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Preface

If you want to improve your understanding of calculus, then this book is for you. It can sup-
plement standard texts at the high-school senior, trade-school, and college undergraduate
levels. It can also serve as a self-teaching or home-schooling supplement. Prerequisites include
intermediate algebra, geometry, and trigonometry. It will help if you've had some precalculus
(sometimes called “analysis”) as well.

This book contains three major sections. Part 1 involves differentiation in one variable.
Part 2 is devoted to integration in one variable. Part 3 deals with partial differentiation and
multiple integration. You'll also get a taste of elementary differential equations.

Chapters 1 through 9, 11 through 19, and 21 through 29 end with practice exercises. You
may (and should) refer to the text as you solve these problems. Worked-out solutions appear
in Apps. A, B, and C. Often, these solutions do not represent the only way a problem can be
figured out. Feel free to try alternatives!

Chapters 10, 20, and 30 contain question-and-answer sets that finish up Parts 1, 2, and
3, respectively. These chapters will help you review the material.

A multiple-choice final exam concludes the course. Don't refer to the text while taking
the exam. The questions in the exam are more general (and easier) than the practice exercises
at the ends of the chapters. The exam is designed to test your grasp of the concepts, not to see
how well you can execute calculations. The correct answers are listed in App. D.

In my opinion, most textbooks place too much importance on “churning out answers,”
and often fail to explain how and why you get those answers. I wrote this book to address these
problems. I've tried to introduce the language gently, so you won’t get lost in a wilderness of
jargon. Many of the examples and problems are easy, some take work, and a few are designed
to make you think hard.

If you complete one chapter per week, you'll get through this course in a school year. But
don’t hurry. When you've finished this book, I recommend Calculus Demystified by Steven G.
Krantz and Advanced Calculus Demystified by David Bachman for further study. If Chap. 29
of this book gets you interested in differential equations, I recommend Differential Equations
Demystified by Steven G. Krantz as a first text in that subject.

Stan Gibilisco
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CHAPTER

Single-Variable Functions

Calculus is the mathematics of functions, which are relationships between sets consisting of
objects called elements. The simplest type of function is a single-variable function, where the
elements of two sets are paired off according to certain rules.

Mappings

Imagine two sets of points defined by the large rectangles in Fig. 1-1. Suppose you're inter-
ested in the subsets shown by the hatched ovals. You want to pair off the points in the top oval
with those in the bottom oval. When you do this, you create a mapping of the elements of one
set into the elements of the other set.

Domain, range, and variables

All the points involved in the mapping of Fig. 1-1 are inside the ovals. The top oval is called
the domain. That's the set of elements that we “go out from.” In Fig. 1-1, these elements are
a through £ The bottom oval is called the range. That’s the set of elements that we “come in
toward.” In Fig. 1-1, these elements are » through z.

In any mapping, the elements of the domain and the range can be represented by vari-
ables. A nonspecific element of the domain is called the independent variable. A nonspecific
element of the range is called the dependent variable. The mapping assigns values of the depen-
dent (or “output”) variable to values of the independent (or “input”) variable.

Ordered pairs

In Fig. 1-1, the mapping can be defined in terms of ordered pairs, which are two-item lists
showing how the elements are assigned to each other. The set of ordered pairs defined by the
mapping in Fig. 1-1 is

{(a,0), (bw), (6v), (6x), (62), (dy), (e.2), (f)}
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Figure 1-1 A relation defines how the elements of a set are assigned to
the elements of another set.

Within each ordered pair, an element of the domain (a value of the independent variable)
is written before the comma, and an element of the range (a value of the dependent variable) is
written after the comma. Whenever you can express a mapping as a set of ordered pairs, then
that mapping is called a relation.

Are you confused?

You won't see spaces after the commas inside of the ordered pairs, but you'll see spaces after the commas
separating the ordered pairs in the list that make up the set. These aren’t typographical errors! That’s the
way they should be written.
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Modifying a relation

A function is a relation in which every element in the domain maps to one, but never more
than one, element in the range. This is not true of the relation shown in Fig. 1-1. Element ¢
in the domain maps to three different elements in the range: v, x, and z.

In a function, it’s okay for two or more values of the independent variable to map to a
single value of the independent variable. But it is 7oz okay for a single value of the indepen-
dent variable to map to two or more values of the dependent variable. A function can be
many-to-one, but never one-to-many. Sometimes, in order to emphasize the fact that no value
of the independent variable maps into more than one value of the dependent variable, we’ll
talk about this type of relation as a #rue function or a legitimate function.

The relation shown in Fig. 1-1 can be modified to make it a function. We must eliminate
two of the three pathways from ¢in the domain. It doesn’t matter which two we take out. If we
remove the pathways represented by (¢,v) and (¢,2), we get the function illustrated in Fig. 1-2.

Figure 1-2 A function is a relation in which every element of the
domain is assigned to one, but never more than one,
element of the range.
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Here’s an informal way to think of the difference between a relation and a function. A rela-
tion correlates things in the domain with things in the range. A function operates on things in the
domain to produce things in the range. A relation merely sits there. A function does something!

Three physical examples

Let’s look at three situations that we might encounter in science. All three of the graphs
in Fig. 1-3 represent functions. The changes in the value of the independent variable can be
thought of as causative, or at least contributing, factors that affect the value of the dependent
variable. We can describe these situations as follows:

e The outdoor air temperature is a function of the time of day.
e The number of daylight hours on June 21 is a function of latitude.
e The time required for a wet rag to dry is a function of the air temperature.

A mathematical example

Imagine a relation in which the independent variable is called x and the dependent variable is
called y and for which the domain and range are both the entire set of real numbers (also called
the reals). Our relation is defined as

y=x+1

This is a function between xand y because there’s never more than one value of y for any value
of x. Mathematicians name functions by giving them letters of the alphabet such as £ g, and
h. In this notation, the dependent variable is replaced by the function letter followed by the
independent variable in parentheses. We can write

flx)=x+1

to represent the above equation, and then we can say, “fof x equals x plus 1.” When we write
a function this way, the quantity inside the parentheses (in this case x) is called the argument
of the function.

The inverse of a relation

We can transpose the domain and the range of any relation to get its inverse relation, also called
simply the inverse if the context is clear. The inverse of a relation is denoted by writing a
superscript -1 after the name of the relation. It looks like an exponent, but it isnt meant to be.

The inverse of a relation is always another relation. But when we transpose the domain
and range of a function, we don’t always get another true function. If we do, then the function
and its inverse reverse, or “undo,” each other’s work.

Suppose that xand yare variables, fand £~ are functions that are inverses of each other,
and we know these two facts:

fe)=y
and

fy=x
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Figure 1-3 At A, the air temperature is a function of the time of day. At

B, the number of daylight hours on June 21 is a function of
the latitude (positive is north; negative is south). At C, the

drying time for a wet rag is a function of the air temperature.

Then the following two facts are also true:

FHf)]=x

fUf Wl=y

Mappings

7
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Are you confused?

It’s reasonable to wonder, “Can we tell whether or not a relation is a function by looking at its
graph?” The answer is yes. Consider a graph in which the independent variable is represented
by the horizontal axis, and the dependent variable is represented by the vertical axis. Imagine a
straight, vertical line extending infinitely upward and downward. We move this vertical line to the
left and right, so the point where it intersects the independent-variable axis sweeps through every
possible argument of the relation. A graph represents a function “if and only if” that graph never
crosses a movable vertical line at more than one point. Let’s call this method of graph-checking
the vertical-line test.

Here's a notel

In mathematics, the expression “if and only if” means that logical implication works in both direc-
tions. In the above example, we are really saying two things:

e If a graph represents a function, then the graph never crosses a movable vertical line at more
than one point.

e If a graph never crosses a movable vertical line at more than one point, then the graph repre-
sents a function.

The expression “if and only if” is abbreviated in text as “iff.” In logic, it’s symbolized by a double-
shafted, double-headed arrow pointing to the left and right (<).

Here's a challengel!

Imagine that the independent and dependent variables of the functions shown in Fig. 1-3 are reversed.
This gives us some weird assertions.

e The time of day is a function of the outdoor air temperature.
e Latitude is a function of the number of daylight hours on June 21.
e The air temperature is a function of the time it takes for a wet rag to dry.

Only one of these statements translates into a mathematical function. Which one?

Solution

You can test the graph of a relation to see if its inverse is a function by doing a horizontal-line test.
It works like the vertical-line test, but the line is parallel to the independent-variable axis, and it
moves up and down instead of to the left and right. The inverse of a relation represents a function
if and only if the graph of the original relation never intersects a movable horizontal line at more
than one point.

When you test the graphs shown in Figs. 1-3A and B, you'll see that they fail the horizontal-line test.
That means that the inverses aren’t functions. When you transpose the independent and dependent vari-
ables in Fig. 1-3C, you get another function, because the graph passes the horizontal-line test.
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Linear Functions

When the argument changes in a linear function, the value of the dependent variable changes
in constant proportion. That proportion can be positive or negative. It can even be zero, in
which case we have a constant function.

Slope and intercept

In conventional coordinates, linear functions always produce straight-line graphs. Conversely,
any straight line represents a linear function, as long as that line isn’t parallel to the dependent-
variable axis.

The slope, also called the gradient, of a straight line in rectangular coordinates (where the axes
are perpendicular to each other and the divisions on each axis are of uniform size) is an expres-
sion of the steepness with which the line goes upward or downward as we move to the right. A
horizontal line, representing a constant function, has a slope of zero. A line that ramps upward as
we move to the right has positive slope. A line that ramps downward as we move to the right has
negative slope. Figure 1-4 shows a line with positive slope and another line with negative slope.

To calculate the slope of a line, we must know the coordinates of two points on that line.
If we call the independent variable x and the dependent variable y then the slope of a line,
passing through two points, is equal to the difference in the y-values divided by the difference
in the x-values. We abbreviate “the difference in” by writing the uppercase Greek letter delta
(A). Let’s use « to symbolize the slope. Then

a=AylAx

6 Slope is
positive

y-intercept is 3

Slope is
negative

Figure 1-4  Graphs of two linear functions.
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We read this as “delta y over delta x.” Sometimes the slope of a straight line is called rise over
run. This makes sense as long as the independent variable is on the horizontal axis, the depen-
dent variable is on the vertical axis, and we move to the right.

An intercept is a point where a graph crosses an axis. We can plug 0 into a linear equation
for one of the variables, and solve for the other variable to get its intercept. In a linear func-
tion, the term y-intercept refers to the value of the dependent variable yat the point where the
line crosses the y axis. In Fig. 1-4, the line with positive slope has a j-intercept of 3, and the
line with negative slope has a j-intercept of -2.

Standard form for a linear function
If we call the dependent variable x, then the standard form for a linear function is

flx)=ax+b

where 2 and & are real-number constants, and fis the name of the function. As things work
out, « is the slope of the function’s straight-line graph. If we call the dependent variable y then
b is the y-intercept. We can substitute y in the equation for f{(x), writing

y=ax+b
Either of these two forms is okay, as long as we keep track of which variable is independent

and which one is dependent!

Are you confused?

If the graph of a linear relation is a vertical line, then the slope is undefined, and the relation
is not a function. The graph of a linear function can never be parallel to the dependent-variable
axis (or perpendicular to the independent-variable axis). In that case, the graph fails the verti-
cal-line test.

Here's a challengel!
Rewrite the following equation as a linear function of x, and graph it on that basis:

12x+6y=18

Solution

We must rearrange this equation to get y all by itself on the left side of the equals sign, and an expres-
sion containing only x and one or more constants on the right side. Subtracting 12x from both sides
gives us:

6y=-12x+18

Dividing each side by 6 puts it into the standard form for a linear function:

y=(-12x)/6 +18/6 =-2x+3
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If we name the function £ then we can express the function as
flx)=-2x+3

In the graph of this function, the y-intercept is 3. We plot the y-intercept on the y axis at the mark for
3 units, as shown in Fig. 1-5. That gives us the point (0,3). To find the line, we must know the coordi-
nates of one other point. Let’s find the x-intercept! To do that, we can plug in O for y to get

0=-2x+3

Adding 2x to each side and then dividing through by 2 tells us that x = 3/2. Therefore, the point (3/2,0)
lies on the line. Now that we know (0,3) and (3/2,0) are both on the line, we can draw the line through
them.

Here's a twist!

When we move from (0,3) to (3/2,0) in Fig. 1-5, we travel in the negative y direction by 3 units, so
Ay = -3. We also move in the positive x direction by 3/2 units, so Ax = 3/2. Therefore

Ay/Ax ==3/(3/2) = -2

reflecting the fact that the slope of the line is -2. We'll always get this same value for the slope, no matter
which two points on the line we choose. Uniformity of slope is characteristic of all linear functions. But
there are functions for which it isn’t so simple.

(0,3)

y-interceptis 3 — (3/2,0)

2 Xx-intercept is 3/2
D e s e s > x
-6 -4 -2 € 6
oL
f(x)=—2x+3 4
=-2x+3

y X+ 4
—6

Figure 1-5 Graph of the linear function y= -2x+ 3.
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Nonlinear Functions

When the value of the argument changes in a nonlinear function, the value of the dependent
variable also changes, but not always in the same proportion. The slope can't be defined for
the whole function, although the notion of slope can usually exist at individual points. In
rectangular coordinates, the graph of a nonlinear function is always something other than a
straight line.

Square the input

Let’s look at a simple nonlinear relation. The domain is the entire set of reals, and the range is
the set of nonnegative reals. The equation is

y=x
If we call the relation g we can write
g =x

For every value of x in the domain of g, there is exactly one value of y in the range. Therefore,
gis a function. But, as we can see by looking at the graph of gshown in Fig. 1-6, the reverse is
not true. For every nonzero value of yin the range of g, there are two values of xin the domain.
These two x-values are always negatives of each other. For example, if y= 49, then x=7 or
x=-7. This means that the inverse of gis not a function.

Slope
varies

—6 T

\4

Figure 1-6  Graph of the nonlinear function y= »*.
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Cube the input

Here’s another nonlinear relation. The domain and range both span the entire set of reals. The
equation is

y=x
This is a function. If we call it 4, then:
h(x)=x>

For every value of x in the domain of 4, there is exactly one value of yin the range. The reverse
is also true. For every value of y in the range of 4, there is exactly one x in the domain. This
means that the inverse of 4 is also a function. We can see this by looking at the graph of 4
(Fig. 1-7). When a function is one-to-one and its inverse is also one-to-one, then the function
is called a bijection.

Are you confused?

Have you noticed that in Fig. 1-7, the y axis is graduated differently than the x axis? There’s a reason
for this. We want the graph to fit reasonably well on the page. It’s okay for the axes in a rectangular
coordinate system to have increments of different sizes, as long as each axis maintains a constant
increment size all along its length.

Slope
varies

Figure 1-7  Graph of the nonlinear function y= x’.



14 Single-Variable Functions

Here's a challengel!

Look again at the functions g and & described above, and graphed in Figs. 1-6 and 1-7. The inverse of
h is a function, but the inverse of g is not. Mathematically, demonstrate the reasons why.

Solution

Here’s the function g again. Remember that the domain is the entire set of reals, and the range is the
set of nonnegative reals:

y=gl)=x
If you take the equation y = x* and transpose the positions of the independent and dependent variables,
you get
x = _yz
This is the same as
y = ()

The plus-or-minus symbol indicates that for every value of the independent variable x you plug in
you’ll get two values of y, one positive and the other negative. You can also write

gl M=%

The function g is two-to-one (except when y = 0), and that’s okay. But the inverse relation is one-to-
two (except when y = 0). So, while g™' is a legitimate relation, it is not a function.

The function % has an inverse that is also a function. Remember from your algebra and set theory
courses that the inverse of any bijection is also a bijection. You have

h(x)=x>
and
b (x) = %13

If a function is one-to-one over a certain domain and range, then you can transpose the values of the
independent and dependent variables while leaving their names the same, and you can also transpose the
domain and range. That gives you the inverse, and it is a function. However, if a function is many-to-one,
then its inverse is one-to-many, so that inverse is not a function.

“Broken” Functions

Relations and functions often show “gaps,” “jumps,” or “blow-ups” in their graphs. This can
happen in countless different ways. Let’s look at some examples.
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y=-3ifx<0 4
y=0ifx=0 O
y=38ifx>0 o

-6 +

\ 4

Figure 1-8  Graph of the “broken” function y=-3
ifx<0,y=0ifx=0,y=3if x> 0.

A three-part function

Figure 1-8 is a graph of a function where the value is —3 if the argument is negative, 0 if the
argument is 0, and 3 if the argument is positive. Let’s call the function £ Then we can write

flx)= -3ifx<0
0ifx=0
3ifx>0

Even though this function takes two jumps, there are no gaps in the domain. The function is
defined for every real number x.

The reciprocal function

Figure 1-9 is a graph of the reciprocal function. We divide 1 by the argument. If we call this
function g then we can write

g(x)=1/x
This graph has a two-part blow-up at x= 0. As we approach 0 from the left, the graph blows

up negatively. As we approach 0 from the right, it blows up positively. The function is defined
for all values of x except 0.
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\ 4

Figure 1-9  Graph of the “broken” function y=1/x.

The tangent function
Figure 1-10 is a graph of the tangent function from trigonometry. If we call this function 4,
then we can write

b (x)=tan x

This graph blows up at infinitely many values of the independent variable! It is defined for
all values of x except odd-integer multiples of /2.

Are you confused?

Does it seem strange that a function can jump abruptly from one value to another, skip over individual
points, or even blow up to “infinity” or “negative infinity”? You might find this idea difficult to com-
prehend if you’re the literal-minded sort. But as long as a relation passes the test for a function accord-
ing to the rules we’ve defined, it’s a legitimate function.

Here's a challengel!

Draw a graph of the relation obtained by rounding off an argument to the nearest integer smaller
than or equal to itself. Call the independent variable x and the dependent variable y. Here are some
examples to give you the idea:
If x=3, then y=3
If x=-6,then y=—-6
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y=tan x

Figure 1-10  Graph of the “broken” function y= tan x.

Ifx=m,theny=3
Ifx=-m, theny=—4
If x=4.999, then y =4
If x=-5.001, then y=—6

Is the relation represented by this graph a function? How can we tell?

Solution

This graph is shown in Fig. 1-11. It passes the vertical-line test, so it represents a function. We can also tell
that this relation is a function by the way it’s defined. No matter what the argument, the relation maps it to
one, but only one, integer. This type of function is called a step function because of the way its graph looks.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
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Figure 1-11  Graph of a step function. Every argument
is rounded off to the nearest integer smaller
than or equal to itself.

represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Imagine a mapping from the set of all integers onto the set of all nonnegative integers in
which the set of ordered pairs is

{(0,0), (lsl)’ (_1)2), (2>3)) (_2’4)’ (3s5)’ (_3)6), (4>7)) (_4’8)’ e }
Is this relation a function? If so, why? If not, why no@? Is its inverse a function? If so,
why? If not, why not?

2. Consider a mapping from the set of all integers onto the set of all nonnegative integers
in which the set of ordered pairs is

{(0,0), (1,1), (-1,1), (2,2), (-2,2), (3,3), (-3,3), (4,4), (-4,4), .. . }

Is this relation a function? If so, why? If not, why not? Is its inverse a function? If so,
why? If not, why not?

3. Consider the following linear function:

flx)=4x-5

What is the inverse of this? Is it a function?
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. Consider the following linear function:

gx)=7

What is the inverse of this? Is it a function?

. In the Cartesian coordinate xy plane, the equation of a circle with radius 1, centered at

the origin (0,0), is

x2+y2:l

This particular circle is called the unit circle. Is its equation a function of x? If so, why?
If not, why not?

. Is the equation of the unit circle, as expressed in Prob. 5, a function of y? If so, why? If

not, why not?

. Consider the nonlinear function we graphed in Fig. 1-6:

g =x

As we saw, the inverse relation, g™', is not a function. But it can be modified so it
becomes a function of x by restricting its range to the set of positive real numbers.
Show with the help of a graph why this is true. Does g™' remain a function if we
allow the range to include 0?

. We can modify the relation g' from the previous problem, making it into a function

of x, by restricting its range to the set of negative real numbers. Show with the help
of a graph why this is true. Does g™' remain a function if we allow the range to
include 0?7

. Look again at Figs. 1-8 through 1-10. All three of these graphs pass the vertical-

line test for a function. This is true even though the relation shown in Fig. 1-9 is not
defined when x = 0, and the relation shown in Fig. 1-10 is not defined when x is any
odd-integer multiple of 7z/2. Now suppose that we don’t like the gaps in the domains
in Figs. 1-9 and 1-10. We want to modify these functions to make their domains
cover the entire set of real numbers. We decide to do this by setting y = 0 whenever
we encounter a value of x for which either of these relations is not defined. Are the
relations still functions after we do this to them?

Consider again the functions graphed in Figs. 1-8 through 1-10. The inverse of one of
these functions is another function. That function also happens to be its own inverse.
Which one of the three is this?



CHAPTER

Limits and Continuity

While Isaac Newton and Gottfried Wilhelm Leibniz independently developed the differen-
tial calculus in the seventeenth century, they both wanted to figure out how to calculate the
instantaneous rate of change of a nonlinear function at a point in space or time, and then
describe the rate of change in general, as a function itself. In the next few chapters, we'll do
these things. But first, let’s be sure we have all the mathematical tools we need!

Concept of the Limit

20

As the argument (the independent variable or input) of a function approaches a particular
value, the dependent variable approaches some other value called the /imit. The important
word here is approaches. When finding a limit, we're interested in what happens to the func-
tion as the argument gets closer and closer to a certain value without actually reaching it.

Limit of an infinite sequence

Let’s look at an infinite sequence § that starts with 1 and then keeps getting smaller:
S=1,1/2,1/3,1/4,1/5, ...

As we move along in Sfrom term to term, we get closer and closer to 0, but we never get all the
way there. If we choose some small positive number 7 no matter how tiny, we can always find
a number in S (if we're willing to go out far enough) smaller than 7 but larger than 0. Because
of this fact, we can say, “If 7 is a positive integer, then the limit of S, as 7 gets endlessly larger,
is 0.” We write this symbolically as

n—ro0

The expression “z — oo translates to “as 7 approaches infinity.” When talking about limits,
mathematicians sometimes say “approaches infinity” to mean “gets endlessly larger” or “gets
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arbitrarily large.” This expression is a little bit obscure, because we can debate whether large
numbers are really closer to “infinity” than small ones. But we'll often hear that expression
used, nevertheless.

When talking about this sequence S, we can also say, “The limit of 1/, as # approaches
infinity, is equal to 0,” and write

Lim 1/n=0

n—yo0

Limit of a function

Now let’s think about what takes place if we don't restrict ourselves to positive-integer argu-
ments. Let’s consider the function

gx)=1/x

and allow x to be any positive real number. As x gets larger, ¢ (x) gets smaller, approaching 0
but never getting there. We can say, “The limit of g (x), as x approaches infinity, is 0,” and
write

Lim g(x) =0

n—yoo

This is the same as the situation with the infinite sequence of positive integers, except that the
function approaches 0 smoothly, rather than in jumps.

Are you a nitpicker?

Let’s state the above expression differently. For every positive real number 7 there exists a positive real
number s such that

O<g(s)<r
Also, if #is a real number larger than s, then

O<g(t)<gls)<r

Think about this language for awhile. It’s a formal way of saying that as we input larger and larger positive
real numbers to the function g, we get smaller and smaller positive reals that “close in” on 0. This statement
also tells us that even if we input huge numbers such as 1,000,000, 1,000,000,000, or 1,000,000,000,000
to the function g, we'll never get 0 when we calculate g (x). We can’t input “infinity” in an attempt to get
0 out of g either. “Infinity” isn’t a real number!

Are you confused?

If the notion of “closing in on 0” confuses you, look at the graph of the function g for large values of x. As
you move out along the xaxis in the positive direction, the curve gets closer and closer to the x axis, where
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£ (x) = 0. No matter how close the curve gets to the axis, you can always get it to come closer by moving
out farther in the positive x direction, as shown in Fig. 2-1. But the curve never reaches the x axis.

Sum rule for two limits

Consider two functions f(x) and ¢ (x) with different limits. We can add the functions and take

the limit of their sum, and we'll get the same thing as we do if we take the limits of the functions

separately and then add them. Lets call this the sum rule for two limits and write it symbolically as
U@+ g = 6+ L g

where 4, the value that x approaches, can be a real-number constant, another variable, or

“infinity.” This rule isn't restricted to functions. It holds for any two expressions with defin-
able limits. It also works for the difference between two expressions. We can write

Lim [ £) - g (0] = Lim ) - Lim g (x)

Curve

Axis

Magnify

Figure 2-1 As xincreases endlessly, the value of 1/x
approaches 0, but it never actually becomes
equal to 0.
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In verbal terms, we can say these two things:

* The limit of the sum of two expressions is equal to the sum of the limits of the expressions.
* The limit of the difference between two expressions is equal to the difference between
the limits of the expressions (in the same order).

Multiplication-by-constant rule for a limit

Now consider a function with a defined limit. We can multiply that limit by a constant, and
we'll get the same thing as we do if we multiply the function by the constant and then take the
limit. Let’s call this the multiplication-by-constant rule for a limit. We write it symbolically as

¢ Lim py=Lim o[ f(x))

where ¢ is a real-number constant, and £ is, as before, a real-number constant, another vari-
able, or “infinity.” As with the sum rule, this holds for any expressions with definable limits,
not only for functions. In verbal terms, we can say this:

e A constant times the limit of an expression is equal to the limit of the expression times
the constant.

Here’s a challenge!

Determine the limit, as x approaches 0, of a function 4 (x) that raises x to the fourth power and then takes
the reciprocal:

h(x)=1/x"
Symbolically, this is written as
1t

Solution

As xstarts out either positive or negative and approaches 0, the value of 1/ x* increases endlessly. No matter how
large a number you choose for /4 (x), you can always find something larger by inputting some x whose absolute
value is small enough. In this situation, the limit does not exist. You can also say that it’s not defined.

Once in awhile, someone will write the “infinity” symbol, perhaps with a plus sign or a minus sign
in front of it, to indicate that a limit blows up (increases without bound) positively or negatively. For
example, the solution to this “challenge” could be written as

Lim 1/x* = oo

x—0

or as

Lim lxi=400

x—0
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Continuity at a Point

When we scrutinize a function or its graph, we might want to talk about its continuity at a
point. But first, we must know the value of the function at that point, as well as the limit as
we approach it from either direction.

Right-hand limit at a point

Consider the following function, which takes the reciprocal of the input value:
g(x)=1/x

We can't define the limit of g (x) as x approaches 0 from the positive direction, because the
function blows up as x gets smaller positively, approaching 0. To specify that we approach 0
from the positive direction, we can refine the limit notation by placing a plus sign after the

0, like this:

Lim
x—0+

g ()

This expression reads, “The limit of ¢ (x) as x approaches 0 from the positive direction.” We
can also say, “The limit of g (x) as x approaches 0 from the right.” (In most graphs where x
is on the horizontal axis, the value of x becomes more positive as we move toward the right.)
This sort of limit is called a right-hand limit.

Right-hand continuity at a point

What about some other point, such as where x = 1? As we approach the point where x =1 from
the positive direction, gstarts out at positive values smaller than 1 and increases, approaching
1. We can see this with the help of Fig. 2-2, which is a graph of g drawn in the vicinity of the
point where x = 1. (Each division on the axes represents 1/2 unit.) This graph tells us that

Lim ¢(x)=1

We can calculate the actual value of gfor x =1, getting
c)=1/1=1
Now suppose that:
e We can define the right-hand limit of a function at a certain point
e We can define the actual value of the function at that point
e The limit and the actual value are the same
When all three of these things are true, we say that the function is right-hand continuous at that

point. Some texts will tell us that gis continuous on the right at the point. In this example, gis
right-hand continuous at x = 1.
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Lim g (x) =1

X—1+

Each axis
increment
is 1/2 unit

\4

Figure 2-2 The limit of the function g (x) = 1/xas x
approaches 1 from the right is equal to the
value of the function when x = 1. In this
graph, each axis division represents 1/2 unit.

Left-hand limit at a point

Let’s expand the domain of gto the entire set of reals except 0, for which gis not defined because
1/0 is not defined. Suppose that we start out with negative real values of x and approach 0 from
the left. As we do this, g decreases endlessly, as we can see by looking at Fig. 2-3. (Here, each
division on the axes represents 1 unit.) Another way of saying this is that gincreases negatively
without limit, or that it blows up negatively. Therefore,

i
e g
is not defined. We read the above symbolic expression as, “The limit of g (x) as x approaches
0 from the negative direction.” We can also say, “The limit of g (x) as x approaches 0 from the

left.” This sort of limit is called a left-hand limit.

Left-hand continuity at a point

Now let’s look again at the point in the graph g where x= 1. Suppose we approach this point
from the left, that is, from the negative direction. The value of gstarts out at positive values larger
than 1. As x increases and approaches 1, g decreases, getting closer and closer to 1. Figure 2-4
illustrates what happens here. (Each division on the axes represents 1/2 unit.) We have

Lim

x—=>1- g(.X') =1
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Each axis
increment
is 1 unit

Lim g (x)

X—>0—

is not defined

g
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g(x)=1/x

Figure 2-3 As x approaches 0 from the negative
direction, the value of 1/x increases
negatively without limit. In this graph,
each axis division represents 1 unit.

Each axis
increment
is 1/2 unit

\4

g(x) =1/x

Figure 2-4 The limit of the function g (x) = 1/xas x
approaches 1 from the left is equal to the
value of the function when x = 1. In this
graph, each axis division represents 1/2 unit.
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We already know that ¢ (1) = 1. Just as we did when approaching from the right, we can say
that gis lefi-hand continuous at the point where x = 1. Some texts will say that gis continuous
on the left at that point.

Are you confused?

Its easy to get mixed up by the meanings of “negative direction” and “positive direction,” and how these
relate to the notions of “left-hand” and “right-hand.” These terms are based on the assumption that we're
talking about the horizontal axis in a graph, and that this axis represents the independent variable. In most
graphs of this type, the value of the independent variable gets more negative as we move to the left, and
more positive as we move to the right. This is true no matter where on the axis we start.

As we travel along the horizontal axis, we might be in positive territory the whole time; we might be in
negative territory the whole time; we might cross over from the negative side to the positive side or vice-
versa. Whenever we come toward a point from the left, we approach from the negative direction, even if
that point corresponds to something like x = 567. Whenever we come toward a point from the right, we
approach from the positive direction, even if the point is at x =—53,535. The location of the point doesn’t
matter. The important thing is the direction from which we approach.

“Total” continuity at a point

Now that we've defined right-hand and left-hand continuity at a point, we can define conzi-
nuity at a point in a “total” sense. When a function is both left-hand continuous and right-
hand continuous at a point, we say that the function is continuous at that point. Conversely,
whenever we say that a function is continuous at a point, we mean that it’s continuous as we

approach and then reach the point from both the left-hand side and the right-hand side.

Here’s a challenge!

Suppose we modify the function g (x) = 1/x by changing the value for x= 1. Let’s call this new function
g*. The domain remains the same: all real numbers except 0. The only difference between g* and gis that
g* (1) is not equal to 1, but instead is equal to 4, as shown in Fig. 2-5. (In this graph, each axis division is
1 unit.) We have seen that the original function gis both right-hand continuous and left-hand continuous
at (1,1), so we know that gis “totally” continuous at (1,1). But what about g#? Is this modified function
continuous at the point where x= 12 Is it left-hand continuous there? Is it right-hand continuous there?

Solution

The answer to each of these three questions is “No.” The function g* is not continuous at the point where
x= 1. It’s not right-hand continuous or left-hand continuous there. The limit of g* as we approach x=1
from either direction is equal to 1. That is,

Lim gx (x)=1
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Each axis
increment
is 1 unit

Figure 2-5

and

As we move toward the point where x =1 from either direction along the curve, it seems as if we should
end up at the point (1,1) when the value of x reaches 1. But when we look at the actual value of g* at x=1,
we find that it’s not equal to 1. There is a discontinuity in g* at the point where x= 1. We can also say that
g* Is not continuous at the point where x= 1, or that g* is discontinuous at the point where x= 1.

g* (X) =1/xwhen x # 1
=4 when x=1

A modified function g*, which is the same as

gexcept that the point (1,1) has been moved

to (1,4).

Here’s another challenge!

Look again at the step function we saw in Fig. 1-11 near the end of Chap. 1. Is this function right-hand

Lim g () =1

continuous at point where x = 3? Is it left-hand continuous at that point?

Solution

A portion of that function is reproduced in Fig. 2-6, showing only the values in the vicinity of our point

of interest. Let’s call the function s (x). We can see from this drawing that

Lim;(x) :3

x—>3+
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Figure 2-6  Limits of a step function,
5 (%), at the point where x = 3.

and

s =2
The value of the function at the point where x= 3 is s (3) = 3. The right-hand limit and the actual value
are the same, so s is right-hand continuous at the point where x= 3. But s is not left-hand continuous at
the point where x = 3, because the left-hand limit and the actual value are different. The same situation
occurs at every integer value of x in the step function illustrated in Fig. 1-11. Because s is not continuous
from both the right and the left at any point where x is an integer, s is not continuous at any such point.
This function has an infinite number of discontinuities!

Continuity of a Function

A real-number function in one variable is a continuous function if and only if it is continuous
at every point in its domain. Imagine a line or curve that’s smooth everywhere, with no gaps,
no jumps, and no blow-ups in its domain. That’s what a continuous function looks like when

graphed.

Linear functions

All linear functions are continuous. A real-number linear function L always has an equation
of this form:

L(x)=ax+ b
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where xis the independent variable, # is a nonzero real number, and & can be any real number.
In rectangular coordinates, the graph of a linear function is a straight line that extends forever
in two opposite directions. It never has a discontinuity.

Figure 2-7 shows four generic graphs of linear functions. The independent variable is on
the horizontal axis, and the dependent variable is on the vertical axis.

Quadratic functions

All single-variable, real-number quadratic functions are continuous. The general form of a
quadratic function Q is

Q(x)=ax*+ bx+c

where x is the independent variable, « is a nonzero real, and 4 and ¢ can be any reals. In rect-
angular coordinates, the graph of a quadratic function is always a parabola that opens either
straight up or straight down. The domain includes all reals, but the range is restricted to either
the set of all reals greater than or equal to a certain absolute minimum, or the set of all reals less than
or equal to a certain absolute maximum. There are never any gaps, jumps, or blow-ups in the graph
within the domain.

Figure 2-8 shows four generic graphs of quadratic functions. The independent variable is
on the horizontal axis, and the dependent variable is on the vertical axis.

Figure 2-7 Linear functions are always continuous. Imagine the
lines extending smoothly forever from both ends.



Continuity of a Function 31

Figure 2-8 Quadratic functions are always continuous. Imagine
the curves extending smoothly forever from both ends.

Cubic functions

All single-variable, real-number cubic finctions are continuous. The general form of a cubic
function Cis

Cx)=ax*+bx*>+cex+d

where x is the independent variable, « is a nonzero real, and 4, ¢, and 4 can be any reals. In rect-
angular coordinates, the graph of a cubic function looks like a badly distorted letter “S” tipped
on its side, perhaps flipped over backward, and then extended forever upward and downward.

Unlike a quadratic function, which has a limited range with an absolute maximum or an
absolute minimum, the range of a cubic function always spans the entire set of reals, although the
graph can have a local maximum and a local minimum. The contour of the graph depends on the
signs and values of 4, 4, ¢, and d. There are no gaps, blow-ups, or jumps within the domain.

Figure 2-9 shows four generic graphs of cubic functions. The independent variable is on
the horizontal axis, and the dependent variable is on the vertical axis.

Polynomial functions

All single-variable, real-number polynomial functions are continuous. We can write the general
form of an nth-degree polynomial function (let’s call it P,) as follows, where 7 is an integer
greater than 3, and x is never raised to a negative power:

P,(x)=a,x"+ a,x"" +a,,x >+ -+ ax+b
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Figure 2-9  Cubic functions are always continuous. Imagine the

curves extending smoothly forever from both ends.

Here, x is the independent variable, 41, 4, a3, . . . , and a4, are called the coefficients, and b is
called the stand-alone constant. The leading coefficient a,, can be any real except 0. All the other
coefficients, and the stand-alone constant, can be any real numbers.

The domain of an nth-degree polynomial function extends over the entire set of real
numbers. If 7 is even, the range is restricted to either the set of all reals greater than or equal
to a certain absolute minimum, or the set of all reals less than or equal to a certain absolute
maximum. If 7 is odd, the range spans the entire set of reals, but there may be one or more
local maxima and minima. The contour of the graph can be complicated, but there are never
any gaps, blow-ups, or jumps within the domain.

Other continuous functions

Plenty of other functions are continuous. You can probably think of a few right away, remem-
bering your algebra, trigonometry, and precalculus courses.

Discontinuous functions

A real-number function in one variable is called a discontinuous function if and only if it is not
continuous at one or more points in its domain. Imagine a function whose graph is a line or
curve with at least one gap, blow-up, or jump. That’s what a discontinuous function looks like
when graphed.

Sometimes a discontinuous function can be made continuous by restricting the domain.
We eliminate all portions of the domain that contain discontinuities. For example, the function
g%, described earlier in this chapter and graphed in Fig. 2-5, is not continuous over the set of
positive reals, because there’s a discontinuity at the point where x = 1. But we can make g*
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continuous if we restrict its domain so that x> 1. We can also make it continuous if we restrict
the domain so that 0 < x < 1, or so that x < 0. In fact, there are infinitely many ways we can
restrict the domain and get a continuous function!

Here’s a challenge!

Look again at the function g (x) = 1/x that we worked with earlier in this chapter. If we define the domain
of gas the set of all positive reals except 0, is this function continuous? If we include x= 0 in the domain
and give the function the value 0 there, calling the new function g*, is this function continuous?

Solution

As long as we don’t allow x to equal 0, the function g (x) = 1/xis both right-hand continuous and left-hand
continuous at every point in the restricted domain. That means it’s a continuous function, even though its
graph takes a huge jump. The blow-up in the graph does not represent a true discontinuity in g because
we don’t allow x= 0 in the domain.

Now suppose that we modify the function to allow x= 0 in the domain, calling the new function ¢*
and including (0,0). Because neither the right-hand limit nor the left-hand limit is equal to 0 as x ap-
proaches 0, the function g” is neither right-hand continuous nor left-hand continuous at the point where
x= 0. Because of this single discontinuity, g* is not a continuous function.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don't hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Find the limit of the infinite sequence
1/10, 1/10%, 1/10%, 1/10%, 1/10°, . . .

2. Inaseries, a partial sum is the sum of all the term up to, and including, a certain term.
As we include more and more terms in a series, the partial sum usually changes. Find
the limit of the partial sum of the infinite series

1/10 + 1/10° + 1/10° + 1/10* + 1/10° + - - .

as the number of terms in the partial sum approaches infinity.

3. Let xbe a positive real number. Does the following limit exist? If so, find it. If not,
explain why not.

Lim 1/x2

x—yo0
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4.

10.

Let x be a positive real number. Does the following limit exist? If so, find it. If not,
explain why not.

Lim 1/x*

x—0+

. Consider the base-10 logarithm function (symbolized log,,). Sketch a graph of the

function f(x) = log,, x for values of x from 0.1 to 10, and for values of f from -1 to 1.
Determine

Lim

2 logyo x

. Look again at f(x) = log, x. Find

Lim

x—3+ log,y x

. Based on the answers to Probs. 5 and 6, can we say that f(x) = log,, x is continuous at

the point where x= 3? If so, why? If not, why not?

. Is the function f(x) = log;, x continuous over the set of positive reals? If not, where are

the discontinuities? Is this function continuous over the set of nonnegative reals (that is,
all the positive reals along with 0)? If not, where are the discontinuities?

. Sketch a graph of the absolute-value function (symbolized by a vertical line on either

side of the independent variable) for values of the domain from approximately -6 to 6.
Is this function continuous over the set of all reals? If not, where are the discontinuities?

Sketch a graph of the trigonometric cosecant function for values of the domain
between, and including, -3 7 radians and 37 radians. Is this function continuous if

we restrict the domain to this closed interval? If not, where are the discontinuities?
Remember that the cosecant (symbolized csc) of a quantity is equal to the reciprocal of
the sine (symbolized sin). That is, for any x,

csc x=1/ (sin x)
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What's a Derivative?

All single-variable linear functions have straight-line graphs. The slope of such a graph can be
found easily using ordinary algebra. In this chapter, we'll learn a technique that allows us to
find the slope of a graph whether its function is linear or not.

Vanishing Increments

When we want to find the slope of a curve at a point, we're looking for the instantaneous rate
of change in a function for a specific value of the independent variable. The instantaneous rate
of change is the slope of a tangent line at that point on the curve.

What is a tangent line?

In the rectangular coordinate plane, a tangent line intersects a curve at a point, and has the
same slope as the curve at that point. Figure 3-1 shows two examples of straight lines tangent
to curves at certain points (at A and B), and two examples of straight lines that are not tangent
to the same curves at those same points (at C and D).

Slope between two points

Imagine a nonlinear function whose graph is a curve in the rectangular x)-plane, and whose
equation is

y=f)

Suppose that we want to find the slope of a line tangent to the curve at a specific point (x;,).
Let’s call this “mystery slope” M. We can approximate M by choosing some point (x,y) thats
near (x,)) and that is also on the curve, as shown in Fig. 3-2. We construct a line through
the two points. The slope of that line is close to M. The difference in the y-values between our
two points (x,7) and (xp,y) is

Ay=y—
35
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D

Figure 3-1 At A and B, the dashed lines are tangent to the
curves at the points shown by the dots. At C and D,
the lines are not tangent to the curves.

y=fx ——

Slope of line = (xy)
AyIAX 7

________________

Figure 3-2 The slope of a curve at a point (x,)) can be
approximated by constructing a line through that
point and a nearby point (x,5), and then finding the
slope of the line, Ay/Ax.
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and the difference in the x-values is
Ax=x— x
The slope of the line through the two points is

AylAx=(y—y) I (x— x)

This slope is approximately the same as M. The accuracy of our approximation depends on how
close together the two points are. We'll get the best results if we choose (x,y) as close to (x,) as
possible. But we can’t make the points identical in an effort to find M exactly. If we do that, we
get Ay=0 and Ax= 0. Then when we try to calculate the slope, we get 0/0. That’s no help!

Converging points

In Chap. 2, we reviewed the theory of limits, which Newton and Leibniz used centuries ago to
figure out instantaneous rates of change in the values of functions. Isaac Newton called these
rates of change fluxions. We call them derivatives.

In the situation of Fig. 3-2, we can’t put (x,y) directly on top of the point (xp,); if we do,
our problem reduces to nonsense. But we can move (x,y) toward (x,)) until the two points
are arbitrarily close together. We get the points as close to each other as we can imagine—and
then a little closer! We minimize Ax until it’s “too small to see.”

As Ax shrinks to almost nothing, Ay does the same. Imagine the point (x,y) getting to
within a hair’s width, then a bacterium’s length, then a proton’s diameter of (x;,7). As this occurs,
the slope of the line through the two points gets arbitrarily close to A4, as shown in Fig. 3-3. The
actual value of M is therefore equal to the limit of Ay/Axas Ax approaches 0:

M= Lim AylAx

Ax—0

y=1fXx)

Slope of curve
at point =

dy/dx e
N

! (XO!yO)

Figure 3-3 As (x,5) approaches (x,)), the increments Ay and
Ax become smaller, and the line approaches the slope
of the curve at the point (xp,3). We call this slope
dy | dix.
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Whats a Derivative?

We now have a way to find the slope of a curve or the instantaneous rate of change in
any function, as long as we can find the limit of Ay/Ax as Ax approaches 0. This limit is the
derivative of the function.

Mathematicians call the arbitrarily tiny quantities Ay and Ax differentials, and sometimes
symbolize them dy and d¥x, respectively. They are called infinitesimals in some texts. We can
express the exact “mystery slope” as

M= dyldx

Are you confused?

You might ask, “What’s the difference between y and f(x) here? Are they different names for the same
thing?” If y is the dependent variable in a function f(x), then they are indeed the same. As you work with
calculus in the future, you'll likely see the derivative of a function y = f(x) written in many different ways.
Here are some of the variants you should watch for:

dyldx

J
df (x) / dx
d/dx f(x)
df ldx
£
r
Here's a challengel!
Find the slope M of a line tangent to the graph of the function

flo)=x

at the point (x,)) = (1,1) in rectangular xy-coordinates, where y = f(x). What does this slope
represent?

Solution

Lets set up a two-point scheme, choosing a movable point (x,y) near (1,1) as shown in Fig. 3-4. The func-
tion tells us that y = x* for all possible values of x and y. The x-value of our movable point is

x=1+Ax

The y-value of our movable point is
y=1+Ay=(1+Ax)>=1+2Ax+ (Ax)*
The slope of the line passing through our two points is

AylAx=(y—=1)/ (x—1)
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yor Slope of line =
f(x) Ay/Ax
3 T :"'
= x2 /
f(X) =X ~ ":
2 +

Movable point

(xy) =
Ay (1+Ax, 1+Ay)

Figure 3-4  Finding the slope of a line tangent to the graph of
f(x) = x* at the point (1,1).

Substituting the quantity [1 + 2Ax+ (Ax)?] in place of yin the above equation, and also substituting the
quantity (1 + Ax) in place of x, we get

AylAx=[1+2Ax+ (Ax)* = 1]/ (1 +Ax—1)
which can be simplified to
AylAx=[2Ax+ (Ax)’] | Ax
and further to
AylAx=2+ Ax

To find the slope of the line tangent to the curve at the point (1,1), we must find

M= Lim AylAx

Ax—0

In this case, it turns out to be

M= Lim 2+ Ax

Ax—0

It’s easy to see that the quantity (2 + Ax) approaches 2 as Ax approaches 0. That limit, 2, is the slope of
the line tangent to the curve at the point (1,1). It’s also the derivative of the function f(x) = x” at the point
where x = 1.
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Basic Linear Functions

We have just recreated an example of the original “Newton-Leibniz magic,” which allows us
to find the slope of a line tangent to a curve, or to find the instantaneous rate of change in
a nonlinear function, at a specified point. Now let’s work out some derivatives over whole

domains for some basic linear functions.

Simply a constant

Imagine a constant function in which the dependent variable always has the same value, no
matter what we input for the independent variable. If we call the function £ then we can

describe it simply enough:

fx)=a

where x is the independent variable and # is a real number. Let’s find the derivative function

/" at some unspecified point (xp,)-

We begin by creating a movable point (x,) near (x,3%), as shown in Fig. 3-5. In the rect-
angular xy-plane, y= « for all possible values of x. The x-value of our movable point is x, + Ax.
The y-value is 2. The derivative at (x,)%) can be approximated by calculating the slope of a

straight line passing through (x,7%) and (x,y). That slope is
AylAx= (y—y) | (x— x))
If we substitute 4 for y, a for y, and the quantity (x + Ax) for x in this equation, we get
AylAx=(a—a) | (xo+ Ax— xp)
which can be simplified to
Ay/Ax=0/Ax=0

Slope of line= | Movable point

- ()=
Ayiax T (Xo+AXYo+AY)
- —— —
(XOs.yO) 1
f(x)=a ® -+ ® Ay=0
}( —————— AX ------- >

Figure 3-5 Finding the derivative of the constant
function f(x) = a at a point (x,)p)-
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['he derivative f'(xo) is
“(x%)= Lim 0
f ( 0) Ax—0

No limit can be more straightforward than this! The derivative /”(x) is equal to 0, no matter
what we choose for x,. By doing this exercise, we've shown that for any constant function

fx)=a

the derivative function is
f'x)=0
which is called, appropriately enough, the zero function.

Multiply x by a real constant

Now we'll find the derivative of a basic linear function in which the independent variable is
multiplied by a real-number constant. Again, let’s call the function £ Then

flo)=ax

where x is the independent variable and « is the constant. Let’s figure out f at a nonspecific
point (x,50)-

We can invent a movable point (x,y) near (x,)), as shown in Fig. 3-6. In rectangular
xy-coordinates, y = ax for all possible values of xand y. The x-value of our movable point is

x =+ Ax

Slope of line =
AyIAX

— Movable point
(xy) =
Ay (Xg+AX, Yo +AY)

Figure 3-6 Finding the derivative of the basic linear function
(%) = axat a point (xp,3).
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The y-value of the movable point is
y=ax= a(xtAx) = axy + alx

We can approximate the derivative by finding the slope of a straight line passing through the
points (xp,)0) and (x,y). That slope is

AylAx= (y—p) | (x— x))
We know that y, = axp, because f'tells us that any x-value must be multiplied by « to get the
corresponding y-value. In the above equation, let’s substitute the quantity (ax, + @Ax) for y
substitute ax;, for y, and substitute the quantity (x, + Ax) for x. That gives us
AylAx= (axo + aAx — axp) | (x + Ax — x;)
which can be simplified to
AylAx=a(x+Ax—x) | Ax

and further to

AylAx= alAx/Ax

and finally to
AylAx=a
The derivative f’(x) is therefore
[e) = Lim 4

This limit here is equal to . That’s all there is to it! Therefore,
[ (%) =a

no matter what value of x, we choose. This result tells us that for any basic linear function of
the form

flx) = ax

the derivative function is
fx)=a

which is a constant function.
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Here's a challengel!

Using the calculus techniques we've learned so far (not plain algebra!), find the derivative of the
function

flx) =—4x+5
at the general point (x,)) in rectangular xy-coordinates, where y = f(x). What does this result tell us?

Solution

Once again, let’s start out by creating a movable point (x,y) near (xy,3). Figure 3-7 shows the slant of the
line. (The coordinate grid is not shown because it would make the illustration needlessly messy. It’s the
slope we're interested in, anyhow!). In rectangular xy-coordinates, we can graph our function in the slope-
intercept form as

y=—4x+5
The x-value of our movable point is, as always,

x=x+ Ax
The y-value of our movable point is

y=—4(x + Ax) + 5 =—4x) — 4Ax+ 5

Slope of line =
AyIAx

Ay
Movable point

(xy) =
(x0+Ax,y0+Ay) _—

f(x)=—4x+5

Figure 3-7 Finding the derivative of the
function f(x) = —4x+ 5 ata
point (xp,)-
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We approximate the derivative by finding the slope of a straight line through (x,%) and (x,y). That slope is
AylAx=(y—y) | (x— xp)
Our function ftells us that y, = —4x, + 5. Now, in the above equation, let’s substitute the quantity (—4x, —
4Ax+ 5) in place of 3 substitute the quantity (—4x, + 5) in place of y, and substitute the quantity (x, + Ax)
in place of x. That gives us
AylAx=[—4xy — 4Ax+ 5 — (—4xy + 5)] / (% + Ax— x)
We had better be careful with the signs here! We can rewrite the above equation as
Ay/Ax= (—4x)— 4Ax+ 5+ 4x,— 5) | (3 + Ax— xp)
which can be simplified to
AylAx=—4Ax/Ax

and finally to

AylAx=—4
We got rid of a big mess in a hurry! Now we can say that the derivative f”(x) is

f(x) = g_ﬁff} —4

This is, again, trivial. The limit is equal to —4. Therefore,

) =—4
no matter what value of x, we choose. This tells us that the derivative of the linear function

flx)=—4x+5

is the function

£/ =4

The stand-alone constant, 5, in f(x) can be changed to any other real number, and we'll still end up with
the same derivative function, f’(x) = —4.

Basic Quadratic Functions

The next step in understanding differentiation (the process of finding derivatives) is to do it
with some basic quadratic functions.
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Square x and multiply by constant

Let’s keep using the name f for our functions. Using the same techniques as we have for sim-
pler functions, we'll now find the derivative of

flx) = ax’

where x is the independent variable and # is a real number. Our mission is to determine f” at
a point (xp,J). In rectangular xy-coordinates, we can plot this function as the graph of

y=ax’
By now, the routine ought to be getting familiar, and we shouldn’t need to draw a graph and
label the points, curve, and lines. We create a movable point (x,y) near (xp,)). The x-value of
the movable point is, as always,
x =x+ Ax
The y-value of the movable point is
y=ax’ = a(x + Ax)* = alx” + 2xAx+ (Ax)?]

= axy® + 2axAx + a(Ax)?

The derivative is approximately equal to the slope of a straight line passing through the points
(x0,90) and (x,7). That slope is, as always,

AylAx=(y—y) | (x—x)

If we plug the value x, into our function, we get y, = ax”. In the above equation, let’s
substitute

* The quantity [ax, + 2axAx+ a(Ax)*] in place of y
* The value ax,” in place of y,
* The quantity (x + Ax) in place of x
That gives us
AylAx=[ax,® + 2axAx + a(Ax)* — ax’] | (% + Ax — x)
which can be simplified to
AylAx= [2axAx+ a(Ax)’] | Ax

and finally to

AylAx=2ax, + alx
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The derivative f’(x) is therefore
[ (x) = A’}Zno 2axy + al\x

As Ax approaches 0, the second addend in the expression, 2#Ax, approaches 0 because it is a
constant multiple of Ax. The first addend, 2ax, is not affected by changes in Ax. The limit of
the entire expression is therefore equal to 2axp, telling us that

[ (%) =2ax,
for any real number x,. On this basis, we can say that for any function of the form
flx) = ax?
the derivative function is

f(x) =2ax

Are you confused?

In each of these drills, just before we take the limit, we encounter ratios with Ax in the denominator. We
also find Ax in each of the terms of the numerator. That lets us cancel out Ax in both the numerator and
the denominator, so the expression is no longer a fraction. “But,” you might object, “we’re forcing Ax
down to 0 when we take the limit, aren’t we? How can we play around with these little Ax factors if they
all ultimately turn out to be 0? Aren’t we dividing by 0 when we do this?”

That is an excellent question. But there’s no need to worry! The quantity Ax is never equal to 0, so it’s
all right to divide by it, cancel it out, and treat it like any nonzero real number. It can get as close to 0 as we
dare to imagine, either on the negative side or the positive side, but it is never true that Ax = 0. We're see-
ing what happens to expressions that contain Axas it gets arbitrarily close to 0, so Ax “thinks it’s 0 when it’s
really not”! This might seem sneaky, almost deceptive—but it works, and it lies at the root of the branch of
mathematics that Newton called infinitesimal calculus, and that people nowadays call differential calculus.

Here's a challengel!

Using the calculus techniques we've learned so far, find the derivative of the function
flx)==7x"+2x

at the general point (x,%) in rectangular xy-coordinates, where y = f(x).

Solution

We can plot this function as the graph of

y=-7x+2x
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If it helps you envision the situation, you can go ahead and draw the graph by locating a few points that
satisfy the function, and then filling in a smooth curve that passes through those points. We create the
usual movable point (x,y) near (x,3). The x-value of this point is

x=x+ Ax

The y-value of the movable point is

y==7x"+2x=—=7(x + Ax)* + 2(x, + Ax)
=—7[x? + 2% Ax+ (Ax)?] + 2x, + 2Ax
=—7x? — 1dxy Ax— 7(Ax)* + 2x, + 2Ax

The slope of a straight line passing through (x,%) and (x,y), which approximates the derivative we're
looking for, is

AylAx=(y=y) I (x= x)
The function dictates that j, = —7x + 2x. In the above equation, let’s substitute
* The quantity [-7x"° — 14xAx— 7(Ax)* + 2x, + 2Ax] in place of y
* The quantity (—7x" + 2x) in place of y
* The quantity (x + Ax) in place of x
When we make these substitutions and then find the slope, we get
AylAx=[-7x" — 14xAx — 7(Ax)? + 2x + 2Ax — (=7x" + 25x0)] | (% + Ax — x)
The signs are tricky in the numerator here, so we have to be careful! Let’s rewrite the above equation as
AylAx=[-7x" — 14xAx — 7(Ax)? + 2x, + 2Ax+ 7x" — 2x) | (3 + Ax — x)
which can be simplified to
AylAx=[-14xAx— 7(Ax)* + 2Ax] | Ax
and finally to
AylAx=—14x — TAx+2
The derivative f”(x) is
()= él':ﬂo —14x)— 7Ax+2
As Ax approaches 0, the second addend, —7Ax, approaches 0 because it’s a constant multiple of Ax. The first
addend, —14x,, and the third addend, 2, have nothing to do with Ax, so they stay the same as Ax

approaches 0. The limit of the entire expression is therefore —14x, + 2, so we have

F() = —14x, +2
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for any real number x,. We've just shown that
flx)=-7x"+2x
has the derivative function

f(x)=—14x+2

Basic Cubic Functions

To differentiate a basic cubic function, we can go through the same process as we did to dif-
ferentiate the basic linear and quadratic functions. Some of the expressions are a little more
complicated this time, but otherwise everything works out in a similar way.

Cube x and multiply by constant

Let’s go through our trusty routine to find the derivative of a function fin which we cube the
independent variable x and then multiply by the constant 4, like this:

fx) = ax®

As in previous situations, we'll determine £ at a nonspecific point (xp,5). In the xy-plane, we

can plot the graph of
y=ax
The x-value of a movable point (x,y) in the vicinity of (x,3) is, once again,
x =2+ Ax

The y-value of the movable point is

y=ax’ = a(x + Ax)’ = alx’ + 3% Ax+ 3x(Ax)* + (Ax)’]

= axy’ + 3ax’Ax + 3axy(Ax)* + a(Ax)?
The slope of a line passing through (xp,5%) and (x) is
AylAx=(y=y) | (x— %)
The function says that y, = ax’. In the above equation, let’s substitute
* The quantity [ax,’ + 3ax%°Ax+ 3ax,(Ax)* + a(Ax)°] for y

* The quantity ax,’ for y
* The quantity (x + Ax) for x
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That gives us
AylAx= [ax® + 3ax"Ax + 3ax(Ax)* + a(Ax)’ — ax’] | (3 + Ax — x)
which simplifies to
AylAx= [Bax,"Ax + 3ax(Ax)* + a(Ax)’] | Ax
and finally to
AylAx=3ax’ + 3axAx+ a(Ax)?
The derivative f’(x) is therefore
f(x) = ALX% Baxy® + 3axpAx + a(Ax)?

As Axapproaches 0, the second addend, 32x,Ax, approaches 0 because it is a constant multiple
of Ax. The third addend, #(Ax)?, also approaches 0. It’s a constant multiple of (Ax)?, which
must approach 0 as Ax approaches 0. The first addend, 3ax’, stays the same no matter what
Ax becomes. The limit of the entire expression is therefore 3ax,’, showing that

[ (%) =3ax’
for any real number x,. Therefore, any function of the form
fx) =ax’
has the derivative

f(x) =3ax

Here's a challengel!

Using the calculus techniques we've learned so far, find the derivative of the function
flx)=2% - 5x

at the general point (x,%) in rectangular xj-coordinates, where y= f(x).

Solution

We can plot this function as the graph of

y=2x3—5x
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We create the usual movable point (x,y) near (x,%). The x-value of this point is
x=x+ Ax

The y-value of the movable point is

y=2x"—5x=2(x + Ax)* = 5(x + Ax)
=2[x;® + 3x*Ax + 3x(Ax)* + (Ax)?] — 5x, — 5Ax
= 2% + 6x°Ax + 6x,(Ax)? + 2(Ax)® — Sx — SAx

The slope of a line through (x,3%) and (x,y) is
AylAx=(y =) | (x=x)
The original function tells us that y, = 2x’ — 5x. In the above equation, let’s substitute
* The quantity [2x° + 6x*Ax + 6x(Ax)? + 2(Ax)® — 5% — 5Ax] in place of y
* The quantity (2x° — 5x) in place of ¥
* The quantity (% + Ax) in place of x
When we make these substitutions, we get
AylAx=[2x° + 6x°Ax + 6x(Ax)* + 2(Ax)? = 5x — 5Ax — (2%° — 5x0)] / (3 + Ax — x)
which can be rewritten as
AylAx = [2x + 63 Ax + 6x(Ax)* + 2(Ax)’ = 5x — 5Ax — 2x° + 5x))] | () + Ax — xp)
This can be simplified to
AylAx = [6x"Ax + 6x(Ax)* + 2(Ax)’ = 5Ax)] | Ax
and finally to
AylAx=6x"+ 63 Ax+ 2(Ax)* = 5
The derivative f”(x) is
(%)= A];l'_{% 6x,° + 6xAx+ 2(Ax)* =5

As Ax approaches 0, the second addend, 6xAx, approaches 0 because it is a multiple of Ax. The third ad-
dend, 2(Ax)?, approaches 0 because it’s a constant multiple of (Ax)*. The first addend, 6ax)*, and the fourth
addend, —5, are unaffected by changes in Ax. The limit of the entire expression is therefore 6x,° — 5, so

/%) =6x" =5
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for any real number x,. That means our original function
flx)=2x - 5x

has the derivative function

f'(x)=6x*-5

Here's another challenge!

In the above scenario, consider the addends in the expression for fas two separate functions gand 4, like
this:

g(x)=2x

and

On this basis, we can say that
fx)=g&)+h(x)
Show that the derivative of this particular sum is equal to the sum of the derivatives:

f) =g+ h'(x)

Solution

First, let’s figure out the derivative function ¢ using the general rule we've already derived. Using the rule
for the derivative of a variable cubed and then multiplied by a constant, we get

&' (x) =6x
Using the rule for the derivative of a variable multiplied by a constant, we get
h'(x)==5
Adding these results gives us
)+ h(x)=6x"—5

This is what we got when we calculated f”(x) in the previous “challenge.”
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Are you astute?

After all this repetition, you've probably noticed that some of the terms in the examples are always the
same as corresponding terms in other examples. You've also seen that certain pairs of terms always can-
cel out, making the expressions simpler. In the numerators, you always end up subtracting f(x,) from
f(x + Ax). In the denominators, you always end up subtracting x, from x. In the end, you always get
a ratio of the form

[/ + Ax) = f(x)] / Ax

Whenever you calculate a derivative using the techniques in this chapter, you're actually generating the
above expression, and then finding its limit as Ax approaches 0. In fact, the derivative f (x,) of a function
f(x) at the point where x = x;, is commonly defined as

FGa) = Lim [ £+ Ax) - f()] | Ax

If we can differentiate the function at every point in its domain, then the formula can be generalized to

£ = LM fet Ax) = £)] 1 Ax

Remember that Ax can be either positive or negative. The limit, as shown above, must work from both the
left and from the right, and the two results must agree. In my opinion, this definition is worth memoriz-
ing. You might put it into “mathematical verse,” breaking the thoughts down line by line:

To find the derivative of a function
fof x,
take fof “x plus a little something,”
then subtract fof x from that,
then divide by the little something,
and finally find the limit
as the little something
shrinks
until it’s practically nothing.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Find the derivative of the quadratic function:

fle)=x

at the points where x =3, x =—2, and x =—1.
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Here’s a hint for this exercise and all the rest to follow: You may use the general
formulas we derived in the text to find these derivatives. Those formulas are theorems
now—ifacts we can use again and again—because we've proven them true. You don't
have to go through the ritual of setting up a movable point, approximating the slope,
and then finding the limit of that slope as Ax approaches 0.

. Find the derivative of the quadratic function:
flx) =«

at the points where x=0, x=1, x=2, and x= 3.

. Find the derivative of the quadratic function:

flx) =-2x

at the points where x=-3, x=-2, and x=-1.

. Find the derivative of the quadratic function:

flx) =-2x

at the points where x=0, x=1, x=2, and x= 3.

. Find the derivative of the quadratic function:

flx)=-7x"+2x

at the points where x=-3, x=-2, and x=-1.

. Find the derivative of the quadratic function:

flx)==7x"+2x

at the points where x=0, x=1, x=2, and x= 3.

. Find the derivative of the cubic function:

flx) =55

at the points where x=-3, x=-2, and x=-1.

. Find the derivative of the cubic function:

flx) =55

at the points where x =0, x =1, x =2, and x = 3.
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9. Find the derivative of the cubic function:

flx)=2x"—5x

at the points where x =-3, x =-2, and x =-1.

10. Find the derivative of the cubic function:

flx)=2x"—5x

at the points where x =0, x =1, x =2, and x = 3.



CHAPTER

Derivatives Don’t Always Exist

In Chap. 3, every function we saw was differentiable, meaning that it had a derivative at every
possible point. But there are functions for which derivatives don’t exist at certain points. In
this chapter, we'll learn how to tell when a function is differentiable, and when it is not.

Let’s Look at the Graph

There’s a quick and easy way to see if a function is differentiable at every point in its domain,
or if there are some points at which it’s nondifferentiable (impossible to differentiate). We can
simply graph it! If the graph appears to have a definable slope at every point, then the function
is probably differentiable. We can look for three signs that indicate differentiation problems.

Is there a gap?
Figure 4-1 is a graph of the function f(x) = 1/x. This graph has a gap. We can't define the

function when x = 0. Because the function has no value when x = 0, the graph can't have a
slope at the point where x=0.

It’s tempting to make an intuitive leap here. Could a line running straight up and down
along the axis labeled f(x) be tangent to the graph? That’s a fine idea, but there’s no point on
the graph at which such a line could come into contact! A tangent line always touches a curve
at a point.

Because we can’t define the slope of a line tangent to the graph of this function at the
point where x= 0, we can’t define the derivative there, either. Even if we add the point (0,0) to
define f'(x) = 1/x for all real numbers, we can't make the function differentiable at the point
where x= 0, as we'll see later in this chapter.

Is there a jump?

Figure 4-2 is a graph of a function that takes a jump. This function is defined for all real num-
bers, although there is a discontinuity. At every point on the line except the one where the
jump occurs, the slope, and therefore the derivative, appears to be 0. Let’s look closely at the
point where x= 0. At this point, we have f'(0) = 3. What is the slope of this graph at (0,3)?

55
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Figure 4-1 This function has a gap at x= 0, because it is

not defined there. It is discontinuous at the

point where x= 0.

f(x)

A

6__

4__

“Jump” at x=0 R 4

2__
R >

—6 -4 -2 4 2 4 6

o f(x) =—3 when x< 0
=3when x>0

—4 —+

—6 T+

A\ 4

Figure 4-2 'This function takes a jump at x= 0, even
though it is defined there. It is discontinuous
at the point where x= 0.
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We might think that the slope at the point (0,3) is parallel to the xaxis, running along the
part of the graph that lies to the right of that point. After all, the whole graph looks horizontal.
I might try to convince you, based on that notion, that the function has a slope of 0 at every
point in its domain, including (0,3). But you could argue that a tangent line at the jump is
not horizontal but vertical, running along the f(x) axis and passing through (0,-3) as well as
(0,3). That makes just as much (or just as little) sense.

The slope of this graph at the point where x = 0 can't be defined with certainty. Therefore,
the derivative does not exist for this function at the point where x = 0. Both this function
and the one with the gap (Fig. 4-1) have discontinuities. As things work out, if a function is
discontinuous at a particular point, then it has no derivative there. Turning this logic “inside-
out” gives us one of the most important facts in calculus:

* Ifa function has a derivative at a point, then the function is continuous there.

Is there a corner?

Figure 4-3 shows the graph of a function that’s defined over the entire set of real numbers, and
that’s continuous everywhere as well. But there’s something strange about this function at the point
where x = 2. It has no gap there, and its value doesnt jump there, but the curve turns a corner.

The slope of a tangent line can’t be defined at the point where x = 2. The trouble here is
similar to the problem we encountered in Fig. 4-2. If we want to talk about the slope at the
point (2,4) on this graph, should we base our idea on the half-parabola to the left, or on the
half-line to the right? Neither idea is better, but they disagree.

N

“Corner” at x=2

f(x) = x2when x< 2
=4 when x>2

-6 +

\4

Figure 4-3 This function turns a corner at x=2,
although it is continuous over the entire set
of real numbers.



58

Derivatives Don’t Always Exist

Are you confused?

You might still wonder why we can’t define the slope of the graph in Fig. 4-3 at the point (2,4). You might
say, “Suppose we choose two movable points, one on either side of (2,4), and draw a line through them.
As we move these two points closer and closer to (2,4), one along the half-parabola and the other along
the half-line, won’t they approach a line having a slope of 2 and running through the point (2,4)? Won't
that line be a legitimate tangent line?” No, there are two problems with that idea.

First, it’s “illegal” to use two movable points in an attempt to find a line whose slope indicates a derivative.
That’s not the way it’s done according to the definition at the end of Chap. 3. We must approach the fixed point,
in this case (2,4), from one side at a time, and use it as one of the points through which we draw the line. Then
we must be sure that we end up with the same line when we approach from the left as we do when we approach
from the right. Only then can we assign it a slope and determine the derivative based on that slope.

Second, even if it were “legal” to use two movable points to find the line, the slope of that line would
depend on the “relative rates of approach” in a situation like the one we see in Fig. 4-3. If the point on
the left is always twice as far away from (2,4) as the point on the right, for example, we will end up with a
different line than we will get if the two points are always at the same distance from (2,4). By adjusting the
“relative rates of approach” of the two points, we could get a line with any slope between 0 and 4!

Here's a challengel!

Look again at the graph of the function f(x) = 1/x, shown in Fig. 4-1. Can we tell, by visual inspection,
what happens to f”(x) as x increases endlessly (that is, “approaches positive infinity”)? Can we tell what
happens to f”(x) as x decreases endlessly (that is, “approaches negative infinity”)?

Solution

Yes, we can get an idea of what happens in these cases, although looking at a graph doesn’t constitute a math-
ematical proof of anything. In this particular graph, as x increases endlessly (that is, “approaches positive infin-
ity”), the slope of the curve, and therefore the derivative f”(x), appears to approach 0 from the negative direction.
As xdecreases endlessly (“approaches negative infinity”), the slgpe of the curve, and therefore the derivative, again
appears to approach 0 from the negative direction. We can write these statements symbolically as

As x — +oo, f'(x) = 0—
and

As x — —oo, f'(x) = 0—
Don’t get confused here. The function itself behaves quite differently than its derivative! As x increases
endlessly in the positive direction, the value of the function approaches 0 from the positive direction. As x
increases endlessly in the negative direction, the value of the function approaches 0 from the negative direc-
tion. We can write these statements symbolically as

As x — +oo, f(x) = 0+

and

As x — —oo, f(x) = 0—
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When We Can Differentiate

Now that we have a visual idea of what it means for a function to be differentiable at a point,
let’s get a little more formal. We can call a function differentiable at a single point, over an
interval, or over its entire domain.

e A function is differentiable at a point if and only if the function has a derivative, as
defined at the end of Chap. 3, at that point.

e A function is differentiable over an interval if and only if it has a derivative, as defined
at the end of Chap. 3, at every point in that interval.

e A function is differentiable in general (or simply differentiable) if and only if it has a
derivative, as defined at the end of Chap. 3, at every point in its domain.

Try to find the limifs

When we want to know whether or not a function is differentiable at a particular point,
we can try to find the derivative at that point and see if the result makes sense. If we get
a meaningful and unambiguous result, then the derivative exists at the point. Otherwise,
it doesn’t.

For all the functions f(x) we examined in Chap. 3, we were able to find the following
limit at any point where the independent variable was equal to some specific value x;:

F'(%) = Lim [f(x+Ax) — f(x)] ] Ax

Ax—0

If the notion of a derivative is to make any sense for a function f'(x) at the point where
x = xp, the value x must be in the domain. That is to say, /(%) must be defined. Once we
know that, then we must be able to find the above limit whether Axis positive or negative. In
other words, the limit has to exist as we approach x, from the right, and it also has to exist as
we approach x, from the left. That’s not all! For ' (x) to have a derivative at the point where
x = xp, the right-hand and left-hand limits, as defined in Chap. 2, must be the same. Stated
symbolically,

%) = ALz'ng [f (0 + Ax) = f(x0)]  Ax
x—0+
must be identical to

') = Lim [flx+Ax) - f(x)]/ Ax

Ax—0—

Example

Figure 4-4 is a graph of a quadratic function that is defined and continuous over the entire
set of real numbers:

flx)=x"-3
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f(~2.5) = -5 -+ f(X)=x2-3
_6 —1

Y

Figure 4-4 'This function is differentiable at the point

where x=-2.5.

Let’s see whether or not this function is differentiable at the point where x=—-2.5. We set up
the limit

ALz'mO [f(=2.5+ Ax) — f(=2.5)] / Ax

We can calculate f(=2.5) easily enough:

f(=2.5)=(=2.57-3
=6.25-3
=3.25

Now we can write the limit as

ALXZ'TO [(-2.5+Ax)* =3 -3.25] / Ax
which expands to
Alxliﬂo [6.25 = 5Ax+ (Ax)* =3 —3.25] / Ax
and then simplifies to

Lim [-5Ax+ (Ax)Y] | Ax

Ax—0
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and finally to

Lim =5+ Ax

Ax—0

Whether Ax is positive or negative (that is, whether Ax approaches 0 from the right or the
left), it’s easy to see that this limit is equal to —5. Therefore,

f(=2.5)=-5

Now that we've found the derivative at the point where x = —2.5, we can conclude that the
function is differentiable there.

