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Preface

This book is intended to complement standard pre-calculus texts at the high-school, trade-school,
and college undergraduate levels. It can also serve as a self-teaching or home-schooling supplement.
Prerequisites include beginning and intermediate algebra, geometry, and trigonometry. Pre-Calculus
Know-I+-ALL forms an ideal “bridge” between Algebra Know-It-ALL and Calculus Know-I+-ALL.

This course is split into two major sections. Part 1 (Chapters 1 through 10) deals with coordi-
nate systems and vectors. Part 2 (Chapters 11 through 20) is devoted to analytic geometry. Chapters
1 through 9 and 11 through 19 end with practice exercises. They're “open-book” quizzes. You may
(and should) refer to the text as you work out your answers. Detailed solutions appear in Appendi-
ces A and B. In many cases, these solutions don't represent the only way a problem can be figured
out. Feel free to try alternatives!

Chapters 10 and 20 contain question-and-answer sets that finish up Parts 1 and 2, respectively.
These chapters aren’t tests. They’re designed to help you review the material, and to strengthen your
grasp of the concepts.

A multiple-choice Final Exam concludes the course. It’s a “closed-book” test. Don’t look back
at the chapters, or use any other external references, while taking it. You'll find these questions more
general (and easier) than the practice exercises at the ends of the chapters. The exam is meant to
gauge your overall understanding of the concepts, not to measure how fast you can perform calcula-
tions or how well you can memorize formulas. The correct answers are listed in Appendix C.

D've tried to introduce “mathematicalese” as the book proceeds. That way, you'll get used to the
jargon as you work your way through the examples and problems. If you complete one chapter a
week, you'll get through this course in a school year with time to spare, but don't hurry. Proceed at
your own pace.

Stan Gibilisco

xi
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CHAPTER

Cariesian Two-Space

If you've taken a course in algebra or geometry, youve learned about the graphing system
called Cartesian (pronounced “car-TEE-zhun”) two-space, also known as Cartesian coordinates
or the Cartesian plane. Let’s review the basics of this system, and then we'll learn how to cal-
culate distances in it.

How It’s Assembled

We can put together a Cartesian plane by positioning two identical real-number lines so they
intersect at their zero points and are perpendicular to each other. The point of intersection is
called the origin. Each number line forms an axis that can represent the values of a mathemati-
cal variable.

The variables

Figure 1-1 shows a simple set of Cartesian coordinates. One variable is portrayed along a hori-
zontal line, and the other variable is portrayed along a vertical line. The number-line scales are
graduated in increments of the same size.

Figure 1-2 shows how several ordered pairs of the form (x,y) are plotted as points on the
Cartesian plane. Here, x represents the independent variable (the “input”), and y represents
the dependent variable (the “output”). Technically, when we work in the Cartesian plane, the
numbers in an ordered pair represent the coordinates of a point on the plane. People sometimes
say or write things as if the ordered pair actually is the point, but technically the ordered pair
is the name of the point.

Interval notation

In pre-calculus and calculus, we'll often want to express a continuous span of values that a
variable can attain. Such a span is called an interval. An interval always has a certain minimum
value and a certain maximum value. These are the extremes of the interval. Let’s be sure that

3
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you're familiar with standard interval terminology and notation, so it won’t confuse you later
on. Consider these four situations:

O<x<?2
-1<y<0
4<z<8
-t <0<nm

These expressions have the following meanings, in order:

* The value of x is larger than 0, but smaller than 2.

* The value of y is larger than or equal to —1, but smaller than 0.

* The value of z is larger than 4, but smaller than or equal to 8.

* The value of O is larger than or equal to —7, but smaller than or equal to 7.

The first case is an example of an open interval, which we can write as
x e (0,2)

which translates to “x is an element of the open interval (0,2).” Don't mistake this open
interval for an ordered pair! The notations look the same, but the meanings are completely
different. The second and third cases are examples of half-open intervals. We denote this type
of interval with a square bracket on the side of the included value and a rounded parenthesis
on the side of the non-included value. We can write

)’ € [_1 50)
which means “y is an element of the half-open interval [-1,0),” and
z€ (4,8]

which means “z is an element of the half-open interval (4,8].” The fourth case is an example of
a closed interval. We use square brackets on both sides to show that both extremes are included.
We can write this as

Oe [—mm

which translates to “0 is an element of the closed interval [-,7].”

Relations and functions

Do you remember the definitions of the terms relation and finction from your algebra courses?
(If you read Algebra Know-It-All, you should!) These terms are used often in pre-calculus, so
is important that you be familiar with them. A relation is an operation that transforms, or
maps, values of a variable into values of another variable. A finction is a relation in which there
is never more than one value of the dependent variable for any value of the independent vari-
able. In other words, there can’t be more than one output for any input. (If a particular input
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produces no output, that’s okay.) The Cartesian plane gives us an excellent way to illustrate
relations and functions.

The axes

In a Cartesian plane, both axes are /inear, and both axes are graduated in increments of the
same size. On either axis, the change in value is always directly proportional to the physical
displacement. For example, if we travel 5 millimeters along an axis and the value changes by
1 unit, then that fact is true everywhere along that axis, and it’s also true everywhere along the
other axis.

The quadrants

Any pair of intersecting lines divides a plane into four parts. In the Cartesian system, these
parts are called quadrants, as shown in Fig. 1-3:

* In the first quadrant, both variables are positive.

* In the second quadrant, the independent variable is negative and the dependent variable
is positive.

* In the third quadrant, both variables are negative.

* In the fourth quadrant, the independent variable is positive and the dependent variable
is negative.

y
A
6__
Il 1 I
4__
Second T First
quadrant o _L quadrant
“«—t—f—F—+—+- H———t—t—"F—>x
—6 —4 —2 4 2 4 6
Third 2] Fourth
quadrant T quadrant
-4 —+
Il € IV
_6 —
\4

Figure 1-3 The Cartesian plane is divided into
quadrants. The first, second, third, and
fourth quadrants are sometimes labeled I, 11,
I1I, and IV, respectively.
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The quadrants are sometimes labeled with Roman numerals, so that

* Quadrant [ is at the upper right
* Quadrant IT is at the upper left
¢ Quadrant IIT is at the lower left
* Quadrant IV is at the lower right

If a point lies on one of the axes or at the origin, then it is not in any quadrant.

Are you confused?

Why do we insist that the increments be the same size on both axes in a Cartesian two-space
graph? The answer is simple: That’s how the Cartesian plane is defined! But there are other
types of coordinate systems in which this exactness is not required. In a more generalized
system called rectangular coordinates or the rectangular coordinate plane, the two axes can be
graduated in divisions of different size. For example, the value on one axis might change by
1 unit for every 5 millimeters, while the value on the other axis changes by 1 unit for every
10 millimeters.

Here's a challengel!

Imagine an ordered pair (x,y), where both variables are nonzero real numbers. Suppose that you've
plotted a point (call it P) on the Cartesian plane. Because x # 0 and y # 0, the point P does not lie
on either axis. What will happen to the location of P if you multiply x by —1 and leave y the same?
If you multiply y by —1 and leave x the same? If you multiply both x and y by —1?2

Solution

If you multiply x by —1 and do not change the value of y, P will move to the opposite side of the
y axis, but will stay the same distance away from that axis. The point will, in effect, be “reflected”
by the y axis, moving to the left if x is positive to begin with, and to the right if x is negative to
begin with.

* If Pstarts out in the first quadrant, it will move to the second.
o If Pstarts out in the second quadrant, it will move to the first.
o If Pstarts out in the third quadrant, it will move to the fourth.
o If Pstarts out in the fourth quadrant, it will move to the third.

If you multiply y by —1 and leave x unchanged, P will move to the opposite side of the x axis, but
will stay the same distance away from that axis. In a sense, P will be “reflected” by the x axis, mov-
ing straight downward if y is initially positive and straight upward if y is initially negative.

* If Pstarts out in the first quadrant, it will move to the fourth.
* If Pstarts out in the second quadrant, it will move to the third.
* If Pstarts out in the third quadrant, it will move to the second.
* If Pstarts out in the fourth quadrant, it will move to the first.
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If you multiply both x and y by —1, P will move diagonally to the opposite quadrant. It will, in
effect, be “reflected” by both axes.

 If Pstarts out in the first quadrant, it will move to the third.
 If Pstarts out in the second quadrant, it will move to the fourth.
e If Pstarts out in the third quadrant, it will move to the first.
e If Pstarts out in the fourth quadrant, it will move to the second.

If you have trouble envisioning these point maneuvers, draw a Cartesian plane on a piece of graph
paper. Then plot a point or two in each quadrant. Calculate how the x and y values change when you
multiply either or both of them by —1, and then plot the new points.

Distance of a Point from Origin

On a straight number line, the distance of any point from the origin is equal to the absolute
value of the number corresponding to the point. In the Cartesian plane, the distance of a
point from the origin depends on both of the numbers in the point’s ordered pair.

An example

Figure 1-4 shows the point (4,3) plotted in the Cartesian plane. Suppose that we want to find
the distance 4 of (4,3) from the origin (0,0). How can this be done?

We can calculate & using the Pythagorean theorem from geometry. In case you've forgotten
that principle, here’s a refresher. Suppose we have a right triangle defined by points 2, Q, and
R. Suppose the sides of the triangle have lengths 4, 4, and 4 as shown in Fig. 1-5. Then

b*+h*=d?
We can rewrite this as
d= (bz+/72)1/2

where the 1/2 power represents the nonnegative square root. Now let’s make the following
point assignments between the situations of Figs. 1-4 and 1-5:

* The origin in Fig. 1-4 corresponds to the point Q in Fig. 1-5.
* The point (4,0) in Fig. 1-4 corresponds to the point R in Fig. 1-5.
* The point (4,3) in Fig. 1-4 corresponds to the point P in Fig. 1-5.

Continuing with this analogy, we can see the following facts:
* The line segment connecting the origin and (4,0) has length & = 4.

* The line segment connecting (4,0) and (4,3) has height /= 3.
* The line segment connecting the origin and (4,3) has length & (unknown).
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y
A
6__
‘T 4.9)
2T d/.
«t—f—t—"F—"F"1t+—F+—+-oF+—+—>x
-6 —4 —2 £ 2 6
Whats the |
distance d? | (4, 0)
4 —+
—6 +
\4

Figure 1-4 We can use the Pythagorean theorem to find
the distance d of the point (4,3) from the

origin (0,0) in the Cartesian plane.

The side of the right triangle having length 4 is the longest side, called the Ayporenuse. Using

the Pythagorean formula, we can calculate
d= (bz + }}2)1/2 — (42 + 32)1/2 — (16 + 9)1/2 — 251/2 — 5

We've determined that the point (4,3) is 5 units distant from the origin in Cartesian coordi-
nates, as measured along a straight line connecting (4,3) and the origin.

P
Hypotenuse :
length = d P
1 Height = h
90° !
(O bl *R

Base length = b

Figure 1-5 The Pythagorean theorem for right triangles.
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The general formula
We can generalize the previous example to get a formula for the distance of any point from the
origin in the Cartesian plane. In fact, we can repeat the explanation of the previous example
almost verbatim, only with a few substitutions.

Consider a point P with coordinates (x,,y,). We want to calculate the straight-line distance
d of the point P from the origin (0,0), as shown in Fig. 1-6. Once again, we use the Pythago-
rean theorem. Turn back to Fig. 1-5 and follow along by comparing with Fig. 1-6:

* The origin in Fig. 1-6 corresponds to the point Q in Fig. 1-5.

* The point (x,,0) in Fig. 1-6 corresponds to the point R in Fig. 1-5.

* The point (x,,,) in Fig. 1-6 corresponds to the point P in Fig. 1-5.
The following facts are also visually evident:

* The line segment connecting the origin and (x,,0) has length 6 = x,.

* The line segment connecting (x,,0) and (x,,y,) has height /= y,.

* The line segment connecting the origin and (x,,y,) has length 4 (unknown).

The Pythagorean formula tells us that

d: (bz + /72)1/2 — (xpz +J,P2)1/2

Point P
(Xp’ Yp)

|

What's the
distance d ?

A

4

Q

~9><
o
SN

<

Figure 1-6  Using the Pythagorean theorem, we can
derive a formula for the distance 4 of a
generalized point = (x,,y,) from the origin.
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A2 units away from the origin, as we would measure it

That’s it! The point (x,,y,) is (x,” + ,

along a straight line.

Are you confused?

You might ask, “Can the distance of a point from the origin ever be negative?” The answer is no.
If you look at the formula and break down the process in your mind, youll see why this is so.
First, you square x,, which is the x coordinate of P. Because x, is a real number, its square must
be a nonnegative real. Next, you square y,, which is the y coordinate of P. This result must also
be a nonnegative real. Next, you add these two nonnegative reals, which must produce another
nonnegative real. Finally, you take the nonnegative square root, getting yet another nonnegative
real. That’s the distance of P from the origin. It cant be negative in a Cartesian plane whose axes
represent real-number variables.

Here's a challengel!

Imagine a point P = (x,,,) in the Cartesian plane, where x, # 0 and y, # 0. Suppose that P is 4
units from the origin. What will happen to 4 if you multiply x, by —1 and leave y unchanged? If
you multiply y, by —1 and leave x unchanged? If you multiply both x, and y, by —12

Solution

This is a three-part challenge. Let’s break each part down into steps and apply the distance formula
in each case.

In the first situation, we change the x coordinate of 2 to its negative. Let’s call the new point 2, .
Its coordinates are (—x,,9,). Let d,_ be the distance of P,_ from the origin. Plugging the values into the
formula, we obtain

d)ﬁ = [(_XP)Z +_yp2]1/2 = [(_l)lxpl +}/P2] 12 _ (xPZ +_yp2)1/2 = d

In the second situation, we change the y coordinate of P to its negative. This time, let’s call the new
point P,. Its coordinates are (x,,—y,). Let &, represent the distance of P, from the origin. Plugging the
values into the formula, we obtain

df = [(xp)z L (_yp)Z]l/z — [xpz L (_1)2}’1)2] 12 (xPZ +.yP2)1/2 — d

In the third case, we change both the x and y coordinates of P to their negatives. We can call
the new point P, with coordinates (—x,,—y,). If we let ., represent the distance of P,, from the
origin, we have

dxy— = [(_Xp)2 4 (_}’p)z]”z = [(—l)le,z + (_1)2},?2]1/2 = (xp2 +}’p2)1/2 = d

We've shown that we can negate either or both of the coordinate values of a point in the Cartesian
g

plane, and although the points location will usually change, its distance from the origin will always

stay the same.
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Distance between Any Two Points

The distance between any two points on a number line is easy to calculate. We take the abso-
lute value of the difference between the numbers corresponding to the points. In the Cartesian
plane, each point needs two numbers to be defined, so the process is more complicated.

Setting up the problem

Figure 1-7 shows two generic points, P and Q, in the Cartesian plane. Their coordinates are
P = (x,,)

and
Q= (xpyy)

Suppose we want to find the distance & between these points. We can construct a triangle by
choosing a third point, R (which isn't on the line defined by P and Q) and then connecting P, Q,
and R by line segments to get a triangle. The shape of triangle PQR depends on the location of R. If
we choose certain coordinates for R, we can get a right triangle with the right angle at vertex R.
With the help of Fig. 1-7, it’s easy to see what the coordinates of R should be. If I travel
“straight down” (parallel to the y axis) from P, and if you travel “straight to the right” (parallel to the

y
A
—+ Point P
—4 (Xp1 yp)
What's the
distance d ?
Ay = Yo—Yq
—t—tt—t—t—"+—>x
PointQ AX= XX, Point R
(Xq! }/q) 1 (Xp7 }/q)

Y

Figure 1-7 We can find the distance & between two
points P= (x,,y,) and Q = (x,,5,) by choosing
point R to get a right triangle, and then
applying the Pythagorean theorem.



Distance between Any Two Points 13

x axis) from Q, our paths will cross at a right angle when we reach the point whose coordinates
are (x,,5,). Those are the coordinates that R must have if we want the two sides of the triangle to
be perpendicular there.

Are you confused?

“Wait!” you say. “Isn’t there another point besides R that we can choose to create a right triangle
along with points 2 and Q?” Yes, there is. The situation is shown in Fig. 1-8. If I go “straight up”
(parallel to the y axis) from Q, and if you go “straight to the left” (parallel to the x axis) from P,
we will meet at a right angle when we reach the coordinates (x,,y,). In this case, we might call
the right-angle vertex point S. We won't use this geometry in the derivation that follows. But we
could, and the final distance formula would turn out the same.

Point S Point P
(an yp) AX (Xpy Yp)

Ay = Yo—Yq

A

| |

I [
\4
x

What'’s the
Point Q 1 distance d ?
(Xg Yo)

Y

Figure 1-8 Alternative geometry for finding the
distance between two points. In this case,
the right angle appears at point S.

Dimensions and “deltas”

Mathematicians use the uppercase Greek letter delta (A) to stand for the phrase “the difference
in” or “the difference between.” Using this notation, we can say that

* The difference in the x values of points Rand Q in Fig. 1-7 is x, — x,, or Ax. That’s the
length of the base of a right triangle.

* The difference in the y values of points P and R is y, — y,, or Ay. That’s the height of a
right triang]e.
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We can see from Fig. 1-7 that the distance & between points Q and P is the length of the hypot-
enuse of triangle PQR. We're ready to find a formula for & using the Pythagorean theorem.

The general formula

Look back once more at Fig. 1-5. The relative positions of points P, Q, and R here are similar
to their positions in Fig. 1-7. (I've set things up that way on purpose, as you can probably
guess.) We can define the lengths of the sides of the triangle in Fig. 1-7 as follows:

* The line segment connecting points Q and R has length 6= Ax=x, — x,.

* The line segment connecting points R and P has height /= Ay =y, -y,
* The line segment connecting points Q and P has length & (unknown).

The Pythagorean formula tells us that

d= (bz + h2)1/2 — (sz + A]/Z)l/z — [(xp _ xq)2 + ()’p _yq)2]1/2

An example

Let’s find the distance d between the following points in the Cartesian plane, using the for-
mula we've derived:

P=(-5,-2)
and
Q=(7.3)
Plugging the values x, = =5, y,= -2, x,= 7, and y, = 3 into our formula, we get

d=1[(x,—x)"+ (,— 3) 1" = [(-5=7)* + (-2 = 3)1]'?
[(=12)% + (=5)4]"2 = (144 + 25)"? = 169> =13

Here's a challenge!

It’s reasonable to suppose that the distance between two points shouldn’t depend on the direction
in which we travel. But if you're a “show-me” person (as a mathematician should be), you might
demand proof. Let’s do it!

Solution

When we derived the distance formula previously, we traveled upward and to the right in Fig. 1-7
(from Q to P). When we work with directional displacement, it’s customary to subtract the start-
ing-point coordinates from the finishing-point coordinates. That’s how we got

Ax=x,—x,
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and
Ay=2,-7,

If we travel downward and to the left (from P to Q), we get
Ay =x,—x,

and
Ay=y,-3

when we subtract the starting-point coordinates from the finishing-point coordinates. These new
“star deltas” are the negatives of the original “plain deltas” because the subtractions are done in
reverse. If we plug the “star deltas” straightaway into the derivation for 4 we worked out a few
minutes ago, we can maneuver to get

d: (A*x2 48 A*)/Z)llz = [(—Ax)2 + (—A}l)z]l/z = [(—1)2A.X‘2 4 (_l)szZ] 1/2
— (sz + Ay2)1/2 — [(xp _ xq 2 + (},P _yq)2]1/2
That's the same distance formula we got when we went from Q to P. This proves that the direction of
travel isn’t important when we talk about the simple distance between two points in Cartesian coordi-

nates. (When we work with vectors later in this book, the direction will matter. Directional distance is
known as displacement.)

Finding the Midpoint

We can find the midpoint between two points on a number line by calculating the arithmetic
mean (or average value) of the numbers corresponding to the points. In Cartesian xy coordi-
nates, we must make two calculations. First, we average the x values of the two points to get
the x value of the point midway between. Then, we average the y values of the points to get
the y value of the point midway between.

A “mini theorem”

Once again, imagine points P and Q in the Cartesian plane with the coordinates
P=(x,,)

and
Q= (xpy)

Suppose we want to find the coordinates of the midpoint. That’s the point that bisects a straight
line segment connecting P and Q. As before, we start out by choosing the point R “below and
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Figure 1-9 Wk can calculate the coordinates of the
midpoint of a line segment whose endpoints
are known.

to the right” that forms a right triangle PQR, as shown in Fig. 1-9. Imagine a movable point M/
that we can slide freely along line segment PQ. When we draw a perpendicular from A to side
QR, we get a point M,. When we draw a perpendicular from M to side RP, we get a point M,.

Consider the three right triangles MQAM,, PMM,, and PQR. The laws of basic geometry
tell us that these triangles are similar, meaning that the lengths of their corresponding sides
are in the same ratios. According to the definition of similarity for triangles, we know the fol-
lowing two facts:

* Doint M, is midway between Q and R if and only if M is midway between P and Q.
* DPoint M, is midway between R and P if and only if M is midway between P and Q.

Now, instead of saying that M stands for “movable point,” let’s say that M stands for “mid-
point.” In this case, the x value of A, (the midpoint of line segment QR) must be the x value of
M, and the y value of M, (the midpoint of line segment RP) must be the y value of M.

The general formula

We've reduced our Cartesian two-space midpoint problem to two separate number-line mid-
point problems. Side QR of triangle PQR is parallel to the x axis, and side RP of triangle PQR
is parallel to the y axis. We can find the x value of M, by averaging the x values of Q and R.
When we do this and call the result x,,, we get

%, = (5, + x,)/12
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In the same way, we can calculate the y value of M, by averaging the y values of R and P. Call-
ing the result y,,, we have

In=0) +)’t1)/2

We can use the “mini theorem” we finished a few moments ago to conclude that the coordi-
nates of point A, the midpoint of line segment PQ, are

Komado) = [, + %)/ 2,(y, + 3,)/2]

An example

Let’s find the coordinates (x,,,,,) of the midpoint M between the same two points for which
we found the separation distance earlier in this chapter:

P=(-5-2)
and
Q=(7.3)

When we plug x, =—5, y,= -2, x,=7, and y, = 3 into the midpoint formula, we get

o) = [(x, + x)12,(y, + 3,)/2] = [(=5 + 7)/2,(=2 + 3)/2]
= (2/2,1/2) = (1,1/2)

Are you a skeptic?

It seems reasonable to suppose the midpoint between points P and Q should not depend on
whether we go from P to Q or from Q to P. We can prove this by showing that for all real numbers
X5 Yps X, and y,, we have

(e, +x)12,(9, + y)12] = [(x, + %,)/2,(y, + 3,)/2]

This demonstration is easy, but let’s go through it step-by-step to completely follow the logic. For
the x coordinates, the commutative law of addition tells us that

X, + %, =%, T X,
Dividing each side by 2 gives us
(%, + x,)/2 = (x, + x,)/2
For the y coordinates, the commutative law says that

Yot Va=Vgt
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Again dividing each side by 2, we get

Oy + 912 =0y +3,)/2

We've shown that the coordinates in the ordered pair on the left-hand side of the original equation
are equal to the corresponding coordinates in the ordered pair on the right-hand side. The ordered
pairs are identical, so the midpoint is the same in either direction.

Are you confused?

To find a midpoint of a line segment in Cartesian two-space, you simply average the coordinates
of the endpoints. This method always works if the midpoint lies on a straight line segment between
the two endpoints. But you might wonder, “How can we find the midpoint between two points
along an arc connecting those points?” In a situation like that, we must determine the length of
the arc. Depending on the nature of the arc, that can be fairly hard, very hard, or almost impos-
sible! Arc-length problems are beyond the scope of this book, but you’ll learn how to solve them
in Caleulus Know-It-All.

Here's a challenge!

Consider two points in the Cartesian plane, one of which is at the origin. Show that the coordi-
nate values of the midpoint are exactly half the corresponding coordinate values of the point not
on the origin.

Solution

We can plug in (0,0) as the coordinates of either point in the general midpoint formula, and work
things out from there. First, let’s suppose that point P is at the origin and the coordinates of point
Q are (x,,),). Then x, = 0 and y, = 0. If we call the coordinates of the midpoint (x,,,,), we have

() = [, + 212,09, + y,)12] = [(0 + x,)/2,(0 + y,)/2]
= (x,/2,,/2)

Now, let Q be at the origin and let the coordinates of P be (x,,5,). In that case, we have

Koy = [(6, + x)12,(9, + y)12] = [(x, + 0)/2,(y, + 0)/2]
= (x,/2,y,/2)

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don't hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!
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1. What are the x and y coordinates of the points shown in Fig. 1-10?

2. Determine the distance of the point (—4,5) from the origin in Fig. 1-10. Using a
calculator, round off the answer to three decimal places.

3. Determine the distance of the point (=5,—-3) from the origin in Fig. 1-10. Using a
calculator, round it off to three decimal places.

4. Determine the distance of the point (1,—-6) from the origin in Fig. 1-10. Using a
calculator, round it off to three decimal places.

5. Determine the distance between the points (—4,5) and (=5,-3) in Fig. 1-10. Using a
calculator, round it off to three decimal places.

6. Determine the distance between the points (=5,—3) and (1,-6) in Fig. 1-10. Using a
calculator, round it off to three decimal places.

7. Determine the distance between the points (1,-6) and (—4,5) in Fig. 1-10. Using a
calculator, round it off to three decimal places.

8. Determine the coordinates of the midpoint of line segment L in Fig. 1-11. Express the
values in fractional and decimal form.

9. Determine the coordinates of the midpoint of line segment M in Fig. 1-11. Express the
values in fractional and decimal form.

10. Determine the coordinates of the midpoint of line segment NV in Fig. 1-11. Express the
values in fractional and decimal form.



CHAPTER

A Fresh Look at Trigonometry

Trigonometry (or “trig”) involves the relationships between angles and distances. Traditional
texts usually define the #rigonometric functions of an angle as ratios between the lengths of the
sides of a right triangle containing that angle. If you've done trigonometry with triangles, get
ready for a new perspective!

Circles in the Cartesian Plane

In Cartesian xy coordinates, circles are represented by straightforward equations. The equation
for a particular circle depends on its radius, and also on the location of its center point.

The unit circle

In trigonometry, we're interested in the circle whose center is at the origin and whose radius
is 1. This is the simplest possible circle in the xy plane. It’s called the unit circle, and is repre-
sented by the equation

x+yr=1

The unit circle gives us an elegant way to define the basic trigonometric functions. That’s why
these functions are sometimes called the circular functions. Before we get into the circular
functions themselves, let’s be sure we know how to define angles, which are the arguments
(or inputs) of the trig functions.

Naming angles

Mathematicians often use Greek letters to represent angles. The italic, lowercase Greek letter
theta is popular. It looks like an italic numeral 0 with a horizontal line through it (6). When
writing about two different angles, a second Greek letter is used along with 6. Most often, it’s
the italic, lowercase letter phi. This character looks like an italic lowercase English letter o with

a forward slash through it (¢).
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Sometimes the italic, lowercase Greek letters alpha, beta, and gamma are used to repre-
sent angles. These, respectively, look like the following symbols: @, B, and 7. When things
get messy and there are a lot of angles to talk about, numeric subscripts may be used with
Greek letters, so don’t be surprised if you see text in which angles are denoted 6;, 6,, 6, and
so on. If you read enough mathematical papers, you'll eventually come across angles that are
represented by other lowercase Greek letters. Angle variables can also be represented by more
familiar characters such as x, y, or z. As long as we know the context and stay consistent in a
given situation, it really doesn’t matter what we call an angle.

Radian measure

Imagine two rays pointing outward from the center of a circle. Each ray intersects the circle
at a point. Suppose that the distance between these points, as measured along the arc of the
circle, is equal to the radius of the circle. In that case, the measure of the angle between the
rays is one radian (1 rad). There are always 27 rad in a full circle, where 7 (the lowercase,
non-italic Greek letter pi) stands for the ratio of a circle’s circumference to its diameter. The
number 7 is irrational. Its value is approximately 3.14159.

Mathematicians prefer the radian as a standard unit of angular measure, and it’s the unit
we'll work with in this course. It's common practice to omit the “rad” after an angle when we
know that we're working with radians. Based on that convention:

* An angle of /2 represents 1/4 of a circle
* An angle of 7 represents 1/2 of a circle

* An angle of 377/2 represents 3/4 of a circle
* An angle of 27 represents a full circle

An acute angle has a measure of more than 0 but less than 7/2, a right angle has a measure
of exactly 7/2, an obtuse angle has a measure of more than 7/2 but less than 7, a straight
angle has a measure of exactly 7, and a reflex angle has a measure of more than 7 but less
than 27.

Degree measure

The angular degree (°), also called the degree of arc, is the unit of angular measure familiar to
lay people. One degree (1°) is 1/360 of a full circle. You probably know the following basic
facts:

* An angle of 90° represents 1/4 of a circle
* An angle of 180° represents 1/2 of a circle
* An angle of 270° represents 3/4 of a circle
* An angle of 360° represents a full circle

An acute angle has a measure of more than 0 but less than 90°, a right angle has a measure
of exactly 90°, an obruse angle has a measure of more than 90° but less than 180°, a straight
angle has a measure of exactly 180°, and a reflex angle has a measure of more than 180° but

less than 360°.
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Are you confused?

If you're used to measuring angles in degrees, the radian can seem unnatural at first. “Why,”
you might ask, “would we want to divide a circle into an irrational number of angular parts?”
Mathematicians do this because it nearly always works out more simply than the degree-measure
scheme in algebra, geometry, trigonometry, pre-calculus, and calculus. The radian is more natural
than the degree, not less! We can define the radian in a circle without having to quote any num-
bers at all, just as we can define the diagonal of a square as the distance from one corner to the
opposite corner. The radian is a purely geometric unit. The degree is contrived. (What’s so special
about the fraction 1/360, anyhow? To me, it would have made more sense if our distant ancestors
had defined the degree as 1/100 of a circle.)

Here's a challengel!

The measure of a certain angle 6 is 7/6. What fraction of a complete circular rotation does this
represent? What is the measure of 6 in degrees?

Solution

A full circular rotation represents an angle of 27. The value 7 /6 is equal to 1/12 of 2. Therefore, the
angle O represents 1/12 of a full circle. In degree measure, that’s 1/12 of 360°, which is 30°.

Primary Circular Functions

Let’s look again at the equation of a unit circle in the Cartesian xy plane. We get it by adding
the squares of the variables and setting the sum equal to 1:

x*+yi=1

Imagine that 6 is an angle whose vertex is at the origin, and we measure this angle in a coun-
terclockwise sense from the x axis, as shown in Fig. 2-1. Suppose this angle corresponds to a
ray that intersects the unit circle at a point P, where

P = (xo,)’o)

We can define the three basic circular functions, also called the primary circular functions, of 0
in a simple way. But before we get into that, let’s extend our notion of angles to include nega-
tive values, and also to deal with angles larger than 27.

Offbeat angles

In trigonometry, any direction angle, no matter how extreme, can always be reduced to some-
thing that’s nonnegative but less than 27. Even if the ray OP in Fig. 2-1 makes more than
one complete revolution counterclockwise from the x axis, or if it turns clockwise instead, its
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Figure 2-1 The unit circle, whose equation is
«* + 9> =1, can serve as the basis for
defining trigonometric functions.
In this graph, each axis division
represents 1/4 unit.

direction can always be defined by some counterclockwise angle of least 0 but less than 27
relative to the x axis.

Think of this situation another way. The point 2 must always be somewhere on the circle,
no matter how many times or in what direction the ray OP rotates to end up in a particular
position. Every point on the circle corresponds to exactly one nonnegative angle less than 27
counterclockwise from the x axis. Conversely, if we consider the continuous range of angles
going counterclockwise over the half-open interval [0,27), we can account for every point on
the circle.

Any offbeat direction angle such as =977 /4 can be reduced to a direction angle that mea-
sures at least 0 but less than 27 by adding or subtracting some whole-number multiple of 27.
But we must be careful about this. A direction angle specifies orientation only. The orienta-
tion of the ray OP is the same for an angle of 37 as for an angle of 7, but the larger value carries
with it the idea that the ray (also called a vector) OP has rotated one and a half times around,
while the smaller angle implies that it has undergone only half of a rotation. For our purposes
now, this doesn’t matter. But in some disciplines and situations, it does!

Negative angles are encountered in trigonometry, especially in graphs of functions. Multi-
ple revolutions of objects are important in physics and engineering. So if you ever hear or read
about an angle such as —7r/2 or 57, you can be confident that it has meaning. The negative
value indicates clockwise rotation. An angle larger than 27 indicates more than one complete
rotation counterclockwise. An angle of less than =27 indicates more than one complete rota-
tion clockwise.
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The sine function

Look again at Fig. 2-1. Imagine that ray OP points along the x axis, and then starts to rotate
counterclockwise at steady speed around its end point O, as if that point is a mechanical bear-
ing. The point P, represented by coordinates (xo, yo), therefore revolves around O, following
the unit circle.

Imagine what happens to the value of y, (the ordinate of point P) during one complete
revolution of ray OP. The ordinate of P starts out at y, = 0, then increases until it reaches y, = 1
after P has gone 1/4 of the way around the circle (that is, the ray has turned through an angle
of /2). After that, y, begins to decrease, getting back to y, = 0 when P has gone 1/2 of the
way around the circle (the ray has turned through an angle of 7). As P continues in its orbit,
9o keeps decreasing until the value of y, reaches its minimum of —1 when P has gone 3/4 of
the way around the circle (the ray has turned through an angle of 377/2). After that, the value
of y, rises again until, when P has gone completely around the circle, it returns to y, = 0 for
60=2m.

The value of y, is defined as the sine of the angle 6. The sine fiunction is abbreviated as sin,
SO wWe can write

sin 9 =Jo

Circular motion

Imagine that you attach a “glow-in-the-dark” ball to the end of a string, and then swing the
ball around and around at a steady rate of one revolution per second. Suppose that you make
the ball circle your head so the path of the ball lies in a horizontal plane. Imagine that you
are in the middle of a flat, open field at night. The ball describes a circle as viewed from high
above, as shown in Fig. 2-2A. If a friend stands far away with her eyes exactly in the plane
of the ball’s orbit, she sees a point of light that oscillates back and forth, from right-to-left
and left-to-right, along what appears to be a straight-line path (Fig. 2-2B). Starting from its
rightmost apparent position, the glowing point moves toward the left for 1/2 second, speed-
ing up and then slowing down; then it reverses direction; then it moves toward the right for

You Ball
A /
Top view “\ (/'
\ String '
Ball
B
ffffffff <«———0
Side view

Figure 2-2  Orbiting ball and string.
At A, as seen from above;
at B, as seen edge-on.
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1/2 second, speeding up and then slowing down; then turns around again. As seen by your
friend, the ball reaches its extreme rightmost position at 1-second intervals, because its orbital
speed is one revolution per second.

The sine wave

If you graph the apparent position of the ball as seen by your friend with respect to time, the result
is a sine wave, which is a graphical plot of a sine function. Some sine waves “rise higher and lower”
(corresponding to a longer string), some are “flatter” (the equivalent of a shorter string), some are
“stretched out” (a slower rate of revolution), and some are “squashed” (a faster rate of revolution).
But the characteristic shape of the wave, known as a sinusoid, is the same in every case.

You can whirl the ball around faster or slower than one revolution per second, thereby
altering the frequency of the sine wave: the number of times a complete wave cycle repeats
within a specified interval on the independent-variable axis. You can make the string longer
or shorter, thereby adjusting the amplitude of the wave: the difference between the extreme
values of its dependent variable. No matter what changes you might make of this sort, the
sinusoid can always be defined in terms of a moving point that orbits a central point at a con-
stant speed in a perfect circle.

If we want to graph a sinusoid in the Cartesian plane, the circular-motion analogy can
be stated as

y=asin b0

where  is a constant that depends on the radius of the circle, and 4 is a constant that depends
on the revolution rate. The angle 6 is expressed counterclockwise from the positive x axis.
Figure 2-3 illustrates a graph of the basic sine function; it’s a sinusoid for whichz=1and =1,
and for which the angle is expressed in radians.

sin 6
3 —

Figure 2-3  Graph of the sine function for
values of 0 between -3 and 37.
Each division on the horizontal axis
represents 7 /2 units. Each division on
the vertical axis represents 1/2 unit.
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The cosine function

Look again at Fig. 2-1. Imagine, once again, a ray OP running outward from the origin
through point P on the circle. Imagine that at first, the ray points along the x axis, and then it
rotates steadily in a counterclockwise direction.

Now let’s think about what happens to the value of x; (the abscissa of point P) during one
complete revolution of ray OP. It starts out at x, = 1, then decreases until it reaches x, = 0 when
0= 1/2. Then x, continues to decrease, getting down to x; = —1 when 0= 7. As P continues
counterclockwise around the circle, x, increases. When 6 = 37/2, we get back up to x, = 0.
After that, x, increases further until, when P has gone completely around the circle, it returns
to xo =1 for 6=2m.

The value of x; is defined as the cosine of the angle 6. The cosine function is abbreviated
as cos, SO we can write

cos B=x,

The cosine wave

Circular motion in the Cartesian plane can be defined in terms of the cosine function by
means of the equation

y=a cos b0

where « is a constant that depends on the radius of the circle, and 4 is a constant that depends
on the revolution rate, just as is the case with the sine function. The angle 6 is measured or
defined counterclockwise from the positive x axis, as always.

The shape of a cosine wave is exactly the same as the shape of a sine wave. Both waves are
sinusoids. But the entire cosine wave is shifted to the left by 1/4 of a ¢ycle with respect to the
sine wave. That works out to an angle of /2. Figure 2-4 shows a graph of the basic cosine

cos 6
3 —_

-3 +

Figure 2-4  Graph of the cosine function for
values of @ between —37 and 3.
Each division on the horizontal
axis represents 7 /2 units. Each
division on the vertical axis
represents 1/2 unit.
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function; it’s a cosine wave for which 2= 1 and 4= 1. Because the cosine wave in Fig. 2-4 has the
same frequency but a difference in horizontal position compared with the sine wave in Fig. 2-3,
the two waves are said to differ in phase. For those of you who like fancy technical terms, a phase
difference of 1/4 cycle (or 7/2) is known in electrical engineering as phase quadrature.

The tangent function

Once again, refer to Fig. 2-1. The zangent (abbreviated as tan) of an angle 0 can be defined
using the same ray OP and the same point P = (xy,),) as we use when we define the sine and
cosine functions. The definition is

tan 0= yo/x,
We've seen that sin 6 = y, and cos 0 = x,, so we can express the tangent function as
tan 6 =sin 6/cos O
The tangent function is interesting because, unlike the sine and cosine functions, it
“blows up” at certain values of 6. This is shown by a graph of the function (Fig. 2-5). Whenever
xp = 0, the denominator of either quotient above becomes 0, so the tangent function is not

defined for any angle 0 such that cos @ = 0. This happens whenever 0 is a positive or negative
odd-integer multiple of 7/2.

tan 6
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Figure 2-5 Graph of the tangent function for values
of @ between —37 and 37. Each division
on the horizontal axis represents 7 /2
units. Each division on the vertical axis
represents 1/2 unit.
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Singularities

When a function “blows up” as the tangent function does at all the odd-integer multiples of
7 /2, we say that the function is singular for the affected values of the input variable. Such a
“blow-up point” is called a singularity.

If you've read books or watched movies about space travel and black holes, maybe you've
seen or heard the term space-time singularity. That’s a place where all the familiar rules of the
universe break down. In a mathematical singularity, things aren’t quite so dramatic, but
the output value of a function becomes meaningless. In Fig. 2-5, the singularities are denoted
by vertical dashed lines. The dashed lines themselves are known as asymprotes.

Inflection points

Midway between the singularities, the graph of the tangent function crosses the 6 axis, and
the sense of the curvature changes. Below the 6 axis, the curves are always concave to the
right and convex to the left. Above the 0 axis, the curves are always concave to the left and
convex to the right. Whenever we have a point on a curve where the sense of the curvature
reverses, we call that point an inflection point or a point of inflection. (Some texts spell the
word “inflexion.”)

Lots of graphs have inflection points. If you're astute, you'll look back in this chapter and
notice that the sine and cosine waves also have them. From your algebra courses, you might
also remember that the graphs of many higher-degree polynomial functions have inflection
points.

Are you confused?

Some students wonder if there’s a way to define a function at a singularity. If you scrutinize
Fig. 2-5 closely, you might be tempted to say that

tan (77/2) = £oo

where the symbol oo means positive or negative infinity. The graph suggests that the output of the
tangent function might attain values of infinity at the singular input points, doesn’t it? It’s an
interesting notion; the problem is that we don’t have a formal definition for 7nfinity as a number.
Mathematicians have found it difficult, over the generations, to make up a rigorous, workable
definition for infinity as a number.

Some mathematicians have grappled with the notion of infinity and come up with a way of
doing arithmetic with it. Most notable among these people was Georg Cantor, a German math-
ematician who lived from 1845 to 1918. He discovered the apparent existence of “multiple infini-
ties,” which he called #ransfinite numbers. 1f you're interested in studying transfinite numbers, try
searching the Internet using that term as a phrase.

Here's a challengel!

Figure out the value of tan (7 /4). Don’t do any calculations. You should be able to infer this on
the basis of geometry alone.
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Solution

Draw a diagram of a unit circle, such as the one in Fig. 2-1, and place ray OP so that it subtends
an angle of 7 /4 with respect to the x axis. (That’s exactly “northeast” if the positive x axis goes
“east” and the positive y axis goes “north.”) Note that the ray OP also subtends an angle of 7 /4
with respect to the y axis, because the x and y axes are mutually perpendicular (oriented at an angle
of exactly 7 /2 with respect to each other), and 7 /4 is half of 7 /2. Every point on the ray OP is
equally distant from the x and y axes, including the point (xy,y,) where the ray intersects the circle.
It follows that x, = y,. Neither of them is equal to 0, so you know that yy/x, = 1. According to the
definition of the tangent function, you can conclude that

tan (7 /4) = yolx =1

Secondary Circular Functions

The three primary circular functions, as already defined, form the cornerstone of trigonom-
etry. Three more circular functions exist. Their values represent the reciprocals of the values of
the primary circular functions.

The cosecant function

Imagine the ray OPin Fig. 2-1, oriented at a certain angle 8 with respect to the x axis, pointing
outward from the origin, and intersecting the unit circle at P = (x,,,). The reciprocal of the
ordinate, 1/, is defined as the cosecant of the angle 8. The cosecant function is abbreviated
as csc, so we can write

csc 0= 1/y,

Because y; is the value of the sine function, the cosecant is the reciprocal of the sine. For any
angle 6, the following equation is always true as long as sin 6 # 0:

csc @=1/sin O

The cosecant of an angle 8 is undefined when 6 is any integer multiple of 7. That’s because
the sine of any such angle is 0, which would make the cosecant equal to 1/0. Figure 2-6 is a
graph of the cosecant function for values of 8 between —37 and 37. The vertical dashed lines
denote the singularities. There’s also a singularity along the y axis.

The secant function

Consider the reciprocal of the abscissa, that is, 1/x,, in Fig. 2-1. This value is the secant of the
angle 0. The secant function is abbreviated as sec, so we can write

sec = 1/x,

The secant of an angle is the reciprocal of the cosine. When cos 8 # 0, the following equation
is true:

sec 0= 1/cos 6

The secant is undefined for any positive or negative odd-integer multiple of 77/2. Figure 2-7 is
a graph of the secant function for values of 8 between —37 and 37. Note the input values for
which the function is singular (vertical dashed lines).



Secondary Circular Functions 31

csc 0

Figure 2-6  Graph of the cosecant function for

values of 0 between —37 and 3.

Each division on the horizontal axis

represents 77 /2 units. Each division on

the vertical axis represents 1/2 unit.

sec 6

values of @ between —37 and 37.
Each division on the horizontal axis

e 2-7  Graph of the secant function for

represents 77 /2 units. Each division on

the vertical axis represents 1/2 unit.
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The cotangent function

Now let’s think about the value of x,/y, at the point 2 where the ray OP crosses the unit circle.
This ratio is called the cotangent of the angle 6. The cotangent function is abbreviated as cot,
SO we can write

cot 8= xy/y,

Because we already know that cos = x; and sin 8= y,, we can express the cotangent function
in terms of the cosine and the sine:

cot 8= cos O/sin 0
The cotangent function is also the reciprocal of the tangent function:
cot = 1/tan 0
Whenever y, = 0, the denominators of all three quotients above become 0, so the cotangent
function is not defined. Singularities occur at all integer multiples of 7. Figure 2-8 is a graph

of the cotangent function for values of @ between =37 and 37. Singularities are, as in the other
examples here, shown as vertical dashed lines.

cot 6
! ! 3 ! : !
! ! | 2 ! : !
A e
A
-3r ! ! . ' ! 3r
R AU T
T T A | T
! ! ! L 3 I ! !

Figure 2-8 Graph of the cotangent function for values
of O between =37 and 37. Each division
on the horizontal axis represents 77 /2 units.
Each division on the vertical axis represents
1/2 unit.
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Are you confused?

Now that you know how the six circular functions are defined, you might wonder how you can
determine the output values for specific inputs. The easiest way is to use a calculator. This ap-
proach will usually give you an approximation, not an exact value, because the output values of
trigonometric functions are almost always irrational numbers. Remember to set the calculator to
work for inputs in radians, not in degrees!

The values of the sine and cosine functions never get smaller than —1 or larger than 1. The
values of the other four functions can vary wildly. Put a few numbers into your calculator and see
what happens when you apply the circular functions to them. When you input a value for which
a function is singular, you’ll get an error message on the calculator.

Here's a challengel!

Figure out the value of cot (577/4). As in the previous challenge, you should be able to solve this
problem entirely with geometry.

Solution

As you did before, draw a unit circle on a Cartesian coordinate grid. This time, orient the ray OP
so that it subtends an angle of 57 /4 with respect to the x axis. (That’s exactly “southwest” if the
positive x axis goes “east” and the positive y axis goes “north.”) Every point on OPis equally distant
from the x and y axes, including (xy,y,) where the ray intersects the circle. You can see that x, = y,
and both of them are negative, so the ratio x,/y, must be equal to 1. According to the definition
of the cotangent function, you can therefore conclude that

cot (5m/4) =1

Pythagorean Extras

The Pythagorean theorem for right triangles, which we reviewed in Chap. 1, can be extended
to cover three important identities (equations that always hold true) involving the circular
functions.

Pythagorean identity for sine and cosine

The square of the sine of an angle plus the square of the cosine of the same angle is always
equal to 1. We can write this fact as

(sin 6)> + (cos )* =1
When the value of a trigonometric function is squared, the exponent 2 is customarily placed
after the abbreviation of the function and before the input variable, so the parentheses can be

eliminated from the expression. In that format, the above equation is written as

sin? 0+ cos®> =1
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Pythagorean identity for secant and tangent

The square of the secant of an angle minus the square of the tangent of the same angle is
always equal to 1, as long as the angle is not an odd-integer multiple of 7£/2. We write this as

sec? O—tan? 6=1

Pythagorean identity for cosecant and cotangent

The square of the cosecant of an angle minus the square of the cotangent of the same angle is
always equal to 1, as long as the angle is not an integer multiple of 7. We write this as

csc? O—cot? 0=1

Are you confused?

You've probably seen the above formula for the sine and cosine in your algebra or trigonometry
courses. If you haven’t seen the other two formulas, you might wonder where they come from.
They can both be derived from the first formula using simple algebra along with the facts we've
reviewed in this chapter. You'll get a chance to work them out in Problems 9 and 10, later.

Here's a challengel!

Use a drawing of the unit circle to show that sin® 8+ cos* 6= 1 for angles 6 greater than 0 and less
than 7/2. (Here’s a hint: A right triangle is involved.)
Solution

Figure 2-9 shows the unit circle with 8 defined counterclockwise between the x axis and a ray
emanating from the origin. When the angle is greater than 0 but less than 7 /2, a right triangle

y

Length =
1 unit

Unit
circle

Figure 2-9 This drawing can help show that
sin? @+ cos* 0= 1 when 0 < O< 7w /2.
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is formed, with a segment of the ray as the hypotenuse. The length of this segment is equal to
the radius of the unit circle. This radius, by definition, is 1 unit. According to the Pythagorean
theorem for right triangles, the square of the length of the hypotenuse is equal to the sum of the
squares of the lengths of the other two sides. It is easy to see that the lengths of these other two
sides are sin 0 and cos 0. Therefore,

sin® O+ cos* 0= 1

Here's another challenge!

Use another drawing of the unit circle to show that sin® 6 + cos® 0 =1 for angles 0 greater than
37 /2 and less than 27. (Here’s a hint: This range of angles is equivalent to the range of angles
greater than —7r/2 and less than 0.)

Solution

Figure 2-10 shows how this can be done. Draw a mirror image of Fig. 2-9, with the angle 0
defined clockwise instead of counterclockwise. Again, you get a right triangle with a hypot-
enuse 1 unit long, while the other two sides have lengths of sin 0 and cos 6. This triangle,
like all right triangles, obeys the Pythagorean theorem. As in the previous challenge, you end
up with

sin® @+ cos* =1

Unit
circle

Length =
1 unit

Figure 2-10 This drawing can help show that
sin®> O + cos’? @ = 1 when 37 /2 < 0< 2.
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1.

Approximately how many radians are there in 1°? Use a calculator and round the
answer off to four decimal places, assuming that 7= 3.14159.

. What is the angle in radians representing 7/8 of a circular rotation counterclockwise?

Express the answer in terms of 7, not as a calculator-derived approximation.

. What is the angle in radians corresponding to 120° counterclockwise? Express the

answer in terms of 7, not as a calculator-derived approximation.

Suppose that the earth is a perfectly smooth sphere with a circumference of 40,000
kilometers (km). Based on that notion, what is the angular separation (in radians)
between two points 1000 /7t km apart as measured over the earth’s surface along the
shortest possible route?

. Sketch a graph of the function y = sin x as a dashed curve in the Cartesian xy plane.

Then sketch a graph of y = 2 sin x as a solid curve. How do the two functions compare?

. Sketch a graph of the function y = sin x as a dashed curve in the Cartesian xy plane.

Then sketch a graph of y = sin 2x as a solid curve. How do the two functions compare?

The secant of an angle can never be within a certain range of values. What is that range?

8. The cosecant of an angle can never be within a certain range of values. What is that

10.

range?

. The Pythagorean formula for the sine and cosine is

sin® O+ cos* =1
From this, derive the fact that

sec? @—tan’> 8=1
Once again, consider the formula

sin® O+ cos* =1

From this, derive the fact that

csc? @—cot* 0=1
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Polar Two-Space

The Cartesian plane isn’t the only tool for graphing on a flat surface. Instead of moving right-left
and up-down from the origin, we can travel in a specified direction straight outward from the
origin to reach a desired point. The direction angle is expressed in radians with respect to a
reference axis. The outward distance is called the radius. This scheme gives us polar two-space
or the polar coordinate plane.

The Variables

Figure 3-1 shows the basic polar coordinate plane. The independent variable is portrayed as
an angle 0 relative to a ray pointing to the right (or “east”). That ray is the reference axis. The
dependent variable is portrayed as the radius 7 from the origin. In this way, we can define
points in the plane as ordered pairs of the form (6,7).

The radius

In the polar plane, the radial increments are concentric circles. The larger the circle, the greater
the value of . In Fig. 3-1, the circles aren’t labeled in units. We can imagine each concentric
circle, working outward, as increasing by any number of units we want. For example, each
radial division might represent 1, 5, 10, or 100 units. Whatever size increments we choose, we
must make sure that they stay the same size all the way out. That is, the relationship between
the radius coordinate and the actual radius of the circle representing it must be linear.

The direction

As pure mathematicians, we express polar-coordinate direction angles in radians. We go coun-
terclockwise from a reference axis pointing in the same direction as the positive x axis normally
goes in the Cartesian xy plane. The angular scale must be linear. That is, the physical angle on
the graph must be directly proportional to the value of 6.

37
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Figure 3-1 The polar coordinate plane. Angular

divisions are straight lines passing
through the origin. Each angular
division represents 71/6 units. Radial
divisions are circles.

Strange values

In polar coordinates, it’s okay to have nonstandard direction angles. If 6 > 27, it represents
at least one complete counterclockwise rotation from the reference axis. If the direction angle
is 8 <0, it represents clockwise rotation from the reference axis rather than counterclockwise
rotation.

We can also have negative radius coordinates. If we encounter some point for which we're
told that < 0, we can multiply » by —1 so it becomes positive, and then add or subtract 7 to
or from the direction. That’s like saying “Proceed 10 km due east” instead of “Proceed —10 km
due west.”

Which variable is which?

If you read a lot of mathematics texts and papers, you'll sometimes see ordered pairs for polar
coordinates with the radius listed first, and then the angle. Instead of the form (6,7), the
ordered pairs will take the form (7,6). In this scheme, the radius is the independent variable,
and the direction is the dependent variable. It works fine, but it’s easier for most people to
imagine that the radius depends on the direction.

Think of an old-fashioned radar display like the ones shown in war movies made in the
middle of the last century. A bright radial ray rotates around a circular screen, revealing targets
at various distances. The rotation continues at a steady rate; its independent. Target distances
are functions of the direction. Theoretically, a radar display could work in the opposite sense
with an expanding bright circle instead of a rotating ray, and all of the targets would show up



The Variables 39

in the same places. But that geometry wasn't technologically practical when radar sets were
first designed, and it was never used. Let’s use the (6,7) format for ordered pairs, where 0 is the
independent variable and 7 is the dependent variable.

Are you confused?

You ask, “How we can write down relations and functions intended for polar coordinates as
opposed to those meant for Cartesian coordinates?” It’s simple. When we want to denote a relation
or function (call it f°) in polar coordinates where the independent variable is 6 and the dependent
variable is 7, we write

r=1(6)

We can read this out loud as “r equals fof 6.” When we want to denote a relation or function (call
it g) in Cartesian coordinates where the independent variable is x and the dependent variable is y,
we can write

=g

We can read this out loud as “y equals g of x.”

Here's a challengel

Provide an example of a graphical object that represents a function in polar coordinates when
0 is the independent variable, but not in Cartesian xy coordinates when x is the independent
variable.

Solution

Consider a polar function that maps all inputs into the same output, such as
fe=3

Because f(6) is another way of denoting 7, this function tells us that »= 3. The graph is a circle with
a radius of 3 units. In Cartesian coordinates, the equation of the circle with radius of 3 units is

x*+92=9

(Note that 9 = 3% the square of the radius.) If we let y be the dependent variable and x be the
independent variable, we can rearrange this equation to get

y= i(9 _ xZ)l/Z

We can’t claim that y = g (x) where g is a function of x in this case. There are values of x (the
independent variable) that produce two values of y (the dependent variable). For example, if x=0,
then y = 3. If we want to say that g is a relation, that’s okay; but g is not a function.
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Three Basic Graphs

Let’s look at the graphs of three generalized equations in polar coordinates. In Cartesian coordi-
nates, all equations of these forms produce straight-line graphs. Only one of them does it now!

Constant angle

When we set the direction angle to a numerical constant, we get a simple polar equation of
the form

O0=2a
where a is the constant. As we allow the value of 7 to range over all the real numbers, the graph
of any such equation is a straight line passing through the origin, subtending an angle of «

with respect to the reference axis. Figure 3-2 shows two examples. In these cases, the equations
are

0=n/3
and

0=7m/8

n/2 /

rn LT

o \ "

A
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371/2

Figure 3-2 When we set the angle constant, the graph is a
straight line through the origin. Here are two
examples.
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Constant radius

Imagine what happens if we set the radius to a numerical constant. This gives us a polar equation
of the form

r=a

where a is the constant. The graph is a circle centered at the origin whose radius is @, as shown
in Fig. 3-3, when we allow the direction angle 6 to rotate through at least one full turn of 27.
If we allow the angle to span the entire set of real numbers, we trace around the circle infinitely
many times, but that doesn’t change the appearance of the graph.

Angle equals radius times positive constant

Now let’s investigate a more interesting situation. Figure 3-4 shows an example of what hap-
pens in polar coordinates when we set the radius equal to a positive constant multiple of the
angle. We get a pair of “mirror-image spirals.”

To see how this graph arises, imagine a ray pointing from the origin straight out toward
the right along the reference axis (labeled 0). The angle is 0, so the radius is 0. Now suppose
the ray starts to rotate counterclockwise, like the sweep on an old-fashioned military radar
screen. The angle increases positively at a constant rate. Therefore, the radius also increases at
a constant rate, because the radius is a positive constant multiple of the angle. The resulting

G

e "x HEE
WAL

3n/2

Figure 3-3 When we set the radius constant, the
graph is a circle centered at the origin.
In this case, the radius is an arbitrary
value 4.
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Figure 3-4 When we set the radius equal to a positive
constant multiple of the angle, we get a pair of

Negative
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spirals.

graph is the solid spiral. The pitch (or “tightness”) of the spiral depends on the value of the

constant « in the equation
r=a0

Small positive values of « produce tightly curled-up spirals. Larger positive values of 2 produce
more loosely pitched spirals.

Now suppose that the ray starts from the reference axis and rotates clockwise. At first, the
angle is 0, so the radius is 0. As the ray turns, the angle increases negatively at a constant rate.
That means the radius increases negatively at a constant rate, too, because we're multiplying
the angle by a positive constant. We must plot the points in the exact opposite direction from
the way the ray points. When we do that, we get the dashed spiral in Fig. 3-4. The pitch is the
same as that of the heavy spiral, because we haven’t changed the value of a. The entire graph
of the equation consists of both spirals together.

Angle equals radius times negative constant

Figure 3-5 shows an example of what happens in polar coordinates when we set the radius
equal to a negative constant multiple of the angle. As in the previous case, we get a pair of
spirals, but they’re “upside-down” with respect to the case when the constant is positive. To see
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Positive
angle, /2
negative
radius

Negative
angle,
3n/2 positive
radius

Figure 3-5 When we set the radius equal to a negative
constant multiple of the angle, we get a
pair of spirals “upside-down” relative to
those for a positive constant multiple of the
angle. Illustration for Problem 4.

how this works, you can trace around with rotating rays as we did in Fig. 3-4. Be careful with
the signs and directions! Remember that negative angles go clockwise, and negative radii go in
the opposite direction from the way the angle is defined.

Are you confused?

Look back at Fig. 3-2. If you ponder this graph for awhile, you might suspect that the indicated
equations aren’t the only ones that can represent these lines. You might ask, “If we allow 7 to range
over all the real numbers, both positive and negative, can’t the line for 8= 7 /3 also be represented
by other equations such as 8=47/3 or 6=—-27/3? Can’t the line representing the 8="77/8 also be
represented by 0= 157/8 or 8= —m/8?” The answers to these questions are “Yes.” When we see an
equation of the form 0= & representing a straight line through the origin in polar coordinates, we
can add any integer multiple of 7 to the constant 4, and we get another equation whose graph is the
same line. In more formal terms, a particular line 8 = « through the origin can be represented by

O=tkma

where / is any integer and « is a real-number constant.
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Here's a challenge!

What's the value of the constant, 4, in the function shown by the graph of Fig. 3-4? What's the
equation of this pair of spirals? Assume that each radial division represents 1 unit.

Solution

Note that if 8= 7, then »= 2. You can solve for « by substituting this number pair in the general
equation for the pair of spirals. Plugging in the numbers (6,7) = (,2), proceed as follows:

r=a0
2=arm
2/m=a

Therefore, 2= 2 /7, and the equation you seek is
r=2/m)0
If you don’t like parentheses, you can write it as

r=20In

Here's another challenge!

What is the polar equation of a straight line running through the origin and ascending at an angle
of 7r/4 as you move to the right, with the restriction that 0 < 8 < 27?2 If you drew this line on a stan-
dard Cartesian xy coordinate grid instead of the polar plane, what equation would it represent?

Solution

Two equations will work here. They are

O=rl4
and

0=>5n/4

Keep in mind that the value of 7 can be any real number: positive, negative, or zero.

First, look at the situation where 0 = 7 /4. When 7 > 0, you get a ray in the 7 /4 direction.
When < 0, you get a ray in the 577/4 direction. When = 0, you get the origin point. The union
of these two rays and the origin point forms the line running through the origin and ascending at
an angle of 7 /4 as you move toward the right.

Now examine events with the equation 6= 57/4. When > 0, you get a ray in the 57 /4 direc-
tion. When 7 < 0, you get a ray in the 7 /4 direction. When » = 0, you get the origin point. The
union of the two rays and the origin point forms the same line as in the first case. In the Cartesian
xy plane, this line would be the graph of the equation y = x.
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Coordinate Transformations

We can convert the coordinates of any point from polar to Cartesian systems and vice versa.
Going from polar to Cartesian is easy, like floating down a river. Getting from Cartesian to
polar is more difficult, like rowing up the same river. As you read along here, refer to Fig. 3-6,
which shows a point in the polar grid superimposed on the Cartesian grid.

Polar to Cartesian

Suppose we have a point (6,7) in polar coordinates. We can convert this point to Cartesian
coordinates (x,y) using the formulas

x=rcos 0
and
y=rsin 0
/2 P

g
A
K

3r/2

Figure 3-6 A point plotted in both polar and Cartesian
coordinates. Each radial division in the polar grid
represents 1 unit. Each division on the x and y axes of
the Cartesian grid also represents 1 unit. The shaded
region is a right triangle x units wide, y units tall, and
having a hypotenuse 7 units long.
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To understand how this works, imagine what happens when »= 1. The equation »= 1 in polar
coordinates gives us a unit circle. We learned in Chap. 2 that when we have a unit circle in the
Cartesian plane, then for any point (x,y) on that circle

x=cos 0
and
y=sin 6

Suppose that we double the radius of the circle. This makes the polar equation » = 2. The
values of x and y in Cartesian coordinates both double, because when we double the length of
the hypotenuse of a right triangle (such as the shaded region in Fig. 3-6), we also double the
lengths of the other two sides. The new triangle is similar to the old one, meaning that its sides
stay in the same ratio. Therefore

x=2cos O
and
y=2sin 0

This scheme works no matter how large or small we make the circle, as long as it stays centered
at the origin. If » = 4, where « is some positive real number, the new right triangle is always
similar to the old one, so we get

x=acos 0
and
y=asin O
If our radius 7 happens to be negative, these formulas still work. (For “extra credit,” can you

figure out why?)

An example

Consider the point (6,7) = (7,2) in polar coordinates. Let’s find the (x,) representation of this
point in Cartesian coordinates using the polar-to-Cartesian conversion formulas

x=rcos 0
and
y=rsin 0
Plugging in the numbers gives us
x=2cost=2X%X(-1)==-2

and
y=2sint=2%x0=0

Therefore, (x,5) = (=2,0).
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Cartesian to polar: the radius
Figure 3-6 shows us that the radius 7 from the origin to our point 2= (x,y) is the length of the
hypotenuse of a right triangle (the shaded region) that’s x units wide and y units tall. Using the
Pythagorean theorem, we can write the formula for determining 7 in terms of x and y as

r= (xz +}’2)1/2
That’s straightforward enough. Now it’s time to work on the more difficult conversion: find-
ing the polar angle for a point that’s given to us in the Cartesian xy plane.

The Arctangent function

Before we can find the polar direction angle for a point that’s given to us in Cartesian coor-
dinates, we must be familiar with an inverse trigonometric function known as the Arctangent,
which “undoes” the work of the tangent function. (The capital “A” is not a typo. We'll see why
in a minute.) Consider, for example, the fact that

tan (w/4) =1

A true function that “undoes” the tangent must map an input value of 1 in the domain to an
output value of 7£/4 in the range, but to no other values. In fact, no matter what we input to
the function, we must never get more than one output.

To ensure that the inverse of the tangent behaves as a true function, we must restrict its
range (output) to an open interval where we don’t get any redundancy. By convention, math-
ematicians specify the open interval (—7r/2,7/2) for this purpose. When mathematicians make
this sort of restriction in an inverse trigonometric function, they capitalize the “first letter” in
the name of the function. That’s a “code” to tell us that we're working with a true function,
and not a mere relation. Some texts use the abbreviation tan™ instead of Arctan to represent
the inverse of the tangent function. We won't use this symbol here because some readers might
confuse it with the reciprocal of the tangent, which is the cotangent, not the Arctangent!

If you're curious as to what the Arctangent function looks like when graphed, check out
Fig. 3-7. This graph consists of the principal branch of the tangent function, tipped on its side
and then flipped upside-down. Compare Fig. 3-7 with Fig. 2-5 on page 28. The principal
branch of the tangent function is the one that passes through the origin.

Once we've made sure we won't run into any ambiguity, we can state the above fact using
the Arctangent function, getting

Arctan 1 =r1/4

For any real number # except odd-integer multiples of 77/2 (for which the tangent function is
undefined), we can always be sure that

Arctan (tan ) = u
Going the other way, for any real number v, we can be confident that

tan (Arctan v) = v



48

Polar Two-Space

- —

Figure 3-7 A graph of the Arctangent function. The
domain extends over all the real numbers.
The range is restricted to values larger than
—m /2 and smaller than 7/2. Each division
on the y axis represents 77 /6 units.

Cartesian to polar: the angle

We now have the tools that we need to determine the polar angle 6 for a point on the basis of
its Cartesian coordinates x and y. We already know that

x=rcos 0
and
y=rsin O
As long as x # 0, it follows that
ylx=(rsin 0)/(r cos 6) = (r/7)(sin 6)/(cos 6)
= (sin 0)/(cos 6) = tan 6
Simplifying, we get

tan 0=y/x
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If we take the Arctangent of both sides, we obtain
Arctan (tan 6) = Arctan (y/x)
which can be rewritten as
0= Arctan (y/x)

Suppose the point P = (x,y) happens to lie in the first or fourth quadrant of the Cartesian
plane. In this case, we have

-w/2<0<m/2

so we can directly use the conversion formula
0= Arctan (y/x)

If P= (x,) is in the second or third quadrant, then we have
w/2<0<3m/2

That's outside the range of the Arctangent function, but we can remedy this situation if we
subtract 7 from 6. When we do this, we bring 6 into the allowed range but we don’t change
its tangent, because the tangent function repeats itself every 7 radians. (If you look back at
Fig. 2-5 again, you will notice that all of the branches in the graph are identical, and any two
adjacent branches are 7 radians apart.) In this situation, we have

0 — = Arctan (y/x)
which can be rewritten as
0=+ Arctan (y/x)

Now we're ready to derive specific formulas for @in terms of x and y. Let’s break the scenario
down into all possible general locations for = (x,y), and see what we get for 0 in each case:

P at the origin. If x=0 and y = 0, then 0 is theoretically undefined. However, let’s
assign 0 a default value of 0 at the origin. By doing that, we can “fill the hole” that would
otherwise exist in our conversion scheme.

P on the +x axis. If x> 0 and y = 0, then we're on the positive x axis. We can see from

Fig. 3-6 that 6=0.

P in the first quadrant. If x> 0 and y > 0, then we're in the first quadrant of the
Cartesian plane where 6 is larger than 0 but less than /2. We can therefore directly
apply the conversion formula

0= Arctan (y/x)
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P on the +y axis. If x=0 and y > 0, then we're on the positive y axis. We can see from
Fig. 3-6 that =1 /2.

P in the second quadrant. If x < 0 and y > 0, then we're in the second quadrant of the
Cartesian plane where 0 is larger than 7£/2 but less than 7. In this case, we must apply
the modified conversion formula

0=+ Arctan (y/x)

P on the —x axis. If x < 0 and y = 0, then we're on the negative x axis. We can see from

Fig. 3-6 that 8= 7.

P in the third quadrant. If x < 0 and y < 0, then we're in the third quadrant of the
Cartesian plane where 0 is larger than 7 but less than 37/2, so we apply the modified
conversion formula

0=+ Arctan (y/x)

P on the —y axis. If x=0 and y < 0, then were on the negative y axis. We can see from

Fig. 3-6 that 6= 37/2.

P in the fourth quadrant. If x> 0 and y < 0, then we're in the fourth quadrant of the
Cartesian plane where 0 is larger than 37/2 but smaller than 27. That’s the same thing
as saying that —/2 < 6 < 0. We'll get an angle in that range if we apply the original
conversion formula

0= Arctan (y/x)

In the interest of elegance, we'd like the angle in the polar representation of a point
to always be nonnegative but less than 277. We can make this happen by adding in a
complete rotation of 277 to the basic conversion formula, getting

0 =27+ Arctan (y/x)

We have taken care of all the possible locations for 2. A summary of the nine-part
conversion formula that we've developed is given in the following table.

60=0 At the origin

0=0 On the +x axis

0= Arctan (y/x) In the first quadrant
6=m/2 On the +y axis

0= 7+ Arctan (y/x)

In the second quadrant

0=n

On the —x axis

0= m+ Arctan (y/x)

In the third quadrant

0=3m/2

On the —y axis

0=2m+ Arctan (y/x)

In the fourth quadrant
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An example

Let’s convert the Cartesian point (=5,—12) to polar form. Here, x=—=5 and y = —12. When we
plug these numbers into the formula for 7, we get

r= [(_5)2 + (_12)2]1/2 — (25 + 144)1/2 — 1691/2 =13

Our point is in the third quadrant of the Cartesian plane. To find the angle, we should use
the formula

0= m+ Arctan (y/x)
When we plug in x=—=5 and y =—12, we get
0= m+ Arctan [(—12)/(=5)] = m + Arctan (12/5)

That is a theoretically exact answer, but it’s an irrational number. A calculator set to work in
radians (not degrees) tells us that

Arctan (12/5) = 1.1760

rounded off to four decimal places. (Remember that the “wavy” equals sign means “is approxi-
mately equal to.”) If we let 7= 3.1416, also rounded off to four decimal places, we get

0=3.1416+1.1760 = 4.3176

The polar equivalent of (x,y) = (=5,—12) is therefore (0,7) = (4.3176,13), where 0 is approxi-

mated to four decimal places and 7 is exact.

Are you confused?

If the foregoing angle-conversion formula derivation baffles you, don’t feel bad. It’s complicated!
If you don’t grasp it to your satisfaction right now, set it aside for awhile. Read it again tomorrow,
or the day after that. You might want to make up some problems with points in all four quadrants
of the Cartesian plane, and then use these formulas to convert them to polar form. As you work
out the arithmetic, you'll gain a better understanding of how (and why) the formulas work.

Here's a challengel!

Find the distance 4 in radial units between the points P = (m,3) and Q = (7/2,4) in polar coordi-
nates, where a radial unit is equal to the radius of a unit circle centered at the origin.

Solution

Let’s convert the polar coordinates of P and Q to Cartesian coordinates, and then employ the
Cartesian distance formula to determine how far apart the two points are. Lets call the Cartesian
versions of the points

P= (%)
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and
Q= (%9,

For P, we have

5=3 cos T=3x (1) =3
and

J,=3sinwt=3x0=0

The Cartesian coordinates of P are therefore (x,,59,) = (=3,0). For Q, we have

x,=4cosm/2=4x0=0
and

Jy=4sinm/2=4X1=4

The Cartesian coordinates of Q are therefore (x,,y,) = (0,4). Using the Cartesian distance formula,
we obtain

d=[(x,—x)"+ (y,—y)1"* = [(-3 - 0)* + (0 — 4)}]"*
=[(-3)+ (41" =(9+16)"*=25"=5

We've found that the points P = (m,3) and Q = (7 /2,4) are precisely 5 radial units apart in the

polar coordinate plane.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Is the relation 6= 7 /4 a function in polar coordinates, where 6 is the independent
variable and 7 is the dependent variable? Why or why not? Is 8= /2 a function in the
same polar system? Why or why not?

2. Suppose that we draw the lines representing the polar relations 0= 7/4 and 6= 7/2
directly onto the Cartesian xy plane, where x is the independent variable and y is
the dependent variable. Do either of the resulting graphs represent functions in the
Cartesian coordinate system? Why or why not?
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. Imagine a circle centered at the origin in polar coordinates. The equation for the circle
is 7 = a, where 4 is a real-number constant. What other equation, if any, represents the
same circle?

. In Fig. 3-5 on page 43, suppose that each radial increment is 7 units. What's the value
of the constant # in this case? What's the equation of the pair of spirals? (Here are a
couple of reminders: The radial increments are the concentric circles. The value of 2 in
this situation turns out negative.)

. Figure 3-8 shows a line Z and a circle C'in polar coordinates. Line L passes through

the origin, and every point on L is equidistant from the horizontal and vertical axes.
Circle C'is centered at the origin. Each radial division represents 1 unit. What's the
polar equation representing L when we restrict the angles to positive values smaller than
2m2 What's the polar equation representing C? (Here’s a hint: Both equations can be
represented in two ways.)

. When we examine Fig. 3-8, we can see that L and C intersect at two points P and Q.
What are the polar coordinates of P and Q, based on the information given in Problem 52
(Here’s a hint: Both points can be represented in two ways.)

Intersection
point P

/2
Line L e Circle C

O
" T
N

_—/
3n/2

Intersection
point Q

Figure 3-8 Illustration for Problems 5 through 10.
Each radial division is 1 unit.
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7.

10.

Solve the system of equations from the solution to Problem 5, verifying the polar
coordinates of points 2 and Q in Fig. 3-8.

. Based on the information given in Problem 5, what are the Cartesian xy-coordinate

equations of line Z and circle C'in Fig. 3-8?

Solve the system of equations from the solution to Problem 8 to determine the
Cartesian coordinates of the intersection points P and Q in Fig. 3-8.

Based on the polar coordinates of points P and Q in Fig. 3-8 (the solutions to Problems
6 and 7), use the conversion formulas to derive the Cartesian coordinates of those two
points.



CHAPTER

Vector Basics

We can define the length of a line segment that connects two points, but the direction is
ambiguous. If we want to take the direction into account, we must make a line segment into
a vector. Mathematicians write vector names as bold letters of the alphabet. Alternatively, a
vector name can be denoted as a letter with a line or arrow over it.

The “Cartesian Way”

In diagrams and graphs, a vector is drawn as a directed line segment whose direction is por-
trayed by putting an arrow at one end. When working in two-space, we can describe vectors
in Cartesian coordinates or in polar coordinates. Let’s look at the “Cartesian way” first.

Endpoints, locations, and notations

Figure 4-1 shows four vectors drawn on a Cartesian coordinate grid. Each vector has a begin-
ning (the originating point) and an end space (the terminating point). In this situation, any of
the four vectors can be defined according to two independent quantities:

* The length (magnitude)
* The way it points (direction)

It doesn’t matter where the originating or terminating points actually are. The important
thing is how the two points are located with respect to each other. Once a vector has been
defined as having a specific magnitude and direction, we can “slide it around” all over the
coordinate plane without changing its essential nature.

We can always think of the originating point for a vector as being located at the
coordinate origin (0,0). When we place a vector so that its originating point is at (0,0),
we say that the vector is in standard form. The standard form is convenient in Cartesian

55
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Figure 4-1 Four vectors in the Cartesian plane. In each
case, the magnitude corresponds to the

length of the line segment, and the direction
is indicated by the arrow.

coordinates, because it allows us to uniquely define any vector as an ordered pair cor-
responding to

* The x coordinate of its terminating point (x component)
* The y coordinate of its terminating point (y component)

Figure 4-2 shows the same four vectors as Fig. 4-1 does, but all of the originating points have
been moved to the coordinate origin. The magnitudes and directions of the corresponding
vectors in Figs. 4-1 and 4-2 are identical. That’s how we can tell that the vectors a, b, ¢, and d
in Fig. 4-2 represent the same mathematical objects as the vectors a, b, ¢, and d in Fig. 4-1.

Cartesian magnitude

Imagine an arbitrary vector a in the Cartesian xy plane, extending from the origin (0,0) to the
point (x,,5,) as shown in Fig. 4-3. The magnitude of a (which can be denoted as 7,, as |al, or
as a) can be found by applying the formula for the distance of a point from the origin. We
learned that formula in Chap. 1. Here it is, modified for the vector situation:

= (et + 0"
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(_4’ 5)

(4,3)

Vectors are
denoted as
ordered pairs

(1! _6)

Figure 4-2 'These are the same four vectors as shown in
Fig. 4-1, positioned so that their originating
points correspond to the coordinate origin

(0,0).

y
Magnitude = r,
= (Xa2 + ya2)1/2
) g Yo Ya)
a 1
N
: X
Xa

Figure 4-3 The magnitude of a vector can be
defined as its length in the Cartesian
plane.
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Direction = 0,
See text for
formulas!

Ya

Xa

Figure 4-4 The direction of a vector can be

defined as its angle, in radians, going

counterclockwise from the positive x

axis in the Cartesian plane.

Cartesian direction

Now let’s think about the direction of a, as shown in Fig. 4-4. We can denote it as an angle 6,
or by writing dir a. To define 6, in terms of its terminating-point coordinates (x,,y,), we must
go back to the polar-coordinate direction-finding system in Chap. 3. The following table has

those formulas, modified for our vector situation.

0,=0 When x,=0and y,=0
so a terminates at the origin
0,=0 When x,>0and y,=0

so a terminates on the +x axis

6, = Arctan (y,/x,)

When x, >0 and y, >0
so a terminates in the first quadrant

0,=m/2

When x,=0and y,>0

so a terminates on the +y axis

6, = m+ Arctan (y,/x,)

When x, <0 and y, >0
so a terminates in the second quadrant

0,=n

When x, <0 and y,=0

so a terminates on the —x axis

6, = m+ Arctan (y,/x,)

When x, <0 and 5, <0
so a terminates in the third quadrant

0,=3m/2

When x,=0and 5, <0

so a terminates on the —y axis

0, =21+ Arctan (y,/x,)

When x, >0 and 5, <0
so a terminates in the fourth quadrant
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Cartesian vector sum

Let’s consider two arbitrary vectors a and b in the Cartesian plane, in standard form with
terminating-point coordinates

a= (x,7,)

and

b = (xb:_yb)

We calculate the sum vector a + b by adding the x and y terminating-point coordinates sepa-
rately and then combining the sums to get a new ordered pair. When we do that, we get

a+b=[(x,+x),0. + )]

This sum can be illustrated geometrically by constructing a parallelogram with the two vec-
tors a and b as adjacent sides, as shown in Fig. 4-5. The sum vector, a + b, corresponds to the
directional diagonal of the parallelogram going away from the coordinate origin.

[(Xa+Xp)s (Vat+Yp)]

Sum of
aandb
runs along
diagonal
of parallelogram

Figure 4-5 We can determine the sum of two
vectors a and b by finding the
directional diagonal of a parallelogram
with a and b as adjacent sides.
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An example

Consider two vectors in the Cartesian plane. Suppose they’re both in standard form. (From
now on, let’s agree that all vectors are in standard form so they “begin” at the coordinate ori-
gin, unless we specifically state otherwise.) The vectors are defined according to the ordered
pairs

a=(4,0)
and

b=(3,4)

In this case, we have x, = 4, x, = 3, y, = 0, and y, = 4. We find the sum vector by adding the
corresponding coordinates to get

a+b=[(+x),0n+tw]=[(4+3),0+4]=(74)

Cartesian negative of a vector

To find the Cartesian negative of a vector, we take the additive inverses (that is, the negatives)
of both coordinate values. Given the vector

a = (x,,9,)
its Cartesian negative is
—a= (_xai__ya)

The Cartesian negative of a vector always has the same magnitude as the original, but points
in the opposite direction.

Cartesian vector difference
Suppose that we want to find the difference between the two vectors

a= (x,7.)
and
b= (xb»}’b)

by subtracting b from a. We can do this by finding the Cartesian negative of b and then adding
—b to a to get

a—b=a+ (-b) = {[(x.+ (=)}, [(n + )]}
= [(xa - Xb)’(_ya __)/b)]



The “Cartesian Way” 61

We can skip the step where we find the negative of the second vector and directly subtract
the coordinate values, but we must be sure we keep the vectors and coordinate values in the
correct order if we take that shortcut.

An example

Let’s look again at the same two vectors for which we found the Cartesian sum a few moments

ago:

and

a=(4,0)

b=(3,4)

As before, we have x, = 4, x,= 3, 7,=0, and y, = 4. We can find a — b by taking the differences of
the corresponding coordinates, as long as we keep the vectors in the correct order. Then we get

a—b=[(x-x),0n-w]=[(4-3),0-4]=(1,-4)

Are you confused?

If you have trouble with the notion of a vector, here are three real-world examples of vector
quantities in two dimensions. If you like, draw diagrams to help your mind’s eye envision what’s

happening in each case:

* When the wind blows at 5 meters per second from east to west, you can say that the magnitude

of its velocity vector is 5 and the direction is toward the west. In Cartesian coordinates where
the +x axis goes east, the +y axis goes north, the —x axis goes west, and the —y axis goes south,
you would assign this vector the ordered pair (—5,0).

When you push on a rolling cart with a force of 10 newtons toward the north, you're applying
a force vector to the cart with a magnitude of 10 and a direction toward the north. In Cartesian
coordinates where the +x axis goes east, the +y axis goes north, the —x axis goes west, and the
—y axis goes south, you would assign this vector the ordered pair (0,10).

When you accelerate a car at 5 feet per second per second in a direction somewhat to the east of
north, the magnitude of the car’s acceleration vector is 5 and the direction is somewhat to the east
of north. A “neat” situation of this sort occurs when the x (or eastward) component is 3 and the
y (or northward) component is 4, so you get the ordered pair (3,4). These components form the
two shorter sides of a 3:4:5 right triangle whose hypotenuse measures 5 units (the magnitude).

Here's a challengel!

Show that Cartesian vector addition is commutative. That is, show that for any two vectors a and
b expressed as ordered pairs in the Cartesian plane,

atb=b+a
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Solution

This fact is easy, although rather tedious, to demonstrate 7igorously. (In pure mathematics, the
term 7igor refers to the process of proving something in a series of absolutely logical steps. It has
nothing to do with the physical condition called rigor mortis.) We must define the two vectors
by coordinates, and then work through the arithmetic with those coordinates. Let’s call the two
vectors

a= (%)
and
b= (xb)}’b)
As defined earlier in this chapter, the Cartesian sum a+ b is
a+b=[(x,+x),0.+m)]
Using the same definition, the Cartesian sum b +a is
b +a=[(x+x),06 + 3.)]
All four of the coordinate values x,, %, 7., and y, are real numbers. We know from basic algebra

that addition of real numbers is commutative. Therefore, we can reverse both of the sums in the
elements of the ordered pair above, getting

b +a={[(x,+x),0.+ )]
That’s the ordered pair that defines a + b. We have just shown that
atb=b+a

for any two Cartesian vectors a and b.

The “Polar Way”

In the polar coordinate plane, we draw a vector as a ray going straight outward from the origin
to a point defined by a specific angle and a specific radius. Figure 4-6 shows two vectors a and
b with originating points at (0,0) and terminating points at (6,,7,) and (6,,r,), respectively.

Polar magnitude and direction

The magnitude and direction of a vector a= (6,,7,) in the polar coordinate plane are defined
directly by the coordinates. The magnitude is 7,, the straight-line distance of the terminat-
ing point from the origin. The direction angle is 6,, the angle that the ray subtends in a
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"‘( \”

NXa \ e,
‘X»

3r/2

Figure 4-6  Vectors in the polar plane are defined by
ordered pairs for their terminating points,
denoting the direction angle (relative
to the reference axis marked 0) and the
radius (the distance from the origin).

counterclockwise sense from the reference axis (labeled 0 here). By convention, we restrict the
vector magnitude and direction to the ranges

7,20
and
0<06,<2m

If a vector’s magnitude is 0, then the direction angle doesn’t matter; the usual custom is to set
it equal to 0.

Special constraints

When defining polar vectors, we must be more particular about what’s “legal” and what’s
“illegal” than we were when defining polar points in Chap. 3. With polar vectors:

* We don't allow negative magnitudes
* We don't allow negative direction angles
* We don't allow direction angles of 27 or larger

These constraints ensure that the set of all polar-plane vectors can be paired off in a one-to-one
correspondence (also called a bijection) with the set of all Cartesian-plane vectors.
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Polar vector sum

If we have two vectors in polar form, their sum can be found by following these steps, in
order:

1. Convert both vectors to Cartesian coordinates
2. Add the vectors the Cartesian way

3. Convert the Cartesian vector sum back to polar coordinates

Let’s look at the situation in more formal terms. Suppose we have two vectors expressed in
polar form as

a=(6,7)
and

b= (6,n)

To convert these vectors to Cartesian coordinates, we can use formulas adapted from the
polar-to-Cartesian conversion we learned in Chap. 3. The modified formulas are

(%29) = [(7, cos 6,),(r, sin 6,)]

and

(%p:2) = [(n, cos 6,),(n, sin 6,)]

Once we have obtained the Cartesian ordered pairs, we add their elements individually to
get

a+b=[(x,+x),0.+ )
Let’s call this Cartesian sum vector c, and say that
c=a+b=[(x+x%),0.+mw] =)
To convert ¢ from Cartesian coordinates into polar coordinates, we can use the formulas given
earlier in this chapter for the magnitude and direction angle of a vector in the xy plane. If we

call the magnitude 7. and the direction angle 6, we can write down the polar coordinates of
sum vector as

c=(0,r)

An example
Let’s find the polar sum of the vectors

a=(m/4,2)
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and
b=(7n/4,2)

Using the formulas for conversion stated earlier in this chapter, we find that the Cartesian
equivalents are

a={[2 cos (m/4)],[2 sin (7 /4)]}
and
b ={[2 cos (7 /4)],[2 sin (7 /4)]}

From trigonometry, we (hopefully) recall that the cosines and sines of these particular angles
have values that are easy to denote, even though they’re irrational:

cos (m/4) =2'2/2

sin (10/4) = 2"2/2
cos (7m/4) =222
sin (77/4) =-2"2/2

Substituting these values in the ordered pairs for the Cartesian vectors, we get
a=[(2x2"/2),2 x 212/2)] = (2'2,2'?)
and
b = {(2 x 2"%/2),[(2 x (=2"%/2)]} = (2"3,-2'?)
When we add these Cartesian vectors, we obtain
a+b={2"+2"),[2" + (-2")]} = [(2 x 21),0]
Let’s call this sum vector ¢ = (x,.). Then we have
x.=2%x2"

and

ye=0
Using the Cartesian-to-polar conversion formulas, we get

6.=0
and

r.= (xc2 +)’c2)1/2 — [(2 X 21/2)2 + 02] 172 2% 21/2
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Putting these coordinates into an ordered pair, we derive our final answer as
a+b=[0,(2x2"%]

That's the polar sum of our original two polar vectors. The first coordinate is the angle in
radians. The second coordinate is the magnitude in linear units.

Polar vector difference

When we want to subtract a polar vector from another polar vector, we follow these steps in
order:

1. Convert both vectors to Cartesian coordinates
2. Find the Cartesian negative of the second vector
3. Add the first vector to the negative of the second vector the Cartesian way
4. Convert the resultant back to polar coordinates
Once again, imagine that we have
a=(0,7)
and
b= (6,n)
The Cartesian equivalents are
(x.,92) = [(7, cos 6,),(7, sin 6))]
and
(be/b) = [(n, cos 8,),(r, sin 6,)]
We find the Cartesian negative of b as
b= (_xb:_}’b)

The difference vector a — b is therefore

a—b=a+ (-b) = {[(x.+ (=) ,[(. + )]}
= [(xa - Xb)’(_)’a —)/b)]

Let’s call this difference vector d. We can say that
d =a— b = [(xa - Xb))(_ya _)/b)] = (Xd,_yd)

We can skip the step where we find the Cartesian negative of the second vector and directly
subtract the coordinate values, but we must take special care to keep the vectors and coordinate
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values in the correct order if we do it that way. To convert d from Cartesian coordinates into
polar coordinates, we can take advantage of the same formulas that we use to complete the
process of polar vector addition.

