGITS FOR SIDES ANGLES TO THE NEAREST
2 1°
3 0.1° or 10’
4 0.01°0r 1’

Bearing and Heading

In applications involving navigation and aviation, as well as some other situations, angles are normally speci-
fied with reference to a north-south axis:

1. BEARING: A direction is specified in terms of an angle measured east or west of a north-south axis.
Thus Fig. 26-2 shows bearings of N30°E and S70°W.

N
30°
w -/ > E
70°
S
Figure 26-2

2. HEADING: A direction is specified in terms of an angle measured clockwise from north. Thus the same
figure shows headings of 30° and 250° (that is, 180° + 70°).
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Angles of Elevation and Depression

1. ANGLE OF ELEVATION is the angle from the horizontal measured upward to the line of sight of the observer.
2. ANGLE OF DEPRESSION is the angle from the horizontal measured downward to the line of sight of the

observer.
Angle of Elevation Angle of Depression
Object Horizontal
7 ! Observer <
aos s ~ Angle of Depression
(S rd 28
P ‘\0 © / 100
W orR
Y
7 Angle of Elevation €N
Observer #= - ~
Horizontal Object
Figure 26-3

SOLVED PROBLEMS

26.1.

26.2.

Given a right triangle ABC with a = 42.7° and a = 68.2, solve the triangle. (See Fig. 26-1.)

Here it is assumed that y = 90°. In any right triangle, the acute angles are complementary, since & + 8 + 90° = 180°
implies & + B = 90°.

Solve for S3:

B=90°—a=90°—42.7° = 47.3°
Solve for b:
In the right triangle ABC, tan o = %; hence b = taia = tagi§7° = 73.9.
Solve for c:
In the right triangle ABC, sin a = %; hence ¢ = —4— = _ 682 100.6.

sine  sin42.7°

Alternatively, use the Pythagorean theorem to find ¢, since a and b are known. However, it is preferable to use
given data rather than calculated data wherever possible, since errors in calculations accumulate.

Given aright triangle ABC with ¢ = 5.07 and @ = 3.34, solve the triangle. Express angles in degrees and minutes.
(See Fig. 26-1.)

Here it is assumed that y = 90°.

Solve for a:

In the right triangle ABC, sin a = %; hence a = sin~'% = sin~! 3.34 _ 41°12".

¢ 5.07
Solve for B:
In the right triangle ABC, o + B = 90°; hence 8 = 90° — a = 90° — 41°12" = 48°48'.
Solve for b:

From the Pythagorean theorem, ¢> = a® + b? hence b = Ve — @2 = V5072 — 3342 = 381.
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26.3. When the angle of elevation of the sun is 27°, a pole casts a shadow 14 meters long on level ground. Find the
height of the pole.

Sketch a figure (see Fig. 26-4).

T
~
~
P h
-~
_ -~
S = B
Figure 26-4
In right triangle STB, let & = height of pole. Given that SB = 14 and £S = 27°, then tan S = S%’ thus

h = SBtanS = 14 tan27° = 7.1 meters

26.4. An airplane leaves an airport and travels at an average speed of 450 kilometers per hour on a heading of 250°.
After three hours, how far south and how far west is it from its original position?

Sketch a figure (see Fig. 26-5).

N
A

D
250°
pm—— 'EA

€

Figure 26-5

In the figure, the original position is O and the final position is P. Thus OP = (450 km/hr)(3 hr) = 1350 km. Since
the heading is 250°, £ AOP must be 250° — 180° = 70°.
Hence, in right triangle AOP,

% = cosAOP, or OA = OP cosAOP = 1350 cos 70° = 462 km south
and

271; = sinAOP, or AP = OP sinAOP = 1350 sin 70° = 1269 km west

26.5. From a point on level ground the angle of elevation of the top of a building is 37.3°. From a point 50 yards closer,
the angle of elevation is 56.2°. Find the height of the building.

Sketch a figure (Fig. 26-6).

7/

v
e h
////
// 7/
2z 7 [
C 50D x B
Figure 26-6
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Introduce the auxiliary variable x. The cotangent function is chosen, as it leads to the simplest algebra in
eliminating x. In right triangle DBT,

cotTDB = %
In right triangle CBT,
cotTCB = 30 + x
h
Therefore,
_50+x x_ 50
cotTCB — cotTCB = A ho
Hence,
50 50

~ CotTCB — cotIDB cot37.3° — cot56.2° = T8yd

Note: The accuracy of the result is determined by the least accurate input measurement. Also note that in
calculating cotangent on a scientific calculator, the identity cotu = 1/(tan u) is used.

Derive the law of sines.

Two typical situations (acute and obtuse triangles) are sketched (Fig. 26-7).

Figure 26-7

h represents an altitude of the triangle, drawn perpendicular from one vertex (shown as B) to the opposite side.
For the obtuse triangle, the altitude lies outside the triangle. In general, however, triangles ADB and CDB are right
triangles. In triangle ADB,

. _h .
sina = & soh = csina

In triangle CDB, £ BCD is either y or 180° — v. In either case, sin BCD = sin y = sin(180° — v); hence

sinBCD = siny = g so h = asiny

Therefore, a sin y = ¢ sin a, or, dividing both sides by sin « sin vy,

a C

sina ~ siny
Note: Since the letters are assigned arbitrarily, the other cases of the law of sines can be immediately derived by
replacement (sometimes called rotation of letters): replace a with b, b with ¢, ¢ with a, and also « with 3, 8 with vy,
vy with a.
The law of sines also applies to a right triangle; the proof is left to the student.
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26.7. Analyze the AAS and ASA cases of solving an oblique triangle.

In either case, two angles are known; hence the third can be found immediately since the sum of the angles of a
triangle is 180°. With all three angles known, and one side given, there is enough information present to substitute
into the law of sines to find the second and third sides. For example, given a, then b can be found, since

asinf
sin«

a b
sin sin 3’

SO L =

26.8. Solve triangle ABC, given a = 23.9°, 8 = 114°, and ¢ = 82.8.
Since two angles and the included side are given, this is the ASA case.
Solve for .
Sincea + B+ vy =180°%y =180°— a — B = 180° — 23.9° — 114° = 42.1°.

Solve for a:
From the law of sines, B —— ; hence
sin « siny
_csina _ 82.8sin23.9°
= Sy T sinaz1e 000
Solve for b:
Applying the law of sines again b = —° hence
pplying gain, sin B siny’
csin i o
p = SSnB _ 828sin114° _ 5
siny sin42.1

26.9. Fire station B is located 11.0 kilometers due east of fire station A. Smoke is spotted at a bearing of S23°40'E
from station A and at S68°40'W from station B. How far is the fire from each fire station?

Sketch a figure (Fig. 26-8).

A 11.0 B

Figure 26-8
Given side AB = ¢ = 11.0, £S5 ,AC = 23°40’, and £S,BC = 68°40, it follows that
a =90° — 23°40' = 66°20" and B = 90° — 68°40" = 21°20’
Thus two angles and the included side are given and this is the ASA case.

Solve for vy:
v =180°— a — B = 180° — 66°20" — 21°20" = 92°20’
Solve for a:

a _ ¢
sina  siny

From the law of sines, ; hence

_ csinae _ 11.0sin66°20" _
a= siny §in 92°20’ 10.1 km from B
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Solve for b:

Applying the law of sines again, ; hence

- _¢
sin B sinvy
_cesinB 11.0sin21°20’

siny — sin92°20’

= = 4.01 km from A

Analyze the SSA case of solving an oblique triangle.

There are several possibilities. Assume for consistency that a, b, and « are given. Draw a line segment of
unspecified length to represent c, then draw angle « and side b. Then the following cases can be distinguished:

« acute (see Fig. 26-9):

bsina>a bsina = a bsina<a<b azb
b b
a a b a
a o a
c c c’ c
No triangle One triangle Two triangles One triangle
Figure 26-9
a obtuse (see Fig. 26-10):
asb a>b
g a
b b
a a
c c
No triangle One triangle
Figure 26-10

In every case, start by calculating the possible values of 3, using the law of sines:

sin 3’
If the value of sin 3 calculated in this way is greater than 1, there is no solution to this equation and no triangle
is possible. If this value of sin 8 = 1, there is one (right) triangle possible. If this value of sin 8 < 1, there are
two solutions for 3:

b bsina
sin « ’

Since it follows that sinf = —

. _; bsin
a

a _ bsina
B = sin —a

and B = 180° — sin

If both of these solutions, substituted into @ + B + y = 180°, yield a positive value for vy, then two triangles are
possible; if not, then only the first solution leads to a possible triangle and there is only one triangle.

The SSA case is sometimes referred to as the ambiguous case, both because there are so many possibilities and
because there may be two triangles determined by the given information.
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26.11. Solve triangle ABC, given « = 23.9°, @ = 43.7, and b = 35.1.

Sketch a figure, starting with a line segment of unspecified length to represent c: Since two sides and a nonincluded
angle are given, this is the SSA case.

35.1 43.7
23.9°
c

Figure 26-11

From Fig. 26-11, and the fact that a > b, only one triangle is determined by the given data.

Solve for S3:
. bsina _ 35.1sin23.9°
sin = —7— = 37 = 0.3254
B = sin"10.3254 = 19.0°
Solve for vy:

v =180°—a — B =180° — 23.9° — 19.0° = 137.1°

Note that the second solution of sin 8 = 0.3254, namely, 8 = 180° — sin~! 0.3254 = 161°, is too large to fit into
the same triangle as & = 23.9°; this possibility must be discarded.

Solve for c:

. a c
From the law of sines — = ————, hence
sin « sinvy

_asiny _ 437sin137.1°
sina sin23.9°

=734

26.12. Derive the law of cosines.
Two typical situations (acute and obtuse angle y) are sketched (Fig. 26-12).

In either case, since A is a point b units from the origin, on the terminal side of vy in standard position, the
coordinates of A are given by (b cos 7y, b sin y ). The coordinates of B are given by (a, 0). Then the distance from
A to B, labeled c, is given by the distance formula as:

¢ =dAB) = V(a — bcosy)? + (0 — bsiny)?

Squaring yields
c? = (a — bcosy)?> + (bsiny)?
y
C
b
Y
d @ *
Fig 26-12
Simplifying yields:

2 = a* — 2ab cosy + b2cos>y + b?sin’y
= a*> — 2ab cosy + b*(cos*y + sin’y)



26.13.

26.14.

26.15.
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Hence by the Pythagorean identity,
2 =a®+ b*> — 2abcosy

Note: Since the letters are assigned arbitrarily, the other cases of the law of cosines can be immediately derived
by replacement (sometimes called rotation of letters): replace a with b, b with ¢, ¢ with a, and also « with (3,
B with y, y with a.

The law of cosines also applies to a right triangle; for the side opposite the right angle, it reduces to the
Pythagorean theorem; the proof is left to the student.

Analyze the SAS and SSS cases of solving an oblique triangle.

In the SAS case, two sides and the angle included between them are given. Label them a, b, and y. Then none of
the three ratios in the law of sines is known at the outset, so no information can be derived from this law. From
the law of cosines, however, the third side, ¢, can be determined. Then with three sides and an angle known, the
law of sines can be used to determine a second angle. If the smaller of the two unknown angles (smaller because it
is opposite a smaller side) is chosen, this angle must be acute, hence there is only one possibility. The third angle
follows immediately since the sum of the three angles must be 180°.

In the SSS case, again, none of the three ratios in the law of sines is known at the outset, so no information
can be derived from this law. However, the law of cosines can be solved for the cosine of any unknown angle
to yield:

b+ 32— a at+ 2= b a+ b -3

cosa = 2be cosfB = 2ac cosy = 2db

If the angle opposite the largest side is calculated first, then if the cosine of this angle is negative, the angle is
obtuse; otherwise, the angle is acute. In either case, the other two angles cannot be obtuse and must be acute.
Therefore, the second angle can be found from the law of sines without ambiguity, since this angle must be acute.
The third angle follows immediately since the sum of the three angles must be 180°.

Solve triangle ABC, given a = 3.562, ¢ = 8.026, and 8 = 14°23’.
Since two sides and the angle included between them are given, this is the SAS case.
Solve for b:

From the law of cosines:

b* = a*> + ¢* — 2accos B = (3.562)* + (8.026)> — 2(3.562)(8.026) cos 14°23" = 21.7194

Hence

b= "V21.7194 = 4.660

Solve for the smaller of the two unknown angles, which must be a:

. a _ b . asinf 3562gin14°23" _
From the law of sines, sine _ sinp hence sina = b 4.660 = 0.18986. The only acceptable

solution of this equation must be an acute angle; hence a = sin~! 0.18986, or, expressed in degrees and minutes,
a = 10°56'.

Solve for vy:

vy =180° — a — B = 180° — 10°56’ — 14°23' = 154°41’

Solve triangle ABC, given a = 29.4, b = 47.5, and ¢ = 22.0.

Since three sides are given, this is the SSS case. Start by solving for the largest angle, 3, largest because it is
opposite the largest side, b.
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Solve for S3:
From the law of cosines,

PP - (2947 + (22002 — (47572
2ac = 2(29.4)(22.0) = ~0.70183

cosfB =

The only acceptable solution of this equation must be an obtuse angle; hence 8 = cos™'(—0.70183), or, expressed
in degrees, B = 134.6°.

Solve for a:

asinB _ 29.4sin[cos™'(—0.70183)]

a _ b . . 3
sina _ sing’ hence sina = - 175 = 0.44090. The

From the law of sines,

only acceptable solution of this equation must be an acute angle, hence a = sin~10.44090, or, expressed in
degrees, a = 26.2°.

Solve for vy:
v =180° —a — b = 180° — 26.2° — 134.6° = 19.2°

26.16. A car leaves an intersection traveling at an average speed of 56 miles per hour. Five minutes later, a second car
leaves the same intersection and travels on a road making an angle of 112° with the first, at an average speed of
48 miles per hour. Assuming the roads are straight, how far apart are the cars 15 minutes after the first car has left?

Sketch a figure (see Fig. 26-13).

112°

14
Figure 26-13

Let x = the required distance. Since the first car travels 56 mph for% hr, it goes a distance of 56(%) = 14 miles.
The second car travels 48 mph for é hr, so it goes a distance of 48(%) = 8 miles. In the triangle, two sides and

the angle included between them are given, hence by the law of cosines,
X2 =82+ 142 — 2(8)(14)cos 112° = 343.9
Hence x = V343.9 = 19 miles to the accuracy of the input data.

26.17. A regular pentagon is inscribed in a circle of radius 10.0 units. Find the length of one side of the pentagon.

N

Sketch a figure (see Fig. 26-14).

A

<
Figure 26-14

Let x = the length of the side. Since the pentagon is regular, angle & = % of a full circle = 72°. Hence, from the
law of cosines,

x? = (10.0)> + (10.0)> — 2(10.0)(10.0)cos 72° = 138.2, sox = V' 138.2 = 11.8 units
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SUPPLEMENTARY PROBLEMS

26.18.

26.19.

26.20.

26.21.

26.22.

26.23.

26.24.

26.25.

26.26.

26.27.

26.28.

Solve a right triangle given a = 350 and o = 73°.
Ans. B=17°b=107,c = 366

Solve a right triangle given b = 9.94 and ¢ = 12.7.
Ans. a=17.90,8=51.5° a=385°

A rectangle is 173 meters long and 106 meters high. Find the angle between a diagonal and the longer side.

Ans. 31.5°

From the top of a tower the angle of depression of a point on level ground is 56°30’. If the height of the tower is
79.4 feet, how far is the point from the base of the tower?

Ans. 52.6 feet

A radio antenna is attached to the top of a building. From a point 12.5 meters from the base of the building, on
level ground, the angle of elevation of the bottom of the antenna is 47.2° and the angle of elevation of the top is
51.8°. Find the height of the antenna.

Ans.  2.39 meters

Show that the law of sines holds for a right triangle.

Show that the law of cosines holds for a right triangle, and reduces to the Pythagorean theorem for the side
opposite the right angle.

Show that the area of a triangle can be expressed as one-half the product of any two sides times the sine of the

angle included between them. (A = %bc sin a)

How many triangles are possible on the basis of the given data?

(@) @ =20°%b =130,y =40% () « =20°b=230,a =5;() a=30,c=20,v=50%

(d) a =30,c =30,y = 100% (e) B

20°% b = 50, ¢

30
Ans. (a) 1;(b) 0;(c) 2;(d) 0;(e) 1

Solve triangle ABC given (a) B = 35.5°,y = 82.6°, ¢ = 7.88; (b) a = 65°50, B = 78°20’, ¢ = 15.3.
Ans. (a) a=61.9°b=4.61,a="17.01;(b) y=23550",a =23.8,b=256

Solve triangle ABC given (a) a = 12.3,b = 84.5,« = 71.0°% (b) a = 84.5,b = 12.3, « = 71.0%
(¢) a=4.53,¢c =647, =39.3°% (d) a =934, b = 1420, B8 = 108°.

Ans. (a) No triangle can result from the given data; (b) 8 = 7.91°,y = 101°, ¢ = 87.7,
(c) Two triangles can result from the given data; triangle 1: y = 64.8°, B = 75.9°, b = 6.94, triangle 2:
y' = 115.2° B =255°b" = 3.08; (d) @ =38.7°,y =33.3% ¢ =819
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26.29.

26.30.

26.31.

26.32.

26.33.

26.34.

26.35.

How many triangles are possible on the basis of the given data?

(a) a = 30,8 = 40° ¢ = 50; (b) a = 80,b = 120,c¢ = 30; (c) a = 40,b = 50,c = 35;
(d) a =75°B =235,y =70% () a=40,b =40,y = 130°

Ans. (a) 1;(b) 0;(c) 1;(d) an infinite number; (e) 1

Solve triangle ABC given (a) b = 78, ¢ = 150, a = 83°% (b) a = 1260, b = 1440, ¢ = 1710.
Ans. (a) a=160,8 =29°, vy =68%(b) @ =46.2°, B =55.5°y = 78.3°

Points A and B are on opposite sides of a lake. To find the distance between them, a point C is located 354 meters
from B and 286 meters from A. The angle between AB and AC is found to be 46°20’. Find the distance between
A and B.

Ans. 485 meters

Two sides of a parallelogram are 9 and 15 units in length. The length of the shorter diagonal of the parallelogram
is 14 units. Find the length of the long diagonal.

Ans. 4V 26 = 20.4 units

A plane travels 175 miles with heading 130° and then travels 85 miles with heading 255°. How far is the plane
from its starting point?

Ans. 144 miles

) . . p sina + sinf
(a) Use the law of sines to show that in any triangle a = -
¢ sinvy

a+b  coss@—P)
c 7 sin(y/2)

(b) Use the result of part (a) to derive Mollweide’s formula:

Because it contains all six parts of a triangle, Mollweide’s formula is sometimes used to check results in solving
triangles. Use the formula to check the results in Problem 26.27a.

1
a+b cosz(a — B)
e = 14746, — 5 s

Ans. = 1.4751; the two sides agree to the accuracy of the given data.



Vectors

Vectors and Vector Quantities

A quantity with both magnitude and direction is called a vector quantity. Examples include force, velocity,
acceleration, and linear displacement. A vector quantity can be represented by a directed line segment, called
a (geometric) vector. The length of the line segment represents the magnitude of the vector; the direction is
indicated by the relative positions of the initial point and terminal point of the line segment. (See Fig. 27-1.)

0

Figure 27-1

Vectors are indicated by boldface letters. In the figure, P is the initial point of the vector v and Q is the
terminal point. Vector v would also be referred to as vector PQ.

Scalars and Scalar Quantities

A quantity with only magnitude is called a scalar quantity. Examples include mass, length, time, and tem-
perature. The numbers used to measure scalar quantities are called scalars.

Equivalent Vectors
Two vectors are called equivalent if they have the same magnitude and the same direction.

Figure 27-2

Normally, equivalence is indicated with the equality symbol. In Fig. 27-2, v = w but u # v. Since there are
an infinite number of line segments with a given magnitude and direction, there are an infinite number of
vectors equivalent to a given vector (sometimes called copies of the vector).
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Zero Vector
A zero vector is defined as a vector with zero magnitude and denoted 0. The initial and terminal points of a
zero vector coincide; hence a zero vector may be thought of as a single point.

Addition of Vectors
The sum of two vectors is defined in two equivalent ways, the triangle method and the parallelogram
method.

Triangle Method Parallelogram Method

Figure 27-3

1. TRIANGLE METHOD: Given v and w, v + w is the vector formed as follows: place a copy of w with
initial point coincident with the terminal point of v. Then v + w has the initial point of v and the

terminal point of w.

2. PARALLELOGRAM METHOD: Given v and w, v + w is the vector formed as follows: place copies of v
and w with the same initial point. Complete the parallelogram (assuming v and w are not parallel line
segments). Then v + w is the diagonal of the parallelogram with this initial point.

Multiplication of a Vector by a Scalar

Given a vector v and a scalar c, the product cv is defined as follows: If ¢ is positive, cv is a vector with the
same direction as v and ¢ times the magnitude. If ¢ = 0, then cv = Ov = 0. If ¢ is negative, cv is a vector
with the opposite direction from v and Icl times the magnitude.

A\
EXAMPLE 27.1 Given v as shown, draw 2v, %v, and —2v. /

The vector 2v has the same direction as v and twice the magnitude. The vector %v has the same direction as v and one-
half the magnitude. The vector —2v has the opposite direction from v and twice
the magnitude (see Fig. 27-4).

Figure 27-4

Vector Subtraction
If v is a nonzero vector, —v is the vector with the same magnitude as v and the opposite direction. Then v — w
is defined as v + (—w).
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EXAMPLE 27.2 [Illustrate the relations among v, w, —w, v — w, and v + (—w).

See Fig. 27-5.

Figure 27-5

—w has the same magnitude as w and the opposite direction. v + (—w) is obtained from the triangle method
of addition. From the parallelogram method of addition, note that

V+(—w)+w=vV V-W+WwW=vV

Thus, v — w is the vector that must be added to w to obtain v.

Algebraic Vectors

If a vector v is placed in a Cartesian coordinate system such that v = P P,, where P, has coordinates (x,,y,) and
P, has coordinates (x,,y,), then the horizontal displacement from P, to P,, x, — x,, is called the horizontal
component of v, and the vertical displacement y, — y, is called the vertical component of v. (See Fig. 27-6.)

y
A Py (xy,y,)
/‘
Pi(x ’)-’_1; o
> X
Figure 27-6

Given horizontal and vertical components a and b, then v is completely determined by a and b and is writ-
ten as the algebraic vector v = {a, b). Then v = OP,where O is the origin and P has coordinates (a, b). There
is a one-to-one correspondence between algebraic and geometric vectors; any geometric vector correspon-
ding to {a, b) is called a geometric representative of {a, b).

Operations with Algebraic Vectors

Letv = (v,v,) and w = (w, w,). Then

v+w={( +w,v, tw,) —W = (—w,, —w,)

V=W = (v, —w,v, —W,) cv = {cv,, cv,)
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EXAMPLE 27.3 Givena = (3, —8)and b = (5, 2), finda + b.
a+ b=(3 -8 +(52) = (3 +5-8+2) = (8 —6)

Maghnitude of an Algebraic Vector

The magnitude of v = (v,, v,) is given by

v = Vvl +3
Vector Algebra
Given vectors u, v, and w, then
V+IW=WwW+YV u+(v+w=@u+v)+w v+0=v
v+ (-v) =0 c(v+w)=cv+cw (c+d)v=cv+adv
(cd)v = c(dv) = d(cv) lv=v Oov=20

Vector Multiplication

Given two vectors v = (v,v,) and w = (w,w,), the dot product of v and w is defined as
v+w = vw, + v,w, Note that this is a scalar quantity.

EXAMPLE 27.4 Givena = (3, —8)and b = (5,2),finda - b.
a*b=3-5+(-82=-1

Angle Between Two Vectors

If two nonzero vectors v = (v,, v,) and w = (w, w,) have geometric representatives OV and OW, then the
angle between v and w is defined as angle VOW (Fig. 27-7).

y
A

> X

Figure 27-7

Theorem on the Dot Product
If 6 is the angle between two nonzero vectors v and w, then v - w = Ivl Iwlcos 6.

Properties of the Dot Product

Given vectors u, v, and w, and a a real number, then
u*v = v-u (commutative property) (av)*w = a(v-w) (associative property)
u-(v+w) =uvt+uw (distributive property)
v:v=0andv-v = 0ifandonlyifv =0 (nonzero property)
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SOLVED PROBLEMS

27.1.

27.2.

27.3.

. 1
Given vectors v and w as shown, sketch v + w, 2v, and 2v — W

e

To find v + w, place a copy of w with initial point coincident with the terminal point of v. Then v + w has the
initial point of v and the terminal point of w.
To find 2v, sketch a vector with the same direction as v and twice the magnitude.

To find 2v — %W, sketch —%w, a vector with the opposite direction to w and half the magnitude, with initial

point coincident with the terminal point of 2v. Then 2v — %w has the initial point of 2v and the terminal point
1

of —3sw.

-1
oW
2v
2v
2v —%w
Figure 27-8

Givenv = (—5,3)and w = (0, —4), find v + w, 4v, and 2v — %w.
v+w=(=53)+0,-4)=(=5+0,3 +(—4)=(=5,—-1)
4y = 4—5,3) = (4(—5),4 - 3) = (=20, 12)

2v = dw = 2(=5,3) = 50, —4) = (~10,6) = (0, —2) = (~10,8)

Given vector v = (vl, v2>, (a) show that the magnitude of v is given by Ivl = V v% + v%; (b) find the angle 0
formed by vector v = (v,, v,) and the horizontal.

(a) Draw a copy of v with initial point at the origin; then the terminal point of v is P(v,, v,).

y
A
A .

4
\Q

P(v;,v,)
Figure 27-9

From the distance formula,

Ml =d©,P) = V(, = 02+ (v, - 02 = V12 +12
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27.5.

27.6.

(b) From the definitions of the trigonometric functions as ratios (Chapter 22), since P is a point on the terminal
side of angle 6,

%
tanf = -

Vi
v
Thus, if 0 < 0 < 7/2, then § = tan~! ‘TT Otherwise, 6 is an angle with this value as reference angle. (If v, = 0,

then if v, > 0, 6 may be taken as 7/2 + 27n; and if v, <0, 6 may be taken as —7/2 + 27rn.)

Find Ivl and the angle 6 formed by vector v = (v, v, and the horizontal, given
(@ v=(85) (b) v=(=6, -6).

(@) Ivl = V8 + 52 = V89. tan = % Since if the initial point of v is at the origin, the terminal point (8, 5)

is in quadrant I, 6 may be taken as tan™! %

() Ivl = V(=62 + (=6)> = V72 = 6\6. tanf = %g = 1. Since if the initial point of v is at the origin,
the terminal point (—6, —6) is in quadrant III,  may be taken as any solution of tan# = 1 in this quadrant,
for example, 57/4.

Resolve a vector v into horizontal and vertical components.
y
A
P(vi,v2)
v
0 > X
0
Figure 27-10

See Fig. 27-10. Vector v = (v, v,). v, and v, are referred to, respectively, as the horizontal and vertical
components of v. Since the coordinates of P are (v,, v,),

Vi V2 .
— = cosfand — = sin6,
[v| vl
hence v, = Ivicos6 and v, = Ivlsin @ are the horizontal and vertical components of v.

Show that for any two algebraic vectors v and w, v + w = w + v (vector addition is commutative).
Letv = (v, v,) and w = (w,, w,). Then
viw=, )+ w,w) =@ +w,v, +w)
and
wHv=(w,w)+y,v) =W +tv,w, +v)
By the commutative law of addition for real numbers, (v, + w,, v, + w,) = (w, + v, w, + v,). Hence

v+tw=w+yv
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27.7. Prove that if 6 is the angle between two nonzero vectors v and w, then v - w = |vl Iwlcos6.

27.8.

First consider the special case when v and w have the same direction. Then # = 0 and w = kv, where £ is positive.
Hence

Vew=ve kv =, v, kv, kv) = kv + kv

and

vl Iwl cos® = \/vf + 3 \/kzvf + k*icos0 = kvi + kv3

Thus v+ w = Ivl Iwlcos @ in this case.

A second special case occurs when v and w have opposite directions. This case is left to the student. Otherwise,
take geometric vectors v and w, each with initial point at the origin, and consider the triangle formed by v, w, and
v — w. The terminal point of v is V (v, v,) and the terminal point of wis W (w, w). v — w = WV =
(v, = w,,v, — w,). Then, by the law of cosines applied to triangle VOW,

lv — wlz2 = IvI> + Iwl? — 2Ivl Iwlcos

y
A

) wW

> x

Figure 27-11

Or, writing in terms of components,
— w2 — w2 =2 2 2 2 _
v, —w)*+ (v, = w)> =vi+v; + wi + w; — 2lvliwlcos6
Simplifying the left side and subtracting and dividing both sides by the same quantity yield, in turn,

vi=2vw, + w4 vi— 2uw, + wi= v+ vi+ wl+ wl — 2lvliwlcos§

—2vw, = 2v,w, = =2 IvlIwl cos 6

Ivl Iwl cos 0

v W, + VW,

Since the left side, by definition, is v + w, the proof is complete.

Find the angle 6 between the vectors (5, 6) and (7, —8).

The formula in the previous problem is often written

cosf = ~ -
[v]Iwl
In this case the formula is applied to obtain
(5,6)-(7,—8) 5-7 + 6(—8) -13

cosf =

5.6 [(7=8) 52+ V72 + (=82 Vol V113

Thus 6 = cos™'———— or, expressed in degrees, 6 = 99°.

13
V61 V113
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27.9.

27.10.

Prove the commutative property of the dot product.

Letu = (u,, u,) andv = (v, v,). Thenu-v = uv, + w,v,and v-u = v,u, + v,u,. By the commutative law
of multiplication for real numbers, u, v, = v,u, and u,v, = v,u,. Hence

u-v =y, + Uy, = vu, + Vo, = Ve

The vector sum of forces is generally called the resultant of the forces. Find the resultant of two forces, a force
F, of 55.0 pounds and a force F, of 35.0 pounds acting at an angle of 120° to F,.

Denote the resultant force by R. Sketch a figure (see Fig. 27-12).

Figure 27-12

Since £ AOB is given as 120°, angle 6§ must measure 180° — 120° = 60°. From the law of cosines applied to
triangle OBC,

R|> = |F1|2 + |F2|2 - 2|F1||F2|cose
= 552 + 352 — 2-55 35 cos 60°
= 2325
Thus IRl = \/ﬁ = 48.2 pounds. This determines the magnitude of the resultant force; since R is a vector,
the direction of R must also be determined. From the law of sines applied to triangle OBC,
sin AOC _ sin6
F  [R]

Hence

|, | sin6 ., 35sin60°

|R| = sin 180 - 38.9°

L AOC = sin™!

SUPPLEMENTARY PROBLEMS

27.11.

27.12.

27.13.

Let v be a vector with initial point (3,8) and terminal point (1,1). Let w be a vector with initial point (3,—4)
and terminal point (0,0). (a) Express v and w in terms of components. (b) Find v +w, v — w, 3v — 2w, and
v + w. (c) Find Ivl, Iwl, and the angle between v and w.

Ans. (@) v=(=2,=T7),w=(=3,4),
b) v+w=(=5 -3, v—w=(1, —11),3v—2w =(0,— 29), v - w = —22;

(¢) Ivl = V53, Iwl = 5, angle = cos™! i, or, expressed in degrees =~ 127°.

5V53

(a) Show that any vector v can be written as {lvl cos 0, Ivl sin 6).

(b) Show that a vector parallel to a line with slope m can be written as a (1, m) for some value of a.

A unit vector is defined as a vector with magnitude 1. The unit vectors in the positive x and y directions are,
respectively, referred to as i and j.

(a) Show that any unit vector can be written as {cos 6, sin 6).

(b) Show that any vector v = (v,, v,) can be written as v i + v, j.
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27.15.

27.16.

27.17.

27.18.

27.19.
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Two vectors that form an angle of /2 are called orthogonal.
(a) Show that the dot product of two nonzero vectors is 0 if, and only if, the vectors are orthogonal.
(b) Show that (10, —6) and (9, 15) are orthogonal.

(c) Find a unit vector orthogonal to (2, —5) with horizontal component positive.

Ans. (c) (5/V29,2/\V29)

(a) Prove the associative property of the dot product;
(b) prove the distributive property of the dot product;

(c) prove the nonzero property of the dot product.
For v any vector, prove (a) v-v = |v|% (b) 0-v = 0.

A force of 46.3 pounds is applied at an angle of 34.8° to the horizontal. Resolve the force into horizontal and
vertical components.

Ans. Horizontal: 38.0 pounds; vertical: 26.4 pounds

A weight of 75 pounds is resting on a surface inclined at an angle of 25° to the ground. Find the components
of the weight parallel and perpendicular to the surface.

Ans. 32 pounds parallel to the surface, 68 pounds perpendicular to the surface

Find the resultant of two forces, one with magnitude 155 pounds and direction N50°W, and a second with
magnitude 305 pounds and direction S55°W.

Ans. 376 pounds in the direction S78°W
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Polar Coordinates;
Parametric Equations

Polar Coordinate System

A polar coordinate system specifies points in the plane in terms of directed distances r from a fixed point
called the pole and angles 6 measured from a fixed ray (with initial point the pole) called the polar axis. The
polar axis is the positive half of a number line, drawn to the right of the pole. See Fig. 28-1.

P(r,0)

r

——&
Pole -
Polar axis
Figure 28-1

For any point P, 6 is an angle formed by the polar axis and the ray connecting the pole to P, and r is the dis-
tance measured along this ray from the pole to P. For any ordered pair (r,0), if r is positive, take 6 as an
angle with vertex the pole and initial side the polar axis, and measure r units along the terminal side of 6. If
r is negative, measure |rl units along the ray directed opposite to the terminal side of . Any pair with r = 0
represents the pole. In this manner, every ordered pair (r,0) is represented by a unique point.

EXAMPLE 28.1 Graph the points specified by (3,77/3) and (—3,7/3).

3, n/3)

(-3, n/3)
Figure 28-2

Polar Coordinates of a Point Are not Unique

The polar coordinates of a point are not unique, however. Given point P, there is an infinite set of polar
coordinates corresponding to P, since there are an infinite number of angles with terminal sides passing
through P.
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EXAMPLE 28.2 List four alternative sets of polar coordinates corresponding to the point P(3, 7/3). Adding any
multiple of 27 yields an angle coterminal with a given angle; hence (3, 777/3) and (3, 137/3) are two possible alterna-
tive polar coordinates. Since 7= + 7/3 = 4r/3 has terminal side the ray opposite to 77/3, the coordinates (—3, 47/3) and
(—3, 107/3) are further alternative polar coordinates for P.

Polar and Cartesian Coordinates

If a polar coordinate system is superimposed upon a Cartesian coordinate system, as in Fig. 28-3, the trans-
formation relationships below hold between the two sets of coordinates.

y
A
If P has polar coordinates (r, 6) and (r.8) _(x.y)
Cartesian coordinates (x, y), then
x = rcosf y = rsinf r Iy
r? = x2+y? tan6=%; (x#0) o . L3y

Figure 28-3

EXAMPLE 28.3 Convert (6, 277/3) to Cartesian coordinates.

Since r = 6 and 6 = 27/3, applying the transformation relationships yields

x = rcosf = 6¢cos2w/3 = —3 y = rsinf = 6sin2w/3 = 3V3
Thus the Cartesian coordinates are (—3, 3 \[3).

EXAMPLE 28.4 Convert (—5, —5) to polar coordinates with r > 0 and 0 = 6 < 277.

Since x = —5 and y = —5, applying the transformation relationships yields

Yy _ =5 _

r2=x2+y2=(—5)2+(—5)2=50 tan0=;—_fs—1

Since r is required positive, r = /50 = 5V/2. Since the point (=5, —5) is in quadrant III, § = 57/4. The polar coordi-
nates that satisfy the given conditions are (5 \6, S/4).

Equations in Polar Coordinates

Any equation in the variables r and # may be interpreted as a polar coordinate equation. Often r is specified
as a function of 6.

EXAMPLE 28.5 r6 = 1 and r?> = 2c0s280 are examples of polar coordinate equations. r = 2sinf and » = 3 — 3cos20
are examples of polar coordinate equations with r specified as a function of 6.

Parametric Equations

An equation for a curve may be given by specifying x and y separately as functions of a third variable, often
t, called a parameter. These functions are called the parametric equations for the curve. Points on the curve
may be found by assigning permissible values of ¢. Often,  may be eliminated algebraically, but any restric-
tions placed on ¢ are needed to determine the portion of the curve that is specified by the parametric equations.

EXAMPLE 28.6 Graph the curve specified by the parametric equations x = 1 — £,y = 2¢ + 2.

First note that ¢ can be eliminated by solving the equation specifying x for # to obtain # = 1 — x, then substituting into the
equation specifying y to obtain y = 2(1 — x) + 2 = 4 — 2x. Thus, for every value of ¢, the point (x, y) lies on the graph of
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y = 4 — 2x. Moreover, since there are no restrictions on ¢ and the functions x(¢) and y(¢) are one-to-one, it follows that x
and y can take on any value and the graph is the entire line y = 4 — 2x. Form a table of values, then plot the points and con-
nect them (Fig. 28-4).

14

tfb 0 1] 2 \4

X 1 0| -1 2
yi 2} 4y 6 1 1 2 3

-2

Figure 28-4

EXAMPLE 28.7 Graph the curve specified by the parametric equations x = cos?f, y = sin’f.

First note that ¢ can be eliminated by adding the equations specifying x and y to obtain x + y = 1. However, both vari-
ables are restricted by these equations to the interval [0, 1]. In fact, since both x and y are periodic with period 7, the
graph is the portion of the line x + y = 1 on the interval 0 = x < 1, and is traced out repeatedly as ¢ varies through all
possible real values. Form a table of values, then plot the points and connect them (Fig. 28-5).

1
t{f o} n/4 { n/2(3n/4}| &
0.5
X1 172 0 172 1
y{h o) 1/2 1 172 1 0 x
0.5 1

Figure 28-5

Polar Coordinates and Parametric Equations

According to the transformation relationships, the Cartesian coordinates of a point are given in terms of its polar
coordinates by the equations x = rcosf and y = rsinf. Hence any polar coordinate equation specifying
r = f(6) can be regarded as giving parametric equations for x and y of the form x = f(0)cos6, y = f(6)sin0,
with 6 as the parameter.

EXAMPLE 28.8 Write the parametric equations for x and y specified by » = 1 + sin6.

x = (1 + sinf)cos6 y = (1 + sinf)sinf

SOLVED PROBLEMS

28.1. Graph the points with the following polar coordinates:

(a) A4, m/6), B(6, —m/4); (b) C(—2, 5m/3), D(—5, m).

(a) (4, 7/6) is located 4 units along the ray at an (b) (—2, 57/3) is located |—2| = 2 units along
angle of 7/6 to the polar axis. (6, —m/4) is the ray directed opposite to 57/3. (=5, ) is
located 6 units along the ray at an angle of located |—5| = 5 units along the ray directed

—r/4 to the polar axis (Fig. 28-6). opposite to 7 (Fig. 28-7).
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A4, n/6)
4
JIt/l6 i L 1 1 )
1/2 3 4 5 6
~nt/4
6
B(6, -n/4)
Figure 28-6

Polar Coordinates; Parametric Equations

C(-2, 5=/3)

Figure 28-7

28.2. Give all possible polar coordinates that can describe a point P(r,0).

Since any angle of measure § + 2, where n is an integer, is coterminal with 6, any point with coordinates

(r,0 + 27rn) is coincident with (r,6). Also, since the ray forming an angle of 6 + 7r with the polar axis is directed

opposite to the ray forming angle 6, the coordinates (r,0) and (—r, # + 7r) name the same point. Finally, any

point with coordinates (—r, § + 7w + 2mn) is coincident with (—r, § + 7). Summarizing, the coordinates
(r, 0 + 2mn) and (—r, 8 + (2n + 1)7) describe the same point as (r,0).

28.3. Establish the transformation relationships between polar and Cartesian coordinates.

See Fig. 28-3. Let P be a point with Cartesian coordinates (x,y) and polar coordinates (r,0). Since P(x, y) is a point
on the terminal side of an angle 6, and r is the distance of P from the origin, it follows that

tanf = %(x # 0)

x
cos =

sin 6 =%

Hence x = rcos@ and y = rsinf. From these relationships, it follows that

x2 4+ y2 = r2cos?0 + r?sin’0 = r*(cos’0 + sin?0) = r?