Another example

Let’s reexamine the function we saw in Fig. 4-2. Suppose we want to find out if this function
is differentiable at the point where x = 3. In the vicinity of this point, we can imagine that
the function is

fx)=3

as shown in Fig. 4-5. To see whether or not this function is differentiable at the point where
x=3, we can try to find the derivative there by setting up the limit

Lim [f(3+4x) = f3)] ] Ax

f(x)
A
6__
4__
’ X=3
(3)=0 o o
f7(0)=" i
(0) al i
A
-6 -4 -2 € 2 4 6
I,
O f(x) =-3 when x<0
=3 when x>0
-4 —+
—6 T
\4

Figure 4-5 This function is differentiable at the point
where x = 3, but not where x= 0.
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We know that £ (3) = 3, so we can rewrite this limit as
Lim [f3+Ax)—-3]/Ax
Ax—0

We must keep in mind that this limit has to be evaluated as Ax becomes very small either posi-
tively or negatively, approaching 0 from either the right or the left. In either of those scenarios,
the value of £(3 + Ax) remains constant at 3. That allows us to simplify the above limit to

Lim (3-3)/Ax

Ax—0

and then to
Lim 0/Ax
Ax—0

This limit is equal to 0. No matter how small we make Ax, it’s still a tiny positive or negative
real number (never 0), so 0/Ax is always equal to 0. Therefore

f'3)=0

Having found a well-defined derivative at the point where x = 3, we can be sure that the func-
tion is differentiable there.

Are you confused?

“Wait!” you say. “In the two examples we just finished, we didn’t find the left-hand and the right-hand
limits separately! Doesnt the definition of the derivative, given at the end of Chap. 3, require us to do
that?” Yes, it does. But in the two examples we just finished, we were able to perform both tasks together,
because it was apparent that the two limits would be the same if we calculated them individually. If your
mind demands absolute rigor (not a bad trait for a mathematician), you can do both limit calculations
separately in every case. In the following challenge, we'll see a situation where that attitude serves us well.

Here's a challengel!

Lets try to find the derivative of the function shown in Fig. 4-5 at the point where x= 0, first by approaching
the point from the right, and then by approaching from the left. What can we conclude from this resule?

Solution

Before we start, let’s state the function mathematically. To fully describe it, we must write it in two parts,

like this:

f(x)==3 whenx<0

=3 whenx>0

First, let’s approach 0 from the right, that is, from the positive side. Geometrically, we'll move from right
to left along the upper half-line, or the portion to the right of the vertical axis. We set up the limit

Lim [f(0+Ax) - f(0)] / Ax

Ax—0+
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We know that £(0) = 3, so we can rewrite this limit as
Li —
Axl—>7:)2+ [f(0+Ax)—3]/ Ax

As Ax becomes small positively, the value of /(0 + Ax) remains constant at 3, so we can rewrite the above

limit as
Lim (3-3)/Ax
Ax—0+
and then to
Lim 0/Ax
Ax—0+

This limit is equal to 0. No matter how small we make Ax, it’s always a positive real number, so 0/Ax= 0.
This result makes sense. The right-hand part of the half-line is horizontal, so we should expect the deriva-
tive, which represents the slope, to be 0.

Now let’s approach 0 from the left (from the negative side). In the graph, this is the equivalent of moving
from left to right along the lower half-line, which lies to the left of the vertical axis. We set up the limit

Li —
Lim [0+ Ax) - f(0)] / Ax
Remember that Ax is negative now, not positive! We know that £(0) = 3, so we can rewrite this limit as

Lim [f0+Ax)—3]/Ax

Ax—0—

As Axbecomes smaller and smaller negatively, /(0 + Ax) remains constant, maintaining a value of =3 (not
3, as it does to the right of the vertical axis), so we can rewrite the above limit as

Lim (=3-3)/Ax
Ax—0—
and then to
Ax—0—

Here, the value of Ax becomes smaller and smaller negatively, becoming arbitrarily close to 0, but never
quite getting there. The ratio —6/Ax is always a positive real, because it’s a negative divided by a negative.
As Ax approaches 0, the ratio —6/Ax blows up; it gets arbitrarily large. The limit is not defined. This result
tells us that the function

fx)=-3 whenx<0

=3 when x>0

is nondifferentiable at the point where x= 0.

When We Can't Differentiate

The “challenge” we just finished involves a function that can be differentiated everywhere
8 J W

except at a single point. The problem in this particular case is caused by a discontinuity at the

point where x = 0. There are other ways that a function can be nondifferentiable at a point.
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Example

Let’s consider another function with a discontinuity, but of a different sort than the one in the
“challenge” we solved a moment ago. Figure 4-6 is a graph of the modified reciprocal function

f(x)=1/x whenx#0

=0 whenx=0

This function is defined over the entire set of real numbers, but it has a discontinuity at (0,0).
If we want to find out whether or not f{(x) is differentiable at the point where x = 0, we must

set up the limit

ALz'mo [f(0+Ax) - f(0)] / Ax

and evaluate it both from the right and from the left. Let’s do it from the right first. We write

this as

Lim [F0+Ax) - £(0)] / Ax

Ax—0+

which simplifies to

Lim [f(6x) = fO) ] Ax

f(x)=1/xwhen x=0
=0whenx=0

Figure 4-6 This function isn’t continuous at the point
where x= 0, and it isn’t differentiable there,

either.
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because 0 + Ax= Ax. We are told that /(0) = 0, so we can simplify further, getting

Lim f(Ax)/ Ax

Ax—0+
The function tells us to take the reciprocal of whatever nonzero number we put in. That
means we can rewrite the above expression as

Lim [1/(Ax)] | Ax

Ax—0+

which simplifies to

Lim 1/(Ax)?
Ax—0+
As Ax approaches 0 from the right (the positive side), the ratio 1/(Ax)* grows arbitrarily large
in the positive sense. That’s because we're taking the reciprocal of (Ax)?, an endlessly shrinking
positive real. The above limit blows up positively; it’s not defined.
The same thing happens when we approach 0 from the left. We can rework the sequence
of steps, replacing Ax — 0+ with Ax — 0— in every instance, to arrive at

Lim 1/(Ax)?
Ax—0—

This limit blows up positively, just as the right-hand limit does, so it’s undefined as well. Actu-
ally, this second exercise is overkill. Once we showed that the right-hand limit doesn’t exist
at the point where x = 0, we gathered enough information to know that our function isn’t
differentiable there.

It’s tempting to say that the discontinuity here is somehow “worse” than the one in the func-
tion shown by Fig. 4-5. In the earlier case, a limit could be defined from one side, at least. This
time, there is no definable limit from either side. We can be “double-sure” that the function

f(x)=1/x whenx#0

=0 whenx=0

is nondifferentiable at the point where x=0.

Another example

Figure 4-7 is a graph of the absolute-value function, which can be written in two-part fashion

like this:

f(x)=x whenx2>0

=—x whenx<0

This function is defined and continuous over the entire set of reals. If x > 0 or x < 0, the
absolute-value function behaves as a linear function, and it is therefore differentiable when we
restrict the domain to either the set of szrictly positive reals or the set of strictly negative reals.
As we can see by examining Fig. 4-7, the graph turns a corner. The slope changes sud-
denly from —1 to 1 as we move to the right through the point where x= 0. When the slope of



66  Derivatives Don’t Always Exist

\4

Figure 4-7 This function is continuous at the point
where x= 0, but it isn’t differentiable there.

a graph changes abruptly at a point, we should suspect that point as a likely place where the
function is nondifferentiable! Let’s find out if that’s the case here. First, we'll evaluate the limit
of the slope as we approach the point where x= 0 from the right:

Lim [f(0+ Ax) —f(0)] / Ax
Ax—0+
Because 0 + Ax= Ax; this can be simplified to
Lim [f(Ax)—f(0)] / Ax

Ax—0+

We can simplify further, knowing that f(0) = 0:

Lim  f(Ax) | Ax

Ax—0+
When Ax is small and positive, f(Ax) = Ax. That means we can simplify the limit even more,
writing it as
Lim Ax[Ax
Ax—0+
Obviously, Ax /Ax = 1. That means we have
Lim 1

Ax—0+
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This limit is equal to 1. We can believe this easily enough. The right-hand half of the graph is
a half-line with a slope of 1.

Now, let’s take the limit of the slope as we approach the point where x= 0 from the left.
We write

Lim [f(0+Ax) —f(0)] / Ax

Ax—0—

Because 0 + Ax= Ax, this can be simplified to

Lim [f(Ax) = f(0)] / Ax

Ax—0—

Knowing that £(0) = 0, we can substitute and rewrite this as
i
Axigi_ f(Ax) | Ax

When we take the absolute value of a negative number, the function simply reverses the sign
of the number, so when Ax is small and negative, f(Ax) = —Ax. That means we can simplify
the limit some more, writing it as

Lim —Ax/Ax

Ax—0—

The ratio —Ax /Ax is always equal to —1, so we have

Lim -1
Ax—0—
This is equal to —1, a sensible result. The left-hand part of the graph is a half-line with a slope
of —1.
We have found the limits in the prescribed form, both from the right and from the left.
But they aren't the same, showing that the function

Fx) = Ixl

is nondifferentiable at the point where x= 0. (The vertical lines in this equation indicate that
the absolute value is to be taken of whatever quantity appears between them.)

Are you confused?

“I see what’s going on now,” you say. “If the slope of a graph changes suddenly at a point, then even if the
function is continuous, there’s no derivative at that point. If we approach the point from one side, the
slope approaches a certain value, but if we approach the point from the other side, the slope approaches a
different value. A derivative can’t be defined as more than one slope at a time. Is that right?” Yes, that geo-
metrically describes the situation. It’s not rigorous, but it’s a good way to talk about it informally.

Then you ask, “What about a function where two different curves terminate and meet at a single
poing, but their slopes approach the same value at the point? Is such a two-part function differentiable at
the point where the curves come together?” That is a great question! You'll learn the answer (in one case,
anyway ) as you work out Exercise 10 at the end of this chapter.
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Here's a challengel!

Look once again at the function graphed in Fig. 4-3. Show that it’s nondifferentiable at the point where x = 2.

Solution

There are two components to the function. When the input is smaller than 2, the output is the square of
the input. When the input is 2 or larger, the output has a constant value of 4. We can express this situa-
tion by writing

f(x)=x" whenx<2
=4 whenx2>2

The function is defined and continuous over the set of real numbers, but the slope of its graph abruptly changes
at the point where x = 2. We can attempt to find the derivative at the point where x= 2 by evaluating

ALl‘m [f2+Ax) - f(2)] /] Ax

x—0

from both the right and the left. Let’s do it from the right first. We have
Lim [f(2+Ax)—f(2)]/ Ax

Ax—0+

When Ax is small and positive, we're in the part of the function with a constant value of 4. We're told
that f(2) = 4. When we substitute 4 in place of (2 + Ax), and substitute 4 in place of f(2) in the above
expression, it becomes

Lim (4—4)[]Ax

Ax—0+
which simplifies to
Lim 0/Ax
Ax—0+
and further to
Lim 0
Ax—0+

This limit is obviously equal to 0. When we examine the graph, that conclusion seems reasonable, because
the part of the graph to the right of the point where x= 2 appears as a straight, horizontal line.

Now let’s go to the left of the point where x =2, into the part of the graph that has a parabolic shape.
When Ax is small and negative, we're in the zone where the function squares the input. We now must
work with the limit

ALz';'Orz_ [f2+Ax) - f(2)] | Ax

We must not forget that £(2) = 4. When we substitute (2 + Ax)* for (2 + Ax), and substitute 4 for £(2)

in the above expression, it becomes

Lim [2+Ax)*—4] | Ax

Ax—0-
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When we square the binomial, we get
Aéi?’gf 4 + 4Ax+ (Ax)* — 4] | Ax
which can be simplified to
Aéi?%i_ [4Ax+ (Ax)?] | Ax
and further to

Lim 4 + Ax

Ax—0—

This limit is equal to 4. That’s a sensible outcome. The slope of the parabola, if it were complete, would be
4 at the point where x = 2. But that’s not the same value as we got when we evaluated the right-hand limit.
Having found a disagreement between the right-hand and left-hand limits of the slope, we know that this
function is nondifferentiable at the point where x = 2.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Sketch a graph of the following function:

f(x) =1/x when x< -1

=-1 whenx2>-1

At what point or points does it appear, based on the graph, that this function is
nondifferentiable?

2. Verify the answer to Prob. 1 mathematically.

3. Sketch a graph of the following function:

f(x)=x whenx<3
=1 whenx>3

At what point or points does it appear, based on the graph, that this function is
nondifferentiable?

4. Verify the answer to Prob. 3 mathematically.

5. Sketch a graph of the following function, noting the subtle difference between it and
the function described in Prob. 3:

f(x)=x whenx<3
=1 whenx2>3
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At what point or points does it appear, based on the graph, that this function is
nondifferentiable?

6. Verify the answer to Prob. 5 mathematically.
7. Sketch a graph of the following function:
flx)=x" whenx<1

=x’ whenx>1

At what point or points does it appear, based on the graph, that this function is
nondifferentiable?

8. Verify the answer to Prob. 7 mathematically.
9. Sketch a graph of the following function:

fx)=x* whenx<1
=2x—1 whenx2>1

At what point or points does it appear, based on the graph, that this function is
nondifferentiable?

10. Verify the answer to Prob. 9 mathematically.



CHAPTER

Differentiating Polynomial
Functions

In this chapter, we'll learn how to differentiate a function that raises a variable to a large inte-
ger power. We'll learn how to differentiate the sum of two functions. Then we'll combine these
rules to differentiate functions that can be written in polynomial form.

Power Rule

In Chap. 3, we learned how to find the derivatives of monomial (single-term) quadratic and
cubic functions. Now let’s develop a rule for finding the derivative of any monomial function
of the form

flx) = ax"

where « is a real-number constant and 7 is a positive integer larger than 2. We'll call this the
power rule for derivatives.

Power of a binomial

Think of the binomial 2z + 4, where 2z and & are nonzero real numbers. (The value of 4 can
be either positive or negative, so we can stick with the plus sign in the notation.) When such
an expression is raised to successive positive integer powers, it generates an increasingly com-
plicated series of terms, each of which consists of a power of 4, a power of 4, or a product of
powers of « and 4. Consider

(a+ b)"=(a+ b)(a+ b)(a+ b) - - - (ntimes)
where 7 is an integer larger than 2. When we multiply this expression out in full (a tedious
process if 7 is large), we always get a polynomial that starts with 2”, followed by terms that

consist of successively smaller powers of 2 multiplied by successively larger powers of 4, until
we get to the last term, which is #”. Each term in the multiplied-out polynomial, containing
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powers of both z and &, has a numerical coefficient, a constant by which the product of powers
of #and 4 is multiplied. Here are the first few cases:

(a+ 0> =a’+3a%b+3ab*+ b
(a+ b)'=a*+42°b+ 64°6* + 4ab’ + b
(a+ b)Y =a’+5a"b+ 106> + 104°6° + 5ab* + b°
(a+b)°=a°+6a°b+ 154*b* + 204°6> + 154°b6* + 6ab’ + b°

As long as 7> 2, we will always notice the following facts about the multiplied-out polyno-
mial:

e The first term is 2"
e The second term is 72" Vé.
e We can factor 42 out of the third term and each term after that.

Now instead of zand 4, let’s call the terms in the binomial by different names. How about
xo and Ax? That gives us

(x0 + Ax)" = (x0 + Ax)(x0 + Ax) (%9 + Ax) - - - (n times)

When we multiply this out, we get a polynomial that starts with x,”, followed by terms that
consist of successively smaller powers of x, times successively larger powers of Ax, until we get
to the last term, which is (Ax)”. We always find that:

e The first term is x,"
e The second term is 7x," VAx.
e We can factor (Ax)? out of the third term and each one after that.

Deriving the rule

Now we'll work out a formula that tells us the derivative of a function f in which we take the 7th
power of a real variable x and then multiply by a real constant a. It's a monomial of the form

[flx) = ax”

where 7 is an integer larger than 2. Let’s determine /" at a nonspecific point (x,,). Imagine
that, in the xy-plane, we plot the graph of

y=ax"
as a curve. The domain is always the entire set of reals, no matter what 7 happens to be. The
range is the set of nonnegative reals if 7 is even, and the set of all reals if 7 is odd. (Try graph-

ing a few functions of this form, and see for yourself!) The x-value of a movable point (x,y)
in the vicinity of (xo,) is

x = xo+ Ax
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The y-value of the movable point is
y=ax"=a(x)+ Ax)" = a[x," + nx" PAx+ S|
where Sis a series, each term of which has a factor of (Ax)?, so
S=r(Ax)?

where 7is some real constant built up by adding and multiplying other constants. Substituting
7(Ax)* for Sin the above equation, we can say that the y-value of the movable point is

y=alx,"+ nxg" VAx+ r(Ax)?] = axy" + anx)" VAx+ ar(Ax)*
The slope of a line through (x,)) and (x,y), which approximates £ (x), is
AylAx= (y—y) | (x— xp)
The function tells us that y, = ax,". In the above equation, let’s substitute
e The quantity [ax," + anx," " Ax+ ar(Ax)?] for y
* The quantity ax," for y,
* The quantity (x, + Ax) for x
That gives us
AylAx= [axy" + anx,” VAx+ ar(Ax)* — axy"] | (xo + Ax— xo)
which simplifies to
AylAx= [anxy" PAx+ ar(Ax)*] | Ax
and further to
Ay lAx= anxy" "V + arAx
The derivative £’ (x,) is therefore
Fl(xo) = Ael'_% anxy" VY + arAx
As Ax approaches 0, the second addend, @7Ax, approaches 0 because it is a constant multiple of

Ax. The first addend, anx," ", doesn’t change no matter what Ax happens to be, because Axisn't
a factor in this term at all. The limit of the entire expression is therefore anx," ", telling us that

f,(xo) = ﬂ”xo(nil)
for any real number x,. Therefore, any function of the form

flx) = ax”



74  Differentiating Polynomial Functions

has the derivative
F(x) = anx"™V
where @ is a nonzero real constant and 7 is an integer larger than 2.

Are you confused?

You might wonder, “Why do we restrict 7 to integers larger than 22 Won't the above formula work if =1 or
n=2?"Yes, it will. We covered those cases in the linear and quadratic examples that we worked out in Chap. 3,
so we don't have to do them again. To make the above derivation work, we had to set things up to get a factor
of (Ax)* out of every term in the polynomial after the second one. That can only happen if 7> 2.

Here's a challengel!

Consider the function f(x) = x. Sketch a graph of this function for values of x between, and including, 0
and 1. Using a calculator, find the value of x (call it x¢) at which the slope of the curve is equal to 1. Round
the answer off to three decimal places.

Solution

Figure 5-1 shows this situation. First, let’s find the derivative using the power rule, letting 2= 1 and n = 4.
We have

f(x) = 4xD = 43

Figure 5-1 Graph of f(x) = x* for 0 < x< 1. At what

value of x is the derivative equal to 1?
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We can solve the following equation to get the value of x for which the slope of the curve is equal to 1:

dx’=1
Dividing through by 4, we get
x° = 1/4
Taking the 1/3 power of each side tells us that
xo=(1/4)"?

We should remember that the 1/3 power is the positive real cube root. We're not interested in nonreal
complex-number roots in this case, because we're restricted to interval between, and including, the real
numbers 0 and 1. A calculator produces the result, rounded to three decimal places, of

Xo = 0.630

Sum Rule

In Chap. 3, we found derivatives of a few functions that were sums of other functions. Perhaps
you noticed that the derivative of the whole sum was the same as the sum of the derivatives of
its addends. That was no accident!

Definition and notation

Let’s be sure we know what’s meant by the sum of two functions. When we want to add two
functions, we simply add the expressions that define those functions. For example, if

fi(x)=6x

and

f(x)==3x

then

fi(x) + £ (x) =6x° — 3x

Here’s another example. If

filx)=-2x"
and

f(x)=5x+3
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then
filx) + £ (x) ==2x"+5x+3

When two functions f; and f; operate on the same variable such as x, we can denote their sum
in various ways. Here are the three most common formats:

fi () + £ (x)
(fi+h) (x)
fith

The rule in brief

The sum rule for two derivatives tells us this:

* The derivative of the sum of two differentiable functions of a single real variable is
equal to the sum of their derivatives.

This rule always works, as long we stick with the same variable in both functions, and as long
as the functions are both differentiable at all the points that interest us. Stated symbolically, if
/i and £ are differentiable functions of the same variable, then

(it h)=f+f

Are you confused?

Have you noticed that sometimes we write f(x) to denote a function and f”(x) to denote its derivative,
and then later we write fand f” to denote the same things? Don't let this bother you. As long as we know
that fand £’ operate on the same variable, it doesn’t matter whether or not we include the variable in
parentheses after the name of the function.

When we want to be sure we know which variable we're talking about, then it’s a good idea to include
the parentheses and the variable. This can be important in multi-variable calculus, which we'll study later
in this book. It’s also important if we're talking about something other than the independent variable itself,
such as the number 4 or the expression (x+ Ax).

Example
Consider the following functions of x. Note that the third function is the sum of the first two:
fi(x)=6x
f(x) =-3x
(f+£) (x) =6x° — 3x
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We can find the derivatives of the first two functions using rules we've already learned:

S (x) =18x
£x)=-3

The sum of the derivatives is
A (x)+ f(x)=18x" -3

If we use the definition at the end of Chap. 3 to calculate the derivative of the sum function
using limits, we will get

(A+A) (x)=18x"-3

which is the same as the result we get when we find the derivatives of component functions
separately and then add them.

Another example

Lets look at an example involving functions of the variable y. Again, the third function is the sum
of the first two:

fily)==2y
£(y)=5y+3
(f+£) () ==20+5y+3

When we find the derivatives of these two component functions, we get

F(y) =—4y
£y =5

The sum of these derivative functions is

F)+£ () =—4y+5

Again using the definition at the end of Chap. 3, we can show that

(f+£) (n=-4y+5

This is what we get when we determine the derivatives separately and add them.

Mathematical induction

If you've taken any number-theory or set-theory courses, you've learned about a technique
called mathematical induction. If you haven't seen this technique before, or if you've forgot-
ten how it works, here’s a brief review. Mathematical induction allows you to prove infinitely
many facts in a finite number of steps.
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Imagine an infinite sequence of statements called S, S,, S, and so on. Suppose that
you want to prove all these statements true. You can’t prove every statement one by one,
because you don't have an infinite amount of time. But suppose that you can demonstrate
two things:

¢ The first statement S, is true, and
* Ifastatement S, (where 7 can be any positive integer) in the sequence is true, then the
next statement S, in the sequence is also true.

Once you have done these two things, the first statement “automatically” proves the second
statement. That, in turn, “automatically” proves the third statement. The logical process can
go on forever, like an endless chain reaction! It proves that all the statements in the sequence
are true, even if there are infinitely many of them.

Are you confused?

By now you might wonder how mathematical induction can help you prove anything that has to do with
adding derivatives. The following “challenge” will answer that question!

Here's a challengel!

Extrapolate the sum rule for two derivatives to show that it works for the sum of any number of derivatives.

Solution

The sum rule for two derivatives says that for any two differentiable functions f and f,

i+ ) = +f

Let’s call this statement §; in an infinite sequence of truths we intend to prove. We are given the fact that this

initial statement is true. Now imagine an unlimited supply of differentiable functions called f, £, £, . . . , and
so on, forever! According to our sequencing scheme, the second statement, S, (which we haven't proven
yet) is

(fi+fh+f) =f+f+F
The third statement, S; (which, again, remains to be proved) is
(f+l+f+0) = +5+F+4

Imagine that we have been assured of the truth of statement S, saying that, for any » + 1 differentiable
functions £, f3, f5, - - . » and so on up to fo,1,

(fithtft ot fu =+ 4 fud
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We must show that if S, is true, then the next statement S, is also true, which would tell us that for any
n+ 2 differentiable functions f;, £, f, . . . , and so on up to fo,

(f+f+fit ot ftfd =+ +++ i+
Now let’s temporarily change a couple of names, like this:

* Call the sum of functions fi +  + 5+ - - - + f,.1 by the nickname ¢
* Call the sum of functions " + £+ £+ - - - + fo1” by the nickname 4

On that basis, we can rewrite S, as

Lets pick a function “out of the air” and call it f,,,. (We can call it anything we want, so why not that?)
We add this new function to gand then take the derivative:

(g+ fourd)
According to the sum rule for two derivatives, we know that
(g+f) =g + 1
We also know that ¢ = 4, so we can substitute in the above equation to get
(g+fr»z)' = /7+fn+2,

When we give gand 4 their original names back, the above expression expands to

(F+h+h+ ot fitfw) =+ +F+ o+l

Thats exactly the statement S,.,! Having fulfilled the requirements of the mathematical induction
routine, we're entitled to claim that the derivative of a sum is equal to the sum of the derivatives, no matter
how many functions are involved. We can now call this rule simply the sum rule for derivatives.

Summing the Powers

If we give a function the name fand tell it to operate on a variable x, then f is an nth-degree
polynomial function if and only if it can be written in this form:

fx)=ax"+ a1 x"" + a,,x" 7+ -+ ax+ a
where each addend is called a zerm, the subscripted letters 4y, 4, 43, . . . , and 4, represent real

numbers called the coefficients of the terms, the subscripted letter 4, represents the stand-alone
constant or constant term, and 7 is a positive integer.
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How it looks

Here are some examples of polynomial functions. They are of degree 4, 5, 7, and 11,
respectively:

fi(x) = 6x* — 3% + 3x* + 2%+ 5
f(x)=3x —4x°
fle) == =55 +3x° — x* = 29
fi(x) =—4x"

In all but the first of these functions, some of the coefficients are equal to 0. The coefficient 4,
by which x” is multiplied, called the leading coefficient, can’t be 0 in an nth-degree polynomial
function. If we set 4, = 0 in a polynomial function f(x), we end up with

fFx)=0x"+ a,., X" + 2,6+ - -+ ax+ 4

This expression is not technically wrong, but it contains a useless term. It’s really a single-variable
polynomial function of degree n— 1:

fx)=a,.x"+a, 57+ -+ ax+a
We assume, of course, that a, ; # 0!

Break it down

Look closely at the general form for an nth-degree polynomial function. Then look at each of
the four examples above. Every one of these functions has something in common. They’re all
sums of monomial power functions. For example,

g(x)=6x"—3x°+3x* + 2x+ 5
is the sum of a monomial fourth-degree (or guartic) function, a monomial cubic function, a

monomial quadratic function, a monomial linear function, and a constant function. Let’s give
each of these functions the name of gwith a subscript indicating its degree, like this:

2 (x) = 6x*
g (x) =-3x
2 (x)=3x"
g (x) =2x

J ) (x ) =5

We can write g (x) as the sum of these:

2()=g(x)+g(x) +gx)+g(x) +gx)

We've learned that the derivative of a sum is always equal to the sum of the derivatives. We've
also learned how to differentiate any function that takes the variable to a nonnegative integer
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power and then multiplies it by a constant. Therefore, we have the tools to differentiate any
polynomial function.

Differentiate each term

Once we've broken a polynomial function down into its terms, we can use the power rule to
differentiate each one of them. In the above situation, we get these derivatives:

g (x) =24x

g (x) =-9x°
% (x)=6x
gl' (x) =2

& (x)=0

Put it back together

To do the final step in working out the derivative of the polynomial function, we add the
derivatives of the individual terms together in order of highest-to-lowest powers:

) =g )+ (x)+2 (x)+a" (x)+g (x)
=242 -9+ 6x+2+0=24x>—9x* + 6x+ 2

Are you confused?

Do you wonder what happens if we try to find the derivative of a function that raises the variable to a
negative-integer power such as —5, or to a non-integer rational power such as 3/5 or —3.7, or even to an
irrational power such as T or the square root of 22 What about functions that don’t involve exponents, such
as the sine or cosine? We'll explore the derivatives of some such functions in Chap. 7.

Here's a challengel!

The sum rule for two derivatives, stated earlier in this chapter, says that if £ and £ are differentiable func-
tions of the same variable, then

(it p) = +f

We've seen some examples of this rule “in action,” but we haven’t proved it yet. Now is the time!

Solution

Before we begin the proof, let’s make four changes to the notation:

* Include the name of the variable (we’ll use x)

* Change the names of the functions to fand ¢

*  Write 8 (lowercase Greek delta) instead of Ax to represent a shrinking increment
* Leave out “d — 0” beneath “Lim” (but remember that it’s implied)
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These changes will make the expressions clearer than they would be otherwise. They’ll also help you get
used to some of the alternative ways that things can be written down in calculus. We want to prove that if
fand gare differentiable functions of x, then

(f+g) () =f"(x) +

According to the definition at the end of Chap. 3, the derivative of our sum function, written the “new
way,” is

(f+g) (x) = Lim [(f+ g) (x+8) = (f+¢g) (x)] /8

We can rewrite this as

Lim {[f(x+8) + g(x+ )] — [f(x) +g(x)]}/
which can be rearranged to

Lim [f(x+8) + g(x+ ) — f(x) — /6

and further to

Lim {[f(x+8) — f(x)] + [g(x+8) —g(x)]} / §
and still further to

Lim [f(x+8) — f(x)] / 8+ [g(x+3) —g(x)] /9

In Chap. 2, we learned that the limit of a sum is equal to the sum of the limits. Using that rule, we can
split the above limit into a sum of two limits, getting

Lim [f(x+8)— f(x)] /8 + Lim [g(x+0)—g(x)]/d

To finish, we can apply the definition of the derivative “backward” to both of these limits and rewrite the
above expression as

1)+ g'(%)

We started out with (f+ )" (x) and ended up with f’(x) + g’(x), showing that these two expressions are
equivalent. Mission accomplished!

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!
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. Determine the derivatives of the following functions:

(@) f(x) = —8x°
(b) g(z) = 122"
(©) h(r)=-21¢"

. Consider the function f (x) = x° in the interval 0 < x< 1. Find x, in this interval,

accurate to three decimal places, such that £’ (x) = 1. (It’s okay to use a calculator.)

. Consider the function £ (x) = &’ in the interval 0 < x< 1. Find x, in this interval,

accurate to three decimal places, such that £ (x) = 1. (It’s okay to use a calculator.)

Consider the infinite set of functions f, (x) = x” in the interval 0 < x< 1, where 7 is an
integer larger than or equal to 2. Find a general expression for x; in this interval, such

that f; (xo) = 1. (A calculator is useless here!)

. Sketch a multi-curve graph that shows £, (x) = x” in the interval 0 < x< 1 for n=3,

n=4, and n=5. On each curve, show the point x, at which £, (x;) = 1 as a solid dot.
To plot the points, use the values obtained in the solutions of problems we've already
solved in this chapter. Draw lines tangent to the curves at these points.

. Consider again the set of functions £, (x) = x”, where 7 is an integer larger than or equal

to 2. Find a general expression for the value of £, (1).

Consider (yet again!) the set of functions f, (x) = x”, where 7 is an integer larger than or
equal to 2. Find a general expression for the value of £, (0).

. Find the derivative of the function

flx)=8x"+4x =3+ x"+x* =3

. Find the derivative of the function

flx) = asx’ + ax’ + 43 + X’ + ayx + 4

where 4, 4, a5, @, a4, and 4, are real numbers, and 45 # 0.

Write an expression for the derivative of the general polynomial function

fx)=ax"+ a x"" + a5+ ax + ax+ 4

where a,, 4, |, 4,5, . . . , a4, and a4, are real numbers, and 4, # 0.



CHAPTER

More Rules for Differentiation

The functions we've differentiated so far have all been specialized. Often, we'll want to dif-
ferentiate more general functions built up by multiplication, division, or other processes.
Sometimes we'll encounter a function of another function! In this chapter, we'll learn some
more useful rules for differentiation.

Multiplication-by-Constant Rule

84

We can take any function and multiply it by a constant, and the result is another function.
There’s a convenient rule that applies to derivatives when this is done.

Definition and notation

When we want to find the product of a function and a constant, we multiply the expression of
the function by that constant. For example, if

flx)=6x

and

then
c[flx)] =-3x6x° =-18x"
Here’s another example. If

flx)=5x"+3x—7
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and

then
c[fx)]=2%x (55" +3x—7)=10x"+ 6x— 14

We can write ¢f by itself, without including the variable in parentheses, as long as we know
which variable we're dealing with. We can also write ¢fif we don’t want to restrict fto a par-
ticular variable, or if we want to let f operate on all sorts of things. (Functions can operate on
expressions more complicated than plain variables.)

The rule in brief

The multiplication-by-constant rule for differentiation tells us this:

* If we take the derivative of a differentiable function affer it has been multiplied by a
constant, we get the same result as we do if we take the derivative of the function and
then multiply by the constant.

This rule always works, provided that the function is differentiable at every point that interests
us. Stated symbolically, if f is a differentiable function and c¢is a real-number constant, then

(cf) =e(f)

and
(ef)=(f")e
Example
Let’s apply this rule to the first example we saw a few moments ago:
Flx) = 6x°
and
c=-3

When we differentiate the product of the function and the constant, we get
(¢f) (x) =dldx (-3 X 6x°) = d | dx (—18x’) = =54x"
When we differentiate the function first and then multiply by the constant, we get

c[f (%)l =-3 % (d/dx 6x°) = =3 x 18x% = —54x°
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Another example

Now let’s work on the second example we saw earlier:
flx)=5x*+3x—7
and
c=2
When we multiply the function by the constant before we differentiate, we get
(cf) (x)=dldx[2%x (55" + 3x—7)] = dldx (10x* + 6x— 14) =20x+ 6
When we multiply by the constant after we differentiate, we obtain

c[f ()] =2x[dldx(5x*+3x—7)] =2 (10x+ 3) =20x+ 6

Are you confused?

“Wait,” you might say. “What does this new notation & /dx mean?” The answer is that is isn’t actually new;
it was introduced in Chap. 3. You can read d/dx as “the derivative with respect to x.” If you see

dldx 8x®

it means “the derivative, with respect to x, of 8x”.” The variable doesnt necessarily have to be x. If it hap-
pens to be yand you see

dldy(y* +2y+1)

»

you would read it as “the derivative, with respect to y of the quantity (y* + 2y + 1)

Here's a challengel!

Prove the multiplication-by-constant rule for differentiation.

Solution

The proof of this rule is similar to the proof of the rule for the sum of two derivatives, which we carried out
at the end of Chap. 5. Once again, let’s make some changes to conventional notation before we begin:

¢ Include the name of the variable (we’ll use x)
*  Write § instead of Ax to represent a shrinking increment

* Leave out “3d — 0” beneath “Lim” (but remember that it’s implied)

We want to prove that if fis a differentiable function of x, and ¢ is a real-number constant, then

(cf) (x) = clf" ()]
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According to the definition at the end of Chap. 3, the derivative of our product function, written the “new
way,” is

(f) (x) = Lim [(cf) (x+8) = (cf) ()] /8
We can rewrite the right side of this equation as
Lim {c[f(x+8)] = e[ f())} / 8
which can be rearranged to
Lim c{[f(x+8)~ f(x)]/ 8}

In Chap. 2, we learned that a constant times the limit of an expression is equal to the limit of the expression
times the constant. Using that rule, we can “pull out the constant” and rewrite the above expression as

c{Lim [f(x+8) — f(x)]/ &}
Inside the curly braces, we have the derivative of the function fall by itself. That’s because, by definition,
Lim [fx+8)— f(x)] 1 8=f"(x)
Therefore,
c{Lim [flx+8) = f(x)] / 8} = e[ f” ()]

We began with the expression (¢f)” (x) and derived ¢[ £’ (x)] from it, showing that these two expressions
are equivalent.

Product Rule

When two functions are multiplied, the result is another function. Sometimes a function can
be broken down into a product of two simpler functions. But the derivative of the product of
two functions is not the simple product of the derivatives!

Definition and notation

To determine the product of two functions, we multiply the expression of the first function
by the expression of the second. For example, if

flx) =06

and

g(x)=-3x
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then
fz (x) = (6x°)(-3x) = —18x*
Here’s another example. If we have

flx) = (" + 2x)
and

g(x) = (2x"-3)
then

Sz (x) = (% + 2x)(2x* = 3) = 2x" + 4x° — 35 — 6x

When we want to denote the product of functions f and g we can write f¢ without including
the variable in parentheses, as long as both functions operate on the same variable or expression.

The rule in brief

The two-function product rule for differentiation tells us this:

* To find the derivative of the product of two differentiable functions, we multiply the
derivative of the first function by the second function, then multiply the derivative of
the second function by the first function, and finally add the two products.

For this rule to apply, both functions must be differentiable at every point that interests us.
Stated symbolically, if fand gare differentiable functions, then

(fo) =f'g+d'f

Example

Let’s see how this rule works, using the examples we saw a few moments ago. First, consider
flx)=6x

and
g2 (x)=-3x

When we differentiate the product of the functions, we get

(fg)" (x) = d1dx [(6x°)(—3x)] = d | dx (-18x") = =72
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When we use the product rule, we get

[f"(llg ()] + [g" I [f ()] = [d /dix (6x)](=3x) + [d ] dx (=3x)](6x°)
= (18x%)(—3x) + (-3)(6x°) =—72x°

Another example

In the second situation, we have
f(x) = (x" + 2x)

and
g(x)=02x"-3)

When we differentiate the product of the functions, we get

(fo)'(x) = dldx [(x* + 2x)(2x* = 3)] = d /dx 2x" + 4x° — 3x” — 6x)
=8x"+12x" —6x—6
When we use the product rule, we get
[f7(0)]lg ()] + (g ) f(x)] = [d ] de («° + 2x)]2x7 = 3) + [d [dx (2x* — 3)](x* + 2x)

=2x+2)2x* = 3) + (dx)(x* + 2x) =8x> + 12x* — 6x— 6

Are you confused?

You must be careful when writing the product of two functions. It’s easy to inadvertently write the expres-
sion for a function of a function instead. For example, if you put down

flg@)]
you tell your readers to apply the function gto the variable x, and then apply the function fto the variable

£ (x). In other words, you indicate “fof g of x.” If you want to denote the product “fof x times g of x,”
you should write

[f ()]g ()]

or

Fo)xg(x)
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If you don’t want to specify the independent variable, things get trickier. If you write

(9

you indicate “fof g” meaning that function fshould be applied to the output of function g If you want
to show “ftimes g” you should write

fg

or

fxg

Here's a challengel!

Based on the rules we've learned so far, prove that if /i and f are differentiable functions of the same vari-
able, and if 4, and &, are constants, then

(@fi+af) =a(f’)+a(f)

This is called the linear combination rule for differentiation.

Solution

This proof is amazingly simple, once we realize that 4, fi and 4, f; are both functions, so they can both be
treated that way in all respects. Therefore, according to the sum rule for two derivatives, we have

(afi+ af) =(@p) + (af)

The multiplication-by-constant rule for differentiation tells us that

(ﬂlﬁ), = ﬂl(fl‘,)

and

(@:f,)" = a(f)

Substituting these expressions in the first equation, we obtain

(afi+af) =a(f)+a(f)

Reciprocal Rule

We can take the reciprocal of a function (as long as it’s not the zero function) and get another
function. But in general, the derivative of a reciprocal is not the reciprocal of the derivative.
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There’s another complication, too. We must be careful about specifying the domain when we
work with the reciprocal of a function.

Definition and notation
To find the reciprocal of a function, we divide 1 by the expression of the function. For example, if

flx) =%

then

1/ [fle)] =17 =x7
Here’s another example. If
flx)=2x*—8
then

1/ [fle)]=1/2x-8) =(2x"—8)"

Caution!

We can express the reciprocal of f(x) by writing [ £(x)]™", but this brings us near dangerous
territory! We can't write an exponent —1 immediately after fto indicate the reciprocal of £ If
we put down £, we denote the inverse function, not the reciprocal function.

With numbers and algebraic expressions, the terms “inverse” and “reciprocal” are often
used interchangeably, because the multiplicative inverse and the reciprocal are the same thing.
But when we deal with functions, there’s a big difference between an inverse and a reciprocal.
Suppose we have a function fof a variable x such that

fx)=5x
Then the reciprocal function is
[f()]™ = 1/(5x)
But the inverse function is
f(x)=x/5

The reciprocal is 1 divided by the function. The inverse is a completely different function; it
“undoes” or “reverses” the work of the original function.
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The rule in brief

The reciprocal rule for differentiation tells us this:

* To find the derivative of the reciprocal of a differentiable function, we must first find
the derivative of the original function, then multiply by —1, and finally divide by the
square of the original function.

Stated symbolically, if f'is a differentiable function, then
(LFY ==f"1(f?)

The square of a function is, as we should expect, the expression of the function multiplied by
itself.

For this rule to apply, the function fmust be differentiable at every point that interests us.
Generally, that means that fcan’t have a gap, take a jump, turn a corner, or blow up. In addi-
tion, fcan't attain the value 0 anywhere in its domain. If it does, we end up having to divide
by 0 to take the reciprocal.

More caution!

If a function is differentiable throughout its domain, then the reciprocal function is not neces-
sarily differentiable at every point in its domain. In the example above, the function

flx) =5x

is defined over the entire set of real numbers x, but the reciprocal function

[f()]™ = 1/(5x)

is not defined for x= 0. There’s a discontinuity, so the reciprocal function is not differentiable
over the entire set of reals. We can make the reciprocal function differentiable only if we
restrict the domain to keep the discontinuity out.

Example

Let’s apply the reciprocal rule for differentiation to a couple of common functions. First, we'll
look at

g(x)=1/x
This is the reciprocal of a function we can call f(x), as follows:
flx) =«

The negative of the derivative of f(x) is

- (x)=—2x
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and the square of f(x) is
[f(0)] = () = «*
We can now set up the derivative of g (x) using the rule:
g/ = (1 [FN) = F/() | [F] = 2 /x = 2/

This holds only as long as x # 0. If x=0, then g (x) is undefined, so its derivative is undefined
as well.

Another example

Now let’s look at another example we saw earlier in this chapter. Let
h(x)=1/(2x*—8)

which is the reciprocal of a function we can call f(x), like this:

flx)=2x"—8
Taking the derivative of f(x), we get
[ (x) =4x
Multiplying by —1 gives us
—f" (x) =—4x

The square of f(x) is
[f(x)]* = 2x* — 8)* = 4x* — 32x* + 64
Using the reciprocal rule for differentiation, we obtain
Koy = {11 [f ==f" () | [f(x)]* = —4x/ (4x" = 32 + 64)
= —x/ (x* — 8x* + 16)

If x=2 or x=-2, then /4 (x) is undefined, so #'(x) is also undefined. Those values of x are the
zeros of f(x), where

2x*—8=0

The function /4 (x) is nondifferentiable at the points where x=2 and x=-2.
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Are you confused?

Whenever you apply the reciprocal rule, a function appears in the denominator of a fraction. When
that denominator function attains the value 0, a discontinuity occurs, and the main function is not
differentiable at that point. You might wonder, “Does this mean that any reciprocal function has at
least one point at which it can’t be differentiated? If that’s true, then reciprocal functions are never
differentiable in the general sense.” Well, as things work out, plenty of reciprocal functions are dif-
ferentiable over the entire set of real numbers. You'll encounter an example as you work through the
exercises at the end of this chapter.

Here's a challenge!

Find the derivative of the function
gx)=1/("+x-2)

in the set of real numbers. Indicate the real values of x, if any, for which this function is nondifferentiable.

Solution

This is the reciprocal of a function we can call £(x), as follows:

fx)=x"+x-2
Taking the derivative of f(x), we get
f(x)=2x+1
Multiplying by —1 gives us
—f(x)=—2x—1

The square of f(x) is
[f)l?= (P +x—2)*=x"+2x° - 37 —4x+ 4
Using the reciprocal rule for differentiation, we obtain
g ) ={1I[fN =—f"(x) ] [f()) = (2x— 1)/ (x* + 2% = 3x* — 4x+ 4)
If x=1 or x=—2, then ¢ (x) is undefined, so 4" (x) is also undefined. Those values of x are the zeros of
f)=x"+x-2

which forms the denominator of g (x). We can find these zeros either by factoring the quadratic or by
using the quadratic formula.
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Quotient Rule

We can take the quotient of two functions and get another function, but we must restrict the
domain to be sure that the second function (the denominator or divisor) cannot attain the
value 0. The derivative of a quotient is not, in general, merely the quotient of the derivatives.
I¢s a little more complicated than that.

Definition and notation

When we want to divide a function by second function, we divide the expression of the first
function by the expression of the second one. We find the ratio of the expressions that define
the functions. Consider

flx)=8x
and

g (x) =4x
In this case,
[f()]/ [g ()] = (8x%) / (4x) =2x
provided x # 0. Here’s another example. Suppose we have
flx)=x"—x—-20

and

gx)=x-5
The quotient in this case, as long as x # 5, is

[fe)]/ [g(0)]=(x*—x=20)/ (x=5) =x+4

The rule in brief

The quotient rule for differentiation tells us this:

* To find the derivative of the quotient of two differentiable functions, we multiply the
derivative of the first function by the second function, then multiply the derivative of
the second function by the first function, then subtract the second product from the
first product, and finally divide by the square of the second function.

If we want to use this rule, then both functions, as well as their ratio, must be differentiable at
every point that interests us. (Sometimes a derivative exists for the quotient of two functions
even when this rule cant be applied. We'll see an example of this shortly.) In addition, the
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denominator function can’t attain the value 0 anywhere in its domain. Stated symbolically, if
f and gare differentiable functions, then

(flg) =(f"¢-¢' /g
for all points where g does not become 0.

Example

Let’s see how this rule works, using the examples from above. First, consider
flx)=8x"
and
g (x)=4x
When we differentiate the quotient of the functions, we get
(flg) (x)=dldx[(8x) | (4x)] = d/dx 2x) =2
When we use the quotient rule, we get

(flg) (x) ={lf" )][g )] = [g" @I )]}/ [g ()]
= {[d/dx (8x*)](4x) — [d | dx (4x)](8x%)} | (4x)*
= [(16x)(4x) — 4 X (8x7)] / (16x%) = (64x* — 32x%) | (16x7)
=(32x%) / (16x}) =2

This works only as long as g (x) # 0. That means the derivative of the quotient function is
defined for all real numbers except 0.

Another example

Now let’s look at these two functions:
flx)=x*—x—-20
and
g(x)=x=5
When we differentiate the quotient of these, we get

(Flg) (x) = dldx [(x* = x—20) | (x—5)] = d ldx (x+ 4) = 1
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When we use the quotient rule, we get

(F19/ () ={Lf" g )] — [ GILFN [g P

{ld/dx (x> — x—20)](x—5) — [d/dx (x— 5)]( x> — x—20)} / (x—5)*
[Cx—1D(x—5)—1x (x*—x—20)]/ (x* — 10x+ 25)

=[(2x* = 11x+5) — (x* = x—20) / (x* — 10x+ 25)

=Q2x*—11x+5— x>+ x+20) / (x* — 10x+ 25)

=(x*—10x+25)/ (x> = 10x+25) =1

This works provided g (x) # 0. That means the derivative of the quotient function is defined
for all real numbers except 5. That value of xis the zero of

glx)=x-5

which forms the denominator in the quotient.

Are you astute?

The quotient of two functions can be differentiable in general, even if one or both of them individually
is not. At first you might think that this sort of thing can’t occur. But once in awhile it happens. Here’s
an example.

Take a look at Fig. 6-1. The derivatives of f(x) and g (x) both abruptly change at the point where x= 0.
Specifically:

f/(x)=-2 whenx<0
f'(x)=2 whenx>0
g (x)=-1 whenx<0
g (x)=1 whenx>0

Neither derivative is defined at the point where x= 0, so neither function is differentiable in general. You
can’t use the quotient rule to find [ f(x) / g(x)]” unless you leave x = 0 out of the domains.

Nevertheless, a derivative exists for f(x) / g (x) over the entire set of reals, including x = 0. Because
£ (x) never becomes equal to 0, you know that

’

Fx) /g =2xl+1)/(Ixl+1)=2
Therefore,
[flx) !/ gx) =dldx2=0

for all real numbers x. The graph of [f(x) /g (x)]" is a line with a slope of 0 at every point along its infinite
length, and that passes through the point (0,2). There is no discontinuity at the point (0,2) or anywhere else.

Here's a challengel!

Derive the quotient rule for differentiation from the other rules we've learned so far.
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Value of
function

<1 T T T T 1 T T T 1> X
fx)=2(x|+1) | Each axis increment
""""""""" T is 1 unit
g=iet | IWlgW=2

\ 4

Figure 6-1 In this situation, the quotient of f(x)
and g (x) is differentiable over the entire
set of reals, but neither f(x) nor g(x) is
differentiable at the point where x= 0.

Solution

Whenever we want to divide a quantity by another, we can multiply the first quantity by the reciprocal
of the second, as long as the second quantity is not equal to 0. Knowing that, it seems that we should be
able to derive the quotient rule for differentiation from the product and reciprocal rules for differentiation.
Let’s try that approach and see if it works.

Suppose that we're given two functions called fand g and the domain is restricted so the value of gcan
never become 0. We can write the reciprocal of gas (1/g). Our knowledge of algebra tells us that

flg=f x(llg)

Let’s insert a “times sign” (X) if there is any risk denoting a function ofa function when we mean to denote
& Y &
a function #imes a function. The reciprocal rule for differentiation tells us that

(g)' ==¢'1(g*)
The product rule for differentiation allows us to write

[Fx (1) =f x (g + (1lg) f
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When we substitute ( f'/ g)’ for [ f X (1/g)]" on the left-hand side of this equation, and we also substitute
[—¢" / (¢7)] for (1/9)" on the right-hand side, we get

(fl9' =f"xg)+[=¢" 1 (g f

We can simplify this to

(fle'=f"lg-¢ flg

Now let’s multiply the quotient immediately after the equals sign by the quantity (g/¢). We know that
(g/g) is defined under our domain restriction—that is, g # 0—so it’s equal to 1. When we do that, the
above equation becomes

(fl9'=(f"lg)gle) =& f1g’
We can multiply out the term immediately to the right of the equals sign to get
(fle'=fglg~¢flg

Now we have a difference of two fractions with a common denominator on the right-hand side of the
equation. Consolidating this into a single fraction, we get

(fle'=(f"g-g g

That’s the quotient rule for differentiation!

Chain Rule

When a function operates on the output of another function, the combination is a third func-
tion known as a composite function. Sometimes its called a function of a function. We can use a
procedure called the chain rule for differentiation to find the derivative of a composite function.

Definition and notation

To determine a function of a function, we apply the second function to the output of the first.
In other words, we apply the first (or “inner”) function to its independent variable, and then
we apply the second (or “outer”) function to the value of the first function. For example, if

Flx) = 647
and

g(y)=-3y
then

g[f(x)] =-3 % (6x°) =—18x
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Heres another example. If
f)="+1)
and
g(y) =4y - 3y)
then

glf)]=4x(+1)°-3x(x"+1)
= 4X(¥+28°+1) =3 -3=4x+5° + 1

To make things look simpler, we can write ¢ (f) without including the first function’s
independent variable. But we don’t want to give our readers the idea that we mean the product
gfor g X f Some texts put a small letter o, which stands for “of,” between the two functions.
In this situation they'd write g( /) as go f-

Note that g ( f) is rarely the same as f(g). The function-of-a-function operation is not,
in general, commutative.

The rule in brief
The chain rule can be stated informally like this:

* To differentiate a function of a function, we multiply the derivative of the “outer”
function by the derivative of the “inner” function.

For the chain rule to apply, both functions must be differentiable at every point that interests
us. Stated symbolically, if fand gare differentiable functions of the same single variable, then

(e (NN =g (F)xf

If we want to include an independent variable (say x) in the notation, then we can write the
above statement as

{g[fN =& [f)] xf'(x)

taking care not to confuse the multiplication symbol with the variable x.

Are you confused?

The above notation can baffle some people, because the difference between the two expressions

{glflY
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and

g [f(0)]

is subtle. Let’s clarify this before we go any further! The first expression, stated as an ordered list of instruc-
tions, reads like this:

* Apply the function f to the variable x.
* Apply the function gto that output.
* Differentiate the function g with respect to x to get the final result.
The second expression tells us to do these things in order:
* Apply the function f to the variable x.
* Differentiate the function g with respect to some arbitrary variable other than x. (We can call it
anything we want, such as y.)

* Plugin f{(x) as that other variable.
* Apply the derivative function g’ to that output to get the final result.

Example

Let’s see how this rule works. Consider the first of the two examples we saw a short while ago:
flx) =06
and
g(y)=-3y
When we differentiate the composite function directly, we get
{g[fCOl = d/dx (-18x") = —54x"
The derivatives of the individual functions are
f(x) =18x
and
g =-3
When we apply the chain rule, we get

{gLF@Y = ¢ [FE)] X f/(x) = =3 X dldx (6x%) = =3 X 185 = =54
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Another example

Now let’s see what happens with the composite of the two functions

flx)=0G"+1)

and

g(y) =4y - 3y)
The derivatives of the individual functions are

f(x) =3
and
Z(y)=8y-3
Differentiating the composite function directly gives us
{g [ =dldx(4x°+5x° + 1) = 24x° + 15x°

When we apply the chain rule, we get

GOl =g [f@IXf" () =[8x (¥ +1) = 3] X d/dx (¥’ +1)
= (8x°+5) (3x%) = 24x° + 1547

Are you confused?

If you aren’t certain that you understand how the chain rule works, make up some more examples in the
same format as the previous two. First, differentiate the composite function as a whole. Then, use the
chain rule. You should always get the same final answer either way. Problems like this are “self-checking.”
If you make a mistake anywhere, you'll probably get answers that don’t agree with each other.

Here's a challengel!

Show that the following statement is not true in general:

g =f(g

Solution

It’s easy to prove that a statement isnt universally true. We simply find a situation called a counterexample
where it’s false. Consider

f)="+1)
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and

() =4y -3y)
We've already determined that
g[f)] =4x°+5x+ 1
Working the other way, we get
Flg] =@y =3y +1=064y° — 144y° + 108y* — 27y° + 1
The function g (f) operates on a variable we call x, and the function f'(g) operates on a variable we call

7. But the names of the variables aren’t important. The composite functions g () and f(g) do different
things. That’s what matters!

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Find the derivative of the polynomial function

Flo) =—4x* + 257 — > — x+ 1

Then find the derivative of

g(x)=2><(—4x4+2x3—x2—x+ 1) =—8x*+4x° — 2% — 2x+2

Verify that g’ = 2f".

2. Find the derivative of the polynomial function

fx) = —40x* + 20x° — 10x* — 10x + 10

Then find the derivative of

g(x) = (1/5) X (—40x* + 20x° — 10x* — 10x+ 10) = —8x* + 45’ — 2x* — 2x+ 2

Verify that g” = (1/5) f.
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3.

Show that the two-function product rule for differentiation is commutative. That is,
show that if fand gare differentiable functions, then

(fo)=(¢f

. Based on the two-function product rule for differentiation, derive a three-function

product rule for differentiation. Assume that all three functions are differentiable.

. Find the derivative of the function

p()=1/(*+1)

in the set of real numbers. Indicate the real values of y if any, for which this function is
nondifferentiable.

. Find the derivative of the function

r(y=1/(y-1)

in the set of real numbers. Indicate the real values of y if any, for which this function is
nondifferentiable.

. Find the derivative of the function

s(2)=EF-1)/1(2+1)

in the set of real numbers. First differentiate s(z) directly after dividing out the
quotient. Then differentiate s(z) using the quotient rule. Indicate the real values of z, if
any, for which this function is nondifferentiable.

. Find the derivative of the function

tz)=(F-1)/(Z-1)

in the set of real numbers. First differentiate # (z) directly after dividing out the
quotient. Then differentiate 7 () using the quotient rule. Indicate the real values of z, if
any, for which this function is nondifferentiable.

. Consider the functions

flx)=x —4x°
and
g =y+5y

Differentiate the composite function g (f) directly. Then do it using the chain rule.
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10. Consider the functions
flx) =x"—4x
and
() =2y+7y

Differentiate the composite function g ( /) directly. Then do it using the chain rule.



CHAPTER

A Few More Derivatives

In this chapter, we'll learn how to differentiate functions that raise a variable to a negative inte-
ger power, or to a non-integer real power. We'll also look at the derivatives of the sine, cosine,
exponential, and logarithmic functions.

Real-Power Rule

106

We've seen how the power rule can be used to differentiate functions with a variable raised to
a positive integer power and then multiplied by a real-number constant. Now we'll take that
rule further. The power to which the variable is raised can be any real number.

The old rule extended

In Chaps. 4 and 5, we showed that any function of the form

fx) = ax”
has the derivative
f(x) = anx™Y
where 4 is a nonzero real constant and 7 is a positive integer. This rule applies not only to

positive integer exponents, but for all real-number exponents. We can rewrite the rule by sub-
stituting 4 in place of 7, where 4 represents a real number. If

flx) = ax*
then

f(x) = akx*V
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There’s an important restriction. If #< 1, then we must be sure that x # 0. Otherwise, when
we take the derivative, we'll end up dividing by 0 when we raise the variable x to the power

of b—1.

Three examples

Let’s work out the derivatives of three simple functions that have exponents other than posi-
tive integers. First, consider

flx)=7x7

We multiply the coefficient 7 by the exponent =5 to get —35. That’s the new coefficient. Then
we reduce the exponent by 1, making it —6. The result:

£ (%) ==35x7°
provided x # 0. Next, let’s differentiate

2(y) = (5/3)y*"

Again, we multiply the coefficient by the exponent, getting 1. Then we reduce the exponent
by 1, getting —2/5. The result:

£y =y
provided y# 0. Finally, let’s consider the function
b (z) =—4z77

Going through the same ritual, taking care with signs and subtraction, we get a new coeffi-
cient of =3.7 X (—4) or 14.8, and a new exponent of —3.7, —1, or —4.7. The result:

b (z) = 14.827*

Are you confused?

If you're not sure what a rational-number exponent is, think back to what you learned in algebra. Remem-
ber the definition of the term rational number, and then remember how negative-integer powers and recipro-
cal powers are defined. A rational number g can always be expressed as a ratio, like this:

g=alb

where ais an integer and & is a positive integer. If you talk about the quantity x7, you're really talking about

%%, or x raised to the power a/b. That’s the same as the positive &th root of x*. That is,

xa/b — (xa)l/b
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This definition doesn’t make sense if x= 0 and 4 < 0. In that case, you end up dividing by 0 when you
work out the expression.

Irrational-number exponents are a little more esoteric. You'll get a chance to “wrap your mind around
them” at the end of this chapter.

Here's a challengel!

Consider the following function, in which the exponent appears as an endless, repeating decimal:
2 (2) = 440000

What's the derivative of this function?

Solution

At first glance, this might seem insoluble. But let’s look closely at the exponent, which is 0.09090909 . . ..
In algebra, we learned that when we see an endless, repeating decimal fraction whose absolute value is less
than 1, we can take the sequence of digits and divide it by an equal number of 9s, and we get a fraction
equivalent to that endless decimal. In this situation we get 09/99, which reduces to 1/11. Now we have

p (v) = 440"

To differentiate, we multiply the coefficient 44 by the exponent 1/11 to get 4. That’s the new coefficient.
Then we reduce the exponent by 1, making it =10/11. The result:

P'(y) — 41/—10/11

provided v # 0.

Sine and Cosine Functions

Now that we've learned how to differentiate functions in which the variable is raised to a
power, let’s look at two functions that work in a different way: the sine and the cosine.

What’s the sine?

In trigonometry, you learned that the sine function acts on angles. The unit-circle model (Fig. 7-1)
defines the sine of x (sin x) for all possible angles x. The value of x is given in radians (rad).
Positive angles go counterclockwise from the right-hand horizontal axis or “due east.” Nega-
tive angles go clockwise from “due east.” In Fig. 7-1, each axis division represents 1/4 unit, so
the circle has a radius of 1 unit.

The sine of an angle is the vertical-axis coordinate of the point where the radial ray inter-
sects the unit circle. Because this circle has a radius of 1 unit, the sine function can never attain
values larger than 1 or smaller than —1. Figure 7-1 shows the situation for an angle of 27/3 rad
(x=2713), which is 1/3 of a rotation.

Remember that all angle expressions for trigonometric functions are given in radians
(never in degrees) unless you're told specifically otherwise!
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sine

Ray from sin x
origin

Each axis Circle with
increment radius of
is 1/4 unit 1 unit

Figure 7-1 The unit-circle model for the sine
function. The angle xis given in
radians, and is measured from the right-
hand horizontal axis or “due east.” Each
axis division represents 1/4 uni.

What's the cosine?

The cosine function can also be defined in terms of the unit circle, as shown in Fig. 7-2. As
before, positive angles are expressed as counterclockwise rotation of the radial ray, and nega-
tive angles are expressed as clockwise rotation.

The cosine of the angle is the horizontal-axis coordinate of the point where the radial ray
intersects the circle. As with the sine, the cosine can never be larger than 1 or smaller than —1.
This drawing illustrates the case where x = 2773.

Both the sine and the cosine functions are defined, continuous, and differentiable over
the entire set of real numbers. An angle of 27z represents a complete counterclockwise rotation
of the ray extending straight out from the origin. Angles larger than 27 represent more than
one complete counterclockwise rotation. Negative angles go clockwise instead of counter-
clockwise. For example, an angle of —27/3 translates to 1/3 of a clockwise rotation. An angle
of =27 is a full clockwise rotation. Angles smaller than =27 (or larger negatively) represent
more than a full clockwise rotation.

Derivative of the sine

Suppose we graph the function f(x) = sin x for values of x between —37 and 37 The result
is the solid curve in Fig. 7-3. Because of its wavelike appearance, this curve is often called a
sine wave. If we examine it closely, we can see that its slope is 0 when it reaches a crest or local
maximum, and the slope is also 0 when it reaches a #rough or local minimum. A point of maxi-
mum slope occurs 1/4 of a rotation, or /2 rad, after every trough. A point of minimum slope
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Ray from
origin
Each axis

increment
is 1/4 unit

cosine

cos X
Circle with
radius of

1 unit

Figure 7-2  The unit-circle model for the cosine function.
Each axis division represents 1/4 unit.

Value of
function

3__

f(x) = sin x 2 f”(x) = cos x

-3+

Figure 7-3 The derivative of the sine is the cosine.
This can be seen when the two functions
are graphed as waves and then compared.
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occurs 77/2 rad after every crest. The curve crosses the x axis at every point where the slope is
maximum or minimum.

If we plot a graph of the slope of the sine function, which represents its derivative, for
many points along the x axis, we'll see that the graph of the derivative is another wave, shown
by the dashed curve in Fig. 7-3. It has the same shape and size as the sine wave. This particular
wave shape occurs often in physics and engineering. The general term for it is sinusoid.

In Fig. 7-3, we can see that the derivative wave is displaced by 7/2 rad to the left of the
original wave. This amount of displacement is sometimes called a quarter wavelength or a
quarter cycle. In this example, the dashed wave represents the cosine function. Therefore, if
we differentiate

f(x) =sin x

we get

f(x) =cos x

Derivative of the cosine

Now let’s graph the function g (x) = cos x for values of x between =377 and 37. We get the
solid curve shown in Fig. 7-4. This wave, like the sine wave, has a slope of 0 when it reaches
a crest or a trough. Also like the sine wave, a point of maximum slope occurs 7/2 rad after

Value of
function
3 —_

g (x) =cos x

-3 +

Figure 7-4 The derivative of the cosine is the negative
of the sine.
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every trough, and a point of minimum slope occurs 77/2 rad after every crest. The cosine wave
is a sinusoid, just like the sine wave. The only difference between the cosine wave and the sine
wave is the horizontal position, also called the phase.

When we graph the slope of the cosine function for many points, we find that the graph of
the derivative is another sinusoid, shown by the dashed curve in Fig. 7-4. The derivative wave
is, as in the earlier case with the sine wave, displaced 77/2 rad to the left of the original. This new
wave is an “upside-down” sine wave, so it represents the negative of the sine function. If

2 (x) = cos x
then the derivative is
Z'(x)=—sin x

Example

Now that we've learned how to differentiate two new functions, we can differentiate any func-
tion that contains them in a sum, product, reciprocal, or quotient. We can also use the chain
rule to differentiate composite functions containing them. Let’s try an example:
_ 2
f(x) ==3x"+2 cos x
Using the sum rule, we know that
f(x) = dldx (=3x*) + dI dx (2 cos x)
The power rule and the multiplication-by-constant rule allow us to rewrite this as
f(x) ==12x" + 2 dl dx (cos x)

We know that the derivative of the cosine is the negative of the sine. Therefore

f(x)==12x"+2 . (—sin x) =—12x> — 2 sin x

Are you confused?

The litcle dot in the first part of the above equation represents multiplication. Its often used instead of the
traditional “times sign,” which some people think looks like the letter x representing a variable. If we were
to write the first part of the above equation with the conventional “times sign,” we would get

f'(x) ==12x7 + 2 X (—sin x)

Some people might confuse this with the completely different equation

f(x) = =122 + 2x (—sin x)
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Let’s agree that from now on, whenever we feel tempted to use a “times sign” to represent multiplication,
we'll use the dot. This dot should be elevated above the base line. Otherwise, it could be confused with
a decimal point! But let’s also remember that we can often indicate multiplication without writing any
symbol at all, as in expressions such as 2x;, xj, or 1246x’.

Another example

Let’s try differentiating a product of trigonometric functions. Consider
g (x) = sin x cos x
We can name the individual functions as
f(x) =sin x
and
2 (x) = cos x
The derivatives are
f(x) = cos x
and
Z'(x) =—sin x
Applying the product rule for differentiation gives us

g’ (x)=(fg) (x)=f"(x) g(x) + g'(x) flx)

= cos x cos x+ (—sin x) sin x= (cos x)* — (sin x)*

With positive integer powers of trigonometric functions such as the sine and the cosine,
the exponent is customarily written directly after the abbreviated name of the function.
For example, instead of (sin x)?, we write sin® x. We can therefore rewrite the above
equation as

g’(x) = cos>x— sin’x

Be warned!

The above notational trick is never used for negative integer powers of trig functions. For
example, when we write sin”' x, we actually mean the inverse of the sine of x, also called the
Aresine. This isn’t even a function unless its domain is restricted.
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Here's a challengel!

Consider a function p (x) that we get when we take sin x and then square the result:
)
2 (x) =sin® x
Differentiate this function. Indicate the values, if any, for which it is nondifferentiable.

Solution

We must use the chain rule in this situation. Let’s name the component functions like this:

fx) =sinx

and

2=y

The derivatives of the component functions are
’
f'(x) =cos x

and

’
£ =2y
Now we can write the derivative of the composite function using the chain rule:

YY) ={g[f@} =¢ [f(x)] - f'(x) =2 sin x cos x

Both of the component functions are continuous and differentiable over the entire set of reals. We never
get a denominator that can become equal to 0, because we never have to divide by anything. Therefore,
the composite function is differentiable over the entire set of reals.

Natural Exponential Function

Imagine some function, other than the zero function, that’s its own derivative. You might
wonder, “Does such a function exist? If so, what does it look like?” We can say this much
about it: The slope of its graph must equal the value of the function at every point in the
domain. As things turn out, infinitely many such functions exist.

What's a natural exponential?

The natural exponential of a quantity is what you get when you raise a unique irrational-
number constant, called Euler’s constant or the exponential constant, to a power equal to that
quantity. Euler’s constant is symbolized by e.
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If you have a good scientific calculator, it should have a key marked ¢". To get an idea of
the approximate value of ¢, enter “1” and then hit the ¢* key. You'll get 2.718 followed by a
string of digits. Because e is irrational, this string of digits is endless and nonrepeating.

Here are some examples of natural exponentials, rounding to three decimal places except
for ¢°, which is exactly 1:

e’ =7.389
e = 4,384
e' =2.718
08347 2 0 304
=1
% = 0.607
e =0.368
¢ 7=0.183
e? =0.135

The wavy equals sign (=) means “is approximately equal to.”

What does it look like?

Figure 7-5 is a graph of the natural exponential function. Its domain is the entire set of real
numbers, and it is continuous at every point in the domain. The function has no gap, does

Value of
function

10

f(x)=ex .

Figure 7-5 The natural exponential

function is its own derivative.
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not have a singularity (that is, it doesnt blow up), and it doesn’t turn any corners. The natural
exponential function is therefore differentiable over the entire set of reals.

At any point on the graph in Fig. 7-5, the slope is equal to ¢'. In more formal terms, we
can write

dldx(e¥) = e"

Offspring functions

The natural exponential function is a parent function with infinitely many child functions, each
of which is its own derivative. Consider the generalized function

g (x) = ke*
where # is a constant that can be equal to any real number. Then

&' (x) = dl dx (ke)
Using the multiplication-by-constant rule for differentiation, we can rewrite this as
g'(x) = kldldx(e)]

Because d/dx (¢°) = ¢, we have

g (x) = ke

which is exactly the same function as g (x).

Example

Let’s differentiate an exponential function that’s a little more complicated than a direct off-
spring of the parent. Consider

plx)=e>
We can rewrite this as
px)=1/()
Now let’s invent a function £ and define it as

fx)=¢"
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Then we have
px)=1/7[f(x)]

The reciprocal rule for differentiation tells us that if f'is a differentiable function of a single
variable, then

[1/£G)) ==f"(0) 1 [f(0))?
In this situation, f'is differentiable, so
fx)=¢
and
[fGo))? = () = e*
Therefore

p/(x) — _ex/ (EZX) — —[BX/ (€2x)] — _e(x72x) =—¢

Are you confused?

A couple of steps in the above process might confuse you. Both of them involve rules for exponentials that
you learned in algebra or precalculus. They're easy to forget!

You might wonder how we got from (') to ¢**. That comes from the rule for a power of a power. If
a, b, and care real numbers, then

(ﬂb)[: ﬂb[

as long as we don’t run into some undefined expression along the way, such as 0 to the Oth power, or 0 to
some negative power.

(x—2x) &

The transition from —[e*/ (¢**)] to —e is the other step that you might not understand right away.

This comes from a rule in algebra that deals with quotients of expressions with exponents. If 2, 4, and ¢
are real numbers and 2 # 0, then

a’la‘=a""

Here's a challengel!

Differentiate the function in the example we just finished, using the chain rule instead of the reciprocal
rule. Again, that function is

px)=¢*
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Solution
This time, we'll break the function p down into two component functions. Let’s call them fand g and
say that
flox) =—x
and
g=¢
Then the function p becomes
r=glf)]
Both fand gare differentiable, so we have
fx)=-1
and
g =¢

The chain rule tells us that if fand gare differentiable functions of the variable x, then
{glfY =g [f()] - f(x)
Substituting the values into this formula, we get
P =6 () ==

This agrees with what we got when we used the reciprocal rule. Which method do you think was easier?

Natural Logarithm Function

The natural exponential function has an inverse that “undoes” its work. This inverse is known
as the natural logarithm, or simply the natural log.

What'’s a natural log?

A logarithm of a quantity is a power to which a positive real constant is raised to get that quan-
tity. The constant is called the base, which is usually 10 or e. We'll deal only with the base-e
or natural log.

In equations, the natural log is usually denoted by writing “In” followed by the argument.
Here are some equations that you can check out with your calculator. With the exceptions of
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In ¢ In 1, and In (1/e), which are exact values, everything has been rounded to three decimal
places.

In 100 = 4.605
In 45 = 3.807
In 10 = 2.303

In6 =1.792
Ine=1
In1=0

In (1/¢) =-1

In 0.5 =-0.693
In 0.1 =-2.303

In 0.07 =-2.659
In 0.01 = —4.605

While the natural log “undoes” the natural exponential, the reverse operation also works.

Therefore,
In (%) =x
and

A — o

The natural log function is defined only for positive real-number arguments. In the first
equation above, that’s not a problem, because ¢* is always a positive real, no matter what real
number we input for x. In the second equation, we must restrict the domain to the positive
reals only. As long as we confine the domain to the positive reals, the natural log function is
continuous and differentiable.

What does it look like?

Figure 7-6 is a graph of the natural log function. Its domain is the set of positive real
numbers, and it’s continuous at every point in that domain. The function is singular
(meaning that it blows up) as x approaches 0 from the right, but this is not a problem
as long as we keep 0 and all the negative reals out of the domain. Once we restrict the
domain in that way, the natural log function doesn’t have any gaps or turn any corners,
so it’s differentiable.

At any point on the graph in Fig. 7-6, the slope is equal to 1/x. We can write this as the
equation

dldx (ln x) = 1/x



120 A Few More Derivatives

Value of
function
6 —
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N
|
I
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-6 -4 2 4
-2 -
f(x)=Inx _a f (x) =1/x
-6 *+

Figure 7-6  The derivative of the natural log
function is the reciprocal function.
The domain must be restricted to the
set of positive real numbers.

Example

Let’s work out a derivative involving a natural logarithm. Without getting complicated, but
still requiring some thought, we'll tackle this:

p(x)=In (7x—14)

The chain rule will work here. If we call the component functions fand g and if we express
the above function as g (f), then

flx)=7x—14
and

g(y)=lny

The function fis differentiable over the entire set of reals, but g is differentiable only as long
as y> 0. That means we must restrict the domain of g (f) so that

7x—14>0
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This works out to x> 2. Now we can differentiate both functions to get
fx)=7
and

g =1y

The chain rule, stated once again, tells us that if fand g are differentiable functions of the
variable x, then

g/ =g [/ )] f'(x)
Substituting the values into this formula, we get
Px)=[11Tx=14)]-7=71 (7x—14)
We can multiply both the numerator and denominator by 1/7, reducing this to
Px)=1/(x=2)
Some people would rather write this as

P)=(=-2)"

Here's a challengel!

Suppose we're confronted with a differentiation problem that involves the composite of a trig function and
a log function. Let’s find the derivative of

g (x) = In (cos 2x)

We'll also define the values of x; if any, for which this function is nondifferentiable.