Polar negative of a vector

Once in awhile, we'll want to find the negative of a vector the polar way. To do that, we reverse
its direction and leave the magnitude the same. We can do this by adding 7 to the angle if it’s
at least 0 but less than 7 to begin with, or by subtracting 7 if it’s at least 77 but less than 27 to
begin with. In formal terms, suppose we have a polar vector

a=(0,7)
If 0 < 6, < 7, then the polar negative is
—a=[(6,+ 7),7]
If 7 < 6, < 2m, then the polar negative is

—a= [(ea - 77:),73]

An example
Let’s find the polar difference a — b between the vectors

a=(m/4,2)
and
b= (7r/4,2)

In the addition example we finished a few minutes ago, we found that the Cartesian ordered
pairs for these vectors are

a= (21/2 21/2)
and
b — (21/2 _21/2)
The negative of b is
—b — (_21/2 21/2)
When we add a to —b, we get

a+ (—b) — {[21/2 + (_21/2)])(21/2 + 21/2)} — [0)(2 X 21/2)]
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That's the same as a — b. Let’s call this Cartesian difference vector d = (xy,y4). Then
x3=0
and
Ja=2%x2"
Using the Cartesian-to-polar conversion table, we can see that
0,=m/2
and
ra= (g + )" =07+ (2% 2" =2x 2"
The polar ordered pair is therefore
a—b={[(n/2),2x2")]

The first coordinate is the angle in radians. The second coordinate is the magnitude in linear
units.

Are you confused?

By now you might wonder, “What’s the difference between a polar vector sum and a Cartesian
vector sum? Or a polar vector negative and a Cartesian vector negative? Or a polar vector differ-
ence and a Cartesian vector difference? If we start with the same vector or vectors, shouldn’t we get
the same vector when we're finished calculating, whether we do it the polar way or the Cartesian
way?” That’s an excellent question. The answer is yes. The mathematical methods differ, but the
resultant vectors are equivalent whether we work them out the polar way or the Cartesian way.

Here's a challenge!

Draw polar coordinate diagrams of the vector addition and subtraction facts we worked out in
this section.

Solution

The original two polar vectors were
a=(0,n) = (7/4,2)
and

b= (6,,1) = (7m/4,2)
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We found their polar sum to be
a+b=1[0,2x2"]
and their polar difference to be
a—b=[(7/2),2 x 2]
When we converted the two vectors to Cartesian form, we got
a= (212,21
and
b = (212,23
We found their Cartesian sum to be
a+b=[(2x2"),0]
and their Cartesian difference to be

a—b=10,2x2")]

69

We can illustrate the original vectors, the vector sum, the negative of the second vector, and the

vector difference in four diagrams:

* Figure 4-7 shows the polar sum, including a, b, and a + b.

/2

b= (7r/4, 2)

3n/2

Figure 4-7 Polar sum of two vectors. Each radial
division represents 1/2 unit.
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* Figure 4-8 shows the polar difference, including a, b, —b, and a — b.

/2

a-b=a+(-b) = [7/2, (2 x212)]

= (m/4, 2)

,r////

QP
713

LT
\“ % = (7n/4, 2)

This vector

is converted to
Cartesian form in
the subtraction process 3n/2

Figure 4-8 Polar difference between two vectors. Each radial
division represents 1/2 unit.

* Figure 4-9 shows the Cartesian sum, including a, b, and a + b.

y

A

T a (21/2, 21/2)

r A

+ 7 a+b=[2x2"),0]

<t P> X

Each axis T
division is | b = (212, -212)
1/2 unit T

Figure 4-9 Cartesian sum of two vectors. Each axis
division represents 1/2 unit.
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* Figure 4-10 shows the Cartesian difference, including a, b, —b, and a — b.

y

A

—b = (—212, 2172)

‘I'a—b=a+(—b)=[0, (2 x 2112)]

a= (21/2’ 21/2)

Each axis
division is
1/2 unit =

A

Figure 4-10.

4

b= (21/2’ _21/2)

Cartesian difference between two vectors. Each

axis division represents 1/2 unit.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don't hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Consider two vectors a and b in the Cartesian plane, with coordinates defined as follows:

a=(-3,0)

and

b=(2,5)

Work out, in strict detail, the Cartesian vector sumsa+b,b+a,a—b,and b — a.

2. A vector is defined as the zero vector (denoted by a bold numeral 0) if and only if its
magnitude is equal to 0. In the Cartesian plane, the zero vector is expressed as the
ordered pair (0,0). Show that when a vector is added to its Cartesian negative in either

order, the result is the zero vector.
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3. Imagine two arbitrary vectors a and b in the Cartesian plane, with coordinates defined
as follows:

a= (x,7.)
and
b= (xb>}’b)

Show that the vector b — a is the Cartesian negative of the vector a — b.

4. Find the Cartesian sum of the vectors

a=(4,5)

and

b=(-2,-3)

Compare this with the sum of their negatives

—a=(-4,-5)

and
-b=1(2,3)
5. Prove that Cartesian vector negation distributes through Cartesian vector addition.
That is, show that for two Cartesian vectors a and b, it’s always true that

—(@a+b)=—a+(-b)

6. Find the polar sum of the vectors

a=(m/2,4)

and

b= (m3)

7. Find the polar negative of the vector a + b from the solution to Problem 6.
8. Find the polar negatives —a and —b of the vectors stated in Problem 6.

9. Find the polar sum of the vectors —a and —b from the solution to Problem 8. Compare
this with the solution to Problem 7.

10. Find the polar differences a — b and b — a between the vectors stated in Problem 6.



CHAPTER

Vector Multiplication

We've seen how vectors add and subtract in two dimensions. In this chapter, we'll learn how
to multiply a vector by a real number. Then we'll explore two different ways in which vectors
can be multiplied by each other.

Product of Scalar and Vector

The simplest form of vector multiplication involves changing the magnitude by a real-number
factor called a scalar. A scalar is a one-dimensional quantity that can be positive, negative, or
zero. If the scalar is positive, the vector direction stays the same. If the scalar is negative, the
vector direction reverses. If the scalar is zero, the vector disappears.

Cartesian vector times positive scalar

Imagine a standard-form vector a in the Cartesian xy plane, defined by an ordered pair whose
coordinates are x, and y,, so that

a= (x,7,)

Suppose that we multiply a positive scalar £, by each of the vector coordinates individually,
getting two new coordinates. Mathematically, we write this as

ka = (k.x, +_)’a)

This vector is called the lefi-hand Cartesian product of k. and a. If we multiply both original
coordinates on the right by 4, instead, we get

ak, = (x, +,}’a/€+)

73
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That's the right-hand Cartesian product of a and k.. The individual coordinates of 4.a and ak,
are products of real numbers. We learned in pre-algebra that real-number multiplication is
commutative, so it follows that

ko= (k.x,k.y,) = (xa/?+,yak+) =ak,

We've just shown that multiplication of a Cartesian-plane vector by a positive scalar is com-
mutative. We don’t have to worry about whether we multiply on the left or the right; we can
simply talk about the Cartesian product of the vector and the positive scalar.

An example

Figure 5-1 illustrates the Cartesian vector (—1,-2) as a solid, arrowed line segment. If we mul-
tiply this vector by 3 on the left, we get

3X (_17_2) = {[3 X (_1)]’[3 X (_2)]} = (_3>_6)
If we multiply the original vector by 3 on the right, we get
(-1,-2) x3=[(-1 X 3)],(-2 X 3)] = (-3,-0)

The new vector is shown as a dashed, gray, arrowed line segment pointing in the same direc-
tion as the original vector, but 3 times as long.

y

0 -3 x (-1, -2)

6+ =(-1,-2) x (-3)

€ =(3, 6)

4__

2__
~t—t—+—+—+t+p—+—t+—t+++"+>x
-6 -4 =2 JIL 2 4 6

-1,-2)8 -+

_4__
3x (-1, -2) T
=(-1,-2)x3 -+
=(_31_6) v

Figure 5-1 Cartesian products of the scalars 3 and -3
with the vector (=1,-2).



Product of Scalar and Vector 75

Cartesian vector times negative scalar

Now suppose we want to multiply a by a negative scalar instead of a positive scalar. Let’s call

the scalar 4_. The left-hand Cartesian product of #_and a is
koa= (kx,k_y,)

The right-hand Cartesian product is
ak = (xk_y.k.)

As with the positive constant, the commutative property of real-number multiplication tells
us that

ka= (k_x,k_y) = (x.k_y.k) = ak

We don’t have to worry about whether we multiply on the left or the right. We get the same
result either way.

An example

Once again, look at Fig. 5-1 with the vector (—1,-2) shown as a solid, arrowed line segment.
When we multiply it by the scalar —=3 on the left, we obtain

3% (-1,-2) ={[-3 X =DL[-3x (=2)]} = (3,6)
Multiplying by the scalar on the right, we get
-1,-2) X (=3) = {[-1 X (=3)],[-2 x (=3)]} = (3,0)

This result is shown as a dashed, gray, arrowed line segment pointing in the opposite direction
from the original vector, and 3 times as long.

Polar vector times positive scalar

Imagine some vector a in the polar-coordinate plane whose direction angle is 6, and whose
magnitude is 7,. If it’s in standard form, we can express it as the ordered pair

a=(0,7)

When we multiply a on the left by a positive scalar #,, the angle remains the same, but the

magnitude becomes #,7,. This gives us the lefi-hand polar product of k. and a, which is
k.a=(0,k.r,)
If we multiply a on the right by k., we get the right-hand polar product of a and k., which is

ak—# = (93’7ak+)
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Because real-number multiplication is commutative, we know that
k+a = (93,/34_73) = (93,73k+) = ak-#

As in the Cartesian case, we don’t have to worry about whether we multiply on the left or the
right. The polar product of the vector and the positive scalar is the same either way.

An example

In Fig. 5-2, the polar vector (77/4,3/2) is shown as a solid, arrowed line segment. When we
multiply this vector by 3 on the left, we get

3x (7Tml4,3/2) = [7m/4,(3 X 3/12)] = (77 /4,9/2)
Multiplying by 3 on the right yields
(7rl4,3/12) x 3 ={77/4,[(3/2) x 3]} = (77 4,9/2)

This polar product vector is represented by a dashed, gray, arrowed line segment pointing in
the same direction as the original vector, but 3 times as long.

Polar vector times negative scalar

Again, consider our polar vector a = (0,,7,). Suppose that we want to multiply a on the left by
a negative scalar 4_. It’s tempting to suppose that we can leave the angle the same and make

/2

3% (7n/4,3/2) _—
(77/4, 3/2) x (-3)

(3774, 9/2) \
20
“'( ) (77r/14, 3/2)

3 x (7n/4, 3/2)

(7r/4, 3/2) x 3
(77/4, 9/2)

3r/2

Figure 5-2  Polar products of the scalars 3 and —3 with
the vector (77 /4,3/2). Each radial division
represents 1 unit.
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the magnitude equal to 4_7,. But that gives us a negative magnitude, which is forbidden by
the rules we've accepted for polar vectors. The proper approach is to multiply the original
vector magnitude 7, by the absolute value of 4_. In this situation, that's —4_. Then we reverse
the direction of the vector by either adding or subtracting 7 to get a direction angle thats
nonnegative but smaller than 27. We define the result as the lefi-hand polar product of k_ and
a, and write it as

ka=[(6,+m),(—kr,)]
if0<6,<m, and

ka=1[(0,—1),(~kr)]
if 1 < 6, <27 Because k_ is negative, —k_ is positive; therefore —£_, is positive, which ensures
that our scalar-vector product has positive magnitude. If we multiply a on the right by 4, we
get the right-hand polar product of a and k_, which is

ak_=[(6,+ 1),r(—k)]
if0<6,<m and

ak = [(6,— 7),r(—k)]
if © < 6, <27 As before, k_ is negative so —k-_ is positive; that means 7,(—£.) is positive, ensur-
ing that our vector-scalar product has positive magnitude. The commutative law assures us
that for any negative scalar #— and any polar vector a, it’s always true that

ka=ak_

As before, we can leave out the left-hand and right-hand jargon, and simply talk about the
polar product of the vector and the scalar.

An example

Look again at Fig. 5-2. When we multiply the original polar vector (77/4,3/2) by —3 on the
left, we get

-3 x (7ml4,3/12) = [(7r/4 — m),(3 X 3/12)] = (3m/4,9/2)
Multiplying the original polar vector by —3 on the right yields
(7m14,3/12) x (=3) ={(7m/4 — m),[(3/2) x 3]} = (37/4,9/2)

This result is shown as a dashed, gray, arrowed line segment pointing in the opposite direction
from the original vector, and 3 times as long.
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Are you confused?

You ask, “What happens when our positive scalar 4, is between 0 and 1? What happens when our
negative scalar 4_ is between —1 and 02 What do we get if the scalar constant is 02” If 0 < k. < 1,
the product vector points in the same direction as the original, but it’s shorter. If =1 < 4_ < 0, the
product vector points in the opposite direction from the original, and it’s shorter. If we multiply a
vector by 0, we get the zero vector. In all of these cases, it doesn’t matter whether we work in the
Cartesian plane or in the polar plane.

Here's a challengel!

Prove that the multiplication of a Cartesian-plane vector by a positive scalar is left-hand distribu-
tive over vector addition. That is, if 4, is a positive constant, and if a and b are Cartesian-plane
vectors, then

k.(a+b)=ka+kb

Solution

At first glance, this might seem like one of those facts that’s intuitively obvious and difficult to
prove. But all we have to do is work out some arithmetic with fancy characters. Lets start with

k.(a+Db)

where £, is a positive real number, a = (x,,7,), and b = (x,,55). We can expand the vector sum into
an ordered pair, writing the above expression as

ki(a+b) =k [(x, + x),(. + )]

The definition of left-hand scalar multiplication of a Cartesian vector tells us that we can rewrite
this as

ki(a+b) = {[k(x, + x)],[£:(a + )]}

In pre-algebra, we learned that real-number multiplication is left-hand distributive over real-num-
ber addition, so we can morph the above equation to get

ki(a+b) = [(kx, + kuxy),(kyy, + k)]

Let’s set this equation aside for a little while. We shouldn’t forget about it, however, because we're
going to come back to it shortly.

Now, instead of the product of the scalar and the sum of the vectors, let’s start with the sum of
the scalar products

ka+ kb
We can expand the individual vectors into ordered pairs to get

k+a aF k+b = kJr(Xa,_)/a) + k+(xb)_)’b)
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The definition of left-hand scalar multiplication lets us rewrite this equation as
ka+ kb= (kb)) + (ko ko)

According to the definition of the Cartesian sum of vectors, we can add the elements of these
ordered pairs individually to get a new ordered pair. That gives us

kia+ kb = [(kx, + k), (k. + /e+)/b)]

Take a close look at the right-hand side of this equation. It’s the same as the right-hand side of the
equation we put into “brain memory” a minute ago. That equation was

ki(a+b) = [(kx, + ko), (k. + ko))
Taken together, the above two equations show us that

k(a+b)=Fka+kb

Dot Product of Two Vectors

Mathematicians define two ways in which a vector can be multiplied by another vector. The sim-
pler operation is called the dot product and is symbolized by a large dot (s). Sometimes it’s called
the scalar product because the end result is a scalar. Some texts refer to it as the inner product.

Cartesian dot product

Suppose we're given two standard-form vectors a and b in Cartesian coordinates, defined by
the ordered pairs

a= (x,7.)
and
b= (Xb)/b)

The Cartesian dot product a « b is the real number we get when we multiply the x values by
each other, multiply the y values by each other, and then add the two results. The formula is

aeb=2xx+yn%

An example

Consider two standard-form vectors in the Cartesian xy plane, given by the ordered pairs

a=(4,0)
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and
b=(3,4)

In this case, x, = 4, x, = 3, y, = 0, and y, = 4. We calculate the dot product by plugging the
numbers into the formula, getting

aeb=(4Xx3)+(0x4)=12+0=12

Polar dot product

Now let’s work in the polar-coordinate plane. Imagine two vectors defined by the ordered pairs
a=(6,7)

and
b= (6,n)

Let 6, — 6, be the angle between vectors a and b, expressed in a rotational sense starting at a
and finishing at b as shown in Fig. 5-3. We calculate the polar dot product a « b by multiplying
the magnitude of a by the magnitude of b, and then multiplying that result by the cosine of
0, — 0, to get

aeb=7r7n cos (0,—0)

/2

3n/2

Figure 5-3 To find the polar dot product of two
vectors, we must know the angle
between them as we rotate from the
first vector (in this case a) to the
second vector (in this case b).



Dot Product of Two Vectors 81

An example

Suppose that we're given two vectors a and b in the polar plane, and told that their coordinates are
a=(1/6,3)
b= (57/6,2)

In this situation, ,= 3, n,= 2, 6,= /6, and 6, = 57/6. We have
6,—60,=51/6—-m/6=2m/3
Therefore, the dot product is
aeb=rncos(6,—6)=3x%X2Xcos (27/3)
=3x2x(-1/2)=-3

Are you confused?

Do you wonder if the dot product of two polar-plane vectors is always equal to the dot product
of the same vectors in the Cartesian plane when expressed in standard form? The answer is yes.
Let’s find out why.

Here's a challengel!

Prove that for any two vectors a and b in two-space, the polar dot product a b is the same as the
Cartesian dot product a ® b when both vectors are in standard form.

Solution

We will start with the polar versions of the vectors, calling them
a=(6,7)

and
b=(6,n)

Let’s convert these vectors to Cartesian form. We can use the formulas for conversion of points
from polar to Cartesian coordinates (from Chap. 3). When we apply them to vector a, we get

X, =1, cos 6,
and

Y. =1, 8in 6,
so the standard Cartesian form of the vector is

a = [(, cos 6,),(r, sin 6,)]
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When we apply the same conversion formulas to b, we obtain

Xy = 1, cos B

and

=1} sin 6,

so the standard Cartesian form is
b = [(r, cos 6),(r, sin 6,)]
The Cartesian dot product of the two vectors is
aeb=uxx+ym
Substituting the values we found for the individual vector coordinates, we get

a* b= (r, cos 0,)(r, cos 6, + (7, sin 8,)(r, sin 6,)
= 7,1, (cos 6, cos 6, + sin 6, sin 6,)

As we think back to our trigonometry courses, we recall that there’s a trigonometric identity telling
us how to expand the cosine of the difference between two angles. When we name the angles so
they apply to our situation here, that formula becomes

cos (6, — 0,) = cos 6, cos 6, + sin 0, sin 6,

We can substitute the left-hand side of this identity in the last part of the long equation we got a
minute ago for the dot product, obtaining

aeb=rn cos (6,— 6)

This is the formula for the polar dot product! We've taken the polar versions of a and b, found their
Cartesian dot product, and then found that it’s identical to the polar dot product. We can now say,
Quod erat demonstradum. That's Latin for “Which was to be proved.” Some mathematicians write the
abbreviation for this expression, “QED,” when they've finished a proof.

Cross Product of Two Vectors

The more complicated (and interesting) way to multiply two vectors by each other gives us
a third vector that “jumps” out of the coordinate plane. This operation is known as the cross
product. Some mathematicians call it the vector product. The cross product of two vectors a
and b is written as a X b.
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Polar cross product

Imagine two arbitrary vectors in the polar-coordinate plane, expressed in standard form as
ordered pairs

a=(0,7)
and
b = (Bb’rb)

The magnitude of a X b is always nonnegative by default, and is easy to define. When a and
b are in standard form, the originating point of a X b is at the coordinate origin, so all three
vectors “start” at the same spot. The direction of a X b is always along the line passing through
the origin at a right angle to the plane containing a and b. But it’s quite a trick to figure out
in which direction the cross vector product points along this line!

Suppose that the difference 6, — 6, between the direction angles is positive but less than
7, as shown in the example of Fig. 5-4. If we start at vector a and rotate until we get to vector b,
we turn through an angle of 6, — 6,. To calculate the magnitude of a X b (which we will denote

T
Cross product ... straight
a x b points ... 3n/2 toward us

Figure 5-4 If 6, < 6, and the two angles differ by
less than 7, then a X b points straight
toward us as we look down on the plane
containing a and b.



84  Vector Multiplication

as 7,4), we multiply the original vector magnitudes by each other, and then multiply by the
sine of the difference angle. Mathematically,

Ty = Tal sin (6, — 6,)

In a situation of the sort shown in Fig. 5-4, the vector a X b points from the coordinate origin
straight out of the page toward us.

If 6, — 6, is larger than 7, then things get a little bit complicated. To be sure that we assign
the correct direction to the vector a X b, we must always rotate counterclockwise, and we're
never allowed to turn through more than a half circle. Figure 5-5 shows an example. We rotate
through one full circular turn minus 6, — 6,, so the difference angle is

2r— (Bb - ea)
which can be more simply written as
2+ 6,- 6,

In a situation like this, a X b points straight away from us.

n< 0,—0,<2rm

T J 0

2T+ 9a —9b
Cross product ... straight
a x b points ... 3r/2 away from us

Figure 5-5 If 6, < 6, and the two angles differ by more
than 7, then a X b points straight away
from us as we look down on the plane
containing a and b.
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If the vectors a and b point in exactly the same direction or in exactly opposite directions,
then 6, — 0,=0 or 6, — 0, = 7. In these cases, the cross product is the zero vector. We'll see
why in the next “challenge.”

An example
Consider the following two polar vectors a and b in standard form:
a=(m/4,7)
and
b = (m,6)
Let’s find the cross product, a X b. We have
6,—-0,=n—rml4=37/4
Because 0 < 6, — 6, < 7, we know that a X b points toward us. Its magnitude is
r Xy, =7 sin (6, — 6,) =7 X 6 X sin (37w/4)

=7x6x((2"%2)=21x2"

Another example
Now let’s look at these two polar vectors a and b in standard form and find their cross product
axb:
a=(m/47)
and

b= (7m/4,6)

This time, < 6, — 6, < 27, so a X b points away from us. To calculate the magnitude, we
consider the difference angle to be

2n+ 60, -6, =2 +mwld-Trld=1/2
Therefore

T = 7a#p sin 2T+ 0,— 6,) =7 X 6 X sin (7/2)
=7X6x1=42
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Are you confused?

We haven't discussed how to directly calculate the cross product of two Cartesian-plane vectors.
There’s a way to do it, but we must know how to work with vectors in Cartesian three-space. We'll
learn those techniques in Chap. 8. Meanwhile, we can indirectly find the cross product of two
Cartesian-plane vectors by converting them both to polar form and then finding their cross prod-
uct the polar way.

Are you still confused?

Here’s a game that can help you find the direction of the cross product a X b (in that order)
between two vectors a and b. It involves some maneuvers with your right hand. Some mathemati-
cians, engineers, and physicists call this the right-hand rule for cross products.

If 0 < 8, — 6, < 7 (as in Fig. 5-4), point your right thumb out as if you're making a thumbs-up
sign. Curl your fingers in the counterclockwise rotational sense from a to b. Your thumb will point
in the general direction of a X b. If the page on which the vectors are printed is horizontal, your
thumb should point straight up.

If #< 6, — 6, < 2m (as in Fig. 5-5), curl your right-hand fingers in the clockwise rotational
sense from a to b. If the page on which the vectors are printed is horizontal, you’ll have to twist
your wrist in a clumsy fashion so that your thumb points straight down in the general direction
of axb.

Remember that a X b always comes out of the origin precisely perpendicular to the plane contain-
ing a and b.

Here's a challengel!

A few moments ago, it was mentioned that if two vectors point in the same direction or in op-
posite directions, then their cross product is the zero vector. Prove it!

Solution

First, consider two vectors a and b that have the same direction angle 8 but different magnitudes
7, and 7, so that

a=(6r)
and
b= (6,n)
The magnitude of a X b is
T = 7a7p Sin (0 — 6) = 7,1, sin 0 = 7,7, X 0 =0
Whenever a vector has a magnitude of zero, then it’s the zero vector by definition, so

axb=0



Cross Product of Two Vectors 87

Now look at the case where a and b have angles that differ by 7, so they point in opposite direc-
tions. As before, you can assign the coordinates

a=(6,)
Two possibilities exist for the direction angle of a. You can have
0<6<rm
or
T<0<2rm
If 0 < O< 7, then
b= [(6+ m),n]
and the magnitude of a X b is
Ty =7t Sin [(B+ M) — Ol =y sin T = 7,7, X0 =0
Therefore
axb=0
If # £ 6<2m, then
b=1[(60-7m),n]
In this case, the magnitude of a X b is
T = 77, sin (0= 70) — 6] =, sin (—71) = 7., X 0 =0
so again,
axb=0

Here's an "extra credit” challenge!

Prove that the cross product of two vectors is anticommutative. That is, show that for any two
polar-plane vectors a and b, the magnitudes of a X b and b X a are the same, but they point in
opposite directions.

Solution

You're on your own. That's what makes this is an “extra credit” problem!
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Consider two standard-form vectors a and b in the Cartesian plane, represented by the
ordered pairs

a=(5-5)

and

b=(-5,5)

Calculate and compare the Cartesian products 4a and —4b.

2. Convert the original two vectors from Problem 1 into polar form. Then calculate and
compare the polar products 4a and —4b.

3. Prove that the multiplication of a standard-form vector by a positive scalar is right-hand
distributive over Cartesian-plane vector subtraction. That is, if 4, is a positive constant,
and if a and b are vectors in the xy plane, then

(a—b)k.=ak. — bk,
4. Consider two standard-form vectors a and b in the Cartesian plane, represented by
a=(4,4)

and
b=(-7,7)

Calculate and compare the Cartesian dot productsa e band b « a.

5. Convert the original two vectors from Problem 4 into polar form. Then calculate and
compare the polar dot productsa e band b « a.

6. Prove that the dot product is commutative for standard-form vectors in the Cartesian plane.
7. Prove that the dot product is commutative for vectors in the polar plane.

8. Prove that if £, is a positive constant, and if a and b are standard-form vectors in
Cartesian or polar two-space, then

kaekb=Fk(aeb)

Demonstrate the Cartesian case first, and then the polar case.



9.

10.

Consider the two polar vectors

a=(m/3,4)

and

b=(3r/2,1)

Determine the polar cross product a X b.

Consider the two polar vectors

a=(m38)

and

b=(nr/6,5)

Determine the polar cross product a X b.

Practice Exercises

89



CHAPTER

Complex Numbers and Vectors

If you've had a comprehensive algebra course such as the predecessor to this book, Algebra
Know-It-All, then you've been exposed to imaginary numbers and complex numbers. In this
chapter, we'll take a closer look at how these quantities behave.

Numbers with Two Parts

90

A complex number consists of two components, the real part and the imaginary part. Com-
plex numbers can be defined as ordered pairs and mapped one-to-one onto the points of a
coordinate plane. They can also be represented as vectors.

The unit imaginary number

The set of imaginary numbers arises when we ask, “What is the square root of a negative real
number?” This question poses a mystery to anyone who is familiar only with the real numbers.
Unless we come up with some new sort of quantity, we have to say, “It’s undefined.”

In order to define the square root of a negative real number, mathematicians invented the
unit imaginary number, called it i, and defined it on the basis of the equation

i*=-1

Once they had set down this rule, mathematicians explored how this strange new number
behaved, and a new branch of number theory evolved.

Engineers and physicists use j instead of 7 to denote the unit imaginary number. That’s
what we'll use, because the lowercase italic 7 is found in other mathematical contexts, particu-
larly in sequences and series. The unit imaginary number j is equal to the positive square root

of —1. That is,
j: (_1)1/2

When we use the symbol ; to represent the unit imaginary number, we can also call it the ;
operator, a term commonly used by engineers.
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The set of imaginary numbers

We can multiply ; by any real number, known as a real-number coefficient, and the result is an
imaginary number. The real coefficient is customarily written after ; if it is positive or 0, and
after —7 if it is negative. Examples are

B=jx3=3x]
5 =7 X (=5)=-5Xj
—j2/3 =% (=2/13) =—-2/3 X
J0=jX0=0%x;=0

The set of all possible real-number multiples of j composes the sez of imaginary numbers. For
practical purposes, the elements of this set can be depicted along a number line corresponding
one-to-one with the real-number line. By convention, the imaginary-number line is oriented
vertically, as shown in Fig. 6-1.

When either j or —j is multiplied by 0, the result is equal to the real number 0. There-
fore, the intersection of the sets of imaginary and real numbers contains one element,
namely, 0.
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Complex numbers

When we add a real number to an imaginary number, we get a complex number. The general
form for a complex number is

a+jb
where @ and & are real numbers. If the real-number coefficient of j happens to be negative,
then its absolute value is written following j, and a minus sign is used instead of a plus sign in
the composite expression. So instead of
a+j(=b)
we should write
a—jb

Individual complex numbers can be depicted as points on a Cartesian coordinate plane as shown
in Fig. 6-2. The intersection point between the real- and imaginary-number lines corresponds

A
Real part Real part
negative, j8—+ positive,
imaginary part T imaginary part
positive j6+ positive

ja+
j2+

< I N I N I N B | il N N N I N N B | Yy

~ 1T T T 171 1T T T T 1T"1 [

-8 6 -4 -2 + 2 4 6 8

-2+

_j 4 -+
Real part -6+ Real part
negative, - positive,
imaginary part -8 imaginary part
negative negative

\

Figure 6-2 Complex numbers can be depicted as
points on a plane, which is defined by the
intersection of perpendicular real- and
imaginary-number lines.



Numbers with Two Parts 93

to 0 on the real-number line and 70 on the imaginary-number line. This plane is called the
Cartesian complex-number plane.

An example

If the imaginary part of a complex quantity is 0, we have a pure real quantity. When the real
part of a complex quantity is 0 and the imaginary part is something other than j0, we have
a pure imaginary quantity. Figure 6-3 shows nine complex numbers plotted as points on the
Cartesian complex-number plane, as follows.

* 0 +;0, whose ordered pair is (0,/0) and which is equal to the pure real 0 and the pure
imaginary ;0.

5 + 70, whose ordered pair is (5,/0) and which is equal to the pure real 5.

0+ j7, whose ordered pair is (0,/7) and which is equal to the pure imaginary ;7.

—2 + 70, whose ordered pair is (=2,70) and which is equal to the pure real —2.

0 — 78, whose ordered pair is (0,—78) and which is equal to the pure imaginary —8.

7 + j6, whose ordered pair is (7,76).

—8 + /5, whose ordered pair is (=8,/5).

—5 — j5, whose ordered pair is (=5,—75).

3 —j7, whose ordered pair is (3,—77).

j8 /0+j7=j7
7+ j6
-8+ /5 J6 s o
O T !
: J4 :
—2+jo=-2_ T o+jo=0 |
<iIIIII\¢I*IIII¢—|—i—|—>
-8 614 -2 + 21!4]|6 8
: —j2 : L
i T i 5+j0=5
! —j4—+ :
—5—j5 ®--------—- + ;
_j6—— E
@ 3-j7

_18
AN
0-j8 =—j8

Figure 6-3 Some points in the Cartesian complex-number
plane.
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Are you confused?

We have learned that (=1)? = ;. You might now ask, “What about the square root of a negative real
number other than —1, such as —4 or —1002” The positive square root of any negative real number
is equal to j times the positive square root of the absolute value of that real number. For example,

(_4)1/2 :jX 41/2 :jz
and
(-100)"* = j x 100" = 710

We can also have negative square roots of negative reals. That’s because —j is not the same quantity
as j. (You'll get a chance to prove this fact in Problem 1 at the end of this chapter.) Negating the
above examples, we get

_(_4)1/2 — _j X 41/2 = _jz
and

—(=100)"* = —j x 100"* = —;10

Here's a challengel!

Demonstrate what happens when —j is raised to successively higher positive-integer powers.

Solution

Keep in mind that — is the negative square root of —1, which is =(—=1)""%. By definition, we know
that 7 = —1, so we can calculate the square of —; as

()= (1xj)’
= 17 X
=1x;?
=1x(-1)
=-1

Now for the cube:
() = ()% (=)
=-1X ()
=j
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The fourth power:
H)'= () x )
=7 % ()
= —jz
=—(-1)
=1
The fifth power:
) =)' *x ()
1% ()
——
The sixth power:

()= () x (=)
=—7 X ()
= ()
=-1
Can you see what will happen if we keep going like this, increasing the integer power by 1 over and

over? We'll cycle endlessly through —j, —1, j, and 1. If you grind things out, you'll see that ;7 =,
j*=1, j°=—j, j'®=-1, and so on. In general, if 7 is a positive integer, then

()" = ()

How Complex Numbers Behave

Complex numbers have properties that resemble those of the real numbers to some extent.
But there are some major differences as well. Let’s review the basic operations involving com-
plex numbers, in case you've forgotten them. As we go along, we'll imagine two arbitrary
complex numbers

a+jb
and
c+jd

where 4, b, ¢, and d are real numbers, and j = (—1)".
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Complex number sum

When we want to find the sum of two complex numbers, we add the real and imaginary
parts independently to get the real and imaginary components of the result. The general
formula is

(a+jb) + (c+jd)=(a+c) +j(b+d)

Complex number difference

We can find the difference between two complex numbers if we multiply the second complex
number by —1, and then add it to the first complex number. The general formula is

(a+7b) — (c+jd) = (a+jb) + [~1(c + jd)]
=(a—o) +jb-d)

Complex number product

When we want to multiply two complex numbers by each other, we can treat them individu-
ally as binomials. We multiply the binomials and then simplify their product, remembering
that j> = —1. The general formula works out as

(a+jb)(c+ jd) = ac+ jad + jbc + j*bd
= (ac— bd) + jlad + bc)

Complex number ratio

Suppose that we want to find the ratio (quotient) of two complex numbers
(a+3b) | (c+jd)
Multiplying both the numerator and the denominator by (¢ — jd), we obtain
[(a +jb)(c—jd)] | (c + jd)(c—jd )
which multiplies out to
(ac — jad + jbc — j*bd) | (¢* — jed + jed — j°d)
This expression can be simplified to
((ac+ bd) + j (bc — ad)] | (> + d?)
When we separate out the real and imaginary parts, we get

[(ac+ bd) | (> +dD)] +j[(bc—ad) | (¢ + d?)]
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The square brackets, while technically superfluous, are included to visually set apart the real
and imaginary parts of the result. We have just derived a general complex-number ratio for-
mula that we can always use:
(a+7b)(c+ jd)
= [(ac+ bd)/(c* + d*)] + j [(bc — ad)/(c* + d?)]
For this formula to work, the denominator must not be equal to 0 + j0. That means we can-
not have both ¢ =0 and 4= 0. If both of these coefficients are 0, then we end up dividing by 0.

That operation, unlike the square root of a negative real, remains undefined, at least as far as
this book is concerned!

Complex number raised to positive-integer power

If 2+ jb is a complex number and 7 is a positive integer, then (2 + jb)" is the result of multiply-
ing (a + jb) by itself 7 times.

Complex conjugates

Suppose we encounter two complex numbers that have the same coefficients, but opposite
signs between the real and imaginary parts, as in

a+jb
and
a—jb
We call any two such quantities complex conjugates. They have some interesting properties.
When we add a complex number to its conjugate, we get twice the real coefficient. In general,
we have
(a+7b) + (a—jb) =2a

When we multiply a complex number by its conjugate, we get the sum of the squares of the
coefficients. In general, we have

(a+jb)a—jb)=a + b

Complex conjugates are often encountered in engineering. They're especially useful in alternating-
current (AC) circuit, radio-frequency (RF) antenna, and transmission-line theories.

Sum example

Let’s find the sum of the two complex numbers 5 + j4 and 2 — ;3. When we add the real parts,
we get

5+2=7
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When we add the imaginary parts, we get
JA+(B)=1=]
The sum can be expressed directly as
C+A+Q2-3)=7+j

The parentheses are not technically necessary, but they help to set the individual complex-
number addends apart on the left-hand side of the equation.

Difference example

To find the difference between 5 + j4 and 2 — j3, we first multiply the second complex quan-
tity by —1. That gives us

1 (2-/3)=-2+/3
Now we can simply add 5 + j4 and —2 + j3. Adding the real parts, we obtain
5+(=2)=3
Adding the imaginary parts gives us
j4+j3=757
The difference can be expressed directly as

5+4)-2-73)=3+;7

Product example

Let’s multiply the complex numbers 5 + j4 and 2 — ;3 by each other. When we treat them as
binomials, the problem works out in a straightforward fashion, but we have to be careful with
the signs. We get

(5+74)2—73)=5X%2+5%(—3) +j4 X2+ j4 X (—3)
=10+ (—j15) +/8 +jx (—j) x4 x 3
=10+ (=j7) + 12
=227

The product can be expressed directly as

(5+j4)2—-j3)=22-;7
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Ratio example

When we find the ratio of a complex number to another complex number, we should expect
some messy arithmetic. Let’s calculate

(5+74)/2-;3)

Keeping track of the coefficients can be confusing when we use the formula for a ratio. Here’s
the general formula again:

(a+7b) | (c+jd) = (ac+ bd) | (& +d*)] +j[(bc—ad) | (¢ +d?)]
The denominator in both addends is ¢ + 4°. Here, ¢ =2 and 4= -3, so we have
A+d*=2"+(-3=4+9=13
We can substitute 13 for the quantity ¢* + &” in our formula, giving us the expression
((ac + bd) 1 13] +j [(bc — ad) | 13]
Knowing that 2 =5, =4, ¢ =2, and 4= -3, the above equation becomes
[5Xx2+4x(=3)]/13+;[4x2-5%x(=3)]/13
which works out to
—2/13 + (23/13)

Our ratio can be expressed directly as

(5 +j4) 1 (2 — j3) =—2/13 + j(23/13)

Power example
Let’s find the cube of the complex number 2 — j3. We square it first, multiplying by itself to get

(2-73)2-73)=2X2+2X(-3) + (-73) X 2+ (3) X (=3)
=4+ (—j6) + (—76) + (—7) X (/) X3 x 3
=4+ (-12) + (-9)
=-5-712

We multiply this result by the original quantity 2 — 3, obtaining

(=5—=712)2 =43) ==5 X 2+ (=5) X (=73) + (=12) X 2 + (—j12) X (—/3)
==10+715+ (=24) + () X () x 12X 3
=-10+ (-79) + (-30)
=-46—-79
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The cube can be expressed directly as

(2-73)°=-46-,9

Are you confused?

When working with complex numbers, you should pay close attention to whether or not a nu-
meral after the j operator is a superscript. The two notations are perilously similar! For example,
if you see

5+;2

it means 5 plus twice 7, which is a complex number that’s neither pure real nor pure imaginary.
But if you see

547

it means 5 plus j squared, which can be simplified to 5 + (—1) or 4, which is pure real.

Here's a challenge!

Prove that the square of a complex number is equal to the square of the negative of that complex
number. That is, show that

(a+ jb)* = (—a — jb)*

for all real-number coefficients # and .

Solution

First, let’s work out the square of 2 + jb. We get

(a+jb)* = (a+jb)(a+jb)
=+ jab + jba+ ;0
=d+j2ab—- b
=a— b +j2ab
Note that in the final term j24b, the numeral 2 is a multiplier, not an exponent! Now let’s find

the square of —z — jb. This is a “nightmare of negatives,” so we must be careful with the signs. We
have

(ma—jb)* = (a—jb)(=a—jb)
= (-a)’ + (—a)(56) + (-jb)(=a) + (-5b)°
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=&+ jab + jba + (—)*0*
= +j2ab— b
= (&> — %) +j2ab

That’s exactly what we got when we squared # + jb. Therefore, we've shown that

(a+jb)* = (—a — jb)?

Complex Vectors

We've seen how points can be represented as standard-form vectors in the Cartesian or polar
coordinate planes. Because complex numbers can be plotted as points in a plane, it’s tempt-
ing to think that we might portray them as vectors. We can; and when we do, things can get
mighty interesting.

Cartesian model

When we want to represent a complex quantity as a vector in the Cartesian complex-number
plane, we draw an arrowed line segment from the origin to the point representing the quantity.
Figure 6-4 shows a few examples.

\/

Figure 6-4 Some vectors in the Cartesian complex-number
plane.
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Polar model

Any vector in the Cartesian plane can also be represented as a vector in the polar coordinate
plane. Figure 6-5 shows the vectors from Fig. 6-4 plotted on the polar plane. The radial incre-
ments (shown as concentric circles) are the same size as the horizontal- and vertical-axis incre-
ments in the Cartesian plane of Fig. 6-4 (that is, 1 unit). The polar scheme is not as common
as the Cartesian scheme. But it’s equally valid if we restrict the direction angles to positive
values less than 27, and if we forbid negative vector magnitudes.

The vectors in Fig. 6-5 theoretically represent the same complex numbers as those in
Fig. 6-4. But the polar coordinates for a complex number differ from the Cartesian coordinates.
The polar coordinates reflect the direction angle and magnitude of a vector, not the real and
imaginary components. We can calculate the direction angle and magnitude of the polar vec-
tor if we know the real and imaginary parts of the equivalent complex number. We can also go
the other way, and figure out the real and imaginary parts of the complex number if we know
the polar vector direction angle and magnitude.

Cartesian-to-polar complex vector conversion

Imagine a complex number # = a + jb, represented as a vector t. in the Cartesian complex-
number plane, extending from the origin to the point (a,j6). We can derive the magnitude »
of the equivalent polar vector t, by applying the Pythagorean distance formula to get

r= (ﬂ2+ b2)1/2

/2

-5-j5 \\
B
3n/2

Figure 6-5 Complex numbers can be portrayed as
vectors in the polar plane. Each radial
division represents 1 unit. Cartesian
coordinates are shown here. The polar
coordinates are entirely different!
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To determine the direction angle 6 of the polar vector t,, we modify the polar-coordinate
direction-finding system. Here’s what we get. As we did in the Cartesian-to-polar coordinate-
conversion scheme, we define @ = 0 by default when we're at the origin. That way, we get a
one-to-one correspondence between the set of Cartesian vectors and the set of polar vectors.
(Keep that in mind, because we'll keep doing this whenever the situation comes up!)

6=0 When 2 =0 and jb = ;0
by default that is, at the origin

0=0 When 2 > 0 and jb = j0O
0 = Arctan (b/a) When « > 0 and jb > jO
0=m/2 When 2= 0 and jb > j0
0= 7+ Arctan (b/a) When a2 < 0 and j& > ;0O
O0=r When « < 0 and jb = jO
0 = 7w+ Arctan (6/a) When 2 < 0 and jb < ;0O
0=3m/2 When « =0 and jb < j0O
0 =2m+ Arctan (b/a) | When 2> 0 and jb< ;0

Polar-to-Cartesian complex vector conversion

We can always convert a polar complex vector t, into a Cartesian complex vector t, that por-
trays a complex number 2 + jb in the familiar form. If we have

t, = (6,7)
then the Cartesian vector equivalent is
t.= (- cos ), jr sin 0)]
which represents the complex number
a+jb=rcos 8+ j(rsin 6)

The parentheses are not strictly necessary here, but they keep the real and imaginary compo-
nents clearly separated.

Absolute value

We can find the absolute value of a complex number a + jb, written | @ + j& |, by calculating
the magnitude of its vector. In the Cartesian complex plane, going from the origin (0,0) to
the point (a,jb), we have

|a+jb| ="+ 6*)"

as shown in Fig. 6-6. In the polar plane, the absolute value of a complex vector is the vector
radius 7.
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Figure 6-6 The absolute value of %
a complex number is
the magnitude of its
vector.

. 1/2
la+jbl = (a2 + b?)
= vector magnitude

Complex vector sum and difference

When we want to add or subtract two complex vectors, we can work on the Cartesian real and
imaginary parts separately. If the vectors are presented to us in polar form, we should convert
them to Cartesian form and then add. We can always convert the resultant back to polar form
after we're done with the addition process.

To find the difference between two complex vectors, we must be sure they’re both in Car-
tesian form before we do any calculations. Once the vectors are in the Cartesian form, we take
the negative of the second vector by negating both of its coordinates. Then we add the two
resulting vectors. Again, if we want, we can convert the resultant back to polar form.

Are you confused?

You may ask, “Why isn’t the addition and subtraction of polar coordinates directly done when
we want to add or subtract complex vectors?” That’s a good question. We can try to define vector
sums and differences this way (adding or subtracting the polar angles and radii separately, for
example), and we'll get output numbers when we grind out the arithmetic. But those numbers
don’t coincide with the geometric definitions of vector addition and subtraction. They don’t give
us the correct complex-number sums or differences. It’s hard to say what those output numbers
really mean, even though the idea is interesting! We should use Cartesian coordinates when we add
or subtract complex vectors. We should use polar coordinates when we want to multiply or divide
them.

Polar complex vector product

When we want to multiply two complex-number vectors, neither the dot product nor the
cross product will give us the proper results. We must invent a new vector operation! Here’s
how it works.

1. We add the direction angles of the original two vectors to get the direction angle
of the product vector.

2. If we end up with a direction angle larger than 27, then we subtract 277 to get the
correct angle for the product vector.
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3. We multiply the original vector magnitudes by each other to get the magnitude of
the product vector.

Polar complex vector ratio

When we want to find the ratio of two complex numbers, we can go through the complex
vector product process “inside-out.” Again, there are three steps.

1. We subtract the direction angle of the denominator vector from the direction
angle of the numerator vector to get the direction angle of the ratio vector.

2. If we end up with a negative direction angle, then we add 27 to get the correct
angle for the ratio vector.

3. We divide the magnitude of the numerator vector by the magnitude of the
denominator vector to get the magnitude of the ratio vector.

Polar complex vector power

When we want to raise a complex number to a positive-integer power, we multiply the polar
angle by that positive integer, and then take the power of the magnitude. If the angle of our
resulting vector is 277 or larger, we subtract whatever multiple of 277 is necessary to bring the
angle into the range where it’s positive but less than 27.

Absolute-value vector example

There are infinitely many vectors that represent complex numbers having an absolute
value of 6. All the vectors have magnitudes of 6, and they all point outward from the origin.
Figure 6-7 shows a few such vectors.

Iy
Set of all points A
corresponding to
Ix+jyl=6 T

Figure 6-7 There are infinitely many complex
numbers with an absolute value of 6.
They all terminate on a circle of radius
6, centered at the origin.
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/2

—

(2n/3, 4/5)
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Figure 6-8 Product of the polar complex vectors (7/6,1/2) and
(27 /3,4/5). Each radial division represents 0.1 unit.

Polar complex vector product example

Figure 6-8 shows the polar complex vectors (77/6,1/2) and (27/3,4/5), along with their product.
Each radial division is 0.1 unit. When we add the angles, we get

wl6+2r/3=57r/6
When we multiply the magnitudes, we get
1/2 x 415 =2/5

so the product vector is (57/6,2/5).

Polar complex vector ratio example

Figure 6-9 shows the ratio of the polar complex vectors (777/4,8) and (7,2). Each radial division
is 1 unit. When we subtract the angles, we get

7rl4—nm=3ml4
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Subtract the angles ... the magnitudes

3r/2

Figure 6-9 Ratio of the polar complex vector (77 /4,8) to the polar
complex vector (7,2). Each radial division represents
1 unit.

When we divide the magnitudes, we get
8/2=4
so the ratio vector is (37/4,4).

De Moivre’s theorem

The above schemes for finding products, ratios, and powers of polar complex numbers can
be summarized in a famous theorem attributed to the French mathematician Abraham De
Moivre, (pronounced “De Mwahvr”), who lived during the late 1600s and early 1700s. This
theorem can be found in two different versions, depending on which text you consult.

The first, and more general, version of De Moivres theorem involves products and ratios.
Suppose we have two polar complex numbers ¢; and ¢,, where

¢1 =1 cos 6, + j(r; sin 6))
and

¢, =1, cos 6, + j(r, sin 6,)
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where 7; and 7, are real-number polar magnitudes, and 6, and 6, are real-number polar direc-
tion angles in radians. Then the product of ¢, and ¢, is

16, = rry cos (6, + 6,) + 7 [y, sin (6; + 6,)]
If 7, is nonzero, the ratio of ¢ to ¢, is
aile, = (ri/r,) cos (60, — 6,) + 7 [(r/7y) sin (6, — 6,)]

The second, and more commonly known, version of De Moivre’s theorem can be derived
from the first version. Suppose that we have a complex number ¢ such that

¢=rcos 8+ j(rsin 6)

where 7 is the real-number polar magnitude and 6 is the real-number polar direction angle.
Also suppose that 7 is an integer. Then ¢ to the nth power is

" =17"cos (n0) + j[7" sin (n60)]

I recommend that you enter this version of De Moivre’s theorem into your “brain storage,”
and save it there forever!

Are you confused?

Do you wonder why we haven’t described how to find a root of a complex vector? You might
think, “It ought to be simple, just like finding a power backward. Can’t we divide the polar angle
by the index of the root, and then take the root of the magnitude?” That’s a good question. Doing
that will indeed give us a root. But there are often two or more complex roots for any given com-
plex number. We're about to see an example of this.

Here's a challengel!

Cube the polar complex vectors (27/3,1) and (47/3,1). Here’s a warning: The solution might
come as a surprise! What do you suppose these results imply?

Solution

To cube a polar complex vector, we multiply the direction angle by 3 (the value of the exponent)
and cube the magnitude. Let’s do this with the vectors we’'ve been given here. In the case of
(2m/3,1)°, we get an angle of

Q2rm/3) x3 =21

That’s outside the allowed range of angles, but if we subtract 27, we get 0, which is okay. We get
a magnitude of 1° = 1. Now we know that

(2m/3,1)° = (0,1)
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where the first coordinate represents the direction angle in radians, and the second coordinate
represents the magnitude. If we draw this vector on a polar graph, we can see that this is the polar
representation of the complex number 1 + 70, which is equal to the pure real number 1. (If you
like, you can use the conversion formulas to prove it.) In the case of (477/3,1)?, we get the direction
angle

(4m/3) x 3 =41

That’s outside the allowed range of angles, but if we subtract 27 twice, then we get an angle of 0,
and that’s allowed. As before, we get a magnitude of 1° = 1. Now we know that

(4m/3,1)>=(0,1)

where, again, the first coordinate represents the direction angle in radians, and the second coordi-
nate represents the magnitude. This is the same as the previous result. It’s the polar representation
of 1 + 0, which is the pure real number 1. We've found two cube roots of 1 in the realm of the
complex numbers. Neither of these roots show up when we work with pure real numbers exclusively.
There are three different complex cube roots of 1! They are

® The pure real number 1
® The complex number corresponding to the polar vector (277/3,1)
* The complex number corresponding to the polar vector (47/3,1)

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Prove that —j is not equal to j, even though, when squared, they both give us —1. Here’s
a hint: Use the tactic of reductio ad absurdum, where a statement is proved by assuming
its opposite and then deriving a contradiction from that assumption.

2. Show that the reciprocal of j is equal to its negative; that is, j ™' = —.
3. Find the sum and difference of the complex numbers =3 + j4 and 1 + 5.
4. Find the ratio of the generalized complex conjugates 2 + jb and a — jb. That is, work out
a general formula for
(a+7b) | (a—jb)
where  and 4 are both nonzero real numbers.

5. Prove that if we take any two complex conjugates and square them individually,
the results are complex conjugates. In other words, show that for all real-number
coefficients @ and b, (2 + jb)* is the complex conjugate of (z — jb)*.
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6.

10.

Find the polar product of the polar complex vectors (77/4,2"%) and (37/4,2"). Then
convert this product vector to Cartesian form and write down the “real-plus-imaginary”
complex number that it represents.

Convert the polar complex vectors (7/4,2"?) and (377/4,2"%) to the complex numbers
they represent in “real-plus-imaginary” form. Multiply these numbers and compare with
the solution to Problem 6.

. Look at the results of the last “challenge,” where we found these three cube roots of 1:

* The pure real number 1
* The complex number corresponding to the polar vector (27/3,1)
* The complex number corresponding to the polar vector (47/3,1)

Convert the polar vectors (277/3,1) and (47/3,1) to their “real-plus-imaginary”
complex-number forms.

. Graph the three cube roots of 1 as polar complex vectors. Label them as ordered pairs in

the form (6,7), where 0 is the direction angle and  is the magnitude.

Graph the three cube roots of 1 as Cartesian complex vectors. Label them as complex
numbers in the form « + jb, where 2 and & are real numbers. Also graph the unit circle,
and note that the vectors all terminate on that circle.



CHAPTER

Cartesian Three-Space

We can create three-dimensional graphs by adding a third axis perpendicular to the familiar x
and y axes of the Cartesian plane. The new axis, usually called the z axis, passes through the
xy plane at the origin, giving us Cartesian t/aree—space or Cartesian xyz space.

How It’s Assembled

Cartesian three-space has three real-number lines positioned so they all intersect at their zero
points, and so each line is perpendicular to the other two. The point where the axes intersect
constitutes the origin. Each axis portrays a real-number variable.

Axes and variables

Figure 7-1 is a perspective drawing of a Cartesian xyz space coordinate system. In a true-to-life
three-dimensional portrayal, the positive x axis would run to the right, the negative x axis
would run to the left, the positive y axis would run upward, the negative y axis would run
downward, the positive z axis would project out from the page toward us, and the negative
z axis would project behind the page away from us.

In Cartesian three-space, the axes are all linear, and they’re all graduated in increments of
the same size. For any axis, the change in value is always directly proportional to the physical
displacement. If we move 3 millimeters along an axis and the value changes by 1 unit, then
that’s true all along the axis, and it’s also true everywhere along both of the other axes. If the
divisions differ in size between the axes, then we have rectangular three-space, but not true
Cartesian three-space.

Cartesian three-space is often used to graph relations and functions having two independent
variables. When this is done, x and y are usually the independent variables, and z is the dependent
variable, whose value depends on both x and y.

111
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Figure 7-1 A pictorial rendition of Cartesian three-space.
In this view, the x axis increases positively from
left to right, the y axis increases positively from
the bottom up, and the z axis increases positively
from far to near.

Biaxial planes

Cartesian three-space contains three flat biaxial (fwo-axis) planes that intersect along the coor-
dinate axes.

* The xy plane contains the axes for the variables x and y.
* The xz plane contains the axes for the variables x and z.
* The yz plane contains the axes for the variables y and z.

You'll see three rectangles in Fig. 7-2, one parallel to each of the three biaxial planes. Look
closely at how these rectangles are oriented. They can help you envision the orientations of
the three biaxial planes in space. Each of the three biaxial planes is perpendicular to both of
the others.

Are you astute?

Figure 7-2 shows an alternative perspective on Cartesian three-space, in which we’re looking “up”
toward the xz plane from somewhere near the negative y axis. There’s a difference between the apparent
positions of the axes in Fig. 7-2 as compared with their positions in Fig. 7-1, but the orientations of the
three axes are the same with respect to each other. You should get used to seeing Cartesian three-space
from various points of view. I'll switch points of view often to keep you thinking!
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Rectangle parallel
to xz plane

Rectangle parallel T
to yz plane

_ Rectangle parallel
-y B to xy plane

Figure 7-2  Cartesian three-space contains the xy, xz, and
yz planes. This drawing shows rectangles parallel to
each of these three biaxial planes. Note the difference
in the point of view between this illustration and
Figure 7-1.

Points and ordered triples

Figure 7-3 shows two specific points 2 and Q, plotted in Cartesian three-space. We've returned
to the perspective of Fig. 7-1, with the positive z axis coming out of the page toward us. A
point can always be denoted as an ordered triple in the form (x,y,2), according to the following
scheme:

* The x coordinate represents the point’s projection onto the x axis.
* The y coordinate represents the points projection onto the y axis.
* The z coordinate represents the point’s projection onto the z axis.

We get the projection of a point onto an axis by drawing a line from that point to the
axis, and making sure that the line intersects that axis at a right angle. If this notion
gives you trouble, you can think of the x, y, and z values for a particular point in the
following way:

* The x coordinate is the point’s perpendicular displacement (positive, negative, or zero)
from the yz plane.

* The y coordinate is the point’s perpendicular displacement (positive, negative, or zero)
from the xz plane.

* The z coordinate is the point’s perpendicular displacement (positive, negative, or zero)
from the xy plane.
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Each axis
increment
is 1 unit

—_— e

T
A\
P -y
(-5,-4,3)

Figure 7-3 Two points in Cartesian three-space, along
with the corresponding ordered triples of the
form (x,,2). On all three axes, each increment
represents 1 unit. Here, we've gone back to the
point of view shown in Figure 7-1.

In Fig. 7-3, the coordinates of point P are (-5,—4,3), and the coordinates of point Q are
(3,5,-2). As the system is portrayed here, we can get to point P from the origin by making the
following moves in any order:

* Go 5 units in the negative x direction (straight to the left).
* Go 4 units in the negative y direction (straight down).
* Go 3 units in the positive z direction (straight out of the page).

We can get from the origin to point Q by doing the following moves in any order:

* Go 3 units in the positive x direction (straight to the right).
* Go 5 units in the positive y direction (straight up).
* Go 2 units in the negative z direction (straight back behind the page).

If we were looking at the coordinate grid from a different viewpoint (that of Fig. 7-2, for
example), our movements would look different, but the points and their coordinates would
be the same.

A note for the picayune

An ordered triple represents the coordinates of a point in three-space, not the geometric point
itself. But we may talk or write as if an ordered triple actually is a point, just as we sometimes
think of a certain person when we read a name. That’s okay, as long as were aware of the
semantical difference between the name and the point.
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Are you confused?

Some people have trouble envisioning three-dimensional situations “in the mind’s eye.” If
you're having problems understanding exactly how the three axes should relate in Cartesian
three-space, here’s a “pool rule” for the orientation of the axes. Imagine the origin of the system
resting on the surface of a swimming pool. Suppose that we align the positive x axis so that it
runs along the water surface, pointing due east. Once we've done that, the other axes are oriented
as follows:

* Negative values of x are west of the origin.
* Dositive values of y are north of the origin.
* Negative values of y are south of the origin.
* Dositive values of z are up in the air.

* Negative values of z are under the water.

You can look at the coordinate axes from any point you want, whether on the surface, in the sky,
or under the water. No matter how your view of the system changes, the actual orientation of the
axes with respect to each other always stays the same. This relative axis orientation is important. If
it’s not strictly followed, we'll get into trouble when we work with graphs and vectors in Cartesian
three-space.

Here's a challengel!

Imagine an ordered triple (x,y,2) where all three variables are nonzero real numbers. Suppose that
you've plotted a point P in xyz space. Because x # 0, y # 0, and z # 0, the point P doesn’t lie on
any of the axes. What will happen to the location of P if you

*  Multiply x by —1 and leave y and z the same?
* Multiply y by —1 and leave x and z the same?
* Multiply z by —1 and leave x and y the same?

Solution

Here’s what will take place in each of these three situations. You can use Fig. 7-2 as a visual aid. If
youre a computer whiz, maybe you can program your machine to create an animated display for
each of these three processes:

¢ Ifyou multiply x by —1 and do not change the values of y or z, then point P will move parallel
to the x axis to the opposite side of the yz plane, but P will end up at the same distance from
the yz plane as it was before.

* Ifyou multiply y by —1 and do not change the values of x or z, then point P will move parallel
to the y axis to the opposite side of the xz plane, but P will end up at the same distance from
the xz plane as it was before.

* Ifyou multiply z by —1 and do not change the values of x or y, then point P will move parallel
to the z axis to the opposite side of the xy plane, but 2 will end up at the same distance from
the xy plane as it was before.
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Distance of Point from Origin

In Cartesian three-space, the distance of a point from the origin depends on all three of the
coordinates in the ordered triple representing the point. The formula for this distance resembles
the formula for the distance of a point from the origin in Cartesian two-space.

The general formula

It’s not difficult to derive a general formula for the distance of a point from the origin in
Cartesian three-space, as long as we're willing to use our “spatial mind’s eye.” Suppose we
name the point P, and assign it the coordinates

P=(x,,9,,2,)

Figure 7-4A shows this situation, along with a point 2*= (x,,9,,0), which is the projection of
P onto the xy plane. We've moved again back to the perspective of Fig. 7-2, looking in toward
the origin from somewhere far out in space near the negative y axis. To find the distance of P*
from the origin, we can work entirely in the xy plane. This gives us a two-dimensional distance
problem, which we learned how to handle in Chap. 1. Let’s call the distance of P* from the
origin by the name 4. Using the formula we learned in Chap. 1 for the distance of a point from
the origin in Cartesian xy plane, we have

a= (xpz +.y}>2)1/2

First, we find the +z

distance from the origin
to P*, and call it a

(Xp» Y 0)

(Xp7 yps Zp)

Figure 7-4A  Finding the distance of point P from the origin: step 1.
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This completes the first step in a three-phase process. Figure 7-4B shows the second step.
Here, we find the distance between P*and P. Let’s call that distance 4. It’s the perpendicular
distance of P from the xy plane, which is simply the coordinate value z,. Therefore, we have

b=z,

That's the end of the second step. In Fig. 7-4C, the distance from the origin to P is labeled
¢. Note that we now have a right triangle with sides of lengths 4, 4, and ¢. The right angle is
between the sides whose lengths are @ and 4. The Pythagorean theorem therefore allows us to
make the claim that

aF+b=7
Substituting the previously determined values for # and 4 into this formula gives us
(x> + )P +22=¢
which simplifies to

2 2 2
X, +}’1> +zp =¢

Second, we find the +z
distance from P*
to P and call it b T

Figure 7-4B  Finding the distance of point P from the origin: step 2.
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Third, we call the +tZ
distance from the origin
to Pby the name c ...

P* —_
(Xp» ¥, 0) . T i
Xt > +x
Right —
angle | T
1 | -
i ' -+
o |
_____ ,(_________|________,7________
—y | T ... and note that
_l _el-____ ._____,:/___ cis the length of
. : ! ) -z the hypotenuse
\ ' of a right triangle!
P
(Xp1 .yp1 zp)

Figure 7-4C  Finding the distance of point P from the origin: step 3.

When we switch the right-hand and left-hand sides of this equation and then take the 1/2
power of both sides, we get the formula we've been looking for, which is
c= (xpz +yp2 + ZPZ)I/Z

An example

Let’s find the distance from the origin to the point P = (=5,—4,3) as shown in Fig. 7-3. We
have x, = -5, y, = —4, and g, = 3. If we call the distance ¢, then

c= (xpz +},})2 +ZP2)1/2

=[(-5)%+ (4)* + 3" =25+ 16 + 9)'* =502

Another example

Now let’s find the distance from the origin to Q = (3,5,-2) as shown in Fig. 7-3. This time,
the coordinates are x, = 3, y, = 5, and 2, = —2. We can again call the distance ¢, so
c= (xqz+yq2+zq2)1/2

— [32 + 52 + (_2)2]1/2 — (9 + 25 + 4)1/2 — 381/2
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Are you confused?

You might ask, “Can the distance of a point from the origin in Cartesian three-space ever be undefined?
Can it ever be negative?” The answers are no, and no! Imagine a point P in Cartesian three-space—
anywhere you want—with the coordinates (x,,5,,2,). To find the distance of P from the origin, you
start by squaring x,, which is the x coordinate of . Because x, is a real number, its square is a nonnega-
tive real. Then you square y,, which is the y coordinate of P. This result must also be a nonnegative
real. Then you square z,, which is the z coordinate of P. This square, too, is a nonnegative real. Next,
you add the three nonnegative reals xpz, )/},2, and zpz. That sum must be another nonnegative real.
Finally, you take the nonnegative square root of the sum of the squares. The nonnegative square root
of a nonnegative real number is always defined; and it’s never negative itself, of course!

Are you still confused?

The formula we derived here is based on the idea that we start at the origin and go outward to
point P. If we go inward from P to the origin, the distance is exactly the same. (If we were working
with vectors, the vector displacements would be negatives of each other, but we're not there yet.)

Here's a challengel!

Suppose we're given a point P= (x,,9,,3,) in Cartesian three-space. Prove that if we negate any one, any
two, or all three of the coordinates, the resulting point is the same distance from the origin as P.

Solution

For the point P, the distance ¢ from the origin is
— 2 2 2\1/2
c=(x"+y,+2°)

The square of any real number is always the same as the square of its negative. That tells us three things:

(_Xp)z = xpz
)=
(= Zp)z — zpz

By substitution, all these quantities are identical:

(5 +9," +z) "
(%) + 5, + 2] "
x>+ (=) + 571"
[ + 2 + (—2)7]1"

[(=x,)* + (=p,)* + 2,1
[(=x,)* + 3>+ (—2,)°1"?
(x> + (=9,)* + (—2,)°1"?

[(_xp)z + (__)’p)z + (_Zp)z]l/z
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These quantities represent the distances of the following points from the origin, respectively:

(%))
(=%,925)
(%p—p25)
(%,9—2,)

(=%p=Yp2))
(=%p9—2,)
(ep=yp—2))
(%p=)p=2))

That’s all the points we can get, in addition to P itself, by negating any one, any two, or all three
of the coordinates of P. They’re all the same distance ¢ from the origin, where
2\1/2

c=(x"+y"+z7)

Distance between Any Two Points

When we want to determine the distance between any two points in Cartesian three-space,
we can expand the formula from Cartesian two-space that we learned in Chap. 1 into an extra
dimension.

The general formula

Imagine two different points in Cartesian three-space, after the fashion of Fig. 7-5. Let’s call
the points and their coordinates

P=(x,,9,,2,)
and
Q= (xpp2,)

where each coordinate can range over the entire set of real numbers. The distance & between
these points, as we follow a straight-line path from Pto Q, is

d=[(x,—x)* + (o, = 3,)* + (z,— z,)°]""
If we start at Q and finish at P, we reverse the orders of subtraction, so the formula becomes
d=[(x,—x)"+ (3 _)’q)z +(z,— Zq)z] "

We always subtract “starting coordinates” from “finishing coordinates.”
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What'’s the
straight-line distance d
between points

Pand Q?

(Xp: yp: zp)

Figure 7-5 Distance between two points in Cartesian three-space.

An example

Let’s calculate the distance between the points P = (=5,-4,3) and Q = (3,5,-2), starting at P
and finishing at Q. We subtract the coordinates for P from those for Q in each term. Pairing
off the coordinates for easy reference, we have

x,==5 and x,= 3
J,=—4 and y,=5

z,=3 and z,=-2

Plugging these values into the formula, we get

d=[lx, = )"+ (g, = 3,)" + (z,— 2"

={B- )P+ [5- (4P + (=2-3)}"
=[8%+ 9%+ (=5)1]"? = (64 + 81 + 25)"* = 170"

Another example

Now let’s calculate the distance between these same two points, but starting at Q and finishing at
P. We reverse the orders of the subtractions from the previous example. When we go through
the arithmetic, we get

d= [, —x,)"+ (o — 3" + (5, — )]

={-5-3+(4-5+[3- (=21}
= [(_8)2 + (_9)2 + 52]1/2 — (64 +81+ 25)1/2 — 1701/2
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Are you confused?

You are probably not surprised that the distance between P and Q is the same in either direction.
But you might ask, “Are there any situations where the distance between two points is different
in one direction than in the other?” The answer is no, such a thing can never happen—as long as
we always follow the same straight-line path through three-space to get from point to point. Lets
prove that the direction doesn’t matter when we want to express the distance between two points
in space.

Here's a challenge!

Show that the distance between any two points in Cartesian three-space is the same, whichever
direction we go.

Solution

It’s sufficient to prove that for all real numbers Xps Yps Zps X ¥ and z,, i’s always the case that
2 2 n1/2 _ 2 2 20112
(Ge = 2)" + (g = 3" + (2, = 7)1 = [, = x)* + (), = 3,)" + (3, = 2,)°]
Because x, — x, and x, — x, are negatives of each other, their squares are equal:
2 _ 2
(0, = %,)* = (5, = x,)
Because y, — y, and y, — y, are negatives of each other, their squares are equal:
2_ 2
0= 20" = 0= 39
Because z, — 2, and z, — z, are negatives of each other, their squares are equal:
2 _ 2
(z,-2) =(z-z)

Based on these three facts, we know that the squared differences on both sides of the original equation
are equal, no matter what the values of the coordinates might be (as long as they’re all real numbers).
This tells us that the distance between any two points is the same in either direction.

Finding the Midpoint

We can find the midpoint along a straight-line path between two points in Cartesian three-space
by averaging the corresponding coordinates.
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The general formula

Suppose that we want to find the midpoint M along a straight-line segment connecting
two points P and Q as shown in Fig. 7-6. We can assign the points the ordered triples

P = (xp9p2)
and
Q= (xpy2)
Let’s say that the coordinates of the midpoint M are
M = (%Y Zm)
We find x,, by averaging x, and x,, getting
X = (%, + x,)/2
We find y,, by averaging y, and y,, getting

I =0 + 712

(Xg, Yo Z9)
Point M is midway S L
between 4544

points Pand Q

o= >
—|X1 ],”-I 1 1 1 * +X
"l
=7 ]
| i | -
[ : !
[ : T
| [P i
- AT A s o I What are the
Wy 4 v L coordinates of
e 5_____,:/___ point M?
_y P 1 - |
\4
X Yp» 2p) —

Figure 7-6  Midpoint of line segment connecting two points in Cartesian
three-space.
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We find z,, by averaging z, and z,, getting
z,=(z,+2,)/2
The coordinates of M in terms of the coordinates of P and Q are therefore

(xm’_ym’zm) = [(.X‘/, + xq)/za(yp +_yq)/2>(zp + Zq)/z]

An example

Let’s find the midpoint between the origin and 2= (=5,—4,3) in Cartesian three-space. We can
use the formula above with Q = (0,0,0). The midpoint M has the coordinates

KomsYmszm) = [(x, + x.)12,(y, + 3,)/2,(2, + 2,)/2]
=[(-5+0)/2,(—4 + 0)/2,(3 + 0)/2]
= (-5/2,-4/2,3/2) = (-5/2,-2,3/2)

Another example

Now let’s find the midpoint between the origin and Q = (3,5,~2). This time, we let 2= (0,0,0),
so the midpoint M has the coordinates

KmsYmszm) = [, +x,)12,(y, + 9,)/2,(3, + 2,)/2]
={(0+3)/2,(0+ 5)/2,[(0 + (=2)]/2}
=(3/2,5/2,-2/2) = (3/2,5/2,—1)

Still another example

Now let’s work out a tougher problem. Suppose we want to find the coordinates of the mid-
point M between P= (—5,—4,3) and Q= (3,5,-2). Pairing off the coordinates for convenience,
we have
x,=-5 and x,= 3
J,=—4 and y,=5
z,=3 and z,=-2
Plugging the values into the formula and working through the arithmetic, we obtain the
coordinates of M as
KmsYmszm) = [(x, + x)12,(9, + 3,)/2,(2, + 2,)/2]
={(=5+3)/2,(=4 +5)/2,[(3 + (=2)]/2}
= (=2/2,1/2,1/2) = (=1,1/2,1/2)
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Are you a skeptic?

Does it seem obvious that the midpoint between two points, say P and Q, doesn’t depend on
whether we go from P to Q or from Q to P? That’s indeed the case; but if we demand proof, we
must show that for real numbers x,, y,, 2, x,, y,, and z,, it’s always true that

[CGe, +x,)12,(3, + 9)12,(2, + 2,)/2] = [(x, + x,)/2,(y, + 3,)/2,(2, + 2,)/2]

This proof is almost trivial, but it’s good mental exercise to put it down in rigorous form. The
commutative law for addition of real numbers tells us that

X, +x,=x,+ %,
Dividing each side by 2 gives us

(%, + x,)/2 = (x, + x,)/2
Using the same logic with the y and z coordinates, we get

O+ )12 =y, + 9,12
and

(2, +2)/2=(z,+ 2,)/2

Based on these facts, we know that the coordinates on both sides of the original equation are
identical. It follows that the midpoint along a straight-line segment connecting any two points in
Cartesian three-space is the same, regardless of which way we go.

Here's a challengel!

Imagine two points in Cartesian three-space where corresponding coordinates are negatives of
each other. Show that the midpoint is exactly at the origin.

Solution

We can choose any point P whose coordinates are all real numbers. Let’s suppose that
P=(x,,9,,2,)
Then the coordinates of Q are
Q= (_Xp:__)/p>_zp)
The coordinates of the midpoint M are
(xm)_yrmzm) = {[(xp + (_xp)]/2>[(_yp + (__yp)]/zx[(zp + (_zp)/z]}
= [(x, — x,)/2,(9, — ,)12,(2, — 2,)/2]
= (0/2,0/2,0/2) = (0,0,0)

The point (0,0,0) is, of course, the origin of the coordinate system.
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. What are the individual x, y, and z coordinates of the three points P, Q, and R shown in
Fig. 7-72

\_; ________________ :_ Origin = (0, 0, 0)

Each axis
increment
is 1 unit

Figure 7-7 Illustration for Problems 1 through 10. Each axis division
represents 1 unit.

2. Determine the distance of the point P from the origin in Fig. 7-7. Using a calculator,
approximate the answer by rounding off to three decimal places.

3. Determine the distance of the point Q from the origin in Fig. 7-7. Using a calculator,
approximate the answer by rounding off to three decimal places.

4. Determine the distance of the point R from the origin in Fig. 7-7. This should come
out exact, so you won't need a calculator!

5. Determine the length of the line segment L in Fig. 7-7. Using a calculator, approximate
the answer by rounding off to three decimal places.

6. Determine the length of the line segment M in Fig. 7-7. Using a calculator,
approximate the answer by rounding off to three decimal places.
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Determine the length of the line segment /Vin Fig. 7-7. Using a calculator, approximate
the answer by rounding off to three decimal places.

Determine the coordinates of the midpoint of line segment L in Fig. 7-7.
Determine the coordinates of the midpoint of line segment M in Fig. 7-7.

Determine the coordinates of the midpoint of line segment /V in Fig. 7-7.
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Vectors in Cartesian Three-Space

Weve learned how to work with Cartesian coordinates in two and three dimensions, and
we've learned about vectors in two dimensions. Now it’s time to explore how vectors behave
in Cartesian xyz space.

How They’re Defined

Imagine two vectors a and b in three-dimensional space. We have infinitely many more direc-
tion possibilities now than we did in two-space! We can denote our vectors as arrowed line
segments, “starting” at the origin (0,0,0) and “ending” at points (x,,5,,2,) and (x,)1,20), as
shown in Fig. 8-1.

Cartesian standard form

In Cartesian xyz space, vectors don't have to “start” at the coordinate origin, but there are
advantages to putting them in that form. Any vector in this coordinate system, no matter
where it “starts” and “ends,” has an equivalent vector whose originating point is at (0,0,0). Such
a vector is in Cartesian standard form.

Suppose that we have a vector a’ that “starts” at a point P, and “ends” at another point
P,, with coordinates as

P= (xl))’bzl)
and
pP= (Xz;_)/z)zz)

as shown in Fig. 8-2. The standard form of a’, denoted a, is defined by the terminating point
P, such that

P, = (x0y2) = [(02 = x1),(02 — 11),(22 — 21)]
128
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a
(Xas Vas Za)
[ ]

-y
Figure 8-1 Two vectors in Cartesian xyz space. This is a perspective
drawing (as are all three-space renditions in this book).

In “real life,” both vectors in this particular case would
p
project generally toward us.

P, 1T
(Xa, Yar Za)

P,
(X2s Yas 2Z2)

+X

(1, 1, z1)

+Z

-y

Figure 8-2 Two vectors in Cartesian xyz space. Vector a is in
standard form because it “begins” at the origin (0,0,0).
Vector a’ is equivalent to a, because both vectors are
equally long, and they both point in the same direction.
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The two vectors a and a” are equivalent, because they’re equally long and they point in the
same direction.

Left-hand scalar multiplication

Imagine the vector a in standard form, defined by (x,,5.,z,) as shown in Fig. 8-3. Suppose
that we want to multiply a positive real scalar 4, by the vector a. To do this, we multiply each
coordinate by 4., getting

k+a = k+(xa7ya)za) = (kﬁ‘xa)kﬁya)k-kza)

The direction of our vector a does not change, but it becomes 4, times as long. If we want to
multiply a negative real scalar 4 by a, then we follow the same procedure with that constant,
obtaining

ka =k (x,y2) = (kx,ky,kz,)

We've just described how to get the lefi-hand Cartesian product of a vector and a scalar in
Cartesian xyz space. Whenever we multiply a negative scalar by a vector, we reverse the direc-
tion in which the vector points. We also change its length by a factor equal to the absolute
value of the scalar.

Vector a +3/
times positive !
constant T
greater than 1 -+ Vector a
(Xa» Y Za)
—Z
>
Vector a
times negative
constant
less than —1
A\ 4

Figure 8-3 Multiplication of a standard-form vector by positive and
negative real scalars in xyz space.
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Right-hand scalar multiplication

Now suppose that we multiply all three of the original vector coordinates on the right by a
scalar 4,. In this case, we get

ak+ = (xak+{)}ak+5zak+)

That’s the right-hand Cartesian product of a and k,. If we multiply the original vector coordi-
nates on the right by a negative constant £_, we get

ak = (o gk 2k

That’s the right-hand Cartesian product of a and 4_. As you might guess, it doesnt matter
whether we multiply a vector by a constant on the left or the right; we get the same result
either way. Scalar multiplication of a vector is commutative.

Magnitude
Let’s keep thinking about our vector a = (x,,7,,2,) in Cartesian xyz space. If we make sure that a
is in standard form, we can calculate its magnitude, which we’ll denote as 7, by finding the dis-
tance of its terminating point from the origin. We learned how to do that in Chap. 7. We get
(w202 IR
Va_ (xa +_ya + Za )
Here, the 7 stands for “radius.” In some texts, vector magnitude is denoted by surrounding

its name with absolute-value signs, or by changing the bold letter to a nonbold italic letter.
Instead of 7,, you might see the magnitude of a written as [a| or 4.

Direction

The x, y, and z coordinates contain all the information we need to fully and uniquely define
the direction of a vector in Cartesian three-space, as long as the vector is in standard form. But
there’s a more explicit way to do it. We can define the direction of a Cartesian three-space
vector if we know the measures of the angles 6,, 6,, and 6, that the vector subtends relative
to the +x, +y, and +z axes, respectively, as shown in Fig. 8-4. These angles, expressed as an
ordered triple (6,,6,,0,), are called direction angles. For any nonzero vector in xyz space, the
direction angles are always nonnegative, and they’re never larger than 7. That means

0<6.<7
<6<
<6,<nm

When we restrict the angles this way, we don’t have to worry about whether we go clockwise
or counterclockwise from the axes to the vectors.

An example

Imagine a nonstandard vector ¢’ in Cartesian three-space. Suppose that the originating point
is (2,3,~7), and the terminating point is (1,4, —1). Let’s convert it to standard form, and call
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+y

a
(Xav ya: Za)

-y

Figure 8-4 The direction of a vector in Cartesian xyz space is
defined by the angles that the vector subtends with
respect to each of the three positive axes.

the resulting vector c. To get the terminating points of ¢, we must individually subtract the
originating coordinates of ¢’ from the terminating coordinates of ¢’. The x coordinate of ¢ is

x==-1-2=-3
The y coordinate of ¢ is
y=4-3=1
The z coordinate of c is
z.=—1-(-7)=-1+7=6
Therefore, the standard form of ¢’ is

c= (xc’_yc)zc) = (_3>1’6)

Another example

Imagine the standard-form vector a = (2,3,4) in Cartesian xyz space. Suppose that we want to
find the magnitude of this vector, accurate to three decimal places. We can assign it the coor-
dinates x, = 2, y, = 3, and 2, = 4. Plugging these values into the magnitude formula, we get

|a| — (xa2 +)’a2 +z32)1/2 — (22 + 32 + 42)1/2
=(4+9+16)"=29"
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Are you confused?

You might wonder, “When we want to do operations with vectors that aren’t in standard form,
must we always convert them to standard form first?” Not a/ways. Sometimes we'll get a valid
result from a vector operation if we leave the vector or vectors in nonstandard form. But some-
times our answer will turn out wrong, and sometimes we won't be able to figure out what to do at
all. The safest course of action is to do operations on vectors in xyz space only after they’ve been
converted to standard form.

Here's a challengel!

Imagine three standard-form vectors a, b, and ¢ in xyz space, defined by ordered triples as

a=(4,0,0)
b = (0,-5,0)
c=(0,0,3)

What are the direction angles of these vectors?

Solution

Figure 8-5 shows this situation. We can see that a lies along the positive x axis, b lies along the
negative y axis, and c lies along the positive z axis. In Cartesian three-space, each of the coordinate

Coordinates = (4, 0, 0)
Coordinates = (0, 0, 3) == Angles = (0, /2, n/2)
Angles = (7/2, n/2, 0)

—X < | | | | | | | | | wd | | o
X T T2 1T > +X
-+ a
c
Each axis v .
division is -¢- — Coordinates = (0, =5 ,0)
+Z 1 unit = Angles = (n/2, 7, ©/2)

\4
-y

Figure 8-5 Three standard-form vectors and their direction angles.
Each vector lies along one of the coordinate axes.



134  Vectors in Cartesian Three-Space

axes is perpendicular to the other two. This fact tells us that a subtends an angle of 0 with respect
to the +x axis, an angle of 77/2 with respect to the +y axis, and an angle of 7/2 with respect to the
+z axis. The direction angles of a are therefore

(exa)eymeza) = (0,7[/2,71'/2)

We know that b subtends an angle of 77/2 relative to the +x axis, and an angle of 7/2 with respect
to the +z axis. Because b points along the negative y axis, its angle is 7 relative to the +y axis. The
direction angles of b are therefore

(04,6,,6.) = (12,7, /2)

Finally, vector ¢ subtends an angle of /2 against the +x axis, 77/2 against the +y axis, and 0 against
the +z axis, so the direction angles of ¢ are

(6.,8,,8,) = (7/2,7/2,0)

e

Remember that these ordered triples contain angle data in radians, not the x, y, and z coordinates for
the terminating points!

Sum and Difference

When we want to add or subtract two vectors in Cartesian xyz space, we should make certain
that they’re both in standard form before we do anything else. Once we've gotten the vectors
into standard form so that they both start at the origin, we can simply add or subtract the x,
¥, and z coordinates.

Cartesian vector sum
Suppose we have two generic three-space vectors in standard form, represented by ordered
triples as
a= (%02,
and
b = (be/byZb)

Their vector sum is
a+ b = [(xa + xb)’(ya +)’b)’(za + Zb)]

This sum can be found geometrically by constructing a parallelogram with vectors a and b
as adjacent sides. The sum vector a + b is the diagonal of the parallelogram. An example is
shown in Fig. 8-6. The figure doesn’t look like a parallelogram because we're looking at it in
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—Z

a+b The four points

lie at the vertices

4 of a parallelogram
(believe it or not!)

+Z T

Figure 8-6  Vector addition in Cartesian xyz space. The terminating points
of the three vectors a, b, and a + b, along with the origin, lie at
the vertices of a parallelogram. Perspective distorts the view.

perspective, and from an oblique angle. All three vectors project generally in our direction;
that is, they're all “coming out of the page.”

Cartesian negative of a vector

To find the Cartesian negative of a standard-form vector in xyz space, we take the negatives of
all three coordinate values. For example, if we have

a = (%))
then the Cartesian negative vector is
—a= (%)%

As in two-space, the Cartesian negative of a three-space vector always has the same magnitude
as the original, but points in the opposite direction.

Cartesian vector difference

Let’s look again at the two generic vectors

a= (X,,).2)
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and

b = (be/b,Zb)

Suppose we want to subtract b from a. We can do this by finding the Cartesian negative of b
and then adding that result to a, getting

a—b=a+ (-b) = {[(x, + (=)L,[0x + ()].[(z + (=2)]}
= [(%2 = %), (0 = ) (2 — )]

We can skip the “find-the-negative” step and simply subtract the coordinate values, but we
must be sure to keep the coordinates in the correct order if we do it that way.

An example

Let’s look again at the three standard-form vectors that we worked with a few minutes ago.
They are

a=(4,0,0)
b = (0,-5,0)
c=1(0,0,3)

Suppose we want to find the sum vector a + b. We add the x, , and z coordinates individually
to get

a+b=(4,0,0) + (0,=5,0) = {(4 + 0),[0 + (=5)],(0 + 0)}
= (4,-5,0)

If we add ¢ to the right-hand side of this sum, we get

(a+b) +c=(4,-5,0) +(0,0,3) = [(4 + 0),(=5 + 0),(0 + 3)]
= (4,-5,3)

Another example

Continuing with the same three vectors as previously, let’s find the sum b + ¢. We add the x,
9, and z coordinates individually to get

b + ¢ =(0,-5,0) + (0,0,3) = [(0 + 0),(=5 + 0),(0 + 3)]
=(0,-5,3)

Adding a to the left-hand side of this sum, we obtain

a+ (b +c)=(4,0,0) + (0,—5,3) = {(4 + 0),[0 + (-5)],(0 + 3)}
= (4,-5,3)
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Are you confused?

The previous example might lead you to ask, “Is vector addition associative in xyz space, just as
real-number addition is associative in ordinary algebra?” The answer is yes. The following proof
will show you why.

Here's a challengel!

Show that if a, b, and ¢ are standard-form vectors in Cartesian xyz space, then addition among
them is associative. That is

(@a+b)+c=a+(b+¢

Solution

Let’s begin by assigning generic names to the coordinates of each vector. Using the same style as
we've been working with all along, we can say that

a= (%,)2,)
b= (xbs}’bazb)
¢ = (Xo)20)

When we add a and b using the formula weve learned, we get

a+b=[(x,+x),0. + m)(2z + 2)]

Adding c to this sum on the right, again using the formula we’ve learned, we obtain

@+b) +c={[(e+x) +xLL0a+ ) + 1. [z + 2) + 2}

The associative law for addition of real numbers allows us to regroup each of the three coordinates
in the ordered triple to get

(a+b) +c={[x+ G+ 2.0+ O+ L[z + (2 + 21}
By definition, we know that

{le + (o + 2L+ O + 9] [z + (2 + 2) ]} =a+ (b + ¢
By substitution, we have

(@a+b)+c=a+(b+¢o
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Some Basic Properties

Here are some fundamental laws that apply to vectors and real-number scalars in xyz space.
We won't delve into the proofs. Most of these facts are intuitive, and resemble similar laws
in algebra. We've already seen a couple of them, but they’re repeated here so you can use this
section for reference in the future. Keep in mind that all of these rules assume that the vectors
are in standard form.