The last relationship also follows immediately from the distance formula.

28.4.

Convert to Cartesian coordinates: (a) (4 \@, 4777-), (b) (—5, —£>.

2

(a) Since r = 4\6 and 6 = 47/3, it follows from the transformation relationships that

X

rcos = 4\/3 cos(4m/3) = 4\@(—1/2) - 2V3

and

y

The Cartesian coordinates are (—2\/3, —6).

rsin® = 4\V/3 sin(@w/3) = 4\V/3(—\V/312) = —6.

(b) Since r = —5 and 6§ = —x/2, it follows from the transformation relationships that

x =rcosf = —5cos(—7/2) =0

The Cartesian coordinates are (0,5).

28.5.

and y = rsinf = —5sin(—7/2) = 5.

Convert (—8 \6, 8\[2) to polar coordinates with r > 0 and 0 = 6 < 27r.

Since x = —8'\V/2 and y=28 \6, applying the transformation relationships yields

P2 =a2 4y = (—8V2) + 8V2)7 = 256

Yy 8V2
tan@—;— 8\[2_

and -1

Since r is required positive, r = V256 = 16. Since the point (—8\/2, 8\/5) is in quadrant II, 6 = 37/4.
The polar coordinates that satisfy the given conditions are (16, 37/4).
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28.6. Transform the following polar coordinate equations to Cartesian coordinates:

28.7.

28.8.

(@) r=4;(b) r =4cos0; (c) r*sin20 = 4.

(a) Since the polar coordinate equation specifies all points that are at a distance of 4 units from the origin, this
is the equation of a circle with radius 4 and center at the origin. Hence the Cartesian coordinate equation is
2 2 —
x*+ y*=16.

(b) Multiply both sides by r to obtain an equation that is easier to work with: r? = 4rcos#. This operation
adds the pole to the graph (r = 0). But the pole was already part of the graph (choose 6 = 7/2), so nothing
has been changed. Now apply the transformation relationships 7> = x2 + y2? and x = rcos# to obtain
x2 4+ y2 = 4x. This equation can be rewritten as (x — 2)> + y? = 4; thus, it is the equation of a circle with
center at (2,0) and radius 2.

(c) Rewrite r2sin26 = 4 as follows:

r?(2sinfcosf) = 4 Double angle identity
2rcosfrsinf = 4 Algebra
2xy =4 Transformation relationships

xy =2 Algebra

Transform the following Cartesian coordinate equations to polar coordinates:
(@) x+y=3;() x2+y2=3y;(c) y>=4x.
(a) Apply the transformation equations x = rcosf and y = rsiné to obtain rcosf +rsinf = 3.
(b) Apply the transformation equations x> + y? = r? and y = rsin# to obtain r> = 3rsin#. This can be further
simplified as follows:
r2 —3rsinfd =0
r(r —3sinf) =0

r=0 or r—3sin6=0
r = 3sinf

The graph of r = 0 consists only of the pole. Since the pole is included in the graph of r = 3sin6f (choose
0 = 0), it is sufficient to consider only » = 3sin# as the transformed equation.

(c) Apply the transformation equations x = rcos® and y = rsin6 to obtain r?sin>0 = 4rcos6. Proceeding as in
part (b), this can be simplified to rsin?# = 4 cosf, which can be further rewritten as follows:
4cosf
sin%6
cosf 1
sinf sinf

= 4cotf csch

Sketch a graph of r = 1 + cos#.

Before making a table of values it is helpful to consider the general behavior of the function #(#) = 1 + cos#.
From knowledge of the behavior of the cosine function:

As 0 increases cosf 1 + cosé
from O to /2 decreases from 1 to 0 decreases from 2 to 1
from /2 to 7 decreases from 0 to —1 decreases from 1 to 0
from 7 to 37r/2 increases from —1 to 0 increases from 0 to 1
from 37/2 to 2 increases from O to 1 increases from 1 to 2

Since the cosine function is periodic with period 27, this shows the behavior of 1 + cos#é for all 6. Now form a
table of values and sketch the graph (see Fig. 28-8).
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0110]| n/4 /2 3n/4 | n

.5
ri{21)17 1 03 0
6

Sn/4 | 3n/2 | Tn/4 | 27 s 1 15 X
1 1
r 0.3 7 2 d.s
Figure 28-8

The curve is known as a cardioid because of its heart shape.

28.9. Sketch a graph of r = cos286.

Before making a table of values, it is helpful to consider the general behavior of the function r(6) = cos26.
From knowledge of the behavior of the cosine function:

As 20 increases 0 increases cos20

from O to 7/2 from O to w/4 decreases from 1 to 0
from w/2 to w from 7/4 to /2 decreases from 0 to —1
from 7 to 37/2 from /2 to 37/4 increases from —1to 0
from 37/2 to 27 from 37/4 to 7 increases from 0 to 1
from 27 to 57/2 from 7 to 57/4 decreases from 1 to 0
from 57/2 to 37 from 57/4 to 3m/2 decreases from O to —1
from 37 to 77/2 from 37/2 to 7m/4 increases from —1to 0
from 77/2 to 4 from 77/4 to 2 increases from O to 1

Since the cosine function is periodic with period 27, this shows the behavior of cos26 for all 6. Now form a table
of values and sketch the graph (Fig. 28-9).

010]| n/8 n/4 | 3n/8 | m/2
rif1{07 0 -0.7 -1
0 5r/8 | 3n/4 | In/8 | =x
r -0.7 0 0.7 1
0 9n/8 | 5n/4 | 11n/8 | 3n/2
r 0.7 0 0.7 -1
0 13n/8 | Tn/4 | 15n/8 | 2n
r -0.7 0 0.7 1
Figure 28-9

The curve is known as a four-leaved rose.
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28.10. Graph the curve specified by the parametric equations x = 12,y = 1> + 2.

First note that ¢ can be eliminated by substituting x for 2 to obtain y = x + 2. However, both variables are restricted
by these equations so that x = 0 and therefore y = 2. Hence the graph is the portion of the line y = x + 2 in the first
quadrant, but is traced out twice, once for negative ¢ and once for positive z. Form a table of values, then plot the points
and connect them (see Fig. 28-10).

7Y
tll=2i-1]lol1{2 6
5
xil 4| 1]lof1]4 4
3
6] 3|2]31}6
' 2
1
X
0 1 2 3 2
Figure 28-10

28.11. Graph the curve specified by the parametric equations x = 2cost, y = 2sint.

First note that ¢ can be eliminated by squaring the equations specifying x and y and adding to obtain
x? + y?> = 4. Thus the graph consists of the circle with center the origin and radius 2, and is traced out once
each time ¢ increases by an amount 277. Form a table of values, then plot the points and draw the circle
(Fig. 28-11).

<

to n/4 n/2 | 3n/4 n

t S5n/4 | 3n/2 | ITn/4 | 2m

Figure 28-11

28.12. When a wheel of radius a rolls without slipping on a horizontal surface, the curve traced out by a point
on the rim of the wheel is called a cycloid. (a) Show that the parametric equations of a cycloid can be
written as

x = a(¢ — sing)
y=a(l — cos¢)

(b) Sketch a graph of a cycloid for a = 1.
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(a) Draw a figure (see Fig. 28-12). The parameter ¢ is the angle through which the wheel has rotated.
y

A

>

0o C
Figure 28-12

The coordinates of P, the point on the rim, are (x, y). Because the wheel rotates without slipping, the
length of arc PC is equal to the length of line segment OC. Hence x = OC — PB = a¢ — asin and
y=CB=AC — AB = a — acos¢.

(b) In this case x = ¢ — sin¢, y = 1 — cos¢. Form a table of values and connect the points. The curve
(Fig. 28-13) is shown for 0 = ¢ =< 27r; for other values of ¢ the arch shape is repeated, since y is a
periodic function of ¢.

¢ 0 /4 n/2 | 3n/4 n
x|lo]| 0.08 | 057 1.65 T

2
yi{o ] 029 1 1.71 2
i 5n/4 | 3n/2 | Tn/4 | 2% 1
x 4.63 5.71 6.20 | 2=n ' X

[ n
y 1.71 1 0.29 0
Figure 28-13

SUPPLEMENTARY PROBLEMS

28.13. Convert to Cartesian coordinates: (5,0), (5,7), (6, —7/3), (—2 \/5 3m/4), (—20, —57/2).
Ans. (5,0),(=5,0), 3, —3V/3), (2,—2), (0,20)

28.14. Convert to polar coordinates with » > 0 and 0 =< 0 < 27: (0,2), (0,—3), (—4,4), (6, *6\/5).
Ans. (2, 7/2), (3,37/2), (4 \[2 3w/4), (12, 57/3)

28.15. Transform the following polar coordinate equations to Cartesian coordinates:
(@) r=3sinb; (b) 0 =m/4;(c) r=2tanb;(d) r =1+ cos6.
Ans. (@) x>+ y2=3y;(b) y =x;(c) x* +x2? =4y% (d) x* +y* — 23 — 20y + 22 —y2 =0

28.16. Transform the following Cartesian coordinate equations to polar coordinates:
@ y=5;0) xy=4;() x>+ y>=16;(d) x> — y* = 16.
Ans. (a) r = 5cscO; (b) r?sinfcosf = 4; (c) r =4; (d) r?cos26 = 16
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28.17.

28.18.

28.19.

Sketch a graph of the following polar coordinate equations:
@ r=0 (0=60=<4m);[d) r=1+ 2sinh
Ans. (a) Fig.28-14; (b) Fig. 28-15

X

-1.5-1-0- 51 1.5
Figure 28-14 Figure 28-15

Eliminate the parameter ¢ and state any restrictions on the variables in the resulting equation:
@x=3ty=2t—5b)x=Vir—1,y=t—2;c)x=¢é,y=e".
Ans. (a) 2x—3y=15;b) y=x*—1,x=0;(c) xy=1,x,y>0

A projectile is fired at an angle of inclination @ (0 < a < #r/2) at an initial speed of v,. Parametric equations
for its path can be shown to be x = v, fcosa, y = v rsina — (gr?)/2 ( represents time).

(a) Eliminate the parameter ¢ and find the value of # when the projectile hits the ground.

(b) Sketch the path of the projectile for the case a = /6, v, = 32 ft/sec, g = 32 ft/sec’.

2v,sina
Ans. (a) y = xtana — (gx*sec’a)/(2v}); y = 0 when 1 = 7 ; (b) Fig. 28-16
4
2

x
5 10 15 20 25

Figure 28-16



CHAPTER 29

Trigonometric Form
of Complex Numbers

The Complex Plane
Each complex number in standard form, z = x + yi, corresponds to an ordered pair of real numbers (x, y) and
thus to a point in a Cartesian coordinate system, referred to as the complex plane. The x-axis in this system

is referred to as the real axis, and the y-axis as the imaginary axis.

5A
g X+ yi
éﬂ ——— co—
— _J)x
Real axis
Figure 29-1

EXAMPLE 29.1 Show 4 + 2i, —2i, and —3 — i in a complex plane.
The points are represented geometrically by (4,2), (0,—2), and (—3,—1).

y
S5i
4+2i
°
[ VT . - L1 1 L
=5 e, ?x
-3~ -2i
-Si
Figure 29-2

Trigonometric Form of Complex Numbers
If a polar coordinate system is superimposed on the Cartesian coordinate system, then the relationships
x = rcosf and y = rsin@ hold. Thus every complex number z can be written in trigonometric form:

zZ = rcosf + irsinf

= r(cosf + isinf)
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This form is sometimes abbreviated as z = rcisf. The standard form z = x + yi is referred to as rectangu-
lar form. Since the polar coordinates of a point are not unique, there are an infinite number of equivalent
trigonometric forms of a complex number. The relationships among x, y, z, r, and 8 are shown in Fig. 29-3.

ay
e A z=x+Yyi
§
'50 r |y
& I
Real axis X >x
Figure 29-3

EXAMPLE 29.2 Write S(COS% + isin %) in rectangular form.

5(003% + isin%) =50+ 1)=0+5i

Modulus and Argument of a Complex Number

In writing a complex number in trigonometric form, the quantity r is normally chosen positive. Then, since
r? = x* + y?, r represents the distance of the complex number from the origin, and is referred to as the mod-
ulus (sometimes called the absolute value) of the complex number. The absolute value notation is used, thus:

lz] = r= VX2 +)?

The quantity 6 is referred to as the argument of the complex number. Unless otherwise specified, 6 is normally
chosen so that 0 = 6 < 2.

EXAMPLE 29.3 Write z = —6 + 6i in trigonometric form and state the modulus and argument for z, choosing
0=6<2m.

—6 + 6i corresponds to the geometric point (—6, 6). Sincex = —6andy =6,r = |z] = V(—6)> + 62 = V72 = 6\/2

and tanf = % = —1. Since (—6, 6) is in quadrant II, it follows that 8 = 3777 Thus, in trigonometric form,

Z =6\/2(cos%7 + isin %T) The modulus of z is 6V/2 and the argument of z is %TW (Note that other, equally valid,

arguments for z can be obtained by adding integer multiples of 27 to the argument 377/4.)

Products and Quotients of Complex Numbers
Let z; = r/(cosf, + isinf)) and z, = r,(cosf, + isinf,) be complex numbers in trigonometric form. Then
(assuming z, # 0)

Z r
2,2, = rynlcos@, + 6,) + isin(@, + 6,)] and Z—; = 7;[005(01 —6,) + isin(9, — 6,)]

DeMoivre’s Theorem
DeMoivre’s Theorem on powers of complex numbers: Let z = r(cosf + isinf) be a complex number in
trigonometric form. Then for any nonnegative integer n,

7" = r"(cosnf + isinn6)
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Theorem on nth Roots of Complex Numbers
If z = r(cosf + isin@) is any nonzero complex number and if # is any positive integer, then z has exactly n

different nth roots wy, w, ..., w__,. These roots are given by
n + 2 . + 2
w, = w<cosenwk + ismenﬂ-k>
fork=20,1, ..., n-1.The roots are symmetrically placed and equally spaced around a circle in the com-

plex plane of radlus \/r and center the origin.

EXAMPLE 29.4 (a) Write i in trigonometric form; (b) find the two square roots of i.

(a) Since i = 0 + 1i corresponds to the ordered pair (0, 1), r = V0> + 12 = 1 and 0 = /2. Thus
i = 1[cos(7/2) + isin(7/2)].

(b) Sincen = 2,r =1, and § = 7/2, the two square roots are given by
W, = \[l(cos /2 -12- 2ak + isin /2 + 27Tk)
for k =0, 1. Thus

B w2 w2y T V2 V2

w, 1<cosf2 + i 2 ) = cos4 + zs1n4 =5 + -
_1( w/2+2w+.,7r/2+2w>_ Sm .. Sm_ V2 N2
Wl = COS ) 1S1n ) = COS 4 isin 4 = B 1 D)

Polar Form of Complex Numbers
In advanced courses, it is shown that

e? = cosf + isin@
Then any complex number can be written as
z = r(cos® + isinf) = re?

Here, unless otherwise specified, 6 is normally chosen between —ar and 7. ¢ obeys the standard properties
for exponents, hence:

Forz = re®, z; = re", z, = r,e, the previous formulas can be written:
. 1 e
2,2y, = ryrye®tt) 5" rje’("l"’z)
7' = r"e"? (DeMoivre’s theorem)

The n nth roots of z = re' are given by w, = %ef("””")’” fork =0,1,...,n — 1 (nthroots theorem).

SOLVED PROBLEMS

29.1. Write in rectangular (standard) form:
(a) 4(cos 0 + isin 0); (b) 3(005 6 + isin ) (©) 10(00557 + isin SZT)
3 . 3
-1 -1
(d) 20[cos(tan 4> + zsm(tan 4>]

(@) 4(cos0 +isin0)=4(1 +0i) =4

(b) 3(005% + isin%) = 3<\2f3 + z<%)) = %

© 10(cos > + isin>T) = 10(—\[ - \/) = —5V2 - 5iV2

4 4
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(d) Letu = tan™! % Then tanu = %, —% <u< % It follows that

3 4 . . 3
1= = = — 1= = ==
cos(tan 4) cosu = 3 and sm(tan ) sinu = 3

Hence

ZO[COS(tan*'%) + isin(tan’l%)} = 20[% + z%] =16 + 12i

29.2. Write in trigonometric form: (a) —8; (b) 3i;(c) 4 + 4i\f3; (d) —3\/5 - 31’\[2; (e) 6 — 8i.

(a) —8 = —8 + 0i corresponds to the geometric point (—8,0). Since x = —8 and y = 0,

r=VE+P=V(8P+ =8 ad =g =0.

Since (—38, 0) is on the negative x-axis, § = . It follows that —8 = 8(cosw + isinm).

(b) 3i = 0 + 3i corresponds to the geometric point (0,3). Since x = 0 and y = 3,

r=Vx+ y: = Vo +32=3 and tanf = %is undefined.

Since (0, 3) is on the positive y-axis, 6 = % It follows that 3i = 3(005% + i sin%).

(c) 4 + 4iV3 corresponds to the geometric point (4,4\/5). Sincex =4andy = 4\/5,

r=Vx+y = \/42+(4\@)2:8 and tan6:4\4/§:\/3.

Since (4, 4\/3) isin quadrant I, 0 = % It follows that 4 + 41'\/?; = 8(008% + isin%).

(d) —3\/5 - 3i\/§ corresponds to the geometric point (—3\/5,—3\/5). Sincex =y = —3\/5,
r=Vx+y = \/(—3\6)2 +(=3V22 =6 and tanf = —3V2 =1
-3V2
S5

%Tﬂ-. It follows that —3\/2 - 3i\6 = 6(005%7 + isinT).

(e) 6 — 8i corresponds to the geometric point (6, —8). Sincex = 6 and y = —8,

Since (—3 \6, -3 \6) is in quadrant I, § =

r=Ve+yY=V6+(-8>=10 and tanf= %8 = 7%_
Since (6, —8) is in quadrant IV, 6 may be chosen as tan’l(—%). However, since this is a negative angle, the

requirement that 0 = 8 < 27 yields the alternative argument § = 27 + tanfl(f%). With this argument,
6 — 8i = 10(cosf + i sinf).

29.3. Letz, = r/(cosf, + isin6,) and z, = r,(cosf, + i sin6,) be complex numbers in trigonometric form.
Assuming z, # 0, prove:
z r
(a) 2,2, = 1,7, [cos(8, + 0,) + i sin(®, + 6,)]; (b) Z—; = 7;[005(01 — 6,) + isin(6, — 6,)].
(@) 7,2, = r(cos B, + isin6 )r,(cos, + isin6,)
= rry(cos@, + isin6,)(cosf, + isinf,)

= r,ry(cos, cos, + isinf,cos, + isin, cosf, + i%sin 0,sin6,) by FOIL

In this expression, use i> = —1 and combine real and imaginary terms:
2,2, = 1 1,(cosB cosB, + isinf,cosh, + isin6 cosh, — sind, sinb,)

= rr,[(cosf, cosf, — sinf sinf,) + i(sinf,cosf, + sinf, cosb,)]
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The quantities in parentheses are recognized as cos(f, + 6,) and sin(6, + 6,), respectively, from the sum
formulas for cosine and sine. Hence

7,2, = ryr,[cos(8, + 6,) + isin(6, + 0,)]

zZ, r(cosf, + isinf) r cosf + isinf,
®) 7, = r(cosf, + isinB,)  Tycosf, + isinf,

In this expression, multiply numerator and denominator by cos6, — i sin6,, the conjugate of the
denominator, then use > = —1 and combine real and imaginary terms:

Z r; (cos®, + isinf )(cos6, — isin6,)

% Ty (cosO, + isinf,)(cosd, — isin6,)
r, cosf cosf, — icosf sinf, + isin6 cosd, — izsint9|sin492

) cos?0, — i%sin?0,

r, (cos@,cosf, + sinf,sind,) + i(sinf cosh, — cosb, sind,)

r cos?0, + sin?,

The quantities in parentheses are recognized as cos(6, — 0,) and sin(6, — 0,), respectively, from the
difference formulas for cosine and sine, while cos?6, + sin’6, = 1 is from the Pythagorean identity.
Hence

Zl

.
Z, = pleos®, = 6) + isin(6, — 6,)]

z
29.4. Letz, = 40(COSL + isin 5 ) and z, = 5(cos3l + isin3£). Find z, z, and 7;

5 5 5
223, = 40((:03* + zsmf> (cosf + isin 3577) % = %[005(4% - 3?77-) + isin (4?77 - %ﬁ)}
= 40(5)[005(* + 7) + tsin(f + 3?77)] = 8(COS 5 + isin 5)
= 200(0057?77 + isin%T)

29.5. Letz, = 24iand z, = 4\/3 — 4i. Convert to trigonometric form and find z, z, and = 1n trigonometric and in
rectangular form.

In trigonometric form:

7z, =0+ 24i = 24(cos% + isin%) and Z, = 8<cos11777 + isinlll)

6 6
Hence
b4

22, = 24(005% + isin%)S(eos 116 + zsinllTW) Z*; = %[cos(g - 11%) + isin(% - HTW)}

- ter) +isin( + 1)) = deos(=57) + isin( 7))

= 24(8)[cos(2 + 3 +is 2 + 3 = 3|cos 3 + isin 3

_ o 777)

= 192<cos 3 + isin 3
To satisfy the requirement that 0 = 6 < 277, subtract 27 from the first argument and add 27 to the second.
Thus

_ T T 4 [ 27 24]
zzz—192[cos3 +zsm3} and Zz—3COS 3 + isin 3
In rectangular form:
Z
= 192(3 + zﬁ) =96+ 96iV3 and - =3(—1+ iﬁ) _ 3,38
2 e 2 2 2 2
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29.6. Prove DeMoivre’s theorem forn = 2 and n = 3.
Choose z; = z, = z = r(cos + i sinf). Then

72 = zz = r(cos@ + isin@)r(cosh + isinf) 73 = 7% = r*(cos20 + isin20)r(cosf + isin6)
= r[cos (0 + 0) + isin(@ + 0)] = r2r[cos (20 + 0) + isin(20 + 0)]
= r%(cos20 + isin26) = r3(cos 30 + isin30)
Note: Similar proofs can be given easily for n = 4, n = 5, and so on. These suggest the validity of DeMoivre’s

theorem for arbitrary integer n. A complete proof for arbitrary integral n requires the principle of mathematical
induction (Chapter 42).

29.7. Apply DeMoivre’s theorem to find (a) {2(003 9 + isin )] (b) (—1+ i)°

5
(a) [2(005% + isinS)] = 25(005 59 + isin 59 ) 32(cos 59 + isin 597T)

(b) First write —1 + i in trigonometric form as \[2(008:%7 + isin %) Then apply DeMoivre’s theorem to

obtain

(-1 + i) = [\fZ(cos% + zsm34 )] = (\[)6<003f + zsmgg) =80 + 1i) = 8i

29.8. Show that any complex number w, = %(cos 0 +n27rk + isin 0 +n277k), for nonnegative integral k, is an

nth root of the complex number z = r(cosf + i sinf).

Apply DeMoivre’s theorem to w:

Wi = [%(cose + 2k sin® +n2”k)]" = (Vrylcos( + 2mk) + isin(8 + 27k)]

r(cos@ + isinf)

The last equality follows from the periodicity of the sine and cosine functions. Hence w, is an nth root of z.

29.9. Find the four fourth roots of 5(cos3 + i sin3).

Applying the theorem on nth roots with n = 4, r = 5, and 6 = 3, the four fourth roots are given by
w, = \%(cos 3+ 2mk +427Tk + isin 3+ 2mk +427Tk)
fork =0, 1, 2, 3. Thus

wy = %(cos% + isin%) w, = %(0033 +4277 + isin3 +4277)
w, = \%(cos3 +447T + isin3 +447T) wy = \‘yg(cosi3 +467T + isin3 +467T)

29.10. (a) Find the three cube roots of —27i; (b) sketch these numbers in a complex plane.
(a) First write —27i in trigonometric form as 27(c0s3777 + isin 3777-) Applying the theorem on nth roots
withn =3, r=27,and 0 = 37, the three cube roots are given by

w, = 3 27<cos 3w/2 ;— 2wk + isin 3m/2 ; 27Tk)

fork =0, 1, 2. Thus

w, = y 27(00 3m/2 + isi 377/2) = 3(cos + isin ) =30 + il) = 3i

3 3 2 2
o 3m/2 + 2w ..377/2+2w)_( T ..777)_<_\/§_.l__3\/§_;.
w, = 27(cos 3 + isin 3 = 3( cos 3 + isin 6 )~ 3 3 12) = > oK
= V(oo TR o 3T AT (o M 1177):3<\f3_.l):3\/§_;.
W2 COS 3 1S1n 3 COS 6 1 S1n 6 ) 12 D) 21
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(b) All three cube roots have magnitude 3, and hence lie on the circle of radius 3 with center the origin
(see Fig. 29-4).

Figure 29-4

Note that since the arguments differ by 27/3, the three cube roots are symmetrically placed and equally
spaced around the circle.
29.11. Find all complex solutions of x° + 64 = 0.

Since x® + 64 = 0 is equivalent to x® = —64, the solutions are the six complex sixth roots of —64.

Write —64 in trigonometric form as 64(cos# + isin). Applying the theorem on nth roots with n = 6, r = 64,
and 6 = m, the six sixth roots are given by

w, = 0 64(005777— +627Tk + isin T =TX +627Tk)

fork =0, 1,2, 3,4, 5. Thus the six complex solutions of x® + 64 = 0 are:
wy = 664(003% + isin%) = 2(% + i ) \[ 3+
cosf + 1sm%r) =20 +il) =2i

0s3T + jsin3T) = o - 4 i 1) - 3

(
(
= Voileos's lsin?):z(—%—fi):—ﬁ—i
(cos%
Voilcos 7

= V64

= Vo4

2

9
= Y64(cos isin gr)=2(0—i1)=—

= Vo4

ol ) =2 1) = Vi

29.12. (a) Write 3¢ in rectangular (standard) form; (b) write 6 — 6 in polar form.
i(ml3) — mo E) — (l ﬁ) _3 3\/5-
(a) 3e 3(cos3+zsm3 32+ 5 i 2+ 5 i

(b) 6 — 6i corresponds to the geometric point (6,—6). Since x = 6andy = —6,

F= Ve + = Ve + (—62=6V2 and tan6=%6= -1

Since (6,—6) is in quadrant IV, 6 = —%. It follows that 6 — 6i = 6\/2e~ ",
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29.13.

29.14.

29.15.

29.16.

. ) z
For z; = 12079, z, = 3¢, find (a) 22,5 (b) 7

(@) z,z, = (12e™)(3e'™3) = 366576773 = 36¢/7™0)_If @ is to be chosen between —r and 77, then write
36617716 = 3G—i(5T6)

z i(57/6)
1 12¢ ; ;
b — === = 461(5'”/6—77/3) — 461(77/2)
( ) 2y 3ei™3

Forz = —1 + i\/ﬁ‘;, find z* in (a) polar and (b) rectangular (standard) form.

(a) First write —1 + iV3in polar form as 2¢/®™3. Then apply DeMoivre’s theorem to obtain
(_ 1+ l\/§)3 — [261‘(277/3)]3 — 2362171' — 86277-/

(b) In standard form 8¢>™ = 8(cos2m + isin2w) = 8.

Find the three cube roots of 64674,

Applying the theorem on nth roots with n = 3, r = 64, and 6 = 5w/4, the three cube roots are given by
w, = V64elSm4+2m005 for k = 0,1,2. Thus

w. = \‘V6Ze“5ﬁ/4y3 = 4ei5m12)
0

— \3/6Zei(5ﬁ/4+2v)/3 = 41373 = 4pi(13m/12)

wy
w, = Q/aei(sw/4+4ﬂ>/z — 4oi@ITM3 = fei(Tald)
Show that e™ + 1 = 0.
e™ +1=cosm+isinm+1=—-14+0i+1=0

SUPPLEMENTARY PROBLEMS

29.17.

29.18.

29.19.

29.20.

29.21.

29.22.

Letz, = 8(003%” + isin%) and z, = cos 29 + isin 29 Find z,z, and

Z,
Ans. ziz, = —4 + 41‘\/5, 5 = 8((:05% + isin 2;)

Write —12, —8i,2 — 2i, and — V3 +iin trigonometric form.

3m ) ( am L) ( Sm 54)
Ans. 12(cosa + isin), 8(009 2 + isin 2 2\[ cos + isin 2 2| cos 3 + isin 3
Use the results of the previous problem to find (a) (—8i) (2 — 2i); (b) il i (0) (2—20).

V3 +i

Ans. (a) —16 — 16i; (b) =2 + 2i\/§; (¢) —16 — 161
Prove DeMoivre’s theorem for the casesn = 0,n = 1, and n = 4.

Show that every complex number z = r(cosf + i sinf) has exactly n different complex nth roots, for n an
integer greater than 1. [Hint: Set w = s(cos a + i sin &) and consider the solutions of the equation w" = z.]

Find the two square roots of —1 + i V3.

Vi, Ve VA e

Ans. 7+lT—T—l
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29.23. (a) Find the three complex cube roots of 1. (b) Find the four complex fourth roots of —1.

Ans. (a) 1,—%+iﬁ,—l—i¥;(b)1+i,_1+i, —loilod
V2T V2 V2T V2

2 2
29.24. (a) Write 12¢/3™ in rectangular (standard) form; (b) Write 5i in polar form.

Ans. (a) —6V2 + 6i\V/2; (b) 5¢"2

Z
29.25. Forz, = 20647, 2, = 2™, find (a) 2,2,: (b) 7.

Ans. (a) 401170 or 40e~/%; (b) 10e/76)

29.26. Forz = 1 — i, find 7’ in (a) polar and (b) rectangular (standard) form.

Ans. (a) 4V 26T (b) —4 + 4i

29.27. Find the four fourth roots of 81¢/2™3),

Ans. 3¢ = @ 3ei@nl3) = M

2

,3\/23 =30 Sy = 3 3iV3

| 3eiTml6) =
2
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Systems of Linear Equations

Systems of Equations

A system of equations consists of two or more equations, considered as simultaneous specifications on more
than one variable. A solution to a system of equations is an ordered assignment of values of the variables that,
when substituted, would make each of the equations into true statements. The process of finding the solutions
of a system is called solving the system. The set of all solutions is called the solution set of the system.
Systems with the same solution set are called equivalent systems.

EXAMPLE 30.1 Verify that (x,y) = (—4,2) is a solution to the system
V+x=0 (1)
2x +3y= -2 2)

If x = —4 and y = 2, then equation (1) becomes 2> + (—4) = 0 and equation (2) becomes 2(—4) + 3 - 2 = —2. Since these
are both true statements, (x, y) = (—4, 2) is a solution to the system.

Systems of Linear Equations

A linear equation in several variables xx,,...,x is one that can be written in the form
ax, + ayx, + ...+ ax, = b, where the g, are constants. This is referred to as standard form. If all
equations of a system are linear, the system is called a linear system; if all equations are in standard form,
the system is also considered to be in standard form.

EXAMPLE 30.2 Rewrite the system
2x + 4y = 5x — 6y (D
y+5=3x+5y 2)
in standard form.

An equation in standard form must have all variable terms on the left side and any constant terms on the right side. Here
equation (1) violates the first of these conditions and equation (2) violates both. Hence, add —5x + 6y to both sides of
equation (1) to obtain —3x + 10y = 0, and add —3x — S5y and —5 to both sides of equation (2) to obtain —3x — 4y = —5.
The resulting equations are in standard form:

—~3x+ 10y =0 3)
Bx—dy=-5 (4

Equivalent Systems

Equivalent systems of linear equations can be produced by the following operations on equations. (It is
understood that “adding two equations” means adding left side to left side and right side to right side to
produce a new equation and “multiple of an equation” means the result of multiplying left side and right
side by the same constant.)
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1. Interchanging two equations.
2. Replacing an equation by a nonzero multiple of itself.
3. Replacing an equation by the result of adding the equation to a multiple of another equation.

EXAMPLE 30.3 For the system of the previous example, find an equivalent system in which one equation does not
contain the variable x.

If both sides of equation (4) are multiplied by —1, the coefficient of x will be the opposite of the coefficient of x in equa-
tion (3). Hence, replacing equation (3) by itself added to —1 times equation (4) will achieve the required result:

14y =5 )
Bx—dy=-5 (4

Classification of Linear Systems
It is shown in advanced courses that systems of linear equations fall into one of three categories:

1. CONSISTENT AND INDEPENDENT. Such systems have exactly one solution.
2. INCONSISTENT. Such systems have no solutions.
3. DEPENDENT. Such systems have an infinite number of solutions.

Solutions of Linear Systems in Two Variables
Solutions of linear systems in two variables are found by three methods:

1. GRAPHICAL METHOD. Graph each equation (each graph is a straight line). If the lines intersect in a
single point, the coordinates of this point may be read from the graph. After checking by substitution
in each equation, these coordinates are the solution of the system. If the lines coincide, the system is
dependent, and there are an infinite number of solutions, with each solution to one equation being a
solution of the others. If neither of these situations occurs, the system is inconsistent.

2. SUBSTITUTION METHOD. Solve one equation for one variable in terms of the other. Substitute this
expression into the other equations to determine the value of the first variable (if possible). Then
substitute this value to determine the value of the other variable.

3. ELIMINATION METHOD. Apply the operations on equations leading to equivalent systems to eliminate
one variable from one equation, solve the resulting equation for this variable, and substitute this value
to determine the value of the other variable.

In methods 2 and 3, the occurrence of an equation of the form a = b, where a and b are unequal constants,
indicates an inconsistent system. If this does not occur, but all equations except one reduce to 0 = 0, the
system is dependent, and there are an infinite number of solutions, with each solution of one equation being
a solution of the others.

Solutions of Linear Systems in More than Two Variables
Solutions of linear systems in more than two variables are found by two methods:

1. SUBSTITUTION METHOD. Solve one equation for one variable in terms of the others. Substitute this
expression into the other equations to obtain a system with one fewer variable. If this process can be
continued until an equation in one variable is obtained, solve the resulting equation for this variable,
and substitute this value to determine the value of the other variables.

2. ELIMINATION METHOD. Apply the operations on equations leading to equivalent systems to eliminate
one variable from all equations except one. This leads to a system with one fewer variable. If this
process can be continued until an equation in one variable is obtained, solve the resulting equation
for this variable, and substitute this value to determine the value of the other variables.

Again, the occurrence of an equation of the form @ = b, where a and b are unequal constants, indicates an
inconsistent system. If this does not occur, but one or more equations reduce to 0 = 0, leaving fewer non-
trivial equations than there are variables, the system is dependent, and there are an infinite number of solu-
tions, with each solution of one equation being a solution of the others.
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SOLVED PROBLEMS

2
30.1. Solve the system "

(a)

(b)

(©

+3y=6 D ) Lo C
(a) graphically; (b) by substitution; (c) by elimination.
—3x—-—y=5 2)

Graph the two equations in the same Cartesian coordinate system (Fig. 30-1); the graphs are straight lines.

Figure 30-1
The two lines appear to intersect at (—3,4). It is necessary to check this result: substituting x = —3 and
y = 4 into equations (1) and (2) yields
2(=3)+3-4=6 —3(-3)—4=5
and
6=06 5=5

respectively. Thus (—3,4) is the only solution of the system.

It is correct to begin by solving either equation for either variable in terms of the other. The simplest
choice seems to be to solve equation (2) for y in terms of x to obtain

y=-3x—-5
Substitute the expression —3x — 5 for y into equation (1) to obtain

2x+3(—3x—5)=6

—Tx—-15=6
—Tx =21
x=-3
Substitute —3 for x into equation (2) to obtain
~3(-3)—y=5
9—y=5
y=4

Again, (—3,4) is the only solution of the system.

If equation (2) is multiplied by 3, the coefficient of y will “match” the coefficient of y in equation (1); that
is, it will be equal in absolute value and opposite in sign. Equation (2) then becomes

—9x—-3y=15 3)
If equation (1) is replaced by itself plus this multiple of equation (2), the following equivalent system
results:
—Tx =21 4)
—3x—y=5 2)

From equation (4), x = —3. Substituting into equation (2) yields y = 4, as before.
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y=2x+2 D

30.2. Solve the system 4y — 2y =8 2)

(a) graphically; (b) nongraphically.

(a) Graph the two equations in the same Cartesian coordinate system (Fig. 30-2); the graphs are straight lines.

y

Figure 30-2
The lines appear to be parallel. In fact, since both have slope 2, but different y intercepts, the lines are parallel;
there is no point of intersection, and the system has no solution (inconsistent system).
(b) Solve by substitution: Substitute the expression 2x + 2 for y from equation (1) into equation (2).
4x —22x+2)=8
4x —4x —4 =28
—4=38
Thus there is no solution, and the system is inconsistent.

4x + 2y =6 (1)

30.3. Solve the system
6x+3y=9 )

(a) graphically; (b) nongraphically.

(a) Graph the two equations in the same Cartesian coordinate system (Fig. 30-3); the graphs are straight lines.

4x +2y=06
Figure 30-3

The lines appear to coincide. In fact, since both have slope —2 and y-intercept 3, they do coincide.
The system is dependent; every solution of one equation is a solution of the other equation. All solutions
can be summarized as follows:

(b) Lety = ¢, where c is any real number. Then substituting ¢ for y into one equation, say (1), and solving for

x yields:
4x +2c =6
4x =6 — 2c
x:3—c
2

. . 3 — .
Hence all solutions of the system can be written as ( 3 C, c), where c is any real number.
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30.4. Show in tabular form the algebraic and geometric interpretations of the types of systems of linear equations in
two variables.

The systems are characterized as consistent and independent, inconsistent, or dependent. Algebraic interpretation
means the number of solutions; geometric interpretation means the behavior of the graphs.

Type of System Number of Solutions Behavior of Graphs
Consistent and independent One Lines intersect in one point
Inconsistent None Two lines parallel, more than two lines fail to

intersect in one point

Dependent Infinite Lines coincide

x—3y+2z=14 (1)
30.5. Solve the system 2x + 5y —z=-9 (2) (a) by substitution; (b) by elimination.
—3x—y+2z=2 3)

(a) Solve equation (1) for x to obtain
x=3y—2z+ 14 “4)
Substitute the expression 3y — 2z + 14 for x from equation (4) into equations (2) and (3).
23y —2z+ 14) + 5y —z=-9
3@y —2z+14)—y+2z=2
Simplifying yields:
11y — 5z = =37 5)
—10y + 8z = 44 6)

Solve equation (5) for y to obtain

5z — 37
YE T @)

Substitute the expression on the right for y into equation (6).
710(7SZ — 37) + 8z = 44
11
—50z + 370 + 88z = 484
38z =114
z=3

Substituting this value for z into equation (7) yields y = —2. Substituting y = —2 and z = 3 into equation
(4) yields x = 2. There is exactly one solution, written as an ordered triple (2, —2, 3).

(b) Replacing equation (2) by itself plus —2 times equation (1) will eliminate x from equation (2).
Thus:
2x + 5y —z=-9 2)
—2x + 6y — 4z = —28 (—2)- Eq. (1)
11y — 5z = =37 5)
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Similarly, replacing equation (3) by itself plus 3 times equation (1) will eliminate x from equation (3):

“3x—y+27=2 3)
3x — 9y + 67 = 42 3-Eq. (1)
—10y + 8z = 44 (6)

Solving the system (5), (6) by elimination yields the same solution as above: (2, —2, 3).

x—4y —5z=18 €))]
30.6. Solve the system 4x —2z=10 2).
Sx—4y—T7z=3 3)

Replace equation (2) by itself —4 times equation (1):

4x —2z=10 2)
—4x + 16y + 20z = —32 (—4)-Eq. (1)
16y + 18z = =22 4)

Replace equation (3) by itself plus —5 times equation (1).