Solution

Before we get started with the differentiation, we had better find out where ¢ is differentiable and where
it is not. The natural log function is defined only for positive values of the argument. That means ¢ is dif-
ferentiable only for those values of x such that

cos 2x> 0
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This inequality is satisfied for infinitely many open intervals. It's awkward to express this symbolically, but
the following arrangement gives the general idea:

From “negative infinity”
\2
-137/4 < x < —117/4
-9zmld < x < —Trml4
—57l4 < x < -3rml4
-7l4 < x < wl4
3rl4d < x < 5ml4
Trld < x < 9xl4
117/4 < x < 137/4
2

Toward “positive infinity”

Our function g is defined and continuous everywhere in each of these open intervals. There are no gaps,
no singularities, and no corners within any single interval. But we must take note of the fact that these are
open intervals, meaning that the end points are 7oz included. Our function g is differentiable at any point
within any of these open intervals, but nowhere else. You might find it helpful to graph the function

y = cos 2x

in the xj-plane to see where this function is positive, where it’s zero, and where it’s negative. Then you'll be
able to envision the above open intervals along the x axis.

In this situation, we're dealing with a function of a function of a function! Another way to say this is
to call g a triplet of nested functions. To differentiate it, we must employ the chain rule twice. Let’s call the
component functions f, g, and 4, working from the inside out. Then we have

q(x)=higlf)}

where
flx) =2x
2(y)=cosy
h(z)=lnz
The derivatives are
fx)=2
g'(y)=—siny
b (z)=1lz

Applied to the outer two functions, the chain rule gives us

[(h()V=h'(g) ¢
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If we let goperate on f, we can rewrite this as

{hlg(OY =h"1g(N]-[g(N)

The chain rule, applied to the inner pair of functions, tells us that

e =) f

So, by substitution, we obtain

hlg(HW=h"1g()-£f)f

The left-hand side of the above equation happens to be the same as 4’, which is what we seek! So let’s
substitute:

g =h1g(NH1- () f
We can include the variable x in the above expression to see how it fits in:

g = g LF@N - ¢ [f] - f(x)

Now let’s plug in expressions for what each of these functions does to its argument, and also plug in the
arguments themselves. When we do that, we get

g’ (x) =[1/ (cos 2x)] - (=sin 2x) - 2 =—=2 (sin 2x) / (cos 2x)

It’s time for us to invoke another well-known law from trigonometry: The sine divided by the cosine is
equal to the tangent, abbreviated zan. Knowing this, we can rewrite the above equation as

q’(x) =—2 tan 2x

provided 2x is not an odd-integer multiple of 77/2. That means x can’t be an odd-integer multiple of 77/4.
We've already taken this constraint into account. Remember that the original function ¢ is differentiable
only within certain open intervals, none of which contains an odd-integer multiple of 77/4.

Are you confused?

Way back in the 1960s, one of my math teachers asked the class at the end of an especially difficult session,
“Are you confused by this?” When we all nodded, he said, “I don’t blame you.” The chain rule is tricky
enough when applied once. When you apply it twice to a triplet of nested functions, it’s worse! If you're
disoriented by the process we just went through, put it aside for now, and look at it again tomorrow.

Where to find more derivatives

You can find some worked-out derivatives in the back of this book. Refer to App. E You can
also find them on the Internet. Enter the phrase “table of derivatives” into your favorite search
engine. A few sites will calculate derivatives for you.
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Real powers in general

A general real-number exponent can be evaluated with natural logs and exponentials. From
algebra and precalculus, remember that when you have an expression of the form x* where x
is a nonzero variable and # is any real number, then

In (x*) = kln x

Because the natural exponential function “undoes” the natural log function, you can take the
natural exponential of both sides of the above equation to get

k= pklnx

If you want to raise a variable to any real power, you can take the natural log of the vari-
able, multiply by the exponent, and finally take the natural exponential of that product. This
scheme only works when x > 0, however, because the natural log of 0 or a negative quantity
is not defined.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Differentiate the function
p(&)=208—4t+5+4r" + 617
Indicate the values of # if any, for which the derivative is not defined.
2. Differentiate the function
gw)=w '+ w'-1)

Indicate the values of w, if any, for which the derivative is not defined.

3. The reciprocal of the sine function is known as the cosecant function, abbreviated csc.
Mathematically,

cscx=1/sin x

provided x is not an integer multiple of 7. Using the rules we've learned so far,
differentiate the cosecant function. Indicate the values of x, if any, for which this
function is nondifferentiable.
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The reciprocal of the cosine function is known as the secant function, abbreviated sec.
Mathematically,

secx=1/ cos x

provided x is not an odd-integer multiple of 772. Using the rules we've learned so far,
differentiate the secant function. Indicate the values of x; if any, for which this function
is nondifferentiable.

5. As mentioned in the chapter text, the sine function divided by the cosine function is the

10.

tangent function. Mathematically,

tan x=sin x/ cos x

provided x is not an odd-integer multiple of 772. Using the rules we've learned so
far, differentiate the tangent function. Indicate the values of x, if any, for which this
function is nondifferentiable.

. The cosine function divided by the sine function is known as the cozangent function,

abbreviated cot. Mathematically,

cot x=cos x/ sin x

provided x is not an integer multiple of 7. Using the rules we've learned so far,
differentiate the cotangent function. Indicate the values of x, if any, for which this
function is nondifferentiable.

Differentiate this generalized function, where # is a real-number constant:

p(x)=e”

. Differentiate this generalized function, where z and 4 are real-number constants:

q (x) = be™

. Differentiate this generalized function, where « is a real-number constant:

r(x) =1In ax

Differentiate this generalized function, where z and & are real-number constants:

s(x)=61n ax
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Higher Derivatives

Functions can be differentiated more than once to get higher derivatives. Sometimes the deriv-
ative functions get simpler as we go, sometimes they get more complicated, and sometimes
they go through repeating cycles.

Second Derivative

The second derivative of a function is the derivative of its derivative. Consider a function fof an
independent variable x, producing a dependent variable y so that y= f(x). The second deriva-
tive of f with respect to x can be denoted in various ways:

d*yldx*

Y
d*f(x) /dx*
d*ldx* f(x)
d*fldx*
f7(x)
r
If we want to find the second derivative of a function, we differentiate the function, then

treat that derivative as a new function, and finally differentiate the new function with respect
to the same variable or expression.

An example

Let’s find the second derivative of a polynomial function. Consider
flo) =—4x" +5° + 65> — 7x+ 8

126
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Using the rules we've learned, we find the first derivative to be
f/(x)=-16x>+15x"+ 12x—7
Differentiating again, we get

[ (x) =—48x"+30x+ 12

Another example

Now let’s work out the second derivative of
F(x) =4x" =5 cos x
Using the sum rule, we obtain
f(x) = dldx (4x") = dldx (5 cos x)
The power rule and the multiplication-by-constant rule can be applied to give us
f(x) =16x" — 5 dldx (cos x)
The derivative of the cosine is the negative of the sine. Therefore
f/(x)=16x"—5 - (=sin x) = 16x° + 5 sin x
Now let’s differentiate again. The sum rule can be used to get
[ (x) =dldx (16x°) + dl dx (5 sin x)
Applying the power rule and the multiplication-by-constant rule gives us
f"(x) =48x*+5 dldxsin x
The derivative of the sine is the cosine, so we have

f7(x) =48x"+5 cos x

Still another example

127

Now we'll work with a function that takes the variable to various integer powers and then adds

the natural logarithm. Let’s find the second derivative of

g(t)=2+5t=7+4t" -7+ 2t +1In¢
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with the constraint that #> 0, because the natural log function is defined only for positive real
numbers. The first derivative comes out as

) =4t+5-417+ 267 -6+ (1/2)

The derivative of 7 is equal to 0, so that term has vanished. Because 1/=#"!, we can rewrite
the above equation, putting the exponents in descending order to get

F)=4t+5+ 1" -4+ 27 -6+
Now we take the derivative again, obtaining
() =4-1t7+8t7 -6+ +241

The derivative of 5 is equal to 0, so that term, like the constant 7 in the first derivative, goes
away.

Are you confused?

In the graph of a function, the derivative at a point represents the slope of the curve at that point, as you
have learned. “All right,” you say. “What does the second derivative represent graphically?” The second
derivative at a point tells you the rate and the sense (increasing or decreasing) at which the slope changes
at that point. Think about the graph of the function

flx)=2x+4
This is a straight line with a slope of 2 at every point. This fact shows up in the first derivative
f(x)=dldx(2x+4)=2

The slope is the same everywhere along the line, so the rate at which the slope changes is 0 at any point
you choose. This is apparent when you take the second derivative

f7(x)=dld 2x+4)=dldx2=0

Here's a challengel!

According to legend, one day several centuries ago Sir Isaac Newton sat in an orchard and saw an apple fall.
At the instant it snapped off the twig, the apple’s speed was zero. Then it began to move, slowly at first,
then faster. Newton realized that falling objects don't merely #ravel downward; they accelerate downward.
Returning to his study, he must have worked out the fact that, neglecting air resistance, the acceleration of
a falling object is constant, and it doesn’t depend on the object’s mass.

The acceleration of a falling object is the rate at which its speed increases. That’s the derivative of
the speed with respect to time. The speed of a falling object is the rate at which its total fallen distance
increases. That’s the derivative of the distance with respect to time. Suppose we let / represent the vertical
fallen distance in meters (m), v represent the vertical speed in meters per second (m/s), a represent the
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vertical acceleration in meters per second per second (m/s?), and frepresent the elapsed time in seconds (s)
after the beginning of the descent. Then

v=dpldt
and
a=dvldt = d*hldf

Now the fiction begins (except for the mathematics, which is fact!). Imagine that Sir Isaac picked up the
apple, took it to the cliffs of Dover, tossed it off from one of the highest points he could find, and watched
it plunge to the beach far below (Fig. 8-1). He had already figured out that the vertical fallen distance as a
function of time would be quite close to

h=5¢

Sir Isaac knew that the total fall time, the vertical component of the speed at any instant, and the vertical
(downward) component of the acceleration at any instant didn’t depend on whether he simply dropped
the apple or whether he threw it as hard as he could—as long as the apple left his hand traveling horizon-
tally. So Sir Isaac took aim straight at the French coast across the Channel, hurling the apple with enough
horizontal force to make sure it would clear the outcroppings below. He timed the fall, and found that the
apple struck the beach after 4 seconds. What was the height 4, of the cliff, as measured from the position
of Sir Isaac’s hand as the apple left it? What was the vertical component v, of the apple’s speed at impact?
What was the vertical component 4, of the apple’s acceleration at impact?

he

= height above beach
from which apple

is thrown

Figure 8-1  Sir Isaac hurls an apple from the cliffs
of Dover. The altitude of the apple
above the beach at the instant it leaves
Sir Isaac’s hand is /.. The vertical speed
of the apple is #,, and the vertical
acceleration is a,.
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Solution

We can calculate the height of the cliff, 4, by plugging in 4 for zin the equation we've been given. When
we do that, we get

h=5-4=5-16=80m
The vertical speed v of a falling object at time rafter its release is always
v=dbldt=dldr (5¢*) = 10z
We can calculate the vertical speed of Newton’s apple at impact, »,, by plugging in 4 for zagain, getting
v,=10-4=40 m/s
The vertical acceleration function turns out to be a constant
a=d*ldf (5¢) =d/dr(102) = 10 m/s*

The vertical acceleration 4, of Newton’s apple at impact was therefore 10 m/s” In fact, the apples vertical
acceleration was 10 m/s* during its entire descent.

Third Derivative

The third derivative of a function is the derivative of its second derivative. Suppose
we have y = f(x). The third derivative of fwith respect to x can be written in various
ways:

d’yldx’

J
d°f(x) 1 dx’
B1d f(x)

Ll d?
[ ()
f///
f(3>( x)
f(3)

The last two expressions contain a simple numeric superscript in parentheses. The parentheses
indicate that we're talking about a derivative, not a power.

If we want to find the third derivative of a function, we differentiate the function, con-
sider that derivative as a new function, differentiate that new function again with respect to
the same variable or expression, consider that as another new function, and finally differenti-
ate it once again with respect to the same variable or expression.
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An example

Earlier in this chapter, we found the second derivatives of three functions. Now let’s work out
the third derivatives of those same functions. Consider

flx) =—4x" +5x° + 6x* = 7x+ 8
We found the second derivative to be
F7(x) = —48x* + 30x + 12
Differentiating again, we get

7 (x) =—96x+ 30

Another example

Let’s look again at the function
Fx) =4x" — 5 cos x
We found that the second derivative is
f7(x) =48x"+ 5 cos x

Now let’s differentiate again. Applying the sum rule, we get

[ (x) = dl dx (48x") + dl dx (5 cos x)
The power rule and the multiplication-by-constant rule tell us that

[ (x) =96x+ 5 dldx (cos x)
The derivative of the cosine is the negative of the sine, so we have
[ (x) =96x+5 - (—sin x)

which can be simplified to

[ (x) =96x—5sin x

Still another example
Let’s find the third derivative of

g(t)=20+5t—-7 44" -7 +2t7+1In¢
We found that the second derivative is

() =4—1t7+8t7 -6t +241
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We can use the generalized power rule and the sum rule to differentiate term-by-term, getting
g7 (1) =217 =24+ 4+ 2447 - 120¢°°
The derivative of 4 is equal to 0, so that term disappears from the final result.

Are you confused?

You've learned that the speed of an object falling straight down (neglecting air resistance) is the derivative
of the fallen distance, and the acceleration is the second derivative of the fallen distance. “What,” you ask,
“is the third derivative of the fallen distance?” It’s called jerk. It’s the derivative of the acceleration, or the
second derivative of the speed. You won't hear or read about jerk very often.

For a falling object, neglecting air resistance, the jerk is always 0 because the acceleration is constant,
and the derivative of a constant function is the zero function. If the intensity of the earth’s gravity were
to increase as an object fell, the jerk would not be 0. (In fact, this does occur when a meteor “falls” from
many thousands of kilometers out in space, but it’s a gradual increase.) Perhaps you've been subjected to
jetk when riding in a high-performance car with a bad driver. If you were pressed backward in your seat
and then suddenly thrown forward against the shoulder strap, you felt it!

Here's a challengel!

Find the second derivative of the tangent function. Start with the known first derivative, which you found
when you solved Practice Exercise 5 in Chap. 7:

dldx (tan x) = sec? x

Indicate the values of x, if any, for which this second derivative function is nondifferentiable.

Solution

From Practice Exercise 4 in Chap. 7, we remember that the secant is the reciprocal of the cosine. We can
therefore rewrite the above equation as

dldx (tan x) = [1 / (cos x)]*= (cos x)7>
This function has discontinuities at all values of x where cos x = 0. Those are, as we've seen, all odd-integer
multiples of 772. To find the second derivative of the tangent function, we must differentiate the cosine
function raised to the =2 power:
d*ldx?* (tan x) = d/ dx (cos x)7
Lets use the chain rule. We'll break the above function down into two components fand g such that

fx) =cos x

and
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The derivatives of the component functions are
, .
f'(x) =—sin x

and

Now we can write the derivative of the composite function using the chain rule as follows:

dldx (cos x) 2 ={g [F)} =& [f(x)] - f'(x) ==2 - (cos x)™ - (=sin x)

=2 (cosx)7 -sin x
We've just found that

d?ldx* (tan x) =2 - (cos x)7 - sin x

Here's an extra credit challenge!

Find the third derivative of the tangent function. Start with the known second derivative, which we just
finished working out. Indicate the values, if any, for which

d*lds?* (tan x) =2 - (cos x)™ - sin x
is nondifferentiable.

Solution

You're on your own. That’s why you get extra credit for tackling this problem! Here’s a hint: Use the chain
rule and the product rule for differentiation.

Beyond the Third Derivative

The fourth derivative of a function is the derivative of its third derivative, the fifth derivative is
the derivative of the fourth derivative, and so on. The nth derivative of a function is what we
get when we differentiate it 7 times, where 7 is a positive integer. Consider y = f(x). The nth
derivative of f with respect to x can be written in various ways:

d"yldx"
d'f(x) ldx"
d"ldx” f(x)
d'fldx"
£ (%)
f(ﬂ)
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As before, the parentheses around a superscript indicate that we're talking about a derivative,
not a power.

An example

Let’s work out the fourth derivative of the same three functions for which we have already
found the second and third derivatives. The first original function, again, is

flo) =—4x' + 5 + 65> — 7x+ 8
When we calculated the third derivative, we got
[ (x) ==96x+ 30
Differentiating again, we obtain

FO(x) =—96

Another example
Now let’s find the fourth derivative of

F(x) =4x" — 5 cos x
We found its third derivative to be
[ (x) =96x—5 sin x
We must differentiate again! The sum rule tells us that
W (x) = dldx (96x) — dldx (5 sin x)
Using the power rule and the multiplication-by-constant rule, we get
F9x) =96 -5 dldxsin x
The derivative of the sine is the cosine, so we have

F@(x) =96 -5 cos x

Still another example
Now we'll find the fourth derivative of

g()=20+5t—7+4r"—t7+2t7+1In¢
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We found that the third derivative is
g7(t) =217 =24+ 4+ 2447 - 120¢°°
Using the generalized power rule and working term-by-term, we get

g9() ==61"+96¢7 — 120 ° + 720+

Are you astute?

By now, you'll have noticed that these three functions “morph” differently as you take their derivatives
repeatedly. In the first case, if you differentiate again, you'll get the zero function; after that, higher deriva-
tives won't change anything. In the second case, the constant =96 will vanish, leaving 5 or =5 times a sine
or cosine. In the last case, you'll always get a “nonstandard” polynomial. The exponents will get larger
negatively, and the coefficients will alternate between positive and negative as their absolute values grow.
Can you tell, merely by looking at a function, what will occur if you differentiate it multiple times? As
an extra-credit exercise, invent a few functions on your own. Then try to predict what will happen if you
differentiate them over and over. Finally, do the calculations to see how accurate your predictions are.

Here's a challengel!

Find the first nine derivatives of the sine function.

Solution

To work out all these derivatives, we need to know only that
dldx (sin x) = cos x
and
dldx (cos x) = —sin x
Succeeding derivatives are easy to find:

d?ldx* (sin x) = d/dx (cos x) = —sin x
d?1ds® (sin x) = d/ dx (—sin x) = —cos x
d41dx (sin x) = d/ dx (—cos x) = sin x
d’ldy’ (sin x) = dldx (sin x) = cos x
d®ldx® (sin x) = dldx (cos x) = —sin x
d’ldyx’ (sin x) = dldx (—sin x) = —cos x
d81ds® (sin x) = d dx (—cos x) = sin x
d°ldx’® (sin x) = d/dx (sin x) = cos x

As we keep going, the derivatives cycle endlessly through these four functions in order: negative sine, nega-
tive cosine, sine, and cosine.
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Here's another challenge!

Find the first nine derivatives of the natural log function, given that the domain is restricted to the posi-
tive reals.

Solution

In this situation, we don’t get a cycle, but we will see a pattern. To begin, remember that
dldx (In x) = x7!
We can use the generalized power rule to find higher derivatives, building our results one upon another:

d*1d?* (In x) = dldx (x7") = —x72
dPld® (In x) = dl dx (—x7%) = 2x7°
didx (In x) = dldx (2x7%) = —6x74
d’ldx’ (In x) = dl dx (—6x7%) = 24x™
dldx® (In x) = dldx (24x7) = —120x7°
d’ldx’ (In x) = dl dx (~120x™) = 720x~7
d¥dx® (In x) = dl dx (720x77) = =5,040x7®
d°1dx’ (In x) = dldx (=5,040x7%) = 40,320x7°

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don't hurry! You'll find worked-out answers in App. A. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. In the chapter text, we found the second, third, and fourth derivatives of

flx) =—4x" + 55 + 6x* — 7x+ 8

Find the fifth derivative of this function.

2. Find the sixth derivative of

flx) =—4x" + 55 + 6x* — 7x+ 8

3. In the chapter text, we found the second, third, and fourth derivatives of

f(x) =4x*— 5 cos x

Find the fifth derivative of this function.
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. Find the sixth derivative of

F(x) =4x" — 5 cos x

. Find the seventh derivative of

F(x) =4x" — 5 cos x

What happens as we keep on going to the eighth, ninth, and higher derivatives?

. In the chapter text, we found the second, third, and fourth derivatives of

g(B)=20+5t—7+4r" -t +2t7+1In¢

Find the fifth derivative of this function.

. Find the sixth derivative of

g(®)=20+5t—7 44" -7 +2t7+1In¢

. Find the seventh derivative of

g(B)=20+5t—7 44" -t +2t7+1n¢

What happens (in general) as we keep on going to the eighth, ninth, and higher derivatives?

. Go back to the first “challenge” in the chapter text. Suppose Sir Isaac went to another

cliff only 50 m high, and repeated the experiment. How long did the apple take to fall
from that cliff? What was the vertical component v, of the apple’s speed at impact?
What was the vertical component &, of the apple’s acceleration at impact?

Look one more time at the first “challenge.” Imagine that, instead of working on earth,
Sir Isaac conducted his experiment on a planet where the fallen distance /4 (in meters) as
a function of time ¢ (in seconds) was

h=3¢

If the apple took 11 seconds to fall, what was the height 4. of the cliff? What was the
vertical component v, of the apple’s speed at impact? What was the vertical component
a, of the apple’s acceleration at impact?



CHAPTER

Analyzing Graphs
with Derivatives

Derivatives can be used to help us draw and analyze graphs of functions. Let’s look at a few
simple examples of how this process works.

Three Common Traits

138

A smooth curve, representing a continuous and differentiable function, has various charac-
teristics. Three of the most significant and obvious traits are concavity, extrema, and inflection
points.

Concavity

The concavity of a curve is the direction in which it bends. In part or all of the graph of a
function, the curvature can be either concave upward or concave downward. When a curve is
concave upward, the second derivative of the function is positive. When a curve is concave
downward, the second derivative is negative.

Figure 9-1 shows a graph with two different regions of concavity. The portion of the curve to
the left of the dashed line is concave upward, and @y /d*x > 0. The portion of the curve to
the right of the dashed line is concave downward, and 4%y /dx* < 0.

Extrema

When a curve has a peak or trough at a certain point relative to the surrounding region, that
point is called an exzremum (plural extrema). A peak is a local maximum, and a trough is a local
minimum. If a peak represents the largest value in the entire function, it’s the absolute maxi-
mum. If a trough is the smallest value in the function, it is the absolute minimum.

At any point where a graph reaches an extremum, the first derivative is 0. In Fig. 9-1,
the curve has one local minimum and one local maximum. The slopes are 0 at both of these
points. Some curves have multiple extrema. Once in a while, we'll see a curve that has infi-
nitely many local extrema, and yet not a single absolute extremum! (The sine function over
the domain of all reals is a good example.)
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Figure 9-1 Generic graph of a function showing zones of
concavity, a local maximum, a local minimum, and
an inflection point.

Inflection point

When a graph reaches a point where it goes from concave upward to concave downward
or vice-versa, we have an inflection point. The second derivative is always 0 at an inflection
point. This means that the rate of change in the curve’s slope is 0. Figure 9-2 shows six differ-
ent examples of inflection points in curves representing cubic functions.

In Fig. 9-2A, C, and E, the slope of the curve is constantly decreasing (downward con-
cavity) to the left of the inflection point, and constantly increasing (upward concavity) to
the right of that point. In Fig. 9-2B, D, and E the slope of the curve is constantly increasing
(upward concavity) to the left of the inflection point, and constantly decreasing (downward
concavity) to the right of that point.

The rate at which the slope changes can be 0 at a point, even if the slope itself is not 0 at
that point. Figure 9-2 shows two curves (A and B) where the slope is 0 at the inflection point,
two curves (C and F) where the slope is positive at the inflection point, and two curves (D and
E) where the slope is negative at the inflection point.

Are you confused?

You might ask, “What do the third and higher derivatives represent in a graph?” This question, while a
good one, is difficult to answer clearly.
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dy/dx=0

dy/dx>0

C +H—+++

dy/dx <0 dy/dx > 0

E A\
T

Figure 9-2 At A and B, the slope at the inflection point is 0. At C
and F, the slope at the inflection point is positive. At D
and E, the slope at the inflection point is negative.

The first derivative represents the slope of a curve. The second derivative represents how fast the slope

changes. In cubic functions such as those in Fig. 9-2, the third derivative is a constant, the absolute value
of which indicates how horizontally spread-out the graph appears. In Fig. 9-2A, B, C, and D, the curves
are “broad,” and the third derivatives have relatively small absolute values. In Fig. 9-2E and F, the curves

are fairly “tight,” and the third derivatives have larger absolute values.

You can make a game out of describing how the fourth and higher derivatives translate into visual
characteristics. But be careful! Some curves behave in ways you might not expect. The curves representing

multiple derivatives of the sine function, for example, keep the same shape. The only change is that the

wave train moves 7772 units to the left every time you differentiate.
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Here's a challengel!

Suppose that the function shown in Fig. 9-1 is multiplied by —1. What happens to the x-values of the
extrema and inflection point? What happens to the range of x-values representing the zone where the
graph is concave upward? What happens to the range of x-values where the graph is concave downward?

Solution

If the function is multiplied by —1, the entire curve is inverted with respect to the x axis. The x-values of
the extrema and the inflection point do not change. But the local minimum becomes a local maximum,
and the local maximum becomes a local minimum. The curve becomes concave downward in the region
where it was concave upward before, and it becomes concave upward in the region where it was concave
downward before.

Graph of a Quadratic Function

When a quadratic function has real-number coefficients and a real constant, its graph in the
xy-plane is a parabola. Figure 9-3 shows several generic examples of parabolas that can repre-
sent quadratic functions of the form

y=ax’+ bx+c
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Figure 9-3 The graph of a quadratic function in the
xy-plane is always a parabola that is either
concave upward or concave downward.
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where 4, b, and ¢ are real numbers, and 2 # 0. Such a parabola is either concave upward or
concave downward.

An example

Consider the quadratic function
y=x"—3x+2

Let’s graph this function in the xy-plane, and then analyze that graph. We can deter-
mine the y-intercept by plugging in 0 for x and then finding y by arithmetic. When
we carry out the operation, we learn that the y-intercept is at the point (x,y) = (0,2).
The x-intercepts (or zeros) of the function, if any exist, can be found by solving the
quadratic equation

¥ —=3x+2=0
which factors into
(x—1D(x—-2)=0

so its roots are x= 1 or x= 2. This tells us that the points (1,0), and (2,0) lie on the graph of
the original quadratic function. Its first derivative is

dyldx=2x—3
and its second derivative is
d*yldx® =2

The second derivative is positive, indicating that the parabola is concave upward. We've found
three points on the graph, and we know that the graph is a parabola that opens upward. Based
on these facts, we can sketch the curve as shown in Fig. 9-4.

To find the x-value of the absolute minimum, we can average the x-intercepts, or we can
find the x-value where the first derivative is equal to 0. This is a calculus course, so let’s use the
derivative method! When we set the first derivative of the original quadratic function equal to
0, we get the equation

2x—3=0

This solves to x = 3/2. We can plug the x-value 3/2 into the original function to solve for
as follows:

y=x"—3x+2=(3/2"-3-(3/2)+2=-1/4

Now we know that the absolute minimum point is (x,y) = (3/2,~1/4).
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is 1/4 unit

d?yldx?> 0
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(3/2,—1/4)
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Figure 9-4 Graph of y= x* — 3x+ 2. On both axes,

each increment represents 1/4 unit.

Are you astute?

Have you noticed that the second derivative of a quadratic function is always a constant, equal to twice the
leading coefficient (the coefficient of the term in which the independent variable is squared)? Geometrically,
this means that the curve’s slope changes at a constant rate as we move from left to right along the x axis
ata “steady speed.”

Here's a challengel!

Look again at the function graphed in Fig. 9-4. What is the slope at the y-intercept point, (0,2)? What are
the slopes at the two x-intercept points, (1,0) and (2,0)?

Solution

To find the slope of the curve at the point (0,2), we can plug in the x-value, which is 0, to the first-derivative
function and calculate

dyldx=2x-3=2-0-3=-3
For the point (1,0), we plug in 1 for x to get

dyldx=2x—3=2-1-3=2-3=-1
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For the point (2,0), we plug in 2 for x to get

dyldx=2x-3=2.2-3=4-3=1

Graph of a Cubic Function

A cubic curve has one of the six characteristic shapes shown in Fig. 9-2. There’s always one,
but only one, inflection point. The overall trend of the curve s either upward (negative-to-positive) or
downward (positive-to-negative), although the curve might reverse its direction in the vicinity
of the inflection point.

Example

Let’s examine the cubic function
y=5x"+3x>+5x+7

We can plug in a few x-values, calculate the y-values, and tabulate the resulting numbers. Table 9-1
is a list of coordinate values that can give us a good idea of what the curve looks like when we
plot the corresponding points in the xy-plane. Figure 9-5 shows the graph. On the xaxis, each
division represents 1/2 unit. On the y axis, each division represents 10 units. This axis distor-
tion allows us to graph the function within a region of reasonable dimensions.

Now let’s differentiate our cubic function to see how the slope varies with the value of x.
The first derivative is

dyldx= 15x2 + 6x+5

The slope follows a quadratic function. This fact makes the cubic curve inherently more com-
plicated than any quadratic curve, where the slope always follows a linear function.

The second derivative of this cubic function tells us how fast, and in what direction, the
slope changes as we increase the value of x. When we differentiate the first derivative, we get

a/z)//oix2 =30x+6

Table 9-1. Selected values for graphing the function
Y =52+ 3% + 5x + 7.

x 582 + 3 +5x+7
-3 -116
-2 -31
-1 0
0 7
1 20
2 69
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Figure 9-5 Graph of y=5x"+ 3x* 4+ 5x+ 7. On
the x axis, each division represents
1/2 unit. On the yaxis, each division
represents 10 units.

We can find the x-value of the inflection point, where the concavity reverses, by figuring
out where the second derivative is 0. We create a linear equation by setting d*y /dx* = 0, like
this:

30x+6=0

The solution to this equation is x=—1/5. When we plug —1/5 into the original function for
xand then calculate y we get

y=5x"+3x"+5x+7=5-(=1/5°+3 . (-=1/5)*+5 - (-1/5) + 7 = 152/25
The coordinates of the inflection point, written as an ordered pair, are therefore
(xy) = (=1/5,152/25)

This curve is concave downward to the left of the inflection point, and concave upward to the
right of the inflection point. This is a geometric indication of the facts that

d*yldx* <0 when x<-1/5
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and

d*yldx* >0 when x>-1/5

Are you confused?

It’s reasonable to wonder whether there are any /oca/ minima or /oca/ maxima in this curve. There is no
absolute minimum and no absolute maximum, because cubic curves never have them! When we examine
Fig. 9-5, we can see that the overall trend of this curve is upward (negative-to-positive). But is this true at
every point along the entire curve? Or does the curve reverse its direction near the inflection point? We
can’t be sure by merely looking at Fig. 9-5.

To figure this problem out by brute force, we could plot hundreds of points with the help of a com-
puter and a good graphing program. We could also evaluate the first derivative at hundreds of x-values,
again with the help of a computer. But there’s a more elegant way to resolve this mystery. (Mathematicians
use the term “elegant” to describe a proof, derivation, or process that uses finesse, rather than force, to
solve a problem.)

If the slope at the inflection point is positive, then we can be sure that the curve in Fig. 9-5 trends
upward all the time (like the one in Fig. 9-2C), never reverses direction, and therefore has no local mini-
mum or maximum. If the slope at the inflection point is negative, then we can be sure that the curve in
Fig. 9-5 reverses direction momentarily, trending downward (positive-to-negative) in a region near the
inflection point. In that case, the curve has a local maximum slightly to the left of the inflection point,
and a local minimum slightly to the right of it (like the one in Fig. 9-2E). If the slope at the inflection
point is 0, then we know that the curve in Fig. 9-5 levels off at that point (like the one in Fig. 9-2A), but
doesn’t reverse direction and therefore has no local minimum or maximum. Let’s see which of these three
situations is the case here.

Here's a challengel!

Look again at Fig. 9-5 and the function that this graph represents. What is the slope of the curve at the
inflection point? What does this tell us about the general nature of the curve? Which of the generic profiles
in Fig. 9-2 does this curve most closely resemble?

Solution

To find the slope of the curve at the inflection point, we plug x = —1/5 into the formula for the first
derivative, getting

dyldx=15x"+ 6x+5=15 - (=1/5*+ 6 - (-1/5) + 5 =22/5

Thats a positive number. We have dy/dx > 0 at the inflection point. The overall trend of the curve is
positive, and so is the slope at the inflection point. Based on all this knowledge, we can deduce that the
curve does not reverse its direction at the inflection point, and doesn’t level off there, either. It therefore
has no local minimum or maximum. Of the six generic profiles shown in Fig. 9-2, this curve most nearly
resembles the one shown in drawing C.
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Graph of the Sine Function

We can use calculus to analyze the graphs of differentiable functions of many kinds, not
only polynomial functions. Let’s look at a continuous, differentiable function that lends itself
nicely to analysis by differentiation: the sine function from trigonometry.

Analyzing the curve

Figure 9-6 is a graph of the sine function over the limited domain where x is restricted to the
open interval between, but not including, 0 and 27 Remember that the x-values are in radi-
ans, not in degrees!

We're familiar enough with trigonometry to know that this curve, with the domain
restricted as shown in Fig. 9-6, has an absolute maximum at the point (x,y) = (7/2,1). It has
an absolute minimum at the point (x,y) = (377/2,—-1). Let’s verify these two facts mathemati-
cally. The first derivative is

dyldx (sin x) = cos x

dy/dx=10
Absolute maximum

Inflection .point
d?y/dx2=0

0 /2 T 3r/2 2n

dy/dx=0
Absolute minimum

Figure 9-6  Graph of y=sin xfor 0 < x< 27. On the x
axis, each division represents 72/6 unit. On
the yaxis, each division represents 1/5 unit.
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and the second derivative is
d*yldx* (sin x) = dldx (cos x) = —sin x

At the point where x = 7/2, the first derivative is the cosine of 77/2. That’s 0. The second
derivative is the negative of the sine of 77/2. That’s —1. The slope is 0 and the curve is concave
downward, meaning that we have a maximum. At the point where x= 37/2, the first deriva-
tive is the cosine of 377/2. That’s 0. The second derivative is the negative of the sine of 37/2.
That’s 1. The slope is 0 and the curve is concave upward, telling us that we have a minimum.
We can look at the graph and immediately see that these extrema are absolute. If we were to
include multiple cycles of the wave (or even infinitely many, by letting the domain extend over
the entire set of real numbers), then these extrema would be local.

It looks like the curve in Fig. 9-6 has an inflection point at (x,y) = (,0). If we want to be
certain, we must look at the second derivative, which is the negative of the sine of 7z That’s 0,
so we know that (x,y) = (7,0) is indeed a point of inflection. The curve is concave downward
to the left of the point, and concave upward to the right of it.

Are you confused?

All of the curves we've seen in this chapter have represented differentiable functions. “But,” you ask,
“what happens if a function has points or intervals where it’s nondifferentiable?” In cases of that sorr,
we can usually graph the curve, but we can’t use differentiation to evaluate it at the nondifferentiable
points or within the nondifferentiable intervals. Even if a function clearly has an extremum at a
certain point, we can’t verify this fact with differentiation if the function is nondifferentiable at that
point. A good example is the absolute-value function y = Ix|. This has an absolute minimum at the
point (x,) = (0,0), but because the function isn’t differentiable at that point, we can’t use derivatives
to verify that fact.

Here's a challengel!

Sketch a graph of the square of the sine function for 0 < x < 27 (It’s all right to use a calculator, plot
numerous points, and then connect them all by curve fitting to obtain this sketch.) Determine the x-values
of the extrema and the inflection points. Verify these results using the calculus techniques we've learned.

Solution
Figure 9-7 is a sketch of this function. Symbolically, we can denote the function as either
y = (sin x)?
or
y=sin’x
In Chap. 7, we found that

dldx sin* x = 2 sin x cos x
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Figure 9-7 Graph of y = sin® x for 0 < x < 27 On the x axis,
each division represents /6 unit. On the y axis,
each division represents 1/5 unit.

We can differentiate again, obtaining the second derivative, using the multiplication-by-constant rule and
the product rule:

d?ldx* (sin® x) = dldx (2 sin x cos x) = 2 [d/dx (sin x cos x)]
=2 [(dldx sin x) cos x+ (dldx cos x) sin x] = 2 [cos x cos x+ (—sin xsin x)]

=2 (cos® x—sin® x) = 2 cos® x— 2 sin* x

To find the extrema, we must figure out all the x-values where the first derivative is 0. That means we
must solve the equation

2sin xcos x=0

This is satisfied whenever sin x = 0 or cos x = 0. We've restricted x to positive values less than 27, so we
have

sinx=0 when x=7x
and

cosx=0 when x=7z/2 or x=37/2
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When we look at Fig. 9-7, it appears that the extrema for x = 77/2 and x = 3 /2 are maxima. We can ver-
ify that these points are maxima by checking the values of the second derivatives. For x = 77/2, we have

d*lds* (sin? x) = 2 cos® x— 2 sin® x=2 (cos 7/2)? — 2 (sin 7/2)*
=2.0°-2.1>==2

The fact that the second derivative is negative indicates that the curve is concave downward, so this extre-
mum is a maximum. In the case of x= 3772, we have

d*ldx* (sin® x) = 2 cos® x— 2 sin® x=2 (cos 37/2)> — 2 (sin 37/2)*
=2.02=2. (-1P==2

Again, the curve is concave downward, so we know that the function attains another maximum at this point.

Are you astute?

“Wait,” you say. “We've found two maxima, all right. But are they local, or is one of them absolute?” If the
y-values are the same for both points, then they’re both local maxima. But if the j-values are different, then
the point with the larger y-value is the absolute maximum. We'd better check this out! When we plug in
x= 7/2 to the original function, we get

y=sin’ x=(sin 7/2)*=1"=1
When we plug in x = 37/2 to the original function, we get
y=sin* x = (sin 37/2)* = (-1)*=1
Now we know that these two maxima are the same, so they’re both local.

Back to the challenge!

Lets return to the “challenge” we've been dealing with. There appears to be an extremum at the point
where x = 7. Figure 9-7 suggests that it's a minimum. To verify, lets plug in 77 for x and see what we get
for the second derivative:

d*ldx?* (sin® x) = 2 cos® x— 2 sin® x=2 (cos 71)* — 2 (sin 77)*
=2, (c1)2-2.0°=2

It’s positive, all right! That means the curve is concave upward at this point, so it must represent a minimum.
Within the span of xvalues we've allowed here, it’s the absolute minimum, because we've left x=0 and x=
2out of the domain. (If we had left those points in the domain, theyd represent local minima, as would the
point where x= 7. You can verify, if you like, that all three of these minima would be the same.)

The inflection points occur where the second derivative is equal to 0. It appears that there are four such
points in the curve of Fig. 9-7, but it’s difficult to tell exactly where they are. We must solve the following
equation to find the x-values:

2cos? x—2sin*x=0
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Dividing through by 2, we get
cos” x— sin* x=0
Adding sin® x to each side gives us
cos® x=sin’ x

We can take the square root of both sides here, keeping in mind that we have to account for the positive
and negative values. When we do that, we get

tcos x=tsin x
We know that the inflection points don’t occur where either the sine or the cosine are equal to 0. Those
situations represent the extrema. We've already determined that the second derivatives are nonzero at those
points. Knowing that the cosine isn’t 0 at any of the inflection points, we can divide each side of the above
equation by *cos x to get

+1 = (£sin x) / (£cos x)

From trigonometry, we remember that the sine divided by the cosine is equal to the tangent. This means
we can simplify the above equation to

*tan x=*1
which tells us that
x= Arctan (£1)

This gives us four values within the domain we've allowed, which is 0 < x < 27z Those values are

x=7l4
x=3ml4
x=57/4
x=7rl4

Here's an extra-credit challengel!

Determine the y-values of each of the inflection points on the curve shown in Fig. 9-7. Then write down
the complete (x,y) coordinates of all four points.

Solution

You're on your own. That’s why you get extra credit!
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these
problems. Don’t hurry! You'll find worked-out answers in App. A. The solutions in the
appendix may not represent the only way a problem can be figured out. If you think you
can solve a particular problem in a quicker or better way than you see there, by all means
try it!

1. Determine the coordinates of the inflection point in the graph of the function

y=3x+3x"—x-7

2. What is the slope of the curve representing the function stated in Prob. 1 at the
inflection point?

3. In what range of x-values is the graph of the function stated in Prob. 1 concave upward?
In what range of x-values is it concave downward?

4. Determine the extremum in the graph of the function

y=4x" -7

Is this an absolute maximum or an absolute minimum?

5. Look again at Fig. 9-4. What is the equation of a line tangent to the curve, and passing
through the point (2,0)?

6. Consider the cubic function

y=x+3x"—3x+4

Without drawing the graph, determine the coordinates of the inflection point. Then
calculate the slope of the curve at the inflection point.

7. Evaluate the function stated in Prob. 6 for x=100. We choose x= 100 because it’s
much greater than the absolute values of any of the coefficients. If we get a large
positive value for 3 we’ll know that the curve trends upward overall, like
Fig. 9-2A, C, or E. If we get a large negative value for j we’ll know that the curve
trends downward overall, like Fig. 9-2B, D, or F. Note again the slope of the
function at the inflection point. We found that slope in the solution to Prob. 6.
From all this information, identify which of the six general contours from Fig. 9-2
applies to this curve.

8. Consider again the function we worked with in the solutions to Probs. 6 and 7. Find
the y-intercept of the curve. Are there any points where the slope is 0? If so, determine
the coordinates of those points. Finally, on the basis of all the information we've
gathered about this function, sketch its graph.
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9. Determine the slope, at the inflection point, of the curve shown in Fig. 9-6 for the
function

y=sinx

10. Determine the slope, at each of the four inflection points, of the curve shown in Fig. 9-7
for the function

y =sin’ x
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This is not a test! It’s a review of important general concepts you learned in the previous nine
chapters. Read it though slowly and let it “sink in.” If youre confused about anything here, or
about anything in the section you've just finished, go back and study that material some more.

Chapter 1
Question 1-1

How do the domain, range, and variables relate in a mapping from one set into another?

Answer 1-1

The domain is the set of elements that the mapping “goes out from.” The range is the set of ele-
ments that the mapping “goes into.” The independent variable is a nonspecific element in the
domain, and the dependent variable is a nonspecific element of the range. The mapping assigns
specific values of the dependent variable to specific values of the independent variable.

Question 1-2

What's the difference between a relation and a function?

Answer 1-2

A relation is a mapping that can be defined as a set of ordered pairs. A function is a special
sort of relation, in which a single value of the independent variable can map into az most one
value of the dependent variable.

Question 1-3

In an ordered pair, what does the term before the comma mean? What does the term after the
comma mean?
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Answer 1-3

The term before the comma represents either the independent variable or some specific value
of the independent variable. The term after the comma represents either the dependent vari-
able or some value of it.

Imagine that we have a relation between two sets Xand ¥, where set Xis the domain, and
we represent the independent variable by x. Also suppose that we call set Y the range, and we
represent the dependent variable by y. Then we can define our relation as a set of ordered pairs
written in the form (x,y). If the relation maps, say, the value 3 in the domain to the value —5
in the range, then (3,-5) is an element of the relation.

Question 1-4

How can we tell whether or not a relation is a function by looking at its graph, where the
independent variable is shown on the horizontal axis and the dependent variable is shown on
the vertical axis?

Answer 1-4

We can imagine a straight, vertical, infinitely long line that we can move freely to the left and
right. A graph represents a function if and only if it never crosses the movable vertical line at
more than one point. We can call this scheme the vertical-line test for a function.

Question 1-9

How can we tell whether or not the inverse of a function is another function by looking at a
raph of the original function? Again, assume that the independent variable is represented on

g . g- g . . . .

the horizontal axis and the dependent variable is represented on the vertical axis.

Answer 1-5

We can imagine a straight, horizontal, infinitely long line that can be freely moved up and
down. The inverse of the graphed function is a function if and only if the graph of the original
function never crosses the horizontal line at more than one point. We can call this scheme the
horizontal-line test for an inverse function.

Question 1-6

In each of the following relations, imagine that x is the independent variable and y is the
dependent variable. Which of these relations, if any, is a constant function of x? Which of
these relations, if any, is not a function of x?

3x+4y =2
y=5
x==7
y=x+2
x =4y

Answer 1-6

The second relation is a constant function of x, because the value of the function is 5 regard-
less of the value of x. The third relation is not a function of x because, when x is equal to —7
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(which constitutes the entire domain), the dependent variable has more than one value (in
fact, it can be any real number!). We can also say that the third relation isn’t a function because
it doesn’t even say anything about the dependent variable. The first, fourth, and fifth relations
can all be expressed as functions of x.

Question 1-7

In each of the following functions, imagine that ¢ is the independent variable and # is the
dependent variable. Which of these functions have inverse functions? How can we tell?

u=2¢t
u=3¢
u=4¢
u=>5¢
u=06¢°
u=7¢t

Answer 1-7

All three of the functions with the odd-integer exponents have inverse functions. None of the
three functions with even-integer exponents has an inverse function (although, if considered
as relations, they can be said to have inverse relations). We can tell which functions have
inverse functions and which do not by plotting them as graphs with 7 on the horizontal axes
and # on the vertical axes, and then conducting horizontal-line tests on each graph.

Question 1-8

How can we recognize a discontinuity in a function by looking at its graph?

Answer 1-8

A discontinuity shows up as a jump, blow-up (singularity), or gap in the graph. The line or
curve is not smooth at the discontinuity.

Question 1-9

Can the graph of a function “turn a sharp corner” at a point and still be continuous there?

Answer 1-9

Yes. A good example is the absolute-value function. It “turns a corner” at the origin point
(0,0), but it’s continuous there. (The absolute-value function is not differentiable at the origin,
however.)

Question 1-10

Examine Fig. 10-1. Does this graph represent a function of x? At what points is the relation
discontinuous? Is the relation defined at the points where it’s discontinuous?
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Figure 10-1 Illustration for Question and Answer 1-10.

Answer 1-10

This graph portrays a function of x, because it passes the vertical-line test. Discontinuities
occur at every point where x is an odd-integer multiple of 7z/2. The function is not defined at
the points where it is discontinuous.

Chapter 2
Question 2-1

Figure 10-2 is a graph of the inverse of the tangent function, also called the Arctangent func-
tion. For this inverse to be a function, the domain of the original tangent function is restricted
to values larger than —7/2 and smaller than 7/2. Here, x is the independent variable, and y is
the dependent variable. We can write

y = Arctan x

or

y= tan”! x
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Figure 10-2 Illustration for Questions and Answers 2-1
and 2-2.

(We mustn’t get confused when we write tan™" in this way; it means the inverse of the tangent
function, not the reciprocal!) What is the following limit? What does it mean?

Lim Arctan x
x—>o0

Answer 2-1

This limit is equal to 77/2. It means that as x increases endlessly in the positive direction, the
value of the function approaches 7/2.

Question 2-2

In the situation described in Question 2-1 and illustrated in Fig. 10-2, what is the following
limit? What does it mean?

Lim Arctan x
x—>—o0

Answer 2-2

This limit is equal to —7/2. It means that as x decreases endlessly (or increases endlessly in the
negative direction), the value of the function approaches —7/2.
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Question 2-3

What does the following symbolic expression claim? Is it true in general?

{EZZ [f(x)+gx)] = f’_f’/f flx)+ gl_?/f 2 (%)

Answer 2-3

This expression claims that the limit of the sum of two functions of x, as x approaches a con-
stant 4, is equal to the sum of the limits of the individual functions as x approaches 4. This is
always true, assuming both functions are defined as x approaches .

Question 2-4
What does the following symbolic expression claim? Is it true in general?

¢ Lim f(x)= LirZ c[f(x)]

x—k

Answer 2-4

This expression claims that a constant ¢ times the limit of a function of x, as x approaches
another constant 4, is equal to the limit of ¢ times the function as x approaches 4. This is
always true, assuming the function is defined as x approaches .

Question Z-9

What does the following expression claim? Is it true in general?

¢ LinZ flx) = Lz'nZ flex)

Answer 2-5

This expression claims that a constant ¢ times the limit of a function of x, as x approaches
another constant 4, is equal to the limit of the same function of ¢x;, as x approaches 4. This is
not always true.

Question 2-6

How does the notion of left-hand continuity at a point differ from the notion of right-hand
continuity at a point?

Answer 2-6

A function is left-hand continuous at a point if and only if

* We can define the limit of the function at the point as we approach that point from the
left (that is, from the negative direction).

* We can define the actual value of the function at the point.

* The limit and the actual value are the same.
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A function is right-hand continuous at a point if and only if

* We can define the limit of the function at the point as we approach that point from the
right (that is, from the positive direction).

* We can define the actual value of the function at the point.

¢ The limit and the actual value are the same.

Question 2-7

Can a function be left-hand continuous at a point, but not right-hand continuous at the same
point? If so, provide an example.

Answer 2-7
Yes, this can happen. Here’s an example. Let’s define a function f(x) like this:

f(x)= -1 whenx<0

=1 whenx>0

This function is left-hand continuous at the point (0,—1), but it’s not right-hand continuous
there. The conditions for left-hand continuity, as outlined in Answer 2-6, are satisfied. As we
approach the point (0,—1) from the left, the limit of the function is —1, and the value of the
function at the point is also —1. But the conditions for right-hand continuity aren’t satisfied.
As we approach (0,—1) from the right, the limit of the function is 1, but the value of the func-
tion at the point is —1. This situation is shown in Fig. 10-3.

y

A

6 —4

y=1f(x) T

=—1ifx<0 4+ Not
=1ifx>0 £ right-hand
o continuous
at (0,-1)

Left-hand o1

continuous

at (0,—1) 1
4+
_6 —4

A\ 4

Figure 10-3 Illustration for Question and Answer 2-7.
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Question Z-8

What do we mean when we say that a real function f(x) is continuous in general (or simply
continuous)? What does the graph of such a function look like?

Answer 2-8

A real-number function f(x) is continuous in general if and only if it is both left-hand con-
tinuous and right-hand continuous at every point in its domain. When graphed, such a func-
tion looks like a line or curve that’s smooth everywhere and has no gaps, blow-ups, or jumps
within the domain.

Question 2-9

Which, if any, of the following functions contain at least one discontinuity, if the domain is
allowed to extend over the entire set of real numbers?

fx)=3x4-7
f(x)==7x+5x—7
f(x) =4x — 5 + 8x— 14
fi () =—6x° = 3x" + 2% + 5x— 1
f (x) =—3sin x
Jo (x) =4 csc x

Answer 2-9

The first four functions are all continuous, because they’re polynomial functions that can be
written in the form

P (x)=ax'+a X"+ a3+ - +ax+b

where 7 is a positive integer, all the &’s are real-number constants, and the variable x is never
raised to a negative power. Such functions are always completely free of discontinuities! The
fifth function, a constant multiple of the sine function, is continuous over the entire set of
reals. But the sixth function, a constant multiple of the cosecant function, has discontinuities
at all points where x is an integer multiple of 7.

Question Z-10

What is the range of the function f (x) stated in Question 2-9? How can this function be
made continuous without restricting the range?

Answer 2-10

The range of this function is the union of two sets: the set of all reals larger than or equal to 4,
and the set of all reals smaller than or equal to —4. Another way of saying this is that the range
is the entire set of real numbers except those in the open interval (—4,4).

As stated in Question 2-9, the function f; (x) has discontinuities at all integer values of
7rbecause it’s undefined at those values of x. We can make f; (x) continuous if we restrict the
domain by excluding all the values of x for which the function is undefined.
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From trigonometry, we recall that the cosecant function is the reciprocal of the sine func-
tion. That means that in Question 2-9, we have

Jo (x) =4 [1/(sin x)] = 4/(sin x)

You can draw a graph of the sine function for the half-open interval 0 < x < 27, and see that
this span of x-values encompasses exactly one full cycle of the curve, so all possible values in
the range are accounted for. But when x= 0 or x = 7, we have sin x= 0, so its reciprocal is
undefined. When we work with the cosecant, we have to exclude these values of x if we want
to call the function continuous. We can account for one full cycle and keep the function con-
tinuous if we define

Jo (x) =4 csc x
for O<x<m and 7<x<27x

Of course, we can make more severe restrictions than this. For example, we could say that x
must be larger than 0 but less than 7/2. If we do that sort of thing, however, we truncate the
range. That is to say, we “cut off” part of the cycle.

Chapter 3
Question 3-1

Suppose someone says, “A line is tangent to a curve at a point (x,%) in the xy-plane.” What
does this statement mean?

Answer 3-1

The line touches the curve at the point (x,%), has the same slope as the curve at that point,
and lies in the x)-plane along with the curve.

Question 3-2

Imagine that we want to approximate the slope M of the line tangent a curve in the xy-
plane at a point (x,),). We create a movable point (x,)) on the curve near (x,%). We draw a
straight line through the two points. What is the slope M of that line? How can this slope
by symbolized?

Answer 3-1
The slope of the line through the two points is

M =(y—n) ! (x=x)

The difference y — y, can be symbolized Ay (read “delta y”), and the difference x — x, can be
symbolized Ax (read “delta x”), so we can write

M*=AylAx
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Question 3-3

What happens to the slope /™ as defined in Question and Answer 3-2, as we move the point
(x,7) closer to the fixed point (x,)) along the curve, without letting the points come together?

Answer 3-3

As the movable point (x,) approaches the fixed point (x,3), the slope M ™ of the line through
the two points approaches the slope M of the line tangent to the curve at (x,3). This means
that the slope M approaches the slope of the curve at (xp, ).

Question 3-4

How must we be careful while defining the slope of a line tangent to a curve in the manner
defined in the previous question?

Answer 3-4

For this scheme to work, we must be able to uniguely define a line tangent to the curve at
(%0,)0). The curve must not have a gap, take a jump, or turn a corner at the point. If any of
these things happen, then we can’t uniquely define the slope of the curve at (x,).

Question 3-9

If a curve has no gap, takes no jump, and turns no corner at a point (xy,5), and if we let (x,7)
be a movable point that approaches (xy,3,) along the curve, then Ay shrinks to almost nothing
as Ax does the same. We say that the limit of Ay/Axas Axapproaches 0 is equal to M, the slope
of a line tangent to the curve at the point (x,%). How do we write this symbolically?

Answer 3-9

We write the limit as

M= Lim AylAx
Ax—0
Question 3-6

As the quantities Ay and Ax become arbitrarily small, we call them differentials and symbolize
them dyand dx. How can we rewrite the limit in Answer 3-5 to reflect this concept? If we let
f(x) be the function that the curve portrays, what is this limit called?

Answer 3-6

We can rewrite the limit, which is called the derivative of f with respect to x at the point
(x0,00), like this:

dyldx= Lim AylAx
Ax—0

or like this:
f(x) =ALz'm AylAx
x—0

Other notations exist, but these are the most common.
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Question 3-7

How can the derivative of a function f(x) at the point where x = x; be defined without involv-
ing y in the notation?

Answer 3-7
The derivative of a function f(x) at the point where x = x, can be defined as

(%) =A1;ig% [f(x+ Ax) = f(x))] | Ax

This is the same as the second expression in Answer 3-6, except that Ay has been replaced by
its equivalent, the quantity

S (% + Ax) = f(x)

Question 3-8

How must we be careful when we interpret the definition (in Answer 3-7) of a derivative at
a point?

Answer 3-8

We must remember that Ax can be either positive or negative. The process must work as we
find the limit from either the left or the right, and the two results must agree.

Question 3-9

How can the derivative of a function f'(x) be defined in general without involving y in the
notation?

Answer 3-9

The formula from Answer 3-7 can be generalized to

f(x) ZALx% [f(x+ Ax) — f(x)] | Ax

Question 3-10

How must we be careful when we apply the definition (from Answer 3-9) of a derivative in general?

Answer 3-10

We must be sure that a derivative exists for the function at every point in its domain.

Chapter 4
Question 4-1

What are the three different characteristics a curve can have that suggest that the function it
portrays is nondifferentiable?
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Answer 4-1

If the curve has a gap, makes a jump, or turns a corner, it’s a warning sign that the function is
nondifferentiable.

Question 4-2

What do gaps, jumps, and corners in a curve look like?

Answer 4-2

Figure 10-4 shows an example of each.

Question 4-3

What other sort of gap can a function have, besides the one shown in Fig. 10-42

Answer 4-3

When a function increases or decreases without bound (blows up) as the independent variable
approaches a certain value, we have an extreme gap—an infinitely wide one! The reciprocal
function, y = 1/x, is an example. The curve blows up when x = 0. The graph of the tangent
function is another example. The curve for this function blows up whenever x is an odd-integer
multiple of 7z/2.

Corner

Figure 10-4 Illustration for Question and Answer 4-2.



166 Review Questions and Answers

Question 4-4

Look back again at Questions and Answers 3-2, 3-3, and 3-4. When we want to define the
slope of a curve at a point (x,)), is it okay to use two movable points, one on either side of
(%0,30), draw a line through them, and make those two points converge on (xp,y)?

Answer 4-4

No. We must approach (xp,),) from one side at a time, and use that fixed point (x,) as one of
the points through which we draw the line. Then we must be sure that we get the same limit
when we approach from the left as we get when we approach from the right.

Question 4-9

How can we precisely define what it means for a function to be differentiable, based on
Answers 3-7 through 3-10?

Answer 4-5

We can call a function differentiable at a single point, over an interval, or over its entire
domain.

* A function is differentiable at a point if and only if the function has a derivative at that
point as defined in Answers 3-7 through 3-10.

* A function is differentiable over an interval if and only if it has a derivative, as defined
in Answers 3-7 through 3-10, at every point in that interval.

* A function is differentiable in general (or simply differentiable) if and only if it has a
derivative, as defined in Answers 3-7 through 3-10, at every point in its domain.

Question 4-6

If a function is discontinuous at a point, can it be differentiable there?

Answer 4-6

No. A function can’t be differentiable at a point where a discontinuity exists. Remember that
if a function is differentiable at a point, then it is continuous at that point. The contrapositive
of this statement is logically equivalent to it: if a function is discontinuous at a point, then it
is nondifferentiable at that point.

Question 4-7

If the slope of a graph changes suddenly at a point, then there’s no derivative at that point,
even if the function is continuous there. Why?

Answer 4-7

If we approach the point from one side, then Ay/Ax (as defined in Question and Answer 3-2)
approaches a certain value. But if we approach the same point from the other side, then Ay/Ax
approaches a different value. A derivative can't be defined as more than one limiting value for
a single point!
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Question 4-8

What about a situation where two different curves terminate and meet at a single point, and
Ay/Ax approaches the same value as we move toward the point from either direction? Is such
a two-part function differentiable at the point where the curves come together?

Answer 4-8

Yes, as long as that point is on the curve. This is true even if the two curves portray completely
different functions.

Question 4-9

Which of the following functions are differentiable in general, if the domain is allowed to
extend over the entire set of reals?

fix)=3x"-7
f(x)==7x>+5x—7

£ (x) =4x’ — 5x* + 8x— 14

fi (x)=—6x°— 3xt+2x2+5x—1
f (x)=-3 sin x

Jo (x)=4 csc x

Answer 4-9

These are the same functions we saw in Question 2-9. The first four functions are all differen-
tiable in general, because they’re polynomial functions that can be written in the form

P (x)=ax"+a,,x"" ' +a,,x 2+ - +ax+b

where 7 is a positive integer, all the &’s are real-number constants, and the variable x is never
raised to a negative power. The graphs of such functions are always free of gaps, jumps, and
corners. The fifth function also has a graph without any gaps, jumps, or corners, so it’s diff-
erentiable in general. But the sixth function has discontinuities, so it is not differentiable in
general.

Question 4-10

Is the following function differentiable over the entire set of reals? If not, how can we restrict
the domain to make it differentiable in general?

g)= 80— 160>+ 302+ 20— 7+ 607"

Answer 4-10

As stated, this function is nondifferentiable if the domain is the set of all real numbers. The
term 6~ is not defined when v = 0, producing a discontinuity. If we restrict the domain to
exclude the value »= 0, then the function becomes differentiable in general.
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Chapter 5
Question 9-1

What do we get when we cube the binomial 2+ 62 What do we get when we raise it to the
fourth power? The fifth power? The sixth power?

Answer 5-1

Here’s what happens. It’s only a matter of working our way through the arithmetic:

3:

(a+ b’ =2’ +34%b+ 3ab* + b°

(a+ b =a*+ 422 b+ 646 + 4ab® + b

(a+ b0’ =a°+54%b+104°6> + 10426 + 5ab* + b°
(a+b)°=a+6a°b+ 1546+ 20436 + 154°6" + Gab® + b°

Question -2

What three things can we say about the polynomial we get when we multiply out
(a+ b)"

where 7 is an integer larger than or equal to 3?

Answer 5-1

We can be sure that

e The first term is a”.
e The second term is 72" V.
e We can factor 4* out of the third term and each one after that.

Question 5-3

What is the power rule for derivatives, as it applies to positive integer exponents?

Answer 5-3

If 2 is a nonzero real-number constant, x is a variable, and 7 is a positive integer, then any
function of the form

[flx) = ax”
has the derivative

f(x) = anx"
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Question 5-4

Using the power rule for derivatives, show that when we differentiate a function of the form
flx) = ax

where 4 is a real-number constant and x is a nonzero variable, we always get
f(x)=a

Explain why the power rule fails in this situation if x= 0.

Answer 5-4

We can rewrite the above function as
flx) = ax!
Using the power rule for derivatives, we get
Flo)=anx"V=0a-1.x""=ax"
Because any nonzero real number raised to the Oth power is equal to 1, we know that
fx)=a

as long as x# 0. If x= 0, then we get the undefined expression 0°. (The formula stated in the
question is valid even if the domain of the function includes 0, but we can’t prove it from the
power rule.)

Question 5-9

What is the sum rule for two derivatives?

Answer 5-5

The derivative of the sum of two functions is equal to the sum of their derivatives. Stated
symbolically, if /i and f; are differentiable functions of the same variable, then

i+t =/ +F

Question 7-6

Does the sum rule work for subtraction as well as for addition of derivatives?

Answer 5-6

Yes, the rule works for the difference of two derivatives, as long as we keep the functions and
their derivatives in the same order, and as long as there are only two of them. If £ and f are
differentiable functions of the same variable, then

(=R =H-F
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Question 5-7

What is mathematical induction? How does it work?

Answer 5-7

Mathematical induction is a trick that allows us to prove infinitely many facts. Imagine an infinite
sequence of statements Sy, S, S, . . . . We can prove all of them if we can demonstrate two things:

¢ The first statement S, is true, and
* Ifastatement S, (where 7 can be any positive integer) is true, then the next statement
S .1 1s true.

Question 5-8

Can the sum rule for two derivatives be extrapolated to work with the sum of any finite num-
ber of derivatives?

Answer 9-8

Yes. For any 7 differentiable functions f;, £, £, . . ., and f,, the derivative of their sum is equal
to the sum of their derivatives. Stated symbolically,

(A+h+fi+.. L) =+ +(+ -+ f

Question -9

Why can’t the leading coefficient be 0 in an nth-degree polynomial function? Is it okay for any
of the other coefficients to equal 0?

Answer 5-9

If we set the leading coefficient to 0 in an nth-degree polynomial function f(x), we have 0x
as the first term. That’s always equal to 0, so the whole term can be removed from the poly-
nomial. Then the “legitimate” first term contains x raised to an integer power smaller than 7,
and we don’t really have an nth-degree function after all! It’s okay for one or more of the other
coefficients to be 0, however.

n

Question 5-10

What is the derivative of the general polynomial function
flx)=a,x"+ a,.x" "+ a, 6"+ -+ ax’ + ax+ a,

where @,, 4,1, @,-3, - . . , 41, and a, are real numbers, and #, # 0?

Answer 5-10

Using the power rule and the sum rule for derivatives, we can differentiate each term individu-
ally and then add them up to get

) =nax"" +(n—1)a, x>+ (n—2)a,,x" >+ -+ 2mx+ a
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Chapter 6
Question 6-1

What is the multiplication-by-constant rule for differentiation?

Answer 6-1

If we take the derivative of a differentiable function after it has been multiplied by a constant,
we get the same result as we do if we take the derivative of the function and then multiply by the
constant. Stated symbolically, if f is a differentiable function and cis a real constant, then

(cf) =c(f)

and

(cf) =(f")e

Question 6-2

Does the multiplication-by-constant rule work for division by a constant?

Answer 6-2

Yes, to a limited extent. If we take the derivative of a differentiable function after it has been
divided by a nonzero constant, we get the same result as we do if we take the derivative of the
function and then divide by the constant. Stated symbolically, if £ is a differentiable function
and cis a nonzero real constant, then

(flo' =(f")]c

Question 6-3

What is the two-function product rule for differentiation?

Answer 6-3

To find the derivative of the product of two differentiable functions, we multiply the deriva-
tive of the first function by the second function, then multiply the derivative of the second
function by the first function, and finally add the two products. Stated symbolically, if fand
gare differentiable functions, then

(fo) =f'¢+gf

Question 6-4

How must we be careful when expressing the product of two functions?
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Answer 6-4

If we want to denote the product “f of x times g of x,” we should write

[f ()] g (x)]

or

f(x) X g(x)

If we don’t want to specify the independent variable, we should write

fg

or

fxg

We can also use the elevated dot (-) instead of the cross to represent multiplication. The
important consideration is that we don’t want to mistakenly write an expression that denotes
a function of another function!

Question 6-5

What is the reciprocal rule for differentiation?

Answer 6-9

To find the derivative of the reciprocal of a differentiable function, we must first find the
derivative of the original function, then multiply by —1, and finally divide by the square of the
original function. Stated symbolically, if f is a differentiable function, then

AUfY ==f1(f)

Question 6-6

How must we be careful when applying the reciprocal rule for differentiation?

Answer 6-6

For this rule to apply, the original function must never become 0 anywhere in its domain.
If that happens, the reciprocal function will blow up at that point, and not be differentiable
there. If a function is differentiable throughout its domain, then the reciprocal function is not
necessarily differentiable over the same domain. We may have to restrict the domain to keep
discontinuities out.

Question 6-7

How must we be careful when expressing the reciprocal of a function?
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Answer 6-7

We can express the reciprocal of £(x) by writing [ £(x)]™', but we must never write the expo-
nent —1 immediately after the name of the function. If we write £, we denote the inverse of
/ That’s a totally different notion from the reciprocal!

Question 6-8

What is the quotient rule for differentiation?

Answer 6-8

To find the derivative of the quotient (or ratio) of two differentiable functions, we multiply
the derivative of the first function by the second function, then multiply the derivative of the
second function by the first function, then subtract the second product from the first product,
and finally divide by the square of the second function. Stated symbolically, if fand gare diff-
erentiable functions, then

(fle)=(f'g—& g

as long as g does not become 0.

Question 6-9

How must we be careful when applying the quotient rule?

Answer 6-9

If we want to use the quotient rule for differentiation, then both functions, as well as their
ratio, must be differentiable at every point that interests us. In addition, the denominator
function must never become 0 anywhere in its domain.

Question 6-10

What is the chain rule for differentiating a function of a function?

Answer 6-10

To differentiate a function of a function, we multiply the derivative of the “outer” function by
the derivative of the “inner” function. Stated symbolically, if fand g are differentiable func-
tions of the same single variable, then

(e (NN =g () xf

Chapter 7
Question 7-1

What is the real-power rule for differentiation?
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Answer 7-1

It’s an extension of the power rule for integer exponents. If x is a real variable, # is a real con-
stant, and 4 is a real exponent, then we can calculate the derivative of

flx) = ax*
by subtracting 1 from the exponent, and then multiplying by £ to get
[ (x) = akx*™V

If £#< 1, then we must be sure that x# 0. That may mean restricting the domain of the func-
tion. Otherwise, when we take the derivative, we'll end up with an undefined expression when
we take x to the power of £#— 1.

Question 7-2

How can we evaluate a variable raised to a rational-number power?

Answer 7-2

Let’s remember the definition of a rational number. Any rational number g can be expressed as
g=alb

where « is an integer and & is a positive integer. If we talk about raising a quantity to the gth
power, we're talking about raising it to the power 2/4. That means we take the quantity to the
ath power, and then find the positive 4th root of the result. If we have a function

f(x) — xa//r
then we can rewrite it as
f) = (x)

There’s a restriction here! We can’t have x= 0 and 2= 0 at the same time.

Question 7-3

How can we evaluate a variable raised to a real-number power (that is, rational or irrational)
using natural exponential and log functions?

Answer 7-3

When we have an expression of the form x* where x is a variable and #is any real number, then
In (x*) = kln x
We can take the natural exponential of both sides to get
k_ (klnx)

X =e

This only works if x > 0, because the natural log of a nonpositive quantity is not defined.
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Question 7-4
Look at Fig. 10-5. Based on this information, what’s the derivative of f(x)?

Answer 7-4

In this graph, f represents the sine function and g represents the cosine function. That is,
f(x) =sin x

and
2 (x) = cos x

The derivative of the sine is the cosine, so

[ (x) = dldx (sin x) = cos x= g (x)

Question 7-9

Based on the information in Fig. 10-5, what’s the derivative of g (x)?

Answer 7-5

The derivative of the cosine is the negative of the sine, so

2’ (x) = dldx (cos x) = —sin x=—f1(x)

Ray from f(x)

origin _/

—— oo

Each axis
increment
is 1/4 unit

Figure 10-5 Illustration for Questions and Answers 7-4 and 7-5.
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Question 7-6

How can we differentiate the following function using the product rule?

g (x) =cos’ x

Answer 7-6

To begin, let’s rewrite the function as
g (x) = cos x cos x
We can name the individual functions in the product as
f(x) = cos x
and
2 (x) = cos x
They’re identical, so their derivatives are identical as well. We have
f'(x) ==sin x
and
Z'(x)=—sin x

Applying the product rule for differentiation gives us

7'(x) = (f2)(x) =f"(x) g (x) + g'(x) f(x)

= (—sin x)(cos x) + (—sin x)(cos x) = —2 sin x cos x

Remember that sin® xand (sin x)* mean exactly the same thing.

Question 7-7

How can we differentiate the function stated in Question 7-6 using the chain rule?

Answer 7-7

Let’s break down our function ¢ (x) into two component functions. We can name the com-
ponent functions

f(x) = cos x

and

2=y
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That means our original function is

q(x)=g[f(x)]

The derivatives of the component functions are
f'(x) =—sin x

and
’
£ =2y
Now we can use the chain rule to write the derivative of the composite function as

g’ () ={g[fl =¢" [f(x)] - f(x)

=2 (cos x)(—sin x) = —2 sin x cos x

Question 7-8

Under what circumstances can a function be its own derivative?

Answer 7-8
If £ is a function of the form

[fx) = ke*
where x is a real variable and £ is a real constant, then f is its own derivative. That is,

[ (x) = dldx (ke*) = ke

Question 7-9

What does the symbol ¢ mean in the above equation?

Answer 7-9

The symbol e stands for Euler’s constant, also called the exponential constant. It is an irratio-
nal number with an approximate value of 2.718.

Question 7-10

What's the derivative of the natural log function? How must the domain be restricted?

Answer 7-10

The derivative of the natural log function is the reciprocal function, but we must restrict the
domain to the set of positive real numbers. We have

dldx(In x)=1/x

for x> 0. If x< 0, then In x is undefined, so its derivative is also undefined.
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Chapter 8
Question 8-1

What is the second derivative of a function?

Answer 8-1

The second derivative of a function is the derivative of its derivative, taken with respect to
the same variable. Suppose we have a function fof an independent variable x, producing a
dependent variable y so that

y=f)

The second derivative of fwith respect to x can be denoted in various ways. Here are the
expressions most often seen:

d*yl dyx*

Y
d*f(x) ldx*
d*ldx* f(x)

d’fldyx
)
F

Question 8-2

What does the second derivative of a function represent in a graph?

Answer 8-2

The second derivative tells us the rate and the sense (increasing or decreasing) at which the

slope of the graph changes.

Question 8-3

When an object falls freely after it has been dropped, what is the second derivative of the total
distance it fell with respect to time? (Assume there is no air resistance.)

Answer 8-3

The second derivative of the total distance the object fell, with respect to time, is the acceleration.

Question 8-4

How does the acceleration of a freely falling object relate to its speed and the total distance it
fell? (Again, assume there is no air resistance.)
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Answer 8-4

The acceleration is the rate at which the speed increases. That’s the derivative of the speed with
respect to time. The speed of a freely falling object is the rate at which the total distance it fell
increases. That’s the derivative of the distance with respect to time.

Question 8-9

What's the third derivative of distance with respect to time for an object that moves in a com-
plicated way?

Answer 8-5

The third derivative of distance relative to time is called the jerk. It’s the derivative of the accele-
ration, and the second derivative of the speed. Jerk represents the rate (and the direction) of a
change in the acceleration.

Question 8-6

What's the jerk of an object in free fall, neglecting air resistance?

Answer 8-6

For a freely falling object, neglecting air resistance, the jerk is always zero because the accelera-
tion is constant, and the derivative of a constant function is the zero function.

Question 8-7

What's the nth derivative of a function?

Answer 8-7

The nth derivative of a function is what we get when we differentiate the function 7 times with
respect to the same variable, where 7 is a positive integer. Consider

=1

The nth derivative of f with respect to x can be written in several ways. Here are the expres-
sions we're most likely to see:

d"yldx”
d"f(x)dx"
d"ldx” f(x)
d"fldx"
£70)
f(n)

Question -8

Draw graphs comparing the sine function and its first four derivatives.
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Answer 8-8

Figure 10-6 is a four-part graph showing this relationship. Remember the four-way cycle that
the sine function goes through as it is repeatedly differentiated:

dldx (sin x) = cos x
d*ldx? (sin x) = d/dx (cos x) = —sin x
A’ dx? (sin x) = d/dx (—sin x) = —cos x
d*1dx* (sin x) = d/ dx (—cos x) = sin x

Figure 10-6 Illustration for Questions and Answers 8-8
and 9-10.
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In each of the four parts of Fig. 10-6, we see the value of x on the horizontal axis, and the value
of the function on the vertical axis.