Commutative law for vector addition

When we add any two vectors in xyz space, it doesn't matter in which order the addition is
done. The resultant vector is the same either way. If a and b are vectors, then

at+b=b+a

Commutative law for vector-scalar multiplication

When we find the product of a vector and a scalar in xyz space, it doesnt matter which way
we do it. If a is a vector and £ is a scalar, then

ka=ak

Associative law for vector addition

When we add up three vectors in xyz space, it makes no difference how we group them. If a,
b, and c are vectors, then

(a+b)+c=a+(b+¢

Assaciative law for vector-scalar multiplication

Suppose that we have two scalars 4, and 4,, along with some vector a in Cartesian xyz space.
If we want to find the product 4,4,a, it makes no difference how we group the quantities. We
can write this rule mathematically as

kikya = (kiky)a = ky(k,a)

Distributive laws for scalar addition

Imagine that we have some vector a in xyz space, along with two real-number scalars 4, and
k. We can always be sure that

a(k, + k) = ak, +ak,
and
(kl + kz)a = kla + kza

The first rule is called the lefi-hand distributive law for multiplication of a vector by the sum
of two scalars. The second law is called the right-hand distributive law for multiplication of the
sum of two scalars by a vector.
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Distributive laws for vector addition

Suppose we have two vectors a and b in xyz space, along with a real-number scalar £. We can
always be certain that

kla+b)=/ra+ kb
and

(a+b)k=ak+bk

The first rule is called the left-hand distributive law for multiplication of a scalar by the sum
of two vectors. The second law is called the right-hand distributive law for multiplication of
the sum of two vectors by a scalar.

Unit vectors

Let’s take a close look at the “structures” of two different vectors a and b in xyz space, both of
which are expressed in the standard form. Suppose that their coordinates can be written as the
familiar generic ordered triples

a= (2,02,

and

b= (xbs)’b,zb)

Either of these vectors can be split up into a sum of three component vectors, each of which
lies along one of the coordinate axes. The component vectors are scalar multiples of mutually
perpendicular vectors with magnitude 1. We have

a= (2,02,
= (x,,0,0) + (0,9,,0) + (0,0,2,)
= x,(1,0,0) + »,(0,1,0) + 2,(0,0,1)

and

b = (xb)_yb’zb)
= (Xb,o,o) + (Oyyb)o) + (0,0,Zb)
= xb(l,0,0) +}’b(0,1,0) + zb(O)Oal)

The three vectors (1,0,0), (0,1,0), and (0,0,1) are called standard unit vectors. (We can call
them SUVs for short.) It’s customary to name them i, j, and k, such that

i=(1,0,0)
j=1(0,1,0)
k=(0,0,1)
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ty

Coordinates = (0, 1, 0)
Angles = (7/2, 0, n/2)

j Each axis division
is 1/5 of a unit

—Z

Coordinates = (1, 0, 0)

- Angles = (0, n/2, n/2)

+Z T
Coordinates =(0, 0, 1)
Angles = (n/2, 71/2, 0) _;/’

Figure 8-7 The three standard unit vectors i, j, and k in Cartesian xyz space.

Figure 8-7 illustrates the coordinates and direction angles of the three SUVs in Cartesian
three-space, where each axis division represents 1/5 of a unit. Note that each SUV is perpen-
dicular to the other two.

A generic example

Let’s see what happens when we add two generic vectors component-by-component. Again,
suppose we have

a= (x,,)2,)
and
b= (xb:yb’zb)
Expressed as sums of multiples of the SUVs, these two vectors are

a= (x,)02) = xi+yj+zk
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and
b = (¥, 00020) = 21 + 1j + 20k
When we add these components straightaway, we get
a+b=xi+yj+zk+xit+njt+ak

The commutative law for vector addition allows us to rearrange the addends on the right-
hand side of this equation to get

a+b=xi+xi+yjt+njt+zk+zak

Now let’s use the right-hand distributive law for multiplication of the sum of two scalars by a
vector to morph the previous equation into

a+b=0(,+x)i+@p+n)jt+z+ak

That’s the sum of the original vectors, expressed as a sum of multiples of SUVs.

A specific example

Suppose we're given a vector b = (-2,3,~7), and we're told to break it into a sum of multiples
of i, j, and k. We can imagine i as going 1 unit “to the right,” j as going 1 unit “upward,” and
k as going 1 unit “toward us.” The breakdown proceeds as follows:

b=(-2,3,-7) =-2x(1,0,0) + 3 x (0,1,0) + (=7) % (0,0,1)
=-2i+3j+ (-7)k=-2i+3j-7k

Are you confused?

By now you might wonder, “Must I memorize all of the rules mentioned in this section?” Not neces-
sarily. You can always come back to these pages for reference. But honestly, I recommend that you do
memorize them. If you take a lot of physics or engineering courses later on, you'll be glad that you did.

Dot Product

As we've been doing throughout this chapter, let’s revisit our generic standard-form vectors in
xyz space, defined as

a= (%))
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and
b= (be/b,Zb)
We can calculate the dot product a e b as a real number using the formula
aeb=2xx,+y)+22
Alternatively, it is
aeb=rn cos O,

where 7, is the magnitude of a, 7, is the magnitude of b, and 6, is the angle between a and b
as determined in the plane containing them both, rotating from a to b.

An example
Let’s find the dot product of the two Cartesian vectors
a=(2,34)
and
b=(-1,5,0)

We can call the coordinates x, = 2, y, = 3, z, = 4, x, = =1, ) = 5, and z, = 0. Plugging these
values into the formula, we get

aeb=xx+y)+22=2X(=1)+3x5+4x0
=2+15+0=13

Another example

Suppose we want to find the dot product of the two Cartesian vectors
a=(-4,1,-3)

and
b =(-3,6,6)

This time, we have x, = —4, y, = 1, 2, = =3, x, = =3, %, = 6, and z, = 6. When we substitute
these coordinates into the formula, we have

aeb=xx,+yp+z2=-4%X(3)+1xX6+(-3)x6
=12+6+(-18)=0
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Are you confused?

Do you wonder how two nonzero vectors can have a dot product of 02 If we look closely at the alterna-
tive formula for the dot product, we can figure it out. That formula, once again, is

aeb=rpcos O

The right-hand side of this equation will attain a value of 0 if at least one of the following is
true:

¢ The magnitude of a is equal to 0
¢ The magnitude of b is equal to 0
o The cosine of the angle between a and b is equal to 0

Neither of the vectors in the preceding example has a magnitude of 0, so we must conclude that

cos B, = 0. That can happen only when a and b are perpendicular to each other, so 6, is either 77 /2
or 37w /2. In the preceding example, the two vectors

a=(—4,1,-3)
and
b = (-3,6,6)

are mutually perpendicular. That’s not obvious from the ordered triples, is it?

Here's a challengel

Show that for any two vectors pointing in the same direction, their dot product is equal to the
product of their magnitudes. Then show that for any two vectors pointing in opposite directions,
their dot product is equal to the negative of the product of their magnitudes.

Solution

Imagine two vectors a and b that point in the same direction. In this situation, the angle 0,
between the vectors is equal to 0. If the magnitude of a is 7, and the magnitude of b is 7, then the
dot product is

aeb=rn cos Oy =rmncos0=rnX1=rn

Now think of two vectors c and d that point in opposite directions. The angle 8.4 between the vec-
tors is equal to 7. If the magnitude of ¢ is 7. and the magnitude of d is 7y, then the dot product is

ced=rr4cos O4=rrgcos T =rrgX (—1)=—rry
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Cross Product

The cross product a X b of two vectors a and b in three-dimensional space can be found
according to the same rules we learned for finding a cross product in polar two-space. We get
a vector perpendicular to the plane containing a and b, and whose magnitude 7.y, is given by

Taxb = Talb sin eab

where 7, is the magnitude of a, 7, is the magnitude of b, and 8,,, is the angle between a and b,
expressed in the rotational sense going from a to b.

When we want to figure out a cross product, it’s always best to keep the angle between
the vectors nonnegative, but not larger than 7. That is, we should restrict the angle to the
following range:

OSGJbSn'

If we look at vectors a and b from some vantage point far away from the plane containing
them, and if 6, turns through a half circle or less counterclockwise as we go from a to b, then
a X b points toward us. If 6, turns through a half circle or less clockwise as we go from a to b,
then a X b points away from us. In any case, the cross product vector is precisely perpendicular
to both the original vectors.

An example

Consider two vectors a and b in three-space. Imagine that they both have magnitude 2, but
their directions differ by /6. We can plug the numbers into the formula for the magnitude
of the cross product of two vectors, and calculate as follows:

Taxy = 7ol SIN By =2 X 2 X sin (M/6) =4 X 1/2=2
If the 7 /6 angular rotation from a to b goes counterclockwise as we observe it, then a X b

points toward us. If the 77/6 angular rotation from a to b goes clockwise as we see it, then
a X b points away from us.

Another example
Now think about two vectors ¢ and d, represented by ordered triples as
c=(1,1,1)
and
d=(-2,-2,-2)

Let’s find the cross product ¢ X d. From the information we've been given, we can see imme-
diately that d =—2c. That means the magnitude of d is twice the magnitude of ¢, and the two
vectors point in opposite directions. We can calculate the magnitude 7. of vector c as

re=(P+ 1+ 1) =(1+1+1)"=3"
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and the magnitude 74 of vector d as
ra=[(=2)2+ (=22 + (=2)?]"* = (4+ 4+ 4)'"* =122

When two vectors point in opposite directions, the angle between them is 7, whether we go
clockwise or counterclockwise. We now have all the information we need to figure out the
magnitude 74 of the cross product ¢ X d using the formula

Ford = 77g sin Bq = 32 x 122 X sin 7

=3"2x122x0=0

The cross product ¢ X d is the zero vector, because its magnitude is 0. Although we don’t yet
have a formula for figuring out cross products directly from ordered triples in xyz space, we
can infer from this result that

(13151) X (_2)_23_2) = (090)0)
where the bold times sign (X) denotes the cross product, not ordinary multiplication.

Are you confused?

The preceding result might make you wonder, “If two vectors point in exactly the same direction
or in exactly opposite directions is their cross product always the zero vector?” The answer is yes,
and it doesn’t depend on the magnitudes of the original two vectors. Let’s prove this fact now.

Here's a challengel!

Show that the cross product of any two vectors that point in the same direction or in opposite
directions, regardless of their magnitudes, is the zero vector.

Solution

When two vectors a and b point in the same direction, the angle 6,, between them is 0. In such a
situation, the magnitude 7., of the cross product is

Tax = Falp, SIN Oy = 7,73, sin 0 = 7,7, X 0 =0

Therefore, a X b = 0, because if a vector has a magnitude of 0, then it’s the zero vector by defini-
tion. When two vectors ¢ and d point in opposite directions, the angle 6,4 between them is 7, so
the magnitude 74 of the cross product is

Tod = ¥IgSIn Oy =rrgsin T =77y X 0=0

Again, we have ¢ X d = 0 by definition.
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Some More Vector Laws

Here are some more rules involving vectors. You'll find these useful for future reference if you
get serious about higher mathematics, physical science, or engineering.

Commutative law for dot product

When we figure out the dot product of two vectors, it doesn’t matter in which order we work
it. The result is the same either way. If a and b are vectors in three-space, then

aeb=bea

Reverse-directional commutative law for cross product

Suppose 6, is the angle between two vectors a and b as defined in the plane containing a and

, such that 0 € 8, < 7, and such that we're allowed to rotate in either direction. The magni-
b, such that 0 < 6,, < 7, and such that g
tude of the cross-product vector is a nonnegative real number, and is independent of the order
in which the operation is performed. This can be proven on the basis of the commutative
property for multiplication of real numbers. We have

Taxty = 7a7p SIN Oy
and
Toxa = Tb7, SIN Oy, = 7,7, sin O

The direction of b X a in space is exactly opposite that of a X b. Figure 8-8 can help us see why
this is true when we apply the right-hand rule for cross products (from Chap. 5) both ways.

axb

Right angle

Right angle

Plane containing
both vectors a and b

Figure 8-8 The vector b X a has the same
magnitude as vector a X b, but
points in the opposite direction.
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Distributive laws for dot product over vector addition

Imagine that we have three vectors a, b, and ¢ in three-space. We can always be sure that
as(b+c)=(aeb)+(aec)

This fact is called the left-hand distributive law for a dot product over the sum of two vectors.
It’s also true that

(a+b)ec=(aec)+(bec)

which, as you can probably guess, is the right-hand distributive law for the sum of two vectors
over a dot product.

Distributive laws for cross product over vector addition

Suppose that a, b, and ¢ are vectors in three-space. Then we can always be sure that
aX(b+c)=(@axb)+(axc

This property is known as the left-hand distributive law for a cross product over the sum of
two vectors. A similar rule exists when we cross multiply a sum of vectors on the right. The
right-hand distributive law for the sum of two vectors over a cross product tells us that

(a+b)xc=(axc)+(bxc)
We can expand these rules to pairs of polynomial vector sums, each having n addends (where
n=2,n=3,n=4, etc.), in the same way as multiplication is distributive with respect to

addition for polynomials in algebra. For example, for 7 = 2, we have the cross product of two
binomial vector sums, getting

(@a+b)x(c+d)=(axc)+(axd)+(bxc)+(bxd)
In the case of 7 = 3, the cross product of two #rinomial vector sums expands as

(a+b+c)x(d+e+f)=(axd)+(axe)+(@axf)+(bxd)+(bxe)+(bxf)
+(cxd)+(cxe)+ (cxf)

Dot product of cross products

Imagine that we have four vectors a, b, ¢, and d in three-space. We can rearrange a dot product
of cross products as

(axb)e(cxd) =(aec)(bed)—(aed)(bec)

We always end up with a scalar quantity (that is, a real number).
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Dot product of mixed vectors and scalars
Suppose that # and # are real numbers, and we have two three-space vectors a and b. We can
rearrange a dot product of scalar multiples as

taeub=1tu(aeb)
The result is always a scalar.
Cross product of mixed vectors and scalars

Once again, imagine that #and # are real numbers, and we have two three-space vectors a and
b. We can rearrange a cross product of scalar multiples as

taX ub = tu(a X b)
The result is always a vector quantity.

Here's a challengel!

Imagine two vectors in Cartesian xyz space whose coordinates are expressed as
a= (xas)/aaza)

and
b= (Xb,}'b,zb)

Derive a general expression for a X b in the form of an ordered triple.

Solution

Let’s go back to the concept of SUVs that we learned earlier in this chapter. These vectors are
i=(1,0,0)
j=(0,1,0)
k=(0,0,1)

Now let’s evaluate and list all the cross products we can get from these vectors. Using the right-
hand rule for cross products (from Chap. 5) along with the formula for the magnitude of the cross
product of vectors, we can deduce, along with the help of Fig. 8-7 on page 140, that

ixj=k
jxi=-k
ixk=-j
kxi=j
jxk=1i

kxj=-i
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We can write the cross product a X b as

aX b= (x,9.,2) X (:)0:25)

= (xd + 7, + 2.k) X (i + pj + zk)

Using the left-hand distributive law for the cross product over vector addition as it applies to
trinomials, we can expand this to

axX b= (xiXxi) + (i X pj) + (i X zk) + (1) X xd) + (0 X wj) + 0j X z0k)
+ (z.k X xd) + (z.k X pj) + (2.k X z.k)
With our newfound knowledge of how scalar multiplication and cross products can be mixed (see
“Cross product of mixed vectors and scalars”), we can morph each of the terms after the equals

sign to get

aX b =x,(1 X 1) + (1 X j) + %20 X k) + 30,G X 1) + y96G X j) + 720 X k)
+ 2.2,k X 1) + z,(k X j) + 2,2, (k X k)
A few moments ago, we proved that we always get the zero vector if we take the cross product of
any vector with another vector pointing in the same direction. That means the cross product of
any vector with itself is the zero vector. Because the zero vector has zero magnitude, we get the

zero vector if we multiply it by any scalar. With all this information in mind, we can rewrite the
previous equation as

axb=0+xpiXj) +xzdXKk) +yxG X1+ 0+ p2G ¥k + zxkXxi)+zpkxj)+0

Looking back at the six “factoids” involving pairwise cross products of i, j, and k, and getting rid of the
zero vectors in the previous equation, we can simplify it to

axX b =xpk + x2,(j) + yx0Kk) + y.zi + 20 + z96(-0)
Rearranging the signs, we obtain
axX b =xpk — xzj— youk + y.2l + zx0j — zi
This can be morphed a little more, based on rules we've learned in this chapter, getting
aXxXb=(.z —zm)i+ (20— xz)j + G — yx)k
This SUV-based equation tells us three things:
* The x coordinate of a X b is y,2, — 2,1

* The y coordinate of a X b is z,x,— x,2,
* The z coordinate of a X b is x, — y.xi,
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Knowing these three facts, we can write the x, y, and z coordinates of a X b as an ordered triple
to get

axXb= [(.z — 290),(2% — %.20), (X — 7:%)]

We've found a formula that allows us to directly calculate the cross product of two vectors in xyz
space when we’re given both vectors as ordered triples.

Here's an extra-credit challenge!

The formulas for the seven laws in this section were stated straightaway. We didn’t show how they
are derived. If you're ambitious (and you have a good pen along with plenty of blank sheets of
paper), derive these seven laws by working out the general arithmetic step by step. Following are
the names of those laws again, for reference:

e Commutative law for dot product

* Reverse-directional commutative law for cross product
* Distributive laws for dot product over vector addition
¢ Distributive laws for cross product over vector addition
* Dot product of cross products

* Dot product of mixed vectors and scalars

e Cross product of mixed vectors and scalars

Solution

You're on your own. That’s why you get extra credit! Here’s a hint: The work is rather tedious, but it’s
straightforward.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Find the magnitude 7, of the standard-form vector

a=(8,-1,-6)

in Cartesian xyz space. Assume the values given are exact. Using a calculator, round off
the answer to three decimal places.

2. Imagine a nonstandard vector a’ that originates at (=2,0,4) and terminates at the origin.
Convert a’ to standard form.

3. What's the standard form of the product 4b’, where b” originates at (2,3,4) and
terminates at (6,7,8)? Here’s a hint: Convert b’ to its standard form b first, and then
multiply that vector by 4.
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. Consider the two standard-form vectors
a=(-7,-10,0)
and
b=(8,-1,-6)

in xyz space. What is their dot product?

. Consider the two standard-form vectors
a=(2,6,0)
and
b=(7,4,3)

in xyz space. What is their cross product?

. Imagine two standard-form vectors f and g that point in the same direction in three-

space. Suppose that the magnitude 7 of f is equal to 4, and the magnitude 7, of g is
equal to 7. Whatis f e g?

Imagine two standard-form vectors f and g that point in opposite directions in three-
space. Suppose that the magnitude 7 of vector f is equal to 4, and the magnitude 7, of
vector g is equal to 7. What is f  g?

. Imagine two standard-form vectors f and g that are perpendicular to each other in

three-space, and we're looking at them from a point of view such that we see the angle
going counterclockwise from f to g as 77/2. Suppose that the magnitude 7 of vector f is
equal to 4, and the magnitude 7, of vector g is equal to 7. What is f e g2 What is g « f?

. Imagine two standard-form vectors f and g that are perpendicular to each other in

three-space, and we're looking at them from a point of view such that we see the angle
going counterclockwise from f to g as 77/2. Suppose that the magnitude 7 of vector f is
equal to 4, and the magnitude 7, of vector g is equal to 7. What is £ X g? What is g X f?

Consider two standard-form vectors a and b that both lie in the xy plane within
Cartesian xyz space. Suppose that a = (2,0,0), so it points along the +x axis. Suppose
that b has magnitude 2 and rotates counterclockwise in the xy plane, starting at (2,0,0),
then going around through (0,2,0), (=2,0,0), and (0,-2,0), finally ending up back at
(2,0,0). Now imagine that we watch all this activity from somewhere high above the

xy plane, near the +z axis. Describe what happens to the cross product vector a X b as
vector b goes through a complete counterclockwise rotation. What will we see if b keeps
rotating counterclockwise indefinitely?
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Alternative Three-Space

We can define the locations of points in three dimensions by methods other than the Cartesian
system. In this chapter, we'll learn about the two most common alternative coordinate schemes
for three-space.

Cylindrical Coordinates

152

Figure 9-1 is a functional diagram of a system of cylindrical coordinates. 1t’s basically a polar
coordinate plane of the sort we learned about in Chap. 3, with the addition of a height axis to
define the third dimension.

How it works

To set up a cylindrical coordinate system, we “paste” a polar plane onto a Cartesian xy plane,
creating a reference plane. We call the positive Cartesian x axis the reference axis. Imagine a
point P in three-space, along with its projection point P’ onto the reference plane. In this
context, the term “projection” means that P’ is directly above or below P, so a line connecting
the two points is perpendicular to the reference plane. We define three coordinates:

o The direction angle, which we call 6, is the angle in the reference plane as we turn
counterclockwise from the reference axis to the ray that goes out from the origin
through P’

o The radius, which we call 7, is the straight-line distance from the origin to P’.

o The height, which we call 4, is the vertical displacement (positive, negative, or zero)
from P’ to P.

These three coordinates give us enough information to uniquely define the position of P as
shown in Fig. 9-1. We express the cylindrical coordinates as an ordered triple

P=(6,r,h)
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Figure 9-1 Cylindrical coordinates define points in
three dimensions according to an angle, a
radial distance, and a vertical
displacement.

Strange values

We can have nonstandard direction angles in cylindrical coordinates, but it’s best to add or
subtract whatever multiple of 27 to bring the angle into the preferred range of 0 < 6 < 27.
If 6 > 27, then we're making at least one complete counterclockwise rotation from the
reference axis. If 6 < 0, then we're rotating clockwise from the reference axis rather than
counterclockwise.

We can have negative radii, but it’s best to reverse the direction angle if necessary to
keep the radius nonnegative. We can multiply a negative radius coordinate by —1 so it
becomes positive, and then add or subtract 7 to or from the direction angle to ensure that
0<0<2m

The height 4 can be any real number. We have 4> 0 if and only if P is above the reference
plane, # < 0 if and only if P is below the reference plane, and 4 = 0 if and only if P is in the
reference plane.

An example

In the situation shown by Fig. 9-1, the direction angle 6 appears to be somewhat more than
7 (half of a rotation from the reference axis) but less than 377/2 (three-quarters of a rotation).
The radius 7 is positive, but we can’t tell how large it is because there are no coordinate incre-
ments for reference. The height 4 is also positive, but again, we don’t know its exact value
because there are no reference increments.

153
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Cylinder
extends
upward
forever

r=k

Constant radius

Reference
plane

Cylinder
extends
downward
forever -z

Figure 9-2 When we set the radius equal to a constant
in cylindrical coordinates, we get an
infinitely tall vertical cylinder whose axis
corresponds to the vertical axis.

Another example

In Chap. 3, we learned that the equation of a circle in polar two-space is simple; all we have
to do is specify a radius. If we do the same thing in cylindrical three-space, we get a vertical
cylinder that’s infinitely tall, with an axis that corresponds to the vertical coordinate axis.
Figure 9-2 shows what we get when we graph the equation

r==Fk
in cylindrical three-space, where £ is a nonzero constant.

Still another example

If we set the height equal to a nonzero constant in cylindrical coordinates, we get the set of all
points at a specific distance either above or below the reference plane. Thats always a plane
parallel to the reference plane. Figure 9-3 is an example of the generic situation where

h=rk

In this case, 4 is a positive real-number constant, but we dont know the exact value because
the graph doesn’t show us any reference increments for the height coordinate.
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Figure 9-3 When we set the height equal to a constant
in cylindrical coordinates, we get a plane
parallel to the reference plane.

Are you confused?

Some texts will tell you that the cylindrical coordinates of a point are listed in an ordered triple
with the radius first, then the angle, and finally the height, as

P=(r,64)

Don'’t let this notational inconsistency baffle you. For any particular set of coordinate values,
we're talking about the same point, regardless of the order in which we list them. In this book, we
indicate the angle before the radius to be consistent with the polar-coordinate system described in
Chap. 3. When “traveling” from the origin out to some point 2 in space in the cylindrical system,
most people find it easiest to think of the reference-plane angle 6 first (as in “face northwest”),
then the radius 7 (as in “walk 40 meters”), and finally the height /4 (as in “dig down 2 meters to
find the treasure”). That’s why, in this book, we use the form

P=(6,h)

Here's a challengel!

What do we get if we set the direction angle 0 equal to a constant in cylindrical coordinates? As
an example, draw a diagram showing the graph of the equation

O0=m/2
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Solution

Let’s think back again to Chap. 3. In polar coordinates, if we set the direction angle equal to a
constant, we get a line passing through the origin. Cylindrical coordinates are simply a vertical
extension of polar coordinates, going infinitely upward and infinitely downward. If we hold 0
constant in cylindrical coordinates but allow the other coordinates to vary at will, we get a vertical
plane, which is an infinite vertical extension of a horizontal line. If £ is any real-number constant,

then the graph of
0=+F

is a plane that passes through the vertical axis. In the case where 6 = 77 /2, that plane also contains the
ray for the direction angle /2, as shown in Fig. 9-4.

+z
Plane
extends ]
forever in
all directions Constant
angle
T > +X
Reference
4 plane
0=r/2 — _

Figure 9-4 When we set the angle equal to a constant in
cylindrical coordinates, we get a plane that
contains the vertical axis.

Cylindrical Conversions

Conversion of coordinate values between cylindrical and Cartesian three-space is just as easy
as conversion between polar and Cartesian two-space. The only difference is that in three-
space, we add the vertical dimension. In xyz space, it’s 2; in cylindrical three-space, it’s 4.

Cylindrical to Cartesian

Let’s look at the simplest conversions first. These transformations are like going down a river;
we can simply “get into the boat” (sharpen our pencils) and make sure we don’t “run aground”
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(make an arithmetic error). Suppose we have a point (6,7,4) in cylindrical coordinates. We can
find the Cartesian x value of this point using the formula

x=rcos 0
The Cartesian y value is
y=rsin 0
The Cartesian z value is
z=h

An example

Consider the point (6,7,4) = (7,2,—3) in cylindrical coordinates. Let’s find the (x,y,2) representa-
tion in Cartesian three-space using the preceding formulas. Plugging in the numbers gives us

x=2cosm=2X%X(-1)=-2
y=2sinT=2x0=0
z=h=-3

Therefore, we have the Cartesian equivalent point
(x,)’,z) = (_290)_3)

Cartesian to cylindrical: finding 6

Going from Cartesian to cylindrical coordinates is like navigating up a river. We not only have
to “go against the current” (do some hard work), but we have to be sure we “take the right
tributary” (use the correct angle values).

Cartesian-to-cylindrical angle conversion is the same as the Cartesian-to-polar angle con-
version process that we learned in Chap. 3. That was messy, because we had to break the situ-
ation down into nine different ranges for 6. In the cylindrical context, the angle-conversion
process works as follows:

6=0 When x=0and y=0
by default that is, at the origin

6=0 When x>0and y=0
0= Arctan (y/x) When x>0 and y >0
0=m/2 When x=0and y>0
0= m+ Arctan (y/x) When x< 0 and y>0
O=rm When x<0andy=0
0= m+ Arctan (y/x) When x< 0 and y<0
0=37/2 When x=0and y< 0
0=21+ Arctan (y/x) When x>0 and y<0
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If you've forgotten what the Arctangent function is, and why we use a capital “A” to denote it,
you can check in Chap. 3 to refresh your memory. Notice that the Cartesian z value is irrel-
evant when we want to find the direction angle in cylindrical coordinates.

Cartesian to cylindrical: finding r

When we want to calculate the 7 coordinate in cylindrical three-space on the basis of a point
in Cartesian xyz space, we use the Cartesian two-space distance formula, exactly as we would
in the polar plane. The radius depends only on the values of x and y; the z coordinate is irrel-
evant. The 7 coordinate is therefore equal to the distance between the projection point P’ and
the origin in the xy plane, which is

r= (24 )"

Cartesian to cylindrical: finding h

When we want to change the Cartesian z value to the cylindrical 4 value in three-space, we
can make the direct substitution

h=z

An example

Let’s convert the Cartesian point (x,y,2) = (1,1,1) to cylindrical three-space coordinates. In this
situation, x =1 and y = 1. To find the angle, we should use the formula

0= Arctan (y/x)
because x> 0 and y > 0. When we plug in the values for x and y, we get
0= Arctan (1/1) = Arctan 1 = /4
When we input the values for x and y to the formula for 7, we get
r=(12+ 13" =27
Because z= 1, we know that
h=z=1
We've just found that the cylindrical equivalent point is

(O,r.h) = (m14,2"%,1)
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Are you confused?

We must pay close attention to the meaning of the radius in cylindrical coordinates. The cylindri-
cal radius goes from the origin to the reference-plane projection of the point whose coordinates we're
interested in. It does no# go straight through space to the point of interest, which is usually outside
the reference plane.

Here's a challengel!

Convert the Cartesian point (x,,2) = (=5,—12,8) to cylindrical coordinates. Using a calculator,
approximate all irrational values to four decimal places.

Solution
We have x =—5 and y = —12. To find the angle, we should use the formula

0=+ Arctan (y/x)
because x < 0 and y < 0. When we plug in x =—5 and y =—12, we get
0= 7+ Arctan [(—12)/(=5)] = w+ Arctan (12/5)

That is a theoretically exact answer, but it’s an irrational number. A calculator set to work in radians
(not degrees) allows us to approximate this to four decimal places as

0~=4.3176
When we input x =—5 and y = —12 to the formula for 7, we get
r=[(=5)+(-12)]'"* = (25 + 144)'* = 169'* = 13
Because z = 8, we know that
h=z=28
We've found that the cylindrical equivalent point is
(6,1,h) = (4.3176,13,8)

The value of 6 is approximate to four decimal places, while 7 and 4 are exact values.

Spherical Coordinates

Figure 9-5 illustrates a system of spherical coordinates for defining points in three-space. Instead
of one angle and two displacements as in cylindrical coordinates, we now use two angles and
one displacement.
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Figure 9-5 Spherical coordinates define points in three-
space according to a horizontal angle, a
vertical angle, and a radius.

How it works

In the spherical coordinate arrangement, we start with a horizontal Cartesian reference plane,
just as we do when we set up cylindrical coordinates. The positive Cartesian x axis forms the
) p ¢y p

reference axis. Suppose that we want to define the location of a point . Consider its projec-
tion, P’, onto the reference plane:

o The horizontal angle, which we call 6, turns counterclockwise in the reference plane
from the reference axis to the ray that goes out from the origin through P’.

o The vertical angle, which we call ¢, turns downward from the vertical axis to the ray
that goes out from the origin through P.

o The radius, which we call 7, is the straight-line distance from the origin to 2.

These three coordinates, taken all together, provide us with sufficient information to uniquely
define the location of P in three-space. We can express the spherical coordinates as an ordered
triple

P=(6,0,7)

Strange values

In spherical three-space, we can have nonstandard horizontal direction angles, but it’s always
best to add or subtract whatever multiple of 277 will keep us within the preferred range of
0<0<2m If 8= 2m, it represents at least one complete counterclockwise rotation from the
reference axis. If 6 < 0, it represents clockwise rotation from the reference axis.
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We can have nonstandard vertical angles, although things are simplest if we keep them
nonnegative but no larger than 7. Theoretically, all possible locations in space can be covered if
we restrict the vertical angle to the range 0 < ¢ < 7. If it’s outside this range, such as—7 < ¢ <0 or
< ¢ < 21, we can multiply the radius by —1, and then add or subtract 7 to or from ¢, and
we'll end up at the point we want. But those are confusing ways to get there!

The radius 7 can be any real number, but things are simplest if we keep it nonnegative. If
our horizontal and vertical direction angles put us on a ray that goes from the origin through
P, then > 0. If our direction angles put us on a ray that goes from the origin away from P2,
then 7 < 0. We have » = 0 if and only if P is at the origin. If we find ourselves working with
a negative radius, we should reverse the direction by adding or subtracting 7 to or from both
angles, keeping 0 < 0 < 2w and 0 < ¢ < 7. Then we can take the absolute value of the negative
radius and use it as the radius coordinate.

An example

In the situation of Fig. 9-5, the horizontal direction angle 8 appears to be somewhere between
7 and 37 /2. The vertical direction angle ¢ appears to be roughly 1 radian. We can’t be sure
of the exact values of these angles, because we don't have any reference lines to compare them
with. The radius 7 is positive, but we have no idea how large it is because there are no radial
coordinate increments.

Another example

Imagine that we set the horizontal direction angle 6 equal to a constant in spherical coordi-
nates. For example, let’s say that we have the equation

60=7xn/5

When we work in polar coordinates and set the direction angle equal to a constant, we get a
line passing through the origin. In spherical coordinates, the horizontal angle in the reference
plane is geometrically identical to the polar direction angle. Therefore, if 4 is any real-number
constant, the graph of

0=+F

is a plane that passes through the vertical axis. When 4 = 77 /5, that vertical plane also con-
tains the ray for the direction angle 777/5, as shown in Fig. 9-6.

Still another example

If we set the radius equal to a constant in spherical coordinates, we get the set of all points at
some fixed distance from the origin. That’s a sphere centered at the origin. Figure 9-7 shows
what happens when we graph the following equation:

r=k

in spherical three-space, where 4 is a nonzero constant.
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Figure 9-6 When we set the horizontal angle equal to a

constant in spherical coordinates, we get a plane
that contains the vertical axis.
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Figure 9-7 When we set the radius equal to a constant
in spherical coordinates, we get a sphere
centered at the origin.
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Are you confused?

Don’t get the wrong idea about the meaning of the radius in spherical coordinates. It’s not the
same as the cylindrical-coordinate radius! In spherical coordinates, the radius follows a straight-
line path from the origin to the point whose coordinates we're interested in. This line almost
never lies in the reference plane. In cylindrical coordinates, the radius goes from the origin to the
projection of the point in the reference plane. You can see the difference if you compare Fig. 9-1
with Fig. 9-5.

Are you still confused?

If you've read a lot of other pre-calculus texts (and I recommend that you do), you might notice
that the order in which we list spherical coordinates is different from the way it’s done in some
of those other texts. You might see the spherical coordinates of a point P go with the radius first,
then the horizontal angle, and finally the vertical angle, as

P=(r,0,9)

Theoretically, it doesn’t matter in which order we list the coordinates. For any particular values,
we're always working with the same point. When we want to get from the origin to a point in
spherical three-space, most people find it easiest to think of the horizontal angle 6 first (as in “face
southeast”), then the vertical angle ¢ (as in “fix your gaze at an angle that’s 77/6 radian from the
zenith”), and finally the radius 7 (as in “follow the string for 150 meters to reach the kite”). That’s
why we use the form

P=(6,¢.7)

Here's a challengel!

What sort of graph do we get if we set the vertical angle ¢ equal to a constant in spherical coordi-
nates? As an example, draw a diagram showing the graph of the following equation:

O=rml4

Solution

This situation doesn’t resemble anything we've seen so far in Cartesian, polar, or cylindrical coor-
dinates. If we hold the vertical angle constant in a spherical coordinate system, we get the set of
points formed by a line passing through the origin and rotated with respect to the vertical axis. If
k is a real-number constant, then the graph of

iy

is a double cone whose axis corresponds to the vertical axis and whose apex is at the origin, as
shown in Fig. 9-8.
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Figure 9-8 When we set the vertical angle equal to a

constant in spherical coordinates, we get a
double cone whose axis corresponds to the
vertical axis.

Spherical Conversions

Converting coordinates between xyz space and spherical three-space is a little tricky, but not
too difficult. Let’s think about a point P whose spherical coordinates are (6,¢,7) and whose

Cartesian coordinates

are (x,9,2).

Spherical to Cartesian: finding x

In spherical coordinates, the radius is usually outside of the reference plane, so we can't use it
rmulas as the cylindrical radius. But we can construct a projection radius
identical to the cylindrical radius: the distance from the origin to the projection point P’ in the
reference plane. In Fig. 9-9, the projection radius is called 7’. From this geometry, we can see
that 7" is equal to the true spherical radius times the sine of the vertical angle. As an equation,

directly in the same fo

we have

¥’ =rsin ¢
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The x value conversion formula from cylindrical coordinates, which we learned earlier in this
chapter, tells us that

x=17"cos O

where 0 is the horizontal direction angle, which is the same in spherical and cylindrical coor-
dinates. Substituting the quantity (7 sin @) for »” gives us

x=rsin ¢ cos 0

Spherical to Cartesian: finding y

When we found the cylindrical equivalent of the Cartesian y value, we took the radius in the
reference plane and multiplied by the sine of the direction angle in that plane. In the spheri-
cal-coordinate situation of Fig. 9-9, that translates to

y=r"sin O
where 0 is the horizontal direction angle. We can substitute (7 sin @) for 7’ to get

y=rsin $sin O

Spherical to Cartesian: finding z

Let’s look again at Fig. 9-9, and locate the projection point P* on the z axis, such that the
z values of P* and P are equal. We can see that P*, P, P’, and the origin form the vertices of a

+Z

Reference
axis

> +X

Reference
-y plane

4

Figure 9-9  Conversion between spherical and Cartesian
three-space coordinates involves several
geometric variables.



166  Alternative Three-Space

rectangle perpendicular to the reference plane. It follows that P*, P, and the origin are at the
vertices of a right triangle. By trigonometry, the z value of P* is equal to the spherical radius »
times the cosine of the vertical angle @. Because the z values of 2 and P” are the same, we can
deduce that the z value of P is given by

Z=1rcos @

Cartesian to spherical: finding r

Now let’s figure out how to get from Cartesian xyz space to spherical three-space. The radius
is the easiest coordinate to find, so let’s do it first. Recall that the spherical radius of a point is
its distance from the origin. Therefore, when we want to find the spherical radius 7 for point 2
in terms of its xyz space coordinates, we can apply the Cartesian three-space distance formula
to get

r= (P4 )"

Cartesian to spherical: finding 6

The horizontal angle in spherical coordinates is identical to its counterpart in cylindrical coor-
dinates, so we can use the conversion table from earlier in this chapter.

6=0 When x=0and y=0
by default that is, at the origin

0=0 When x>0 and y=0
0= Arctan (y/x) When x>0 and y >0
0=rm/2 When x=0and y >0
0=+ Arctan (y/x) When x <0 and y >0
6=rm When x< 0 and y=0
0= 7+ Arctan (y/x) When x<0and y<0
0=3m/2 When x=0and y <0
0=2m+ Arctan (y/x) When x>0 and y < 0

The Arccosine

Before we can find the vertical spherical angle for a point that’s given to us in Cartesian coor-
dinates, we must be familiar with the arccosine relation. It’s abbreviated arccos (cos™ in some
texts), and it “undoes” the work of the cosine function. For example, we know that

cos (m/3)=1/2

and

cos T=—1
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For things to work without ambiguity when we go the other way, we want the arccosine to be
a true function. To do that, we must restrict its range (output) to an interval where we don’t
get into trouble with ambiguity. By convention, mathematicians specify the closed interval
[0,7] for this purpose. That happens to be the ideal range of values for our vertical angle ¢
in spherical coordinates. When we make this restriction, we capitalize the “A” and write Arc-
cosine or Arccos to indicate that we're working with a true function. Then we can state the
above facts “in reverse” using the Arccosine function, getting

Arccos 1/2=m1/3
and
Arccos (-1)=rm
For any real number #, we can be sure that
Arccos (cos #) = u
Going the other way, for any real number v such that =1 < » < 1, we know that
cos (Arccos v) = v

We restrict v because the Arccosine function is not defined for input values less than —1 or
larger than 1.

Cartesian to spherical: finding ¢

We've learned how to find the vertical angle on the basis of the Cartesian coordinate z. That
formula is

z=rcos ¢
We can use algebra to rearrange this, getting
cos O=zlr

provided r# 0. When we examine Fig. 9-9, we can see that for any given point P, the absolute
value of z can never exceed 7, so we can be sure that —1 < z/r < 1. Therefore, we can take the
Arccosine of both sides of the preceding equation, getting

Arccos (cos ¢) = Arccos (z/7)
Simplifying, we obtain

¢ = Arccos (z/7)
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This formula works nicely if we know the value of 7. But we sometimes want to find the verti-
cal angle in terms of x, y, and z exclusively. We've found that

r=0"+y+2)"
so we can substitute to obtain

¢ = Arccos [z/ (& + y* + 25)"*]

An example
Consider a point P in spherical three-space whose coordinates are given by

P=(6,0,r) = B3m/2,m/2,5)

Let’s find the equivalent coordinates in Cartesian xyz space. We'll start by calculating the x
value. The formula is

x=rsin ¢ cos 0

When we plug in the spherical values, we get
x=5sin (w/2) cos (B3n/2)=5X1%x0=0

The formula for y is

y=rsin ¢sin O
Plugging in the spherical values yields

y=5sin (7/2) sin 3w/2) =5X1Xx-1=-5
The formula for z is
Z=1rcos ¢
When we put in the spherical values, we get
z=5cos (m/2)=5%x0=0

In xyz space, our point can be specified as

P=(0,-5,0)

Another example

Let’s convert the xyz space point (—1,—1,1) to spherical coordinates. To find the radius, we use
the formula

r=0"+y+2)"
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Plugging in the values, we get
r=[1)+ 1)+ 1] =(1+1+ 1) =3"
To find the horizontal angle, we use the formula
0=+ Arctan (y/x)
because x < 0 and y < 0. When we plug in the values for x and y, we get
0= 7+ Arctan [-1/(-1)] = 7+ Arctan 1 = 7+ /4 =51 /4
To find the vertical angle, we can use the formula
¢ = Arccos (z/7)
We already know that »=3"2 so
¢ = Arccos (1/3"?) = Arccos 372
Our spherical ordered triple, listing the coordinates in the order 2= (6,9,7), is

P=[57/4,(Arccos 37%),3

Are you confused?

When you come across a messy ordered triple like this, you might ask, “Is there any way to make it
look simpler?” Sometimes there is. In this case, there isn’t. You can get rid of the grouping symbols
if youre willing to use a calculator to approximate the values. But even if you do that, you'll have
to remember that in spherical coordinates, the first two values represent angles in radians, and the
third value represents a linear distance.

Here's a challengel!

Suppose we're given the coordinates of a point P in spherical three-space as
P=(6,¢,r) = 3m/4,m/4,3"7)

Find the coordinates of P in cylindrical coordinates.

Solution

We haven't learned any formulas for direct conversion between spherical and cylindrical coordi-
nates, so we must convert to Cartesian coordinates first, and then to cylindrical coordinates from
there. The Cartesian x value is

x=rsin ¢ cos 8= 3" sin (7 /4) cos (37 /4)
= 31/2 X 21/2/2 X (_21/2/2) = _31/2/2
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The Cartesian y value is

y=rsin @sin 0= 3" sin (7 /4) sin 37 /4)
— 31/2 % 21/2/2 X 21/2/2 — 31/2/2

The Cartesian z value is
z=rcos ¢=3"* cos (/4) = 3> x 22/2 = 6'?/2
Our Cartesian ordered triple is therefore
P=(x,2) = (-=3"%/2,3"%/2,6"*/2)

Now let’s convert these coordinates to their cylindrical counterparts. We have

x==3"2/2
and

y=3"12
To find the cylindrical direction angle 6, we use the formula

0=+ Arctan (y/x)

because x < 0 and y > 0. When we plug in the values for x and y, we get

0=+ Arctan [(3"%/2) / (-3"%/2)] = mw+ Arctan (—1)
=n+ (-n/4)=3m/4
This is the same as the horizontal direction angle in the original set of spherical coordinates, as we
should expect. (If things hadn’t come out that way, we'd have made a mistake!) When we input the

values for x and y to the formula for the cylindrical radius 7, we get

r= [(_31/2/2)2 + (31/2/2)2]1/2 = (3/4 4L 3/4)1/2
= (6/4)"*=6"/2

We calculated that z = 6'%/2, so the cylindrical height 4 is
h=z=06"/2
We've found that the cylindrical equivalent point is

(6,1,h) = 3m/4,6'/2,6"%/2)
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1.

Describe the graphs of the following equations in cylindrical coordinates. What would
they look like in Cartesian xyz space?

6=0
r=0
h=0

. Plot the point (6,,4) = (37/4,6,8) in the cylindrical coordinate system.
. Consider the point (0,,5) = (7/4,0,1) in cylindrical coordinates. Find the equivalent of

this point in Cartesian xyz space.

. Consider the point (—4,1,0) in xyz space. Find the equivalent of this point in cylindrical

three-space. First, find the exact coordinates. Then, using a calculator, approximate the
irrational coordinates to four decimal places.

. In the chapter text, we used the conversion formulas to find that the cylindrical

equivalent of (x,3,2) = (1,1,1) is (6,n,h) = (/4,2'2,1). Convert these coordinates back to
Cartesian xyz coordinates to verify that the result we got was correct and unambiguous.

Describe the graphs of the following equations in spherical coordinates. What would
they look like in Cartesian xyz space?

N S O
Il
S o o

Plot the point (6,¢,7) = 37 /4,7/4,8) in the spherical coordinate system.

8. Consider the point (6,9,7) = (7/4,0,1) in spherical coordinates. Find the equivalent of

10.

this point in Cartesian xyz space.

. Consider the point (—4,1,0) in xyz space. Find the equivalent of this point in spherical

three-space. First, find the exact coordinates. Then, using a calculator, approximate the
irrational coordinates to four decimal places.

Work the final “challenge” backward to verify that we did our calculations correctly.
Consider the point P in cylindrical three-space given by

P=(6,1,h) = [3m14,6""/2,6"/2]

Find the coordinates of P in Cartesian coordinates, and from there, convert to spherical
coordinates.
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This is not a test! It’s a review of important general concepts you learned in the previous nine
chapters. Read it through slowly and let it sink in. If youre confused about anything here, or
about anything in the section you've just finished, go back and study that material some more.

Chapter 1
Question 11

What's the difference between an open interval, a half-open interval, and a closed interval?

Answer 1-1

All three types of intervals are continuous spans of values that a variable can attain between a
specific minimum and a specific maximum, which are called the extremes. But there are subtle
differences between the three types as listed below:

 Inan open interval, neither extreme is included.
e In a half-open interval, one extreme is included, but not the other.
e In a closed interval, both extremes are included.

Question 12

Imagine two real numbers # and 4, such that 2 < 4. These numbers can be the extremes of
four different intervals: one open, two half-open, and one closed. How can we denote these
four intervals for a variable x?

Answer 12

If we include neither 2 nor 4, we have an open interval where 2 < x < b. We can write

x € (a,b)
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which means “x is an element of the open interval (2,6).” If we include 2 but not 4, we have a
half-open interval where 2 < x < 6. We can write

x € [a,b)

which translates to “x is an element of the half-open interval [2,6).” If we include & but not 4,
we have an open interval where 2 < x < 6. We write

x € (a,b]

which means “x is an element of the half-open interval (4,6].” If we include both 2 and 4, we
have a closed interval where 2 < x < 5. We can write

x € [a,b]

»

which means “x is an element of the closed interval [4,5]

Question 1-3

What point of confusion must we avoid when working with interval notation?

Answer 1-3

We must never confuse an open interval with an ordered pair, which uses the same notation.
If we pay close attention to the context in which the expression appears, we shouldnt have
trouble.

Question 1-4

Relations and functions are operations that map specific values of a variable into specific val-

ues of another variable. There’s an important distinction between a relation and a function.
What is it?

Answer 1-4

In a relation, we can have more than one value of the dependent (or output) variable for a sin-
gle value of the independent (or input) variable. In a function, we're allowed no more than one
output for any given input. All functions are relations, but not all relations are functions.

Question 1-5

The Cartesian plane can be used for graphing relations and functions between an independent
variable and a dependent variable. The plane is divided into four sections, called quadrants.
How do we identify them?

Answer 1-5

In the first quadrant (usually the upper right), both variables are positive. In the second quadrant
(usually the upper left), the independent variable is negative and the dependent variable is
positive. In the third quadrant (usually the lower left), both variables are negative. In the
fourth quadrant (usually the lower right), the independent variable is positive and the dependent
variable is negative.
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Question 1-6

Suppose we have a point S in Cartesian two-space that is represented by the ordered pair (x,,y,).
We can write this as

S= (x5

What's the straight-line distance &, between S and the coordinate origin? What’s the minimum
possible distance between S and the origin? Can the distance be negative? What’s the maxi-
mum possible distance?

Answer 1-6

We can find the distance using the formula that we derived from the Pythagorean theorem in
geometry. In this situation, the formula is

d= (2 +y2)'"

The minimum possible distance between S and the origin is zero, which occurs if and only if
x,=0and y,= 0, so that

§= (x99 = (0,0)
We can never have a negative distance. There is no maximum possible distance between S and

the origin. We can make it as large as we want by making x, or y, (or both) huge positively or
huge negatively.

Question 1-7
Imagine two points in Cartesian two-space, called S and 7; such that

S= (x5
and
T= (xt)_yt)

What's the straight-line distance 4, going from § to 7? What's the straight-line distance d,
going from 7 to §? Does it make any difference which way we go?

Answer 1-7
If we go from S to 7, the distance between the points is

dy= [0, —x)* + (3, — )1

If we go from 7'to S, the distance is

dy= [0, —x)* + (3. — )1
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Figure 10-1 Illustration for Question and Answer 1-8.

It doesn’t matter which way we go when we want to determine the straight-line distance
between two points. Therefore, 4, = 4,

Question 1-8

In Fig. 10-1, what do the expressions Ax and Ay mean? What’s the straight-line distance &
between the two points, based on the values of Ax and Ay?

Answer 1-8

We read Ax as “delta x,” which means “the difference in x.” We read Ay as “delta y,” which
means “the difference in y.” The straight-line distance o between the points can be found by
squaring Ax and Ay individually, adding the squares, and then taking the nonnegative square
root of the result, getting

d= (A + A"

Question 1-9

Suppose we want to find the midpoint of a line segment connecting two known points in the
Cartesian xy plane. How can we do this?

Answer 1-9

We average the x coordinates of the endpoints to get the x coordinate of the midpoint, and
we average the y coordinates of the endpoints to get the y coordinate of the midpoint.
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Question 1-10

Once again, imagine two points S and 7"in the Cartesian plane with the coordinates

8= (xy7)

and

T'= (xny,)
What are the coordinates of the point B that bisects the line segment connecting S and 77

Answer 1-10

The point B is the midpoint of the line segment. When we follow the procedure described in
Answer 1-9, we obtain the coordinates (x;,y,) of point B as

(Xb))/é) = [(X, + xt)/za()/: +)/t)/2]

Chapter 2
Question 2-1
What is a radian?

Answer 2-1

A radian is the standard unit of angular measure in mathematics. If we have two rays point-
ing out from the center of a circle, and those rays intersect the circle at the endpoints of an
arc whose length is equal to the circle’s radius, then the smaller (acute) angle between the rays
measures one radian (1 rad).

Question 22

How many radians are there in a full circle? In 1/4 of a circle? In 1/2 of a circle? In 3/4 of a
circle?

Answer 22

There are 27 rad in a full circle. Therefore, 1/4 of a circle is /2 rad, 1/2 of a circle is 7 rad,
and 3/4 of a circle is 37/2 rad.

Question 2-3

Suppose we have an angle whose radian measure is 771/6. What fraction of a complete circular
rotation does this represent?

Answer 2-3

Remember that an angle of 27 represents a full rotation. The quantity 7/6 is 1/12 of 27, so
an angle of 71/6 represents 1/12 of a rotation. Therefore, an angle of 77/6 represents 7/12 of
a rotation.
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Each axis division -
is 1/4 unit

Figure 10-2 Illustration for Questions and Answers
2-4 through 2-9. Each axis division
represents 1/4 unit.

Question 2-4

In Fig. 10-2, the gray circle is a graph of the equation x* + 3 = 1. The point (xo,),) lies on this
circle. A ray from the origin through (x,)) subtends an angle 6 going counterclockwise from
the positive x axis. How can we define the sine of the angle 6?2

Answer 2-4
The sine of 8 as shown in Fig. 10-2 is equal to y,. Mathematically, we write this as

sin 9 =Jo

Question 2-9

How can we define the cosine of the angle 8 in Fig. 10-2?

Answer 2-§

The cosine of 0 is equal to x,. Mathematically, we write this as

cos 0= x,

Question 2-6
How can we define the tangent of the angle 0 in Fig. 10-2?
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Answer 2-6

The tangent of O is equal to y, divided by x;, as long as x; is nonzero. If x, = 0, then the tangent
of the angle is not defined. Mathematically, we have

tan 0= yy/xo & % # 0

The double-headed, double-shafted arrow (<) is the logical equivalence symbol. It translates to
the words “if and only if.” We can also define the tangent as

tan @ =sin B/cos 6 < cos %0

Question 27

How can we define the cosecant of the angle 0 in Fig. 10-22

Answer 2-7

The cosecant of 6 is equal to the reciprocal of y,, as long as y, is nonzero. If y, = 0, then the
cosecant is not defined. Mathematically, we have

cscO=1/y = 5 #0
We can also define the cosecant as
csc @=1/sin < sin %0

Question 2-8

How can we define the secant of the angle 6 in Fig. 10-2?

Answer 2-8

The secant of 6 is equal to the reciprocal of x,, as long as x, is nonzero. If x, = 0, then the
secant is not defined. Mathematically, we have

sec0=1/xy & x, 20
We can also define the secant as
sec @=1/cos 0 < cos 0#0

Question 2-9
How can we define the cotangent of the angle 0 in Fig. 10-2?

Answer 2-9

The cotangent of 0 is equal to x, divided by yy, as long as y, is nonzero. If y, = 0, then the
cotangent is not defined. Mathematically, we have

cot O=xp/yy < 9 # 0
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We can also define the cotangent as
cot0=1/tan 0 & tan O#0
or as
cot O=cos B/sin 0 < sin 0% 0

Question 2-10

What are the Pythagorean identities for trigonometric functions? Which, if any, of these
should be memorized?

Answer 2-10

The Pythagorean identities are the three formulas

sin? @+ cos®> 0= 1
sec? @—tan’ 0=1

csc? O—cot? =1

The first of these is worth memorizing, because it comes up quite often in applied mathemat-
ics and engineering. The second and third identities can be derived from the first one.

Chapter 3
Question 3-1

How are variables and points portrayed on the polar-coordinate plane?

Answer 3-1

The independent variable is rendered as a direction angle 6, expressed counterclockwise from
a reference axis. This reference axis normally goes outward from the origin toward the right (or
“due east”), in the same direction as the positive x axis in the Cartesian xy plane. The depen-
dent variable is rendered as a radius 7, expressed as the straight-line distance from the origin.
Points in the plane are expressed as ordered pairs of the form (6,7), as shown in Fig. 10-3. In
some texts, the ordered pair is written as (,6).

Question 32

Can a point in polar coordinates have a negative direction angle, or an angle that represents a
full rotation or more?

Answer 32

Yes. If 6< 0, it represents clockwise rotation from the reference axis. If 6 > 27, it represents at
least one complete counterclockwise rotation from the reference axis.

Question 3-3

Can a point in polar coordinates have a negative radius?
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Figure 10-3  llustration for Question and Answer 3-1.

Answer 3-3

Yes. If 7 < 0, we can multiply 7 by —1 so it becomes positive, and then add or subtract 7z to or
from the direction angle, keeping it within the preferred range 0 < 6 < 27.

Question 3-4

How we can we portray a relation or function in polar coordinates when the independent
variable is 8 and the dependent variable is ?

Answer 3-4

We can write down an equation with 7 on the left-hand side and the name of the function fol-
lowed by 6 in parentheses on the right-hand side. For example, if our function is g, we write

r=g(6)

and read it as “r equals g of 6.”

Question 3-9

If we set the polar-coordinate angle equal to a constant, say 4, what graph do we get?

Answer 3-9

The graph is a straight line passing through the origin. The line appears at an angle of 4 radians
with respect to the reference axis.

Question 3-6

If we set the polar-coordinate radius equal to a constant, say 72, what graph do we get?
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Answer 3-6

The graph a circle centered at the origin, so that every point on the circle is 7 units from the
origin.
Question 3-7

Suppose we have a point (6,7) in polar coordinates. How can we convert this to coordinates
in the Cartesian xy plane?

Answer 3-7

We can convert the polar point (6,7) to Cartesian (x,y) using the formulas
x=rcos 0

and
y=rsin O

Question 3-8
Suppose we have a point (x,y) in the Cartesian plane. What's the polar radius 7 of this point?

Answer 3-8

The polar radius of a point is its distance from the origin. We can use the formula for the
distance of a point from the origin to find that

r= (24 )"

This gives us a positive value for the radius, which is preferred.

Question 3-9
Suppose we have a point (x,) in the Cartesian plane. What's the polar angle 6 of this point?

Answer 3-9

This problem breaks down into following nine cases, depending on where in the Cartesian
plane our point (x,y) lies:

If x=0and y =0, then 8= 0 by default.

If x> 0and y=0, then 6= 0.

If x>0 and y > 0, then 8= Arctan (y/x).

If x=0and y> 0, then 8=1/2.

If x<0and y> 0, then 0= 7+ Arctan (y/x).
Ifx<0and y=0, then 8=

If x<0and y<O0, then 0= 7+ Arctan (y/x).
If x=0and y<O0, then 8=37/2.

If x> 0and y <0, then 8= 27+ Arctan (y/x).

If we follow this process carefully, we always get an angle in the range 0 < 8 < 27, which is
preferred.
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Question 3-10

What does “Arctan” mean in the conversions listed in Answer 3-9?

Answer 3-10

It stands for “Arctangent.” That’s the function that undoes the work of the trigonometric tan-
g g

gent function. The domain of the Arctangent function is the entire set of real numbers. The

range is the open interval (=7/2,7/2). For any real number # within this interval, we have

Arctan (tan ) = u
Conversely, for any real number v, we have

tan (Arctan v) = v

Chapter 4
Question 4-1

What is a vector?

Answer 4-1

A vector is a quantity with two independent properties: magnitude and direction. A vector
can also be defined as a directed line segment having an originating point (beginning) and a
terminating point (end).

Question 42

What's the standard form of a vector in the xy plane? What's the standard form of a vector in
the polar plane? What'’s the advantage of putting a vector into its standard form?

Answer 42

In any coordinate system, a vector is in standard form if and only if its originating point is at
the coordinate origin. The standard form allows us to uniquely define a vector as an ordered
pair that represents the coordinates of its terminating point alone.

Question 4-3

How can we find the magnitude of a standard-form vector b in the xy plane whose terminat-
ing point has the coordinates (x;,1,)?

Answer 4-3

The magnitude of b, which we can write as #, is found by using the formula for the distance

of the terminating point from the origin. In this case, we get
— 2 2\1/2
= (" +n)

In some texts, the magnitude of b would be denoted as |b| or &.

Question 4-4

How can we find the direction of a standard-form vector b in the xy plane whose terminating
point has the coordinates (xi,,,)?
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Answer 4-4

We find the polar direction angle of the point (x,y,). If we call this angle 6,, the process can
be broken down into the following nine possible cases:

If x,= 0 and y, =0, then 6, = 0 by default.

If x,> 0 and y, = 0, then 6, =

If x,> 0 and y, > 0, then 6, = Arctan (/).
Ifxb 0 and > 0, then 9b /2.

If x, < 0 and y, > 0, then 6, = w+ Arctan (y/x,).
If x, < 0 and 3, = 0, then 6, =

If x, < 0 and y, < 0, then 6, = w+ Arctan (y/x,).
If x,= 0 and y, <0, then 6,=37/2.

If x,> 0 and y, < 0, then 6, =27+ Arctan (j/x,).

In some texts, the direction of b is denoted as dir b.

Question 4-9

Imagine two vectors a and b in the xy plane, in standard form with terminating-point coor-
dinates

a=(x,),)
and
b = (i,

How can we find the sum of these vectors?

Answer 4-5

We calculate the sum vector a + b using the formula
a+t+ b = [(xa + xb):(_ya +)’b)]

Question 4-6

How can we calculate the Cartesian negative of a vector that’s in standard form? How does the
Cartesian negative compare with the original vector?

Answer 4-6

We take the negatives of both coordinate values. For example, if we have
b = (xb))’b)
then its Cartesian negative is
_b = (_xby__yb)

The Cartesian negative has the same magnitude as the original vector, but points in the opposite
direction.
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Question 4-7

Imagine two Cartesian vectors a and b, in standard form with terminating-point coordinates

a=(x,,0,)

and

b = (xb,_yb)
How can we find a — b? How can we find b — a? How do these two vectors compare?

Answer 4-7

We calculate the difference vector a — b using the formula

a—b= [(Xa - Xb))()’a —)’b)]

We find difference vector b — a by reversing the order of subtraction for each coordinate,
getting

b—a={[(x—x),(n—1)]

In the Cartesian plane, the difference vector b — a is always equal to the negative of the dif-
ference vector a — b.

Question 4-8

Suppose we have a vector expressed in polar form as
c=(6o7)

where 6, is the direction angle of ¢, and 7, is the magnitude of ¢. How can we convert ¢ to a
standard-form vector (x.,y.) in the Cartesian plane?

Answer 4-8

We use formulas adapted from the polar-to-Cartesian conversion. We get
(xeye) = [(7c cos 6o), (7. sin 6,)]

Question 4-9

What restrictions apply when we work with vectors in the polar-coordinate plane?

Answer 4-9

A polar vector is not allowed to have a negative radius, a negative direction angle, or a direc-
tion angle of 27 or more. These constraints prevent ambiguities, so we can be confident that
the set of all polar-plane vectors can be paired off in a one-to-one correspondence with the set
of all Cartesian-plane vectors.
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Question 4-10

Suppose were given two vectors in polar coordinates. What's the best way to find their sum
and difference? What's the best way to find the negative of a vector in polar coordinates?

Answer 4-10

The best way to add or subtract polar vectors is to convert them to Cartesian vectors in stan-
dard form, then add or subtract those vectors, and finally convert the result back to polar
form. The best way to find the negative of a polar vector is to reverse its direction and leave
the magnitude the same. Suppose we have

a=(6,7)
If 0 < 6, < 7, then the polar negative is
—a=[(6,+ 7),7.]
If # < 0, <27, then the polar negative is

—a=[(0,— )]

Chapter 5
Question 5-1

What's the left-hand Cartesian product of a scalar and a vector? What's the right-hand Cartesian
p g
product of a vector and a scalar? How do they compare?

Answer 5-1

Consider a real-number constant 4, along with a standard-form vector a defined in the xy
plane as

a = (¥))
The left-hand Cartesian product of # and a is
ka = (kx,.ky,)
The right-hand Cartesian product of a and £ is
ak = (x.k,y.k)

The left- and right-hand products of a scalar and a Cartesian vector are always the same. For
all real numbers % and all Cartesian vectors a, we can be sure that

ka=ak

Question 52

What's the left-hand polar product of a positive scalar and a vector? What's the right-hand
polar product of a vector and a positive scalar? How do they compare?
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Answer 52

Imagine a polar vector a with angle 6, and radius 7, such that
a=(6,n)
When we multiply a on the left by a positive scalar 4., we get
kia = (0,,k.7,)
When we multiply a on the right by 4., we get
ak, = (0,,7.k.)

The left- and right-hand polar products of a positive scalar and a polar vector are always the
same. For all positive real numbers 4, and all polar vectors a, we can be sure that

ka=ak,

Question 9-3

What'’s the left-hand polar product of a negative scalar and a vector? What’s the right-hand
polar product of a vector and a negative scalar? How do they compare?

Answer 5-3

Once again, suppose we have a polar vector a with angle 6, and radius 7, such that
a=(6,7)
When we multiply a on the left by a negative scalar £, we get
ka=[(6,+7),(—kr)]
if0<6,<m and
ka=[(6,—),(—kr)]

if © < 6, < 27. Because k_ is negative, —k_ is positive, so —k_7, is positive, ensuring that we get
a positive radius for the resultant vector. If we multiply a on the right by 4, we get

ak— = [(ea + ﬂ'),}"a(_k,)]
if0<6,<mand

ak_=[(6,— 7),n(—k)]
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if m < 6, <2m. Because k_ is negative, —k_ is positive, so 7,(—£.) is positive, ensuring that we
get a positive radius for the resultant vector. For all negative real numbers 4_ and all polar
vectors a,

ka=ak

Question 5-4

Suppose we're given two standard-form vectors a and b, defined by the ordered pairs
a = (x0)

and
b= (xb’)’b)

What's the Cartesian dot product a « b? What's the Cartesian dot product b « a? How do they
compare?

Answer 9-4

The Cartesian dot product a « b is a real number given by
aeb=uxx+y

and the Cartesian dot product b e a is a real number given by
bea= XpX, T YpYa

The Cartesian dot product is commutative, so for any two vectors a and b in the xy plane, we
can be confident that

aeb=Dbea

Question 5-9

Imagine a polar vector a with angle 6, and radius 7, such that
a=(0,7)

and a polar vector b with angle 6, and radius #, such that
b= (6,n)

What's the polar dot product a « b?

Answer 5-9

Let 6, — 6, be the angle as we rotate from a to b. The polar dot product a e b is given by the
formula

aeb=rmncos (6,—0)
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Question 5-6

Consider the same two polar vectors as we worked with in Question and Answer 5-5. What's
the polar dot product b « a?

Answer 9-6

We can define this dot product by reversing the roles of the vectors in the previous problem. Let

6, — 6, be the angle going from b to a. The polar dot product b  a is given by the formula

bea=1#y7,cos (0,— 6,)

Question 57

How do the polar dot products a « b and b « a, as defined in Answers 5-5 and 5-6,
compare?

Answer 57

For any two vectors a and b, the polar dot product is commutative. That is

aeb=bea

Question -8

Imagine a polar vector ¢ with angle 6, and radius 7, such that
c=(6,7)

and a polar vector d with angle 6, and radius 7y, such that
d=(6p74)

What's the polar cross product ¢ X d?

Answer 5-8

Imagine that we start at vector ¢ and rotate counterclockwise until we get to vector d, so we
turn through an angle of 6; — 6.. Suppose that 0 < 6, — 6, < 7. To calculate the magnitude 7.4
of the cross-product vector ¢ X d, we use the formula

Texd = 7cTd sin (ed - ec)

In this situation, ¢ X d points toward us. If 7 < 6; — 6, < 27, we can consider the difference
angle to be 27+ 6, — 6,. Then the magnitude of ¢ X d is

Tod = rrgsin Qm+ 6.— 6,)

and it points away from us.
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Question 5-9
What's the right-hand rule for cross products?

Answer 5-9

Consider again the two vectors ¢ and d that we defined in Question 5-8, and their differ-
ence angle 6, — 6, that we defined in Answer 5-8. If 0 < 6, — 6. < 7, point your right thumb
out, and curl your fingers counterclockwise from ¢ to d. If < 8, — 6, < 27, point your right
thumb out, and cutl your right-hand fingers clockwise from ¢ to d. Your thumb will then
point in the general direction of ¢ X d. The vector ¢ X d is always perpendicular to the plane

defined by c and d.

Question 5-10

How do the polar cross products of two vectors ¢ X d and d X ¢ compare?

Answer 5-10

They have identical magnitudes, but they point in opposite directions.

Chapter 6
Question 6-1

What's the unit imaginary number? What’s the j operator?

Answer 6-1

These expressions both refer to the positive square root of —1. If we denote it as j, then
]- — (_1)1/2

and

Question 62

How is the set of imaginary numbers “built up”?> How do we denote such numbers?

Answer 6-2

If we multiply 7 by a nonnegative real number 4, we get a nonnegative imaginary number. If we
multiply by a negative real number —a, we get a negative imaginary number. We denote non-
negative imaginary numbers by writing j followed by the real-number coefficient. If 2 > 0, then

JXa=aXj=ja

We denote negative imaginary numbers as — followed by the absolute value of the real-number
coefficient. If —2 < 0, then

jX(—a)=—aXj=—ja



190  Review Questions and Answers

Question 6-3

How is the set of complex numbers “built up”? How do we denote such numbers?

Answer 6-3

A complex number is the sum of a real number and an imaginary number. If # is a real number
and & is a nonnegative real number, then the general form for a complex number is

a+jb
If 2 is a real number and —4 is a negative real number, then we have
a+ j(=b)

but it’s customary to write the absolute value of —4 after 7, and use a minus sign instead of a
y J g
plus sign in the expression. That gives us the general form

a—jb
Question 6-4

How do the complex number 0 + j0, the pure real number 0, and the pure imaginary number
7O compare?

Answer 6-4
They are all identical.

Question 6-9

How do we find the sum of two complex numbers z + jb and ¢ + jd? How do we find their
difference? How do we find their product? How do we find their ratio?

Answer 6-9

When we want to add, we use the formula
(a+jb)+ (c+jd)=(a+c) +j(b+d)
When we want to subtract, we use the formula
(a+jb)—(c+jd)=(a—c) +jb—d)
When we want to multiply, we use the formula
(a+ jb)(c+ jd) = (ac— bd) + j(ad + bc)

When we want to find the ratio, we use the formula
(a+7b) | (c+jd) = [(ac+ bd) | (& +d*)] +j[(bc—ad) | (¢ + d?*)]

In a complex-number ratio, the denominator must not be equal to 0 + ;0.
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Question 6-6

What are complex conjugates? What happens when we add a complex number to its conju-
gate? What happens when we multiply a complex number by its conjugate?

Answer 6-6

Complex conjugates have identical coefficients, but opposite signs between the real and imag-
inary parts, as in

a+jb
and
a—jb
When we add a complex number to its conjugate, we get
(a+jb) + (a—jb) =2a
When we multiply a complex number by its conjugate, we get
(a+jb)a—jb)y=a+ &

Question 6-7

What's the Cartesian complex-number plane? What’s the polar complex-number plane? How
are complex vectors defined in these planes?

Answer 6-7

Figure 10-4 shows a Cartesian complex-number plane. The horizontal axis portrays the real-
number part, and the vertical axis portrays the imaginary-number part. A Cartesian complex
vector is rendered in standard form, going from the origin to the terminating point corre-
sponding to the complex number. Figure 10-5 shows a polar complex-number plane. Polar
complex vectors are defined in terms of their direction angle and magnitude, instead of their
real and imaginary parts. Assuming that the axis divisions in Fig. 10-4 are the same size as
the radial divisions in Fig. 10-5, the vectors in both drawings represent the same complex
number.

Question 6-8

How can we convert a Cartesian complex vector to a polar complex vector?

Answer 6-8

Imagine a complex number  + j4 in the Cartesian complex plane, whose vector extends from
the origin to the point (#,j6). We can derive the magnitude 7 of the equivalent polar vector by
applying the distance formula to get

r= (42 + b2)1/2
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Ordered pair is (a, jb)
representing the
complex number a + jb

Figure 10-4 Illustration for Question and Answer 6-7.
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Figure 10-5 Another illustration for Question and Answer 6-7.
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To determine the direction angle 0 of the polar vector, we modify the polar-coordinate
direction-finding system. Here’s what happens:

When 2 = 0 and jb = jO, we have 6= 0 by default.
When > 0 and jb = jO, we have 0= 0.

When > 0 and jb > jO, we have 0= Arctan (b/a).
When 2= 0 and jb > jO, we have 0= 7 /2.

When 2 < 0 and jb > jO, we have 0= 7+ Arctan (b/a).
When « < 0 and jb = jO, we have 0= 7.

When 2 < 0 and jb < jO, we have 0= 7+ Arctan (b/a).
When 2= 0 and jb < jO, we have 6= 37/2.

When 2 > 0 and jb < j0, we have 8= 27 + Arctan (6/a).

Question 6-9

How can we convert a polar COl’IlplCX vector to a Cartesian complex vector?

Answer 6-9

Imagine a complex vector (6,7) in the polar complex plane, whose direction angle is 6 and
whose radius is 7. The Cartesian vector equivalent is

(a,jb) = [(r cos 0), j(r sin O)]
which represents the complex number
a+jb=rcos 8+ j(rsin 6)

Question 6-10

What are the two versions of De Moivre’s theorem? How are they used?

Answer 6-10

The first, and more general, version of De Moivre’s theorem involves products and ratios.
Suppose we have two polar complex numbers ¢; and ¢,, where

¢; =1 cos 6 + j(r; sin 6))
and
e, =1, cos 6, + j(r, sin 6,)

where 7, and 7, are real-number polar magnitudes, and 6, and 6, are real-number polar angles
in radians. Then

16, =1y cos (6, + 6,) +j [ri7,sin (6, + 6,)]
and, as long as 7, is nonzero,

cile, = (ri/r,) cos (6, — 6,) +j [(r/7r,) sin (6, — 6,)]
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The second version of De Moivre’s theorem involves integer powers. Suppose that ¢ is a com-
plex number, where

c=rcos O+ j(rsin 0)

where 7 is the real-number polar magnitude and 6 is the real-number polar angle. Also sup-
pose that 7 is an integer. Then

" =17" cos (n6) + jlrn sin (n0)]

Chapter 7
Question 7-1

How are the axes and variables defined in Cartesian xyz space?

Answer 7-1

We construct Cartesian xyz space by placing three real-number lines so that they all intersect
at their zero points, and they’re all mutually perpendicular. One number line represents
the variable x, another represents the variable y, and the third represents the variable z.
Figure 10-6 shows two perspective drawings of the typical system. Although the point of

Figure 10-6 Illustration for +y
Question and
Answer 7-1. 4
+ -z
A =X <———F—+—+- F——t—+—+—+—+x
+Z T
-y
+z
1 +y
B —X 1 F———F—+—+—+X

—Z
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view differs between illustrations A and B, the relative axis orientation is the same in both
cases. When we graph relations and functions having two independent variables in Cartesian
xyz space, x and y are usually the independent variables, and z is usually the dependent
variable.

Question 72

What’s the difference between Cartesian xyz space and rectangular xyz space?

Answer 72

In Cartesian xyz space, the axes are all linear, and they’re all graduated in increments of the
same size. In rectangular xyz space, the divisions can differ in size between the axes, although
each axis must be linear along its entire length.

Question 7-3

What's the “pool rule” for the relative axis orientation and coordinate values in Cartesian xyz
space?

Answer 7-3

We can imagine that the origin of the coordinate grid rests on the surface of a swimming pool.
We orient the positive x axis horizontally along the pool surface, pointing due east. Once we've
done that, the coordinate values can be generalized as follows:

o DPositive values of x are east of the origin.

o Negative values of x are west of the origin.
o Positive values of y are north of the origin.
o Negative values of y are south of the origin.
o Positive values of z are up in the air.

o Negative values of z are under the water.

Question 7-4

What are the biaxial planes in Cartesian xyz space?

Answer 7-4

The biaxial planes are the xy plane, the xz plane, and the yz plane. Each plane is perpendicular
to the other two, and all three intersect at the origin. The biaxial planes are defined by pairs
of axes as follows:

o The xy plane contains the axes for variables x and .
o The xz plane contains the axes for variables x and z.
o The yz plane contains the axes for variables y and z.

Question 7-9

In Cartesian xyz space, a point can always be denoted as an ordered triple in the form (x,,2).
What do the x, y, and z coordinates represent geometrically?
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Answer 7-5

We can think of this situation in two different ways. First, we can use the notion of a point’s
projection. We get the projection of a point onto an axis by drawing a line from the point
to the axis, and making sure that the line intersects that axis at a right angle. That way, the
coordinates and projection points are related as follows:

 The x coordinate represents the point’s projection onto the x axis.
» The y coordinate represents the point’s projection onto the y axis.
 The z coordinate represents the point’s projection onto the z axis.

We can also think of the x, y, and z values for a particular point in terms of perpendicular
displacements from the biaxial planes as follows:

o The x coordinate is the point’s perpendicular displacement (positive, negative, or zero)
from the yz plane.

o The y coordinate is the point’s perpendicular displacement (positive, negative, or zero)
from the xz plane.

o The z coordinate is the point’s perpendicular displacement (positive, negative, or zero)
from the xy plane.

Question 7-6

What semantical distinction should we keep in mind when we talk about points in terms of
ordered triples?

Answer 7-6

An ordered triple represents the coordinates of a point in three-space, not the geometric point
itself. Informally, the ordered triple is the name of the point. We can talk about the ordered
triple as if it were the actual point, as long as we're aware of the technical difference between
the object and its name.

Question 7-7

How can we find the distance of a point from the origin in Cartesian xyz space?

Answer 7-7
Suppose we name the point Q, and assign it the coordinates
Q= (xpp2,)
If we call the distance between Q and the origin by the name 4, then

dq — (xqz +)’q2 + ZqZ)l/Z

This distance is always defined, it's always unique (unambiguous), it’s never negative, and it
doesn’t depend on whether we go from the origin to the point or from the point to the origin.

Question 7-8

How can we find the distance between two points in Cartesian xyz space?
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Answer 7-8

Let’s call the points and their coordinates

S= (%902,
and

T'= (x,y52)

where each coordinate can range over the entire set of real numbers. If we go from Sto 7, the
distance between the points is

dy= [0, —x)*+ (=) + (7 — 2)"]"
If we go from 7'to S, the distance is
dy=[(x,—x)"+ (3, — ) + (z, — 2)"]"*

This distance is always defined and unique. It’s never negative, and it doesn’t depend on which
direction we go. Therefore

d,=d,

Question 7-9

How can we find the midpoint of a line segment connecting two points in Cartesian xyz
space?

Answer 7-9

Let’s call the points and their coordinates

P = (x,0%))
and

Q= (epp2,)
We can call the midpoint M, and say that its coordinates are

M = (%)%,
Given this information, the coordinates of M in terms of the coordinates of 2 and Q are
KonYmszm) = [(x, + x,)12,(y, + 3,)/2,(3, + 2,)/2]

This midpoint is always defined, it's always unique, and it doesn’t depend on which direction
we go.
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Question 710

Suppose that we have two points in Cartesian xyz space where all three pairs of corresponding
coordinates are negatives of each other. Where is the midpoint of a line segment connecting
these two points?

Answer 710

It’s always at the origin.

Chapter 8
Question 8-1

What'’s the Cartesian standard form for a vector in xyz space?

Answer 8-1

Any vector in xyz space, no matter where its originating and terminating points are located,
has an equivalent standard-form vector whose originating point is at (0,0,0). Consider a vec-
tor ¢’ whose originating point is Q; and whose terminating point is Q,, such that

Ql (xl ,}’1 :zl

and

QZ (x2 ,}/2,Z2

The standard form of ¢’, denoted ¢, has the originating point (0,0,0) and the terminating
point Q. such that

Qc - ( w)’oz) - ( Xl) (}’2 }/I)s(zz - Zl)]

The two vectors ¢ and ¢ have identical direction angles and identical magnitudes. That’s why
we say they’re equivalent.

Question 82

What's the advantage of putting a three-space vector into its standard form?

Answer 82

The standard form allows us to uniquely define a vector as an ordered triple that represents the
coordinates of its terminating point alone. We don't have to worry about the originating point.

Question 8-3

How can we find the magnitude 7, of a standard-form vector b in xyz space whose terminating
point has the coordinates (xi,,,2)?

Answer 8-3

We can do it by calculating the distance of the terminating point from the origin. In this case,
the formula is

n= (0" + o +2)"
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Question 8-4

How can we define the direction of a standard-form vector in xyz space whose terminating
point has the coordinates (xi,,1,2)?

Answer 8-4

The x, y, and z coordinates implicitly contain all the information we need to define the direc-
tion of a standard-form vector in Cartesian three-space. But this information is “indirect.”
Alternatively, we can define the vector’s direction if we know the measures of the angles 6,, 6,
and 6, that the vector subtends relative to the +x, +y, and +z axes, respectively. These angles
are never negative, and they’re never larger than 7. There is a one-to-one correspondence
between all possible vector orientations and all possible values of the ordered triple (6,,6,,6,).

Question 8-

Imagine two Cartesian xyz space vectors a and b, in standard form with terminating-point
coordinates

a = (x,,)12,)
and
b= (xby}’b»zb)

How can we find the sum a + b? How can we find the difference a — b? How can we find the
difference b — a? How can we calculate the Cartesian xyz space negative of a vector that’s in
standard form? How does the Cartesian negative compare with the original vector? How do
the differences a — b and b — a compare?

Answer 8-9

We can calculate the sum vector a + b using the formula
a+b=[(x,+x),(5:+ (2 + 2)]

We can calculate the difference vector a — b using the formula
a—b=[(x,—x),(3a = ), (2. — 2)]

We can find the difference vector b — a using the formula
b—a=[(x, — x),(p — 1),z — 2))]

To find the Cartesian xyz space negative of a vector that’s in standard form, we take the nega-
tives of all three terminating-point coordinate values. For example, if we have

b = (xbr_yb’zb)

then its Cartesian negative is

_b = (_Xb’__yb’_zb)
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The Cartesian negative has the same magnitude as the original vector, but points in the oppo-
site direction. In xyz space, the difference vector b — a is always equal to the Cartesian negative
of the difference vector a — b.

Question 8-6

What's the left-hand Cartesian product of a scalar and a vector in xyz space? What's the right-
hand Cartesian product of a vector and a scalar in xyz space? How do they compare?

Answer 8-6

Consider a real-number constant 4, along with a standard-form vector a defined in xyz
space as

a= (%02
The left-hand Cartesian product of £and a is
ka = (kx,,ky,,kz,)
The right-hand Cartesian product of a and 4 is
ak = (x.ky.k,2.k)
For all real numbers 4 and all Cartesian xyz space vectors a, we can be sure that

ka=ak

Question 8-7
What are the three standard unit vectors (SUVs) in Cartesian xyz space?

Answer 8-7

The three SUVs in Cartesian xyz space are defined as the standard-form vectors

i=(1,0,0)
j=1(0,1,0)
k=(0,0,1)

Any Cartesian xyz space vector in standard form can be split up into a sum of scalar multiples
of the three SUVs. The scalar multiples are the coordinates of the ordered triple representing
the vector. For example, suppose we have

a= ()02,
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We can break the vector a up in the following manner:

a = (%002
= (x,,0,0) + (0,,,0) + (0,0,2,)
=x,(1,0,0) +,(0,1,0) + 2,(0,0,1)
=xi+yj+zk

Question 8-8

Suppose we have two standard-form vectors in Cartesian xyz space, defined as
a = (xu)0%)

and
b= (Xb’_)’b)zb)

How can we calculate the dot product a « b2 How can we calculate the dot product b « a?
How do they compare?

Answer 8-8

We can calculate a b as a real number using the formula
aeb=uxx,+ Y0+ 232
Alternatively, it is
aeb=r7n cos O
where 7, is the magnitude of a, 7, is the magnitude of b, and 0, is the angle between the
vectors as determined in the plane containing them both, rotating from a to b. In the same
fashion, we can calculate b « a using the formula
b e a=xx, + )y, + 22,
Alternatively, it is
b e a =1y, cos 6,
where 7, is the magnitude of b, 7, is the magnitude of a, and 6, is the angle between the vec-
tors as determined in the plane containing them both, rotating from b to a. The dot product
is commutative. In other words, for all vectors a and b in Cartesian xyz space, we can be sure

that

aeb=bea
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Question 8-9

How can we find the cross product of two standard-form vectors a and b in three-space if we
know their magnitudes and the angle between them?

Answer 8-9

The cross product a X b is a vector perpendicular to the plane containing both a and b, and
whose magnitude 7, is given by

Taxb = 7a7h SiN Oy

where 7, is the magnitude of a, 7, is the magnitude of b, and 6, is the angle between a and
b, expressed in the rotational sense going from a to b. We should define the angle so that it’s
always within the range

0<6,<7

If we look at a and b from some point far outside of the plane containing them, and if 8,
turns through a half circle or less counterclockwise as we go from a to b, then the cross-
product vector a X b points toward us. If 6,, turns through a half circle or less clockwise as we
go from a to b, then a X b points away from us.

Question 8-10

Imagine that we have two vectors in xyz space whose coordinates are
a = (X)02)

and
b= (xb’}’brzb)

How can we express a X b as an ordered triple?

Answer 8-10

We can plug in the coordinate values directly into the formula
ax b = [(_yazb - Za_yb)a(zaxb - xazb))(qub __yaxb)]

Chapter 9
Question 9-1

How do we determine the cylindrical coordinates of a point in three-space?

Answer 9-1

We “paste” a polar plane onto a Cartesian xy plane, creating a reference plane. The positive
Cartesian x axis is the reference axis. To determine the cylindrical coordinates of a point P, we
first locate its projection point, P’ on the reference plane:
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o The direction angle 6 is expressed counterclockwise from the reference axis to the ray
that goes out from the origin through P’.

o The radius 7 is the distance from the origin to P’.

o The height 4 is the vertical displacement (positive, negative, or zero) from P’ to P.

The basic scheme is shown in Fig. 10-7. We express the cylindrical coordinates of our point
of interest as an ordered triple:

P=(6,h)

Question 9-2

Can we have nonstandard direction angles in cylindrical coordinates? Can we have negative
radii? Are there any restrictions on the values of the height coordinate?

Answer 92

Theoretically, we can have a nonstandard direction angle. But if we come across that situ-
ation, it’s best to add or subtract whatever multiple of 27z will bring the direction angle
into the preferred range 0 < 0 < 27. If @ > 27, it represents at least one complete counter-
clockwise rotation from the reference axis. If 6 < 0, it represents clockwise rotation from
the reference axis.

We can have a negative radius in theoretical terms. However, if we come across that sort
of situation, it’s best to reverse the direction angle and then consider the radius positive. If
r <0, we can take the absolute value of the negative radius and use it as the radius coordinate.
Then we must add or subtract 77 to or from 6 to reverse the direction, while also making sure
that the new angle is larger than 0 but less than 27r.

+Z

Reference
axis

Reference
-y plane

—Z

Figure 10-7 Illustration for Question and Answer 9-1.
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The height 4 can be any real number. There are no restrictions on it whatsoever. We have
h >0 if and only if P is above the reference plane, /< 0 if and only if P is below the reference
plane, and /= 0 if and only if Pis in the reference plane.

Question 9-3

Consider a point 2= (6,7,4) in cylindrical coordinates. How can we determine the coordinates
of P in Cartesian xyz space?

Answer 9-3

The Cartesian x value of P is

x=rcos O
The Cartesian y value is
y=rsin 0
The Cartesian z value is
z=h

Question 9-4

Consider a point P = (x,),2) in Cartesian three-space. How can we find the direction angle 6
of the point P in cylindrical coordinates?

Answer 9-4

Cartesian-to-cylindrical angle conversion is the same as Cartesian-to-polar angle conversion:

e Ifx=0and y=0, then 8= 0 by default.

e Ifx>0andy=0, then 6=0.

e Ifx>0andy>0, then 6= Arctan (y/x).

o Ifx=0and y>0, then 0=1m/2.

e Ifx<0andy>0,then 8=+ Arctan (y/x).
e Ifx<0andy=0, then 0=

e Ifx<0andy<O0,then 8=+ Arctan (y/x).
e Ifx=0andy<0, then 8=37/2.

e Ifx>0andy<0, then 8=27+ Arctan (y/x).

Question 9-9

Consider a point P = (x,5,2) in Cartesian three-space. How can we find the radius 7 of the
point P in cylindrical coordinates? How can we find the height 4 of the point P in cylindrical
coordinates?
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Answer 9-9

To find the cylindrical radius coordinate of P, we find the distance between its projection
point P’ and the origin in the xy plane. The z value is irrelevant, so the formula is

r=(+ )"
The cylindrical height is simply equal to z. The x and y values are irrelevant, so the formula is
h=z

Question 9-6

How do we determine the spherical coordinates of a point in three-space?

Answer 9-6

We start with a Cartesian reference plane. The positive Cartesian x axis forms the reference
axis. To determine the spherical coordinates of a point P, we first locate its projection point,
P, on the reference plane:

o The horizontal angle 6 turns counterclockwise in the reference plane from the refer-
ence axis to the ray that goes out from the origin through P’.

o The vertical angle ¢ turns downward from the vertical axis to the ray that goes out
from the origin through 2.

o The radius 7 is the straight-line distance from the origin to 2.