5x —4y —T7z=3 3)
—5x + 20y + 257 =—40  (=5)-Eq. (1)
16y + 18z = —37 ®))

The system (1), (4), (5) is clearly inconsistent, since adding —1 times equation (4) to equation (5) yields 0 = —15.
Thus there is no solution.
x+y+z=1 (1)

30.7. Solve the system 2x — 2y — 10z = —6 2).
—x+3y+1lz=7 3)

Replace equation (2) by itself plus —2 times equation (1):

2x — 2y — 10z = —6 2)
—2x — 2y — 2z=-2 (=2)-Eq. (1)
—4y — 12z = -8 4)

Replace equation (3) by itself plus equation (1):
—x+ 3y + 1lz=7 3)
x+y +z=1 D
4y + 12z =8 5)

The system (1), (4), (5)

xt+y+z=1 @))]
—4y — 12z = -8 4)
4y + 12z =8 %)

is clearly dependent, since replacing equation (5) by itself plus equation (4) yields
x+y+z=1 (D)
—4y — 12z = —8 4
0=0 (6)
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30.8.

30.9.

Thus there is an infinite number of solutions. To express them all, let z = ¢, ¢ any real number. Then solving
—4y — 12¢ = —8 for y yields y = 2 — 3c. Substituting y = 2 — 3¢ and z = ¢ into equation (1) yields

x+2—-3c+c=1
x=2c—1

Thus all solutions can be written as ordered triples (2c — 1, 2 — 3c, ¢), ¢ any real number.

$8000 is to be invested, part at 6% interest, and part at 11% interest. How much should be invested at each rate
if a total return of 9% is desired?

Use the formula / = Prt with ¢ understood to be one year. Let x = amount invested at 6% and y = amount
invested at 11%; a tabular arrangement is helpful:

P: Amount Invested | r: Rate of Interest | I: Interest Earned

First account X 0.06 0.06x
Second account y 0.11 0.11y
Total investment 8000 0.09 0.09(8000)

Since the amounts invested add up to the total investment,
x +y = 8000 €))

Since the interest earned adds up to the total interest,

0.06x + 0.11y = 0.09(8000) 2)

The system (1), (2) can be solved by elimination. Replace equation (2) by itself plus —0.06 times equation (1):

0.06x + 0.11y = 0.09(8000) 2)
—0.06x — 0.06y = —0.06(8000) (—0.06) - Eq. (1)
0.05y = 0.03(8000) 3)

Hence y = 4800. Substituting into equation (1) yields x = 3200, hence $3200 should be invested at 6% and
$4800 at 11%.

Find a, b, and ¢ so that the graph of the circle with equation x> + y> + ax + by + ¢ = 0 passes through the
points (1,5), (4,4), and (3,1).

If a point lies on the graph of an equation, the coordinates of the point satisfy the equation. Hence, substitute, in
turn, (x, y) = (1,5), (x, y) = (4,4), and (x, y) = (3,1) to obtain

1+25+al+b5+c=0 a+5b+c=-26 (1)
16+16+a4+b4+c=0 or, simplifying 4a +4b +c= —32 2)
9+1+a3+bl +c=0 3a+b+c=-10 3)
To solve the system (1), (2), (3), eliminate a from equations (2) and (3) as follows:
a+5b+c=-26 (1)
—16b —3c =172 4)=Eq.(2) + (—4)-Eq. (1)
—14b — 2¢ = 68 (5) =Eq.(3) + (—3)-Eq. (1)
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Now eliminate b from equation (5) by replacing it with itself plus —7/8 times equation (4).

a+5b+c=-26 (1)

—16b — 3¢ =172 )
2 =5 ©)
Finally, solve equation (6) to obtain ¢ = 8 and substitute in turn into equations (4) and (1) to obtain b = —6

and a = —4.

The equation of the circle is x> + y> — 4x — 6y + 8 = 0.

SUPPLEMENTARY PROBLEMS

2x — 3y =4 6x — 4y =8 2y =3x + 4
30.10. Solve the systems (a) * Y (b) u Y (©) Y *
3x + 2y =19 9x — 6y = 12 9% — 6y =4

Ans. (a) (5, 2); (b) <2C37+4, c), ¢ any real number; (¢) no solution

3x—2y=0 x—3y=0 x+2y=2
30.11. Solve the systems (a) x + 3y =0 (b) 2x + 3y =2 c) 2x—y=3
2x —y=0 —x+y=1 3x+y=5

Ans. (a) (0, 0); (b) no solution; (c) (%, %)

30.12. Solve the systems:

x+y+z=5 xty—2z=4 —x +2y+2z=—13
(a) x—4y —3z=11 b) 2x =5y +z=17 ) 5Sx+y—8=0
—2x + 2y + 5z = =30 x+8 —Tz=2 3x —y=12

Ans. (a) (7,2,—4); (b) no solution; (c) (2,—6,%)

2x —y—z=0 x+ty—z=15
3x — 3y —6z=-—15
30.13. Solve the systems(a) x —y +z=0 b)) 3x—y+z=3 (©)
—2x+ 2y +4z=10
3x+2y+z=0 y—z=3

Ans. (a) (0,0,0); (b) (2,3 + ¢, ¢), c any real number; (c) (¢ +2d — 5, ¢, d), ¢ and d any real numbers

30.14. $16,500 was invested in three accounts, yielding an annual return of 5%, 8%, and 10%, respectively. The
amount invested at 5% was equal to the amount invested at 8% plus twice the amount invested at 10%. How
much was invested at each rate if the total return on the investment was $1085?

Ans.  $9500 at 5%, $4500 at 8%, $2500 at 10%

30.15. Find a, b, and ¢ so that the equation of the parabola y = ax? + bx + ¢ passes through (1,4), (—1,6), and (2,12).

Ans. a=3,b=—-1,c=2



Gaussian and Gauss-Jordan
Elimination

Matrix Notation

Elimination methods for solving systems of equations are carried out more efficiently by means of matrices.
A matrix is a rectangular array of numbers, arranged in rows and columns and enclosed in brackets, thus:

The numbers are called elements of the matrix. The above matrix would be said to have three rows (first
row: a, a,, a,, a,, and so on) and four columns, and would be called a matrix of order 3 X 4. The
elements are referred to by two subscripts; thus, the element in row 2, column 3 is element a,,. A matrix
may have any number of rows and any number of columns; a general matrix is said to have order m X n,

thus, m rows and n columns.

Row-Equivalent Matrices

Two matrices are said to be row-equivalent if one can be transformed into the other by successive applica-
tions of the following row operations on matrices:

1. Interchange two rows. (Symbol: R, <> R)
2. Replace a row by a nonzero multlple of itself. (Symbol: kR, — R)
3. Replace a row by itself plus a multiple of another row. (Symbol kR, + R.— R)

Note the exact correspondence to the operations that result in equivalent systems of equations (Chapter 30).

EXAMPLE 31.1 Given the matrix [5

) 6:|’ show the result of applying, in turn, (a) R <> R,;

(b) 5R, > R, (c) —5R, + R, >R,

2 6
(a) R, <> R, interchanges the two rows to yield [5 _2:|.

1 3
(b) %Rl — R, replaces each element in the new first row 2 6 by one-half its value to yield [5 _2:|.
(c) —5R, + R, — R, replaces each element in the new second row by itself plus —5 times the corresponding element

1 3
in the first row —5 —15 to yield .
0 -17
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Matrices and Systems of Linear Equations

To every linear system of m equations in n variables in standard form there corresponds a matrix of order
m X n + 1 called the augmented matrix of the system. Thus to the system:

3x + 5y —2z=4 3 5 =2 4
—2x — 3y =6 corresponds the augmented matrix -2 -3 0 6
2x +4y + z= -3 2 4 1 -3

The vertical bar has no mathematical significance and serves only to separate the coefficients of the variables
from the constant terms.

Row-Echelon Form of a Matrix
A matrix is in row-echelon form if it satisfies the following conditions:

1. The first nonzero number in each row is a 1.

2. The column containing the first nonzero number in each row is to the left of the column containing the
first nonzero number in rows below it.

3. Any row containing only zeros appears below any row having any nonzero numbers.

EXAMPLE 31.2 Perform row operations to find a matrix in row-echelon form that is row-equivalent to the matrix

1 -1 3

32| -1
N B T S S Bl R Il B
302 -1 T R0 5| —10)5 T o 1| 2

Gaussian Elimination
Gaussian elimination (with back substitution) is the following process for solving systems of linear equations:

. Write the system in standard form.

. Write the augmented matrix of the system.

. Apply row operations to this augmented matrix to obtain a row-equivalent matrix in row-echelon form.

. Write the system of equations to which this matrix corresponds.

. Find the solution of this system; it can be solved readily by substituting values from each equation into
the one above it, starting with the last nonzero equation.

DN W =

x —y=3 . T
by Gaussian elimination.

EXAMPLE 31.3 Solve the system
3x+2y=-1

I -1 3
The system is in standard form. The augmented matrix of the system is [3 ) ‘ 1 }, considered in the previous
example.

—y=3

X
:|. This matrix corresponds to the system —

1
Reducing this to row-echelon form yields |:0 ! ‘ 5

Thus y = —2. Substituting this into the first equation yields x — (—2) = 3 or x = 1. Thus the solution of the system is (1, —2).

Reduced Row-Echelon Form

A matrix is in reduced row-echelon form (often called just reduced form) if it satisfies the conditions for
row-echelon form and, in addition, the entries above the first 1 in each row are all 0.

1 -1 3
EXAMPLE 31.4 Find a matrix in reduced form that is row-equivalent to the matrix |:0 ’ 2} from

Example 31.2. 1
1 -1 3 1 0 1
R, + R, = R,
0 1] -2 0 1| -2
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Note that the solution of the system can be read off immediately after writing the system that corresponds to this matrix
x=1,y=-2).

Gauss-Jordan Elimination

Gauss-Jordan elimination is the following process for solving systems of linear equations:

1.
2.
3.

4.
5.

Write the system in standard form.

Write the augmented matrix of the system.

Apply row operations to this augmented matrix to obtain a row-equivalent matrix in reduced row-
echelon form.

Write the system of equations to which this matrix corresponds.

Find the solution of this system. If there is a unique solution, it can be read off immediately. If there
are infinite solutions, the system will be such that after assigning arbitrary real values to undetermined
variables, the other variables are immediately expressed in terms of these.

The process of finding a matrix in row-echelon form or reduced row-echelon form that is row-equivalent to a

g
a

iven matrix thus plays a key role in solving systems of linear equations. This process is usually abbreviated
s “Transform to row-echelon (or reduced row-echelon) form.”

SOLVED PROBLEMS

31.1. Show the result of applying (a) R, <> R;; (b) —%Rz — R,; (¢) 2R, + R, — R, to the matrix

5 3 =2 3
-3 6 12 | =3 |
1 0 —4 5
1 0 —4 5
(a) R, <> R, interchanges rows 1 and 3, yielding| =3 6 12 | =3 |.
5 3 2 3

5 3 —213
(b) _%Rz — R, replaces row 2 by —% times itself, yielding | 1 -2 —4 | 1.
1 0 —41]5

-1 15 22| -3
(¢) 2R, + R, — R, adds row —6 12 24 |—6 to the existing row 1, yielding| =3 6 12 | =3 |.
1 0o —4 5
1 2 =2 3
31.2. Transform the matrix | 2 5 0 | —7 | torow-echelon form.

37 -2 |4

The first element in row 1 is a 1. Use this to produce zeros in the first position in the lower rows:

12 2| 3 12 —2| 3
R, + (2R, > R,

205 0T SR R 1 4| -13

307 -2 | -4) Pl 4| -3

The first nonzero element in row 2 is now a 1. Use this to produce a zero in the corresponding position in the

last row.
1 2 -2 3 1 2 =2 3
0 1 4 | -13 (R, + (DR, > R,| 0 1 4 | —13
0 1 4 | —13 0 0 0 0

This matrix is in row-echelon form, and is row-equivalent to the original matrix.
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31.3. Generalize the procedure of the previous problem to a general strategy for transforming the matrix of an
arbitrary system to row-echelon form.

1. By interchanging rows if necessary, obtain a nonzero element in the first position in row 1. Replace row 1
by a multiple to make this element a 1.

2. Use this element to produce zeros in the first position in the lower rows.

3. If this produces rows that are zero to the left of the vertical bar, or all zeros, move these rows to the bottom.
If there are no other rows, stop.

4. If there are nonzero elements in rows below the first, move the row with the leftmost nonzero element to
row 2. Replace row 2 by a multiple to make this element a 1.

5. Use this element to produce zeros in the corresponding position in any rows below row 2 that are nonzero
to the left of the vertical bar.

6. Proceed as in steps 3 to 5 for any remaining rows.

x+2y—2z=3
31.4. Solve the system 2x + Sy = —7 by Gaussian elimination.
3x+ 7y —2z=—4

The augmented matrix of the system is the matrix of Problem 31.2. Transforming to row-echelon form yields

the matrix
1 2 =2 3 x+2y—22=3 (¢))
0 1 4 | —13 | which corresponds to the system y+4z=-13 2)
0 0 0 0 0 =0 3)

This system has an infinite number of solutions. Let z = r, r any real number. Then from equation (2),
y = —13 — 4r. Substituting back into equation (1) yields:

x+2(=13—4r)—2r=3
x=10r + 29

Thus all solutions of the system can be written as (10r + 29, —13 — 4r, r), r any real number.

0 -1 1 2 2

b0 2 =3 educed helon f
O _1 1 3 3 O reduced row-ecnelon rorm.

-2 -1 -3 9 | 11

31.5. Transform the matrix

O N = =

The first element in row 1 is a 1. Use this to produce zeros in the first position in the lower rows:

1o -r 1 2] 2 1 0 -1 1 2| 2

1 0 2 3| 4|R,+(-DR>R[0 1 1 1 =5|-6

20 -1 1 3| 3R+ (2R ->R|0 0 1 -1 —1]-1

0 -2 -1 =3 9] 11 0 -2 -1 -3 91|11
Now the first nonzero element in row 2 is a 1. Use this to produce zeros in the position below it in the lower
rows (only row 4 lacks a zero).

1 0 -1 1 2 2 1 0 -1 1 2 2
0 1 1 1 -5 | -6 R 4R R 0 1 1 1 -5 1| -6
0 0 I -1 -1 | -1/|"* 2 410 0 1 -1 -1 -1
0o -2 -1 -3 9 | 11 0 0 1 -1 -1 | -1

Now the first nonzero element in row 3 is a 1. Use this to produce a zero in the position below it in row 4.

1o -1 1 2| 2 1o -1 1 2| 2
01 1 1 -5|-6 01 1 1 -5|-6
R, + (-DR, > R,

00 1 -1 -1]-1 : 0 1 -1 -1]-1
00 1 -1 —-1]-1 00 0 0 0] 0
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31.6.

31.7.

This matrix is in row-echelon form. To produce reduced row-echelon form, use the leading 1 in each row to
produce zeros in the corresponding position in the rows above, starting from the bottom row.

1 0 -1 1 2 2 1 0 0 0 1 1
0 1 1 1 =-5| -6 R, + R, — R, 0O 1 0 2 -4 | -5
0 0 1 -1 -1 |-1|R,+(—DR,—R,J0 0 1 -1 —1]—1
0 0 0 0 0 0 0 0 O 0 0 0
This matrix is in reduced row-echelon form.
Solve by Gauss-Jordan elimination:
X, —x, + x, +2x,=2
x, +x, +2x, — 3x,= —4
2x, —x, + x,+3x,=3

—2x, = x; — 3x, + 9x, = 11

The augmented matrix of the system is the matrix of Problem 31.5. Transforming to reduced row-echelon
form yields the matrix

1 0 0 0 1 1

01 0 2 —4]|-5 i o= oM
00 1 -1 —1|<1 which corresponds to the system X, + 2x,— 4x; = =5 2)
000 0 0] 0 HoTs Ts=oh )

This system has an infinite number of solutions. Let x; = r, x, = s, r and s any real numbers. Then from equation
(3), x, = r + s — 1; from equation (2), x, = 4r — 2s — 5; and from equation (1), x, = 1 — r. Thus all solutions
can be written as (1 — r, 4r — 2s — 5, r + s — 1, 5, r), r and s any real numbers.

Pumps A, B, and C, working together, can fill a tank in 2 hours. If only A and C are used, it would take
4 hours. If only B and C are used, it would take 3 hours. How long would it take for each to fill the tank,
working separately?

Lett, t,, and ¢, be the times for pumps A, B, and C, respectively. Then the rate at which each pump works can
be written as r, = 1/t, r, = 1/t,, and r, = 1/t,. Using quantity of work = (rate)(time), the following tabular
arrangement can be made:

RATE TIME QUANTITY OF WORK
Pump A r, 2 2r,
Pump B r, 2 2r,
Pump C r, 2 2r,

Thus, if all three machines working together can fill the tank in 2 hours,
2r + 2r, + 2r, = 1 (1)
Similarly,
dr +4r, =1 2)
3r,+3r,=1 3)
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The system (1), (2), (3) has the augmented matrix

2 2 211 1 0 O 1/6
4 0 4 | 1 |which transforms to the reduced row echelonform |0 1 0 1/4
0 3 3|1 0O 0 1] 1/12

Thus, r, = 1/6 job/hr, r, = 1/4 job/hr, and r, = 1/12 job/hr. Therefore, ¢, = 6 hr for pump A to fill the tank,
t, = 4 hr for pump B to fill the tank, and #, = 12 hr for pump C to fill the tank, working alone.

31.8. An investor has $800,000 that she wishes to divide among Certificates of Deposit (CDs) paying 6%
interest, mutual funds paying 10% interest, growth stocks paying 12% interest, and venture capital paying
14% interest. Fox tax reasons, she wants to plan for an annual return of $78,000, and she wants to have
the total of all other investments three times the amount invested in CDs. How should she divide her
investment?

Let x, = amount invested in CDs, x, = amount invested in mutual funds, x, = amount invested in growth
stocks, and x, = amount invested as venture capital. Form a table:

AMOUNT INVESTED RATE OF INTEREST INTEREST EARNED
CDs X, 0.06 0.06x,
Mutual funds X, 0.1 0.1x,
Growth stocks X, 0.12 0.12x,
Venture capital X, 0.14 0.14x,

Since the total investment is $800,000, x, + x, + x, + x, = 800,000 €))]
Since the total income is $78,000, 0.06x, + 0.1x, + 0.12x, + 0.14x, = 78,000 2)
Since the total of other investments is to equal three times the amount invested in CDs,

x, + x, + x, = 3x,, or in standard form, =3x, + x, + x, + x, = 0 3)

The system (1), (2), (3) has the following augmented matrix:

1 1 1 1| 800,000
0.06 0.1 0.12 0.14| 78,000
-3 1 1 1 0

Transforming this to reduced row-echelon form yields:

1 0 0 0 | 200,000
0 1 0 -1 300000
0 0 1 2 | 300,000
This corresponds to the system of equations:
X, = 200,000
X, — x, = 300,000

x, + 2x, = 300,000

This has an infinite number of solutions. Let x, = r. Then all solutions can be written in the form

(200000, 300000 + r, 300000 — 27, r). Thus the investor must put $200,000 into CDs, but has a wide range of further
options meeting the given conditions. An amount r put into venture capital requires an amount $300,000 more in mutual
funds, and an amount $300,000 — 2r in growth stocks. As long as these are all positive, the conditions of the problem are
satisfied; for example, one solution would be to let » = 100,000, then x, = $200,000 in CDs, x, = $400,000 in mutual
funds, x, = $100,000 in growth stocks, and x, = $100,000 in venture capital.
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SUPPLEMENTARY PROBLEMS

31.9.

31.10.

31.11.

32.12.

31.13.

Transform to row-echelon form:

2 s| 3 2 5| 3 2 5|3
@ [4 -2 —6:| ® [4 10‘ —6:| © [4 10‘6}

1 s e 1 52| 3 1 sn | e
Ans. ; ;
ns. (@ [0 1 ‘ 1} ®) [o 0 ‘ —12} © [0 0 ‘ 0}

Solve, using the information from the previous problem:

2x + 5y =3 2x + 5y =3 2x + 5y =3
(a _ (b) _ (©) _
4dx — 2y = —6 4x + 10y = —6 4x + 10y = 6
. 3 —5r
Ans. (a) (—1, 1); (b) no solution: (c) 5 »T) rany real number.
Transform to reduced row-echelon form:
2 3 8 2 3 —41]8 1 3 4 511
@ |3 -—-1]12 b [3 4 5|6 ©[3 5 2 617
5 2|20 1 1 —-1]2 4 8 6 1118
1 0] 4 1 0 1{2 1 0 =72 =74 4
Ans. @ |0 1[0 |0 1T —-2]0;;()]|0 1 52 9/4 | —1
0 010 0 0 0] 4 0 0 0 0 0
Solve, using the information from the previous problem:
2x + 3y =8 2x + 3y — 4z =18 x, + 3x, +4x, + 5x, =1
@ 3x—y=12 (b) 3x+4y —52=6 () 3x, + 5x, + 2x, + 6x, =
S5x + 2y =20 xty—z=2 4x, + 8x, + 6x; + 11x, = 8

9
Ans. (a) (4,0); (b) no solution; (c) (4 + % + %, -1 - % - Zr, s, r), r and s any real numbers

A mixture of 140 pounds of nuts is to be made from almonds costing $4 per pound, pecans costing $6 per pound,
and brazil nuts costing $7.50 per pound. If the mixture will sell for $5.50 per pound, what possible combinations
of nuts can be made?

Ans. If t = number of pounds of brazil nuts, then any combination of 105 — 1.75¢ pounds of pecans and
35 + 0.75¢ pounds of almonds for which all three are positive; thus, 0 < < 60, 105 > 105 — 1.75¢ > 0,
and 35 < 35 + 0.75¢ < 80.



Partial Fraction Decomposition

Proper and Improper Rational Expressions

: o . (x) : : .
A rational expression is any quotient of form %, where f and g are polynomial expressions. (Here it is assumed

that f and g have real coefficients.) If the degree of f1is less than the degree of g, the rational expression is called
proper, otherwise improper. An improper rational expression can always be written, using the long division
scheme (Chapter 14), as a polynomial plus a proper rational expression.

Partial Fraction Decomposition

Any polynomial g(x) can, theoretically, be written as the product of one or more linear and quadratic fac-
tors, where the quadratic factors have no real zeros (irreducible quadratic factors). It follows that any
proper rational expression with denominator g(x) can be written as a sum of one or more proper rational
expressions, each having a denominator that is a power of a polynomial with degree less than or equal to 2.
This sum is called the partial fraction decomposition of the rational expression.

2
EXAMPLE 32.1 x)—cl—il is an improper rational expression. It can be rewritten as the sum of a polynomial and a proper
rational expression: = =x—1+ 1
P x+ 1 x+ 1
EXAMPLE 32.2 2’; I ! is a proper rational expression. Since its denominator factors as x> + x = x(x + 1), the partial
x>+ x

2x+ 1. 2x+ 1 1
is =

2+x ox2+x Y x+ D
l+ I _ x+1 I x _2x+1
X x+1 x(x+1)  x(x+1) x>+ x

fraction decomposition of as can be verified by addition:

EXAMPLE 32.3
no real zeros.

211 already in partial fraction decomposed form, since the denominator is quadratic and has

Procedure for Finding the Partial Fraction Decomposition
Procedure for finding the partial fraction decomposition of a rational expression:

1. If the expression is proper, go to step 2. If the expression is improper, divide to obtain a polynomial
plus a proper rational expression and apply the following steps to the proper expression f(x)/g(x).
2. Write the denominator as a product of powers of linear factors of form (ax + )" and irreducible quadratic
factors of form (ax?> + bx + ¢)".
3. For each factor (ax + b)", write a partial fraction sum of form:
A

Al A2 m
ax+b  a+br O Tty

where the A, are as yet to be determined unknown coefficients.
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4. For each factor (ax* + bx + ¢)", write a partial fraction sum of form:
Bx + C, Byx + C, P Bx + C,
ax> + bx + ¢ (ax* + bx + ¢)? (ax* + bx + ¢y

where the BJ. and Cj are as yet to be determined unknown coefficients.

5. Set f(x)/g(x) equal to the sum of the partial fractions from steps 4 and 5. Eliminate the denominator g(x).
by multiplying both sides to obtain the basic equation for the unknown coefficients.

6. Solve the basic equation for the unknown coefficients A, Bj, and C]

General Method for Solving the Basic Equation

1. Expand both sides.

2. Collect terms in each power of x.

3. Equate coefficients of each power of x.

4. Solve the linear system in the unknowns A, Bj, and Cj that results.

EXAMPLE 32.4 Find the partial fraction decomposition of 21

This is a proper rational expression. The denominator x> — 1 factors as (x — 1)(x + 1). Therefore, there are only two
partial fraction sums, one with denominator x — 1 and the other with denominator x + 1. Then set
4 4 i A,
X2-1 x—1 x+1

Multiply both sides by x> — 1 to obtain the basic equation
4=Ax+DH+Ax—-1
Expanding yields
4=Ax+A +Ax—A,
Collecting terms in each power of x yields
Ox+4=A +A)x+ (A —A)

For this to hold for all x, the coefficients of each power of x on both sides of the equation must be equal; hence:

A +A,=0
A —A, =4
The system has one solution: A; = 2, A, = —2. Hence the partial fraction decomposition is
4 2 -2

2—1 x—1 x+l

Alternate Method

Alternate method for solving the basic equation: Instead of expanding both sides of the basic equation, sub-
stitute values for x into the equation. If, and only if, all partial fractions have distinct linear denominators, if
the values chosen are the distinct zeros of these expressions, the values of the A, will be found immediately.
In other situations, there will not be enough of these zeros to determine all the unknowns. Other values of x
may be chosen and the resulting system of equations solved, but in these situations the alternative method is
not preferred.

EXAMPLE 32.5 Use the alternative method for the previous example.

The basic equation is

4=AC+D+AEx-1
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Substitute x = 1, then it follows that:
4=A01+D+A0-D
4=2A4A,
A =2
Now substitute x = —1, then it follows that:
4=A-1+D+AC-1-D
4=-2A,
A,=-2

This yields the same result as before.

SOLVED PROBLEMS

2 _
32.1. Find the partial fraction decomposition of %

This is a proper rational expression. The denominator factors as follows:
B—x=x(x>—-1D=x(x—Dx+1)
Thus there are three partial fraction sums, one each with denominator x, x — 1, and x + 1. Set

2+ Tx—2 A A, Ay

B —x X T x—17x+1

Multiplying both sides by x* — x = x(x — 1)(x + 1) yields

4, Ay

2
5 X+ Tx—2 _
e G Sl DI R ) vt |

A
(x x)ﬁ =x(x — DHx + 1)7l +x(x— DHx+ 1)

¥F+TIx—2=AK—-Dx+1)+Axx+1) + Ax(x — 1)

This is the basic equation. Since all the partial fractions have linear denominators, it is more efficient to apply
the alternate method. Substitute for x, in turn, the zeros of the denominator x(x — 1)(x + 1).

x=0:
=2 = A,(=1)(1) + A,0)(1) + A,0)(—1D)
-2 = —A
A =2
x=1
1247-1—-2= Ad-DA+1D)+A0M3A+ 1) +AMA-1)
6 =24,
, =3
x=—1:

(12 +7(=1) =2 =A (=1 = (=1 + 1) + A(=D)(=1 + 1) + A(=D)(=1 = 1)
—8 = 24,

A = —4

Hence the partial fraction decomposition is
X+ Tx—=2 _2 3 —4

X3 —x :}+x—l+x+l
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6x3 + 5%+ 2x — 10
6x2 —x — 2 '
This is an improper expression. Use the long division scheme to rewrite it as:
5x — 8
6x> —x — 2

32.2. Find the partial fraction decomposition of

x+ 1+

The denominator factors as (3x — 2)(2x + 1). Thus there are two partial fraction sums, one with denominator
3x — 2 and the other with denominator 2x + 1. Set

Sx — 8 A, A,

6x2—x—2_3x—2+2x+1

Multiply both sides by 6x> — x — 2 = (3x — 2)(2x + 1) to obtain

Sx=8=A2x+ 1)+ A,3x—2)

This is the basic equation. Since the zeros of the denominator involve fractions, the alternate method does not
seem attractive. Expanding yields

Sx—8=24x+A, +3Ax— 24,

Collecting terms in each power of x yields

5x— 8= (24, + 3A)x + (4, — 24,

For this to hold for all x, the coefficients of each power of x on both sides of the equation must be equal; hence:

2A,+3A,=5
A —2A,=—8
The only solution of this system is A| = —2, A, = 3. Hence the partial fraction decomposition is
6x3 + 5x2 + 2x — 10 _ -2 3
6x2 —x — 2 B o S P

- —x*+33+5x2+6x+6
X+ a8 ’

This is an improper expression. Use the long division scheme to rewrite it as:

32.3. Find the partial fraction decomposition of

33 +5x22+6x+ 6
x4+ X3

—x +

The denominator factors as x*(x + 1). The first factor is referred to as a repeated linear factor; one partial fraction
sum must be considered for each power of x from 1 to 3. Set

3x3+5x2+6x+6_A1+A2 Ay Ay

x*+ X X2 ¥ xt+1
Multiply both sides by x* + x3 = x*(x + 1) to obtain
345+ +6=Axx+ D +Axx+ 1) +AKX+1)+AN
This is the basic equation. Expanding yields
35S+ 6=AX +AX+AFX +Ax+HAx+A, +AL
Collecting terms in each power of x yields

3+ 5+ x+6=(A +AFC + (A + A+ (A, T A)x + A,



32.4.

32.5.
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For this to hold for all x, the coefficients of each power of x on both sides of the equation must be equal, hence:

A +A, =3
A +A,=5
A, +A,=6

A, =6

The only solution of this systemis A, = 5, A, = 0,A, = 6, A, = —2. Hence the partial fraction decomposition is

O - +33+52+ e+ 6 5,6 -2
s =Xt It ot i

-+ -1
Find the partial fraction decomposition of x;%lx

This is a proper rational expression. The denominator factors as follows:
X*=1=@-DE@+1D)=x—-Dx+ D2+ 1)

Thus there are three partial fraction sums, one each with denominator x — 1, x + 1, and x> + 1. Note that the
irreducible quadratic denominator x> + 1 requires a numerator of the form Bx + C,, that is, a linear rather than
a constant expression. Set

P+ -1 A4 A, +le+cl
X =1 Tx—-1 x+1 X2+ 1
Multiply both sides by x* — 1 = (x — 1)(x + 1)(x*> + 1) to obtain
P+ —-1=Ax+DFP+DH+Ax-DEP+1D+Bx+C)Hx— Dx+1)
This is the basic equation. Expanding yields
B+ —1=Ar+AX+Ax+A +AX —AxX¥+Ax— A, +BxX¥+Cx*—Bx—C,
Collecting terms in each power of x yields
B=xX*+%—1=@A +A,+B)F+A —A,+C)F+ A +A,—Bx+A —A,—C,
For this to hold for all x, the coefficients of each power of x on both sides of the equation must be equal, hence:
A +A +B =1
A —A,+C =-1

A+ A, —B =9

A —A —-C =-1
The only solution of this systemis A; = 2,A, = 3, B, = —4, C, = 0. Hence the partial fraction decomposition is
X=X+ —-1_ 2 +_3 L 4
-1 Tx—1 x+1 " 24+1

S5x° — 4x2 + 21x — 28

x4+ 1062+ 9
This is a proper rational expression. The denominator factors as x* + 10x*> + 9 = (x> + 1)(x?> + 9). There are
only two partial fractions, one each with denominator x*> + 1 and x> + 9. Each irreducible quadratic denominator
requires a linear, not a constant numerator. Set

Find the partial fraction decomposition of

5x° — 4x2 + 21x — 28 Bx+ C Bx+C,

+
x*+ 102+ 9 x2+1 x2+9
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32.6.

32.7.

Multiply both sides by x* + 10x> + 9 = (x> + 1)(x*> + 9) to obtain
5x —4x2 +21x — 28 = (Bx + CD(? +9) + (Bx + C)(x* + 1)
This is the basic equation. Expanding yields
503 —4x? +21x —28=Bx* + Cx2 + 9Bx + 9C, + B,x* + Cx* + Bx + C,
Collecting terms in each power of x yields
503 — 4x2 + 21x — 28 = (B, + B,)x* + (C, + C)x* + (9B, + B)x + 9C, + C,

For this to hold for all x, the coefficients of each power of x on both sides of the equation must be equal, hence:

B, +B,=5
C, +C,=—4
9B, + B, = 21

9C, + C, = =28
The only solution of this system is B, = 2, B, = 3, C; = —3, C, = — 1. Hence the partial fraction decomposition is

50 — 42 +21x—28 _2x—3 [ 3x—1

x4+ 102+ 9 x2+1 X2 +9

A common error in setting up a partial fraction sum is to assign a constant numerator to a partial fraction with
an irreducible quadratic denominator. Explain what would happen in the previous problem as a result of this
error.

Assume the incorrect partial fraction sum

56— 4 +21x—28 A 4,
x4+ 1022 + 9 *+1 x*+9

is set up. Multiplying both sides by x* + 10x> + 9 = (x> + 1)(x> + 9) would yield

50 -4 +2lx —28=A(+ D+ A,*+ 1)
Expanding this incorrect basic equation would yield

S50 —4x* +2lx—28=Ax*+9A, + A2+ A,
Collecting terms in each power of x would yield

503 —4x?+2lx—28=(A, + A)x* + 9A, + A,

For this to hold for all x, the coefficients of each power of x on both sides of the equation would have to be equal,
but this is impossible; for example, the coefficient of x* on the left is 5, but on the right it is 0. So the problem
has been tackled incorrectly.

33 + 14x — 3

Find the partial fraction decomposition of P82t 16

This is a proper rational expression. The denominator factors as x* + 8x2 + 16 = (x> + 4)% This is referred to
as a repeated quadratic factor; one partial fraction sum must be considered for both x* + 4 and (x*> + 4)2. Each
irreducible quadratic denominator requires a linear, not a constant, numerator. Set

3x3+14x—3:le+C1+Bzx+C2
x*+ 8% + 16 X2+ 4 2 + 4)?

Multiply both sides by x* 4+ 8x* + 16 = (x> + 4)? to obtain

38+ 14x—3=Bx+ C)x*+4)+Bx+C,
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This is the basic equation. Expanding yields

3+ 14x—3=Bx*+Cx*+4Bx+4C, + Bx + C,
Collecting terms in each power of x yields

3¢+ 14x —3=Bx*+ Cx* + 4B, + B,)x + 4C, + C,

For this to hold for all x, the coefficients of each power of x on both sides of the equation must be equal, hence:

B, =3

c, =0
4B, + B, = 14
4C, + C, = -3

The only solution of this system is B, = 3, B, = 2, C;, = 0, C, = —3. Hence the partial fraction decomposition is

3¢+ 14x -3 _ 3 +2x—3
X*+82+16 X +4 (2442

SUPPLEMENTARY PROBLEMS

32.8.

32.9.

32.10.

32.11.

32.12.

32.13.

32.14.

Find the partial fraction decomposition of H

5 6
Ans. Y+x72

. . . .. 2x + 22
Find the partial fraction decomposition of ERP

4 -2
xf3+x+4

Ans.

X33 - 22— 2x — 4

Find the partial fraction decomposition of 21
-2 3
x—1  x+1

Ans. xX*+3x—1+

4x*> — 15x — 125

Find the partial fraction d iti f
1n € partial fraction decomposition o x3 — 25x¢
5 -2 1
Ans. x+x—5+x+5
—2x2 4+ 46x — 3

Find the partial fraction decomposition of 300 T 392 — O
1 3 -2

Ans. 3t s 1ttt 3

x> — 4
3—3x2+3x— 1"

Find the partial fraction decomposition of
X

1 2 -3

: + +
R B i e

6 — x5 =3x8 +x2+3x—3
X=X '

Find the partial fraction decomposition of X

-1 3 -2
Ans. x2+T+;+x_l
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X +3x2—x—8

32.15. Find the partial fraction decomposition of 3
X+ 4x

2x3 — 4x
23+ 22+ 2+ 1

32.16. Find the partial fraction decomposition of

2 1 -3

: + +
Ans AT G i el

2x° + 42x3 + x2 + 124x + 16
x4+ 20x% + 64

32.17. Find the partial fraction decomposition of

1 —x 3x

2+ +
Ans. 2t o T e 16

S+ X+ 28 + 2% +4x — 1
(x> + 1) '

32.18. Find the partial fraction decomposition of X

x+ 1 3x — 2
X2+1 @+ 1)y

Ans.

XX+ 22— ¥ - +3x—3
x4 202 4+ 1 ’

32.19. Find the partial fraction decomposition of x

x—2 3x — 1
x2+1 @2+ 1)7?

Ans. x> —x +

5x0 — x° 4+ 33x* — 14x% + 51x* — 31x + 23
(2 + 1)2x* + 4)? ’

32.20. Find the partial fraction decomposition of

5 x+3 —2x
X2+4 (2 +4r P+ 1)?

Ans.

3x2 —6x + 6

32.21. Find the partial fraction decomposition of P

5 1 — 2x
X+1+x2*x+1

c n —c
2a(x — a) 2a(x + a)’

32.22. Show that the partial fraction decomposition of — € 5 can be written as
xX*—a



Nonlinear Systems of Equations

Definition of Nonlinear Systems of Equations

A system of equations in which any one equation is not linear is a nonlinear system. A nonlinear system may
have no solutions, an infinite set of solutions, or any number of real or complex solutions.

Solutions of Nonlinear Systems in Two Variables
Solutions of nonlinear systems in two variables can be found by three methods:

1. GRAPHICAL METHOD. Graph each equation. The coordinates of any points of intersection may be read
from the graph. After checking by substitution in each equation, these coordinates are the real solutions
of the system. Normally, only approximations to real solutions can be found by this method, but when
the algebraic methods below fail, this method can still be used.

2. SUBSTITUTION METHOD. Solve one equation for one variable in terms of the other. Substitute this expres-
sion into the other equations to determine the value of the first variable (if possible). Then substitute this
value to determine the value of the other variable.

3. ELIMINATION METHOD. Apply the operations on equations leading to equivalent systems to eliminate
one variable from one equation, solve the resulting equation for this variable, and substitute this value
to determine the value of the other variable.

— p—X

; 1+ xgraphically.

The graph of y = e™* is an exponential decay curve; the graph of y = 1 + x is a straight line.

EXAMPLE 33.1 Solve the system
y

Sketch the two graphs in the same coordinate system (see Fig. 33-1).

-1-0.50 0.5 1 1.5 2
Figure 33-1

The graphs appear to intersect at (0, 1). Substituting x = 0,y = lintoy = e *yields 1 = ¢ %or 1 = 1. Substituting into
y=1+xyields 1 =1 + 0. Thus, (0, 1) is a solution of the system. The method does not rule out the possibility of other
solutions, including nonreal complex solutions.
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y=x -2 ()
x+2x =11 2)
Substitute the expression x> — 2 from equation (1) into equation (2) for y to obtain

EXAMPLE 33.2 Solve the system by substitution.

x+26*—2)=11
Solving this quadratic equation in x yields
2 +x—15=0
2x—=5)x+3)=0
2x—5=0 or x+3=0

x=% x=-3
Substituting these values for x into equation (1) yields
_é._é)z_ v — 3y = (32 2=
x—Z‘y—(2 2 = 2 x=-3:y=(—3) 2=17

Thus the solutions are (% %) and (— 3,7).

XX +yr=1 (D
2-yp=71 Q@
Replacing equation (2) by itself plus equation (1) yields the equivalent system:

EXAMPLE 33.3 Solve by elimination:

2+y=1 (1)
22=8 (3)

Solving equation (3) for x yields

x=2 or x= -2

Substituting these values for x into equation (1) yields

x=2: 2 +yr=1 = —2- (=22 +y2 =1
y¥=-3 y?=-3
y:i\@ or y:—i\/g y:i\@ or y:—i\/g

Thus the solutions are (2, i\V/3), (2, —i\V/3), (=2, iV/3), (=2, —i\V/3).

No General Procedure Exists

There is no general procedure for solving nonlinear systems of equations. Sometimes a combination of the
above methods is effective; frequently no algebraic method works and the graphical method can be used to
find some approximate solutions, which can then be refined by advanced numerical methods.

SOLVED PROBLEMS

=52 1
33.1. Solve the system yo (1) and illustrate graphically.
x+y=2 2)
Solve by substitution: Substitute the expression x> from equation (1) into equation (2) for y to obtain the quadratic

equation

x+x2=2



33.2. Solve the system
y
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Solving yields
X+x—-2=0
x—Dx+2)=0
x=1 or x=-2
Substituting these values for x into equation (1) yields:
x=1:y=12=1 x=-2:y=(=2?%=4
Thus the solutions are (1, 1) and (=2, 4).