* At A, the solid curve represents the sine function, and the dashed curve represents its
derivative.

* At B, the solid curve represents the first derivative of the sine function, and the dashed
curve represents its second derivative.

* At C, the solid curve represents the second derivative of the sine function, and the
dashed curve represents its third derivative.

* At D, the solid curve represents the third derivative of the sine function, and the
dashed curve represents its fourth derivative.

With each derivative, the whole curve moves 772 units to the left. Therefore, when we take
the fourth derivative, we end up 27 units to the left of where we started. If we let the domain
extend over the entire set of real numbers, taking the fourth derivative of the sine function
gives us the sine function all over again.

Question -9

What do we get if we differentiate the natural log function repeatedly?

Answer 8-9

In this situation, we don't get a cycle, but we get a pattern. We always get a monomial func-
tion of x. The power to which the argument (independent variable) is raised starts out at —1,
and then decreases by 1 with each succeeding derivative. The coefficient starts out at 1, then
goes to —1, and then keeps increasing in absolute value but alternating in sign. Here are the
first nine derivatives:

dldx (In x) = x!

d?ldx* (In x) = dldx (x7") = —x72
d3?ldx® (In x) = dldx (—x72) = 2x73
d*ldx* (In x) = dldx 2x7) = —6x7*

d’ldx’ (In x) = dldx (—6x7%) = 24x7°
d%dx® (In x) = dldx (24x7%) = —120x7°
d’ldx” (In x) = dldx (-120x7%) = 720x~

d8ldx® (In x) = dldx (720x77) = —5,040x78
d°ldx’ (In x) = dldx (-5,040x7%) = 40,320x7°

In every case, we must restrict the domain to x> 0, because the natural log function is defined
only when the argument (independent variable) is positive.

Question 8-10

Imagine that we encounter a polynomial function of the form

fx)=a,x"+ a,.x" "+ 4, x" 7+ -+ mx+ ax+ a
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where 7 is a positive integer, all the &’s are real-number constants, and the variable x is never
raised to a negative power. If we keep differentiating this function over and over, what will
eventually occur?

Answer 8-10

Sooner or later, we'll get the zero function as we keep taking derivatives. This will happen no
matter how high the degree of the original function might be. Each time we differentiate, the
degree will decrease until, at some stage, we'll get a constant multiple of x. When we differen-
tiate that, we'll get a constant function. When we differentiate a constant function, we always
get the zero function. After that, all further derivatives will be the zero function.

Chapter 9
Question 9-1

What is concavity in the graph of a function? How does concavity relate to the first and sec-
ond derivatives?

Answer 9-1

The concavity of a curve is the general direction in which it “bends,” either overall or within a
region. A curve can be concave upward or concave downward at a given point. When a curve
is concave upward, the first derivative can be positive, negative, or 0, but the second deriva-
tive is always positive. When a curve is concave downward, the first derivative can be positive,
negative, or 0, but the second derivative is always negative.

Question 9-2

What is an extremum in the graph of a function? How do extrema relate to the first and sec-
ond derivatives of a function?

Answer 9-2

An extremum is a point on the curve at which the function attains a maximum or minimum
value.

If an extremum represents the largest value in the entire function, it’s called the absolute
maximum. If it’s the largest value in its immediate region, but not necessarily in the entire
function, then it’s called a local maximum. If an extremum represents the smallest value in the
function, it’s called the absolute minimum. If it’s the smallest value in its immediate region,
but not necessarily in the entire function, then ic’s called a local minimum.

At any point where a graph reaches an extremum, the function’s first derivative is 0. If the
extremum is a maximum, then the second derivative is negative at that point. If the extremum
is a minimum, then the second derivative is positive at that point.

Question 9-3

What is an inflection point in the graph of a function? How do inflection points relate to the
first and second derivatives?
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Answer 9-3

An inflection point is a point where a curve goes from concave upward to concave downward
or vice versa. The first derivative can be negative, positive, or 0 at an inflection point, but the
second derivative is always 0.

Question 9-4

What is always true about the first derivative of a quadratic function? What does the graph of
the derivative function look like?

Answer 9-4

The first derivative of a quadratic function is always a linear function. The general form of a
quadratic function f"in the variable x is

flx)=ax®+ bx+ ¢
where 4, b, and c are real numbers, and 2 # 0. The first derivative of this is
f(x)=2ax+ b

That’s a linear function of x. Its graph is a straight line. We might remember from our alge-
bra courses that if we let y = f(x) in this situation, then the slope of the line is 24, and the
J-intercept is b.

Question 9-5

What'’s the x-value of the extremum in the general quadratic function
flx)=ax*+ bx+ ¢
where 4, b, and care real numbers, and 2# 0?

Answer 9-9

We can find the extremum in a quadratic function by setting the first derivative equal to 0,
and then solving the linear equation

2ax+ b=0
Subtracting & from both sides, we get
2ax=—b
Dividing through by 24, which we know is okay because 2 # 0, we obtain

x==b/Qa)

Question 9-6

What is always true about the second derivative of a quadratic function? The third derivative?
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Answer 9-6

The second derivative of a quadratic function is always a constant function. When we take
the derivative of f” as it appears in Answer 9-4, thereby getting the second derivative of f; we
have

f7(x)=2a

The third derivative of a quadratic function is always the zero function. When we take the
derivative of f” as shown above, we get

f/// (x) — 0

Question 9-7

How do we know whether the extremum we find in a quadratic function, according to the
methods described above, is an absolute minimum or an absolute maximum?

Answer 9-7

If the second derivative is negative, we have an absolute maximum, because the curve is con-
cave downward. If the second derivative is positive, we have an absolute minimum, because
the curve is concave upward. That means we have a maximum if # < 0, and a minimum if 2> 0
in the general quadratic function

fx)=ax’+ bx+c
where 4, b, and c are real numbers, and 2# 0.

Question 9-8

How can we find out whether or not the natural log function has any extrema or inflection points?

Answer 9-8

To see if there is an extremum, we can take the first derivative and see if it becomes equal to 0
anywhere in the domain. We remember from Answer 8-9 that

dldc(In x)=x"=1/x
There is no real number that has a reciprocal of zero. Therefore, the natural log function has
no minima or maxima.
To see if there are any inflection points, we take the second derivative and see if it becomes
0 anywhere in the domain. Again consulting Answer 8-9, we have
d?ldx* (In x) = —x7=—-1/(x?)

If we try to solve the equation

-1/(x) =0
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we find that no real number x satisfies it. That means the natural log function has no inflec-
tion points. We can see intuitively that this function has no extrema or inflection points by
casually looking at its graph. Now we have mathematical proof.

Question 9-9

How can we find out whether or not the natural exponential function has any extrema or
inflection points?

Answer 9-9

To see if there is an extremum, we can take the first derivative and see if it becomes 0 any-
where. The natural exponential function is its own derivative. That is,

dldx (e¥) = e*

There’s no real number x such that ¢*= 0. That means the natural exponential function has
no minima or maxima.

Don’t get confused here. The fact that the curve approaches the x axis as we move toward
the left (that is, as x increases negatively) does not mean that the extremum is 0. The value of
the function keeps getting smaller and smaller positively, approaching 0, but it never actually
attains a value of 0. In fact, there is no particular real number we can choose and say, “This is
the smallest value that the function attains.”

To see if there are any inflection points in the graph of the natural exponential function,
we take the second derivative and see if it becomes 0 anywhere in the domain. We have

d?ldx? (e¥) = ¢~

The same thing happens here as with the first derivative. There is no real number to which we
can raise eand end up with 0. That means the natural exponential function has no inflection
points.

Question 9-10

Look again at Fig. 10-6, which shows the sine function and its first four derivatives. Also, re-read
Answer 8-8. Based on all this information, what happens to the local maxima, the local min-
ima, and the inflection points of any of these functions when we take its derivative?

Answer 9-10

Every time we take a derivative, all the x-values of the extrema and inflection points move 7/2
units to the left (that is, in the negative direction). The y-values (if we always let y equal the
value of the function) do not change. The local maxima are always at y = 1, the local minima
are always at y = —1, and the inflection points are always at y = 0.
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CHAPTER

1

What's an Integral?

When we differentiate a function, we see its rate of change. When we integrate a function, we
see its accumulated value. In this chapter, we'll learn how the concept of the integral translates
into geometric area. Then we'll look at three ways that integral calculus is used.

Summation Notation

Before we start “integral-building,” let’s review the mathematical shorthand for writing down
long sums. It’s called summation notation.

Specify the series

Imagine a set of constants, all denoted by « with a subscript. Here’s an example:
{a, @, a3, a4, a5, a6, @, a5}
Suppose we add these up, getting a final sum of 4. We can write this as
s+ at+at+agt+astagta+ag=2>6

If we had 800 terms, getting a final sum equal to ¢, writing down the entire series would be
impractical. But we could put an ellipsis (three dots) in the middle to get

ﬂl+ﬂ2+ﬂ3+'"+ﬂ798+ﬂ799+ﬂ800:C

Tag the terms

Let’s invent a variable and call it 7 (not to be confused with the unit imaginary number).
Written as a subscript, 7 can serve as a counting tag or marker in a series containing a large
number of terms.

189



190  Whats an Integral?

In the above situations, we can call each term by the generic name ;. In the first series, we
add up eight 4/s to get the final sum 4, and the counting tag 7 goes from 1 to 8. In the second
series, we add up 800 /s to get the final sum ¢, and the counting tag 7 goes from 1 to 800.
Suppose that we have a series with 7 terms, like this:

amtra+a+ - ta,,tva, ta,=d

In this case, we add up 7 /s to get the final sum 4.

The big sigma

Let’s go back to the series in which we add eight terms. It can be written in shorthand like
this:

28“4,: b
i=1

We read this as, “The summation of the terms ;, from i=1 to 8, is equal to 4.” The large,
bold symbol X is an uppercase Greek letter sigma, which stands for “summation” or “sum.”
Now let’s look at the series in which 800 terms are added:

Same
i=1

We can read this as, “The summation of the terms #;, from 7=1 to 800, is equal to ¢.” Finally,
let’s express the open-ended or unbounded example:

7
S 4=
i=1
We can read this as, “The summation of the terms «;, from 7= 1 to #, is equal to 4.”

A more sophisticated example

Sometimes we'll want to use something other than a place marker as the counting variable in a
summation. The variable doesn’t have to start at 1. It can have an initial value of 0. It can even
start out as a negative integer. And it doesn’t have to end at 7. It can go on forever!

Suppose we sum a series starting with 1, then adding 1/2, then adding 1/4, then adding
1/8, and going on forever, each time cutting the value in half. From precalculus, we recall that
this series, even though it has infinitely many terms, adds up to 2:

1+1/2+1/4+1/84+...=2
We can also write this series as

1/2°+1/2+1/22+1/2°+ ... =2

In summation notation, it is

i1/2i=2
i=0
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Here's a challengel!

Consider the same series as above, but only up to the reciprocal of the nth power of 2. Give the entire sum
the name S. Write this fact in summation notation.

Solution

Let’s use the letter 7 as the counting tag. We start at 7= 0 and go up to 7 = n, with each term having the
value 1/27. Therefore, the summation notation is

i 1/2'=§
=0

Here's another challenge!

Think of the summation in the previous challenge, and imagine what happens as 7 increases endlessly—
that is, as 7 approaches infinity. The series gets longer; as 7 grows extremely large and the sum approaches
2. Write this fact using the limit notation along with the summation notation.

Solution

We can plug the summation into a limit “template,” and then state that the whole thing is equal to 2, like

this:

Lim Y 1/2=2

n—oo %
=0

Area Defined by a Curve

Now let’s see how we can determine the area between the graph of a function and the independent-
variable axis, as defined between two known values of the independent variable.

Defining the region

Imagine a function f(x) whose graph is a curve as shown in Fig. 11-1. We want to find the
area bounded by:

¢ The vertical line x= 2 on the left

* The vertical line x= 4 on the right

* The curve on the bottom when f(x) is negative
* The xaxis on the top when f(x) is negative

* The xaxis on the bottom when f(x) is positive
* The curve on the top when f(x) is positive

Any part of the region that appears below the x axis and above the curve is considered to have
negative area, assuming we move along the x axis in the positive direction. Any part of the
region that appears above the x axis and below the curve is considered to have positive area,
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Area defined by curve
between x=aand x=5b

/

Figure 11-1  Generic example of area defined by a curve. If we
move to the right, the area below the x axis (light-
shaded region) is negative. The area above the x axis
(dark-shaded region) is positive.

again assuming we move along the x axis in the positive direction. (As we'll learn later, the
notions of positive area and negative area reverse if we travel along the x axis in the nega-
tive direction.) The total area between the two vertical lines x = 2and x = 4, as defined by the
curve and the x axis, is the sum of the areas of both shaded regions.

The area of a region like the one shown here is often called area under the curve even
though, as we can see, some of the region might lie above the curve. To keep from getting
confused or misled, let’s talk about the area defined by the curve in situations of this kind. In
Fig. 11-1, the net area over the interval from x = 2 to x = 4 is less than the area of the dark-
shaded part, because there’s some negative area involved. To get the net area, we subtract the
negative area from the positive area.

Approximating the area

Let’s divide the entire region, both the light-shaded part and the dark-shaded part, into 7 rectan-
gles, all of equal width, as shown in Fig. 11-2. For each rectangle, let’s call the width Ax. Then

Ax=(b—a)ln



Height of ith

Avrea Defined by a Curve

rectangle
=f(a+iAX)
X=a
X
x=b
> Ax Width of every
rectangle
= AX
/ =(b-a)/n

Figure 11-2  Approximating the area defined by a curve. We
divide the region into 7 rectangles, all of equal width,
and whose heights are defined by the values of the

function along the right-hand sides. As 7 increases,

the approximation improves.
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As we've arranged things in Fig. 11-2, the height of any particular rectangle is equal to the
value of f{(x) along the rectangle’s right-hand edge. Let’s call the left-most rectangle number 1,
and count up as we move to the right. Suppose we make 7 large. Then:

* The height of rectangle number 1 is f (2 + Ax)
* The height of rectangle number 2 is /(2 + 2Ax)
* The height of rectangle number 3 is /(2 + 3Ax)

e Andsoon...

* The height of rectangle number 7is f (2 + iAx)

e Andsoon...

* The height of rectangle number 7 is (2 + nAx)

The area of each rectangle is the width times the height. Therefore:

* The area of rectangle number 1 is Ax - f (2 + Ax)
* The area of rectangle number 2 is Ax - /(2 + 2Ax)
* The area of rectangle number 3 is Ax - /(2 + 3Ax)
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e Andsoon...

* The area of rectangle number 7is Ax - f (a+ iAx)
e Andsoon...

* The area of rectangle number 7 is Ax - f(a+ nAx)

We approximate the total area by adding up the areas of the rectangles:
2 Ax- f(a+ iAx)
i=1

Because Ax= (b — a)/n, we can substitute the quantity (& — ) /n for Ax to get

2 ((b—a)In] - fla+ i(b— a)ln]

i=1

The shrinking increment

In the situation shown by Fig. 11-2, we have only nine rectangles, so 7z = 9. If we were faced
with an actual approximation problem, we could calculate the sum of the areas of the rect-
angles by working out the arithmetic. If we wanted a better approximation, an extremely large
number could be chosen for 7, and a computer could be used to calculate the area of every
single rectangle and then add them all up. The accuracy would be limited only by how large
we could make 7 before our computer crashed.

As nincreases, the width Ax of each rectangle grows smaller, and the flat tops (or bottoms)
of the rectangles get closer to the contour of the curve. The approximation error between the
sum of the rectangle areas and the true area defined by the curve therefore decreases. If we
make 7 extremely large, that error is tiny indeed.

The Riemann magic

In the 1800s, the mathematician Bernhard Riemann decided to carry the area-approximation
process to infinite accuracy (make the error vanish). He reasoned that if he could find the limit
of the sum of the rectangle areas as 7 approached infinity, the actual area defined by a curve
could be determined. His method resembled the schemes used by Newton and Leibniz for
finding the slope of a curve at a point. Riemann saw that the actual area defined by the curve,
as portrayed with a scheme such as that shown in Fig. 11-2, must be equal to

n

Lim 2 ((b—a)In] - fla+ i(b— a)ln]

n—roo im1
We can express it in a simpler way by writing
n
Lim Ax- f(a+ iAx
Ax—0 21‘ 1 )
iz

Sometimes the order of the product after the summation symbol is reversed, so it’s written as

n

Lim Z[f(a+ iAx)] - Ax

Ax—0 4
i=1
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Are you confused?

“Wait!” you might say. “The method described above can work only if a limit, as we've defined it here,
actually exists, isn’t that so? How do we know that the limit exists?” These are good questions. In some
cases, a limit doesn’t exist, and we can't define the area in this way. But in the generic example shown by
Figs. 11-1 and 11-2, our intuition ought to tell us that there is such a limit. Clearly, the area has to be
definable somehow, because we can draw it, and it’s finite. The function doesn’t have a singularity, break
apart, or zig-zag in some way that would make the limit impossible to define.

The integral notation

Rather than scribbling out the limit notation above, the area defined by a curve is usually
denoted using an integration symbol along with the lower and upper bounds of the interval.
The integral symbol looks like a vertically stretched-out letter S. Instead of

n

Lim z [f(a+iAx)] - Ax

Ax—0 “
i=1

we can write

}f(x)dx

a

This is read aloud as, “The integral from a to & of f(x) dx.” The dx part of the expression
comes from the shrinking of Ax to an arbitrarily small value—the differential of x—just as we
saw when we worked out the definition of a derivative. It’s important to write down this lictle
dx after any integrand (function to be integrated).

When we express an integral with a lower bound and an upper bound so it represents a
specific area defined by a curve within an interval, we call it a definite integral. In the foregoing
example, the lower bound is x = # and the upper bound is x = 4.

Here's a challengel!

Consider the function for which the output is the same as the input:

fo=x

Using integration, find the area defined by the curve between the bounds =4 and 2= 8. Then calculate
the area using plane geometry, recognizing that the region is a trapezoid.

Solution

Figure 11-3 shows how we can set up the integral using the Riemann method, constructing rectangles.
We want to find

8
[P
4
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f(x)
10T Height of ith b=8
1 rectangle
=f(a+iAx)
s =a+iAx — 5 Axle—

77 Width of every
4+ rectangle
= AXx
4 f(x)=x =(b—a)/n
=4/n
2 _
0 —— I I —t— X
0 2 4 6 8 10

Figure 11-3 We can use integration to find the area defined by the
curve for f(x) = x between specific bounds.

This integral can be expressed using the long version of the limit

n

Lim Y, [(b=a)/n] - fla+ i(b—a)/n]

(=
In this situation, @ = 4 and & = 8. The output of the function is the same as the input. Knowing these
things, we can rewrite the above formula as

n

Lim Y (8 ~4)/n) - [4+i(8 - 4)/n]
n—>00 -1

which simplifies to

Lim Y, (4/n) - (4 +4iln)

n—yoo i=1
Using algebra, we can rewrite this as

Lim z 16(n+ i)/ n?
-1

n—yoo 7
i=
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We can factor 16 out the sum, getting
Lim 16 - E (n+ 1)/ n*
noe i=1

Using the multiplication-by-constant rule for limits, we can rewrite this as

n

16 - Lim Y, (n+ i)ln*

i=1

Now let’s look at the summation part all by itself:

n

Y (n+i)n?

i=1

We can write this series out as
(n+ DIn*+n+2)n*+ (n+3)n*+- -+ (n+ n)ln*
which simplifies to
1+(1+2+3+---+n)/n?

From precalculus, we remember that

[;ZZ Q+2+43+---+n)/n*=1/2
We must add 1 to this, which gives us

1+(1+2+3+---+n)/n*=3/2

Now we know that

n

Lim Y (n+ i)ln>= 312

n—oo .
i=1

Therefore

16- Lim Y, (n+i)/n*=16-3/2=24
i=1

n—ro0

That’s the integral we seek. We've just determined that
8

j x dx=24

4

Here's a twist!

We can verify this result by looking at Fig. 11-4, which shows the actual region under the curve. It’s a trapezoid.
The two parallel sides have lengths of 4 units and 8 units. Averaging them gives us 6 units. We multiply that by
4 units, the lateral distance between the parallel sides, to get 24 square units for the area of the trapezoid.

The foregoing problem was easy compared to what can happen when the Riemann method is used
with more complicated functions. But there’s a shortcut that allows us to figure out integrals more easily.
You'll learn how to apply this technique in the next few chapters.
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f(x)
10+ b=8
T -<— 4 units *»
8 —
61 a=4
§2)
4+ S
[o0]
T+ f(x) =x Area = 24
w square
2+ = units
=}
1 <
0 I I I I I I I I X
0 2 4 6 8 10

Figure 11-4 In this case, the area defined by the curve can be found
using plane geometry, because it has a trapezoidal
shape. This result agrees with what we got by working
out the integral.

Three Applications

Let’s look at how definite integrals are used in some “real-world” situations. First, we'll ana-
lyze forward motion in a straight line. Then we'll find the average value of a function over an
interval. Finally, we'll examine the graph of a function that describes probability.

Displacement vs. speed

Imagine a car that starts out from a standstill and accelerates on a straight, level road. Sup-
pose that when the driver presses her foot down on the accelerator, the car goes along with
the following speed-vs.-time function s, where s (#) is the speed in meters per second and #is
the time in seconds:

s(2)=2.4¢

Figure 11-5 shows a graph of this function. Let’s find out the total distance that the car travels
between times # =2 and ¢ = 5. That’s the distance between the car’s location 2 seconds after it
starts and its location 5 seconds after it starts.
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s (t)
25 T
Graph of s (1)
- 20 +
[
o]
(&) 4
(0]
(7]
& 15T t=5
o
2
o 4
©
€ 10+
o t=2 Area =
(0] £ .
o : distance
o 5l : —— car travels
] during
-+ interval
0 ¥X—+——+— —t— ¢
0 2 4 6 8

Time, seconds

Figure 11-5 Graph of a function that describes
the speed of a car vs. time. The area
defined by the curve over a specific
time interval is the distance the car
travels during that interval.

In classical physics, the total distance traveled by an object moving in a straight line can
be defined using a definite integral of the function of speed vs. time. In the situation shown
by Fig. 11-5, that integral is

5

j s(¢) dt

2
We could go through the Riemann process to work out this integral, just as we did in the
“challenge” a little while ago. But we don't have to. The graph of the function s (#) is a straight
line, so we can use geometry to find the area of the trapezoidal shaded region. At time 7= 2,
the speed of the car in meters per second is

s(2)=24-2=48
At time ¢ = 5, the speed in meters per second is
s(3)=24-5=12

so the two parallel sides of the trapezoid have lengths of 4.8 units and 12 units. Averaging
them gives us 8.4 units. We multiply that by 3 units, the lateral distance between the parallel
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sides, to get 25.2 square units for the area. That’s the distance in meters that the car travels
between times # =2 and # = 5. As a definite integral, we can write this as

5
J 2.4t dt=25.2
2

Average value

Imagine a function f(x) that is continuous over its domain from x = 2 to x = b, as shown in
Fig. 11-6. We can use integration to find the average value of the function over the interval
(a,6) between x = zand x = 4. In this situation, 2 < b.

In geometric terms, we find the height (either positive or negative) of a rectangle whose
area is the same as the area defined by the curve between lines x = zand x = 4. If we call the
area defined by the curve 4, then

j.f(x) dx=A

From geometry, we remember that the area of a rectangle is equal to its width times its
height. Once we've found the integral, we know the area A. We also know the width of the

f(x)
Average value
of f(x) _—
over interval
from x=a
tox=b —+— Positive
area
defined
X=a by curve

X
xX=b
Negative \\| Total area
area defined by curve
defined in rectangle
/ by curve of width b—a

Figure 11-6 Integration can be used to find the average value of a
nonlinear function over an interval.
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rectangle; it’s & — a. If we call the average value of the function over the interval by the rather
fancy name 7, then

fu=Al(b—a)

We can also write

b
fio=(=a" [ fx)de

Normal distribution

In the graph of a probability function called a normal distribution, there’s a central peak, and
the curve tapers off symmetrically on either side. Because of its characteristic shape, it’s some-
times called a bell-shaped curve. Figure 11-7 shows a generic graph of a normal probability
distribution. Let’s call it P (x). The area defined by the curve over the entire domain, which

P (x)

=0

Half of area under curve, less than mean
Half of area under curve, more than mean

Approximately 68% of area under curve

Figure 11-7 Integrals can be used to analyze a normal
probability distribution. Areas under the curve
define the mean and the standard deviation.
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extends from x = p to x = ¢, is equal to 1. All normal distributions have this property, which
We can express as

j P(x)de=1

?

The mean of normal distribution, symbolized by the lowercase Greek letter mu (), is
the value of x that produces equal areas on either side. The mean can be found by imagining
a movable, heavy, dashed vertical line that intersects the x axis. When the position of this line
is such that the area defined by the curve to its left is half the total area (hatched region with
down-sloping lines) and the area defined by the curve to its right is also half the total area
(hatched region with up-sloping lines), then the vertical line intersects the x axis at the mean.
We can describe this by writing

u
J. P(x) dx=1/2
?

and

q
J. P(x) dx=1/2
u

The standard deviation of a probability function is an expression of the extent to which
the values are concentrated near the center. It’s symbolized by the lowercase Greek letter sigma
(0). A small standard deviation produces a “sharp” curve with a narrow peak and steep sides. A
large standard deviation produces a “broad” curve with less steep sides. Imagine two movable,
heavy, dashed vertical lines, one on either side of the mean. Suppose these vertical lines, x = 4
and x = b, are such that the one on the left is the same distance from g as the one on the right,
and the area defined by the curve between x = z and x = & is approximately 68% of the total
area defined by the whole curve (dark-shaded region in Fig. 11-7). When this is the case, lines
x = aand x = b are both exactly 6 units away from . That is,

U—a=0
and

b-u=c
We can describe the area defined by the curve for the standard deviation as

b
j P (x) dx = 0.68

Here's a challengel!

Using the definite integral we found to describe the distance traveled by the moving car (Fig. 11-5), calculate
the average value of the function

s(2) =2.4r

over the interval from # =2 to £ = 5. What does this tell us?
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Solution

To find the average value of this function, we divide the area “under the graph” in the interval by the width
of the interval. Let’s call the average 55;5. Then

5
S5 =(5-2)" j 2.4¢ d
2

We've already found that the area is 25.2 square units, and subtraction tells us that the width of the interval
is 3 units. Therefore,

shs=(1/3)-25.2=8.4

This is the average speed of the car during the time interval.

Here's another challenge!

Verify the solution of the above “challenge” using ordinary arithmetic. Could this alternative method be
used if s were not a linear function?

Solution

The function sis linear, so its graph is a straight line. Therefore, the average of the speeds at 2 seconds and
5 seconds is equal to the speed in the middle of that time interval. Let’s call that “average time” #5,5. We
can average the time at the beginning of the interval with the time at the end to get

ths=(1/2)- (5+2)=7/2
The value of the function at #=7/2 is the average speed of the car during the time interval:
ths=s(ths)=5(712)=2.4.7/2=8.4

This method of finding the average value of the function works because our speed-vs.-time function s
is linear. If it were nonlinear, its graph wouldn’t be a straight line, and we couldn’t use straightforward
arithmetic to find the average speed. We would have to use the integral method. Situations like this are
common in physics and engineering.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don't hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Express the first 7 terms of the following series in summation notation:

8+4+2+1+1/2+1/4+1/8+---
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2.

10.

Express the first 7 terms of the following series in summation notation:

1/2+2/3+3/4+4/5+5/6+6/7+7/8+ ...

. Express the limits of the series stated in Probs. 1 and 2 as the number of terms increases

endlessly. Use limit notation in conjunction with summation notation.

. Which, if either, of the limits we obtain by working out Prob. 3 are defined?

. Consider the function for which the output is the square of the input:

fle)=x

The graph of this function is a section of a parabola passing through (0,0) and (1,1).
Using the Riemann method of integration, find the area defined the curve between
x=0and x=1.

. Based on the solution to Prob. 5, find the average value of the function

[ ) =x

over the interval from x=0to x=1.

. Consider the function for which the output is the cube of the input:

o) =x°

The graph of this function is a curve, similar to a section of a parabola but somewhat
“sharper,” passing through (0,0) and (1,1). Using the Riemann method of integration,
find the area defined by the curve between x=0 and x=1.

. Based on the solution to Prob. 7, find the average value of the function

fx) =%

over the interval from x=0to x=1.

. Look again at Fig. 11-5, which graphs a situation where a car’s speed steadily increases

from a standstill. Using the Riemann method of integration, calculate how far the car
travels in the first 5 seconds (that is, from # =0 to ¢ = 5).

Verify the solution to Prob. 9 using geometry.
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Derivatives in Reverse

One of my favorite professors said, “Differentiation is like navigating downstream in a river system.

Antidifferentiation is like navigating upstream in the same system. You're in the same scene, but the
B . . » 1

experience is completely different.” That professor knew what he was talking about.

Concept of the Antiderivative

Antidifferentiation produces a new function that expresses the cumulative growth (or shrink-
age) of the original function.

The notation

We usually represent functions with lowercase letters such as £ g, or 4. Their antiderivatives are
denoted by uppercase italic counterparts such as £, G, or H. When seeking the antiderivative
of a function f; we must find a function F that, when differentiated, gives us f again.

Antiderivatives of the zero function

Let’s think about a constant function f of a variable x that takes all the values of the domain
and maps them into a real-number constant ¢. That is,

fl)=c
When we differentiate f; we get
f (x)=0

Imagine another constant function ¢ that maps all the values of x into 0. That’s the zero func-
tion. It’s also the derivative of £ so

I x) =g(x)

205
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It’s reasonable to suppose that we can antidifferentiate both sides here, getting
fx)=G(x)
But f'(x) = ¢ so it follows that
Gx)=c

How do we know that this constant ¢ represents the same number that we called ¢ at the
beginning? Well, in fact, we don.

Are you confused?

Now you might wonder, “What’s this constant ¢ that we get when we antidifferentiate the zero function?
Are we suggesting that ¢ can be any real number? When we antidifferentiate the simplest imaginable func-
tion, the zero function, do we get infinitely many different results?” Yes. The set of all the antiderivatives
of the zero function is the set of all real numbers. (We won't get into what happens with imaginary and
non-real complex numbers here.)

Now perhaps you can see why my professor compared antidifferentiation with going upstream in a
river system. Which tributary do we take? Going downstream, we can float with the current, and we'll
always get to the ocean. But going upriver, we have many choices. If we start in New Orleans and take a
steamboat up the Mississippi River, we'll end up in a different place if we take the Ohio tributary, than we
will if we take the Missouri tributary.

Here's a challengel!

Draw a graph of the function
F9=0

as a solid line or curve. Write down the antiderivatives for ¢ = =2, ¢ = 3, and ¢ = 5. Draw the graphs of
these antiderivatives as dashed lines or curves. What do these antiderivative graphs all have in common?

Solution

The general expression for the antiderivative is
Fx)=c¢

where ¢ can be any real number. Figure 12-1 shows the graphs of the three antiderivatives where ¢ = =2,
¢=3,and ¢ =5, respectively:

F,(x)=-2
F(x)=3
E(x)=5

All the antiderivative graphs are straight lines with slopes of 0. The constants represent the points where
the lines pass through the dependent-variable axis.
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Figure 12-1  Graphs of the zero function (solid line) and

three of its antiderivatives (dashed lines).

Some Simple Antiderivatives

Let’s look at the antiderivatives of some basic functions. We learned how to take their deriva-
tives in Part One, so we have a head start.

Antiderivatives of nonzero constant functions

After the zero function, the next simplest function is a constant function. If we call the func-
tion £, the variable x, and the constant 4, then

fx)=a

If we want to antidifferentiate this, we must ask ourselves, “What function or functions will
give us f when differentiated?” The most immediate answer is

Fy (x) = ax
But any of the following will also work:
F (x)=ax+1
E(x)=ax+3

F,(x)=ax—2
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and, in general,
F(x)=ax+c
where ¢ can be any real number.

Antiderivatives of basic linear functions

Now consider the basic linear function, which multiplies the variable by a nonzero constant.
If we call the function f£ the variable x, and the constant 4, then

f(x)=ax

The task of antidifferentiating this is a little trickier. It might take some trial and error, but we
can make educated guesses and eventually come up with

Fy (x) = ax?/2

Let’s recall the rule for differentiating a basic quadratic function, and also remember the
multiplication-by-constant rule. With the help of these principles, we can differentiate the
above function to get

F/(x) =2 (ax/2) = ax = f (x)
But any of the following functions will also work:

Fi(x)=ax’/2+4
Fy (%) = ax*/2 + 32
Ezgg (x) = dx2/2 - 298

because the added constants always vanish when we differentiate. In general, the antideriva-
tives have the form

F(x)=ax*2+ ¢
where ¢ can be any real number.

Antiderivatives of basic quadratic functions

The next level of complexity is the basic quadratic function, which squares the variable and
then multiplies the result by a nonzero constant. If we call the function f; the variable x, and
the constant 4, then

fx) = ax

We can think back to the basic rules for differentiation, and it won't take us long to see that
the most obvious antiderivative is

E (x) = ax’/3



Some Simple Antiderivatives 209

Using the rule for differentiating a basic cubic function, and again remembering the
multiplication-by-constant rule, we can verify that £ is a legitimate antiderivative by dif-
ferentiating it to get

F/(x)=3-(ax’13) = ax’ = f (x)

As before, we can add any constant we want, and we'll still get /(x) when we differentiate.
For example:

E).33 (x) =ax’/3 +6.33
Foos (x) = ax’/3 + 71.05
Fgsis (x) = ax’/3 — 85/13

and, in general,
Fx)=al3+ ¢

where ¢ can be any real number.

Antiderivatives of basic nth-degree functions

Can you guess what we must do when we want to find the antiderivative of a function that
raises a variable to a nonnegative integer power and then multiplies by a constant? We follow
the power rule for derivatives that we learned in Chap. 5, but we work it “backward.” If we
call the function £ the variable x, and the constant 4, then

f(x)=ax"
where 7 is a nonnegative integer. The most straightforward antiderivative is
F(x)=ax"V [ (n+1)

Using the power rule for derivatives, we can check to be sure that £ is an antiderivative. When
we differentiate it, we get

F(x)=(n+1) [ax""V] [ (n+ 1) = ax" = f(x)

As in all the cases we've seen before, we can add any constant and still get /' (x) when we dif-
ferentiate. For example:

Fyr (x) = [ax"™V [ (n+ 1)] +6/7
Fo, (x)=[ax"V [ (n+1)] = 2¢
Fogr (%)= [ax"V [ (n+ 1) -78/7
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and, in general,
F(x)=[ax"Y ] (n+ D] +¢
where ¢ can be any real number.

Real-number exponents

The rule outlined above applies not only to nonnegative integers, but to all real-number expo-
nents except —1. We can rewrite the rule by substituting 4 in place of 7, where £ represents any
real number other than —1. If

f(x) = ax*
then
F(x)=[ax*V/ (b+ 1]+ ¢

If % is negative, we must be sure that x# 0. Otherwise, ax” is undefined. Can you see why?
We get into trouble with this rule if #=—1, no matter what value we plug in for the vari-
able x. The problem is easy to see in an example. Suppose

fx)=3x""
When we try to apply the rule, we get
F(x)=Bx™"/ (=1 + D] +c=3x70+¢

Division by 0 is not defined, so this expression doesn't make sense! But this is an interesting situ-
ation because, as things turn out, reciprocal functions do have antiderivatives. This rule simply
happens to be the wrong way to look for them. We'll learn the correct way in Chap. 17.

Here's a challengel!

Imagine that you're in the gondola of a balloon hovering 1,000 meters above a deserted lake. You make sure
no one is below you, and then you hold a brick over the side and let it go. Suppose the brick is so dense that
air resistance does not affect it. Consider the vertical acceleration caused by gravity to be exactly 10 meters
per second per second. Use antidifferentiation to derive the vertical speed as a function of time and the
vertical displacement as a function of time. Assume that you start your timer at the instant you drop the
brick. How long will it take for the brick to splash down after it is dropped?

Solution

The bricK’s initial speed is zero, and it increases downward by 10 meters per second every second until it
hits the water. If you call the acceleration function fand the time variable # then

f(&)=10
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Because you start the timer exactly when you drop the brick, and because the brick starts out at zero
speed, you can set the constant ¢ equal to 0 when you find the antiderivative. That means you can leave
the constant out altogether, getting

F(r)=10¢

This function expresses the vertical speed vs. time. If you take the antiderivative again and call the new
function ® (z), then

D (r) =5+

The symbol @ is the uppercase Greek letter phi. You can leave out the constant again here, because the
initial vertical displacement (or “fallen distance”) is 0. The function @ tells you the vertical displacement in
meters vs. the elapsed time in seconds. You can verify the relationship among @, £ and f'by differentiating them
in succession:

D (£)=2-5:%Y =10 = F(2)
and
F'(8) =10=£(2)

You want to know how long it will take the brick to hit the water after you release it. This is the time zat
which the value of @ is equal to the altitude of the balloon (1,000 meters). You can solve the problem by
writing the equation

5 =1,000
Dividing each side by 5, you get
£ =200

Therefore, = 200" the positive square root of 200. Its value is approximately 14.14 seconds.

Indefinite Integral

The indefinite integral of a function is the collection of all its possible antiderivatives. The
indefinite integral always includes ¢, the so-called constant of integration, but does not neces-
sarily tell us the exact value of that constant. It is quite sensible to call an indefinite integral an
ambiguous integral, but you will probably never hear any mathematician use that slang.

The notation

Suppose that f'is a continuous real-number function of a variable x. The indefinite integral of
[ is a function Fsuch that

F'(x)=f(x)
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added to the constant of integration ¢. This is written as follows:

jf(x) de=F(x)+ ¢

where dx represents the differential of x. The above expression, if read out loud, is “the indefi-
nite integral of f(x) dx,” or “the indefinite integral of f(x) with respect to x.”

An example
Consider the function

fx) =
The derivative is

£ (x) =24

Now think about the following indefinite integral:
J. 2x dx
Let’s rename the function we're integrating. We can say that
g(x)=2x

At first thought, it’s tempting to suppose that the antiderivative of g is the function G such
that

G (x) = x*
But the situation isn’t quite so simple, because G isn’t the only function of x that can be dif-

ferentiated to get g. Any real number ¢ can be added to G. When we differentiate the result,
we always get ¢ back again, because the derivative of the constant is always 0. We can think

of it like this:
Glx)+c=x*+¢
and therefore:
[G(x)+c]'=2x+0=2x=g(x)
That means:

J.Zxafx=x2+ c

where ¢ can be any real number.
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“Pulling out” a constant

Imagine that fis a function of a variable x that can be integrated. Suppose that 4 is a real-
number constant. The indefinite integral of 4 times f'(x) with respect to x is equal to 4 times
the indefinite integral of f'(x) with respect to x. As an equation, we write this fact as

[kl de= k[ f) o

We can “pull the constant out” of an indefinite integral and get an equivalent expression, just
as we can “pull the constant out” of a limit, summation, or derivative.

“Pulling out” the negative

We have a special case of the above rule when £ happens to be equal to —1. In that situation,
we can say that the indefinite integral of a negative is equal to the negative of the indefinite
integral. We can “pull out the minus sign” like this:

[-treon de=-[ feo) e

Sum of indefinite integrals

Suppose that fi, 5, £, . . . , and f, are functions of a variable x, and all of those functions can be
integrated. The indefinite integral of the sum of the functions with respect to x is equal to the
sum of the indefinite integrals of each function with respect to x. As an equation, we write

[+ +£@) +- -+ £ d
=[fde+ [ de+ [ der -+ [ £l de

Again, when it comes to addition, we can work with indefinite integrals just as we can do with
limits, summations, and derivatives.

Are you confused?

The difference between an antiderivative and an indefinite integral is subtle. A language or grammar
teacher might call it “a matter of semantics.” Some texts will tell you that the antiderivative and the in-
definite integral are identical. I like to think of the indefinite integral as all the antiderivatives swarming
around each other in an infinitely large “mathematical cloud.”

Here's a challengel!

Let’s go back to the balloon, hovering 1,000 meters above the lake. You dropped a brick from the gondola
and measured how long it took to splash down. The brick splashed down 14.14 seconds after you released
it. You decide to conduct the experiment again. But this time, instead of dropping the brick, you lean out
over the edge of the gondola and hurl the brick straight down with some force, so it starts its descent with
a vertical speed of 5 meters per second. How long will this brick take to fall?
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Solution

Because the brick has a “head start,” the constant of integration is significant the first time you antidiffer-
entiate! The bricK’s initial speed is 5 meters per second. As before, the vertical speed increases by 10 meters
per second every second until the brick splashes down. (That’s the acceleration caused by the earth’s grav-
ity, which never changes.) If you call the acceleration function fand the time variable 7 then, as before,

f(r=10

You start the timer when you hurl the brick. But, although the brick starts out at zero “fallen distance,”
you give it an initial speed of 5 meters per second. You must account for this by adding a constant into the
antiderivative the first time around. When # = 0 (at the moment you start the timer), the speed is 5 meters
per second, so the antiderivative is

F(z) =10t+5
This function F expresses the downward vertical speed of the brick vs. time, assuming that you hurl the
brick straight down. Antidifferentiating again, remembering the rule for the sum of indefinite integrals and
calling the result @ (z), you get

@ (z) =5¢+5¢
The function @ expresses the vertical displacement vs. the elapsed time. In this go-around, the constant of
integration is 0, because the initial “fallen distance” is 0. As before, you can verify the relationship among
@, £ and f by differentiating:

D ()=2-5t%D+5=10t+5=F(¢)

and

F'(r) =10+0=10=f(2)

Now you’re ready to calculate how long it will take the brick to hit the water after you throw it down. This,
once again, is the time zat which the value of @ is equal to the altitude of the balloon. You have

5245+ =1,000

This is a quadratic equation. You can get it into standard quadratic form by subtracting 1,000 from each
side, obtaining

5£+5¢—1,000=0
Dividing through by 5 gives you the simpler equation
41+ -200=0
Using the quadratic formula to solve for  you have

p=E1E [P =41 (22001} / 2 1) = (-1 £801") /2
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The positive square root of 801 is approximately 28.30. Therefore,
t=(-1£28.30)/2 =13.65 or -14.65

What is happening here? Obviously, the brick can’t fall in two different lengths of time, and it is ridiculous
to suppose that it could fall in a negative time! The only solution that makes sense is # = 13.65 seconds.
The other solution is a “phantom.” (When you have a quadratic equation that leads to a “real-world” solu-
tion, the appearance of negative “phantom solutions” is common. Don’t worry about it unless you plan to
become a time traveler, enter an antimatter universe, or write science fiction.) By hurling the brick straight
down with an initial speed of 5 meters per second, you got it to splash down in only a little less time than
it took to fall when you merely dropped it. Does that surprise you?

Definite Integral

In graphical terms, the definite integral of a function over an interval is the total area between
the curve and the independent-variable axis in that interval. In Chap. 11, we added the areas
of a set of rectangles, making them narrower to reduce the error, and finding the exact area by
calculating the limit as the widths of the rectangles approached 0. We can also express definite
integrals in terms of antiderivatives. That’s easier!

The Fundamental Theorem of Calculus

Imagine that £ is a continuous real-number function of a variable x. Also suppose that z and
b are values in the domain of f with z < 4, and F'is a specific antiderivative with a constant
of integration ¢. According to a law called the Fundamental Theorem of Calculus, the definite
integral from 4 to b is

b
[ ) dx=F(b)- Fla)
Sometimes this is written as

b b
[ ) de=F(x) ]

a
where the expression on the right-hand side of the equals sign is read “F (x) evaluated from
ato b.”

When we find a definite integral this way, the constant of integration subtracts from itself
because F (4) and F (a) are calculated with the same antiderivative (the constant of integra-
tion is the same for both). This is convenient! It let us set the constant equal to 0 or leave it
entirely out.

An example

Suppose were given the following basic linear function, and we're told to find its definite
integral from -2 to 1:

g(x)=2x
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We can easily figure out the antiderivatives from our work with the basic quadratic function.
They can be written in general as

Glx)=x*+¢

When we apply the Fundamental Theorem of Calculus to find the definite integral, the con-
stant of integration subtracts from itself no matter which antiderivative we choose. We might
as well choose the one where ¢ = 0! When we do that, we get

[ g@) de=G (1)~ G(-2)
-2

We can easily calculate
G =1=1
and
G(=2)=(-20=4
Therefore
G)-G(2)=1-4=-3
s0 we have the final result

'1[ 2xdx=-3

-2

Another example

Suppose we're given the following basic quadratic function, and we're told to find its definite
integral from -2 to 1:

b (x) = 6x*

We know the antiderivatives / (x) from our work with the basic quadratic function. They can
be written in general as

H((x)=6x13+c=2x"+¢

As before, let’s use the case where ¢ = 0, because the constant of integration will cancel itself
out no matter what it is. (We can always leave the constant of integration out when we take
advantage of the Fundamental Theorem of Calculus.) We have

1

j h(x) dv=H(1)— H(-2)

-2
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Calculating the antiderivatives, we obtain
H()=2.1°=2
and
H(-2)=2.(=2)%=-16
Therefore
H(1)-H(-2)=2-(-16)=18
so we get the definite integral

j.zedx=18

-2

Are you confused?

If you have trouble envisioning what’s taking place in the above examples, draw graphs of the functions g (x)
and /4 (x), mark off the intervals of integration with the vertical lines corresponding to x=—-2 and x=1,
and then fill in the areas bounded by these two lines, the x axis, and the curves.

Remember: If the complete region defined by an integral consists of more than one enclosed area, then
the total area is the sum of the areas of the individual enclosed regions. Areas above the x axis are positive,
and areas below the x axis are negative, assuming that we always move in the positive direction along the
independent-variable axis. If the negative area is greater than the positive area, then the definite integral
is negative.

Are you still confused?

You might wonder, “What if the lower and upper bounds of the interval are the same when we want to
find a definite integral?” In that case, the definite integral is always 0. Suppose that you want to evaluate
the definite integral of a function f(x) from 4 to itself, with respect to x. If you apply the Fundamental
Theorem of Calculus, then you get

:ll.f(x) dx =F(a) — F(a)

Remember that in any single-variable function, there can never be more than one value of the dependent
variable (that is, one “output”) for any single value of the independent variable (“input”). Therefore, you
can be confident that

F(a)—F(a)=0

Here's a challengel!

Once again, imagine that you're in the balloon over the lake. You're still hovering at an altitude of 1,000 meters.
After expending a lot of energy (and risking your life) trying to get the brick to fall faster and gaining almost
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nothing for the effort, you simply drop the next brick and let it fall straight down. How much speed will
the brick gain during the third second of its descent (that is, from # =2 to # = 3)? How far will it fall in that
time?

Solution

The brick’s initial speed is zero, and it accelerates downward by 10 meters per second per second. As before, let’s
call the acceleration function fand the time variable # so

f(r=10
To find out how much speed the brick gains from # =2 to # = 3, we must find
3
[ 10 s
2

We can set the constant of integration equal to 0 because the initial speed of the brick is equal to 0. There-
fore the antiderivative, which tells us the instantaneous speed, is

F(r)=10z
We evaluate the definite integral by subtracting £ (3) — F (2), getting
3

J10d=10-3-10.2=10
2

We've just figured out that the brick gains 10 meters per second of speed during the third second of its fall.
To find out how far the brick falls in this same time interval, we must evaluate

3
flOtdt
2

Again setting the constant of integration to 0, we get an antiderivative, which tells us the instantaneous
“fallen distance,” of

D (1) =5+
This time, we evaluate
3
Jroedr=5.3~5.22=25
2

The brick falls 25 meters during the third second of its descent.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don't hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!
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. Draw a graph of the function

fl)=2

as a solid line or curve. Write down the antiderivatives of this function for the constants
of integration ¢ =1, ¢ = 3, and ¢ = —2. Draw the graphs of these antiderivatives as
dashed lines or curves. What do these antiderivative graphs all have in common?

. Draw a graph of the function
f(x) =2x

as a solid line or curve. Write down the antiderivatives of this function for the constants
of integration ¢ =1, ¢ = 3, and ¢ = —2. Draw the graphs of these antiderivatives as
dashed lines or curves. What do these antiderivative graphs all have in common?

. Draw a graph of the function

fx) =3

as a solid line or curve. Write down the antiderivatives of this function for the constants
of integration ¢ =5, ¢ = 15, and ¢ =—10. Draw the graphs of these antiderivatives

as dashed lines or curves. On the graph, make each horizontal-axis division represent

1 unit, and make each vertical-axis division represent 5 units. What do these
antiderivative graphs all have in common?

. Draw a graph of the function

Flx) =45

as a solid line or curve. Write down the antiderivatives of this function for the constants
of integration ¢ =5, ¢ = 15, and ¢ = —10. Draw the graphs of these antiderivatives as
dashed lines or curves. On the graph, make each horizontal-axis division represent 1 unit,
and make each vertical-axis division represent 5 units. What do these antiderivative
graphs all have in common?

. Using the rule for antidifferentiating a basic #th-degree function and the Fundamental
Theorem of Calculus, evaluate the definite integral of the function

flx) =85

with respect to x, from x =0 to x = 5.

. Using the rule for antidifferentiating a basic #th-degree function and the Fundamental
Theorem of Calculus, evaluate the definite integral of the function

g(2)=-2z"

with respect to z, from z=—6to z=—3.
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7. Let’s go back to the balloon, hovering 1,000 meters above the lake. We conduct the
experiment still another time. I lean out over the lip of the gondola (you're no longer
so foolish) and toss the brick into the air with an upward vertical speed of 5 meters per
second. It rises a short distance and then begins to fall. How long will it be from the
time I toss the brick up undil it hits the water?

8. How fast will the brick in Prob. 7 be traveling when it splashes down?

9. You and I are still in the balloon. You release another brick and let it fall straight down
with an initial speed of 0 at time # = 0, just as you did in the original experiment. How
fast will the brick be falling at # = 5? How much vertical speed will it gain between the
end of the 5th second and the end of the 6th second (in the interval from # =5 to ¢ = 6)?

10. In the situation of Prob. 9, how far will the brick fall in the first 5 seconds? How far will
it fall between £t =5 to ¢t = 6?



CHAPTER

13

Three Rules for Integration

Until now, the functions we've integrated have been simple and straightforward. We've always
gone in the positive direction (left-to-right) over continuous intervals. In this chapter, we'll
learn some rules that can help us find definite integrals in more complicated situations.

Reversal Rule

When we want to calculate a definite integral using the Fundamental Theorem of Calculus,
we usually integrate from the minimum to the maximum value of the independent variable
over an interval. But we can also integrate in the other direction.

The rule in brief

The reversal rule for definite integration tells us this:

* If we integrate a function over an interval from the largest to the smallest value of
the independent variable, we get the negative of the integral from the smallest to the
largest value. In other words, if we reverse the direction in which we integrate over a
specific interval, we multiply the result by —1.

For this rule to work, the function must be integrable over the interval. That means the defi-
nite integral must exist, and we must be able to find it. If fis an integrable function over an
interval (4,6) where 2 < b, then

b a

ff(x) 4x=—jf(x) dx

a b

Example

In the solution to Practice Exercise 5 in Chap. 12, we found that

5
j8x3 dx=1,250
0

221
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Let’s go the other way and find
0
J 8x° dx
5

We can find the basic antiderivative, in which the constant of integration is 0 (in contrast to
the general antiderivative where the constant of integration can be any real number). Our basic
antiderivative is

F(x)=8x%"/(3+1)=8x"4=2x"
Plugging in the values at the bounds, we obtain
F(0)=2-0"=0
and
F(5)=2-5'=1,250
Therefore
F(0) - F(5)=0—1,250 =—-1,250

With the help of the Fundamental Theorem of Calculus, we can conclude that

0
[ 8 dx=—-1,250
5

Another example
In the solution to Practice Exercise 6 in Chap. 12, we found that

-3
J. —2z% dz=-3,013.2

6
We can integrate this in the other direction by finding
-6
j —2z* dz
-3
The basic antiderivative is, as before,

G2 =22/ (4+1)=-22/5
Calculating the antiderivatives at the bounds, we get

G(6)=[-2-(=6)°]1/5 =[-2-(=7,776)] | 5=15,552/5=3,110.4
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and
G(-3)=[-2-(-3)]1/5 =[-2-(-243)] / 5=486/5=97.2
By arithmetic, we get
G(=6) — G(-3)=3,110.4 — 97.2=3,013.2

obtaining the final answer
-6

[ 22" dz=3,013.2

-3

Are you confused?

Usually, we think of areas defined by a curve above the independent-variable axis to be positive, and areas
below the independent-variable axis to be negative. But, as was mentioned in Chap. 11, things work out that
way only when we go from left to right, that is, in the positive direction along the independent-variable axis.
If we go from right to left, then the negative and positive areas reverse, as shown in Fig. 13-1.

Here's a challengel!

Show that for any integrable function f(x) over a real-number interval (2, &) where a < 4,

p 5
Jf(x) dx=—_[f(x) dx

Solution

From the Fundamental Theorem of Calculus, we know that
[ £(x) dx = F(a) - F(b)
b
and
b
[ F&) de=F(6)- Fla)

where F is the basic antiderivative of f. The right-hand sides of these equations are subtractions of the
same quantities done in opposite order. By algebra,

F(a) = F(b)=—-[F(b) - F(a)]

We can plug in the definite integral expressions for these differences to obtain

]"f(x) dxz—Jf(x) dx
b a
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Positive
area

Integrate :

—> X=b
fromato b
|

Negative area

A

f(x)

Negative
area

Integrate :

«— X= b
from bto a
I
Positive area

B

Figure 13-1 When we integrate in the positive x direction, areas
above the x axis are positive, while areas below the x
axis are negative, as shown at A. When we integrate
in the negative x direction, areas above the x axis are
negative, while areas below the x axis are positive, as
shown at B.

Split-Interval Rule

Imagine that we break up an interval into two parts that don’t overlap, but are contiguous
(there is no gap between them). If we integrate the parts separately and then add the results,
we'll get the same thing as we do if we integrate over the whole interval.
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The rule in brief
The split-interval rule for definite integration tells us this:
* If £ (x) is an integrable function over a single, continuous interval containing real
numbers 4, 4, and ¢, then the sum of the integral from x = 2 to x = 4 plus the integral

from x = b to x = cis equal to the integral from x =ato x = c.

When we write this symbolically, we get

]l.f(x)dx+ j.f(x)dxz j.f(x)dx‘
b b P

A special case exists when @ < & < ¢. But this doesn’t have to be true. If 2 < ¢ < b, for example,
then the second integral in the above sum goes in the negative direction. It doesn’t matter. The
formula works anyway!

Example

Let’s integrate a function from x = 0 to x = 2, and then from x = 2 to x = 5. We'll see that
the sum of these two integrals is the same as the integral from x = 0 to x = 5. First, we use the
Fundamental Theorem of Calculus to evaluate

2
_[ 8x° dx
0
The basic antiderivative is
F(x) =24
Calculating the antiderivatives, we obtain
F(2)=2.2=32
and
F0)=2-0"=0
Therefore
FQ2)-F(0)=32-0=32
so we get the result
2
J. 8x® dx=32
0
Now, let’s work out

5
J. 8x7 dx
2
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This time, the antiderivatives are

F(5)=2-5*=1,250

and
F(2)=2.2"=32
Therefore
F(5) - F(2)=1,250-32=1,218
s0 we have

5
[ 8 de=1,218
2
Now when we add, we should get
2 5 5
J8x3afx+ j8x3afx= I8x3dx
0 2 0
In the solution to Practice Exercise 5 in Chap. 12, we found that
5
j 8x° dx= 1,250
0

Plugging in the results we've just obtained for the integrals from x=0 to x=2 and from x=2
to x= 5, we get the sum

32+ 1,218 =1,250

Another example

Let’s integrate this same function from x = 0 to x = 7, and then from x =7 to x = 5. We'll
see that the sum of these two integrals is the same as the integral from x = 0 to x = 5. First,
we evaluate

7
J 8x° dx
0
Calculating the antiderivatives, we obtain
F(7)=2. 74 =4,802
and

F(0)=2-0=0
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Therefore
F(7)— F(0)=4,802 — 0 =4,802
so we get the result
j 8x° dx= 4,802
Now, let’s work out '
j 8x° dx
7
The antiderivatives are
F(5)=2-5"=1,250
and
F(7)=2-7"=4,802
Therefore
F(5)— F(7)=1,250 — 4,802 =—3,552
so we get the result
j 8x° dx=-3,552
7

Now when we add, we should get
7 5 5
ijadx+ij3dx=ijde
0 7 0
We've already determined that
5
j 8x° dx= 1,250
0

Lets plug in the results we just got for the integrals from x =0 to x =7 and from x =7 to x = 5.
When we do this, we get

4,802 + (-3,552) = 1,250

Are you astute?

If we integrate a function from one value of the independent variable to another, it doesn’t matter how we get
from the starting point to the finishing point. As long as the function is integrable over the entire route, we’ll
get the same end result no matter how far afield we go, and no matter how many times we backtrack.
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Here's a challengel!

Prove the split-interval rule in its basic form: For any function f (x) that’s defined and integrable over an
interval containing the real numbers 4, 4, and ¢,

jf(x)dx#—j.f(x)dx:jf(x)dx

Solution

From the Fundamental Theorem of Calculus, we know these three facts:
f(x) dx=F(b)— F(a)

f(x) dx=F(c)—F(b)

S Y ey

[ £G0) de= F(e) - Fla)

where F represents the antiderivative of fwith the constant of integration equal to 0. Let’s rename the
values of the functions at the points in the interval:

p=F(a)
q="F(b)
r=F(c)

where p, g, and rare real numbers. We know all three of these numbers exist, because we've been assured
that the function f(x) is defined and integrable over the interval containing the x-values 4, 4, and ¢. By
substitution, we can rewrite the first two of the above integrals as

[fe)de=g-p
b

and

_1. fx)dx=r—gq
To find the sum of these, we evaluate the expression
(g=p)+(r—9q)
By algebra, this simplifies to
r=p
Substituting back the original expressions for rand p, we get

F(c)—F(a)
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According to the Fundamental Theorem of Calculus, that’s the same as
[ ) ds

Substitution Rule

Once in awhile, we'll want to evaluate a definite integral that involves a composite function.
If the integral can be written in a certain form, then it can be solved using a technique called
the substitution rule.

The rule in brief

Imagine two functions f and g both of them integrable, such that f operates on x while g
operates on f(x). Now consider

b
[ gl G- f7 () d

We can rewrite this integral in the form
f(b)

_[ g(y) dy
f(a)
where y = f(x). Once we've made this substitution, we evaluate the definite integral of the

function gwith respect to 3 from y = f'(2) to y = (). That process gives us the value of the
original definite integral.

Example
Let’s evaluate this definite integral using the substitution method:

j (x+2)* dx
1
We can consider this as a composite function where
fx)=x+2
and

2=y

We're lucky here because

fr)=1
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so we can rewrite the original integral in the form
2
[glf G- f ) ds
1
We calculate
f)=1+2=3
and
f2)=2+2=4

Now we can write the integral as

4
[ dy
3
which is
4
[r
3
Now let’s find the indefinite integral
[

With the constant of integration set to 0, we get the antiderivative
G(y)=y1I5
We calculate
G4)-G(3)=4/5-3/5=156.2

We've just found that

2
j (x+2)* de=156.2
1

Are you confused?

When we work out a definite integral using substitution, the bounds of integration usually change
during the intermediate steps. Don’t let this baffle you! In the above situation, we must add 2 to both
bounds when we integrate g (y) with respect to 3 because that’s what the function fdoes to its input
variable.
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Here's a challengel!
Evaluate this definite integral using the substitution method:

jx(x2—1)4dx

-1

Solution

Before we start, let’s multiply the entire integral by 1/2, and then multiply the quantity after the integral
sign by 2. The product rule for integration allows us to do this; we're simply multiplying the whole thing
by 1/2 - 2, which is 1. (You'll see why we're playing this game in a minute.) That gives us

(1/2) [ 25 (x> = 1) dix

We now have a composite function where
flo)=x"—1
and
g =y"
Our multiplication game has made things so that
[ (x)=2x
Now we can rewrite the original integral in the form
(1/2) jg[f(x)] f (x) dx
e
which gets it all ready for substitution. We calculate
fED=ED)2-1=0
and
f@2)=2>-1=3
so we can write the integral as
(1/2) j £ dy
0
which is

3
(12) [y dy
0
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Now lets find the indefinite integral
[
The basic antiderivative is
G(y)=y’I5
Therefore
G(3) - G(0)=3"5-0°/5=48.6

We're not done yet! We must multiply the above result by the constant 1/2. This gives us 24.3. We can
now conclude that
2

J x(x?=1)*dx=24.3

-1

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Prove that if 4 is an integrable function of a variable v over an interval from v=pto v=¢
where p and ¢ are real-number constants, then
q P
J bh(v) dv= J.—b(z/) dv
4

9

2. As an example of the rule stated in Prob. 1, show that
2

1
j x*dx = J‘ —x* dx

1 2

3. Draw graphs of the two functions evaluated in the solution to Prob. 2. Show, by

shading, the regions defined by the curves in the interval between x = 1 and x = 2.
Explain why both areas are considered positive in this situation.

4. Consider the function f(x) = x°. Evaluate each of the integrals in the following sum,
demonstrating the split-interval rule:
0 3 3
J.xadx+J.x3dx=J.x3dx
-3 0 -3

5. Draw a graph of the situation in Prob. 4. Show the negative and positive areas.
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. Evaluate each of the integrals in the following sum:

-5 3 3
J.x3dx+J.x3dx=J.x3dx

-3 =5 -3

. Prove that for any function f(x) that’s defined and integrable over an interval

containing the real numbers 4, 4, ¢, and 4,

j.f(x)dx+ j.f(x)dx+]:f(x)dx=j:f(x)dx
b c a

b

Here’s a hint: See the “Challenge” at the end of the section “Split-Interval Rule.”

. Evaluate this definite integral using the substitution method:

2
J. (4—-x)2dx
3

. Suppose we want to evaluate

4
J. (4—-x)2dx
3

There’s a potential problem here. What is it?

Try evaluating the integral stated in Prob. 9 and see what happens.

233



CHAPTER

14

Improper Integrals

In this chapter, we'll see what happens when we try to integrate a function that contains a
singularity (blows up either positively or negatively). We'll also learn how to integrate certain
functions over infinitely wide intervals. Integrals of these types are called improper integrals.

Variable Bounds

234

Let’s look at definite integrals in which one of the bounds is variable rather than fixed. This can
happen in either of two different ways. We can precisely adjust a bound, making it approach a
certain limiting value, or we can let the bound “run away” (increase or decrease indefinitely).

Adjusting the upper bound

Consider a function f of a variable x, along with two constants 2 and 4. Let’s say that « is the
lower bound of an open interval (2,6) over which the function is defined, and & is the upper
bound of that same interval. That means < 4. As we have seen, the definite integral of f(x)
with respect to x, over the open interval from x = 2 to x = b, can be written

[ £ ds

Suppose that the value of f increases or decreases endlessly as x approaches the upper
bound & from the negative direction (from the left). The function is defined and continu-
ous as long as x < 4, but when x = 4, there’s a singularity. Remember that our interval is
open, so it does not include the end points. Because of the singularity, the integral is improper.
To approximate it, we can imagine some extremely small positive number & (the lowercase
Greek letter epsilon), subtract it from &, and use the difference as the upper bound instead
of 4. Then we get

b-¢e

[ [ de

a
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We can make & as small as we want, as long as we keep it positive (as shown on the left-hand
side of Fig. 14-1), and we'll always be able to calculate the value of the integral. In this way,
we can get an approximation of

[ £ s

that’s as close to the actual value as we want, but only if that actual value is finite.

Adjusting the lower bound

Now consider another function g of a variable x, along with two known constants ¢ and 4.
Let’s say that ¢ is the lower bound of an open interval (¢,4) over which gis defined, and 4 is

Singularity
|

Value
of

function
A

x
Il
o

:

&

Singularity

Figure 14-1 When an interval has a singularity, we
can approximate the definite integral by
choosing a bound near the singularity, but
at which the function is defined.
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the upper bound of that same open interval. The definite integral of ¢ (x) with respect to x,
over the open interval from x = cto x = d, is

d
j g (x) dx

Imagine that ghas a singularity at the lower bound, ¢. As x approaches ¢ from the positive
direction (that is, from the right), the value of f increases or decreases endlessly. Our function
gis defined and continuous as long as x > ¢. This integral, like the one in the previous section,
is improper. We can take some minuscule positive number o (the lowercase Greek letter delta),
add it to ¢, and use the sum as the lower bound instead of ¢, as shown on the right-hand side

of the graph in Fig. 14-1. Then we get

d

j g(x) dx

c+0
We can make O'as small as we want, letting it approach 0. As long as we keep O positive, we
can get better and better approximations of

d
fg(x)dx

c

as long as the actual value of the integral is finite.

“Runaway” bounds

Sometimes we'll find ourselves in a situation where we want to figure out a definite integral
with an unspecified upper bound. Consider the integral

q

j f(x) dx
where the upper bound, ¢, is a variable. (The lower bound, 4, is a constant, as in any definite
integral.) If g is allowed to increase endlessly as shown at the right-hand edge of Fig. 14-2, we
approach the “one-ended” improper integral

[ ) ds

We can do the same thing with a lower bound. Consider the integral

d
J g (x) dx
’
Here, the lower bound, p, is a variable, and the upper bound, 4, is a constant. Suppose we
make p shrink forever (that is, get larger and larger negatively) as shown at the left-hand edge
of Fig. 14-2. In this situation, we approach the “one-ended” improper integral
d

Jg(x)dx

—oo



interval is finite.

Variable Bounds

Value
of

function
AN

Are you confused?

Here's a challengel!

x=d

Figure 14-2 Sometimes, we might want to integrate a

function over an interval where one of the
bounds increases or decreases without limit
(“runs away”).

Consider the following definite integral:

q
J. 5x7C dx
1

237

You might ask, “aren’t these types of integrals always undefined? In all four of the cases shown in Figs. 14-1
and 14-2, we go off toward infinity or negative infinity.” The answer, oddly enough, is that the integral
is sometimes defined and finite in a situation like this. When an improper integral is infinite, it is said to
diverge. That means the area defined by the curve over the specified open interval is infinite. But some
improper integrals converge. In these situations, the area defined by the curve over the specified open

The convergence of certain improper integrals is one of the most fascinating phenomena in mathemat-
ics. We can have a geometric plane figure that’s infinitely wide or infinitely tall, but nevertheless has a finite
interior area. In three dimensions, the counterpart is a solid with finite volume, but with infinite surface area.
In the real world, such an object would allow us to cover an infinite surface with a finite amount of paint!
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where ¢ is the upper bound. Evaluate this definite integral for

q=102
g=10°
g=10°

What takes place as g grows larger endlessly? Express this integral as a limit, and also as an improper integral.
Solution
If we call our function f(x), then the basic antiderivative is
F(x)=—-x7

When g = 10%, the definite integral is

FQ0) - F(1)=-[(10)7] = [-(1)]=-(10") +1=1-107"
This is a little smaller than 1. When g = 10°, the definite integral is

F(10%) = F(1) ==[(10°] = [-(17)] = =(10) + 1 = 1 — 107>
This is closer to 1 than before. When g = 10, we have

F(10% — F(1) =—[(10%7] = [-(17)] =-(10") + 1 =1 - 107

This is extremely close to 1, but it’s still not quite there! We can now see what happens as ¢ increases with-
out limit: The value of the definite integral approaches 1, so

% Flg-F(1) =1

If we want to express this fact using the integral symbology, we can write
q

Lim j 5xCdx=1
1

g

As an improper integral, this can be expressed as
J’ 5x S dx=1
1

Singularity in the Interval

When we graph a function with a singularity, the value of the function increases or decreases
without bound as the independent variable approaches a certain finite value. We've seen func-
tions like this, but we haven't really “gotten into them.” Let’s look at them more closely.
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How to do it wrong

Suppose we want to evaluate the definite integral of a function over an interval that contains
a singularity. Figure 14-3 is a graph of the function

fx)=x7

There’s a singularity at x= 0. Let’s try to find
1

J. x7% dx

21
by directly applying the Fundamental Theorem of Calculus, as if this were an ordinary defi-
nite integral. Unaware of the trouble that awaits us, we begin by finding the basic antideriva-
tive /£ That turns out to be

F(x)=—x""

Next, we evaluate F (x) at the bounds of integration, subtracting the value at the lower bound
from the value at the upper bound. By arithmetic,

F()= FED) ==(17) = [ =-1 - 1=-2

Area defined by curve
—+ extends upward
forever

Each vertical | |
division is
1 unit

Each horizontal division is 1/2 unit

Figure 14-3 The function f(x) = x* contains a
singularity at x = 0. In this graph, each
horizontal division represents 1/2 unit, and
each vertical division represents 1 unit.
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This result can’t be correct! The curve in the interval defines an area that’s entirely above the
y

x axis, and we integrated in the positive direction. Therefore, if the area is finite, it must be

positive. It can’t be —2. We must find another way to evaluate this integral.

How to do it correctly: the left-hand side

To evaluate an integral like this, we divide the interval into two parts that meet at the singular-
ity. Then we integrate on either side of the singularity. Finally, we add the two “sub-integrals.”
In the situation we're looking at now, the singularity is at x = 0. First, let’s evaluate

0
j x7 dx
-1
We take a tiny positive &, subtract it from the upper bound at x= 0, and obtain
—&
J. X7 dx
-1
The basic antiderivative is
Fx)=—x""

When we evaluate this antiderivative from —1 to —& we get
Fe8 - F() =—(&)" — -1 =&~ 1

Now consider

Lim £'-1

=0+

This limit is infinite because, as & approaches 0 from the positive direction, the value of the
quantity (¢7' — 1) grows arbitrarily large. Therefore,

—£

Lim j x2 dx
-0+
is infinite, indicating that
0
J. x2 dx

-1

is undefined. This fact is sufficient to tell us that

J. x7 dx

-1
is undefined. We don’t have to work out the part of the integral on the right-hand side of the
singularity to reach this conclusion. We can’t add anything to an undefined quantity and end
up with a defined quantity! But let’s work through the right-hand portion anyway.
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How to do it correctly: the right-hand side

This time, we want to evaluate the improper integral in which the singularity exists at the
lower bound of the open interval. That integral is

1
J. X7 dx
0

We'll take a tiny positive &, add it to the lower bound at x= 0, and get

1
J. x72 dx
)

Again, the basic antiderivative of our function is

F(x)=—x"
When we evaluate this from Jto 1, we get
F()=F()=-1")~=[-(6)]=d6"-1
Now we consider

Lim §1-1

50+

This limit is infinite; as dapproaches 0, its reciprocal blows up. Therefore,

1
Lim J. x2 dx
-0+
is infinite, telling us that
1
'[ x72 dx
0

is undefined.

Here's a challengel!
Find the definite integral of g (x) = x™* over the open interval -1 < x < 1:

-1

Solution

The notion of the —2/3 power can be confusing. Let’s be sure we know what it means. Our function g takes
the input x, squares it, takes the cube root of that, and finally takes the reciprocal of that.
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The interval of integration includes a singularity at x = 0, as shown in Fig. 14-4. We must divide the
interval at the singularity, integrate on either side, and add the results. First, let’s work out
0

J‘ 2B g

-1
We take a tiny positive &, subtract it from the upper bound at x= 0, and obtain

_Jf x72/3 dx

-1

The antiderivative without the constant of integration is
G (x) =3x'?
When we evaluate this antiderivative from —1 to —€, we get

G&)-GE1)=3. (=) =3.(-1)""=3-3¢"

Area defined by curve
-+ extends upward
H forever

Each vertical |-
division is
1 unit

Each horizontal division is 1/2 unit

23 contains a

Figure 14-4 The function g(x) = x
singularity at x = 0, but the integral over the
open interval from x = -1 to x = 1 is defined
and finite. In this graph, each horizontal
division represents 1/2 unit, and each vertical

division represents 1 uni.
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Remember that the 1/3 power is the cube root. Now we consider

Lim 3 -3¢

£—-0+

As gapproaches 0 from the positive direction, the value of £ also approaches 0 from the positive direc-
tion. Multiplying that vanishing quantity by 3 still gives us a term that approaches 0. That means the
quantity (3 — 3€'?) approaches 3. We can conclude that

Therefore

Now let’s work through the integral on the right-hand side of the singularity. This time, we want to cal-
culate

1
J 2B gy
0
We take a tiny positive J, add it to the lower bound at x = 0, and obtain
1
J. X723
s
Once again, the antiderivative of our function is
G (x) =3x"
When we evaluate this from d'to 1, we get
G(1)-G(6)=3-1"-36"=3-35"
We want to determine

Lim 3 — 38"

60+

As Sapproaches 0 from the positive direction, the value of 8" also approaches 0 from the positive direc-
tion. Multiplying that vanishing quantity by 3 still gives us a term that approaches 0. That means the
quantity (3 — 38"?) approaches 3, so

1

Lim [ de3
)

50+

Therefore

x de =3

O —y
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We've evaluated the integral from x =—1 up to the singularity, and found that it’s equal to 3. We've also evalu-
ated the integral from the singularity up to x = 1, and found that it’s equal to 3. The integral from x = -1 to
x =1 is the sum of the two:

1 0 1
J xB dx = j x7B dx+ J B dx=3+3=6
-1 -1 0
The shaded region in Fig. 14-4 portrays an infinitely tall geometric plane figure with a finite interior area.