The basic scheme is shown in Fig. 10-8. We express the spherical coordinates as an ordered triple

P=(6,¢,r)
+z
A
Reference
axis
Lo
Pey &
1 NS
i AN r. +y
e
—X ! = +X
[Prm===
Reference
-y plane
v
4

Figure 10-8 Illustration for Question and
Answer 9-6.
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Question 9-7

Are their any restrictions on the horizontal or vertical angles in spherical coordinates? Are
there any restrictions on the radius?

Answer 9-7

Theoretically, we can have a nonstandard horizontal direction angle, but it’s best to add or
subtract whatever multiple of 277 will bring it into the preferred range 0 < 6 < 27. If 8> 27,
it represents at least one complete counterclockwise rotation from the reference axis. If 8 < 0,
it represents clockwise rotation from the reference axis.

Theoretically, we can have a nonstandard vertical angle, but it’s best to restrict it to the
range 0 < ¢ < . We can do that by making sure that we traverse the smallest possible angle
between the positive z axis and the ray connecting the origin with P.

The radius can be any real number, but things are simplest if we keep it nonnegative. If we
find ourselves working with a negative radius, we should reverse the direction by adding or sub-
tracting 7 to or from both angles, making sure that we end up with 0 < 8<27wand 0 < < 7.
Then we must take the absolute value of the negative radius and use it as the radius coordinate.

Question 9-8

Consider a point P = (6,¢,7) in spherical coordinates. How can we determine the coordinates
of P in Cartesian xyz space?

Answer 9-8

The Cartesian x value of P is
x=rsin ¢ cos 6
The Cartesian y value is
y=rsin @sin O
The Cartesian z value is
Z2=1rcos @

Question 9-9

Consider a point P = (x,y,2) in Cartesian three-space. How can we find the horizontal angle
coordinate 6 of the point P in spherical coordinates?

Answer 9-9

The Cartesian-to-spherical horizontal-angle conversion process is identical to the Cartesian-
to-cylindrical direction-angle conversion process:

e Ifx=0and y=0, then =0 by default.
e Ifx>0andy=0, then 6=0.
e Ifx>0andy>0, then 6= Arctan (y/x).
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Ifx=0and y> 0, then 8=1m/2.

If x<0and y> 0, then 0= 7+ Arctan (y/x).
Ifx<0and y=0, then 8=

If x<0and y <0, then 0= 7+ Arctan (y/x).
If x=0and y<O0, then 8=37/2.

If x> 0and y <0, then 8= 27+ Arctan (y/x).

Question 9-10

Consider a point P = (x,),2) in Cartesian three-space. How can we find the radius coordinate
r of the point P in spherical coordinates? How can we find the vertical angle coordinate ¢ of
the point P in spherical coordinates?

Answer 9-10

To find the spherical radius, we use the formula
=0+ + )"
To find the spherical vertical angle, we use the formula
¢ = Arccos [z/ (¢ + 2 + 2]
If we already know the radius 7, then we have

¢ = Arccos (z/7)
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CHAPTER

L

Relations in Two-Space

If you've taken the course Algebra Know-It-All, you've already had some basic training on
relations and functions. They’ve been mentioned a few times in this book as well. Let’s look
more closely at how relations and functions behave in two-space.

What’s a Two-Space Relation?

A relation is a special way of assigning, or mapping, the elements of a “source” set to the
elements of a “destination” set. In two-space, both the source and destination sets usually
consist of numbers. The sets might be identical, partially overlapping, or entirely disjoint. For
example, we might have a relation between the set of negative integers and the set of positive
integers, or the set of positive real numbers and the set of all real numbers, or the set of all real
numbers and itself.

Ordered pairs

Any point in the Cartesian plane or the polar plane can be uniquely represented by an ordered
pair in which a value of the independent variable (an element of the source set) is listed first,
followed by a value of the dependent variable (an element of the destination set). The domain
is the set of all values of the independent variable for which the relation produces defined
values of the dependent variable. The range is the set of all values of the dependent variable
that come from the elements of the domain. Here’s an example of a relation written as a set
of ordered pairs:

{(3,2),(4,3),(5,4),(6,5)}

The domain of this particular relation (let’s call it set D) is the set of first numbers in the
ordered pairs. Therefore

D =1{3,4,5,6}

211
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The range (let’s call it set R) of the relation is the set of second numbers in the ordered
pairs, so

R = {2)334:5}

Injection, surjection, and bijection

Imagine a relation between numbers x in a set X and numbers y in a set Y. Suppose that each
number x in set X corresponds to one, but only one, number y in set Y. Also suppose that no
number in Y has more than one “mate” in X. (There might be some numbers in ¥ without
any “mate” in X.) A relation of this type is called an injection. In some older texts, it’s called
one-to-one.

Now imagine a relation that assigns the elements of set X to the elements of set Y'so that
every element of Y has at least one “mate” in X. This type of relation is called a surjection. Set
Y'is completely “spoken for.” A surjection is sometimes called an onzo relation, because it maps
(assigns) the values from set X completely onzo the entire set Y.

Finally, imagine a relation that is both an injection and a surjection. This type of relation
is called a bijection. In older texts, you might see it referred to as a one-to-one correspondence
(not to be confused with one-to-one, which means an injection). A bijection assigns every
value of x in set X to a unique value of y in set Y. Conversely, every y in set ¥ corresponds to
a unique value of x in set X. In this context, “a unique value” means “one and only one value”
or “exactly one value.”

Example 1

Relations are commonly represented by equations. Here’s an example of a simple two-space
relation that subtracts 1 from every value in the domain to generate values in the range:

y=x—1
This relation could describe a one-to-one correspondence between the elements of the domain
X=1{3,4,5,6}
and the elements of the range
Y=1{2,3,4,5}

which we saw a few moments ago. If we allow the domain of the relation to extend over the
entire set of real numbers, then the range also covers the entire set of real numbers. When we
put specific values of x into the equation, we get results such as the following:

o Ifx=-13, then (x,)) = (-13,-14).

o Ifx=-1.6, then (x,)) = (-1.6,-2.6).

o Ifx=0, then (x) = (0,~1).

o Ifx=1, then (xy) = (1,0).

o Ifx=3/2, then (x,y) = (3/2,1/2).

o Ifx=28"% then (x;) = [8"%,(8" - 1)].
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For every value of x, the relation assigns one and only one value of y. The converse is also true;
for every value of y, there is one and only one corresponding value of x.

Example 2

Next, let’s consider a real-number relation that squares each element in the domain to produce
values in the range. We can write this relation as the following equation:

y=x

In the set of real numbers, this relation is defined for all possible values of x, but we never get
any negative values of y. The range is the set of all y such that y > 0. When we plug specific
numbers into this equation, we get results such as the following:

If x = —4, then (x,)) = (—4,16).

If x=—1, then (xy) = (-1,1).

If x=—1/2, then (x,;y) = (=1/2,1/4).
If x =0, then (x,9) = (0,0).

If x=1/2, then (x,) = (1/2,1/4).

If x =1, then (x,;9) = (1,1).

If x = 4, then (x,y) = (4,16).

For every value of x, the relation assigns a unique value of y, but for every assigned value of y
except y = 0 in the range, the domain contains two values of x.

Example 3

Now let’s look at a real-number relation that takes the positive or negative square root of ele-
ments in the domain to get elements in the range. We can write it as the equation

y= i(xI/Z)

When we plug in some numbers here, we get results like the following:

If x=1/9, then (x,9) = (1/9,1/3) or (1/9,~-1/3).
If x = 1/4, then (x,9) = (1/4,1/2) or (1/4,-1/2).
If x=1, then (x,)) = (1,1) or (1,-1).

If x =4, then (x,)) = (4,2) or (4,-2).

If x=9, then (x,) = (9,3) or (9,-3).

If x=0, then (x,y) = (0,0).

In the set of real numbers, the domain of this relation is confined to nonnegative values of
x. That is, the domain is the set of all x such that x = 0. For every positive value of x in the
domain, there are two values of y in the range. If x= 0, then y = 0. The range encompasses all
possible real-number values of y. For any value of y in the range, there exists one and only one
corresponding value of x in the domain.
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Example 4

Finally, let’s examine a real-number relation that takes the nonnegative square root of values
in the domain to get values in the range. We can denote it as

— L2
_)/—.X‘

The domain is the set of all real numbers x such that x > 0, and the range is the set of all real
numbers y such that y > 0. Following are a few examples of what happens when we input
values of x into this equation:

o Ifx=1/9, then (x;y) = (1/9,1/3).
o Ifx=1/4, then (x;) = (1/4,1/2).

e Ifx=1, then (x,9) = (1,1).
o Ifx=4, then (x) = (4,2).
o Ifx=9, then (x) = (9,3).
o Ifx=0, then (x) = (0,0).

For every x in the domain, there is one and only one y in the range. The converse is also true.
For every y in the range, there is one and only one x in the domain.

Are you confused?

Sometimes a relation fails to take all of the elements of the source or destination sets into account.
Figure 11-1 illustrates a generic example of a situation of this sort using a graphical scheme called
a Venn diagmm:

o The entire source set is called the maximal domain.

e The entire destination set is called the co-domain.

e The domain of a relation is a subset of its maximal domain.
o The range of a relation is a subset of its co-domain.

Here's a challenge!

Classify each of the relations in Examples 1 through 4 as an injection, a surjection, a bijection, or
“none of them” from the set of real numbers to itself.

Solution

In each of these relations, our source set is the entire set of real numbers, and that’s not neces-
sarily the domain. Also, our destination set is the entire set of reals, and that’s not necessarily the
range:

o In Example 1, we subtract 1 from each value of the independent variable to get a value of the
dependent variable. This operation produces a one-to-one correspondence between the set of
real numbers and itself. For every value we input, we get a unique output. Also, every output
value is the result of one and only one input value. It follows that this relation is a bijection.
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Domain

7

Mapping

Co-domain

Range

Figure 11-1 The domain of a relation is a
subset of the maximal domain.
The range is a subset of the
co-domain.

o In Example 2, we square each value of the independent variable to get a value of the dependent
variable. For every value of the dependent variable except 0, two different values of the inde-
pendent variable are assigned to it. The relation is not an injection, because it’s not one-to-one.
It can't be a bijection, then, either. The independent variable can attain any real value, but the
dependent variable can never be negative, so this relation is not a surjection onto the set of real
numbers. We must therefore classify this relation as “none of them.”

o In Example 3, we take the positive or negative square root of each value of the indepen-
dent variable to get a value of the dependent variable. The independent variable can’t be
negative, but the dependent variable can be any real number. The relation is therefore a
surjection onto the set of real numbers. But it’s not an injection, because most values of
the independent variable map to two values of the dependent variable. It’s not a bijection
then, either.

 In Example 4, we take the nonnegative square root of each value of the independent variable to
get a value of the dependent variable. As in Example 3, the independent variable can never be
negative. Neither can the dependent variable. In this case we don’t have an injection, because
some real numbers in the source set don't have any counterparts in the destination set. We
don’t have a surjection either, because the range fails to cover the entire set of real numbers. We
must categorize this as a “none of them” relation.
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What’s a Two-Space Function?

In two-space, a function is a relation that never maps any value of the independent variable to
more than one value of the dependent variable. All functions are relations, but not all relations
are functions. Figure 11-2 shows Venn diagrams of a “legal” assignment for a function (left)
and an “illegal” assignment (right).

The vertical-line test

In the Cartesian xy plane, suppose that x is the independent variable, and we plot it against
the horizontal axis. Also suppose that y is the dependent variable, and we plot it against the
vertical axis. When we see the graph of a simple relation, it usually appears as a line or curve.
More complicated relations may graph as groups of lines and/or curves.

We can test the graph of any relation in the Cartesian xy plane to see if it represents a
function of x. Imagine an infinitely long, movable vertical line that’s always parallel to the
dependent-variable axis (the y axis). Suppose that we're free to move the line to the left or
right, so it intersects the independent-variable axis (the x axis) wherever we want. If the
graph is a function of x, then the movable vertical line never intersects the graph of our
relation at more than one point. If, in any position, the vertical line intersects the graph
at more than one point, then the relation is not a function of x. We call this exercise the
vertical-line test.

Domain Domain
/

Range

A function

is!
can do this . ... but not this!

Figure 11-2 A true function never assigns any element in its
domain to more than one element in its range.
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Example 1 revisited

Let’s take another look at the relation given by Example 1 in the previous section. We described
it using the following equation:

y=x—1

Figure 11-3 is a graph of this equation in the Cartesian xy plane. It’s a straight line with a slope
of 1 and a y intercept of —1. If we imagine an infinitely long, movable vertical line sweeping
back and forth, it’s easy to see that the vertical line never intersects our graph at more than one
point. Therefore, the relation is a function.

Example 2 revisited

The relation in Example 2 in the previous section has a graph that’s a parabola opening
upward, as shown in Fig. 11-4. The equation is

y=x

The vertex of the parabola represents the absolute minimum value of the relation, and it coin-
cides with the coordinate origin (0,0). The curve rises symmetrically on either side of the y
axis. It’s not difficult to see that a movable vertical line never intersects the parabola at more
than one point. This fact tells us that the relation is a function of x.

Movable
vertical
line

Figure 11-3  Cartesian graph of the relation y=x—1.
The vertical-line test reveals that it’s a
function of x.
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—4— | Movable
— 1 vertical
-1 line

\4

Figure 11-4 Cartesian graph of the relation y = x*. The
vertical-line test reveals that it’s a function
of x.

Example 3 revisited

Figure 11-5 is a graph of the relation we saw in Example 3 in the previous section. The equation
for that relation was stated as

_)’ — i(x1/2)

In this case, the graph is a parabola that opens to the right. The vertex coincides with the
coordinate origin, but there is no absolute minimum or maximum for the dependent variable.
When we construct a movable vertical line in this situation, we find that it doesn’t intersect
the graph when x < 0. When x = 0, the vertical line intersects the graph at the single point

(0,0). When x> 0, the vertical line intersects the graph at two points. Therefore, this relation
is not a function of x.

Example 4 revisited

Figure 11-6 is a graph of the relation we saw in Example 4 in the previous section. It’s the
upper half of the parabola of Fig. 11-5, with the point (0,0) included. The equation is

1/2

y=x

The vertical-line test tells us that this relation is a function of x. No matter where we position
the vertical line, it never intersects the graph more than once.
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Figure 11-5 Cartesian graph of the relation y = +(x'"%).
The vertical-line test reveals that it isn’t a
function of x.
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Figure 11-6 Cartesian graph of the relation y = x'".

The vertical-line test reveals that it’s a

function of x.
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Are you confused?

By now you might wonder, “When we have a relation where the independent variable is repre-
sented by the polar angle 6 and the dependent variable is represented by the polar radius 7, how
can we tell if the relation is a function of 827 It’s easy, but there’s a little trick involved. We can
draw the graph of the relation in a Cartesian plane with 6 on the horizontal axis and 7 on the verti-
cal axis. We must allow both 0 and 7 to attain all possible real-number values. Once we've drawn
the graph of the polar relation the Cartesian way, we can use the Cartesian vertical-line test to see
whether or not the relation is a function of 6.

Here's a challenge!

Consider the relation between an independent variable x and a dependent variable y such that
F—y=1

Sketch a graph of this relation in the Cartesian xy plane. Use the vertical-line test to determine,
on the basis of the graph, whether or not this relation is a function of x.

Solution

Figure 11-7 is a graph of this relation. It’s a geometric figure called a hyperbola. The vertical-line
test tells us that the relation is not a function of x.

y
A !
o+
1T Movable
2+ vertical

line
| | | >
T > X

4 6

\4

Figure 11-7 Cartesian graph of the relation x* — y* = 1.
The vertical-line test reveals that it isn’t a
function of x.
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Here's another challenge!

Consider the relation between an independent variable 6 and a dependent variable 7 defined by
the equation

r=20/m

Sketch a graph of this equation in the polar plane. Then redraw it in the Cartesian plane with 6 on
the horizontal axis and 7 on the vertical axis. Use the vertical-line test to determine, on the basis
of the graph, whether or not the relation is a function of 6.

Solution

Figure 11-8 is a graph of the equation in the polar plane. It’s a pair of “dueling spirals.” When
we draw the graph of the equation in a Cartesian plane with 6 on the horizontal axis and
on the vertical axis, we get a straight line that passes through the origin with a slope of 2/,
as shown in Fig. 11-9. The Cartesian vertical-line test indicates that the relation is a function

of 6.

Positive

/2 angle,
positive

o \ / radius

Cx ‘\

: S
i SR o
b ARG 9‘ /
% é’
i Each radial
Negau?/e division
angle, _ _
negative 37r/2 is 1 unit
radius

Figure 11-8 Polar graph of the relation » =26 /7. Each

radial division represents 1 unit.
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Figure 11-9 Cartesian graph of the relation »=26/7.
The vertical-line test shows that it’s
a function of 6.

Algebra with Functions

Functions can always be written as equations. Therefore, when we want to add, subtract, mul-
tiply, or divide two functions, we can use ordinary algebra to add, subtract, multiply, or divide
both sides of the equations representing the functions.

Cautions

There are three “catches” in the algebra of functions. Whenever we add, subtract, multiply, or
divide one function by another, we must watch out for these potential pitfalls. Otherwise, we
might get misleading or incorrect results:

 The independent variables of the two functions must match. That is, they must de-
scribe the same parameters or phenomena. We can't algebraically combine functions of
two different variables in an attempt to get a new function in a single variable. If we try
to do that, we won't know which variable the resultant function should operate on.

e The domain of the resultant function is the intersection of the domains of the two
functions we combine. Any element in the domain of a sum, difference, product, or
ratio function must belong to the domains of both of the constituent functions. The
domain of a ratio function may, however, be restricted even further if the denominator
function becomes 0 anywhere in its domain.
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o If we divide a function by another function, the resultant function is undefined for
any value of the independent variable where the denominator function becomes 0.
This can, and often does, restrict the domain of the resultant function to a proper
subset of the domain we would get if we were to add, subtract, or multiply the same
two functions.

New names for old functions

So far in this chapter, we've encountered four different functions. Three of them are functions
of x; the fourth is a function of 6. Following are the equations of the functions once again,
for reference:

y=x-1
y=x
y=x1/2
r=20In

Let’s assign these functions specific names, so that we can write them in the conventional
function notation. These are

Sum of two functions

When we want to find the sum of two functions, we add both sides of their equations. This
can be done in either order, producing identical results. For f; and f;, we have

F+AW=f@+AER=—-D+P=r+x—1
and
B+A@ =A@ +f()=F+x—1) =2 +x—1
For £; and f;, we have
F+A@=AE +AE) = (- 1)+ =x+x"7~1
and
F+HA@ =@+ =x"+x-D)=x+x2~1
For £, and f;, we have

(L+A@) =) +f0) =+ +x"
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and

(F+AE=£0)+ ) =x"+x=x+x"

It’s customary to write polynomials (sums or differences of a variable raised to powers) with
the largest power first, and then descending powers after that. That's why some of the sums
and differences have been rearranged in the above examples.

What about £,?

The independent variable in f; doesnt match the independent variable in any of the other
three functions, so we can’t combine and manipulate the equations as if the variables did
match. We can add the equations straightaway, but that doesn’t tell us much. For example,
we can say that

L)+ £(0)=x+20/m
but that’s all we can do with it. It’s like trying to add minutes to millimeters. We can’t get a

resultant function of a single variable. The same problem occurs if we try to subtract, multiply,
or find a ratio involving f; and any of the other three functions.

Difference between two functions

When we want to find the difference between two functions, we subtract both sides of their
equations. This can be done in either order, usually producing different results. For i and £,
we have

F-AE=fE-f0=x-1)-F=—s"+x—1
and
(b= = - =oH—-(x—1)=x—x+1
For £, and f;, we have
fi=-PE=fE)-fE)=6-1)-x"=x—x"~1
and
(A= =£0)—f)=x"?—(x-1)=—x+x"+1
For £; and f;, we have
(A=A =£0) - fx) =x ="
and

(f=R)=f) =) =x" -2 == +
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Product of two functions

When we want to find the product of two functions, we multiply both sides of their equa-
tions. This can be done in either order, producing identical results. For f; and f;, we have

(AxpE) =f()xflx) == 1Dx'=x =«
and
(AEXA@ =) X)) =x—1)=x—x
For f; and f;, we have
(AXHE) =f() X f(x) = (x = D' =7 — 572
and
(BXAE) =£) X f(x) =x"(x— 1) =7 — &7
For f; and f;, we have
(X F)) = f(x) X f(x) = 512 =
and
(BXAHE) =f) X folx) =575 ="
Ratio of two functions

When we want to find the ratio of two functions, we divide both sides of their equations. This
can be done in either order, usually producing different results. For f; and £, we have

AR =f0 1) == D =x" =27
and
(AL =) 1 f () == 1) = (x— 1)
For f; and f;, we have
(il @) = A6 1 f(x) = (¢ = 1) [ x"2 = 52— 5712
and
BRI =41 () == 1) =5 — 1)
For £, and f;, we have
(B1H) =) 1 () = 2l = 5
and

(BIA ) =f(x0) ] fibx) = xPa = 57
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Are you confused?

You ask, “Do the commutative, associative, distributive, and other rules of arithmetic and algebra
work with functions in the same ways as they do with numbers and variables?” The answer is a
qualified yes. All the rules of addition, subtraction, multiplication, and division of functions are
identical to the rules for arithmetic or algebra involving numbers or variables, as long as we heed
the cautions outlined earlier in this section.

Here's a challengel!

Define the real-number domains of all the sum, difference, product, and ratio functions we've
found in this section.

Solution

We found the real-number domains (which we can call the rea/ domains for short) of the functions
/i, fo» and f; eatlier in this chapter. Here they are again, for reference:

o The real domain of f; (x), which subtracts 1 from x, is the set of all reals.

o The real domain of £ (x), which squares x, is the set of all reals.

o The real domain of f; (x), which takes the nonnegative square root of x, is the set of all non-
negative reals.

The real domains of the sum, difference, and product functions are the intersections of these.
Let’s list them:

o The real domains of (fi + /), (fi — f5), and (f; X f5) are the set of all real numbers.
o The real domains of (f; + f1), (s — f1), and (f; X f;) are the set of all real numbers.
o The real domains of (f; + f5), (fi — f5), and (fi X f5) are the set of all nonnegative real numbers.
o The real domains of (5 + 1), (5 — f1), and (/5 X /1) are the set of all nonnegative real numbers.
o The real domains of (5 + f5), (s — f5), and (/5 X f5) are the set of all nonnegative real numbers.
o The real domains of (5 + f5), (5 — f2), and (f5 X /5) are the set of all nonnegative real numbers.

The real domains of the ratio functions are subsets of the real domains for the sum, product, and
difference functions. We have to look at each ratio function and check to see where the denomina-
tors are equal to 0:

o The denominator of (fi/f,) becomes 0 when x = 0.
o The denominator of (f;/f;) becomes 0 when x= 1.
o The denominator of (fi/f;) becomes 0 when x = 0.
o The denominator of (f;/f;) becomes 0 when x= 1.
o The denominator of (f;/;) becomes 0 when x = 0.
o The denominator of (f3/;) becomes 0 when x = 0.

On the basis of these observations, we can create one final list:

o The real domain of (f{/f;) is the set of all real numbers except 0.
o The real domain of (f;/f}) is the set of all real numbers except 1.
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The real domain of (fi/f5) is the set of all strictly positive real numbers.
The real domain of (f5/f;) is the set of all nonnegative real numbers except 1.
The real domain of (f5/f5) is the set of all strictly positive real numbers.
The real domain of (f5/f,) is the set of all strictly positive real numbers.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Examine the relation illustrated in Fig. 11-10. Suppose that for every element x in set X,
there exists az most one element y in set Y. Is this relation an injection? Is it a surjection?
Is it a bijection? Note that the range of the relation is the entire co-domain. Is that true
of all relations? As described here, is this relation a function? Explain each answer.

Maximal domain

Relation

Set X

Set Y coincides
with co-domain

Figure 11-10 Illustration for Problem 1.

2. Imagine a relation in which the domain Xis the set of all positive rational numbers,
while the range Y'is the set of all positive integers. Let’s call the independent variable x
and the dependent variable y. Suppose that for any x in set X, the relation rounds x up
to the next larger integer to obtain the corresponding element y in set Y. Is this relation
an injection? Is it a surjection? Is it a bijection? Is it a function of x? Explain each answer.

3. Suppose that we reverse the action of the relation described in Problem 2. Let the
domain X be the set of all positive integers, while the range Yis the set of all positive
rationals. Suppose that for any value of the independent variable x in set X, the relation
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maps to the set of all rationals in the half open interval (x — 1,x]. Is this relation an
injection? Is it a surjection? Is it a bijection? Is it a function of x? Explain each answer.

4. Can a relation whose graph is a circle or ellipse in the Cartesian xy plane ever be a
function of x> Why or why not?

5. Can a relation whose graph is a circle in the polar 67 plane ever be a function of 82 Why
or why not?

6. Find all the sums, differences, products, and ratios of
fl)=x+2
and
g) =3
7. Find all the sums, differences, products, and ratios of
fl)=x+1
and
e =x—1
8. Find all the sums, differences, products, and ratios of
fl)=x"
and
g =x7
9. Find all the sums, differences, products, and ratios of
f)=sin? 0
and
g(x) = cos? 0

10. What are the real-number domains of all the original and derived functions in Problems

6 through 92
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12

Inverse Relations in Two-Space

Any relation in two-space has a unique inverse relation, which can be called simply the inverse
if we understand that we're dealing with a relation. We denote the fact that a relation is an
inverse by writing a superscript —1 after its name. For example, if we have a relation f(x), then
its inverse is £ (x).

Finding an Inverse Relation

A relation’s inverse does the opposite of whatever the original relation does. To find the inverse
of a relation, we can manipulate the equation so that the independent and dependent variables
switch roles. We must therefore transpose the domain and range.

The algebraic way

Suppose we have a relation £ (x). The inverse of f; which we call 7', is another relation
such that

W] =x

for all possible values of x in the domain of ; and

fIF Ol =y

for all possible values of y in the range of £ When we talk or write about an inverse relation,
it’s customary to swap the names of the variables so the inverse relation calls the independent
and dependent variables by their original names. That means the preceding equation can be
rewritten as

fIf el =x
for all possible values of x in the domain of .

229
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An example

Let’s find the inverse of the following relation:
fl)=x+2
If we call the dependent variable y, then we can rewrite our relation as
y=x+2
Swapping the names of the variables, we get
x=y+2
which can be manipulated with algebra to obtain
y=x—2
If we replace the new variable y by the relation notation f~'(x), we get
flx)=x-2
The domain and range of the original relation f'both span the entire set of real numbers.

Therefore, the domain and range of the inverse relation £~ also both span the entire set of
reals.

Another example

Let’s find the inverse of the following relation:

g(0) =£(x'")
If we call the dependent variable y, then we can rewrite the relation as

y — i(xl/Z)

When we switch the names of the variables, we get

x= i(yl/Z)

Squaring both sides produces

2

x’=y
Reversing the left- and right-hand sides gives us

2

Jy=x
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Replacing y by ¢ 7' (x), we get

2

g ') =x

The domain of the original relation g spans the set of nonnegative reals, and the range of g
spans the set of all reals. Therefore, the domain of ¢™" includes all reals, while the range of g
is confined to the set of nonnegative reals.

Still another example

Let’s find the inverse of the relation
h(x) = x'"

When we write the 1/2 power of a quantity without including any sign, we mean the non-
negative square root of that quantity. If we call the dependent variable y, then we have

1/2

y=x
Swapping the names of the variables, we get

1/2

x=y
Squaring both sides, we obtain

2

=)y
Reversing the left- and right-hand sides of this equation yields
y=x
Replacing y by /7' (x), we get
h7H(x) = x?

Is the inverse of / identical to the inverse of ¢ we obtained a few moments ago? It looks that
way “on the surface,” but it’s not so simple when we examine the situation more closely.
The domain of 4 spans the set of nonnegative reals, just as the domain of g does. But the
range of / spans the set of nonnegative reals only (not the set of all reals, as the range of ¢
does). Transposing, we must conclude that the domain and range of /™" are both confined
to the set of nonnegative reals. The relations # and /" are therefore restricted versions of g

and g7\

The graphical way
Imagine the line represented by the equation y = x in the Cartesian xy plane as a “point
reflector.” For any point that’s part of the graph of the original relation, we can locate its
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Figure 12-1 Any point on the graph of the inverse of a
relation is the point’s image on the opposite
side of a point reflector line. The new
coordinates are obtained by reversing the
sequence of the ordered pair representing
the original point.

counterpart in the graph of the inverse relation by going to the opposite side of the point
reflector, exactly the same distance away. Figure 12-1 shows how this works. The line con-
necting a point in the original graph and its “mate” in the inverse graph is perpendicular to
the point reflector. The point reflector is a perpendicular bisector of every point-connecting
line.

Mathematically, we can do a point transformation of the sort shown in Fig. 12-1 by
reversing the sequence of the ordered pair representing the point. For example, if (4,6) rep-
resents a point on the graph of a certain relation, then its counterpoint on the graph of the
inverse relation is represented by (6,4).

When we want to graph the inverse of a relation, we flip the whole graph over along a
“hinge” corresponding to the point reflector line y = x. That moves every point in the graph
of the original relation to its new position in the graph of the inverse. Figures 12-2, 12-3, and
12-4 show how this process works with the three relations we dealt with a few moments ago.
The positions of the x and y axes haven’t changed, but the values of the variables, as well as the
domain and range, have been reversed.
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(4, 6)

N ]
o

\ 4

>

Figure 12-2 At A, Cartesian graph of the relation y = x + 2.
At B, Cartesian graph of the inverse relation.
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Figure 12-3

-6+

\4

1/2).

At A, Cartesian graph of the relation y = +(x
At B, Cartesian graph of the inverse relation.
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\4

Figure 12-4 At A, Cartesian graph of the relation y = x'"”.
At B, Cartesian graph of the inverse relation.



236 Inverse Relations in Two-Space

Are you confused?

It’s reasonable for you to wonder, “Can any relation be its own inverse?” The answer is yes. There
are plenty of examples. Consider the following equation:

“+y=25

The Cartesian graph of this equation is a circle centered at the origin and having a radius of 5 units
(Fig. 12-5). If we transpose the variables, we get

y+xt=25

which is equivalent to the original relation. If we perform the graphical transformation by mir-
roring the circle around the line y = x, we get another circle having the same radius and the same
center. Theoretically, all but two of points on the new circle are in different places than the points
on the original circle, but the graph looks the same as the one shown in Fig. 12-5.

Here's a challenge!

Consider the following relation where the independent variable is x and the dependent variable
is y:

X9+ H25=1

y “Point
Circle centered at A reflector’”
the origin is e line /x
symmetrical ... £ \ o

A 4
x

... with respect
L to the “point
reflector” line

4

Figure 12-5 Cartesian graph of the relation x* + y* = 25.

This relation is its own inverse.
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Ellipse centered
at origin

Figure 12-6  Cartesian graph of the relation x*/9 +
7125 =1.

Figure 12-6 is a graph of this relation in Cartesian coordinates. It’s an ellipse centered at the origin.
The distance from the center to the extreme right- or left-hand point on the ellipse measures
3 units, which is the square root of 9. The distance from the center to the uppermost or lowermost
point on the ellipse measures 5 units, which is the square root of 25. Determine the inverse of this
relation, and graph it.

Solution

We can obtain the inverse of this relation by swapping the variables. That gives us the equation
Y19 +x°125=1

which can be rewritten as
%25+ 919 =1

Figure 12-7 illustrates the graphs of the original relation and its inverse in Cartesian coordinates.
The new graph is another ellipse having the same shape as the original one, and centered at the
origin just like the original one. But the horizontal and vertical axes of the ellipse have been
transposed. The distance from the center to the extreme right- or left-hand point on the “inverse
ellipse” measures 5 units, which is the square root of 25. The distance from the center to the upper-
most or lowermost point on the “inverse ellipse” measures 3 units, which is the square root of 9.
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y “Point
Original A reflector” ',"
. 1 4
relation 6 -1 line e
\ o
F— x
6
Inverse
relation
4

Figure 12-7  Cartesian graph of the relation x*/25 +
%19 = 1, the inverse of the relation graphed
in Fig. 12-6.

Finding an Inverse Function

If a function is a bijection (that is, a perfect one-to-one correspondence) over a certain domain
and range, then we can transpose the domain and range, and the resulting inverse relation will
always be a function. If a function is many-to-one, then its inverse relation is one-to-many, so
it’s not a function.

“Undoing” the work

Suppose that fand /' are both true functions that are inverses of each other. Then for all x in
the domain of either function, we have

Ff@]=x

and

fIf @] =x

An inverse function undoes the work of the original function in an unambiguous manner
when the domains and ranges are restricted so that the original function and the inverse are
both bijections.
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Sometimes we can simply turn f“inside-out” to get an inverse relation, and the inverse
will be a true function for all the values in the domain and range of £ But often, when we seek
the inverse of a function f; we get a relation that’s not a true function, because some elements
in the range of f'map from more than one element in the domain of £ When this happens, we
must restrict /to define an inverse /' that’s a true function. We can usually (but not always)
find a way to “force” /' to behave as a true function by excluding all values of either variable
that map to more than one value of the other variable. Once we've done that, we get a bijec-
tion, ensuring that there is no ambiguity or redundancy either way.

Making a relation behave as a function

A little while ago, we looked at a relation whose graph is a circle with a radius of 5 units
(Fig. 12-5). The equation of that relation, once again, is

X +y'=25
which can be rewritten as
Yy =25-%
and then morphed to
y=1(25-x)"

If we use relation notation to express this equation and name the relation f; we have
Flx) =125 —xH)"?

The vertical-line test tells us that fis not a true function of x. We can modify it so that it
becomes a function of x if we restrict the range to nonnegative values. Graphically, that elimi-
nates the lower half of the circle, so that for every input value in the domain, we get only one
output in the range. Figure 12-8A is an illustration of this function, which we can call f; and
define as

)= 25— )"

Once again, we mustn’t forget that when we take the 1/2 power of a quantity without includ-
ing any sign, we mean, by default, the nonnegative square root of that quantity. The solid dots
indicate that the plotted points are part of the range of ;.

Now suppose that we eliminate the top half of the circle including the points (=5,0) and
(5,0), getting the graph shown in Fig. 12-8B. The vertical-line test indicates that this is a true
function of x. If we call this function £, we can write

f)=-25-x)"

The white dots (small open circles) tell us that the plotted points are 7oz part of the range of £.
We can restrict the range further, say to values strictly larger than 1 or values smaller than or
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(-5, 0) is part —+ (5, 0) is part
of the graph 4 of the graph
—6
\ 4
y
A
6 —
(-5, 0) is not 4 (5, 0) is not
part of the graph -+ part of the graph
2 1

Figure 12-8 At A, Cartesian graph of the function y =
(25 — x?)"". At B, Cartesian graph of the
function y=—(25 — x%)"2.
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equal to =2, and we'll get more true functions. You can doubtless imagine other restrictions
we can impose on the range of the original relation f'to get true functions of x.

What about the inverse of £.?

Let’s manipulate f; algebraically to find its inverse. If we call the dependent variable y, then
y=025-x)"
Swapping the names of the variables, we get
x= (25— )"
Squaring both sides, we obtain
¥=25-y
Subtracting 25 from each side yields
x*—=25=—y

When we multiply through by —1 and transpose the left-hand and right-hand sides of the
equation, we obtain

Yy =25-%
Taking the complete square root of both sides gives us
y=1(25-x)"
Replacing y by .7 (x) to indicate the inverse of f;, we get
F ) =125 — %)

Does this look like the same thing as the inverse of the original relation f/? Don't be fooled; it
isn’t the same! We haven't quite finished our work. We must transpose the domain and range of
£ to get the domain and range of the inverse relation £;™'. The domain of £; is the closed interval
[-5,5], and the range of £; is the closed interval [0,5]. Therefore, the domain of £;™" is the closed
interval [0,5], and the range of £; is the closed interval [-5,5]. Figure 12-9A is a graph of this
inverse relation. It’s easy to see that £, fails the vertical-line test, so it’s not a true function of x.

What about the inverse of £?

Now let’s go through the algebra to figure out the inverse of the function . This process is
almost identical to the work we just finished, but it’s a good practice to carry it out step by
step anyway. If we call the dependent variable y, then

y=—(25 )"
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6
(0, 5) is part
of the graph

F— x
-6 -4 6
(0, =5) is part
of the graph
(0, 5) is not

part of the graph

(0, =5) is not
part of the graph

Figure 12-9 At A, Cartesian graph of the inverse of the
function y = (25 — x%)"%. At B, Cartesian graph
of the inverse of the function y = —(25 — x%)""2,
Vertical-line tests indicate that neither of these
inverse relations is a function.
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Switching the names of the variables, we get
=25 )"
Squaring both sides, we obtain
2=25-y
Subtracting 25 from each side gives us
2 —25=—y

When we multiply through by —1 and transpose the left- and right-hand sides of the equation,
we get

y=25-x
Taking the complete square root of both sides, we have
y=%25-x)"
Replacing y by £ (x) to indicate the inverse of £, we get
£l =£25-)"

We transpose the domain and range of £ to get the domain and range of £ Things get a little
tricky here. Refer again to Fig. 12-8B. The domain of £ is the open interval (-5,5), and the
range of £ is the half-open interval [-5,0). Transposing, we can see that the domain of £ is
the half-open interval [-5,0), and the range of £ is the open interval (—5,5). Figure 12-9B is
a graph of £7'. This inverse relation fails the vertical-line test, so it’s not a true function of x.

Making an inverse behave as a function

Do you get the idea that we can't make the relation graphed in Fig. 12-5 behave as a function
whose inverse is another function, no matter what limitations we impose on the domain and
range? Don't give up. There are plenty of ways. For example, we can restrict both the domain
and the range of the original relation

¥+ =25

to values that all show up in the first quadrant of the Cartesian plane. When we do that, the
domain and range are both narrowed down to the open interval (0,5). The relation becomes
a true function of x, and its inverse also becomes a true function. Similar things happen if we
restrict both the domain and the range to values that show up entirely in the second quadrant,
entirely in the third quadrant, or entirely in the fourth quadrant. Feel free to draw the graphs,
put a point reflector line to work, and see for yourself.
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Are you confused?

You might ask, “We've seen an example of a relation that’s its own inverse. Can a function be its
own inverse?” The answer is yes. The function f(x) = x is its own inverse; the domain and range
both span the entire set of real numbers. It’s the ultimate in simplicity. The function’s graph coin-
cides with the point reflector line, so it’s identical to its own reflection! We have

U@l =) =x

so therefore

fIf' @l =f)=x

Another example

Consider g(x) = 1/x, with the restriction that the domain and range can attain any real-number
value except zero. This function is its own inverse. We have

g g0l =¢""(1/x) =1/(1/x) = x

so therefore

gle' @ =g/ =1/(1/x) =x

Still another example

Consider the function A(x) = 3 for all real numbers x. Figure 12-10 shows its graph. When we
transpose the variables, domain, and range, we must set x = 3 for /#'(x) to mean anything.
Then we end up with all the real numbers at the same time. This relation fails the vertical-line
function test in the worst possible way, because the graph is itself a vertical line (Fig. 12-11).

Here's a challenge!

Consider the following three functions:

fl)=x—11
g(x) =214
h(x) = —32x°

The inverse of one of these functions is not a function. Which one?
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Figure 12-11  Cartesian graph of the inverse of /4 (x) = 3.

It’s obviously not a function!
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Solution

The inverse of g is not a function. If we call the dependent variable y, we get
y=x14

The domain is the entire set of reals, and the range is the set of non-negative reals. If we swap the
names of the independent and dependent variables, we get

x=y14
which is the same as
Yy =4x
Taking the complete square root of both sides gives us
y=12x"
The plus-or-minus symbol indicates that for every nonzero value of the independent variable x

that we input to this relation, we get two values of the dependent variable y, one positive and the
other negative. We can also write

g—](x) = i2x1/2

The original function g is two-to-one (except when x = 0). That’s okay. But the inverse relation is
one-to-two except when x = 0. That prevents ¢! from qualifying as a true function.

The other two functions, fand 4, have inverses that are also functions. Both fand 4 are one-to-
one, so their inverses are also one-to-one. We have

f@=x-11
and
fl)=x+11
We also have
h(x) =-32x

and

b7 () = (—x)'°12
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Use algebra to find the inverse of the relation

flx)=2x+4

2. Use algebra to find the inverse of the relation

gx)=x"—4x+4

3. Use algebra to find the inverse of the relation

hx) =x =5

4. Determine the real-number domains and ranges of the relations and inverses from the
statements and solutions of Problems 1, 2, and 3.

5. Consider the two-space relation

Pl - 19 =1

Figure 12-12 is a graph of this relation in Cartesian coordinates. It’s a hyperbola centered
at the origin, opening to the right and left, and crossing the x axis at (2,0) and (=2,0).

Figure 12-12  Illustration for Problem 5.
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10.

Call the independent variable x and the dependent variable y. Call the relation f
Determine f(x) and /' (x) mathematically. State them both using relation notation.

What is the real-number domain of the relation f(x) that you determined when you
solved Problem 52 What is its real-number range?

Sketch a graph of the inverse relation you found when you solved Problem 5. What is
its real-number domain? What is its real-number range?

. The relation described and graphed in Problem 5 can be modified by restricting its

domain to the set of reals greater than or equal to 2. Show graphically, by means of the
vertical-line test, that this restriction makes the inverse /' into a function.

. The relation described and graphed in Problem 5 can be modified by restricting its

domain to the set of reals smaller than or equal to —2. Show graphically, by means of
the vertical-line test, that this restriction makes the inverse /™' into a function.

The relation described and graphed in Problem 5 can be modified by restricting its
range to the set of nonnegative reals. Show graphically, and by means of vertical-
line tests, that this restriction makes /" into a function, but does not make /™' into a
function.
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Conic Sections

In this chapter, we'll learn the fundamental properties of curves called conic sections. These curves
include the circle, the ellipse, the parabola, and the hyperbola. The conic sections can always be
represented in the Cartesian plane as equations that contain the squares of one or both variables.

Geometry

Imagine a double right circular cone with a vertical axis that extends infinitely upward and
downward. Also imagine a flat, infinitely large plane that can be moved around so that it slices
through the double cone in various ways, as shown in Fig. 13-1. The intersection between the
plane and the double cone is always a circle, an ellipse, a parabola, or a hyperbola, as long as
the plane doesn’t pass through the point where the apexes of the cones meet.

Geometry of a circle and an ellipse

Figure 13-1A shows what happens when the plane is perpendicular to the axis of the double
cone. In that case, we get a circle. In Fig. 13-1B, the plane is not perpendicular to the axis of
the cone, but it isn't tilted very much. The curve is closed, but it isn’t a perfect circle. Instead,
its an “elongated circle” or ellipse.

Geometry of a parahola

As the plane tilts farther away from a right angle with respect to the double-cone axis, the
ellipse becomes increasingly elongated. Eventually, we reach an angle of tilt where the curve is
no longer closed. At precisely this threshold angle, the intersection between the plane and the
cone is a parabola (Fig. 13-1C).

Geometry of a hyperhola

So far, the plane has only intersected one half of the double cone. If we tilt the plane beyond
the angle at which the intersection curve is a parabola, the plane intersects both halves of the
cone. In that case, we get a hyperbola. If we tilt the plane as far as possible so that it becomes
parallel to the cone’s axis, we still get a hyperbola (Fig. 13-1D).

249
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Figure 13-1 The conic sections can be defined by the
intersection of a flat plane with a double right
circular cone. At A, a circle. At B, an ellipse.
At C, a parabola. At D, a hyperbola.

Are you confused?

You might ask, “We haven’t mentioned the flare angle of the double cone (the measure of the angle
between the axis of the cone and its surface). Does the size of this angle make any difference?”
Quantitatively, it does. As the flare angle increases (the cones become “fatter”), we get ellipses less
often and hyperbolas more often. As the flare angle decreases (the cones get “slimmer”), we obtain
ellipses more often and hyperbolas less often. However, we can always get a circle, an ellipse, a parabola,
or a hyperbola by manipulating the plane to the desired angle, regardless of the flare angle.

Here's a challengel!

Imagine that you're standing on a frozen lake at night, holding a flashlight that throws a cone-
shaped beam with a flare angle of 77/10; in other words, the outer face of the light cone subtends
an angle of /10 with respect to the beam center. How can you aim the flashlight so that the edge
of the light cone forms a circle on the ice? An ellipse? A parabola?

Solution

The edge of the light cone is a circle if and only if the flashlight is pointed straight down, so the
center of the beam is perpendicular to the surface of the ice (Fig. 13-2A). The edge of the region
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of light is an ellipse if and only if the beam axis subtends an angle of more than /10 with respect
to the ice, but the entire light cone still lands on the surface (Fig. 13-2B). The edge of the region
of light is a parabola if and only if the beam axis subtends an angle of exactly 7/10 with respect to
the ice, so the top edge of the light cone is parallel to the surface (Fig. 13-2C).

Here's another challenge!

Imagine the scenario described above with the flashlight. How can you aim the flashlight so the
edge of the light cone forms a half-hyperbola on the ice?

ﬂ Flashlight

A /.
— T >
Edge of bright region is a circle
%:Iashlight
B
S
Edge of bright region is an ellipse
Flashlight
c N A TN

Edge of bright region is a parabola

Figure 13-2 At A, the edge of the light cone creates a circle on the
surface. At B, the edge of the light cone creates an
ellipse on the surface. At C, the edge of the light cone
creates a parabola on the surface. The dashed lines
show the edges of the light cones. The dotted-and-
dashed lines show the central axes of the light cones.



252  Conic Sections

Solution
The edge of the region of light is a half-hyperbola if and only if one of the following conditions is met:

e The beam’s central axis intersects the lake at an angle of less than 7z /10 with respect to the
surface of the ice (Fig. 13-3A).

e The beam’s central axis is aimed horizontally (Fig. 13-3B).
e The beam’s central axis is aimed into the sky at an angle of less than 77 /10 above the horizon

(Fig. 13-3C).
Flashlight -
e g
Edge of bright region is a half-hyperbola
Flashlight T
:l(_:z;.:.j ................................
E A g
Edge of bright region is a half-hyperbola
Flashlight " ==
c _— =

Edge of bright region is a half-hyperbola

Figure 13-3 At A, B, and C, the edge of the light cone
creates a half-hyperbola on the surface. The
uppermost part of the light cone is above
the horizon in all three cases. The dashed
lines show the edges of the light cones. The
dotted-and-dashed lines show the central
axes of the light cones.
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Basic Parameters

Figure 13-4 illustrates generic examples of a circle (at A), an ellipse (at B), and a parabola
(at C) in the Cartesian xy plane. The circle and ellipse are closed curves, while the parabola
is an open curve. In the circle, 7 is represents the radius. In the ellipse, 2 and & represent
the semi-axes. The longer of the two is called the major semi-axis. The shorter of the two is
called the minor semi-axis. In these examples, the circle and the ellipse are centered at the
origin, and the parabola’s vertex (the extreme point where the curvature is sharpest) is at
the origin.

Specifications for a parabola

Suppose that were traveling in a geometric plane along a course that has the contour of a
parabola. At any given time, our location on the curve is defined by the ordered pair (x,y). To
follow a parabolic path, we must always remain equidistant from a point called the focus and

N0
N

Cc

Figure 13-4 Three basic conic sections in the Cartesian xy plane.
At A, a circle centered at the origin with radius 7. At
B, an ellipse centered at the origin with semi-axes «
and 4. At C, a parabola with the vertex at the origin.
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Conic Sections

-——c -

9

(._._,_,_

Directrix

\4

Figure 13-5 All the points on a parabola are at equal distances #
from the focus and the directrix. The focus and the
directrix are at equal distances ffrom the vertex of
the curve.

a line called the directrix as shown in Fig. 13-5, where the focus and the directrix both lie in
the same plane as the parabola. Let’s call this distance #. In this illustration, the focus of the
parabola is at the coordinate origin (0,0).

Now imagine a straight line passing through the focus and intersecting the directrix at a
right angle. This line forms the axis of the parabola. In Fig. 13-5, the parabola’s axis happens
to coincide with the coordinate system’s y axis. Along the axis line, the distance # is called the
focal length, which mathematicians and scientists usually call £ (Be careful here! Don’t confuse
this fwith the name of a relation or a function.) By drawing a line through the focus parallel
to the directrix and perpendicular to the axis, we can divide #, measuring our distance from
the directrix, into two line segments, one having length 2f'and the other having length .

Therefore

u=2f+y

The focus is at the point (0,0). Therefore, the distance # is the length of the hypotenuse of a
right triangle whose base length is x and whose height is y. The Pythagorean theorem tells us
that

Sy =

If we divide the distance from the focus to point (x,y) on the curve by the distance from
(x,) to the directrix, we get a figure called the eccentricity of the curve. The eccentricity is
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symbolized e. (Don’t confuse this with the exponential constant, which is also symbolized e.)
In the case of a parabola, these distances are both equal to #, so

e=ulu=1

Specifications for an ellipse and a circle

Suppose that we want to construct a curve in which the eccentricity is positive but less than 1.
We can use a geometric arrangement similar to the one we used with the parabola, but the
distance from the focus is ex instead of #, as shown in Fig. 13-6. In this situation we get an
ellipse. The focus is at the origin (0,0). The ellipse has two vertices (points where the curvature
is sharpest), both of which lie on the y axis, and the ellipse is taller than it is wide. When we
draw an ellipse this way, its variables and parameters are related according to the equations

u=f+flety
and
+ 5 = (en)’
y

A
> x
u="f+fle+y
u
v

A\ Directrix

Figure 13-6 Construction of an ellipse based on a defined focus
and directrix. The eccentricity e is an expression of
the elongation of the ellipse.
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As the eccentricity ¢ approaches 0, the focus gets farther from the directrix, and the ellipse
gets less elongated. When e reaches 0, then f/e becomes meaningless, the directrix vanishes
(“runs away to infinity”), and we have a circle where fis equal to the radius 7. A circle is actu-
ally an ellipse whose major and minor semi-axes are the same length. Going the other way, as
the eccentricity e approaches 1, the focus gets closer to the directrix, and the ellipse gets more
elongated. When e reaches 1, the ellipse “breaks open” at one end and becomes a parabola.
Summarizing the above we can say

e TForacircle,e=0
e Foran ellipse, 0 <e< 1
e For a parabola, =1

The ellipse has another focus besides the one shown in Fig. 13-6. It’s located at the same
distance from the upper vertex of the curve as the coordinate origin is from the lower vertex.
We can flip the ellipse in Fig. 13-6 upside-down, putting the upper focus in place of the lower
focus and vice versa, and we'll get a diagram that looks exactly the same. The center of the
ellipse is midway between the two foci.

How the foci, directrix, and eccentricity relate

Let’s look at the circle, the ellipse, and the parabola in terms of the parameters we've just
described. The circle has a single focus, which is at the center. The directrix is “at infinity.”
The ellipse has two foci separated by a finite distance. The curve is symmetrical with respect
to a straight line that goes through the two foci. The curve is also symmetrical with respect to
a straight line equidistant from the foci. The ellipse has two directrixes at finite distances from
the vertices. We can think of a parabola as having two foci: one “within reach” and the other
“at infinity.” Its single directrix is at a distance from the vertex equal to the focal length.

There’s an alternative way to define the eccentricity of an ellipse. Suppose we know the
distance o between the foci, and we also know the length s of the major semi-axis. The eccen-
tricity can be found by taking the ratio

e=dl(2s)

Specifications for a hyperbola

If we construct a conic section for which ¢ > 1, we get a curve called a hyperbola. Figure 13-7
shows an example. The hyperbola looks like two parabolas back-to-back, but there’s an impor-
tant difference in the shape of a hyperbola compared with the shape of a double parabola. The
parameters that help define hyperbolas are straight lines called asymprotes. Hyperbolas always
have asymptotes, but parabolas never do.

In the scenario of Fig. 13-7, the hyperbola has two asymptotes that happen to pass through
the origin. In this case, the equations of the asymptotes are

y=(bla) x
and
y=—(bla) x

The curve approaches the asymptotes as we move away from the center of the hyperbola, but
the curves never quite reach the asymptotes, no matter how far from the center we go.
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\4
x

A

4

Figure 13-7 A basic hyperbola in the Cartesian xy plane. The
eccentricity is greater than 1. The distances 2 and &
are the semi-axes.

Are you confused?

You might ask, “Is it possible to have a conic section with negative eccentricity?” For our purposes
in this course, the answer is no. Negative eccentricity involves the notion of negative distances. If
we allow the eccentricity of a noncircular conic section to become negative, we get an “inside-out”
ellipse, parabola, or hyperbola. In ordinary geometry, such a curve is the same as a “real-world”
ellipse, parabola, or hyperbola.

That said, it’s worth noting that in certain high-level engineering and physics applications, neg-
ative distances sometimes behave differently than positive distances. In those special situations, an
inside-out conic section might represent an entirely different phenomenon from a real-world conic
section. Keep that in the back of your mind if you plan on becoming an astronomer, cosmologist, or
high-energy physicist someday!

Here's a challengel!

Using the alternative formula for the eccentricity of an ellipse, show that if we have an ellipse in
which e =0, then that ellipse is a circle.
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Solution

First, we should realize that a circle is a special sort of ellipse in which the two semi-axes have
identical length. With that in mind, let’s plug e= 0 into the alternative equation for the eccentric-
ity of an ellipse. That gives us

0=d/(2s)

where d is the distance between the foci, and s is the length of the major semi-axis. We can multiply
the above formula by 2s to obtain

0=d

which tells us that the two foci are located at the same point, so there’s really only one focus. A circle is
the only type of ellipse that has a single focus.

Standard Equations

When we graph a conic section in the Cartesian xy plane, we can find a unique equation that
represents that curve. These equations are always of the second degree, meaning that the equa-
tion must contain the square of one or both variables.

Equations for circles

We can write the standard-form general equation for a circle in terms of its center point and
its radius as

(x—x0)"+ (y—p) =7

where x, and y, are real constants that tell us the coordinates (xy,y,) of the center of the circle,
and 7 is a positive real constant that tells us the radius (Fig. 13-8).

When a circle is centered at the origin, the equation is simpler because x, = 0 and y, = 0.
Then we have

Pty=r

The simplest possible case is the unit circle, centered at the origin and having a radius equal
to 1. Its equation is

L+y=1

Equations for ellipses

The standard-form general equation of an ellipse in the Cartesian xy plane, as shown in

Fig. 13-9, is

(x—=x0)*ad* + (y— ) 16> =1
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(X0, Yo)

A\ 4

Figure 13-8  Graph of the circle for (x — x0)* + (y — y0)* = 7°.

(Xo: Yo)

Y

Figure 13-9  Graph of the ellipse for (x — xy)*/a”* +

(y—y)16* = 1.
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where x; and y, are real constants representing the coordinates (x,59) of the center of the
ellipse, a is a positive real constant that represents the distance from (xy,y) to the curve along
a line parallel to the x axis, and & is a positive real constant that tells us the distance from (x,y,)
to the curve along a line parallel to the y axis. When we plot x on the horizontal axis and y
on the vertical axis (the usual scheme), 4 is the length of the horizontal semi-axis or horizontal
radius of the ellipse, and 4 is the length of the vertical semi-axis or vertical radius.

For ellipses centered at the origin, we have x, = 0 and y, = 0, so the general equation is

Pl + P16 =1

If 2= b, then the ellipse is a circle. Remember that a circle is an ellipse for which the eccentricity
is 0.

Equations for parabolas

Figure 13-10 is an example of a parabola in the Cartesian xy plane. The standard-form general
equation for this curve is

y=ax’ +bx+c

The vertex is at the point (xp,),). We can find these values according to the formulas

Xo = —b/(Zﬂ)

Vertex
Xo = —b/(Za)
Yo=—-b?/(4a) + ¢

Y

Figure 13-10  Graph of the parabola for y = ax* + bx + c.
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and

Yo =axy’ + bxy+ c=—6"1(4a) + ¢
If 2 > 0, the parabola opens upward, and the vertex represents the absolute minimum value
of y. If 2 < 0, the parabola opens downward, and the vertex represents the absolute maximum

value of y. In the graph of Fig. 13-10, the parabola opens upward, so we know that 2 > 0 in
its equation.

Equations for hyperbolas

The standard-form general equation of a hyperbola in the Cartesian xy plane, as shown in
Fig. 13-11, is

(x—x0)*1ad* = (y— )16 =1

where x; and y, are real constants that tell us the coordinates (x,5,) of the center.

A

Y

Figure 13-11  Graph of the hyperbola for (x — xp)*/a* — (y — y,)*/6* = 1.
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The dimensions of a hyperbola are harder to define than the dimensions of a circle or an
ellipse. Suppose that D is a rectangle whose center is at (x,),), whose vertical edges are tangent
to the hyperbola, and whose corners lie on the asymptotes. When we define D this way, then
a is the distance from (xy,),) to D along a line parallel to the x axis, and 4 is the distance from
(x0,0) to D along a line parallel to the y axis. We call « the width of the horizontal semi-axis,
and we call & the height of the vertical semi-axis.

For hyperbolas centered at the origin, we have x, = 0 and y, = 0, so the general equation
becomes

Pla -yl =1
The simplest possible case is the unit hyperbola whose equation is

P oy=1

Are you astute?

You might imagine that the above-mentioned standard forms are not the only ways that the equa-
tions of conic sections can present themselves. If that’s what you're thinking, you're right! How-
ever, you can always convert the equation of a conic section to its standard form. For example,
suppose you encounter

4922 + 250" = 1225

You say, “This looks like it might be the equation for an ellipse, but it’s not in the standard form
for any known conic section.” Then you notice that 1225 is the product of 49 and 25. When you
divide the whole equation through by 1225, you get

49x*1225 + 25971225 = 1225 / 1225
which simplifies to
125 + 149 =1
which can also be written as
LIS+ 7 =1
Now you know that the equation represents an ellipse centered at the origin whose horizontal

semi-axis is 5 units wide, and whose vertical semi-axis is 7 units tall.

Here's a challenge!

Whenever we have an equation that can be reduced to the standard form

y=ax +bx+c
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we get a parabola that opens either upward or downward, and that represents a true function of x.
How can we write the standard-form general equation of a parabola that opens to the right or the
lefe? Does such a parabola represent a true function of x?

Solution

We can simply switch the variables to get
x=ay +by+c

If 2> 0, we have a parabola that opens to the right. If 2 < 0, we have a parabola that opens to the left. If
we define x as the independent variable and y as the dependent variable as is usually done in Cartesian
xy coordinates, then vertical-line tests reveal that these parabolas do not represent true functions of x.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. At the beginning of this chapter, we learned that the intersection between a plane and
a double right circular cone is always a circle, an ellipse, a parabola, or a hyperbola,
as long as the plane doesn't pass through the point where the apexes of the two cones
meet. What happens if the plane does pass through that point?

2. Figure 13-12 shows an ellipse in the Cartesian xy plane with some dimensions labeled.
The lower focus is at the origin (0,0). The lower vertex is at (0,—2). Both foci and both
vertices lie on the y axis. The ellipse is taller than it is wide. What is its eccentricity?

3. Recall the formulas relating the parameters of an ellipse when plotted in the manner of
Fig. 13-12:
u=f+flet+y
and
24y = (e

Based on these formulas, the information provided in the figure, and the solution you
worked out to Problem 2, determine a relation between x and y that describes our
ellipse. The equation should include only the variables x and y, but it doesn’t have to be
in the standard form.

4. What are the coordinates of the upper vertex of the ellipse shown in Fig. 13-12? What
are the coordinates of the upper focus of the ellipse shown in Fig. 13-12?
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Upper vertex

A
> X
u=f+fle+y
T Lower vertex u
fle is at (0, —2) ;
l :

\4

Equation of directrix is y = —6

Figure 13-12  Illustration for Problems 2 through 5.

5. What are the coordinates of the center of the ellipse shown in Fig. 13-122 What is the
length of the vertical semi-axis? What is the length of the horizontal semi-axis? Based
on these results, write down the standard-form equation for the ellipse.

6. Determine the type of conic section the following equation represents, and then draw

its graph:
“+97=9

7. Determine the type of conic section the following equation represents, and then draw

its graph:

Xy +2x—-2y+2=4

8. Determine the type of conic section the following equation represents, and then draw

its graph:

-y +2x+2y=4
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9. Determine the type of conic section the following equation represents, and then draw

10.

its graph:

x2—3x—)/+3=1

Following is an equation in the standard form for a hyperbola:

(= D)Y4— (y+2)%9=1

First, find the coordinates (xy,),) of the center point. Then determine the length 4 of
the horizontal semi-axis and the length & of the vertical semi-axis. Next, sketch a graph
of the curve. Finally, work out the equations of the lines representing the asymptotes.
Here’s a hint: Use the point-slope form of the equation for a straight line in the xy
plane. If it has slipped your memory, the general form is

Y=D= m(x—xo)

where 2 is the slope of the line, and (x,)) represents a known point on the line.
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14

Exponential and Logarithmic
Curves

In your algebra courses, you learned about exponential functions and logarithmic functions. 1t
you need a refresher, the basics are covered in Chap. 29 of Algebra Know-It-All. Let’s look some
graphs that involve these functions.

Graphs Involving Exponential Functions

266

An exponential function of a real variable x is the result of raising a positive real constant,
called the base, to the xth power. The base is usually e (an irrational number called Euler’s
constant or the exponential constant) or 10. The value of ¢ is approximately 2.71828.

Exponential: example 1

When we raise e to the xth power, we get the natural exponential function of x. When we raise
10 to the xth power, we get the common exponential function of x. Figure 14-1 shows graphs of
these functions. At A, we see the graph of

y=¢e
over the portion of the domain between —2.5 and 2.5. At B, we see the graph of
y=10"

over the portion of the domain between —1 and 1. The curves have similar contours. When we
“tailor” the axis scales in a certain relative way (as we do here), the two curves appear almost
identical.

In the overall sense, both of these functions have domains that include all real numbers,
because we can raise ¢ or 10 to any real-number power and always get a real-number as the
result. However, the ranges of both functions are confined to the set of positive reals. No matter
what real-number exponent we attach to ¢ or 10, we can never produce an output that’s equal
to 0, and we can never get an output that’s negative.
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Figure 14-1 Graphs of the natural y
exponential function 10T
(at A) and the
common exponential
function (at B).

Exponential: example 2

Let’s see what happens to the graphs of the foregoing functions when we take their reciprocals
and then graph them over the same portions of their domains as we did before. Figure 14-2A
is a graph of

y=1/¢
Figure 14-2B is a graph of

y=1/10"
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Figure 14-2  Graphs of the
reciprocals of the
natural exponential
(at A) and the

common exponential

(at B).

These curves are exactly reversed left-to-right from those in Fig. 14-1. The above reciprocal
functions can be rewritten, respectively, as

y=e
and
y=10"

When we negate x before taking the power of the exponential base, we “horizontally mirror” all
of the function values. The y axis acts as a “point reflector.” The overall domains and ranges of
these reciprocal functions are the same as the domains and ranges of the original functions.
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Exponential: example 3

Now that we have two pairs of exponential functions, let’s create two new functions by adding
them, and see what their graphs look like. The solid black curve in Fig. 14-3A is a graph of

y=e+1le=é+e*
The solid black curve in Fig. 14-3B is a graph of
y=10"+ 1/10°=10"+ 10~

The domains of these sum functions both encompass all the real numbers. The ranges are
limited to the reals greater than or equal to 2.

Figure 14-3  Graphs of the natural

exponential plus

its reciprocal (solid
black curve at A)

and the common
exponential plus

its reciprocal (solid
black curve at B).

The dashed gray A
curves are the graphs
of the original
functions.
X
B
—t —t } I } } } — X
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Here’s a “heads up™

In many of the graphs to come, you'll see two dashed gray curves representing functions to be
combined in various ways, as is the case in Fig. 14-3. But the constituent functions won't be
labeled as they are in Fig. 14-3. The absence of labels will keep the graphs from getting too
cluttered, so you'll be able to see clearly how they relate. Also, the lack of labels will force you
to think! Based on your knowledge of the way the functions behave, you should be able to tell
which graph is which without having them labeled.

Exponential: example 4

Figure 14-4 shows what happens when we subtract the reciprocal of the natural exponential
function from the original function and then graph the result. The solid black curve is the

graph of

y=eé—-1l¢=¢é—¢*

Figure 14-4 Graph of the natural y
exponential minus 10+
its reciprocal (solid
black curve). The
dashed gray curves
are the graphs of the 1
original functions.

—-10+
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Figure 14-5 Graph of the y

common exponential 10T

minus its reciprocal 1+

(solid black curve). 1

The dashed gray 1
curves are the graphs

of the original T

functions. 5T

f } } } } } } } t | X
-1 1 1
54
~10+

In Fig. 14-5, we do the same thing with the common exponential function and its reciprocal.
Here, the solid black curve represents

y=10"-1/10"=10"- 10~

In both of these figures, the dashed gray curves represent the original functions. The domains
and ranges of both difference functions include all real numbers.

Are you confused?

Do you wonder how we arrived at the graphs in Figs. 14-3 through 14-5? We can plot sum and
difference functions in two ways. We can graph the original functions separately, and then add or
subtract their values graphically (that is, geometrically) by moving vertically upward or downward
at various points within the spans of the domains shown. Alternatively, we can, with the help of a
calculator, plot several points for each sum or difference function after calculating the outputs for
several different input values. Once we have enough points for the sum or difference function, we
can draw an approximation of the graph for that function directly.
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Here's a challengel!

Plot a graph of the function we get when we raise e to the power of 1/x. In rectangular xy coordi-
nates, the curve is represented by the equation

— A1

J

What is the domain of this function? What is its range?

Solution

We can use a calculator to determine the values of y for various values of x. Figure 14-6 is the
resulting graph for values of x ranging from —10 to 10. When we input x= 0, we get €', which is
undefined. For any other real value of x, the output value y is a positive real number. Therefore,
the domain of this function is the set of all nonzero reals. No matter how large we want y to be
when y > 1, we can always find some value of x that will give it to us. Similarly, no matter how
small we want y to be when 0 < y < 1, we can always find some value of x that will do the job.
However, we can’t find any value for x that will give us y = 1. For that to happen, we must raise e
to the Oth power, meaning that we must find some x such that 1/x = 0. That’s impossible! There-
fore, the range of our function is the set of all positive reals except 1. The graph has a horizontal
asymptote whose equation is y= 1, and a vertical asymptote corresponding to the y axis. The open
circle at the point (0,0) indicates that it’s not part of the graph.

y
10*W
Asymptote -+
along y axis
< Range includes
all positive
5 4k real numbers
except 1
Asymptote -+
aty=1
L I e e e e B o e o I e [
-10 -5 0 5 10

Domain includes all nonzero real numbers

Figure 14-6  Graph of the function y = ¢!"”. Note the
“hole” in the domain at x = 0 and the “hole”
in the range at y = 1.
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Graphs Involving Logarithmic Functions

A logarithm (sometimes called a /o) of a quantity is a power to which a positive real constant
is raised to get that quantity. As with exponential functions, the constant is called the base,
and it’s almost always equal to either e or 10. The base-¢ log function, also called the natural
logarithm, is usually symbolized by writing “In” or “log,” followed by the argument (the
quantity on which the function operates). The base-10 log function, also called the common
logarithm, is usually symbolized by writing “log;,” or “log” followed by the argument.

They’re inverses!

A logarithmic function is the inverse of the exponential function having the same base. The
natural logarithmic function “undoes” the work of the natural exponential function and
vice versa, as long as we restrict the domains and ranges so that both functions are bijec-
tions. The common logarithmic and exponential functions also behave this way, so we can
say that

In & =x=¢M?

and
log 10 =x= 10"

For these formulas to work, we must restrict x to positive real-number values, because the
logarithms of quantities less than or equal to 0 are not defined.

Logarithm: example 1

Figure 14-7 illustrates graphs of the two basic logarithmic functions operating on a variable
x. At A, we see the graph of the base-e logarithmic function, over the portion of the domain
from 0 to 10. The equation is

y=lnx

At B in Fig. 14-7, we see the graph of the base-10 logarithmic function, over the portion of
the domain from 0 to 10. The equation is

y=logiy x

As with the exponential graphs, these curves have similar contours, and they look almost
identical if we choose the axis scales as we've done here.

The domains of the natural and common log functions both span the entire set of posi-
tive reals. When we try to take a logarithm of 0 or a negative number, however, we get a
meaningless quantity (or, at least, something outside the set of reals!). By inputting just the
right positive real value to a log function, we can get any real-number output we want. The
ranges of the log functions therefore include all real numbers.
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-4+

Figure 14-7 Graphs of the natural logarithmic

function (at A) and the common

logarithmic function (at B).

Logarithm: example 2

Let’s take the reciprocal of the independent variable x before performing the natural or com-
mon log, and then plot the graphs. Figure 14-8 shows the results. At A, we see the graph of

the function
y=1In (1/x)
and at B, we see the graph of the function

y=log,, (1/x)
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14
Figure 14-8 Graphs of the natural log of the

reciprocal (at A) and the common log
of the reciprocal (at B).

These functions can also be written as
y=In (x")
and
y=logy, (x)

Based on our knowledge of logarithms from algebra, we can rewrite these functions, respec-
tively, as

y=—llnx=-Inx
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and
y=-1log;o x =—logo x

When we raise x to the =1 power before taking the logarithm, we negate all the function
values, compared to what they'd be if we left x alone. The x axis acts as a point reflector. The
domains and ranges of these reciprocal functions are the same as the domains and ranges of
the original functions.

Logarithm: example 3
We can create two interesting functions by multiplying the functions defined in the previous two

paragraphs. Let’s do that, and see what the graphs look like. We want to graph the functions

y=(nx) [In )]

and

J= (IOgm x) [logm (Xfl)]

Our knowledge of logarithms allows us to rewrite these functions, respectively, as

y=—(Inx)?*

and

y=—(logy %)’

The results are shown in Figs. 14-9 and 14-10. The domains of both product functions span
the entire set of positive reals. The ranges of both functions are confined to the set of nonposi-
tive reals (that is, the set of all reals less than or equal to 0).

Figure 14-9  Graph of the natural y
log times the natural 6 -
log of the reciprocal
(solid black curve).
The dashed gray
curves are the graphs 37
of the original _E
functions.
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Figure 14-10  Graph of the y
common log times 1
the common log of il
the reciprocal (solid
black curve). The
dashed gray curves T
are the graphs
of the original
functions.

Logarithm: example 4

Finally, let’s take the log functions we've been working with and find their ratios, as follows:
y=(nx) /[ln (x)]
and
y = (logip x) / [logo (x™)]
Our knowledge of logarithms allows us to simplify these, respectively, to
y=(nx)/(-lnx)=-1
and
y = (logiy x) / (-logy x) =—1

These functions are defined only if 0 < x < 1 or x > 1. The domains have “holes” at x = 1
because when we input 1 to either quotient, we end up dividing by 0. (Try it and see!) The
ranges are confined to the single value —1.
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Don't let them confuse youl

In some texts, natural (base-¢) logs are denoted by writing “log” without a subscript, fol-
lowed by the argument. In other texts and in most calculators, “log” means the common
(base-10) log.

To avoid confusion, you should include the base as a subscript whenever you write “log”
followed by anything. For example, write “log;,” or “log,” instead of “log” all by itself, unless
it’s impractical to write the subscript. You don’t need a subscript when you write “In” for the
natural log.

If you aren’t sure what the “log” key on a calculator does, you can do a test to find out. If your
calculator says that the “log” of 10 is equal to 1, then it’s the common log. If the “log” of 10 turns
out to be an irrational number slightly larger than 2.3, then it’s the natural log.

Here's a challenge!

Draw graphs of the ratio functions we found in “Logarithm: example 4.” Be careful! They’re a
litele cricky.

Solution
Figure 14-11 is a graph of the function

y=(nx)/[ln (x")]

Figure 14-11 Graph of the y
natural log divided 6 -
by the natural log _[

of the reciprocal
(solid black line T8
with “holes”). The 3t
dashed gray curves

are the graphs
of the original T
functions. 0 —t—t—+——F—F+—+—+—+ X
5
O—CL\\ 10
-3 Points (0, —1) and (1, —1)

are not part of the graph
of the ratio function!
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Figure 14-12  Graph of the y
common log 1=
divided by the
common log of
the reciprocal
(solid black line
with “holes”). The T
dashed gray curves ——t—t—t—t—t+—t+—+—+— X
are the graphs 5 10
of the original
functions.

Points (0, —1) and (1, —1)
are not part of the graph
of the ratio function!

Figure 14-12 is a graph of the function
y=(logio x) / logyo (x™)]

In both graphs, the original numerator and denominator functions are graphed as dashed gray curves.
The ratio functions are graphed as solid black lines with “holes.” The small open circles at the points
(0,-1) and (1,~1) indicate that those points are 7oz part of either graph. That’s the trick I warned you
about. Without the open circles, these graphs would be wrong.

Logarithmic Coordinate Planes

Engineers and scientists sometimes use coordinate systems in which one or both axes are
graduated according to the common (base-10) logarithm of the displacement. Let’s look at
the three most common variants.

Semilog (x-linear) coordinates

Figure 14-13 shows semilogarithmic (semilog) coordinates in which the independent-variable
axis is linear, and the dependent-variable axis is logarithmic. The values that can be depicted
on the y axis are restricted to one sign or the other (positive or negative). The graphable inter-
vals in this example are

-1<x<1
and

0.1<y<10
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Figure 14-13 The semilog y
coordinate plane 10
with a linear x axis
and a logarithmic
y axis. 3

0.3

The yaxis in Fig. 14-13 spans two orders of magnitude (powers of 10). The span could be increased
to encompass more powers of 10, but the y values can never extend all the way down to 0.

Semilog (y-linear) coordinates

Figure 14-14 shows semilog coordinates in which the independent-variable axis is logarith-
mic, and the dependent-variable axis is linear. The values that can be depicted on the x axis
are restricted to one sign or the other (positive or negative). The graphable intervals in this
illustration are

0.1<x<10
and
1<y<1

The x axis in Fig. 14-14 spans two orders of magnitude. The span could cover more powers of
10, but in any case the x values can't extend all the way down to 0.

Log-log coordinates

Figure 14-15 shows log-log coordinates. Both axes are logarithmic. The values that can be
depicted on either axis are restricted to one sign or the other (positive or negative). In this
example, the graphable intervals are

0.1<x<10
and
0.1<y<10

Both axes in Fig. 14-15 span two orders of magnitude. The span of either axis could cover
more powers of 10, but neither axis can be made to show values down to 0.
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Figure 14-14 The semilog y
coordinate plane 1T
with a logarithmic 1
x axis and a linear 1
y axis.
o+—+—+++++HH—++++HH x
1 0.3 1 3 10
-1+
Figure 14-15 The log-log y
coordinate plane. 10
The x and y axes are
both logarithmic.
3
1
0.3
0.1 X
0.1 0.3 1 3 10

Are you confused?

Semilog and log-log coordinates distort the graphs of relations and functions because the axes
aren’t linear. Straight lines in Cartesian or rectangular coordinates usually show up as curves in
semilog or log-log coordinates. Some functions whose graphs appear as curves in Cartesian or
rectangular coordinates turn out to be straight lines in semilog or log-log coordinates. Try plotting
some linear, logarithmic, and exponential functions in Cartesian, semilog, and log-log coordi-
nates. See for yourself what happens! Use a calculator, plot numerous points, and then “connect
the dots” for each function you want to graph.
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Here's a challengel!

Plot graphs of each of the following three functions in x-linear semilog coordinates, y-linear semi-
log coordinates, and log-log coordinates (use the templates from Figs. 14-13 through 14-15):

y=x
y=lnx
y=e

Solution

Use a scientific calculator and input various values of x. Plot several points for each function and
then draw curves through them, interpolating as you go. Be sure that your calculator is set for the
natural logarithmic and exponential functions (that is, base ¢), 70z common logarithm or common
exponential functions (base 10). You should get graphs that look like those shown in Fig. 14-16.
In two cases, only a single point of the function shows up in the coordinate spans portrayed here.
You'd have to expand the linear axis (the x axis) at A beyond 1 to see any of the graph for y=1In x.
You'd have to expand the linear axis (the y axis) at B beyond 1 to see any of the graph for y = ¢".

01 03 1 3 10

Figure 14-16  Simple functions in x-linear semilog
coordinates (at A), y-linear semilog coordinates
(at B), and log-log coordinates (at C).
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it! When plotting
graphs here, feel free to use a calculator, locate numerous points, and “connect the dots.”

1.

When we discussed the range of the natural exponential function, we claimed that
no real-number power of ¢ is equal to 0. Prove it. Here’s a hint: Use the technique of
reductio ad absurdum, in which we assume the truth of a statement and then derive
something obviously false or contradictory from that assumption.

. Set up a rectangular coordinate system like the one in Fig. 14-1A, where the values of x

are portrayed from —2.5 to 2.5, and the values of y are portrayed from 0 to 10. Sketch
the graphs of the following functions on this coordinate grid:

y=e
y=e’
y=ée”

. Set up a rectangular coordinate system like the one in Fig. 14-1B, where the values of x

are portrayed from —1 to 1, and the values of y are portrayed from 0 to 10. Sketch the
graphs of the following functions on this coordinate grid:

y=10"
y=107
y=107107

. Draw the graphs of the three functions from Problem 3 on an x-linear semilog

coordinate grid, where the values of x are portrayed from —1 to 1, and the values of y are
portrayed over the three orders of magnitude from 0.1 to 100.

. Plot a rectangular-coordinate graph of the function we get when we raise 10 to the

power of 1/x. The curve is represented by the following equation:
y — 10(1/x)

What is the domain of this function? What is its range? Include all values of the domain
from —10 to 10.

. We've claimed that the natural log of 0 isn't a real number. Prove it. Here’s a hint: Use

reductio ad absurdum, and use the solution to Problem 1 as a lemma (a theorem that
helps in the proof of another theorem).

Plot a rectangular-coordinate graph of the sum of the natural log function and the
common log function. The curve is represented by the following equation:

y=Inx+log, x

What is the domain of this function? What is its range? Include all values of the domain
from 0 to 10. Include all values of the range from -5 to 5.
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8.

10.

Plot a rectangular-coordinate graph of the product of the natural log function and the
common log function. The curve is represented by the following equation:

y=(Inx) (logo x)

What is the domain of this function? What is its range? Include all values of the domain
from 0 to 10, and all values of the range from 0 to 5.

. Draw the graphs of the three functions from Fig. B-18 (the illustration for the solution

to Problem 7) on a y-linear semilog coordinate grid. Portray values of x over the two
orders of magnitude from 0.1 to 10. Portray values of y from =5 to 5.

Draw the graphs of the three functions from Fig. B-19 (the illustration for the solution
to Problem 8) on a y-linear semilog coordinate grid. Portray values of x over the single
order of magnitude from 1 to 10. Portray values of y from 0 to 2.5.
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Trigonometric Curves

If you've taken basic algebra and geometry, you're familiar with the trigonometric functions.
You also got some experience with them in Chap. 2 of this book. Now we'll graph some algebraic
combinations of these functions.

Graphs Involving the Sine and Cosine

Let’s find out what happens when we add, multiply, square, and divide the sine and cosine
functions.

Sine and cosine: example 1

Figure 15-1 shows superimposed graphs of the sine and cosine functions along with a graph of
their sum. You can follow along by inputting numerous values of 6 into your calculator, deter-
mining the output values, plotting the points corresponding to the input/output ordered pairs,
and then filling in the curve by “connecting the dots.” In Fig. 15-1, the dashed gray curves are
the individual sine and cosine waves. The solid black curve is the graph of the sum function:

f(6) =sin B8+ cos 0

The sum-function wave has the same period (distance between the corresponding points
on any two adjacent waves) as the sine and cosine waves. In this situation, that period is 27.
The new wave also has the same frequency as the originals. The frequency of any regular,
repeating wave is always equal to the reciprocal of its period.

The peaks (recurring maxima and minima) of the sine and cosine waves attain values of
*1. The peaks of the new wave attain values of 2%, which occur at values of 8 where the
graphs of the sine and cosine cross each other. By definition, the peak amplitude of the new
function is 2" times the peak amplitude of either original function. The new wave appears
“sine-like,” but we can’t be sure that it’s a true sinusoid on the basis of its appearance in this
graph. The domain of our function fincludes all real numbers. The range of fis the set of all
reals in the closed interval [-2'2,212].

285



286  Trigonometric Curves

Figure 15-1 Graphs of the Each horizontal £(6)
sine and cosine division
functions (dashed is 7r/2 units
gray curves) and
the graph of their

sum (solid black

curve). Each division 7=
on the horizontal

axis represents 77/2 T N

{ | | | { {
. . i j i — i T 0
units. Each division ‘ ‘ ‘ ! ‘
on the vertical axis T
represents 1/2 unit. T

Each vertical
division
— is 1/2 unit

Sine and cosine: example 2

In Fig. 15-2, we see graphs of the sine and cosine functions along with a graph of their product.
The dashed gray curves are the superimposed sine and cosine waves. The solid black curve is
the graph of the product function:

f(6) =sin O cos O

The new function’s graph has a period of 7, which is half the period of the sine wave,
and half the period of the cosine wave. The peaks of the new wave are £1/2, which occur at
values of @ where the graphs of the sine and cosine intersect. As in the previous example, the
new wave looks like a sinusoid, but we can't be sure about that by merely looking at it. The
domain of the product function spans the entire set of reals. The range is the set of all reals in
the closed interval [-1/2,1/2].

Sine and cosine: example 3

Figure 15-3 shows the graphs of the sine function (at A) and the cosine function (at B) along
with their squares. The dashed gray curve at A is the sine wave; the dashed gray curve at B is
the cosine wave. In illustration A, the solid black curve is the graph of

f(6)=sin* 0
In illustration B, the solid black curve is the graph of

2 (6) =cos” 0



Figure 15-2  Graphs of the sine Each horizontal f(6)

and cosine functions ~ division

(dashed gray curves) is /2 units %
along with the graph

of their product

(solid black curve).

Each horizontal
division represents
7/2 units. Each
vertical division
represents 1/4 unit.

Each vertical division

is 1/4 unit
Figure 15-3  The dashed gray Each horizontal  £(6)
curves are graphs of division - —_
is 7/2 units

the sine function -+
(at A) and the cosine
function (at B). The

solid black curves are
graphs of the square

of the sine function

(at A) and the square A
of the cosine function -
(at B). Each division N
on the horizontal
axes represents 77 /2

units. Each division

Each vertical division
L is 1/4 unit

on the vertical axes

represents 1/4 unit.

Each horizontal 9(6)
division -
is /2 units

Each vertical division
L is 1/4 unit
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The squared-function waves have periods of 7, half the periods of the original func-
tions. Therefore, the frequencies of the squared functions are twice those of the original
functions.

The waves for the squared functions are displaced upward relative to the waves for the
original functions. The squared functions attain repeated minima of 0 and repeated maxima
of 1. In other words, the positive peak amplitudes of the squared-function waves are equal to
1, while the minimum peak amplitudes are equal to 0. We define the peak-to-peak amplitude
of a regular, repeating wave as the difference between the positive peak value and the negative
peak value. In this example, the original waves have peak-to-peak amplitudes of 1 — (1) =2,
while the squared-function waves have peak-to-peak amplitudes of 1 — 0 = 1.

The waves representing the squared functions fand g look like sinusoids, but we can’t
be certain about that on the basis of their appearance alone. The domains of fand g include
all real numbers. The ranges of fand g are confined to the set of all reals in the closed
interval [0,1].

Sine and cosine: example 4

Let’s add the squared functions from the previous example and graph the result. The solid
black line in Fig. 15-4 is a graph of the sum of the squares of the sine and the cosine functions,
which are shown as superimposed dashed gray curves. We have

f(6) =sin® 0+ cos” 0

In this case, the function has a constant value. The domain includes all of the real numbers.
The range is the set containing the single real number 1.

Figure 15-4  Graph of the sum £(6)
of the squares of -
the sine and cosine 4
functions (solid
black line). The
dashed gray curves
are the graphs of

the original squared -+
functions. Each R R A T W W WY g
horizontal division

represents 7T/2 units.

Each vertical division
Each horizontal _|_ Each vertical
division division

is /2 units T is 1/4 unit

represents 1/4 unit.
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Are you confused?

You might wonder, “How can we be certain that the graph in the previous example is actually a
straight, horizontal line? When I input values into my calculator, I always get an output of 1, but
I've learned that even a million examples can’t prove a general truth in mathematics.” Your skepti-
cism shows that you're thinking! But let’s remember one of the basic #rigonometric identities that
we learned in Chap. 2. For all real numbers 6, the following equation holds true:

sin® @+ cos” O=1
This fact assures us that in the previous example, we have

=1

so the graph of the sum-of-squares function is indeed the horizontal, solid black line portrayed
in Fig. 15-4.

Here's a challengel!

Sketch a graph of the ratio of the square of the sine function to the square of the cosine function.
That is, graph

£(6) = (sin” 6)/(cos” 6)

Solution

The solid black complex of curves in Fig. 15-5 is the graph of the ratio of the square of the sine
to the square of the cosine. The superimposed gray curves are graphs of the original sine-squared
and cosine-squared functions.

Figure 15-5 Graph of the ratio of
the square of the sine
function to the square
of the cosine function
(solid black curves).
Each horizontal
division represents
7t /2 units. Each
vertical division
represents 1/2 unit.
The dashed gray

curves are the graphs

of the original sine- 1

squared and cosine- Each horizontal | Each vertical
squared functions. division division
The vertical dashed is /2 units - is 1/2 unit

lines are asymptotes -+

of 1
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This ratio function f is singular (that is, it “blows up”) when 0 is any odd-integer multiple of 77/2.
That’s because cos” 0 (the denominator) equals 0 at those points, while sin* 6 (the numerator) equals 1.
The function attains values of 0 at all integer multiples of 77 because at those points, sin” 6 (the numerator)
equals 0, while cos” 0 (the denominator) equals 1.

The period of f is 7, the distance between the asymptotes; the graph repeats itself completely
between each adjacent pair of asymptotes. The peak amplitude and the peak-to-peak amplitude are
both undefined. (It's tempting to call them “infinite,” but let’s not go there!) The domain includes all
reals except the odd-integer multiples of /2. The range is the set of all nonnegative reals.

Graphs Involving the Secant and Cosecant

In Chap. 2, we saw graphs of the basic secant and cosecant functions, which are the reciprocals
of the cosine and sine, respectively. Let’s combine these two functions after the fashion of the
previous section, and see what the resulting graphs look like.

Secant and cosecant: example 1

The dashed gray curves in Fig. 15-6 are the superimposed graphs of the secant and cosecant
functions. The complex of solid black curves is a graph of their sum. As always, you can repro-
duce this graph by inputting a sufficient number of values into your calculator, plotting the

Figure 15-6  Graph of the sum of
the secant and cosecant
functions (solid
black curves). The
dashed gray curves
are the graphs of the
original functions.
Each division on
the horizontal axis
represents 77/2 units.
Each vertical division

represents 1 unit.
The vertical dashed
lines are asymptotes
of f* The dependent-
variable axis is also an
asymptote of /-

Each horizontal division is 7/2 units
Each vertical division is 1 unit
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output points, and then “connecting the dots.” You'll have to take some time to “investigate”
this function before you can accurately plot this graph, but be patient! We have

f(6) =sec 8+ csc 6

The graph of /" has asymptotes that pass through every point where the independent vari-
able is an integer multiple of 7z/2. If you examine Fig. 15-6 closely, you'll see that the graph is
regular and it repeats with a period of 27, but we cant call it a wave. The domain includes all
real numbers except the integer multiples of 77/2 because, whenever 6 attains one of those values,
either the secant or the cosecant is undefined. The range spans the set of all real numbers.