The graph of y = x? is the basic parabola, opening up. The graph of x + y = 2 is a straight line with slope —1
and y intercept 2. Sketch the two graphs in the same coordinate system (Fig. 33-2).

(L1

Figure 33-2

=x>+2 1
Y _ ;x 4 E2; and illustrate graphically.
Solve by substitution: Substitute the expression x> + 2 from equation (1) into equation (2) for y to obtain the

quadratic equation

X*+2=2x—4
Solving yields
X*—2x+6=0

(=2 = V(=2 - 41)(6)
X =

2(1)

x=1%iV5s
Substituting these values for x into equation (1) yields:
1+iVs:y=a+iVsr+2=-2+2\5
1-iV5:iy=0—-iV52+2=-2-2\5

X

X

Thus the solutions are (1 + i\V/5, =2 + 2iV/5)and (1 — i V5, =2 — 2iV/5).

The graph of y = x? + 2 is the basic parabola, opening up, shifted up 2 units. The graph of y = 2x —4 is a straight
line with slope 2 and y intercept —4. Sketch the two graphs in the same coordinate system and note that the
complex solutions correspond to the fact that the graphs do not intersect (Fig. 33-3).
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T
~

6
4
X
-2 -1 1 2
-2

-8
Figure 33-3

242 =4 (1)
9% + 1602 = 140 (2)

The system is most efficiently solved by elimination. Replace equation (2) by itself plus four times equation (1):

33.3. Solve the system

4y — 16x* = 16 4 - Eq. (1)
9y? + 16x2 = 140 2
13y2 = 156 3)
Solving equation (3) yields
y: =12
y = i2\/§
Substituting these values for y into equation (1) yields
y=2V3: (QV32-—42=4 y=-2V3: (=2\V3P -4l =4
=2 =2
x=V2 or x=-V2 x=V2 or x=-V2

Thus the solutions are (V'2, 2V/3), (V2, —2V3), (= V2,2V3), (- V2, —2V/3).

X2+ xy—3?=3 8
X+ 4xy +32=0 )

The system is most efficiently solved by substitution. Solve equation (2) for x in terms of y:

33.4. Solve the system

x+x+3y)=0
x+y=0 or x+3y=0
xX=-y x = -3y
Now substitute these expressions for x into equation (1):
Ifx= -y (=yP+(=yy—3*=3
—3y?=3

y=1i or y=—i



33.5.

33.6.
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Sincex = —y,wheny = i,x = —i,and wheny = —i,x = i.
Ifx = =3y: (=3y)> + (-3y)y — 3> =3
3y2=3
y=1 or y=-—1
Since x = =3y, wheny = 1,x = —3,and wheny = —1, x = 3.

Thus the solutions are (i,—1i), (—i,i), (—3,1), (3,—1).

X4+ xy—yr=—-1 e
X+ 2xy —yP =1 )
This can be solved by a combination of elimination and substitution techniques. Replace equation (2) by itself
plus —1 times equation (1):

Solve the system

x> —xy+yr=1 (=1)-Eq. (1)
X2+ 2xy—y> =1 2
xy =2 3)
Solving equation (3) for y in terms of x yields y = % Substitute the expression % into equation (1) for y to obtain:

o) B -

x2+2—i2:—1
X

x2+3—i2=0
X

*+3x2-4=0 x#0)

=D+ D =2 +2)=0
x=1 or x=—1 or x=2i or x=—2i
%: 2and whenx = —1,y = % = —2. Also, when x = 2i,y = % = —I.

Sincey = %, whenx =1,y =
and when x = —2i,y = %21 = {. Thus, the solutions are (1,2), (—1,—2), (2i,—i), and (—2i,i).

An engineer wishes to design a rectangular television screen that is to have an area of 220 square inches and a
diagonal of 21 inches. What dimensions should be used?

Let x = width and y = length of the screen. Sketch a figure (see Fig. 33-4).

21

X
Figure 33-4

Since the area of the rectangle is to be 220 square inches,
xy =220 (€))
Since the diagonal is to be 21 inches, from the Pythagorean theorem,

X2+ y? =212 2)
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The system (1), (2) can be solved by substitution. Solving equation (1) for y in terms of x yields

_ 220
X

Substitute the expression % for y into equation (2) to obtain:
2
R E-L)

48400
2

X2 +

= 441

x* + 48400 = 441x? x#0)
x* — 441x + 48400 = 0

The last equation is quadratic in x?, but not factorable. Use the quadratic formula to obtain:

| —(—441) = V(—441) — 4(1)(48400)
2(1)

441 = /881

2

441 + /881
TN 2

In the last step, only the positive square root is meaningful. Thus the two possible solutions are

X = /441% VB8l _ 1534 and  x = 441% VB8l _ 1434

Since y = 220/x, if x = 15.34, y = 14.34, and conversely. Hence the only solution is for the dimensions of the
screen to be 14.34 X 15.34 inches.

SUPPLEMENTARY PROBLEMS

=52 x =y

(b)

2
33.7. Solve the systems: (a) Y ;
4y = x3

2=y =2
Ans. (a) (0,0), 2,2): (b) (2,\V/2), 2, —\/2), (—L,i), (—1,—i)
X2+ y2 =16 *+y>=238

; (b)

33.8. Solve the systems (a ;
v Y @ v =4—-x y—x=4

Ans. (@) (40), (=3,V7), (=3,— V7): (b) (=2,2)

x2+4y2=24.(b) =82 =1
X2—4y=0"""72x2+4H*=25

Ans. (2) (V8,2), (= V8,2), 2i\V/3, —3), (=2i \/3, —3):
b V17, V2), V17, - V2), (= V17, V2), (= V17, = \V2)

33.9. Solve the systems: (a)
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y=x2*l. y=x>-2

33.10. Solve and illustrate the solutions graphically: (a) v =42 (b) y=2-2—
Ans. (a) Solutions: (—1,0), (3,8); Fig. 33-5: (b) Solutions: (—2,2), (1,—1); Fig. 33-6
Y

y

10 6

3,8
8 (3.8) 4
(-2,2)

4 -z -2 Ky\ /2’C
2,1

AN 1L -1 2 3 e

Figure 33-5 Figure 33-6

2x + 3y + xy = 16, 23 — 5xy + 22 =0

1. Ive th tems: ; (b
33 Solve the systems: (a) = 5=0 (b) 302 4+ 2uy — 32 = 15

Ans. (a) (% 2), (3,%);(1)) @2, 1), (=2, —1), (\V5,2V5), (- \V/5, —2\V/5)

33.12. A rectangle of perimeter 100 meters is to be constructed to have area 100 square meters. What dimensions are
required?

Ans. 25 + \V525by 25 — V525, or approximately 47.91 X 2.09 meters



CHAPTER 34

Introduction to Matrix Algebra

Definition of Matrix
A matrix is a rectangular arrangement of numbers in rows and columns, and enclosed in brackets, thus:

ay a4 a3 a4y
y) Gy Gy Ay
a a a a

31 32 33 34

The numbers are called elements of the matrix. The above matrix would be said to have three rows (first
row: a;,; a,, a;; a,; and so on) and four columns, and would be called a matrix of order 3 X 4. The ele-
ments are referred to by two subscripts; thus, the element in row 2, column 3 is element Ay A matrix may
have any number of rows and any number of columns; a general matrix is said to have order m X n, thus,
m rows and n columns.

Matrix Notation

Matrices are referred to by capital letters, thus: A, and by doubly subscripted lowercase letters enclosed in
parentheses, thus: (ay). If necessary for clarity, the order of the matrix is specified as a subscript, thus: A |

Xn*

Special Matrices

A matrix consisting of only one row is called a row matrix. A matrix consisting of only one column is called
a column matrix. A matrix with equal numbers of rows and columns is called a square matrix. For a square
matrix of order n X n, the elements a,,, a,,, . . ., a, are called the main diagonal elements. A matrix with
all elements equal to zero is called a zero matrix. A zero matrix of order m X n is denoted by 0 or, if the
order is clear from the context, simply 0.

mXn’

2
EXAMPLE 34.14 [5 -2 0 9]isarow matrix (order 1 X 4). {_3} is a column matrix (order 2 X 1).

-3 5 —4
0
Examples of square matrices are [4], [ 0 O}’ and 2 2 —41- { 0 0} is also a zero matrix of order 2 X 2.
9 —4

Matrix Equality

Two matrices are equal if and only if they have the same order and corresponding elements are equal, thus, given
A= (al.j) and B = (bl.i), A = B if and only if the matrices have the same order and a; = bl./. for all i and j.

Matrix Addition

Given matrices of the same order m X n, A = (al.j) and B = (bij), the matrix sum A + Bis definedby A + B =

(a; + bij), that is, A + B is a matrix of order m X n with each element being the sum of the corresponding ele-

ments of A and B. The sum of two matrices of different orders is not defined.
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Additive Inverse and Subtraction

The additive inverse, or negative, of an m X n matrix A = (al.j) is the m X n matrix —A = (—al.j). Subtrac-
tion of two matrices of the same order m X n, A = (al.j) and B = (bl.j), is definedby A — B = (aij - bl.j), that
is, A — B is a matrix of order m X n with each element being the difference of the corresponding elements
of A and B.

Properties of Matrix Addition

Given m X n matrices A, B, C, and O, the following laws can be shown to hold (O is a zero matrix):

1. COMMUTATIVE LAW: A + B=B + A

2. ASSOCIATIVE LAW: A + (B+C)=(A + B) + C
3. IDENTITY LAW: A + O = A

4. ADDITIVE INVERSE LAwW: A + (-A) = O

Product of a Matrix and a Scalar

The product of a matrix and a scalar is defined as follows: Given an m X n matrix A = (al.j) and a scalar (real
number) c, then cA = (cay), that is, cA is the m X n matrix formed by multiplying each element of A by c.
The following properties can be shown to hold (A and B both of order m X n):

c(A+ B)=cA + cB (c+ d)A = cA + dA (cd)A = c(dA)

SOLVED PROBLEMS

4 3
3
34.1. State the order of the following matrices: A = [4}; B=|5 —-2|,C= [

00—3}
6 4

4 2 2/
A has 2 rows and 1 column; itis a 2 X 1 matrix.

B has 3 rows and 2 columns; it is a 3 X 2 matrix.

C has 2 rows and 3 columns; itis a 2 X 3 matrix.

. . R 0 _ 3 =2 -3 -2 =3] .
34.2. Given the matrices A = {2 _3},3 = [_4 8]6‘ = [ 4 0 2},ﬁnd

(a A+ B;(b) —C;(c) B+ C;(d) B—A.

(a)A+B=B 0}+{3 *2}:{5 T3 o+(72)}:[8 ,2}

-3 -4 8 24 (-4  (-3)+38 -2 5
b —C = _{—3 -2 —3} _[ 3 2 3}
®) - 4 0 2] [-4 0 -2

(c) Since Bis a2 X 2 matrix and Cis a2 X 3 matrix, B + C is not defined.
3 -2 5 0 3 -5 (-2)-0 -2 =2
dB-—A= — = =
—4 8 2 -3 (—4) — 2 8 —(—3) -6 11
34.3. Verify the commutative law for matrix addition: for any two m X n matrices A and B,A + B = B + A.

LetA = (al.,.) and B = (bij). Since both A and B have order m X n, both A + B and B + A are defined and have
order m X n. Then

A+B= (a[:,.) + (b,:,.) = (al./. + b[:,.) and B+ A= (bx_'/) + (a[.j) = (b,;,' +ay)

Since for all i and j, a; + b,-,- and bl.j +a; are real numbers, a; + bl.j = blj +a; Hence A + B= B + A.
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34.4. Verify the identity law for matrix addition: for any m X n matrix A,A +0 . = A.

X

y <, = (0). Then

LetA = (al.j); by definition 0, . is an m X n matrix with all entries equal to zero, that is, 0

A+ 0, ,1s defined and has order m X n, hence
A+0, ., = (a,,j) +(0) = (al.j +0) = (al:/) =A
-2 6 2 3 =2 -3 -2 =3
34.5. Given the matrices A = { 0 -3 4},3 = [_4 8},C = [ 4 0 2},ﬁnd

(a) —2A;(b) 0B; (c) 5B + 3A;(d) —3C + 4A.

-2 6 2}_{(—2)(—2) (—2)%6 (—2)2}_[4 -12 —4}
0 =3 4] | (=20 (=2)(=3) (-24]

S [3 =21 [T o3 o-2] [o o
() 08 = 0{—4 8} - {0(—4) O(SJ - {0 0}

(c) Since 5Bis a2 X 2 matrix and 3A is a 2 X 3 matrix, 5B + 3A is not defined.
[—3 -2 —3} {—2 6 2} { 9 6 9} {—8 24 8}
-3 +4 = +
4 0 2 0o -3 4 -12 0 -6 0 —12 16
3 { 1 30 17}
-12 —12 10

34.6. Verify: If both A and B are m X n matrices, then for any scalar ¢, c(A + B) = cA + ¢B.

(a) —24 = —2[

(d —3C +4A

First note that A + B, ¢(A + B), cA, cB, and hence cA + ¢B are all defined and of order m X n.
LetA = (al:/.) and B = (bl:/.); then
¢+ B) = c((a) + (by) = cl(a, + b)) = (c(a, + b))
where the innermost multiplication is the product of two real numbers, and
cA+ cB = c(al.j) + c(b,.j) = (cai/. + cbij)

But by the distributive law for real numbers, c(al.j + bl.j) =ca; + Cbij for any i and j. Hence
c(A+B)=cA+cB

SUPPLEMENTARY PROBLEMS

3 4 =2 4 2 0 2 0
34.7. GivenA =8 0 2 |,B= 4 2,C=|-3 —4 2 |, find
1 1 -2 -4 -2 7 2 -1

(@) A+ B;(b) A+ C;(c) B— B;(d)2C.

3 6 -2 0 0 0 4 0
Ans. (a) Notdefined; (b) | 5 —4 4@ |[0 O0;|—-6 -8 4
8 3 -3 0 0 14 4 =2

34.8. Given A, B, and C as in the previous problem, find (a) 3A + 2C; (b) iB; (c) —A—2C.

9 16 —6 1 172 -3 -8 2
Ans. (a) | 18 -8 10 |; (b) 1 172 [;(c) | —2 8§ —6
17 7 -8 -1 —12 —-15 -5 4

34.9. Verify the associative law for matrix addition: for any three m X n matrices A, B, and C,
A+B+C)=A@+B) +C.
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34.10. Verify the additive inverse law for matrix addition: for any m X n matrix A,A + (=A) = O, .
34.11. Verify: for any two scalars ¢ and d and any matrix A, (c + d) A = cA + dA.

34.12. Verify: for any two scalars ¢ and d and any matrix A, (cd)A = c(dA).

34.13. The transpose of an m X n matrix A is a matrix AT formed by interchanging rows and columns of A, that is, an
n X m matrix with the element in row j, column i being a; Find the transposes of matrices

34 -2 4 2
@A=[8 0 2/ ®B=| 4 2]
11 -2 -4 =2
38 1
4 4 —4
Ans. T — . T —
ns. (a) A 4 0 1) B L 5 _2}
-2 2 -2

34.14. Verify: (a) (AT)T = A; (b) (A + B)T = AT + BT; (¢) (cA)T = cA™.



Matrix Multiplication
and Inverses

Definition of Inner Product

The inner product of a row of matrix A with a column of matrix B is defined, if and only if the number of
columns of matrix A equals the number of rows of matrix B, as the following real number: multiply each
element of the row of A by the corresponding element of the column of B and sum the results. Thus:

........... by,
j

a-b.=a.a,...a, . by, —

i 7 i1"i2 e T —ailb1j+ai2b2j+--- +al.pbpj
b .
pi
. . 3 4] . 5 9 2
EXAMPLE 35.1 Find the inner product of row 1 of with column 2 of 0 7 sl

B4 m _ 39) + 4(7) = 55

Multiplication of Matrices

The product of two matrices is defined, if and only if the number of columns of matrix A equals the number
of rows of matrix B, as the following matrix AB: Assuming A is an m X p matrix and B is a p X n matrix,
then C = AB is an m X n matrix with the element in row i, column j, being the inner product of row i of
matrix A with column j of matrix B.

3 4 5 9 2| .
EXAMPLE 35.2 LetA = and B = . Find AB.
6 -2 0o 7 8

First note that A is a 2 X 2 matrix and B is a 2 X 3 matrix, hence AB is defined and is a 2 X 3 matrix. The element in
row 1, column 1 of AB is the inner product of row 1 of A with column 1 of B, thus:

5
[3 4] {0} = 3(5) + 4(0) = 15
Continuing in this manner, form

Ap = |3®)  TAO 30)  +4D) 30 +4(8)}_[15 55 38}
T l6(5) + (=2)(0)  6(9) + (=2)(7) 6(2) + (=2)8®)] [30 40 —4
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Properties of Matrix Multiplication

In general, matrix multiplication is not commutative, that is, there is no guarantee that AB should equal BA.
In case the two results are equal, the matrices A and B are said to commute. The following properties can be
proved for matrices A, B, and C when all products are defined:

1. ASSOCIATIVE Law: A(BC) = (AB)C
2. LEFT DISTRIBUTIVE LAW: A(B + C) = AB + AC
3. RIGHT DISTRIBUTIVE LAW: (B + C)A = BA + CA

Identity Matrix

An n X n square matrix with all main diagonal elements equal to 1, and all other elements equal to 0, is
called an identity matrix, and is denoted I, or, if the order is clear from the context, /. For any n X n square
matrix A,

1 0
EXAMPLE 35.3 [, = [0 J .

Inverses of Matrices

If A is a square matrix, there may exist another square matrix of the same size, B, such that AB = BA = . If
this is the case, B is called the (multiplicative) inverse of A; the notation A~! is used for B, thus,

AATT =ATA=]

Not every square matrix has an inverse; a matrix that has an inverse is called nonsingular; a matrix that has
no inverse is called singular. If an inverse can be found for a matrix, this inverse is unique; any other inverse
is equal to this one.

_ 12
EXAMPLE 35.4 Show that B = { 5 2} is an inverse for A = [ }

3 -1 35
Multiply the matrices to find AB and BA:

AB — [1 2“—5 2} _ {1(—5) +2(3) 12) + 2(—1)} _ [1 o} -
3 5]l 3 -1 3(=5 +53) 32 +5(-1) 0

BA = {—5 2“1 2} _ [(—5)1 +23) (=2 + 2(5)} _ [1 o} _7
3-1]13 5 3D+ (=3 32 + (D5 0

SinceAB=BA=1,B=A"".

Calculating the Inverse of a Given Matrix
To find the inverse of a given nonsingular square matrix A, perform the following operations:

1. Adjoin to A the identity matrix of the same order to form a matrix schematically indicated by: [A | I].
2. Perform row operations on this matrix as in Gauss-Jordan elimination until the portion to the left of the
vertical bar has been reduced to 1. (If this is not possible, a row of zeros will appear, and the original

matrix A was in fact singular.)
3. The entire matrix will now appear as [/| A~'] and the matrix A~! can be read at the right of the vertical bar.
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1 0
EXAMPLE 35.5 Find the inverse for the matrix A = L J.
0

1

1 0
0 1

1 0
-1 1

=y 0l S 21

SOLVED PROBLEMS

First, form the matrix [1
1

}. One operation: R, + (—=1)R; — R,, transforms the portion to the left of the bar

0
_1 J is read from the right side of the bar. Checking, note that

into I and yields [1 0 ‘ },Then Al = [
0 1

5
35.1. GivenA =[3 8]and B = [2}, find the inner product of each row of A with each column of B.

There is only one row of A and only one column of B. The inner product required is givenby 3 - 5 + 8 - 2 = 31.

9
} and B = 5 |, find the inner product of each row of A with each column of B.
-2

2 1 4

35.2. GivenA =
iven {_ 3 -1 6
There is only one column of B.

The inner product of row 1 of A with this column is givenby 2 -9 + 1 - 5 + 4(—2) = 15. The inner product of
row 2 of A with the column is given by (—3)9 + (—1)5 + 6(—2) = —44.

35.3. Find the order of AB and BA, given the following orders for A and B:
(a) A:2 X3, B:3X2 (b) A:2 X3, B:3X3 (¢c) A:2 X4, B:4X3
(d) A:3 X2, B:3X2 (e) A:3X 3, B:3X3 (f) A:1 X3, B:2X2

(a) A2 X 3 matrix multiplied times a 3 X 2 matrix yields a 2 X 2 matrix for AB. A 3 X 2 matrix multiplied
times a 2 X 3 matrix yields a 3 X 3 matrix for BA.

(b) A2 X 3 matrix multiplied times a 3 X 3 matrix yields a 2 X 3 matrix for AB. A3 X 3 matrix can only be
multiplied times a matrix with three rows, thus BA is not defined.

(c) A2 X 4 matrix multiplied times a 4 X 3 matrix yields a 2 X 3 matrix for AB. A4 X 3 matrix can only be
multiplied times a matrix with three rows, thus BA is not defined.

(d) A3 X 2 matrix can only be multiplied times a matrix with two rows, thus neither AB nor BA is defined.
(e) A3 X 3 matrix multiplied times a 3 X 3 matrix yields a 3 X 3 matrix for both AB and BA.

(f) A1 X 3 matrix can only be multiplied times a matrix with three rows, thus AB is not defined. A 2 X 2 matrix
can only be multiplied times a matrix with two rows, thus BA is not defined.

9

2 ! 4} and B = 5 |, find AB and BA.

354. GivenA =
iven {_3 1 >

Since A is a 2 X 3 matrix and B is a 3 X 1 matrix, AB is defined and is a 2 X 1 matrix. The element in row 1,
column 1 of AB is the inner product of row 1 of A with column 1 of B. This was found in Problem 35.2 to be 15.
The element in row 2, column 1 of AB is the inner product of row 2 of A with column 1 of B. This was found in
Problem 35.2 to be —44. Hence
]
AB =

—44

Since B is a3 X 1 matrix, it can only be multiplied times a matrix with 1 row, thus BA is not defined.
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2
Given A = E 1} and B = [ ﬂ, find AB and BA.

Since A is a2 X 2 matrix and B is a 2 X 2 matrix, AB is defined and is a 2 X 2 matrix. Find the inner product of
each row of A with each column of B and form AB:

AB — {5(1) + 2(—8) 5(6) + 2(4)} _ {—11 38}

3(1) + 1(—8) 3(6) + 1(4) -5 22

Since Bis a2 X 2 matrix and A is a 2 X 2 matrix, BA is defined and is a 2 X 2 matrix. Find the inner product of
each row of B with each column of A and form BA:

1(5) + 6(3) 12) + 6(1)} _ [ 23 8}

BA= [(—8)5 + 4(3) (—8)2 + 4(1) —28 —12

Note that AB # BA.

Explain why there is no commutative law for matrix multiplication.

Given two matrices A and B, there are a number of ways in which AB can fail to equal BA. First, either AB or BA
may fail to be defined (for example, if A is a2 X 1 matrix and B is a 2 X 2 matrix, AB is undefined, while BA is
defined). Second, both AB and BA may be defined, but be of different orders (for example, if A is a 2 X 3 matrix
and Bis a3 X 2 matrix, AB is a2 X 2 matrix and BA is a 3 X 3 matrix). Finally, both AB and BA may be defined
and of the same order, as in the previous problem, but because AB involves the inner product of the rows of A
with the columns of B, while BA involves the inner product of the rows of B with the columns of A, AB # BA.

2 1 0
4 4 -1
Given A = 3 =2 5 |andB = [_3 2},findAB and BA.
-2 5 0

Since A is a 3 X 3 matrix and B is a 2 X 3 matrix, AB is not defined.

Since Bis a2 X 3 matrix and A is a 3 X 3 matrix, BA is defined and has order 2 X 3. Find the inner product of
each row of B with each column of A and form BA:

42) +43) + (-1)(=2) A1) + 4=2) + (—D5 40) +45) + (—1)0] _[ 22 =9 20
(=3)2) + 03) + 2(=2) (=3)(1) + 0(=2) + 2(5) (=3)0 + 0(5) + 2(0)} - {—10 7 0}

3 1 8 3 -5 -1
GivenA = {O _3}, B = [3 8}’ and C = [ 4 2], verify the associative law for matrix multiplication

(AB)C = A(BO).
First find AB and BC:

[3 1”8 3} [27 17} [8 3“—5 —1} [—28 —2}
AB = = and BC = =

0-3]|3 8 -9 —24 3 8] 4 2 17 13
Hence

ABC—{M 17“—5 —1}_{—67 7} q ABC_F IH—ZS —2}_{—67 7}
MBIC=1 o 4|l 4 2] T |-s1 -39 4 ABO=1g 21l 17 137 | =51 -39

Thus (AB)C = A(BO).

3 1 8 3 -5 -1
Given A = [ }, B = { }, and C = { }, verify the left distributive law for matrix
0 -3 3 8 4 2

multiplication A(B + C) = AB + AC.
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First find B + C and AC. (AB was found in the previous problem.)
8 3 =5 -1 3 2 3 1||—-5-1 —11 —1
Rt O R R A SRS P N
3 8 4 2 7 10 0 -3 4 2 —12 -6
Hence

3 1113 2 16 16 27 17 —11 —1 16 16
AB + O) = = and AB + AC = + = .
0 —-3]l7 10 —21—-30 -9 -24 —12 -6 —21 —30

Thus A(B + C) = AB + AC.

35.10. Verify that LA = A for any 3 X 3 matrix A.

a4 Ay
LetA = | 4 dyp Gy | Then
a3 Gy Ay
1 0 0|4 94 a3 [la,, + 0a,, + Oay,  lay, + 0ay, + Oay,  lag; + 0ay, + Oay,
IA=|0 1 0% an ay|= Oa,, + la, + Oay; Oa,, + la,, + 0a,, Oa, + la,; + Oa,,
0 0 1] % 9 A3y | Oay + 0ay + lay, Oa,, + O0ay, + lay,  Oajy + Oayy + lay,
[ay, a, ay
= |Gy Gy dy
| 931 93 Gy
Thus LA = A.

35.11. Show that/ X = X for any n X 1 matrix X.

Since I A = A for any n X n matrix A, multiplying by / must leave each column of A unchanged. Since each column
of A can be viewed as an n X 1 matrix, multiplying by /, must leave any n X 1 matrix unchanged. Thus / X = X.

35.12. Show thatif A = [a,,]is a 1 X 1 matrix with a,; # 0, then ATl = [/a,].

Since [a,,1[1/a,,] = [a,,(/a,)] = [11 = I, and [Va,lla,,] = [(1/a,)a,] = [1] = I,, it follows that [1/a, ] = [a,,]"".

1 3
35.13. Find A~ 'givenA = [ }
4 11

Form the matrix

[ = [1 3‘1 o}

4 11|10 1

Apply row operations on this matrix until the portion to the left of the vertical bar has been reduced to /.

1 3t o0 1 3010 1 ol-11 3
—4R, + R, —> R, 3R, + R, > R,
4 110 1 0 —1|-4 1 0-1| -4 1
—R2—>R2[1 O1=11 31— a1y
0 1| 4-1

Thus A™! = [_11 3}
4 —1
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2 5
35.14. Show that the matrix A = {4 10} has no multiplicative inverse.
Form the matrix
2 5/11 0
Alll =
Al {4 10 ‘ 0 1}

Applying row operations on this matrix to attempt to reduce the portion to the left of the vertical bar to / yields
[2 5 ’ 10

25’10
4 1010 1 -

—2R. + R, — R
} b 2[oo 2 1

There is no way to produce a 1 in row 2, column 2 without destroying the 0 in row 2, column 1. Thus the portion
to the left of the vertical bar cannot be reduced to / and there is no inverse for A.

35.15. Show that if an inverse B exists for a given matrix A, this inverse is unique, that is, any other inverse C is equal to B.

Assume that both B and C are inverses of A, then BA = [ and CA = I; hence BA = CA. Multiply both sides of
this true statement by B, then

(BA)B = (CA)B

By the associative law for matrix multiplication,

B(AB) = C(AB)

But, since B is an inverse for A, AB = I; hence BI = CI, thus, B = C.

5 3 4
35.16. FindA 'givenA =|2 2 3
2 0 0
Form the matrix
5 3 4|11 0 0
[AIl=]2 2 3|0 1 O
2 0 0]0 0 1

Apply row operations on this matrix until the portion to the left of the vertical bar has been reduced to /.

5 3 4(1 0 O 2 0 010 0 1 1 0 0|0 O 12
2 2 3/0 1 O|R<R(2 2 3|0 1 0 %Rl—>RI 2 2 310 1 O
2 0 00 0 1 5 3 411 0 0 5 3 411 0 0
o 0|0 0 112 1 0 0]0 0 12
R, + (=2)R, &> R, 1
R + (“5R, — R 2 310 1 -1 §R2—>R2 0O 1 32|10 12 —-112
3 ! 1o 3 411 0 =512 0 3 411 0 —52
1 0 0|0 0 112 1 0 00 0 12
R, +(=3)R,—>R,|0 1 320 12 —-12|R,+3R,—>R,|0 1 03 —4-712
0 0-12]1-32 -1 0 0-12]1-32 -1
1 0 0] 0 0 1/2
(=2)R,—>R,|0 1 0| 3-4-72]|= [1A~1
0 0 1]-2 3 2
0o 0 112
ThusA~'=| 3 —4 =7/2

-2 3 2



CHAPTER 35 Matrix Multiplication and Inverses

35.17. Show that any system of m linear equations in n variables:

apx; tanx, £ o0 Fax, = b
ayx, + ayx, + -+ +a,x =b,
a x +a. x,+ -+ +a x =b
ml™1 m272 mn”"n m

can be written as AX = B, where A is called the coefficient matrix of the system, and A, X, and B are given

respectively by:
b
ay ap ag ap, Xy 1
a a a a X b,
21 22 23 on 2
A = .. .. .. X = .. B = R
aml am2 am3 T amn xn m

With A as the m X n matrix shown and X as the n X 1 matrix shown, the product AX is the m X 1 matrix:

apx; Tapx, £ o0 Fax,
a,x, tayx, + -+ +a,x
a. x ta x + -+ +a x
ml™1 m272 mn”'n

Thus, by the definition of matrix equality, the matrix equation AX = B holds if and only if each entry of AX is
equal to the corresponding element of the m X 1 matrix B, that is, if and only if the system of equations is
satisfied. That is, the matrix equation is simply the system of equations written in matrix notation.

35.18. Show that if A is a nonsingular square matrix, then the matrix X that satisfies the matrix equation AX = B is
given by X = A”'B, where

1 b,

2 b,

X = and B=|
X, b,

Let AX = B. Then, since A is nonsingular, A~! exists; multiplying both sides of this equation by A~! yields:

ATIAX=A"'B
IX=A"'B
X=A"B

35.19. Use the result of the previous problem to solve the system of equations
x, +x,+x,=b
x, +2x, +3x, = b,
x, +x, + 2x, = b,

given(a) b, =3,b,=4,b,=5;(b) b,=—-7,b,=9,b, = —6.
The given system of equations can be written as AX = B, with

1 1 1 X, b,
A=1]1 2 3 X=1|x B=|Db,
1 1 2 X, b,
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To apply the result of the previous problem, first find A~!. Start by forming the matrix

1 1 1|1 0 O
[AIT=]1 2 310 1 O
1 1 210 0 1

Apply row operations on this matrix until the portion to the left of the vertical bar has been reduced to /.

11 1 0 11 1 1 0 0
R, + (=DR, =R, R, + (=DR, >R,
b2 30 R+ (-DR ok |O L 2T L0 R SR
11 0 0 3 ! 3o 0 1|-1 0 1]°7? 3 2
1 1 0 0 -1 1 0 o] 1-1 1
0 1 0| 1 1-2|R+CDR,->R|0 1 O 1 1-2
0 0 1]|-1 0 1 0 0 1|-1 0 1
1 -1 1
ThusA~! = 1 1 —2 |. Now the solutions of the given systems are given by X = A~'B. Hence
-1 0 1
(x7 [ 1 -1 1][? 1 -1 1][3 4
@ |%H|=| 1 1 =2||b|=] 1 1 -2||4|=]|-3|thatis,x; =4,x,= =3,x,=2.
15| -1 0 1]|bs -1 0 1]|[5 2
(x,] [ 1 -1 1][b 1 -1 1][-7 -22
® (=] 1 1 =2|bl=| 1 1 -2 9= 14| thatis,x, = —22,x,= 14,x,= L.
L5 -1 0 1][bs -1 0 1]|-6 1

Note that, in general, this method of solving systems of linear equations is not more efficient than elimination
methods, since the calculation of the inverse matrix already requires all of the steps in a Gauss-Jordan elimination.
However, the method is useful if, as in this problem, several systems with the same coefficient matrix and different
right-hand sides are to be solved.

SUPPLEMENTARY PROBLEMS

1
35.20. GivenA = L} and B = [2 4], find AB and BA.

Ans. AB = [2 4} BA = [14]
s 6 12)

35.21. GivenA={ 2 3} and B = F —2 3},findABandBA.
4 s 4 0 6

14 -4 24

Ans. AB=[
16 8 18

}, BA is not defined

35.22. If A is a square matrix, A? is defined as AA. Find A? if A is given by:

2 0
(@) [ : ”}(b) 13

1
2
! -3 - 0
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1 -1 2
Ans.  (a) { 2 ’ﬂ;(b) -1 7 17
2 2 ~7 -3 -5

3 1
0-3
multiplication (B + C)A = BA + CA.

35.23. Given A = [ },B - E z},andc - {_i _ﬂ,verify the right distributive law for matrix

35.24. An orthonormal matrix is defined as a square matrix A with its transpose equal to its inverse: AT = A1
(See Problem 34.13.) Show that

{1/\6 —1/\5}
2 o V2

is an orthonormal matrix.
35.25. For square matrices I, A, B of order n X n, verify that (a) I"' = I, (b) (A™")"' = A; (c) AB)" ' = B7'A™\.

35.26. Find inverses for

1 1
3 45 303 ] 0 0
3.0 35 1 0 1
(a) 0 1/2;(b) ;© 11 0 15| 2 -1 1} 1 0 1 0
32 4 4 6 -2 -1 -2
0 -1 0 1
13 0 35 4
Ans. (3){ };(b)l 27 ; (¢) no inverse exists; (d)L 2 —4 —1|;
0 2 91 3 3 11
-4 —3 -9
1 0-1 0
110 1 0 —1
©@501 0 1 o0
01 0 1

35.27. Use the result of Problem 35.26d to solve the system
3x+3y+z=0b
2x—y+tz=b,
—2x—y—2z=b,
for(a) by = —4,b,=0,b,=3;(b) b, =11,b,=22,b, = —11;(c) b, =2, b,= —1,b, =5.
2

Ans. @ x=0y=—lz=—1b) x=9y=—52=~1© x= 1.y = 2= =3



CHAPTER 36

Determinants and Cramer’s Rule

Notation for the Determinant of a Matrix

Associated with every square matrix A is a number called the determinant of the matrix, written det A or |Al.
Fora 1 X 1 matrix A = [a,,], the determinant is written |Al and its value is defined as |Al = a,, (Note: the
vertical bars do not denote absolute value).

Determinant of a 2 X 2 Matrix

a a
11 12 . . . 11 12
LetA = . Then the determinant of A is written: |Al = ;
ay 2 21 4n
it value is defined ay Al _
its value is defined as ’ ol = a0y, = Gy0y,.

The determinant of an n X n matrix is referred to as an n X n determinant.

EXAMPLE 36.1

.
=3.6-4-7=-10.
;

Minors and Cofactors
For any n X n matrix (aij) with n > 1, the following are defined:

1. The minor M, of element a; is the determinant of the (n — 1) X (n — 1) matrix found by deleting row i
and column j from (al.j).
2. The cofactor Aij of element a; is Al.j =(—1) +/'Mij. A cofactor is sometimes referred to as a signed minor.

8 2
EXAMPLE 36.2 Find M, and A,, for the matrix {3 _5}.

Delete row 1 and column 2 to obtain 5 —

Then M, =3andA, = (—=D'*M,, = (=1)}Q3) = —3.

a4 Ay
EXAMPLE 36.3 Find M,, and A,, for the matrix | %21 9 923 |.

a3 Gy Ay
Delete row 2 and column 3 to obtain . Hence:

M. = ay 4y
=a,d, — 4,a
23 1% 3192
a; ds
= (—1)213 = (—=1)° — = _
Ay = (=1 M,y = (=Day,a5, — aya,) = aya, — a,,a5,
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Determinant of a 3 X 3 Matrix
The determinant of a 3 X 3 matrix is defined as follows:

ay a4, 4apy
= |a a a,,| =
Al 21 22 23 ajA; tapA, TagA,
a a a

31 32 33

That is, the value of the determinant is found by multiplying each element in row 1 by its cofactor, then
adding these results. This definition is often referred to as expanding by the first row.

3 1 -2
EXAMPLE 36.4 Evaluate |2 4 1].
3 6 5
312 4 2 2 4
4 1] =31 +1(=1)1*? + (=2)(=1)i*3
1 6 s 6 3 5 3 6

=34-5-6-1)—12-5-3-1)—22:6 — 3-4)
=3-14-1-7-2-0
=35

Determinant of an n X n Matrix
The determinant of an n X n matrix is defined as

Al =ay A, ta,A, + 0 ta A

Again, the value of the determinant is found by multiplying each element in row 1 by its cofactor, then adding
these results.

Properties of Determinants
The following can be proved in general for any n X n determinant.

1. The value of the determinant may be found by multiplying each element in any one row or any one
column by its cofactor, then adding these results. (This is referred to as expanding by a particular row
or column.)

2. The value of a determinant is unchanged if the matrix is replaced by its transpose, that is, each row is
rewritten as a column. (This is referred to as interchanging rows and columns.)

3. If each element in any one row or any one column is multiplied by c, the value of the determinant is
multiplied by c.

4. If a row operation R, <> R. is performed on a determinant, that is, if any two rows are interchanged
(or if any two columns are interchanged), the value of the determinant is multiplied by —1.

5. If two rows of a determinant are equal (that is, each element of row i is equal to the corresponding
element of row j), the value of the determinant is 0. If two columns of a determinant are equal, the
value of the determinant is 0.

6. If any row or any column of a determinant consists entirely of zeros, the value of the determinant is 0.

7. If a row operation R, + kR, — R, is performed on a determinant, that is, the elements of any row are
replaced by their sum with a constant multiple of another row, the value of the determinant is unchanged.
If an analogous column operation, written C, + kC]. — C,, is performed, the value of the determinant is
also unchanged.

Cramer’s Rule for Solving Systems of Equations

1. Let
a,x + a,y = b,

ay,x + a,y = b,
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be a 2 X 2 system of equations. Define the determinants

ay Ay

2 4xn

D is the determinant of the coefficient matrix of the system, and is referred to as the determinant of the
system. D, and D, are the determinants found by replacing, respectively, the first and second columns of
D with the constants bj. Cramer’s rule states that if, and only if, D # 0, then the system has exactly one
solution, given by

2. Let
x, + a,x, + a%, =

Ay X, + ayx, + a,x, = b
X

| T oagnx, toagx; = b

ay a4, A4y b, a, a; a, b, aj a,, a, b,
D = |Gy Gy Gy| D =|b, ay, ay| D,=|dy b, ay D, = |4y A4y b,
a; 4z Ay by a,, ay ay, by ay ay  ay by

Again, D is the determinant of the coefficient matrix of the system, and is referred to as the determinant
of the system. D 1 Dss and D, are the determinants found by replacing, respectively, the first, second, and
third columns of D with the constants bj. Cramer’s rule states that if, and only if, D # 0, then the system
has exactly one solution, given by

3. Cramer’s rule can be extended to arbitrary systems of n equations in n variables. However, evalua-
tion of large determinants is time-consuming; hence the rule is not a practical method of solving
large systems (Gaussian or Gauss-Jordan elimination is generally more efficient); it is of theoretical
importance, however.