Infinite Intervals

We've seen what can happen when we try to integrate over an interval that’s infinitely wide.
Let’s look further into this type of improper integral. We'll use the same two functions that we
integrated from x=—1 to x= 1 in the previous section:

flo)=x7

and

-2/3

g(x)=x

Example

A while ago, we figured out that the improper integral

1

J x2 dx

o1
is not defined. Now let’s integrate the same function over the interval that includes all values
of x less than —1, as shown in Fig. 14-5. We want to evaluate

-1

j x2 dx
The antiderivative, as before, is
Fx)=—x"
Let’s consider the definite integral
-1
J. x72 dx
?

where p is a variable that decreases endlessly (that is, it grows larger negatively without
restraint). To find the integral, we must determine

Lim F(=1) = F(p)
P
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Each vertical |
division is
1 unit

Area defined
by curve
extends

to the left
forever

o |

= I I I

Each horizontal division is 1/2 unit

Figure 14-5 Integration of the function f (x) = x> over
an interval that includes all real values of x
less than -1. In this graph, each horizontal
division represents 1/2 unit, and each
vertical division represents 1 unit.

We calculate
Fel)=—(1)" =1

As p becomes large negatively without bound, the value of 7 (p) approaches 0. We can see this
by inputting some numbers into the antiderivative and doing the arithmetic:

F(=10")=-(-10>)"1=1072
F(=10%) =—(=10°" = 10"
F(=10%=—=(-10%"1=108
Now we know that
Lim F(-1)= F(p)=1-0=1

pr—o

Therefore
.
J. x2dx=1

—oo
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Another example

We've already worked out the fact that
1
I x P dx=6
o
Now let’s integrate the same function, which we call g (x), over the interval that includes all
values of x larger than 1 as shown in Fig. 14-6. The improper integral is
]’O 2 gy
1
The antiderivative, as before, is

G (x) =3x"

Now let’s consider the definite integral

x72B dx

—

Each vertical
division is
1 unit

Area defined
by curve
extends

to the right
forever

| [ T N
I I I I -

Each horizontal division is 1/2 unit

Figure 14-6 Integration of the function g (x) = x™*° over
an interval that includes all real values of x
larger than 1. In this graph, each horizontal
division represents 1/2 unit, and each
vertical division represents 1 unit.



Infinite Intervals 247
where ¢ is a variable that increases endlessly. To find the integral, we must determine
Lim G (q) - G(1)
g
We calculate
G(1)=3-1"7=3

As g becomes large positively without bound, G (¢) also increases without bound. We know
this because the cube root of a growing positive real number grows, and there is no limit to
how large that cube root can become. If we multiply such a number by 3, it gets bigger still.
Because G (g) increases without bound as ¢ approaches infinity, we know that

Lim G(g)- G()
is infinite. This tells us that the improper integral
Jof x72 dx
is undefined. 1

Are you confused?

Do you wonder why we specify open intervals for definite integrals? We do this because it’s the “safest”
approach. Once in awhile, we'll encounter a definite integral where the function is undefined at one or
both bounds. Technically, we can’t integrate all the way up to a bound where a function is undefined.
We can approach it, but we can't work directly with it. If we leave the endpoints out of integration
intervals, we avoid this problem. (The boundary never has any “area” anyway, so we dont need to
include it.)

Do you remember what the various interval notations mean? If not, here’s a refresher. If we have a vari-
able x and two constants z and & where 2 < b, then

(a,6) means the open interval where a< x< &
[2,6) means the half-open interval where < x< &
(@,6] means the half-open interval where 2< x< b

[4,b] means the closed interval where 2< x< b

Are you astute?

Have you noticed that the function f portrayed in Figs. 14-3 and 14-5, has an undefined integral over the
interval (—1,1), but a defined one over the interval (—ee,—1)? In the first situation, the region is infinitely
tall and has infinite area. In the second situation, the region is infinitely wide but has finite area.

Have you also noticed that the function g shown in Figs, 14-4 and 14-6, behaves in precisely the
opposite manner? It has a defined integral over the interval (—1,1), but an undefined one over the interval
(1,e0). The infinitely tall region has finite area; the infinitely wide one has infinite area.
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The curves for fand glook almost the same in the graphs, but theyre a lot different mathematically.
Whether a singularity gives us a finite integral or an undefined one depends on how “fast” the curve
approaches the line where the singularity exists. If the curve approaches the line fast enough, then the inte-
gral is finite. Otherwise it’s undefined. Usually, the only way to know what will happen when we integrate
over an interval with a singularity is to try it and see. If the integral is defined, we'll come up with a limit
that converges. If the integral is undefined, we'll get a limit that is infinite.

How's your imagination?

In all of the examples here, the singularities are along the coordinate axes. But there are functions with
singularities that don’t correspond to either axis. Can you think of any?

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Evaluate the following integral. If it’s defined, state the value.
1
j —7x78 dx
0

2. Evaluate the following integral. If it’s defined, state the value.
.
J. —7x78 dx

—oo

3. Evaluate the following integral. If it’s defined, state the value.
2
J. x7 dx
0

4. Evaluate the following integral. If it’s defined, state the value.

jfx_34x

2

5. Evaluate the following integral. If it’s defined, state the value.
0

J‘ X35 gy
-3
6. Evaluate the following integral. If it’s defined, state the value.

—o0

J’ 735

-3
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. By looking at graphs of the functions, we can see immediately that one of the following
integrals is undefined. Which one?
J x7 dx
2
J —5x dx
2

. Work out the integral stated in Prob. 7 that looks as if it might be defined. If it turns

out not to be defined, indicate why. If it’s defined, state the value.

. Evaluate the following integral as if there were no singularity in the interval of

integration. That’s the wrong way to do it, of course! But try it anyway, and see what
happens:

J X7 dx
-1
Draw a graph that lends intuitive support to the “solution” here.

Evaluate the integral stated in Prob. 9 using the correct approach.
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Integrating Polynomial Functions

In this chapter, we'll integrate functions that appear in polynomial form. Working out such
problems involves knowing which rules to apply, and when to apply them. The rest is, as my
teachers and professors used to say, “mere busywork.”

Three Rules Revisited

In Chap. 12, we learned three important rules that apply to indefinite integrals. They also
apply to definite integrals under certain conditions.

The old rules

The original rules involve multiplying a function by a constant, taking the negative of a func-
tion, and adding two or more functions. Here they are again, in brief.

* If we multiply a function f'(x) by a constant #and then integrate with respect to x, we

get the same thing as we do by integrating f'(x) with respect to xand then multiplying
by the constant:

[ kLG de=k| £ e

* If we integrate the negative of a function f (x) with respect to x, we get the same thing
as we do by integrating f (x) with respect to x and then taking the negative:

[ -1rende==[ ) de

250
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* Imagine that fi, 5, £, ..., and f, are functions of a variable x. The integral of the sum
of the functions with respect to x is equal to the sum of the integrals of the functions
with respect to x:

[ A +£@+ 0+ +fi0)] do
JA@ac+ [ fode+ [ o der o+ [ £l e

The new rules

We can modify these rules to work with definite integrals, but we must be careful. We have
to stay with the same interval of integration all the time, and we must always integrate in the
same direction. Suppose the bounds of the interval are x = zand x = b, and we integrate start-
ing at # and finishing at 4. Here are the new rules.

* If we multiply a function £ (x) by a real constant 4 and then take the definite integral
with respect to x, we get the same result as we do when we integrate with respect to x
and then multiply by the constant:

j ELF ()] de=k jf(x) dx

a a
* If we take the definite integral of the negative of a function f'(x) with respect to x, we
get the same result as we do when we integrate the function with respect to x and then
take the negative:
b

j[ﬂmw jﬂwﬁ

* The definite integral of the sum of two functlons /i (x) and £ (x) with respect to x is
equal to the sum of their definite integrals with respect to x. If /i and £, are integrable
functions of the same variable x, then

b b b

[ Ui )+ A de= [ fi(x) de + [ f(x) dx
This last rule, which we can call the sum rule for definite integrals, works when we add up any
finite number of functions, as long as:

* The interval of integration is the same for each function
* All the functions are integrable over the interval
* All the integrals are done in the same direction

Are you inquisitive?

You might ask, “why does the above sum-of-integrals rule work only when both, or all, of the integration
intervals are the same, and only when we integrate in the same direction all the time?” The best way to
answer this question is to see what happens if we violate either or both of these restrictions.
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Suppose we want to consolidate a sum of two integrals into a single integral of the sum of both func-
tions, but the intervals differ. Here’s an example:

6
j7x2 dx + Jx2/3dx
3 4

We can work out the two integrals separately (assuming they’re both defined) and then add them. That’s not
a problem, because they’re plain numbers. But if we want to consolidate the above expression into a single
integral, we have no way of knowing what the interval should be. Should we use (3,5)? Noj; that won’t let
us do anything with the values of x between 5 and 6, which are included in the second integral. Should we
use (4,6)? Noj that leaves out the values between 3 and 4 in the first integral. How about (3,6)? No; it’s too
wide for either integral alone. What about (4,5)? No; that leaves out some of the values when we consider the
integrals together. Now think about what happens if we integrate the functions in opposite directions:

5 3
[ 730 d + [ 2 i
3 5
We can rewrite this as a difference of integrals done in the same direction:
5 5
[ 752 — [ 2 ae
3 3
That’s equal to

(7x* = x*3) dx

@ —

Here's a challengel!

Consider the following two functions over the interval from x=2 to x=4:

and

Integrate these functions individually and add the results. Then add the functions and show that the inte-
gral of the sum is equal to the sum of the integrals.

Solution
First, let’s figure out the definite integral
4
_[ 8x dx
2
The basic antiderivative is
G (x) = 45

When we evaluate this from x=2 to x=4, we get

G4 -GQ2)=4-4-4-2"=48
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Next, we figure out
The basic antiderivative is

When we evaluate this from x=2 to x= 4, we get
HM@)-HQ)=-3-4>—-(-3-2%)=-36

When we add these results, we get 48 + (=36), which is 12. Now, let’s add the two original functions and
then integrate their sum. If we call the sum g (x), then

g(x) + h(x) = q(x) =8x+ (—6x) = 2x

We want to work out

4

_[ 2x dx

2
The basic antiderivative is

Qx)=x

When we evaluate this from x= 2 to x= 4, we get

Q- QR =4-2=12

Indefinite-Integral Situations

We're now able to integrate any sum of monomial terms, where each term raises the indepen-
dent variable to a real power and then multiplies it by a real constant.

Example

Let’s resolve the indefinite integral

_[ (32*+22—06) dz
We have a sum of three monomial functions. Let’s call them

fi(2) =37’
f(2)=2z
£(2)=—6
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The indefinite integrals are
I fi (2) &l’z:J 3z dz= 2"+ ¢,
j 2 (2) dz=j 2zdz=2z>+ ¢,
J f (2) dz=J —6dz=—06z+c;

where ¢, ¢;, and ¢ are the constants of integration. These constants are not necessarily all the
same. The original integral is

J (32*+22—06) dz =jﬁ(z) dz + Jﬁ(z) dz + Jf3(z) dz
— J 3z dz + J 2z dz + J ~6dz=2"+c+ 2"+ 06— 6z+ ¢
=22+22-6z+aq+o+tqg

We can consolidate ¢, + ¢, + ¢; into a single constant ¢, so

J (32°+22—6) dz=2>+ 22— 6z+ ¢

Another example
Let’s find the indefinite integral

I (5),2/3 _}/—1/2 _ 4)/—2) d_y

This is the integral of a sum of three monomial functions. Let’s call them

ﬁ ()/) — 5},2/3
L)=—yT"
£ () =—4y~

The indefinite integrals are

[ £ Oy ty=] 57 =3y + 6
[EG =] 5 =2+
I 5 ﬂ’y=J —4y dy=4y" + o
where ¢, ¢, and ¢ are the constants of integration. The original integral is
J Gy =y =4y dy =f fi(p) dy + J £ dy + J () dy
- _[ 5y dy + _[ —ydy + J —4y~ dy

=3P +a-2y"+o+4y" + ¢

=3P -2y + 4y + o+ ot g



Definite-Integral Situations 255

Consolidating ¢ + ¢, + ¢; into a single constant ¢, we have

J. (5}/2/3 __)/_1/2 _4)}—2) dy: 3},5/3 _ 2}/1/2 +4y—1 +c

Are you confused?

You might ask, “why not leave the constants of integration out until the end of the process, and then add
in a single consolidated constant?” In most cases, we can do that. In scientific problems, the values of the
individual constants might be significant, but in pure theoretical mathematics, they aren’.

Here's a challengel!

Determine the indefinite integral

I (x+3)2x* —4x—5) dx

Solution

When we multiply polynomials, we get another polynomial. In this case,
(x+3)2x* —4x—5) =25 +2x*— 17x— 15
We can therefore rewrite the above integral as
J. 2x*+2x* = 17x—15) dx

Let’s take the indefinite integrals of each monomial from left to right, omit the individual constants of
integration, and then add c as the last step. We get

J. 2x3 dx + J. 2x* dx + _[ —17xdx + J —-15 dx
=(1/2)x* + (213)x* = (17/2)x* = 15x+ ¢
That's it! We've determined that
[ 3@~ = 5) de= (120" + @13) — (17725~ 15w+ ¢

Definite-Integral Situations

Once we know how to evaluate the indefinite integrals of polynomial functions, it’s easy to
work out definite integrals most of the time. But if the integrand (the function that we're inte-
grating) has a singularity in the interval, then we have to use the rules we learned in Chap. 14
when we work out the definite integral.
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Example
Let’s find the definite integral

4
j (32> +2z—0) dz
2

From the previous section, we know that

J. 322+ 2z—=06)dz=2>+2z*—6z+ ¢

We want to evaluate this from z= 2 to z= 4. Before we start, we must be sure that the inte-
grand doesn’t have any singularities in the interval for which 2 < z < 4. To do that, we must
look at each individual term as a function. Let’s call the integrand £, so we have

f(z)=32"+22—6

This breaks down into the three monomial functions

fi(z)=32"
f(2) =2z
f:(2)=06

The graph of £, is a parabola that opens upward. The graph of £ is a line through the origin with
a slope of 2. The graph of £ is a line with a slope of 0. (You might want to sketch the graphs to
see these facts.) None of these three functions blows up in the interval 2 < z < 4, so it’s okay to
evaluate the integral by plugging in the boundary numbers to the antiderivative F (z) and then
subtracting the results. That antiderivative, leaving out the constant of integration, is

F(g)=2>+2*-06z
When we input 4 (the upper bound of the definite integral) here, we get
F4)=4+4-6-4=56
When we input 2 (the lower bound of the definite integral), we get
F(2)=2+2"-6-2=0
The difference is
F(4)-F(2)=56-0=56

so we've determined that

4
j (32> + 22— 6) dz = 56
2
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Another example

Let’s find the following definite integral. The arithmetic is messy, so we'll approximate our
answer with a calculator to three decimal places.

2
j (5}/2/3 _}/—1/2 _ 4),—2) d}/
1
In the previous section, we found that
J(Syzls _y—llz _ 4)/—2) dy — 3}/5/3 _ 2}/1/2 + 4),—1 +c

We want to evaluate this from y =1 to y = 2. Let’s call the integrand £, so

f()’) — 5},2/3 _y—llz _ 4}’72

This breaks down into

fl (}’) — 5}/2/3
L) ==
f () =-4y~

The graph of f is a parabola-like curve opening upward. The graph of £ is a curve with a
singularity at y = 0, but were okay over the interval where 1 < y < 2. The graph of f; also
has a singularity at y = 0, but were okay in the interval where 1 < y < 2. (Feel free to sketch
graphs of these three monomial functions.) When we leave out the constant of integration,
the antiderivative of f is

F(y) =3y = 2y + 4y~
When we input 2 here, we get

F(2)=3.2%-2.224 4.2

When we work out the above expression and round off to three decimal places at the end of
the calculation, we get

F(2) = 8.696
When we input 1 to the antiderivative £ we get
F(1)=3-1%-2.1"4+4.1"=5
The difference is

F(2) - F(1) = 8.696 — 5 = 3.696
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We have determined that

2
J 5y =y —4y?) dy = 3.696
1

Are you confused?

“What would happen,” you wonder, “if we try to evaluate the above integral from 0 to 1? Two of the three
monomial terms, considered as individual functions, are singular at y= 0. Does that mean the entire inte-
gral is undefined?” Maybe, and maybe not! The only way to find out is to work out the definite integrals
for each monomial function individually. If they’re all defined, we can add them up to get the final answer.
If any of them is undefined, then the entire integral is undefined.

Here's a challengel!

Evaluate the definite integral

1

J (x—l/i _ x—l/4) dx

0

Solution

The integrand is a sum of two monomial functions. Let’s call them

ﬁ (x) — X—l/S

and

ﬁ (X) — _x—1/4

Both of these functions are singular at x= 0. That’s the lower bound of our integration interval. One of the
functions blows up positively, while the other one blows up negatively. Let’s go through four steps:

¢ Split the original integral into two separate improper integrals.

* Evaluate those two integrals independently.

* Ifeither of them is undefined, conclude that the entire integral is undefined.
* If they are both defined, add them to get the final result.

When we break the original integral into a sum of the integrals of the monomial functions, we get
1 1
_[ x5 de + J. —x 4 dx
0 0
Lets evaluate the left-hand addend first. We want to find
1

j 5 g

0
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We take a tiny positive J, add it to the lower limit at x= 0, and obtain
1
J' 15
s
The basic antiderivative is
F (x) = (5/4)x*°
When we evaluate this from J'to 1, we get
F (1) = F (0) = (5/4) - 1'° = (5/4)6*" = 5/4 — (5/4)5*"
Now we must determine
Lim 5/4 — (5/4) 0%
50+

As 8approaches 0 from the positive direction, the value of §*” also approaches 0 from the positive direc-
tion. Multiplying by 5/4 gives us a term that still approaches 0. That means the quantity [5/4 — (5/4) 0*"]
approaches 5/4, so

1

Lim I{“ﬂ=ﬂ4

50
S0+

Therefore, the left-hand addend in the “big sum” is

1

J' x5 g = 5/4

0

Now let’s evaluate the right-hand addend in our sum of improper integrals. This time, our task is to figure
out

1

J. —x V4 i

0

We take a tiny positive J, add it to the lower limit at x= 0, and get

1
J VA
5
The basic antiderivative is
F, (x) = (—4/3)x"
When we evaluate this from Jdto 1, we get

F (1) = B (6) = (—4/3) - 174 — (=4/3) 8 = —4/3 + (4/3) 0°* = (4/3) 6" — 4/3

Now we consider

Lim (4/3)6%% - 4/3
50+
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As dapproaches 0 from the positive direction, the value of 54 also approaches 0 from the positive direc-
tion. Multiplying by 4/3 gives us a term that still approaches 0. That means the quantity [(4/3)5** — 4/3]
approaches —4/3, so

1
Lim | —x" dx=—-4/3
50+
This tells us that the right-hand addend in our “big sum” is

1
[ = de=—413

0

We have now found the values of both addends in the expression
1 1
J x—l/S d + J _x—1/4 dx
0 0
The left-hand integral is 5/4, and the right-hand one is —4/3. They’re both defined, but they have opposite
sign. (That’s interesting when you graph both monomial functions and see how the areas combine. Make
a sketch if you're motivated!) We can apply the rule for adding two definite integrals to get

1
[ G = ) dhe= 514 — 413
0

which simplifies to
1

[ s = sy de=—1/12

0

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Work out the following sum of integrals:

j.?)xzdx + '6'.—129(2 dx
5 5

Show that this is the same as
6

J. —9x dx

5

2. Work out the following sum of integrals:

j.3x2afx + '5[.—12x2 dbx
5 6
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Note the difference in the direction of integration between the two integrals. Show that
the above sum is the same as

6
Jlezdx
5

. Work out the following difference of integrals:

j‘—12x2 dx — j.ﬁxzdx
5 5

Show that this is the same as

6
J—lez dx
5

. Find the following indefinite integral:

J (x4 578 dx

. Find the following indefinite integral:

[ on6y- 2943 dy

. Find the following indefinite integral:

j (2° = 1)(=32°+ 72%) dz

. Calculate the following definite integral:

1
J. (4x® = 5x* + 7x—4) dx
0

. Calculate the following definite integral:

-2
J. (2 +x2+ 5 dx
-1

. Calculate the following definite integral:

j. (x—2)% dx

0

Calculate the following definite integral:

1
[ e+ 42 d
-1
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16

Areas between Graphs

When we find the definite integral of a function over an interval, there’s a geometric equivalent
in rectangular coordinates: the area between the graph and the independent-variable axis. Now
let’s learn how to figure out the area between the graphs of two functions over an interval.

Line and Curve

262

Consider two functions, plotted as graphs in the xj-plane. One of the graphs is a straight line
represented by

fx)=x+2
This line has a slope of 1 and passes through the points (=2,0) and (0,2). The other graph is

a curve whose function is
gx)=x*—4

The curve is a parabola that opens upward, passing through (=2,0), (0,—4), and (2,0). Both
of these functions are graphed in Fig. 16-1. Let’s find the total area of the region between the
line and the curve. That’s the shaded zone.

Solve the system

To define the enclosed region between the graphs of two functions, we must find both (or all)
of the points where the graphs intersect. We know that at any intersection point,

fx)=gx)

If we put the value of fon the left-hand side of an equation and the value of g on the right-
hand side in the situation of Fig. 16-1, we get

x+2=x—4
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Value
of
function

What'’s the area
of the shaded
region?

Figure 16-1 What's the area of the shaded region
between the straight line and the parabola?

This can be rearranged to obtain the quadratic equation
¥—x—6=0
which can be factored into
(x+2)(x—3)=0

The roots of this equation are x =—2 or x = 3, the values of x that make one or the other factor
equal to 0. When we plug x = -2 into the original functions, we get

f=2)=-2+2=0
and
g =27 —4=0

This tells us that the graphs intersect at the point (=2,0). When we plug x = 3 into the original
functions, we obtain

fB)=3+2=5
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and
g(3)=3"-4=5

This tells us that the graphs intersect at (3,5). Now we know the points that mark the lower
and upper bounds of the region for which we want to calculate the area. These are the only
two points where the curves intersect, because the equation we got from both functions is a
quadratic, which can’t have more than two real roots.

Work out the geometry

Now we must ask ourselves, “How do we calculate the area of an irregular region such as the
shaded zone in Fig. 16-12” In this case, we can break the region into three different plane
figures, two of which contribute positively and one of which contributes negatively. Then we
can add the areas that contribute positively and take away the area that contributes negatively.
Let’s keep an eye on Fig. 16-2 as we go through this process.

Value
of

function
A

Add shaded areas,
then
—  subtract hatched area

\4

Figure 16-2 The areas of the shaded parabolic section
and the shaded triangle are considered
positive, and the area of the hatched region
is considered negative. The hatched region
is not a perfect triangle; one of its “sides” is
part of the parabola.
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As the first step, consider the lightly shaded region in Fig. 16-2 that’s bounded on the top
by the x axis and on the bottom by the parabola. This region lies between the points where
x =—2and x = 2. We can find its area by evaluating

j. (x* — 4) dx

-2

The integrand is a polynomial. The basic antiderivative is
G(x)=x13 —4x
When we evaluate this from x= -2 to x = 2, we obtain
G2)-G2)=[(213-4-2)]-[(-2)’/13-4-(-2)] =-32/3

This area is negative, because the region is entirely below the x axis. But we want to know the
true geometric area between the curves, so we must consider it positive! The true geometric
area of the lightly shaded region between the curve and the x axis in Fig. 16-2 is 32/3 square
units.

Now let’s consider the area of the triangle bounded by the points (-2,0), (3,0), and (3,5).
We can find this in either of two ways. We can evaluate the definite integral

j (x+2) dx

-2

or we can use ordinary geometry to work out the area of the triangle. Let’s use geometry;
it’s simpler! The base length of the triangle is 5 units, and the height is 5 units. The product
of these is 25 units. Dividing by 2 gives us 25/2 square units as the area of the dark-shaded
triangle in Fig. 16-2. If we add this to the area of the lightly shaded region between the x axis
and the curve, we get 32/3 + 25/2. By arithmetic, we find that this total area is 139/6 square
units.

We've found an area, but the region is larger than the one we're interested in. It encom-
passes the sum of the areas of two zones. The first zone lies above the parabola and below the
xaxis. The second zone lies below the line and above the x axis. The region of which we want
to find the area is a little smaller. (Look again at Fig. 16-1, and compare.) To find that area, we
must subtract the area of the hatched region that lies above the x axis but below the parabola
in Fig. 16-2. That area is

j (x* — 4) dx
2

We've figured out G (x), so we can plug in the numbers to get
GB)-GR)=(33-4-3)-(2°/3-4-2)=7/3

The area of the region between the line and the curve is 139/6 square units minus 7/3 square
units, or 125/6 square units.
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Are you astute?

You might ask, “Isn't the above scheme unnecessarily complicated? Can we subtract the function repre-
sented by the parabola (the lower graph) from the one represented by the line (the upper graph), and then
integrate the resulting difference function between the points where the graphs intersect?” That’s a good
question. The answer is yes. We can indeed!

Imagine slicing the region between the line and the curve into thin rectangles as shown in Fig. 16-3,
and then working out the definite integral using the Riemann limit scheme we learned in Chap. 11. But
this time, instead of using the x axis as the reference, suppose we use the graph that bounds the region
on the bottom. In this case, it’s the parabola. As we make the rectangles thinner and more numerous, we
approximate the area of the region between the curves. We can find the limit of the sum of the rectangle
areas as their widths approach 0, and we'll get exactly the area we want to find. In effect, we integrate the
upper function over the interval by following the contour of lower function’s graph instead of the x axis.

Here's a challengel!

Find the area between the line and the curve shown in Fig. 16-1 by subtracting the lower function g from the
upper function £ and then integrating over the interval between the points where the graphs intersect.

Value
of
function
A
6 —4
gx)=x>-4 T
4 —
TH
2t
B
< I I I I3 £ I I > X
_6 _4 'x' e 6
,/’ T 77 It is a lot easier
e 4N to integrate the
) =x+2 1 difference
between the
T functions!
Y

Figure 16-3 We can find the area between two graphs
by integrating the difference between the
functions over the interval between the
points where the graphs intersect.
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Solution

When we subtract the function for the parabola from the function for the straight line, we get a polyno-
mial function. Let’s call it p (x). Then

P =flx)—gx)=(x+2)— (x**—4) =—x*+x+6

We want to integrate over the interval between x=—2 and x= 3, which are the x-values of the points where
the line and the curve intersect. That means we must find

3
[ 2+ x+6) dx
e}
The basic antiderivative is
P(x)=—x°13+x*/2 + 6x

When we evaluate this from x = -2 to x = 3, we obtain

P(3)—P(=2)=[-(3%13) + 312+ 6 - 3] = [-(=2)’/3 + (-2)*/2 + 6 - (-2)] = 125/6

Two Curves

When we want to find the area between the graphs of two polynomial functions, the hybrid
geometry-and-calculus method won’t work. We must use calculus exclusively, although there
might be more than one way to do it.

Two “mirrored” paraholas
Let’s find the area between the parabolas represented by

flx)=x12-2
and
gx)=—x2+2

From algebra, we know that the curve for f opens upward, and the curve for g opens down-
ward. We can find the points where the parabolas intersect by setting f (x) = ¢ (x) and solving
the resulting equation for x; like this:

XH2-2=—x*2+2
Adding x%/2 to both sides, we get
¥=2=2
We can subtract 2 from each side, obtaining

X¥—4=0



268 Areas between Graphs
This factors into

(x+2)(x—2)=0

The roots here are x=—2 or x= 2. We can find the points where the parabolas intersect the
dependent-variable axis by setting x = 0 for either function. When we do that, we get

FO)=02-2=-2
and
2(0)=-0°2+2=2
The vertices of the parabolas for the functions f and gare at (0,-2) and (0,2), respectively. The

parabolas intersect at (—2,0) and (2,0). Figure 16-4 shows the graphs of these two functions,
along with the region they enclose.

Integrate the difference function

In this situation, the parabola for g is the upper curve, while the parabola for f is the lower
curve. To find the area of the enclosed region, we must integrate the difference function

px)=g(x)—flx)=(x124+2) - (x*2-2)=—x"+4

Value
of
function

f(x)=x%2-2

—6 — L} 4 6

’
’ AY
4 \Y
’ A
7 1
1 A}
1 A}
1 1
’ -1 \)
1 \)
1 A
I )
I A}
1 \)
1 1
I 1
1 A}
1
]

\
-6 |
t

g(x)=—x%2+2

Figure 16-4 Calculus can be used to find the area

between two curves. In this example, the
curves are “mirror-image” parabolas.
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Remember, we must subtract the function for the lower curve from the function for the upper
curve to get the difference function. This ensures that we’ll end up with a positive total area
when we integrate over the interval in the positive direction. The interval of interest is (=2,2),
so the integral we want to evaluate is

j. (—x* + 4) dx
The basic antiderivative of the difference function is
P(x)==x13 + 4x
When we evaluate this from x=—2 to x =2, we obtain

PQR)-P(2)=[-(2°3)+4-2] — [-(=2)°/3+4 - (-2)] =32/3

Are you confused?

You might ask, “Can’t we integrate the functions separately over the interval, take the absolute values of
the integrals, and then add them? Won't that give us the same result as the above method?” Yes, that will
work here, but only because both endpoints of the interval lie on the x axis.

Here's a challengel!

Find the area between the curves for f'(x) and g (x), as above and as shown in Fig. 16-4, once again. This
time, integrate the functions separately over the interval =2 < x < 2. Consider the areas defined by either
curve (one above the x axis and the other below it) as positive, and then add them to get the total area of
the region enclosed by the parabolas.

Solution

Let’s begin by integrating the lower function, f (x), with respect to x over the interval where -2 < x < 2.
We want to figure out

2

| eer2—2) ax

2
Because this region lies entirely below the x axis, the definite integral will be negative. But we want to
consider the area positive, so we must evaluate

2
— | 12 -2) dx
2
That’s the same as
2
| —eer-2) de
e

which can be simplified to

2
| 2 +2) de

-2
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Now, notice that
g(x)==x*2+2

That’s a convenient coincidence! When we integrate f(x) over the interval and then take the negative,
we're actually finding

2

I g (x) dx

-2
Therefore, our total area is twice what we get if we integrate ¢ (x) over the interval. That means the true
geometric area between the curves is

2
2 [ 2+2) d
)
We've mathematically verified a fact that appears obvious in Fig. 16-4: The upper and lower halves of the
region between the curves are exact duplicates. Let’s do the calculations. The antiderivative of g (x), leaving
out the constant of integration, is

G(x)=—x16+ 2x
When we evaluate this from x=—2 to x= 2, we obtain
GQ2)-G2)=[-(2%6)+2-2] = [-(=2)/6+2 - (-2)] = 16/3

This tells us that
2
| x2+42) dv=16/3

-2

The total area of the region between the curves is twice this, or

2
2 [ (2+2) de=3213
-2

Singular Curves

There are infinitely many ways that two graphs can combine to create enclosed regions. Once
in awhile, we'll encounter an enclosed region that has one or more infinite dimensions, but
whose area is finite. Let’s look at a situation of that sort.

An infinitely tall zone

Consider the following two functions. One of them has a graph that’s a straight line. The
other has a graph that’s a curve with a singularity. Here they are:

fx)=x

and
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Imagine the region bounded by the graph of fon the bottom, the graph of gon the right and
on top, and the dependent-variable axis on the left. Our mission is to find the area of this

region, shown as the shaded zone in Fig. 16-5.

Determine the interval
Before we do any calculus, we must know the interval over which we're going to integrate. On

the left, the interval is bounded by the dependent-variable axis, so the left-hand bound is x= 0.
We can see that the line and the curve intersect somewhere. The x-value of the intersection
point will be the right-hand end of our integration interval. To figure out that x-value, let’s set
the functions equal and then solve for x. Here’s the equation we get:

= 523

Figure 16-5 shows us that the line and the curve don’t intersect at the point where x = 0.
Therefore, x = 0 is not one of the roots of the above equation. That’s convenient, because it

means that we can multiply both sides by x~'. When we do that, we obtain

(D) = ()

Value
of
function
A
_| Area bounded
i li bylineand
i1 curve
5——5 extends upward
1|+ forever
1 1
1 ]
Each vertical i
division is :'__':
i ] 1 _
1 unit N g(x)=x23
I
1 1
N
[ f(x)=x
1 1
1 1
1 1
N
g(X)_X—2/3 ! | \
/I" “\
B e s A T T
<T—7T 1T T 1= 1111 1 >X
\ 4

Each horizontal division is 1/2 unit

In this example, we can calculate the area
of the region between a line and a curve,
even though the curve blows up at one end
of the interval. Each horizontal division
represents 1/2 unit. Each vertical division

Figure 16-5

represents 1 unit.
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which simplifies to
1= x—5/3
The only real number that satisfies this equation is x = 1. (You might suspect that —1 would

work too, but it doesn’t. Plug it in and see for yourself.) Now we know that our interval of
integration is 0 < x < 1.

Integrate the difference function

In this scenario, the upper graph represents g and the lower graph represents £ That means
we must subtract f from g to get the difference function. If we call our difference function p
as usual, then

Px)=g(x) = flx)=x~x

We want to integrate p over the interval 0 < x < 1, which is bounded on the left by the singu-
larity. That integral is

1

j (x72% — x) dx

0
Let’s take a tiny positive &, add it to the lower limit at x= 0 where the singularity occurs, and obtain

1
J’ ( K23 x) dx
S

The basic antiderivative is

P(x)=3x"—x*2

When we evaluate this from J to 1, we get
P =P0)=(3B-1"7=1%2) = (36" = §%2) =5/2 - (30" = 52/2)
Now we must figure out

Lim 52— (36" — 6°/2)

50+

As & approaches 0 from the positive direction, the values of 30"* and d?/2 both approach 0
as well. That means the quantity (36" — 67/2) approaches 0, so

Lim 512 = (36"° — 8%12) =5/2

-0+
It follows that
1
Lim | (x7 = x) dx=5/2
60+

Therefore

(x723 = x) dx=5/2

(=
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We've found the area of the region between the curve and the line over 0 < x < 1. This area is
finite, even though the upper function blows up at the left-hand end of the interval.

Here's a challengel!
Solve this problem by subtracting the area defined by f from the area defined by g over the interval 0 < x< 1.
That is, instead of integrating the difference function, find the difference between the integrals.

Solution
As part of the solution to one of our examples in Chap. 14, we found the integral of our current function gover
this same interval. (You might want to look back at Chap. 14 now and review that example.) The result was

1

J. X de=3

0
This is the area of the shaded region in Fig. 16-6, bounded by the x axis on the bottom, the line x = 1
on the right, the function g on top, and the dependent-variable axis on the left. The hatched region in

Value
of
function
A
_| Area bounded
Each vertical i |i bylineand
division is E i curve
1 unit T extends upward
1|y forever
Add shaded :'_':.
area, .:__:.
then Pl g () =x2B
subtract .-' ‘-_
hatched area HE
I f(x) = x\
ge=x2% F | %
S e T s

Each horizontal division is 1/2 unit

Figure 16-6  Alternative method of calculating the area of
the region between the line and the curve.
The shaded area is considered positive, and
the hatched area is considered negative.
Each horizontal division represents 1/2 unit.
Each vertical division represents 1 unit.
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Fig. 16-6 represents the area defined by fover 0 < x < 1. That region is a triangle with a base length of 1
unit and a height of 1 unit. Simple geometry tells us that its area is 1/2 square unit. When we subtract this
area from the area defined by the curve for g, we obtain the net area between the curve for gand the line
for f. If we write this as a difference of integrals, we get

1 1
J x dy — Jxafx=3—l/2=5/2
0 0

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Suppose the equation of the line shown in Fig. 16-1 is changed to

fx)=2x-1

but the equation of the parabola stays the same. Outline, step-by-step, the strategy we
should use to find the area between the line and the curve in this situation.

2. Using the procedure outlined in the solution to Prob. 1, calculate the area of the region
between the graphs of the functions

fx)=2x-1

and

glx)=x"—4

3. Find the area of the region between the graphs of the functions
fl)=x
and
g)=+

4. Using a combination of geometry and calculus, figure out the area of the region
between the graphs of the functions

fx)=x



Practice Exercises 275
and
gx)=x

as the difference between the area under the straight line and the area under the
parabola over the interval between the intersection points.

5. Find the area of the region between the graphs of the functions
fl)=x
and
g)=x
6. Find the total area of the region between the graphs of the functions
Fl)=x
and
g(x)=x

Here’s a hint: We must evaluate the areas over the intervals —1 < x<0and 0 < x< 1
separately. Explain why.

7. Find the area of the region between the graphs of the functions
f=1

and

over the interval 0 < x< 1.

8. Find the area of the region between the graphs of the functions
f)=1

and

over the interval 1 < x< 2.
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9. Find the total area of the region between the graphs of the functions
f)=1

and

over the interval 0 < x < 2.

10. Find the area of the region between the graphs of the functions
flx)=x7
and

g(x)=—x7

over the interval 1 < x, which can also be written as (1,0).



CHAPTER

17

A Few More Integrals

Now that we're experts at integrating polynomial functions, let’s work with the sine, cosine,
and natural exponential. We'll also figure out how to integrate the reciprocal function, which
doesn’t follow the power rule for antiderivatives.

Sine and Cosine Functions

When we integrate the sine or cosine function, we obtain a function whose derivative is that
sine or cosine function. Table 17-1 is a quick reference. Remember that general antiderivatives
include constants of integration, while basic antiderivatives don't.

Indefinite integrals of cosine and sine

The derivative of the sine function is the cosine function, and the derivative of any real-number
constant c is the zero function. Therefore,

dldx (sin x+ ¢) = cos x+ 0 = cos x
When we go through this process the other way, we get
J.cos xdx=sin x+ ¢
The derivative of the negative of the cosine function is the sine function, so
d/dx (—cos x+ ¢) =sin x+ 0 =sin x

Going backward again,

Isinxdx=—cos x+c

277
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Table 17-1. Derivatives and antiderivatives for positive and negative
sine and cosine. The variable is x, and the constant of integration is c.

General Basic
Function Derivative antiderivative antiderivative
sin x cos X —Cos X+ ¢ —Cos X
cos X —sin x sin X+ ¢ sin x
—sin x —Cos X CoOS X+ ¢ cos X
—Cos x sin x —sinx+ ¢ —sin x

Example

Let’s figure out the area defined by the graph of the sine function over its first 1/2 cycle, as
shown in Fig. 17-1. To do this, we must evaluate

V3
j sin x dx
0

Note that 1/2 cycle is 7z radians. The basic antiderivative of the sine function, which we can

call £ (x), is

F(x)=—cos x
f(x)
3 —_
T What'’s the area
2 of the
iR shaded region?
1 —
-3r i 3r/2
— I I I I —t x
-3r/2 | 3r
—+ -1
f(x) =sin x —+
_2 —
_3 R

Figure 17-1 Integration allows us to determine the
area defined by the curve for the sine
function over its first 1/2 cycle.
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When we evaluate this from x= 0 to x= 7, we get
F(m)— F(0)=—cos t— (—cos 0) = —cos T+ cos 0=—(—1)+1=2
We've discovered that

Vs
J sin xdx=2
0

The area of the shaded region in Fig. 17-1 is 2 square units.

Another example
Now let’s find the area defined by the graph of

f(x)=sinx+1

over the first 3/4 cycle, as shown in Fig. 17-2. We go from x = 0 to x= 37/2. The entire wave
is elevated by 1 unit compared with the wave in Fig. 17-1. We must work out

3m/2

J (sin x+ 1) dx
0

f(x) What's the area
3+ of the
shaded region?

-3+

Figure 17-2 Here’s an area problem that’s a little
more complicated, because a constant
has been added to the sine function.
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The basic antiderivative is
F(x)=—cosx+ x=x—cos x
When we evaluate this from x = 0 to x = 37/2, we get

F(3r/2)— F(0)=3n/2—cos3x/2) —(0—cos 0)=(Bx/2-0)—-(0-1)
=37/2+1

We've just determined that

3n/2
J. (sinx+1) dx=37m/2+1
0

which tells us that the area of the shaded region in Fig. 17-2 is 37/2 + 1 square units. This is
an irrational number approximately equal to 5.712.

Are you confused?

Do you wonder where we get the values of the trigonometric functions for various inputs? If you've
forgotten the “landmarks” for the sine and the cosine, Table 17-2 can refresh your memory. These values
are exact. The positive square root of 2, represented by 2”2, is approximately 1.414 (rounded to three
decimal places).

Table 17-2. Selected values for the sine and cosine.
Inputs are in radians.

x sin x cos x
T

Cycle continues for x< 0
0 0 1
7l4 21212 21212
7l2 1 0
37l4 21212 21212
V2 0 -1
574 21212 21212
372 -1 0
77wl4 21212 21212
2w 0 1

Cycle continues for x> 27

1
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Value
of
function
3 —_
f(x)=sinx+1
e 2 T ™ e
'l \‘ 'I \‘ 'l \‘
’ ‘ 4 ' ’ ‘
’ LY T LY 7 Y
1 A ’ A Y ’ A
’ \} ’ A Y ’ \}
’ A v ’ A
A} ’ A 1_1_ ’
A Y ’ A} | A Y ’
Ay 7 A 7 \Y ’
A Y ’ A ) ’ A Y ’
A 7 A} 1 \Y 4
A Y ’ ' ’ A Y ’
Y I Y LA LS
T T T T T T 11 1 X
-3r —-31/2 ae 3n/2 3r
-1 What's the area
g(x)=x/n - of the
o1 shaded region?
_3 —

Figure 17-3 Calculus can be used to find the area

between this curve and line.

Here's a challengel!
Figure 17-3 shows the graphs of two functions and a region they define:
fx)=sinx+1
and
gx)=xIm

The region is bounded on the bottom by the line, on the top by the curve, and on the left by the dependent-
variable axis. What's the area of this zone?

Solution

Let’s begin by defining the function were going to integrate: the difference between fand g Because
[ has the upper graph and g has the lower graph, we subtract g from f If we call our difference func-
tion ¢, then

gx)=f(x)—gx)=sinx+1-x/7w

The next step is to figure out the interval of integration. The lower (or left-hand) bound of the interval is
the dependent-variable axis. The upper (or right-hand) bound is the x-value of the point at which the line
and the curve intersect. That’s the point where the two functions have equal values. Setting f'(x) = g (x),
we obtain the following equation to solve:

sinx+1=x/7x
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Let’s plug in 7 for the variable x and see what we get:

sinT+1=rxnlx
0+1=1
1=1

Sometimes a good guess can save us a lot of algebra! Now we know that the interval of integration is 0 < x < 7
To find the area of the shaded region, we evaluate

]E (sinx+1—x/7m) dx
Remember that we defined '

qx)=sinx+1-x/7w
The basic antiderivative is

Q (x) =—cos x+ x— X/(27)
When we evaluate Q at the upper bound where x = 7, we get
Qm)=-cos T+ - Rr=—(-1)+ 71— 72 =1+ 7/2
When we evaluate Q at the lower bound where x= 0, we get
Q0)=—cos0+0-027=-14+0-0=-1

The definite integral is equal to

Qm)-QO)=1+z12-(-)=14+7R+1=7x/2+2

We've determined that

| Ginx+1-x/7) de=nl2+2
0

so the area of the shaded region in Fig. 17-3 is 77/2 + 2 square units. This is an irrational number approxi-
mately equal to 3.571.

Natural Exponential Function

In Chap. 7, we learned how to differentiate the natural exponential function and its mul-
tiples. These functions don’t change when we differentiate them. Antidifferentiation doesn’t
change them either, except for adding a constant of integration if we want to work with the
general case.
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Indefinite integrals of basic exponential functions

Because any constant multiple of the exponential function is its own derivative, it follows
that

dldx (ke*+ ¢) = ke*+ 0 = ke*

where ¢ is the exponential constant, and 4 and ¢ are real-number constants. When we “turn
things around,” we obtain

J ke* dx=ke*+ ¢
where cis the constant of integration.

Example
Figure 17-4 shows a graph of the function

fx)=e"

along with a shaded region defined by the curve over the interval 0 < x < 1. To find the area of
this region, we must figure out the value of

I e* dx

0

f(x)

10 +
What'’s the T X=
area of 5 4 |
the |
shaded T i
region? 4 !
——— 1 x

-2 -1 0 1 2

Figure 17-4 A simple definite integral
involving the exponential
function.
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The basic antiderivative is
F(x)=e¢"
When we evaluate this from x=0 to x= 1, we get

F()—F0)=e¢'—¢"=¢—1

which tells us that
1

j e“dx=e—1

0

That’s the area of the shaded region in Fig. 17-4, expressed in square units. A calculator can
approximate this as 1.718.

Another example
Here’s a situation involving the area between two graphs as shown in Fig. 17-5:
fx)=e"
and
g(x)=2x
Value
of
function
10 + .
f(x)=exi
Whatsthe T x=1 F
area of 5 1 s
the E 'I'
shaded T P
o |
region’ 14 g =2x
s i x
-2 -1 0 1 2

Figure 17-5 Determination of the area of a region
between the graphs of the exponential
function and a straight line.
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We can approach this problem in two different ways. The first strategy involves taking away
the area A of the triangle connecting the points (0,0), (1,0), and (1,2) from the area we
derived in the previous example. That’s a triangle with a base length of 1 unit and a height
of 2 units, so

A=(1-2)2=1

When we subtract this from the area defined by the exponential curve alone over the interval
for which 0 < x < 1, we obtain

je"afx—l

0

which is ¢e— 1 — 1, or e— 2 square units. The second method involves integrating the differ-
ence between the function for the line and the curve over the interval 0 < x < 1. In Fig. 17-5,
the function f'is associated with the upper graph, and the function g is associated with the
lower graph. If we call our difference function ¢, then

g x)=f(x)—gx)=e"—2x

We must work out the integral

(e*—2x) dx

[SY S———

The basic antiderivative is
Qx)=e¢"—x"
When we evaluate this from x=0 to x= 1, we get
QD =QO)=(e"=1)=(e"=0)=(e~=1)=(1-0)=e=2

This agrees with the “subtract-the-triangle” scheme. We've shown that
1
j (e*=2x)dx=e—2
0

A calculator can approximate this as 0.718.

Here's a challengel!

Find the area of the shaded region in Fig. 17-6, defined by the graph of the exponential function over the
interval for x < 1. We can also write this interval as (—oo,1).
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f(x)
10 +
What'’s the 4 X =
area of |
the ST |
shaded 1 |
region? |
—T 1 x
-2 -1 0 1 2

Area defined
by curve extends
to the left forever

Figure 17-6 Determination of the area defined
by the graph of f'(x) = ¢” over the

interval for which x < 1.

Solution

We want to evaluate the improper integral

1

J e* dx
Consider this definite integral:

1

j e* dx

?

where p is an arbitrary real number less than 1. If we call the exponential function f£ then the basic anti-
derivative is

F(x)=¢"
To find the value of the integral, we must determine

Lim F() = F(p)
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We can quickly calculate
F(l)=¢'=¢

As p becomes large negatively without bound, the value of F () approaches 0. We can see this by input-
ting some increasingly negative numbers into the antiderivative and watching what happens:

F(=10) = ¢ =1/¢"°
F(=100) = 7% = 1/¢'%°
F(=1,000) = ¢71990 = 1/,1:000
F(~10,000) = 71090 = /¢1000

These are quotients with numerators always equal to 1, but with increasingly large denominators. There’s
no limit to how large the denominators can get as we let x “run away” in the negative direction, so the
quotients approach 0. Now we know that

Lim F(1)=F(p)=e—0=¢
P

Therefore

The area defined by the curve in Fig. 17-6 is equal to ¢ square units.

Are you astute?

Suppose that we allow the upper bound of the interval in the previous “challenge” to vary. Imagine that,
instead of being fixed with a value of 1, it can be any real number » we want, as shown in Fig. 17-7. We
can show that the area defined by the curve over the interval (—oo,7) is always equal to ¢”.

Let’s generalize the solution, substituting 7 for 1 and watching what happens as we go through the
process. This time, we want to determine

j e dx

where 7 can be any real-number constant. Now consider

r

_[ e dx
?

where p is an arbitrary real number smaller than 7 If we again call the exponential function £ the basic
antiderivative is

F(x)=e¢"
To find the value of the integral, we must determine

Lim F(r)—F(p)

P
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Upper bound is equal to r, which
can be any real number !

whatsoever! i

—E |

To —oo

=2 -1 0
Area defined by curve extends forever

to the left of the upper bound
of the interval at x=r

Figure 17-7 Determination of the area defined
by the graph of f'(x) = ¢” over the
interval for which x < % where »
can be any real number.

We know straightaway that
F(r)=¢"

As p becomes large negatively without bound, the value of F (p) approaches 0, just as it did in the solution
to the “challenge.” The same thing happens when we plug in some test numbers:

F(=10)=¢""=1/e"
F(=100) = 719 = 1/¢!%°
F(=1,000) = 71990 = 1/,1000
F(=10,000) = ¢710000 = 1/,10:000

The quotients approach 0, so
Lim F(r)—F(p)=e —0=¢
P

Therefore

J. e dx=¢
We've shown that the area defined by the graph of the exponential function f (x) = ¢* over the interval
(—oo,7) is always equal to e’
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Reciprocal Function

In Chap. 12, we saw that the general power rule can’t be used to find antiderivatives or inte-
grals of the reciprocal function. When we try to apply that rule to a function that raises the
independent variable to the —1 power, we end up dividing by 0. But the reciprocal function
can be integrated!

Indefinite integral of basic reciprocal function

We've learned that the derivative of the natural logarithm function is the reciprocal function.

That is,
dldx (In x) = x™!

If we add a constant ¢ to the logarithm function and then differentiate, we get
didx(Inx+¢)=x"+0=x"
When we antidifferentiate through the above equation, we obtain

Jx‘l dcx=Ilnx+¢

where ¢is the constant of integration.

Are you confused?

“Wait,” you say. “The above formula suggests that if x < 0, we can take the natural log of a negative num-
ber to get the integral. But the natural logs of negative numbers aren’t defined. Do we have to leave all the
negative numbers out?” The answer is no. We can integrate this function even when x < 0.

Look at the graph of the reciprocal function as shown in Fig. 17-8. The pair of curves is symmetrical
with respect to the origin. We can integrate this function over any interval where x is negative, and treat
that interval like a “mirror image” of an interval equally far from the vertical axis on the other side. If we
take the absolute value of x before we take the logarithm, then we can define the antiderivative of the
reciprocal function for all real-number values of x except 0. The formula is

J‘x’l dx=1Inlxl+¢

We still have trouble when x = 0, because the reciprocal function is singular there. We can't get around that.

Example

Let’s evaluate a simple definite integral for the reciprocal function. Figure 17-8 shows the
graphical representation of
j xdx

1
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What's the
area of
the

1 shaded
region?

Figure 17-8 Definite integral of the reciprocal function
over the interval for which 1 < x< e.

If we call this function £ then the basic antiderivative is
F(x)=Inlxl
Because x is positive throughout our interval, we can simplify this to
F(x)=Inx
When we evaluate from x = 1 to x = ¢, we get
Fe)—F(1)=lne-Inl1=1-0=1
We've just found that

j.x_lafx=1
1

Another example

Here’s a more exotic problem. Let’s find the area between the curves as shown in Fig. 17-9,
over the interval for which =2 < x < —1. The function corresponding to the upper curve is

fx)=x?



Reciprocal Function
Value
of
function

area of
the

n
shaded
region?

What's the ““

Figure 17-9 Determination of the area of a region

between the graphs of the reciprocal

function and a parabola over the interval
for which -2 < x < —1.

and the function corresponding to the lower curve is

g)=x7"
We can find the difference function p by subtracting ¢ from £ getting

P8 =f ) = g ) =57
The area of the shaded region can be found by evaluating

-1

J (x*—x71) dx

)
The basic antiderivative is

P(x)=x%3 —1In Ixl

First, we look at the situation for x = —1. We see that

P(-1)=(-1°/3-Inl-11=-1/3-In1=-1/3-0=-1/3

291
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Next, we look at the situation for x = —2. We have
P(=2)=(-2)*3—-In|-21=-8/3—-1In2

That’s as simple as we can get this expression, because In 2 is irrational. Now we must subtract

P (=2) from P (-1) to find the value of the integral. We get
P(-1)—P(2)=-1/3—(-8/3-1n2)=-1/3+8/3+In2=7/3+1n2

We've figured out that
-1
[ P=x) de=7/3+1n2
)
That’s the area of the shaded zone in Fig. 17-9. We can use a calculator to approximate this

as 3.0206 square units.

Here's a challengel!

Figure 17-10 shows the graphs of three functions:
fx)=x7
1

gx)=x"
h(x)=4
Value
of
function
:" f(x) = x?
—— What's the area
of the shaded
region?
H——T—F x
2 4 6
g(x)=x7"
1~ —6
Y

Figure 17-10 What's the area of the region bounded by
the two curves and the straight line?
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These three graphs enclose a region, which is shaded. The region is bounded on the right and the bottom
by the curve for £ on the left and the bottom by the curve for g and on the top by the line for 4. What’s

the area of the shaded zone?

Solution
Lets divide the enclosed region into two parts, each of which is bounded by the graphs of two of the
functions. Figure 17-11 shows how this is done. Only the first quadrant of the coordinate plane is shown,

because our entire region lies within that quadrant.
To begin, we find the three x-values of the points where the function graphs intersect. The x-value of the

intersection point between the curves for /'and g can be found by setting them equal, producing the equation

If we multiply through by x, we obtain
=1

which solves to x = 1. We draw a dashed, vertical line representing this x-value to mark the boundary
between the two “sub-zones” in the enclosed region. We can find the xvalue of the intersection point

between the curves for gand 4 by setting those functions equal, getting

x'=4
Value
of
function
A /
{of(x)=x2
6 X= 1 ,"
s
N h(x) =4
3 ! § ! We add the areas of
i i the shaded region
i % | and
2 iR % | the hatched region
i N i
X
T gx) =x"
R H B e
1 . 3 4 5 6
x=14  x=2

Figure 17-11  Solution to the challenge presented in Fig. 17-10.
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Multiplying through by x gives us
1 =4x
When we divide through by 4 and transpose the sides of the equation, we get the solution
x=1/4
We draw another dashed, vertical line representing this x-value to mark the extreme left-hand boundary

of the enclosed region. In a similar way, the x-value of the intersection point between the curves for fand
b can be found by solving

When we take the 1/2 power of each side, we get

x=x2
We aren’t interested in the root x=—2, but only in the root x=2. We draw a third dashed, vertical line for
this x-value to mark the extreme right-hand boundary of the enclosed region. We now have three bounds
that define the intervals for two different definite integrals.

Let’s define the integrals we have to work out. In the shaded zone, which lies to the left of the vertical
dashed line x= 1, we have the difference function

P =h)—gl)=d—x"

On the right-hand side of the vertical dashed line x = 1 (hatched zone), we have the difference function
g =h()~flx) =4«

The area of the shaded zone (call it A) is

Jll (4—x7") dx

1/4

The basic antiderivative is
P (x)=4x—InIxl
When we evaluate this from x = 1/4 to x = 1, we get
P1)-P(1/4)=4-1-Inll)—(4-1/4—Inl1/4l)=3 +1n (1/4)

This is an irrational number and we can’t simplify it any further, so

1
A= [ G=x")dv=3+In(1/4)
14

1



Practice Exercises 295

The area of the hatched zone (call it B) is

(4 — x*) dx

—_—

The basic antiderivative is
Q(x) =4x—xI3
When we evaluate this from x= 1 to x= 2, we obtain
QR)-Q()=(4-2-2%3)—(4-1-1%3)=5/3
We have determined that
B= j‘ (4 —x?) dx=5/3
1
The total area enclosed by the three graphs, in square units is therefore
A+ B=3+In(1/4) +5/3 =14/3 +In (1/4)

This is an irrational number, but a calculator can approximate it as 3.280 square units.

Where to find more integrals

You can find a table of indefinite integrals in the back of this book. Refer to App. G. You can
also find them on the Internet. Enter the phrase “table of integrals” or “table of indefinite
integrals” into your favorite search engine. A few sites will calculate definite integrals if you
input the bounds.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Evaluate the following definite integral:
2r
J. —5 sin x dx
0

2. What happens to the definite integral of the cosine function over intervals whose lower
bounds are always 0 and whose upper bounds keep increasing positively? Here’s a hint:
Evaluate

s

Lim | cos x dx
s—>00
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3.

10.

Evaluate the following definite integral:

1
J. (cos x*)(2x) dx
0

Here’s a hint: Use the substitution method for integrating composite functions.

. Evaluate the following definite integral:

j (4e* + 4 sin x) dx

0

. Evaluate the following definite integral:

j. 2% dx
0

Here’s a hint: Use the substitution method for integrating composite functions.

. Evaluate the following definite integral:

'I[ (cos €¥)(e¥) dx

0

Here’s a hint: Use the substitution method for integrating composite functions.

. Evaluate the following integral. If it’s defined, state the value.

j. xdx

0

. Evaluate the following integral. If it’s defined, state the value.

].lx_ldx

—oo

. Evaluate the following integral as though there were no singularity in the interval.

That’s the wrong way to do it! But try it anyway, and see what happens:
'[ x71 dx

Note that the limits of integration are —¢ and e, where e is the exponential constant.
Draw a graph that lends intuitive support to this “solution.”

Evaluate the integral stated in Prob. 9 using the correct approach.



CHAPTER

18

How Long Is the Arc?

We've seen how integration can help us find the areas defined by, and between, graphs. In this
chapter, we'll learn how to determine arc length, or the distance along a curve between two
points.

A Chorus of Chords

Let’s derive a formula for arc length along the graph of a function, as defined between two
values of the independent variable. We'll start by approximating, and then we'll refine the
estimate until we get a formula for the exact value.

Breaking up the arc

Imagine a function f (x) whose graph is a curve (Fig. 18-1). We want to find the length Z of
the arc between the points where x = zand x = 4, assuming that 2 < 4. If we move along the arc
in the positive-x direction, let’s call the arc length positive. If we go in the negative-x direction,
let’s call the length negative. No matter which interval we choose, we know that we will always
travel either to the right or to the left over the entire interval. (Otherwise, there would be more
than one value of the dependent variable for some values of the independent variable, and the
graph would not represent a function.)

If the graph were a straight line, the length of the segment between the points where x = «
and x = & could be found easily. We could take & — # as the base length of a right triangle,
take /(&) — f (a) and call it the height of the triangle, and then calculate the length L of the

segment connecting the points using the distance formula
L={(b—a) +[f () - f(@)}"
Obviously, the graph in Fig. 18-1 isn't a line segment over the interval shown. But we can

split it up into a set of line segments. Suppose we select several points on the arc with equally
spaced x-values (Fig. 18-2). These segments are called chords. If we break the arc up into

297
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f(x)

Graph of f(x)

Arc length along curve
between x=aand x=»b

Figure 18-1 Arc length over an interval in a graph
between the point where x = zand the
point where x = &.

f(x)

Graph of function Chords are dark,
is gray curve straight lines

y=1fXx)

All increments are of
X=a equal size along the
X axis

Figure 18-2 Approximating arc length. We divide the arc into
n chords. The x-values of the endpoints are equally
spaced. As 7 increases, we get better approximations.
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n chords, then the difference Ax in the x-values between adjacent pairs of points is
Ax=(b—a)ln

Each chord forms the hypotenuse (longest side) of a small right triangle. The base length of
each triangle is Ax. The heights vary.

Let’s say that y = f'(x). Then we can call the height of a particular triangle, say the 7th
triangle, A,y as shown in Fig. 18-3. Let’s call the left-most triangle “number 1,” and count up
as we move toward the right. If we make 7 large, then:

The height of triangle number 1 is A}y
The height of triangle number 2 is A,y
The height of triangle number 3 is A;y
Andsoon...

The height of triangle number 7is A,y

Andsoon...

The height of triangle number zis A, y

The length of each chord can be found with the Pythagorean formula:

* The length of chord number 1 is [(Ax)* + (A;5)*]"?
* The length of chord number 2 is [(Ax)* + (A;3)]"?

f(x)

This is

the ith triangle
in a set of
ntriangles

Figure 18-3 Every chord is the hypotenuse of a right triangle. Each
triangle has the same base length Ax, but the heights
vary. Here, we're looking at the 7th triangle, whose

height we call Ay.
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The length of chord number 3 is [(Ax)* + (Asy)*]"?
Andsoon...
The length of chord number 7is [(Ax)* + (A ;y)*]"

Andsoon...

The length of chord number 7 is [(Ax)* + (A,p)*]""

We can get an approximation of the arc length (call it Z,,,) by adding up the lengths of all the
chords from 7 = 1 to 7 = n. Stated symbolically,

n

L= Y [(80) + (A,9)"]"

i=1

The law of the mean

We've described how to approximate the arc length L between the two points on the graph of
y = f (x) for which x = zand x = 4. Before we can work out a way to determine L exactly, we
must know an important principle called the law of the mean.

Suppose we choose two points on the graph of a function y = f(x), and these points
describe one of the chords in an approximation of the arc length between the points. For the
ith chord, the endpoints are where x = x;_; and x = x;, as shown in Fig. 18-4. That chord has
slope

AylAx = [f(x;) = f (o)) ] (6= x,21)

f(x)
Slope of
tangent to
curve Slope
= Fxi’) = Aylax of ch)wrd

. .=AylAXx

T X=X
Gray curve
Ax > represents
y=1f(x)

Figure 18-4 There’s always a point on a curve,
somewhere between the endpoints of a
chord, for which the derivative of the
function is equal to the slope of the

chord.
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If £ (x) is defined and continuous between the chord endpoints, then there is at least one point
on the curve between the chord endpoints for which the derivative of £is equal to the slope of
the chord. If we call the x-value of such a point x;, then

and
f(x)=AylAx

We don’t necessarily know the exact location of any point for which x = x;". But we do know
that at least one such point exists on the curve between the endpoints of the chord.

Are you confused?

We're using a lot of symbols and subscripts here. Don’t let them overwhelm you! Here’s a summary of
what they mean.

* The x-values of the endpoints of the arc are x = zand x = 6.

* Axis the difference in the x-values between any two adjacent points on the arc.

* Axalso refers to the width of every small right triangle along the arc.

* A,yrefers to the height of the 7th small right triangle in the set of # triangles along the arc.

* The value x;" is the x-coordinate of a point on the curve where the derivative of the function is
equal to the slope of the ith chord.

* L, is the approximate arc length, expressed as the sum of the lengths of a set of chords.

* Lis the actual arc length, as we would measure it if we could move exactly along the curve.

Finding the true arc length

Now we're ready to derive a formula that will tell us precisely how long the arc is. Look again
at the sum that expresses the approximate length:

Lapp = 2 [(Ax)z + (Az_y)z] "
i=1
We can use algebra to rewrite this as

L= Z [1+ (Al-y/Ax)z]”2 Ax

i=1

By the law of the mean, there’s a point on the arc such that x = x;", somewhere between the
point where x = x;_; and x = x;. (Look again at Fig. 18-4.) That point is in the 7th interval
along the arc, corresponding to the 7th chord. Now that we know this, we can substitute
f7(x;) for A;y/Ax in the above equation to get

Lyp= 21 {1+ [/ Ax
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Imagine that we make 7 larger without end, so the chords approximate the actual arc length

L ever more closely. As 7 approaches infinity, L,,, approaches L, so

L= Lim 3 {1+ [f/)P1" Ax

i=1

This scheme is similar to the theory Riemann used to find the area defined by a curve. When
written in integral notation, the above statement becomes

L= {1+[f"()]}" dx

[ —

A Monomial Curve

Let’s try out our newly discovered formula with a monomial function f that cubes the variable
xand then takes the positive square root of the result:

f (x) — x3/2

Suppose we want to find the arc length along this curve from the point where x= 0 to the
point where x= 1, as shown in Fig. 18-5.

f(x)

} f(x) = x3?
What's the o x=1
length of the —
solid arc?

Each axis T
increment 1
is 1/5 unit

\4

Figure 18-5 Calculating the arc length along the graph
of (%) =, from x=0rto x=1.
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Arc-in-a-box method

We can find a range of possible absolute values for the arc length between two points, getting
a way to check arc-length calculations for major errors. I call this scheme the arc-in-a-box
method. Here’s how it works.

* Construct a box (rectangle or square) with vertical and horizontal edges, such that the
endpoints of the arc are at opposite corners of the box.

* Be sure that the arc is entirely contained within the box.

e Be sure that the arc bends in the same sense (either clockwise or counterclockwise)
everywhere within the box.

Once we've done these things, we know that the absolute value of the arc length is greater than
or equal to the diagonal measure of the box, but less than or equal to half the perimeter of the
box. In the situation of Fig. 18-5,

f(o 03/2

and
F=1"=1

The arc length must be greater than or equal to the diagonal of the dashed gray square whose
edges measure 1 unit. That diagonal is 2" (about 1.414) units long. Also, the arc length must
be less than or equal to half the perimeter of the square. That’s 2 units. If we call the arc length
L, then we know that

2 1<2

If we get an answer that lies outside these extremes, we'll know that we've made a mistake in
our calculations somewhere along the way!

Setting up the integral

Before we use the arc-length formula, we must differentiate the function. Again, our function
is

The derivative is

(%) = (3/2)x""

We plug (3/2)x""* into the formula for the arc length in place of £’(x), and we also include the
bounds of the integration interval, getting

L= | {1+[(3/2)x"1}"" dx

O — —
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This can be rewritten as

1
L= j1+<9/4 A2 dx
0

Let’s refer to a table of integrals to resolve this. (The creators of such tables compiled them
especially to help people like us in situations like this!) Looking through App. G in the back
of this book, we find the form

j (ax+ b)" dix = 213)(ax+ B> ™' + ¢

where cis the constant of integration. We can reverse the addends in the binomials to get this
into a form more convenient to use directly in the problem at hand:

j (b+ ax)™ die = (213)(b+ ax)™ a' + ¢

If we let 2=9/4 and 6= 1, we obtain
j (1 + (9/4)x]" dic = (2/3) - [1 + (9/4)x]*"? - (4/9) + ¢

which simplifies to

j [1+ (9/4)x]" dic = (8/27) - [1 + (9/4)x]*> + ¢

Working out the integral

To determine the arc length, we must evaluate the following expression over the interval from
x=0tox=1:

(8/27) - [1 + (9/4)x]*>
Plugging in x = 1, we get
(8/27) - [(1 + (9/4) - 117*=2,197"2/ 27
Plugging in x = 0, we get
(8/27) - [(1 + (9/4) - 0]** = 8/27
The arc length is the difference between these results, or
= (2,197"*-8) /27

A calculator can approximate this to 1.440 units. That’s between the constraints we derived: a
minimum of 2'"* (approximately 1.414) and a maximum of 2.
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Here's a challengel!

Using the techniques developed in this chapter, derive the formula for the distance of a point (x,)) = (2,6)
from the origin in Cartesian coordinates.

Solution

To begin, we must be sure we know the function we want to evaluate! Its graph is a straight line connecting
the points (0,0) and (4,4), as shown in Fig. 18-6. The slope of this line is 4/4. The y-intercept is 0, because
the line passes through the origin. Therefore, if we call our function £ we have

fx)=(bla)x
The derivative of this is
f'(x)=0bla

Keeping in mind that #and & are constants, we can plug &/ into the formula for arc length in place of f/(x).
The bounds of our interval are x= 0 and x= 4, so

L= j (1 + (bl 2" dx
0
f(x)
A
What's the T
length of the
solid

line segment?

f(x)=(blax |

A\

Figure 18-6 We can derive the formula for the distance
of an arbitrary point (4,6) from the origin
in Cartesian coordinates. In this graph, axis
divisions are of arbitrary size.
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Using algebra, we can rewrite this as

L= j. [(&*+ 6*)Y* | a] dx
0

If this looks complicated, note that the quantity [(#* + £*)""* / 4] is a constant, because it’s built up from
other constants. For a moment, let’s rename it 4, so

k=[(a*+ 6*)"? /4]

That gives us

The indefinite integral works out easily as
'[ kdx=lx+c
To obtain L, we evaluate the expression kx from x= 0 to x= 4, getting
L=k-a—k-0=tFk-a
Lets give k its original name back. Now we have
L=[(a*+b)"/d-a=(a*+ b)"?

This is the formula we learned in precalculus. It defines the distance in Cartesian coordinates from the
origin to an arbitrary point (x, y) = (4, b).

A More Exotic Curve

Now let’s try the formula with a more complicated curve. Suppose f'is a function of x such that
fx)=x124 +2x7"
Let’s find the arc length from the point where x= 2 to the point where x = 3.

Setting up the integral

The first thing to do is differentiate our function. That gives us
f(x) =x°18 = 2x7
When we square this, we get

[f(x)]* = x"/64 — 1/2 + 4x7*
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Adding 1 gives us
+ [ ()] =x"64 + 1/2 + 4x7*
We can morph the right-hand side of the above equation as follows:

x164 4+ 1/2 + 4x7* = x7* (x¥/64 + x*/2 + 4) = x~* (x1/8 + 2)?
= (x2)? (x*8 4+ 2)* = (x?/8 + 2x72)?

When we plug (x°/8 + 2x7*)* into the arc-length formula for {1 + [f’(x)]*} and include the
bounds of integration, we obtain

3
L= j(x2/8+2 )22

2

which simplifies to

L= (x*8 +2x7%) dx

B —

The indefinite integral, leaving out the constant of integration, is

j (x*/8 + 2x7%) dx= x*124 — 2x™"

Are you astute?

Have you noticed that this is almost identical to our original function? The only difference is that we
subtract the two monomials, rather than adding them. This is sheer coincidence.

Working out the value

To determine the arc length, we must evaluate the following expression over the interval from
x=2tox=3:

%124 = 2x7!
Plugging in x = 3, we get
3°24-2-3"=11/24
Plugging in x = 2, we get

2%/24—-2.27"'=-2/3
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The arc length is the difference between these results, or

Here's a challengel!

Plot a graph of the function we just finished working with. Indicate the location of the arc whose length
we found. Determine a range of lengths within which the arc length must lie, so we can be fairly sure that

L=11/24—-(-2/3)=9/8

we didn’t make any errors in our calculation.

Solution

Figure 18-7 is a graph of the function in the first quadrant. The black portion of the curve is the arc. The
endpoints are labeled. Function values have been worked out using arithmetic. The dashed gray box is
constructed so the endpoints of the arc are at opposite corners. The arc length must be greater than or
equal to diagonal measure of the box, but less than or equal to half the perimeter of the box. The diagonal

measure is

[(43/24 — 4/3)* + (3 — 2)1]"? = (697/576)""*

f(x) = x%/24 + 2x

/ (3,43/24)

(2,4/3)

A

A

Figure 18-7

4

A\ 4
<

Graph of the function £ (x) = ¥*/24 + 2x7,
showing the arc for which we found the
length. The dashed gray box defines the

range of possible values for the arc length.
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Using a calculator, we get approximately 1.100 units. The arc must be at least as long as this. Checking it;
we found L= 9/8, which is 1.125 units. Now let’s determine half the perimeter of the box. That’s the sum
of the lengths of the long side and the short side. Calculating, we get

(43/24 — 4/3) + (3 —2) =35/24

A calculator approximates this as 1.458 units. The arc is shorter, as we should expect.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it! If you need to refer
to integral tables, feel free to use them.

1. Using the techniques we've learned in this chapter, find the length of the arc that goes
1/4 of the way around the unit circle in the first quadrant of the Cartesian coordinate
plane, from the point where x = 0 to the point where x = 1. Remember that the unit
circle is centered at the origin and has a radius of 1 unit. Its equation is

x*+y=1

2. Draw a graph of the function and the arc we evaluated in the solution to Prob. 1. Then
show that when we multiply this arc length by 4, we get the circumference of the circle,
just as we can find it using the rules of geometry. Remember that the formula for the
circumference of a circle is

C=nr

where Cis the circumference and 7 is the radius, both expressed in the same units.

3. Using the arc-in-a-box method, find the minimum and maximum possible lengths for
the arc we evaluated in the solution to Prob. 1. Then verify that the arc length is indeed
within that range.

4. Using the techniques we've learned in this chapter, find the length of the arc that goes
part of the way around the circle

x*+yt=4

in the second quadrant of the Cartesian coordinate plane, from the point where x = -2
to the point where x =—1.
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N

10.

Draw a graph of the function and the arc we evaluated in the solution to Prob. 4.

. Using the arc-in-a-box method, find a span of values between which the arc length we

found in the solution to Prob. 4 must be. Verify that the arc length is within that range.

. Verify that the arc length we found in the solution to Prob. 4 is exact, using ordinary

geometry and trigonometry.

Using the techniques we've learned in this chapter, find the length of the arc in the
graph of the function

fx)=x%/2
from the point where x = 0 to the point where x = 1.

Draw a graph of the function and the arc we evaluated in the solution to Prob. 8.