Secant and cosecant: example 2

Figure 15-7 shows graphs of the secant and cosecant functions along with their product. The
dashed gray curves are graphs of the original functions superimposed on each other; the solid
black curves show the graph of

f(6) =sec Bcsc O

This function f has a period of 7, which is half that of the secant and cosecant functions.
Like the sum-function graph, this graph has asymptotes that pass through every point where
the independent variable is an integer multiple of 7£/2. The domain is the set of all reals except
the integer multiples of 77/2. The range spans the set of all real numbers except those in the
open interval (—2,2). Alternatively, we can say that the range includes all reals y such that y > 2
ory<—2.

Figure 15-7  Graph of the
product of the
secant and cosecant
functions (solid
black curves). The
dashed gray curves
are the graphs of the
original functions.
Each division on
the horizontal axis

represents 77/2 units.
Each vertical division

represents 1 unit.
The vertical dashed
lines are asymptotes
of /' The dependent-
variable axis is also
an asymptote of f©

Each horizontal division is 7/2 units
Each vertical division is 1 unit
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Secant and cosecant: example 3

The dashed gray curves in Fig. 15-8 are the graphs of the secant function (at A) and the
cosecant function (at B). At A, the solid black curve is the graph of

£(6) =sec’ 0
At B, the solid black curve is the graph of

2 (0) =csc* 6

Figure 15-8 The solid black
curves are the graphs ! ! !
of the squares of the 3 3 3
secant function (at % % %
A) and the cosecant | | |
function (at B). The ! ! !
dashed gray curves % % %
are the graphs of the | | |

original functions. A s | s | s

Each division on N N N
the horizontal axes

represents 77/2 units.

Each division on the

vertical axes represents

1 unit. The vertical

N

dashed lines are

asymptotes of fand g. , L .
At B, the dependent- Each horizontal division is 7/2 units

Each vertical division is 1 unit

variable axis is also an
asymptote of g. g(0)
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The squared functions have periods of 7, which are half the periods of the original func-
tions. Therefore, the frequencies of the squared functions are double those of the originals.
Singularities occur at the same points on the independent-variable axes as they do for the
original functions. The domain of the secant-squared function is the set of all reals except
odd-integer multiples of 7/2. The domain of the cosecant-squared function is the set of all
reals except integer multiples of 7. The ranges in both cases are confined to the set of reals y
such that y > 1.

Secant and cosecant: example 4

Figure 15-9 shows what happens when we add the secant-squared function to the cosecant-
squared function. The solid black curves compose the graph of

£(6) =sec® O+ csc” 6

The dashed gray curves are superimposed graphs of the original functions. This sum function
has a period equal to half that of the original functions, or 7£/2. The domain includes all reals
except the integer multiples of /2. The range is the set of reals y such that y > 4.

Figure 15-9  Graph of the sum f(6)
of the squares of the
secant and cosecant
functions (solid
black curves). The
dashed gray curves
are the graphs of
the original squared
functions. Each

horizontal division
represents 7T/2 units.
Each vertical division
represents 1 unit.
The vertical dashed
lines are asymptotes
of fThe positive
dependent-variable
axis is also an
asymptote of 2 -

Each horizontal Each vertical
division division
is /2 units is 1 unit
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Are you confused?

You're bound to wonder, “How do we know that the range of the sum-of-squares function in the
previous example is the set of all reals greater than or equal to 4?” Another way of stating this fact
is that the minima of the solid black curves in Fig. 15-9 have dependent-variable values equal to 4.
These minima occur at values of 6 where the graphs of the secant-squared and cosecant-squared
functions (dashed gray curves) intersect. Every one of those points occurs where 6 is an odd-in-
teger multiple of 7/4. With the help of your calculator, you can determine that whenever 6 is an
odd-integer multiple of 77/4, the secant squared and cosecant squared are both 2, so their sum is 4. If you
move slightly to the right or left of any of these points, the value of the sum-of-squares function
increases (a fact that you can, again, check out with your calculator). It follows that the sum-of-
squares function can never attain any real-number value less than 4. However, there’s no limit to
how large the value of the function can get. One or the other of the original functions “blows up
positively” at every point where 0 attains an integer multiple of 7/2.

Here's a challengel!

Sketch a graph of the ratio of the square of the secant function to the square of the cosecant func-
tion. That is, graph

f(6) = (sec” 6)/(csc” O)

Determine the domain and range of - Be careful! Both the domain and the range have some tricky
restrictions.

Solution

We can simplify this problem by remembering a few basic facts in trigonometry, and by applying
a little algebra. First, let’s remember that the cosecant is equal to the reciprocal of the sine, so the
converse is also true. We have

1/(csc 6) = sin O
When we square both sides, we get

1/(csc? 0) = sin®> O
Substituting in the equation for our function gives us

£(6) = (sec” 6) (sin’ 0)

We've learned that the secant is equal to the reciprocal of the cosine. We have

sec 0= 1/(cos 0)

so we can square both sides to get

sec’ = 1/(cos’ 6)
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Substituting again in the equation for our original function, we obtain
£(6) = (sin? B)/(cos* 6) = [(sin O)/(cos 6)]*

The sine over the cosine is equal to the tangent, so we can substitute again to conclude that our
original function is

£(6) =tan* 6

with the restriction that we can’t define it for any input value where either the secant or the cosecant
become singular.

The solid black curves in Fig. 15-10 show the result of squaring all the values of the tangent func-
tion, noting the additional undefined values as open circles. At the points shown by the open circles, the
cosecant function is singular so its square is undefined. That means we can’t define our ratio function f
at any such point. At the asymptotes (dashed vertical lines), the secant function is singular so its square
is undefined, making it impossible to define the ratio function ffor those values of 6. Our function f°
has a period of 7. The domain of /" includes all real numbers except integer multiples of 77/2, where one
or the other of the original squared functions is singular. The range is the set of all positive reals.

Each horizontal — Each vertical
division e division
is 7/2 units is 1 unit

Figure 15-10  Graph of the ratio of the square of the
secant function to the square of the
cosecant function (solid black curves).
The dashed gray curves are the graphs
of the original squared functions.
Each horizontal division represents
/2 units. Each vertical division
represents 1 unit. The vertical dashed
lines are asymptotes of /-
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Graphs Involving the Tangent and Cotangent

You were introduced to graphs of the basic tangent and cotangent functions in Chap. 2. The tan-
gent is the ratio of the sine to the cosine, and the cotangent is the ratio of the cosine to the sine.
Now we'll see what happens when we alter or combine these functions in a few different ways.

Tangent and cotangent: example 1
In Fig. 15-11, the dashed gray curves are superimposed graphs of the tangent and cotangent
functions. The solid black curves portray the graph of

f(6) =tan 6+ cot 0

The graph of fhas asymptotes that pass through every point where the independent
variable attains an integer multiple of 77/2. The period is 7. The domain is the set of all real
numbers except the integer multiples of 77/2. The range is the set of reals larger than or equal

—
)

Each horizontal division is 7/2 units
Each vertical division is 1 unit

Figure 15-11  Graph of the sum of the tangent
and cotangent functions (solid black
curves). The dashed gray curves are
the graphs of the original functions.
Each division on the horizontal axis
represents 77 /2 units. Each vertical
division represents 1 unit. The
vertical dashed lines are asymptotes
of - The dependent-variable axis is
also an asymptote of f.
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to 2 or smaller than or equal to —2. We can also say that the range spans the set of all reals
except those in the open interval (=2,2).

Tangent and cotangent: example 2

Figure 15-12 shows superimposed graphs of the tangent and cotangent functions (dashed gray
curves) along with their product (black line with “holes” in it). We have

f(6) =tan B cot O

We can simplify the calculations to graph this function when we recall that the cotangent
and the tangent are reciprocals of each other, so we have

cot 6= 1/(tan 6)

This equation is valid as long as both functions are defined and tan 0 # 0. By substitution, the
equation for our function /" becomes

f(6) = (tan 6)/(tan 6) =1

Each horizontal division is 7/2 units
Each vertical division is 1 unit

Figure 15-12  Graph of the product of the tangent
and cotangent functions (solid black
curve). The dashed gray curves are
the graphs of the original functions.
Each division on the horizontal axis
represents 77/2 units. Each vertical
division represents 1 unit.
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The graph of f'is a horizontal, straight line with infinitely many “holes,” with each hole
located at a point where 8 is an integer multiple of 77 /2. If we want to get creative with our
terminology, we can say that the graph of fconsists of infinitely many open-ended line seg-
ments, each of length /2, placed end-to-end in a collinear arrangement. The domain of f
spans the set of all reals except the integer multiples of 77/2. The range is the set containing

the single real number 1.

Tangent and cotangent: example 3

The dashed gray curves in Fig. 15-13 are the graphs of the tangent function (at A) and the
cotangent function (at B). The solid black curves in drawing A compose the graph of

Figure 15-13 The solid black
curves are graphs of
the squares of the
tangent function
(at A) and the
cotangent function
(at B). The dashed
gray curves are
graphs of the
original functions.
Each division on
the horizontal axes
represents 77/2
units. Each division
on the vertical axes
represents 1 unit.
The vertical dashed
lines are asymptotes
of fand g. At B, the
positive dependent-
variable axis is also
an asymptote of g.

f(6) =tan” 6

Each horizontal division is 7/2 units
Each vertical division is 1 unit

g(©)
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The solid black curves in drawing B compose the graph of
g(0) =cot’ 0

Both f'and g have periods of 7, the same as the periods of the tangent and cotangent
functions. Therefore, the frequencies of the squared functions are the same as those of the
originals. Singularities occur in f'and g at the same points on the independent-variable axis
as they do for the original functions. The domain of fis the set of all reals except odd-integer
multiples of /2. The domain of g is the set of all reals except integer multiples of 7. The
ranges of both fand g span the set of nonnegative real numbers.

Tangent and cotangent: example 4

Figure 15-14 is a graph of the sum of the tangent-squared function and the cotangent-squared
function. The solid black curves compose the graph of

f(6) =tan® 6+ cot® O

The dashed gray curves are superimposed graphs of the original squared functions. This
sum function f has a period equal to half that of the original functions, or 77/2. The domain
includes all reals except the integer multiples of 77/2. The range is the set of reals y such that
y22.

Figure 15-14  Graph of the sum f(6)
of the squares
of the tangent
and cotangent
functions (solid
black curves). The
dashed gray curves
are the graphs of
the original squared
functions. Each
division on the
horizontal axis

units. Each vertical
division represents

1 unit. The vertical
dashed lines are
asymptotes of /- The
positive dependent- -+

represents 77/2 %

variable axis is also

an asymptote of £/ Each horizontal Each vertical

division —+ division
is /2 units 1 is 1 unit
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Are you confused?

You might wonder how we can be sure that the range of the sum-of-squares function graphed in
Fig. 5-14 is the set of all reals greater than or equal to 2. To understand this, we can use the same
reasoning as we did when we added the squares of the secant and the cosecant functions. All the
minima on the solid black curves in Fig. 15-14 correspond to dependent-variable values of 2,
because they occur where the graphs of the dashed gray curves intersect. At all such points, the
tangent squared and cotangent squared are both 1, so their sum is 2. If you move slightly on either
side of any such point, the value of the sum-of-squares function increases.

Here's a challengel!

Sketch a graph of the ratio of the square of the tangent function to the square of the cotangent
function. That is, graph

f(6) = (tan* 6)/(cot” 6)

State the domain and range of f. Be careful! There are some tricky restrictions in the domain.

Solution

Lets use our knowledge of trigonometry to break this ratio down into sines and cosines. We recall
that

tan 6= (sin 6)/(cos 6)
as long as O isn’'t an odd-integer multiple of /2, and
cot 6= (cos 6)/(sin 6)
provided 0 isn’t an integer multiple of 7. Therefore,
tan® 0= (sin* 6)/(cos’ 6)
and
cot” 0= (cos® 0)/(sin* 6)
with the same restrictions. By substitution, our ratio function becomes
£(6) = [(sin® 6)/(cos* 0)]/[(cos® B)/(sin* O)]
as long as O isn’t an integer multiple of 77/2. The above equation can be rewritten as
£(6) = [(sin® 6)/(cos” )] [(sin* 6)/(cos® 6)]
which simplifies to

£ = (sin* 0)/(cos* 6)]
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and finally to
f(6) =tan* 6

with, once again, the important restriction that 6 cannot be any integer multiple of 7/2. If we
input any integer multiple of 7/2 to the original function, we can’t define the output because
either the numerator or the denominator function encounters a singularity.

The black curves with the holes in Fig. 15-15 show the result of raising all the values of the tangent
function to the fourth power, noting the additional undefined values as open circles. The dashed gray
curves are the original tangent-squared and cotangent-squared functions. Our function /" has a period
of 7. The domain includes all real numbers except integer multiples of 77/2. The range includes all
positive real numbers.

SALALDA AL

Each horizontal nE Each vertical
division L division
is /2 units e is 1 unit

Figure 15-15 Graph of the ratio of the square
of the tangent function to the
square of the cotangent function
(solid black curves). The dashed
gray curves are the graphs of the
original squared functions. Each
division on the horizontal axis
represents 77/2 units. Each vertical
division represents 1 unit. The
vertical dashed lines represent
asymptotes of f
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1.

Look back at Fig. 15-1, which shows the graphs of the sine and cosine waves (dashed
gray curves) along with their sum (solid black curve). Sketch a graph, and state the
domain and the range, of the difference function:

b (0) =sin 6 — cos O

. Look back at Fig. 15-4, which shows the sine-squared and cosine-squared waves (dashed

gray curves) along with their sum (solid black horizontal line). Sketch a graph, and state
the domain and the range, of the difference-of-squares function:

b (6) = sin* @ — cos®> 6

. Look back at Fig. 15-5, which shows the graphs of the sine-squared and cosine-squared

waves (dashed gray curves) along with the graph of the ratio-of-squares function:
£(6) = (sin® 6)/(cos” 6)

Sketch a graph, and state the domain and the range, of the ratio-of-squares function
going the other way. That function is

b (0) = (cos® 8)/(sin® 6)

Look back at Fig. 15-6, which shows the graphs of the secant and cosecant functions
(dashed gray curves) along with their sum (solid black curves). Sketch a graph, and state
the domain and the range, of the difference function:

b (6) =sec 0— csc O

. Look back at Fig. 15-9, which shows the graphs of the secant-squared and cosecant-

squared functions (dashed gray curves) along with their sum (solid black curves).
Sketch a graph, and state the domain and the range, of the difference function:

b (6) =sec® O— csc* O

Look back at Fig. 15-10, which shows the graphs of the secant-squared and cosecant-
squared functions (dashed gray curves) along with the graph of

f(6) = (sec” 6)/(csc” H)

Sketch a graph, and state the domain and the range, of the ratio-of-squares function
going the other way. That function is

b (0) = (csc? 0)/(sec O)

Look back at Fig. 15-11, which shows the graphs of the tangent and cotangent
functions (dashed gray curves) along with the graph of their sum (solid black curves).
Sketch a graph, and state the domain and the range, of the difference function:

b (6) =tan 6 — cot O
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10.
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Look back at Fig. 15-14, which shows the graphs of the tangent-squared and cotangent-
squared functions (dashed gray curves) along with the graph of their sum (solid black
curves). Sketch a graph, and state the domain and the range, of the difference-of-
squares function:

b (6) = tan® O — cot®* O

. In Chap. 2, we learned that square of the secant of an angle minus the square of the

tangent of the same angle is always equal to 1, as long as the angle is not an odd-integer
multiple of /2. That is,

sec? O—tan®> 0=1

Sketch a graph that illustrates this principle, which is sometimes called the Pythagorean
theorem for the secant and tangent.

In Chap. 2, we learned that the square of the cosecant of an angle minus the square
of the cotangent of the same angle is always equal to 1, as long as the angle is not an
integer multiple of 7. That is,

csc? O—cot? =1

Sketch a graph that illustrates this principle, which is sometimes called the Pythagorean
theorem for the cosecant and cotangent.



CHAPTER

16

Parametric Equations in Two-Space

In the two-space relations and functions we've seen so far, the value of one variable depends on
the value of the other variable. In this chapter, we'll learn how to express two-space relations
and functions in which both variables depend on an external factor called a parameter.

What’s a Parameter?

304

In a two-space relation or function, a parameter acts as a “master controller” for one or both
variables. When there exists a relation between x and y, for example, we don’t have to say
that x depends on y or vice versa. Instead, we can say that a parameter, which we usually call 7
independently governs the values of x and y. We use parametric equations to describe how this

happens.

A rectangular-coordinate example

Here’s an example of a pair of parametric equations that produce a straight line in the Cartesian
xy plane. Consider

x=2t
and
y=3t

To generate the graph of this system, we can input various values of 7 to both of the parametric
equations, and then plot the ordered pairs (x,y) that come out. Following are some examples:

When #=-2, we have x=2 X (-2) =—4 and y = 3 X (-2) = 6.
When #=—1, we have x=2 x (-1)==2and y =3 X (-1) =-3.
When #=0, we have x=2X0=0and y=3x0=0.
When r=1,wehavex=2X1=2and y=3x1=3.
When r=2, wehavex=2Xx2=4and y=3x2=0.
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When we plot the (x,y) ordered pairs based on the above list as points on a Cartesian plane
and then “connect the dots,” we get a line passing through the origin with a slope of 3/2, as
shown in Fig. 16-1. From our knowledge of the slope-intercept form of a line in the xy plane,
we can write down the equation in that form as

y=03/2)x

Alternatively, we can use algebra to derive the equation of our system in terms of x and y alone,
without #. Lets take the first parametric equation

x=2t
and multiply it through by 3/2 to get
(3/12)x=(3/2)(21) = 3¢
Deleting the middle portion in the above three-way equation gives us
(3/2)x =3¢

The second parametric equation tells us that 37= y, so we can substitute directly in the above
equation to obtain

(312)x=y
y
A
6 e 1= 2
4t i
T 1 |t=-1
_— o x
-6 2 4 6
t=—1 -
t=—2 Moo -
7

Figure 16-1 Cartesian-coordinate graph of the

parametric equations x = 2¢ and y = 3z.
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which is identical to the slope-intercept equation

y=(3/2)x

The polar-coordinate counterpart

Let’s see what happens if we change our pair of parametric equations to polar form. We'll put

0 in place of x, and put 7 in place of y. Now we have

and

To create the polar graph, we can input various values of 7 just as we did before. To keep
things from getting messy, let’s restrict ourselves to values of # such that we see only the part
of the graph corresponding to the first full counterclockwise rotation of the direction angle,

0=2¢

r=3t

so 0 < 0< 2m. Consider the following cases:

Our graph is a spiral, as shown in Fig. 16-2. Its equation can be derived with algebra exactly

When t=0, wehave 8=2Xx0=0and »=3x0=0.

When = 7m/4, we have 0=2 X /4 =m/2 and »r= 31 /4.

When t=7/2, we have =2 X /2 =1 and r=37/2.

When t=37/4, we have 0=2 X 3w /4=31/2 and r=3 X 37 /4 =91 /4.
When ¢ = 7, we have 0= 27 and »=37.

as we did in the Cartesian plane, substituting 6 for x and  for y to get

Figure 16-2

r=(3/2)0
Polar-coordinate Each radial /2
graph of the division ...
parametric equations
0=2rand r= 3z

Each radial division
represents 7T units.
For simplicity, we
restrict 0 to the
interval [0,27].
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Are you confused?

If you're having trouble understanding the concept of a parameter, imagine the passage of time.
In science and engineering, elapsed time ¢ is the parameter on which many things depend. In the
Cartesian situation described above, as time flows from the past (z < 0) through the present moment
(= 0) and into the future (# > 0), a point moves along the line in Fig. 16-1, going from the third
quadrant (lower left, in the past) through the origin (right now) and into the first quadrant (upper
right, in the future). In the polar case, as time flows from the present (# = 0) into the future (z> 0),
a point travels along the spiral in Fig. 16-2, starting at the center (right now) and going counter-
clockwise, arriving at the outer end when 7 = 7 (a little while from now).

Here's a challengel!

Find a pair of parametric equations that represent the line shown in Fig. 16-3.

Solution

We're given two points on the line. One of them, (0,3), tells us that the y-intercept is 3. We can
deduce the slope from the coordinates of the other point. When we move 4 units to the right from
(0,3), we must go downward by 3 units (or upward by —3 units) to reach (4,0). The “rise over run”
ratio is —3 to 4, so the slope is —3/4. The slope-intercept form of the equation for our line is

y=(=3/4)x+3

-6+

\4

Figure 16-3 How can we represent this line as a pair of
parametric equations?
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We can let x vary directly with the parameter z. We describe that relation simply as
X=t

Thats one of our two parametric equations. We can substitute 7 for x into the point-slope equation
to get

y=(=3/4)r+3

That’s the other parametric equation.

Here's an experiment!

Do you suspect that the pair of equations

and
y=(-3/4)t+3

isn't the only parametric way we can represent the line in Fig. 16-3? If so, maybe you're right. Let x =2z,
orx=t+1, orx=-2¢+ 1, and see what happens when you generate the equation for y in terms of 7 on
that basis. When you put the two parametric equations together, do you get the same line as the one
shown in Fig. 16-3?

From Equations to Graph

Parametric equations allow us to define complicated curves in an elegant, and often simpler,
way than we can do with ordinary equations. Let’s look at a couple of examples, and plot their
graphs in rectangular and polar coordinates.

Rectangular-coordinate graph: example 1

Suppose that x varies directly with the square of 7, and y varies directly with the cube of z In this
situation, we have the parametric equations

and
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Let’s construct a graph of this equation by inputting several values of # to the system and then
plotting the points. We can break the situation down as follows:

o When #=—4, we have x = (—4)* = 16 and y = (—4)’ = —64.
o When #=-3, we have x=(-3)* =9 and y = (-3)° = -27.
o When #=-2, we have x= (-2)* =4 and y = (-2)° =-8.

o When t=-1, we havex=(-1)’=1and y= (-1)°=-1.

o When =0, we havex=0°=0and y=0’=0.

o Whent=1,wehavex=1"=1landy=1"=1.

o When t=2,wehavex=2"=4and y=2"=8.

o When #=3, we have x=3"=9 and y =3’ =27.

o When #=4, we have x=4"= 16 and y = 4’ = 64.

We can plot the points for these nine xy-plane coordinates and then connect them by curve
fitting to get the graph of Fig. 16-4. To keep the picture clean, the points aren’t labeled. In
this illustration, we have a rectangular-coordinate graph, but not a true Cartesian graph.
That’s because the divisions on the y axis represent different increments than those on the
x axis. The result is a curve that’s “vertically squashed” compared to the way it would look
if plotted on a true Cartesian coordinate grid, but we can fit more of the curve into the
available space.

Polar-coordinate graph: example 1

Figure 16-5 illustrates what happens when we substitute 0 for x and » for y in the above
example, and then graph the result in polar coordinates. For simplicity, let’s restrict the graph

Figure 16-4 Rectangular-
coordinate graph
of the parametric
equations x = # and

y=7.
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to values of # such that 0 < # < (27)"". To keep the picture clean, we won’t label any of the

Each radial
division ...

&

X

/2

25

T }” 0

{

$

W

XM

3n/2 ... I8 3 units

Figure 16-5 DPolar-coordinate graph of the
parametric equations 0= #* and r=
£. Each radial division represents 3

units.

points. The situation breaks down as follows:

When =0, we have 8=0>=0and »r=0*>=0.
When t=1, we have @=1>=1and r=1>=1.
When = "2, we have 0= (1'?)* =1t and r= (#'?)* = %% = 5.57.
When =2, we have §=2>=4 and r=2°=8.
When z= 5", we have = (5"%)*=5 and r= (5"%)° =52 = 11.18.

When = (27)"?, we have 8= [27)"*)? =27 and r= [27)'?)® = 27)** = 15.75.

Rectangular-coordinate graph: example 2

Suppose that x varies inversely with 7 and y varies directly with In z The parametric equations

are

and

y=Inr
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Figure 16-6  Rectangular-coordinate graph of
the parametric equations x = £

andy=Inz

We can construct a rectangular-coordinate graph of the relation between x and y by tabulat-
ing the values for several points, based on various values of . Let’s break things down into the
following cases:

When <0, In #is undefined, so there are no points to plot.

When t=¢7?=0.14, we havex=(¢?) ' =¢ =7.39 and y=1In (¢?) = -2.
When t=¢"=0.37, wehavex=(¢") "' =¢=2.72and y=In (¢') =-1.
When t=1,wehavex=1"=1andy=Iln1=0.

When =2, we have x=2"=1/2 and y=1n 2 = 0.69.

When t=e¢=2.72, wehavex=¢"'=0.37and y=lne= 1.

When t=¢*=7.39, we have x=(¢)) ' = ¢ = 0.14 and y=In () = 2.

Figure 16-6 shows the curve we obtain when we plot these points and “connect the dots.” To keep
the picture clean, the points arent labeled. As in Fig. 16-4, we use distorted rectangular coordi-
nates to help us fit more of the curve on the page than we could with a true Cartesian grid.

Polar-coordinate graph: example 2

We can directly substitute 8 for x and 7 for y in the above example, tabulate some values, graph
the results, and get the curve shown in Fig. 16-7. Let’s restrict # to keep 6 within the closed
interval [0,27] so we see only the first full positive revolution. The situation breaks down as
follows:

o When r=¢ = 148, we have 8= (¢) ' = ¢ = 0.0067 and »=In (&) = 5.
o When r=¢*=7.39, we have 0= ()" =¢2=0.14 and r=1n () = 2.
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Each radial /2
division ...

e

W

D
<

2

(.
NV

Figure 16-7 Polar-coordinate graph of the para-
metric equations 0= ¢"and r=1In «
Each radial division represents
1 unit.

e Whent=2,wehave 9=2"=1/2and »=1n2 = 0.69.

e Whent=1,wehave 9=1"=1landr=In1=0.

e When = 1/2, we have 8= (1/2)"' =2 and r=1n (1/2) = —0.69.

o Whensr=7n"=0.32, wehave 0= (r"")"'=m and r=1In (#7") = -1.14.

e When t=(27m)" =0.16, we have 8= [27)']"' =27 and r=1n [27)'] = —1.84.

As we plot the points to obtain this graph, we must remember that when we have a negative
radius in polar coordinates, we go outward from the origin by a distance equal to |7|, but in
the opposite direction from that indicated by 6.

Are you confused?

The polar graph in Fig. 16-7 can be baffling. Imagine that we start out facing east, in the direction
0= 0. Our graph is infinitely far away in this direction. As we turn counterclockwise, the curve
approaches us as 7 becomes finite and decreases. When we have turned counterclockwise through
an angle of 1 rad (approximately 57°), the graph has come all the way in and reached the origin. As
we continue to turn counterclockwise, the radius becomes negative, so the graph is behind us. As
we rotate farther counterclockwise, r increases negatively. When we've rotated all the way around
through a complete circle, the graph is approximately 1.84 units to our rear.
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Here's a challengel!

Plot a rectangular-coordinate graph of the pair of parametric equations where x varies directly
with ¢’ and y varies directly with #. Then plot a polar-coordinate graph of the pair of parametric
equations where 0 varies directly with ¢ and 7 varies directly with #. For simplicity, restrict the
polar graph to values of # such that 0 < 0< 2.

Solution

The parametric equations for plotting the system in the rectangular xy plane are

and

Let’s tabulate the x and y values for several points, based on various values of %

o When r=-2, we havex=¢?=0.14 and y= (-2)* = 4.

o When r=-1, we havex=¢"'=0.37 and y= (-1)*= 1.

o When r=0, we havex=¢=1and y=0>=0.

o Whenrt=1,wehavex=¢'=¢=~272and y=1"=1.

o When ¢=3/2, we have x = ¢'* = 4.48 and y = (3/2)> = 9/4 = 2.25.
o When =2, we havex=¢"~7.39 and y =2 =4.

Figure 16-8 shows the graph we obtain by plotting the points in the xy plane. This is a true
Cartesian graph; the divisions on the x and y axes are the same size.

Figure 16-8 Cartesian-coordinate y
graph of the n
parametric equations 6
x=¢andy="7~. -t

4

2 —
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Now let’s tabulate some values for a polar graph. We substitute 6 for x and 7 for y, input values
of 7 to get a good sampling of polar angles in the output, and restrict # to keep 6 within the closed
interval [0,27]. The situation breaks down into the following cases:

e When r=-2, we have =¢?= 0.14 and = (-2)* = 4.

e When z=-1, we have §=¢"'=0.37 and »= (-1)>=1.

e When =0, we have 0=¢"=1 and »=0>=0.

e Whenz=1,wehave 0=¢'=¢=2.72and r=1>=1.

e When = 3/2, we have = ¢> = 4.48 and r= (3/2)>=9/4 = 2.25.
e When #=In 27, we have 0= ¢"?" =27 and = (In 27)* = 3.38.

Figure 16-9 shows the resulting curve in the polar plane. If the above tabulation doesn’t generate
enough points to satisfy you, feel free to work out a few more. As you gain experience in plotting
graphs like this, you'll learn to get a sense of where the curves go without having to calculate very
many discrete values.

Each radial /2

division ...

T 0
3r/2 ... is 1 unit

Figure 16-9 Polar-coordinate graph of the
parametric equations 8= ¢ and r=
#. Each radial division represents
1 unit.

From Graph to Equations

We've seen how we can go from parametric equations to graphs. Now we’ll do an exercise
going from a graph to a pair of parametric equations.
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Cartesian-coordinate graph to equations

Consider a circle of radius 4, centered at the origin in the Cartesian xy plane as shown in
Fig. 16-10. From trigonometry, we remember that

X=acos @
and
y=asin @

where ¢ is the angle going counterclockwise from the positive x axis. Both x and y depend on
the value of ¢. Let’s rename ¢ and call it # so our equations become

X=acos t
and
y=asint
This is a pair of parametric equations representing a circle of radius 4, centered at the origin in

the Cartesian xy plane. For any particular circle, # is a constant (not a variable), so the parameter
t is the only variable on the right-hand side of either equation.

X=acos ¢

y=asing¢

Figure 16-10 Cartesian-coordinate graph of a circle
with radius 4, centered at the origin. We
can let ¢ = ¢ to describe this circle as a
pair of parametric equations.
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Figure 16-11 Polar-coordinate n/2
graph of a circle
with radius 4,

centered at the / \
origin. We can let @ \‘

¢ = ¢ to describe ‘
this circle as a

pair of parametric 7 e
N

3r/2

-

equations.

(¢, f)

Polar-coordinate graph to equations

Now let’s convert the circle in the previous example to a pair of polar-form parametric equa-
tions. Suppose the polar direction angle is ¢, and the polar radius is 7. The equation of a circle
having radius # as shown in Fig. 16-11 is

r=a

Let’s call the angle ¢ our parameter # just as we did in the xy-plane situation. Then we can
write the parametric equations of our circle as

o=t

and

Are you confused?

Does the above pair of parametric equations seem strange to you? The second equation doesn’t
contain the parameter! That’s not a problem in this situation. The parameter has no effect because
the polar radius 7 is always the same.

Here's a challengel!

Suppose that we come across a pair of parametric equations similar to the one in the Cartesian-
coordinate example above, except that the cosine and sine of the parameter are multiplied by
different nonzero real-number constants # and &, like this:

X=a Ccos t
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and
y=bsint

What sort of curve should we expect to get if we graph the relation defined by this pair of para-
metric equations?

Solution

We’ve been told that 2 and & are both nonzero real numbers. Therefore, we can divide the equa-
tions through by their respective constants to get

xla=cos t
and
ylb=sint
If we square both sides of both equations, we obtain
(x/a)* = cos® ¢
and
(y/b)* =sin’ ¢
When we add these two equations, left-to-left and right-to-right, we obtain the new equation
(x/a)* + (y/b)* = cos® t+ sin® ¢
From trigonometry, we remember that for any real number 7, it’s always true that
cos® t+sin’ £=1
Therefore, the preceding equation can be rewritten as
(xla)* + (y/b)* =1
Expanding the squared ratios on the left-hand side gives us
Ll + 1o =1
which is the equation of an ellipse centered at the origin. The horizontal (x-coordinate) semi-axis is @

units wide, and the vertical (y-coordinate) semi-axis is & units high.
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. In “Rectangular-coordinate graph: example 1” (Fig. 16-4), the parametric equations are
x=7
and
y=r

Find an equation for this relation that expresses x in terms of y without the parameter #
Then find an equation that expresses y in terms of x without the parameter z.

2. Is the relation defined in your second answer to Problem 1 a function of x?
3. In “Polar-coordinate graph: example 2” (Fig. 16-7), the parametric equations are
0=1"
and
r=Inr

Find an equation for this relation that expresses 0 in terms of 7 without the parameter z.
Then find an equation that expresses 7 in terms of 6 without the parameter .

4. Is the relation defined in your second answer to Problem 3 a function of 6?
5. In “Cartesian-coordinate graph to equations” (Fig. 16-10), the parametric equations are
X=dacost
and
y=asint

where a is a nonzero constant. Find an equation for this relation in terms of x and y
only, without the parameter .

6. Express the solution to Problem 5 as a relation in which x is the independent variable
and y is the dependent variable. You should end up with y alone on the left-hand side
of the equals sign, and an expression containing x (but not y) on the right-hand side.
Is this relation a function of x?

7. Suppose that we come across the pair of parametric equations
x=sect
and
y=tant

Find an equation for this relation in terms of x and y only, without the parameter z What
sort of curve should we expect to get if we graph this relation in the Cartesian xy plane?
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Consider the pair of parametric equations
x=acsct
and
y=bcott

where 2 and 4 are nonzero real-number constants. Find an equation for this relation in
terms of x and y only, without the parameter z. What sort of curve should expect to get
if we graph this relation in the Cartesian xy plane?

. Express the relation

x = sin (cos y)
as a pair of parametric equations.

Manipulate the equation stated in Problem 9 so that y appears all by itself on the left-hand
side of the equals sign, and operations involving x appear on the right-hand side. Then
manipulate your answer to Problem 9 to get the same equation.
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17

Surfaces in Three-Space

Three-space can contain an infinite variety of surfaces, all of which can be defined as equa-
tions in terms of three variables. In this chapter, we'll examine a few basic surfaces and their
equations in Cartesian three-space.

Planes

320

An intuitive way to express the equation for a plane in Cartesian xyz space is to define the
direction of a vector normal (perpendicular) to the plane, and then to identify the coordinates
of a point in the plane. We don't have to know the magnitude of the vector, and the point in
the plane doesn’t have to be the one where the vector originates.

General equation of plane

Figure 17-1 shows a plane Win Cartesian three-space, a point P = (xy,),2) in the plane W,
and a vector (a,b,c) = ai + bj + ck that’s normal to plane W. The vector (2,6,c) originates at a
point Q that differs from P, and which is also located away from the coordinate origin. The
values x= 4, y= b, and z= c for the vector are nevertheless based on the vector’s standard form,
as if it originated at (0,0,0). The point and the vector give us enough information to uniquely
define the plane and write its equation in standard form as

alx—xp) + b(y —y) + c(z—2) =0

This equation can also be written as

ax+by+cz+d=0

where 4 is a stand-alone constant. With a little algebra, we can work out its value in terms of
the other constants and coefficients as

d=—axy— by, — ¢z
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Vector .
(a, b 0 +y Point P
normal to W A fXO! Yo o)
at point Q in plane W
Point Q
in plane W

+X

+Z

-y

Figure 17-1 A plane W can be uniquely defined on the basis of a point

P in the plane and a vector (4,6,c) normal to the plane.

Plotting a plane

When we want to construct a plane in Cartesian xyz space based on its equation, we can do it
by figuring out the coordinates of points where the plane crosses each of the three coordinate
axes. These points are the x-intercept, the y-intercept, and the z-intercept. When we plot these
intercept points on the axes, we can envision the position and orientation of the plane.

There’s a potential “hangup” with this scheme for plane-graphing. Not all planes cross all
three axes in Cartesian xyz-space. If a plane is parallel to one of the axes, then it does not cross
that axis, although must cross at least one of the other two. If a plane is parallel to the plane
formed by two coordinate axes, then that plane crosses only the axis with respect to which it
is not parallel.

An example

Suppose that a plane contains the point (3,-6,2), and the standard form of a vector normal to
the plane is 4i + 3j + 2k. Let’s find the plane’s equation in the standard form given above. To
begin, we know that the vector

4i+ 3j+ 2k
is equivalent to the ordered triple

(a,b,0) = (4,3,2)
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We've been told that
(X0,Y0520) = (3,—6,2)
and that this point lies in the plane. The general formula for the plane is
alx—x0) + b(y — yo) + cz—29) =0
Plugging in the known values for 4, 4, ¢, x,, y,, and z,, we get
4(x=3)+3[y—(-6)]+2(z-2)=0
which simplifies to

4x+3y+2z+2=0

Are you confused?

The standard-form equation of a plane in xyz space looks like an extrapolation of the standard-
form equation of a straight line in the xy plane. This can confuse some people. Don't let it baffle
you! An equation of the form

ax+by+cz+d=0

where 4, b, ¢, and d are constants represents a plane, not a line. In Chap. 18, you'll learn how to
describe straight lines in Cartesian xyz space.

Here's a challengel!

Draw a graph of the plane represented by the following equation:

—2x—4y+3z—-12=0

Solution

Let’s work out the graph by finding the coordinate-axis intercepts. The x-intercept, or the point
where the plane intersects the x axis, can be found by setting y = 0 and z= 0, and then solving the
resultant equation for x. Lets call this point 2. We have

—2x—4x0+3X0-12=0
Solving step-by-step, we get

—2x—12=0
—2x=12
x=12/(-2) =—6

Therefore
P = (_6a0)0)
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The y-intercept, or the point where the plane intersects the y axis, can be found by setting x = 0
and z = 0, and then solving the resultant equation for y. Lets call this point Q. We have

—2x0-4y+3x0-12=0
Solving, we get

—4y—12=0
—4y=12
y=12/(-4)=-3

Therefore
Q = (O)_3>O)

The z-intercept, or the point where the plane intersects the z axis, can be found by setting x = 0
and y = 0, and then solving the resultant equation for z. Lets call this point R. We have

—2x0-4%x0+3z—-12=0
Solving, we get

3z—-12=0
3z=12
z=12/3=4

Therefore
R=1(0,0,4)

These three points are shown in Fig. 17-2. We can now envision the plane because, as we recall
from our courses in spatial geometry, a plane in three dimensions can be uniquely defined on the
basis of three points.

ty

Each axis division
is 1 unit

Figure 17-2  Here’s the graph of a plane, based on the locations
of the three axis intercept points P, Q, and R.
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Spheres

A spherical surface is defined as the set of all points that lie at a fixed distance from a known
central point in three dimensions. When we recall the formula for the distance between a
point and the origin, it’s easy to work out equations for spheres in Cartesian xyz space.

Center at the origin

Imagine a sphere whose center lies at the origin (0,0,0), as shown in Fig. 17-3. Any point on
the sphere’s surface is at the same distance from the origin as any other point on the sphere’s
surface. Suppose that P is one such point whose coordinates are given by

P=(x,,9,2,)

In Chap. 7, we learned that the distance 7 of the point P from the origin in Cartesian xyz
space is
r= (xp2 +_yp2 + sz)l/z

We can square both sides of the above equation to get

— 2 2 2
rz—xp +y], +zp

Center of
sphere is at
(0,0,0) T

+7 Radius = r

Figure 17-3 A sphere of radius 7 in Cartesian xyz space, centered
at the origin. All points on the sphere’s surface are
at distance 7 from the center point (0,0,0).
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Transposing the left- and right-hand sides, we have
X,y +zl ="

Every point on the sphere’s surface is the same distance from the origin as 2, so we can general-
ize the above equation to get

Py =r

which defines the set of all points in three dimensions that lie at a fixed distance 7 from the
origin. That’s all there is to it! We've found the standard-form equation for a sphere of radius 7,
centered at the origin in Cartesian xyz space.

Center away from the origin

Consider a sphere whose center is somewhere other than the origin in Cartesian xyz space.
Suppose that the coordinates of the center point are (x;,0,2), as shown in Fig. 17-4. Whatever
point P that we choose on the sphere’s surface, the distance between P and the center is equal
to the sphere’s radius 7. Adapting the distance-between-points formula for Cartesian xyz space

from Chap. 7, we get

r= [0, —x0)” + (4, — p)* + (3, — 20"

Center of
sphere is at

(X0, Yos 20)

Radius = r

-y

Figure 17-4 A sphere of radius 7 in Cartesian xyz space, centered
away from the origin. All points on the sphere’s surface
are at distance 7 from the center point (xy,y0,%)-
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Squaring both sides of this equation and then transposing the left- and right-hand sides, we
obtain

(e, = x0)* + (o, —y0)* + (2, — 20)° = 7*

Every point on the sphere’s surface is the same distance from P as (xy,)0,20), 0 we can general-
ize to get

(= x0)* + (= yo)* + (2= 20)* =7

This is the standard-form equation for a sphere of radius 7, centered at the point (xy,0,2) in
Cartesian xyz space.

An example

Suppose we have a sphere whose center is at the origin, and whose radius is 7 units. If we let
r=7 in the general equation for a sphere centered at the origin, then we have

Ly 4+ =7
which can be simplified to

Ly +2=49

Another example

Consider a sphere centered at the point (=2,4,—1) with a radius of 5 units in Cartesian xyz
space. We can let

X0:_2

yo=4

Z():_l
r=>5

in the general equation for a sphere centered at a point other than the origin. When we plug
in the numbers, we obtain

[x— (2P + (-4 +[z—-(-1)]*=5"
which simplifies to

(x+2)+ (-4 +(z+1)*=25
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Are you confused?

The radius of a sphere is usually defined as a positive real number. If we define the radius of a
particular sphere as a negative real number, we get the same equation as we would if we defined
the radius as the absolute value of that number. That’s because we square the radius when we work
out the formula. For example, if we have a sphere centered at the origin with a radius of 4 units,
then its equation is

Lry+2=4
which simplifies to

“+y+z=16
If we find a companion “antisphere” centered at the origin with radius —4 units, then its equation is

L+ y+2=(-4)]

which also simplifies to

“+y+z =16
In physics and engineering, it’s possible to come up with spheres having negative radii, as well as
negative dimensions for other physical objects. These results are usually mere artifacts of the cal-
culation process, and don’t have any significance in the real world. However, if you ever encounter

a sphere whose radius is represented by an imaginary number such as j4, then you have good rea-
son to be confused until you know what sort of object or phenomenon the equation describes!

Here's a challengel
Suppose we're told that the following equation represents a sphere in Cartesian xyz space:
L —6x+y —2y+ 2 +4z=286

We're also informed that the sphere has a radius of 10 units. What are the coordinates of the center
of the sphere?

Solution

To solve this problem, we need some intuition. We know that the radius » of the sphere is 10
units. Therefore, 7 = 100. If we add 14 to both sides of the original equation, we get 7 on the
right-hand side:

& —6x+y —2y+2z +4z+14=100

We can split the stand-alone constant 14 into the sum of 9, 1, and 4, getting

EL—6x+y—2y+2+42+9+1+4=100
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Rearranging the addends on the left-hand side produces the following equation:
P —6x+9+y —2y+1+2 +4z+4=100
When we group the terms on the left-hand side by threes, we obtain
(F=6x+9)+ ( —2y+ 1) + (& + 42+ 4) = 100
This is a sum of three perfect squares! Factoring them individually gives us
(x=3)+ (y— 1"+ (z+2)*=100

The coordinates of the center point are therefore

XO=3
J=1
Zy=—2

Expressed as an ordered triple, it’s (3,1,—-2).

Distorted Spheres

Spheres can be made “out of the round” by increasing or decreasing the axial radii in the x, y,
and z directions individually.

Alternative equation for a sphere centered at the origin

Once again, consider the general equation of a perfect sphere centered at the origin. That
equation, in standard form, is

CHy+Z=r
where 7 is the radius. If we divide through by 7, we get
I+ e+ 27 =1

This equation tells us that the radius is always the same, whether we measure it in the direction
of the x axis, y axis, or z axis. To emphasize the fact that we can, if desired, change any of all of
these axial radii, let’s rewrite the above equation as

Rl + VI + 218 =1

where 4, b, and ¢ are positive real numbers representing the radii along the x, y, and z axes,
respectively. In the case of a perfect sphere, we have

a=b=c

If these three positive real-number constants 4, 4, and ¢ are not all the same, then we have a
distorted sphere.
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Oblate sphere centered at the origin

Suppose that we take a perfect sphere and then shorten one of the three axial radii. This pro-
cess gives us an object called an oblate sphere. It’s flattened, like a soft rubber ball when pressed
between our hands. Figure 17-5 shows an example. This is what we get if we take the sphere
from Fig. 17-3 and reduce the axial radius & (the one that goes along the y axis), while leaving
the axial radii # and ¢ unchanged. The center of the object is still at the origin, but we can no
longer say that all the points on its surface are equidistant from the origin. The general equation
for an oblate sphere centered at the origin is

ClE +pIb + 21 =1

where 4 is the x-axial radius, & is the y-axial radius, ¢ is the z-axial radius, and exactly one of
the following relationships holds true among them:

a<b=c
b<a=c
c<a=b

Alternative equation for a sphere centered away from the origin
Earlier in this chapter, we learned that the general equation of a sphere centered at some point

other than the origin in Cartesian xyz space is

(x — x0)” + ()/_)’0)2 +(z—2)* =7

Ty

Center is at

(0,0,0) Radius in
y direction
=b

+z Radius in B Radius.in
z direction x direction
=C - =a

Figure 17-5 An oblate sphere in Cartesian xyz space, centered at
the origin.
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where 7 is the radius, and (xp,y0,2) are the coordinates of the center. Dividing through by 7,
we obtain

(x—x0) 17 + (y = y0)° 17 + (z— z0)* 17 =1

As we did with the sphere centered at the origin, we can rewrite this equation, getting
(x—x0)*1d* + (y— )1 6° + (z— z0)*/* =1

where 4, b, and ¢ are the radii parallel to the x, y, and z axes, respectively. As before, with a
perfect sphere, we have

a=b=c
If 4, b, and ¢ are not all the same, then the sphere is distorted.

Oblate sphere centered away from the origin

If we take a sphere that’s centered at (x,50,%9) and shorten one of the axial radii, we get an
oblate sphere defined by the general equation

(x—x0)*1ad* + (y— )1 6° + (z— z0)*/* = 1

where exactly one of the following is true:

a<b=c
b<a=c
c<a=b

Figure 17-6 should give you a general idea of what happens in a case like this. Imagine a sphere
centered at (xy,)0,2) that has been squashed in the direction defined by a line parallel to the y axis.

Ellipsoid centered at the origin

Again, imagine that we have a perfect sphere centered at the origin in Cartesian xyz space. Let’s
lengthen one of the axial radii while leaving the other two unchanged. This stretching process
produces an ellipsoid. 1t's elongated, like a football with blunted ends. Figure 17-7 shows an
example. Imagine that we take the sphere from Fig. 17-3 and then stretch it in the z direction.
The general equation for an ellipsoid centered at the origin is

Rl + VI + 218 =1

where 4 is the x-axial radius, & is the y-axial radius, ¢ is the z-axial radius, and exactly one of
the following relationships is true:

a>b=c
b>a=c
c>a=2b
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Ty

Radius in
y direction

Radius in
x direction
=a

An oblate sphere in Cartesian xyz space, centered

ty

Radius in
y direction
=b

Radius in
z direction
=c

Radius in
T X direction
=a

Figure 17-7  An ellipsoid in Cartesian xyz space, centered at the

origin.
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Ellipsoid centered away from the origin

Consider a sphere centered at (xy,)0,20). If we make one of the axial radii longer while leaving
the other two unchanged, we get an ellipsoid defined by the general equation

(x—x0)*1ad* + (y— y)*16° + (z — z0)*/* = 1

where exactly one of the following is true:

a>b=c
b>a=c
c>a=2b

Figure 17-8 portrays a situation in which a sphere centered at (xo,50,20) has been stretched
along a line parallel to the z axis to obtain an ellipsoid.

Oblate ellipsoid centered at the origin

One more time, imagine a sphere centered at the origin. We start out with all three axial radii
equal in measure. Then we lengthen one of them, shorten another, and leave the third one
unchanged. This process gives us an oblate ellipsoid. Figure 17-9 shows an example where we
take the sphere from Fig. 17-3, squash the radius in the y direction, stretch the radius in the
z direction, and leave the radius unchanged in the x direction. The general equation for an
oblate ellipsoid centered at the origin is

Pla + 10+ 2 =1

ty
Center is at Radius in
(X0, Yo, 20) y direction
=b
Z
——————— >
2 . ZAmEE
/
—+ Radius in
+ x direction
z Radius in I =g
z direction -+
=c
A\

Figure 17-8 An ellipsoid in Cartesian xyz space, centered at
(xo»)/mzo)-
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+y
(%egte(;)'s at Radius in
T y direction
=b

Radius in
x direction
—t =a

Radius in
z direction
=c

Figure 17-9  An oblate ellipsoid in Cartesian xyz space, centered
at the origin.

where @ is the x-axial radius, & is the y-axial radius, ¢ is the z-axial radius, and all of the fol-
lowing are true:

a#b
b#c
axtc

Oblate ellipsoid centered away from the origin

Finally, imagine a sphere that’s centered at (xo,y,20). If we lengthen one of the axial radii,
shorten another, and leave the third one unchanged, we get an oblate ellipsoid defined by

(x—x)’ 1@+ (y— )16+ (z— z)*d =1
where all of the following are true:

azb
b#c
a¥*c

Figure 17-10 shows an example of what happens when we move the center of the oblate ellip-
soid from Fig. 17-9 away from the origin.
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+y
A
_ Radius in
Center is at y direction
(XOa yOa ZO) T = b

Radius in B Radius in
zdirection T X direction
+Z =c e —a

Figure 17-10  An oblate ellipsoid in Cartesian xyz space,
centered at (xp,)0,2p)-

An example

Suppose that the coordinates of the center of a certain oblate sphere in Cartesian xyz space are
(1,2,3). The axial radius in the x direction is 4, the axial radius in the y direction is 4, and the
axial radius in the z direction is 2. The general equation is

(x—x0)* 1>+ (y— y)*16° + (z— z0)*/* =1

where (xo,70,2) are the coordinates of the center,  is the is the axial radius in the x direction, &
is the axial radius in the y direction, and ¢ is the axial radius in the z direction. We know that

(xO)_yO)ZO) = (1’2’3)

a=4
b=4
c=2

Plugging these values into the general equation, we conclude that our oblate sphere can be
represented by the following equation:

(x—1D)Y4+ (y— 214"+ (z—3)/2* =1
which simplifies to

(x— 116+ (y—2)*/16+ (z—3)*/4 =1
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Another example

The coordinates of the center of an ellipsoid are (—3,-2,-6). The axial radius in the x direc-
tion is 3, the axial radius in the y direction is 7, and the axial radius in the z direction is 3. The
general equation is

(x—x) 1+ (y— )16 + (z— z)* =1

This time, we have

(XOJ_)}O)ZO) = (_3a_2’_6)

Plugging these values into the general equation, we obtain
[x— (33 + [y — (2)PI17° + [z — (—6))°/3° =1
which simplifies to

(x+3)9+ (y+2)/49 + (z+ 6)*/19 =1

Still another example
The coordinates of the center of an oblate ellipsoid are (0,—3,11). The axial radius in the x

direction is 5, the axial radius in the y direction is 8, and the axial radius in the z direction is 1.
The general equation is
(x—x)’ld+ (y— )16 + (z— z)* =1

In this case, we have

(XO)}/O)zO) = (O,—3,1 1)

a=>5
b=28
c=1

Plugging these values into the general equation gives us
[x—01*/5* + [y — (-3)]*/8* + (z— 11)*/1° =1
which simplifies to

125+ (y+3)*/64 + (z—11)* =1
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Are you astute?

So far, we've described various surfaces by adding squared binomials to each other. You have every
right to ask, “What will happen if we subtract any of the squared binomials in equations like
these?” We'll do that shortly, and you'll see a few examples of what can take place. When we add
squared binomials, the graphs always turn out to be spheres, oblate spheres, ellipsoids, or oblate
ellipsoids in Cartesian xyz space. These are closed surfaces. They're “air-tight.” If we subtract one
or more of the squared binomials, we get open surfaces that “can’t hold air.” Such surfaces can take
diverse, interesting forms.

Here's a challengel!
Consider a distorted sphere represented by the following equation:
12x7 + 72x 4+ 20y — 80y + 152> — 30z =—143

What are the coordinates of the center? What are the axial radii? Is the object an oblate sphere, an
ellipsoid, or an oblate ellipsoid?

Solution

This problem requires a lot of insight to solve! Let’s begin by adding 203 to each side of the equa-
tion to obtain

12, + 72x + 205 — 80y + 1522 — 30z + 203 = 60
The number we've added, 203, happens to be the sum of 108, 80, and 15. Let’s add these three

numbers into the above equation just after the terms 72x, 80y, and —30z, respectively. The equation
then becomes

12x* + 72x+ 108 + 20y* — 80y + 80 + 152 — 30z + 15 = 60
Grouping the addends on the left-hand side by threes gives us
(12%% + 72x + 108) + (20y* — 80y + 80) + (152 — 30z + 15) = 60
which is equivalent to
12(7 + 6x+9) + 20(y" — 4y + 4) + 15(z* — 2z + 1) = 60
The three trinomials factor into perfect squares, so we can further morph the equation to obtain
12(x+3)*+20(y— 2)* + 15(z— 1)*= 60
Dividing through by 60, we get

(x4 35+ =23+ (z—1)4=1
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We recall that general formula for a distorted sphere in Cartesian xyz space is
(x—x0)*1d* + (y — yo)* 10> + (z— )’/ =1

where (xy,)0,20) are the coordinates of the center, # is the axial radius in the x direction, & is the axial
radius in the y direction, and c is the axial radius in the z direction. In this situation, we have

(xo,)/o,Z()) = (—3,2, 1)

a= 51/2
b=31/2
c=4"=2

Our object is an oblate ellipsoid centered at (—3,2,1). The radius in the x direction is 52 The radius
in the y direction is 3" The radius in the z direction is 2.

Other Surfaces

Let’s look at three general objects that arise in Cartesian xyz space from equations with sums
and differences of terms containing x, 5%, and z*.

Hyperboloid of one sheet

Figure 17-11 shows a generic example of a hyperboloid of one sheet. In this context, the term sheet
refers to an unbroken surface. We get this type of object when we graph an equation of the form

Rl + P15 — 213 =1

where 4, b, and ¢ are positive real-number constants. This equation is like the one for a dis-
torted sphere, except that one of the plus signs has been replaced by a minus sign. That sign
change makes a huge difference! Instead of a closed surface centered at the origin, we get an
infinitely tall, pinched cylinder whose axis lies along the coordinate z axis, and whose center
coincides with the origin. The dimensions and shape of the hyperboloid depend on the values
of a, b, and ¢. The perpendicular cross sections are always circles or ellipses.

If we move the minus sign so that it’s in front of the term containing y* instead of the term
containing z°, we get the general equation

Rl - pIB + 218 =1

Again, we get a hyperboloid of one sheet, but its axis is along the coordinate y axis, and its
center is at the origin. If we move the minus sign one more place to the left, putting it in front
of the term containing x?, the general equation becomes

2+ I+ 2P =1

This is the general form of the equation for a hyperboloid of one sheet whose axis coincides
with the coordinate x axis, and whose center is at the origin.
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> +y

Figure 17-11 A hyperboloid of one sheet in Cartesian xyz space,
centered at the origin.

Are you astute?

Figure 17-11 shows a perspective on Cartesian xyz space that we haven’t seen before. We're looking
“down” on the yz plane from somewhere near the positive x axis. Nevertheless, the axes are correctly
oriented with respect to each other, as you can verify by referring back to Chap. 7. Let’s stay with this
axis orientation as we look at the next couple of objects.

Hyperboloid of two sheets

Figure 17-12 shows a hyperboloid of two sheets, which is the graph in Cartesian xyz space of an
equation having the form

Pl + I — 2P =1

where 4, b, and ¢ are positive real-number constants. Here, we have two surfaces that resemble
bowls facing in opposite directions. In theory, the bowls extend infinitely toward the left and
the right in this illustration. Both surfaces share a common straight-line axis that coincides
with the coordinate y axis, and the two sheets are exact mirror images of each other. The center
of the entire hyperboloid is at the origin. The contours of the surfaces depend on the values
of 4, b, and c.
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Figure 17-12 A hyperboloid of two sheets in Cartesian xyz
space, centered at the origin.

If we make the term containing x” positive instead of the term containing y*, we get the
general equation

Rld = P15 - 218 =1

which produces a hyperboloid of two sheets whose axis lies along the coordinate x axis, and
whose center is at the origin. If we move the plus sign so it’s in front of the term containing
2%, the general equation becomes

Pl = PIF + 21 =1

This maneuver gives us a hyperboloid of two sheets whose axis lies along the coordinate z axis,
and whose center is at the origin.

Elliptic cone

Figure 17-13 shows an elliptic cone. It’'s what we get when we graph an equation of the form
a +y 10— 2 =0

where 4, b, and ¢ are positive real-number constants. The perpendicular cross sections of the
cone are always circles or ellipses. The cone’s axis coincides with the coordinate z axis, and the
cone’s vertex coincides with the origin. The flare angles, as well as the eccentricity of the cross-
sectional ellipses, depend on the values of @, 4, and .
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+X

—Z

Figure 17-13  An elliptic cone in Cartesian xyz space, centered at
the origin.

If we move the minus sign so it’s in front of the term containing )/2, we get the general
equation

Rl = VI + 213 =0

whose graph is an elliptic cone with the axis along the coordinate y axis, and whose center
is at the origin. If we move the minus sign so that it’s in front of the term containing x?, the
general equation becomes

—la* + Y10 + 2 =0
and the graph becomes an elliptic cone whose axis lies along the coordinate x axis, and whose

center is at the origin.

An example

Consider the object in Cartesian xyz space represented by
36x* — 16y + 3627 =0
We can divide through by 144 to obtain
4 —y19+214=0

This is the equation for an elliptic cone whose vertex is at the origin, and whose axis coincides
with the coordinate y axis.
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Another example

Consider the object in Cartesian xyz space represented by
- +y+5=-7
When we divide through by =7, we get
—*(=7) + 1 (=7) + 2(=7) =1
which simplifies to
7 =y 17 =217 =1

This equation describes a hyperboloid of two sheets whose center is at the origin, and whose
axis lies along the coordinate x axis.

Still another example

Consider the object in Cartesian xyz space represented by

15+ + 10y* = 62 + 30
We can subtract 6% from each side, getting

15x + 105> — 62" =30
Dividing through by 30 gives us

PR+ y13-215=1

This is the equation for a hyperboloid of one sheet whose center is at the origin, and whose
axis lies along the coordinate z axis.

Are you confused?

It’s reasonable to ask, “What if the center of a hyperboloid, or the vertex of an elliptic cone, lies
somewhere other than the origin, say at (xy,0,20)? What happens to the equation in that case?” If
you're willing to exercise your mathematical intuition, you can probably guess the answer. Make
the following substitutions in the equation:

o Replace every occurrence of x with x — x
o Replace every occurrence of y with y — y,
® Replace every occurrence of z with z — z,

Consider a hyperboloid of two sheets such as the one in Fig. 17-12. The straight-line axis of the
“bowls” lies along the coordinate y axis, and the center of the entire object is at the origin. If 2 = 2,
b =3, and ¢ =4, the equation is

—*12° + 137 - 24 =1
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which simplifies to
-4+ 519 — 2/16=1
Now suppose that you change the equation to
—(x=7)d+ (+1)Y9—(z-5)/16=1

You've moved the entire hyperboloid, without altering its overall shape or orientation. It has a
new center whose coordinates are (7,—1,5) instead of (0,0,0). The straight-line axis of the two
bowls is parallel to, but no longer coincides with, the coordinate y axis. If you want to disguise
this equation, you can multiply it through by the product of the denominators on the left-hand side,
getting

—144(x—7)* + 64(y + 1)* = 36(z — 5)* = 576

Here's a challengel!

Consider the object in Cartesian xyz space represented by
3x* + 6x — 4y* — 16y + 22" — 4z= 35

What do we get when we graph this equation in Cartesian xyz space? Where is the center of the
object? How is its axis oriented?

Solution

As with some of the examples we've seen, we need lot of intuition to solve this problem. Lets
subtract 11 from both sides of the equation. That gives us

35+ 6x—4y* — 16y + 22" — 4z — 11 =24

When we subtract 11, we in effect add —11, which happens to be the sum of 3, —16, and 2. That
means we can rewrite the above equation as

3 +6x— 4y — 16y + 22 —4z+3 - 16+2=24
which can be rearranged to get

3% +6x+3—4y —16y— 16+ 22" —4z+2=24

Grouping the terms on the left-hand side into trinomials, and paying special attention to the signs
associated with the variable y as we group the second three terms, we get

(3% + 6x+3) — (47 + 16y + 16) + (22" — 4z + 2) = 24

which morphs to

367 +2x+ 1) —4( +4y+4) +2(z2 —2z+ 1) =24
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and further to

3+ 1) —4(y+2)°+2(z—1)=24

Dividing through by 24, we get

(x+1)%8—(y+2)/6+ (z—1)"/12=1

This is the equation of a hyperboloid of one sheet whose center is at (—=1,-2,1), and whose axis is ori-
ented along a line parallel to the coordinate y axis.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1.

Suppose that a plane contains the point (0,0,0), and the standard form of a vector
normal to the plane is —4i + 4j — 4k. Find the plane’s equation in standard form.

. Suppose that a plane contains the point (4,5,6), and the standard form of a vector

normal to the plane is —2i + 0j + Ok. Find the plane’s equation in standard form.

. Consider a sphere whose equation is

X+2x+1+y-2y+1+2+8z+16=064

What are the coordinates of the center of this sphere? What's its radius?

. What's the equation of a sphere centered at the point (5,7,—3) and whose radius is equal

to the positive square root of 23?

. Consider the equation

8(x—1)+8(y+2)’+6(z+7)=24

What sort of object does this equation describe? Does the object have a center? If so,
what are the coordinates of the center point? Does the object have axial radii? If so, what
are they?

. Consider the equation

400(x + 2)* + 225(y — 4)* + 1442” — 3\600 = 0

What sort of object does this equation describe? Does the object have a center? If so,
what are the coordinates of the center point? Does the object have axial radii? If so, what
are they?
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7. Consider a surface whose equation is
FH2x+ 14y -2+ 1 -2 +62—-9=36

What sort of object is this? What are the coordinates of the center? How is the axis
oriented?

8. Write down a generalized equation for an elliptic cone whose axis is parallel to the
coordinate y axis, and whose vertex is at (-2,3,4).

9. Suppose we slice the elliptic cone described in Problem 8 straight through with the
coordinate xz plane. The cone’s surface intersects the xz plane in a curve. Derive a
generalized equation of that curve in the variables x and z. What sort of curve is it?
Here’s a hint: At every point in the xz plane, y = 0.

10. Suppose we slice the elliptic cone described in Problem 8 straight through with the
coordinate xy plane. The cone’s surface intersects the xy plane in a curve. Derive a
generalized equation of that curve in the variables x and y. What sort of curve is it?
Here’s a hint: At every point in the xy plane, z=0.



CHAPTER

18

Lines and Curves in Three-Space

In Chap. 16, we learned how parametric equations can define curves that are difficult to por-
tray as conventional relations. “Parametric power” becomes more apparent when we graduate
to three dimensions.

Straight Lines

Finding an equation for a straight line in Cartesian three-space is harder than it is in the
Cartesian plane. The extra dimension makes expressing the line’s location and orientation
more complicated. There are at least two ways we can do it: the symmetric method and the
parametric method.

Symmetric method

A straight line in Cartesian xyz space can be represented by a three-part symmetric-form equa-
tion. Suppose that (xp,),2) are the coordinates of a known point on the line, and 4, 4, and ¢
are nonzero real-number constants. Given this information, we can represent the line as

(x=xp)la=(y—y)/b=(z—z)lc

Ifa=0o0r b=0or c=0, then we get a zero denominator somewhere, and the system becomes
meaningless.

Direction numbers

In the symmetric-form equation of a straight line, the constants 4, , and ¢ are known as the
direction numbers. Imagine a vector m whose originating point is at the origin (0,0,0) and
whose terminating point has coordinates (,6,c). Under these circumstances, the vector m
either lies right along, or is parallel to, the line denoted by the symmetric-form equation.

345



346

Lines and Curves in Three-Space

Line L
and vector m
are parallel

-y

Figure 18-1 We can uniquely define a line Z in Cartesian xyz
space on the basis of a point P on L and a vector
m = (a,b,¢) parallel to L.

(In three-space, a vector m and a straight line L are parallel if and only if the line containing
m occupies the same plane as L but does not intersect L.) We have
m=ai+bj+ck

where m is the three-dimensional equivalent of the slope of a line in the Cartesian plane.
Figure 18-1 shows a generic example.

Parametric method

Given any particular line Z in Cartesian xyz space, we can find infinitely many vectors to play
the role of the direction-defining vector m. If 7 is a nonzero real number, then any vector

tm = (ta,th,tc) = tai + tbj + tck
works just as well as
m=ai+bj+ck

for the purpose of defining the direction of Z, so we have an alternative way to describe a
straight line using the following equations:

X=Xyt at

Y=+ bt

z=2zyt ct
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The variable 7 behaves as a “master controller” for the variables x, y, and z, so the above system
is a set of parametric equations for a straight line in Cartesian xyz space. To completely define
a straight, infinitely long line this way, we must let # vary throughout the entire set of real
numbers, including 7= 0 to “fill the hole” at the point (x,y0,2).

An example

Let’s find the symmetric-form equation for the line Z shown in Fig. 18-2. As indicated in the
drawing, L passes through the point

P= (_5,_4’3)
and is parallel to the vector
m = 3i+5j-2k

The direction numbers of L are the coefficients of the vector m, so we have

a=3
b=5
c=-2
L
+y <

Each axis :
division 1
equals 1 unit |
T i
i
=z
i
Pl I I
AT 11 > +X
1
Line L
and vector m
N A it It are parallel
»‘ _____ fomm oo s JI/____ |
+Z :\ ' T
S : v

Figure 18-2 What are the symmetric and parametric equations for line £?
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We are given a point P on the line L with the coordinates

XO:_S
yo=—4
20:3

The general symmetric-form equation for a line in Cartesian xyz space is
(x=xo)a=(y—y)b=(z—z)lc
When we plug in the known values, we get the three-part equation
[x = (=9)1/3=[y— (D1/5=(z—3)/(-2)
which simplifies to

(x+35)/3=@p+4)/5=(z—-3)/(-2)

Another example

Let’s find a set of parametric equations for the line L shown in Fig. 18-2. In this case, our work
is easy. We can take the values of x, y, 29, 4, 6, and ¢ that we already know, and plug them into
the generalized set of parametric equations

X=Xxy+at

y=y0+bt

z=2zytct
The results are

x==5+3¢

y=—4+5¢

z=3—-2¢

Are you confused?
For any particular line in Cartesian xyz space, there are infinitely many valid ordered triples that
can represent the direction numbers. If a line has the direction numbers (2,3,4), then we can
multiply all three entries by a real number other than 0 or 1, and we'll get another valid ordered
triple of direction numbers. For example, all of the following ordered triples represent the same
line orientation as (2,3,4):
(4,6,8)
(_2)_37_4)
(20,30,40)
(=20,—30,—40)
Qm3m4r)
(—2m,—3m,—4m)
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“That’s interesting,” you say, “but which direction numbers are the best?” In theory, it doesn’t
matter; any of the above ordered triples is as “good” as any other. Nevertheless, from an esthetic
point of view, it’s a good idea to reduce an ordered triple of direction numbers so that the only
common divisor is 1, and so that there is 2z most one negative element. According to that standard,
(2,3,4) are the preferred direction numbers.

Here's a challengel!
Consider the following three-way equation that represents a straight line in Cartesian xyz space:
3x—6=4y—12=06z—24

Find a point on the line. Determine the preferred direction numbers. Based on that information,
write down the direction vector as a sum of multiples of i, j, and k.

Solution

Before we think about the direction numbers or any specific point on the line, let’s try to get the
equation into the standard symmetric form. We can multiply the left-hand part of the equation
by 4/4, the middle part by 3/3, and the right-hand part by 2/2. That gives us
4(3x— 6)/4 =3(4y — 12)/3 = 2(6z — 24)/2
Multiplying out the numerators, we get
(12x — 24)/4 = (12y — 36)/3 = (122 — 48)/2
We can factor out 12 from each of the numerators to obtain
12(x—2)/4=12(y—3)/3 = 12(z— 4)/2
Dividing the entire equation through by 12 gives us the standard symmetric form
(x=2)/4d=(y—3)I3=(z—4)/2
We remember that the generalized symmetric equation for a straight line in Cartesian xyz space is
(x—x0)a= @y —p)b=(z—=z)lc
where (xo,%,20) are the coordinates of a specific point on the line, and @, 4, and ¢ are the direction
numbers. Comparing the symmetric-form equation we derived with the generalized form, we can

see that

Xo=2

N =3

2y =
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This tells us that (2,3,4) is a point on the line. We can also see that

a
b

c

Il
N

so the line’s direction numbers are (4,3,2). We can write down a standard-form direction vector
m from these numbers as

m = 4i + 3j + 2k

Parabolas

From algebra, we remember that a quadratic equation in a variable x can always be written in
the form

ﬂ1X2+Ll2x+ﬂ3=0

where 4, 4,, and a; are real-number constants called the coefficients, and a, # 0. If we replace
the 0 on the right-hand side of this equation by another variable and then transpose the sides,
we get an expression for a guadratic function. For example,

4 +2x+1=0
is a quadratic equation in x, but
y=4x+2x+1

is a quadratic function in which the independent variable is x and the dependent variable is y.
If we give our function a name (f; for example), then we can denote it as

) =4x"+2x+1

When we graph a quadratic function in Cartesian two-space, we always get a parabola that’s
fairly easy to graph, because there’s only one plane to worry about (the xy plane, if our inde-
pendent variable is x and our dependent variable is y). In xyz space, the situation is more com-
plicated, because we have an extra variable. There are infinitely many different planes in which
a parabola can lie, as well as infinitely many different shapes and orientations for a parabola in
any particular plane. Lets look at a few simple cases.

Hold x constant

Imagine a parameter ¢ that’s allowed to wander all over the set of real numbers. Also imagine
a generalized quadratic function fof this parameter, such that

fO=alf+at+a
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Parabola
in plane
X=cC

-y
Figure 18-3 Parabola in a plane where x is held to a constant

value ¢. The plane is perpendicular to the x axis, and
intersects that axis at the point (¢,0,0).

where a;, a,, and ; are real-number coefficients. Let’s go into Cartesian xyz space and restrict
ourselves to a single plane in which the value of x is some real-number constant ¢. This plane is
parallel to the yz plane, and it intersects the x axis at the point (,0,0). Consider a parabola in
the plane x = ¢ whose axis is parallel to the y axis, as shown in Fig. 18-3. (The axis of a parabola
is a straight line in the same plane as the parabola, and on either side of which the parabola is
symmetrical.) In this situation, the value of z tracks right along with the value of # while the

variable y follows f'(#). Therefore

X=c
y:f(t):ﬂ1t2+ﬂ2t+ﬂ3
zZ=t

The above set of equations is a parametric description of our parabola. If we want to describe
a parabola in the plane x = ¢ whose axis is parallel the z axis instead of the y axis, then y follows
¢ while z follows f'(#), and we have

X=cC

Jy=t
sz(t):ﬂltz+ﬂzt+ﬂ3
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Hold y constant

Now suppose that we restrict our movements to a plane in which the value of y is always equal
to a constant ¢. The equation of the plane is y = ¢. It’s parallel to the xz plane, and it intersects
the y axis at (0,¢,0). Imagine a parabola in this plane whose axis is parallel to the z axis, as
shown in Fig. 18-4. In this situation, x follows # while z follows f(#), and the curve can be
described as

X=1
=c
Z :f(t) = ﬂltz + at + as
To describe a parabola in the plane y = ¢ whose axis is parallel the x axis, we can let z follow ¢
and let x follow £'(#), getting the system
X :f(t) = ﬂltz + at + as
y=c

zZ=1

Hold z constant

Finally, let’s confine our attention to a single plane in which the value of z is some real-number
constant ¢. The plane z = ¢ is parallel to the xy plane, and it intersects the z axis at (0,0,¢).

+Yy

Parabola
in plane
y=c¢ y=c¢

/ ©, ¢, 0)

-y

+Z

Figure 18-4 Parabola in a plane where y is held to a constant
value ¢. The plane is perpendicular to the y axis, and
intersects that axis at the point (0,¢,0).
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Parabola +Yy
in plane A
zZ=cC

+Z 1 \

. zZ=C

v
-y
Figure 18-5 Parabola in a plane where z is held to a constant

value ¢. The plane is perpendicular to the z axis, and
intersects that axis at the point (0,0,c).

Imagine a parabola in the plane z = ¢ whose axis is parallel to the y axis as shown in Fig. 18-5.
Here, x follows # while y follows f(z). We therefore have the parametric system

X=t
_yzf(t)zﬂltz‘l‘ﬂzt‘l‘ as
Z=c

For a parabola in the plane z = ¢ whose axis is parallel to the x axis instead of the y axis, the
value of y follows # while the value of x follows (), so we have

x=f(t) = ﬂltz + at+ as

J=t

Zz=cC

An example

Consider a quadratic function in the plane x = 2. Suppose that the parametric equations are

x=2
y t
2= —3t+2
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Using the knowledge we've gained so far in this chapter, along with our existing knowledge
of algebra (such as we got from Algebra Know-It-All or a comparable algebra book), let’s draw
a graph of this function. Imagine that we're gazing broadside at the plane x = 2 from some
distant point on the positive x axis. We've been told that y = . If we stay in the plane x =2, we
can therefore write the quadratic function by direct substitution as

z=y —3y+2

The coefficient of y is positive, so the parabola opens in the positive z direction. The above
polynomial equation factors into

z=@p-1@-2)

so we can see that z= 0 when y =1, and also that z=0 when y = 2. Because x is always equal
to 2, we know that the points (2,1,0) and (2,2,0) are on the parabola. The curve opens in
the positive z direction, so we know that the parabola must have an absolute minimum. The
y-value at the point, ypmi,, is the average of the y-values of the points where z= 0. Therefore

Ymin = (1 +2)/2
=3/2

To find the z-value at this point, we plug 3/2 into the quadratic function and get

Zmin = (3/2)*=3X3/2+2=9/4-9/2+2
=9/4—-18/4+8/4=(9—-18+8)/4=-1/4

We've determined that the coordinates of the absolute minimum are (2,3/2,—1/4). We also
know that the points (2,1,0) and (2,2,0) lie on the parabola. Figure 18-6 shows these points.
They're close together, so it’s difficult to get a clear picture of the parabola based on their
locations. But we can find another point to help us draw the curve. When we plug in 0 for y,
we get

2=y —3y+2=0"-3%x0+2
=0-0+2=2

This tells us that the point (2,0,2) is on the curve. It’s also shown in Fig. 18-6.

Another example

Now let’s look at a quadratic function in the plane where y = 5. Suppose that the parametric
equations are

X=t
=5
z2=2F+4r+3
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+Z

Each axis increment
is 1/4 unit

A

v (2, 3/2,-1/4)
Figure 18-6  Graph of a parabola in a plane parallel to the

yz plane, such that x has a constant value of 2.
On both axes, each increment represents
1/4 unit.

Imagine that we're gazing broadside at the plane y = 5 from somewhere on the negative y axis.
We have been told that x = #, so we can write the quadratic function as

z2=2x+4x+3

This parabola opens in the positive z direction, because the coefficient of x* is positive. That
means this parabola attains an absolute minimum for some value of x. Let’s call it x,,,. When
x is the independent variable and z is the dependent variable, the general polynomial form for
a quadratic function is

2= a4+ arx + as
where a,, 4, and a; are constants. From our algebra courses, we know that
Xmin = _612/(2511)

In this situation, we have

Xmin = —4/(2 X 2) = (—4)/4=-1
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The z-value at the absolute minimum point is

Zimin = 2%t + 4xpin +3=2X (=12 +4x (1) +3
=2-4+3=-2+4+3=1

Now we know that the coordinates of the parabola’s vertex are (—1,5,1). As the basis for our
next point, let’s choose x = —3. We can plug it directly into the function to get

z2=2+4x+3=2x%x (-3 +4%x(-3)+3
=18-12+3=6+3=9

This gives us (=3,5,9) as the coordinates of a second point on the curve. Finally, let’s set x= 1.
Plugging it in, we obtain

z2=2"+4x+3=2x12+4%x1+3
=2+4+3=9

The third point on our curve is (1,5,9). We now have three points: (-3,5,9), (-1,5,1), and
(1,5,9). Figure 18-7 shows these points, along with a graph of the parabola passing through
them, as seen in the plane where y maintains a constant value of 5.

(-3,5,9) (1,5,9)

Each axis
increment
is 1 unit

(-1,5,1) 4

Y

Figure 18-7  Graph of a parabola in a plane parallel to the
xz plane, such that y has a constant value of 5.
On both axes, each increment represents
1 unit.
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Are you curious and ambitious?

Think about the graphs of higher-degree polynomial functions confined to specific planes in
Cartesian xyz space. For example, consider the cubic function in the plane where x = 2, such that

2

N R R
Il

t
£

or the quartic function in the plane where z = —7, such that

x=3t"+6
y=t
z==7

Can you draw graphs of these curves?

Circles

In Chap. 13, we learned that the equation of a circle centered at the origin in the Cartesian xy
plane can be written in the form

+y=r
where 7 is the radius. In Chap. 16, we learned that the parametric equations for such a
circle are

X=7rcost
and

y=rsint

where 7 is the parameter. Let’s expand these notions to deal with any circle in xyz space that’s
centered on, and exists entirely in a plane perpendicular to, one of the three coordinate
axes.

Hold x constant

Consider a plane x = ¢ in Cartesian xyz space, where ¢ is a constant. This plane is parallel to
the yz plane, and it intersects the x axis at (¢,0,0). Imagine a circle of radius 7 in the plane
x = ¢ that’s centered on the x axis as shown in Fig. 18-8. The variable y follows along with
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Circle
in plane

\!_________,_—F-—-f X=c

1_ Radius
of circle

e 407

+Z

Figure 18-8 Circle in a plane where x is held to a constant
value ¢. The plane is perpendicular to the x axis,
and intersects that axis at the point (,0,0). The
circle has radius 7 and is centered at (c,0,0).

r cos t, while the variable z follows along with 7 sin # Therefore, we can define our circle with
the system of parametric equations

x=c
y=rcost
z=rsint

For the circle to be fully circumscribed, the parameter # must range continuously over a span
of values sufficient to ensure that a moving point makes at least one full revolution around the
x axis. The smallest such span is any half-open interval that’s at least 277 units wide.

Hold y constant

Now suppose that we restrict ourselves to a plane such that y = ¢, where ¢ is a constant. This
plane is parallel to the xz plane, and it intersects the y axis at (0,¢,0). Imagine a circle in
the plane y = ¢ that’s centered on the y axis, as shown in Fig. 18-9. In this case, the circle is
described by the system

=7cost

N R R
I
A

rsin t
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Radius —_
of circle y=c¢

=r /
T -z
f

+X

Circle 0,20

+Z in plane
y=¢

v
4
Figure 18-9 Circle in a plane where y is held to a constant value .
The plane is perpendicular to the y axis, and intersects
that axis at the point (0,¢,0). The circle has radius 7 and
is centered at (0,c,0).

For a complete circle to be described, the parameter # must range continuously over a
span of values sufficient to ensure that a moving point makes at least one full revolu-
tion around the y axis. The smallest such span is any half-open interval that’s at least
2m units wide.

Hold z constant

Finally, consider a plane in which z = ¢. It’s parallel to the xy plane, and it intersects the z axis
at (0,0,¢). Imagine a circle in the plane z = ¢ that’s centered on the z axis as shown in Fig. 18-10.
Here, we have

X=rcost
y=rsint
z=c¢

For a complete circle to be described, the parameter # must range continuously over a
span of values sufficient to ensure that a moving point makes at least one full revolu-
tion around the z axis. The smallest such span is any half-open interval that’s at least
27 units wide.
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ty
. A Z=cC
Circle /
in plane T
z=c £
Cxe 1 ol I N

\i/
+Z )
T Radius
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Y
-y

Figure 18-10 Circle in a plane where z is held to a constant value c.
The plane is perpendicular to the z axis, and intersects
that axis at the point (0,0,¢). The circle has radius 7
and is centered at (0,0,¢).

An example

Imagine a circle in the plane x = 3. Suppose that the circle is centered on the x axis, and its
gine a L p pp
parametric equations are

x=3
y=3cost
z=3sint

In the plane x = 3, our circle can be described by the two parametric equations
y=3cost

and
Zz=3sint

When we express this system as a relation between y and z, we have

y+z2=9
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+Yy
A
Each axis T B
increment I
is 1 unit -+
i | (3v 010)
x>
1 EL—Radius
/l .
| 2f30|rcle
Circle/__
+Z in plane |
x=3
T \x=3
Y
-y

Figure 18-11 Graph of a circle of radius 3 in the plane x = 3,
centered on (3,0,0). Each axis increment
represents 1 unit.

Figure 18-11 is a perspective rendition of this circle’s graph in Cartesian xyz space. The radius
is 3, and the center is at (3,0,0).

Another example

Now let’s look at a circle having a radius of 3 units, and contained in the plane where y main-
tains a constant value of —2. The parametric equations are

x=23cost
y=-2
z=3sint

In the plane y = =2, our circle can be described by the parametric system
x=3cos t

and
z=3sint

As a relation between x and z, this system can be represented by

X+2=9



362  Lines and Curves in Three-Space

+Yy
A
Each axis -+ Radius
increment 1 of circle
is 1 unit =3
4 /72
X

A

e
_______ L

»~ -
+Z Circle 1 (0,-2,0)
in plane

y=-2

%
-y
Figure 18-12  Graph of a circle of radius 3 in the plane y=-2,

centered on (0,-2,0). Each axis increment represents
1 unit.

Figure 18-12 is a perspective graph of this circle in Cartesian xyz space.

Are you confused?

All of the parabolas and circles described in this chapter are confined to planes parallel to the xy
plane, the xz plane, or the yz plane. Finding equations for curves in other planes is sometimes easy,
but more often it’s difficult. The process can be streamlined by adding a function called a coordinate
transformation to the relation describing the curve. That way, any curve that lies in a single plane
(no matter how the plane is oriented in space, and no matter where the curve is positioned within
the plane) can be described in terms of a curve in the xy plane, the xz plane, or the yz plane. You'll
learn how to do coordinate transformations in advanced calculus or analysis courses.

Here's a challenge!

Consider a curve whose parametric equations are

x =2 cost
y=3sin¢
z=-3

What sort of curve is this? Sketch its graph in Cartesian xyz space.
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Solution

For a moment, suppose that the coefficient in the first equation was 3 rather than 2. In that case,
the set of parametric equations would be

x=3cost
y=3sin¢
z=-3

and we'd have a circle in the plane z = —3. Figure 18-10, on page 360 is an approximate graph
of this circle if we imagine each coordinate axis division to represent 1 unit. However, the coef-
ficient in the first equation is 2, not 3. Therefore, the curve is squashed in the x direction; it’s only
2/3 as wide as the above described circle. This squashed circle is an ellipse centered on the point
(0,0,-3). Figure 18-13 shows how its graph looks in Cartesian xyz space, from a vantage point far
from the origin but close to the positive z axis.

+y
A z=-3
Ellipse 4 /
in plane
z=-3 1
_;/_\ (0, 0,-3)
- x :;:l:/:=1>+x
:Z\EV
+Z
Major T Minor
semi-axis - semi-axis
=3 =2
\4
-y

Figure 18-13 Graph of an ellipse in the plane z=—3, centered

on (0,0,—3). Each axis increment is 1 unit.

Circular Helixes

When we created the generalized circles and graphed them as shown in Figs. 18-8 through
18-10, we held one variable constant and forced the other two variables to follow the para-
metric equations for a circle in a plane. Now imagine that, instead of holding one variable
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constant, we let it change according to a constant multiple of the parameter. When we do this,
we get a three-dimensional object called a circular helix.

Center on x axis

Consider a moving plane x = ¢z in Cartesian xyz-space, where ¢ is a constant and # is the parameter.
This plane is always perpendicular to the x axis, so it’s always parallel to the yz plane. It intersects
the x axis at a moving point (¢#,0,0). Imagine a moving a circle of radius 7 in the moving plane x =
ct that’s centered on the x axis. On this circle, the value of y tracks along with 7 cos #, while the value
of z tracks along with 7 sin # The complete set of parametric equations is

x=ct
y=rcost
z=rsint

When we graph the path of a point on this moving circle as r varies, we get a circular helix
of uniform pirch (that means its “coil turns” are evenly spaced, like those of a well-designed
spring). The pitch depends on ¢. Small values of ¢ produce tightly compressed helixes, while
large values of ¢ produce stretched-out helixes. The helix axis corresponds to the coordinate
x axis, so the helix is centered on the x axis. Figure 18-14 is a generic graph of a circular helix
oriented in this way.

+y

Helix is
centered
on the

X axis

o6

o

1=l

i =

S

-y
Figure 18-14 Circular helix of radius 7, centered on the

x axis. The pitch depends on the constant by
which 7 is multiplied to obtain x.
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Center on y axis

Now imagine a moving plane y = ¢z that’s perpendicular to the y axis, parallel to the xz plane,
and intersects the y axis at a moving point (0,¢£0). The value of x tracks along with 7 cos 7
while the value of z tracks along with 7 sin 7 so we have the system

X=rcost
y=ct
z=rsint

The graph of this set of parametric equations is a circular helix of uniform pitch, centered on
the y axis as shown in Fig. 18-15.

Center on z axis

Finally, envision a moving plane z = ¢z that’s perpendicular to the z axis, parallel to the xy
plane, and intersects the z axis at a moving point (0,0,c7). The value of x follows 7 cos #, while
y follows 7 sin z Our parametric equations are therefore

X=7rcost
y=rsint
zZ=ct
Helix is
centered Ly
on the
y axis

-

Radius
£ of helix
=r

Figure 18-15 Circular helix of radius 7, centered on the y axis.
The pitch depends on the constant by which #
is multiplied to obtain y.
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-X «<—+

+X
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-y
Figure 18-16  Circular helix of radius , centered on the z axis.

The pitch depends on the constant by which #is
multiplied to obtain z.

In Cartesian xyz space, these equations produce a circular helix of uniform pitch, centered on
the z axis. Figure 18-16 is a generic graph.