SOLVED PROBLEMS

8 4

9 4
36.1. Evaluate the determinants: (a) ; (b)
3 8 16 8

38‘

;(C)‘9 4

(a)

o 4 =9-8—-3-4=060; () 8 4 =8:-8—-16-4=0;() 3 8 =3:4-9-8=-60
308 G BT N

5 2 -2 5 2 =2
36.2. Evaluate the determinants: (a) 3 4 0;(b)|3 4 0

)

-4 2 6 8§ 6 —2



CHAPTER 36 Determinants and Cramer’s Rule

Use the definition of a 3 X 3 determinant (expanding by row 1):

(a) The value of the determinant is found by multiplying each element in row 1 by its cofactor, then adding the

results:
> 272 4 3 4
3 4 0] =5-D"! + 2(—1)'*2 + (=2)(—D'*3
2 -4 6 -4 2
-4 2 6
=54-6—-2-0)—2[3:-6—(—4)-0] —2[3-2—(—4)- 4]
=120 — 36 — 44
=40
(b) Proceed as in (a):
5 2 =2
3 4 0 =5-—1! 4 + 2(—1)'*2 3 + (=2)(—D'*3 3
8 6 —2 6 —2 8 -2 8 6

=5[4(=2) —6:0] —2[3-(=2) —8:0] —2(3-6 — 8-4) = —40 + 12 + 28 = 0

36.3. Derive the following formula for a general 3 X 3 determinant:

ay a4 4y
Ayy Gy Q| = q,.0,0py — Ay Azlzy — Qoo oy T Aiolorlyy + A 20, Ay — A120os0a
1192933 1192343, 12921933 1292343, 1392193 1392293,
a3 Az Ay
Expand the determinant by the first row:
a a a
11 12 13
a a a a a a
2 23 21 23 21 2
Gy Gy G| =g, (=D + a,(—1)1*? + a,(—DI3
A a3 dy : a3 Ay
a a a
31 32 33

= ay(ayay; = ay0y,) = a(aya5; — aya,,) + ay(aya;, — ayay)

= ay0y0yy T 10y T Ayply Ayy T Aypyyay Tt a130,,05 T G130y0y,

36.4. Property 1 of determinants states that the value of a determinant may be found by expanding by any row or
column. Verify this for the above determinant for the case of expanding by the first column.

Multiply each element of the first column by its cofactor and add the results to obtain:

ap dg

a
2 93

_ 1)1+l 12+l

apAy +oayAy, +oagAy = an(=1) + ay,(=1) ay, g a a

ay 11
a + a3l(—1) +

23
as3 2 Ay

= 4y (ayayy = A30y;) — Gy (a1, = a3,0,5) T ay(a,0,; = a50a,5)

= 04105055 T Ayy050y; T AyAyy0sy T 0y A50,3 T 03,01,0); T 03,050,

= 04,0505, — Q05305 — A0y 04 T A,0050, T 450,05, — 430,50

117722733 117723732 13722731

where the last equality follows by rearranging the order of factors and terms by the commutative and associative laws
for multiplication and addition of real numbers. The last expression is precisely the quantity derived in Problem 36.3.

5 2-3
36.5. Find the valueof | 4 0 1
-2 0 3
Use property 1 of determinants to expand by the second column. Then
5 2 -3
4 0 1|=2-D'" 5 3 + 0(A,) + 0(A,) = —2[4-3 — (=2)1] = =28
-2 0 3

where the cofactors A,, and A,, need not be evaluated, since they are multiplied by 0.



36.6.

36.7.

36.8.

36.9.
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Property 2 of determinants states that the value of a determinant is unchanged if the matrix is replaced by its
transpose, that is, each row is rewritten as a column. Verify this for an arbitrary 2 X 2 determinant.

Consider the determinant

a a

R [ (by definition)

a a 118y — dy4),

21 22

The determinant of the transposed matrix is then

a a

11 21

a a

12 22

But by the definition of the 2 X 2 determinant this must equal a a,,a,,, which is clearly the same as

. —
1% 12%1
a,,a,, — a,,a,,. Thus the value of the determinant is unchanged by interchanging rows and columns.

Property 3 of determinants states that if each element in any one row or any one column is multiplied by c, the
value of the determinant is multiplied by c. Verify this for the first row of a 2 X 2 determinant.

Consider

ca ca a

11 11 12

= Ca),ay = Cayay, = oAy ay, — ayap,) =

a a

21 22 21 22

Property 4 of determinants states that if any two rows are interchanged (or if any two columns are
interchanged), the value of the determinant is multiplied by — 1. Verify this for the two rows of a2 X 2
determinant.

Consider
a]l a12
=a,a, — a,a
a, a, 11%22 21%12
Now interchange the two rows to obtain
a4y dp
4 Ay
By the definition of the 2 X 2 determinant, this must equal a,,a,, — a,,a,, = —1(a,,a,, — a,a,,). Thus interchanging

the two rows multiplies the value of the determinant by —1.

Property 7 of determinants states that if a row operation R, + kR/. — R, is performed on a determinant, that is,
the elements of any row are replaced by their sum with a constant multiple of another row, the value of the
determinant is unchanged. Verify this for the operation R, + kR, — R, performed on a 2 X 2 determinant.

Consider

= apdy T 4y A

Now perform the operation R, + kR, — R, to obtain

a, + ka, a,+ kay,
= (a,, T kay)ay, — ay(a,, + kay)

a a

21 2
Simplifying the last expression yields
(ay, + kay)ay, — ay(a), + kay) = aa,, + kayay, — aya,, = kaya,, = a,,ay, — a,a,,,

that is, the value of the original determinant has not been changed.
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36.10. Property 7 is used to evaluate large determinants by generating rows or columns in which many zeroes appear.
[lustrate by applying property 7 to evaluate:

1 2 3 4
5 6 7
@ |5 7 9w 0 3 0 2
a 5
2 4 5 6
10 9 —1
37 8 2
567R+(—1)R—>R56 7
Ans. @ | 5 7 9 R2+(—2)Rl—>R2 1 2
10 9 —-1]°3 ! 310 =315
The latter determinant can be efficiently evaluated by expanding by the first column:
5 6 7 1
0 1 2|=5-D"! 3 15 + 0(4,) + 0(A;) = 5[1(—=15) = (=3)2] = —45
0 —-3-15
(b)
1 2 3 4 1 2 3 4
3 0 2 30 2
0 3 0 2(R,+(-2)R—>R,|0 3 0 2
- - =1(-D""f0 -1 =2|=|0 -1 =2
2 4 5 6|R,+(-3)R—R |0 0 -1 -2
1 —1-10 1 —1-10
37 8 2 0 1 —-1-10

Apply property 7 to the latter determinant to produce a second zero in column 2:

3.0 2 30 2
0 -1 —2|R,+ (-DR, >R, |0 —1 —2
1 -1-10 1 0 -8

This determinant can be efficiently evaluated by expanding by the second column:

3.0 2
0 —1 —2| =0@,,) + (—1)(—17* ? o1+ 0@, = (—DB(-8) —1-2] = 26
1 0 -8

36.11. Show that the equation of the straight line through the points (x;, y,) and (x,, y,) can be expressed as:

x y 1
x oy 1
x, vy, 1

Expanding the determinant by the first row yields
XA, +yA, + 1A, =0,

where the three cofactors do not contain the variables x and y; therefore, this is the equation of a straight line.
Now set x = x, and y = y,. Then the value of the determinant is 0, by property 5 of determinants, since two rows
are equal. Therefore, the coordinates (x,, y,) satisfy the equation of the line, hence the point is on the line.
Similarly, setting x = x, and y = y, shows that the point (x,, y,) is on the line. Hence the given equation is the
equation of a straight line passing through the two given points.

36.12. Apply Cramer’s rule for solving 2 X 2 system of equations to the systems:

3x+4y=5 Sx —Ty=3
Y - (b) y

@ ety =16 P 3+ 8y =5

(a) The determinant of the system is
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Therefore the system has exactly one solution, given by

5 4 35
_Do_[16 3] -4 _ D a6l s,
L > M A Y DT 1 T =17
(b) The determinant of the system is
5 =7
D= = 61
3 8
Therefore the system has exactly one solution, given by
3 =7 5 3
D, |5 8| 59 I BT
"D~ 61 6 YT D 6l 6l

36.13. Apply Cramer’s rule for solving 3 X 3 systems of equations to the systems:

3, +5x, —x; =4 3, +5x, — x; =4
(@ —x, +4x, +4x;, =6 ; (b) —x; +4x, +4x, =6
2x, + 5x, = =2 2x; + 9x, + 3x, = 10

(a) The determinant of the system is
5 -1
D=|—-1 4 4| =133
0 5

Therefore, the system has exactly one solution, given by

4 5 —1 3 4 -1
6 4 4 -1 6 4
_Db_ =2 0 51 _ 118 _ Dby 122 51 176
1T D 133 33 *~D 133 133
35 4
-1 4 6
Dy |2 02| ¢
» T D~ 133 - 133

(b) The determinant of the system is

305 -1
D=|-1 4 4|=0
2 9 3

Therefore Cramer’s rule cannot be used to solve the system. Gaussian elimination can be used to show

24r — 14 22 — 11r
7 7 7 , for r any real number.

that there are infinite solutions, given by (

SUPPLEMENTARY PROBLEMS

cost —sint

11 12
36.14. Evaluate the determinants: (a) ‘ 15 14 ;(©)

-5 8
> () ‘ 25 —40 sint  cost

Ans. (a) —2; (b) 0;(c) 1
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36.15.

36.16.

36.17.

36.18.

36.19.

36.20.

3 —4 -5 0 —4 -5 (3)_:_(5) 1
Evaluate the determinants: (a) |0 —4 O ;) | =4 0 8/{;(c) 5 1 7 1l
31 7 -5 8 0
0o 1 1 1

Ans. (a) —144; (b) 320; (c) 123

Verify property 5 of determinants: if two rows of a determinant are equal (or if two columns of a determinant
are equal), the value of the determinant is 0. (Hint: consider what happens when the two rows or columns are
interchanged.)

Verify property 6 of determinants: if one row of a determinant consists of all zeros, the value of the
determinant is 0.

i j k i Jj k
Evaluate the determinants (a) |2 3 4]; (b) 6 —12 8.
5-4 6 -9 18 —12

Ans. (a) 34i + 8 — 23k; (b) 0

1 1 1
Use properties of determinants to verify: | a b ¢ | = (a — b)(b — ¢)(c — a).
a b A

Apply Cramer’s rule to the solution of the systems

Sx—6y =9 X, — 2x, — S5x; = —28 2x, —3x, +4x, =0
(a) i + 8 5; (b) 2x, +6x,+5x, =44 ;(c) 4x, +x,—3x;,=3
X - _
Y “3x, + 3x, — 4y, = 25 10x, — x, — 2x, = 5
21 26

Ans. (a) x = 29°Y = T29° (b)x, = =4, x, = 7, x; = 2; (c) Since the determinant of the system is 0,

Cramer’s rule does not yield a solution; Gaussian elimination shows that the system has no solution.
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Set of All Points

The set of all points that satisfy specified conditions is called the locus (plural: loci) of the point under the
conditions.

EXAMPLE 37.1 The locus of a point with positive coordinates is the first quadrant (x > 0, y > 0).

EXAMPLE 37.2 The locus of points with distance 3 from the origin is the circle x> + y?> = 9 with center at
(0, 0) and radius 3.

Distance Formulas
Distance formulas are often used in finding loci.

1. DISTANCE BETWEEN TWO POINTS formula (derived in Chapter 8): The distance between two points
P,(x,,y,) and P,(x,.y,) is given by

d(Pl’Pz) = \/(-xz - xl)Z + ()’2 - y1)2
2. DISTANCE FROM A POINT TO A LINE formula: The distance from a point P, (x,,y,) to a straight line
Ax + By + C = Ois given by

g |Ax, + By, + C|

VA + B

EXAMPLE 37.3 Find the locus of points P(x, y) equidistant from P,(1,0) and P,(3,0).

Setd(P,P,) = d(P,P,). Then V(x — 12 + (y — 0 = V(x — 3)> + (y — 0)% Simplifying yields:
(= 1P+ (=02 =(x =32+ (-0
=241+ = —6x+9+)
4x =8
x=2

The locus is a vertical line that forms the perpendicular bisector of P P,.

Parabola

A parabola is defined as the locus of points P equidistant from a given point and a given line not containing the
point, that is, such that PF = PD, where F is the given point, called the focus, and PD is the distance to the given
line /, called the directrix. A line through the focus perpendicular to the directrix is called the axis (or axis of
symmetry) and the point on the axis halfway between the directrix and the focus is called the vertex.
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A parabola with axis parallel to one of the coordinate axes is said to be in standard orientation. If, in ad-
dition, the vertex of the parabola is at the origin, the parabola is said to be in one of four standard positions:
opening right, opening left, opening up, and opening down.

Graphs of Parabolas in Standard Position
Graphs of parabolas in standard position with their equations and characteristics are shown in Figs. 37-1

to 37-4.

OPENING RIGHT OPENING LEFT OPENING UP OPENING DOWN
Vertex: (0,0) Vertex: (0,0) Vertex: (0,0) Vertex: (0,0)
Focus: F(p,0) Focus: (—p,0) Focus: F(0,p) Focus: F(0,—p)

Directrix: x = —p Directrix: x = p Directrix: y = —p Directrix: y = p

Equation: Equation: Equation: Equation:
y* = 4px y' = —4px x* = 4py X = —4py
Lx=-py ylLx=p ,i X
/ F(0,) Ly=p
o> | Foo > ¥ i
I y=—
y=-r F(0,—p
Figure 37-1 Figure 37-2 Figure 37-3 Figure 37-4

Parabolas in Standard Orientation

Replacing x by x — A has the effect of shifting the graph of an equation by IAl units, to the right if / is posi-
tive, to the left if / is negative. Similarly, replacing y by y — k has the effect of shifting the graph by Ikl units,
up if k is positive and down if k is negative. The equations and characteristics of parabolas in standard ori-

entation, but not necessarily in standard position, are shown in the following table.

OPENING RIGHT OPENING LEFT OPENING UP OPENING DOWN
Equation: Equation: Equation: Equation:
O—k?=dpx—h) | O—k>=—dpx—h) | x—h?=4dply—k | &x—h?=—dpy—k
Vertex: (h,k) Vertex: (h,k) Vertex:(h,k) Vertex: (h,k)
Focus: F(h + p,k) Focus: F(h — p.k) Focus: F(h,k + p) Focus: F(h,k—p)
Directrix: Directrix: Directrix: Directrix:
x=h—p x=h+p y=k—p y=k+p

SOLVED PROBLEMS

37.1. Find the locus of points P(x,y) such that the distance of P from point P (2,0) is twice the distance of P from the origin.
Set d(P,,P) = 2d(O,P). Then \V/(x — 2* + y* = 2\V/x? + 2. Simplifying yields:
(r =22 +)2 =4 +3?)
X —dx 4+ 4+ P =4x7 4+ 4y?
0=32+3y+4x—4

The locus is a circle with center on the x-axis.
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|Ax, + By, + C|

37.2. Derive the formulad = ————=—=—=—for the perpendicular distance d from a point P,(x,,y,) to a straight

37.3.

VA2 + B

line Ax + By + C = 0.

Drop a perpendicular from P, to the line at point L. Then d = ‘P_IL\‘ Let P(x,y) be an arbitrary point on the given
straight line (see Fig. 37-5).

y
A
P(x.y)
Py(x,yy)
L >
Figure 37-5

PP, -PL PP, -PL

In the right triangle PP|L,d = PIL’ = ’PPI‘COSG = ’PPI

1 PIL‘ ’PIL‘

’PP
Now ﬁ: = (x, — x,y, — y). To find P_IL\, note that the given line has slope —%, hence, any perpendicular
line has slope % Therefore, every vector perpendicular to the given line, including P_IL\, can be written as

a(1, B/A) for some value of a. Therefore,

CPPPL (x,—xy —y) .a(lLBA)  aly, = x) + BA, — )]

d= = =
‘P—lz‘ ja{1, BIA)| Va2 (1 + BIA?)

Since the signs of a and A are unspecified, and a distance must be a nonnegative quantity, take the absolute
value of the right-hand side to ensure that d is not calculated negative. Then

_ Jalte, = 0 + BIAYy, — y)] ‘ _ |alAG, = %) + BO, — 91| |Ax, — Ax + By, — By|
Va* (1 + B*/A?) aVA? + B? VA% + B2

Finally, since (x,y) is on the line Ax + By + C = 0, it must satisfy the equation of the line, hence the quantity
—Ax — By can be replaced by C, and

g |Ax, + By, + C|

VA2 + B

Find the distance from (a) the point (5, —3) to the line 3x + 7y — 6 = 0; (b) the point (5, 7) to the line x = —4.

|Ax, + By, + C]

(a) Use the formula d = withx, = 5andy, = —3:

VA? + B?
|35+ 7(—=3) — 6| 12
V32 + 72 V58
|Ax, + By, + C|
(b) Rewrite the equation of the line in standard form 1x + Oy + 4 = 0, then use the formulad = ———F——————
VA? + B?

withx, =5andy, =7:
1-5+0-7+4
d=‘ ‘=9

V12 + 0




CHAPTER 37 Loci; Paraholas

374.

37.5.

37.6.

Show that the equation of a parabola with focus F(p, 0) and directrix x = —p can be written as y> = 4px.

The parabola is defined by the relation PF = PD. Let P be an arbitrary point (x,y) on the parabola. Then PF is
found from the distance-between-two-points formula to be \/(x — p)* + (y — 0)?- PD is found from the

formula for the distance from a point to a line to be |x + p|. Hence:
PF = PD
\/(x—p)2+(y—0)2= |x + p|
@ =pP+y=@x+p)
x2 = 2px + p?> + y* = x> + 2px + p?
y* = 4px

Show that the equation of a parabola with focus F(0, —p) and directrix y = p can be written as x> = —4 py.

The parabola is defined by the relation PF' = PD. Let P be an arbitrary point (x,y) on the parabola. Then PF is
found from the distance-between-two-points formula to be \/(x — 0)2 + (y + p)> PD is found from the

formula for the distance from a point to a line to be [y — p|. Hence:

PF = PD

Vi =02+ +pP2 = Jy—p|
X+ v+ p? =0 - p)?
X2+ 2+ 2py + pr = y* — 2py + p?
x? = —4py

For the parabola y> = 12x, find the focus, directrix, vertex, and axis, and sketch a graph.

The equation of the parabola is in the form y? = 4px with 4p = 12, thus p = 3. Hence the parabola is in standard
position, with vertex (0,0), opening right, and has focus at (3,0), directrix the line x = —3, and axis the x-axis,
y = 0. The graph is shown in Fig. 37-6.

Figure 37-6

37.7. Show that y> — 8x + 2y + 9 = 0 is the equation of a parabola. Find the focus, directrix, vertex, and axis, and

sketch a graph.

Complete the square on y to obtain:
¥+ 2y =8 -9
y2+2y+1=8x—8
G+ 1)P=8x—-1
Thus the equation is the equation of a parabola in the form (y — k)> = 4p(x — h) withp =2, h = 1,and k = —1.
Hence the parabola is in standard orientation, with vertex (1,—1), opening right, and thus has its focus at
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(h+p,k)=@2+1,—1)= (@3, —1). Its directrix is the linex = h — p = 1 — 2 = —1, and its axis is the line
y = —1. The graph is shown in Fig. 37-7.

ar

2

Figure 37-7

37.8. Find the equation of a parabola in standard position with focus (5,0) and directrix x = —S5.

Since the parabola is in standard position with focus on the positive x-axis, the focus is located at the point
(p, 0), hence, p = 5. The parabola is opening right, hence its equation must be of form y> = 4px. Substituting
p = 5yields y* = 20x.

37.9. Find the equation of a parabola in standard orientation with focus (3, 4) and directrix the y-axis.

The equation can be found by direct substitution in the definition of the parabola PF = PD. Alternatively, note
that the vertex is the point half the distance from the focus to the directrix, that is, the point @ 4). Since the
focus is to the right of the directrix, the parabola opens to the right and has an equation of the form
(y — k)?> =4p(x — h), with h = % and k = 4. The distance from the vertex at (%, 4) to the focus at (3, 4) is then
also %, and this is the value of p. Substituting yields

o= =4~

(v — 4?2 =06x—9

37.10. For the parabola x> = —2y, find the focus, directrix, vertex, and axis, and sketch a graph.

The equation of the parabola is in the form x?> = —4py with4p = 2, thus p = % Hence the parabola is in standard
position, with vertex (0, 0), opening down, and has focus at (0, —%), directrix the line y = %, and axis the y-axis,

x = 0. The graph is shown in Fig. 37-8.

-8
Figure 37-8

37.11. Show that x> + 2x + 6y — 11 = 0 is the equation of a parabola. Find the focus, directrix, vertex, and axis and
sketch a graph.

Complete the square on x to obtain:

x>+ 2x = —6y + 11
X2+ 2x+1=—-6y+ 12
x+ 1)?=—-6(y —2)
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37.12.

37.13.

Thus the equation is the equation of a parabola in the form (x — h)> = —4p(y — k) with p = %, h = —1, and
k = 2. Hence the parabola is in standard orientation, with vertex (—1, 2), opening down, and thus has its focus at
(hk —p)=(—1,2 = 3) = (=1, }). The directrix is the liney = k + p = 2 + 3 = 2, and its axis is the line
x = —1. The graph is shown in Fig. 37-9.

o =
(S5 I ol %A

/-4 -2 2\'
-0.5

Figure 37-9

Find the equation of a parabola in standard position, opening down, with focus (0,—4) and directrix the line y = 4.

Since the parabola is in standard position with focus on the negative y-axis, the focus is located at the point
(0,—p), hence p = 4. The parabola is opening down, hence its equation must be of form x> = —4py. Substituting
p = 4 yields x> = —16y.

Find the equation of a parabola in standard orientation with focus (3,4) and directrix the line y = 6.

The equation can be found by direct substitution in the definition of the parabola PF = PD. Alternatively, note that
the vertex is the point half the distance from the focus to the directrix, that is, the point (3,5). Since the focus is below
the directrix, the parabola opens down and has an equation of the form (x — h)> = —4p(y — k), with h = 3 and
k = 5. The distance from the vertex at (3,5) to the focus at (3,6) is then 1, and this is the value of p. Substituting yields

-4y — 5
—4y + 20

(x =3
(x =37

SUPPLEMENTARY PROBLEMS

37.14.

37.15.

37.16.

37.17.

37.18.

Find the locus of points P(x,y) such that the distance from P to the y-axis is 5.

Ans. x = 5andx = —5, two straight lines parallel to the y-axis.

Find the locus of points P(x,y) such that P is equidistant from both axes.

Ans. y = xandy = —x, two straight lines through the origin.

Find the locus of points P(x,y) such that the distance of P from P,(1,1) is one-half the distance of P from
P,(—2,-2).

Ans.  x* + y* — 4x — 4y = 0, a circle passing through the origin.

Find the locus of points P(x,y) equidistant from (5,—1) and (3,—8).

Ans. 4x + 14y + 47 = 0, a straight line, the perpendicular bisector of the line segment joining the given points

Find the locus of points P(x,y) equidistant from (—5,3)andx — y + 8 = 0.

Ans. x>+ y2 + 2xy + 4x + 4y + 4 = 0, thatis, (x + y + 2)?> = 0, a straight line perpendicular to the given
line at the given point.



37.19.

37.20.

37.21.

37.22.

37.23.

37.24.

37.25.

37.26.
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Find the locus of points P(x,y) such that the product of their distances from (0,4) and (0,—4) is 16.

Ans. x* 4+ 2x%?* + y* + 3242 — 322 =0
Show that the equation of a parabola with focus F(—p,0) and directrix x = p can be written as y*> = —4px.

Show that the equation of a parabola with focus F(0,p) and directrix y = —p can be written as x> = 4py.

Sketch graphs of the equations (a) y* = —2x; (b) x> = 6y.
Ans. (a) Fig. 37-10; (b) Fig. 37-11

y

y

.5

2

.5

1

.5

2 4 x
Figure 37-10 Figure 37-11
Find equations for parabolas in standard position (a) with focus at (0,7) and directrix the liney = —7;

(b) with focus at (—%,0) and directrix the line x = %

Ans.  (a) x> = 28y; (b) y> = —5x

Find equations for parabolas in standard orientation (a) with focus at (—2,3) and directrix the y-axis;
(b) with focus at (—2,3) and directrix the line y = 1.

Ans. (@) > —6y+4x+13=0;(b) > +4dx—4y+12=0

Sketch graphs of the equations (a) y> —2y —3x —2=0;(b) x> +2x +2y — 5 =0.
Ans. (a) Fig. 37-12; (b) Fig. 37-13

)
4
3
5 y
. /_\2\
I 1 X
1 1 2 3 - -2 2
-1 -2
_2\ -4
Figure 37-12 Figure 37-13

Use the definition of the parabola directly to find the equation of a parabola with focus F(2,2) and directrix the
linex +y+2=0.

Ans. x> =2xy+y?—12x— 12y +12=0
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Ellipses and Hyperbolas

Definition of Ellipse

The locus of points P such that the sum of the distances from P to two fixed points is a constant is called
an ellipse. Thus, let F| and F, be the two points (called foci, the plural of focus), then the defining relation for
the ellipse is PF, + PF, = 2a. The line through the foci is called the focal axis of the ellipse;
the point on the focal axis halfway between the foci is called the center; the points where the ellipse crosses the
focal axis are called the vertices. The line segment joining the two vertices is called the major axis, and the
line segment through the center, perpendicular to the major axis, with both endpoints on the ellipse, is called
the minor axis. (See Fig. 38-1.)

Figure 38-1

An ellipse with focal axis parallel to one of the coordinate axes is said to be in standard orientation. If, in
addition, the center of the ellipse is at the origin, the ellipse is said to be in one of two standard positions:
with foci on the x-axis or with foci on the y-axis.

Graphs of Ellipses in Standard Position
Graphs of ellipses in standard position with their equations and characteristics are shown in the following
table:

FOCI ON x-AXIS

FOCI ON y-AXIS

2 2
P
Equation: 2 + by 1
where b = a? — ¢?
Note:a>b,a>c

£, 7
b a?
where b? = a®> —¢?
Note:a>b,a>c

Equation: =1

Foci: F,(—c, 0), F,(c, 0)
Vertices: (—a, 0), (a, 0)
Center: (0, 0)

Foci: F (0, —c), F,(0, ¢)
Vertices: (0, —a), (0, a)
Center: (0, 0)
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FOCI ON x-AXIS FOCI ON y-AXIS

y
Vertex(0, a%

y
©, b)A

(-b,0)
Focus Focus X
Vertex(-a, 0\ F(—¢, 0) Fy(c, 0) Vaex(a, 0) 0, —)
F I"FOCUS
0, -b) Vertex(0, —a)
Figure 38-2 Figure 38-3

Definition of Hyperbola

The locus of points P such that the absolute value of the difference of the distances from P to two fixed
points is a constant is called a hyperbola. Thus, let F'| and F, be the two points ( foci), then the defining re-
lation for the hyperbola is |[PF| — PF,| = 2a. The line through the foci is called the focal axis of the hyper-
bola; the point on the focal axis halfway between the foci is called the center; the points where the hyperbola
crosses the focal axis are called the vertices. The line segment joining the two vertices is called the trans-
verse axis. (See Fig. 38-4.)

Figure 38-4

A hyperbola with focal axis parallel to one of the coordinate axes is said to be in standard orientation. If, in
addition, the center of the hyperbola is at the origin, the hyperbola is said to be in one of two standard posi-
tions: with foci on the x-axis or with foci on the y-axis.

Graphs of Hyperbolas in Standard Position
Graphs of hyperbolas in standard position with their equations and characteristics are shown in the fol-
lowing table:
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FOCI ON x-AXIS FOCI ON y-AXIS
Foci: F (=c, 0), F)(c, 0) Foci: F (0, —c¢), F,(0, ¢)
Vertices: (—a, 0), (a, 0) Vertices: (0, —a), (0, a)

Center: (0, 0) Center: (0, 0)
oY Y2
Equatlon.; i 1 Equation: T 1
where b? = ¢ — a? where b? = ¢? —a?
Note:c>a,c>b Note: c>a,c>b
= +b Y
Asymptotes:y = £/ x Asymptotes: y = igx

Asymptote Asymptot
y

A

(0, b)

Focus , O) Focus

Fi(~,0) f4 Fy(c, 0)
e

(0, -b

Figure 38-5 Figure 38-6

Definition of Eccentricity

A measure of the shape for an ellipse or hyperbola is the quantity e = %, called the eccentricity. For an ellipse,
0O<e< 1, forahyperbolae> 1.

SOLVED PROBLEMS

38.1. Derive the equation of an ellipse in standard position with foci on the x-axis.

Let P(x, y) be an arbitrary point on the ellipse. Given that the foci are F,(—c,0) and F,(c,0), then the definition
of the ellipse PF| + PF, = 2a yields:

Va+ P+ -0+ V- +(—02=2

Subtracting one of the square roots from both sides, squaring, and simplifying yields:

Vi + e+ -02=2a— V- cP+ (- 02

G+ +y =42 —4aVx — P+ (- 0P+ x— P+

xz+2xc—i—c2-l-y2:4612—461\/(x—c)2+(y—O)Z—i-)cz—2)6c+c2—i-y2

4xc — 4a® = —4aV(x — ¢ + (y — 0)?

xc —a* = —a\/(x -+ (y—0)7?
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38.3.
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Now square both sides again and simplify:
x2c? — 2xca® + a* = a®’[(x — ¢)* + y?]
x2¢? — 2xca® + a* = a’x* — 2a%xc + d’c? + a¥y?
K2 — @2 — @ = & — a
xZ(CZ — aZ) — azyz — aZ(CZ — a2)

By the triangle inequality, the sum of two sides of a triangle is always greater than the third side. Hence (see
Fig. 38-1)

PF, + PF,> F|F,

2a > 2c
a’* > c?
Thus the quantity a®> — ¢> must be positive. Set a> — ¢* = b2 Then ¢> — a*> = —b? and the equation of the ellipse
becomes:
—P22 — A2 = — @2

P22 + a*y? = 2>

This is generally written in standard form:

Note that it follows from a*> — ¢* = b? that a > b.

2
Analyze the equauon - + ﬁ 1 of an ellipse in standard position, foci on the x-axis.
2

Set x = 0, then % = 1, thus, y = =b. Hence * b are the y-intercepts.

Sety = 0, then % = 1; thus x = *a. Hence *a are the x-intercepts.
a

2 2 2
Substitute —y for y: = + ( bi) =1, % + % = 1. Since the equation is unchanged, the graph has x-axis
symmetry.

. (= ¥ 2 Y . - .
Substitute —x for x: 2 + jEh 1; 2 + o 1. Since the equation is unchanged, the graph has y-axis

symmetry. It follows that the graph also has origin symmetry.

Note further that solving for y in terms of x yields y = ig V a* — x* hence —a < x < a for y to be real.
Similarly, —b = y = b for x to be real.

Summarizing, the graph is confined to the region between the intercepts *a on the x-axis and *b on the
y-axis, and has all three symmetries. The graph of the ellipse is shown in Fig. 38-2.

Analyze the equatlon + %

b2 = 1 of an ellipse in standard position, foci on the y-axis.

2
y .
Set x = 0, then 2 = 1; thus y = *a. Hence *a are the y-intercepts.

2
Sety =0, then o 1; thus x = *b. Hence *b are the x-intercepts.
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2 —v)2 2 2
Substitute —y for y: % + ( ;2)) =1 % + yj = 1. Since the equation is unchanged, the graph has x-axis
symmetry.

(_x)z y2 B v yz

Substitute —x for x: =1 » + i 1. Since the equation is unchanged, the graph has y-axis

P&
symmetry. It follows that the graph also has origin symmetry.

Note further that solving for y in terms of x yields y = i% V b?> — x* hence —b =< x < b for y to be real. Similarly
—a =y = a for x to be real.

Summarizing, the graph is confined to the region between the intercepts *£b on the x-axis and *a on the
y-axis, and has all three symmetries. The graph of the ellipse is shown in Fig. 38-3.

38.4. Analyze and sketch graphs of the ellipses (a) 4x> + 9y? = 36; (b) 4x> + y* = 36.

(a) Written in standard form, the equation (b) Written in standard form, the equation becomes
becomes becomes
2 2
x> Y X2 Y
gtz =1 9 T3 !
Thusa =3,b = 2. Thusa =6, b = 3.
Therefore c = V> — > = V9 — 4 = \/5. Therefore c = V&> — b = V36 — 9 = 3V/3.
Hence the ellipse is in standard position with Hence the ellipse is in standard position with
foci at (= \/5,0) on the x-axis, x-intercepts foci at (0,£3 \/g) on the y-axis, x-intercepts
(%3,0), and y-intercepts (0,*2). The graph is (%3,0), and y-intercepts (0,%6). The graph is
shown in Fig. 38-7. shown in Fig. 38-8.
4
y 2
X
1 12
1 2
Figure 38-7 Figure 38-8

38.5. Derive the equation of a hyperbola in standard position with foci on the x-axis.

Let P(x,y) be an arbitrary point on the hyperbola. Given that the foci are F',(—c,0) and F(c,0), then the definition
of the hyperbola IPF| — PF,| = 2a; thatis, PF, — PF, = *2a yields:

Va+ e+ -02—- V- + (- 02 = %2
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Adding the second square root to both sides, squaring, and simplifying yields:

Va+o2+ 0 —-02=%2a+ Vx—c2+ (- 02

G+ P+ =4 =4V (x — o + (y — 02 + (x — o) + y?

)cz-l-2)cc-I—cz-i-yz=4azt4a\/(x—c)2-i-(y—0)2-1-)52—2)cc-|-cz-i-y2

dxe — 4a® = *daV(x — ¢ + (y — 0)?

xc —a® = ia\/(x— o)+ (y — 072

Now square both sides again and simplify:

x2c? = 2xca® + a* = @®[(x — ¢)* + y?

x2c? = 2xca® + a* = a’x* — 2a*xc + a’c? + a*y*
22— a2 — P = PP —

2 — @) — &P =a(E — @)

By the triangle inequality, the sum of two sides of a triangle is always greater than the third side. Hence
(see Fig. 38-4)
PF, + F F, > PF,
F.F,> PF, — PF,

2¢ > 2a

c>a

Thus the quantity ¢> — a® must be positive. Set ¢> — a> = b% Then the equation of the hyperbola becomes:
b2 — @y = a2b?
This is generally written in standard form:

2 )
@ ]

Note that it follows from ¢ — > = b*thatc > b and ¢ > a.

2

2
38.6. Analyze the equation % - % = 1 of a hyperbola in standard position, foci on the x-axis.
2
Set x = 0, then » = —1; thus y*> = —b?. Hence there can be no y-intercepts.

2
Sety = 0, then % = 1; thus x = *a. Hence *a are the x-intercepts.

> —v)2 5 2
Substitute —y for y: % ¢ bf) =1 % - % = 1. Since the equation is unchanged, the graph has x-axis
symmetry.
(=07 Y 2 )
Substitute —x for x: 2 » =1 2 » = 1. Since the equation is unchanged, the graph has y-axis

symmetry. It follows that the graph also has origin symmetry.
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38.7.

38.8.

Note further that solving for y in terms of x yields y = i% Vx? — a* hence x = a or x = —a for y to be real.

Solving for x in terms of y yields x = i% Vy? + b%; hence y can take on any value.

It is left as an exercise to show that as x becomes arbitrarily large, the distance between the graphs of
y = ig Vx* — b*and the lines y = ig x becomes arbitrarily small, thus the lines are oblique asymptotes for
the graph.

To draw the graph of the hyperbola, mark the intercepts =a on the x-axis. Mark the points =5 on the y-axis. Draw
vertical line segments through the points x = *=a and horizontal line segments through the points y = %5 to form
the box shown in Fig. 38-5. Draw the diagonals of the box; these are the asymptotes of the hyperbola. Then
sketch the hyperbola starting from the intercept x = a and approaching the asymptote y = bx/a. The remainder
of the hyperbola follows from the symmetry with respect to axes and origin, as shown in Fig. 38-5.

2

2
Analyze the equation % - % = 1 of a hyperbola in standard position, foci on the y-axis.

b

2
y .

Set x = 0, then — = 1; thus y = *a. Hence *a are the y-intercepts.
a

2
Sety = 0, then —% = 1; thus x> = —b?. Hence there can be no x-intercepts.

. (=) 2 ¥R . .o .
Substitute —y for y: 2 1; T 1. Since the equation is unchanged, the graph has x-axis symmetry.

. y (w2 Y o2 . - .
Substitute —x for x: 2 B ;; i 1. Since the equation is unchanged, the graph has y-axis

symmetry. It follows that the graph also has origin symmetry.

Note further that solving for y in terms of x yieldsy = t% V/ b* + x% hence x can take on any value.

Solving for x in terms of y yields x = i% Vy? — a* hence y = a or y = —a for x to be real.

It is left as an exercise to show that as x becomes arbitrarily large, the distance between the graphs of
y = i% V b? + x* and the lines y = i% x becomes arbitrarily small, thus the lines are oblique asymptotes for
the graph.

To draw the graph of the hyperbola, mark the intercepts *a on the y-axis. Mark the points =5 on the x-axis.
Draw vertical line segments through the points x = *=b and horizontal line segments through the points
y = *a to form the box shown in Fig. 38-6. Draw the diagonals of the box; these are the asymptotes of the
hyperbola. Then sketch the hyperbola starting from the intercept y = a and approaching the asymptote
y = ax/b. The remainder of the hyperbola follows from the symmetry with respect to axes and origin, as shown
in Fig. 38-6.

Analyze and sketch graphs of the hyperbolas (a) 4x> — 9y?> = 36; (b) y> — 4x* = 36.

(a) Written in standard form, the equation (b) Written in standard form, the equation
becomes becomes

©o|%,
INDS

[35)
©o|%,

&l
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Thusa = 6,b = 3.

Therefore ¢ = Va2 + b2 = \V/36 + 9 = 3V/5.
Hence the hyperbola is in standard position with
foci at (0, =3 \[5) on the y-axis, y-intercepts
(0,%6), and asymptotes y = *2x. The graph

Thusa =3,b = 2.
Therefore ¢ = Va? + b> = V9 + 4 = V13.

Hence the hyperbola is in standard position with
foci at (= V 13,0) on the x-axis, x-intercepts
t%x. The graph

(%3, 0), and asymptotes y =

is shown in Fig. 38-9. is shown in Fig. 38-10.

)
10
4y
2
-2 2
e 2
/=10
-4
Figure 38-9 Figure 38-10

38.9. Show in a table the characteristics of hyperbolas and ellipses in standard orientation, with center at the

point (hk).

Shifting the center of the curves from the origin to the point (4, k) is reflected in the equations by replacing
x with x — h and y with y — k, respectively. Hence the shifted curves can be described as follows:

Ellipse; equation

— 2 — 2
(= WP =R

Ellipse; equation

— 2 — 2
O R el

1

Hyperbola; equation
C—h -k

a? b?

1

b? a?

a? b?

1

Hyperbola; equation
O—Kk  —hP

a? b?

1

Foci: (h = ¢, k),
Vertices: (h *+ a, k)
Endpoints of minor

axis: (h, k = b)

Foci: (h, k = ¢),
Vertices: (h, k = a)
Endpoints of minor

axis: (h = b, k)

Foci: (h =+ ¢, k),
Vertices: (h £ a, k)

Asymptotes:

-k =20 —n

Foci: (h, k = ¢),
Vertices: (h, k + a)
Asymptotes:

v =k ==y = h)

38.10. Analyze and sketch the graph of 9x* + 4y* — 18x + 8y = 23.

Complete the square on x and y.

9(x* — 2x) + 4(* + 2y) = 23

O —2x+ 1) +402+2y + 1)
Ox — 12 + 4(y + 1)?
o+ 1y

(o — 1

= 36

4

9

=23+9-1+4-1
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Comparing with the table in Problem 38.9, we find that this is the equation of an ellipse with center at (1,—1).

Sincea>b,a> =9and b> =4,thusa=3,b=2,andc = Va2 — b* = \/g; the focal axis is parallel to
the y-axis. Foci: (h, k = ¢) = (1,—1 = \@). Vertices: (h, k = a) = (1, —1 £ 3), thus (1,2) and (1,—4).
Endpoints of minor axes: (h = b, k) = (1 £ 2, —1), thus (3,—1) and (—1,—1). The graph is shown in
Fig. 38-11.