Using the arc-in-a-box method, find a span of values between which the arc length
we found in the solution to Prob. 8 must be. Verify that the arc length is within that
range.
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Special Integration Tricks

It’s okay to use a reference table to resolve a difficult or unfamiliar integral. But it’s also a good
idea to get some practice working out integrals. In this chapter, we'll look at three techniques
for integrating certain functions or combinations of functions.

Principle of Linearity

In Chap. 15, we learned some rules that apply to definite integrals. We can expand on them to
get the principle of linearity, also known as the linear-combination rule for definite integration.

The old rules

Let’s review the two rules that were about to expand upon. They involve multiplication of a
function by a constant, and the addition of two different functions. If we have a variable x, a
continuous interval (2,6), a constant 4, and functions f; (x) and f; (x) that are integrable from
x =ato x = b, then

b b
Jk[ﬁ(x)] dx=kj [£ (x)] dix
and ’ ’
b b b
JUAG+f @ de= [ fiG) de+ [ filx) dx
The new rule in brief

The principle of linearity combines the best features of these two older rules. We can write it
out in formal mathematical language or as an equation. Let’s do both! First, the words:

* Let f; and f; be integrable functions of x over a continuous interval (4,0). Let 4, and 4,
be constants. The integral of £, times f; plus £, times f, over (4,6) is equal to 4, times
the integral of f; over (4,0) plus k, times the integral of £, over (4,6).

311
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And now, the equation:
b

b b
[ AN+ k[ N de=h [ fi()de+ ko [ fi(x) ds

a
The principle of linearity isn’t limited to two functions and constants. It works with any finite
linear combination if we stay with the same interval, stay with the same variable, and make
sure that each function can be integrated over the entire interval (2,6).

Example

To demonstrate how this principle works, suppose we come across
T
J. (3 sin x+ 5¢%) dx
0
The principle of linearity allows us to rewrite this as
Vs Vs
3 J sin x dx +5 J e* dx
0 0
The basic antiderivative of the sine function is the negative of the cosine function. The expo-
nential function is its own basic antiderivative. We can therefore resolve the above sum of
integrals to
3. [-cos T— (—cos 0)] +5 - (¢"— &)
which can be simplified to
3.[cos0—cos w]+5- ("= ¢Y)
We know that cos 0 =1, cos 7=—1, and ¢’ = 1, so the above expression works out to
3.1 (145 ("=1)=1+5¢"
The complete integral and its value can now be stated as

J. (Bsin x+5¢%) dx=1+5¢"
0

Don’t be fooled!

It’s easy to look at the above result and suspect that
V4
J. 3sinxdx=1
0

and

]T. 5¢ dx=5e"
0
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These conclusions are wrong. The principle of linearity doesn’t imply anything like this. If you
like, work out these integrals and see what their values actually are.

Are you confused?

Do you suspect that the principle of linearity can apply to a difference, just as it does for a sum? If so,
you're right, as long we keep the order of subtraction the same. We can express this in formal jargon:

* Let f; and £, be integrable functions of x over a continuous interval (4,6). Let 4, and 4, be con-
stants. The integral of 4, times f; minus 4, times f, over (2,6) is equal to 4, times the integral of f;
over (4,6) minus #, times the integral of f; over (4,6).

Written as an equation, it is

b b b
[ A @Ik lf @Y de=h [ fiG)de— b [ fix) de

Here's a challengel!

Prove the principle of linearity for the definite integrals of two functions, based on the sum rule and the
multiplication-by-constant rule stated at the beginning of this chapter.

Solution

Suppose that we want to integrate a constant 4, times a function f;, added to another constant 4, times
another function f;, like this:
b

| RCA IR A VAR

a
The variable is x, and the integration interval is (2,6). The sum rule tells us that we can split this integral
so each addend becomes a new integrand, and both of the new integrals go over the same original interval
(a,6). When we do that, we get

jklf(xdx+jkzﬁ

We can pull the constants out of both integrals accordlng to the multiplication-by-constant rule, which
gives us

klj.fl(x)dx-i- k, }fz(x)dx

Integration by Parts

Once in awhile, you'll encounter an integral that consists of a product of two functions, but
can be rearranged so it becomes easier to resolve using a scheme called integration by parts.
Here’s how it works.
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An old idea revisited

Do you remember the two-function product rule for differentiation from Chap. 6? That
rule says that if f'and gare differentiable functions of the same variable, then we can find the
derivative of their product as a sum of two other products:

(fo) =fgs+df

Suppose the independent variable is x for both functions. We can integrate both sides of the
above equation with respect to x, getting

[ oy ae=] (frergp) e

Because the integral of a sum is equal to the sum of the integrals, we can rewrite the right-hand
side to get

[ oy ae=] frgde+ | gfa

Now let’s take a close look at the left-hand side of this equation. In effect, it’s telling us to take
the antiderivative of a derivative! These two operations “undo” each other, so we can simplify
the preceding equation to

Jg =J [lgadx +j gfdx
When we subtract J F’g dx from both sides, we get

/g —J f’gdx=f gfdx
Let’s transpose the right-hand and left-hand sides. That gives us

I gfdx=fg —J fgdx

This formula is useful in certain situations where we must integrate a function that’s a product
of two others. It leaves us with another integral, as you can see. But if we're clever (and lucky),
we can arrange things so the second integral is easier to figure out than the original integral
would be if we attempted to resolve it directly.

Are you confused?

You mightask, “Aren’t the constants of integration importantin the process we just finished? In par-
ticular, taking the antiderivative of a derivative gives us the same function again, but only if the constant
of integration is 0, isn’t that right?” Yes, that’s true. However, we always have at least one indefinite integral
somewhere in the equation in each step of the process. Those constants are always there, and because we
never have to specify their values, we don’t have to worry about making a mistake when we manipulate the
equations. But we must never forget to include a constant of integration as the last step in the process of
resolving an indefinite integral.
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Variations on a theme

The formula we've just derived can be presented in several different forms. We can write the
formula out in full, showing the variable x and including multiplication symbols for clarity.
It’s messier but more revealing than the shorter version:

[ fodi=fe) g -] £ g0 de

The commutative law for multiplication (from basic algebra) allows us to reverse the orders of prod-
ucts. Let’s use that rule with two of the three products here, and rewrite the above equation as

[r@ g@de=fe) gt - [ g £/ de

Now let’s use an alternative notation for the derivatives. In Chap. 3, we saw several different
ways that derivatives can be denoted. Let’s substitute like this:

[ (x) =df (x)dx
and
2 (x) =dg (x)/dx

Now we get the sloppy formula
Jﬂ@{@uMdefuyﬂM—Iﬂ@{#@Mde

In both of the integrals here, we have differentials in numerators and denominators right next
to each other. They're the little dx quantities that we always write with integrals. (Sometimes
writing them gets to be such a habit that we forget what they really mean! If you don’t remem-
ber their significance, look back at Chap. 11 under the section “The Integral Notation.”)
These differentials divide out to give us

[F@ dg@)=f(x)-g() = [ g - dfx)

When we “hide” the variable xand the multiplication symbols, we get back to an abbreviated
version of this same formula:

deg=fg - f gaf
Some texts use the letters # and v instead of f and g to represents the functions. In those
books, you'll see the rule for integration by parts written as

J-udv=uv—J-1/du

Are you confused?

If you're baffled by all these different ways of saying the same thing, I understand. It’s as if I've told you
“This is a calculus book” in half a dozen different languages. You may ask, “What's the point?” I've gone



316  Special Integration Tricks

through them to give you a chance to see alternative notations. That way, you won't be surprised when
you're reading a textbook or thesis and you come across a nonstandard form. My favorite version is

[ £ g0 de=f@)- gt - [ g0 e

Example

Consider the following indefinite integral, which is the product of a simple linear function
and an exponential function:

J x e dx
To set up the parts, let’s say that

flo)=x
and

Zx)=e
The basic antiderivative of g” is

glx)=¢
The derivative of f'is

fr)=1
The formula for integration by parts tells us that

J-xe"dx=xe" - J- e lde=xe" — J. e dx

The last term can be considered as the basic antiderivative of e*, which is, once again, simply
the exponential function e*. Substituting back, we get

j xetde=xe"—e"+c=e¢"(x—1)+¢
where ¢ s the constant of integration.

Are you confused?

You might wonder why we don’t include constants of integration in either of the two cases above where
we take the antiderivative of ¢*. The reason is the same as when we derived the formula for integration by
parts. We can include all those constants, and it won't do any harm, except to make things sloppier than
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necessary. But when we have a combination of antiderivatives in an ongoing process that eventually pro-
duces a single indefinite integral, we can wait until the last step before we add in the constant.

Here's a challengel!

Use integration by parts to find

J —3x e dx

Solution

Solving this requires some intuition. To begin, we can rewrite this integral as

J 3x (—e™) dx

Does this maneuver seem strange? We move the minus sign “legally,” but instead of pulling it out in front
of the integral sign, we move it further into the integrand! As things turn out, that will make the problem
easier to solve. To set up the parts, let’s say that

fx) =3x
and

gx)=—¢>
The basic antiderivative of g’ is

gx)=e™

If you wonder how we come to this conclusion, you can differentiate gas we've stated it above, using the
reciprocal rule for differentiation (from Chap. 6) and the fact that the exponential function is its own
derivative. You'll end up with g’. The derivative of f'in this situation is

f(x)=3

The formula for integration by parts tells us that

'[ 3x(—e™) dx =3xe™ — j e 3dx=3xe" — 3J- e dx

The last integral in this equation resolves to —e™ plus a constant. (That’s another “backward application”
of the reciprocal rule for differentiation, along with multiplication by —1.) Substituting back into the
preceding equation, we get

J 3x(—e™) dx=3xe =3 (—e™)+c=3e"(x+1)+¢

where cis the constant of integration.
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Partial Fractions

Occasionally you'll see an integral of a fraction that contains a constant in the numerator and
a polynomial in the denominator. Some such integrals can be split up into sums of simpler
integrals using the method of partial fractions.

A helpful formula

Let’s look at an indefinite integral with a constant in the numerator and linear function in the
denominator. The general form is

j kl(ax+ b) dx

where x is the variable, and 4, 4, and kare constants. We can rewrite this using exponent nota-
tion instead of fraction notation. That gives us

j Elax+ b)™ dx

When we pull out the constant, we get

k j (ax+ b)" dy

Referring to the table of integrals in App. G, we find

j (ax+ b) " de = a ' In lax+ bl + ¢

When we include the constant 4, we get

kj (ax+ b) " de= k(2" In lax+ bl + ¢)

where cis the constant of integration. We can also write this as

kf (ax+ b)" dy = ka ' In | ax+ bl + ke

which can be simplified to

/ej (ax+ b) " dy = ka ' In lax+ bl + ¢

We can “recycle” the constant ¢ because it doesn’t have any value in particular.

A preliminary example
Let’s resolve the indefinite integral

.[ 2(Bx+5)7" dx



Partial Fractions 319

To begin, we move the constant in front of the integral symbol, getting
2 J. (Bx+5)7" dx
Then we apply the formula we derived above to get
2.3 Inl3x+5l+¢
which can be simplified to
(2/3) In 13x+ 51+ ¢

We have therefore determined that

j 2 Bx+5)" dx=(2/3) In Bx+5| + ¢

“Reverse engineering”

Suppose we come across an integral of a ratio that has a linear function of x in the numerator
and a quadratic function of x in the denominator. Here’s the general form:

J [(ax+ b)(ex® + dx+ 7] dx

where 4, b, ¢, d, and e are constants. (In this case, ¢ has nothing to do with the exponential
constant. It’s an ordinary constant like the others.) If we try to resolve this integral straight-
away, we're bound to be frustrated. But we can use algebra to rewrite many integrals of this
sort in the form

klj (ax+ b)) dx + kzj (x+ b)) dx

where x is the variable, and 4, @), b,, by, &, and &, are constants. Both of the integrands here
are reciprocals of linear functions. We know how to work them out!

The transformation from the first integral above to the second one involves a big intuitive
leap. It’s unlikely to be obvious to anyone but a high-caliber mathematician. But we can get
an idea of how it happens by doing a little bit of “reverse engineering.” We can work backward
from the above expression until we get the one before it. That way, we can see the logic behind
each step. Once we've finished working through the derivation backward, we can turn around
and “reverse engineer” the backward derivation to get the real one.

Let’s start with the above expression, in which both addends are integrals that we already
know how to do. We can move the constants into the integrands, getting

j ki(ax+ b)) dx + j by(ayx+ b)) dx
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Remembering that the sum of two integrals is the same as the integral of the sum when both
functions involve the same variable, we can rewrite this as

| eare+ ) + ke + b)) d
From algebra, we can use the general rule for adding two fractions, getting
[ (kare+ kiby+ kaaie+ kab) e+ b)(ax+ b)) ds
The numerator can be rearranged, and the denominator multiplied out, to obtain
[ Weias+ ko) i s + s )] Lasans® + (anby + braa)xo+ b,6] de

This looks a lot more complicated than it actually is. All combinations of 4’s, &’s, and £’s are
constants, because they’re sums and products of constants. When we look closely, we can see
that this integrand is the ratio of a linear function to a quadratic function. That’s obvious if
we make the following substitutions:

Call (k,a, + k,a,) by the nickname «
Call (£,6,+ k,b6,) by the nickname &
Call 2,4, by the nickname ¢
Call (@,6, + b,a) by the nickname &
Call 4,6, by the nickname ¢

When we assign these nicknames to our original constants, the above integral becomes
J [(ax+ b)(ex® + dx+ )] dx

which is the original form we started with at the beginning of this section!

A working example

Now let’s work out an integral of the above form. Consider this:
J (2x+ 8)(x* + 8x+ 15)7! dx

We want to get the integrand into a sum of fractions, each of which has a constant in the
numerator and a linear function in the denominator. This is the difficult part of the process.
From intermediate algebra, we can figure out that the integrand breaks down into the sum
of (x+ 3)™" and (x+ 5)7". We’re lucky in this case because the numerators are both 1, and the
coefficients of xare also both 1. That means the above integral can be rewritten as

[ 1t 3) 4 e 5) e

Because the integral of a sum is equal to the sum of the integrals, we have

j (x+3)" de + j (x+5)" dx
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Using the formula we took earlier from App. G, we get

Inlx+3l+Inlx+5+¢
We have therefore found that
J‘ 2x+8)(x*+8x+15) ' dx=Inlx+3l+Inlx+5l+¢

Are you confused?

Do you have trouble with the algebra here? It’'s not easy. The goal always the same: Get the integrand into a
sum of fractions in which the numerators are all constants, and the denominators are linear functions. Let’s
go through the algebra in the example we just finished, so you can get the general idea for future problems
of this type. Take a look at the integral we resolved:

J. (2x+ 8)(x*+ 8x+ 15)7 dx
The denominator, a quadratic function, can (fortunately) be factored like this:

¥+ 8x+15=(x+3)(x+5)

In a sum of fractions, the denominator of the sum can always be expressed as the product of the individual
denominators. In this situation, therefore, we will have two fractions, one with a denominator of (x + 3)
and the other with a denominator of (x+ 5). To find the numerators, we must look for constants p and

g such that
px+3)7"+g(x+5)7" = (2x+8)(x* + 8x+15)"

Do you remember the rule for adding two fractions or ratios in algebra? If not, here’s a reminder. If we
have numbers 4, 4, ¢, and 4, then

ab™ + cd ™' = (ad+ bc)(bd)™

provided, of course, that neither & nor 4 are equal to 0. If we apply this rule to the left-hand side of the

previous equation, the expression becomes

[p(x+5)+ g (x+3)] [(x+3)(x +5)]"
which can be rewritten as

[plx+5)+ g(x+3)] (x> +8x +15)7"

Substituting this on the left-hand side of the long equation we got a minute ago (count up to the fourth
equation before this one), we obtain

[plx+5) + glx+3)] (x> +8x +15)" = 2x + 8)(x* + 8x + 15)™
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Notice that the denominators are the same on both sides of this equation. (We must assume that they can
never become 0 if the equation is to make sense.) When we multiply through by the quantity (x* + 8x +
15), we can get rid of the denominators, leaving ourselves with
plx+5)+g(x+3)=02x+8)
Using the distributive law of multiplication over addition, we can rewrite this as
Px+5p+gx+3g=2x+8
which can be rearranged to
(p+q)x+ (5p+3q)=2x+8
We can split this into a two-by-two linear system:
p+ q =2 (the coefficient of x)
and

5p + 3¢ = 8 (the stand-alone constant)

This pair of simultaneous linear equations solves to p = 1 and g = 1. Those are the numerators of the two
fractions we've been looking for. That means the sum of partial fractions is

(x+3)7'+ (x+5)"

giving us the integral

J. [(e+3) + (x+5)7"] dx
From here, we have only some calculus to go through, and we'll finish the problem with ease.

Here's a challengel!

Use the technique of partial fractions to resolve the indefinite integral

J Bx+1)2x*—x—1)"dx

Solution

Employing our algebra skills, we can figure out that the integrand breaks down into a sum of two constant
multiples of reciprocal linear functions, like this:

J. 2Qx+ )"+ 3(x—-1)"dx

When we split this into a sum of two integrals and pull out the constants, we get

2_[ Q2x+ 1) " dx+ 3.[ (x=1)" dx
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Applying the “old reliable” formula from App. G to each addend gives us
2.2 In2x+ 1 +31Inlx—1l+¢
which simplifies to
In2x+1l+3Inlx—1l+¢

The complete statement of the integral and its resolution is therefore

J Bx+1)2x*—x—1D"dx=Inl2x+1+3Inlx—1l+¢

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. B. The solutions in the appendix may not
represent the only way a problem can be figured out. If you think you can solve a particular
problem in a quicker or better way than you see there, by all means try it!

1. Evaluate the following definite integral using the principle of linearity:
/4
j (3 sin x— 5¢%) dx
0
2. Evaluate the following definite integral using the principle of linearity:
2
[ Ger+7x7) dx
1

3. Evaluate the following definite integral using the principle of linearity:

/2
J (3 sin x+ 2 cos x) dx
-n/2

4. Based on the principles we've learned so far, prove that if i and f; are integrable
functions of x over a continuous interval (2,6), and if %4, and 4, are constants, then
b

b a
[N~k de=h [ fiGx)de+ ko [ fi(x) ds
a b

a

Note the plus and minus signs, and pay attention to the direction we go over the
interval in each case!

5. Use integration by parts to find

J. (3 cos x)(2x— 4) dx
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6. Use integration by parts to find

J 7x* cos x dx

7. Use integration by parts to evaluate

]T' (/2 = 2x)(5 cos x) dx

0

Here’s a hint: When we integrate a definite integral by parts, we can work through the
calculations with indefinite integrals, and restore the original bounds at the end of the
process.

8. Resolve the indefinite integral

[ -5 Q-7 ae

9. Use the technique of partial fractions to resolve the indefinite integral

I 2x (x* = 1) dx

10. Use the technique of partial fractions to resolve the indefinite integral

J GBx=1(x*—x—2)" dx



CHAPTER

20

Review Questions and Answers

Part Two

This is not a test! It’s a review of important general concepts you learned in the previous nine
chapters. Read it though slowly and let it “sink in.” If you’re confused about anything here, or
about anything in the section you've just finished, go back and study that material some more.

Chapter 11
Question 11-1

How can we write the series
ar+ar+as+as+as+ as=200
using the summation notation?

Answer 11-1

It can be written like this:
2 a;=200

i=1

Question 11-2

Consider an open-ended series, in which 7 terms are added up to obtain a final sum of x. How
can this be written using the summation notation?

Answer 11-2

It can be written like this:

325
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Question 11-3

Suppose we sum a series starting with 1/3, then add 1/9, then add 1/27, then add 1/81, and
go on forever, each time cutting the term to 1/3 of its previous value. How do we express this
series in summation notation?

Answer 11-3

We write this series in summation notation as
3 13
i=1

Question 11-4

Suppose we sum a series starting with 1, then add 1/3, then add 1/9, then add 1/27, then add
1/81, and continue forever, each time cutting the term to 1/3 of its previous value. How do we
express this series in summation notation? How does this differ from the series in Answer 11-3?

Answer 11-4

We write this series in summation notation as

i 1/3¢
=0

We begin at 7= 0, raising 1/3 to the zeroth power (which is 1). In Answer 11-3, we started out
at 7 = 1, raising 1/3 to the first power (which is 1/3).

Question 11-9

Imagine a function fgraphed in the xy-plane, such that y = £ (x). Part of the graph lies above
the x axis, and another part lies below the x axis, as shown in Fig. 20-1. If we integrate from
x= ato x= b while moving from left to right (so @ < 4), how are areas defined by the curve
with respect to the x axis?

Answer 11-5

If we integrate in the positive-x direction (from left to right), then any part of the region
underneath the x axis but above the curve has negative area, and any part of the region above
the x axis but below the curve has positive area.

Question 11-6

Bernhard Riemann found that the area defined by a curve can be approximated by adding up
the areas of rectangles as shown in Fig. 20-2. The width of each rectangle is Ax. How can this
width be expressed in terms of the bounds x= #and x= 4, and the number of rectangles 7?

Answer 11-6

The widths of all the rectangles are the same. Therefore, the width of each one is equal to the
width of the interval from x= 2 to x= 4, divided by the number of rectangles 7:

Ax=(b—a)ln
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\ — Positive
area

X=a
' X
x=b
Negative We integrate
area in this direction

/

Figure 20-1 Illustration for Question and Answer 11-5.

Question 11-7

Consider the ith rectangle in Fig. 20-2. Assume that 7 is an integer somewhere between, and
including, 1 (representing the leftmost rectangle) and 7 (representing the rightmost rectangle).
If the curve represents our function £, what is the height of the 7th rectangle?

Answer 11-7
The height of the 7th rectangle is equal to

f(a+ iAx)
which is the same as

fla+i(b— a)ln]

Question 11-8
Again, consider the ith rectangle in Fig. 20-2. What is the area of the 7th rectangle?
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f(x)
Width of every
rectangle
=AX
X=a
X
X=b
A Height of ith
| AX rectangle
=7?
/ Area of ith
rectangle
=7?

Figure 20-2 Illustration for Questions and Answers 11-6 through
11-9.

Answer 11-8
The area of the 7th rectangle is equal to its width times its height, or

Ax- f(a+ iAx)

which is the same as

(b= a)ln] - fla+t i(b—a)ln]

Question 11-9

How can we express the exact area defined by the curve in Fig. 20-2 as a limit in terms of
Ax, i, n, a, and the function f'? How can we express that area as a limit in terms of 7 7, 4, b,
and the function f?
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Answer 11-9

The exact area is the limit from 7 = 1 to n, as Ax approaches 0, of the sum of the rectangle
areas. That’s written formally as

Ax—>o0 #
i=

Lim z Ax- f(a+ iAx)
1

or as

Lim 3 (b=l - fla+ i(b= ) 1n]

i=1

Question 11-10

How can we find the average value of a function over a specific interval, assuming the function
is continuous and can be integrated over that interval?

Answer 11-10

Consider a function f (x) that is continuous from x = 2 to x = , where 2 < 6. We can deter-
mine the average value /7, over the interval (4,6) by integrating f from ato 4, and then divid-
ing by the interval width (& — #). Mathematically,

b
fiow=(b—-a" jf(x) dx

Chapter 12
Question 12-1

What is the antiderivative of the zero function?

Answer 12-1

The antiderivative of the zero function can be any imaginable constant function.

Question 12-2

Why are all antiderivatives ambiguous by nature?

Answer 12-2

Whenever we antidifferentiate a function, we must add a constant, but we don't necessarily
know its value.

Question 12-3

Imagine a function f of a variable x, such that
fx)=4

What's the general antiderivative?



330 Review Questions and Answers

Answer 12-3

The general antiderivative is
F(x)=4x+c

where ¢ is an unspecified real-number constant.

Question 12-4

Imagine a function g of a variable y such that

g(y)=a

where a is some specific real number. What's the general antiderivative?

Answer 12-4

The general antiderivative is
G(y)=ay+c

where ¢ is an unspecified real-number constant.

Question 12-5
Imagine a function 4 of a variable z, such that
bh(z)=bz
where & is some specific real number. What’s the general antiderivative ?
Answer 12-5
The general antiderivative is
H(z)=bz*12+¢

where ¢is an unspecified real-number constant.

Question 12-6

How do we find the general antiderivative of a function that raises a variable to a nonnegative
integer power and then multiplies by a constant? Call the function £ the variable x, and the
constant 4, so that

f(x) = ax"

where 7 is a nonnegative integer.
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Answer 12-6

The general antiderivative is
F(x)=ax""/(n+1)+c
where ¢ is an unspecified real-number constant.

Question 12-7

How can we expand the above rule so that it applies to any real-number power of the variable
except the —1 power (reciprocal)?

Answer 12-7

Let k represent any real number other than —1. If
f(x) = ax*
then
Fx)=ax"V/(k+1)+ ¢

where ¢ is an unspecified real-number constant. If 4 is negative, we must be sure that x # 0.
Otherwise, F(x) is undefined.

Question 12-8
Why doesn’t the above rule work if £#=—1?

Answer 12-8

We get into trouble with this rule if #= -1, because it results in our having to divide by 0.
Consider the function

fx)=ax™!
where « is a specific constant. When we try to apply the above described rule, we get

F(x)=[ax"V/(=14+ D]+ c=ax®/0+ ¢

Question 12-9

What are the two general rules for indefinite integration that allow us to “pull out” constants
or negatives? What's the rule concerning the sum of indefinite integrals?

Answer 12-9

If f'is an integrable function of a variable x, and if 4 is a real-number constant, then

[ kUFG de= k] f£) ds
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In the specific case where £#=—1, we have

[ ~trende==[ £ e

Iffi, £ f5> - - ., and f, are integrable functions of a variable x, then
[ U@+ £+ A6+ + £0)] de
[ A de+ [ e de+ [ feode+ o+ [ £ d

Question 12-10

What is the Fundamental Theorem of Calculus for integrals? What happens to the constant
of integration when we find a definite integral using this theorem?

Answer 12-10

Imagine that fis a continuous real-number function of a variable x. Let # and & be values in
the domain of f with 2 < 4, and let F be a specific antiderivative with a constant of integra-
tion ¢. Then the definite integral from ato & s

b

[ f6) de=F(6)~ F(a)

a
Sometimes this is written as

b b
[ f0) de=F(x) ]

a
where the expression on the right-hand side of the equals sign is read “F (x) evaluated from
ato b.” When we find a definite integral this way, the constant of integration subtracts from
itself and disappears.

Chapter 13
Question 13-1

What happens when we integrate a function over a certain interval in one direction, and then
integrate the same function over the same interval in the opposite direction?

Answer 13-1

The reversal rule for definite integration tells that if fis an integrable function of x over an
interval between two limits 2 and 4, then

[ £ de=—] £ e
a b

Question 13-2

How can we illustrate the reversal rule as a graph, showing the areas defined by a curve that
crosses the independent-variable axis within the interval of integration?
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Answer 13-2

When we integrate a function f(x) over an interval (4,6) in the positive x direction, areas
above the x axis are positive while areas below the x axis are negative, as shown in Fig. 20-3A.
When we integrate in the negative x direction, areas above the x axis are negative while areas
below the x axis are positive, as shown in Fig. 20-3B.

Question 13-3

Imagine an interval split into two contiguous subintervals that don’t overlap. Suppose that
we integrate the subintervals from left to right separately and then add the results. Then, we
integrate over the whole interval from left to right. How do the integrals compare?

f(x)

Positive
area

Integrate

_'_) X=b
fromato b
I

Negative area

A

f(x)

Negative
area

Integrate
«—f— X=b
from bto a

I
Positive area

Figure 20-3 Illustration for Question and Answer 13-2.
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Answer 13-3

The split-interval rule for definite integration says that if /'(x) is a function that’s integrable
over a continuous interval containing real numbers 4, 4, and ¢, then

jf(x) dx + jf(x)alx= jf(x)dx
b b P

Question 13-4

Is it necessary to have 2 < & < ¢ for the above formula to work?

Answer 13-4

No, but the two subintervals must not overlap, and there must be no gap between them.

Question 13-9

Consider the function
fx)=x"

If the domain is the set of all nonnegative real numbers, then this function is continuous and
integrable over any interval in that domain. Now suppose we find

4

j x” dx

0
Then we find

3

j x” dx

4
Finally, we add the two definite integrals. What's the result as a single definite integral? Here’s
a hint: Note the directions of integration in each case.

Answer 13-9

We can apply the split-interval rule, letting 2= 0, =4, and ¢ = 3, obtaining
4 3 3
Jx”dx + Ix”dxzj x" dx
0 4 0

Question 13-6

If we integrate a function from one value of the independent variable to another, does it mat-
ter how we get from the starting point to the finishing poine?

Answer 13-6

No. As long as the function is integrable everywhere we go, and provided we don’t change the
starting or finishing points, we'll always get the same final answer.

Question 13-7

What is the substitution rule for definite integration?
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Answer 13-7

Suppose that we have two integrable functions f and g such that f operates on x while goper-
ates on f'(x). If zand & are the bounds of integration, we can rewrite

b

[ elf - ) de

a

in the form
f()

[ e
f(a)

where y = f (x). Then we can evaluate this new integral to obtain the value of the original
definite integral.

Question 13-8

How can we evaluate this definite integral using the substitution method?

j3(x+ 5) dx
0

Answer 13-8
We can consider the integrand as a composite function where
fx)=x+5
and
() =3y
In this case,
frx)=1

so the original integral is in the form

gL 7o) d
Wie calculate 0
F0)=0+5=5
and

FQ)=1+5=6
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Now we can write the integral as
6 6
[e dy= {3y dy
where y= f(x). With the constant osf integration Zet to 0, we get the basic antiderivative
G(y=y
We calculate
G(6)-G((5)=6"-5=91
We've found that

1
j 3 (x+5)? dx=91
0

Question 13-9

When we evaluate a definite integral using the substitution method, is it normal for the

bounds of integration to change during part of the process?

Answer 13-9

Yes. In the above situation, we must add 5 to both bounds when we integrate gwith respect to
7. In the problem we just solved, g operates on (x+ 5), not on x, so we must integrate ¢ from

5 to 6, not from 0 to 1.

Question 13-10

How can we evaluate the following integral using the substitution technique?
4
J’ et

-5

Answer 13-10

We can consider the integrand as a composite function in which
f(x)=x+5
and

gy =¢

In this situation, we have

fr=1
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so the original integral takes the form
4

[ glf ] f(x) dy
=5
We calculate the new bounds as

f(=5)=-5+5=0
and
f(4)=—4+5=1

We rewrite the integral as

1 1
[edy=]edy
0 0
The exponential function is its own basic antiderivative, so
G(y)=¢
When we evaluate from 0 to 1, we get
G -G)=¢'—e’=¢—1

We've determined that
4

j Yt e =e—1
-5

Chapter 14

Question 14-1

What's an improper integral?

Answer 14-1

337

There are two major types of improper integrals. One type is a definite integral of a function
that contains a singularity in, or at either bound of, the interval over which we want to inte-

grate. The other type is a definite integral evaluated over an infinitely wide interval.

Question 14-2

An improper integral involves a region that’s “infinitely stretched out.” Aren’t such integrals

always undefined?

Answer 14-2

Some improper integrals are undefined, but many are defined and finite.
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Question 14-3
Consider the following definite integral of /4 (x) over an open interval (4,6) with 2 < b:

b
jmmw

Suppose that the value of 4 blows up (or down) as x approaches the upper bound 4 from the
negative direction. How can we approximate the integral?

Answer 14-3

We can invent a tiny, “adjustable” positive number & and then evaluate
b—e
[ o) de
a
As we bring € closer and closer to 0, this integral approaches the actual value of

b
JM@M

a
assuming that this improper integral is defined and finite.

Question 14-4

Consider the following integral of 4 (#) over an open interval (72,7) with m < n:
[ ) ds

Suppose that the value of 4 blows up (or down) as rapproaches the lower bound 7 from the
positive direction. How can we approximate the integral?

Answer 14-4

We can invent a tiny, “adjustable” positive number &, and then evaluate

j b (t) dt

m+0
As we make Oapproach 0, the above integral approaches

j/?(t) dt

m
assuming that the improper integral is defined and finite.

Question 14-5

Consider the following integral of g (z) over an open interval (¢,q) with ¢< ¢:

q
jg@ﬁ

where the lower bound, ¢, is a constant but the upper bound, g, is a variable. What happens
if we make ¢ increase endlessly?
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Answer 14-5

If ¢ increases indefinitely, then the definite integral of g (z) with respect to z, evaluated from
¢ to g, approaches

oo

J. 2(2) dz

c

Question 14-6

Consider the following integral of f'(s) over an open interval (p,2) with p < a:

j‘f(s) ds
?

where the upper bound, 4, is a constant but the lower bound, p, is a variable. What happens
if we make p to decrease (grow larger negatively) without end?

Answer 14-6

If p becomes larger negatively without end, then the definite integral of f'(s) with respect to s,
evaluated from p to 4, approaches

a

j f(s) ds

—oo

Question 14-7

Figure 20-4 is a graph of a function with a singularity. Suppose we want to find

b
J g (x) dx

What's the correct way to work out this problem?

Answer 14-7

We must split the interval into two parts, one on either side of the singularity. Because the
singularity is at x= 0, we should use the intervals (2,0) and (0,4). First, we try to evaluate

j.g(x)oix

If this is undefined, then the original integral is undefined. If the above integral is defined and
finite, then we try to evaluate

j.g(x)oix

If this is undefined, then the original integral is undefined. But if it's defined and finite, then
0

Jg(x) dx + 'b[g(x) dx= j.g(x) dx

a
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g(x

A Area defined by curve
—+ extends upward
H forever

Figure 20-4 Illustration for Question and Answer 14-7.

Question 14-8

How can we find the following integral?
0

J' x~5/5 dy
-1
Answer 14-8

There’s a singularity at x= 0. We can verify this fact by plugging in 0 for x in the function and
doing the arithmetic:

2(0)=0"/5=[1/(0")]/5=(1/0)/ 5

That’s undefined because there’s a denominator of 0. To evaluate the integral, we take a tiny
positive number & subtract it from the upper bound at x= 0, and obtain

—&

J. x5 dx

|
The antiderivative without the constant of integration is

G(x) ="
When we evaluate this antiderivative from —1 to —&, we get

G(—S) _ G(—l) — (—8)1/5 _ (_1)1/5 — 1 _ 81/5
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Remember that the 1/5 power is the fifth root. Now we consider

Lim 1—¢g'°
£—-0+

As g approaches 0 from the positive direction, the value of £ also approaches 0 from the

positive direction. That means the quantity (1 — £'%) approaches 1, so
-
Lim x /5 dx=1

£—0+

Therefore

0
j x 515 dye=1

-1

Question 14-9

How can we find the following integral?
1

J x5 dx

0

Answer 14-9

We take a tiny positive number 6, add it to the lower bound at x= 0, and obtain
1
[ <715 ds
é

Once again, the antiderivative of our function is

G(x)=x"
When we evaluate this from dto 1, we get
G -G =1"=6"=1-06"
Now we consider
Lim 1- 0"

-0+

As Japproaches 0 from the positive direction, the value of ' also approaches 0 from the
positive direction. That means the quantity (1 — 6"°) approaches 1, so
1

Lim j x¥515 de =1

-0+

Therefore

1
J. x U5 de =1

0
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Question 14-10

How can we find the following integral?

_Jg 384x77 dx

Answer 14-10

If we call our integrand function £ then the basic antiderivative is
F(x)=—64x"°
Now let’s consider the definite integral
_f 384x7 dx

?
where p is a variable that decreases endlessly (grows larger in the negative direction forever).
To find this integral, we must determine

Lim F(=2)— F(p)

e
We can calculate

F(-2)=-64.(-2)°=-1

As p becomes large negatively without bound, F(p) approaches 0. We can see this by inputting
some numbers into the antiderivative and doing the arithmetic:

F(-10*)=—64 - (-10)°=-64 - 107"
F(-10°)=—64 - (-10°)*=—-64 - 107
F(-10*)=—64 - (-10%°=-64 . 107

Now we know that

Lim F(=2)—F(p)=-1-0=-1

P

Therefore

2
j 384x7 dx=—1

—oco

Chapter 15
Question 19-1

Look back and reexamine Question and Answer 12-9 on pages 331 and 332. How can we
modify these rules if we want to use them with definite integrals?
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Answer 15-1

Consider the functions f'(x), i (x), and £, (x). Suppose the bounds of integration are x = a
and x= &. Then these three rules apply:

b
kLf () de=F [ f(x) do

QA C— > QA — >

b
~f @) de== [ f() ds

b b b
[ U@ +AE) de= [ () de+ [ £(0) do
The last rule can be extrapolated to any finite number of functions of x.

Question 19-2

What precautions must we take when applying the rules in Answer 15-12

Answer 19-2

We must be sure that the interval is the same for each function, all the functions are integrable
over the interval, and all the integrals are done in the same direction.

Question 15-3

Consider the following functions over the interval from x =2 to x = 4:
g(x) =4x

and
h(x)=10x

Integrate these functions individually. What happens when we add the results?

Answer 19-3
First, we find the definite integral of ¢ (x) from x=2 to x=4:
4
J 4x dx
2
The basic antiderivative is
G (x) =252

When we evaluate this from x= 2 to x= 4, we get

G@l)-GQ)=2-4*-2.2"=24
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Next, we find the definite integral of / (x) from x= 2 to x= 4:

'4[ 10x dx

2
The basic antiderivative is

H (x) =5x
When we evaluate this from x = 2 to x = 4, we get
HM4)-H(2)=5-4-5-2"=60

When we add these results, we get 24 + 60, which is 84.
Question 19-4

Consider again the following two functions over the interval from x= 2 to x = 4:
g (x) =4x

and
h(x)=10x

Add the functions and then integrate. How does this compare with Answer 15-3?

Answer 15-4

If we call the sum p (x), we have
2(x)+ h(x)=p(x) =4x+ 10x= 14x

We want to work out the integral

j l4x dx

2
The basic antiderivative is

P(x)=7x
When we evaluate this from x= 2 to x= 4, we get
PA4)-PQ2)=7-4-7-2"=84

That’s the same result as we got in Answer 15-3.

Question 19-9

Consider the following two functions over the interval from x=—1 to x=1:

g2(x)=—2x
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and
b (x) = 35
Integrate these functions individually. What happens when we add the results?

Answer 19-9

First, we find the definite integral of g (x) from x=—-1 to x=1:
1
J —2x dx

a
The basic antiderivative is

G(x)=—x*
When we evaluate this from x =—1 to x = 1, we get
G -GE)=-1"=-[-(-1)"]=0

Next, we find the definite integral of 4 (x) with respect to x from x=—-1 to x=1:

1
J. 3x7 dx
5
The basic antiderivative is
Hx)=x

When we evaluate this from x=—1 to x= 1, we get
H1)-H(-)=1-(-1)°=2

When we add these results, we get 0 + 2, which is 2.

Question 15-6

Consider again the following two functions over the interval from x=—-1 to x= 1:
g(x)=-2x

and
b (x) = 3x*

Add the functions and integrate. How does this result compare with Answer 15-5?

Answer 15-6

If we call the sum g (x), we can write it in order of descending exponents as

g (x)=3x"—2x

345
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We want to work out

1
I (3x* — 2x) dx
5

The basic antiderivative is

Q) = -
When we evaluate this from x=—1 to x= 1, we get
QM -Q-N=1-1)-[(-1)’-(-1)1]=2

That's the same result as we got in Answer 15-5.

Question 15-7

How can we find the following integral by breaking the integrand into monomials?

j (92> +8z—7) dz

Answer 15-7

This is the integral of a sum of three monomial functions. Let’s call them
fi (2) =92
f(z) =28z
(@) ==7

The indefinite integrals of the individual monomials are
J fi(2) dz=j 922 dz=32+ ¢
[ £ de=[ 82de=42+
J £ (2) dzzj T de=—Tz+ ¢
where ¢}, ¢, and ¢; are the constants of integration. The original integral is
[Oz+8e-7de=[ f@de+ [ f@) e+ [ f2) e

ZJ 9z% dz + J 8z dz + j ~7dz =32+ ¢ +4z2°+ 6 — T2+ o

=32°4+4z2> -7zt + o+

If we consolidate ¢, + ¢; + ¢; into a single constant of integration ¢, then

J (92 +82—7) dz2=32"+ 42> —T7z+ ¢
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Question 19-8

How can we find the following definite integral with respect to z?

1
J (92*+82—7) dz
0

Answer 15-8
From Answer 15-7, we know that

J (92*+82—7) dz=32° +4z>—T7z+ ¢

We want to evaluate this from z= 0 to z= 1. We must be sure that the integrand doesnt blow
up in the interval for which 0 < z< 1. To do that, we must look at each individual term as a
function. Let’s call the integrand £ so we have

f(z)=92"+8z—-7

This breaks down into

fi1(z)=9z"
) (2) =8z
f£)=7

The graph of f; is a parabola that opens upward. The graph of £ is a line through the origin
with a slope of 8. The graph of £ is a line with a slope of 0. (Feel free to sketch the graphs to
visualize these facts.) None of these functions is singular for 0 < z< 1, so we can input the
boundary values to the antiderivative F (z) and then subtract the results. Without the con-
stant of integration, that antiderivative is

F(z2)=32>+4z*-7z
When we input 1, we get
F(1)=3.1°+4.1*-7-1=0
When we input 0, we get
F(0)=3-0°+4-0°—7-0=0
The definite integral is
F(1)= F(0)=0—-0=0

so we've determined that
1
_[ (92*+82—7) dz=0

0
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Question 19-9

How can we find the following integral by breaking the integrand into monomials?

J ( yl/ﬁ _ }71/3 _ }/72/3) dy

Answer 19-9

This is the integral of a sum of three monomial functions. Let’s call them
f ()’) _y1/3
f ()/) —1/3
f ()/) —2/3

The indefinite integrals of the individual monomials are

[ £O) dy=] 3 dy=14)y" +
[ d=] " h=-6r2y"+4
j £ dy=J P dy==3y" + ¢
where ¢}, ¢, and ¢; are the constants of integration. The original integral is
Jors-ye=ya=[fod+ [+ F0s

_ Jy1/3 dy + j 57 dy + J —5 dy
= (3/14)y"” + = (B12)y"° + -3y + &
= (3/4)y"° — 3/2)y** =3y + o+ o + ¢

Consolidating ¢ + ¢ + ¢; into a single constant ¢, we obtain

J (),1/3_),—1 2/3) d)/ (3/4) 413 (3/2)),2/3 3yl/3+ c

Question 15-10

How can we calculate the following definite integral?

1
j [(6/7)x77 = (516)x™] dx
0

Answer 15-10

The integrand is a sum of two monomial functions. Let’s call them

£ ()= (6/7)x"
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and

£ (x) ==(5/6)x7""¢

Both of these functions are singular at x= 0, the lower bound of our interval. That means we
must use the techniques for evaluating improper integrals, along with the sum rule. Lets go
through four steps:

Split the original integral into two separate improper integrals

Evaluate those two integrals independently

If either of them is undefined, conclude that the entire integral is undefined
If they are both defined, add them to get the final result

When we break the original integral into a sum of two integrals, we get
1 1
J 6I7)x" dx + j —(5/6) %716
0 0

Lets evaluate the left-hand integral first. We take a tiny positive 6, add it to the lower limit at
x=0, and obtain

1

I (6/7)x7Y7 dx

é
The basic antiderivative is

Fi ()= x%7
When we evaluate this from Jdto 1, we get
F(1) = F(8) =197 57 =1 6
Now we must determine

Lim 1= 0%

60+

As dapproaches 0 from the positive direction, the value of 0°” approaches 0. That means the
quantity (1 — 6°7) approaches 1, so

1
Lim | (6/7)x7Y dx=1
5—0+

Therefore, the left-hand addend in the “big sum” is
1
j 617)x7" dx=1
0

Now let’s evaluate the right-hand integral in our “big sum.” We take a tiny positive 6, add it
to the lower limit at x= 0, and get

1
[ ~(6516)x71 dix
8
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The basic antiderivative is
B (x) = ="
When we evaluate this from Jto 1, we get
E (1) = F, (8) =196 — (=5%%) = 56 — 1
Now we consider

Lim &°—1

50+
As Sapproaches 0 from the positive direction, the value of 8> approaches 0. Therefore, the
quantity (6”"° — 1) approaches —1, so

1

Lim [ ~(5/6)x"5 dy = -1
S

550+

This tells us that the right-hand addend in our “big sum” is
1
[~5/6)x de=-1
0

We have now found the values of both addends. The left-hand integral is 1, and the right-
hand integral is —1. We can apply the sum rule to conclude that
1

[ 16757 = (516)x"] de=1+ (-1) =0

0

Chapter 16
Question 16-1

How can we find the true geometric area of the region between the line and the parabola in
Fig. 20-5?

Answer 16-1

We can proceed by following these steps, in order:

* Find the function f'(x) represented by the parabola.

* Find the function g (x) represented by the line.

* Find the difference function f (x) — g (x), remembering that must subtract the “bottom
function” from the “top function” over the interval between the points where the
graphs intersect.

* Integrate the difference function over the interval between the points where the graphs
intersect.

Question 16-2
What is the function f(x) represented by the parabola in Fig. 20-5?
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Value

of

function

A
Straight 6+
line 1 (2,4)
g
— 'O.§‘

S I I I I I

% -4 -2 /]
00 i

I
1
1}
]
I
1
1
1
1
J
1

Parabola !
f(x) ,-' _

A\ 4

Figure 20-5 Illustration for Questions and Answers
16-1 through 16-6.

Answer 16-2
The parabola crosses the x axis at (0,0) and (4,0), so it represents a quadratic function whose
zeros are x = 0 and x = 4. From algebra, we can deduce that the function is of the form

fx) = k(x—0)(x—4) = kx(x— 4) = kx> — 4bx

where /4 is a constant. To find 4, we note the point (2,4) at the vertex of the parabola. These

coordinates tell us that

fQR)=4=Fk-(2°) —4k-2=—4k

This simplifies to

which solves to #=—1. By substitution,

fx)=—x*+4x
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Question 16-3
What is the function g (x) represented by the straight line in Fig. 20-5?

Answer 16-3
The slope of the line is —1 and it passes through (0,0), so we can see straightaway that

g(x)=—x

Question 16-4
What'’s the difference function ¢ (x) = f (x) — g (x) in the situation of Fig. 20-5?

Answer 16-4
We have found that
F(x) ==+ 4x
and
g(x)=—x
Therefore
q () =f(x) = g(x) = (& + 4x) = (=x) = =" + 5x
Question 16-9

What’s the definite integral that represents the true geometric area between the line and the
curve in Fig. 20-5?

Answer 16-9

The bounds of integration are 0 and 5, the x-values of the points where the graphs intersect,
so the true geometric area between the graphs is
5

_[ (—x*+ 5x) dx

0

Question 16-6

What'’s the true geometric area between the line and the curve in Fig. 20-5?

Answer 16-6

First, we find the basic antiderivative function Q (x). It is

Q (%) = =213 + (5/2)%
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When we plug in x=5 to this, we get
Q) =-(5)/3+(5/2) - 5*=125/6
When we plug in x= 0, we get
Q(0)=—(0)/3+(5/2)- 0>°=0
The definite integral is the difference between these, which is
Q(5) - Q(0)=125/6-0=125/6
Therefore, the true geometric area between the line and the curve is

5
j (—x* + 5x) dx=125/6
0

Question 16-7

How can we find the true geometric area of the shaded region between the two parabolas
shown in Fig. 20-6?

Value
of
function

Parabola -6+ ‘\_
g ()

\4

Figure 20-6 Illustration for Questions and Answers
16-7 through 16-10.
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Answer 16-7

We can proceed by following these steps, in order:

* Note the function f (x) represented by the parabola that opens upward.

* Find the function g (x) represented by the parabola that opens downward.

* Find the difference function ¢ (x) — f (x), remembering that must subtract the “bottom
function” from the “top function” over the interval between the points where the
graphs intersect.

* Integrate the difference function over the interval between the points where the graphs
intersect.

Question 16-8
What’s the function g (x) represented by the downward-opening parabola in Fig. 20-6?

Answer 16-8

The parabola crosses the x axis at (=2,0) and (2,0). Therefore, it represents a quadratic func-
tion g (x) whose zeros are x=—2 and x = 2. With algebra, we can work out the fact that the
function must be of the form

g(x) = k(x—2)(x+2) = kx> — 4k

where / is a constant. To find 4, we note the point labeled at the vertex of the parabola. This
point is (0,1), so

FO)=1=+F(0°) —4k=—4k
which simplifies to
1 =—-4k
This equation solves to #=—1/4. By substitution, we get

() = (14 + 1= x4 + 1

Question 16-9

What's the difference function p (x) = g (x) — f(x) in the situation shown by Fig. 20-62? What’s
the integral that represents the true geometric area between the curves?

Answer 16-9
The “top function” relative to the shaded region is

gx)=—x14+1
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and the “bottom function” relative to the shaded region, as we are given in Fig. 20-0, is
flx)=x*2-2
The difference function is therefore
px)=g(x)—f(x)=(x"14+1) - (x*/2-2)=-3x"14+3

The bounds of integration are =2 and 2, the x-values of the points where the graphs intersect.
That means the definite integral representing the true geometric area between the graphs is

2
j (=35%/4 + 3) dx

-2

Question 16-10

What'’s the true geometric area between the curves in Fig. 20-62

Answer 16-10

We must find the basic antiderivative function P (x) and evaluate it from —2 to 2. That anti-
derivative is

P(x)==x14+ 3x
When we plug in x= 2 to this, we get
PQ2)=—(2)/14+3-2=4
When we plug in x=—2, we get
P(2)=—(-2)14+3-(-2)=—4
The definite integral is the difference between these, which is
PQ2)-P(-2)=4—-(-4)=8

Therefore, the true geometric area between the line and the curve is

2
j (=3x%/4 + 3) dx=8
-2

Chapter 17
Question 17-1

What are the indefinite integrals of the sine and cosine functions and their negatives?
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Answer 17-1

We find the functions whose derivatives are the functions we want to antidifferentiate, and
then add constants of integration for each. Here they are:

J sin x dx=—cos x+ ¢
j —sin x dx=cos x+ ¢
J cos x dx=sin x+ ¢

J —cos x dx=—sin x+ ¢

Question 17-2
What’s the area defined by the graph of the sine function over its first 1/4 cycle?
Answer 17-1
To do this, we must evaluate
/2
J sin x dx

0
If we call the sine function f'(x), then its basic antiderivative is

F(x)=-cos x
When we evaluate this from x=0 to x= 7/2, we get
F(x/2) — F(0)=—cos (7/2) — (—cos 0) =—cos (7#/2) +cos0=0+1=1

We've discovered that
/2
J sin x dx =1
0
The area defined by the graph of the sine function over its first 1/4 cycle is 1 square unit.

Question 17-3
What's true geometric area between the x axis and the graph of

f(x)=cos x—1
over the interval from x=0 to x= 7?

Answer 17-3

We must work out the value of

]E(cos x—1) dx
0
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If we call our function g (x), then the basic antiderivative is
G(x)=sinx—x
When we evaluate this from x=0 to x= 7, we get
Gr)-G0)=G6Ginz—7)—(in0-0)=0-7)-(0-0)=-7x

We've determined that
T
I (cosx—1) dx=—x
0

which tells us that the theoretical area (in terms of definite integration done directly) defined

by the graph of
f(x)=cos x—1

over the interval (0,7) is equal to —& square units. The true geometric area between the x axis
and the graph, in this particular case, is the absolute value of the theoretical area, or 77 square
units, because the entire region lies below the x axis. (Feel free to sketch a graph if you need
help visualizing this.)

Question 17-4
What's the value of

j (cos x+ sin x) dx

0
representing the sum of the cosine and sine functions over the interval (0,7)?

Answer 17-4

If we call our function g (x), then the basic antiderivative is
G (x) = sin x— cos x
When we evaluate this from x=0 to x= 7, we get
G(r)-—G)=(sinr—cos &) —(sin0—cos 0)=[0—(-1)] - (0—1)=2

We've just determined that
Ve
J (cos x+ sin x) dx=2
0

Question 17-5

The result in Answer 17-4 is the same as the result we got in one of the examples in Chap. 17,
where we found that

w
J. sin xdx=2
0

What's the reason for this?
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Answer 17-9

The definite integral of the cosine function over the interval (0,7) is equal to 0. Half of the
curve lies above the x axis and half lies below, and the two halves are mirror images over the
interval. (If it will help you see this more clearly, sketch a graph.) That makes the cosine part
of the integrand become 0 when we integrate it from 0 to 7.

Question 17-6

How can we verify, in mathematical terms, the claim made in Answer 17-5?

Answer 17-6

Let’s see precisely what the cosine part of the integrand in Question 17-4 contributes to the
value of the entire integral. We can do this by working out

Tcosxafx

0
If we call the cosine function f'(x), then the basic antiderivative is

F(x)=sin x
When we evaluate this from x = 0 to x = 7, we get
F(r)—-F@0)=sin z7—sin0=0-0=0

which shows that

J cos xdx=0
0
Using the sum rule, the integral stated in Question 17-4 can be written as
Vs

Vs
jcosxdx + Jsinxdx
0

0
which, based on what we've just discovered, can be simplified to

T
0 + Isinxdx
0

and further to

T
j sin x dx

0
This definite integral, as we determined in the chapter text, is equal to 2.

Question 17-7
What’s the value of

/2

J (cos x+ sin x) dx
0

representing the sum of the cosine and sine functions over the interval (0,7/2)?
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Answer 17-7

As before, if we call our function g (x), the basic antiderivative is
G (x) = sin x— cos x
When we evaluate this from x=0 to x= 77/2, we get
G (7/2) — G(0) = (sin 7z/2 — cos 7/2) — (sin0 —cos 0) =(1—-0)— (0—1) =2

We've just determined that

m/2
j (cos x+sin x) dx=2
0

We cut the width of the interval in half compared with the situation in Question and Answer
17-4, but the value of the definite integral is the same!

Question 17-8

Evaluate the definite integrals of the sine and cosine functions individually over the interval
(0,72/2). Show that the sum of these integrals is equal to the integral of the sum function
obtained in Answer 17-7 over the same interval.

Answer 17-8

First, let’s work out

/2
J cos x dx

0
If we call the cosine function f(x), then the basic antiderivative is

F(x) =sin x
When we evaluate from x= 0 to x= 77/2, we get
F(7/2) — F(0) =sin 7/2 —sin0=1-0=1
which shows that
/2
J. cos x dx=1
0

Now, let’s calculate
/2
J. sin x dx
0
If we call the sine function 4 (x), then the basic antiderivative is

H (x) =—cos x
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When we evaluate from x= 0 to x= 7/2, we get
H(x/2)— H0)=-cos 7/2 —(—cos0)=0—-(-1)=1

which tells us that

/2
I sin x dx=1
0
Therefore
/2 /2
I cos x dx + I sinxdx=1+1=2
0 0
This agrees with

m/2
I (cos x+ sin x) dx=2
0

which we found before.

Question 17-9
Suppose we are given these two functions:
flx)=¢"
and
glx)=e

What’s the area of the region bounded by the graphs of these functions and the dependent-
variable axis?

Answer 17-9

Figure 20-7 shows this situation. The two curves intersect at the point (1,e) because
f()=¢'=¢
and
g()=¢

We must integrate the difference between the function for the line and the curve over the
interval (0,1). If we call our difference function ¢ (x), then

gx)=gx)—f(x)=e—e"
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Value

of

function

10 T

f(x) = e~

1 X =
gix)=e 1 i
— 1 X
-2 -1 0 1 2

Figure 20-7 Illustration for Question and
Answer 17-9.

We must work out the integral

(e—€) dx

O e —

The basic antiderivative is
Q(x)=ex—e"
When we evaluate from x=0 to x= 1, we get
QD =-QO)=(e-1-e)=(e-0-€)=(e—g—-(0-1)=1
We've shown that
j. (e—e*) dx=1
That’s the area of the shaded region in 0Fig. 20-7.

Question 17-10

What's the area between the curve and the line shown in Fig. 20-8, over the interval for which
—2 < x<—12 The function corresponding to the upper line is

flx)=1-x
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Value
of
function

Figure 20-8 Illustration for Question and Answer 17-10.

and the function corresponding to the lower curve is

1

gx)=x"

Answer 17-10

We can find the difference function by subtracting g from £ If we call that difference function
2 (x), then

PO =f)—gl)=1—x—x"
The area of the shaded region is
].1 (1—x—x7")dx
The basic antiderivative is N
P(x)=x—x*/2—In Ixl
First, let’s evaluate this for x=—1. We obtain

P(-1)=-1-(-1)*/2=In|-11=-3/2
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Next, we evaluate for x=—2. We have
P(=2)=-2— (=22 —Inl-2l=—4—In2
That’s as simple as we can get this expression because In 2 is irrational, so
P(-1)-P(-2)=-3/2-(-4-1In2)=5/2+In2
We've figured out that
j. (1-x—x")dx=5/2+1n2

That’s the area between the line and the curve in Fig. 20-8. We can use a calculator and round
off to three decimal places to get an approximation of 3.193 square units.

Chapter 18
Question 13-1

How can we informally describe the law of the mean?

Answer 18-1

Imagine two points on a smooth curve. Somewhere between these points, the derivative of the
function is equal to the slope of the chord connecting the points.

Question 13-2

How can we formally state and illustrate the law of the mean for finding the length of an
arc?

Answer 18-2

Suppose we choose two points on the graph of a function y= f'(x), and these points describe
one of the chords in an approximation of the arc length between the points. Suppose that for
the 7th chord, the endpoints are where x = x.; and x = x; as shown in Fig. 20-9. Then the
slope of the chord is

Az‘)//sz [f(xl) _f(xfl)] ! (%= x:1)
If £ (x) is defined and continuous between the chord endpoints, then there is at least one point

on the curve between the chord endpoints for which f” (x) is equal to the slope of the chord.
If we call the x-value of such a point x;, then

and

’(.X'l'*) = Ai /Ax
f Y
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f(x)
Slope of
tangent to
curve Slope
= "(x7) = Aylax of chord
- - = A,‘ /AX
T A X=X,
X = Xi* /.//
Ay ///
— X
v °
o 4 Xi-1
Gray curve
< AX > represents
y=1£(x
Figure 20-9 Illustration for Question and Answer 18-2.
Question 18-3

How does the formula for true arc length arise? What's the precise length L of the arc in the
graph of a function f'(x) between two points where x= zand x= b?

Answer 18-3

We get the formula by adding up the lengths of chords connecting points on the arc. As the
number of chords increases without bound, we get a limit that defines

L= [+ 1" de

QA C— >~

Question 13-4

What's the arc-in-a-box method of finding the largest and smallest possible absolute values of
the arc length between two points on the graph of a function?

Answer 18-4

The arc-in-a-box method works as follows.

* Construct a box with vertical and horizontal edges, such that the endpoints of the arc
are at opposite corners (Fig. 20-10).

* Be sure that the arc is entirely contained within the box.

* Be sure that the arc curves in the same sense (clockwise or counterclockwise) every-
where within the box.
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(%)

Figure 20-10 Illustration for Questions
and Answers 18-4 and 18-5.

Once we've done this, we can be sure that:

* The absolute value of the arc length is greater than or equal to the diagonal measure of

the box.
* The absolute value of the arc length is less than or equal to half the perimeter of the box.

Question 18-

In Fig. 20-10, suppose that 2 =3, 6 =7, f (a) = =3, and £ (b) = —1. What are the minimum
and maximum possible lengths of the arc in the box?

Answer 18-9

The box width is the absolute value of the difference between the x-values of the points:
lb—al=17-31=4

The box height is the absolute value of the difference in the function values at the points:
1F(6) - f(a)l=1(-1)=(-3)I=2

The minimum possible arc length is the diagonal measure of the box:

(4> + 29" = (16 + 4)"> = 20"

The maximum possible arc length is half the perimeter of the box:

(2-4+2-2)/2=08+4)/2=6

The arc length can't be less than 20" units nor more than 6 units.
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Question 13-6

How can we use the arc length formula to measure a line segment along the graph of

f(x) =(4/3)x
from x=0 to x=3?

Answer 13-6
To begin, we differentiate the function, getting

F(x) =413

The formula for the arc length L, stated again for convenience, is
b

L=[{1+[f @P}" d

When we input 4/3 in place of f” (x), set 2= 0, and set &= 3, we get
3
L= j [1+ (4/3)%]"? dx
0
Using arithmetic, this simplifies to

3
L= 5/3dx
I
The indefinite integral without the constant of integration is
[ 513 de=513)z
When we evaluate this from 0 to 3, we get
L=(5/3)-3-(5/3)-0=5

The line segment is 5 units long. If you sketch a graph of this situation, you'll see that we've
used calculus to evaluate the dimensions of a so-called “3-4-5 right triangle.”

Question 13-7

How can we use the arc length formula to measure a line segment along the graph of
f(x)=6x=5
fromx=8tox=5?

Answer 18-7

As before, we start by differentiating the function. In this case, we get

fx)=6
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When we substitute 6 for /” (x) and include the bounds in the formula, we get
L= j 1+ 69" dx
which simplifies to 8

L =|37"dx

00 Sy N

The indefinite integral without the constant of integration is

[ 37 de=37"
When we evaluate this from 8 to 5, we get
L= 371/2 . 5 _ 371/2 .8 = _3 . 371/2

That’s an irrational number equal to approximately —18.248.

Question 18-8
Why is the result in Answer 18-7 negative?

Answer 18-8

The arc length is negative because we move in the negative-x direction.

Question 18-9

Consider the following function, which represents a parabola:

fx)=x*2

How can we measure the arc from x=0 to x= 1, as shown in Fig. 20-11?

Answer 18-9

Our first step is to differentiate the function. The derivative is
frx)=x
When we substitute x for /' (x) and include the bounds in the formula, we get

b
L= j (1 + xD)'V? dx

From the table of integrals (App. G), we find the form
j (P +a®)? dx = (x/2)(x* + a®)"? + (1/2) @ In lx+ (& + 2?2l + ¢

367



368  Review Questions and Answers

f(x)
A
1.0 -+
08 1 f(x) = x2/2
06 T width = 1
(1,1/2)
Height = 1/2
I e e e e
2

Figure 20-11 Illustration for Questions and Answers 18-9
and 18-10.

which can be rewritten as

j (@ + )" dx = (x/2)(a® + )" + (1/2) a* In lx+ (a® + 21 + ¢

If we let 2= 1, we obtain

J. A+ dx=(x/2)(1+ )"+ (1/2) In lx+ (1 4+ )" + ¢

To find the arc length, we evaluate the following expression from x=0 to x= 1:
(x/2)(1 + A"+ (1/2) In lx+ (1 + 25
Plugging x= 1 into the above formula, we get
(1/2)(1+ D"+ 172) In 11+ 1+ 1)"=(1/2) - 2"+ (1/2) In 11 + 2
Plugging in x= 0, we get
(0/2)(1 +0)" + (1/2) In 10+ (1 + 0)"*1 =0
The arc length L is the difference between these results, or

L=(1/2) - 22+ (1/2) In 11 + 2"



Part Two 369

Using a calculator and approximating to three decimal places gives us

L=1.148

Question 13-10

How can we use the arc-in-a-box scheme to see that Answer 18-9 is reasonable?

Answer 18-10

Refer again Fig. 20-11. The width of the dashed gray box is |1 — 0l, or 1 unit. The height of
the box is [1/2 — 01, or 1/2 unit. The minimum possible arc length is the diagonal measure of

the box:
(124 (1/2)"* = (1 + 1/4)"*=5"/2

That’s an irrational number. A calculator tells us that it’s roughly 1.118 units. The maximum
possible arc length is half the perimeter of the box:

2-1+2-(1/2)]/2=2+1)/2=3/2

The arc length can’t be less than 52/2 = 1.118 nor more than 3/2 = 1.5. In Answer 18-9, we
found that the arc length is 1.148 units, rounded to three decimal places. That’s between the
constraints.

Chapter 19
Question 19-1

What's the principle of linearity for definite integrals, as it applies to a sum?

Answer 19-1

Let fi and f; be integrable functions of x over a continuous interval (2,6). Let 4 and 4, be
constants. Then

N C—

b b
b Al k (@) de=h [ i) de+ ke [ f(x) de

Question 19-2

What'’s the principle of linearity for definite integrals, as it applies to a difference?

Answer 19-2

Let fi and f; be integrable functions of x over a continuous interval (4,6). Let &, and 4, be
constants. Then

N —

b 1
b f ) =k LS de=h [ fi(x) de = ko [ fi(x) dx
a 0
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Question 19-3

Does the principle of linearity for sums work with any finite number of functions and constants?

Answer 19-3

Yes, if we stay with the same interval, stay with the same variable, and make sure that each
function can be integrated over the entire interval.

Question 19-4

How can we evaluate the following definite integral using the principle of linearity?

1
J (e/e+ 4 cos x) dx
0

Answer 19-4

The principle allows us to rewrite this as
1 1
¢! j edx + 4 j cos x dx
0 0
The basic antiderivative of the cosine is the sine. The exponential function is its own basic
antiderivative. We can therefore resolve the above sum of integrals to

¢! (' =% +4 (sin 1 —sin 0)
which simplifies to

l—el+4sinl

Question 19-9
What’s the formula for integration by parts?

Answer 19-5

For any two integrable functions f(x) and g (x),

[0 -g () de=f) - ) - [ g0) - 7 () dis

Question 19-6

How can we find the following indefinite integral using integration by parts?

J (5x+ 1)(2 sin x) dx

Answer 19-6

To set up the parts, let’s consider our functions f and g’ to be

Flx) =Sx+1
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and

g (x)=2sinx
Then we have

g(x)=-2 cos x
and

fx)=5
Plugging these into the formula for integration by parts, we get
[ Gt D@ sinx) de= (54 D2 cos ) — [ (2 eos ) -5 di

=(x+1)(—2 cos x) + 10-[ cos x dx

The basic antiderivative of the cosine is the sine, so the last integral in the above equation
becomes sin x plus a constant of integration ¢. Substituting, we get

J. (5x+ 1)(2 sin x) dx= (5x+ 1)(=2 cos x) + 10 sin x+ ¢

= —10xcos x—2 cos x+ 10 sin x+ ¢

Question 19-7

How can we use integration by parts to evaluate the following indefinite integral?

J (712 sin x + xsin x) dx

Answer 19-7

As the first step in solving this problem, we must get the integrand into the proper form. We
can factor it to obtain

[ 12+ x)Gsin )
To set up the parts, let’s say that
fx)=7m/2+x
and

g (x)=sinx
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Then we have

2(x) = —cos x
and
F)=1
In this case,
[ 212+ x)Gsin x) de= (712 + x)(~cos x) = | (~cosx) - 1 ds
= (2 +x)(cos x) + [ cos xdx

The last integral can be simplified to sin x plus a constant of integration ¢, because the basic
antiderivative of the cosine is the sine. Substituting back, we get

J (712 + x)(sin x) dx= (7/2 + x)(—cos x) +sin x+ ¢

= —7r/2 cos x— xcos x+sin x+ ¢

Question 19-8

Consider an integral of the form

[ k/(ax+ by as
where x is the variable, and 4, 4, and % are constants. How can we resolve this?

Answer 19-8

We can rewrite the integral as

k f (ax+ b dx

Then we can use an integral table such as App. G to derive the formula

i j (ax+ b)" ds = ka ' In lax+ bl + ¢

Question 19-9

How can we resolve the following integral?

[ ~Gxr 1
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Answer 19-9

We move the minus sign in front of the integral symbol, getting
- J 5x+ 1) dx

Then we apply the formula stated in Answer 19-8, obtaining
=5"Inl5x+ 11+ ¢

which can also be written as

(=1/5) In15x+ 1l + ¢

Question 19-10

How can we resolve the following integral using the method of partial fractions?

j (6x+ 8)( + 3x+2)" dx

Answer 19-10

The integrand breaks down into a sum of two constant multiples of reciprocals of linear func-
tions. We get

j [4 (x+2)" + 2 (x+ 1)7] dx

When we split this into a sum of integrals and pull out the constants, we get

4 j (4 2)" dit 2 j (vt 1) dv

Applying the formula from Answer 19-8 to each addend gives us

4Inlx+21+2Inlx+ 1+ ¢
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CHAPTER

2

Differentiating Inverse Functions

The derivative of an inverse function can often be found directly, but sometimes an indirect
scheme works better. Let’s examine both methods.

A General Formula

To differentiate an inverse function, we can find the derivative of the original function, find
the reciprocal of that derivative, substitute one variable for the other, and thereby get the
derivative of the inverse function “through the back door.”

What is an inverse function?

In Chap. 1, we learned about relations, functions, and their inverses. Let’s review the meaning
of inverse in this context. Suppose that x and y are variables, and f'and ' are functions that
are inverses of each other. Also suppose that

f=y

and

() =x

Then we can be sure that

A If®l=x

and

FUf =y
377
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When we seek the inverse of a function, we might get a relation that’s not a true function,
because some values of the independent variable map to more than one value of the depen-
dent variable. In many such cases, we can “force” the inverse of the original function to behave
as another true function by excluding all values of either variable that map to more than one
value of the other variable.

Differentiating “through the back door”

Lets recall the chain rule from Chap. 6. If fand g are differentiable functions of the same
variable x, then

{glf Ol =g [f)]-f"(x)
If g happens to be the inverse of £, then

@Y =f"1f@]f (%)

where £ means the derivative of the inverse function. The inverse function and the original
function “undo” each other on the left-hand side of this equation, so it becomes

=] ()
If we say that y = £ (x), then we can simplify to obtain

dxldx =7V (y) - dyldx
which we can further simplify to

dx|dx = (dx ldy) (dyldx)
Because dx/dx= 1, we have

1 = (dxldy) (dyldx)

which can be rearranged to get

(dxcldy) = (dyldx)

Are you confused?

It’s easy to be confused by the use of the superscript —1 after the name of a function such as f; as compared
with its use after an expression such as (dy/dx). When it’s written after the name of a function, a super-
script —1 tells us to think about the inverse function. When it’s written after a quantity, a superscript —1
means that we should work with the reciprocal of that quantity.
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Example: “front door”

Let’s look at a function that has a well-defined inverse, and whose domain and range are both the
entire set of real numbers. We can find the inverse and then differentiate it directly. Consider

flo)=x
Ifwe call y = £(x), then
y=x
and
dylde = 3x°

The inverse of f undoes the work of £ In this case,
x=f"1(y)=y"
When we differentiate x with respect to 3 we get
dxldy = y2°13
We can also write this as
) =y7013

This is the derivative of the inverse function, in which y is the independent variable and x is
the dependent variable.

Same example: “back door”

Now let’s differentiate the inverse function using the alternative method we've just learned.
We already know that

dyldx=3x"
We find dx/dy by taking the reciprocal of dy/dx, like this:
(dxldy) = (dyldx)™" = (3x") " = x7/3

That’s expressed in terms of x, but we want it in terms of 3. We've seen that

1/3

x=y
Substituting, we get

x72/3 — (y1/3)72/3 =y72/3/3
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Here's a challengel!

Differentiate the inverse of the following function, where the domain is the set of all real numbers x such
that x> 1. First, find the inverse and then differentiate it directly. Then, use the “back door” method.

fx)=e"+1

Solution

Let’s introduce a dependent variable y so we have
=/
and
x=f"0)

We can derive x in terms of y from our knowledge of logarithms and exponentials. Here’s how fcan be
morphed into £, step-by-step:

fx)=¢"+1
y=e"+1
y—1=¢"
In(y—1)=In (%)
In(y—1)=x
x=Iln(y-1)

T =h(-1
When we differentiate using the chain rule, we get
) =G-"1=(p-1"

Thats the “front door” method. Now let’s use the “back door” scheme. The derivative of y with respect
to x is

dyldx=e*
When we take the reciprocal of this, we get
dxldy=(e¥)!

We want to express this in terms of 3 not in terms of x. As part of our algebraic exercise a short while ago,
we saw that

x=Iln(y-1)
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By substitution,
dxldy=[e"0] 7 = (y— 1)

which can also be written as

" y=0u-n"

This agrees with the result we got when we differentiated the inverse function directly through the “front door.”

Derivative of the Arcsine

Do you wonder what these “back door” formulas for differentiating inverse functions are use-
ful for? Let’s look at some examples of this method in action.

Restricting the domain

The sine function is a true function, regardless of its domain. We usually work only with input
values between 0 and 27, or perhaps —7and 7. But theoretically, we can input any real num-
ber. When we seek the inverse of the sine function, however, things get more complicated. We
can “stand the wave on end” in Cartesian x)-coordinates and say that

y=f(x)=sinx
and

x=f"(y) = Arcsin y

If we want the Arcsine relation to be a true function, we must restrict the domain of the sine func-
tion before we “stand the wave on end.” The most common way to do this is to specify that

—7l2<x< 7l2

ensuring that the Arcsine relation is a true function of . When we define the domain of the
sine this way (Fig. 21-1), we capitalize the name of its inverse, writing

f'(y) =Arcsin y

Are you confused?