An example

Consider a circular helix centered on the x axis, described by the parametric equations

x=1t/(2m)
_j/= COoS ¢t
z=sint

Here are some values of x, , and z that we can calculate as # varies, causing a point on the helix
to complete a single revolution in a plane perpendicular to the x axis:

When =0, we have x=0, y=1, and 2= 0.

When ¢= /2, we have x=1/4, y=0, and 2= 1.
When ¢= 1, we have x=1/2, y=—1, and 2= 0.
When = 37/2, we have x=3/4, y=0, and z=—1.
When =27, we havex=1, y=1, and 2= 0.
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Every time # increases by 27, our point makes one complete revolution in a moving plane
that’s always perpendicular to the x axis. Also, every time # increases by 27, our point gets 1
unit farther away from the yz plane. The pitch of the helix is therefore equal to 1 linear unit
per revolution.

Another example

Consider a circular helix centered on the y axis, described by the parametric equations

x=2cost
y=t
z=2sint

Here are some values of x, y, and z that we can calculate as # varies, causing a point on the helix
to complete a single revolution in a plane perpendicular to the y axis:

* When =0, we have x=2,y=0, and 2= 0.

* When t=m/2, we have x=0, y=7/2, and z=2.

* When r=m, we have x=-2, y=m, and 2= 0.

* When r=37/2, we have x=0, y=37/2, and z=-2.
* When r=27, we have x=2, y=27, and 2= 0.

Every time ¢ increases by 27, our point makes a complete revolution in a moving plane thats
always perpendicular to the y axis. Also, every time # increases by 277, our point moves 27 units
farther away from the xz plane. The pitch of the helix is therefore equal to 27 linear units per
revolution.

Are you confused?

You might ask, “When describing a helix with parametric equations, does it make any difference
if we multiply # by a positive constant or a negative constant?” That’s an excellent question. The
answer is yes; it matters a lot!

The polarity of the constant affects the sense in which the helix rotates as we move in the positive
direction. For example, suppose we have a helix described by the parametric equations

x=3t
y=3cost
z=3sin¢

In this case, the helix turns counterclockwise as we move in the positive x direction. If we observe
the situation from somewhere on the positive x axis while the value of # increases, a point on the
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helix will appear to approach us and rotate counterclockwise. If the value of # decreases, a point
on the helix will appear to retreat from us and rotate clockwise.
Now suppose that we reverse the sign of the constant in the first equation, so our system becomes

x=-3t
y =3cost
z=3sin ¢

If we watch this scene from somewhere on the positive x axis while the value of # increases, a point
on the helix will appear to retreat from us and rotate counterclockwise. If the value of 7 decreases, a
point on the helix will appear to approach us and rotate clockwise.

Are you astute?

Imagine yourself at some point far from the origin on the +x axis in Fig. 18-14, or far from the
origin on the +y axis in Fig. 18-15, or far from the origin on the +z axis in Fig. 18-16. If you have
excellent spatial perception, you'll be able to figure out that in all three of these situations, the
constant ¢ is negative! In each case, a retreating point on the helix will appear to revolve counter-
clockwise, and an approaching point on the helix will appear to revolve clockwise.

Here's a challengel!

Suppose that we encounter an object in Cartesian xyz space whose parametric equations are

x=2cos ¢t
y=3sin¢
z=-3¢

What sort of object is this?

Solution

Let’s divide the first two equations through by their respective constants. That gives us
x/2 = cos ¢

and
y/3=sint

Squaring both sides of both equations, we obtain

(x/2)* = cos® ¢
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and
(y/3)* =sin* ¢
When we add these two equations, left-to-left and right-to-right, we get
(x/2)* + (y/3)* = cos® t+ sin® ¢
The rules of trigonometry tell us that
cos” £+ sin” £ =1
so the preceding equation can be rewritten as
(x/2)*+ (y/3)* =1
and further morphed into
lh+9=1

This equation describes an ellipse in the xy plane whose horizontal (x-coordinate) semi-axis mea-
sures 2 units, and whose vertical (y-coordinate) semi-axis measures 3 units. Now let’s consider the
z coordinate. The equation for z in terms of # is

=3¢

This equation tells us that a point on our object travels in the negative z direction as the value
of the parameter ¢ increases. The complete set of three parametric equations therefore describes
an elliptical helix centered on the z axis. As we move in the positive z direction, the helix rotates
clockwise, because the coefficient of # is negative. It looks something like the helix in Fig. 18-16,
except that it’s stretched by approximately 50 percent in the positive and negative y directions
(vertically in this particular illustration).

Here's an extra-credit challengel!

Sketch three-dimensional perspective graphs of the helixes described in the foregoing two examples
and challenge.

Solution
You're on your own. That's why you get extra credit!
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these
problems. Don’t hurry! You'll find worked-out answers in App. B. The solutions in the
appendix may not represent the only way a problem can be figured out. If you think you
can solve a particular problem in a quicker or better way than you see there, by all means
try it!

1. Consider the following three-way equation for a straight line in Cartesian xyz space:

x—1=y—2=z-4

Find a point on the line, find the preferred direction numbers, and determine the
direction vector as a sum of multiples of i, j, and k.

2. Consider the following three-way equation for a straight line in Cartesian xyz space:

4x=5y=06z

Find a point on the line, find the preferred direction numbers, and determine the
direction vector as a sum of multiples of i, j, and k.

3. Consider the following three-way equation for a straight line in Cartesian xyz space:

(x—=2)/3=(4y—8)/4=(z+5)/(-2)

Find a point on the line, find the preferred direction numbers, and determine the
direction vector as a sum of multiples of i, j, and k.

4. Consider a relation in Cartesian xyz space described by the system of parametric

equations
x=—4
y=t
z=—1t—1

Draw a two-dimensional graph of this relation as it appears when we look broadside at
the plane containing it.

5. Consider a relation in Cartesian xyz space described by the system of parametric
equations
x=1£+2t
=t
z=0
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Draw a two-dimensional graph of this relation as it appears when we look broadside at
the plane containing it.

6. Consider a relation in Cartesian xyz space described by the system of parametric
equations

x=t
y==7
z=£2-5

Draw a two-dimensional graph of this relation as it appears when we look broadside at
the plane containing it.

7. Consider a relation in Cartesian xyz space described by the system of parametric

equations
x=4 cost
y=4sint
z=1

Draw a two-dimensional graph of this relation as it appears when we look broadside at
the plane containing it.

8. Consider a relation in Cartesian xyz space described by the system of parametric
equations

x=5cost
y=0
z=5sint

Draw a two-dimensional graph of this relation as it appears when we look broadside at
the plane containing it.

9. Consider a relation in Cartesian xyz space described by the system of parametric
equations

x=5cos ¢
y=3sinzt
Z=T

Draw a two-dimensional graph of this relation as it appears when we look broadside at
the plane containing it.
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10. Consider a relation in Cartesian xyz space described by the system of parametric

equations
x=2cost
y=t/2m)
z=2sint

Draw a perspective view of this relation’s three-dimensional graph. Here’s a hint: You
can probably tell that the graph is a circular helix, but as you draw it, pay attention to
the orientation, the pitch, and the sense of rotation.
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19

Sequences, Series, and Limits

Have you ever tried to find the missing number in a list? Have you ever figured out how much
money an interest-bearing bank account will hold after 10 years? Have you ever calculated the
value that a function approaches but never reaches? If you can answer “Yes” to any of these
questions, you've worked with sequences (also called progressions), series, or limits.

Repeated Addition

A sequence is a list of numbers. Some sequences are finite; others are infinite. The simplest sequences
have values that repeatedly increase or decrease by a fixed amount. Here are some examples:

A=1,2,3,4,5,06
B=0,-1,-2,-3,-4,-5
C=2,4,6,8
D=-5,-10,-15,-20

E =4,8,12,16, 20, 24, 28, ...
F=2,0,-2,-4,-6,-8,-10, ..

The first four sequences are finite. The last two are infinite, as indicated by an ellipsis
(three dots) at the end.

Arithmetic sequence

In each of the sequences shown above, the values either increase steadily (in 4, C, and E) or
decrease steadily (in B, D, and F). In all six sequences, the spacing between numbers is con-
stant throughout. Here’s how each sequence changes as we move along from term to term:

* The values in A always increase by 1.
* The values in B always decrease by 1.
* The values in C always increase by 2.

373
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* The values in D always decrease by 5.
* The values in E always increase by 4.
* The values in F always decrease by 2.

Each sequence has an initial value. After that, we can easily predict subsequent values by
repeatedly adding a constant. If the constant is positive, the sequence increases. If the added
constant is negative, the sequence decreases.

Suppose that s, is the first number in a sequence S. Let ¢ be a real-number constant. If §
can be written in the form

S=50, (5o + ), (5o + 20), (50 + 30), ...

then it’s an arithmetic sequence or an arithmetic progression. In this context, the word “arithmetic”
. « . . »
is pronounced “err-ith-MET-ick.

The numbers s, and ¢ can be integers, but that’s not a requirement. They can be fractions
such as 2/3 or —=7/5. They can be irrational numbers such as the square root of 2. As long
as the separation between any two adjacent terms is the same wherever we look, we have an
arithmetic sequence, even in the trivial case

$=0,0,0,0,0,0,0, ...

Arithmetic series

A series is the sum of all the terms in a sequence. For an arithmetic sequence, the correspond-
ing arithmetic series can be defined only if the sequence has a finite number of terms. For the
above sequences A through F, let the corresponding series be called A, through F.. The total
sums are as follows.

A =1+2+3+4+5+6=21
B, =0+ (-1)+ (=2) + (-3) + (-4) + (-5) =-15
C,=24+4+6+8=20
D,=(-5) + (-10) + (=15) + (-=20) = =50
E, is not defined
F, is not defined

Now consider the infinite series
S:+:=0+0+0+0+0+0+0+ .-

We might think of Sy, as “infinity times 0,” because it’s the sum of 0 added to itself infinitely
many times. It’s tempting to suppose that Sy, = 0, but we can’t prove it. When we add up any
finite number of “nothings”, we get “nothing”, of course. However, when we try to find the
sum of infinitely many nothings, we encounter a mystery. The best we can do is say that S,
is undefined.
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Graphing an arithmetic sequence

When we plot the values of an arithmetic sequence as a function of the term number in rect-
angular coordinates, we get a set of discrete points. We can depict the term number along the
horizontal axis going toward the right, so the term number plays the role of the independent
variable. We can plot the term value along the vertical axis, so it plays the role of the depen-
dent variable.

Figure 19-1 illustrates two arithmetic sequences as they appear when graphed in this
way. (The dashed lines connect the dots, but they aren’t actually parts of the sequences.) One
sequence is increasing, and the dashed line connecting this set of points ramps upward as we
go toward the right. Because this sequence is finite, the dashed line ends at (6,6). The other
sequence is decreasing, and its dashed line ramps downward as we go toward the right. This
sequence is infinite, as shown by the ellipsis at the end of the string of numbers, and also by
the arrow at the right-hand end of the dashed line.

When any arithmetic sequence is graphed according to the scheme shown in Fig. 19-1,
its points lie along a straight line. The slope 72 of the line depends on whether the sequence
increases ( positive slope) or decreases (negative slope). In fact, 7 is equal to the constant ¢ in
the general arithmetic series form:

S=150, (50 + ), (55 + 20), (5o + 30), ...

regardless of how many terms the sequence contains.
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Figure 19-1 Rectangular-coordinate plots of two arithmetic
sequences.
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An example

Suppose that in an infinite sequence S, we have s, =5 and ¢ = 3. The first 10 terms are

=5
s5=5+3=5+3=8
H=5+3=8+3=11
5=5+3=11+3=14
s5=5+3=14+3=17
ss=s54+3=17+3=20
s6=5+3=20+3=23
s;=5s+3=234+3=26
ss=5+3=26+3=29
S9=s53+3=294+3=32

Therefore

§=5,8,11, 14, 17, 20, 23, 26, 29, 32, ...

Another example

Consider the following sequence 7. Someone asks, “Is this an arithmetic sequence? If so, what
are the values 7 (the starting value) and ¢, (the constant of change)?”

T=2,4,8,16, 32,064, 128, 256, 512, ...

In this case, 7'is not an arithmetic sequence. The numbers do not increase at a steady rate. There
is a pattern, however. Each number in the sequence is twice as large as the number before it.

Still another example

Consider the following sequence U. Someone asks, “Is this an arithmetic sequence? If so, what
are the values #, (the starting value) and ¢, (the constant of change)?”

U =100, 65, 30, -5, =40, =75, -110, ...

This is an arithmetic sequence, at least for the numbers shown (the first seven terms). In this
case, sp = 100 and ¢, = =35, so we can generate the following list:

5% =100
= uy + (=35) = 100 — 35 = 65
= u + (=35) =65—-35=30
ws=u, + (=35)=30-35=-5
s =uz+ (—35) =—5—35=-40
us = uz + (—35) =—40 — 35 =-75
ug=us+ (—35) =-75-35=-110
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Are you confused?

You ask, “What happens if we start a sequence with a fixed number and then alternately add and
subtract a constant? Is the result an arithmetic sequence?” Here’s an example:

V=-1/2,1/2,-1/2, 1/2,-1/2, 1/2, -1/2, ...

In this case, the first term, vy, is equal to —1/2. We might say that the constant, ¢, is equal to 1,
but we alternately add and subtract it to generate the terms. This is a definable sequence, but it’s
not an arithmetic sequence. In order to generate a true arithmetic sequence, we must repeatedly
add the constant, whether it’s positive, negative, or 0. When the constant is positive, the terms
steadily increase. When the constant is negative, the terms steadily decrease. Arithmetic sequences
never alternate as 1 does.

Here's a challengel!

When we have a sequence and we start to add up its numbers, we get another sequence of numbers
representing the sums. These sums are called partial sums. List the first five partial sums of the
following sequences:

S =5,8,11, 14, 17, 20, 23, 26, 29, 32, ...
T =2,4,8,16, 32, 64, 128, 256, 512, ...

U =100, 65, 30, -5, —40, —75, —110, ...
V=-1/2,1/2,-1/2,1/2,-1/2, 1/2,-1/2, ...

Solution

We simply add increasing numbers of terms and list the sums. For the sequence S, the first five
partial sums are

Sor=15

su=5+8=13

55 =5+8+11=24
s5,=5+8+11+14=38
s4=5+8+11+14+17=55

For the sequence 7, the first five partial sums are

=2
t.=2+4=6
hy=2+4+8=14
t,=2+4+8+16=30
t=2+4+8+16+32=062
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For the sequence U, the first five partial sums are

1y, = 100

=100 + 65 = 165

. = 100 + 65 + 30 = 195

3, = 100 + 65 + 30 + (=5) = 190

s = 100 + 65 + 30 + (=5) + (—40) = 150

For the sequence V;, the first five partial sums are

v =—1/2

v, =—1/2+1/2=0

v, =—112+1/2+ (-1/2) =-1/2

v, =—112+1/24+ (-1/2) +1/2=0

v =—112+1/2+ (=1/2) + 1/2 + (=1/2) =-1/2

Repeated Multiplication

Another common type of sequence has values that are repeatedly multiplied by some constant.
Here are a few examples:

G=1,2,4,8,16,32
H=1,-1,1,-1,1,-1, ...

I=1, 10, 100, 1000
J=-5,-15,-45,-135, —405
K=3,9,27,81, 243,729, 2187, ...
L=1/2,1/4,1/8, 1/16, 1/32, ...

Sequences G, 7, and J are finite. Sequences H, K, and L are infinite, as indicated by an ellipsis
at the end of each list.

Geometric sequence

Upon casual observation, the above sequences appear to be much different from one another.
But in all six sequences, each term is a constant multiple of the term before it:

* The values in G progress by a constant factor of 2.

* The values in A progress by a constant factor of —1.
* The values in 7 progress by a constant factor of 10.
* The values in / progress by a constant factor of 3.

* The values in K progress by a constant factor of 3.

* The values in L progress by a constant factor of 1/2.
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If the constant is positive, the values either remain positive or remain negative. If the constant
is negative, the values alternate between positive and negative.

Let £, be the first number in a sequence 7, and let 4 be a constant. Imagine that 7 can be
written in the general form:

T= f(), l'()k, tokz, l’oks, t0k4,

for as long as the sequence goes. Such a sequence is called a geomerric sequence or a geometric
progression.

If £ =1, the sequence consists of the same number over and over. (In that case, it’s also an
arithmetic sequence with a constant equal to 0!) If £#=—1, the sequence alternates between
and its negative. If 7, is less than —1 or greater than 1, the values get farther from 0 as we move
along in the series. If #, is between (but not including) —1 and 1, the values get closer to 0. If
to =1 or ty =—1, the values stay the same distance from 0.

The numbers 7, and 4 can be whole numbers, but this is not a requirement. As long as the
multiplication factor between any two adjacent terms in a sequence is the same, the sequence
is a geometric sequence. In the sequence L above, we have the constant # = 1/2. This is an
especially interesting case, as we'll see in a moment.

Geometric series

In a geometric sequence, the corresponding geometric series, which is the sum of all the terms, can
always be defined if the sequence is finite, and can sometimes be defined if the sequence is infinite.

For the above sequences G through Z, let the corresponding series be called G, through L,.
Then we have

G.=1+2+4+8+16+32=063
H=1-1+1-1+1-1+..=2
I,=14+10+100+1000=1111
Jo=—5-15-45-135—-405=-605

K. is not defined
L,=1/2+1/4+1/8+1/16+1/32+...=2?

The finite series G,, /., and /, are straightforward. There’s no mystery there! The partial sums
of H. alternate between 0 and 1, but can’t settle on either of those values. It’s tempting to
say that /., has two values, just as certain equations have solution sets containing two roots.
But we're looking for a single, identifiable number, not the solution set of an equation. On
that basis, we're forced to conclude that /. is not definable. The infinite series K, goes “out
of control.” It’s an example of a divergent series; its values keep getting farther from 0 without
ever reaching a limit.

Convergence

For the above sequences H, K, and L, the sequences of partial sums, which we’ll denote using
asterisk subscripts, go as follows:
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H=1,0,1,0,1,0, ...
K-=3,12, 39, 120, 363, 1092, 3279, ...
L.=1/2,3/4,7/8, 15/16, 31/32, ...

The partial sums denoted by H- and K- don't settle down on anything. But the partial sums
denoted by L. seem to approach 1. They don’t “run away” into uncharted territory, and they
don’t alternate between or among multiple numbers. The partial sums in L. seem to have a clear
destination that they could reach, if only they had an infinite amount of time to get there.

It turns out that the complete series L., representing the sum of the infinite string of
numbers in the sequence Z, is exactly equal to 1! We can get an intuitive view of this fact by
observing that the partial sums approach 1. As the position in the sequence of partial sums, L.,
gets farther and farther along, the denominators keep doubling, and the numerator is always
1 less than the denominator. In fact, if we want to find the 7zth number L., in the sequence of
partial sums L., we can calculate it by using the following formula:

L,=Q2"-1)/2"

As n becomes large, 2" becomes large much faster, and the proportional difference between
2" —1 and 2” becomes smaller. When 7 reaches extremely large positive integer values, the quo-
tient (2" — 1)/2” is almost exactly equal to 1. We can make the quotient as close to 1 as we want
by going out far enough in the series of partial sums, but we can never make it equal to or larger
than 1. The sequence L. is said to converge on the number 1. The sequence of partial sums L. is
an example of a convergent sequence. The series L, is an example of a convergent series.

Plotting a geometric sequence

A geometric sequence, like an arithmetic sequence, appears as a set of points when plotted
on a Cartesian plane. Figure 19-2 shows examples of two geometric sequences as they appear

40
\ 40, 20, 10, 5, 2.5, 1.25, ...
\
30+ \ !
\ /
(0] \ /
= \ 1,2,4,8, 16, 32 /
£ 20 ‘e /
€ AN .//
A AN 7
N Ve
10 . -
\&/
/’/ \.~\
oe=-%" , L ¢--er-

1 2 3 4 5 6
Term number

Figure 19-2  Rectangular-coordinate plots of
two geometric sequences.
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when graphed. Note that the dashed curves, which show the general trends of the sequences
(but aren’t actually parts of the sequences), aren't straight lines, but they are “smooth.” They
don’t turn corners or make sudden leaps.

One of the sequences in Fig. 19-2 is increasing, and the dashed curve connecting this
set of points goes upward as we move to the right. Because this sequence is finite, the dashed
curve ends at the point (6,32), where the term number is 6 and the term value is 32. The other
sequence is decreasing, and the dashed curve goes downward and approaches 0 as we move
to the right. This sequence is infinite, as shown by the three dots at the end of the string of
numbers, and also by the arrow at the right-hand end of the dashed curve.

If a geometric sequence has a negative factor, that is, if £ < 0, the plot of the points alter-
nates back and forth on either side of 0. The points fall along two different curves, one above
the horizontal axis and the other below. If you want to see what happens in a case like this, try
plotting an example. Set #, = 64 and k#=—1/2, and plot the resulting points.

An example

Suppose you get a 5-year certificate of deposit (CD) at your local bank for $1000.00, and it earns
interest at the annualized rate of exactly 5 percent per year. The CD will be worth $1276.28 after
6 years. To calculate this, multiply $1000 by 1.05, then multiply this result by 1.05, and repeat
this process a total of 5 times. The resulting numbers form a geometric sequence:

* After 1 year: $1000.00 x 1.05 = $1050.00
* After 2 years: $1050.00 X 1.05 = $1102.50
* After 3 years: $1102.50 X 1.05 = $1157.63
* After 4 years: $1157.63 X 1.05 = $1215.51
o After 5 years: $1215.51 X 1.05 = $1276.28

Another example

Is the following sequence a geometric sequence? If so, what are the values #, (the starting value)
and £ (the factor of change)?

T=3,-6,12,-24, 48, -90, ...

This is a geometric sequence. The numbers change by a factor of —2. In this case, o = 3 and
k=-2.

Are you confused?

It’s reasonable to ask, “Can we categorize all sequences as either arithmetic or geometric?” The
answer is no! Consider

U=10, 13, 17, 22, 28, 35, 43, ...

This sequence shows a pattern, but it’s neither arithmetic nor geometric. The difference between
the first and second terms is 3, the difference between the second and third terms is 4, the difference
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between the third and fourth terms is 5, and so on. The difference keeps increasing by 1 for
each succeeding pair of terms. This is a fairly simple example of a nonarithmetic, nongeometric
sequence with an identifiable pattern.

Here's a challenge!

Suppose a particular species of cell undergoes mizosis (splits in two) every half hour, precisely on
the half hour. We take our first look at a cell culture at 12:59 p.m., and find three cells. At 1:00
p.m., mitosis occurs for all the cells at the same time, and then there are six cells in the culture.
At 1:30 p.m., mitosis occurs again, and we have 12 cells. How many cells are there in the culture
at 4:01 p.m.?

Solution

There are 3 hours and 2 minutes between 12:59 p.m. and 4:01 p.m. This means that mitosis takes
place 7 times: at 1:00, 1:30, 2:00, 2:30, 3:00, 3:30, and 4:00. Table 19-1 illustrates the scenario.
We look at the culture repeatedly at 1 minute past each half hour. There are 384 cells at 4:01 p.m.,
just after the mitosis event that occurs at 4:00 p.m.

Table 19-1 Cell division as a function of time,
assuming mitosis occurs every half hour

Time Number of cells
12:59 3
1:01 6
1:31 12
2:01 24
2:31 48
3:01 96
3:31 192
4:01 384

Limit of a Sequence

A limit is a specific, well-defined quantity that a sequence, series, relation, or function approaches.
The value of the sequence, series, relation, or function can get arbitrarily close to the limit,
but doesn’t always reach it.

An example

Let’s look at an infinite sequence A that starts with 1 and then keeps getting smaller. For any
positive integer 7, the nth term is 1/n, so we have

A=1,1/2,1/3,1/4,1/5, ..., ln, ...
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This is a simple example of a special type of sequence called a harmonic sequence. In this
particular case, the values of the terms approach 0. The hundredth term is 1/100; the thou-
sandth term is 1/1000; the millionth term is 1/1,000,000. If we choose a tiny but positive real
number, we can always find a term in the sequence that’s closer to 0 than that number. But no
matter how much time we spend generating terms, we'll never get 0. We say that “The limit
of 1/n, as n approaches infinity, is 0,” and write it as

Lim1/n=0

71—y

Another example

Consider the sequence B in which the numerators ascend one by one through the set of natu-
ral numbers, while every denominator is equal to the corresponding numerator plus 1. For
any positive integer 7, the nth term is (z — 1)/7, so we have

B=0/1,1/2,2/3, 3/4, 4/5, ..., (n— 1)/n, ...

As 7 becomes extremely large, the numerator (7 — 1) gets closer and closer to the denominator,
when we consider the difference in proportion to the value of 7. Therefore

Lim(n—1)n=nln=1

n—ro0

Still another example

Let’s see what happens in a sequence C where every numerator is equal to the square of the
term number, while every denominator is equal to twice the term number. For any positive
integer 7, the nth term is 7%/(2n), so we have

C=1/2,4/4,9/6, 16/8, 25/10, 36/12, 49/14, ..., n* | 2n), ...

Note that
n*(2n)=nl2
This tells us that

Lim n*l(2n) = Lim nl2

n—seo n—seo

As n grows larger without end, so does 7/2. Therefore

Limn/2

n—>00

is undefined, so we know that

Lim n*(2n)

n—ro0

is also undefined. Alternatively, we can say that this limit doesn’t exist, or that it's meaning]ess.
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Are you confused?

By now, you should suspect that any given sequence must fall into one or the other of two cat-
egories: convergent (meaning that it has a limit) or divergent (meaning that it doesn’t have a
limit). But what if a sequence alternates between two numbers endlessly? Once again, look at the
sequence

H=1,-1,1,-1,1,-1, ...

We might be tempted to suggest that a sequence of this type “has two different limits,” but it
doesn’t converge on any single number. However, that won’t work because a limit must always
be a single value that we can specify as a number. In cases like this, it’s customary to say that the
limit is not defined.

Here's a challengel!

Consider the sequence D in which the numerators alternate between —1 and 1, while the denomi-
nators start at 1 and increase by 1 with each succeeding term. For any positive integer 7, the nth
term is (—1)"/n, so that

D=-1/1,1/2,-1/3, 1/4, -1/5, ..., (=1)"/n, ...

Does this sequence have a limit? If so, what is it? If not, why not?

Solution

As n becomes extremely large, the absolute value of the numerator is always 1, although the sign
alternates. The denominator increases steadily, and without end. If we choose a tiny positive or
negative real number, we can always find a term that’s closer to 0 than that number, but we’ll never
actually reach 0 from either the positive side or the negative side. Therefore

Lim (-1)"/n=0
n—s00

Here's another challenge!

Consider the following sequence:
K=(=1-1/1), (1 +1/2), (-1 = 1/3), (1 + 1/4), ..., [(1)" + (=1)"/n], ...

The parentheses and brackets are not technically necessary here, but they visually isolate the terms
from one another. Does K have a limit? If so, what is it? If not, why not?

Solution

Each term in Kis expressed as a sum. The first addend alternates between —1 and 1, endlessly. The
second addend is identical to the corresponding term in the sequence D that we evaluated in the
previous challenge. We determined that D converges toward 0. The terms in K therefore approach
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two different values, —1 and 1, as we generate terms indefinitely. If we want to claim that a sequence
has a limit, we must take that expression literally. “A limit” means “one and only one limit.” We
therefore conclude that

Lim (=1)"+ (=1)"/n

is not defined.

Summation “Shorthand”

Mathematicians have a “shorthand” way to denote long sums. This technique can save a lot
of space and writing time. We can even write down an infinite sum in a compact statement.
It’s called summation notation.

Specify the series

Imagine a set of constants, all denoted by 2 with a subscript, such as
{dlr ay, a3, dy, ds, dgs Ay, ﬂS}

Suppose that we add up the elements of this set, and call the sum 4. We can write this sum
out term by term as

gt vastaztastagta+ag=20

That’s easy because we have only eight terms, but if the set contained 800 elements, writing
down the entire sum would be exasperating. We could put an ellipsis in the middle of the sum,
calling it ¢ and then writing

a, +6lz+ﬂ3+ +ﬂ798+ﬂ799+61300:C

If the series had infinitely many terms, we could use an ellipsis after the first few terms and
leave the statement wide open after that, calling it 4 and then writing

a+ataztaitas+--=d

Tag the terms

Let’s invent a nonnegative-integer variable and call it 7. Written as a subscript, 7 can serve as
a counting tag in a series containing a large number of terms. Don’t confuse this 7 with the
symbol some texts use to represent the unit imaginary number, which is the positive square
root of —1!

In the above-described series, we can call each term by the generic name 4;. In the first
series, we add up eight /s to get the final sum &, and the counting tag 7 goes from 1 to 8. In
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the second series, we add up 800 4s to get the final sum ¢, and the counting tag 7 goes from
1 to 800. In the third series, we add up infinitely many 4s to get the final sum 4, and the
counting tag 7 ascends through the entire set of positive integers. Suppose that we have a series
with 7 terms, as follows:

a+atat++a,,tva, ta, =k

In this case, we add up 7 4s to get the final sum 4.

The big sigma

Let’s go back to the series with eight terms. We can write it down in a cryptic but information-
dense manner as

8
2 a; = b
i=1

We read this expression out loud as, “The summation of the terms #;, from =1 to 8, is equal
to 4.” The large symbol X is the uppercase Greek letter sigrma, which stands for summation or
sum. Now let’s look at the series in which 800 terms are added:

800

S
i=1

We can read this aloud as, “The summation of the terms 4;, from i =1 to 800, is equal to ¢.”
In the third example containing infinitely many terms, we can write

za,:d

=)
=1

This statement can be read as, “The summation of the terms #,, from 7 =1 to infinity, is equal
to 4.” Finally, in the general case, we can write

i a; = k
=1

and read it aloud as, “The summation of the terms @, from 7= 1 to #, is equal to £.”

A more sophisticated example

Suppose we want to determine the value of an infinite series starting with 1, then adding 1/2,
then adding 1/4, then adding 1/8, and going on forever, each time cutting the value in half.
As things work out, we get

1+1/2+1/4+1/8+ =2
even though the series has infinitely many terms. We can also write

1/2°4+ 172+ 1/22 4+ 1/2° + .. =2

In summation notation, we write

i 1/2/=2
=0
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Are you confused?

If you're baffled by the idea that we can add up infinitely many numbers and get a finite sum,
you can use the “frog-and-wall” analogy. Imagine that a frog sits 8 meters (8 m) away from a wall.
Then she jumps halfway to the wall, so she’s 4 m away from it. Now imagine that she continues
to make repeated jumps toward the wall, each time getting halfway there (Fig. 19-3). No finite
number of jumps will allow the frog to reach the wall. To accomplish that goal, she would have to
take infinitely many jumps. This scenario can be based on a sequence of partial sums of a series

S=4+4+2+1+1/2+1/4+1/8 + -

A real-world frog cannot reach the wall by jumping halfway to it, over and over. But in the
imagination, she can. There are two ways this can happen. First, in the universe of mathematics,
we have an infinite amount of time, so an infinite number of jumps can take place. Another way
around the problem is to keep halving the length of time in between jumps, say from 4 seconds
to 2 seconds, then to 1 second, then to 1/2 second, and so on. This will make it possible for our
“cosmic superfrog” to hop an infinite number of times in a finite span of time. Either way, when
she has finished her journey and her nose touches the wall, she’ll have traveled exactly 8 m. There-
fore, the sum total of the lengths of her jumps is

S=4+2+1+1/2+1/4+1/8+--=8

Here's a challengel!

Consider the series that we dealt with in “A more sophisticated example” a couple of paragraphs
ago, but only up to the reciprocal of the z#th power of 2. Let S, be the partial sum of this series up to,
and including, that term. Write S, in summation notation.

1st jump Wall
/,"‘ *sx“ 4th
%, 2nd jump

, 3rd

H e

® H H

< 4m >I< 2m—>
—> 1m

Initial position of frog
L (point on surface exactly 1/2m—
below her nose)

Figure 19-3 A frog jumps toward a wall, getting halfway there
with each jump.
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Solution

Lets use the letter 7 as the counting tag. We start at 7= 0 and go up to 7 = 7, with each term having
the value 1/2°. Therefore, the summation notation is

n

DIV

=0

Limit of a Series

If a series has a limit, we can sometimes figure it out by creating a sequence from the partial
sums, and then finding the limit of that sequence.

An example

Think of the summation in the previous challenge, and imagine what happens as 7 increases
endlessly—that is, as 7 approaches infinity. As 7 grows larger, the sequence of partial sums
approaches 2. We can plug the summation into a limit template, and then state that

Li N i_
Lin 3122
i=0

Another example

Let’s look once again at the infinite sequence V' we saw a little while ago, where the numerators
keep alternating between —1 and 1, as follows:

V=-1/2,1/2,-1/2,1/2,-1/2, 1/2, -1/2 ...
Let’s replace every comma by a plus sign, creating the infinite series
Vi==124+12-1/2+1/12-112+1/2-1/2 + -
We can write this series in summation form as
i =172
=1

Now consider the limit of the sequence of partial sums of V; as the number of terms becomes
arbitrarily large. We write this quantity symbolically as

n—soo

Lim 2 “1)/2
=1

This limit does not exist, because the sequence of partial sums alternates endlessly between two
values, —1/2 and 0.
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Are you confused?

Does the combination of limit and summation notation look intimidating? Besides getting used
to the symbology, you have to keep track of two different indexes, 7 for the sum and 7 for the limit.
It helps if you remember that the two indexes are independent of each other. You're finding the
limit of a sum as you keep making that sum longer.

Here's a challengel

Find the limit of the partial sums of the infinite series
1/100 + 1/100% + 1/100° + 1/100* + 1/100° + --

as the number of terms in the partial sum increases without end. That is, find

Lim E 1 1()()
- /

In decimal form, 1/100 = 0.01, 1/100* = 0.0001, 1/100° = 0.000001, and so on. Let’s arrange
these numbers in a column with each term underneath its predecessor, and all the decimal points
along a vertical line, as the following:

0.01

0.0001
0.000001
0.00000001
0.0000000001
!

0.0101010101...
When we look at the series this way, we can see that it must ultimately add up to the nonterminat-
ing, repeating decimal 0.0101010101.... From our algebra or number theory courses, we recall

that this endless decimal number is equal to 1/99. That’s the limit of the sequence of partial sums
in the series:

n
Y 1/100°
=l
as the positive integer 7 increases without end. It’s also the value of the entire infinite series:

i 1/100°
i=1
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Limits of Functions

So far, we've looked at situations where we move from term to term in a sequence or series.
Sometimes, such sequences and series have limits (they converge); in other cases they don’t
have limits (they diverge). Similar phenomena can occur when we have a variable that changes
in a smooth, continuous manner, rather than jumping among discrete values.

Some functions have limits, and some don’t

Certain functions increase or decrease without bound, while others reach specific values and

stay there. Still others increase or decrease continuously without ever passing, or even reach-

ing, a certain value. It’s also possible for a function to “blow up” and have no limit at all.
The solid curve in Fig. 19-4 shows the reciprocal function in the first quadrant of the

Cartesian plane, where the value of the independent variable is positive. The dashed curve

shows the negative reciprocal function in the fourth quadrant, where, again, the value of the

independent variable is positive. The functions are

f)=x"

Value

of

function

A

Each . B
axis division _ :(X) =x
is 1 unit or x>0

—f(x) = —x~1
for x>0

What are
the limits?

P Py sy oy

\4

Figure 19-4  Graphs of the reciprocal function (solid
curve) and its negative (dashed curve)
in the first and fourth quadrants of the
Cartesian plane, where x > 0. Each axis
division represents 1 unit.
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and

()=~

As the value of x increases without end, both of these functions approach, but never reach, 0.
We can therefore write

Lim f(x)=0
and

Lim —f(x)=0

X0

As the value of x becomes arbitrarily small but remains positive, both of these functions
approach singularity. The reciprocal function “blows up positively” while the negative recipro-
cal function “blows up negatively.” Therefore, we must conclude that neither

Lim f(x)
x—0
nor

Lim —f(x)

x—0

exists. It’s tempting to claim that
Lim f(x) = +oo
x—0

and

Lim —f(x) = —oo

x—0

However, we haven't explicitly defined +eo (“positive infinity”) or —eo (“negative infinity”), so
such statements are informal at best.

Right-hand limit at a point

Consider again the reciprocal function

flo)=x7"

To specify that we approach 0 from the positive direction, we can refine the limit notation by
placing a plus sign after the 0, as follows:

I
L 9

This expression reads, “The limit of f(x) as x approaches 0 from the positive direction.” We
can also say, “The limit of f(x) as x approaches 0 from the right.” (In most graphs where x
is on the horizontal axis, the value of x becomes more positive as we move toward the right.)



392 Sequences, Series, and Limits

This sort of limit is called a right-hand limit. Because f'is singular where x = 0, this particular
limit is not defined.

Left-hand limit at a point

Let’s expand the domain of f to the entire set of reals except 0, for which f is not defined
because 0" is meaningless. Suppose that we start out with negative real values of x and
approach 0 from the left. As we do this, / decreases endlessly. Another way of saying this is
that f increases negatively without limit, or that it “blows up negatively.” Therefore,

Lim f(x)

x—0—

is not defined. We read the above symbolic expression as, “The limit of f(x) as x approaches
0 from the negative direction.” We can also say, “The limit of f'(x) as x approaches 0 from the

left.” This sort of limit is called a lefi-hand limit.

An example

Let’s consider a function ¢ that takes the reciprocal of twice the independent variable. If the
independent variable is x, then we have

gx)=(2x)"

Imagine that we allow x to be any positive real number. As x gets arbitrarily large positively, ¢ (x)
gets arbitrarily small positively, approaching 0 but never quite getting there. We can say, “The
limit of g (x), as x approaches infinity, is 0,” and write

Limg(x)=0

This scenario is similar to what happens with the reciprocal function, except that this func-
tion g approaches 0 at a different rate than the reciprocal function as the independent variable
becomes arbitrarily large.

Now let’s see what happens when x gets smaller but stays positive, so that g (x) gets larger.
If we make x close enough to 0, we can make g (x) as large as we want. This function, like the
reciprocal function, “blows up” as x approaches 0 from the positive direction, but at a different
rate. Therefore

Lim g )

x—0+

is not defined.

Another example

Suppose that x is a positive real-number variable, and we want to evaluate
Lim 1/x*
x—00

Let’s start out with x at some positive real number for which the function is defined. As we
increase the value of x, the value of 1/x* decreases, but it always remains positive. If we choose
some tiny positive real number 7, no matter how close to 0 it might be, we can always find
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some large value of x for which 1/x? is smaller than 7. Therefore, as x grows without bound,
1/x* approaches 0, telling us that

Lim 1/x*=0
x—>00
Still another example
Again, let x be a positive real-number variable. This time, let’s evaluate
Lim 1/x?
x—0+

Suppose that we start out with x at some positive real number for which the function is defined and
then decrease x, letting it get arbitrarily close to 0 but always remaining positive. As we decrease the
value of x, the value of 1/x* remains positive and increases. If we choose some large positive real
number s, no matter how gigantic, we can always find some small, positive value of x for which 1/x
is larger than s. As x becomes arbitrarily small positively, 1/x* grows without bound, so

Lim 1/x?

x—0+

is not defined.

Are you confused?

It’s easy to get mixed up by the meanings of negative direction and positive direction, and how
these relate to the notions of left hand and right hand. These terms are based on the assumption
that we're talking about the horizontal axis in a graph, and that this axis represents the indepen-
dent variable. In most graphs of this type, the value of the independent variable gets more negative
as we move to the left, and it gets more positive as we move to the right.

As we travel along the horizontal axis, we might be in positive territory the whole time; we might be
in negative territory the whole time; we might cross over from the negative side to the positive side or vice
versa. Whenever we come toward a point from the left, we approach from the negative direction, even if
that point corresponds to something like x = 567. Whenever we come toward a point from the right, we
approach from the positive direction, even if the point is at x =—53,535. The location of the point doesn’t
matter. The important consideration is the direction from which we approach the point.

Here's a challengel!

Consider the base-10 logarithm function (symbolized log;,). Sketch a graph of the function f(x) =
log,o x for values of x from 0.1 to 10, and for values of ffrom —1 to 1. Then determine

Lim log, x
X—5—

Solution

Figure 19-5 is a graph of the function f(x) = log,, x for values of x from 0.1 to 10, and for values

of ffrom —1 to 1. The function varies smoothly throughout this span. If we start at values of x a

little smaller than 5 and work our way toward 5, the value of fapproaches log;, 5. Therefore,
Lim logyy x= logo 5

X—5—
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We “close in”
£(x) on this point ...
1 =
1 _\',L- ... from
T | the negative
4 | direction
0 S S R e e R I
i 5 10
Common logarithm function
f(x) = log 4o X
-1 -

Figure 19-5 An example of the limit of a
function as we approach a point
from the negative direction.

Memorable Limifs of Series

Certain limits of series are found often in calculus and analysis. If you plan to go on to Caleulus
Know-It-All after finishing this book, you're certain to see the three examples that follow!

An example

Imagine an infinite series where we take a positive integer 7 and then divide it by the square of
another positive integer 7. Symbolically, we write this as

Z iln?
i=1
When we expand this series out, we write it as
Un*+2/n>+3/n+ -+ nln*+ -

which simplifies to

(14+2+3++n+-)n?
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Suppose that we let 7 grow endlessly larger, increasing the number of terms in the series. Let’s
consider

Lim QA +2+3+-+n)ln’

=300
As things work out, this limit is equal to 1/2. Therefore
Lim Y, iln*=1/2

n—oo *
i=1

Another example

Now imagine an infinite series where we square a positive integer 7 and then divide it by the
cube of another positive integer 7. Symbolically, we write this as

oo

2 i2n?
i=1

We can expand it to
12/n° + 2% n’ + 3% n’ + o + n?ln® + -
which simplifies to
(1’4 22+ 3%+ -+ 22 + )/’
As n grows endlessly larger, we have

Lim (1*+ 22+ 32+ .. + n?)/n’®

n—>00

This limit turns out to be 1/3. Therefore

n—eo 4

Lim S #n’=1/3
=1

Still another example

Finally, let’s look at an infinite series where we cube a positive integer 7 and then divide it by
the fourth power of another positive integer 7. Symbolically, we write this as

oo

2 3Int
i=1
When we write this series out, we obtain
Pin*+2%/n+ 3nt + o+ n3nt + .

which simplifies to

(P+22+3+ .+’ +.)/nt
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As n grows endlessly larger, we have

Lim (P +2>+ 3+ +n®)/nt

71—y

This limit turns out to be 1/4. Therefore

L‘ 2 .3 4:
ni('fg’/” 1/4

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Figure 19-6 is a graph of the first few elements of an infinite arithmetic sequence. If we
call the sequence S, then

S=5sq (5o+c), 50+ 2¢), (5o + 3¢), ...

where  is the initial term value and ¢ is a constant. Based on the information given in

this graph, what is s> What is ¢? What is the value of the hundredth term in §?

A
6,,
«
AN
4+ N 5,3,1,-1,-3, -5, ...
AN
+ °
N
2+ M
\\
o
% .\ 4 5 6
>0 H — i +—> Term number
€ 1 23 N
CH N
-2 + \\
- \‘
N
-4+ AN
\
1 L\
N
_6” N
\4

Figure 19-6 Illustration for Problem 1.
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. Does the infinite arithmetic sequence described in Problem 1 converge? If so, on what
value does it converge? If not, why not?

. The general form for an infinite geometric sequence 7'is

T= to, f()k, t()kz, fokg, t0k4,

where 7, is the initial value and 4 is the constant of multiplication. Calculate, and write
down, the first seven terms in an infinite geometric sequence 7 where =2 and 4= —4.
Does this sequence converge? If so, on what value does it converge? If not, why not?

. Suppose that in the scenario of Problem 3, we change # from —4 to —1/4. Calculate and
list the first seven values of the resulting infinite sequence. Does it converge? If so, on
what value does it converge? If not, why not?

. Consider again the sequence we saw earlier in this chapter:
B=0/1,1/2,2/3, 3/4, 4/5, ..., (n— Dln, ...
We determined that the limit of B, as # grows without end, is

Lim (n—1)In=1

n—>00

so we know that B converges. Write down the series B, that we get when we add the
elements of B. Then write down the first five terms of the sequence B., which is made
up of the partial sums in B,. Does the sequence B converge? If so, to what value does it
converge? If not, why not?

. Express the following series by writing out the first five terms followed by an ellipsis:
S.= X, 1/10°
=1

First, express the terms as fractions. Then express them as powers of 10. Then express
them as decimal quantities. Finally, write down the first five terms in the sequence S- of
partial sums.

. Find the following limit if it exists. If no limit exists, explain:

Lim 3, 1/10

=

. Using a calculator, plug in =2, n=6, n= 10, and 7 = 20 to informally illustrate that
Lim(1+2+3+-+n)/n*=1/2=0.5

n—00
and therefore that

Lim Y iln*=1/2=0.5
=1

n—oo “

Work out the partial sums to obtain decimal quantities. Round off your results to five
decimal places when you encounter repeating or lengthy decimals.

. Using a calculator, plug in =2, n=6, n= 10, and 7 = 20 to informally illustrate that

Lim(1?+ 22 + 3% + - + n)/n’ = 1/3 = 0.33333...
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and therefore that

Lim Y, i*ln®=1/3=0.33333...
n—yo0
i=1
Work out the partial sums to obtain decimal quantities. Round off your results to five
decimal places when you encounter repeating or lengthy decimals.

10. Using a calculator, plug in =2, n=6, n= 10, and n = 20 to informally illustrate that

Lim (P+22+3%+ ..+ 2 /n=1/4=0.25

n—00
and therefore that

Li ' 3 ‘i=1/4=0.2
”ngz/n /14=0.25

Work out the partial sums to obtain decimal quantities. Round off your results to five
decimal places when you encounter repeating or lengthy decimals.
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Review Questions and Answers

Part Two

This is not a test! It’s a review of important general concepts you learned in the previous nine
chapters. Read it though slowly and let it sink in. If youre confused about anything here, or
about anything in the section you've just finished, go back and study that material some more.

Chapter 11
Question 111

What’s a mathematical relation?

Answer 11-1

A relation is a clearly defined way of assigning, or mapping, some or all of the elements of a
source set to some or all of the elements of a destination set. Suppose that X is the source set
for a relation, and Y'is the destination set for the same relation. In that case, the relation can
be expressed as a collection of ordered pairs of the form (x,y), where x is an element of set X
and y is an element of set Y.

Question 112

What's an injection, also known as an injective relation?

Answer 112

Imagine two sets X and Y. Suppose that a relation assigns each element of X to exactly one ele-
ment of Y. Also suppose that, according to the same relation, an element of ¥ never has more
than one mate in X. (Some elements of ¥ might have no mates in X) In a situation like this,
the relation is an injection.

Question 11-3

What's a surjection, also called an onto relation?

399
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Answer 11-3

Again, imagine two sets X and Y. Suppose that according to a certain relation, every element
of Yhas at least one (and maybe more than one) mate in X, so that no element of Y'is left out.
A relation of this type is a surjection from X onto Y.

Question 11-4

What's a bijection, also called a one-to-one correspondence?

Answer 11-4

A bijection is a relation that’s both an injection and a surjection. Given two sets X and Y, a
bijection assigns every element of X to exactly one element of ¥, and vice versa. This is why a
bijection is sometimes called a one-to-one correspondence.

Question 11-9

What’s a two-space function? Is every two-space function a relation? Is every two-space rela-
tion a function?

Answer 11-5

A two-space function is a relation between two sets that never maps any element of the source
set to more than one element of the destination set. All two-space functions are relations.
However, not all two-space relations are functions.

Question 11-6

What's the vertical-line test for the graph of a two-space function?

Answer 11-6

The vertical-line test is a quick way to determine, based on the graph of a two-space relation,
whether or not the relation is a function. Imagine an infinitely long, movable line that’s always
parallel to the dependent-variable axis (usually the vertical axis). Suppose that we're free to
move the line to the left or right, so it intersects the independent-variable axis (usually the
horizontal axis) wherever we want. The graph is a function of the independent variable if and
only if the movable vertical line never intersects the graph at more than one point.

Question 11-7

Based on the vertical-line test, which of the curves in Fig. 20-1 are functions of x within the
span of values for which —6 < x < 62

Answer 11-7

Only fis a function of x. If we construct a movable vertical line (always parallel to the y axis),
it never intersects the curve for fat more than one point over the span of values for which -6
< x < 6. However, the movable vertical line intersects the curve for g at more than one point
for some values of x where —6 < x < 6. The same is true of the curve for 4.

Question 11-8

Suppose we're working in the polar coordinate plane, and we encounter the graph of a relation
where the independent variable is represented by 6 (the direction angle) and the dependent
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Figure 20-1 Illustration for Question and Answer 11-7.

variable is represented by 7 (the radial distance from the origin). How can we tell if the relation
is a function of 6?

Answer 11-8

We can draw the graph of the relation in a Cartesian plane, plotting values of 0 along the
horizontal axis, and plotting values of r along the vertical axis. We can allow both 6 and 7 to
attain all possible real-number values. Then we can use the Cartesian vertical-line test to see if
the relation is a function of 6.

Question 11-9
How do functions add, subtract, multiply, and divide?

Answer 11-9

To add one function to another, we add both sides of their equations. This can be done in
either order, producing identical results. If /; and f; are functions of x, then

A+ A ) =) +£x)

and

(o + ) =filx) + fix)
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To subtract one function from another, we subtract both sides of their equations. This can be
done in either order, usually producing different results. If /i and f; are functions of x, then

(i =)&) = filx) = (%)

and

(=)&) = fx) = filx)

To multiply one function by another, we multiply both sides of their equations. This can be
done in either order, producing identical results. If /; and £, are functions of x, then

(fi X f2) (%) = i) X fo(x)

and

(2 X /) (%) = foo0) X fi(x)

To divide one function by another, we divide both sides of their equations. This can be done
in either order, usually producing different results. If /i and £, are functions of x, then

(A1) () = £i()/fo(x)

and

(Al ) = £&)fi)

Question 11-10

When we add, subtract, multiply, or divide functions, we must adhere to three important
rules. What are they?

Answer 1110

First, we must be sure that the functions both operate on the same thing. In other words, the
independent variables must describe the same parameters or phenomena. Second, we must
restrict the domain of the resultant function to only those values that are in the domains of
both functions (the intersection of the domains). Third, if we divide a function by another
function, we can't define the resultant function for any value of the independent variable
where the denominator function becomes 0.

Chapter 12
Question 12-1

How can we informally define the inverse of a relation?
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Answer 121

The inverse of a relation is another relation that undoes whatever the original relation does.
Also, the original relation undoes whatever its inverse does.

Question 122

How can we rigorously define the inverse of a relation?

Answer 122

Let /" be a relation where x is the independent variable and y is the dependent variable. The
inverse relation for fis another relation /™" such that

] =x

for all values of x in the domain of £, and

FIf 7 ol=y

for all values of y in the range of £

Question 12-3

Suppose we've drawn the graph of a relation fin the Cartesian xy plane. How can we create
the graph of the inverse relation f~'?

Answer 12-3

Imagine the line y = x as a “point reflector.” For any point on the graph of £, its counterpoint
on the graph of ' lies on the opposite side of the line y = x but the same distance away, as
shown in Fig. 20-2. Mathematically, we can do this transformation by reversing the sequence
of the ordered pair representing the point. When we want to obtain the graph of /' based on
the graph of £, we can “flip the whole graph over in three dimensions” around the line y = x,
as if that line were the hinge of a revolving door.

Question 12-4

Is it possible for a relation to be its own inverse?

Answer 12-4

Yes. The simplest example is the relation described in the Cartesian xy plane by the equation
y=x
which can also be written as
f)=x

Another, less obvious example, is
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Figure 20-2 Illustration for Question and Answer 12-3.

which can also be written as

fx) =—x

If a relation’s graph is a circle centered at the origin, then that relation is its own inverse.
Examples include all relations of the form

LHy=r
where 7 is the radius of the circle. We can also write such a relation in the form

f) = (7 -

Question 12-9

How can we tell, simply by looking at the graph of a relation, whether or not that relation is
its own inverse?

Answer 12-9

Suppose that when we “flip the graph over in three dimensions” along the line y = x as if that
line were the hinge of a revolving door, we end up with exactly the same graph as the one we
started with. In any case like that, the relation is its own inverse. If we do the “revolving door”
transformation and end up with a graph that’s different in any way from the one we started
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Figure 20-3 Illustration for Question and Answer 12-5.

with, then the relation isn’t its own inverse. Figure 20-3 shows an example of a graph of the
second type, where the inverse obviously differs from the original relation.

Question 12-6

Suppose we have a relation that’s not a function, because it maps some values of the indepen-
dent variable x to more than one value of the dependent variable y. Is it possible to modify
such a relation so that it becomes a function of x?

Answer 12-6

Yes, in most cases it’s possible. If we can restrict the domain or the range to values such that
the modified relation never maps any value of x to more than one value of y, then the modified
relation is a function of x.

Question 127

Is the inverse of a function always a function?

Answer 12-7

No, not always. Suppose we have a function f'that maps values of an independent variable x
to values of a dependent variable y. Also imagine that, for any value of x in the domain, there’s
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only one corresponding value of y in the range. On that basis, we know that /" is a function of
x. However, if some values of y are mapped from two or more values of x, then we don't have a
function of y when we consider y as the independent variable and x as the dependent variable.
Although the inverse £ is a relation, it’s not a true function.

Question 12-8

Consider a function fthat maps values of x to values of y. Suppose that £, which maps values
of y to values of x, is a relation but not a true function. Is it possible to modify the inverse
relation /7 so that it becomes a function of y?

Answer 12-8

In most cases, yes. If we can restrict the inverse relation’s domain (the set of y values for which
£ is defined) or the inverse relation’s range (the set of x values for which f™" is defined) so
that the modified version of f~' never maps any value of y to more than one value of x, then
the modified inverse is a true function of y.

Question 12-9
Consider the two functions

fl)=x
and

() =—x

Both fand g are their own inverses, and the inverses are also true functions. Is it possible for any
other true function to be its own inverse, with that inverse also constituting a true function?

Answer 12-9

Yes, this can happen. Consider the real-number function
h(x)=1/x
where x # 0. This function is its own inverse, because
h'h ()] =h""(11x) =1/(1/x) = x
and

hh™' ()]l =h(1/x) =1/(1/x) =x

Question 12-10

Imagine a function fsuch that

y=fx)
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and whose inverse f ' is a true function, so that

o) =x

for all values of x in the domain of £ and for all values of y in the range of £ Based on this
information, what can we conclude about the nature of the mapping that frepresents between
the elements of its domain and the elements of its range?

Answer 12-10

Every element x in the domain maps to exactly one element y in the range, and every element
y in the range is mapped from exactly one element x in the domain. Therefore, within the
specified domain and range, the mapping that f'represents is a one-to-one correspondence,
technically known as a bijection.

Chapter 13
Question 13-1

What are the four basic types of conic sections? What do they look like in the Cartesian
plane?

Answer 13-1

The conic sections are geometric curves representing the intersection of a plane with a double
cone. There are four types: the circle, the ellipse, the parabola, and the hyperbola. Figure 20-4
shows generic graphs of each type of conic section in the Cartesian plane.

Question 132

How are the conic sections generated in 3D geometry?

Answer 132

When the plane is perpendicular to the axis of the double cone, we get a circle, as shown in
Fig. 20-5A. When the plane is not perpendicular to the axis of the cone but the intersection
curve is closed, we get an ellipse (Fig. 20-5B). When we tilt the plane just enough to open up
the curve, we get a parabola (Fig. 20-5C). When we tilt the plane still more, we get a hyper-
bola (Fig. 20-5D).

Question 13-3

What is meant by the term “eccentricity” with respect to a conic section? How do the eccen-
tricity values compare for a circle, an ellipse, a parabola, and a hyperbola?

Answer 13-3

Eccentricity (symbolized ¢) is a nonnegative real number that defines the extent to which a
conic section differs from a circle. Here’s how the eccentricity values compare for the four
types of conic section:

* Acirclehase=0
* Anellipsehas0<e<1
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Circle Ellipse

Parabola / Hyperbola \

Figure 20-4 Illustration for Question and Answer 13-1.

* A parabola has e=1
* A hyperbola has ¢> 1

Question 13-4

What's the focus of a parabola? What's the directrix of a parabola? How are they related?

Answer 13-4

The focus of a parabola is a point in the same plane as the parabola, and the directrix is a line
in that plane that does not pass through the focus. On a parabola, every point is equidistant
from a specific focus and a specific directrix, as shown in Fig. 20-6. For any particular focus
and directrix in geometric space, there exists exactly one parabola. Conversely, for any particu-
lar parabola in space, there exists exactly one focus, and exactly one directrix.

Question 13-5
What's the focal length of a parabola?
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Answer 13-9

The focal length of a parabola is the distance between the focus and the point on the parabola
closest to the focus. The focal length is also equal to half the distance between the focus and
the point on the directrix closest to the focus.

Question 13-6

What's the standard-form general equation for a circle in the Cartesian xy plane?

Answer 13-6

The standard-form general equation is
(x=x0)*+ (y—y0)* =7

where x, and y, are real-number constants that tell us the coordinates (xo,y,) of the center of
the circle, and 7 is a positive real-number constant that tells us the radius of the circle.

Question 13-7

What'’s the standard-form general equation for an ellipse in a Cartesian xy plane where the
x axis is horizontal and the y axis is vertical?

Answer 137

The standard-form general equation is
(x—x)’ld+ (y—p)16* =1

where x, and y, are real-number constants representing the coordinates (xy,)) of the center of
the ellipse, 4 is a positive real-number constant that tells us the length of the horizontal semi-
axis, and & is a positive real-number constant that tells us the length of the vertical semi-axis.

Question 13-8

What's the standard-form general equation for a parabola that opens upward or downward in
a Cartesian xy plane where the x axis is horizontal and the y axis is vertical?

Answer 13-8

The standard-form general equation is
y= ax + bx+ ¢

where 4, b, and ¢ are real-number constants, and 2 # 0. If 2 > 0, the parabola opens upward.
If 2 < 0, the parabola opens downward.

Question 13-9

How can we locate the coordinates (x,)) of the vertex point on a parabola that opens upward
or downward in a Cartesian xy plane where the x axis is horizontal and the y axis is vertical?
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How can we tell whether that vertex point represents the absolute minimum value of y or the
absolute maximum value of y?

Answer 13-9

We can find the coordinates (xy,y,) of the vertex point based on the constants in the standard-
form equation of the parabola. The x value is

xo=—bl(2a)
The y value is
yo=—b*(4a) + ¢

If 2> 0, the parabola opens upward, so the vertex represents the absolute minimum value of
y on the curve. If 2 < 0, the parabola opens downward, so the vertex represents the absolute
maximum value of y on the curve.

Question 13-10

What’s the standard-form general equation for a hyperbola that opens toward the right and
left in a Cartesian xy plane where the x axis is horizontal and the y axis is vertical?

Answer 13-10

The standard-form general equation is
(x—xp)lad — (y— )’ 1P =1

where x, and y, are real-number constants that tell us the coordinates (x,y,) of the center of
the hyperbola,  is a positive real-number constant that tells us the length of the horizontal
semi-axis, and & is a positive real-number constant that tells us the length of the vertical
semi-axis.

Chapter 14
Question 14-1

How can we informally describe the graph of the function
y=¢e
in the Cartesian xy plane?

Answer 14-1

The graph is a smooth, continually increasing curve that crosses the y axis at the point (0,1). The
domain is the set of all real numbers, and the range is the set of all positive real numbers. The
curve is entirely contained within the first and second quadrants. As we move to the left (in
the negative x direction), the curve approaches, but never reaches, the x axis. As we move to
the right (in the positive x direction), the graph rises at an ever-increasing rate.
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Question 142

How can we informally describe the graph of the function

in the Cartesian xy plane?

Answer 142

The graph is a smooth, continually decreasing curve that crosses the y axis at (0,1). The domain
is the set of all real numbers, and the range is the set of all positive real numbers. The curve is
entirely contained within the first and second quadrants. As we move to the right, the curve
approaches the x axis but never quite reaches that axis. As we move to the left, the graph rises
at an ever-increasing rate. In fact, the curve for the function

y=e’
has exactly the same shape as the curve for the function
y=¢

but is reversed left-to-right around the y axis, so the two graphs are horizontal mirror images
of each other.

Question 14-3

How can we informally describe the graphs of the functions
y=10°

and
y=10"

in the Cartesian xy plane?

Answer 14-3

The graphs of these functions are curves that closely resemble the graphs of the functions
y=é

and
y=e’

respectively. Both base-10 graphs cross the y axis at (0,1), just as the base-e graphs do. How-
ever, the contours differ. The base-10 curves are somewhat steeper than the base-¢ curves.
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Question 14-4

How can we visually and qualitatively compare the graphs of the four functions described in
Questions 14-1 through 14-3?

Answer 14-4

We can graph them all together on a generic rectangular-coordinate grid such as the one
shown in Fig. 20-7.

Question 14-9

How can we informally describe the graph of the function
y=Ilnx
in the Cartesian xy plane?

Answer 14-5

The graph is a smooth, continually increasing curve that crosses the x axis at the point (1,0). The
domain is the set of positive real numbers, and the range is the set of all real numbers. The
curve is entirely contained within the first and fourth quadrants. As we move to the left (in
the negative x direction) from the point (1,0), the curve “blows up negatively,” approaching
the y axis but never reaching it. As we move to the right from (1,0), the graph rises at an ever-
decreasing rate.

> +X

\4

-y

Figure 20-7 Tllustration for Question and Answer 14-4.
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Question 14-6
How can we verbally describe the graph of

y=In (1/x)
in the Cartesian xy plane?

Answer 14-6

The graph is a smooth, continually decreasing curve that crosses the y axis at (1,0). The domain
is the set of positive real numbers, and the range is the set of all real numbers. The curve is
entirely contained within the first and fourth quadrants. As we move to the left from the point
(1,0), the curve “blows up positively,” approaching the y axis but never reaching it. As we move
to the right from (1,0), the graph falls at an ever-decreasing rate. In fact, the curve representing

y=In (1/x)

has exactly the same shape as the curve for

y=Ilnx

but is reversed top-to-bottom with respect to the x axis, so the two graphs are vertical mirror
images of each other.

Question 14-7

How can we informally describe the graphs of the common-log functions
y =logx
and
y =log (1/x)

in the Cartesian xy plane?

Answer 14-7
The graphs of these functions closely resemble the graphs of the functions
y=Inx
and
y=In(1/x)

respectively. Both common-log graphs cross the x axis at (1,0), just as the natural-log graphs do.
However, the contours differ. The natural-log curves are somewhat steeper than the common-
log curves.
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Question 14-8

How can we visually and qualitatively compare the graphs of the four functions described in

Questions 14-5 through 14-7?

Answer 14-8

We can graph them all together on a generic rectangular-coordinate grid such as the one
shown in Fig. 20-8.

Question 14-9

How can we plot the graph of the sum of two functions or the difference between two functions?

Answer 14-9

There are two ways in which this can be done. First, we can graph the original functions
separately, and then add or subtract their values visually to infer the sum or difference graph.
Second, we can calculate several outputs for each function using inputs that we've selected to
get a good sampling. Then we can add or subtract these outputs arithmetically. Based on that
data, we can graph the sum or difference function.

Question 14-10

Texts don't always agree in the denotation of logarithmic functions. How can we avoid confu-
sion when we write our own papers?

y=log,, (1/x)

y=1In(1/x)

y
-y
Figure 20-8 Illustration for Question and Answer 14-8.
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Answer 14-10

We should always clarify the logarithmic base when we write “log” followed by anything. For
example, we should write “log,,” or “log,” instead of “log” (unless we cant portray the sub-
script within the constraints of a text-editing or Web site—building program). We don't need
to write a subscript when we write “In” to denote the natural logarithm, because “In” means
natural log or base-¢ log all the time.

Chapter 19
Special note

If you want to see graphical illustrations of the answers to the following 10 questions, feel free
to look back at Chap. 15. Try to envision or draw the graphs yourself before you look back!

Question 15-1

Consider a function fof a real-number variable 8 such that
f(6) =sin O+ cos 0

What are the period, the positive peak amplitude and the negative peak amplitude of /2 What
are the domain and range of f°?

Answer 15-1

The period of f'is 27. That’s the same as the period of the sine. It’s also the same as the period
of the cosine. The positive peak amplitude of fis 2"2. The negative peak amplitude of fis
—2"2, The domain of £ is the set of all real numbers. The range of f is the set of all real num-
bers /'(6) such that

_21/2 Sf(@) < 21/2

Question 192

Consider a function fof a real-number variable 0 such that
f(6) =sin O cos O

What are the period, the positive peak amplitude and the negative peak amplitude of /? What

are the domain and range of f?

Answer 152

The period of f is 7, which is equal to half the period of the sine, and is also half the period
of the cosine. The positive peak amplitude of /" is 1/2. The negative peak amplitude of f is
—1/2. The domain of fis the set of all real numbers. The range of fis the set of all real numbers
f(6) such that

—12<£(6) <1/2
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Question 15-3

Consider a function fof a real-number variable 8 such that
£(6) =sin® O+ cos® 0

What are the period, the positive peak amplitude and the negative peak amplitude of 2 What

are the domain and range of /2

Answer 15-3

In this case, the function fhas a constant value of 1. The period is not defined, because the
function’s output value never changes, and is defined for all inputs. The positive peak ampli-
tude of fis equal to 1. The negative peak amplitude of fis also equal to 1. The domain of fis
the set of all real numbers. The range of fis the set containing the single number 1.

Question 19-4

Consider a function fof a real-number variable 6 such that
f(6) =sec 8+ csc 6

What are the period, the positive peak amplitude and the negative peak amplitude of 2 What
are the domain and range of /7

Answer 15-4

The period of f is 27, which is the same as the period of the secant, and the same as the period

of the cosecant. The positive and negative peak amplitudes of fare not defined, because f°
blows up in both the positive and negative directions whenever 8 is an integer multiple of 77/2.

The domain of fis the set of all real numbers except the integer multiples of 77/2. The range

of fis the set of all real numbers.

Question 15-9

Consider a function fof a real-number variable 6 such that
f(6) =sec Bcsc O

What are the period, the positive peak amplitude and the negative peak amplitude of /2 What
are the domain and range of f°?

Answer 15-5

The period of fis , which is half the period of the secant, and half the period of the cose-
cant. The positive and negative peak amplitudes of fare undefined, because f blows up both
positively and negatively at all integer multiples of 77/2. The domain of f'is the set of all real
numbers except the integer multiples of 77 /2. The range is the set of all real numbers £ (6)
such that

f(0) =2 or f(O)<-2
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Question 19-6

Consider a function fof a real-number variable 8 such that
£(6) =sec® O+ csc* 6

What are the period, the positive peak amplitude and the negative peak amplitude of /2 What
are the domain and range of f?

Answer 15-6

The period of fis 7£/2, which is half the period of the secant squared, and half the period of the
cosecant squared. The positive peak amplitude of fis undefined, because /“blows up” positively
at all integer multiples of 77 /2. The negative peak amplitude of f'is equal to 4, which occurs
whenever 6 is an odd-integer multiple of 77 /4. The domain of fis the set of all real numbers
except the integer multiples of 77/2. The range is of fthe set of all real numbers f(6) such that

FO)=24

Question 157

Consider a function fof a real-number variable 0 such that
f(6) =tan 6+ cot

What are the period, the positive peak amplitude and the negative peak amplitude of /2 What
are the domain and range of f°?

Answer 157

The period of f'is 7, which is the same as that of the tangent, and the same as that of the cotangent.
The positive and negative peak amplitudes of fare both undefined, because / blows up positively
and negatively at all integer multiples of 77/2. The domain of fis the set of all real numbers except
the integer multiples of 77/2. The range of fis the set of all real numbers £(6) such that

f(O) =2 or f(O)<-2

Question 15-8

Consider a function fof a real-number variable 8 such that
f(6) =tan B cot O

What are the period, the positive peak amplitude and the negative peak amplitude of /2 What
are the domain and range of /°?

Answer 15-8

This particular function presents a strange situation. The graph of f'is a horizontal, straight
line with single-point gaps wherever 0 is an integer multiple of 7£/2. The period of fis 7 /2,
because the graph consists of infinitely many open line segments placed end to end, each of
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length 7/2. The positive peak amplitude of fis equal to 1. The negative peak amplitude of f°
is also equal to 1. The domain of f is the set of all real numbers except the integer multiples
of /2. The range is the set containing the single element 1.

Question 15-9

Consider a function fof a real-number variable 6 such that
f(6) = tan” 6+ cot’ 6

What are the period, the positive peak amplitude and the negative peak amplitude of 2 What

are the domain and range of /2

Answer 15-9
The period of /" is /2, which is half that of the tangent squared, and is also half that of the

cotangent squared. The positive peak amplitude of /'is undefined, because the function blows up
positively at all integer multiples of 77/2. The negative peak amplitude of f'is equal to 2, which
occurs whenever 0 is an odd-integer multiple of 77/4. The domain of fis the set of all real num-
bers except the integer multiples of 77/2. The range of f'is the set of real numbers £(6) such that

JACEY)

Question 15-10

Consider a function fof a real-number variable 6 such that
£(6) = (tan® 6)/(cot’ 6)

What are the period, the positive peak amplitude and the negative peak amplitude of /? What

are the domain and range of f?

Answer 15-10

The period of f is 7, which is the same as the period of the tangent squared, and is also the same
as the period of the cotangent squared. The positive peak amplitude of f"is undefined, because
the function blows up positively at all odd-integer multiples of 77/2. The negative peak ampli-
tude of f is undefined as well, although f(6) approaches 0 whenever 8 approaches any integer
multiple of 7z from either side. (We can't say that the negative peak amplitude is 0, because the
function never actually attains that value.) The domain of £ is the set of all real numbers except
the integer multiples of 77/2. The range of £ is the set of all positive real numbers.

Chapter 16
Question 16-1

What's a parameter? What’s a set of parametric equations?

Answer 16-1

A parameter is an independent variable on which other variables depend. A set of parametric
equations is a collection of equations, at least one of which has one or more variables that
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depend on the parameter. The parameter, which is often symbolized 7, plays the role of master
controller for the other variables in the system.

Question 162

Consider the pair of parametric equations
x=3t

and

y=-t

where 7 is the parameter on which both x and y depend. How can we sketch a Cartesian graph
of this system? How can we find an equivalent equation in terms of the variables x and y only,

based on the graph?
Answer 162

We can input various values of # to both equations, and plot the ordered pairs (x,y) that come
out of those equations. Following are some examples:

* When r=-2, we have x=3 X (-2) =—6 and y = -1 X (=2)
* When r=-1, we have x=3 x (-1) =—3 and y=-1 X (-1)
* When =0, wehavex=3Xx0=0and y=-1x0=0.

* Whenr=1,wehavex=3x1=3andy=-1x1=-1.

* Whenr=2,wehavex=3x2=6and y=—1x2=-2.

2.
1

When we plot the (x,y) ordered pairs based on this list as points on a Cartesian plane and then
“connect the dots,” we get a line through the origin with a slope of —1/3, as shown in Fig. 20-9.
In slope-intercept form, the line can be represented as

y=(-1/3)x
Question 16-3
Consider again the pair of parametric equations
x=3t
and
y=-t

How can we use algebra alone (without the help of a graph) to determine the equivalent equa-
tion in terms of x and y only?

Answer 16-3
We can take the first parametric equation

x =3z
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\4

Figure 20-9 Illustration for Question and Answer 16-2.

and multiply it through by —1/3 to get
(—1/3)x=(-1/3)(31) =—¢

Deleting the middle portion, we get
(=1/3)x=—t

The second parametric equation tells us that —# = y, so we can substitute directly in the above
equation to obtain

(=1/3)x=y
which is identical to the following slope-intercept equation:

y=(-1/3)x

Question 16-4

Consider the pair of parametric equations

0=3¢
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and
r=—t

where 7 is the parameter on which both 8 and r depend. How can we sketch a polar graph of
this system?

Answer 16-4

We can input various values of #, restricting ourselves to values such that we see only the part
of the graph corresponding to the first full counterclockwise rotation of the direction angle,
where 0 < < 2m:

e When t=0,wehave 6=3x0=0and r=-1x0=0.

e When t=7/4, we have 0=37/4 and r=-m /4 = —0.79.

e When t=m/2, we have 0=37/2 and r=-1/2 = -1.57.

e When t=27m/3, we have 0=3 X 27/3 =21 and r=-271/3 = —=2.09.

Figure 20-10 illustrates this graph, based on these four points and the intuitive knowledge
that the graph must be a spiral, starting at the origin and expanding as we rotate counterclock-
wise. The graph is a little tricky, because all of the radii are negative! Also, we should remember
that the concentric circles represent radial divisions on the polar coordinate grid; the straight
lines represent angular divisions.

Each radial /2
division ...

3m/2 ... Is /4 units

Figure 20-10 Illustration for Question and
Answer 16-4. In this coordinate
system, each radial division
represents 7T /4 units.
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Question 16-5

Consider again the pair of parametric equations

and

How can we use algebra to determine the equivalent equation in terms of 6 and 7 only?

Answer 16-9

The equation can be derived using the same algebraic process that we used in the Cartesian situ-
ation. We substitute 0 in place of x, and we substitute 7 in place of y. When we do that, we get

r=(-1/3)0

Question 16-6

What are the parametric equations for a circle centered at the origin in the Cartesian xy plane?

Answer 16-6
The parametric equations are

X=acost
and

y=asint

where 4 is the radius of the circle and # is the parameter.

Question 16-7

What are the parametric equations for a circle centered at the origin in the polar coordinate plane?

Answer 16-7

Let the polar direction angle be 0, and let the polar radius be 7. The parametric equations of a
circle having radius 4, and centered at the origin, are

0=1¢

and

where # is the parameter.
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Question 16-8

Why does only one of the equations in Answer 16-7 contain the parameter #? Shouldn’t both
equations contain it?

Answer 16-8

The parameter # has no effect in the second equation, because the polar radius 7 of a circle
centered at the origin is always the same, no matter how anything else varies.

Question 16-9
What are the parametric equations for an ellipse centered at the origin in the Cartesian xy plane?
Answer 16-9
The parametric equations are
X=acost
and
y=bsint

where 4 is the length of the horizontal (x-coordinate) semi-axis, & is the length of the vertical
(y-coordinate) semi-axis, and ¢ is the parameter.

Question 16-10

Why is the passage of time a common parameter in science and engineering?

Answer 16-10

In the physical world, many effects and phenomena depend on elapsed time. If we find time
acting as a mathematical variable, then that variable is almost always independent. We often
come across situations where two or more factors fluctuate with the passage of time. An
example is the variation of temperature, humidity, and barometric pressure versus time in a
specific location. In a situation of this sort, time can be considered as the parameter on which
the other three physical variables depend.

Chapter 17
Question 171

What information do we need to determine the equation of a plane in Cartesian xyz space?

Answer 1741

We can find an equation for a plane in Cartesian xyz space if we know the direction of at least
one vector that’s perpendicular to the plane, and if we know the coordinates of at least one
point in the plane. We don’t have to know the magnitude of the vector, but only its direction.
The point’s coordinates don’t have to tell us where the vector begins or ends; the point can be
anywhere in the plane.
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Question 172

Imagine a plane that passes through a point whose coordinates are (x;,)0,2) in Cartesian xyz space.
Also suppose that we've found a vector 4i + 6j + ck that's normal (perpendicular) to the plane.
Based on this information, how can we write down an equation that represents the plane?

Answer 172

We can write the plane’s equation in the standard form
alx—xp) + by — yo) + c(z—29) =0
We can also write the equation as
ax+by+cz+d=0
where d is a constant that works out to

d=—axy— by, — ¢z

Question 17-3

What's the general equation for a sphere centered at the origin and having radius 7 in Cartesian
xyz space?

Answer 17-3

The equation can be written in the standard form

Py =r

Question 17-4

What's the general equation for a sphere of radius 7 in Cartesian xyz space, centered at a point
whose coordinates are (xp,)9,2)?

Answer 17-4

The equation can be written in the standard form

(x=—x)’+ (=) +(z—z)=r

Question 17-9

Can a sphere have a negative radius in Cartesian xyz space?

Answer 17-5

Normally, we define a sphere’s radius as a positive real number. Nevertheless, spheres with
negative radii can exist in theory. If we encounter a sphere whose radius happens to be defined



426 Review Questions and Answers

as a negative real number, then that sphere has the same equation as it would if we defined
the radius as the absolute value of that number. For all real numbers 7, it’s always true that
= 7% so the following two equations:

(x—x0)+ (=) +(z—2)> =7
and

(x—x)+ (=) +(z—z) =|r|?
are equivalent, whether 7 is positive or negative.

Question 17-6

What's the general equation for a distorted sphere in Cartesian xyz space?

Answer 17-6

The equation can be written in the standard form
(x—xp) 1+ (y— )10 + (z— z)°Id =1

where (xy,7,2) are the coordinates of the center, « is the is the axial radius in the x direction,
b is the axial radius in the y direction, and ¢ is the axial radius in the z direction. Normally, all
three of the constants 4, b, and ¢ are positive reals.

Question 177

There are three distinct classifications of distorted sphere. What are they? How can we tell,
from the standard-form equation, which of these three types we have?

Answer 177

We can have an oblate sphere, an ellipsoid, or an oblate ellipsoid. We can tell which of these
three types a particular standard-form equation represents by comparing the values of the axial
radii 4, b, and ¢. We have an oblate sphere if and only if two of the positive real-number axial
radii are equal, and the third is smaller. In that case, one of the following is true:

a<b=c
b<a=c
c<a==b

We have an ellipsoid if and only if two of the positive real-number axial radii are equal, and the
third is larger. Then one of the following is true:

a>b=c
b>a=c
c>a=2b
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We have an oblate ellipsoid if and only if no two of the positive real-number axial radii are
equal. In that scenario, all of the following are true:

a#b
b*c
ax*c

Question 17-8

What's the general equation for a hyperboloid of one sheet in Cartesian xyz space?

Answer 17-8

The equation can be written in one of the following standard forms:

(x—x)’ 1@+ (y— )16 — (z— z)* =1
(x=x0)*lad* = (y = )1 6* + (z— z)*/ 7 = 1
—(x—x)’1d+ (y—p)* 16 + (z— z)* =1
where (x0,)0,20) are the coordinates of the center, the constants , b, and ¢ are positive real

numbers that define the object’s general shape, and the locations of the signs (plus and minus)
define the object’s orientation with respect to the coordinate axes.

Question 17-9

What's the general equation for a hyperboloid of two sheets in Cartesian xyz space?

Answer 17-9

The equation can be written in one of the following standard forms:

—(x—x0)*1d* + (y— )16 — (z— z)* /7 =1
(x—x)’ld>— (y— )16 — (z— z)*d =1
—(x—x0)*1d* — (y— )16 + (z— )’/ =1
where (xp,70,2)) are the coordinates of the center, the constants 4, 4, and ¢ are positive real

numbers that define the object’s general shape, and the locations of the signs (plus and minus)
define the object’s orientation with respect to the coordinate axes.

Question 17-10

What’s the general equation for an elliptic cone in Cartesian xyz space?

Answer 1710

The equation can be written in one of the following standard forms:
(x—x)’ld+ (y—p)°16° — (z— )/ =0

(x—x0)’ld* = (y = p)*16* + (z— )’/ =0
—(x—x)’ld+ (y— p)* 16 + (z— z)*/ =0
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where (xo,),2) are the coordinates of the point where the apexes of the two halves of the
double cone meet, the constants 4, b, and ¢ are positive real numbers that define the object’s
general shape, and the locations of the signs (plus and minus) define the object’s orientation
with respect to the coordinate axes. Don’t get confused by the similarity between these equa-
tions and those for hyperboloids of one sheet. The only difference is that the net values are all
equal to 1 for the hyperboloids, and all equal to 0 for the cones.

Chapter 18
Question 18-1

What's the general symmetric equation for a straight line in Cartesian xyz space?

Answer 18-1

Imagine that (x,50,29) are the coordinates of a specific point. Suppose that 4, 4, and ¢ are
nonzero real-number constants. The general symmetric equation of a straight line passing
through (xo,50,20) is

(x=x)a = (y=p)lb = (z2—z)lc

The constants 4, 4, and ¢ are called direction numbers. When considered all together as an
ordered pair (4,6,¢), these numbers define the direction or orientation of the line with respect
to the coordinate axes.

Question 182

What are the general parametric equations for a straight line in Cartesian xyz space?

Answer 182

Let (xo,)0,20) be the coordinates of a specific point, and suppose that @, 4, and ¢ are nonzero
real-number constants. The general parametric equations for a straight line passing through
(%0,)0:20) are

X=Xyt at
Y=Y+ bt
z=2zy+tct

where the parameter # can range over the entire set of real numbers. As with the symmetric
form, the constants @, &, and ¢ are direction numbers that tell us how the line is orientated
relative to the coordinate axes.

Question 18-3

What is meant by the expression “preferred direction numbers” when describing the orienta-
tion of a straight line in Cartesian xyz space?

Answer 18-3

For any line in Cartesian xyz space, there are infinitely many ordered triples that can define its
orientation with respect to the coordinate axes. For example, if a line has the direction numbers
(a,b,0), then we can multiply all three entries by a real number other than 0 or 1, and we'll get
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another valid ordered triple of direction numbers for that same line. For the sake of simplicity and
elegance, mathematicians usually reduce the direction numbers so that their only common divi-
sor is 1, and so that az most one of them is negative. Doing this produces a unique set of direction
numbers “in lowest terms,” and these are the preferred direction numbers for the line.

Question 18-4

What are the generalized parametric equations for a parabola in Cartesian xyz space where the
value of x is constant, and the curve’s axis is parallel to either the y axis or the z axis?

Answer 18-4

If x is constant and the axis of the parabola is parallel to the y axis, then the curve’s parametric
equations are

x=c
y:ﬂltz+ﬂzt+ﬂ3

zZ=t
where a;, 4,, and a; are real-number coefficients, ¢ is the real-number constant value to which
x is held, and 7 is a parameter that can range over the set of all real numbers. If x is constant
and the curve’s axis is parallel to the z axis, then the parametric equations are

x=c

y=t

Zzﬂltz+ﬂ2t+ﬂ3

In either case, the parabola lies in a plane parallel to the yz plane.

Question 18-

What are the generalized parametric equations for a parabola in Cartesian xyz space where the
value of y is constant, and the curve’s axis is parallel to either the x axis or the z axis?

Answer 18-

If y is constant and the axis of the parabola is parallel to the x axis, then the parametric equations are

X:ﬂ1t2+ﬂzt+ﬂ3
y=c
zZ=1t
where a;, 4,, and a; are real-number coefficients, ¢ is the real-number constant value to which

y is held, and 7 is a parameter that can range over the set of all real numbers. If y is constant
and the curve’s axis is parallel to the z axis, then the parametric equations are

X=1t
y=c
Z:ﬂltz+ﬂ2t+ﬂ3

In either case, the parabola lies in a plane parallel to the xz plane.
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Question 18-6

What are the generalized parametric equations for a parabola in Cartesian xyz space where the
value of z is constant, and the curve’s axis is parallel to either the x axis or the y axis?

Answer 18-6

If z is constant and the axis of the parabola is parallel to the x axis, then the parametric equa-
tions are

X:ﬂll'2+ﬂ2t+ﬂ3
Jy=t
Zz=cC

where 4,, 4,, and a3 are real-number coefficients, ¢ is the real-number constant value to which
z is held, and ¢ is a parameter that can range over the set of all real numbers. If z is constant
and the curve’s axis is parallel to the y axis, then the parametric equations are

xX=t
)/:ﬂltz+ﬂ2f+ﬂ3

z=c
In either case, the parabola lies in a plane parallel to the xy plane.

Question 18-7

What are the generalized parametric equations for a circle in Cartesian xyz space where the
value of x is constant so the circle lies in a plane parallel to the yz plane, and the center of the
circle lies on the x axis?

Answer 18-7

The parametric equations are

X=cC
_)/ZTCOSZ'
Z

=rsint

where 7 is the radius of the circle, ¢ is the real-number constant value to which x is held,
and # is a parameter that varies continuously over a real-number interval at least 277 units
wide.

Question 18-8

What are the generalized parametric equations for a circle in Cartesian xyz space where the
value of y is constant so the circle lies in a plane parallel to the xz plane, and the center of the
circle lies on the y axis?
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Answer 18-8

The parametric equations are

=7rcost

X
y=c
z=rsint

where 7 is the radius of the circle, ¢ is the real-number constant value to which y is held, and
tis a parameter that varies continuously over a real-number interval at least 277 units wide.

Question 18-9

What are the generalized parametric equations for a circle in Cartesian xyz space where the
value of z is constant so the circle lies in a plane parallel to the xy plane, and the center of the
circle lies on the z axis?

Answer 18-9

The parametric equations are
X=rcost
y=rsint
z=c

where 7 is the radius of the circle, ¢ is the real-number constant value to which z is held, and
t is a parameter that varies continuously over a real-number interval at least 277 units wide.

Question 18-10

Imagine a circle in Cartesian xyz space whose sets of parametric equations have one of the
forms described in Answer 18-7 through 18-9. Consider the variable that’s held constant.
Suppose that, instead of insisting that it always keep the same value, we allow that variable
to follow a constant multiple of the parameter 2. What sort of curve will we get under these
conditions?

Answer 18-10

We'll get a circular helix centered on the axis for whichever variable follows the constant
multiple of z

Chapter 19
Question 19-1

What's the difference between a sequence (also called a progression) and a series?

Answer 19-1

A sequence is a list of numbers or variables. Such a list can contain anywhere from two to
infinitely many elements. A series is the sum of the elements in a specific sequence.
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Question 192

What's an arithmetic sequence?

Answer 192

An arithmetic sequence is a list of numbers that starts at a certain value, and then increases
or decreases at a constant rate after that. Therefore, each element is larger or smaller than its
predecessor by a certain fixed amount.

Question 19-3

What'’s the general form of a finite arithmetic sequence of real numbers? What's the general
form of an infinite arithmetic sequence of real numbers?

Answer 19-3

The general form of a finite arithmetic sequence Sz, is
Sk = 50> (50 + ©), (50 + 2¢), (50 + 30), ..., (5o + 720)

where s, is a real number representing the first element, ¢ is a real number representing the
sequence constant, and 7 is a positive integer. In this case, the sequence has 7 + 1 elements.
The general form of an infinite arithmetic sequence S, is

Sinf: 50> (50 + C)) (50 + 2(")’ (50 + 36‘)’

where s is a real number representing the first element, and ¢ is a real number representing the
sequence constant. The ellipsis (...) tells us that the sequence continues without end.

Question 19-4

What are the partial sums of an infinite arithmetic sequence?

Answer 19-4

When we add up the elements of a numeric sequence, we get another list of numbers called
the sequence of partial sums. For S,,¢ described in Answer 19-3, the first five partial sums are

So
Sot+so+c¢
So+so+c+so+2c
sotso+c+sy+2c+ s+ 3¢
ot so+c+so+2c+ 5o+ 3c+ 5o+ 4e

which can be simplified to

o
250 +c
35() + 3¢
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45+ 6c
550+ 10¢

Question 19-9

What's a geometric sequence?