Figure 3811

38.11. Analyze and sketch the graph of 9x> — 16y? — 36x + 32y = 124.

Complete the square on x and y.

9(x? — 4x) — 16(y* — 2y) = 124
9 — 4x +4) — 160> — 2y + 1) = 124 + 9-4 — 16 1
9x — 22 — 16(y — 12 = 144

x-2% (-—17
6 9

1

Comparing with the table in Problem 38.9, we find that this is the equation of a hyperbola with center at (2,1). Since
the coefficient of the square involving x is positive, the focal axis is parallel to the x-axis. (Note: For a hyperbola
there is no restriction that @ > b.) Hence > = 16 and b*> = 9; thus,a = 4,b =3,andc = Va? + b?> = V25 = 5.
Foci: (h £ ¢, k) = (2 £ 5, 1), thus, (7,1) and (—3,1). Vertices: (h + a, k) = (2 £ 4, 1), thus, (6,1) and (—2,1).

Asymptotes: (y — k) = ig(x — h), thus, (y — 1) = t%(x — 2). Draw vertical lines through the vertices and

horizontal lines through the points (h, k = b) = (2, 1 = 3), thus (2,4) and (2,—2). These form the box. Sketch in
the asymptotes and the diagonals of the box, then draw the hyperbola from the vertices out toward the asymptotes.
The graph is shown in Fig. 38-12.

Figure 38-12



38.12.

38.13.

38.14.
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Analyze the quantity eccentricity e = c/a for an ellipse and a hyperbola.
For an ellipse, 0 < ¢ < a, hence 0 < c¢/a = e < 1. The eccentricity measures the shape of the ellipse as follows:

If e is small, that is, close to 0, then ¢ is small compared to a; hence, b = V a? — ¢?is close to a. Then the minor
and major axes of the ellipse are roughly equal in size and the ellipse resembles a circle (the word eccentricity
means departure from the center).

If e is large, that is, close to 1, then c is roughly equal to a; hence b = Va?> — ¢? is close to 0. Then the major
axis of the ellipse is substantially larger than the minor axis, and the ellipse has an elongated shape.

For a hyperbola, ¢ > a; hence c/a = e > 1. The eccentricity measures the shape of the hyperbola by constraining
the slope of the asymptotes, as follows:

If e is small, that is, close to 1, then ¢ is roughly equal to a; hence b = V¢? — a? is close to 0. Then the
asymptotes, having slopes *=b/a or *a/b, will seem close to the axes on which the vertices lie and the hyperbola
will have a hairpin shape.

If e is large, then a is small compared to c; hence b = V ¢? — a?is close to ¢, and thus also large compared
to a. Then the asymptotes will seem far from the axes on which the vertices lie and the hyperbola will
seem wide.

Find the equation of an ellipse (a) in standard position with foci (+3,0) and y-intercepts (0,*2);

(b) in standard orientation with foci (1,5) and (1,7) and eccentricity %

(a) The ellipse is in standard position with foci on the x-axis. Hence it has an equation of the form
2

2

% + % = 1. From the position of the foci, ¢ = 3; from the position of the y-intercepts, b = 2; hence
) 2

a= Ve + b= V3 + 22 = V13, Thus the equation of the ellipse isicf3 + yZ =1

(b

~

The center of the ellipse is midway between the foci, thus, at (1,6). Comparing with the table in
— he — 2
(x ) . O )
b? a?
The distance between the foci = 2¢ = 2, thus ¢ = 1. Since e = c¢/a = 1/2, it follows that ¢ = 2 and
x -1 -6y
3 T 4

Problem 38.9, the ellipse has an equation of the form = 1, with (h,k) = (1,6).

b=Va —c=\22— 1> = V3. Thus the equation of the ellipse is 1.

Find the equation of a hyperbola (a) in standard position with foci (*+3,0) and x-intercepts (*=2,0);
(b) in standard orientation with foci (1,5) and (1,7) and eccentricity 2.

(a) The hyperbola is in standard position with foci on the x-axis. Hence it has an equation of the form
2
XY

2 = 1. From the position of the foci, ¢ = 3, from the position of the vertices, a = 2; hence
5 2
b=V —a@=\3 -2 =\/5 Thus the equation of the hyperbola isxz - yg =1

(b) The center of the hyperbola is midway between the foci, thus, at (1,6). Comparing with the table in
G-k &—=h
@ P
(h,k) = (1,6). The distance between the foci = 2¢ = 2, thus ¢ = 1. Since ¢ = c¢/a = 2, it follows that

Problem 38.9, we find that the hyperbola has an equation of the form = 1, with

a=12andb = V& — a2 = V12 — (1/2)> = (\/3)/2. Thus the equation of the hyperbola is

O—67 (x—1?2
4 34

1.
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SUPPLEMENTARY PROBLEMS

2 2
38.15. Analyze and sketch graphs of the ellipses (a) % + % = 1; (b) 25x* + 16y*> + 100x — 96y = 156.
Ans. (a) Standard position, foci on x-axis (b) Standard orientation, focal axis parallel
at (£2,0), vertices (*3,0), to y-axis, center at (—2,3), foci (—2,0)
endpoints of minor axis and (—2,6), vertices (—2,—2) and (—2,8),
(O,t\ﬁ)‘ See Fig. 38-13. endpoints of minor axis (2,3) and (—6,3).

See Fig. 38-14.

Y
2
1
1 2 B
X
/ 2
-2
Figure 3813 Figure 38-14

2 2
38.16. Analyze and sketch graphs of the hyperbolas (a) % — yg =1b)x>—y+6x+34=0.

Ans. (a) Standard position, foci on x-axis at (b) Standard orientation, focal axis parallel
(V' 14,0), vertices (£3,0), asymptotes to y-axis, foci at (—3,%5 \[2),

vertices (—3,%5), asymptotes

Vs
= +—= 1 -
y = =73 SeeFig. 38-15. y = *+(x + 3). See Fig. 38-16.

y
\/@/
4
2
) X
4 6 -4 -2
-2
6 2 AVEES
-2 -4
4 m\
Figure 38-15 Figure 38-16

38.17. Show that as x becomes arbitrarily large, the distance between the graphs of y = ig Vx?> — a?* and the lines

y = téx becomes arbitrarily small, thus the lines are oblique asymptotes for the graph.



38.18.

38.19.

38.20.

38.21.

38.22.
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Show that as x becomes arbitrarily large, the distance between the graphs of y = i% V b?> + x* and the lines

y = i%x becomes arbitrarily small, thus the lines are oblique asymptotes for the graph.

Find the eccentricity for each of the following:
2 ) 2 Y
(a) §+§: 1; (b) 25x* + 16y* + 100x — 96y = 156; (c) 935" 1;(d) x> —y*+6x+34=0.

Ans. (a) 2/3; (b) 3/5; (¢) V14/3; (d) V2

Find the equation of an ellipse (a) with major vertices (*4,0) and eccentricity i; (b) with minor vertices

(—3,4) and (1, 4) and eccentricity %

CH1? -4
i T o009 !

2 2
Ans. (@) 3% + ly—s = 1:(b)

Find the equation of a hyperbola (a) with vertices (0, =12) and asymptotes y = *3x;

(b) with foci (3, 6) and (11, 6) and eccentricity %

y2

2 =T =6 _
@14~ 16 B

= L(b) 9 - 7

Ans. 1

Use the definition of an ellipse PF, + PF, = 2a directly to find the equation of an ellipse with foci at (0,0)
and (4,0) and major axis 2a = 6.
(x =2y

2
Y _
Ans. 9 +5—1



CHAPTER 39

Rotation of Axes

Rotation of Coordinate Systems
It is often convenient to analyze curves and equations in terms of a Cartesian coordinate system for which
the axes have been rigidly rotated through a (normally acute) angle with respect to the standard Cartesian

coordinate system.

Transformation of Coordinates Under Rotation

Let P be a point in the plane; then P has coordinates (x,y) in the standard Cartesian coordinate system (called
the old system) and coordinates (x', y’) in the rotated system (called the new system). (See Fig. 39-1.) Then
the coordinates in the old system can be expressed in terms of the coordinates in the new system by the trans-

formation equations:

x =x"cosf — y'sinf
y=x"sin6 + y'cosh

y y
A
P
[ ]
xl
9] >
Figure 39-1

These equations can be applied to the coordinates of individual points; a frequent use is to transform equa-
tions of curves given in the old coordinate system into equations in the new system, where the form of the

equation may be easier to analyze.

EXAMPLE 39.1 Analyze the effect on the equation xy = 2 of rotating the axes through a 45° angle.

If 6 = 45°, then cosf = sinf = 1/ \6 Hence the transformation equations become
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Performing these substitution in the original equation yields

) -
2y = _
V2 V2
x/2 _ y’2
2

This can be written as

X2 Y
-

4 =1

which can be seen to be the equation of a hyperbola in standard position with foci on the x"-axis (that is, the new x-axis),
rotated 45° with respect to the old.

Analyzing Second-Degree Equations
In analyzing second-degree equations written in the standard form

A*+Bxy+ Cy?’ +Dx+Ey+F=0

it is useful to rotate axes. An angle 6 can always be found such that rotating axes through this angle trans-
forms the equation into the form A’x'?> + C'y'> + D'x’ + E'y’ + F = 0. The angle 6 is given by

1. If A = C, then 8 = 45°

2. Otherwise, 6 is a solution of the equation tan260 = B

A-C

SOLVED PROBLEMS

39.1. Show that for any point P that has coordinates (x,y) in a standard Cartesian coordinate system and
coordinates (x',y") in a system with axes rotated through 6, the transformation equations x = x’cosf — y'sin#,
y = x'sinf + y’cos6 hold.

Consider the vector OP drawn from the origin of both coordinate systems to P in Fig. 39-2.

Figure 39-2

It is convenient to use the notation of Problem 27.13, in which i and j are defined, respectively, as tlﬁunit vectors
in the positive x-and y-directions (in the old coordinate system). Then, in this coordinate system, OP = xi + yj.
Similarly, i’ and j’ are, respectively, the unit vectors in the positive x'- and y'-directions, and, in this coordinate
system, OP = x'i" + y'j’. Then xi + yj = x'i’ + y'j’. If, now, the dot product of both sides of this identity is
taken with vector i, it follows that:

E+yp-i=@i +yj)-i

it yjri=xiit )i
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39.2.

39.3.

In the latter identity, apply the theorem on the dot product:

Since the angle betweeniandiis 0°,i-i=lillilcos0°=1-1-1=1.

Since the angle between i and j is 90°,i - j = lil |jl cos90° =1-1-0 = 0.

Since the angle betweeniandi’' is0,i-i’ = lilli'l cos§ =1 -1 - cosf = cos#.

Since the angle betweeniand j is 6 + 90°,i-j = lil lj’'l cos(f + 90°) =1 -1 - (—sinf) = —sin6.

Substituting yields:
x(1) + y(0) = x"cosf — y'sinf

x = x"cosf — y'sinf

The proof of the transformation equation for y, y = x"sinf + y'cos#, is left as an exercise.

Show that an angle 6 can always be found such that rotating axes through this angle transforms the equation
Ax? + Bxy + Cy> +Dx + Ey + F = 0 into the equation A’x'> + C'y'> + D'x' + E'y' + F = 0.

Rotating axes through an angle 0 transforms the equation Ax> + Bxy + Cy?> + Dx + Ey + F = 0 by making the
substitutions x = x'cosf — y'sinf, y = x'sinf + y’cosf. Performing the substitutions yields:

A(x'cos6 — y'sin6)? + B(x'cos® — y'sinf)(x'sin® + y’ cosf) + C(x'sinf + y’ cosh)?

+ D(x'cos® — y'sinf) + E(x'sinf + y'cosf) + F =0

Expanding and combining terms in x'2, y'?, x'y’, x’, and y’ yields:
Xx'*(Acos’0 + BcosOsing + Csin?0) + x'y'[—2Acos0sinf + B(cos?’0 — sin?6) + 2Csinfcos0)]
+ y'2(Asin’ — Bsinfcos® + Ccos?0) + x'(Dcosf + Esin) + y'(—Dsinf + Ecosf) + F =0

In order for the equation to have exactly the form A’x'2 + C'y'? + D'x’ + E'y' + F = 0, the coefficient of the
x'y" term must be zero, that is:

—2Acosfsind + B(cos?0 — sin*6) + 2Csinfcosh = 0
—Asin260 + Bcos20 + Csin20 =0
(A — C)sin26 = Bcos26

Thus if A = C, then Bcos26 = 0, thus 26 = 90°, or § = 45°. Otherwise, divide both sides by (A — C) cos26
to obtain

sin2¢ _ B

cos20 A —-C
_ B

tan260 = Ai-C

This equation will have an acute angle solution for 6.

Find an appropriate angle through which to rotate axes and sketch a graph of the equation
3x% — 2\/§xy + 32+ 2x + 2\/3)7 =0.

Here A =3,B = —2\/§, C = 1; hence set

B *7\?:_\/5

tan20=ﬁ= 3

The smallest solution of this equation is given by 26 = 120°, that is, # = 60°. Since sin60° = V/3/2 and
cos60° = L the transformation equations are

27
x' —y'\/3 x’\/§+y’
2

x= y =
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Substituting these into the original equation followed by simplification yields:

() IR (oY)

2

+2W<X\/+y)

X3 -6+ 3) +xy(—6V3+4V3I+2VRH +y20+6+ 1) K2 +6) +y(—2V3+2V3)
4 * 2 =
492+ 4x' =0

y/2 = —x'

Thus, in the rotated system, the graph of the equation is a parabola, vertex at (0,0), opening left. The graph is
shown in Fig. 39-3.

y oy ox
S x
)l “ 1

-1

-2

-3

Figure 39-3

39.4. Solve the transformation equations for x" and y’ in terms of x and y to find the reverse transformation equations.
Write the transformation equations in standard form for equations in x’ and y':
x'cosf — y'sinf = x
x'sinf + y'cosf =y

Now apply Cramer’s rule to obtain:

x —sinf cosf x
y cos 6 . sinf vy .
x''=1—————— = xcosf + ysinf y =———— = —xsinf + ycosf
cosf —sinf cosf —sinf
sin @ cosf sinf cosé

39.5. Find appropriate transformation equations for rotation of axes and sketch a graph of the equation
2x2 — 3xy —2y*> + 10 = 0.

Here A = 2, B = —3, C = —2; hence set
B _ -3 _ _
A—-—C 2-(=-2) 4

[S)

tan260 =

An exact solution of this equation is not possible, but it is also not necessary, since sinf and cos 6 can be
found from the half-angle formulas. Assume the smallest solution of the equation, with 90° < 26 < 180°,

then, since sec20 = —V1 + tan?20 = — /1 + (—é)z ] cos26 = L _ 4
’ 4 4> sec26 5
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Hence, since 45° < 6 < 90°,

ing = |1 cos20 _ L=(=45 _ |9 3
sme= 2 - 2 “NI10 T
g—  [Ltcos20  JLHCH) 1 _ 1
o8 2 2 10~ /10

Thus the transformation equations to rotate axes in order to eliminate the xy term are:

x' =3y 3x' +y'
== =7 y=
V10 V10

Substituting these into the original equation followed by simplification yields:

2(x’ — 3y’)2 3(x’ - 3y’)<3x’ + y’) 2(3x’ + y’>2 10— 0
V10 V10 V10 V10

X222 =9 —18) + x'y' (=12 + 24 — 12) + y'>(18 + 9 — 2)

X

10 +10=0
—25x'? + 25y"? 10 -
x2 Y

T g !

Thus, in the rotated system, the graph of the equation is a hyperbola in standard position, with focal axis on the
x" axis and asymptotes y' = *x’. To sketch, note that the axes have been rotated through an angle 6 with tanf = 3;

hence the x'-axis has precisely slope 3 with respect to the old coordinate system. The graph, together with the
asymptotes, is shown in Fig. 39-4.
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Figure 39-4

39.6. In the previous problem, (a) find the coordinates of the foci in the new system and in the old system and
(b) find the equations of the asymptotes in the old system.

(a) From the equation of the hyperbola in the new system, a = b = 2; hence ¢ = Va? + b> = 2V2.

Thus the coordinates of the foci in the new system are (x', y') = (12\[2,0). To transform these to the old
system, use the transformation equations:

. 1 3
= x'cosf — y'sinf = 12\6(—) - 0(7> = +
V10

2
V5
. 3 1 6
y = x'sinf + y'cosf = i2\6(7> + 0(7) = +——
Vs
and (x.

=
I

V10

Hence the coordinates of the foci in the old system are (x, y) = (L L)
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(b) The equations of the asymptotes in the new system are y’ = *x'. To transform these to the old system, use
the reverse transformation equations:
x + 3y —3x+y

y' = —xsinf + ycosf =
V10 V10
Th , b —3x+y x+3y
en y’ = x’ becomes = ,
V10 V10

“3x+y (x+3y

Vio  \Vio

x'" = xcosf + ysinf =

or, after simplification, —2x = y, and y’ = —x’ becomes

), or, after simplification, x = 2y.

SUPPLEMENTARY PROBLEMS

39.7. Complete Problem 39.1 by showing that a rotation through an angle 6 transforms y according to the
transformation equation y = x’sinf + y’ cosé.

39.8. Find an appropriate angle through which to rotate axes to eliminate the xy term in the equation

212 — 10xyV/3 + 31y? = 144,
Ans. 30°

39.9. Find the equation into which 21x> — ley\/g + 31y? = 144 is transformed by the rotation of the previous
problems and sketch the graph.

2

”
Ans. Equation: x9 + yT = 1. See Fig. 39-5.

Figure 39-5

39.10. Show that the equation x> + y*> = r2 does not change (is invariant) under a rotation of the axes through any angle 6.

39.11. Find the transformation equations to rotate axes through an appropriate angle to eliminate the xy term in the
equation 16x? + 24xy + 9y? + 60x — 80y + 100 = 0.

A A =3y 3+ Ay
ns. x = 5 , ¥y = 5

39.12. Find the equation into which 16x? + 24xy + 9y? + 60x — 80y + 100 = 0 is transformed by the rotation of the
previous problem and sketch the graph.

Ans. Equation: x'? = 4(y" — 1). See Fig. 39-6.
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-10-8 -6 -4 -2"|* 2
-~ _2
Figure 39-6

39.13. Show that in transforming the equation Ax> + Bxy + Cy> + Dx + Ey + F = 0 through any rotation of axes
into an equation of form A’x'2 + B'x’y’ + C'y’> + D'x' + E'y’ + F = 0, the quantity A + C will equal the
quantity A" + C'. (Hint: See Problem 39.2 for expressions for A" and C’.)

39.14. Find the transformation equations to rotate axes through an appropriate angle to eliminate the xy term in the
equation 3x? + 8xy — 3y? — 4x\V5 + Sy\/g = 0.

2 Sl U i A

Ans. x = ,y =
Vs V5

39.15. Find the equation into which 3x?> + 8xy — 3y? — 4x\V/5 + 8y\@ = 0 is transformed by the rotation of the
previous problem and sketch the graph.

. "2 g .
Ans. Equation: 2 - 1. See Fig. 39-7.
)" 10)’
7.5
\j X
2 .S "
o I X
-10 =57 5~10
.-""‘4-2 5 ."‘.
L -5 "
~1.5
-10

Figure 39-7



CHAPTER 40

Conic Sections

Definition of Conic Sections

The curves that result from the intersection of a plane with a cone are called conic sections. Fig. 40-1 shows
the four major possibilities: circle, ellipse, parabola, and hyperbola.

ZX]

/

Circle Ellipse Parabola Hyperbola
Figure 40-1

Degenerate cases arise from exceptional situations; for example, if the plane in the first figure that intersects
the cone in a circle were to be lowered until it passes through only the vertex of the cone, the circle would
“degenerate” into a point. Other degenerate cases are: two intersecting lines, two parallel lines, one line, or
no graph at all.

Classification of Second-Degree Equations

The graph of a second-degree equation in two variables Ax?> + Bxy + Cy?> + Dx + Ey + F = 0 is a conic
section. Ignoring degenerate cases, the possibilities are as follows:

A. IF NO xy TERM IS PRESENT (B = 0):

1. If A = C the graph is a circle. Otherwise, A # C; then:
2. If AC = 0 the graph is a parabola.

3. If AC > 0 the graph is an ellipse.

4. If AC < 0 the graph is a hyperbola.

B. IN GENERAL:

1. If B> — 4AC = 0 the graph is a parabola.
2. If B> — 4AC < 0 the graph is an ellipse (or circle if B = 0,A = C).
3. If B> — 4AC > 0 the graph is a hyperbola.

The quantity B> — 4AC is called the discriminant of the second-degree equation.
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EXAMPLE 40.1 Identify the curve with equation x> + 3y> + 8x + 4y = 50, assuming the graph exists. B = 0.

Since A = 1 and C = 3, AC = 3 > 0, thus the graph is an ellipse.

EXAMPLE 40.2 Identify the curve with equation x*> + 8xy + 3y? + 4y = 50, assuming the graph exists.

SinceA=1,B=8,C=3,B>—4AC = 8 — 4-1-3 = 52> 0, thus the graph is a hyperbola.

SOLVED PROBLEMS

40.1. Derive the classification scheme for second degree equations with B = 0.

40.2.

First note that any such equation has the form Ax?2 + Cy?> + Dx + Ey + F = 0.

1. If A = 0, the square can be completed on y to yield C(y — k)> = —D(x — h); if C = 0, the square can be
completed on x to yield A(x — h)*> = —E(y —k). These are recognizable as equations of parabolas in
standard orientation, corresponding to the case AC = 0.

2. Otherwise neither A nor C is zero. Then the square can be completed on both x and y to yield
A(x — h)?> + C(y — k)> = G. The following cases can be further distinguished.

3. G = 0. The equation represents a degenerate conic section, either a point or two straight lines.

o . . x—h? -k o
4. G # 0.If A and C have opposite signs, the equation can be written as P *1, which is

the equation of a hyperbola, corresponding to the case AC < 0. If A and C have both the same sign as G, the
— B2 — k2
(x : ) N o i )
m n
equation of a circle; if not, it is the equation of an ellipse, with AC > 0. Finally, if A and C both have the
opposite sign from G, the equation represents a degenerate conic section, consisting of no point at all.

equation can be written as = 1. Then if the denominators are equal, this is the

Recall that a rotation of axes through any angle 6 transforms a second-degree equation of the
form Ax*> + Bxy + Cy> + Dx + Ey + F = 0 into another second-degree equation in the form
A'X?2+ B'x'y’ + C'y?> + D'x' + E'Yy + F = 0. Show that, regardless of the value of 6,

B> —4AC = B> - 4A'C'".

In Problem 39.2, it was shown that rotating axes through an angle 6 transforms the equation
Ax? + Bxy + Cy*> + Dx + Ey + F = 0 by making the substitutions x = x'cosf — y’sin,
y = x'sinf + y'cos6, yielding:

x"2(Acos?0 + Bcosf sinf + Csin?0) + x'y'[—2Acosfsinf + B(cos?0 — sin?#) + 2Csinfcosh]
+ y'%(Asin?0 — Bsinfcos + Ccos?0) + x'(Dcosf + Esinf) + y'(—Dsin® + Ecosf) + F =0
Comparing this with the form A'x'> + B'x'y’ + C'y'?> + D'x’ + E'y’ + F = 0 shows that
A’ = Acos?6 + Bcosfsinf + Csin?0
B’ = —2Acos0sin® + B(cos?6 — sin’0) + 2Csinfcosf
C' = Asin?0 — Bsinfcos + Ccos?6
Thus
B’? — 4A'C’' = [—2Acos0sind + B(cos?0 — sin?6) + 2Csinfcos0]?
—4(Acos?0 + BcosOsind + Csin?0)(Asin*0 —Bsinfcosd + Ccos?6)
Expanding and collecting terms yields
B'? — 4A’C’ = A*(4 cos?0sin?6 — 4cos?0sin?0) + B%(cos*6 — 2cos?Hsin?f + sin*0 + 4cos?fsin’0)
+ C*(4co0s?0sin®0 — 4cos?0sin’6) + AB(—4cos*0sinf + 4cosOsin0 + 4cos>Osind — 4cosOsin® )

+ AC(—8sin*0cos?0 — 4cos*0 — 4sin*0) + BC(4cos*0sinh — 4cosOsin®0 — 4cos>Osinf + 4coshHsin® )
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The coefficients of A%, C?, AB, and BC are seen to reduce to zero, and the right side reduces to:
B'? — 4 A'C' = B¥cos*# + 2cos20sin?6 + sin*6) — 4AC(cos*0 + 2cos?fsin?6 + sin*H)
= (B? — 4 AC)(cos?0 + sin?0)?
= B> —4AC

This equality is often stated as follows: The quantity B> — 4AC is invariant under a rotation of axes through any
angle.

Derive the general classification scheme for second-degree equations.

The general second-degree equation has the form Ax> + Bxy + Cy?> + Dx + Ey + F = 0. If B # 0, then it was
shown in the previous chapter (Problem 39.2) that there is an angle 6 through which the axes can be rotated so
that the equation takes the form A'x'2 + C’y'?> + D'x’ + E’y’ + F = 0. Then, this is the equation of

1. Aparabolaif A'C’' =0
2. Anellipse if A'C' >0
3. Ahyperbolaif A'C’' <0

For the transformed equation, the discriminant becomes B> — 4AC = —4A’C’. Therefore, in case 1, the original
discriminant B> — 4AC = 0; in case 2, B> — 4AC < 0; and in case 3, B> — 4AC > 0. Summarizing, the equation
Ax?> + Bxy + Cy> + Dx + Ey + F = 0 represents

1. A parabolaif B> — 4AC =0
2. Anellipse if B> — 4 AC <0 (orcircle if B = 0,A = C)
3. Ahyperbola if B> — 4AC >0

Here degenerate cases are neglected and it is assumed that the equation has a graph.

Identify the following as the equations of a circle, an ellipse, a parabola, or a hyperbola:

(a) 3x* + 8x + 12y = 16; (b) 3x> — 3y* + 8x + 12y = 16;

(c) 3x> +3y* +8x+ 12y = 16; (d) 3x> + 4y> + 8x + 12y = 16

(a) Here B=0,A = 3, and C = 0. With B = 0, since AC = 0, this is the equation of a parabola.
(b) Here B=0,A = 3, and C = —3. With B = 0, since AC < 0, this is the equation of a hyperbola.
(c) Here B =0, and A = C = 3. Thus this is the equation of a circle.

(d) Here B=0,A = 3, and C = 4. With B = 0, since AC > 0, this is the equation of an ellipse

Identify the following as the equations of a circle, an ellipse, a parabola, or a hyperbola:
(a) 3x% + 8xy + 12y = 16; (b) 3x> + 8xy — 3> + 8x + 12y = 16;
(c) 3x% + 6xy + 3y> + 8x + 12y = 16;(d) 3x% + 2xy + 3y + 8x + 12y = 16

(a) Here A =3,B=28,C=0,s0B> —4AC = 8 — 4-3-0 = 64 > 0. Hence this is the equation of a
hyperbola.

(b) Here A = 3,B=8,C = —3,s0 B> — 4AC = 8> — 4 - 3(—3) = 100 > 0. Hence this is the equation of a
hyperbola.

(c) Here A=3,B=6,C=3,50B%> — 4AC = 6> — 4 - 3 -3 = (. Hence this is the equation of a parabola.
(d) HereA=3,B=2,C=3,5s0B>—4AC =22 —4-3-3 = —32 <0. Hence this is the equation of an ellipse.

Note: Since B # 0 in all of these cases, none of these can be an equation of a circle.
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40.6. It can be shown that, in general, for any ellipse and any hyperbola, there are two straight lines called directrices,
perpendicular to the focal axis and at distance a/e = a?/c from the center, such that the equation of the curve can
be derived from the relation PF = e - PD, where PF is the distance from a point on the curve to a focus and PD
is the perpendicular distance to the directrix. (See Figs. 40-2 and 40-3.)

Asymptote Asymptot:
y
Directrix y Directrix A
Focus Focus X
/‘.‘oc(; m S Fy(~,0) Fy(c, 0)
Vertex(-4 DN F(—c, 0) —’ch,f)\/Venex(afO)
Directrix  Directrix

Figure 40-2 Figure 40-3

Y

Find the directrices and verify the derivation of the equation from PF = e - PD for:

2
(a) the ellipse xz + 2 = 1;(b) the hyperbolax? — y> =1

(a) Herea=2,b=1,c = Va2 — b= \V4—1=\3 Thuse = cla = \V/3/2. The directrices then are
the vertical lines x = *ale = =2 + \/3/2 = *4/ \/§ The relation PF = e - PD then becomes

4

x - —

V3

(choosing the right-hand focus and directrix)

Ve = V3p + y =%

Squaring both sides and simplifying yields:

3 8 16
2 _ 2 (2 _ O 16
X 2x\/§+3+y 4<x \/§x+3)

x2—2x\/§+3+y2=%x2—2x\[3+4

+y=1

(b) Herea=1,b=1,c = Va2 + b =\V1+1= V2 Thuse = c/la = /2. The directrices then are
the vertical lines x = *a/e = £ 1/\6. The relation PF = e - PD then becomes
x — L (choosing the right-hand focus and directrix)

Vix = V2 +y2 = V2 G

Squaring both sides and simplifying yields:

x2—2x\/2+2+y2=2<x2—ix+l>

V2 2
x2—2x\/§+2+y2:2x2—2x\/§+1
X+ y+2=22+1
1 =x2—y
Note: If the eccentricity of a parabola is defined as 1, then the relation PF = e - PD can be viewed as
describing all three noncircle conic sections: parabola, ellipse, and hyperbola.
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40.7. Show that in polar coordinates the equation of a conic section with (one) focus at the pole and directrix,

the line rcos® = —p can be written as
_ ep
"T 1 = ecosh
See Fig. 40-4.
d y
D A 7~ P@16)

Figure 40-4

From the previous problem, a conic section can be defined by the relation PF = e - PD. Here, the focus is at the
origin, hence the distance from a point on the conic section to the focus PF = r. The distance from P to the
directrix is given by

PD = PA + AD = rcosf + p.
Thus

PF =e-PD
r = e(rcosf + p)
r = recosf + ep
r — recosf = ep
(1 — ecosf) = ep
ep

U

40.8. Identify each of the following as the equations of an ellipse, a hyperbola, or a parabola:

_ 4 _ 4 ) -4
@ r= 1 - cosH’(b)r 1 - 2cos9’(c)r 2 — cosf
ep

(a) Comparing the given equation with r = 1= ecost ©

= land ep = p = 4, hence this is the equation of
a parabola.

ep

(b) Comparing the given equation with » = 1= ecost ©

= 2andep = 2p = 4, p = 2, hence this is the

equation of a hyperbola.

(c) To compare the given equation with » = rewrite it as r = and

—_— 2 .Thene = 1
1 — ecosé 1 2
1 - Ecosﬂ

ep = %p = 2, p = 4, hence this is the equation of an ellipse.
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SUPPLEMENTARY PROBLEMS

40.9. Identity the following as the equations of a circle, an ellipse, a parabola, or a hyperbola:
(a) x* + 2y* — 2x + 3y = 50; (b) x> — 2x + 3y = 50; (¢) x> — y* — 2x + 3y = 50;
(d) y>—2x+ 3y =x2+50; (e) 2x> + 23> — 2x + 3y =50

Ans. (a) ellipse; (b) parabola; (c) hyperbola; (d) hyperbola; (e) circle

40.10. Identify the following as the equations of a circle, an ellipse, a parabola, or a hyperbola:
(a) x* + 2xy + y> — 2x + 3y = 50; (b) 2xy + y* — 2x + 3y = 50; (¢) x*> + xy + > — 2x + 3y = 50;
(@ >+ 4dxy +y>—2x+3y=50;(e) (x —y)>+ (x +y)> —2x =50

Ans. (a) parabola; (b) hyperbola; (c) ellipse; (d) hyperbola; (e) circle

40.11. The following equations represent typical degenerate conic sections. By factoring or other algebraic techniques,
identify the graphs:

(@ X>+xy—3x=0;(b) > —2xy+y*=81;(c) X +4dxy+ 4>+ 2x+ 4y +1=0;
@ 22 +y>?—4y+16=0;(e) 2x> +4x +y*—4y+6=0
Ans. (a) x =0orx + y =3, two intersecting lines; (b) x — y = =9, two parallel lines;
(¢) x + 2y + 1 =0, one line; (d) 2x*> + (y — 2)> = —12, no point;
(e) 2(x + 1)> + (y — 2)> = 0, graph contains one point: (—1,2)

c\‘<

_
=
S
")

|

Il
_

40.12. Find the directrices for the graphs of the following equations: (a) Z +

Ans. (b) y

ﬂ\o
o
(98]

(a) y——\/

40.13. Show that in polar coordinates the equation of a conic section with (one) focus at the pole and directrix
the line rcos® = p can be written as

ep

"T 1+ ecosh

40.14. Identify each of the following as the equations of an ellipse, a hyperbola, or a parabola:

12 12 12 12

@ =306 ® 7T T4 306" @ " T T 050D 7T 3= Beost

Ans. (a) ellipse; (b) hyperbola; (c) parabola; (d) hyperbola

40.15. Show that in polar coordinates the equation of a conic section with (one) focus at the pole and directrix
the line rsin@ = p can be written as
ep
rF =5 A
1 + esinf
40.16. Show that in polar coordinates the equation of a conic section with (one) focus at the pole and directrix
the line rsinf = —p can be written as

_ er
~ 1 — esinf
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Sequences and Series

Definition of Sequence

A sequence is a function with domain the natural numbers (infinite sequence) or some subset of the natural
numbers from 1 up to some larger number (finite sequence). The notation f(n) = a, is used to denote range
elements of the function: the a,, a,, a, . ..are called the first, second, third, etc. terms of the sequence, and
a, is referred to as the nth term. The independent variable 7 is referred to as the index. Unless otherwise
specified, a sequence is assumed to be an infinite sequence.

EXAMPLE 41.1 Write the first four terms of the sequence specified by a, = 2n.
a=2-1,a,=2-2,a,=2-3,a, =2 -4 The sequence would be written 2 - 1,2 -2,2-3,2-4,...0r2,4,6,8,....

EXAMPLE 41.2 Write the first four terms of the sequence specified by a, = (—1)".

a, = (=D a, = (=12 a; = (—1)%, a, = (—1)*. The sequence would be written (—1), (—=1)%, (=1)%, (=1)*, .. . or
-1,1,—-1,1,....

Finding the nth Term of a Sequence

Given the first few terms of a sequence, a common exercise is to determine the nth term, that is, a formula
which generates all the terms. In fact, such a formula is not uniquely determined, but in many cases a simple
one can be developed.

EXAMPLE 41.3 Find a formula for the nth term of the sequence 1, 4,9, 16, . . ..

Notice that the terms are all perfect squares, and the sequence could be written 12, 22, 32,42, . . ..

Thus the nth term of the sequence can be given as a, = n”.

Recursively Defined Sequence

A sequence is defined recursively by specifying the first term and defining later terms with respect to
earlier terms.

EXAMPLE 41.4 Write the first four terms of the sequence defined by @, = 3,a, =a, _, +7,n> 1.

Forn=1,a, =3

Forn=2a,=a, +7=a+7=3+7=10

2
Forn:3,a3=a371+7=a2+7=10+7=17

Forn=4,a,=a, +T7=a,+7=17+7=24

4

The sequence can be written 3, 10, 17, 24, . . ..
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Definition of Series

A series is the indicated sum of the terms of a sequence. Thus if a, a,, a,, . ..,a, are the m terms of a finite
sequence, then associated with the sequence is the series given by a, + a, + a3+ -+ + a,. Series are
often written using the summation notation:

a ta, +a, + - Ea
K=
Here 3, is called the summation symbol, and k is called the index of summation or just the index. The right-
hand side of this definition is read, “the sum of the q,, with k going from 1 to m.”
> 1

EXAMPLE 41.5 Write in expanded form: e
k=1

Replace £, in turn, with the integers from 1 to 5 and add the results:

5
LIS S DS NI NS NI SIS D S
gk— Etuta Tt ltitot 6" 53

~
=]

Infinite Series
The sum of all the terms of an infinite sequence is referred to as an infinite series, and is indicated by the
symbol:

Infinite series in general are discussed in calculus courses; a special case (infinite geometric series) is treated
in Chapter 43.

Factorial Symbol

A useful definition is the factorial symbol. For natural numbers n, n! (pronounced n factorial) is defined as
the product of the natural numbers from 1 up to n. Then

=1 21=1-2=2 31=1-2-3=6 41=1-2-3-4=24

and so on. Separately, 0! is defined to equal 1.

SOLVED PROBLEMS

41.1. Write the first four terms of the sequences specified by
(@ a,=2n—1;(0) b,=6—4n;(c) c,=2"(d) d,= 3(=2)

@a=2-1-1=1,a=2-2-1=3,a,=2-3—-1=5,a,=2-4—1=7.The sequence would be
written 1, 3,5,7, .. ..

(b)by=6—-4-1=2,b,=6—-4:2=-2,b,=6—-4-3=—6,b,=6 —4-4= —10. The sequence
would be written 2, —2, —6, —10, .. ..

(¢) ¢, =2'=2,¢,=2"=4,c, =2 =8, ¢, = 2* = 16. The sequence would be written 2,4, 8, 16, . . ..

(d) d, =3(-2)' = —6,d, = 3(—2)* = 12,d, = 3(—2)* = —24, d, = 3(—2)* = 48. The sequence would be
wrltten —6, 12, —24, 48
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Write the first four terms of the sequences specified by

(b) b, = ”712; ©c, = sin%; d d, = (=D Vn

@ a, = 57 =
n n+1 3n (n+ Dn+2)

@a-=-o"t L, 1, _ 1 _ 1 _ 1 _1
V=301 2273241 7%733+1 10%~"34+1 13
_ 12 _ _ 22 _ _ 32 _2 _ 42 _§
b b =3g 5 =lh=35 5= lh=3y 35 =305 3-575
(c)c=sin7T‘1=Lc=sinL.2=lc=sinw‘3=ic=sinﬂ“4=0
1 4 N 4 G 4 NG 4
g o COVI o cV2 NV GV VG
Dd=grna+2- 2" arhe+ry 25 3rD3+2 - 20
—)"V4 i

1
4T G+ D@ +2) 30 15

Write the tenth term of each of the sequences in the previous problem.
a = 1 _ 1 b = 102 _25
0 3.-10+1 31 0=3.10-2 7
5 (VI 4 - =D°vVio V1o
€10 = ST 107 (10 + D10 +2) 132

Write the first four terms of the following recursively defined sequences:

a
(a) a1=1,an=na n>1;(b)a1=l,an=an 1-l—2,n>l;(c)a]=12,an= ,n>1

n— 1 - 4

(@ Forn=1,a,=1 (b) Forn=1,a, =1
Forn=2,a,=2a,_ ,=2a,=2-1=2 Forn=2,a,=a,_,+2=a +2=1+2=3
Forn=3,a,=3a,_,=3a,=3-2=6 Forn=3,a;,=a,_+2=a,+2=3+2=5
Forn=4,a4=4a4_l=4a3=4-6=24 Forn=4,a4=a4_l+2=a3+2=5+2=7

(¢) Forn=1,a =12

a, _ a
Forn=2,a, = 2412112%:3
a, _ a
Forn =3,a, = 341:7:%
a, a

The sequence definedby @, = 1,a, = 1,a, = a, _, + a, _,,n>2,is called a Fibonacci sequence. Write the
first six terms of this sequence.

Forn=l,a1=l Forn=2,a2=l
Forn=3,a3=a2+a1=1+l=2 Forn=4,a4=a3+a2=2+1=3
Forn=5,a;,=a,+a,=3+2=5 Forn=6,a,=a;+a,=5+3=38

The sequence would be written 1, 1, 2,3,5,8, .. ..
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41.6. Find a formula for the nth term of a sequence whose first four terms are given by:

) B O _ gy 123 4
(a‘) 2’47 6’ 8"", (b) 1? 33 5’ 7?"'7(C) 1’ 27 4, 87"'3(d) 23 57 107 1 9
(a) Comparing the terms of the sequence with n = 1, 2, 3, 4, . . . shows that the individual terms are each
2 times the index n of the term. Thus a possible formula would be a, = 2n.
(b) The sequence can be written as %, %, %, %, .. .; thus, comparing the denominators with the previous
sequence shows that each denominator is 1 less than 2, 4, 6, 8, . . . , hence, can be written as 2n —1.
Thus a possible formula would be a, = n 1_ T

(c) The absolute values of the terms of the sequence are powers of 2, that is, 2°, 2!, 22, 23; comparing this to
n=1,2,3,4,... suggests that the nth term has absolute value 2"~ !. The fact that the signs of the terms
alternate can be represented (in more than one way) by successive powers of —1, for example, (—1)',
(=D% (=1)%, (=1)% .... Thus a possible formula would be a, = (—1y2" .