Do you wonder why we restrict the domain of the sine function to values in the closed interval [-77/2,7/2] to
define the Arcsine function? Can’t we use any closed interval that makes the mapping between the domain
and the range a bijection? (If you don’t remember what a bijection is, review its definition in Chap. 1.)
The answer is “Yes and no.” We can use certain other intervals. But whatever interval we choose, it must be
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X or f_1(y)
3T = __
— ™
(::\ T 372 f(x)=sinx
i f(y) = Arcsin y
-1 -+ )
e T yor o)
3 -2 ~ - 1 2 3
824

= 31

Figure 21-1 The Arcsine function is the inverse of the sine
function whose domain is restricted to values of
x1in the closed interval [-7/2, 7/2].

exactly 1/2 cycle (7rradians) wide, either from a positive peak to the next negative peak, or from a negative
peak to the next positive peak. The interval for which

-2 < x< 7l2

is the one that most mathematicians prefer. It’s called the principal branch of the sine function.

Getting the formula

The direct approach to differentiation doesn’t work well with a function such as the Arcsine.
We'll have an easier time if we go through the “back door.” To illustrate, we can differentiate
the inverse of

f(x) =sin x
for =712 < x < 71/2. Let’s introduce the function ' and the variable y so that

y=f)

and

x=1"(y)
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We can express x in terms of y as
x = Arcsin y
For the original sine function, the derivative of y with respect to x is
dyldx= cos x
When we take the reciprocal of each side, we get
dxldy= (cos x)™!
This is the derivative of the Arcsine function, but we want it in terms of y. Before we attempt
a substitution, let’s remember an important identity from basic trigonometry. For all values
of x,
(cos x)* + (sin x)? =1
This well-known identity can be rewritten as
(cos x)*=1 — (sin x)?
Taking the 1/2 power of both sides, we get
cos x=[1 — (sin x)?]"?
We know that sin x = y so we can substitute in the above equation to get
cos x= (1 — y?)'?
A while ago, we found that

dxldy = (cos x)™"

Y12 to obtain

We can now replace cos x by (1 — »
dxldy = [(1 —y»)'"]"!
which can be simplified to

dcldy = (1 - y)"

This is the derivative of the Arcsine function with the independent variable y. We've deter-
mined that

d/d_)/ (Arcsin )/) =(1 _yz)—l/z
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Are you astute?

Here’s an important fact that you might have already suspected. The derivative of the Arcsine function is
defined only over the gpen interval (—1,1), that is, for all real numbers y such that -1 < y < 1, even though
the Arcsine function itself is defined over the closed interval [-1,1]. Can you see why? Here’s a hint: Look
at the endpoints of the solid curve in the graph of Fig. 21-1, and try to imagine the slope at those points.

Derivative of the Arccosine

Differentiating the inverse of the cosine function gives us a formula similar to the one for the deriv-
ative of the inverse of the sine. Let’s define the inverse function, and then we'll derive the formula.

Restricting the domain

The cosine function, like its “cousin” the sine, is a true function even if we allow the domain
to encompass the entire set of real numbers. But, as with the sine, things change when we seek
the inverse (Fig. 21-2). We have

y=f(x)=cosx
and

x=f"(y) = Arccos y

X or f_1(y)
" - 3r

el f(x)=cos x

'\7* a f(y) = Arccos y
TSV o

3 2 - LA 2 3

- — 37

Figure 21-2 The Arccosine function is the inverse of the
cosine function whose domain is restricted to
values of x in the closed interval [0,7].
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but if we want the Arccosine relation to be a true function, we must restrict the domain of the
cosine to the values 0 < x< 7. When we do this, we capitalize the name of its inverse, writing

f(y) = Arccos y

Are you confused?

You might wonder, as with the sine and Arcsine, why we restrict the domain of the cosine function to the
interval [0,7] to get the Arccosine function. The reason is the same as that for the sine and Arcsine, except
that the interval is shifted by 1/4 cycle. The zone for which 0 < x < 7is the principal branch.

Getting the formula

Differentiating the Arccosine is similar to differentiating the Arcsine. Lets go through the
process step-by-step. We'll start by letting

f(x)=cos x
for 0 < x< 7. We define the function £ and the variable y so that
y=rf)
and
x=f"(y)
We can express x in terms of y as
x = Arccos y
The derivative dy/dx is
dyldx=—sin x
When we take the reciprocal of this, we get
dxldy = (—sin x)™

We want to get the right-hand side in terms of y. That familiar trigonometric identity comes
in handy again! For all values of x,

(cos x)* + (sin x)* =1
which can be rewritten as

(sin x)?> =1 — (cos x)?
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Taking the 1/2 power of both sides gives us

sin x = [1 — (cos x)?]*?
We can multiply through by —1 to obtain

—sin x=—[1 — (cos x)?]"?
We know that cos x = 3 so we can substitute for x in the right-hand side to get
—sin x=—(1—y»)"
A while ago, we found that
dx/dy= (—sin x)™'

We can replace —sin x by — (1 — )2

in the above equation, obtaining
dxldy=[—-(1 — y*)'"]"!
which simplifies to
dxldy=—(1—y*)™?

We have just figured out that

dldy (Arccos y) = —(1 — y*)™'"

Are you astute?

The derivative of the Arccosine function is defined only over the gpen interval (-1,1), even though the
function itself is defined over the closed interval [—1,1]. The reason is the same as that for the Arcsine func-
tion and its derivative.

Here's a challengel

Consider the following sum of composite functions:
b (z) = Arcsin (2/2) + Arccos (2%/2)

Define the domain of 4, and then differentiate it.
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Solution (part 1)

The domain of the Arcsine function is the set of all inputs that produce defined outputs. That’s the set
of all real numbers in the closed interval [-1,1]. In our situation, the argument of the Arcsine is 2/2, so
the domain of that function is the set of all z for which —2 < 2 < 2. For the Arccosine function, the
domain is, again, the set of all reals in the closed interval [-1,1], so the domain of the right-hand
term in the sum is the set of all z for which =22 € z < 22, The domain of 4 is therefore the set of
all z for which —2'"2 < z <2'2,

Are you confused?

Do you wonder why the domain of /4 is the set of all zin [-2"%,2"], and not the set of all zin [-1,1] or
the set of all zin [-2,2]? The reason is that the domain of # must be the intersection of the domains of the
functions in the sum. In other words, if the output of A 1is to make any sense, we must get a defined output
from the Arcsine function when we input /2 to it, and we must get a defined output from the Arccosine
function when we input 2%/2 to it. This happens for any real number z in [-2'2,2""%], but not for any z
outside of that interval.

Solution (part 2)

Now that we know the domain of 4, we can differentiate the two terms in the sum independently, and
then add the results. Let’s call those terms

2 (2) = Arcsin (2/2)
and
q (2) = Arccos (z%/2)

We've already determined the derivatives of the Arcsine and Arccosine functions. If we let the independent
variable be z, then

dldz (Arcsin z) = (1 — 222
and
dldz (Arccos z) = —(1 — 22)712
Using the chain rule to differentiate p and ¢, we get
(@) =[1- (/" (1/2)=[1- (/)] 2
and
7 (2) =—[1 = (22)] " (2) ==z [1 — (2%/2)]?

The derivative 4’ is the sum p” + ¢, so

b (z)=[1— (2] 2—-z[1- (2"
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Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these
problems. Don’t hurry! You'll find worked-out answers in App. C. The solutions in the
appendix may not represent the only way a problem can be figured out. If you think
you can solve a particular problem in a quicker or better way than you see there, by all
means try it!

1. Differentiate the inverse of the following function over the domain x > 0. First, find the

inverse and then differentiate it directly. Then, use the “back door” method.

flx) =x"+2

2. Differentiate the inverse of the following function over the domain x> 0. First, find the
inverse and then differentiate it directly. Then, use the “back door” method.

f(x)=lnx

3. Differentiate the inverse of the following function. First, find the inverse and then
differentiate it directly. Then, use the “back door” method.

flx)=x"+4
4. Define the domain of the following function. Then, differentiate it with respect to x.
f(x) =5 Arcsin x
5. Define the domain of the following function. Then, differentiate it with respect to «
g(#) =—06¢* Arcsin ¢
6. Define the domain of the following function. Then, differentiate it with respect to z.
b (2) = Arccos z°

7. Define the domain of the following function. Then, differentiate it with respect to ».

f(v) = 30> Arccos (v/3)
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8. Define the domain of the following function. Then, differentiate it with respect to s.

b (s) = Arcsin s* — Arccos 2s

9. Define the domain of the following function. Then, differentiate it with respect to w.

¢ (w) = (Arccos w* — Arcsin w?) /2

10. Define the domain of the following function. Then, differentiate it with respect to x.

f(x) = Arcsin ¢*



CHAPTER

Implicit Differentiation

Until now, we've seen functions with the dependent variable on the left-hand side of an equa-
tion, and an expression containing the independent variable on the right-hand side. In this
chapter, we'll differentiate relations that aren't so clearly denoted.

Two-Way Relations

390

When we see a two-variable equation that isn’t expressed as an obvious function of either vari-
able, we can usually differentiate it if we accept some ambiguity and restrict the domain.

How shall we write it ?

Any equation in two variables is a rwo-way relation. The mappings are inverses of each other,
although one or both may fail to be true functions. Consider

y=x2+l

Here, y is a true function of x, and the equation is written in the usual form for a function.
But we can also write

y—1= x*
If we take the positive-and-negative square root of each side and then transpose the sides, we get
x=H(y— 1)1
This is a relation in which x is expressed in terms of 3 but it’s not a true function because it
assigns more than one value of the dependent variable x to any real-number input value of y

larger than 1. There’s also another distinction. The domain of the function

y=x"+1
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is the entire set of real numbers. But the domain of the relation
x=%(y— 1"

must be restricted to the set of reals y such that y > 1 if we want a real-number output.

Equations of circles

When working with graphs in the Cartesian xy-plane, we can write the general equation for a
circle in the standard form

2 2__ .2
(x=x0)*+(y—po)'=r
where x, and y, are real constants that tell us the coordinates (x(,y,) of the center of the circle,

and ris a positive real constant that tells us the radius (Fig. 22-1). When the circle is centered
at the origin, the formula is simpler because x, = 0 and y, = 0. Then we have

The simplest possible case is the unit circle, centered at the origin and having a radius equal
to 1. Its equation is

x2+y2=1

(X0:Y0)

Y

Figure 22-1  Graph of the circle for (x— x0)* + (y— yo)* = -
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Equations of ellipses

The general form for the equation of an ellipse in the Cartesian x)-plane, as shown in
Fig. 22-2, is

(x=x0)*1a*+ (y — y0)° 1% =

where x, and y, are real constants representing the coordinates (x,y,) of the center of the
ellipse, ais a positive real constant that represents the distance from (x,,,) to the curve along a
line parallel to the xaxis, and & is a positive real constant that tells us the distance from (x(,,)
to the curve along a line parallel to the y axis. When we plot x on the horizontal axis and y
on the vertical axis (the usual scheme), « is the length of the horizontal semi-axis or “horizon-
tal radius” of the ellipse, and & is the length of the vertical semi-axis or “vertical radius.” For
ellipses centered at the origin, we have x, =0 and y, = 0, so the general equation is

la*+ b =1

Equations of hyperbolas

The general form for the equation of a hyperbola in the Cartesian xy-plane, as shown in
Fig. 22-3, is

(x—x0)*1a* = (y—y)*16* =1

Figure 22-2  Graph of the ellipse for (x— x¢)*/a* +
(y—y0)* o> =1.
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A

A\ 4

Figure 22-3  Graph of the hyperbola for (x— x,)*/a* = (y— yo)*/6* = 1.

where x, and y, are real constants that tell us the coordinates (x,,,) of the center. The dimen-
sions are more difficult to define than those of a circle or an ellipse. Suppose that D is a
rectangle whose center is at (xo,y0), whose vertical edges are tangent to the hyperbola, and
whose corners lie on the asymprotes of the hyperbola. (An asymptote, as we remember from
precalculus, is a straight line that a curve approaches but never reaches as we move away from
the origin.) When we define D this way, then # is the distance from (xy,y,) to D along a line
parallel to the x axis, and & is the distance from (x,y,) to D along a line parallel to the y axis.
We call 2 the length of the horizontal semi-axis, and we call 4 the length of the vertical semi-
axis. For hyperbolas centered at the origin, we have x, = 0 and y, =0, so the general equation
becomes

x*la* =y lb* =1
The simplest possible case is the unit hyperbola whose equation is

xZ_y2=1
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Are you confused?

The equations of ellipses and hyperbolas don’t always appear in the standard forms. Don’t let this baffle
you! Suppose you see the equation

SI3+y4=1

This is in the standard form for an ellipse. If you multiply through by 12, you get
4x* +3y* =12

You can then subtract 3y* from each side, getting
4x* =12 — 397

This represents the same curve as the original equation. But if you saw it for the first time, you might not
realize that the graph is an ellipse in the x)-plane.

Two-Way Derivatives

We can differentiate a two-variable relation with respect to either variable, even if the equation
does not look like it’s in any standard form. This process is called implicit differentiation.

Example: unit circle

Let’s scrutinize the equation of the unit circle, which has a radius of 1 and is centered at the
origin. Again, that equation is

+y=1
The above equation can be rewritten as
y=+(1- )12
or
x=+(1 _y2)1/2

The top equation produces a real-number output y only when —1 < x < 1. The bottom equa-
tion produces a real-number output x only when —1 < y < 1. When we find derivatives with
respect to either variable, we must remember these limitations.

Lets find y” by differentiating both sides of the original equation with respect to x, and
then solving the result for y’. We start with

x2+y2=1
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Differentiating through, we get
dldx (x*) + d/dx (y*) = d/dx (1)
Term-by-term, this works out to
2x+2y'=0

Do you wonder how we get 2yy” here? It comes from the chain rule. We must use that rule
when we differentiate y* with respect to x, because we have a composite relation. First, x maps

into y. Then, y maps into y. Think of the derivative like this:
dldx (y*) = [d/dy (y*)] (dyldx) = 2y (dyldx) = 2y’
We can subtract 2x from each side of the equation
2x+ 2y =0

to obtain

2y’ =-2x
We can divide through by 2y if we insist that y# 0. That gives us

7 =(=2%)1(2y)

which simplifies to

Y =—xly
We've found the derivative dy/dx of the two way-relation. It’s in terms of both x and j but
that’s a common result in implicit differentiation. This derivative exists only for values of x
between, but 7oz including, —1 and 1. If x=—1 or x= 1, then we get y = 0 when we solve
for it in the original equation, making y* undefined. If x < —1 or x> 1, then y isn’t part of
the real-number relation. (It would be part of the relation if we let it be a complex number,
but we aren’t going into the realm of complex numbers here.)

Now let’s find x” by differentiating both sides with respect to 3 and then solving the result
for x”. We have

dldy (x*) + d/dy (y*) = d/dy (1)
When we differentiate term-by-term, we get

2xx" +2y=0
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As before, the chain rule is needed on d/dy (x°) to get 2xx”. When we subtract 2y from each

side, we obtain

2xx’ = =2y

We can divide each side by 2x while insisting that x # 0, getting

which simplifies to

x'=(-29) / (2x)

x' =-ylx

We've found the derivative dx/dy. But there’s a restriction, just as there was with the other
derivative. The value of x” is defined only for —1 < y < 1. When we have y=—1 or y=1, then
we get x = 0 when we solve for it in the original equation, making x” undefined. When we
have y<—1 or y> 1, then xisn’t in the relation, so x” is again undefined.

Example: ellipse

Consider the equation of an ellipse centered at (x,y,) = (1,~1), with a horizontal semi-axis of 2 =2
units and a vertical semi-axis of 4 = 3 units. Figure 22-4 is a graph of this ellipse. Its equation is

(x—1)*/4+@p+1)*/19=1

A

6__

4__

BRI B 1 ;
;/\

-6+

\4

\4
x

Center is
at (1,-1)

Figure 22-4  Graph of the ellipse for
(=172 /M4+(@+1)0/9=1.
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Before we start differentiating, we should find the domains for both mappings in our
two-way relation. The x-coordinate of the center is x, = 1. The horizontal semi-axis is 2 units
long. Knowing these facts, we can see that the relation is defined only for values of x up to,
and including, 2 units to the left or right of x,. That is,

1-2<x<1+4+2
which means we must have
-1<x<3

The y-coordinate of the center is y, = —1. The vertical semi-axis measures 3 units. Therefore,
the relation is defined only for values of y up to, and including, 3 units above and below y.

That is,
“1-3<y<-1+3
which means we must have
—4<y<2

To find y’ (the derivative dy/dx), let’s get the original equation into a form that’s easier to
work with. Here’s the original equation for the ellipse:

(x—172/4+(y+1)°/9=1
We can multiply through by 36 to get
9 (x—1)*+4 (y+1)*=36
Expanding the squared binomials gives us
9(*—2x+1)+4 ()’ +2y+1)=36
which multiplies out to
9x* — 18x+9+4y*+8y+4=36

Subtracting 9 from each side and then subtracting 4 from each side, we get an equation with
the variables all on the left and a constant alone on the right:

9x* — 18x+ 4y + 8y=23
Differentiating this term-by-term with respect to x, we get

dldbe (95%) — d/dx (18x) + d/dx (4y?) + d/dx (8y) = d/dbe (23)
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This works out to
18x— 18+ 8y +8y’'=0

Note, once again, that we must use the chain rule on d/dx (4y”) to get 8yy”. When we add the
quantity (18 — 18x) to each side, we get

8y +8y" =18 — 18x
The left side can be rewritten to give us
(8y+8) )’ =18 — 18x
Dividing through by the quantity (8y+ 8) with the restriction that y# —1, we get
Y =(18—18x)/ (8y+8)=(9—9x)/(4y+4)
We've found dy/dx, but it has meaning only for —=1 < x< 3. If x=—1 or x= 3, then the original
equation for the ellipse tells us that y = —1, making y* undefined because the denominator
of our ratio, the quantity (4y+ 4), becomes 0. If x < —1 or x> 3, then yisn’t part of the real-
number relation at all, so the derivative can’t exist.
Now let’s work out x” (the derivative dx/dy). We've already morphed the equation of the
ellipse into the convenient form
9x* — 18x+ 4y + 8y=23
When we differentiate term-by-term with respect to y we have
dldy 9x*) — d/dy (18x) + d/dy (4y°) + d/dy (8y) = d/dy (23)
Applying the rules of differentiation including the chain rule when necessary, we get
18xx" — 18x"+8y+8=0
Adding the quantity (-8 — 8y) to each side, we get
18xx” — 18x" =—8 — 8y
The left side can be rewritten to give us
(18x— 18) x"=—8 — 8y
Dividing through by the quantity (18x— 18) with the restriction that x# 1, we get
x'=(-8-28y)) /(18x—18)=(—4—4y) / Ox—9)=(4y+4) / (9—-9x)

We've found dx/dy, but it’s defined only when —4 < y< 2. If y=—4 or y = 2, then the original
equation for the ellipse tells us that x =1, making x” undefined because the denominator of
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our ratio, the quantity (9 — 9x), becomes 0. If y < —4 or y > 2, then x isn’t in the relation at
all, so the derivative is meaningless.

Example: hyperhola

Consider the equation of a hyperbola centered at (xo,y,) = (1,—1), with a horizontal semi-axis
of 2 =2 units and a vertical semi-axis of 4 = 3 units. This hyperbola is graphed in Fig. 22-5,
and its equation is

(x= 172/ 4=(y+1)*/9 =1

Let’s find the domains for the two parts of this relation. The x-coordinate of the center is
xo = 1. The length of the horizontal semi-axis is 2 units. Knowing these things and examining
Fig. 22-5, we can see that the relation is defined only for values of x that are at least 2 units to
the left of xo, or at least 2 units to the right of x,. That is,

x<1—-2 or x=21+4+2

<« : > X
-#
AN Center is
Each axis A at (1,-1)
division a N
represents i E— %
1 unit £

Figure 22-5  Graph of the hyperbola for (x—1)*/4 —
(y+ 1)*/9 = 1. Each axis division represents
1 unit.
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which means we must have
x<—=1 or x=3

The y-coordinate of the center is y, = —1. The vertical semi-axis measures 3 units. When we
look at the graph, we can see that these facts, while interesting geometrically, don’t place any
restrictions on the domain of the relation when yis the independent variable. The relation that
maps y to x is defined for all real numbers y.

To find y’, let’s get the equation into a more workable form. Here, again, is the original
equation:

(x—12/4-(@p+1)/9=1
Multiplying through by 36 gives us
9 (x—1—4(y+1)*=36
Expanding the squared binomials produces
9(x*—2x+1)—4 (P +2y+1)=36
which multiplies out to
9x* — 18x+ 9 —4y*—8y—4=36
Subtracting 9 from each side and then adding 4 to each side, we get
9x> — 18x— 4y” — 8y =31
Differentiating this term-by-term with respect to x, we get
d/dx (9x*) — d/dx (18x) — d/dx (4y*) — d/dx (8y) = d/dx (31)
This works out to
18x— 18— 8yy’ — 8y’ =0
Adding the quantity (18 — 18x) to each side, we get
—8yy’ —8y’ =18 — 18«
The left side can be rewritten to give us
(-8y—8) y’ =18 — 18x
Dividing through by the quantity (—=8y— 8) with the restriction that y# —1, we get
7' =(18-18x)/ (-8y—8)=(9—-9x) / (-4y—4) = 9x—9) / (4y+4)

This expression has meaning only when x < —1 or x> 3. If x=—1 or x= 3, then the original
equation for the hyperbola tells us that y=—1, making y* undefined because the denominator
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of our ratio, (4y+4), is equal to 0. If =1 < x < 3, then yisn't part of the real-number relation,
so there can be no derivative.
Now let’s work out x”. We've already got the equation into a form that’s easy to work with:

9x* — 18x— 4y — 8y=31
When we differentiate term-by-term with respect to y we have
d/dy (9x*) — d/dy (18x) — d/dy (4y*) — d/dy (8y) = d/dy (31)
Working it out term-by-term yields
18xx" — 18x"—8y—8=0
Adding the quantity (8y+ 8) to each side, we get
18xx" — 18x"=8y+38
The left side can be rewritten to give us
(18x—18) x’ = 8y+8
Dividing through by the quantity (18x— 18) with the restriction that x# 1, we get
x"=(8y+8)/(18x—18) = (4y+4)/ (9x—9)

We've found dx/dy, and it’s defined over the entire set of real numbers 3. We can see this by
looking at Fig. 22-5. There’s no point on the curve for which its slope is parallel to the x axis.
The curve never passes through any point where x = 1, which would be necessary to get a zero
denominator in dx/dy.

Are you astute?

Let’s look again at the derivatives we've obtained for the unit circle, the ellipse, and the hyperbola in this
section. Have you noticed that they follow a pattern? For the unit circle, we got

Y ==xly
and
¥ =—ylx
For the ellipse, we found that
' =09-9%/(4y+4)
and

x'=(4y+4)/ (9-9x
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For the hyperbola, we derived
¥ =x—9) 1 (4y+4)
and
X' = (dy+4)/ (9x—9)

In each case, y” and x” are reciprocals of each other. These are not coincidences! Think about it. When we
work out y’, we're finding dy/dx. When we work out x”, we're finding dx/dy. When we write the derivatives
as ratios in this way, it’s easy to see that if both derivatives are defined, we have

dyldx = (dx|dy)™
and
dxldy= (dyldx)™

This principle is so reliable that you can use it to check your work whenever you're doing implicit differen-
tiation of an equation in two variables. Work out the derivatives both ways. You should always get mutual
reciprocals. If you don’t, you've made a mistake somewhere.

Are you confused?

You might wonder if 4y two-way relation involving positive integer powers of the variables can be reduced
to the standard form for a line, parabola, circle, ellipse, or hyperbola. The answer is no—at least, not if
either variable is raised to an integer power larger than 2. Make up some equations in which one or both
variables are raised to integer powers of 3 or larger, and then plot their graphs.

Ponder this!

Imagine the set of all possible two-way relations where the exponents of the variables are either 1 or 2, and
never anything else. It’s tempting to suppose that any such relation must represent a line, parabola, circle,
ellipse, or hyperbola. What do you think? Is this proposition true, or not?

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. C. The solutions in the appendix may
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

1. What type of curve does the following equation represent? Put the equation in standard
form for that type of curve. If the curve has a center, what are its coordinates? If the
curve has semi-axes, how long are they?

392 = 12x* — 48
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. What type of curve does the following equation represent? Put the equation in standard

form. If the curve has a center, where is it? If it has semi-axes, how long are they?

4" +y"+8x+2y+1=0

. What are the coordinates of the center of the circle represented by the following

equation? What's the radius of that circle?

2x% =288 — 297

. Determine the values of x and y for which the two-way relation stated in Prob. 1 is

defined. Then find y” and x”, and verify that they are reciprocals of each other.

. Determine the values of x and y for which the two-way relation stated in Prob. 2 is

defined. Then find y” and x”, and verify that they are reciprocals of each other.

. Determine the values of x and y for which the two-way relation stated in Prob. 3 is

defined. Then find y” and x”, and verify that they are reciprocals of each other.

. Look again at the equation for the unit circle

¥+y =1

and the derivatives we found for it. What are the two values of y” for x = 1/2? What are
the two values of x” for y = 2712

. Look again at the equation for the ellipse

(x—1)M4+@+1)9=1

whose graph is shown in Fig. 22-4. Examine the derivatives we found. What is y” for x=1?
What is x” for y=-12

. Look again at the equation for the hyperbola graphed in Fig. 22-5:

(x—12/4-(@p+1)/9=1

Examine the derivatives we found. What is y” when x=—-3?

Prove that for any specific value of x, the derivatives y” for the two-way relation
representing a circle centered at the origin, are always exact negatives of each other.
We must assume, of course, that the value we choose for x is part of the real-number
relation.
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The L’Hapital Principles

In this chapter, we'll learn how to evaluate limits using the /’Hépizal (pronounced lo-pi-TALL)
principles, named after the French mathematician Guillaume Francois Antoine de I'Hépital
(1661-1704), who described the rules in one of the first calculus textbooks ever written.
Sometimes you'll see his name spelled /’Héspital.

Expressions That Tend Toward 0/0

404

Imagine that we want to find the limit of a ratio in which both the numerator and the
denominator approach 0. This is an example of an indeterminate expression. We can't evaluate
0/0 directly, because it’s undefined. But we might be able to evaluate it indirectly.

How it works

If we want to find the limit of a ratio that tends toward 0/0, and if we can differentiate the
numerator and the denominator, then the limit of the ratio of the derivatives is the same as
the limit of the original ratio.

Imagine two functions f (x) and g (x) with three properties. First, f and ¢ are both differ-
entiable everywhere in some open interval around the point x = a (except maybe not exactly
at x = 4). Second,

Lim f(x)=0
and

Lim g(x)=0

x—a

Third, g’ (x) # 0 at every point within the defined interval where x # 4. If all three of these
conditions are met, then

ézg fx)/g(x)= 5@"3 [ (x)1g (x)
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Example

Let’s figure out the following limit, where the numerator and denominator both approach 0
as x approaches 1:

Lim (3x—3)/(x—1)
o1
If we name the numerator and the denominator
f(x)=3x-3
and
gx)=x—1
respectively, then our limit is of the form
Lim f()1g()
The derivatives are
fix)=3
and
gx) =1
The ’'Hépital rule for expressions that tend toward 0/0 tells us that
Lin )15 = Lin (91 )= Ly 31

The value of the final (rightmost) expression is obviously 3, no matter what happens to x.
Therefore, we know that

Lim 3x=3)/(x—1) =3
x—1

Applying the rule twice

Let’s scrutinize a more complicated limit in which the numerator and denominator both
approach 0 as x approaches 1:

Lim (3x*—6x+3)/(x* —2x+ 1)

x—1

If we name the functions

f(x)=3x"—6x+3
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and
g(x)=x"—2x+1
then the derivatives are
f(x)=6x-06
and
g (x)=2x-2
The 'Hépital rule for expressions that tend toward 0/0 tells us that
élj{z f(x)/g(x) = élff f(x) g (x) = é:nf (6x—06)/(2x—2)

This new expression, like the original one, approaches 0/0 as x approaches 1. The limit still
defies direct evaluation, but we can apply 'Hopital’s principle again. Let’s differentiate the
numerator and denominator a second time, getting

f7x)=6
and
g (x)=2
The 'Hépital rule now indicates that
Liy 91 ()= Lip £ 1) = Ly 2

This is equal to 3, no matter what happens to x. This third limit must be equal to the second
one we found, which in turn must equal the original one. Therefore

Lim (3x* —6x+3)/(x*-2x+1)=3

x—1

Are you confused?

Do you wonder if the 'Hépital rule a/ways leads to a resolution for the limit of an expression that tends
toward 0/0? The answer is no, it doesn’t. Sometimes a limit “runs away” toward positive or negative infinity
(or both!) when we try to apply the rule to it. In cases like that, we must conclude that the limit is infinite.

Here's a challengel!

Evaluate the following limit, where the numerator and denominator both approach 0 as x approaches 1.
If the limit is infinite, then say so.

Lim (5x—=5)/(3x" — 6x+ 3)

x—1
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Solution

If we name the functions

fx)=5x=5
and

g(x)=3x"—6x+3
then the derivatives are
fx)=5

and

g (x)=6x—06
Using the 'Hépital principle, we find that

Lim f(x)/g(x)= Lz‘rqz [ (x) g’ (x) = Lim 5/(6x—06)

x—1 x—1

The numerator in the final limit stays constant at 5, but the denominator approaches 0 as x approaches 1.
The absolute value of the quantity [ /' (x)/g’ (x)] therefore increases without bound as x approaches 1.
If we approach 1 from the left (values smaller than 1, but increasing) the ratio “runs away” toward nega-
tive infinity, but if we approach from the right (values larger than 1, but decreasing) the ratio “runs away”
toward positive infinity.

An important restriction

“Well,” you might say, “suppose we apply the 'Hépital rule to the above limit a second time?
Will that resolve it?” Let’s try it and see. The second derivatives of the functions are

f// (.X') =0
and
g// (.X') =6
producing the apparent result
Lim f'(x)/¢g’ (x)= Lim " (x)/g” (x) = Lim 0/6
x—1 x—1 x—1
This limit appears to be equal to 0. But this isnt a legitimate answer, because we have violated

a critical restriction on the use of 'Hopital’s rule. We must zever use this tactic to look for the
limit of an expression that obviously blows up as the variable approaches the limiting value.
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It was okay to use the 'Hépital rule the first time in the preceding “challenge,” because
we were faced with an expression that tended toward 0/0. But the second application of the
rule was inappropriate.

Expressions That Tend Toward +oo/+ oo

Now think of a limit where the numerator and the denominator both “run away” toward
positive or negative infinity. We can't work with infinity directly as if it were a number. But we
might be able to find the limit of such a ratio by differentiation.

How it works

This 'Hoépital principle is almost identical to the 0/0 version, except for a couple of changes
in the “numbers.” As before, suppose that f'and ¢ are functions of a variable x, and both func-
tions are differentiable over an open interval containing x = 4, except possibly at x = a itself.

Also suppose that

Lim f(x) =too
and

Lim g(x)=too
x—a

Here, the symbol ee means “positive infinity or negative infinity.” Furthermore, suppose that
¢’ (x) # 0 at every point in the defined interval where x # 4. If all these things are true, then

Lim f(x)Ig(x)= Lim [ (x)/g" (x)

Example

Let’s look at the limit, as x approaches 0 from the right, of the natural logarithm function
divided by the reciprocal function:

Lim (In x)/(x™")

x>0+
We can name the functions

f(x)=Ilnx
and

g)=x"

In this case, we have

Lim f(x)=—c0o and Lim g(x)=+oo

x—=0+ x—0+



Expressions That Tend Toward £oo/400 409

The derivatives are

=
and

¢ )=

Using the 'Hoépital principle for expressions that tend toward feo/teo, we find that
Lim f(x)/g(x)= Lim f'(x)/g" (x)= Lim x'/(—x7?)
x—0+ x—0+ x—0+
The last expression in the above equation is awkward, but it can be rewritten as
M (=x) = /x) I(=1/x») = (1/x) (—x*) = —x*Ix=—x

We can do these maneuvers without inadvertently dividing by 0. That’s because x, while it
might become vanishingly small, never actually equals 0. Now our limit is

Lim —x
x—0+

This expression tends toward 0, so we can conclude that

Lim (Inx)/(x)=0

x—0+

Another variant of the rule

Here’s a 'Hépital principle that can help us find the limit of an expression as the value of the
variable increases or decreases endlessly. Suppose that /" and g are functions of a variable x,
both functions are differentiable, and g’ (x) # 0 as x approaches positive or negative infinity.
Also, suppose that one of the following things is true:

Lim f(x)=0 and Lim g(x)=0

X—>+oo X —>+oo

Lim f(x)=0 and Lim g(x)=0
Lim f(x)=t2co and Lim g(x)=too
X—>+oo X —>+oo

Lim f(x)=xc0 and Lim g(x)=too
x—>—o0 x—>—o00

In any situation like this,

Lim f(x)Ig(x)= Lim [ (x)/g" (x)
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Another example

Let’s figure out the limit, as x is positive and increases without bound, of the ratio of the natu-
ral logarithm function to the exponential function:

Lim (In x)/e”
Xx—>+o0

We can name the functions
f(x)=Inx
and
glx)=¢"

The values of these functions both tend toward positive infinity as x increases without bound.
That is,

Lim f(x)=+c0 and Lim g(x)=-too
Xx—>+oo x—>too

The derivatives are

and

Applying the wisdom of 'Hépital, we find that
Lim f(x)Ig(x)= Lim )1 (x)= Lim x7 e
The rightmost expression can be rewritten as
x'e"=(1/x) (1/e*) = 1/(xe") = (xe*)™"
We must find
Lim (xe*)™!

x—>+o0

As x approaches positive infinity, both x and ¢* do the same, so the product x¢* tends toward
. . pp- . p .
positive infinity as well. The reciprocal therefore tends toward 0, so

Lim (Inx)/e*=0

xX—>+oo
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Are you astute?

Occasionally, you'll want to find the limit of a ratio that can be converted into another form and then
evaluated directly, even though it looks like it needs one of 'Hépital’s rules. If you think you can simplify
an expression before working out the limit, go ahead and try it! You might get a ratio that’s easier to man-
age, or an expression that doesn’t involve a quotient at all. For example, if you have a ratio where a vari-
able is raised to negative powers in both the numerator and the denominator, you can try to simplify the
expression with algebra before looking for the limit.

Other Indeterminate Limits

Occasionally, you'll encounter the limit of an indeterminate product, sum, or difference. If
such an expression can be converted to a ratio of the form 0/0 or Feo/teo, then you may be
able to use one of 'Hépital’s principles to evaluate it.

Expressions that tend toward 0 - (+o0) or 0 « (—o0)

Let’s examine the limit, as x approaches 0 from the left (that is, from the negative side), of the
product of the sine function and the reciprocal function:

Lim (sin x) (x71)
x—0—

In this situation, the sine function approaches 0 while the reciprocal function tends toward
negative infinity. We can rewrite the expression as a ratio to get

Lim (sin x)/x
x—0—

Now both the numerator and the denominator approach 0, so we can apply the 'Hépital rule
for the form 0/0. Let’s name the functions in our ratio

£(x) =sin x
and
glx)=x
The derivatives are
£ (x) = cos x

and

Zx)=1
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Therefore

fi’gd_ f(x)/g(x)= XLK(;”_ f(x) g (x) = nggi— (cos x)/1 = Lim (cos x)

x—=0—

The rightmost expression approaches 1 as x approaches 0 from the left. We have determined
that

Lim (sinx) (x ) =1
x—0—

Expressions that tend toward + oo — (+c)

Let’s work out the following limit of a difference in which both terms tend toward positive
infinity as x approaches 0 from the right (that is, from the positive side):

Lim 4x7' —4(e*— 1)

x—0+

Using algebra, we can rearrange the expression to get a ratio so our limit becomes

Lim (4de*—4 — 4x)/(xe” — x)

x—=0+

As x approaches 0 from the right, both the numerator and the denominator in the above
expression tend toward 0. We can apply the 'Hopital rule for limits of this form. Let’s call the
numerator and denominator functions

f(x) =4e"—4—4x
and
gx)=xe"—x
The derivatives are
[ (x)=4e¢"—4
and
g x)=e"+xe"—1
Therefore
xL_l>€n+ f(x)/g(x) = fiﬁ’i f(x) g (x) = xL_z)ﬁ (4e*—4) /(e + xe"— 1)

As x approaches 0 from the right, the numerator and denominator in the above ratio both
approach 0, so we must apply 'Hépital’s rule again. The second derivatives are

7 (x)=4e
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and
g (x) ="+ "+ xe" =2e" + xe”
Now we have
fogi f(x) g (x) = }:Li;(ﬁ 7 (x)1g” (x) = fiﬁ (4e*)/1Q2e* + xe¥)

As x approaches 0 from either direction, /" (x) approaches 4 and g” (x) approaches 2. We
have found that

Lim 4x'—4(e*—1)"'=4/2=2

x—=0+

Expressions tending toward +oco - 0, —co « 0, —o0 + (+00), +00 + (—o0),

or —oo — (—o0)

Whenever we see a limit whose expression tends toward positive infinity times 0, negative
infinity times 0, negative infinity plus positive infinity, positive infinity plus negative infinity,
or negative infinity minus negative infinity, we can convert it to a form we already know how
to work with, as follows:

* The form 4o - 0 is equivalent to 0 - (+eo)

* The form —eo - 0 is equivalent to 0 - (—eo)

* The form —eo + (+00) is equivalent to 4oo — (+o0)
* The form 4o + (—o0) is equivalent +oo — (+o0)

* The form —eo — (—o0) is equivalent to 4oo — (+o0)

Are you confused?

Don’t be flabbergasted by the way we bandy around the notions of positive and negative infinity (and
the symbols 4+e0 and —e) as if they’re real numbers. They're not, of course! But expressions like these are
convenient, even though they aren't technically rigorous.

Here's a challenge!

Evaluate the following limit, where the first term tends toward negative infinity and the second term tends
toward positive infinity as x decreases endlessly (that is, becomes large negatively without bound):

Lim x>+ x*

x—>—c0

Solution

Let’s use algebra to rearrange the expression to get a ratio. We can morph it like this:

=+ (D) T =2+ (1) = (e + 1) /(x7)
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Our limit can now be written as
Lim (x+1)/(x7)

x—>—o0

As xbecomes large negatively without bound, the numerator tends toward negative infinity while the denom-
inator tends toward 0. That means the ratio tends toward negative infinity, so we can conclude that

Lim x*+x*= Lim (x+ 1)/(x™%) =—o

X—>—00 X—>—00

Here's a lesson!

Perhaps the greatest challenge in regards to 'Hoépital’s rules is knowing when we can apply them to advan-
tage, and when we can’t. These principles are useful only when we encounter, or can derive, the limit of a
ratio that tends toward 0/0 or too/teo. In other situations, 'Hépital’s rules rarely work and should not be
used. If we apply them inappropriately, we will likely get invalid results.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. C. The solutions in the appendix may
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

1. Evaluate the following limit, where the numerator and denominator both approach 0 as x
approaches 0. (We can approach from the left or from the right; it doesn’t matter.) If the
limit is infinite, then say so.

Lz'ng (sin x)/(8x)

2. Evaluate the following limit, where the numerator and denominator both approach 0 as
x approaches 1 (from either side). If the limit is infinite, then say so.

Lim (6x* —12x+ 6)/(x* = 2x+ 1)

x—1

3. Evaluate the following limit, where the numerator and denominator both approach 0 as
x approaches 0 (from either side). If the limit is infinite, then say so.

Lim (12 sin x— 12x) /x°
x>

4. Evaluate the following limit, where the numerator and denominator both tend toward
positive infinity as x increases endlessly. If the limit is infinite, then say so.

Lim 7x/(In x)

x—>+eo
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. Evaluate the following limit, where the numerator and denominator both tend toward

positive infinity as x increases endlessly. If the limit is infinite, then say so.

Lim e*/x*
x—>oo

. Evaluate the following limit, where the numerator and denominator both tend toward

positive infinity as x approaches 0 from the right. If the limit is infinite, then say so.

Lim x7/x72
x—0+

. Evaluate the following limit. Compare it to the limit of the same expression as x

approaches 0 from the negative side, which we found equal to 1 in the chapter text.

Lim (sin x) x™'
x—0+

. Evaluate the following limit, where the first factor tends toward 0 and the second factor

tends toward negative infinity as x approaches 0 from the left. If the limit is infinite,
then say so.

Lim x°ln lxl
x—0—

. Evaluate the following limit, where both terms tend toward positive infinity as x

approaches 0 from the right. If the limit is infinite, then say so.

Lim 2x7'=3(e*—1)"

x—=0+

Evaluate the following limit, where both terms tend toward positive infinity as x
approaches 77/2 from the left. If the limit is infinite, then say so.

Lim sec x—tan x
x—/2-
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24

Partial Derivatives

In this chapter, we'll learn how to differentiate multi-variable functions with two or three inde-
pendent variables. When graphed, such functions require three or four dimensions, respec-
tively. We can draw three-dimensional (3D) graphs on a flat page or computer screen if we
include perspective. Four-dimensional (4D) graphs can’t be drawn, so we must rely entirely
on equations.

Multi-Variable Functions

416

As we've learned, a function is a special sort of mapping from the elements of one set (the
domain) to the elements of another set (the range). Until now, the domain of every func-
tion we've encountered has been a set of real numbers. But we can also have functions whose
domains are sets of ordered pairs or triples of real numbers.

Two inputs, one output

Imagine that we want to define the zpography (terrain) of a rolling prairie in terms of a func-
tion. We need three dimensions: east-west position, north-south position, and elevation. We
choose a starting point and call it the origin of Cartesian three-space in variables x, 3 and z.
At the origin, we assign x=0, y=0, and z= 0. That’s the ordered triple (x,52) = (0,0,0). We
define the coordinate axes like this:

* Positive values of x are east of the origin

* Negative values of x are west of the origin
* Positive values of yare north of the origin
* Negative values of y are south of the origin
* Positive values of z are above the origin

* Negative values of zare below the origin

For convenience, let’s say that z= 0 at sea level, so the x)-plane is at sea level within a few kilo-
meters of the origin, where we can ignore the curvature of the earth. Unless we're in a strange
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part of the world or somewhere underwater in the ocean, we'll always find that the elevation
z 1s positive.

Suppose that we wander around on the prairie and measure the elevation of the terrain
above the xj-plane as a function of our horizontal location in terms of x and y. We spend a
long time at this, taking down notes to make a detailed topographical map of the region. That
map represents a function f that maps ordered pairs (x,y) into values of z, so we can write

z=f(xy)

If we split the ordered pairs into individual real numbers, we can say that our function f has
two independent (input) variables, x and y. The dependent variable, z, is the output.

If £ is a true function, then there can never be more than one value of z for any particular
ordered pair (x,y). In our prairie analogy, this translates into “No outcroppings, no overhangs,
and no caves.” In the real world, most prairie regions fit that description.

A pure-mathematics example

Figure 24-1 illustrates the graph of a simple function with two independent variables. (Actu-
ally, this drawing shows only a few curves on the true surface, which resembles a tall, thin bowl
that extends infinitely upward.) This object is a paraboloid, which is what we get when we
rotate a parabola on its axis to create a two-dimensional surface. The domain of the function
is represented by the entire x)-plane. The range is the set of values on the z axis larger than a
certain minimum, represented by the apex or vertex of the paraboloid, or its lowest point. We
can envision curves on the paraboloid, formed by its intersection with various flat planes in
space. If we cut the paraboloid with a vertical plane, such a curve is a parabola. If we cut the
paraboloid with a horizontal plane, such a curve is a circle.

+Z
. Curve is
Curve IS para"el
parallel to xz-plane

to xy-plane —\
+y

-

T o B e e R o

1
. Jr
//// : z=1f(xy)
Curve is

-y parallel
to yz-plane
—Z
Figure 24-1 Graph of a two-variable function in Cartesian
xyz-space, showing some curves on the surface.
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The vertical-line test

If the axis of the paraboloid in Fig. 24-1 is parallel to the z axis, then the surface represents a
function of the variables x and y. If we call the function £, then

z=f(xy)

because there is never more than one output value z for any input pair (x,y). Do you remem-
ber the vertical-line test for a single-variable function? (If not, look back at Chap. 1.) We can
apply a similar rule to the graph of a two-variable function in xyzspace, as long as that graph
appears as a surface.

Imagine a straight, infinitely long vertical line parallel to the z axis. We move this line
around, so the point where it intersects the x)-plane sweeps through every possible ordered
pair (x,9). Our graph represents a function if and only if the movable vertical line never cuts
through the surface at more than one point. The paraboloid in Fig. 24-1 passes this test. Some
surfaces, such as a sphere, fail the test. They represent relations, but not true functions, in
Cartesian xyz-space.

Three inputs, one output

Lets perform a different experiment on the prairie. Imagine that we're no longer restricted to the
surface. We choose a starting point and call it the origin, as before. But this time, we make all
three of the variables x, j and zindependent. Their literal meanings are the same as before:

* Dositive values of xare east of the origin

* Negative values of x are west of the origin
* Dositive values of yare north of the origin
* Negative values of y are south of the origin
* Dositive values of z are above the origin

* Negative values of zare below the origin

The difference between this situation and the previous one is that our elevation (or altitude)
doesn’t depend on the location. Altitude is now an independent variable, along with the east-
west and north-south positions. Let’s say that the dependent variable is the wind speed, and
call it w. The value of w depends on where we are in space: the values of x, y and z. Any change
in x, y or z s likely to produce a change in w.

Suppose that we launch weather balloons from numerous places all around the prairie. The
balloons rise into the air, reaching various east-west positions, north-south positions, and altitudes.
Each balloon has a weather-monitoring device with a radio transmitter that sends us wind-speed
data for points (x,2) scattered around in the sky. We check all this data at 12:00 noon, local time,
on a certain day. Then we compile the data to get points in a relation g such that

w = g (%52)

This relation ¢ maps ordered triples (x,%2) to a fourth number, represented by the variable w.
In the real world, ¢ must be a true function. We can’t have more than one wind speed at any
single point at noon on the day of our experiment. There’s never more than one value of w for
any particular ordered triple (x,%2).
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What about time?

If we add another independent variable to the mix—time, represented by /—we’ll get a func-
tion of four variables, with inputs consisting of ordered quadruples (x,y.z,7) and the dependent
variable w. The inclusion of time as a variable makes our experiment more difficult, because
we must take wind-speed readings from our weather instruments at frequent intervals, not
only at noon. These added tasks complicate our function, and the larger amount of data com-
plicates any graph that we try to create. Such a graph would occupy five dimensions: east-west
position, north-south position, altitude, time, and wind speed!

Are you confused?

We can't easily envision a vertical line test in the weather-balloon scenarios we've just described, because
we're working in more than three dimensions. Any “vertical line” is perpendicular to each of the independent-
variable axes, and parallel to the dependent-variable axis Cartesian four-space or Cartesian five-space.

To see if a relation with three or more independent variables is a true function, we must rely on math-
ematics and intuition. Sometimes this is easy, and sometimes it’s hard. We know that it’s impossible to have
more than one wind speed at any place and time. But in a pure-mathematics situation with no physical
analogy, it can be difficult to test a relation to see if it’s a true function.

Two Independent Variables

If we want to find the derivative of a function £ (x,y), we can try to differentiate f with respect
to xalone or with respect to yalone. If we're successful, the results are called partial derivatives.
If it’s impossible to find both of the partial derivatives, then we must conclude that f'(x,y) isn’t
entirely differentiable.

“Slope” of a surface at a point

Examine Fig. 24-1 again. Imagine that we want to find the slope at a particular point on the
surface. On most surfaces, there are infinitely many tangent lines at any specific point. All of
those lines lie in a single tangent plane. The surface “rests on” the tangent plane the way a ball
rests on a floor.

If we want to fitlly define the “slope” of a surface at a point, we must define the orientation
of the plane tangent to the surface at that point. This can be done by calculating the direction
numbers of a line passing through the point perpendicular to the tangent plane. That’s a little
complicated, but we don’t have to worry about it here.

We can partially define the “slope” of the surface at a point by cutting through that surface
with a flat plane perpendicular to any of the three coordinate axes. When we do that, we get
curves. Note that:

* Any plane perpendicular to the y axis is parallel to the xzplane.
* Any plane perpendicular to the x axis is parallel to the yz-plane.
* Any plane perpendicular to the zaxis is parallel to the x)-plane.
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If we have z= f (x,y), then were interested in planes of the first or second types. A plane of
the first type lets us define zas a function of x for some fixed value of 5. A plane of the second
type allows us to define z as a function of y for some fixed value of x. If both of these partial
functions are differentiable, we can find the partial derivatives of £ (x,y).

Derivative with respect to x

Let’s slice the surface in Fig. 24-1 with a flat plane parallel to the xz-plane. There are infinitely
many such planes to choose from, all perpendicular to the y axis and passing through some
point on that axis. Any plane that intersects the surface does so along a curve. If we select one
of the planes parallel to the xz-plane and stay within it, then we can find the derivative dz/dx
for the intersection curve in that plane. Figure 24-2 illustrates an example. If we select another
plane parallel to the xz-plane, then we can find dz/dx for the new curve.

We can find the general partial derivative of f with respect to x if we treat yas a constant.
(This can be tricky, because we're used to thinking of y as a variable.) General partial deriva-
tives are written like the general derivatives of single-variable functions, but using a “curly &’
instead of an ordinary d to represent a differential. We can write the general partial derivative
of f'with respect to x in any of the following ways:

0z/dx
of (x,y)/0x
of1ox
0/0x f (x,y)
0lox f
+z
o Curve is
Line is parallel
in same to xz-plane
plane as
curve

+X

0z/0x

t int P
atpom z=f(xy)

but we treat y
as a constant

Figure 24-2  Graph showing a partial derivative of z= f (x,y)

with respect to x at a point P on the surface.
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If we select a point P on the curve, then we can figure out the slope of the line through P
tangent to the curve in a plane perpendicular to the yaxis. This is a partial derivative of f with
respect to x at the point 2

Derivative with respect to y

Now suppose we take the surface shown in Fig. 24-1 and slice it with a flat plane parallel to
the yz-plane. Once again, there are infinitely many such planes. They are all perpendicular
to the x axis, and they all go through some point on that axis. As before, any such plane
that intersects the surface does so along a curve. If we choose one of these planes and work
entirely in it, then we can find dz/dy for the curve where the plane and the surface intersect.
If we move our reference plane back and forth, always keeping it parallel to the yzplane and
perpendicular to the x axis, we get other curves with other derivatives. Figure 24-3 shows

one such scenario.
If we treat x as a constant, we can work out the general partial derivative of f with respect

to ». In the situation we're dealing with now, we can write the partial derivative of f with
respect to y in any of these formats:

0z/dy
of (x,)/dy

of1dy
919y f (%)

2y f
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to yz-plane
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plane as v
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z=1f(xy)
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as a constant

-y

0z/0y / '\'\

at point Q -z

Figure 24-3 Graph showing a partial derivative of z= f'(x,y)
with respect to yat a point Q on the surface.
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If we choose a particular point Q on the curve, then we can figure out the slope of the line
through Q tangent to the curve in a plane perpendicular to the xaxis. This is a partial deriva-
tive of f with respect to yat P

Example

Let’s look at a simple function in which the domain is a set of real-number ordered pairs (x,y),
and the range is a set of real numbers z. We will derive the general partial derivatives 0z/dx
and dz/dy. Here’s the function:

z=f(xy) =xy’

To differentiate f with respect to x, we treat y as a constant and x as the independent variable.
Because y is a constant, so is . The partial derivative with respect to x is therefore

dz/0x=3x%y°

To differentiate f with respect to y we treat x as a constant and y as the independent variable.
Because x is a constant, so is x”. The partial derivative with respect to y is therefore

dz/dy=5xy"

Are you confused?

Do you wonder which rules for single-variable differentiation also work for partial differentiation? Two
of the rules that we learned in Part 1 can be expanded to create three tools that can help us find partial
derivatives.

The multiplication-by-constant rule for partial derivatives says:

o If we take the partial derivative of a multi-variable function affer it has been multiplied by a con-
stant, we get the same result as we do if we take the partial derivative of the function and then
multiply by the constant, as long as we differentiate with respect to the same variable both times.

The sum rule for partial derivatives tells us this:

o The partial derivative of the sum of two or more multi-variable functions is equal to the sum of
their partial derivatives, as long as all the partial derivatives are found with respect to the same
variable.

We can combine these two rules to obtain the difference rule for two partial derivatives, which says:

o The partial derivative of the difference between two multi-variable functions is equal to the differ-
ence between their partial derivatives, as long as both partial derivatives are found with respect to
the same variable, and as long as we keep the subtraction in the same order.
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Another example

Let’s derive the general partial derivatives dz/0dx and dz/dy for the two-variable polynomial
function

z=f(xy) =5% + 2x°y" + 4xy’

To differentiate with respect to x, we treat y as a constant. The derivative of the first term with
respect to x is easy to find, because y doesn’t appear there at all; it’s 25x*. In the second term,
x* is multiplied by the product of 2 and 7, so its derivative with respect to x is equal to 2x
times 2y, which is 4xy. In the third term, x is multiplied by the product of 4 and ¥, so
its derivative with respect to x is equal to 1 times 4y, which is 4y’. When we add these three
derivatives, we get

0z/dx=25x" + dxy? + 4y

To differentiate f (x,y) with respect to 3 we hold x constant. The derivative of the first term

with respect to yis 0. That’s because xis a constant, so 5x° is also a constant, and the derivative

of a constant is always 0. In second term, 2x is a constant, so the derivative with respect to y is

equal to 2x* times —2y~, which is —4x°y~. In the third term, 4x is a constant, so the derivative
ith i | to 4xti 2, which is 12xy?. Adding th |

with respect to y is equal to 4x times 3%, which is 12xy”. ing these results, we get

0z/0y =0+ (—4x7y7) + 12xy° = —4x°y~ + 12xy°

Here's a challenge!

For the function stated in the last example, find the derivative with respect to xat the point (x,y) = (1,-2).
Mathematically, we write this as

0/9x (1,-2)
Then find the derivative with respect to y at the point (x,y) = (2,3), which we formally write as

0/9y (2,3)

Solution

To find 9/0x (1,-2), we plug in the values x=1 and y=—2 to the general derivative formula
0z/0x=25x" + 4y + 4y
Working out the arithmetic, we obtain

0/0x(1,-2)=25-1"4+4.1.(=2)2+4.(-2)>=25+1+(-32)=-6
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To find 9/dy (2,3), we plug in x=2 and y= 3 to the general derivative formula
0z/0y=—4x"y> + 12x)°
The arithmetic yields

910y (2,3)=—4-2%-37°4+12.2-32=-16/27 + 216 =5,816 / 27

Three Independent Variables

If we want to differentiate a function that has three independent variables, say w = g (x,32),
we can try to differentiate with respect to x, with respect to y or with respect to z. If we suc-
ceed at these tasks, we obtain partial derivatives. If it’s impossible to find all three of the partial
derivatives, then gis not fully differentiable.

Derivatives with respect to x, y, and z

We can find the general partial derivative of a function w = g (x,5z) with respect to x if we
treat both yand z as constants. It’s written in one of these ways:

dw/dx
dg (x,2)/0x

dg/dx
0/0x g (x,2)

d/dx g

The same thing can be done with the other two independent variables. If we hold x and z
constant, we can find the partial derivative with respect to 3. If we hold x and y constant, we
can work out the partial derivative with respect to z. The same notations as those above can
be used for these partial derivatives. Simply replace every occurrence of dx with either dy or

0z, as applicable.

Example
Let’s find dw/dx, dw/dy, and dw/dz for the following function g The domain is a set of real-
number ordered triples (x,%2), and the range is a set of real numbers w.

w=gxyz)=xy"7

To figure out dw/dx, we hold yand z constant and let x be the independent variable. When we
do that, y'2* is a constant, because it’s the result of arithmetic operations on other constants.
The derivative with respect to x is therefore

dw/dx=3x"y "'z
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To find dw/dy, we keep x and z constant and think of y as the independent variable. In that
case, x°z* is a constant, so we have

owldy=—x"y’z

To determine dw/dz we hold x and y constant and consider z as the independent variable.
This means that x’y' is a constant, so we obtain

dwldz=2x"y"z

Another example

Now we'll find dw/0x, dw/dy, and dw/dzfor a more complicated function 4. The domain is, as
before, a set of real-number ordered triples (x,3%2), and the range is a set of real numbers w.

w=h(xpz)=2ey e+ 4xyz

To figure out dw/dx, we hold y and z constant and think of x as the independent variable.
In the first term, y~¢” is a constant, so the derivative with respect to x is 2¢*y ¢ In the
second term, yz is a constant, so the derivative with respect to x is 4yz. Adding these two
results gives us

dwldx=2e*y*e* + 4yz

To find dw/dy, we keep x and z constant, while y is the independent variable. The first term
has the constant 2e%¢, so its derivative with respect to y is —4¢*y ¢ In the second term, 4xz
is a constant, so the derivative with respect to y is 4xz. Adding, we get

dwldy=—4e*y " + 4xz

To figure out dw/dz, we hold x and y constant and let z be the independent variable. In the
first term, 2™~ is a constant, so the derivative with respect to z is 2¢*y ¢ In the second
term, 4xy is a constant, so the derivative with respect to z is 4xy. Adding yields

dwldz=2e"y*e* + 4xy

Are you confused?

Do you wonder what happens when y = 0 in either of the previous examples? In both situations, there’s
a factor where y is raised to a negative-integer power, so if we input y= 0, we get an undefined quantity.
Both functions have singularities. Because neither gnor 4 is defined at any point where y=0, none of their
partial derivatives are defined at such points.
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Here's a challengel!

Find all three partial derivatives at the point (x,%2z) = (2,3,4) for the function in the first example we
worked out above:

w=gxpz) =xy 'z

Solution

To work out 9/dx (2,3,4), we input x=2, y=3, and z= 4 to the general partial derivative dw/dx. That
derivative is

dw/dx=3x"y"2*
Working out the arithmetic, we get
0/0x(2,3,4)=3.22.3".4*=3.4.(1/3) - 16 =064

To find 9/dy (2,3,4), we input x=2, y=3, and z=4 to the general partial derivative dw/dy. That deriva-
tive is

dwldy=—x"y’z
When we work out the arithmetic, we get
0/dy (2,3,4)=—(2% - 37%.4*=-8 . (1/9) - 16 =—128/9
To calculate 9/0z (2,3,4), we input x= 2, y= 3, and z= 4 to the formula for dw/dz. That derivative is
dwldz=2xy"z
Doing the arithmetic, we obtain

0/0z(2,3,4)=2-2°.3".4=2.8.(1/3) - 4=064/3

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. C. The solutions in the appendix may
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

1. Look back at Fig. 24-1. Suppose that we call y the dependent variable, so the surface
defines

y=g(%z2)

where x and zare the independent variables. Is ga true function? Why or why not?
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. In Fig. 24-1, suppose that we call x the dependent variable, so the surface defines

x=h()2)

where yand zare the independent variables. Is 4 a true function? Why or why not?

. Consider the following function, in which the domain is a set of real ordered pairs (x,y),

and the range is a set of real 2’s. Find the general partial derivative dz/0x.

z=f(xy) =—x"+2xy+ 4y

Find the general partial derivative dz/dy of the function stated in Prob. 3.
For the function stated in Prob. 3, find d/dx (1,1) and d/dy (1,1).
For the function stated in Prob. 3, find d/dx (—2,—3) and d/dy (-2,-3).

Consider the following function, in which the domain is a set of real ordered triples
(x,3:2), and the range is a set of reals w. Find the general partial derivative dw/dx.

w=g(x5z) =xylnlzl — 2%z

. Find the general partial derivative dw/dy of the function stated in Prob. 7.
. Find the general partial derivative dw/0z of the function stated in Prob. 7.

10.

For the function stated in Prob. 7, find these three specific partial derivatives:

0/0x (—=1,2,¢)
0/0y (-2,-1,2¢)
0/9z (1,-2,0)
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Second Partial Derivatives

We can differentiate single-variable functions more than once, as we have seen. The same is
true with multi-variable functions. In this chapter, we'll learn how to partially differentiate
two-variable and three-variable functions twice in succession.

Two Variables, Second Partials

428

Imagine a function fof two real-number input variables x and j giving us a real-number
output z:

z=f(xy)

We can differentiate /" twice with respect to x or twice with respect to j getting new functions
of those variables. The new functions are called simple second partial derivatives, or second
partials.

Second partials relative to x or y

To determine the second partial of f with respect to x, we must treat y as a constant, dif-
ferentiate with respect to x as we learned to do in Chap. 24, and then differentiate with
respect to x again. The second partial of /" with respect to x can be denoted in any of the
following ways:

0°z/0x"
°f (x,9)/0x

O’ flox’
9°10x" f (%)

*10x* f
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If we treat x as a constant, then we can generate the second partial of / with respect to y. First,
we work out dz/0dy, and then we differentiate that function with respect to 3 This second
partial can be represented by any of the following expressions:

d°z/0y*
°f (x,)/0y*

d’floy*
9°19y* f (x,y)

9’19y* f

We'll use the first notations in these lists, assuming that the independent variables are x and y
and the dependent variable is z.

Example

Let’s find both of the second partials, 0*z/dx* and 0°z/dy*, of the monomial function
z=f(xy) = x3y5
We worked out the first partial with respect to x in Chap. 24 by holding y constant, getting

dz/dx = 3x*y°

To find the second partial with respect to x, we keep holding y constant, and then we differ-
entiate with respect to x again. Because y is a constant, so is ys. Therefore

0°z/0x* = 6xy°

The first partial with respect to  as we found in Chap. 24, was derived by holding x constant
and differentiating with respect to 3. We obtained

dz/dy = 5x°y*

To figure out the second partial with respect to 3 we keep treating x as a constant and differ-
entiate relative to y again. Because x is a constant, so is 5x°. Therefore

9°z/dy* = 20x°y’

Are you confused?

It’s reasonable to wonder whether the multiplication-by-constant rule, the sum rule, and the difference
rule for first partial derivatives also apply to second partials. They do, under certain conditions.
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The multiplication-by-constant rule for second partials says:

* Ifwe take the second partial of a multi-variable function affer it has been multiplied by a constant,
we get the same result as we do if we take the second partial of the function and #hen multiply by
the constant, as long as we differentiate with respect to the same variable throughout the process.

The sum rule for second partials says:

* The second partial of the sum of two or more multi-variable functions is equal to the sum of their
second partials, as long as all the partial derivatives are found with respect to the same variable.

The difference rule for second partials says:

* The second partial of the difference between two multi-variable functions is equal to the differ-
ence between their second partials, as long as we differentiate with respect to the same variable
throughout the process, and as long as we keep the subtraction in the same order.

Another example

Let’s derive the second partials 0°z/dx* and 9°z/dy* of the polynomial function
z=f(xy) =5% + 25"y + 4xy’
In Chap. 24, we differentiated this function term-by-term with respect to x to get the first partial
0z/0x=25x" + 4xy~* + 4y°

Let’s continue to hold y constant and differentiate with respect to xagain. In the first term, the
constant is 25. In the second term, the constant is 4y . The third term is a pure constant, 4y°,
so it will disappear when we differentiate it with respect to x. Working through, we get

9°z/0x* =100x" + 4y~ + 0 = 100x° + 4y~
The first partial of the original function fwith respect to  as we found in Chap. 24, is
0z/0y=—4x"y" + 12xy*

We keep treating x as a constant, and we differentiate the first partial relative to y In the first
term, —4x” is a constant. In the second term, 12xis a constant. We therefore have

0*z/0y* = 12y + 24xy

Here's a challengel!

For the original function f in the example we just finished, find the specific second partial with respect to x
at the point (x,y) = (1,-2). We denote this as

*9x* (1,-2)
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Then find the specific second partial with respect to y at the point (x,y) = (2,1). We denote this as

1y (2.1)

Solution

To find the second partial with respect to xat (1,-2), we input x= 1 and y=-2 to the general formula
0%z/0x* = 100x° + 452
Calculating, we get
995 (1,-2) =100 - 1 + 4 - (<2)2=100+ 1 = 101
To find 9°/dy* (2,1), we input x =2 and y =1 to the general formula
2z/0y* = 12x*y™* + 24xy
The arithmetic gives us

y* (2,1)=12-2*-17%+24.2.1=48+48=96

Two Variables, Mixed Partials

Once again, let’s consider a function f of two real-number inputs x and j giving us a real-
number output z, so

z=f(xy)

We've seen what happens when we differentiate f/'twice with respect to x or 3. But we can dif-
ferentiate f with respect to x and then differentiate dz/dx relative to y Alternatively, we can
differentiate f relative to y and then differentiate dz/dy relative to x. If we do either of these
things, we get a general mixed second partial derivative, also called a mixed partial.

Differentiating with respect to x and then y

When we work out the mixed partial of fwith respect to xand then y we can write the result as
0/9y (0z/0x)

assuming, of course, that we use the names of the function and the variables so that

z=f(xy)



432 Second Partial Derivatives

This same mixed partial can be denoted in other ways, too, such as:

0°z/0y0dx
9’ (x,y)/dyox

d*f1dyox
9°19ydx f (x,y)

*1dyox f

Are you confused?

In the denominators of the above differential ratios, the variables appear in reverse order from the way the
differendiation is done. Although we differentiate with respect to x and then with respect to 3 the denomi-
nator says dydx. This is nothing more than a notational convention, but it can be confusing.

Differentiating with respect to y and then x

We can go the other way as well. First, we work out dz/dy and then we differentiate that
function with respect to x. This second partial can be represented by any of the following
expressions:

0/0z (0x/9y)
0°z/dxdy
9°f (x,)/90xdy
9°f10xdy
9°10xdy f (x,y)
9°/0xdy f

Again, the variables in the denominators of the differential ratios appear backward from the
way we do the differentiation. We differentiate with respect to y and then x, but the denomi-
nator says 0x0y.

Example

Lets find the two mixed partials, 0°z/dydx and 0°z/dxdy of a function that we've worked
with before:

z=f(xy) =¥y’

To find 9°z/dydx, we differentiate f with respect to x, and then differentiate the resulting
function with respect to y. The first partial derivative with respect to x is

dz/dx=3x7y°
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To differentiate relative to 3 we hold x constant in dz/dx. That makes 3x” a constant, so we
have

0*z/dydx= 15x"y"

To find 9°z/0xdy, we differentiate frelative to 3 and then differentiate the resulting function
relative to x. We've already seen that

dz/dy=5xy"*

To differentiate with respect to x, we hold y constant in dz/0y. That means y4 is a constant,
)

0’ z/dxdy = 15x"y"

The two mixed partials are the same. Do you think this is mere happenstance? Let’s try another
example and see if the coincidence occurs again.

Another example

Lets find the two mixed partials, 0°z/dydx and 0°z/dx0dy, of the trinomial function we've
worked with before:

z=f(xy) =5x" + 2x*y 7" + 4xy°
The first partial relative to x, which we've already found, is
0z/0x=25x" + 4xy~* + 4y°
Now we hold x constant in dz/dx and differentiate with respect to y getting
0°z/0ydx=0—8xy~> + 12y° =—8xy + 12y°
To find 9°z/0xdy, we differentiate relative to y and then relative to x. We've seen that
0z/0y=—4x"y” + 12xy’
To find the derivative of this function with respect to x, we hold y constant, getting
0°z/0xdy=—8xy~> + 12y°
The two mixed partials are the same again!

A theorem

If you like, make up several two-variable functions and find their mixed partials “both ways.”
If you work out all the derivatives correctly, you'll see that the mixed partials are always the
same, regardless of which variable you differentiate against (that is, with respect to) first.
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Mathematicians have proved that this is always the case. Ifs an important theorem in the
calculus of two-variable functions.

Here's a challengel!

For the original function f in the example we just finished, calculate the value of the mixed partial

0°z/dy0x at the point (x,y) = (3,1). We denote this as
9%/dydx (3,1)
Then find the value of the mixed partial 0*z/0xdy at the point (x,5) = (2,0), written as

9*/19xdy (2,0)

Solution
To find 0°/dydx (3,1), we input x=3 and y=1 to the general formula

0°z/dydx=—8xy~ + 12y*
The arithmetic yields
0%dydx (3,1)=-8-3-1°+12. 1?’=-24+12=-12
To find 0*/dxdy (2,0), we plug in x=2 and y= 0 to the general formula
0°z/0xdy=—8xy~> + 12y*
The arithmetic gives us
0*0xdy (2,0)=-8-2-0°+12.0°

The first term contains 0 to the —3 power. That’s undefined, so the entire expression is undefined at the
point (x,y) = (2,0). In fact, the mixed partials are undefined at any point where y= 0.

Three Variables, Second Partials

Let’s see what happens when we differentiate a three-variable function twice. As we did in
Chap. 24, let’s name the function and variables

w= g (%),2)

We can try to differentiate twice with respect to x, twice with respect to y or twice with respect
to z. If all the functions are differentiable, we will obtain second partials.
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Second partials with respect to x, y, or z

We can find the second partial of gwith respect to x if we treat both y and z as constants, and
then differentiate against x twice in succession. The expression for this second partial can be
written in any of these forms:

0*w/ox*
0°g (x%,,2)/0x"

d’g/ox’
9°10x g (x,9,2)

0’10’ g

If we hold x and z constant, we can find the second partial with respect to 3 and denote it in
any of these ways:

d*wldy*
d’g (x,,2)19y*

d°gldy*
9°19y* g (x,3,2)

d°19y* ¢

If we hold x and y constant, we can find the second partial relative to z. As you can guess, we
can denote this in any of the following formats:

*wloz?
g (x,5,2)/0z”
0°gloz?
9°10z° g (x,9,2)
9°/0z* ¢

As we did earlier in this chapter, we will use the first notations in these lists, remembering that
we're calling x, y and z the independent variables, while w is the dependent variable.

Example

Let’s find 9°w/dx?, 0*w/dy*, and 9*w/dz* for the function we worked with in the first three-
variable example in Chap. 24:

w=gxpz)=xy"'z

We found dw/0x by treating y and z as constants and differentiating the function relative to
x. That gave us

Jdwlox=3x"y "'z’
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Continuing to hold y and z constant, we can differentiate with respect to x again, getting
*wldx* = 6xy~'z*
We determined dw/dy by holding x and z constant. Differentiating against 3 we got
owldy=—x"y 7>
When we keep treating x and z as constants, differentiating relative to y again yields
F*wldy* =2x"y 7z’
We figured out dw/dz by holding x and y constant and differentiating against z, getting
dwldz=2x"y "'z
Maintaining x and y as constants, we can differentiate against z again to get

Fwldz* =2xy™"

Another example

Now we'll find 0°w/dx?, 0*w/dy?, and 9*w/dz* for the function we worked with in the second
three-variable example in Chap. 24:

w=h(xpz)= Zexy’zez + 4xyz

The first partial of the original function relative to x is

dwldx=2ey e+ 4yz
We keep holding y and z constant, differentiating with respect to x again to get

Pwlox® =2e"y "+ 0 =2¢ey 2e*

The first partial of the original function relative to y is

dwldy=—4e"ye* + 4xz
Continuing to hold x and z constant, we differentiate relative to y again, obtaining

QPwldy? = 12¢y "+ 0 = 12¢%ye”

The first partial of the original function relative to zis

dwldz=2e"y*e* + 4xy
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If we keep treating x and y as constants, differentiating against z again gives us

Pwldz* =2ey "+ 0 =2eye*

Are you confused?

It’s easy to become frustrated by the fancy notation in expressions such as those we've been working with
in this chapter. The situation is rarely as complicated as it looks. Remember these things, and you'll have
a minimum of trouble.
*  Once you decide which variable youre differentiating against, then any combination of the other
variables should be treated as a constant, just as if it were a real number.
* The derivative of a constant times the variable you're differentiating against is always equal to that

constant, all by itself.
* The derivative of a constant alone is always equal to 0.

Here's a challengel!

Find all three simple second partials at the point (x,%2) = (2,3,4) for the function in the first example we
worked out above:

w=g(xpz)=xy "2

Solution
To work out 8*/dx* (2,3,4), we input x=2, y=3, and z=4 to

*wldx* = 6xy~'z*

Doing the arithmetic, we get
*/0x* 2,3,4)=6-2-3".4=6-2.(1/3) - 16 =64

To find 9%/0y* (2,3,4), we input x=2, y=3, and z=4 to

Fwldy’ =2xy 7z’
Calculating, we obtain

9°1dy* (2,3,4)=2-2°.37.4=2.8.(1/27) - 16 =256/27

To determine 9°/dz” (2,3,4), we input x=2, y= 3, and z=4 to

Fwldz® =2x"y"
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Working it out, we get

0*/0z* (2,3,4)=2-2°-3"=2.8.(1/3) =16/3

Three Variables, Mixed Partials

When we differentiate a three-variable function twice, we can differentiate against one vari-
able and then another. In that case, we get a mixed partial.

Six ways to mix

There are six different ways we can find mixed second partials of a three-variable function.
Here they are, along with the notations. Lets call the independent variables x, y and z, and
le’s call the dependent variable w.

* We can differentiate against x and then y to get 0*w/dydx.
* We can differentiate against x and then z to get 9°w/dzdx.
* We can differentiate against y and then x to get 0*w/dx0y.
* We can differentiate against y and then z to get 0*w/dzdy.
* We can differentiate against z and then x to get 9°w/dxdz.
* We can differentiate against zand then yto get d*w/dydz.

Are you confused?

As with mixed partials in two-variable functions, the sequence of differentials in the denominators can be
misleading. Don’t be fooled! They go in the opposite order from the way we usually read text. For example,
0’w/dz0y means that we differentiate with respect to y first, and then with respect to z.