Answer 19-9

A geometric sequence is a list of numbers with a starting value that’s repeatedly multiplied by
a constant factor. If we take any element in the sequence (except the first one) and divide it by
its predecessor, we always get the same constant.

Question 19-6

What's the general form of a finite geometric sequence of real numbers? What's the general
form of an infinite geometric sequence of real numbers?

Answer 19-6

The general form of a finite geometric sequence T, is
4
Y}m = tO, tok, tokz, t()ks, t()k 3 eeey tokn

where 7, is a real number representing the first element, 4 is a real number representing the
sequence constant, and 7 is a positive integer. In this case, the sequence has 7 + 1 elements.
The general form of an infinite geometric sequence 7;,¢ is

Y—Enf: tO) tOka t()kza t()k%! t0k4)

where 7 is a real number representing the first element, and 4 is a real number representing
the sequence constant.

Question 19-7

What are the partial sums of an infinite geometric sequence?

Answer 19-7
For T, described in Answer 19-6, the first five partial sums are
)
to + tok

by + tok + 1,
to + tok + 1B + 1B
to + ok + 1B + 1k + rk
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which can be simplified to

)

t (1+4)
ty(1+k+#)
to(1+E+F+ 5
Lh(l+ b+ P+ P+ F

Question 19-8

How can summation notation be used to symbolize a finite series? How can summation nota-
tion be used to symbolize an infinite series?

Answer 19-8

Suppose we have a series with 7 terms
a + a,) + as + ..+ a,-> + a, 1 + a,

We can symbolize it by writing

n

24

i=1
and read it as, “The summation of the terms 4;, from 7 =1 to ».” If we have an infinite series

4+ i+ a+ ag+ as+ -

then we can symbolize it by writing

i=1

and read it as, “The summation of the terms 4;, from 7= 1 to infinity.”

Question 19-9

What is the limit of an infinite sequence, an infinite series, a relation, or a function? How can
q
we symbolize the fact that the limit of x°, as a real number x approaches infinity, is equal to 02
What does the term “convergent” mean in relation to an infinite sequence or series?
g q

Answer 19-9

Alimitis a value that an infinite sequence, an infinite series, a relation, or a function approaches,
but does not necessarily reach. We can symbolize the fact that the limit of 7, as a real-number
variable x approaches infinity, is equal to 0 by writing

Limx>=0

X—>00

An infinite sequence is convergent if and only if; as we move along the sequence from term to
term, the values of the terms approach a definable limit. An infinite series is convergent if and
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only if; as we move along the series from term to term, the values of the partial sums approach
a definable limit.

Question 19-10

What is the right-hand limit of a function at a point? What is the left-hand limit of a function
at a point?

Answer 19-10

The right-hand limit of a function at a point is the value that the function approaches as we
move toward the point from the positive direction. We denote a right-hand limit by writing a
small plus sign at the end of the subscript. For example, if we approach the point where x=0
along the x axis from the positive side, then the expression

LimIn x

x—0+
refers to the limit of the natural logarithm of x, as x approaches 0 from the right. (You might
immediately see that this particular limit is not defined.) The left-hand limit of a function
at a point is the value that the function approaches as we move toward the point from the
negative direction. We denote a left-hand limit by writing a small minus sign at the end of the
subscript. For example, if we approach the point where x = 3 along the x axis from the nega-
tive side, then the expression

Lim ¢

x—3—

refers to the limit of the natural exponential of x, as x approaches 3 from the left. (This par-
ticular limit happens to be defined, and is equal to ¢’.)
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This exam is designed to test your general knowledge, not to measure how fast you can perform
calculations. A good score is at least 80 correct answers. The answers are listed in App. C. This
test is long, so don’t try to take it in a single session. Feel free to draw diagrams, sketch graphs, or
use a calculator. But don’t look back at the text or refer to outside information sources.
1. Under what conditions is the dot product of two nonzero polar-plane vectors equal to 02
a) When the two vectors point in the same direction.
b) When the two vectors point in opposite directions.

(

(

(c) When the two vectors have equal magnitude.

(d) When the two vectors are mutually perpendicular.
(

e) Under more than one of the above conditions (a), (b), (c), and (d).

2. The cosecant function is singular when the input, in radians, is equal to
(a) 0.
(b) m/o.
(c) m/4.
(d) /3.
(e) m/2.

3. The conjugate of 8 —j6 is
a) undefined.
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. Consider two vectors a and b in the Cartesian xy plane, both of which originate at
(=1,4). Suppose that vector a terminates at (0,5) and vector b terminates at (0,3). If
we add these vectors and express the result in standard form, what do we get?

(@) a+b=(3"%5"%
(b) a+b=(-1,1)
(c) a+b=(-1,9)
(d) a+b=(2,0)

() a+b=1(0,2"?)

. Suppose that we have a complex number ¢ in polar form, such that
c=rcos B+ j(rsin 6)

where 7 is the real-number polar vector magnitude and 6 is the real-number polar
vector angle. Also suppose that 7 is an integer. DeMoivre’s theorem tells us that the
nth power of this complex number is equal to

(@) rncos (n6) + j[rnsin (n6)].

(b) (r+n) cos (n6) +j[(r+ n) sin (2 6)].

(c) 7" cos (n6) +j[r"sin (n6)].

(d) 77 cos (0) + j[rn sin (6)].

(e) 7" cos (6) +j[r"sin (6)].

. The point (x,y) = (0,-3) is

(a) in the first quadrant of the Cartesian plane.

(b) in the second quadrant of the Cartesian plane.

(c) in the third quadrant of the Cartesian plane.

(d) in the fourth quadrant of the Cartesian plane.

(e) not in any quadrant of the Cartesian plane.

. Under what conditions is the cross product of two nonzero polar-plane vectors equal
to the zero vector?

(@) When the two vectors point in the same direction.

(b) When the two vectors point in opposite directions.

(c) When the two vectors have equal magnitude.

(d) When the two vectors are mutually perpendicular.

(e) Under more than one of the above conditions (a), (b), (c), and (d).

. In polar coordinates, which, if any, of the following equations can represent the

dashed line graphed in Fig. FE-1?

(@ 6=0
(b) O=7r
(c) 6=2rm/3
d) 6=2m/3

(e) We can't say without knowing the size of each radial increment.
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9.

10.

11.

/2

3n/2

Figure FE-1 Illustration for Question 8.

The intersection of the sets of real and imaginary numbers is the set
@ {7}

(b) {1}.
© {~}
(d) {-1%
(e) {0}

Which, if any, of these geometric figures would be the graph of a true function of x if

drawn on the Cartesian xy plane, and the graph of a true function of 8 if drawn on the
polar coordinate plane?

{
{
{
{

a) A circle centered at the origin.

b) A straight line passing through the origin.

(
(
(c) A straight line parallel to the Cartesian x axis, but not passing through the origin.
(d) A straight line parallel to the Cartesian y axis, but not passing through the origin.
(e) None of the above

When we multiply a polar vector by a negative scalar, what restrictions, if any, should
we put on the direction angle of the product?

a) It should be nonnegative, but less than 7 /2.

b) It should be nonnegative, but less than 7.

(
(
(c) It should be nonnegative, but less than 2.
(d) It should be at least —7, but less than 7.

(

e) We don'’t have to take any precautions concerning the direction angle.
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If we quadruple the value of each coordinate of a point in Cartesian three-space, then
its distance from the origin increases by a factor of

(a) 2.

(b) 4.

(c) 8.

(d) 16.

(e) 64.

If we graph the unit circle in the Cartesian xy plane and then pick a point (xy,),) on
that circle such that x, # 0, then 1/x, is equal to

(a) the cosine of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (x,5).

(b) the Arccosine of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (x,,yp).

(c) the tangent of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (xo,5).

(d) the Arctangent of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (x,,yp).

(e) the secant of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (xo,%).

Suppose that we have a vector in Cartesian xyz space whose originating point is
(1,~1,3) and whose terminating point is (7,—4,—3). What is the ordered triple
representing the Cartesian standard form of this vector?

(a) We need more information to answer this question.
(b) (8,-5,0)

(c) (6,-3,-0)

(d) (7,4,-9)

(e) (4,—5/2,0)

What are the Cartesian xy plane coordinates of the point P plotted in Fig. FE-2?
Assume that each concentric-circle radial division represents 2 units.

@ (2"%,6)

(b) (2",-6)

(© (=2',6)

(d) (22,6

(e) None of the above

What is the range of values for x in the interval (—4,0]?
(@) “4<x<0
(b) 4<x<0
() 4<x<0
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/2

5

<

'( o

37r/2

Figure FE-2  Tllustration for Question 15.

(d) -4<x<0

(e) We can't say, because the notation (—4,0] is meaningless.

17. The direction of a standard-form vector in Cartesian xyz space can be uniquely defined by
a) the angle that the vector subtends with respect to the positive x axis.

b) the angle that the vector subtends with respect to the positive y axis.

(c) the angle that the vector subtends with respect to the positive z axis.
(d) the sum of the angles that the vector subtends with respect to the positive x, y, and z axes.

e) None of the above

18. In Cartesian xyz space, the point (2,3,4) is
) 3 units from the origin.

b) 9 units from the origin.

(a
(
(c) 24" units from the origin.
(d) 29" units from the origin.
(

e) 24 units from the origin.

19. The Cartesian negative of a vector in xyz space
a) points in the same direction as the original vector.

b) has the same magnitude as the original vector.

(
(
(c) has the same direction angles as the original vector.
(d) always has negative coordinates.

(

e) always has coordinates whose absolute values are negative.



20.

21.

22.

23.

24.

25.

Final Exam 441

The radian is an angle whose measure is precisely equivalent to
(a) /2 of a full circle.

(b) 2/m of a full circle.

(c) 4/mof a full circle.

(d) 1/(2m) of a full circle.

(e) 3m/2 of a full circle.

When we multiply a vector in two-space by a positive scalar 4,, the magnitude

(a) changes by a factor of 4,, while the direction angle stays the same.

(b) changes by a factor of k,, while the direction angle reverses.

(c) stays the same, but the direction angle changes by a factor of ..

(d) stays the same, but the direction angle becomes £, radians larger.

(e) and direction angle both change by a factor of 4,.

Suppose we see the ordered pair (57/2,-2) as the representation for a point in the polar

coordinate plane. If we want to keep the direction angle nonnegative but less than 2,
and if we want to keep the radius nonnegative, we should rewrite this ordered pair as

(@ (3m/2,2).
(b) (m/2,2).
() 2m/5,2).
(d) @r/5,1/2).
(e) (m/2,1/2).

In Cartesian xyz space, the distance between the points (—=1,-2,—3) and (3,2,1) is
(a) 6 units.

(b) 8 units.

(©) 9 units.

(d) 12 units.

(e) None of the above

In Cartesian two-space, a line segment connecting the points (=3,10) and (5,16) is
exactly

(a) 145" units long.

(b) 10 units long.

(c) 97" units long.

(d) 9 units long.

(e) 79" units long.

What are the polar coordinates of the point plotted in Fig. FE-3?
(@) (37m/4,50'")

(b) (57/4,~50"?)

(c) (7m/4,50"%)
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Figure FE-3 Illustration for Question 25.

(d) (57/2,-50"?)
(e) None of the above

26. Imagine a polar complex vector p, as follows:

p=(6.) = (Br/4,72"?)

What complex number does this vector represent?

27. What's the ordered pair representing the standard form of a vector in the Cartesian xy
plane whose originating point is (—2,-2) and whose ending point is (3,3)?

@ (5,5
(b) (=5,-5)
(© (1,1)
(d) (-1.-1)
(e) (1/2,1/2)
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How is the cross product b X a oriented in the situation of Fig. FE-4?

(a) It points in the direction bisecting the smaller angle between a and b.
(b) It points in the direction bisecting the larger angle between a and b.
(c) It points straight out of the page toward us.

(d) It points straight out of the page away from us.

(e) It has no orientation, because it’s a scalar, not a vector!

How is the dot product b @ a oriented in the situation of Fig. FE-4?

(a) It points in the direction bisecting the smaller angle between a and b.
(b) It points in the direction bisecting the larger angle between a and b.
(c) It points straight out of the page toward us.

(d) It points straight out of the page away from us.

(e) It has no orientation, because it’s a scalar, not a vector!

443

The midpoint coordinates of a line segment in Cartesian two-space can be found by

(a) adding the coordinates of the endpoints.

(b) multiplying the coordinates of the endpoints.

(c) multiplying the distances of the endpoints from the origin.
(d) averaging the coordinates of the endpoints.

(e) averaging the distances of the endpoints from the origin.

Smaller angle
between a and b

Larger angle 3n/2
between a and b

Figure FE-4 Illustration for Questions 28 and 29.
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31.

32.

33.

34.

35.

Suppose we're given two points P and Q in the Cartesian xy plane, such that their

y values are negatives of each other. Based on our knowledge of the midpoint formula
for Cartesian two-space, we can be absolutely certain that if we connect P and Q with
a line segment, the midpoint of that line segment lies

(a) on the x axis.

(b) at the origin.

(c) on the y axis.

(d) in either the first quadrant or the third quadrant.
(

e) in either the second quadrant or the fourth quadrant.

In Cartesian xyz space, the point midway between (—1,-2,-3) and (3,2,1) is
(a) (0,0,0).
(b) (1,0,-1).
(©) (2,2,2).
d) 2,-2,2).
(e) (=2,0,2).

How do we find the negative of a vector in polar coordinates?
(a) We negate the magnitude, but leave the direction angle unchanged.
(b) We negate the direction angle, but leave the magnitude unchanged.

(c) We add or subtract 7 to or from the direction angle, keeping the angle
nonnegative but less than 27, but leave the magnitude unchanged.

(d) We add or subtract 7 to or from the direction angle, keeping the angle
nonnegative but less than 27, and negate the magnitude.

(e) We don’t, because we can’t!

Fill in the blank to make the following sentence true: “A exists between the
set of all polar-plane vectors and the set of all Cartesian-plane vectors.”
(a) circular relation

(b) linear function

(c) quadratic function

(d) bijection

(e) trijection

In Fig. FE-5, what complex number does the longer vector represent?
(a) 5m/4+j14

(b) —5m/4—j14

(c) 70" /4 + 70" /4

(d) 70" /4 - ;70" 1 /4

(C) 81/2 ] 98 1/2
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/2

Each radial
division

o
Gase

3r/2

Figure FE-5 Illustration for Questions 35 and 36.

36. In Fig. FE-5, what is the magnitude of the cross product of the two vectors?
(@ 0
(b) 701/2
(c) 982
(d) 24
(e) 140

37. Imagine two generic standard-form vectors in xyz space, defined by ordered triples as

a= (x,,)2,)

and

b= (xbr}/b»zb)

Now consider the quantity

k=[0x+y>+2)0 +n + 2] cos O,
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38.

where 6, is the angle between a and b as determined in the plane containing them
both, rotating from a to b. What does # represent?

(a) The dot product of a and b.

(b) The product of the magnitudes of a and b.

(c) The ratio of the magnitudes of a and b.

(d) The Cartesian product of a and b.

(e) The magnitude of the cross product of a and b.

Is there anything wrong with the rendition of Cartesian xyz space in Fig. FE-6? If so,
how can things be made right?

(a) Nothing is wrong with Fig. FE-6.

(b) The axis polarities do not conform to the rules for Cartesian xyz space. To make

things right, the polarity of the x axis can be reversed, while leaving the polarities
of the other two axes as they are.

(c) The axis polarities do not conform to the rules for Cartesian xyz space. To make
things right, the polarity of the y axis can be reversed, while leaving the polarities
of the other two axes as they are.

(d) The axis polarities do not conform to the rules for Cartesian xyz space. To make
things right, the polarity of the z axis can be reversed, while leaving the polarities
of the other two axes as they are.

(e) Any single one of the above actions (b), (c), or (d) can be taken, and things will be
made right.

-y

Figure FE-6 Illustration for Question 38.



39.

40.

41.

Final Exam 447

The square of the sine of an angle plus the square of the cosine of the same angle is
always equal to

(a) 0.
(b) 1.
(c) ml/2.
d) =
(e) 2m.

Imagine two generic standard-form vectors in xyz space, defined by ordered triples as

a= (X))

and

b = (xi,),21)

Now consider the quantity

n= XX, Yl + 2.3

What does 7 represent?

(@) The dot product of a and b.

(b) The product of the magnitudes of a and b.

(c) The sum of the magnitudes of a and b.

(d) The arithmetic mean of a and b.

(e) The magnitude of the cross product of a and b.

Here’s a claim concerning coordinate conversions. Suppose we have a point (6,7,4) in
cylindrical coordinates. We can find the Cartesian x value of this point using the formula

x=rcos 0
The Cartesian y value is
y=rsin O
The Cartesian z value is
z=h

What, if anything, is wrong with this claim as stated? If anything is wrong with it,
how can it be made right?

(a) The xand y conversions are wrong. It should say x = 7 sin @ and y = r cos 6.

(b) The x and y conversions are wrong. It should say x =/ cos 6 and y = 4 sin 6.
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42.

43.

(c) The z conversion is wrong. It should say z= (»* + 5?)""*.

(d) The z conversion is wrong. It should say z= /4 tan 6.

(e) Nothing is wrong with the claim as stated.

If we graph the unit circle in the Cartesian xy plane and then pick a point (x,y,) on
that circle such that x, # 0, then y/x, is equal to

(a) the cosine of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (x,5).

(b) the Arccosine of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (xo,y).

(c) the tangent of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (x,%).

(d) the Arctangent of the counterclockwise angle between the positive x axis and a ra
g 8 P y
going out from the origin through (xo,y).

(e) the secant of the counterclockwise angle between the positive x axis and a ray
going out from the origin through (x,3).

Figure FE-7 illustrates a general cylindrical coordinate system. Note that the line
segment connecting the origin and point P’ is always perpendicular to the line
segment connecting points P’ and P. Based on this knowledge and the information in
the diagram, the straight-line distance & between the origin and point P is

(a) (r2+hH)"2
(b) rsin 6.

(c) rcos 6.

(d) 7 cos 6.

(

e) impossible to determine unless we have more information.

+Z

Reference
axis

+X

Reference
—y plane

—Z

Figure FE-7 Illustration for Question 43.
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The Arctangent function

(a) reverses the work of the tangent function.

(b) is the reciprocal of the tangent function.

(c) tells us the tangent of an angle measuring an integer multiple of 7 radians.

(d) tells us the tangent of an angle measuring an odd-integer multiple of 7£/2 radians.
(e) tells us the length of an arc having a measure of a given angle.

Which of the three variables portray the same geometric dimension in both spherical
and cylindrical coordinates?

(a) The radius.

(b) The vertical direction angle.

(c) The radius and the vertical direction angle.
(d) The horizontal direction angle.

(e) The horizontal and vertical direction angles.
In Cartesian coordinates, the point (=5,-12) is the same distance from the origin as
the point

(@ (0,17).

(b) (10,7).

(c) (0,-13).

d) (6,11).

(e) All of the above.

Imagine two generic standard-form vectors in xyz space, defined by ordered triples as

a=(x,,),2,)

and

b = (Xb,)/b ’Zb)

Now consider the quantity

g =[x+ + 27 (" + 3" + 251" sin 6,

where 6, is the smaller angle between a and b as determined in the plane containing
them both. What does g represent?

(@) The dot product of a and b.

(b) The product of the magnitudes of a and b.

(c) The ratio of the magnitudes of a and b.

(d) The Cartesian product of a and b.

(e) The magnitude of the cross product of a and b.
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48. In spherical coordinates, the graph of the equation »=0 is
(a) an infinitely tall vertical cylinder.

(b) an infinitely long vertical line.

(c) asphere.

(d) a point.

(e) undefined.

49. How can we add two polar-coordinate vectors?

(a) Convert them to standard form in Cartesian coordinates, add the Cartesian
vectors, and then convert the Cartesian sum back to polar form.

(b) Convert them to standard form in cylindrical coordinates, add the cylindrical
vectors, and then convert the cylindrical sum back to polar form.

(c) Convert them to standard form in spherical coordinates, add the spherical vectors,
and then convert the spherical sum back to polar form.

(d) Add the direction angles of the addend vectors to get the direction angle of the
sum vector, and add the magnitudes of the addend vectors to get the magnitude of
the sum vector.

(e) We cant! Addition of polar vectors is not defined.

50. In a system of spherical coordinates, the constant-radius increments appear as
a) concentric circles.
b) concentric cylinders.

(

(

(c) concentric spheres.

(d) straight lines passing through the origin.
(

e) parallel planes.

51. Consider the sum of the tangent and the cotangent. Let
f(6) =tan 6+ cot 0

What's the positive peak amplitude in the graph of /°?
a) 1

b) 2

o

d) 27

(e) It’s not defined.

(
(
(
(

52. Consider the following system of parametric equations representing a straight line in
Cartesian xyz space:
x=—4+7¢
y=3-5¢
z=2+0¢



53.

54.

55.

56.

57.

Final Exam 451

Which of the following is a valid expression of the line’s direction numbers?
(@) (-4,3,2)

(b) (3,-2.,8)

() (-11,8,—4)

(d) (11,-8,4)

() (=14,10,-12)

When we add, subtract, or multiply one function by another function of the same
variable, the domain of the resultant function is

(a) the intersection of the ranges of the two functions.

(b) the union of the ranges of the two functions.

(c) the intersection of the domains of the two functions.

(d) the union of the domains of the two functions.

(e) None of the above.

Consider the following equation in three variables x, y, and z:
(e+2)%4+ (x+ 329+ (x+ 4)*16=1

In Cartesian xyz-space, this equation represents

(a) an elliptic cone.

(b) an oblate ellipsoid.

(¢) acylinder.

(d) a hyperboloid.

(e) a paraboloid.

The solid black curve in Fig. FE-8 shows the graph of a relation f'in the Cartesian
xy plane. Which, if any, of the four dashed gray curves portrays the graph of /"2
(a) Curve A

(b) Curve B

(c) Curve C

(d) Curve D

(e) None of the above

Which, if any, of the curves in Fig. FE-8 represents a relation that’s zoz a true function
of either x or y?

(a) Curve A
(b) Curve B
(c) Curve C
(d) Curve D
(e) The solid black curve

In the Cartesian xy plane, the unit hyperbola intersects the line x = 3 at
(@) no points.

(b) one point.
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59.

Graph of
6 relation f

Graph of -6
relation f v

Curve A
Curve B

Curve C
Curve D

Figure FE-8 Illustration for Questions 55 and 56.

(c) two points.
(d) four points.

(e) infinitely many points.

Which of the following is an arithmetic sequence and also a geometric sequence?

) 4,4,4,4,4,4,.
(b)424242

(© 1,- 1,1,—1,...
(d)32 1 0 -1,-2,.

(e) 1,1/2,1/3, 1/4, 1/5 1/6, .

What does the following expression represent?

oo

DES

i=0
(a) A divergent harmonic series

(b) A divergent geometric series
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(c) A convergent harmonic series
(d) A convergent geometric series

(e) An undefined series

What's the value of the following limit?

Lji&}z In (—x)
(@) 1
(b) -1
(c) e
(d) —e

(e) It’s not defined.

Consider a relation whose graph in the Cartesian xy plane looks like Fig. FE-9. What
can we say about this relation?

(a) It has no inverse.

(b) It’s a function of x, but not y.

(c) It’s a function of y, but not x.

(d) It’s a function of both x and .

(e) It’s identical to its inverse.

All four sides (0, 4) Graph of
of the graph ...

relation

... are straight
—4 (0,-4) line segments

Figure FE-9 Illustration for Question 61.
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62.

63.

64.

65.

66.

We can uniquely identify a plane in Cartesian three-space if we know
a) the locations of two points in the plane.
b) the direction of a vector normal to the plane.

(
(
(c) the location of a point in the plane, and the direction of a vector normal to the plane.
(d) the direction of a vector in the plane.

(

e) the direction numbers of a line that passes through the plane and the coordinate origin.

Which of the following functions has an inverse that’s also a function when we allow x
to span the entire set of real numbers?

@@ fi)=x"+2
(b) fo(x) =3x*—1
(¢) fi(x) =sinx

(d) filx) =x*+10
(e) fi(x) =—tanx+3

Consider the sum of twice the secant and twice the cosecant. Let

f(6) =2sec O+ 2csc O

The range of f'is
a) the set of all real numbers.
b) the set of all positive real numbers.

(
(
(c) the set of all real numbers except those in the interval [-1,1].
(d) the set of all real numbers except those in the interval [-2,2].
(

e) the set of all real numbers except those in the interval [-7,7].

Figure FE-10 illustrates a parabola in the Cartesian xy plane, along with the generalized
standard equation for that type of curve. Based on the information shown, we know that
a) c¢> 0, because the curve has an absolute maximum.

b) & =0, because the curve’s axis is vertical.

(c) ¢< 0, because the x-value of the curve’s vertex point is negative.
(d) a <0, because the curve opens downward.

e) a=0, because the curve doesn’t turn any sharp corners.

Imagine a double right circular cone, through which a flat plane passes. Suppose that
the plane has a Cartesian coordinate xy coordinate grid drawn on it. Which of the
following equations cannot, under any circumstances, represent the intersection of the
plane and the cone?
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+y

Equation of curve
is
y=ax?+bx+c

+X

-y

Figure FE-10 Illustration for Question 65.

In Fig. FE-11, line L is a good portrayal of the graph of

(a) the product of the natural exponential function and its reciprocal.

(b) the sum of the natural exponential function and its reciprocal.

(c) the difference between the natural exponential function and its reciprocal.

(d) the natural exponential function divided by its reciprocal.

(e) the reciprocal of the natural exponential function divided by the natural
exponential function.

In Fig. FE-11, curve Cis a good portrayal of the graph of

(a) the product of the natural exponential function and its reciprocal.

(b) the sum of the natural exponential function and its reciprocal.

(c) the difference between the natural exponential function and its reciprocal.

(d) the natural exponential function divided by its reciprocal.

(e) the reciprocal of the natural exponential function divided by the natural
exponential function.

A relation that’s both one-to-one and onto is known as

(a) asurjection.

(b) a bijection.

(c) a monojection.

(d) an injection.

(e) asuperjection.

455
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Curve C
y
10T
Reciprocal 1 — Natural
of natural T exponential
exponential £ : function
function H
5__
Line L T
e D ——— x
2 —1 0 1 2

Figure FE-11 Illustration for Questions 67 and 68.

70. Which of the following pairs of graphs have identical asymptotes in the Cartesian xy
plane?

(a) The graphs of y =log, x and y = tan x
(b) The graphs of y =log), xand y=1n x
(c) The graphs of y=Inxand x> —y* =1
(d) The graphs of y=1n x and y = csc x

(e) The graphsof ¥* —y*=land ¥ +y° =1

71. Consider the relation in the Cartesian xy plane represented by
9(x—2)*+4(y+3)*=36

The graph of this relation intersects the y axis at

(a) no points.

(b) one point.

(c) two points.

(d) four points.
(e) infinitely many points.

72. Consider the function that we get when we multiply the square of the tangent by the
square of the cotangent. Let

f(6) =tan® O cot” 0
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What's the range of f?
@ {-m}

(b) {m}

(o -1}

(d) {1}

(e) {0}

Which of the following statements is true of all conic sections?

(a) For a circle, the eccentricity is 0; for an ellipse, the eccentricity is positive but
less than 1; for a parabola, the eccentricity is equal to 1; for a hyperbola, the
eccentricity is greater than 1.

(b) For a parabola, the eccentricity is 0; for an ellipse, the eccentricity is positive
but less than 1; for a circle, the eccentricity is equal to 1; for a hyperbola, the
eccentricity is greater than 1.

(c) For a hyperbola, the eccentricity is 0; for a parabola, the eccentricity is positive but
less than 1; for an ellipse, the eccentricity is equal to 1; for a circle, the eccentricity
is greater than 1.

(d) For an ellipse, the eccentricity is 0; for a parabola, the eccentricity is positive
but less than 1; for a circle, the eccentricity is equal to 1; for a hyperbola, the
eccentricity is greater than 1.

(e) For an ellipse, the eccentricity is 0; for a hyperbola, the eccentricity is positive
but less than 1; for a circle, the eccentricity is equal to 1; for a parabola, the
eccentricity is greater than 1.

Which of the following functions appears as a straight line in log-log coordinates, meaning
that both axes are graduated according to the common logarithm of the displacement?

(@ y=3

(b) y=Inx
(c) y=¢*

(d) y=log, x
() y=10

Suppose that # is a parameter on which two variables x and y depend. Which of the
following pairs of parametric equations can represent the straight line graphed in
Fig. FE-12?

(@ x=r—3 and y=r—4
(b) x=r+3 and y=¢+4
(o) x=3t/4 and y=4¢/3
(d) x=1r and y=3¢/4
() x=3¢ and y=4r

Consider the following pair of parametric equations:

x=3cost
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78.

Figure FE-12  Illustration for Question 75.

and

y=4sin¢t

In the Cartesian xy plane, the graph of this system appears as
a) an ellipse centered at the origin.
b) an ellipse passing through the origin.

(

(

(c) a hyperbola centered at the origin.

(d) a hyperbola passing through the origin.
(

e) a parabola whose focus is at the origin.

The peak-to-peak amplitude of the wave representing the function y = sin 7x is

If we divide a function by another function, the resultant function is undefined for
any value of the independent variable where

(a) the value of the numerator function is negative.

(b) the value of the denominator function is equal to 0.
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(c) the value of the denominator function is negative.
(d) the values of both the numerator and denominator function are negative.

(e) the values of the numerator and denominator function have opposite signs.

Consider the following system of parametric equations in Cartesian xyz space:

X=t

y=-1
z=-2t*—7¢

This system represents

(a) a straight line in a plane parallel to the xy plane.
(b) a hyperbola in a plane parallel to the xy plane.
(c) acircle in a plane parallel to the yz plane.

(d) a parabola in a plane parallel to the xz plane.

(e) an ellipse that intersects the z axis at two points.

What does the following expression portray?

S=-12+1/2-12+1/2-1/2+1/2-1/2 + -

(a) An infinite arithmetic series
(b) An infinite harmonic series
(c) An infinite geometric series
(d) An infinite hyperbolic series

(e) An infinite circular series
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Suppose that 7 is a parameter on which two variables x and y depend. Which of the

following pairs of parametric equations can represent the straight line graphed in
Fig. FE-13?

(@ x=r—5 and y=¢-3

(b) x=5¢ and y=3¢

() x=3¢t/5 and y=5¢/3

(d) x=r and y=3—3¢/5

() x=3¢ and y=>5¢

Consider an object in Cartesian xyz space whose parametric equations are

x=(cos 1)/
y=Tsin ¢
Z=T7t

The graph of this object is an elliptical
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\4

Figure FE-13  Illustration for Question 81.

(a) hyperboloid.
(b) helix.
(c) paraboloid.
(d) cylinder.
(e) cone.
83. In an infinite arithmetic sequence, we can find a constant that determines
a) the ratio of any term to its successor.
b) the difference between any term and its successor.

(
(
(c) the product of any term and its successor.
(d) the sum of all the terms.

(

e) the product of all the terms.

84. If the ordered pair (—1,8) represents a point that lies on the graph of a relation f'in
the Cartesian xy plane, then its counterpoint on the graph of the inverse relation £ is
represented by the ordered pair

(@) (1,-8).
(b) (-1,1/8).
(©) (8,-1).
(d) (1/8,-1).
(e) (-=1/8,1).
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In the Cartesian xy plane, a unit hyperbola can be represented by which one of the
following pairs of parametric equations, where # is the parameter?

(@) x=1¢* and y=—#

(b) x=cos ¢ and y=—sin ¢

(c) x=sin¢ and y=—sin ¢

(d) x=cos ¢ and y=—cos ¢

(e) x=1¢ and y==+(*—1)"

Which of the following equations might describe the hyperboloid of two sheets shown
in Fig. FE-14? Assume the center of the entire object is at the origin.

(@) —x*2+y*2-2%3=1

(b) x*12+y*12+2*/3=1

(©) x*2+y*12+2°/13=0

(d) x12+yl2+2/3=1

() x=2)(p+2)(z—-3)=1

If we move the entire object in Fig. FE-14 to place its center at the point (5,5,5) rather
than at the origin, its equation becomes which one of the following?

(@) x*2+y*2+213=5

(b) 5x*/2+5y*/12+52°13=0

ty

Figure FE-14 Illustration for Questions 86 and 87.
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88.

89.

90.

91.

() x/10+y/10+2/15=1
(d) 5x—10)(5y+10)(5z—15)=1
(e) —(x—5)2+(y—5)?%2—(z—5)/3=1

Consider the graph of the pair of parametric equations

0=rm/3

and

r=-3t

In the polar coordinate plane, the graph of this system is a
a) spiral that expands as we rotate clockwise.

b) circle passing through the origin.

(

(

(c) circle centered at the origin.

(d) straight line that doesn’t pass through the origin.
(

e) straight line passing through the origin.

The period of the graph representing the function y = 27 csc x is

In two-space, a relation can always be represented as a set of
a) lines.

b) circles.

d) closed curves.

(
(
(c) parabolas.
(
(

e) ordered pairs.

Consider the two functions

y=lnx
and

y=1In (1/x)
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When we graph the sum of these two functions in the Cartesian xy plane, we get
(a) an open-ended ray corresponding to the line y = x in the first quadrant.

(b) an open-ended ray corresponding to the positive y axis.

(c) an open-ended ray corresponding to the positive x axis.

(d) an open-ended ray corresponding to the line y = —x in the fourth quadrant.

(e) acircle centered at the origin and having a radius of e units.

Which of the following relations is 7oz a true function of x?

(@) y=2x+3
(b) x=2y+3
() y=x"+3
(d) x=y"+3
(e) y=x/2+3

Consider the following equation in three variables x, y, and z:
2x+y+7z=3

In Cartesian xyz space, this equation represents a
(a) straight line.

(b) circle.

(c) sphere.

(d) hyperboloid.

(e) plane.
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Consider again the equation in Question 93, and the geometric figure it represents in

Cartesian xyz space. At what coordinates, if any, does the figure cross the z axis?
(a) (0,0,-3/2)

(b) (0,0,1/3)

(c) (0,0,3/7)

(d) (0,0,1/2)

(e) The figure doesn't cross the z axis anywhere.

Which of the following types of graphs is not a conic section?
(a) A circular curve

(b) An elliptical curve

(c) A logarithmic curve

(d) A parabolic curve

(e) A hyperbolic curve

Consider the following equation in three variables x, y, and z:

x2+)/2+z2+2z+1=20
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In Cartesian xyz-space, this equation represents a
a) plane.

b) cone.

(

(

(o) cylinder.

(d) hyperboloid.
(e) sphere.

In two-space, a function is a relation that

(a) never maps any specific value of the independent variable to more than one value
of the dependent variable.

(b) never maps more than one value of the independent variable to any specific value
of the dependent variable.

(c) has a domain and range that both encompass the entire set of real numbers.
(d) has a domain that’s a proper subset of the range.

(e) has a range that’s a proper subset of the domain.

Consider the following three-way equation:

xI3=yl4=—z/2

In Cartesian xyz space, this equation represents a
a) straight line through the origin.

b) circle centered at the origin.

(

(

(c) circular cone centered at the origin.
(d) circle centered at the point (3,4,—2).
(

e) circular cone whose apex is at the point (3,4,-2).

Consider the following system of parametric equations:

X=7Tcost
y=-n
z=2msin ¢t

The graph of this system in Cartesian xyz space is
a) an ellipse that lies in a plane perpendicular to the y axis.

b) a parabola that lies in the xz plane.

(
(
(c) acircle that passes through all three axes.
(d) a hyperbola that’s centered on the y axis.
(

e) impossible to figure out based on the information given here.
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100. The period of the wave representing the function y = sin 7 x is equal to
(a) 2m.
(b) m/2.
(c) 1/2.
d) 2.

(e) impossible to determine without more information.
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Worked-0Qut Solutions to Exercises:

Chapter 1-9

These solutions do not necessarily represent the only ways the chapter-end problems can be
figured out. If you think you can solve a particular problem in a quicker or better way than
you see here, by all means go ahead! But always check your work to be sure your alternative
answer is correct.

Chapter 1

466

1. As shown in the graph of Fig. 1-10, the x axis is horizontal and the y axis is vertical.

Unless otherwise stated, the horizontal axis represents the independent variable in

Cartesian coordinates, and the vertical axis represents the dependent variable. The

independent variable is listed first in an ordered pair, and the dependent variable is
listed second. According to the following rules:

The point (0,0) has x=0and y=0

The point (—4,5) has x=—4 and y=5
The point (=5,-3) hasx=—-5and y=-3
The point (1,-6) hasx=1 and y=-6

. Let’s call our point P, so we have P= (—4,5). That means x, = —4 and y, = 5. When we

plug these values into the formula for the distance & of a point from the origin, we get
d: (xpz +yp2)1/2 — [(_4)2 + 52]1/2 — (16 + 25)1/2 — 411/2

That’s an irrational number. We can use a calculator to approximate its value to three
decimal places, getting

d=6.403

The “wavy” or “squiggly” equals sign means “is approximately equal to.”
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3. This time, let’s say that 2= (=5,-3), so x, = =5 and y, = —3. Plugging these values into
the formula for 4 gives us

d= (xpz +}/p2)1/2 =[(=5)% + (_3)2]1/2 =(25+ 9)1/2 = 3412

Once again, we have an irrational number. Using a calculator, we can approximate it to
three decimal places as

d=5.831

Note that we've rounded off the value here, because that’s what we were asked to do.
Remember that rounding is not the same thing as truncation, where we simply delete
all the digits after a certain place. Whenever we want to approximate a value to a
certain number of decimal places or significant figures, we should round it either up
or down as necessary, not truncate it, unless we're specifically told to truncate it. (If
you've forgotten the rules for rounding, this is a good time to review your pre-algebra

book!)

4. We can call P=(1,-6), so we have x, = 1 and y, = —6. Plugging these values into the
formula, we obtain

d: (xpz +_)’p2)1/2 — [12 + (_6)2]1/2 — (1 + 36)1/2 — 371/2
Our answer is irrational again. Approximating to three decimal places, we get
d=6.083

5. Let’s call the points P and Q, and assign them the ordered pairs

P=(-4,5)
and
Q=(-5-3)
The values of the coordinates are
x,=—4
¥,=
X, =5
Yg=—3

Plugging these numbers into the formula for the distance & between two points, we get

d=16,—x,) + (3= 31" = {[-4 = 5)*+ [5 - (3)}"”
— [12 + 82]1/2 — (1 + 64)1/2 — 651/2
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When we use a calculator to work this out and round 4 off to three decimal places,

we get
d=8.062
6. This time, let’s call the points
P=(-5,-3)
and
Q=(1,-6)
The individual coordinates are
x,==5
¥=-3
x,=1
Yy =—06

Plugging these numbers into the formula, we get
d=1lg= )"+ (=) TP = (-5~ 1 + 3 - (6P}
= [(=6)*+ 37" = (36 + 9)'* = 45"
Using a calculator and rounding to three decimal places, we get
d=6.708

7. Let’s call the points P and Q once again, and give them the ordered pairs

P=(1,-6)
and
Q=(-45)
The coordinates are
x,=1
y,=—6
x,=—4
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Plugging these numbers into the formula yields

d= [0, = x,)" + (5= y,)'1" ={[1 = D] + (-6 = 5)*}'"
=[3+ (111" = (9 +121)"*=130""

Using a calculator and rounding off to three decimal places, we get
d=11.402

. Let’s call the endpoints of our line segment L by the names P and Q, such that

P=(-4,5)
and
Q=(-5-3)
The coordinate values of these points are
x,=—4
»H=5
X, =5
Yg=-3

Using the formula to find the midpoint (x,,,,,), we obtain
g = [, + x,)12,(y, + y,)12] = {[=4 + (=5)1/2,[5 + (=3)]/2}
=(=9/2,2/2) = (=9/2,1)
In decimal form, the ordered pair is exactly

(%)) = (—4.5,1)

. Let’s call the endpoints of M by the names P and Q, such that

P=(-5,-3)
and
Q = (1’_6)
The coordinates are
X, ==5
»p=-3
x,=1

q

g =06

469
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Plugging these numbers into the midpoint formula, we get
(o) = [, + 2)12,(y, + 9,)/12] ={(=5 + 1)/2,[-3 + (-6)]/2}
= (-4/2,-9/2) = (-2,-9/2)
When we express this ordered pair in decimal form, we have exactly
(%)) = (=2,—4.5)
10. We can call the endpoints of N by the names P and Q, such that

P=(1,-6)
and
Q=(-45)
This time, we have
x,=1
y,=—6
x,=—4
Yg=5

When we put these values into the formula for the midpoint, we come up with

i) = [, + x)12,(9, + 3,)/2] = {[1 + (=4)]/2,(=6 + 5)/2}
= (-3/2,-1/2)

In decimal form, this is exactly

(%Ym) = (=1.5,-0.5)

Chapter 2

1. There are 27 radians in a full circle of 360°. If we assume that 7 = 3.14159, then a full
circle has a radian measure of

2w=2x3.14159 = 6.28318
To get the radian measure in 1°, we divide 27 by 360. That gives us
1°=6.28318/360 = 0.0175

rounded off to four decimal places.
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2. If we go 7/8 of the way around a circle counterclockwise, we rotate thorough an angle
of 7/8 X 2m, or 77 /4.

3. An angle of 120° is 1/3 of a circular rotation, because 120° is 1/3 of 360°. If we go 1/3
of the way around a circle counterclockwise, that’s an angle of 1/3 X 27, or 27/3.

4. Imagine that we travel over the earth in a great circle (the shortest path between two
points on the surface of a sphere, as measured on that surface) for 1000 /7 km. If the
earth’s circumference is 40,000 km and the planet is a perfectly smooth sphere, then
our distance traveled is

(1,000 /77 )/40,000 = 1000/(40,0007) = 1/(407)

of a complete circumnavigation. If we travel exactly once around the earth along a great
circle, we go through an angle of 27. The angular separation, in radians, of two points
located 1000 /7 km apart on the surface is therefore

[1/(40m)] X 2= (2m)/(40m) = 2/40 = 1/20

5. Figure A-1 shows the graphs of y = 2 sin x (solid curve) and y = sin x (dashed curve).
The graph of y = 2 sin x resembles the graph of y = sin x, but the amplitude is doubled.

6. Figure A-2 shows the graphs of y = sin 2x (solid curve) and y = sin x (dashed curve). The
graph of y = sin 2x resembles the graph of y = sin x, but the frequency is doubled.

y=sin x

Figure A-1 Illustration for the solution to Problem 5
in Chap. 2.



472 Worked-Out Solutions to Exercises: Chapter 1-9
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y=sin x
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Figure A-2  Illustration for the solution to Problem 6
in Chap. 2.

7. The secant is the reciprocal of the cosine. The cosine has a range of output values
covering the closed interval [-1,1]. That means

—1<cosx<1
for all real-number input values x. We can break this fact down into the two statements
—1<cosx<0
and
0<cosx<1
The reciprocals are the one-ended ranges
1/cos x < -1
and
1 <1/cos x
We can rewrite the above as

secx<-—1
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and
1 <secx

These two inequalities tell us that the secant function never attains any values in the
open interval (-1,1).

. The cosecant is the reciprocal of the sine. The sine has a range of output values covering
the closed interval [-1,1]. In other words, no matter what the real-number input x, we
always have

—1<sinx<1

We can split this into the statements

—1<sinx<0
and
0<sinx<1
Therefore,
1/sin x < —1
and
1< 1/sinx
We can rewrite the above as
cscx<—1
and
1<cscx

The output of the cosecant function, like the output of the secant, is never equal to
anything in the open interval (-1,1).

. We start with the Pythagorean theorem for the sine and cosine, which is
sin? @+ cos®> 0=1
When we subtract sin? 0 from either side, we get

cos? @=1—sin’ 0
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10.

We can divide through by the square of the cosine, as long as we don’t allow 6 to be an
odd-integer multiple of 7£/2. (If it is, then cos 8= 0, which means that cos’ 0=0 and
we end up dividing by 0.) Performing the division, we get

cos? O/cos* @=1/cos® O — sin* B/cos* O

The left-hand side of this equation is equal to 1 regardless of the value of 0, as
long as it’s not one of the forbidden values. The first term on the right-hand side is
the reciprocal of the cosine squared, which is the same as the secant squared. The
second term on the right-hand side is the ratio of the sine squared to the cosine
squared, which is same as the tangent squared. We can therefore simplify the above
equation to

1 =sec’ O—tan” O

which is, of course, the same as
sec’ @—tan” 0=1

Again, we start with the Pythagorean theorem for the sine and cosine
sin? B+ cos® =1

This derivation goes a lot like the solution to Problem 9. Let’s subtract cos” 6 from
either side to get

sin? =1 — cos* 8

We can divide through by the square of the sine, provided that we don't allow 6 to be
an integer multiple of 7. (If it is, then we end up dividing by 0.) This gives us

sin® 6/ sin® 6= 1/sin* 6 — cos” O/sin* O
The left-hand side of the above equation is always equal to 1, as long as 6 is not one
of the forbidden values. The first term on the right-hand side is the reciprocal of the
sine squared; that’s the same as the cosecant squared. The second term on the right-

hand side is the ratio of the cosine squared to the sine squared. That’s the same as the
cotangent squared. We can therefore simplify the above equation to

1=csc? @—cot* O
which can be rearranged to

csc? @—cot®* 0=1
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Chapter 3

1. Figure A-3 shows the graphs of the equations 8= /4 and 6= /2 in polar coordinates,
where 0 is the independent variable and 7 is the dependent variable. Neither of these are
functions of 6. In the first case, r can be any real number when 8= 7 /4. In the second
case, 7 can be any real number when 0= /2.

2. The graph of 6= 7/4 is a sloping line through the origin in the Cartesian xy plane.
The graph of 8= /2 is a vertical line that coincides with the y axis. Figure A-4 shows
both graphs. The line representing 6 = 7/4 portrays a function of x in the Cartesian xy
plane, because there is never more than one value of y for any value of x. But the line
representing 0= 77/2 does not portray a function of x in the Cartesian xy plane, because
when x = 0, y can be any real number.

Figure A-3  Illustration for the
solution to Problem 1

in Chap. 3.

Figure A-4 Illustration for the
solution to Problem 2

in Chap. 3.
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3. The equation 7= —a represents the same circle as the equation = 4.

4. Imagine a ray that points straight to the right along the reference axis labeled 0. As
the ray rotates counterclockwise so that 6 starts out at 0 and increases positively, the
corresponding radius 7 starts out at 0 and increases negatively. This tells us that the
constant « is negative. When the ray has turned through 1/2 rotation so that 8= 7, the
radius of the solid spiral reaches the value »=-27. (Don't get this confused with the
apparent radius of 7 = 47 on the solid spiral! The larger value is actually = -4, which
we get when the ray has rotated through a complete circle so that 8= 27.) We can solve
for a by substituting the number pair (6,7) = (m,—27) in the general spiral equation

r=a0
This gives us
—2rm=ar
which solves to 2 = —2. Therefore, the equation of the pair of spirals is
r=-20

5. Line L runs through the origin and up to the left at an angle halfway between the 7/2
axis and the 7 axis. That direction is represented by

0=3n/4

This is the equation of L. But we can also imagine that line Z runs down and to the
right at an angle corresponding to

6=7r/4

so this can also serve as the equation of L. Theoretically, we can add or subtract any
integer multiple of 7 from 377/4 and get a valid equation for L. By convention, we stick
to the range of angles 0 < 6 < 27, so the above two equations are preferred over any
others.

Circle Cis centered at the origin and has a radius of 3 units, as we can see by
inspecting the graph and remembering that each radial division equals 1 unit.
Therefore, C can be represented by

r=3
We can also consider the radius to be =3 units, so
r=-3

is an equally valid equation for C.
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6. Based on the solution to Problem 5, we can represent the intersection point at the
upper left as either

P=(3m/4,3)

or
P=(7r/4,-3)

We can represent the intersection point at the lower right as either
Q= (7r/4,3)

or
Q= (3r/4,-3)

The more intuitive representations are the coordinates with positive radii, which are
P=(31/4,3)

and
Q= (7r/4,3)

7. Before we can solve the system of equations for L and C as they are shown in Fig. 3-8,
we must be certain that we've completely identified the system. For Z, we have

0=3rm/4
or
0="7rl4
and for C, we have
r=3
or
r=-3

Solving this system is deceptively simple. It doesn’t require algebra at all! We merely
combine all the possible combinations of angles and radii we've listed above to get the
following four ordered pairs:

(8,r) = (37m/4,3)
(6,r) = (3m/4,-3)
(8,r) = (7Tm/4,3)
(6,r) = (7m/4,-3)
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Using plus-and-minus notation for the radii, we can reduce this list to two items:
(6,7) = (37 /4,£3)

and
(6,r) = (77 14,£3)

That’s redundant, but it’s valid. If we want to be more elegant, we can get rid of the
redundancy and list the solutions as

(6,r) = (3m/4,3)
and
(6,r) = (77 /4,3)

We can tell which ordered pair represents 2 and which one represents Q by looking
again at Fig. 3-8. It’s obvious that

P=(3m/4,3)
and
Q= (7r/4,3)

8. Lets take away the polar grid in Fig. 3-8 and put a Cartesian grid in its place, as shown
in Fig. A-5. Because we've been told that line L is equally distant from the vertical and

y

Intersection
point P

S 4 Circle C

-~
Intersection h
point Q

Figure A-5 Illustration for the solutions to Problems 8
through 10 in Chap. 3.
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horizontal axes, we know that its slope is —1. Because we've been told that line L passes
through the origin, we know that its y-intercept is 0. From algebra, we remember that
the slope-intercept form of the Cartesian equation for a straight line is

y=mx+b

where  is the slope and 4 is the y-intercept. Plugging in —1 for 7 and 0 for &, we find
that the Cartesian equation for line Z is

y=x

We've been told that circle C'is centered at the origin and has a radius of 3 units. From
algebra, we recall that the general form for the equation of a circle centered at the origin is

PAy=r

where 7 is the radius. When we plug in either 3 or —3 for , we find that the Cartesian
equation for circle C'is

¥+y=9

. Here’s the system of Cartesian equations that we've found, representing line Z and circle

C as shown in Figs. 3-8 and A-5:
y=-x
and
X+y=9
Let’s replace y in the second equation by —x, so we get
X+ (—x)?=9

Because (—x)* = x* for any real number x, we can rewrite the above equation as

=9
which simplifies to
2x*=9
and further to
x*=9/2

The solutions to this equation are

x=(9/2)""



480

Worked-Out Solutions to Exercises: Chapter 1-9

10.

or

x=—(9/2)"
To solve for y, we must plug in these values of x to either of the equations in our
original system. Let’s use y = —x. When we put the first of these solutions into that
equation, we obtain

y=—(9/2)'"?

which tells us that one of the points is (x,5) = [(9/2)"2,—(9/2)""*]. When we plug the
second solution for x into the equation y = —x, we get

y= _[_(9/2)1/2] — (9/2)1/2

so we know that the other point is (x,5) = [-(9/2)"%,(9/2)""*]. By inspecting Fig. A-5, we
can see that the points must be

P=1[-(9/2)"%,(9/2)""]
and
Q: [(9/2)1/2,_(9/2)1/2]

To get the Cartesian equivalents of the points we found when we solved Problems 6 and 7,
we use the conversion formulas

x=rcos 0
and

y=rsin 0
The polar form of point P is

(0,r) = (31 /4,3)
In this case, we have
x=3cos (37m/4) =3 x (=2"%)/2 =-(9/2)""
and
y=3sin 3mw/4) =3 x2"/2=(9/2)"

so the ordered pair is

(x9) = [=(972)"2,9/2)""]
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The polar form of point Q is
(6,r) = (7m/4,3)
In this case, we have
x=3cos (7m/4) =3 x 222 = (9/2)"?
and
y=3sin (7m/4) =3 x (-2"%)/2 =—(9/2)"?
so the ordered pair is
(vp) = [9/2)",~(9/2)""]
We have found that

P

[_(9/2) 1/2’(9/2) 1/2]
and

Q=1(9/2)"*~(9/2)""]

These results agree with what we got when we solved Problem 9. They are the Cartesian
coordinates of points 2 and Q as shown in Figs. 3-8 and A-5.

Chapter 4

1. Here are the two vectors we’ve been told to work with:
a=(-3,6)
and

b=(2,5)

In this situation, x, = =3, x, = 2, 5, = 6, and y, = 5. The Cartesian sum a+ b is
a+b=[(x+x),(5.+ )] =[(=3+2),06+5)]=(-1,11)
Reversing the order of the sum, we get

b+a={[(+x),(n+3)]=[2+(3),6+6)]=(111)
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The Cartesian difference a — b is
a—b=[(x,—x),(). — )] = [(-3-2),(6-5)] =(-5,1)
Reversing the order of the difference, we obtain

b—a=[(x—x),(n—p)]={2-(316-06)}
[(2 + 3)!(5 - 6)] = (5’_1)

2. Imagine that we have an arbitrary Cartesian vector
a = (x,,),)
Its Cartesian negative is
—a = (=x,)
By definition, the Cartesian sum vector a + (—a) is
a+ (-a) = {[x, + ()]0 + ()]} = [ = 2, (32 = 92)] = (0,0) = 0

Reversing the order of the sum, we get

—a+a=[(—x+x),(0+ )] = b+ ()LD + Gl
= [(xa - xa)’()’a __ya)] = (O’O) =0

3. As with the solutions to Problems 1 and 2, demonstrating this fact is a mere exercise in
arithmetic. Nevertheless, we can get some practice in mathematical rigor by carefully
working our way through each step in the process. According to the formula for the
Cartesian difference between two vectors from the chapter text, we have

a—b=[(x, —x),(3. — )]
and

b —a= [(xb - Xa),(}’b __ya)]
Now let’s look closely at the coordinates for these two vectors, and compare them. The
x coordinate of a — b is the real number x, — x, while the x coordinate of b — a is the
real number x;, — x,. From pre-algebra, we remember that when we reverse the order of

the difference between two numbers, we get the negative. In this case, it means

Xp ™ Xa = _(xa - xb)
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The same thing happens with the other elements. The y coordinate of a — b is y, — y,
and the y coordinate of b — a is y, — y,. The rules of pre-algebra tell us that

W=2a=—(a =)
Therefore, we know that
b —a=[-(x,— %)~ (5. — )]

By definition, that’s the Cartesian negative of a — b.

. We are given the two Cartesian vectors
a=(4,5)

and

b= (-2,-3)
Their Cartesian sum is

a+b={l4+ 2L+ ) =022)

The individual Cartesian negatives are

—a=(—4,-5)
and

-b=(2,3)

These vectors add up to

In this case, the sum of the Cartesian negatives is equal to the negative of the Cartesian
sum.

. Let’s begin by working out a formula for the negative of a vector sum. Suppose we’re
given two Cartesian vectors

a=(x,).)
and

b= (leyb)
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The sum vector a+ b is
a+b=[(x,+x),0.+wl
The negative of this sum vector is
—(a+b) =[x, +x),~(. + )]
Using the rules of pre-algebra, we can rewrite the right-hand side of this equation to get
—(@+b) =[x, + (=) L.l + )]
Now let’s go back to the original two vectors. We can state their Cartesian negatives as
—a= (=)
and
-b= (_xbs_}’b)
When we add these, we obtain
—a+ (=b) =[x, + (=) L.[n + ()]
That’s the same thing we got when we worked out —(a + b), so we know that

—(a+b)=-a+(-b)

6. We are given the two polar vectors
a=(m/2,4)
and
b= (7,3)

We want to find their polar sum. First, we convert the vectors to Cartesian form. When
we do that, we get

a={[4 cos (/2)],[4 sin (7/2)]} = [(4 X 0),(4 X 1)] = (0,4)
and
b = [(3 cos m),(3 sin M)] = {[(3 X (=1)],(3 X 0)]} = (-3,0)
When we add these, we obtain

a+b=1{[0+(-3)],(4+0)} = (-3,4)
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Let’s call this Cartesian sum vector ¢ = (x,,).), so we have

x.=-3
and

ye=4
The point defined by these coordinates lies in the second quadrant of the Cartesian
plane. We want to know the polar sum vector ¢ = (6,,7.), where 8, is the direction angle
of c and 7, is the magnitude of c. Using the applicable angle-conversion formula, we get

0. = 7+ Arctan [4/(—3)] = m+ Arctan (—4/3)
That’s an irrational number. If we want to be exact, we must leave it in this form; there’s
no way to make it simpler! A calculator set to work in radians can give us approximate
values to four decimal places of
Arctan (—4/3) = —-0.9273

and

T=3.1416

From this, we can calculate
0.~ 2.2143
Using the formula for the polar magnitude, we obtain
=24y =3+ 4" =9+ 16)?=25" =5

This value is exact. Putting the coordinates into an ordered pair, we derive our exact
final answer as

c=a+b=(0,r)={[m+ Arctan (-4/3)],5}
The approximate-angle version is
c=a+b=(2.2143,5)

Don’t get confused here. This ordered pair looks deceptively like the rendition of a
vector in the Cartesian plane, but it really defines the vector in the polar coordinate
plane. The first coordinate is in radians, and the second coordinate is in linear
units.
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7.

To find the polar negative of the vector we derived in the solution to Problem 6, we
reverse the direction but leave the magnitude the same. In this situation, 0 < 6, < 7, so
we should add 7 to the angle to reverse the direction. That gives us the exact answer as

—(a+b) ={[m+ 7w+ Arctan (—4/3)],5}
={[27+ Arctan (—4/3)],5}

If we say that 277 = 6.2832, then we can approximate the angle to four decimal places
and define the vector as

—(a+b) = (5.3559,5)

. The original two vectors are

a=(m/2,4)
and
b= (73)
To find the polar negatives, we reverse the directions but leave the magnitudes the
same. We want to keep the angles less than 27 without letting either of them become

negative. In this case, that means we should add 7 to 6,, but we should subtract 7 from
0,. When we make these changes, we get

—a=(37/2,4)

and
-b=1(0,3)

We must be careful to avoid confusion about what the coordinates of —b actually mean.
The first entry in the ordered pair is an angle, while the second entry is a radius.

. This time, we want to find the polar sum of the vectors

—a= (31/2,4)
and
—b =(0,3)

Converting them to Cartesian form, we get

—a={[4 cos 3m/2)],[4 sin Br/2)]} ={(4x0),[ 4 x (-1)]} = (0,—4)



Chapter 4 487
and
—b = [(3 cos 0),(3 sin 0)] = [(3 x 1),(3 X 0)] = (3,0)
Adding, we get the Cartesian vector sum
—a+ (=b) =[(0 + 3),(—4 + 0)] = (3,—4)
Let’s call this Cartesian sum vector d = (xy,54). We have
xg=3
and
yg=—4
This is in the fourth quadrant of the Cartesian plane. We seck the polar sum vector
d = (6,,74), where 0, is the direction angle of d and 7, is the magnitude of d. Using the
applicable angle-conversion formula, we get
0, =27+ Arctan (—4/3)
The formula for the polar magnitude tells us that
= +y ) =3+ (—4)]" = (9 + 16)*=25" =5
This gives us the ordered pair
d=—-a+ (-b) = (647) ={[27+ Arctan (—4/3)],5}

This is precisely the same vector that we got when we solved Problem 7. Now we know
that in the specific polar-vector case where

a=(m/2,4)
and
b= (m3)
the following formula holds:

—(a+b)=-a+ (-b)

Of course, demonstrating this single example doesn’t prove the general case. We know
it works in general for Cartesian vectors. If youre ambitious and would like some
extra credit, go ahead and rigorously prove that polar vector negation always distributes
through polar vector addition. You're on your own!
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10. Here are the original two polar vectors, stated once again for reference:
a=(m/2,4)
and
b= (m3)

We want to find their polar differences both ways. Before we do that, we must know the
Cartesian forms of the vectors. We worked them out in the solution to Problem 6, getting

a=(0,4)
and
b= (-3,0)
When we subtract b from a, we get
a=b={[0-(-3)],(4-0)}=(34)

Let’s call this Cartesian difference vector p = (x,,,). The individual coordinates are

x=3
and

=4
This puts us in the first quadrant of the Cartesian plane. We seek the polar sum vector
p = (6,,7,), where 6, is the direction angle of p and 7, is the magnitude of p. Using the
appropriate Cartesian-to-polar angle-conversion formula, we come up with

6, = Arctan (4/3)

A calculator set to work in radians can give us an approximate value to four decimal
places of

Arctan (4/3) = 0.9273
Using the formula for the polar magnitude, we obtain the exact result
7, = (xp2 +,)’p2)1/2 — (32 + 42)1/2 — (9 + 16)1/2 — 251/2 =5

Putting the angle and magnitude coordinates into an ordered pair, we derive our exact
answer as

p=a—b=(6,7) = [Arctan (4/3),5]
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The approximate-angle version is
p=a—-b=(0.9273,5)

We must remember that the first coordinate is in radians, and the second is in linear
units. Now let’s go the other way. When we subtract a from b, we get

b—a=[(-3-0),00-4)]=(-3-4)

Let’s call this Cartesian difference vector q = (x,,),). We have

and

Yo =4

This time, we're in the third quadrant. We seck the polar sum vector q = (6,,7,), where
0, is the direction angle of q and r, is the magnitude of q. Converting the angle to polar
form using the applicable formula, we get

0, = 7+ Arctan [-4/(-=3)] = 7w+ Arctan (4/3)
As before, a calculator tells us that
Arctan (4/3) = 0.9273
Using the formula for the polar magnitude yields the exact value
7e= (e + )" = (-3 + (-4)H)]"* = (9 + 16)*=25" =5
Our exact final answer is therefore
q=b—a=(6,r) = {[m+ Arctan (4/3)],5}
If we let = 3.1416, the approximate-angle version is

q=b—a=(4.0689,5)

The first coordinate is in radians, and the second is in linear units.

Chapter 5
1. We've been given the Cartesian vectors
a=(5-5)
and

b=(-5,5)
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When we multiply a on the left by 4, we get
da=4x(5-5)=1{(4x5), [4 % (=5)]} = (20,-20)
When we multiply b on the left by —4, we get
—4b =—4 %X (=5,5) = {[-4 X (-5)],(-4 x 5)} = (20,-20)
2. The Cartesian vector a has the coordinates x, = 5 and y, = =5, so it terminates in the

fourth quadrant. The direction angle for the polar form of a can be found using the
conversion formula for a vector in the fourth quadrant, giving us

0, =21+ Arctan (-5/5) =27+ Arctan (1) =27+ (-1 /4)
=7n/4

The magnitude of a is found by the distance formula

7= 52 ( 5) 1/2 (25+25)1/2=501/2

Therefore, the polar version of a is
a= (7m/4,50"?)

The Cartesian version of b has x, = =5 and y, = 5. It terminates in the second quadrant.
Using the conversion formula for the direction angle of a vector in that quadrant, we get

6, = w+ Arctan [5/(=5)] = @+ Arctan (1) = &+ (-7 /4)
=3r/4

The magnitude of b is
= [(=5)* + 572 = (25 + 25)"* = 50"
Therefore, the polar version of b is
= (371/4,50"?)
When we multiply a on the left by 4, we get
4da=4x (7m/4,50") = (7m/4,800"%)
When we multiply b on the left by —4, we get

—4b = —4 x (37/4,50"%) = (37 /4,~800"%) = (77 /4,800")
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In the last step in the equation for —4b, we must take the absolute value of the negative
magnitude coordinate, because we can't allow a vector to have negative magnitude. We
do this by reversing the direction, in this case by adding 7 to the angle.

. We want to prove that positive-scalar multiplication is right-hand distributive over
vector subtraction in the Cartesian xy plane. Let’s start with

(a—b)k,

where a = (x,,7,), b = (x,4), and 4, is a positive real number. Expanding the vectors into
their ordered pairs in our initial expression, we get

(@—b)k, = [(x, —x),(ya — )] 4s

The definition of right-hand scalar multiplication tells us that we can morph this
equation to obtain

(@—b)k, = {[(x, — x) k], [(3. — )] A}

The right-hand distributive law for real numbers allows us to transform the equation
further, getting

(a—Db)k, = [(x.k. - xb/e+)>()/ak+ _ybk+)]
Let’s put this equation aside for moment. We'll come back to it!

Now, instead of the product of the vector difference and the constant, let’s start with
the difference between the products

ak, — bk,
We can expand the individual vectors into ordered pairs to get
ak, — bk, = (g0 b — G b,
By the definition of right-hand scalar multiplication, we have
ak, — bk, = (vbogik) — Cikoihs)

When we add the elements of the ordered pairs individually to get a new ordered pair,
we obtain

ak, — bk, = [(x.k, — xbk+)’(_yak+ _)’b/ﬁ)]

The right-hand side of this equation is the same as the right-hand side of the equation
we put aside a minute ago. That equation, once again, is

(a—Db)k, = [(x.k, — xb/?+)>()/a/€+ _ybk+)]
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Taken together, the above two equations show us that
(a—Db)k, =ak, — bk,
4. We've been given the Cartesian vectors
a=(4,4)
and
b=(-7,7)

We can define the coordinate values as x, = 4, x, = =7, y, = 4, and y;, = 7. The Cartesian
dot product of a and b, in that order, is therefore

a*b=xx+yp=4x7)+4x7=-28+28=0
The Cartesian dot product of b and a, in that order, is
bea=uxx+y).=-7X4+7x4=-28+28=0

5. The Cartesian vector a has the coordinates x, = 4 and y, = 4, so it terminates in the first
quadrant. The direction angle for the polar form of a is therefore

0, = Arctan (4/4) = Arctan 1 =1 /4
The magnitude of a is
ro=[42+ 47" = (16 + 16)"? = 32!
so the polar form of a is
a=(r/4,32"?)
The Cartesian vector b has x, = —7 and y, = 7. It terminates in the second quadrant.
Using the conversion formula for the direction angle of a vector in the second

quadrant, we get

6, = w+ Arctan [7/(=7)] = w+ Arctan (1) = &+ (-7 /4)
=3r/4

The magnitude of b is
"= [(_7)2 + 72]1/2 — (49 + 49)1/2 — 981/2
Therefore, the polar version of b is

b= (37/4,98")
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Let’s assign the coordinate values 6, = /4, 6, = 37/4, r,= 32", and r, = 98" The
Cartesian polar product of a and b, in that order, is

a*b=rncos(8,—0)=32"2x98"2x cos 3m/4 — /4)
=3,136"2 cos (m/2) =56 x0=0

The Cartesian dot product of b and a, in that order, is

bea=nr cos (0,— 6,) =98"?x 322 X cos (/4 — 37 /4)
=3,136" cos (-/2) =56xX0=0

. Consider two standard-form vectors a and b in Cartesian coordinates, defined by the
ordered pairs

a= (x,,).)
and
b= (Xba_)’b)
By definition, the Cartesian dot product of a and b, in that order, is
a*b=uxx,+ym

The commutative law for real-number multiplication allows us to reverse the order of
both terms in the sum on the right-hand side of this equation, getting

a*b=uxx+p.

By definition, the right-hand side of the above equation is the Cartesian dot product of
b and a, in that order. Therefore

a*b=bea

for any two standard-form Cartesian-plane vectors a and b.

. Suppose we're given two vectors a and b in the polar plane, defined by
a=(6,n)

and
b=(6,n)

The polar dot product of a and b, in that order, is

a*b=rn cos (6,—6)



494 Worked-Out Solutions to Exercises: Chapter 1-9

The commutative law for real-number multiplication allows us to reverse the order of
the multiplication on the right-hand side of this equation to obtain

a*b=nr cos (6,—6)
Now let’s look at the difference between the direction angles. From pre-algebra, we recall

that when we reverse the order of a difference, we get the negative of that difference.
Using this rule, we can modify the angular difference in the above equation to get

a*b=nr cos [-(0,— 6,)]

Basic trigonometry tells us that the cosine of the negative of an angle is the same as the
cosine of the angle itself. Therefore

a*b=7#7cos(0,—6,)

By definition, the right-hand side of this equation is the polar dot product of b and a,
in that order, telling us that

a*b=bea

for any two vectors a and b in the polar plane.

8. Let’s do the Cartesian proof first. We have a positive scalar 4, along with two standard-
form vectors a and b in the xy plane. Suppose that the coordinates are

a= (%0,
and
b = ()
When we multiply these vectors individually on the left by 4, we get
kia = (kix,k.y,)

and

k+b = (kﬂb:kﬁ/b)
The Cartesian dot product of these vectors is

kiae kb= (kxkox, + kykg) = (kixx, + kyy)
=k (xx, + y ) = k(@ e b)

Now let’s work through the polar case. Suppose that the coordinates of a and b are

a=(06,7)
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and

b=(6,7)

When we multiply the individual vectors on the left by the positive scalar 4, and expand
the results into ordered pairs, we get

k.a=(0,k.r,)
and

kb = (6,k.n)

Does this step confuse you? If so, remember that because the scalar 4, is positive,
multiplying any polar vector by £, doesnt change the vector direction. It only affects
the magnitude, making it 4, times as large. When we take the polar dot product of
these new vectors, we get

kaekb=/Fkrkncos(6,—0)
=k’ cos (6, — 6) = k*(a*b)

9. We want to find the cross product a X b of the polar vectors

a=(m/3,4)

and
b=(3r/2,1)

The coordinate values are 6, = /3, 6, =37m/2, r,=4, and n, = 1. Before we begin our
calculations, we should note that

6,—06,=3n2—-n/3=71/6

That’s larger than 7, so a X b points straight away from us as we look down on the polar
plane. To find the magnitude 7,4, we use the formula for cases where 7 < 6, — 6, < 2.
That gives us

Tay = 7t sin 2w+ 0, — 6,) =4 X 1 X sin (57/6)

=4x1x1/2=2

so we know that the magnitude of a X b is 2.

10. We've been told to find the cross product of the polar vectors

a=(m8)
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and
b=(7r/6,5)

The coordinate values are 0, = 7, 6, = 77 /6, r, = 8, and », = 5. In this situation, we
have

6,—0,=7nl6—-n=nm/6
That’s smaller than 7, so the cross product vector points directly toward us as we look
down on the polar plane and imagine going counterclockwise from a to b. To find the

magnitude 7,4, we use the formula for situations in which 0 < 6, — 6, < 7, getting

T = TaTh sin (6, — 6,) = 8 X 5 X sin (7/6)
=8x5x%x1/2=20

so we know that the magnitude of a X b is 20.

Chapter 6

1. We know that j* = —1 by definition, and we derived the fact that (—j)* = —1 in the

chapter text. We might think that
=i

Let’s suppose, for the sake of argument, that the above equation is true. Multiplying
each side by j gives us

TXj=jX]
which can be rewritten as
Ixjxj=jx;
Because j X j = j* = —1 by definition, we can rewrite the above as
-1x(-1)=-1
and finally simplify it to
1=-1

This statement is obviously false. By reductio ad absurdum, we must conclude that our
original assumption, —j = j, is also false. Therefore

J#J
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2. The quantity ;' can also be written as 1/;. It’s an unknown, so let’s call it x and then set
up the simple equation

lj=x
We can multiply through by ; to get
Jj=jx

Because any nonzero quantity divided by itself is equal to 1, we can simplify to

1 =/x
Multiplying through by —; gives us
=i
which can be rewritten as
=

We know that ]-z =—1, so the above equation becomes
—j==(-D)x
which simplifies to
—j=x

Our unknown quantity is equal to —j. We have just demonstrated that

Jt=

The multiplicative inverse (reciprocal) of j is the same as its additive inverse (negative).
No real number behaves like that!

3. First, let’s add =3 + 74 and 1 + /5. When we add the real parts, we get
3+1=-2
When we add the imaginary parts, we get
JA+75=79
The sum can be expressed directly as

(3+/4)+1+55=-2+/9
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The parentheses are superfluous, but they help to separate the individual complex-
number addends on the left-hand side of the equation. Now let’s subtract 1 + /5 from
-3 + j4. First, we multiply (1 +75) by —1, getting

—“1x(1+75)=-1-/5
Now we add =3 + j4 to —1 — j5. When we sum the real parts, we get
3+ (-1)=—4
Adding the imaginary parts gives us
JA+ (5=
The difference can be expressed directly as
(=3+74) - (1+5)=—4~j

4. We want to find a general formula for the ratio of a complex number to its conjugate.
We can do this by evaluating

(a+7b)(a—jb)

where @ and & are real numbers, and neither « nor 4 is equal to 0. The general ratio
formula is

(a+7b)l(c+jd) = [(ac+ bd)I(& + dD)] + ] [(bc — ad) (& + d7)]

In this situation, we can let ¢ = 2 and 4 = —4. Then we can substitute in the ratio
formula to get
(a+jb)/(a—jb) = {laa + b(=b)l/[a* + (=b)*1} + j {[ba — a(-b))/[4* + (—6)*]}
=[(@ - (@ + b)) + ] [2ab) (& + b))
The curly braces in the second part, and the square brackets in the third part, are

technically unnecessary. But they help to visually set apart the real and imaginary
components of the complex quantities.

5. First, let’s work out the square of 2 + jb. When we go through the arithmetic, we obtain

(a+7b)* = (a+jb)(a+jb)
=4+ jab + jba+ j* b
=d+j2ab- b
== b") +j2ab
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Note that in the expression j2ab, the numeral 2 is not an exponent! Now let’s find the
square of the complex number z — jb. Paying careful attention to the signs, we get

(a—jb)* = (a—jb)(a—jb)
=+ a(—jb) + (—jb)a + (—jb)*
=a’ —jab— jba+ (—)*0
=a—j2ab- b
= (" —b") —j2ab
The two final products we've derived are
(@ — b)) +j2ab
and
(@ —b%) —j2ab
which, by definition, are complex conjugates.

. First, let’s find the product of the polar complex vectors (7/4,2"?) and (37/4,2"%). We
must add the direction angles and multiply the magnitudes. The sum of the angles is

nld+3nld=r
The product of the magnitudes is
21/2 X 21/2 — 2

Therefore, the product vector is (1,2). The angle 0 is equal to 7, and the magnitude 7 is
equal to 2. To convert this polar vector (6,7) = (7,2) to the complex-number form
a+ jb where 2 and b are real-number coefficients, we use the formula for that purpose,
getting
a+jb=rcos O+ j(rsin 6) =2 cos mw+ j(2 sin )
=2xX(-1)+jx2x0=-2+,0=-2
The product of the two original polar complex vectors (7/4,2""%) and (37/4,2") is a

vector representing the pure real number —2.

. Let’s convert the polar vector (6,7) = (7/4,2"%) to a complex number in the traditional
“real-plus-imaginary” form. The conversion formula tells us that

rcos B+ j(rsin 6) = 2'"* cos (1/4) + j[2"7 sin (m/4)]
=222 +j2"2x2"2) =1+

Repeating the process with the polar vector (6,7) = (37/4,2'"%), we get

rcos O+ j(rsin 6) = 2'"* cos (37 /4) + j[2"* sin (37/4)]
=22 % (=2"2/2) +j(2"* x 2'%[2) = -1+
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When we multiply these two complex numbers as binomials, we get
A+)E1+)=1xX (D) +1Xj+7X (1) +5x;
=—1+j+ (=) + (1) =-2

This agrees with the solution to Problem 6. It should! We've been multiplying the same
two vectors, representing the same two complex numbers, all along. If we hadn’t gotten
identical results using the polar method and the Cartesian method, we'd have made a
mistake somewhere.

8. Let’s convert the polar vector (6,7) = (27/3,1) to the “real-plus-imaginary” complex-
number form. The conversion formula tells us that

rcos O+ j(rsin 0) = cos (27/3) + j sin (27/3)]
=-1/2+5(3"/2)

If you don’t remember why sin (277/3) = 3'%/2, you might want to verify it for extra
credit. (Here’s a hint: Use the Pythagorean theorem to solve for the height of a right
triangle whose base is 1/2 unit wide and whose hypotenuse is 1 unit long.) Now let’s
repeat the process with the polar vector (6,7) = (47/3,1). The conversion formula gives us

rcos 0+ j(rsin 0) = cos (47/3) + j sin (47/3)]
=-1/2+j(-3"*/2)
=-1/2 - j(3"/2)

9. Figure A-6 is a graph of the three cube roots of 1 as polar complex vectors. Each radial
division represents 1/5 unit.

/2

3n/2

Figure A-6  Illustration for the solution to
Problem 9 in Chap. 6. Each radial

division represents 1/5 unit.
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y

Complex number
-1/2 + j(3"%/2)

\ Pure real
number

Complex number ~~~-_

12 _j(31/2/2) Unit circle

Figure A-7 Illustration for the solution to Problem 10
in Chap. 6. Each axis division represents
1/5 unit.

10. Figure A-7 is a graph of three cube roots of 1 as Cartesian complex vectors. Each radial
division represents 1/5 unit. All three vectors terminate on the unit circle.

Chapter 7

1. In Fig. 7-7, the x axis goes from left to right, the y axis goes from bottom to top, and
the z axis goes from far to near. According to the following rules:

* The origin hasx=0, y=0,and 2=0

* The point Phasx=3,y=-3,and z=4
* The point Qhasx=-5,y=4,andz2=0
* The point Rhasx=0,y=0,and 2=06

2. We have P = (3,-3,4). Let’s call the coordinates x, = 3, y, = -3, and z, = 4. When we

plug these values into the formula for the distance ¢ of a point from the origin, we get

c= (xp2 +yP2 + ZPZ 172 [32 + (_3)2 + 42]1/2

=(9+9+16)" =34
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That’s an irrational number. When we use a calculator to approximate its value to three
decimal places, we get

c=5.831

3. In this case, Q= (=5,4,0), so we can say that x, = =5, y, = 4, and z,= 0. When we plug
these values into the distance-from-the-origin formula, we get

c= (xqz +_J/q2 +ZqZ)llz — [(_5)2 + 42 + 02]1/2
=(25+ 16+ 0)"*=41""
A calculator approximates this irrational number to
c=6.403
4. This distance can be read straightaway from the graph if we use the z axis as a
measuring stick. If we want to go through the mathematics, we have R = (0,0,6), so we
can assign x, = 0, ,= 0, and z, = 6. The distance formula yields

= 4y +2)" =02+ 0+ 6)"2=36"=6

This value is exact.

5. Line segment L connects points Q and R, where
Q= (%92, = (=5,4,0)
and
R=(x,,2)=(0,0,6)

Plugging the coordinates into the formula for the distance & between two points in
Cartesian three-space, we get

d=[(x,—x)"+ (=) + (z—2)"1"
={0- 9P+ 0 -4+ (6-0}"
— [52 + (_4)2 + 62]1/2 — (25 +16+ 36)1/2 — 771/2

When we use a calculator to round this irrational number off to three decimal places,
we get

d=8.775
6. Line segment M connects points P and R, where

P=(x,y2,) = (3,-3,4)
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and
R=(x,9,2)=(0,0,6)

Plugging the coordinates into the formula for the distance & between P and R gives us

d=[(x,—x)+(,—3) +(z—2)1"
=((0-3)+ [0~ (-3) + (6 - 47}
— [( 3)2+ 32 + 22]1/2 (9 + 9 +4)1/2 221/2

A calculator rounds this value to three decimal places as
d=4.690
. Line segment /N connects points P and Q, where
P= (%92, = (3,-3,4)
and
Q = (xpypz,) = (=5,4,0)

The distance & between these points is

d=[(x,— x,)* + (9, = 3)* + (z,— z,)"]""
{(5=32+[4- (3 +(0-49%}"
=[(=8)*+ 72+ (—4)*]"* = (64 + 49 + 16)"* = 129"

A calculator rounds this to three decimal places as
d=11.358

. We want to find the midpoint of the line segment L connecting the points
Q= (%12, = (=5,4,0)

and
R=(x,7,2)=(0,0,6)

Let’s call the midpoint A (for “average”) in this situation, because we're already using M as
the name of a line segment. The midpoint formula tells us that the coordinates of A are
Knywzd) = [+ %)12,( g, + y)12,(z, + 2)/2]
={(-5+0)/2,(4 + 0)/2,(0 + 6)/2}
= (-5/2,4/2,6/2) = (-5/2,2,3)
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9. We want to find the midpoint of the line segment M connecting the points
P=(x,9,2,) = (3,~3,4)
and
R= (x,y,2,) = (0,0,6)
If we again call the midpoint A, our formula tells us that the coordinates of A4 are

(xa’)/a)zﬂ) = [(Xp + xr)/zﬁ(yp +_yr)/2>(zp + Z,)/Z]
=[(3+0)/2,(=3 +0)/2,(4 + 6)/2}
=(3/2,-3/2,10/2) = (3/2,-3/2,5)

10. We want to identify the midpoint of the line segment /V connecting the points
P=()p2) = (3,-3,4)
and
Q= (x,9,2,) = (=5,4,0)

Let’s call the midpoint A once more. Plugging the values into the formula, we obtain
the coordinates

Kaywrza) = [0, + x)12,(9, + 3)/2,(2, + 2,)/2]
={[(3+ (=5)1/2,(=3 + 4)/2,(4 + 0)/2}
=(=2/2,1/2,4/2) = (-1,1/2,2)

Chapter 8

1. We want to find the magnitude 7, of the standard-form vector
a=(8-1,-6)

Let’s call the coordinates x, = 8, y, = —1, and z, = —6. Using the formula for vector
magnitude, we obtain

7= (xaz +}/a2 + Zaz 172 _ [82 + (_1)2 + (_6)2]1/2

=(64+1+36)"*=101"
When we round this irrational number to three decimal places, we get

.=~ 10.050
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2. The vector a’ originates at (—2,0,4) and terminates at (0,0,0) in xyz space. To find the
standard form of this vector (let’s call it a), we subtract the originating coordinates from
the terminating ones. According to that rule, the x coordinate of a is

x=0—(-2)=2
The y coordinate of a is
$=0-0=0
The z coordinate of a is
z,=0—-4=—4

Putting these together, we get
a= (xa{)/ayza) = (2>0)_4)

3. The vector b’ originates at (2,3,4) and terminates at (6,7,8). Let b be the standard form
of this vector. We find the terminating coordinates of b by subtracting the starting
coordinates of b’ from its ending coordinates. For the x value of b, we get

x,=6-2=4
For the y value of b, we get

w=7-3=4
For the z value of b, we get

z=8—-4=4

Assembling these coordinates into an ordered triple, we have
b= (be/b,Zb) = (4,4>4)
When we multiply b on the left by the scalar 4, we obtain

4b=4 (xb,yb,zb) = (4xb,4yb,4zb)
=[(4x4),(4 x4),(4 x4)] =(16,16,16)

That’s the standard form of 4b, so it must also be the standard form of 4b’.

4. We have the two standard-form vectors
a=(-7,-10,0)

and

b=(8,-1,-6)
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Let’s assign the coordinates and pair them off as follows:
x,=—7 and x,=8
7,=—10 and p=-—
z,=0 and z,=-6

When we plug these values into the formula for the dot product of two vectors in

Cartesian xyz space, we get

a*b=uxx,+y+22
=-7%x8+ (—10) X (1) + 0 X (-6)
=-56+10+0
=—46
5. We have the two standard-form vectors
a=(2,6,0)
and

b=(74,3)

Let’s call the coordinates x, =2, 5, =6, 2,= 0, x, = 7, %, = 4, and 2, = 3. We can use the
formula for the cross product of two vectors in xyz space to get

a X b= [(y.2 — 2)> (25 = %:20), (e, = yaxv)]
=[(6%xX3-0x%x4),0x7-2%3),2xX4—-6X%X7)]
=[(18 - 0),(0 - 6),(8 — 42)] = (18,-6,—34)
6. We can use the formula for the dot product of two vectors, based on their magnitudes

and the angle between them. In this case, .= 4 and 7, = 7, and the angle between
them, expressible as 6, is 0 because the vectors point in the same direction. Therefore

feg=rm,cos O,=4X7Xcos0

=4Xx7x1=28

7. As in the previous solution, we can use the formula for the dot product of two vectors,
based on their magnitudes and the angle between them. Here, 77=4 and 7, =7, and the
angle between them, 6, is 7 because the vectors point in opposite directions. Therefore

feg=ry,cos Op=4X7Xcos
=4xX7x(-1)=-28

8. Once again, let’s use the formula for the dot product of two vectors, based on their
magnitudes and the angle between them. The magnitudes are 77=4 and r, = 7. We see
the angle 6, going counterclockwise from f to g, as 77/2. Then

feog=rn,cos O,=4x7Xxcos (1/2)

=4xX7%x0=0
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When we go clockwise from g to f, we negate the angle between them because we've
reversed our direction. The angle 6,5 going clockwise from g to f, is —=7r/2. In this case
we have

g f=rrcos Op=7 X 4 X cos (-1/2)
=7%x4x0=0

9. Lets use the formula for the magnitude of the cross product of two vectors, based on
their individual magnitudes and the angle between them. We have 7r=4 and r,=7.
The angle 6, going counterclockwise from f to g, is £/2. The magnitude 74, of the
cross product vector f X g is therefore

Fixg = 117 Sin O = 4 X 7 X sin (7/2)

=4x7x1=28

Because we see the rotation going counterclockwise from f to g, the vector £ X g points
toward us. According to the reverse-directional commutative law for cross products,
we know that g X f has the same magnitude as fX g, but g X f points in the opposite
direction (that is, away from us).

10. Our vector b starts out (2,0,0), so b points in the same direction as a. This fact tells us
that the cross product a X b is the zero vector. As b starts rotating counterclockwise, the
vector a X b “sprouts and grows” toward us along the +z axis. When b = (0,2,0), having
gone through 77/2 radians of rotation in the xy plane, the magnitude 7,4, of the cross
product vector is 2 X 2 = 4, and a X b points toward us. As b keeps rotating, a X b starts

to “shrink” while continuing to point toward us along the +z axis. When b = (=2,0,0),
having gone through 7 radians of rotation, vector b points in the opposite direction
from vector a, so a X b is the zero vector again. As the rotation continues, a X b “sprouts
and grows” directly away from us along the —z axis. When b = (0,-2,0), having turned
through 37/2 radians of rotation, 7,4, =2 X 2 =4, and a X b points away from us. After
that, a X b “shrinks” again while continuing to point away from us along the —z axis,
vanishing to the zero vector when b = (2,0,0), having passed through a full rotation in
the xy plane. If b keeps rotating indefinitely, the cross product vector a X b oscillates
alternately toward and away from us along the z axis, attaining peak magnitudes of 4 at
the instants when b lies along the y axis, and vanishing to the zero vector at the instants
when b lies along the x axis.

Chapter 9

1. In cylindrical coordinates, the graph of the equation 6= 0 appears as a vertical plane
perpendicular to the reference plane, and passing through the reference axis. In xyz
space, this would be the xz plane. The graph of 7= 0 is a vertical straight line that
coincides with the 4 axis. In xyz space, this would be the z axis. The graph of /=0 is a
horizontal plane that coincides with the reference plane. In xyz space, this would be the

xy plane.
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(37/4, 6, 8)

Reference
axis: 6=0

Each radial division
. =2 units

Each vertical division
-z =2 units

Figure A-8 Illustration for the solution to Problem 2 in
Chap. 9. Each radial division represents 2 units.
Each vertical division also represents 2 units.