(d) A pattern for the denominators can be found by comparing to the sequence 1, 4, 9, 16, . . . of Example 41.3;
since each denominator is 1 more than the corresponding term of this sequence, they can be represented by

n?> + 1. The numerators are equal to the index of the terms; thus, a possible formula would be a, = nZnTl

41.7. Write each series in expanded form:
4 5 j 20 P Kk
@ 26k + D;0) X 5@ 2EDTUE@ 2y
K=1 i=1jr 1 i=3 =15

(a) Replace k in the expression 6k + 1, in turn, with each natural number from 1 to 4, and place an addition
symbol between the results:

4
2(6k+1)=(6-1+1)+(6-2+1)+(6~3+1)+(6~4+1)=7+13+19+25:64
k=1

(b) Note that the letter j is used for the index here; in general, any variable letter may be used, but the letters
i, j, k are the most common. Replace j in the expression after the summation symbol, in turn, with each
natural number from 1 to 5, and place an addition symbol between the results.

5 .
2 J 1 2 3 4 5 1

4 5
= + + + + == =
AT 1241 2+1 R+ #2410 241 2

17 " 26

2 3
~ 510"

In this context, it is not always necessary to complete the arithmetic; if desired, the addition can be
3597

performed to yield 210 = 1.6276.
(c) Note that the index starts from 3; there is no requirement that a series must start from index 1. Replace j in
the expression after the summation symbol, in turn, with each natural number from 3 to 20, and place an

addition symbol between the results.

20,
ZEDTE) = CDTIG ) GG A (DTS5 e+ (D75 20)

i=3

15—-20+25—---—100

If there are an unwieldy number of terms, as in this case, not all terms are written out explicitly; the three
dots (ellipsis . . .) symbol is used.

(d) Here the variable on top of the summation symbol indicates that the number of terms is not explicitly
stated. Write out the first few terms and the last term; use the ellipsis symbol.
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41.8. Write the following series in expanded form:

41.9.

)kk

1
(a) Ex L ) E( 1D 14 (o) E(

(a) Replace k in the expression after the summation symbol, in turn, with each natural number from 1 to 3,
and place an addition symbol between the results.

xk+1

Sk 2 3

(b) Replace k in the expression after the summation symbol, in turn, with each natural number from 1 to 5,
and place an addition symbol between the results.

5
Sk = (=) 4 (DR (— 1P (— D+ (=1 LS
K=1

=x—x2+x83—xt+ i

(c) Replace k in the expression after the summation symbol, in turn, with each integer from O to 4, and place
an addition symbol between the results.

4
(- 1)kx" D%~ (122 (-1 (— DA
2 TTo T T TTm Ta

D SR TN SR N DNV R SR o
U TR T TR T R Rl Sl S 7
Write the following series in summation notation:
PSS S S 4 4 SN SN 24
(a)3-1-6-1—9-1—12-1—15,(b)2 4+8 16,(c)4-|—3+9-i- 729’(d)1+ +6 22
(a) Comparing the terms of the sequence with k = 1, 2, 3, 4, . . . shows that the individual terms are each

3 times the index k of the term. Thus a possible formula for the terms would be a, = 3k; there are 5 terms,
5

hence the series can be written as 2 3k.
k=1
(b) Comparing the terms of the sequence with k = 1, 2, 3,4, ... shows that the denominators are powers of 2:
21,22,23, ... The fact that the signs of the terms alternate can be represented by successive powers of —1,
for example, (—1)°, (—1)!, (—1)%,. .. . Thus a possible formula for the terms would be a, = (— 1)~ /2
4
there are 4 terms, hence the series can be written as E (= 1)k =172k,
k=1
(c) Comparing the terms of the sequence with k = 1, 2, 3, 4, . . . shows that the denominators are powers
of 3: 3%, 31,32, .. .. Thus a possible formula for the terms would be a, = 4/3* ~ 1. Since the last term has
denominator 729 = 3°, setting 6 = k —1 yields k = 7; there are 7 terms, hence the series can be written

as D, 4/3k 1.
k=1
(d) Comparing the terms of the sequence with k = 1, 2, 3,4, ... shows that the denominators are representable

as factorials; a possible formula for the terms would be a, = xX¥/k!; there are 4 terms, hence the series can be
4

written as E XK\,
k=1
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SUPPLEMENTARY PROBLEMS

41.10. Write the first four terms of the following sequences: (a) a, = %On; (b)a, = p :1 3 ©a,=5-2n

(d) a,= n[l — (—1)"]; (e) a, = 5, a,= 2a —1,n>1;() a, = 4, a,=—a,_ 1/5,n> 1.

n—1

11 1 1 436912 _1 —1a.
Ans- @ 70: 700° 1000° 10,000° ® & 78 95 (© 3L~ =3
: : 44 4
@ 2,0,6,0;() 5,9,17,3% () 4, —%, 55, 153
a_, +x
41.11. The sequence recursively defined by a, = 54 with a, chosen arbitrarily, may be used to approximate
n—1
a_,+5
Vixto any desired degree of accuracy. Find the first four terms of the sequence a; = 2, a, = a0

n—1

and compare to the calculator approximation for V5.

Ans. 2,2.25,2.23611, 2.236068, calculator: V5 ~ 2.236068

41.12. Find a formula for the nth term of a sequence whose first four terms are given by:

. as 6 78 _9 B A S
(@) 4,7,10,13,...;(b) 1, =3,5, 3O 2 =g 13 @D 35 g e g
Ans. @a =3n+1(ba =(—1y-1Qn—1)@a = (—1yp-1 213 @a, -
: n b)a, 0 a, o+ 5 (2n)!

k 6 3 P
41.13. Write in expanded form: (a) 2 Tr1 l’ 2 k + 1)',(0 m
k=0

2,4, -8 fJX P 0 1 x| X x
Ans. @) H- 3+ 4 (b)4! site T O T3 21T 5 1%
41.14. Write the following in summation notation:
3 5 7
()7+2+%+7(b)x—2x2+3x3—4)é‘+5x5—6x6(c)x—f+%—%

_])k*1x2k*1

4 6 4
(
Ans. (a) kgl ﬁ; (b) kgl(_ 1%~ Tkx*; (¢) kgl k=1
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The Principle of Mathematical
Induction

Sequences of Statements
Statements about the natural numbers can often be regarded as sequences of statements P

n

nn + 1
EXAMPLE 42.1 The statement, “The sum of the first n natural numbers is equal to % can be written as
nn + 1) o n(n + 1) ) I(ar+1
P:1+2+3+ -+ +n= — or P : 2 k= #.ThenP1 is the statement 1 = f,Pﬂsthe
k=1
22 + 1)
statement 1 + 2 = — and so on.

EXAMPLE 42.2 The statement, “For each natural number n, n*> — n + 41 is a prime number,” can be written as
P :n?> — n + 41 is a prime number. Then P, is the statement: 12 —1 + 41, or 41, is a prime number, P, is the
statement: 2> — 2 + 41, or 43, is a prime number, and so on.

Principle of Mathematical Induction (PMI)

Given any statement about the natural numbers P , if the following conditions hold:

1. P, is true.
2. Whenever P, is true, P ., is true.

Then P is true for all n.

Proof by Mathematical Induction
To apply the principle of mathematical induction to a sequence of statements P, :

1. Write out the statements P, P,, and P, , |

2. Show that P is true.

3. Assume that P, is true. From this assumption (it is never necessary to prove P, explicitly), show that the
truth of P, | | follows. This proof is often called the induction step.

4. Conclude that P holds for all n.

Failure of Proof by PMI

A sequence of statements may only be true for some values of n, or it may be true for no values of n. In these
cases, the principle of mathematical induction will not apply, and the proof will fail.

EXAMPLE 42.3 In the previous example, P, P,, P,, and so on, up to P, are all true. (P, is the statement: 40% — 40 + 41,
or 1601, is a prime number.) However, P, the statement: 41> — 41 + 41, or 412, is a prime number, is clearly false. Thus
the sequence of statements P, is regarded as false in general, and certainly cannot be proved, although some individual state-

ments are true.
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Extended Principle of Mathematical Induction

If there is some natural number m such that all statements P, of a sequence are true for n = m, then the
extended principle of mathematical induction may be used; if the following conditions hold:

1. P_is true.
m

2. Whenever P, is true, P

e 18 true.

Then P is true for all n = m.

EXAMPLE 42.4 Let P, be the statement: n! = 2". P, P,, and P, are false. (For example, P, is the false statement
2! = 2%or 2 = 4.) However, P, is the true statement 4! = 2% or 24 = 16, and the statement can be proved true for all
n = 4 by the extended principle of mathematical induction.

SOLVED PROBLEMS

nn + 1)

3 by mathematical induction.

42.1. Prove the statement P : 1 +2 + 3+ -+ +n =

Note that the left side can be thought of as the sum of the natural numbers up to and including n. Then

. 11+ 1)
P, is the statement 1 = s —

. k(k + 1)
P, is the statement 1 + 2 + 3 + --- + k= —

. k + Dk + 1) + 1]
P,  isthestatementl + 2 + 3+ .-+ +(k+ 1) = 2 .
. . 1a+1 2 . . .

Now P, is true, since 1= —5 =5 = 1 is true. Assume that P, is true for an arbitrary value of k.
To show that P, , | holds under this assumption, note that the left side can be thought of as the sum of the natural

numbers up to and including k + 1, thus the term on the left before the last is k, and P, | | can be rewritten as

k + Dk + 2)

P 14243+ - +k+(k+1)= 5

Thus the left side of P, , differs from the left side of P, only by the single additional term (k + 1). Hence,
starting with P, which is assumed to be true, add (k + 1) to both sides:

k(k + 1)
1+2+3+”'+sz
k(k + 1)
1+2+3+-~-+k+(k+1)=T+(k+l)
Simplifying the right side yields:
k(k + 1 k(k + 1 2k + 1 k(k + 1) + 2k + 1 k+ Dk + 2
GHD Ly gy HEFD 264D _KEFDEAH Dkt DED

Thus, from the assumption that P, is true, it follows that

k + D)k + 2)

1+2+3+ - +k+k+1)= 5

holds. But this is precisely the statement P, ,. Thus the truth of P, | follows from the truth of P,. Thus, by the
principle of mathematical induction, P, holds for all n.
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42.2. Prove the statement P: 1 + 3 + 5+ -+ + (2n — 1) = n? by mathematical induction.
Proceed as in the previous problem.

P, is the statement 1 = 1%

P isthe statement 1 + 3 + 5+ -+ + 2k — 1) = k%
P, isthestatementl + 3 + 5+ --- + [2(k+ 1) — 1] = (k + 1)2, which can be rewritten as
1+3+54+ -+ +2k—1D+2k+1)=(k+ 1)

Now P, is obviously true. Assume the truth of P, and, comparing it to P, |, note that the left side of
P, differs from the left side of P, only by the single additional term (2k + 1). Hence, starting with P, add
(2k + 1) to both sides.

1 +3+5+ +Q—-1)=Fk
L4345+ +Qk— 1)+ @Qk+1)=~+ Qk+1)
The right side is immediately seen to be k2 + 2k + 1 = (k + 1), thus
1+3+5+- +Qk— 1D+ Qk+1)=(k+ 1)

holds. But this is precisely the statement P, , ,. Thus the truth of P
principle of mathematical induction, P, holds for all n.

'« +  follows from the truth of P,. Thus, by the

42.3. Prove the statement P : 1 +2 + 22+ --- + 2"~ ! = 2" — | by mathematical induction.
Proceed as in the previous problems.
P, is the statement 1 = 2! — 1,
P, isthe statement 1 + 2 + 22+ --- + 281 =2k — 1],

P

.. is the statement 1 + 2 + 22 + -+ + 2+ D=1 =2k+1 _ 1 which can be rewritten as

L+24+224 -+ +267 14 2k=2k1 1]

Now P, is true, since 1 = 2! — 1 =2 — 1 = 1 is true. Assume the truth of P, and, comparing it to P note
that the left side of P, __ |

P,, add 2* to both sides.

K+ 10
differs from the left side of P, only by the single additional term 2*. Hence, starting with

1+2+22+ -+ 271 =2k
1+2+224 -+ + 2671 4 2k =2k 2k — ]
Simplifying the right side yields:

2+ 28— 1=2-2t—1=21-2k—1 =21 — ] thus
1+2+ 22+ -+ +267 1 42k =2k1 -]

holds. But this is precisely the statement P, _ ,. Thus the truth of P, __, follows from the truth of P,. Thus, by
the principle of mathematical induction, P, holds for all n.

L _n(n+ D2n + 1)

42.4. Prove the statement P, E j?= 6 by mathematical induction.
i=1

Proceed as in the previous problems.

1
10+ DH2-1+1
P, is the statement Ejz = ( )(6 ).

i=1

k
k(k + D2k + 1 ktk + D2k + 1
P, is the statement 2]’2—$0r12+22+ +k2:$~
j=1
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42.5.

42.6.

k+1
k+ DIk+ 1)+ 12k + 1) + 1
P, ., is the statement E j2= ¢ I ) 5 LE ) ],which can be rewritten as
=1

(k + Dk + 2)2k + 3)

P+22+ - 4B+ k+ 1= 3

Now P, is true, since the left side is merely 1% and the right side is L é 3
comparing it to P, | |, note that the left side of P, | | differs from the left side of P, only by the single additional
term (k + 1)%. Hence, starting with P,, add (k + 1) to both sides.

, that is, 1. Assume the truth of P, and,

12422 4 ... _|_k2 = w

6
k(k + D2k + 1
12+22+-~-+k2—i-(k—i-1)2:$+(k+l)2
Simplifying the right side yields:
k(k + DRk + 1 k(k + DRk + 1 6(k + 1)?
( ) )+(k+1)2=( ) )+( )
6 6 6
_k+ DIkQRk + 1) + 6(k + 1)]
N 6
_(k+ D[2k* + Tk + 6]
N 6
_ k + Dk + 2)2k + 3)
n 6

(k + Dk + 2)2k + 3)
Thus 12 + 22+ -+ + k2 + (k+ 1)? = 6

P, . ;. Thus the truth of P, , | follows from the truth of P,. Thus, by the principle of mathematical induction,
P, holds for all n.

holds. But this is precisely the statement

Prove the statement P, : n < 2" for any positive integer n by mathematical induction.
P, is the statement 1 < 2.
P, is the statement k < 2%,

P, isthe statement k + 1 <2F* 1

Now P is obviously true. Assume the truth of P, and, comparing it with P, _ |,

is 2 times the right side of P,. Hence, starting with P,, multiply both sides by 2:

note that the right side of P, |

26>k
2.2k > 2k

2k+1 > 2k
But2k =k + k=k+ 1. Hence

2152k =k + 1 and 2> k4 1.

But this is precisely the statement P, , . Thus the truth of P, | follows from the truth of P,. Thus, by the principle

of mathematical induction, P, holds for all positive integers n.

Prove the statement P : n! > 2" is true for any integer n = 4 by the extended principle of mathematical induction.
P, is the statement 4! > 24,
P, is the statement k! > 2%, or1-2 -3+ -+ - k>2K

P, isthestatement (k + 1)!>2* ! or1-2-3- --+ k- (k+1)>2* 1



42.7.

42.8.
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Now P, istrue, since 4! = 1-2 -3 -4 = 24 and 2* = 16. Assume the truth of P, and, comparing it with P ..
note that the left side of P, , | is k + 1 times the left side of P,. Hence, starting with P, multiply both sides by
k+ 1:

1:2-3 o+ k- (k+ 1) > 2%k + 1)

But, since k> 1, k + 1 > 2, hence 2%k + 1) > 2k - 2 = 2k . 21 = 2k*+ 1 Therefore
123 - k-(k+1)>2k+1

holds. But this is precisely the statement P, , ,. Thus the truth of P, | ,
extended principle of mathematical induction, P, holds for all n = 4.

follows from the truth of P,. Thus, by the

Prove the statement P : x — y is a factor of x — y" for any positive integer n by mathematical induction.
P, is the statement: x — y is a factor of x! — y.

P, is the statement: x — y is a factor of x* — y*.

k+1 k+1

P

¢ + 1 18 the statement: x — y is a factor of x

-y
Now P, is true, since any number is a factor of itself. Assume the truth of P,; the statement can be rewritten
as x* — yk = (x — )Q(x), where Q(x) is some polynomial. Similarly P, , | can be rewritten as

xk+ 1 —yk+1 = (x — y)R(x), where R(x) is some (other) polynomial. To show that P, , | holds under the
assumption of the truth of P, note that

k+1 k+1

X yk+1:xk+l_xyk+xyk_y
— (xk+l _xyk) + (xyk_yk+l)

= x(xk = yH + yHx — )

Since by assumption x* — y* = (x — y)Q(x), then

k+1 _yk+1 :x(xk_yk) +yk(x_y)

= x(x — y)OX) + y*x — y).
(x — O + ¥

X

In other words, the required polynomial R(x) is equal to xQ(x) + y* and x — y is a factor of x**! — y¥ 1 But
this is precisely the statement P, , |. Thus the truth of P, _| follows from the truth of P,. Thus, by the principle
of mathematical induction, P, holds for all positive integers n.

Use the principle of mathematical induction to prove DeMoivre’s theorem: If z = r(cosf + isinf) is a
complex number in trigonometric form, then for any positive integer n, z" = r" (cosnf + isinnf).

Here P is the statement z" = r"(cosnf + isinn6). Then

P, is the statement z' = r!(cos 16 + isin18).

P, is the statement z* = r*(cosk@ + isink6).

P, , ,is the statement z* * ' = r** I[cos(k + 1)0 + isin(k + 1)0].

Now P, is obviously true. Assume the truth of P,, and, comparing it with P, |,

is z times the left side of P,. Hence, starting with P, multiply both sides by z:

note that the left side of P, , |

¥ = rk(cosk® + isink6)

2z% = z(r*(cos k@ + isink#))
k41 = p(cos® + isinf)r¥(cosk6 + isink0)
ZK+ 1 = rrk(cos® + isin@)(coskf + isinkh)
k1 = pk*1l(cos® + isin@)(coskd + isink0)

N
|
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But by the rule for multiplying complex numbers in trigonometric form,
(cos@ + isinf)(cosk + isinkd) = cos(6 + k6) + isin(0 + kB) = cos(k + 1)0 + isin(k + 1)0

Thus z** ! = r¥* ![cos(k + 1)0 + isin(k + 1)8] holds. But this is precisely the statement P, , ,. Thus the truth
of P, , follows from the truth of P,. Thus, by the principle of mathematical induction, P , that is, DeMoivre’s

theorem, holds for all positive integers n.

SUPPLEMENTARY PROBLEMS

42.9.

42.10.

42.11.

42.12.

42.13.

42.14.

42.15.

42.16.

Prove by mathematical induction: 2 +4 + 6+ -+ +2n=n(n + 1).
Prove by mathematical induction: 3 +7 + 11 + -+ + (4n — 1) = n(2n + 1).
Prove by mathematical induction: 1 +3 + 324 --- + 37" 1 = 32;1

oo . n*(n + 1)
Prove by mathematical induction: 13 + 23 + 33 + --- +p3 = —

n n 2
Deduce from Problems 42.1 and 42.12 that 2, k3 = ( > k) .
k=1

k=1
Prove by mathematical induction: —— + —— + —— + 0+ L =1
y 13 3-5 57 en—1D2n+1) 2n+1°
ProveL + L + L + -0+ L >Van=2 by the extended principle of mathematical
Vi V2 V3 Vn ’ ’

induction.

Prove by mathematical induction: x + y is a factor of x> = ! + y2" = ! for any positive integer n.
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Special Sequences and Series

Definition of Arithmetic Sequence

A sequence of numbers a, is called an arithmetic sequence if successive terms differ by the same constant,
called the common difference. Thusa, —a _,=danda = a,_,+ d for all terms of the sequence. It can
be proved by mathematical induction that for any arithmetic sequence, a, = a, + (n — 1)d.

Definition of Arithmetic Series
An arithmetic series is the indicated sum of the terms of a finite arithmetic sequence. The notation S is often
n

used, thus, § = E a,. For an arithmetic series,
k=1

S, = %(al +a) S, = %[Zal + (n — 1)d]

EXAMPLE 43.1 Write the first 6 terms of the arithmetic sequence 4, 9, . . ..

Since the sequence is arithmetic, with a; = 4 and a, = 9, the common difference d is givenby a, —a, =9 — 4 = 5.
Thus, each term can be found from the previous term by adding 5, hence the first 6 terms are 4, 9, 14, 19, 24, 29.
EXAMPLE 43.2 Find the sum of the first 20 terms of the sequence of the previous example.

To find S,, either of the formulas for an arithmetic series may be used. Since a, = 4, n = 20, and d = 5 are known, the
second formula is more convenient:

S, =5 [2a, + (n = 1d]

S = 270[2~4 + (20 — 1)5] = 1030

Definition of Geometric Sequence

A sequence of numbers a is called a geometric sequence if the quotient of successive terms is a constant,

called the common ratio. Thus a, ~a _,=rora =ra, _, for all terms of the sequence. It can be proved
1

by mathematical induction that for any geometric sequence, a, = a,r" ~ .

Definition of Geometric Series

A geometric series is the indicated sum of the terms of a geometric sequence. For a geometric series with r # 1,
|

L

EXAMPLE 43.3 Write the first 6 terms of the geometric sequence 4, 6, . . . .

Since the sequence is geometric, with a; = 4 and a, = 6, the common ratio r is given by a, +~ a; = 6 = 4 = 3/2. Thus,
each term can be found from the previous term by multiplying by 3/2, hence the first 6 terms are 4, 6, 9, 27/2, 81/4, 243/8.
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EXAMPLE 43.4 Find the sum of the first 8 terms of the sequence of the previous example.

Use the sum formula with @, = 4, n = 8, and r = 3/2:

1 - (/2 6305
8~ 71 -(3/2) 32

Infinite Geometric Series

It is not possible to add up all the terms of an infinite geometric sequence. In fact, if |-l = 1, the sum is not
defined. However, it can be shown in calculus that if Il < 1, then the sum of all the terms, denoted by S_, is
given by:

EXAMPLE 43.5 Find the sum of all the terms of the geometric sequence 6,4, . . . .

Since the sequence is geometric, with @, = 6 and a, = 4, the common ratio r is given by a, = a, = 4 = 6 = 2/3. Therefore

_ 4 6 _
Se= 17~ 1-a;3 " 18

Series Identities
The following identities can be proved by mathematical induction:

Eak+ Zb—E(ak+bk) Eak—zbk=2(ak—bk) 2cak—c2ak

k=1 k=1 k=1 k=1 k=1 k=1

. _M Lo, nn+ D@2n+ 1)
2k 2k = 6

" n*(n + 1) 2 nn + DQ2n + DGn* +3n — 1)
LY 4 _
2 k 4 2 k 30

SOLVED PROBLEMS

43.1. Identify the following sequences as arithmetic, geometric, or neither.
@ 2,4,8,...5(b) 3,535 --.5() 7,53, ...;(d) z,g,g,--.

(a) Sincea, —a, =4 —2=2anda, — a, = 8 — 4 = 4, the sequence is not arithmetic. Since
a,la; = 4/2 = 2 and a./a, = 8/4 = 2, the sequence is geometric with a common ratio of 2.

= 1 -y =1_1_ _1 i i i i
= —ganda, — a, = 7 — 3 = —3, the sequence is not arithmetic. Since

(b) Since a, — q, =% - %
a, ~a, = % = % = %and a, +a,= % = % = %, the sequence is not geometric. Thus it is neither arithmetic
nor geometric.

(c) Sincea, —a;, =5 —7= —2anda, — a, = 3 — 5 = —2, the sequence is arithmetic with a common
difference of —2.

(d) Since a, — q, :é -
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43.2. Identify the following sequences as arithmetic, geometric, or neither.

43.3.

43.4.

(a) 3,%%,. ..3() In1,In2,1n3,...;(c) x Lx % x73,...;(d) 0.1,0.11,0.111, . ..

15

i —15_ 5, _3 _ 15
(a) Sincea, —a, =3 — 3 =;anda, —a

9 3 I N
, =73 — 3 = 3 the sequence is arithmetic with a common

difference of %.

(b) Sincea, —a, =In2 —Inl =In2anda, —a, =In3 —In2 = ln%, the sequence is not arithmetic. Since
a, = a; = (In2) + (Inl) is not defined, the sequence is not
geometric. Thus it is neither arithmetic nor geometric.

— X
X2

- 1 —x . . .
— x~2 = ———, the sequence is not arithmetic
X

_ — 3
anda, —a, =x

_ 1
2yl =

(c) Sincea, —a, = x~

2 1 = 3

except in the special case x = 1. Since a, + ¢, = x>+ x' =x'anda, + a, = x~°
sequence is geometric with a common ratio of x~! (except in the special case x = 0).

+x2=x"1 the

(d) Since a, —a, = 0.11 — 0.1 = 0.01 and a, — a, = 0.111 — 0.11 = 0.001, the sequence is not arithmetic.
Since a, + a; = 0.11 + 0.1 = 1.1 and a; + a, = 0.111 = 0.11 = 1.01, the sequence is not geometric.
Thus it is neither arithmetic nor geometric.

Prove that for an arithmetic sequence the nth term is givenby a, = a, + (n — 1)d.

An arithmetic sequence is defined by the relation a, = a, _ | + d. Let P, be the statement thata, = a, + (n — 1)d
and proceed by mathematical induction.

P, is the statement a; = a, + (1 — 1)d.
P, is the statement a, = a, + (k — 1)d.

P

.+ 1 18 the statement a, , ; = a, + [(k + 1) — 1]d, which can be rewritten as

a =a, +kd

k+1

Now P is obviously true. Assume the truth of P, and note that by the definition of an arithmetic sequence,

a, ., = a, + d. Therefore

a =agt+d=a +k—-1d+d=a +kd

k+1

Buta, , , = a; + kdis precisely the statement P, | |. Thus the truth of P, | | follows from the truth of P,. Thus,
by the principle of mathematical induction, P, holds for all 7.

Given that the following sequences are arithmetic, find the common difference and write the next three terms
and the nth term.

17

(a) 2,5,...;(b) 9,7,...;(0) Inl,1In2, ...

(a) The common difference is 5 — 2 = 3. Each term is found by adding 3 to the previous term, hence the next
three terms are 8, 11, 14. The nth term is found from a, = a, + (n — 1)d with a; = 2 and d = 3; thus
a,=2+m—-13=3n—-1

(b) The common difference is 4 — 9 = —3. Each term is found by adding —3 to the previous term, hence the
next three terms are 8, %, 7. The nth term is found from a, = a, + (n — 1)d witha, = 9 and d = —%; thus
1 19 —n
a,=9+0n=D(-3)=—5—

(c) The common difference is In2 — In1 = In2. Each term is found by adding In?2 to the previous term,
hence the next three terms are given by In2 + In2 =In4,In4 + In2 =1In§,and In 8 + In2 = In16.
The nth term is found from a, = a, + (n — 1)d with a; = In1 and d = In2; thus
a =Inl+ (n— DIn2 = — DIn2 =In2"" "
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43.5. Given that the following sequences are geometric, find the common ratio and write the next three terms and
the nth term.

(a) 5,10,...5() 4, —2,...;(c) 0.03,0.003, ...

(a) The common ratio is 10 + 5 = 2. Each term is found by multiplying the previous term by 2, hence the
next three terms are 20, 40, 80. The nth term is found from a,=ar"” ' with a, = 5 and r = 2; thus
a =5-2""1,

(b) The common ratio is —2 + 4 =—%. Each term is found by multiplying the previous term by—%; hence the

next three terms are 1, —%, %. The nth term is found from a, = a,r"~ I'with a, =4andr = —%; thus
n=1 (=)
Y e i
n 2 2n 3

(c) The common ratio is 0.003 + 0.03 = 0.1. Each term is found by multiplying the previous term by 0.1;
hence the next three terms are 0.0003, 0.00003, 0.000003. The nth term is found from
3

a, = a,;r"~'witha, =0.03and r = 0.1, thus ¢, = 0.03(0.1)" "' =3 X 1072 X 10! " = T T

n 1
43.6. Derive the formulas S, = g(al +a)and S = %[2(11 + (n — 1)d] for the value of an arithmetic series.
To derive the first formula, write out the terms of S ;
S =a +(@ +d)+ (@ +2d)+ - +[a +(n—1)d]

Now write the terms in reverse order, noting that to begin with a,, each term is found by subtracting d, the
common difference, from the previous term.

S =a +(@ —d+ @ —2d)+ - +[a —(n— 1)d]
Adding these two identities, term by term, and noting that all terms involving d add to zero, yields:
S, +S§,=(@ ta)+(@ +a)t@+a)+ - - +(a +a)
Since there are n identical terms on the right,

28

n

n
S = E(al + an)

n

n(a, + a,)

For the second formula, substitute @, = a, + (n — 1)d into the above to obtain
_n —1
S _2[“1+“1+(” )d]
S ="02aq + yd
- 2[ al (l’l - ) ]
43.7. Find the sum of the first 10 terms of the arithmetic sequences given in Problem 43.4.
(a) Here a, = 2 and a,= 3n — 1. Forn = 10,

Sy = %[2 + (310 — 1)] = 155

9—n
2

1
(b) Herea, =9 and a, = . Forn = 10,

2

S

10 19 — 10 135
(= 0y 195 0]

(c) Herea, = Inland a, = In2"~'. For n = 10,

Sy = 12—0[1n1 + In21°71] = 5102 = 45In2



43.8.

43.9.

43.10.

43.11.
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Derive the formula §, = a 1% for the value of a finite geometric series (r # 1).

Write out the terms of S, .
S =a +ar+tar*+ - +ar!
Multiply both sides by r to obtain
S, =ar+arttarit+ - +ar
Subtracting these two identities, term by term, yields:
S, —rS, =a —ar"
Sn(l —-r = al(l —rh

1 -7
'] —r

Assuming r # 1, both sides may be divided by 1 — rtoyield S, = a . Note that if » = 1, then

S =a t+a +a +- - +a =na

n

Find the sum of the first 7 terms of the geometric sequences given in Problem 43.5.

(a) Here a, = Sandr=2.Forn =17,

(b) Here a, = 4and r = —%. Forn =17,

1\7
1= (=) _4<27+1)_Q
- ()TN T

(c) Here clearly S, = 0.03333333. Using the formula is more cumbersome, but yields the same result.

S, =4

a,
1—r

Give a plausibility argument to justify the formula S, = for the sum of all the terms of an infinite

geometric sequence, Irl < 1.

First note that there are three possibilities: r = 0,0 <r< 1, and —1 < r < 0. For the first case, the formula is clearly
a
valid, since all terms after the first are zero; hence S, = a; + 0 = ﬁ
- n
S, =a, 11 — rr and let n increase beyond all bounds. Since for real n, " is then an exponential decay function,

as n — oo, r" — 0. It seems plausible that this remains valid if n is restricted to integer values. Thus,

. For 0 < r < 1, consider the formula

1 4 o . .
asn— o, § — T — and S, = - A similar, but more cumbersome, argument can be given if

—1 < r<0. A convincing proof is left for a calculus course.

Find the sum of all the terms of each geometric sequence given in Problem 43.5, or state that the sum is
undefined.

(a) Since r = 2, the sum of all the terms is not defined. The sequence is said to diverge.

(b) Since r = ~banda = 4,5, = —+ =%
T (-3

1= (=)
003 _ 1

(c) Sincer =0.1anda, = 0.03, S, = = = A
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43.12.

43.13.

43.14.

n

n n
Use mathematical induction to show that E a; + E bj = E (aj + bj) holds for all positive integers n.
i=1 =1 i=1

Let P be the above statement. Then

1 1 1
P, is the statement 2 a; + E bj = E(aj + bj).
i=1 i=1 i=1

k k k
P, is the statement 2 a; + 2 bj = E(aj + bj).
j=1" ji=1 j=1

k+1 k+1 k+1

P, , | is the statement Eaj + Eb/‘ = E(a,.-l— b}.).
j=1 ==

Now P, is true, since it reduces to a, + b, = (a, + b,). Assume the truth of P,; then
a+ay+ - +a +b +b,+---+b =(a +b)+(a+b)+t - +(a+b)

Add a + bk ., to both sides, then

k+1
al+a2+‘-'+ak+b1+b2+'~'+bk+ak+1+bk+1=(al+b1)+(a2+b2)+~-‘ +(ak+bk)

+ (a +b,.)

k+1

Rearranging the terms on the left side yields

al+a2+‘-‘+ak+ak+1+bl+b2+‘-‘+bk+bk+1=(a1+b1)+(a2+b2)+-'~ +(ak+bk)

T, th )
Writing this in the summation notation, it becomes
k+1 k+1 k+ 1
DYa+ Xb= > +b)
At T L~ J J
j=1 j=1 j=1
But this is precisely the statement P, | . Thus the truth of P, _ | follows from the truth of P,. Thus, by the

principle of mathematical induction, P, holds for all n.

Determine the seating capacity of a lecture hall if there are 32 rows of seats, with 18 seats in the first row,
21 seats in the second row, 24 seats in the third row, and so on.

The number of seats in each row forms an arithmetic sequence, with a, = 18, d = 21 — 18 = 3, and n = 32.
Use the second formula for the value of an arithmetic series:

S, =512, + (n = 1)d]

S, = %[2- 18 + (32 — 1)3] = 2064

32

A company buys a machine that is valued at $87,500 and depreciates it at the rate of 30% per year. What is the
value of the machine at the end of 5 years?

Note that depreciation of 30% of the value of the machine means that at the end of each year the value is 70%
of what it was at the beginning. Thus the value at the end of each year is a constant multiple of the value at the
end of the previous year. Hence the values form a geometric sequence, with a; = (0.7)(87500)(the value at the
end of the first year), r = 0.7 and n = 5. Thus

a, =ar""!

. (0.7)(87500)(0.7)° ~ ! = 14706

as

The value of the machine is $14,706.
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A ball is dropped from a height of 80 feet and bounces to three-fourths of its initial height. Assuming that this
process continues indefinitely, find the total distance travelled by the ball before coming to rest.

Initially the ball travels 80 feet before hitting the ground. It then bounces up to a height of %(80) and then back
down this same distance. As this process repeats, the distance traveled can be written:

80 + 2(%)80 + %[2(%)80} + e

Except for the first term, this may be regarded as an infinite geometric series with a; = 2(%)80 = 120 and
r= % Hence, if the process continues indefinitely, the entire distance travelled is given by

80 + 5, = 80 + —20 — 560 feet

_3
1

SUPPLEMENTARY PROBLEMS

43.16.

43.17.

43.18.

43.19.

43.20.

43.21.

43.22.

Are the following sequences arithmetic, geometric, or neither?
33 Sy 339 ey 3303 gy 3333 ey 34 s
@ 526,...50) 55550 Lo 5@ L0 5©) L5

Ans. (a) geometric; (b) arithmetic; (c) neither; (d) geometric; (e) neither

For the following arithmetic sequences, state the common difference, and write the next three terms and the
nth term: (a) 2, %, ...;(b) =8, =5,...;(c) m, 37, ...
Ans. (@) d=1%1,4%a =" JS“ 2 () d =3 -2, 1,4;a, = 3n — 11;

(©) d=2m; 5w, 7w, 9m;a, = 2n — D7

Prove by mathematical induction: for a geometric sequence, the nth term is given by a, = a,r" ~ .

For the following geometric sequences, state the common ratio, and write the next three terms and the nth
term: (a) 15,3 ...;(b) —5,5,=5,...:(c) 1,1.05, ...

Ans. (a) r=8;6,48,384;a =3 -2 8% (b) r=—1;5,-5,5a,=5(—1);
(c) r=1.05;(1.05)% (1.05)%, (1.05)* a, = (1.05)" !

For the following geometric sequences, state the common ratio and find the sum of all terms, or state that the
sum is undefined. (a) 4,3, 1, ...;(b) 1,4, 4 ...5(c) 36, —12,4,...;(d) 1,095, ...

Ans. (a) r =158, = 2;(b) r = —1, sum undefined; (c) r = —1,§, = 27;(d) r=0.95,5, =20

©

n n n n n
Use mathematical induction to show that E a, — E b, = E (a, — b)) and 2 ca, = c E a, hold for all
K=1 K=1 k=1 K=1 K=1
integers n.
Suppose that $0.01 were deposited into a bank account on the first day of June, $0.02 on the second day, $0.04

on the third day, and so on in a geometric sequence. (a) How much money would be deposited at this rate on
June 30th? (b) How much money would be in the account after this last deposit?

Ans. (a) $5,368,709.12; (b) $10,737,418.23
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Binomial Theorem

Binomial Expansions

Binomial expansions, that is, binomials or other two-term quantities raised to integer powers, are of frequent
occurrence. If the general binomial expression is a + b, then the first few powers are given by:

@+ by =1

(@a+b)l=a+b

(a + b)* =a*>+ 2ab + b?

(@ + by = a® + 3a®b + 3ab®> + b3

Patterns in Binomial Expansions
Many patterns have been observed in the sequence of expansions of (a + b)". For example:

1. There are n + 1 terms in the expansion of (a + b)".

2. The exponent of a starts in the first term as n, and decreases by 1 in each succeeding term down to O in
the last term.

3. The exponent of b starts in the first term as 0, and increases by 1 in each succeeding term up to 7 in the
last term.

Binomial Theorem
The binomial theorem gives the expansion of (a + b)". In its most compact form, this is written as follows:

(a + by" = 2 <’:>a”’b’

r=0

|
The symbols " are called the binomial coefficients, defined as: ") = L —
r r rl(n — r)!

3
EXAMPLE 44.1 Calculate the binomial coefficients < > and verify the expansion of (a + b)? above.
r
3\ _ 3! _ 3! -1 3\ _ 3! :3!:3‘>-2~1:3
0 03 —-0! 1-3! 1 na-n 12 12-n

3\__ 3 3 _3.2.1_, N__ 3 3 3
2) 213 -2 211 2Dl 3) 313 =3 3100 31-1

3
(a + b = 2(3)113*’1)’ = <3>a3*°b0 + <3)a3* Ipl + (3>a3*2b2 + (3>a3*3b3
r=o\7 0 1 2 3

= 1a’b° + 3a2b' + 3a'b? + 1a°%® = a® + 3a2b + 3ab* + b?

Therefore
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Properties of the Binomial Coefficients
The following are readily verifiable:

G- 0-6m) (E)+0-(7")

The binomial coefficients are also referred to as the combinatorial symbols. Then the designation C is used, with
n
<=(")
’

Finding Particular Terms of a Binomial Expansion

In the binomial expansion of (a + b)", r, the index of the terms, starts at O in the first term and goes up to n
in the n + 1st term. Thus the index r is equal to j — 1 in the jth term. If a particular term is desired, it is gen-
erally thought of as the j + Ist term; then 7 is equal to j and the value of the j + Ist term is given by

<”> "~ ibi
J

EXAMPLE 44.2 Find the fifth term in the expansion of (a + b)'.

Heren = 16 andj + 1 = 5, thus j = 4 and the term is given by

n o 16 16!
n=jpi = 16-4pd — 10 16-4p4 12,4
(j)a b ( 4)a b 4116 — 4y ¢ b 1820a'*b

SOLVED PROBLEMS

44.1. Calculate the binomial coefficients:
()<4>'(b)(>()<>(d)< )
a 5 ) c {
@ 4\ 4! 4! 4-3-
4 2 _2!(4—2)!_2’2'_21
(b) 8 _ 8! _ 8 _8: -5! 876
5 518 — 5)! 5131 5K -1 T 3-2-1
12\ 12! 120 12110
© <1> T2 = oo o111 12
n

B n! B nn — 1)! _
) <n - 1) S U-Dn-G-DI -l "

44.2. Show that <”) = <"> = 1.
n 0

ny\ n! _n!_n!_ls..lln_ n! _n!_l
n) " nln — ! T onlol T oni(ny - MY T 0 — 0)! T 1(n!)

|

UJ\]
NO\ t\.)l\.)

= 56

44.3. Show that (2) = nn 1)(;1 7 -r)“(r - = = D r' el for any integer r < n.
Note thatn! = n(n — )(n — 2)- -+ - (r+ )r- --- -1.Hence
ny _ n! _n(n—l)(n—2)~-~- '(r+1)r~~-~'1_n(n—1)(n—2)~-~- ~(r +Dr!
R rin = 1) N A — 1!
nn—1- - -(r+1

(n—r)!
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Similarly, n! = n(n — )(n —2)-...-(n —r + 1)(n—r)-...- 1. Hence
n\ o _nn-D-=-2)- - -m-—r+hn-r- - -1
r) rim—r)! rli(n — !
_nn— D —2)- - -n—r+ DHn —n!
B ri(n — r)!
nn—1- - mn—r+1)
- r!

44.4. Use the results of the previous problems to write out the terms of (a + b)*.

4
4
E<>a4*rbr
r=0\7
4 4 4
4 — 07,0 4—1p1 4-2p2 4 4-3p3 4 4 — 414
(oo e (R (e (e (G

3opr 4 4302 s
21‘”7 3.2 140

= a* + 4a’b + 64*b*> + 4ab’® + b*

(@ + by

la* + *a*b +

+ 16*

44.5. Write the binomial expansion of (3x — 5y)*.
Use the result of the previous problem with a = 3x and b = —5y. Then
[3x) + (=5y)1* = Bx)* + 43x)(=5y) + 6(3x)*(=5y)* + 4Bx)(=5y)* + (=5y)*
= 81x* — 540x%y + 1350x%y> — 1500xy® + 625y*

44.6. Write the first three terms in the binomial expansion of (@ + b)%.

. 20 ! .
Since (a + b)) = >, < )am ~ 7}, the first three terms can be written as
r=0\71

20 20 20 2() 20-19
20 — 040 20 — 131 20 - 212 — 20 19 18 2
(0> b <1)a b+(2>a b= 1a® + “a®b + 5 ah

a® + 20a'b + 190a'8h?

44.7. Write the first three terms in the binomial expansion of (2x> + 3722,

12

12
Take a = 2x> and b = 3#2. Then 2x° + 3)!2 = 2 ( )(2x5)12 ~"(3¢2)". The first three terms of this can be
written as r=ONT

(102>(2x5)12 + <112)(2x5)“(3t2) + (122)(2)65)10(31‘2)2

= 409635 + 12(2048 53 ) + 12 1

44.8. Show that <"> =( " >
r n—r

Substitute n — r for r in the definition of < ) Then

n . n! . n! o n! _(n
n—r) @=Dh—-0—-0! =0 rlim—r "\,

(1024x50)(9 ) = 4096x%0 + 73,728 x%> + 608,256 x4
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+ 1
44.9. Show that< k > + <k> = <k >
r—1 r r

Note first that #! = r(r — ). Also, (k+ D! =(k+ Dkland (k —r + D! =k —r + 1)(k — 1!

¢ ) = k! k!
<r - 1) i <r> T Dik—r+ Dl A=

The LCD for the two fractional expressions on the right is r!(k — r + 1)!. Rewriting with this common
denominator yields:

Then

k! K rk! (k —r+ Dk!
C—Dik—r+ D! " AGk=—n! = Dlk—r+ DI T (k=r+ Dritk = n!
k! (k —r + Dk!

Ak —r+ DAk =+ D
The two expressions on the right can be combined to yield:

e (k—r+ Dkl rkl +(k—r+ Dkl (r+k—r+ Dk (k + D!

Ak—r+ D Ak—r+ 1) Ak-r+ D~ Ak-r+ D Ak-r+ D

The last expression is precisely
(k + 1) _(k+1
rk+1—-7r! " r

44.10. Show that the binomial coefficients can be arranged in the form shown in Fig. 44-1.

Figure 44-1

where each entry, except the 1’s, is the sum of the two entries above it and to the right and left. (This
triangular arrangement is often called Pascal’s triangle.)

Clearly the first two rows represent (a + b)° = 1 and the coefficients of (¢ + b)! = la + 1b. For the other
rows, note that the first and the last binomial coefficients in each are given by

W) e ()

respectively. For all other coefficients, since, as proved in the previous problem,

(E)+0)- ()

each entry in the k£ + 1st row is the sum of the two entries in the kth row above it and to the right and left.

44.11. Use mathematical induction to prove the binomial theorem for positive integers n.

Let P be the statement of the binomial theorem:

(@a+by= <Z>a"*’b’

r=0

1
1

Then P, is the statement (a + b)! = E ( )a] b
r=0\7
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k
. k
P, is the statement (a + by = :EO (r)ak —rpr.

R Y
P, isthe statement (@ + b)¥*! = 20( . )ak*fl—rbr'
P

Now P, is true, since the left side is @ + b and the right side is

1 1
(0>a1’°b° + (1>a‘*1b‘ =la+1lb=a+b

Assume the truth of P,, and, comparing it with P, , |, note that the left side of P, , | is a + b times the left
side of P,. Hence, starting with P, multiply both sides by a + b:

k
(a+ b)a + b =(a+b) E(f)ak—rb'
r=0

k k
k k
(a + bykt! aE()a"*’b’ﬁ-bE()a"’rb*
r= r r=0

0 r

k k
2<k>ak+lfrbr+ 2<k)ak7rbr+l
r=0

r=0\7" r

Writing out the terms of the sums yields:

k k k k k
k+1+ k + k712+ cee 4 2k71+ k
(0>" (1>“ b <2>“ b (k - 1)“ b (k)“b
k k k k k
+ kb+ k—1b2+ oo 4 2bk—l+ bk+ bk+1
(0)" (1>“ (k - 2)“ (k - 1)" (k>
k k+1 k k+1
Combining like terms, and noting that( ) =1= ( >and< > =1= ( >, yields
0 0 k k+1
+
(5 oo () (G = () + () e
0 1 0 2 1
k k k k k+1
+ + 25k — 1 + + k + k+ 1
((k - 1) (k - 2))“ b ((k) (k - 1>>“b <k + 1)”
+ + + + + +
:(k l)ak“ + (k ])akb-i-(k l)a""b2+ +(k 1>a2b’f“ +<k ]>ab’f+ (k ])b"“
0 1 2 k—1 k k+1

Thus, writing the last expression in summation notation,

k+1
+
(a+b)k+]: E(k 1)ak+lfrbr

r=0 r

But this is precisely the statement P, _ . Thus the truth of P, | follows from the truth of P,. Thus, by the
principle of mathematical induction, P, that is, the binomial theorem, holds for all positive integers n.

1\
44.12. Write the eighth term in the expansion of <\/); + 7) .

Vix

The (j + 1)st term in the expansion of (a + b)" is given by (r_l)a" “Jb/.Heren =13 andj + 1 = 8; hencej = 7.
J

Thus the required term is

(13)(\&)1377(#)7 o131 (VW0 13:12:11-10:9-8 _ 1716
7 \/;C (13 — NH'7! (\/;)7 6!\//; \/;C
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44.13. Use the binomial theorem to approximate (1.01)? to three decimal places.

Expand (1 + 0.01) to obtain:

20 120 <2O> 90.01)! 20) 150,012 (20) 0.01)? (2(’) 650,01 4 - --
(0)1 (5 oot + (5 Jisoone + (5 Jivoont + (7 )isoont +

20 - 19 201918 20-19-18-17
51 (0:0001) + “557(0.000001) + = oo

1+ 02+ 0.019 + 0.00114 + 0.00004845 + - --

1 + 20(0.01) +

(10*8) + ...

1.220188. ..

where the neglected terms have no effect on the third decimal place. Thus (1.01)?° = 1.220 to three decimal places.

SUPPLEMENTARY PROBLEMS

15 8 12
44.14. Calculate the binomial coefficients: (a) ( ) ); (b) (6); (©) <9 ); (d) ( " 2)
n—

nn —1)
Ans. (a) 15;(b) 28;(c) 220; (d) —

44.15. Write the binomial expansion of (a) (a + b)’; (b) (2x + y)°.
Ans. (a) @ + 5a*b + 10a°b* + 10a*b® + 5ab* + b°; (b) 32x° + 80x*y + 80x3y? + 40x%y® + 10xy* + y°

5
44.16. Write the binomial expansion of (a) (4s — 31)*; (b) <2a - %) .

16 8 2 b’

3 _ 2 2 _ 3. 5 4 =Y 31,2 9 213 = 4 __ Y

Ans. (a) 64s 144s°t + 108st* — 27¢; (b) 32a 16a*b + 5 a b 25 4 b + 125 ab 3125

44.17. Prove that <0> + <1> + .. +< 1) + ( ) = 27" that is, that the sum of the binomial coefficients for
n— n

any power n is equal to 2". [ Hint: Consider the binomial expansion of (1 + 1)".]

14
44.18. Find the middle term in the binomial expansion of (a) <3x — %) ; (b) (2 + 2yH)10,

Ans.  (a) —3432x7y7; (b) 8064x'%y!3

44.19. It is shown in calculus that if Ix] < 1 and « is not a positive integer, then (1 + x)* = 2 <O.l>x/' with
i=0\J
(a) _ale— D (a—j+ 1)
J J!
expansion of (a) (1 + x)7% (b) (1 + x)'2,

. Use this formula to write the first three terms of the binomial

11,

Ans. (@) 1 —2x+3x%(b) 1 + * 3
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Limits, Continuity, Derivatives

Informal Definition of Limit

If the values taken on by a function f(x) can be made arbitrarily close to L by taking input values x arbitrar-
ily close to a, then L is called the limit of f(x) as x approaches a, written

lim f(x) = L

EXAMPLE 45.1 li_1>111‘(2x — 3) = 5, since 2x — 3 can be made arbitrarily close to 5 by taking values of x arbitrarily
close to 4, as suggested by the following table:

X 35 39 3.99 3.999 4.5 4.1 4.01 4.001

2x — 3 4 4.8 4.98 4.998 6 52 5.02 5.002

Formal Definition of Limit

li_I)Il f(x) = L means that given any & > 0, a number 6 > 0 can be found so that if 0 < |x — a| < §, then
|f&x) — L] <e.

EXAMPLE 45.2 In the previous example, given any & > 0, take 0 < |x — 4| < &/2.

Then:
2x — 4] < e
2x — 8| < e
[2x —3) = 5| <e
Thus Ali_r)l}l(Zx —3)=05.

Note that the statement li_r)nf(x) = L says nothing about what happens at a. Possibly f(a) = L; however, possibly f(a)
is undefined, or defined but unequal to L.

Properties of Limits

limc = ¢ limx = a
x—a x—a

If lim f(x) = L and lim g(x) = M, then

)lci_f};[f(X) +g]=L+M }_i_rg[f(x) el =L-M
)lcl_fg[f(x)g(x)] =ILM )l(l_fg[f(x)]" = In
lim[ f(x)/g()] = L/M  provided M # 0

lim YV f(x) = /L provided r is an odd integer, or n is an even integer and L is positive.
x—a
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Finding Limits Algebraically

As a result of these properties, many limits can be found algebraically.

EXAMPLE 45.3 Find li_r)ri(3x + 7).

liﬂ(Sx +7) = 1i_1)133x + li_1:1[1‘7 = lim3 - limx + lm7 =3-4+7=19

x—4 x—4

x2 -9

EXAMPLE 45.4 Find an%

-9 (-3 +3)
x—>3x_3_xl—>n]3 x—3

=1i_r>1§(x+3)=1i_>rn}x+li_r}:153=3+3=6

There are, however, many situations where a limit does not exist.

EXAMPLE 45.5 Find llir(l)( —%)

Consider the following table:

X -0.5 —0.1 -0.01 | —0.001 0.5 0.1 0.01 0.001

2 10 100 1000 -2 —10 —100 —1000

=

The values are not approaching a limit; the limit does not exist.

One-Sided Limits

1. If the values taken on by a function f(x) can be made arbitrarily close to L by taking input values x arbi-
trarily close to (but greater than) a, then L is called the limit of f(x) as x approaches a from the right,
written

li)m+ f) =L

2. If the values taken on by a function f(x) can be made arbitrarily close to L by taking input values x arbi-
trarily close to (but less than) a, then L is called the limit of f(x) as x approaches a from the left, written

Ji st = £

Infinite Limits

If the values taken on by a function f(x) can be made arbitrarily large and positive by taking input values x
arbitrarily close to a, then it is said that the limit of f(x) as x approaches a is (positive) infinite, written
li_r)n f(x) = oo If the values taken on by a function f(x) can be made arbitrarily large and negative by taking input
values x arbitrarily close to a, then it is said that the limit of f(x) as x approaches a is negative infinite,
written 11_r)r{11 f(x) = —oo,

EXAMPLE 45.6 1111%(713)2 = o0, since ﬁ can be made arbitrarily large by taking values of x arbitrarily close
x23(x — —
to 3, as suggested by the following table:
X 2.5 29 2.99 2.999 35 3.1 3.01 3.001
ﬁ 4 100 10,000 |1,000,000 4 100 10,000 |1,000,000
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One-Sided Infinite Limits

1. If the values taken on by a function f(x) can be made arbitrarily large and positive by taking input
values x arbitrarily close to (but greater than) a, it is said that the limit of f(x) as x approaches a from
the right is (positive) infinite, written xliﬁrg f(x) = oo, If the values taken on by a function f(x) can be
made arbitrarily large and negative by taking input values x arbitrarily close to (but greater than) q, it is
said that the limit of f(x) as x approaches a from the right is negative infinite, written xlig} flx) = —oo.

2. If the values taken on by a function f(x) can be made arbitrarily large and positive by taking input
values x arbitrarily close to (but less than) a, it is said that the limit of f(x) as x approaches a from the
left is (positive) infinite, written xhar?f f(x) = oo If the values taken on by a function f(x) can be made
arbitrarily large and negative by taking input values x arbitrarily close to (but less than) a, it is said that
the limit of f(x) as x approaches a from the left is negative infinite, written }L“} fx) = —oo.

EXAMPLE 45.7 Find lim (—1) and lim ().
x—0" x—0"

From the table in Example 45.5, it appears that li)rg (—%) = —o and ILI}}?(—%) = o,

Limits at Infinity

1. If the values taken on by a function f(x) can be made arbitrarily close to L by taking input values x arbi-
trarily large and positive, then L is called the limit of f(x) as x approaches (positive) infinity, written

lim f(x) = L

xX—>®

2. If the values taken on by a function f(x) can be made arbitrarily close to L by taking input values x arbi-
trarily large and negative, then L is called the limit of f(x) as x approaches negative infinity, written

Aim f(o) = L

Definition of Continuity

1. A function f(x) is called continuous for a value c if hm f(x) f(c). This is usually referred to as conti-
nuity at a point ¢, or simply continuity at c.

2. A function f(x) is called continuous on an open interval (a,b) if it is continuous at every point on the
interval.

3. A function f(x) is called continuous on a closed interval [a,b] if it is continuous at every point on the
interval (a,b) and also XILIE f(x) = f(a) and xhar?f fx) = f(b).

If a function is not continuous for a value c, it is called discontinuous, and c is called a point of discontinuity.

EXAMPLE 45.8 It can be shown that every polynomial function is continuous at every point in R and that every
rational function is continuous at every point in its domain. Thus if f(x) is a polynomial function, the limit hm f (x) can
always be calculated as f(c). If f(x) = p(x)/q(x) is a rational function, the limit hm f (x) can be calculated as
f(c) = p(c)lq(c) for any value c as long as f(c) is defined, that is, if g(c) # O.

Definition of Derivative
Given a function f(x), the derivative of f, written f'(x), is a function defined by the formula

JERR LRt
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provided that the limit exists. If the limit exists for a value a (also referred to as: at the point a), the function
is called differentiable at a. The process of finding the derivative is called differentiation.

EXAMPLE 45.9 Find the derivative of f(x) = x.

S+t —f) | (xt+ -
lim——————— = lim——————

h—0 h =0 h

. x4 2xh+ R — X
= lim
h—0 h
. 2xh + h?
lim~—————
=0 h
h(2x + h)
iy h
]111_1}(1)(2)6 + h)

= 2x

Average and Instantaneous Rates of Change
In Chapter 9, the average rate of change of f(x) over an interval from x to x + & was defined as

fx+h) — f)
h

also referred to as the difference quotient.

f&e+h) —fx)

The derivative of f(x), f'(x) = IIIILI(I) A , is also called the instantaneous rate of change of the

function with respect to the variable x.

Tangent Line

The tangent line to the graph of a function f(x) at the point (a, f(a)) is the straight line through the point with
slope m equal to the derivative of the function at the point a,

+h) —
@ = £ = iy S

Average and Instantaneous Velocity

Given a function s(¢) that represents the position of an object at time ¢, the average velocity of the object on
the interval [a,b] is given by

Change in position  s(b) — s(a)
Changeintime b —a

The instantaneous velocity of the object at time # is given by the derivative of s(¢):

) = s'(t) = }’%w
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SOLVED PROBLEMS

45.1. Use the formal definition of limit to show (a) lgnc = ¢; (b) liinx = a.

(a) h_I)nc = ¢ means that given any € > 0 a number 6 > 0 can be found so that if 0 < |x — a| < §, then
|c — ¢| < e. However, regardless of x and 6, |c — ¢| = |0|] = 0 < g holds for any & > 0. This proves

the required result.

(b) li_r)nx = a means that given any € > 0, a number § > 0 can be found so thatif 0 < |x — a| < §, then
|x — a| < e. Clearly, given € > 0, choose 6 = &,then 0 < |x — a| < & will guarantee |x — a| < &.

This proves the required result.

45.2. Use the formal definition of limit to show that if lgn f(x) = Land liing(x) = M, then liin[ fx) +g)]=L+ M.

li_r)n[f(x) + g(x)] = L + M means that given any € > 0, a number 6 > 0 can be found so that if
0 <|x —a| <é,then |(f(x) + gkx) — (L + M)| <e.

Note that |(f(x) + g(x)) — (L + M)| = |(f(x) — L) + (gx) — M)| = |f(x) — L| + |g(x) — M|. This
inequality follows from the triangle inequality (Chapter 7).

Hence, since li_r)nf(x) = Land li_r)ng(x) = M, given £ > 0, choose 9, so thatif 0 < |x — a| < &, then
|f(x) — L| < &/2, and choose 8, so thatif 0 < |x — a| < 0, then [g(x) — M| < &/2.

Therefore, choose & to be the smaller of 8, and 6,. Then, if 0 < |x — a| < 4,
[(f(x) + gx) — (L + M)| = |f(x) — L| + |g(x) — M| < &/2 + &/2 = &. This proves the required result.

45.3. Find liLI%(Z — 3x) (a) by examining a table of values near 5; (b) by using the formal definition of limit;
(c) by using the continuity of polynomial functions.

(a) Form a table of values near 5:

X 4.5 49 4.99 4.999 5.5 5.1 5.01 5.001

2—-3x | —115 —12.7 | —12.97 | —12.997 | —145 —133 | —13.03 | —13.003

This suggests that 122(2 — 3x) = —13.
(b) If0 < |x — 5| < &, then
0 <|=3(x — 5| < |—3]5,
0 < |15 — 3x| < 39,
0<1]2—3x) — (—13)] <36,
Therefore, given & > 0, choose § = 6, = &/3.1If 0 < |x — 5| < §, then
|2 — 3x) — (—13)| < 3(e/3) = ¢
Thus li_rg@ — 3x) = —13 as suggested by the table.
(c) Since f(x) = 2 — 3xis a polynomial function, li_rgf(x) =f5)=2-3-5=—13.

x — 1
X2+ 3

45.4. Find (a) l_i)rzlz(x3 - 3x2 + 2x + 8); (b) li_rH

(a) Since f(x) = x* — 3x? + 2x + 8 is a polynomial function,

lim () = f(=2) = (=2 = 3(=2* + 2(-2) + 8 = 16
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. _x—1. . . . _
(b) Since f(x) = 213 is a rational function defined at x = 4,
. _ _4-1 _ 3
mf) =f4) = o173 = 19
45.5. Find the following limits algebraically:
x=5 o NVx—4  B-x*-9
@ lim s ® lim~ 765 © lig X
@) li x—=5 — 5 x—5 -5 1 _ 1
Ve =25 T WM -5 +5  Bx+5 10
o fim Y54 Vi -4 I . S
ST T (Vo p(Va ) TV d Vime limd V1644
B =x-9  9-6ex+x*-9  —ex+x . M6+txn _
e L L g U .

45.6. (a) Give formal definitions of 1Lm+ f(x) = Land li)mﬁ f(x) = M. (b) Show that if li)m+ f(x) = Land
lim f(x) = L, then liLn f(x) = L.

ives

1
8

(a) lim‘ f(x) = L means that given any ¢ > 0, a number 6 > 0 can be found so thatif 0 < x — a < 6 then

| f&x) — L| <e. ’li)mff(x) = M means that given any £ > 0, a number & > 0 can be found so that if
0<a—x<d,then|f(x) — M| <e.

(b) If lirq f(x) = Land le f(x) = L, then given any &€ > 0 a number &, > 0 can be found so that if
0 <x—a<4,then|f(x) — L| < £ and a number §, > 0 can be found so thatif 0 < a — x < 4,,
then | f(x) — L| < . So given any £ > 0, choose 6 to be the smaller of 6, and §,. Then if

0<|x—al] <8 both) <x—a<§and0 <a — x <§,will hold and | f(x) — L| < & as required.

x—3 ifx<2
457. Let f(x) = { o o= o Find @ Tim £ (0) lim f(0); (©) lim f(x).

(@) lim f(¥) = lim6x = 12
(b) lim f(x) = lim(x — 3) = —1

(c) Since 11)n21+ fx) #+ li,n} f), 11_13 f(x) does not exist.

x> =3 ifx<2

45.8. Let f(x) = { fr=2 Find (a) Xliggf(x); (b) Xli,“}f(x); (c) lLrI%f(x).

1
X
(@) lim f) = lim 5 = 1

(b) lim f() = lim(? —3) =22 =3 =1

(c) Since xli)nzlf(x) = Xli)n;f(x) = 1,li_>rr%f(x) =1

45.9. Find () limVx; (b) lim V'x.
(a) 1_135\/;= Viimx = Va4 =2

(b) Since \/;c is not a real number for any value of x near —4, l_i>m4\/;c does not exist.
el
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45.10. Let f(x) = x—% Find (a) 1L1121+f(x); (b) li)nzlif(x); (c) li_)rr%f(x).
Consider the following table:
X 1.5 1.9 1.99 1.999 2.5 2.1 2.01 2.001
1 -2 —10 —100 —1000 2 10 100 1000
x—2
(a) From the table, it appears that 11,“21 f(x) does not exist; however, it can be said that li)n} f(x) = oo,
(b) From the table, it appears that 11;121 f(x) does not exist; however, it can be said that llgl fx) = —oo.
(c) Since liﬁrg fx) # 1g£1 f(x), liir% f(x) does not exist.
_ x+3 . . . . . .
45.11. Let f(x) = =27 Find (a) Xllggf(x), (b) }Hg,f(x)’ (©) 11_)rr%f(x).
Consider the following table:
X 1.5 1.9 1.99 1.999 2.5 2.1 2.01 2.001
x+3
m 18 490 49,900 | 4,999,000 22 510 50,100 | 5,001,000
(a) From the table, it appears that 11}1121+ f(x) does not exist; however, it can be said that ll)rg fx) = oo,
(b) From the table, it appears that 13121 f(x) does not exist; however, it can be said that 13121 f(x) = oo,
(c) Since 11921 fx) = llgl f(x) = oo, it can be said that li_rg f(x) = oo,
45.12. It can be shown that 1i_1)1;1€ % = 0 and Erllv# = 0 for any positive value of n. Use these facts to find
. 2x + 2 5
(@ lim =% (b) Jim
@ lim X2 = i 22 _ a2 2R 400,
x—e X + 3 x—e 1 + 3/x li_l;Iolol + 31i_{1010(1/x) 1+3-0
lim (5/x?) 5 lim (1/x?)
(b) lim = = = = =30 __,
x——2x? 4+ 6 lim I + lim (6/x?) lim 1 + 6 lim (1/x% 1+6:-0
45.13. Discuss how a function may fail to be continuous for a particular value and give examples.

A function f(x) is continuous for a value a if 1i_r>n f(x) = f(a). However:

1. f(a) may be undefined. For example, consider f(x) = éat x = 0,orf(x) = \/;c at any negative value
x2—4

of x, or f(x) = p—

atx = 2.

x2ifx <2

N . . . 1
2. Thel 1 fail .F le, = = =
e limit lim Jf(x) may fail to exist. For example, consider f(x) = yatx = 0 or f(x) { Ayifx =2 at

x = 2.
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3. The limit liin f(x) may exist and f(a) may be defined, but liin f(x) # f(a). For example, consider

x2ifx #2

3ifx =2 atx = 2, where lim f(x) = 4, butf(2) = 3.

f(x)={

45.14. Analyze the derivative of the function f(x) = |x|.

= h

 fa ) —f) A ]
lIim—————— = lim——————

i
=0 h =0 h

If x > 0, then for sufficiently small 4, x + k& > 0, hence

. S+ h) - fx) et x| . x+h—x . h .
lim—————— = lim = lim = lim+ = liml =1
=0 h =0 h =0 h —oh >0
If x < 0, then for sufficiently small 4, x + h < 0, hence
e+ —f@) kAR - —@Eh - (D —p -
L L N - D o L Vi

If x = 0, however,

St @ xR = Jh
im =1 =1

|

im im——
=0 h =0 h =0 h

This limit does not exist, since

L .
fmy = Jimy = il = bt
tim L = lim(-1) = —1
et R
lifx>0
Summarizing, if f(x) = |x|, then f'(x) = {—1ifx <0

undefined if x = 0

45.15. Find the derivatives of the following functions:
@ f00) = x5 (0) f0) = Vi, x > 0:(©) f(x) = 1, x # 0.

Jx+h) — f()

(a) Find }11_1}(1)

h
e+ - f® G+ - X
lim =
=0 h h
L X+ 33h 3R+ R -
= lim
=X h

. 3x*h + 3xh? + K
=lim———F————
=0 h

. h(3x* + 3xh + K?)
= lim
=0 h

},E%ze + 3xh + h?)

3x?
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®) Find fing 2 2SO

h

L fat ) —f0 Vxt+h— Vax
Iim—————— = lim——————
=) h =) h

Vot ~VxVx+h+ Vax

=l

=0 h Vi +h+ Vi

- lim x+h—x
POR(Vx + b+ V)
= lim h
POpNx + b+ V)
. 1
= llm—
POV + b+ Vi
]
2Vx

This is defined as long as x > 0.

Jx+h) — f(x)

(c) Find %1_133 7

 flx + h) — fx) U+ h) — 1x
lim = lim

h—0 h h—0 h

5 x—(x+h
) hx(x + h)

lim_ih
=0 hx(x + h)
lim_il
—ox(x + h)
-1

2

45.16. Find the equation of the line tangent to the graph of
— 43 . = Vx . _1 1 —
(@) fx) = ¥, at (2,8); (b) f(x) = Vux,at(42); (c) f(x) = 5, at(=1,—1)

(a) Using the derivative found in the previous problem, we find that the slope of the tangent line at (2,8) is
f'(2) = 3 - 2% = 12. Using the point-slope form of the equation of a line, we find that the
equation of the line through (2,8) with slope 12 is
y—8=12(x — 2)
y—8=12x — 24
y=12x — 16
(b) Using the derivative found in the previous problem, we find that the slope of the tangent line at (4,2) is
@ = L\[ = % Using the point-slope form of the equation of a line, we find that the equation of the
2V4

line through (4,2) with slope % is

y—2=—-x—4)

y—2=ix—1
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(c) Using the derivative found in the previous problem, we find that the slope of the tangent line at (—1,—1) is
v_ — —1 —

G
the line through (—1,—1) with slope —1 is

—1. Using the point-slope form of the equation of a line, we find that the equation of

y— (D= EDkx - (=]
y+1=—-x-1
y=—x—2

SUPPLEMENTARY PROBLEMS

45.17.

45.18.

45.19.

45.20.

45.21.

45.22.

45.22.

45.23.

Find the following limits algebraically:

-7
(a) hm (Sx + 1); (b) hm(2x — 8 + 7); (¢) hmgx s
Ans. (a) —14;(b) —1;(c) 1
Find the following limits algebraically:
Ve=10 o 2x+4 o (=3P +27
@l — 5 0 im0 @ I @ gt

Ans. (a) 2;(b) %; (c) does not exist; (d) 27

Use the formal definition of limit to prove:
If li_I>nf(x) = Land li_I)ng(x) = M, then li_r)n[f(x) —g] =L - M
¥ifx <3

Let f(x) = {3x x> 3 Find (a) lim f(x); (b) lim f(x); (c) lim f(x)

Ans. (a) 9;(b) 27; (c) does not exist
ifx <3

318
Let f(x) = {;Cx iy = 3 Find @) lim f(x); (b) lim f(x); (¢) lim f(x)

Ans. (a) 9;(b) 9;(c) 9

Find the following limits:
(a) li_I;[}\/Z — x; (b) l_i)n}4\/5 - X

Ans. (a) does not exist; (b) 3

Let f(x) = >

Ans. (a) ©; (b) —o; (c) does not exist

Let f(x) = Find (a) hm f(x); (b) hm f); (©) hm f(x)

( 3)2
Ans. (@) —»;(b) —»;(c) —
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45.24.

45.25.

45.26.

45.27.

45.28.

Find the following limits:

2
100x .(b) lim 100x

x—>—w5x2 — 1

@ 5e

Ans. (a) 0; (b) 20
Show that if f(x) = mx + b, where m and b are constants, then f'(x) = m.

Find the derivatives of the following functions:

@ f() = x4 () f) = Vx — 4,x > 4;(0) f(x) = %

' _ . ' — 1 . ! — ;2
Ans. (a) f'(x) = 4x% (b) f'(x) 72\/m,x >4;50) f'(x) 3
Find the equation of the line tangent to the graph of
@ f00 = ¥t (11; (0) ) = V= 4,2t (51 ©) f() = 55t (3.4)

Ans. (a)y=4x—3;(b)y=%x—%;(c)y= —16x + 12

Show that if f(x) = x", where n is any positive integer, then f'(x) = nx" ~ L,

(Hint: Use the binomial theorem.)
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A
AAS case, 241, 245
Abscissa, 54
Absolute value, 3, 49
in equations, 49
in inequalities, 50
properties, 49
Accuracy in computations, 241
Altitude, 85
Ambiguous case, 246
Amplitude, 188, 190
Angles, 197
complementary, 199
coterminal, 199, 202
degree measurement, 198
in a quadrant, 197
quadrantal, 197
radian measurement, 198
reference, 201, 206
standard position, 197
supplementary, 199
vertex, 197
Angular speed, 210
Arc length, 198, 203
Argument, 271
ASA case, 241, 245
Associative laws, 1
Asymptotes
horizontal, 133, 135, 137
of a hyperbola, 339, 343
oblique, 135, 137
vertical, 132, 136
Axes, 54
rotation of, 349
Axioms for the real number
system, 1
Axis, 54, 330
focal, 338
transverse, 338

B

Bearing, 241

Binomial coefficients, 381

Binomial theorem, 381, 384
proof, 384-385

C
Cardioid, 266
Cartesian coordinate
system, 54

Center

of a circle, 57

of an ellipse, 337

of a hyperbola, 338
Change-of-base formula, 168
Circle, 57, 62

center, 57, 62

radius, 57, 62

tangent line to, 85
Closure laws, 1
Commutative laws, 1
Completing the square, 30, 34, 95
Complex fractions, 20, 23

Complex numbers, 3, 117, 270
nth roots, 272
operations, 22, 26
polar form, 272
standard form, 22
trigonometric form, 270
Complex plane, 270
Components
of a vector, 254, 257
Compound interest, 154, 157, 172
continuous, 155, 158, 172
Conic sections, 356
degenerate cases, 356, 361
in polar coordinates, 360-361
Continuity, 389
Coordinate axes, 54
Cosine curve, 187
Cosines, 177, 187
law of, 241, 247
Coulomb’s law, 153
Cramer’s rule, 323
Critical point, 43
Cycloid, 267

D
Decibel, 169
Demand, 108

DeMoivre’s theorem, 271, 275

proof by mathematical

induction, 372

Depreciation, linear, 84, 86
Depression

angle of, 242
Derivative, 389
Descartes’ rule of signs, 118, 122
Determinants, 322

cofactors, 322

minors, 322

properties, 323, 325-326
Directrix

of an ellipse, 359

of a hyperbola, 359

of a parabola, 330-331
Discriminant, 30, 356
Distance

between two points, 54, 58

from point to line, 330, 332
Distributive laws, 1
Division

of polynomials, 115

synthetic, 116
Dot product, 255
Double-angle formulas, 220, 224

E
e, 154
Earthquake intensity, 169, 173
Eccentricity, 339, 346

of a parabola, 359
Elevation

angle of, 342
Ellipse, 337

equation of, 337, 339

Index



Equations, 29
containing radicals, 31
equivalent, 29
exponential, 168
in quadratic form, 35
linear, 29
literal, 31, 35
logarithmic, 168
nonlinear, 29
quadratic, 30
second degree
classification, 356
systems of, 279
trigonometric, 213, 215
Exponential decay, 154, 156
Exponential growth, 154, 156
Exponents, 15
laws, 16
natural number, 15
negative integer, 15
properties, 154
zero, 15

F
Factor theorem, 116, 120
Factorial, 363
Focus

of an ellipse, 337

of a hyperbola, 338

of a parabola, 330-331
FOIL multiplication, 2, 8
Formulas, 31

Function-inverse function relation,

105
Functions, 68
algebraic, 146
composite, 104, 108
constant, 69
decreasing, 69
domain, 68, 71
even, 69
exponential, 154
finding inverses, 106, 110
graph, 69
increasing, 69
input and output values, 68
inverse, 105, 110
largest possible domain, 68
linear, 79
linear, rule for, 79
logarithmic, 162
maximum, minimum values, 96
notation, 68
odd, 69
odd and even, 69, 112
one-to-one, 105, 109
periodic, 113, 177, 230
polynomial, 114
graphing, 118
product and quotient, 104
quadratic, 95
range, 68
rational, 132
graphing, 132, 135, 137
sum and difference, 104

Fundamental principle of fractions,

20

Fundamental theorem of algebra, 117

G
Gaussian elimination, 288
Gauss-Jordan elimination, 289

Graph, 55
of an equation, 55

H
Half-angle formulas, 221, 225
Half-angle identities, 221, 224
Heading, 241
Horizontal line test, 105
Hyperbola, 338

equation of, 339

I
Identities, 29, 178, 211
for negatives, 178
Pythagorean, 178, 184
quotient, 178
reciprocal, 178
trigonometric, 178, 211
verifying, 212-213
Identity laws, 1
Index
of a radical, 21
of a sequence, 362
Inequalities, 41
equivalent, 42
linear, 42
nonlinear, 42—43
Inequality
relations, 41
statements, 42
triangle, 49
Integers, 1
Intercepts, 55, 97
x-, 55
y-, 55
Intermediate value theorem, 118
Intervals, 41
Invariant, 358
Inverse laws, 2
Inverse square law, 150, 153
Irrational numbers, 1

K
Kepler’s third law, 152

L
Laws for negatives, 2
Laws for quotients, 2
Limits, 387
at infinity, 389
infinite, 388
one-sided, 388
Linear inequalities, 42
Lines
horizontal and vertical, 79
normal, 85
parallel, 80
perpendicular, 80

point-slope form of equation, 80

slope-intercept form, 80
standard form of equation, 80
tangent, 85, 390

two-intercept form of equation, 81

Loci, 330
Logarithmic scales, 168

Logarithmic-exponential function relations, 162

Logarithms, 162

M
Major axis, 337
Mathematical induction

See Principle of mathematical induction

Index
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Matrices, 287, 309

addition, 309
commutative law, 310
augmented, 288
equality, 309
identity, 314
inverses, 314
main diagonal elements, 309
multiplication, 313
non-commutativity, 314

non-singular, 314
orthonormal, 321
product with a scalar, 310
reduced row-echelon form, 288
row-echelon form, 288
row-equivalent, 287
singular, 314
square, 309
subtraction, 310
transpose, 312, 321
zero, 309

Median, 85

Midpoint formula, 58, 62

Minor axis, 337

Modulus, 271

Mollweide’s formula, 251

N
Natural numbers, 1
Newton’s law of cooling, 152

(o)
Ohm’s law, 150
Order of operations, 3

Ordering properties of real numbers, 2

Ordinate, 54

P
Parabolas, 95, 330

equations of, 331

vertex, 95, 330
Parametric equations, 262, 267
Partial fraction decomposition, 294
Period, 177
Perpendicular bisector, 63—64
Phase shift, 188
Phase-shift formula, 231, 237
Phase-shift identity, 231, 237
Polar and Cartesian coordinates,

262

transformation relationships, 264
Polar coordinate system, 261
Polar coordinates, 261

possible sets of, 261, 264
Polynomials, 7

addition, 7

complex zeros, 117

degree, 7, 10

division, 115, 119

factoring, 9-12

FOIL multiplication of, 8

multiplication, 8, 11

rational zeros, 117

subtraction, 8

zeros, 115
Population growth, 155

logistic, 155, 159

unlimited, 155, 159
Price/demand, 109, 112

Principle of mathematical induction,

368
extended, 369

Product-to-sum formulas, 221, 226
Projectile, 269
Proportion, 146
direct, 146, 149
inverse, 146, 149
Pythagorean theorem, 32

Q
Quadrants, 54
Quadratic formula, 30

R
Radical expressions, 21
rationalize denominator, 22, 25
rationalize numerator, 22, 25
simplest radical form, 21
Radicals, 21
properties, 21
rationalize denominator, 22, 25
rationalize numerator, 22, 25
simplest radical form, 21
Radioactive decay, 155, 160
Rate of change
average, 70,
instantaneous, 390
Rational expressions, 20, 294
Rational numbers, 1
Real number line, 3
Reflection, 57
Remainder theorem, 116, 119
Resultant
of forces, 259-260
Richter scale, 169, 173
Rose, 266

S
SAS case, 241, 248
Scalar quantity, 252
Scalars, 252
Scientific notation, 16, 18
Sequence, 362
arithmetic, 374
defined recursively, 362
Fibonacci, 364
geometric, 374
Series, 363
arithmetic, 374
infinite geometric, 375
Shifting
horizontal, 88
vertical, 87
Sine curve, 187
Sines, 177, 187
law of, 241, 244
Slope, 79
Sound intensity, 169, 173, 390
SSA case, 241, 246
SSS case, 241, 248
Stretching, 88
Sum and difference formulas,
220, 222
Summation notation, 363
Sum-to-product formulas, 221, 226
Symmetry, 55
tests for, 55
Systems of equations, 279
linear, 279
nonlinear, 302
Systems of linear equations, 279
classification, 280
equivalent, 279
solutions, 280



Tangent line

to a circle, 85
to a graph, 390

Transformation equations

in rotation, 349-350
reverse, 352

Transformations, elementary, 87
Triangle inequality, 49, 53
Triangles, 63, 240

oblique, 241
solving, 241

right, 200, 240
solving, 240

Trigonometric functions, 177

of acute angles, 200

of angles, 199

calculator approximation, 208
cofunction formulas, 220
domain and range, 178-179
double-angle formulas, 220
even and odd properties, 186
graphs, 187

half-angle formulas, 221
half-angle identities, 221
inverse, 207, 212, 230

of important angles, 205-206
periodicity, 177
product-to-sum formulas, 221
redefined, 230

sum and difference formulas, 220
sum-to-product formulas, 221
unit circle definition, 177

U
Unit circle, 57, 176

A\

Variation, 146
combined, 147
direct, 146, 149
inverse, 146, 149
joint, 147

Vector quantity, 252

Vectors, 252
addition, 253
algebraic, 254
angle between, 255,

258
dot product, 255
equivalent, 252
magnitude, 252, 255
multiplication by a scalar,
253
orthogonal, 260
subtraction, 253
unit, 259
zero, 253
Velocity, 390
Vertical line test, 69

w

Word problems,
32,36

7

Zero factor laws, 2
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