2. Figure A-8 is a plot of the point (6,7,/) = (37/4,6,8) in cylindrical coordinates.

3. We want to find the (x,y,2) representation of the point (6,7,4) = (7/4,0,1). Let’s use the
conversion formulas we learned. Here are the formulas again:

x=rcos O
y=rsin 0
z=h

Plugging in the values, we get

x=0cosm/4=0
y=0sinmw/4=0
z=h=1

Therefore, the Cartesian equivalent point is
(x952) = (0,0,1)

4. We want to convert the xyz space point (—4,1,0) to cylindrical coordinates. In this
situation, we have x = —4 and y = 1. To find the angle, we should use the formula

0=+ Arctan (y/x)
because x < 0 and y > 0. When we plug in the values for x and y, we get

0= 1+ Arctan [1/(—4)] = m+ Arctan (—1/4)
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When we input the values for x and y to the formula for 7, we get
r=[-4+ 1’1" =(16+1)"=17"
Because z = 0, we know that
h=2z=0
The exact cylindrical equivalent point is

(8,,h) = {[m+ Arctan (-1/4)],17"2,0}

509

Using a calculator set for radians to approximate the angle coordinate to four decimal

places, we get
0= m+ Arctan (=1/4) = 3.1416 + (—0.2450) = 2.8966
When we approximate the radius coordinate to four decimal places, we obtain
r=17"=4.1231

The approximate ordered triple representing our point in cylindrical coordinates is
therefore

(6,,h) = (2.8966,4.1231,0)

The first coordinate represents an angle in radians. The second and third coordinates

represent linear displacements in space.

. We want to find the (x,,2) equivalent of (6,7,4) = (7 /14,2"2.1). First, let’s find x. Using

the cylindrical-to-Cartesian conversion equation, we get
x=rcos 0=2"cos (w/4) =2"*x2"?/2=2/2=1
The cylindrical-to-Cartesian conversion equation for y tells us that
y=rsin 0=2""sin (m/4) =2""x2"%/2=2/2=1
Finding z involves no conversion at all. We have simply
z=h=1
Therefore, the Cartesian equivalent point of the cylindrical (6,7,4) = (7 14,22.1) is

(x%,2) = (1,1,1)

That’s what we began with when we worked out the example in the chapter text.
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6.

In spherical coordinates, the graph of the equation 6= 0 appears as a vertical plane
containing the reference axis. In xyz space, this would be the xz plane. It’s exactly the
same situation as we had in the cylindrical coordinate system when we solved Problem 1,
because the horizontal direction angles are identical in both systems. The graph of

¢ =0 in spherical coordinates is a vertical straight line that coincides with the Cartesian

z axis. The graph of 7 = 0 in spherical coordinates is the origin point. In xyz space, it’s
(0,0,0).

Figure A-9 is a plot of the point (6,9,7) = (37/4,7/4,8) in spherical coordinates.

. We have a point in spherical three-space whose coordinates are given by

P=(6,¢,r) =(n/4,0,1)

The formula for x is

x=rsin ¢ cos 0
When we plug in the spherical values, we get

x=1sin0cos (w/4) =1x0x2"*/2=0

The formula for y is

y=rsin ¢sin O
Plugging in the spherical values, we get

y=1sin0sin (7/4)=1x0x2"%/2=0

o= rml4 +z
(3m/4, /4, 8) — \ 0= 37/4
N r=8 ’
RS
| \
I \\ +y
X +X
Each \
radial
—y division Reference
=1 unit plane
4

Figure A-9 Illustration for the solution to Problem 7 in
Chap. 9. Each radial division represents 1 unit.
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The formula for z is
z=rcos ¢
Plugging in the spherical values, we get
z=lcos0=1x1=1
Therefore, the coordinates in xyz space are
P=(0,0,1)

. We want to convert the xyz space point (—4,1,0) to spherical coordinates. To find the
radius, we use the formula

=0t 4y + )"
Plugging in the values, we get
r=[(-4)>+ 1>+ 01" =(16+1+0)"?=17"
To find the horizontal angle, we use the formula
0=+ Arctan (y/x)
because x < 0 and y > 0. When we plug in the values for x and y, we get
0=+ Arctan [1/(—4)] = m+ Arctan (—=1/4)

To find the vertical angle, we can use the formula

¢ = Arccos (z/7)
We already know that r= 172, so

¢ = Arccos (0/17"?) = Arccos 0 = /2
Our spherical ordered triple, listing the coordinates in the order 2= (6,9,7), is
P={[m+ Arctan (-1/4)],7/2,17"%}

Using a calculator set for radians and rounding the irrational values to four decimal
places, we get

6= m+ Arctan (—1/4) = 3.1416 + (—0.2450) = 2.8966
O=m/2=3.1416/2~=1.5708
r=17""=4.1231
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Therefore, we can approximate the spherical coordinates as
P=(2.8966,1.5708,4.1231}
10. We're given the point P in cylindrical three-space as
P=(6,r,h) = [37m/4,6"%/2,6'/2]

Odur first task is to find the equivalent coordinates in xyz space. Here are the conversion
formulas once again, for reference:

x=rcos 0
y=rsin 6
z=h

Plugging in the numbers to these formulas gives us

x=6"2/2 cos Bm/4) = 6212 x (=2'%/2) =-3"2/2
y=06"/2sin 3m/4) = 6"2/2x 2?2 =3"7/2
z=h=6"%2

Therefore, we have the Cartesian equivalent point
P=(x.2) = (=3"%/2,3'%12,6'%/2)

When we check this against the intermediate result we got as we solved the last
challenge in the chapter text, we see that the two agree. So far, we're doing okay! Now
let’s convert this Cartesian ordered triple to spherical coordinates. To find the spherical
radius, we use the formula

r=0+y+2)"
Plugging in the values, we get

r=1[(=3"/2)*+ (3"42)* + (6"2/2)2]"* = (3/4 + 3/4 + 6/4)"*
— (12/4)1/2 — 31/2

To find the horizontal angle, we use the formula
0=+ Arctan (y/x)

because x < 0 and y > 0. When we plug in the values for x and y, we get

0=+ Arctan [3Y%/(=3'?)] = m+ Arctan (1) =+ (—x/4) =37 /4

To find the vertical angle, we can use the formula

¢ = Arccos (z/7)
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We already know that = 312 5o
¢ = Arccos [(6'%/2)/3"] = Arccos (2'%/2) = /4
Our spherical ordered triple, listing the coordinates in the order = (6,9,7), is therefore
P=(3r/4,m/4,3"?)
This is the original spherical angle in the challenge from the chapter text. We've worked

the problem out in both directions without running into any trouble, so we can be
confident that we didn’t make any errors either way.
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Worked-0Qut Solutions to Exercises:
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These solutions do not necessarily represent the only ways the chapter-end problems can be
figured out. If you think you can solve a particular problem in a quicker or better way than
you see here, by all means go ahead! But always check your work to be sure your alternative
answer is correct.

Chapter 11

514

1. The domain of the relation shown in Fig. 11-10 is set X. We've been told that the
relation never maps any element of set X into more than one element of set Y. Set ¥’
contains no elements outside the co-domain. Therefore, the relation is an injection.
The illustration shows that the relation maps elements X completely onto set Y, so the
relation is a surjection. Because the relation is both an injection and a surjection, it’s
a bijection by definition. In this example, the range happens to be the same as the co-
domain. That’s not true of all relations. This relation is a function, because no element
in the domain maps to more than one element in the range.

2. Every positive integer y in set Y (the range) has infinitely many rational numbers x from
set X (the domain) assigned to it. For example, if we take the integer y =5 in set ¥; it
can correspond to any rational x in set X such that 4 < x < 5. The relation is clearly
not one-to-one, so it’s not an injection. For any positive integer y in set ¥, we can find
at least one positive rational x in set X that maps to it, so the relation is a surjection.
The relation is not a bijection; it would have to be both an injection and a surjection
to “qualify” for that status. If we take any positive rational number x in the domain X,
we can never map it to more than one positive integer y in the range Y. Therefore, our
relation is a function of x.

3. This relation, like the one described in Problem 2, is not one-to-one, so it isn’t an
injection. For any positive rational number y in set ¥, we can find a positive integer x in
set X that maps to it, so we have a surjection. The relation is not a bijection, because it isn’t
both an injection and a surjection. If we take any positive integer x in the domain X,
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Figure B-1 Illustration for the solution to Problem 4 in
Chap. 11.

we can map it to infinitely many positive rationals y in the range Y. Therefore, this
relation is not a function of x.

. A relation whose graph is a circle or ellipse in the Cartesian xy plane can never be a
function of x, because such a graph always fails the vertical-line test. Figure B-1 shows
several examples.

. A relation whose graph is a circle or ellipse in the polar 07 plane is a function of 0r if
the origin is inside the circle or ellipse. Figure B-2A shows a simple example in which

a circle is centered at the origin in the polar plane. When we graph this relation the
“Cartesian way” as shown in Fig. B-2B, we get a straight, horizontal line that passes the
vertical-line test.

. We've been given the functions

F)=x+2

and

g(x)=3

Their sums are

(f+2@)=f)+gx)=x+2)+3=x+5
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and
G+ )W =gW+f@)=3+x+2) =x+5
Their differences are
(f-9W=f)—g)=k+2)-3=x-1
and
(=W =g@—f)=3—(x+2)=—x+]1
Their products are
(FX Q@) =) Xg () = (x+2) X3=3x+6
and
(gX )W) =g () X f() =3% (x+2) =3x+6
Their ratios are
(Fl9() = FWlg () = (c+ 2)/3 = x/3 +2/3
and
(glf)x) =g ()/f(x) = 3/(x+2)
. We've been given the functions
f=x+1
and
gW=x—1
Their sums are
(f+ Q@) =f0) +g (@) = (x+ 1)+ (x— 1) =2
and
(g+ ) =g () +F() = (x— 1)+ (x+ 1) =2x
Their differences are

(f—9W=f)-g)=k+1)-(x-1)=2



518 Worked-Out Solutions to Exercises: Chapter 11-19

and

(g =g -f)=kx-1)—-(x+1)=-2
Their producs are

(fx9)=f)xg)=x+1Dx-1)=x"-1
and

(gx ) =g @) Xf(x)=x—Dx+1)=x>—1
Their ratios are

(flg)(x) =f()lg (x) = ¢+ D/ (x— 1)
and
(glf)) =g ()/f(x) = (= D/ (x+ 1)
8. Wee've been given the functions
flo)=x"
and
g =x
Their sums are
(f+90) =fl)+g ) =x"+x7
and
(gt =g +fl)=x+x"=x"+x7
Their differences are
(90 =fl)—g)=x"-x7
and
(g-NW) =g —fl)=x?—x"=-=x"+x7

Their products are

(fX9) =fl) xgk)=x"x"=x"
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and
(X)) =g @) X flo) =x2x"=x7

Their ratios are

(fl9@) =f)lg (0 = (/) =x"'x =x

and
(gl =g Ifx) = ()() =xx=x"
9. We've been given the functions
f(x) =sin’> 6
and
g (%) =cos* 0

Their sums are

(f+ 9() =f(x) + g (x) = sin® O+ cos® O=1
and

(g+ ) x) =g () + f(x) = cos* O+ sin> O= 1
Their differences are

(f~=9®) =f(x) — g (x) =sin> 6~ cos’ 0
and
(g—f)x) =g () = f(x) = cos’ 6 —sin” 6
Their products are
(fx 9(x) = f(x) X g (x) = sin® O cos O
and
(gXf)(x) =g (x) X f(x) = cos® Osin* @ =sin” O cos* O
Their ratios are
(fl9 () = fx)/g (x) = (sin* B)/(cos’ 6) = tan® O

and

(g/f)(x) = g (¥)/f (x) = (cos® 6)/(sin* 6) = cot® O
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10. We must remember that the domain of a sum, difference, product, or ratio function is
the intersection between the domains of the constituent functions. Also, in the case of
a ratio, the domain can’t include any value where the denominator becomes 0. With
these facts in mind, let’s go through the solutions we derived for Problems 6 through 9
and evaluate all the possible real-number domains:

Problem 6 and its solutions: The domains of both fand g encompass all real numbers.
Therefore, the domains of all the sum, difference, and product functions are the entire
set of reals. The domain of f/g is the entire set of reals, because g never attains the
value 0. The domain of ¢g/fis the set of all reals except —2, because

f(=2)=-2+2=0

Problem 7 and its solution: The domains of both fand g encompass all reals, so the
domains of all the sum, difference, and product functions are the entire set of reals. The
domain of f/g is the entire set of reals except 1, because

¢()=1-1=0
The domain of ¢g/fis the entire set of reals except —1, because
FED)=—1+1=0

Problem 8 and its solutions: The domains of both fand g include all reals except 0, so the
domains of all the sum, difference, and product functions encompass all reals except 0.
The same holds for both ratio functions. There are no additional restrictions, because
neither denominator can ever become 0.

Problem 9 and its solutions: The domains of both fand g are the entire set of reals, so
the domains of all the sum, difference, and product functions encompass all reals. The
domain of f/g is the entire set of reals except all odd-integer multiples of 7£/2, because
the square of the cosine of any odd-integer multiple of 77/2 is equal to 0. The domain
of g/fis the entire set of reals except all integer multiples of 7, because the square of the
sine of any integer multiple of 77 is equal to 0.

Chapter 12

1. We want to find the inverse of the relation
fl)=2x+4
If we call the dependent variable y, then
y=2x+4
Swapping the names of the variables, we get

x=2y+4
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which can be manipulated with algebra to obtain
y=x/2-2
If we replace the new variable y by the relation notation f™' (x), we get
fl)=x/2-2
. We want to find the inverse of the relation
g)=x*—4x+4
Calling the dependent variable y, we can write this as
y=x"—4x+4
which factors to
y=(x— 2)?
When we swap the names of the variables, we get
x=(—-2)°
Taking the complete square root of both sides produces
txP=y-2
which can be manipulated with algebra to obtain
y=2%x"
Replacing y by ¢ ™' (x), we get
gl =2%x"
. We want to find the inverse of the relation
h(x)=x>-5
Calling the dependent variable y, we have
y=x"-5
Swapping the names of the variables yields

x=y -5

521
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which can be morphed algebraically into
y=(+5"
Replacing y by 51 (x), we get
A7 (@) = (x+5)"

4. Let’s examine each situation by imagining what happens when we try to input real
numbers to the original relations, and working from there:

Problem 1 and its solution: The relation and its inverse are
fl)=2x+4
and
) =x/2-2

We can input any real number into either of these relations, and we always get a
meaningful result. Therefore, the domains of fand ' both span the entire set of real
numbers. The range of /™' is the same as the domain of £, and the range of fis the same
as the domain of #~'. Therefore, the ranges of fand /™' both include all real numbers.

Problem 2 and its solution: The relation and its inverse are
g =x"—4x+4
and
gl ) =2£x"

We can input any real number we choose into g, and we always get a meaningful result.
However, that result is always nonnegative, because it’s the square of the real-number
quantity (x — 2). It’s possible for the output of g to equal 0; that happens when the
input is 2. The range of g is therefore the set of all nonnegative reals. The domain of g™
is identical to the range of g, so the domain of g™ spans the set of all nonnegative reals.
The range of ¢ ™' is the same as the domain of g, which is the set of all reals.

Problem 3 and its solution: The relation and its inverse are
h(x)=x"=5
and
b = (et 5)"

We can input any real number into 4, and we always get a real-number output value.
Therefore, the domain of 4 spans the entire set of reals. The same is true of the domain
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of 57'; the relation is defined for all possible real-number input values. The range of
h" is the same as the domain of 4, and the range of / is the same as the domain of /47
Therefore, the ranges of # and #~" both span the set of all reals.

. The equation of our relation, as given in the problem, is

x*4—y*19=1
Let’s use algebra to morph this equation so it’s stated with y all by itself on the left-hand
side and an expression containing only the variable x on the right-hand side. If we
multiply through by 36, we get

9x* — 4y* =36
which can be rewritten as

—4y* =36 - 9x*
Multiplying through by —1, we get

4y =9x* — 36
When we divide through by 4, we obtain

P =9x*14-9
Taking the complete square root of both sides yields

y=%(9x*/4 - 9)""?
Using relation notation to express this equation and name the relation £, we get
fx) =+(9x7 /4 — 9)'"?

That's the relation! Now let’s find its inverse. We begin by restating the relation with y
on the left instead of £(x), so we have

y=1(9x*/4 - 9)"?
Swapping the names of the variables gives us

x=%(9y* 14 - 9)"?
When we square both sides, we obtain

x*=9y"14-9
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Adding 9 to each side, we get
x*+9=9y°14

Multiplying through by 4, and then transposing the left- and right-hand sides of the

equation, we come up with
9y* = 4x* + 36
Dividing through by 9 yields
P =4x*19+4
After we take the complete square root of both sides, we have
y=1(4x?/9 + 4)"
Replacing the variable y by the relation notation £~ (x), we conclude that
() =£(4x? /9 + 4"

6. With the information stated in Problem 5, along with the graph of the relation shown
in Fig. 12-2, we can see that the real-number domain of fis the set of all reals greater
than or equal to 2, or smaller than or equal to —2. Another way of stating this is to say
that the domain of fis the set of all reals except those in the open interval (=2,2). The
range of fis clearly the set of all reals.

7. Figure B-3 shows the graph of the original relation
f) =£(9x* 14 - 9)"?
as a pair of gray curves, and the graph of the inverse relation
£ () = (4x? /9 + 4)'"

as a pair of black curves. The “point reflector” is the dashed line. The real-number
domain of £~ is the same as the real-number range of f; that’s the set of all reals. The
real-number range of £~ is identical to the real-number domain of £ that’s the set of all
reals except those in the open interval (-2,2).

8. Figure B-4 shows the graph of the original relation with its domain restricted to the
reals greater than or equal to 2 (gray curve) and its inverse (black curve). The curve for
the inverse relation is a half-hyperbola that opens upward and intersects the y axis at
(0,2). A movable vertical line never intersects the black curve at more than one point.
Therefore, the inverse relation

F7 ) = (dx2/9+ 4)'”

is a true function of x.
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Figure B-5 Illustration for the solution to Problem 9 in
Chap. 12.

Figure B-5 shows the graph of the original relation with its domain restricted to the
reals smaller than or equal to —2 (gray curve) and its inverse (black curve). The curve
for the inverse relation is a half-hyperbola that opens downward and intersects the y
axis at (0,—2). A movable vertical line never intersects the black curve at more than one
point. Therefore, the inverse relation

() =—(4x?/19 + 4"

is a true function of x.

Figure B-6 shows the graph of the original relation with its range restricted to the
nonnegative reals (pair of gray curves) and the graph of its inverse (pair of black
curves). A movable vertical line never intersects the graph of the original restricted
relation at more than one point, so it’s a true function. Whenever the movable
vertical line intersects the graph of the inverse, that line crosses both curves. On
this basis, we know that the inverse of the original restricted relation is not a true
function.
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Chapter 13

1. If the plane passes through the point where the apexes of the two cones meet, the
intersection is a point, a straight line, or a pair of lines that intersect. Here’s how the
situations break down:

¢ If the plane is slanted so that we'd get a circle or ellipse if the plane didn’t pass through
the apexes, then we get a single point (figs. B-7A and B).

* Ifthe plane slants so that we'd get a parabola if the plane didn’t pass through the apexes,
then we get a straight line (fig. B-7C).

o If the plane slants so that wed get a hyperbola if the plane didn’t pass through the
apexes, we get a pair of lines that cross (fig. B-7D).

2. When we examine the graph of the ellipse, we see that the lower focus is at (0,0) and
the lower vertex is at (0,—2). Therefore, the distance between the lower focus and the
lower vertex is 2 units, telling us that the focal length is

f=2
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Figure B-7 Illustrations for the solution to Problem 1 in Chap. 13.

We can also see that the distance between the lower vertex and the directrix is 4 units,
because the lower vertex is at (0,—2) and the directrix passes through (0,—6). Therefore

fle=4
Combining the above two equations and solving, we get
e=1/2

That’s the eccentricity of the ellipse.

3. When we solved Problem 2, we determined that /=2 and ¢ = 1/2. Plugging these
values into the formulas relating the parameters of the ellipse, we obtain

u=2+2/(1/12) +y
and

x>+ =[(1/2) u)?
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These simplify to
u=06+y
and
x4yt =u’l4
Let’s substitute the quantity (6 + y) for # in the second equation above. That gives us
> +y7=(6+)y)°/4
This is an equation for our ellipse, although it’s not in standard form.

. We've been told that both foci and both vertices lie on the y axis, so x = 0 at the lower
vertex and also at the upper vertex. If we plug x = 0 into the equation we got in the
solution to Problem 3, we'll be left with an equation that tells us the y values at both
vertices of the ellipse. Here it is

7> =(6+y)4
Multiplying through by 4, we obtain

4y* = (6 +y)
When we multiply out the squared binomial on the right-hand side, we get

4y’ =36+ 12y+y’

This is a quadratic equation. Let’s morph it with algebra into the standard form for a
quadratic. That gives us

3y?—12y-36=0
which factors into
(3y+6)y—6)=0
The solutions are therefore
y=-2
or
=06
The first solution corresponds to the point (0,—2) on the ellipse. The second solution

corresponds to (0,6) on the ellipse. We already know that the coordinates of the lower
vertex are (0,—2), so the coordinates of the upper vertex must be (0,6).
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Now let’s find the coordinates of the upper focus. We already know that the lower focus
is at (0,0). We also know that the lower vertex is at (0,—2), which is 2 units below the
lower focus on the y axis. Because all ellipses are symmetrical with respect to the foci,
the upper focus must be 2 units below the upper vertex on the y axis. Therefore, the
coordinates of the upper focus must be (0,4).

. We can find the coordinates of our ellipse’s center by averaging the coordinates of the

foci. The lower focus is at (0,0), while the upper focus is at (0,4). Therefore, the center
must be at (0,2).

The length of the vertical semi-axis (let’s call it 4) is the distance between the center and
the lower vertex, as shown in Fig. B-8. The center is at (0,2) and the lower vertex is at
(0,-2), so the vertical semi-axis is 4 units long. (We get the same result if we use the
center and the upper vertex.)

To find the length of the horizontal semi-axis, we must know the coordinates of either
the left-most point or the right-most point on the ellipse. These are the points where
the horizontal line y = 2, which passes through the center of the ellipse, intersects the
curve. To find these points, we can plug y = 2 into the equation we got for the ellipse
when we solved Problem 3. When we make the substitutions, we obtain

+22=(6+2)Y4

y

Upper vertex is at (0, 6)

Left-most Right-most
point Center point
on curve on curve
Line y=2
< > X

/

Lower vertex is at (0, —2)

\4

Figure B-8 Illustration for the solution to Problem 5 in
Chap. 13.
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which simplifies to

x*=12
This equation solves easily to
x=12'"
or
x=—12""

telling us that the left-most point on the curve is at (—12"%,2), and the right-most point
on the curve is at (122,2). The horizontal semi-axis (call it @) is therefore 12" units
long,.

In the generalized standard form for the equation of an ellipse, the ordered pair (x,0)
represents the coordinates of the center point. We know that this point is (0,2). We've
now figured out these four values:

x():O
Jo=2
a=12"
b=4

As you can guess, we chose the names of these parameters so that theyd fit neatly into
the generalized standard form for the equation of an ellipse. That form is

(x—x0)*1d* + (y— )16 =1
Plugging in the numbers straightaway, we obtain
(x—0)/(12'2) + (y—2)*/4* =1
which simplifies to
12+ (y—2)"16=1

At last, we've found the standard-form equation for the ellipse graphed in Fig. 13-12!
If youre skeptical and ambitious, you'll demand proof that this equation is equivalent
to the one we got in the solution to Problem 3. Why not demonstrate that fact as an
extra-credit exercise? Start with

X2+ (y—-2)"16=1
and morph it into

x*+yP=(6+)°/4
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6. Here’s the original equation again, for reference:
x*+9°=9
We can divide this equation through by 9 to obtain
x*19+y'=1
This equation is in the standard form for an ellipse. We recall that the general version is
(x—x0)*1d+ (y—y)* 16" =1

where x, and y, are the coordinates of the center, « is the length of the horizontal semi-
axis, and & is the length of the vertical semi-axis. In this case, we have

x0=()

»=0
a=9"=3
b=1"=1

The center is at (0,0). The horizontal semi-axis measures 3 units. The vertical semi-axis
measures 1 unit. We can now sketch the graph as shown in Fig. B-9.

N
>

Each axis increment _|_
is 1/2 unit

(X0:Y0) =(0, 0)

Y

Figure B-9  Illustration for the solution to Problem 6
in Chap. 13. Each axis division represents
1/2 unit.
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7. Here’s the original equation again, for reference:
x2+y2+2x—2)/+2=4

It takes some mathematical intuition to see how this can be morphed into the standard
form for a conic section. We can split it into the sum of two trinomials as

WC+2x+ 1)+ -2+ 1)=4

The parentheses, while not technically necessary, clarify the identities of the trinomials.
Both of these trinomials happen to be perfect squares. They can be factored to get

(x+1)P+@p-17=4

which is in the standard form for a circle. We remember that the general equation for a
circle is

(x—x)"+ @ —p)=7r

where (x,)) are the coordinates of the center, and 7 the radius. In this particular
example, we have

The center is at (—1,1). The radius is 2 units. We can now sketch the graph as shown in
Fig. B-10.

Figure B-10 Illustration for the
solution to Problem
7 in Chap. 13.
Each axis division
represents 1/2 unit.

Each axis increment
is 1/2 unit
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8. Here’s the original equation again, for reference:
X =y +2x+2y=4
As in Problem 7, we must rely on our algebra experience to see how this can be
transformed into an equation that’s in the standard form for a conic section. We can
split it into a difference between two trinomials as

P+2x+ 1) -0 -2y+1)=4

In this equation, the parentheses are necessary! The trinomials can be factored exactly as
they were in the solution to Problem 7; when we do that, we obtain

x+1)°-@-17=4
We can divide through by 4, getting
(x+1)°/4—(—-1)14=1

This equation is in the standard form for a hyperbola. The general version, as we've
learned, is

(x—x0)*1d = (y—y)* 16" =1

where (xp,),) are the coordinates of the center, « is the length of the horizontal semi-axis,
and & is the length of the vertical semi-axis. In this case, we have

XO—_].
Jo=1
a=4"=2
b=4"=2

The center is at (—1,1). The horizontal and vertical semi-axes are both 2 units long.
With this information, we can sketch the graph as shown in Fig. B-11.

9. Here’s the original equation again, for reference:
x*=3x—y+3=1
We can subtract 1 from each side to get
x*=3x—y+2=0
Adding y to each side and then transposing the sides left-to-right yields

y=x"=3x+2
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Each axis —+
increment
is 1 unit

\4

Figure B-11

Illustration for the solution to Problem 8 in
Chap. 13. Each axis division represents 1 unit.

This equation is in the standard form for a parabola. The coefficient of x* is positive,
so we know that the parabola opens upward. When we divide the negative of the

coefficient for x by twice the coefficient for x*, we get the x value of the vertex point,
which we can call x,. We have

x=—(=3)/(2x1)=3/2

To find the y value of the vertex point (let’s call it y,), we plug 3/2 into the function for
Y p ) plug
x and grind out the arithmetic:

9o=03/2-3%x3/2+2=9/4-9/2+2

=9/4—-18/4+8/4=(9—-18+18)/4
=-1/4

Now we know that the coordinates of the vertex are (3/2,—1/4). Because the parabola
opens upward, we know that this vertex is the absolute minimum point.

The right-hand side of the standard-form equation factors into a product of two clean-
cut binomials

y=-1Dkx-2)
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If we set y = 0 and then solve the resulting quadratic equation, we get two roots that tell
us the x-intercepts of the curve. The roots here can be read straight from the factors as

x=1
or

x=2
revealing that (1,0) and (2,0) lie on the parabola. These two points are close together,
and they’re also close to the vertex. It’s difficult to draw a good image of the parabola
based on these three points alone. But we can find the y-intercept, which is “farther
out,” to help us draw the curve. When we plug in 0 for x, we get

y=0"-3%x0+2=0-0+2=2

indicating that (0,2) is on the parabola. Now that we know the coordinates of four
points that lie on the parabola, we can do some “mental curve-fitting” and sketch the
graph as shown in Fig. B-12.

Each axis increment
is 1/4 unit

A

1 | 2, 0)
(3/2, —1/4)

Figure B-12  Illustration for the solution to Problem 9
in Chap. 13. Each axis division represents
1/4 unit.
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10. The standard-form general equation for a hyperbola in the xy plane is
(x—x0)*d® = (y—y)*16* =1

where (xp,)) are the coordinates of the center,  is the length of the horizontal semi-axis,
and & is the length of the vertical semi-axis. The specific equation of our hyperbola is

(x=1*14-(p+2)?9=1
From this equation, we can see that the constants are

Xo = 1
Jo=—2
a=4"=2
b=9"=3
This information tells us that the hyperbola’s center is at (1,—2). The horizontal semi-

axis is 2 units wide. The vertical semi-axis is 3 units tall. We can therefore sketch the
graph as shown in Fig. B-13.

Each axis
increment
is 1 unit

Figure B-13  Illustration for the solution to Problem 10 in
Chap. 13. Each axis division represents 1 unit.
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To find the equations of the asymptotes, we must know the coordinates of a point on
each of them, and we must also know their slopes. The asymptotes intersect at the
center of the hyperbola, which is at

(Xo,}/o) = (1 ’_2)

We know that this point lies on both asymptote lines. Let’s construct a rectangle D
whose width is twice the length of the horizontal semi-axis, and whose height is twice
the length of the vertical semi-axis. The asymptotes pass through the corners of this
rectangle, as shown in Fig. B-13. When we go from the center to the upper right-hand
corner of D, the “rise over run” (an informal term for slope) is

bla=3/2

so m = 3/2. We can therefore write the equation of the “up-ramping” asymptote in
point-slope form as

y+2=03/2)(x-1)

When we travel from the center to the lower right-hand corner of D, the “rise over run”
is

bla=-3/2

so m = —3/2. We can therefore write the equation of the “down-ramping” asymptote in
point-slope form as

y+2=(32)(x—-1)

If you insist on having the equations of these lines appear in the standard form for a
linear equation in two-space, feel free to convert them to that form!

Chapter 14

1. Suppose that there’s a real number x that satisfies the equation
=0

We know that our mystery number x can’t be equal to 0, because we can plug x =0
straightaway into the equation and get

L=1

based on the fact that any positive real number (including ¢) raised to the zeroth power
is equal to 1. We've assumed that x is real, and we've discovered that x # 0, so we can be
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certain that 1/x is a nonzero real number. Therefore, it’s okay for us to take the (1/x)th
power of both sides of the original equation to obtain

(gv)(l/x) — O(I/x)

which we can rewrite using the algebraic rules for exponents as

U] — 1)

When 0 is raised to any nonzero real power, the result is 0. That fact, along with
another “dose” of the algebraic rules for exponents, allows us to streamline the above
equation, getting

L — )
which simplifies further to

=0
and finally to

e=0

This statement is patently untrue. According to reductio ad absurdum, it follows that
our original assumption must be false. We must conclude that no real-number power of
e is equal to 0.

2. The dashed gray curves in Fig. B-14 are the graphs of

y=e

Figure B-14 Illustration for the y
solution to Problem 2 10+

in Chap. 14. 1
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and
y=e"
taken directly from Figs. 14-1A and 14-2A. Now let’s consider the function
y=¢ée”

Using the algebraic rules for exponents, we can rewrite this as

= el
which simplifies to

y=¢
and further to

y=1

The domain of this constant function encompasses all real numbers. The range is the
set containing the single element 1. The graph is a solid black horizontal line passing
through the point (0,1) in Fig. B-14.

. The dashed gray curves in Fig. B-15 are the graphs of

y=10"
and

y=107"

Figure B-15 Illustration for the
solution to Problem 3

in Chap. 14.
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taken directly from Figs. 14-1B and 14-2B. Now let’s look at the ratio function
y=107/10~
Using the algebraic rules for exponents, we can rewrite this as
=10k
which simplifies to
y=10*

The domain encompasses all real numbers. The range is the set of all positive real

numbers. The graph is the solid black curve in Fig. B-15.

. Figure B-16 shows the same graphs as Fig. B-15. However, in this illustration, the y axis
is logarithmic, spanning the three orders of magnitude from 0.1 to 100. The dashed
gray lines are the graphs of

y=10"
and
y=107
Figure B-16 Illustration for the
solution to Problem 4 100
in Chap. 14.
30
10
3
1—
f } } } } } } } { X
-1 1
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The solid black line is the graph of
y=10%
5. Figure B-17 is the graph of the function
y=10""

for values of x ranging from —10 to 10. When we input x = 0, we get 10"°, which is
undefined. For any other real value of x, the output value y is a positive real, so the
domain is the set of all nonzero reals. No matter how large we want y to be when y > 1,
we can always find some value of x that will produce it. No matter how small we want y
to be when 0 < y < 1, we can always find some value of x that will produce it. However,
we can't find any value for x that will give us y = 1. For that to happen, we must raise

10 to the zeroth power, meaning that we must find some x such that 1/x= 0. No such x
exists, so the range of the function is the set of all positive reals except 1. The graph has
a horizontal asymptote whose equation is y = 1, and a vertical asymptote corresponding
to the y axis. The open circle at (0,0) tells us that this point is not part of the graph.

6. Suppose that there’s a real number x that satisfies the equation

In0=x
y
10 1
Asymptote —+
along y axis
-+ Range includes
all positive
5 -+ real numbers
except 1
Asymptote
aty=
O X
-10 -5 0 5 10

Domain includes all nonzero real numbers

Figure B-17  Tllustration for the solution to Problem 5 in Chap. 14.
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Let’s take the natural exponential of each side of this equation. That gives us

e(ln 0) _ e~

We know that the natural log function and the natural exponential function are inverses
of each other. They “undo” each other’s work, as long as we stay within the domain of
the natural log function. We've assumed that In 0 is a real number, and therefore that
it's in the domain of the natural log function. Based on that assumption, we can rewrite
the above equation as

0=¢"

In the solution to Problem 1, we proved that no real number x can satisfy this equation.
That result contradicts our original assumption here. By reductio ad absurdum, we are
forced to conclude that the natural log of 0 is not a real number.

. The dashed gray curves in Fig. B-18 are the graphs of
y=Inx
and
y=logi x
We want to graph the sum function
y=Inx+log, x

When we input several values, use a calculator to obtain the outputs, plot the points,
and then connect the points by curve fitting, we get the solid black curve. The domain
of this sum function is the set of positive reals, and the range is the set of all reals.

Figure B-18 Illustration for y
the solution to 5
Problem 7 in 1
Chap. 14.
0 } } } } } } } } | X
) S 10




544  Worked-Out Solutions to Exercises: Chapter 11-19

Figure B-19  Illustration for the y
solution to Problem 8 T
in Chap. 14. i
4
o |
0 = } —t —t } — X
0 5 10

8. The dashed gray curves in Fig. B-19 are the graphs of

y=lnx
and
y=logx

The portions of these curves below the x axis (that is, where y < 0) are cut off here,
because we haven't included any of the negative y axis. But the function values are still
there, of course! We want to graph the product function

y = (In x)(logyo x)

When we input several values for x, use a calculator to obtain the outputs, plot the
points, and then connect the points by curve fitting, we get the solid black curve. The
domain of this product function is the set of all positive reals, and the range is the set of
all nonnegative reals.

. Figure B-20 shows the same graphs as Fig. B-18. Here, the x axis is logarithmic,
spanning the two orders of magnitude from 0.1 to 10. The dashed gray lines are the
graphs of

y=Inx
and

y=log x
The solid black line is the graph of the sum function

y=Inx+logy x



Figure B-20  Illustration for the
solution to Problem 9 5

in Chap. 14.

-5

10. Figure B-21 shows the same graphs as Fig.

Chapter 14 545

B-19. In this coordinate system, the x axis is

logarithmic, spanning the single order of magnitude from 1 to 10. The y axis is linear,
spanning the values from 0 to 2.5. The dashed gray lines are the graphs of

y=lnx

and

y=logiy x

The solid black curve is the graph of the product function

7= (In x)(logyo x)

Figure B-21 Illustration for the
solution to
Problem 10 in
Chap. 14.
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Chapter 19

1. Figure B-22 shows superimposed graphs of the sine and cosine functions (dashed gray
curves) along with a graph of their difference function

b (0) =sin 6 — cos 6

shown as a solid black curve. The domain of 4 includes all real numbers. The range of /4
is the set of all reals in the closed interval [-2"2,21].

2. The solid black curve in Fig. B-23 is a graph of the difference between the squares of
the sine and the cosine functions, which are shown as superimposed dashed gray curves.
We have

b (6) = sin* @ — cos* 6

The domain of / includes all of the real numbers. The range is the set of all real
numbers in the closed interval [-1,1].

Each horizontal h(6)
division -+
is /2 units

Each vertical
division
— is 1/2 unit

Figure B-22  Illustration for the solution to Problem 1
in Chap. 15. Each horizontal division
represents 7¢ /2 units. Each vertical
division represents 1/2 unit.



Figure B-23

Illustration for the
solution to
Problem 2 in
Chap. 15. Each
horizontal division
represents 77 /2
units. Each vertical
division represents
1/4 unit.
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Each horizontal division is 7/2 units
Each vertical division is 1/4 unit

3. The solid black complex of curves in Fig. B-24 is the graph of the ratio of the square of

the cosine to the square of the sine. If we call the function 4, then

b (0) = (cos® 0)/(sin* 6)

The superimposed gray curves are graphs of the original sine-squared and cosine-
squared functions. The domain of 4 includes all real numbers except the integer

multiples of 7. The range of 4 spans the set of all nonnegative reals.

Figure B-24

Illustration for the
solution to
Problem 3 in
Chap. 15. Each
horizontal division
represents 77 /2
units. Each vertical
division represents
1/2 unit. The
vertical dashed
lines are asymptotes
of h. The positive
dependent-variable
axis is also an
asymptote of /.

Each horizontal
division
is /2 units

h(6)

Each vertical
division
is 1/2 unit
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Each horizontal division is /2 units
Each vertical division is 1 unit

Figure B-25 Illustration for the solution to
Problem 4 in Chap. 15. Each
horizontal division represents
7r/2 units. Each vertical division
represents 1 unit. The vertical
dashed lines are asymptotes of 4.
The dependent-variable axis is also
an asymptote of 4.

4. The dashed gray curves in Fig. B-25 are the superimposed graphs of the secant and
cosecant functions. The complex of solid black curves is a graph of the difference
function

b (6) =sec 0— csc O

The domain of /4 includes all real numbers except the integer multiples of /2. The
range of / spans the set of all real numbers.

5. The dashed gray curves in Fig. B-26 are the superimposed graphs of the secant-squared
and cosecant-squared functions. The complex of solid black curves is a graph of the
difference function

b (0) =sec®> O—csc* O

The domain of 4 includes all real numbers except the integer multiples of /2. The
range of 4 includes all real numbers.



Chapter 15 549

Each horizontal division is 7/2 units
Each vertical division is 1 unit

Figure B-26  Illustration for the solution to
Problem 5 in Chap. 15. Each
horizontal division represents
7 /2 units. Each vertical division
represents 1 unit. The vertical
dashed lines are asymptotes of 4.
The dependent-variable axis is also
an asymptote of /.

6. We want to find a graph of the ratio function
b (0) = (csc? 6)/(sec® 0)

We can simplify this function with some algebra, along with our knowledge of
trigonometry. The secant is the reciprocal of the cosine, so the converse is also true.
We have

1/(sec 6) = cos 6
Squaring both sides, we get

1/(sec? 6) = cos* 8

Substituting in the equation for our original ratio function, we get

b (0) = (csc? B)(cos® 6)
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The cosecant is the reciprocal of the sine, so
csc = 1/(sin 0)
Squaring both sides gives us
csc’ 0= 1/(sin* 6)
Substituting in the modified equation for our original function, we obtain
£(6) =[1/(sin* )] (cos* 6) = [(cos O)/(sin 6)]

The cosine divided by the sine is the cotangent, so we can substitute again to conclude
that our original function is

b (0) =cot® O

with the restriction that we can't define 4 for any input value where either the secant or
the cosecant become singular.

The solid black curves in Fig. B-27 show the result of squaring all the values of the
cotangent function, noting the undefined values as asymptotes or open circles. The
domain includes all real numbers except integer multiples of 77/2, where one or the other
of the original squared functions is singular. The range is the set of all positive reals.

h(o)
]

WitV

% N

v

Y

v

Y

Y

Each horizontal —+ Each vertical
division e division
is /2 units is 1 unit

Figure B-27 Illustration for the solution to
Problem 6 in Chap. 15. Each
horizontal division represents
7/2 units. Each vertical division
represents 1 unit. The vertical
dashed lines are asymptotes of 4.
The positive dependent-variable
axis is also an asymptote of 4.
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Each horizontal division is 7/2 units
Each vertical division is 1 unit

Figure B-28 Illustration for the solution to
Problem 7 in Chap. 15. Each
horizontal division represents
7t /2 units. Each vertical division
represents 1 unit. The vertical
dashed lines are asymptotes of 4.
The dependent-variable axis is also
an asymptote of 4.

7. In Fig. B-28, the dashed gray curves are graphs of the tangent and cotangent functions.
The solid black curves compose the graph of

b (6) =tan 6 — cot O

The domain of 4 is the set of all reals except the integer multiples of 77/2. The range is
the set of all real numbers.

8. In Fig. B-29, the dashed gray curves are graphs of the tangent-squared and cotangent-
squared functions. The solid black curves compose the graph of

b (6) =tan® 0 — cot® 6

The domain of / includes all reals except the integer multiples of 77/2. The range is the
set of all real numbers.

9. In Fig. B-30, the dashed gray curves represent the squares of the secant and tangent
functions. The solid black line with holes is a graph of

£(6) =sec’ O — tan” 6
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Figure B-29  Illustration for the
solution to ;
Problem 8 in |
Chap. 15. Each 3
horizontal division %
represents 77/2 units. i
Each vertical division 3
represents 1 unit. i
The vertical dashed {‘
lines are asymptotes }
of . The dependent- %

variable axis is also an

asymptote of A.

Each horizontal division is 7/2 units
Each vertical division is 1 unit

The domain of fis the set of all reals except the odd-integer multiples of 77/2. The range
of fis the set containing the number 1.

10. In Fig. B-31, the dashed gray curves represent the squares of the cosecant and cotangent
functions. The solid black line with “holes” is a graph of

f(6) =csc® 60— cot” O

The domain of fis the set of all reals except the integer multiples of 7. The range of fis
the set containing the number 1.

Figure B-30 Illustration for the £(6)
solution to -
Problem 9 in €
Chap. 15. Each
horizontal division
represents 77 /2
units. Each vertical

division represents L0 O
1 unit. [ IS Y S IS NP N AP N
=t IS A R s e
Each horizontal — Each vertical
division division

is /2 units N is 1 unit
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Figure B-31 Illustration for the £(6)
solution to T
Problem 10 in i
Chap. 15. Each
horizontal division
represents
7r/2 units. Each N
vertical division e e

represents 1 unit. N AN [EEREN P B 0

Each horizontal — Each vertical
division 1 division
is /2 units is 1 unit

Chapter 16

1. For reference, the parametric equations are

and

We can take the 1/3 power of both sides of the second equation to get

13— 4

J
Substituting y'? for # in the first equation yields

1/3)2

x=(y
which can be simplified to
x=y2h
This equation contains the variables x and y only, without the parameter z There’s

another way to approach this problem. We can take the positive-or-negative 1/2 power
of both sides of the first original equation, getting

tx'2=¢
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Then we can substitute +x"* for # in the second original equation to obtain
y= (ix1/2)3 — ixS/z

which contains the variables x and y only, without the parameter

2. The second answer to Problem 1 is an expression of the relation in which x is the
independent variable and y is the dependent variable. This relation is not a function of x.
We can see this by applying the vertical-line test to the graph of Fig. 16-4. The graph
fails the test because, for all positive values of x, there are two values of y.

3. For reference, the parametric equations are
0=z"
and
r=Inr
We can take the natural exponential of both sides of the second equation to obtain
e’ = f(ln 7)
which simplifies to
e'=t

provided that #> 0, so we're sure that In # is defined. Substituting ¢” for #in the first
original parametric equation yields

6= ()"

which simplifies to

0=¢"
This equation contains the variables 8 and r only, without the parameter z. We can
approach this problem another way. If we take the reciprocal of both sides of the first
original parametric equation, we get

0 = (+)"

as long as £ # 0, so we're sure that #~' is defined. This simplifies to

0=t
When we substitute 07" for # in the second parametric equation, we get

r=In(@")=-In 0O
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which, again, contains the variables 6 and 7 only, without the parameter z This relation
is defined only for positive real-number values of 6.

. The second answer to Problem 3 is an expression of the relation in which 6 is the
independent variable and 7 is the dependent variable. We can’t apply a line test directly
to Fig. 16-7, but we can graph the relation in a Cartesian coordinate plane with 6 on
the horizontal axis and 7 on the vertical axis. When we do that, we get the curve shown
in Fig. 16-6, with 0 in place of x and 7 in place of y. This graph passes the vertical-line
test, indicating that 7 is a function of 6.

. For reference, the parametric equations are
X=acost
and
y=asint

We've been assured that @ # 0, so we can divide the equations both through by 4 to
obtain

xla=cos t
and
yla=sin t
Squaring both sides of both equations gives us
(x/a)* = cos* ¢
and
(y/a)* =sin’ ¢
When we add these two equations, left-to-left and right-to-right, we have
(x/a)* + (y/a)* = cos® t +sin’ ¢
The Pythagorean trigonometric identity for the sine and the cosine tells us that
cos’ t+sin” t=1
for all real numbers #. Therefore, the preceding equation can be rewritten as
(xla)*+ (yla)* =1
Expanding the squared ratios on the left-hand side gives us

x*a+ytla =1
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Multiplying through by 4%, we get
x* + y2 =a
which is the equation of a circle of radius 4, centered at the origin.
6. When we subtract x* from both sides of the solution to Problem 5, we obtain
y=a-x
Taking the positive-or-negative square root of both sides gives us
y=1(a —x)"
This relation is not a function of x, as we can see when we apply the vertical-line test to
the graph of Fig. 16-10. Whenever we input any value of the independent variable x that

lies within the open interval (—4,4), our relation produces two values of the dependent
variable y.

7. For reference, the parametric equations are
x=sect
and
y=tant
When we square both sides of both equations, we obtain
x*=sec’ t
and
yP=tan’t
Subtracting the second equation from the first, left-to-left and right-to-right, we get
x*—y*=sec’ t—tan’ ¢
From trigonometry, the Pythagorean identity for the secant and the tangent tells us that
sec’ t—tan’ t=1

for all real numbers # except odd-integer multiples of 77/2. The preceding equation can
therefore be rewritten as

XZ_J/Z:I

which represents the unit hyperbola in the Cartesian xy plane.
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8. For reference, the parametric equations are
X=acsct
and
y=bcott

We've been assured that 2 # 0, so we can divide the first equation through by « to
obtain

xla=csct

We've also been told that & # 0, so we can divide the second equation through by 4,
getting

ylb=cott
Squaring both sides of both equations gives us
(xla)® =csc* ¢
and
(y/b)* =cot’ ¢

When we subtract the second equation, left-to-left and right-to-right, from the first
one, we obtain

(xla)* = (y/b)* = csc® t—cot’ ¢
The Pythagorean identity for the cosecant and the cotangent tells us that
csc’ t—cot’ t=1

for all real numbers # except integer multiples of 7. Knowing this, we can rewrite the
preceding equation as

(xla)* — (y1b)* =1
Expanding the squared ratios on the left-hand side gives us
xa -y b =1
which represents a hyperbola centered at the origin in the Cartesian xy plane. The width

of the horizontal (x-coordinate) semi-axis is # units, and the height of the vertical
(y-coordinate) semi-axis is & units.
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9. We start with the relation
x = sin (cos y)
Suppose we assign our parameter # such that
cosy=t
Taking the arccosine of both sides, we get
arccos (cos y) = arccos ¢
which simplifies to
y = arccos ¢

That’s one of our parametric equations. We can substitute # for cos y in the original
equation to get

x=sint

That’s the other parametric equation.

10. As in Problem 9, we start with the relation

x = sin (cos y)

Taking the arcsine of both sides gives us
arcsin x = arcsin [sin (cos y)]

which simplifies to

arcsin x = cos y
When we take the arccosine of both sides, we obtain

arccos (arcsin x) = arccos (cos y)
which simplifies to
arccos (arcsin x) =y

Transposing the left- and right-hand sides, we get the sought-after equation

y = arccos (arcsin x)
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Now let’s derive this equation from the parametric equations in the solution to Problem 9.
Those equations are

x=sin ¢t
and
y = arccos ¢
We can take the arcsine of both sides of the first equation, getting
arcsin x = arcsin (sin )
This simplifies to
arcsin x =¢

Substituting arcsin x for # in the right-hand side of the second parametric equation, we
obtain

y = arccos (arcsin x)

which is the same equation we got from the original relation in terms of x and y without
the parameter 7.

Chapter 17

1. The standard-form vector
—4i+ 4j — 4k
can be described by the ordered triple
(a,b,¢c) = (—4,4,—4)
We've been told that one of the points in our plane is
(x%0,%0:20) = (0,0,0)
The general formula for a plane in Cartesian xyz space is
a(x — xo) + b(y — yo) + c(z2—2)) =0
Plugging in the known values, we get

—4(x—0)+4[y—-0]+ (-4 (z-0)=0
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which simplifies to
—4x+4y—42=0
2. The standard-form vector
-2i+0j+ 0k
can be described by the ordered triple
(a,b,¢) = (=2,0,0)
One of the points in the plane is
(x0,)0020) = (4,5,6)
The general formula for a plane in Cartesian xyz space is
a(x —xp) + b(y — yo) + c(z2— ) =0
Plugging in the known values, we get
—2(x—4)+0[y-5]+0(z-6)=0
which simplifies to
-2x+8=0
3. We've been told that the equation of a certain sphere is
X+ 2x+1+)y°-2y+1+2+82+16=064
Grouping the addends by threes, we get
P+2x+ 1)+ =2y+ 1)+ (Z+ 82+ 16) =64
Factoring each of the trinomials enclosed by parentheses, we obtain
x+ 1)+ (-1 +(z+4)>=64
The general equation for a sphere in Cartesian xyz space is
(x — xp)* + (v —yo)z +(z2—zp)* =7

where (xp,)0,20) are the coordinates of the center, and 7 is the radius. Based on this
information, we can deduce that the coordinates of this sphere’s center are

(xO,_yO’ZO) = (_1 > 1 ,_4)

and the radius 7 is the positive square root of 64, which is 8.
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4. We've been told that the coordinates of the center of a certain sphere are

(x03y0320) = (5>7>_3)
and the radius is
r= 231/2
Once again, the general equation for a sphere in Cartesian xyz space is
(e=x0)* + (= 30)* + (2= 2)* =7

where (xp,)0,20) are the coordinates of the center, and 7 is the radius. Plugging in the
known values directly, we conclude that the equation for this particular sphere is

(x=5P2+@G-7) +(z+3)=23
. Stated again for reference, the equation of our object is
8(x—1)"+8(y+2)*+6(z+7)* =24

Dividing through by 24, we obtain

=113+ @+2)?3+(z+7)/4=1
This is the equation for a distorted sphere centered at

(x0,y0,20) = (1,-2,=7)

The length of the axial radius in the x direction is the positive square root of 3. The
length of the axial radius in the y direction is also the positive square root of 3. The

length of the axial radius in the z direction is the positive square root of 4, or 2, which
is a little longer than the other two axes. Therefore, our object is an ellipsoid.

. Stated again for reference, the equation for the object under scrutiny is
400(x + 2)* + 225(y — 4)* + 1442 — 3600 = 0
When we add 3600 to each side, we get
400(x + 2)* + 225(y — 4)* + 1442" = 3600
Dividing through by 3600 yields
(x+2)/19+ (y—4)?*/16+2/25=1
This is the equation for a distorted sphere centered at

(xO)_)/O)ZO) = (_2>4’0)
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The length of the axial radius in the x direction is 92 which is 3. The length of the
axial radius in the y direction is 162, which is 4. The length of the axial radius in the z
direction is 252, which is 5. Because no two of the axial radii are the same, our object
is an oblate ellipsoid.

7. We've been told that the equation of a certain object is
X+ 2x+ 1+ =2y+1-22+6z2-9=36
Grouping the terms by threes, we get
P+2x+ 1D+ 0P —2y+ 1)+ (22 +62-9) =36
which can be rewritten as
P+2x+ 1)+ =2y+1) - (F—6z+9) =36
Factoring each of the trinomials enclosed by parentheses, we obtain
x+ 1)+ @G-1"=(z—3)*=36
Dividing through by 36 gives us
(x+1)°/36 + (y— 1)*/36 — (z— 3)*/36 =1
This equation represents a hyperboloid of one sheet whose center is at

(xOy_yOyZO) = (_1> 1 :3)

and whose axis is a line parallel to the coordinate z axis.

8. We've been told that the coordinates of the vertex of an elliptic cone are (-2,3,4), and
that the cone’s axis is parallel to the coordinate y axis. The equation must therefore be of
the form

(4222 = (y— 316+ (z— 412 =0

where 4, b, and ¢ determine the eccentricity and orientation of the cross-sectional
ellipses that we get when we slice through the cone with planes perpendicular to its
axis. On the basis of the information given, all we can say about these constants is that
they’re positive real numbers.

9. Here’s the generalized equation for the elliptic cone described in Problem 8:
(x+2)/a* = (y—3)°16"+ (z—4)* /=0

This cone intersects the xz plane in a curve where the y value is always equal to 0. If we
set y = 0 in the above equation, we get

(x+2)/a*—(0-3)16°+ (z—4)* /=0
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which simplifies to
(x+2)*12=910*+ (z—4)*/12=0

If we add the quantity 9/4” to both sides, we obtain

(x+2)*2+ (z—4)* =98
Now we can divide through by the quantity 9/47, getting

(x+ 22192416 + (z—4)* /(97 16*) =1
which can also be expressed as
(x+2)*/(3alb)* + (z—4)*/(3c/b)* =1

This is a generalized equation for an ellipse in the Cartesian plane, where the variables
are x and z. The center of the ellipse has the coordinates

(X'o,Zo) = (_234)

The semi-axes have lengths 34/6 and 3c/6b.

Here, once again, is the generalized equation that we derived for the elliptic cone
described in Problem 8:

(42222 = (y= 316+ (z— 412 =0

This cone intersects the xy plane in a curve where z = 0 at every point. If we set =0 in
the above equation, we get

(x+2)a—(y—3)*16"+(0—4)*/=0

We can simplify this equation to

(x+2)*a*— (y—3)*16"+ 16/ =0
If we subtract the quantity 16/¢* from both sides, we obtain

(x+2)*/d* — (y—3)*16* =16/
Dividing through by the quantity 16/¢%, we obtain
(x+2)*/(164° 1) — (y— 3)*1(166° /&) = -1

which can be rewritten as

(x+2)*/(4alc)* — (y — 3)*/(4blo)* = -1
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Finally, we can multiply the entire equation through by —1 to obtain
(y—3)21(4blc)* — (x+2)*/(4alc)* = 1

This is a generalized equation for a hyperbola in the Cartesian xy plane. It’s oriented
differently than the hyperbolas in Chap. 13, however. Instead of opening in the positive
and negative x directions as the hyperbolas in Chap. 13 do, this pair of curves opens in
the positive and negative y directions. The coordinates of the center are

(xO{)/O) = (_2r3)
The lengths of the semi-axes are 44/c and 44/c.

Chapter 18

1. We have a three-way equation for a straight line. We want to find the preferred (lowest)
direction numbers, and then find the direction vector based on those numbers. We

also want to know the coordinates of a specific point on the line; any point will suffice.
Stated again for reference, our three-way equation is

x=1=y-2=2-4
This equation is in the standard symmetric form for a straight line in Cartesian xyz

space, so we don’t have to manipulate anything. The generalized standard-form
symmetric equation is

(x—xp)la = (y—y)lb = (z—=)lc

where (xy,7,20) are the coordinates of a specific point on the line, and 4, 4, and ¢ are

the direction numbers. Comparing the symmetric equation we've been given with the
generalized form, we can see that

X()zl
N=2
Z0=4

This tells us that (1,2,4) is a point on the line. We can also see that

a=1
b=1
c=1

so the direction numbers are (1,1,1). This set of numbers is in lowest form, because

there’s no common divisor other than 1. We can write down a standard-form direction
vector m from these values as

m=i+j+k



Chapter 18 565

2. Stated again for reference, the three-way equation for our line is
4x = 5y = 6z
Dividing the entire equation through by 60, we obtain
x/15 = y/12 = 2/10
The generalized standard-form symmetric equation is
(x—xp)a = (y—y)lb = (z2—z)lc

where (x0,50,20) are the coordinates of a specific point on the line, and 4, 4, and ¢ are the
direction numbers. In this case, we have

Xo =
J0=0
Z():O

This tells us that the origin (0,0,0) is on the line. We also have

a=15
b=12
c=10

so the line’s direction numbers are (15,12,10). This ordered triple is in lowest form, so
the direction vector m is

m = 15i+ 12j + 10k
3. We've been given the symmetric equation
(x=2)/3 = (49-8)/4 = (z+5)/(-2)
We can divide out the middle portion to get
(x=2)/3 = y=2 = (2+5)/(-2)

This equation is in the standard symmetric form. Once again, the generalized standard-
form symmetric equation is

(x—xo)a = (y—y)lb = (z—z)lc
In this situation, we have
Xo = 2

Jo=2
Z()=_5
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so we know that the point (2,2,—-5) is on the line. We can also see that

a=3
b=1
c=-2

so the line’s direction numbers are (3,1,—2). This ordered triple is in lowest form. (We
could divide it through by —1, but then we'd get two negative elements instead of only
one.) The direction vector m is therefore

m=3i+j- 2k
4. Stated again for convenience, the parametric equations for our object are
x=—4
y=t
z=—t*—1

The first equation tells us that the object lies in the plane x = —4, which is perpendicular
to the x axis, parallel to the yz plane, and 4 units distant from the yz plane on the

—x side. We can draw projections of the coordinate y and z axes into the plane x = —4,
obtaining a Cartesian yz grid. In that system, our object is a parabola defined by

y)=t
and
z=—1—1
Substituting y for ¢ in the second equation gives us
z=—y"—1

Figure B-32 is a graph of this curve as it looks when we see the plane x = —4 broadside
from a point on the positive x axis at a considerable distance from the origin.

Figure B-32  Illustration for the
solution to Problem 4 in Chap. 18.
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5. Stated again for convenience, the parametric equations are

x=F£r+2
y=t
z=0

According to the last equation, the whole object lies in the plane z= 0, which coincides
with the xy plane. In that system, the object is a parabola defined by

x=1+2t
and
y=t
Substituting y for # in the first equation, we obtain
x=y"+2y

Figure B-33 is a graph of this curve as it looks when we observe the xy plane broadside
from a point on the +z axis at a considerable distance from the origin.

y
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Figure B-33 Illustration for the solution to Problem 5
in Chap. 18.
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6. We have been given the parametric equations
X=1
y=-7
z=t12-5
According to the second equation, our object lies entirely in the plane y = —7. This
plane is perpendicular to the y axis, parallel to the xz plane, and 7 units distant from the

xz plane on the —y side. When we draw projections of the three-space x and z axes onto
the plane y = —7, we create a coordinate grid for a parabola defined by

xX=t
and
z=712-5
Let’s substitute x directly into the second of these equations to obtain
z=x"12-5
Figure B-34 is a graph of this equation as it appears when seen from a point of view

broadside to the plane y = —7. We're looking in the +y direction from somewhere along
the —y axis, but quite a lot farther away from the origin than the point where y = —7.

Figure B-34 Illustration for the solution to Problem 6
in Chap. 18.
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7. Repeated for convenience, the parametric equations are

x=4 cos t
y=4sint
z=1

According to the last equation, the object is contained entirely in the plane z= 1, which
is parallel to the xy plane and 1 unit away from it on the +z side. Within this plane, the
parametric equations of the object reduce to

x=4cost
and
y=4sint

The graph is a circle in the plane z= 1, centered on the point (0,0,1) and having
a radius of 4 units. Figure B-35 is a graph of this object as we would see it looking
broadside at the plane z= 1, from a point fairly far from the origin on the +z axis.

Figure B-35 Illustration for the solution to Problem 7
in Chap. 18.



570

Worked-Out Solutions to Exercises: Chapter 11-19

8. Repeated for convenience, the parametric equations are

x=5cos ¢t
=0
z=15sint

According to the middle equation, the entire object lies in the plane y = 0, which

is the xz plane. Within the Cartesian xz system, the equations describing the
object are

x=5cost

and
z=5sint

The graph is a circle in the xz plane, centered at the origin and having a radius of
5 units. Figure B-36 illustrates this circle as seen from somewhere along the —y axis.
We're fairly far from the origin, and we're looking in the +y direction.

Figure B-36  Illustration for the solution to Problem 8
in Chap. 18.
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9. Repeated for convenience, the parametric equations are

x=5cost
y=3sint
Z=T

According to the last equation, the object is contained entirely in the plane z = &, which
is parallel to the xy plane and 7 units away from it on the +z side. Within that plane,
the parametric equations are

x=5cost
and
y=3sint

The graph is an ellipse in the plane z= 7 and centered on (0,0,7). The major semi-axis
is parallel to the x axis, and measures 5 units wide. The minor semi-axis is parallel to
the y axis, and measures 3 units high. Figure B-37 is a graph of this ellipse as we gaze
broadside at the plane z = 7, from some location on the +z axis that’s considerably
farther from the origin than (0,0,7).

10. Stated again for reference, the parametric equations are

x=2cost
y=tlQ2rm)
z=2sint
y
A
6%%

A\

Figure B-37 Illustration for the solution to
Problem 9 in Chap. 18.
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The object described by these equations is a circular helix having a radius of 2 units,
and centered on the y axis. Here are some values of x, y, and z that we can calculate as
¢ varies, causing a point on the helix to complete a single revolution in a moving plane
perpendicular to the y axis:

* When r=0, we havex=2, y=0, and 2= 0.

* When r=m/2, we have x=0, y=1/4, and 2= 2.

* When =7, we have x=-2, y=1/2, and 2= 0.

* When r=37/2, we have x=0, y = 3/4, and z2=-2.
* When =27, we havex=2,y=1,and 2=0.

Every time ¢ increases by 27, our point makes exactly one revolution in a moving
plane that’s always perpendicular to the y axis. In addition, we can see that every
time # increases by 27, our point gets 1 unit more distant from the xz plane in the +y
direction. The pitch of the helix is therefore 1 linear unit per revolution.

The sense of rotation is rather tricky to describe. Suppose that we’re somewhere on
the y axis, and we direct our gaze in the —y direction. As the value of the parameter 7
increases, causing a point on the helix to move generally toward us, the point appears
to revolve counterclockwise around the y axis. The helix’s sense of rotation is therefore
counterclockwise in the +y direction. Figure B-38 is a perspective drawing of the graph
of this object in Cartesian xyz space.

Helix is
centered
on the +y
y axis
1 Helix turns
i counterclockwise
Pitch as we move

of helix in the +y direction

=1

+Z L
Each axis [ e Radius
division is of helix
1 unit A\ =2

Figure B-38 Illustration for the solution to Problem 10
in Chap. 18. Each axis division represents
1 unit.
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Chapter 19

1. Here’s the sequence S again, for reference:
§=5,3,1,-1,-3,-5, ...

We can read the value of the first term directly as s, = 5. After that, the terms proceed as
follows:

The second term is 3, which is 2 less than the first term.
The third term is 1, which is 2 less than the second term.
The fourth term is —1, which is 2 less than the third term.
The fifth term is —3, which is 2 less than the fourth term.
The sixth term is —5, which is 2 less than the fifth term.

We're told that S is an arithmetic sequence, so we can be sure that the terms always
differ by the same constant ¢. The general form is

S=5s0, (5o + ), (50 + 20), (50 + 30), ...

where s is the initial term and ¢ is the constant. In this case, ¢ = =2, giving us

S=[5L 5+ )L B+2x (=21, [5+3%x(-2)], ...
=55-2),5-4,5-6),5-8),(5-10),..
=5,3,1,-1,-3,-5, ...

The brackets in the first line and the parentheses in the second line aren’t technically
necessary, but they serve to visually isolate the terms. In general, the 7th term of the
series is what we get when we multiply the constant ¢ by 7z — 1 and then add it to s.
The hundredth term in S is therefore

so+ (m—1)c

5+ (100 — 1) X (-2)
5+99 X% (-2)

5+ (-198)

5-198

—-193

2. The values of the terms in the sequence S become large negatively without bound. We
can choose an integer that’s as large negatively as we want, and we’ll always be able to
find an element in S that’s still more negative. Therefore, S does not converge.

3. We're told that 4, = 2 and k= —4. Let’s plug these values into the general formula for an
infinite geometric sequence

T: l'(), fok, t()kz, fo/@3, f0k4,
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When we do that for the first seven terms, we get

th=2
nh=2X%X(-4)=-8
L =2X(-4)=2x%x16=32
5=2X(—4)’=2X(-64) =-128
=2X(—4)*=2x%x256=512

£, = 2 X (—4)° = 2 X (~1024) = —2048

ts=2 X (—4)° =2 x 4096 = 8192

This series does not converge. The terms’ actual values alternate between positive and

negative. The absolute values increase by a factor of 4 with each succeeding term. In an
intuitive sense, 7 “approaches both positive infinity and negative infinity.”

4. This time, we're given the values £, = 2 and &= —1/4. We can plug these values into the
general formula for an infinite geometric sequence
T: t(), t()k, f()kz, f()ks, t0k4,
Calculating the first seven terms, we obtain
t() = 2
=2 (~1/4) =-1/2
H=2x(~1/42=2x1/16=1/8
t=2X%X(—4)’=2x (-1/64) =-1/32
=2%(—4)*=2x1/256=1/128
ts=2 X (—4)° =2 x (-1/1024) =-1/512
te=2 % (—4)°=2 X 1/4096 = 1/2048
This series converges on 0. The terms’ actual values alternate between positive and

negative. The absolute values decrease by a factor of 4 with each succeeding term. In an
intuitive sense, 7" “approaches 0 from both sides.”

5. Here’s the sequence B again, for reference:
B=0/1,1/2, 213, 314, 4/5, ..., (n— 1)/n, ...
When we add the elements of B, we obtain the series

B.=0/1+1/24+2/3+3/4+4/5+ -+ (n—1)/n+--

In summation notation, we can write

B, = i(n— 1)/n

n=1
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The first five terms of the sequence B, listing the partial sums of B,, are
B.=0/1, 1/2,7/6, 23/12, 163/60, ...
As we continue to calculate partial sums, we keep adding values that get closer and

closer to 1. The terms in B grow at an ever-increasing rate. If we choose any positive

real number, no matter how large, we can eventually generate an element of B. that
exceeds it. Therefore, the sequence B- of partial sums does not converge.

6. Here’s the series again, expressed in summation notation:
n
S, = 2 110
i=1
When we write out the first five terms of S, as fractions, we get the sum

S, =1/10+1/100 + 1/1000 + 1/10,000 + 1/100,000 + ---

Expressing the terms as powers of 10, we have

S, =10"+ 102+ 10°+ 104+ 107 + .

Expressing the terms as decimal quantities, we have

S,= 0.1+0.01+0.001+ 0.0001 + 0.00001 + --

The first five terms in the sequence of partial sums S. are

$.=0.1,0.11,0.111,0.1111, 0.11111, ...

7. We want to find the limit

Lim 3 110
i=1

n—oo

if it exists. From the results of Problem 6, we see that it’s the limit of the sequence of
partial sums

$=0.1,0.11,0.111,0.1111, 0.11111, ...

so we know that

n—o0

Lim Y, 1/10° = 0.11111...
i=1

We learned in our algebra courses that 0.11111... = 1/9. Therefore

Lim Y, 1/10° = 1/9

n—yo
i=1
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8. When 7 =2, the partial sum is
(1+2)/22=0.75
When 7 = 6, the partial sum is approximately
(1+2+3+4+5+6)/6=0.58333
When 7 = 10, the partial sum is
(1+2+3+.-+8+9+10)/10>°=0.55
When 7 = 20, the partial sum is
(1+2+3+--+18+19+20)/20°=0.525

We're approaching 1/2 from the right (the positive side). If youre a computer expert, try
programming your machine to work out the partial sums for much larger values of 7,
and see more clearly that 1/2 (or 0.5) is indeed the limit of this sequence of partial sums.

9. Refer to Table B-1 for squares of integers from 1 to 20. When 7 = 2, the partial sum is

(12 + 2%/2° = 0.625

Table B-1. Squares and cubes of positive
integers from 1 to 20.

n n’ w
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
11 121 1331
12 144 1728
13 169 2197
14 196 2744
15 225 3375
16 256 4096
17 289 4913
18 324 5832
19 361 6859
20 400 8000
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When 7 = 6, the partial sum is approximately
(17+ 22+ 32+ 4>+ 5+ 69)/6° = 0.42130

Remember that the “wavy” equals sign means “is approximately equal to.” When 7 =
10, the partial sum is

(124+2*+3*+ .-+ 82+ 92+ 10%)/10° = 0.385
When 7 = 20, the partial sum is
(12 4+ 22+ 3%+ .- + 182+ 19% + 20%)/20° = 0.35875
We're approaching 1/3 from the right. If you're a computer expert, try programming

your machine to work out the partial sums for much larger values of 7, and see more
clearly that 1/3 (or 0.33333...) is indeed the limit of this sequence of partial sums.

Refer to Table B-1 for cubes of integers from 1 to 20. When 7 = 2, the partial sum is
(1° +2%)/2=0.5625
When 7 = 6, the partial sum is approximately
(1P+2°+3°+4°+ 5+ 6°)/6* = 0.34028
When 7 = 10, the partial sum is
(1P+2°+3°+ ..+ 8 +9°+10%/10“= 0.3025
When 7 = 20, the partial sum is
(1P+2°+3>+ ...+ 18+ 19° +20%)/20 = 0.27563

We're approaching 1/4 from the right. If you're a computer expert, try programming

your machine to work out the partial sums for much larger values of 7, and see more
clearly that 1/4 (or 0.25) is indeed the limit of this sequence of partial sums.
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APPENDIX

Special Characters in Order of
Appearance

Symbol First use
€ Chapter 1
(%) Chapter 1
[x,9) Chapter 1
(%71 Chapter 1
[x,7] Chapter 1
A Chapter 1

= Chapter 1 (App. A)

Chapter 2

<

Chapter 2

Chapter 2
Chapter 2
Chapter 5
Chapter 5

X ® 8

Chapter 6
Chapter 6
Chapter 8
Chapter 8
Chapter 8
Chapter 10

II B e e SS. WL

Meaning

Set symbol meaning “is an element of”

Ordered pair (x,y)

Open interval where x < y, such that neither x nor y
is included

Half-open interval where x < y, such that x is
included but y is not

Half-open interval where x < y, such that y is
included but x is not

Closed interval where x < y, such that x and y are
both included

Uppercase Greek letter delta, symbolizing difference
in coordinate values

“Squiggly” or “wavy” equals sign, symbolizing
approximate equality

Lowercase Greek letter theta, symbolizing an angular
variable

Lowercase Greek letter phi, symbolizing an angular
variable

Positive or negative value

Lemniscate, denoting inﬁnity

Boldface dot, symbolizing the dot product of vectors
Boldface multiplication symbol, denoting the cross
product of vectors

Positive square root of —1

Positive square root of —1, also called j operator
Standard unit vector (1,0,0) in Cartesian xyz space
Standard unit vector (0,1,0) in Cartesian xyz space
Standard unit vector (0,0,1) in Cartesian xyz space
Logical equivalence symbol, meaning “if and only if”

579
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! Chapter 12 Inverse of relation or function f

log, Chapter 14 Natural (base-¢) logarithm

In

log;o Chapter 14 Common (base-10) logarithm

Lim Chapter 19 Limit of a sequence, series, or function

) Chapter 19 Uppercase Greek letter sigma, symbolizing

summation of a sequence
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A

absolute minimum, 217
absolute value of complex number, 103-105
acceleration vector, 61
acute angle, 22
addition of functions, 222-223, 401-402
additive inverse, 60
alternative three-space, 152-171
algebra with functions, 222-227
algebraic way to find inverse relation,
229-231
angle naming, 21-22
anticommutative property of cross
product, 87
arc, 18
Arccosine function, 166-167
Arctangent function, 47-48, 182
arithmetic mean, 15
arithmetic progression, 374
arithmetic sequence, 373-378, 432—434
arithmetic series, 374
associative law
in algebra of functions, 226
for vector addition, 138
for vector-scalar multiplication, 138
asymptotes of hyperbola, 256-257
axes in Cartesian three-space, 111-112,
194-195

axes in Cartesian two-space, 4, 6

axis of helix, 364
axis of parabola, 254, 351

B

basic circular functions, 23—30
biaxial planes, 112-113, 195
bijection, 63, 212, 214-215,

238, 400

C

Cartesian complex-number plane, 92-93,
191-192

Cartesian direction of vector, 58

Cartesian cross product, 148—150

Cartesian dot product, 79-82, 187

Cartesian magnitude of vector, 56-57

Cartesian model of complex vector, 101

Cartesian negative of vector, 60, 135, 183,
199-200

Cartesian plane, 3-20, 173

Cartesian product of scalar and vector, 73-75,
185. 200

Cartesian three-space, 111-127, 194-202

Cartesian-to-cylindrical coordinate
conversion, 157-159, 204-205

Cartesian-to-polar complex vector conversion,
102-103, 191-193
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Cartesian-to-polar coordinate conversion, 47-52,
181-182
Cartesian-to-spherical coordinate conversion,
166-168, 206-207
Cartesian two-space, 3-20, 173
Cartesian vector difference, 60-61, 71, 135-1306,
184, 199-200
Cartesian vector sum, 59—60, 70, 134-135, 137,
183, 199
Cartesian xy plane, 3-20, 173
Cartesian xyz space, 111-127, 194-202
circle
centered at origin, 236
in Cartesian three-space, 357-363
in Cartesian two-space, 258-259, 315-316
in polar coordinates, 41
circle eccentricity, 256, 407-408
circle equation, 258-259, 315-316,
357-363, 411
circle geometry, 249-252, 407411
circle specifications, 255-256
circular functions, 21-26
circular helix in Cartesian three-space, 363-369,
431
circular motion, 25-26
closed interval, 5, 172-173
closed surfaces, 336
co-domain, 214-215
coefficients of quadratic equation, 350
common exponential function, 266-267,
411-413
common logarithmic function, 273-274,
413-416
commutative law
in algebra of functions, 226
for dot product, 146
for vector addition, 61-62, 138
for vector-scalar multiplication, 138
complex conjugates, 97, 191
complex number difference, 96, 98, 190
complex number product, 96, 98, 190
complex number ratio, 96-97, 99, 190
complex number raised to power, 97, 99-100
complex number sum, 96-98, 190
complex numbers, 90-110, 190-194
complex vector difference, 104
complex vector power in polar coordinates, 105

complex vector product in polar coordinates,
104-106

complex vector ratio in polar coordinates,
104-107

complex vector sum, 104

complex vectors, 101-110

conic sections, 249-265

constant angle in polar coordinates, 40

constant radius in polar coordinates, 41

convergence, 379-380, 434—435

convergent sequence, 380, 434-435

convergent series, 380, 434435

coordinates in Cartesian two-space, 3—4

coordinate transformation, 45-52, 362

cosecant function, 30-31, 34, 177-178,
290-295

cosine function, 27-28, 33, 177, 285-290

cosine wave, 27-28

cotangent function, 32, 34, 177-179, 296-301

cross product, 82-87, 144-150, 188-189, 202

cubic function, 357

cylindrical conversions, 156-159

cylindrical coordinates, 152-159, 202-205

cylindrical-to-Cartesian coordinate conversion,
156-157, 204

cylindrical-to-spherical coordinate conversion,

169-170

D

degree measure, 22-23
degree of arc, 22
“deltas,” 13-14
DeMoivre’s theorem, 107-108, 193—194
dependent variable, 3, 37, 400-401
destination set, 211, 214, 399
difference between functions, 224, 400401
directed line segment, 55
directional diagonal of parallelogram, 59
direction angle(s)
in Cartesian three-space, 131, 133-134
in cylindrical coordinates, 152-153, 203
in polar coordinates, 37-38, 179-180
in trigonometry, 23-24
direction numbers in Cartesian
three-space, 345-346, 348-350,
428-429



direction of vector, 55, 58, 62-63, 131,
133-134, 182-183, 199
directrix of parabola, 254
distance between two points, 12-15, 120-122,
174-175, 196-197
distance of point from origin, 8-11, 116-120,
174, 196
distributive laws
in algebra of functions, 226
for cross product, 147
for dot product, 147
for scalar addition, 138
for vector addition, 139
distorted sphere in Cartesian xyz space, 328-337,
426427
division of functions, 225, 400—401
domain of relation, 211, 214-215, 407
dot product, 79-82, 141-143, 146148,
187-188, 201
“dueling spirals,” 221

E

e (exponential constant), 266
eccentricity of conic section, 254-258
ellipse
in Cartesian three-space, 362-363
centered at origin, 237
ellipse eccentricity, 257-258, 407-408
ellipse equation, 258-260, 262, 362-363, 410
ellipse foci, 256
ellipse geometry, 249-252, 407—411
ellipse specifications, 255-256
ellipsoid in Cartesian xyz space, 330-332, 335,
426-427
elliptical helix, 368-369
elliptic cone, 339-340, 427
equations for conic sections, 258-263, 410-411
equivalent vector, 128
Euler’s constant, 266
exponential constant, 266
exponential functions, 266-272, 411-413

F
flare angle, 250
focal length of parabola, 254-256, 408-410
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foci of ellipse, 256
focus of parabola, 253-256, 408-410
force vector, 61

frequency of wave function, 285
function, concept of, 39, 173, 180, 216-228

G
geometric progression, 379
geometric sequence, 378-381, 433434
geometric series, 379-380, 433-434
graphic way to find inverse relation, 231-238
graph(s)
of arithmetic sequence, 375
of conic sections, 259-261
of geometric sequence, 380-381
involving cosecant function, 290-295
involving cosine function, 285-290
involving exponential functions, 266-272,
411-413
involving logarithmic functions, 273-282,
413-416
involving secant function, 290-295
involving sine function, 285-290
involving trigonometric functions, 285-295,
416-419
of parametric equations, 308-314

H

half-hyperbola, 252

half-open interval, 5, 172-173

harmonic sequence, 382-383

height in cylindrical coordinates, 152-153,
203-204

helix, 363-369

horizontal angle in spherical coordinates,
160, 206

horizontal semi-axis, 260

hyperbola asymptotes, 256-257

hyperbola eccentricity, 256, 407-408

hyperbola equation, 261-262, 411

hyperbola geometry, 256-257, 407-411

hyperbola graph, 220

hyperbola specifications, 256-257, 407411

hyperboloid of one sheet, 337-338, 341, 427

hyperboloid of two sheets, 338-339, 341, 427
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I

identities, trigonometric, 33-34, 179
imaginary number line, 91-93
imaginary numbers, 90-91, 189
independent variable, 3, 37, 400-401
inflection point, 29

infinity, 29

injection, 212, 214-215, 399-400
interval notation, 3-5, 172—-173
“inverse ellipse,” 237-238

inverse function, 238-246, 405407
inverse relation, 229-248, 402—407
inverse trigonometric function, 47

JKL
J operator, 90, 189
left-hand limit, 392, 435
left-hand scalar multiplication of
vector, 130
lemma, 283
light cone, 251-252
limit
of function, 390-394, 434—435
of sequence, 382-385, 434435
of series, 388—389, 394—396, 434—435
line from parametric equations, 304—308,
345-350
line in Cartesian three-space, 345-350
logarithmic coordinate planes, 279-282
logarithmic functions, 273-282, 413416
logarithms of reciprocals, 274-279
“log” key on calculator, 278
log-log coordinates, 280282

M

magnitude of vector, 55-57, 62-63, 131, 182,
198-199

major semi-axis, 253

mathematical rigor, 2

maximal domain, 214-215

midpoint between two points, 15-18, 122-125,
175-176, 197-198

minor semi-axis, 253

“mirror-image spirals,” 41-43

mitosis, 382

mixed vectors and scalars, 148
multiplication of functions, 225, 400-401

N

naming angles, 21-22

natural exponential function, 266-267, 411-413

natural logarithmic function, 273-274, 413416

negative angle, 24

negative direction angle, 38, 63, 179, 184, 203

negative eccentricity, 257

negative radius coordinates, 38, 153, 179-180,
184, 203-204

negative magnitude of vector, 63

nonpositive reals, 276

nonstandard direction angles, 38, 153, 160-161,
203, 206

(0)

oblate ellipsoid in Cartesian xyz space, 332333,
335, 426-427

oblate sphere in Cartesian xyz space, 329331,
334, 426-427

obtuse angle, 22

offbeat angles, 23-24

one-to-one correspondence, 63, 212, 400

onto relation, 212, 399—400

open interval, 5, 172-173

open surfaces, 336

ordered pair, 3-4, 174, 211-212

ordered triple, 113-114, 195-196

ordinate, 25

origin of Cartesian two-space, 3

originating point of vector, 55

P

parabola axis, 254

parabola directrix, 254, 408-409

parabola eccentricity, 256, 407-408

parabola equation, 260-263, 410411

parabola focus, 253-254, 256, 408-409

parabola geometry, 249-252, 407411

parabola in Cartesian three-space,
350-357

parabola vertex, 253



parameter, 304, 307, 419420, 424
parametric equations
from graphs, 314-317
in three-space, 345-372, 428-431
in two-space, 304-319, 419-424
parametric method, 346-347
partial sums, 377-378, 432-434
peak amplitude of wave function, 285,
416-419
peaks of wave function, 285
peak-to-peak amplitude of wave function, 288
period of wave function, 285, 416419
perpendicular bisector, 232
pitch
of helix, 364
of spiral, 42
planes in Cartesian xyz space, 320-323,
424-425
plot
of arithmetic sequence, 375
of geometric sequence, 380-381
point of inflection, 29
polar complex-number plane, 102, 191-192
polar complex vector power, 105
polar complex vector product, 104-106
polar complex vector ratio, 104-107
polar coordinates, 37-54, 156, 179-181
polar cross product, 83—-85 188-189
polar direction of vector, 62-63
polar dot product, 79-82, 187-188
polar magnitude of vector, 62-63
polar model of complex vector, 102
polar negative of vector, 67, 185
polar product of scalar and vector, 75-79,
185-187
polar-to-Cartesian complex vector conversion,
103, 193
polar-to-Cartesian coordinate transformation,
45-46, 181, 184
polar two-space, 37-54
polar vector difference, 66-68, 70, 185
polar vector sum, 64-66, 69, 185
“pool rule” for axis orientation, 115, 195
positive or negative infinity, 29
powers of —j, 94-95
primary circular functions, 23-30
principal branch of tangent function, 47-48
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product
of functions, 225, 400-401
of scalar and vector, 73-79, 130-131
projection point
in cylindrical coordinates, 152-153
in spherical coordinates, 160, 165
pure imaginary quantity, 93
pure real quantity, 93
Pythagorean identities, 33-34, 179, 288289,
303
Pythagorean theorem, 8, 117, 174, 254

Q

quadrants in Cartesian two-space, 6-7, 173
quadratic equation, 350

quadratic function, 350, 353-356

quartic function, 357

Quod erat demonstradum, 82

quotient of functions, 225, 400—401

R
radar display, 38-39
radian measure, 22, 176
radius
in cylindrical coordinates, 152-153
in polar coordinates, 37-38, 179-180
of sphere, 327
in spherical coordinates, 160
range of relation, 211, 214-215, 407
ratio of functions, 225, 400-401
real domain, 226
real-number coefficient, 91
real-number domain, 226
real-number line, 3—4, 92-93
rectangular coordinates, 7
rectangular three-space, 111, 195
rectangular xyz space, 111, 195
reference axis
in cylindrical coordinates, 152-153
in spherical coordinates, 160
reference plane
in cylindrical coordinates, 152-153
in spherical coordinates, 160
reflex angle, 22
relation, 39, 173, 180, 211-228, 399-400
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reciprocals of exponential functions, 267-271

restricted domain and range, 243

reverse-directional commutative law for cross
product, 146

right angle, 22

right-hand limit, 391-392, 435

right-hand rule for cross products, 86-87, 189

right-hand scalar multiplication of vector, 131

rigor, 62

rigor mortis, 62

S
scalar, 73-79
scalar times vector, 73—79
secant function, 30-31, 34, 177-178
secondary circular functions, 30-33
second-degree equation, 158
semi-axis, 253, 260
semilogarithmic coordinates, 279-282
sense of helix rotation, 367-368
sequence, 373-398, 431-434
series, 374-398, 431-434
similar triangles, 16, 46
sine function, 25-26, 33, 177, 285-290
sine wave, 26
singularity, 29
source set, 211, 214, 399
sphere in Cartesian xyz space, 324—328,
425-426
sphere radius, 327
spherical conversions, 164-170
spherical coordinates, 159-170, 205-207
spherical-to-Cartesian coordinate conversion,
164-166, 206
spherical-to-cylindrical coordinate conversion,
169-170
spiral from parametric equations, 306-307
spiral in polar coordinates, 41-43, 221
square
of cosecant function, 292-295
of cosine function, 286-290
of cotangent function, 298-301
of secant function, 292-295
of sine function, 286290
of tangent function, 298-301
square root of negative real number, 90, 94

standard form of vector, 55-57, 128-130, 182,
198-199

standard unit vectors, 139—140, 200-201

straight angle, 22

straight line in polar coordinates, 40

straight line segment, 18

subtraction of functions, 224, 400—-401

summation notation, 385—-388, 434

sum of functions, 222-223, 401-402

surfaces in three-space, 320-344

surjection, 212, 214-215

symmetric-form equation, 345-346

symmetric method, 345-346

T
tangent function, 28-29, 34, 177-178, 296-301
terminating point of vector, 55
“tightness” of spiral, 42

time as a parameter, 307, 424
trigonometric curves, 285-303, 285-295
trigonometric identities, 33-34, 179
trigonometry, 21-36

two-space function, 216-228, 400
two-space relation, 211-228, 400
two-space inverse relation, 229-248

U

unit circle, 21

unit hyperbola, 262

unit imaginary number, 90, 189
unit vectors, 139—140, 200-201

vw
variables
in Cartesian three-space, 111-112, 194-195
in Cartesian two-space, 3
in polar plane, 37-39 179
vector, definition of, 55, 182
vector basics, 55-72
vector difference, 60—61, 71, 135-136
vector product, 82-87
vector sum, 59-60, 70, 134-135, 137,
140-141
vector times scalar, 73—-79



vectors
in three-space, 128-151
in two-space, 55-72
velocity vector, 61
Venn diagram, 214
vertex of parabola, 253
vertical angle in spherical coordinates, 160, 206
vertical-line test for function, 216, 400-401
vertical semi-axis, 260

Index 589

XYZ

x component of vector, 56

x-linear semilog coordinates, 279-280, 282
xy plane, 56, 112-113

xz plane, 112-113

y component of vector, 56

y-linear semilog coordinates, 280282

yz plane, 112-113

zero vector, 71
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