Example

Let’s look again at the monomial function g for which we found the simple second partials.
This time, we'll determine all six of the mixed second partials. Here’s the original function for
reference:
_ _ 312
w=gxpz)=xy"'z
The first partial of the original function relative to x is
dwlox=3x"y"'2*

To differentiate dw/dx against y we hold x and z constant, getting

*wldydx=—-3x"y "z’
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To differentiate dw/dx against z, we hold x and y constant, getting
*wldz0x=6x"y 'z
The first partial of the original function relative to yis
dwldy=—x"y "z’
To differentiate dw/dy against x, we hold y and z constant, getting
*wldxdy=—3xy 2"
To differentiate dw/dy against z, we hold x and y constant, getting
’wldzdy=-2x"y "’z
The first partial of the original function relative to zis
dwldz=2x"y"'z
To differentiate dw/dz against x, we hold y and z constant, getting
’wldxdz=6x"y 'z
To differentiate dw/dz against 3 we hold x and z constant, getting

’wldydz=-2x"y "’z

Here's a challengel!

Find the six mixed second partials for the binomial three-variable function 4 that we've worked with a
couple of times already. Here’s the function again, for reference:

w = h(xpz) =2+ 4xyz

Solution

This problem is a little bit tedious, but it’s tricky. We have many opportunities to make a mistake, but only
one way to get it right! The first partial of the original function relative to x is

dwldx=2ey e+ 4yz
To differentiate dw/dx against 3 we hold xand z constant to get

*wldydx=—4e"y e+ 4z
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To differentiate dw/dx against z, we hold x and y constant to get
*wldzdx=2ey " + 4y
The first partial of the original function relative to yis
Qwldy=—4e*y e + 4xz
To differentiate dw/dy against x, we hold y and z constant to get
Pwldxdy=—4e"ye* + 4z
To differentiate dw/dy against z, we hold xand y constant to get
*wldzdy=—4e"y e + 4x
The first partial of the original function relative to zis
dwldz=2ey " + 4y
To differentiate dw/dz against x, we hold y and z constant to get
’wldxdz =2y e + 4y
To differentiate dw/dz against 3 we hold xand z constant to get

Fwldydz=—4e*y e + 4x

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. C. The solutions in the appendix may
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

1. Consider the following function, in which the domain is a set of real ordered pairs (x,y),

and the range is a set of reals z. Find the second partial 0*z/dx".

z=f(xy) =—x"+2xy+4y°

2. Find the second partial 0°z/dy* of the function stated in Prob. 1.

3. Find the specific second partials 9°/0x* (3,2) and 0*/dy* (3,2) of the function stated in
Prob. 1.
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. Find the mixed second partial 0*z/dydx of the function stated in Prob. 1.

5. Find the mixed second partial 0*z/dxdy of the function stated in Prob. 1.

. Find the specific mixed partials 0*/0ydx (3,2) and 9°/dxdy (3,2) of the function stated

in Prob. 1.

. Consider the following function, in which the domain is a set of real ordered triples

(x,,2), and the range is a set of reals w. Find 0°w/dx?, 9*w/dy?, and 9*w/dz".

w=g(x3z) =xyln |zl = 2x7y°z*

. For the function stated in Prob. 7, find these three specific second partials:

0%/9x? (—1,2,¢)
9°19y* (=2,—1,2¢)
0%/9z* (1,-2,0)

. Find all six mixed second partials for the function stated in Prob. 7.

10.

Find all six specific mixed second partials for the function stated in Prob. 7, at the point
where (x,5%2) = (1,2,¢).
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26

Surface-Area and Volume Integrals

In Part 2, we used integration to find areas of flat surfaces. Integration can also help us deter-
mine surface areas and volumes of solids in three dimensions (3D). In this chapter, we'll see
how this technique works with cylinders, cones, spheres, and prisms.

A Cylinder

442

Figure 26-1 shows a cylinder in Cartesian three-space. The cylinder is lying on its side, so
its left-hand face is in the yz-plane, with the center at the origin. The axis of the cylinder lies
along the x axis. The right-hand face is / units to the right of the left-hand face. The radius is .
This is a right circular cylinder, meaning that the end faces are circles oriented at right angles
to the axis.

Circumference vs. displacement

Imagine that we uniformly slice the outer shell into cylindrical cross-sectional bands,
each of width Ax. We increase the number of bands indefinitely, so their widths become
infinitesimals dx and they approach true geometric circles. These circles all lie in planes
parallel to the end faces, and they all have radius » Their circumferences are therefore
equal to 27z7. The circumference of any particular cross-sectional circle is a function
fof the displacement x to the right of the cylinder’s left-hand face. It’s a constant
function:

f(x) =27xr

because it doesn’t depend on where the center of the circle is located on the x axis.

Lateral-surface area integral

To find the lateral-surface area A of the cylinder (the area of the sleeve only, not includ-
ing either end face), we can integrate f along the length of the cylinder from its left-hand
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Circular slice:
Circumference
=2nr

Disk area
=7r2

—X +X

Figure 26-1 Integration can be used to find the lateral-surface
area and volume of a cylinder.

face where x= 0 to its right-hand face where x = 4. When we set up the integral, it comes
out as

)
A=\ 2nrd
-(!. rax

The basic antiderivative is
F(x)=2mrx

When we evaluate Ffrom x=0 to x= A, we get

)
A= 27[rx] =2mrh—2mr-0=27mrh
0

This is familiar! We recognize it from basic geometry as the formula for the lateral-surface area
of a cylinder in terms of its radius 7and its length A.

Cross-sectional area vs. displacement

Let’s cut the cylinder uniformly into cross-sectional slices again. As before, we make the num-
ber of slices approach infinity. But now, instead of slicing through the sleeve, we cut through
the interior. This produces coin-like slabs parallel to the cylinder faces. Every slab has equal
thickness Ax. As the number of slabs approaches infinity, their thicknesses become differen-
tials dx which become arbitrarily close to 0. The slabs approach two-dimensional (2D) disks
of radius 7 and area 777°. As we did with the circular slices, we can think of the area of any
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particular disk as a function gof its displacement x to the right of the cylinder’s left-hand face.
This is a constant function:

gx)=m"

Volume integral

To find the volume Vof the cylinder, we integrate galong the entire length, just as we did with
the function f for the circles. We start at the left-hand face where x= 0, and travel along the
x axis until we reach the right-hand face where x= 4. That gives us

b
V= J. 7Tr? dx
0
The basic antiderivative is
G (x) = 7mr’x

When we evaluate G from x=0 to x= A, we get

b
V= ﬂ'rzx] =r*h— - 0= m’h

0

This is the formula for the volume of a cylinder that we learned in 3D geometry.

Are you confused?

Do you wonder how we can add up circumferences to get area, or add up areas to get volume? How do we
get the extra dimensions? The answer is that we're not adding circumferences or areas in the conventional
sense. We're taking advantage of the same mathematical trick that Riemann used with rectangles to figure
out the areas defined by curves in the Cartesian plane.

To determine the surface area of a cylinder, we stack infinitely many infinitely thin bands to get the
cylinder shell. To get the volume, we stack infinitely many infinitely thin slabs to get the cylinder and its
interior. We call the bands “circles” and the slabs “disks” because, as their widths or thicknesses approach
0, that’s what they more and more closely resemble.

A Cone

Figure 26-2 shows a cone tipped on its side, so its apex is at the origin of Cartesian xyz-space.
Its base (the flat face at the right) is parallel to the yzplane. The axis of the cone is a portion
of the coordinate x axis. The base of the cone is 4 units from the apex. The radius of the base
is 7 units. This is a right circular cone, meaning that the base is a circle oriented at a right angles
to the axis.
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Circular slice:
Circumference
=2n(rt/s)
Disk area

= n(rx/h)?

Figure 26-2 Integration can be used to find the slant-surface
area and volume of a cone.

Circumference vs. displacement

We can slice the cone’s shell into cross sections, and then increase the number of slices indefi-
nitely. These slices approach circles parallel to the yz-plane, perpendicular to the x axis, and
centered on that axis. Unlike the situation with the cylinder, these circles vary in radius,
depending on where on the x axis we center them.

The circumference of the cone’s circular base is 2777 Any point on the edge of the base is
s units from the apex, where s is the slant height of the cone as shown in the figure. The slant

height is
s= (2 + hH)?

The radius of any particular cross section is directly proportional to its distance from the apex
as measured along the shell of the cone. Let’s call this distance 7 and invent an axis for it as
shown. This raxis can be any straight line connecting the cone’s apex with some point on the
edge of its base. The radius of a circular slice whose edge is # units from the apex is therefore
equal to 7 times #/s, so its circumference is 277 (r¢/s).

We can describe the circumference of any particular cross-sectional circle as a function
fof the distance #between its edge and the cone’s apex. This isn't a constant function, as with
the cylinder. Instead, we have

f(2) =2m (rtls) = 2mrls)e

where 27z7/s is a constant, and #is the independent variable.
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Are you confused?

Do you wonder why we define the circumferences of our cross-sectional circles in terms of the displace-
ment ¢ along the cone’s shell, rather than in terms of the displacement x along the cone’s axis? When we
want to find the surface area of an object, we must integrate a function that’s defined on thar surface. If we
cut through the cone’s interior from the apex to the center of the base, the resulting distance 4 is less than
the slant height s. If we try to derive the surface-area formula that way, we'll get answers that are only A/s

of what they should be.

Slant-surface area integral

Let A be the slant-surface area of the cone (that is, the surface area not including the base). We
can integrate f'(#) along a straight line in the cone’s shell from the apex, where 7= 0, to any
point on the outer edge of the base, where #= s. This gives us the definite integral

A= j Q27rls)t dt
0
The basic antiderivative is
F@)=[Qarls)?] 1 2= (mrls)e*

When we evaluate Ffrom =0 to 7= s, we get

A= (7[7/5)1‘2] = (7wrls)s* = (mrls) - 0% = 7rs
0
This formula is taught in some basic geometry courses, but not all. If you go to the Internet
and do a search on the phrase “surface area of a cone,” you'll find that this is indeed the for-
mula for the slant-surface area of a cone in terms of its base radius 7 and its slant height s. If
you want the formula in terms of the radius and the true height 4, then you can substitute the
quantity (#* + 4*)"* in place of s, getting

A= 7r(r* + h*)"?

Cross-sectional area vs. displacement

Now let’s slice up the cone through its interior, getting disks parallel to the base. Each disk has
a radius that’s directly proportional to its distance x from the apex. The largest such disk is the
base itself. The radius of any particular disk is equal to 7 times x/4, so its area is 77 (rx/h)*.

We can describe the area of a cross-sectional disk as a function gof its distance x between
its center and the cone’s apex. In this situation, we travel straight through the cone rather than
on its shell, because were concerned with the cone’s interior, not its surface. We have

g(x)=7m(rxl h)> = (w1 h*)x*

where 7177/ /7 is a constant, and x is the independent variable.
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Volume integral

To find the volume V] we integrate our function g along the axis of the cone from its apex
where x= 0 to its base where x = 4. This gives us

)
V= [ (w1 dx
0
The basic antiderivative is
G (x) = [(m*hHx*) 1 3

When we evaluate G from x= 0 to x= A, we get
b
V=UzriP)x) 1 3] = [(mP1h*)h°] 1 3= Uzl h?) - 0°] 1 3= mr*h3

0

This is the familiar geometric formula for the volume of a cone in terms of its base radius 7

and its height 4.

Here's a challengel!

Using integration, find the slant-surface area and volume of a cone with a base radius 7 of 3 units and a
height 4 of 4 units. Then compare these results with the values obtained using the standard geometric
formulas.

Solution

To begin, we must find the slant height of the cone. We're told that 7= 3 and 4 = 4. Remembering the
formula for slant height sin terms of 7and 4, we can calculate

s=(P+h)P=(32+4)"=(9+16)"*=25""=5
The circumference of a circular slice as a function f'of the distance # between its edge and the cone’s apex is
f()=Quarls)t=Q2rx- 3/5)t=(67/5)¢
To find the slant-surface area A, we must calculate

5
A= J. (67 /5)¢t dt
0

The basic antiderivative is

F@)=[6x/5)¢12=03x/5)¢
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When we evaluate Ffrom t=0 to t=5, we get

5
A= (37[/5)#] =(3x/5)-5*—=Bxl5) - 02=0Bx/5)-25=15x
0

Using the geometric formula, we get the same result:
A=nmrs=rx-3.-5=157

Now let’s calculate the volume. The area of a cross-sectional disk as a function g of the distance x between
its center and the cone’s apex is

g(x) = (@ h)x* = (x- 34%)x* = 97 /16)x*

To find the volume V] we integrate galong the axis of the cone from its apex where x= 0 to its base where
x= 4, getting

V= 9r/16)x dx

O —

The basic antiderivative is
G(x)=[97/16)x"] | 3= (Bx/16)x’

Evaluating G from x= 0 to x= 4, we get
4
V= [(37[/16)x3] =(3x/16) - 4> - (37x/16) - 0*°=(37/16) - 64= 127
0

The formula from 3D geometry tells us that

V=m?hl3=rx-3*-4/3=127x

A Sphere

Figure 26-3 shows a sphere in Cartesian xyz-space. The center of the sphere is at the origin,
and its radius is 7. Let’s use integration to derive general formulas for the surface area and the
volume of this sphere.

Circumference vs. arc displacement

We can slice the sphere’s outer surface into cross sections parallel to the yzplane, and then
force the number of slices to increase endlessly. When we have infinitely many such slices,
each one is a circle on the sphere’s shell. Suppose we start at the far right-hand pole as shown
in Fig. 26-3, where the sphere intersects the positive x axis. We move toward the left until we
reach the opposite pole where the sphere intersects the negative x axis. The radius of a circular



A Sphere 449

Circular slice:
Circumference
= 2xrsin (t/r)

Finish

Sphere «r—>

4

Figure 26-3 Integration can be used to find the

surface area of a sphere.

slice depends on its distance # as measured over the sphere’s surface, from the starting point.
The smallest possible distance is #= 0, and the largest possible value is #= 7 or half the
sphere’s circumference.

We can write down a function that describes the radius of any particular cross-sectional
circle based on the arc distance z If we call the function £, we have

[ (2)=rsin (¢/7)

Here, ¢/7is the angle, in radians, between any point on the circle’s edge and the far right-hand

g . y p . . . . g . . g .
pole of the sphere. The circumference of such a circle is 27 times its radius. If f is the function
that describes this circumference, then

f () =2xf"(t)=27rsin (¢/7)

Surface-area integral

To find the surface area A of the sphere, we must integrate f halfway around the sphere from
t=0 to #= 7rr. We can write that integral as

r

A= J'2zrsin (t17) dt= 271'7_[ sin (¢/7) dt
0 0
When we look through App. G, the table of indefinite integrals, we find the formula

Jsin ax dx=—a' cos ax+ ¢
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From this, letting 2= 7', we can infer that the basic antiderivative of the last integrand above is
F*(t)==rcos (¢r)
The basic antiderivative of the complete function f*is 2777 times this, or
F (¢) = =27 cos (¢/7)

When we evaluate Ffrom =0 to r= 77, we get
r
A==27r" cos (t/7) ] = -27tr* cos T— (=27r? cos 0) = 2772 + 2 7wr* = 470r?
0

This is the well-known geometric formula for the surface area of a sphere in terms of its radius 7

Are you confused?

You might wonder why we follow a geodesic on the sphere’s surface instead of cutting through the sphere
along the x axis to define the circumferences of the cross-sectional circles. (On any sphere, a geodesic is
a circle whose center is at the center of the sphere. A geodesic, also called a great circle, is as large as any
circle on the sphere can be. On the earth’s surface, for example, all meridians are geodesics because they
pass through both poles.)

The situation here is similar to the case with the cone. When we use integration to figure out the
surface area of a solid, remember that we must integrate on, or over, that surface. If we cut straight
through the sphere, then we travel a distance equal to the sphere’s diameter, or twice the radius. But
we want to go halfway around the sphere’s circumference. That distance is greater than the diameter
by a factor of /2.

Cross-sectional area vs. displacement

Imagine that we cut up the sphere into solid disks instead of circles, all parallel to the yzplane
with their edges on the sphere’s shell (Fig. 26-4). The radius 7, of such a disk is a function of
the x-value of the point through which its center passes. Imagine x as the base of a right tri-
angle (shown in dashed gray), 7, as its height, and 7 as its hypotenuse. From the Pythagorean
theorem in geometry, we know that

=7
so therefore

B= (7 = )2
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Area of disk
= 7r2 —;x?2
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Figure 26-4 Integration can be used to find the
volume of a sphere.

With this information, we can describe the area of any particular cross-sectional disk as a
function of x. We use the formula for the area of a disk in terms of its radius. If we call our
function g then

gxX)=m’=x[(P =) P =x( - %) =’ — 7K’

In this situation, we travel straight through the sphere rather than over its surface. When think-
ing about volume, we're concerned with the whole sphere, interior included, and not only the
surface. This makes our job easier than it was when we derived the formula for the surface area.
This time, as we integrate, we can travel a straight path instead of having to follow an arc.

Volume integral

We can define the volume Vof the sphere by integrating our function galong the x axis from
the left-hand pole of the sphere to the right-hand pole. The lower bound is therefore at the
point where x = —7 and the upper bound is at x= 7 We have

,
V= '[ (7 — 7x?) dx
—-r
Keep in mind that # the radius of the sphere, is a constant, so the basic antiderivative is

G (x) = wrix— 7x’l3
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When we evaluate G from x=—7rto x= 7, we get

V= (mr’x— mx*3) ] = (7 — w13) — (—7r + 7°13) = 47713
We recognize this from our courses in geometry as the formula for the volume of a sphere in
terms of its radius 7.

Here's a challengel!

Using integration, find the surface area and volume of a sphere with a radius of 2 units. Compare the
results with the values obtained using the formulas from 3D geometry.

Solution

As we find the surface area of the sphere, Fig. 26-3 can be helpful for reference. Remember that the cir-
cumference of a cross-sectional circle as a function of the arc displacement #is described by

f(2)=27rsin (¢/7)
To find the surface area A, we integrate /" halfway around the sphere from =0 to = 7z We know that r=2, so
A= 7]: 27rsin (tr) dt= 47z2f sin (¢/2) dr
0 0
The table of indefinite integrals (App. G) gives us the formula
J sin ax dx=—da "' cos ax+ ¢
Letting = 1/2 and leaving out the constant of integration, we obtain
Jsin (¢12) dt=-2 cos (¢/2)
The basic antiderivative F of the complete function f is 477 times this, or
F () =—8mcos (t/2)
When we evaluate Ffrom #=0 to r= 27, we get

2r

A=-8rmcos (¢/2) ] =—8mcos t— (—87mcos 0) =87+ 87 =167
0

The formula from solid geometry gives us

A=4mrt=4rx-22=167

Now, let’s refer to Fig. 26-4 as we work out the volume. The area of any particular cross-sectional disk,
based on the location of its center along the x axis, is

g(x)=mr — mx’
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We've been told that »= 2, so this function becomes
g(x)=47m— 7’

The sphere’s volume Vis obtained by integrating the function galong the x axis from the point where x=
—2 to the point where x= 2. Therefore,

2
V= j (4r— 12 dx

-2

The basic antiderivative is
G (x) = 4mx— 75’13

When we evaluate G from x=—-2 to x= 2, we get

2

V=(4mx—ndl3) | =(@rx-2- - 213) - [47- (-2) - 7 (-2)*/3]

-2

= 87— 87x/3) — [-87m— (-8x/3)] = 167x/3 + 167x/3 =327/3
From solid geometry, we can calculate the volume as

V=4rmr3=4r-2%3=327/3

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. C. The solutions in the appendix may
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

1. Using the integration techniques in this chapter, find the lateral-surface area of a
cylinder with a radius of 2 units and a length of 5 units. Compare this with the result
using the formula from 3D geomertry.

2. Find the volume of the cylinder described in Prob. 1, first using integration, and then
using the formula from 3D geometry.

3. Using integration, find the slant-surface area of a cone with a radius of 12 units and a slant
height of 13 units. Compare this with the result using the formula from 3D geometry.

4. Find the volume of the cone described in Prob. 3, first using integration, and then using
the formula from 3D geometry.

5. Using integration, find the surface area of a sphere with a radius of 10 units. Compare
this with the result using the formula from 3D geometry.

6. Find the volume of the sphere described in Prob. 3, first using integration, and then
using the formula from 3D geometry.
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Figure 26-5 Illustration for Practice Exercises 7 through 10.

7. Derive a formula for the lateral-surface area (not including either flat end face) of a
rectangular prism using integration. Assume that the length of the prism is 4, and the
end faces are rectangles of dimensions z and & as shown in Fig. 26-5.

8. From 3D geometry, verify that the formula derived in the solution to Prob. 7 is correct.

9. Derive a formula for the volume of a rectangular prism using integration. Assume that
the length of the prism is 4, and the end faces are rectangles of dimensions z and 4 as
shown in Fig. 26-5.

10. From 3D geometry, verify that the formula derived in the solution to Prob. 9 is correct.
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Repeated, Double, and
lterated Integrals

In this chapter, we'll develop a method of integrating single-variable functions twice in succes-
sion. Then we'll integrate two-variable functions twice, first with respect to one variable and
then with respect to the other.

Repeated Integrals in One Variable

Just as we can differentiate a single-variable function twice, we can integrate a single-variable func-
tion twice. We must set the constants of integration to 0 with each repetition to avoid ambiguity.

Multiple definite integrals

Let’s start out with a constant function. If we call the function f; the variable x, and the con-
stant 4, then

f) =k

The indefinite integral with respect to x is
f kdx=kx+ c

where cis the constant of integration. Suppose that we set ¢= 0 and then integrate again with
respect to x. That gives us

J (J kafx) dxzjkxdx:kx2/2+d

where 4 is another constant of integration. If we set 4 = 0 and then specify an interval with
bounds x = zand x = & for both integrals, we get
b

kx*12 ] = kb2 — ka?/2

a

455
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We can write out the complete repeated integral like this:
b
} i kdx dx = k2] = k6?12 — ka’l2
We must write two differelftiaizs dx here, one for each integral.

Are you confused?

In this scheme, we find basic antiderivatives twice in succession, and then evaluate the final expression a¢
the end of the process. We don't find the first definite integral and then integrate again. (We will operate
that way later in this chapter with functions of two variables, but that approach wont work with functions
of one variable.)

Example

Let’s try our newfound skill on a monomial linear function (a constant times a variable). Sup-
y
pose we want to find

—_—

2
_[ 12t dt dt
1

First, we find the indefinite integral without the constant of integration. That’s the basic
antiderivative

J. 12t dr=6¢#*
Now we integrate again, leaving out the constant of integration to get
J. 6P dr =271

The repeated definite integral is therefore

2
12t dt dt=27 ] =2.2°-2.1°=16-2=14
1

e L
—_——

Another example

The sine and the cosine functions behave in interesting ways when we integrate them over and
over. Let’s consider the example

T T
J. J. sin z dz dz
/2 w2

The first basic antiderivative is

J. sin z dz=— cos z
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Integrating again without the constant gives us

J —cos zdz=—sin z

The repeated definite integral is therefore

]E if[ sin z dz dz=—sin z élr

nl2 wl/2

—sin 7= (=sin7/2)=0—-(-1)=1
/2

Here's a challengel!

In Chap. 8, we worked out a problem involving a fictitious episode with Sir Isaac Newton, an apple, and
the cliffs of Dover. According to our make-believe story, Sir Isaac took an apple to the cliffs, tossed it off,
and watched it plunge to the beach. He (and we) knew the function that defined the apple’s vertical fallen
distance vs. time. He timed the fall, and saw that the apple struck the beach after 4 seconds. Based on that
data, we calculated the height 4. of the cliff.

Now let’s change the story. Suppose that Sir Isaac knew only that the apple would accelerate vertically
downward at a constant rate of 10 meters per second per second. He knew that this would be true,
neglecting air resistance, no matter how heavy the apple was. He timed the fall and saw that the apple
struck the beach after 4 seconds (Fig. 27-1). Calculate the height 4. of the cliff on this basis. Remember

that the apple’s vertical speed is the derivative of its vertical fallen distance over time, and its vertical
acceleration is the derivative of its vertical speed at any instant in time.

Vertical acceleration
is a constant

. 10 meters per second
¢ per second

\\
‘\
‘\
t=4 seconds

\

1

\
1
\

Figure 27-1  Sir Isaac hurls an apple from the cliffs of
Dover. The vertical acceleration is

10 meters per second per second, and the
apple takes 4 seconds to fall. What is the
altitude 4, of the apple above the beach at

the instant it leaves Sir Isaac’s hand?
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Solution

To work this out, we integrate the acceleration function twice, from #= 0 seconds (when the apple leaves
Sir Isaac’s hand) to #= 4 seconds (when the apple lands). The acceleration function is a constant 10, so
our repeated integral is

4 4
f j 10 dt dr
0 0
The first basic antiderivative is
J 10 dr=10¢
When we take the basic antiderivative again, we get
J 10z dt =57

The repeated definite integral is

4

4 4
| [ 10didi=57]=5.4-5.0°=80-0=80
0 0

0

The height of the cliff, 4, is 80 meters. This is the same answer that we got when we worked out the solu-
tion in Chap. 8.

Double Integrals in Two Variables

While repeated integration can be done with single-variable functions, we're more likely to
encounter it with functions of two variables. An interesting application is calculating the
mathematical volume of an object in 3D coordinates. In Chap. 26, we were concerned with
the true geometric volume or “real-world” volume of a solid object. “Real-world” volume can
never be negative. Mathematical volume can be positive, negative, or zero. We'll see how this
works in this chapter and the next.

Prisms and slabs

Imagine a function fof variables xand y in Cartesian xyz-space. Suppose that the graph of the
function is a surface such as the one as shown in Fig. 27-2. For any given point (x,%2) on the
surface, we have

z=f(xy)

We can approximate the mathematical volume of the object defined by this surface with
respect to any rectangular region in the xy-plane, as long as the function f is defined for every
point (x,y) in that region. The object is a solid whose “base” lies in the xy-plane.

Imagine breaking up the solid into square prisms whose heights are defined by the value
of zin a selected corner of each prism’s top face. (In Fig. 27-2, that point is the one where the
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Surface +z
representing

f(x.y)

integration

Figure 27-2 'We can approximate the volume defined by a
surface with respect to a rectangular region in
the xy-plane by breaking the solid into square
prisms whose heights are defined at selected
points in their top faces.

xand yvalues are smallest.) The defined height of the prism is shown as a heavy, dashed verti-
cal line that runs along one of its corners. In this example, the height of the prism is positive
(2> 0), so its mathematical volume is positive. If the height were negative (z < 0), then the
prism’s mathematical volume would be negative. If the height of the prism were zero, then its
mathematical volume would be zero.

Now imagine that we make the xy-plane grid for the prisms increasingly fine while
staying inside the same rectangular region. In Fig. 27-2, the grid has eight squares along
the x axis and eight squares along the y axis. That means there are 82, or 64, prisms in
total. We could increase this to 80 by 80, getting 6,400 prisms; then to 800 by 800,
getting 640,000 prisms; then to 8,000 by 8,000, getting 64,000,000 prisms; and so on
without end. As the number of prisms increases while the rectangular region stays the
same, our approximation of the solid’s mathematical volume improves. As the number of
prisms approaches infinity, the sum of their individual mathematical volumes approaches
the actual mathematical volume of the solid defined by the surface relative to the rectan-
gular region.

In practice, it’s difficult to add up the mathematical volumes of rectangular prisms, as
portrayed in Fig. 27-2, to find the mathematical volume of a solid defined by a surface with
respect to a plane region. But there’s an easier way. We can integrate f(x,y) with respect
to one of the variables, in effect slicing the solid crosswise into flat, thin slabs. Then we
can integrate the resulting function with respect to the other variable. When we do this,
we stack up the slabs, rather than assembling an array of prisms, to get the mathematical
volume of the solid.
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+Z

Surface
representing

f(xy)

Cross-sectional slab

=X

-

Figure 27-3 We can integrate twice to find the volume enclosed by
a surface with respect to a rectangular region in the xy-
plane by integrating with respect to x and then with
respect to J.

Slabs parallel to the xz-plane

Let’s slice the solid into arbitrarily thin vertical slabs parallel to the xzplane, find their areas by
integration, and then integrate the function defining those areas along the y axis. This scheme
is diagrammed in Fig. 27-3. We must work through two separate integrals.

First, we integrate f'(x,y) with respect to x, treating y as a constant. We can think of this
as a “partial antiderivative.” But we must consider the limits of integration, too. Suppose that
the x-value edges of the rectangle in the xy-plane are x= zand x= b, as shown in the drawing.
That means we must determine

j. f(xy) dx

Once we've worked out this definite integral, we get a function of y alone. We integrate that
function with respect to 3 and evaluate the result from y= cto y= 4. The bounds of this inter-
val represent the y-value edges of the rectangle in the xy-plane, as shown. When we finish this
process, we have the value of

d b
[ []fCen) dc] dy
If we give the xy-plane region a name such as R, we can rewrite the above expression in the
shortened form

[] £y doe dy

R
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Slabs parallel to the yz-plane

There’s nothing special about the way we sliced up the solid in the above example. We can just
as easily slice it into slabs parallel to the yzplane. As before, we find the slabs’ areas by integra-
tion, but this time we first integrate f (x,y) with respect to . Then we integrate the function
defining those areas as we move along the x axis. This scheme is shown in Fig. 27-4.

As we integrate f (x,y) with respect to 3 we hold x constant. Imagine that the y-value
edges of the rectangle in the xy-plane are y = cand y = 4. We figure out the definite integral

[ Fosn d

When we do this, we get a function of x. We integrate this new function with respect to x over
the interval from x = 2 to x = b, obtaining

j. [T f(xy) dy] dx

a c

As before, we can call the xy-plane region R. The above expression can then be written as
H f(xy) dy dx
R

Are you confused?

There’s an obvious difference between the two processes described above, and a subtle difference in the
integral expressions we write at the end. In the first case, we get differentials in the order dx dy. In the

+Z

Surface
representing

f(x.y)

Region E E
of i R L,
mtegratlon e . e e
- gy
e / Cross- X=b
sectional %
slab

—Z

Figure 27-4 W can integrate twice to find the volume enclosed by a
surface with respect to a rectangular region in the xy-plane
by integrating with respect to y and then with respect to x.
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second process, they come out as dy dx. It’s reasonable to ask, “Does the order of the differentials matter?”
From a pure mathematics point of view, there’s a theoretical difference between

[ £Goy) dedy

R

and

[J £ o) dy
R

But in practice, the quantity were describing—the mathematical volume of the solid—is the same either
way. If these schemes really work (and they do, as long as the function is integrable over the entire region R),
then they must give us identical results. After all, it’s the same object, no matter how we slice it! This
fact comes out of a theorem proved early in the twentieth century by the Italian mathematician Guido
Fubini.

lterated Integrals in Two Variables

When we calculate a double definite integral for a two-variable function as described above,
first with respect to one independent variable and then with respect to the other, the process
is called iterated integration.

Example

Consider the surface described by this two-variable function f in Cartesian xyzspace:
flxy) =3x"+3y>+1

We will calculate the mathematical volume of the solid defined by f with respect to the square
region in the x)-plane whose edges are x=—1, x=1, y=—1,and y=1.

First, let’s find the mathematical volume of the solid using double integration, slicing
through the solid to create slabs parallel to the xz-plane by integrating with respect to x, and
then stacking up the slabs by integrating with respect to y. Written in the shorthand form, our
double integral is

H (Bx*+3y>+ 1) dxdy

R

where Ris the square in the x)-plane with respect to which we want to find the mathematical
volume. Written out “the long way,” which more completely shows us what we must do, the
iterated integral is

1

I [ I(3x2+3y2+ 1) a’x] dy

-1 -1
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The integral inside the large square brackets is

1
J. (Bx*+3y*+1) dx

-1

To integrate with respect to x, we treat y as a constant, just as if we wanted to find the partial
derivative with respect to x. But here, we're finding a “partial antiderivative.” We obtain
p ga p

1
x3+3xy2+x]

-1

Evaluating the expression from x=—1 to x= 1, we get
(1+3y°+1)—(-1-3y>—-1)=6y>+4

We substitute this new one-variable equation in place of the integral inside the large square
brackets above, obtaining

1
[ ©3+4d
-1

The basic antiderivative should be evaluated from —1 to 1, so we must calculate

1

2y3+4y]

-1

Working out the arithmetic, we get
Q- P+4.-D)-2-(-1)0P+4.(-1)]=12

Now let’s go the other way by slicing up the object in planes parallel to the yz-plane, and
then integrating with respect to x. Written in the shorthand form, our double integral is

J.J. (Bx*+3y*+1) dydx

R

The iterated integral is

1

J [ j B+ 3y + 1) dy] dx

-1 -1

The integral inside the large square brackets is

1
J Bx*+3y°+1) dy

-1
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To integrate with respect to 3 we hold x constant, getting the antiderivative

1

3x2y+y3+y]

-1

Evaluating the expression from y=-1to y= 1, we get
Bx?+1+1)—(-3x*—-1-1)=6x>+4

We substitute this for the integral inside the large square brackets above, obtaining

'1[ (6x7 + 4) dx

el
This resolves to

1

2x° + 4x]

-1

Working out the arithmetic, we get the same result as we did when we found the mathemati-
cal volume the other way:

R-1P+4.1)-2-(-1)1°+4-(-1]=12

Another example

Let’s try our iterated-integration skills with a region that isn't centered at the origin. We should
expect to get the same answer either way we do the integration, but the routes will differ.
Here’s a surface described by a two-variable function gin xyz-space:

g2(xy)=2x—y

Our task is to calculate the mathematical volume of the solid defined by g with respect to the
rectangle in the xy-plane whose edges are at x=0, x=2, y=0, and y = 4.

This problem is interesting because, if we graph the function g in xyz-space (or get a
computer to do it for us), we'll see that in the rectangular region we've specified, some of the
surface is “above” the xy-plane (2> 0) and some of the surface is “below” the x)-plane (z< 0).
Any portions of the solid’s mathematical volume where z < 0 will contribute negatively to our
final answer. We should not be surprised if this object has a zero or negative net mathematical
volume.

First, let’s slice through the solid in planes parallel to the xzplane by integrating with
respect to x, and then we'll integrate with respect to y. Written in the shorthand form, our
double integral is

'”. (2x—y) dxdy

R
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The iterated integral is
4 2
J. [J (2x—1y) afx] dy
0 0

The inside integral is

'2[ (2x—y) dx
0

We treat y as a constant, obtaining the antiderivative
2
x%— xy]
0

Evaluating the expression from x= 0 to x= 2, we get

(22-2y)—(0°-0y)=4 -2y

We substitute this single-variable equation in place of the integral inside the large square
brackets above, obtaining

4
j (4-2y) dy
0

The antiderivative is
4

4y-y*]
0
Working out the arithmetic, we get

(4-4-4)-(4-0-09=0

The object has zero mathematical volume, even though it’s three-dimensional! The average
position of the surface within the rectangular region happens to coincide exactly with the
xy-plane, although the surface is oriented at a slant. With respect to the region we've defined
in the xy-plane, the positive and negative portions of the solid’s mathematical volume are
equal and opposite, so they cancel each other out.

Now lets slice up the solid in planes parallel to the yzplane, and then integrate with respect
to x. If we do everything right, we should get a final answer of 0 again. In shorthand, we have

” (Qx—y) dydx
R

The iterated integral is

[SL N

4
[J (2x—1y) dy] dx
0

The inside integral is
4
J (2x—1y) dy

0
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To integrate with respect to 7 we hold x constant, getting
4
2xy—y°12 ]
0

Evaluating the expression from y= 0 to y= 4, we get
(Qx-4—42/2) — (2x- 0 — 0%/2) = 8x— 8
We substitute this for the integral inside the large square brackets above, obtaining

2
J (8x—8) dx

This resolves to
2
42— Sx]
0
Evaluating, we get

(4.22—8.2)—(4-0°—8.0)=0

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. C. The solutions in the appendix may
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

1. Imagine that we're in a hovering dirigible above the surface of an otherwise uninhabited
planet, where gravity causes falling objects to accelerate at 24 feet per second per
second. We drop a brick, which reaches the surface after 14 seconds. Assuming that air
resistance is not a factor, what’s our altitude?

2. We test-drive a car on a flat, straight road. Before starting the experiment, we bring
the car to a stop and mark our position. Then we accelerate at an increasing rate of 6¢
meters per second per second, where 7 represents the elapsed time, in seconds, after the
start. Find the function that expresses our distance in meters from the starting position
as time passes.

3. In the situation of Prob. 3, how many meters will we travel in the first second? The first
2 seconds? The first 3 seconds? The first 4 seconds? If we can keep up this increasing
rate of acceleration for 10 seconds, how far from the starting point will we end up?

4. Consider the flat surface described by the following constant function in Cartesian xyz-
space:

fxy)=4
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Draw a simple 3D graph of this situation. Then, using the formula from 3D geometry,
calculate the mathematical volume of the rectangular box defined by f'with respect to
the region whose edges are segments of the lines x= -3, x=5, y=—5, and y= 3 in the
xy-plane.

. Find the mathematical volume of the box described in Prob. 4 by integrating f relative

to the region, first with respect to x and then with respect to .

. Find the mathematical volume of the box described in Prob. 4 by integrating f relative

to the region, first with respect to y and then with respect to x.

. Consider the surface described by the following function in Cartesian xyz-space:

f(xy) =4x+4y

Integrate against x and then against y to find the mathematical volume of the solid that
this surface defines with respect to the region whose edges are segments of the lines x= 1,
x=3,y=0,and y=5 in the x)-plane.

. Find the mathematical volume of the region described in Prob. 7 by integrating against

yand then against x.

. Consider the surface described by the following function in Cartesian xyz-space:

floy)=x"+2xy+ 5y

Integrate against x and then against y to find the mathematical volume of the solid
that this surface defines with respect to the region whose edges are segments of the
lines x=1, x=3, y=0, and y=5 in the x)-plane.

Find the mathematical volume of the region described in Prob. 9 by integrating against
yand then against x.
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More Volume Integrals

We could devote a dozen chapters to double integration. Obviously, we dont have room for
that, but let’s look at a few examples that are a little more complicated than the ones we saw
in the last chapter.

Slicing and Integrating

468

Imagine that we're working in Cartesian xyz-space, and we want to find the mathematical
volume of a solid defined by a surface with respect to some flat, but non-rectangular, integra-
tion region Rin the xy-plane. Suppose that R has a finite, positive area, and is enclosed by the
graphs of two functions

y=gx)

and
y=h(x)

We can break up the solid into slabs, just as we can with rectangular regions of integration.
Figure 28-1 shows a situation of this sort.

First, we slice

When the boundaries of R are functions of x, the best way to find the mathematical volume
of the solid is to slice it into slabs perpendicular to the x axis, and therefore parallel to the yz-
plane. This is the way it’s done in Fig. 28-1. The illustrated slab is bounded by the region of
integration, the surface, and two vertical lines representing values of 5. One vertical line passes
through the graph of g (x), and the other vertical line goes through the graph of 4 (x). Here,
“vertical” means “parallel to the z axis.”
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Figure 28-1 To find the volume of a solid defined by an
irregular region, we can sometimes integrate
cross-sectional slabs as shown here. We're
located close to the negative j-axis, looking in
toward the origin.

Next, we integrate

For any given value of x, we have a unique slab as defined above. We can find the area A of the
slab by integrating the surface function f'(x,y) with respect to 3 from g (x) to 4 (x) for that
particular value of x. That is,
h(x)
A= | fley) dy

g(x)

If we choose a different value of x, we get a different slab, and its area is likely to be different.
We can choose slabs that intersect the x axis anywhere from x= 4 to x= b as shown in Fig. 28-1,
and the value of the above integral varies accordingly. We integrate with respect to j so we
must treat x as a constant when working out the antiderivative.

Finally, we integrate again

Imagine that we're at the point where x = # in the situation of Fig. 28-1. Here, the cross-
sectional slab is actually a line segment parallel to the z axis. As such, it has no area. As we
start moving toward the right along the x axis, the slab is slender, but growing. As we keep
moving, the area of the slab increases until it reaches a maximum at some value of x between
a and b. (Figure 28-1 shows the slab near that maximum-area point.) As we get close to x =
b, the slab becomes slimmer until, when x finally attains the value 4, the slab collapses into
another line segment parallel to the z axis.
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If we integrate the function that expresses the Area A of a slab with respect to our position
on the x axis, we obtain the mathematical volume V of the solid defined by the region of
integration Rand the surface:

This can be written out in full as

b h(x)

V=[[ | flxy) dy] dx

a gx)
or as

b h(x)

v=[ [ fley) dydx

a g(x)

If we're sure we have explicitly defined the region of integration R, we can write the above
expression in the shorthand form

V= _” [ (xy) dy dx
R

Base Bounded by Curve and x Axis

Imagine a flat region Rwith a finite, positive area in the xy-plane of Cartesian xyz-space. Sup-
pose that Ris bounded by the xaxis and the graph of a nonlinear function 4 (x). If the graph
of / (x) doesn’t intersect the x axis twice, then the region must also be bounded by one or
two lines parallel to the y axis to ensure that it’s completely enclosed. Figure 28-2 shows an
example of a situation like this. Here, the functions whose graphs define R are

g(x)=0
and
h (x) = 3x*

On the right, Ris bounded by the line x =2 to ensure that the base of the solid is a completely
enclosed region.

Are you confused?

Have you noticed that the coordinate axes appear different in Fig. 28-2 than they have looked in earlier
examples? We're taking a new perspective on xyz-space. In all the 3D graphs portrayed until now, we've
seen the situation from out in space near the negative y-axis, looking in toward the origin. Now, we're
out in space near the positive z-axis, looking in toward the origin. Things look different, but the relative
orientations of the positive and negative x, 3 and z axes are the same as they've always been.
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Figure 28-2 A region in the xy-plane between a curve and
the x axis. We can integrate twice to find the
mathemartical volume defined by a surface (not
shown) with respect to this region.

This new vantage point gives us a good broadside view of the x)-plane, so we can clearly see the shape of
the region of integration. Unfortunately, this perspective makes it difficult to show the surface represented
by f(xy). But if that surface is flat and level, we can imagine it as a sheet parallel to the page on which

Fig. 28-2 is printed. Such a sheet might be “in front of” the page or “behind” it, depending on whether
[ (x,9) is positive or negative.

The proper structure of Cartesian xyz-space

Whenever you see Cartesian xyz-space, the axes always are (or should be) oriented in a certain
way relative to each other, regardless of the point of view. You learned this relationship in pre-
calculus. This is a good time to review it. Think in terms of compass directions and altitude.
Draw an xaxis so that the positive values go “east” and the negative values go “west.” Then
draw a y axis going “north” and “south,” at a right angle to the x axis. These two axes intersect
at the point where x = 0 and y = 0. The positive y-values go “north,” and the negative y-
values go “south.” Now imagine a third axis, the z axis, which is “vertical” and perpendicular
to both the x axis and the y axis. The positive z-values go “upward,” and the negative zvalues

go “downward.” The z axis passes through the point where the x axis and y axis intersect. At
this point, z= 0.
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Now imagine this set of three mutually perpendicular lines, which all intersect at a single
point where x=0, y=0, and z= 0, as a rigid structure in space, as if each axis were an inflex-
ible rod. No matter where you go, the structure stays the same, even though its appearance
changes as your perspective changes. If you have a 3D computer graphing program and you
experiment with it for awhile, you'll be able to create some beautiful examples of this type of
coordinate structure.

If you like, look back at all the drawings you’ve seen so far in this book showing Cartesian
xyz-space. You'll notice that the axes are oriented in the same relative way, regardless of your
point of view. It's important that Cartesian xyz-space always be set up in exactly this fashion.
Otherwise, sooner or later, you'll get seriously confused because you'll end up with graphs that
are “inside-out,” “upside-down,” or “backward”!

Flat, level surface

Let’s calculate the mathematical volume of a solid with respect to the region in Fig. 28-2, as
defined by a surface whose function is

fley)=4

This surface is a plane parallel to the xy-plane and 4 units “in front of” it, as seen from the
perspective of Fig. 28-2. Written in the shorthand form, our double integral is

g4@a

The x-value interval for the region of integration is (0,2), so the iterated integral is

(] ore

g(x)

The integral inside the large square brackets is

M)
j 4 dy

g(x)

which resolves to

We remember that the functions whose graphs define the region of integration R are
g(x)=0
and

b (x) = 3x*
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Evaluating 4y from y= 0 to y = 3x%, we get
4.3x—4.0=12x"

We substitute this for the integral inside the square brackets above, obtaining
2
J 1257 dx
0

which resolves to

2
4x3]

0

Working out the arithmetic to derive the mathematical volume V] we get

V=4.2-4.0°=32

Flat, sloping surface

Now let’s see what happens with a surface that’s flat, but not parallel to the xy-plane. Imagine
a solid with respect to the region of integration R in Fig. 28-2 as defined by

f(xy) =2x+4y

In shorthand form, the double integral is
[[ @+ 4y) dy
R

The x-value interval enclosing R is, as before, (0,2). Therefore, we can write the iterated
integral as

2 hix)
J1] @x+4p) dy]de
0

g(x)

The integral inside the large square brackets represents the area of a cross-sectional slab with
x held constant:

h(x)
J. (2x+4y) dy

g(x)
We integrate against y to obtain

h(x)

2xy+ 2}/2 ]
2(x)
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Again, we remember that the xy-plane functions whose graphs define the region of integration
Rare

gx)=0
and
bh(x)=
Evaluating the quantity (2xy+ 2y%) from y=0 to y= 3x” yields
[2x- 3% + 2327 — (2x- 0+ 2 - 0%) = 6x° + 18+

Substituting this for the integral inside the large square brackets above, we get
2
J (657 + 18x") dix

which resolves to

2

3x/2 + 18515 |
0

Working out the arithmetic to get the mathematical volume V] we obtain

V=(3-2%2+18-2%/5) - (3-0%2+ 18 - 0°/5) = 696/5

Warped surface

Imagine a solid defined by the following function with respect to the region of integration R
shown in Fig. 28-2:

fley)=3x"+y

This surface is not flat, but warped, making our problem a little more complicated than the
situation in the previous examples. Written in shorthand form, the double integral is

H (3x* +y) dy dx
R
As before, the span of x values for the region of integration is (0,2). The iterated integral is

therefore

h(x)

j I (3x* +y)dy
0

g(x)
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The integral inside the large square brackets is

hz)
j (Bx*+y) dy
g(x)
Holding x constant and integrating against j we get
h(x)
3x*y+ 12 ]

g(x)

The functions whose graphs define the base of the solid are
gx)=0
and
b (x) =3x%
Evaluating the quantity (3x’y + y*/2) from y= 0 to y = 3x%, we get
[3x” - 35 + (3x7)*/2] — (3x7 - 0+ 0%/2) = 27x'/2

We substitute this for the integral inside the large square brackets above to obtain

2
J 275412 dx
0

which resolves to

2
279?/10]

0

Working out the arithmetic, we get a mathematical volume of

V=27.2°/10 - 27 - 0°/10 = 432/5

Base Bounded by Curve and Line

Consider a region in the x)-plane, bounded by a parabola representing ¢ (x) and a straight line
representing / (x) as shown in Fig. 28-3. In this situation, the functions whose graphs define
the region Rare

gx)=x"—4
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Figure 28-3 A region in the x)-plane between a curve and a line.
We can integrate twice to find the mathematical
volume defined by a surface (not shown) with
respect to this region.

and
h(x)=x+2

Let’s calculate the mathematical volumes of solids with respect to R, as defined by three dif-
ferent surfaces.

Flat, level surface

Imagine a flat surface 4 units “in front of” the xy-plane. The function for this surface is

fxy) =4

Written in shorthand, the double integral for the mathematical volume of the solid is

[[4 dyds

R
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The interval representing the span of x values for R is (=2,3). These are the x values of the
points where the parabola and the line intersect in Fig. 28-3. The iterated integral is there-
fore

3 hix)
[ 4a]a
-2 g(x)

The integral inside the large square brackets is

h(x)
[ 4

g(x)

which resolves to

h(x)
4y ]
g(x)
Again, the functions whose graphs define Rare
gx)=x"—4
and
hx)=x+2
When we evaluate 4y from y= x*> — 4 to y = x+ 2, we obtain

4.(x+2)—4-(x*—4)=—4x"+4x+24

We substitute this for the integral inside the square brackets above, obtaining

3
j (—dsl + b+ 24) dx

-2

which resolves to

3
—45313 + 2x% 4+ 24x ]

-2

Working out the arithmetic, we get

V=(—4-333+2-3+24.3) = [~4. (213 +2 - (<2)*+ 24 - (-2)] = 250/3
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Flat, sloping surface

Let’s calculate the mathematical volume of a solid relative to the region of integration Rin Fig.

28-3 as defined by

f(xy) =4x

The graph of this function is a flat, sloping surface. In shorthand, we have

” 4x dy dx

R

The x-value interval enclosing Ris (=2,3), so can write the iterated integral as

3 h(x)

“f dx dy] d

-2 g(x)

The integral inside the large square brackets is

h(x)
J 4x dy

g2(x)
When we integrate against 3 holding x constant, we obtain

h(x)
4xy ]

g(x)

Again, the xy-plane functions whose graphs define R are
gx)=x"—4
and
hx)=x+2
When we evaluate 4xy from y= x> — 4 to y= x+ 2, we get
4o (x+2) — dx(x? — 4) = —4x> + 4x* + 24x

Substituting this for the integral inside the square brackets above, we get

3
j (—ds® + 42 + 24x) dx

-2

which resolves to

3
— + 45313 + 1247 ]

-2
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Working out the arithmetic, we obtain

V=(-3"+4.3%3+12.3) - [-(-2)*+ 4. (-2)°/3+ 12 - (-2)*] = 125/3

Warped surface

Now imagine a warped surface in Cartesian xyz-space that represents

fley) =

Let’s find the mathematical volume of the solid defined by this surface and the region illus-
trated in Fig. 28-3. The shorthand form of the double integral is

” x> dy dx
R

The interval of x values is (—2,3), so the iterated integral is

3 hix)
[ » ) a
-2 g(x)

The integral inside the large square brackets is

h(x)
J x* dy
g(x)

Holding x constant and integrating with respect to 3 we get

h(x)
2
xy ]
g(x)

As in the previous two examples, the functions whose graphs define the region of integration
in the xy-plane are

gx)=x"—4
and

h(x)=x+2
Evaluating x’y from y= x> — 4 to y= x + 2 produces

e+ 2) — xHx* — 4) = —x' + % + 6x?

When we substitute this for the integral inside the large square brackets above, we get
3
J (= + X + 6x?) dx

-2
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which resolves to

3
=I5 + X4+ 2x° ]

-2

Working out the arithmetic to derive the mathematical volume, we get

V=(=315+3"4+2-3%) — [-(=2)’/5+ (-2)/4 + 2 - (-2)°] = 125/4

Here's a challengel!

Calculate the mathematical volume of a solid with respect to the region of integration in Fig. 28-3 as

defined by

fley)=—x

This function’s graph is a flat, sloping surface that cuts through the xy-plane along the y axis.

Solution

The shorthand form of the double integral for the mathematical volume is

jRj—xdmc

The x-value interval enclosing the region of integration is (=2,3), so can write the iterated integral as

3 h(x)
j [ j —x dy] dx
-2 2(x)
The integral inside the large square brackets is
h(x)
J —x dy
2(x)

When we hold x constant and integrate against j we obtain

h(x)
—xy ]

g(x)
Once again, the xy-plane functions whose graphs enclose the region of integration are
gx)=x"—4
and

hx)=x+2
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When we evaluate —xy from y= x*—4to y=x+2, we get
—x(x+2) = [-x(x*—4)] =% — x* — 6x

Substituting this for the integral inside the large square brackets above, we get

3

J. (x* — x* — 6x) dx

-2
which resolves to

3

14— 313 — 357 ]

-2

Working out the arithmetic, we obtain

V=(3%4-3%13-3.3) - [(-2)"4 — (-2)*/3 -3 . (-2)}] =—125/12

Base Bounded by Two Curves

Now let’s look at a region in the xy-plane that’s bounded by two parabolas as shown in Fig. 28-4.
Here, the functions whose graphs define the region of integration are

g(x)=x2-2
and
h(x)=—x*2+2

We will calculate the mathematical volumes of solids with respect to this region, as defined by
three different surfaces in xyz-space.

Flat, level surface

Let’s find the mathematical volume of a solid relative to the region of integration Rin Fig. 28-4,

as defined by

fley)=4

The short form of the double integral is

[[4 dyax

R
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Figure 28-4 A region in the x)-plane between two curves. We can
integrate twice to find the mathematical volume defined
by a surface (not shown) with respect to this region.

The span of x values for Ris (=2,2). The iterated integral is therefore

2 h(x)
JT] 4a)d
-2 gl

The integral inside the large square brackets is

h(x)
j 4 dy

g(x)
Integrating with respect to j we get
h(x)
4y ]

2(x)

We recall that the functions whose graphs enclose the region of integration are

g(x)=x2-2
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and
bhx)=—x*2+2
Evaluating 4y from y= K12 =210 y= —x%/2 + 2, we get
4.(—x*2+2)—4-(x*2-2)=—4x*+ 16

We substitute this for the integral inside the large square brackets above, obtaining

2
j (—4x* + 16) dx

-2

which resolves to

2
—4x°/3 + 16x ]

22
Working out the arithmetic to derive the solid’s mathematical volume, we get

V=(-4-2/3+16-2)—[-4-(-2)’/3+16- (-2)] =128/3

Flat, sloping surface

Let’s find the mathematical volume of a solid relative to the region in Fig. 28-4 as defined
by the following function, which represents a sloping surface that cuts through the xy-plane
along the x axis:

floy) =2y

In shorthand form, the double integral is
” 2y dy dx
R

The span of x values over the region of integration is (—2,2). The iterated integral is therefore

2 h(x)
J [ J 2y dy] dx
-2 g(x)

The integral inside the large square brackets is

h(x)
[ 2y
g(x)
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Integrating with respect to j we get
h(x)

7" ]
2(x)
Once again, the functions whose graphs enclose our xy-plane region of integration are
g(x)=x12-2
and
h(x)==x*2+2
Evaluating 5 from y=x*/2 — 2 to y=—x*/2 + 2, we get
(=242 = (x*2-2)*=0
Substituting this for the integral inside the large square brackets above, we get
2
J 0 dx
-2

which resolves to

0]

22
Working out the arithmetic is a trivial task. We have simply
V=0-0=0

The surface lies partly above the x)-plane and partly below it. The mathematical volume rela-
tive to the region of integration R on the positive y-side of (or “above”) the x axis is positive,
but the mathematical volume relative to R on the negative y-side of (or “below”) the x axis is
negative to the same extent. Therefore, they cancel each other out, giving us a mathematical
volume of 0—even though the solid, if we could construct it in the “real world,” would have
a finite and positive geometric volume!

Warped surface

Finally, let’s see what happens when we have a warped surface that cuts through the xj-plane
exactly along the y axis. This time, we'll figure out the mathematical volume of a solid defined
by the region of integration in Fig. 28-4 and the function

flxy) =%

In shorthand form, the double integral is

[[ = dy dx

R
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The span of x values is, once again, (—2,2), so the iterated integral is

2 )
J. [ _[ X dy] dx
-2 g(x)

The integral inside the large square brackets is
h(x)
J. X dy
g(x)
Integrating with respect to j we get
h(x)
Xy ]
g(x)
The functions whose graphs define our xy-plane region are
g(x)=x2-2
and
h(x)==x*2+2
Evaluating x’y from y= x*/2 — 2 to y=—x*/2 + 2, we get
(=222 +2) — 5352 = 2) = —x° + 4x°

Substituting this for the integral inside the large square brackets above, we get
2
[ (0 +4x) d
-2

which resolves to

2
—x%/6 + ]
2

Working out the arithmetic, we obtain
V= (=26 42— [-(-2)°+ (-2)] =0

The mathematical volume on the positive x-side (or “to the right”) of the y axis is positive,
and the mathematical volume on the negative x-side (or “to the left”) of the y axis is negative
to an equal extent. The positive and negative mathematical volumes precisely cancel, leaving
us with a mathematical volume of zero for the entire solid.
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Are you confused?

In this chapter, we always slice the solid regions so that the slabs are perpendicular to the x axis and parallel to
the yz-plane. We never go the other way, slicing the solid into slabs perpendicular to the yaxis and parallel to the
xz-plane. If you wonder why, go ahead and try to solve one of the above problems that way! It will be difficult,
because in all the examples here, we define the base region of the solid using functions of x, not functions of 3.

Once in awhile, we'll encounter base regions in the xy-plane that are defined as functions of 3 with x
as the dependent variable. For example, suppose that we have

x=g()

and

x=h(y)

In situations like this, it’s easier to find the solid’s mathematical volume by slicing it into slabs perpendicu-
lar to the yaxis and parallel to the xzplane, and then integrating from y= 2 to y= b as shown in Fig. 28-5.
When we compare this with Fig. 28-1, it’s apparent that we've changed our point of view. The mathemati-
cal calculations are a little different; but geometrically, the process works in the same way. We get

b by
v=J[] fep de]d
a g(y)
Surface
representing +z

f(xy)

1
T

X:i,m 7 a\ e

_________

\\ \\\\\\\

y \“\\\‘ S Y
x=h(y) —, A
Cross- integration
sectional |
+X slab

4

Figure 28-5 Sometimes it’s easier to slice a solid into
slabs perpendicular to the y axis, rather than
perpendicular to the x axis. Here, we see the
situation from a point of view near the positive
x-axis, looking in toward the origin.
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which can also be written as

b
v=[ | fexp deay

If we call the region of integration R, we can shorten this further to

h(y)
()

4

V=[] flsy) dedy
R

In the volume integral, we now have dx dy instead of dy dx. This tells us to integrate first with respect
to x to get the areas of the slabs for constant values of 3 and then to integrate with respect to y to get the
mathematical volume of the solid.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don't hurry! You'll find worked-out answers in App. C. The solutions in the appendix may
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

1. Refer to Fig. 28-6. Imagine that we're doing the second integral in the iteration, looking
at the areas of the cross-sectional slabs as we move from x= 2 to x= 4. The surface

Line along which

Surface +z  surface and region
representing intersect
f(x,y) T

-y - \ T integration

Line along which —%
surface and region
intersect

Figure 28-6 Illustration for Practice Exercise 1.
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representing f (x,y) is flat, and cuts through the region of integration. The surface lies
partly “above” the xy-plane and partly “below” it. Describe how the area of the cross-
sectional slab varies as we move from x= 2 to x= b. (This exercise is difficult, but is
intended to stimulate your imagination!)

2. For the solid defined by the flat, level surface £ (x,y) = 4 and the shaded region in
Fig. 28-2, we found V= 32. This mathematical volume can also be found by
determining the true geometric area of the region of integration and then multiplying
by 4, which is the height of the solid. Find the mathematical volume this way, and
verify that the result agrees with what we got in the chapter text.

3. Refer again to Fig. 28-2. Consider a solid defined by the following function and the
region of integration shown:

f(xy)=2x—06y

Calculate the mathematical volume of this solid using the method we've learned in this
chapter.

4. Refer to Fig. 28-2 one more time. Consider a solid defined by the following function
and the region of integration shown:

fxy)=3x"—4y

Calculate the mathematical volume of this solid using the method we've learned in this
chapter.

5. For the solid defined by the flat, level surface f'(x,y) = 4 and the shaded region in
Fig. 28-3, we found V'=250/3. This mathematical volume can also be found by
determining the true geometric area of the region of integration and then multiplying
by 4, which is the height of the solid. Find the mathematical volume this way, and
verify that the result agrees with what we got in the chapter text.

6. Refer again to Fig. 28-3. Consider a solid defined by the following function and the
region of integration shown:

f(xy) =—4x

Calculate the mathematical volume of this solid using the method we've learned in this
chapter.

7. Refer to Fig. 28-3 one more time. Consider a solid defined by the following function
and the region of integration shown:

fley) ==

Calculate the mathematical volume of this solid using the method we've learned in this
chapter.
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For the solid defined by the flat, level surface £ (x,y) = 4 and the shaded region in

Fig. 28-4, we found V'=128/3. This mathematical volume can also be found by
determining the true geometric area of the region of integration and then multiplying
by 4, which is the height of the solid. Find the mathematical volume this way, and
verify that the result agrees with what we got in the chapter text.

. Refer again to Fig. 28-4. Consider a solid defined by the following function and the

region of integration shown:

fxy)=2x+1

Calculate the mathematical volume of this solid using the method we've learned in this
chapter.

Refer to Fig. 28-4 one more time. Consider a solid defined by the following function
and the region of integration shown:

fley)=2y-1

Calculate the mathematical volume of this solid using the method we've learned in this
chapter.



CHAPTER

29

What’s a Differential Equation?

A differential equation contains one or more derivatives or differentials along with variables
and constants. In this chapter, we'll look at a few extremely basic examples of ordinary differ-
ential equations (ODEs), which don’t have partial derivatives.

Elementary First-Order ODEs

490

An elementary first-order ODE can be manipulated into an equation with only a derivative on
the left-hand side, and only a single-variable function on the right-hand side.

How to recognize one

Imagine an independent variable x and a dependent variable y along with a continuous func-
tion f'(x), bundled into an equation. We have an elementary first-order ODE if we can morph
it into the standard form

dyldx = f (x)
To solve this, our objective is to eliminate the derivative and obtain an equation of the form
y=H(x)
where H is a family of functions. We call it a family because it contains a constant whose value

can change, giving rise to a set of functions that are similar but not identical. The constant
arises when we take an indefinite integral as part of the solution process.

Example 1

Let’s start with something simple that’s in the standard form for an elementary first-order
ODE to begin with:

dyldx=—=2x
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When we integrate both sides with respect to x, we get
J. (dyldx) dx= J. —2x dx

Because these are indefinite integrals, each has its own constant of integration when we work
it out. We obtain the general antiderivatives

J (dyldx) dx=y+ ¢,
and
J.—2x dx=—x*+ ¢,

where ¢, and ¢, are the constants. When we take the right-hand sides of these two equations
and combine them, we get

Yyt = -+ ¢,
Subtracting ¢, from each side gives us
= —x* - atoc
We can consolidate ¢, and ¢, into a single constant ¢, like this:
-c1tcy=c¢
That simplifies our solution equation to
y=Hx)=—-x"+c¢

where H is the family of solution functions.

Example 2

Let’s work out an elementary first-order ODE where the left-hand side is a little more com-

plicated:

dyldx— 6x" =—¢"
Adding 6x” to both sides, we get

dyldx=—e* + 6x7
Integrating both sides with respect to x, we get

[ ylds) de=[ (- + 6x7)
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The general antiderivatives are
J (dyldx) dx=y+ ¢,
and
J (6" + 6x%) dx=—e"+2x> + ¢,

Putting these antiderivatives together into a single equation, we obtain

y+e=—e"+2x+ ¢,
When we subtract ¢, from each side, we get

y=—"+2x>—c1+ ¢,
As before, we can consolidate ¢, and ¢, into a single constant ¢, writing the solution as

y=H(x)=—e"+2x"+¢

Example 3

Now we'll tackle something more messy, in which we find a polynomial along with a trigono-
metric function. Let’s solve

dyldx+ cos x= 3x> + 8x—7
If we subtract cos x from both sides, we get
dyldx=3x"+ 8x—7 — cos x

This is in the standard elementary first-order ODE form. When we integrate both sides, we
get

[ (ylds) de=[ (3 + 8= 7 ~ cos x) de
The general antiderivatives are
[ ylds) de=y+c,
and
I (3x*+ 8x—7 —cos x) dx= x>+ 4x> — 7x—sin x+ ¢,

where ¢, and ¢, are the constants of integration. Combining the right-hand sides of these two
equations, we get

y+o=x>+4x>—T7x—sinx+c,
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Subtracting ¢, from both sides gives us
y=x>+4x*—7x—sinx—c, + ¢,
Once again, we can consolidate the constants and call the combination ¢, getting

y=H(x)=x"+4x*—7x—sinx+ ¢

Are you confused?

You might wonder if the constant in the solution to an elementary first-order ODE be eliminated or
resolved into a specific real number. Sometimes it can, but not always. In many physics and engineering
situations, the constant of integration cancels itself out. We saw an example of how that sort of thing can
happen when we calculated the height of Sir Isaac’s cliff in Chap. 27. For the constant to disappear or at-
tain a specific real-number value, we must define certain initial conditions, such as when to start a timer or
where to start a race. The purely mathematical solution to an elementary first-order ODE always includes
a constant whose value we don’t necessarily know, because it’s the result of taking indefinite integrals.

Elementary Second-Order ODEs

A differential equation can contain a second derivative along with a function. Then we have
an elementary second-order ODE.

How to recognize one

Consider an equation with an independent variable x and a dependent variable y along with
a continuous function f'(x). We have an elementary second-order ODE if we can morph it
into the form

d*yldx* = £ (x)
To solve this type of equation, our objective is to get something of the form
y=Hx)

where H is a family of functions that contains two constants, which result from repeated
indefinite integration.

Example 4

Let’s solve an elementary second-order ODE that consists only of a second derivative and a
monomial linear function:

a’zy/a/x2 =-2x
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When we take the indefinite integrals of both sides with respect to x, we get
J. (d*yldx?) dx= J —2x dx

Because these are indefinite integrals, each has its own constant of integration. We obtain the
general antiderivatives

J.(dzy/dxz) dx=dyldx+ c,
and
J—2x dx=—x*+ ¢,

where ¢, and ¢, are constants. When we combine these two antiderivatives into a single equa-
tion, we get

dyldx+ ¢ =—x"+ ¢,
Subtracting ¢, from each side, we get

dyldx=—x"—c, + ¢,
Letting the quantity (-¢; + ¢,) be a consolidated constant p, we can simplify to

—eite=p
That gives us
dyldx=—x"+p
We recognize this as an elementary first-order ODE. When we integrate both sides, we get
[ yids) de=[ (- + p) d

The general antiderivatives are

[ yids) de=y+ c,
and

[t p) de= =134 et e,

where ¢; and ¢4 are new constants. When we combine the right-hand sides of these two equa-
tions, we get

y+ c3=—x°/3 +pxtcy
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Subtracting ¢; from each side produces
y=—x"13+px—c3+ ¢4
We can consolidate ¢; and ¢4 and call the combination ¢, like this:
-3t ci=¢q
That simplifies our solution equation to
y=H(x)=—x13+px+qg

where H is the family of solution functions, and p and g are constants whose values we don’t
necessarily know.

Example 5

Now let’s solve an elementary second-order ODE that isn’t quite so neat:
d*yldx® — 12x* = 2¢*
Adding 12x* to both sides, we get
d*yldx* =2e" + 12x°
Integrating through with respect to x gives us
J (d*yldx*) dx= J (2¢*+ 12x%) dx
The general antiderivatives are
[ @y1de) de= dylds+ c,
and
j (2e*+ 12x%) dx=2¢"+ 4x> + ¢,
Putting the general antiderivatives together into a single equation, we obtain
dyldx+c,=2e"+4x’ + ¢,
Subtracting ¢, from each side gives us
dyldx=2e"+4x> — ¢, + ¢,
Letting the quantity (-¢; + ¢,) be a consolidated constant p, we can simplify to

dyldx=2e*+ 453 +p
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When we integrate both sides of this elementary first-order ODE, we get
[ (@ylde) de= [ @+ 42+ p) i
The general antiderivatives are
[ ylds) ds=y+ e,
and
J. (2e*+4x® + p) dx =2+ x* + px+ ¢4

where ¢ and ¢4 are new constants. Combining the right-hand sides of these equations, we
get

yte3=2e"+ xt + px+ ¢4
Subtracting ¢; from each side yields
y=2e"+ x4+px— c3+ ¢y
When we add —c¢; to ¢4 and call the sum g, we can simplify to obtain the solution

y= H(x)=2€”+x4+px+q

Example 6

Now let’s solve the following elementary second-order ODE:

d’yldx® — cos x=3x"+ 6x+ 10
Adding cos x to both sides, we get

d*yldx* = 3x* + 6x+ 10 + cos x
Integrating both sides gives us

[ @yide) de=[ G2+ 62+ 10 + cos x) ds
The general antiderivatives are
[ @y1de) de= dylds+ c,

and

J-(3x2 +6x+ 10 + cos x) dx= x>+ 3x*+ 10x+sin x+ ¢,
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Combining these results into a single equation, we obtain

dyldx+ ¢, = x>+ 3x* + 10x+sin x+ ¢,
Subtracting ¢, from each side yields

dyldx= x>+ 3x*+ 10x+sin x— ¢, + ¢,
Adding —¢, and ¢, to get a single constant p, we obtain

dyldx= x>+ 3x*+ 10x+sin x+ p
Integrating through with respect to x gives us
J. (dyl dix) dx=J- (%’ +3x* 4+ 10x+ sin x+ p) dx
The general antiderivatives are
[ ylds) ds=y+ e,
and
j (x? + 3x> + 10x+ sin x+ p) dx=x"/4 + x> + 5x> — cos x+ px+ ¢4

where ¢; and ¢4 are new constants. Combining the right-hand sides of the above equations
into a single equation yields

y+ 3= x4+ x° + 5x — cos x+ px+ ¢4
When we subtract ¢; from each side, we get

y=x"14+ x>+ 5x% — cos x+ px— ¢35+ ¢
We can add —¢; to ¢4, getting a single constant ¢ to produce the solution

y=H (x) = x*/4 + x* + 5x* — cos x+ px+ q

Are you confused?

Do you wonder why we can’t consolidate p and ¢ in the solutions to the elementary second-order ODEs
in Examples 4 through 6, the way we combined ¢, and ¢, in the solutions to the elementary first-order
ODE: in Examples 1 through 3? The reason goes back to the algebra of polynomials. Within an expres-
sion or equation, we can only consolidate constants that apply to the same power or function of a single
variable or set of variables.

In the elementary first-order ODEs, the constants ¢, and ¢, both stood alone. We could treat them both
as multiples of 1, which is x°, so we could merge them into a single constant. But in the solutions to the
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elementary second-order ODEs, the constant p multiplies x or x', while g multiplies 1 or x°. The different
powers of x can’t be merged into a monomial, so we have no convenient way to combine their multiples.

Are you astute?

You might ask, “After we've derived a solution to an ODE, how do we know if it’s correct?” To
check the solution to a first-order ODE, we differentiate our answer once. To check the solution to
a second-order ODE, we differentiate our answer twice. If we've done everything right, we should
either get the original ODE straightaway, or else get something that we can morph into the original
ODE.

Here's a challengel!

Differentiate the solutions in each of the examples we worked out in this chapter. If necessary, morph the
derivatives to get back the original equations, thereby showing that our solutions were correct.

Solution

We must check each of the examples in the order they appeared. The first three were elementary first-order
ODEs, and the second three were elementary second-order ODE:s.

Checking example 1. We finished with the solution
y=—x"+c
Differentiating both sides gives us
dyldx=—-2x
That was the original equation.
Checking example 2. We derived the solution
y=—+2x+¢
Differentiating through, we get
dyldx=—¢"+ 6x°
Subtracting 6x? from each side gives us the original equation, which was
dyldx— 6x* = —¢*
Checking example 3. Our solution equation was
y=x"+4x* —T7x—sinx+c
When we differentiate through, we obtain

dyldx=3x"+8x—7 — cos x



Elementary Second-Order ODEs 499

Adding cos x to both sides produces the ODE we began with, which was
dyldx+ cos x=3x+ 8x—7

Checking example 4. We ended with the solution

y=—x13+px+q
Differentiating both sides gives us
dyldx=—x+p
Differentiating again yields
d*yldx® = —2x

That’s the equation we started with.
Checking example 5. We derived the solution equation
y=2e"+x"+px+¢q
Differentiating both sides, we obtain
dyldx=2e+4x> + p
When we differentiate a second time, we get
d*yld® =2 + 1257
Subtracting 12x* from each side produces the original differential equation
d*yld* — 125> = 2¢*
Checking example 6. The solution we obtained was
y=x"14+ %+ 5x* — cos x+ px+ ¢
We differentiate both sides to get
dyldx= x>+ 3x>+ 10x+sin x+ p
Differentiating again yields
d’yldx® = 3x* + 6x+ 10 + cos x
We can subtract cos x from both sides to get the original equation

d*yldx* — cos x=3x*+ 6x+ 10
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For further study

Differential equations are an outgrowth of calculus. This chapter was written only to give you
a glimpse into the topic by showing you how to solve some of the simplest possible ODEs.
Differential Equations Demystified by Steven G. Krantz (McGraw-Hill, 2005) offers an excel-
lent introduction to the subject.

Practice Exercises

This is an open-book quiz. You may (and should) refer to the text as you solve these problems.
Don’t hurry! You'll find worked-out answers in App. C. The solutions in the appendix may
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

1. Solve the differential equation

dyldx=sin x+3

2. Solve the differential equation

dyldx+ sin x= cos x

3. Solve the differential equation

2dyldx— 4e* = 16x°

4. Solve the differential equation

d’yldx* = cos x+ 5x

5. Solve the differential equation

d*yldx* + 2 sin x=3 cos x

6. Solve the differential equation

2d%yldx* — 26" = 24x°

7. Solve the differential equation

dyl(3dx) + 6x7 = ¢*

Here’s a hint: As the first step, multiply through by 3.
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Solve the differential equation
dy—4¢" dx=x" dx+ 2x dx
Here’s a hint: As the first step, divide through by dx.

. Solve the differential equation stated in Prob. 8 by adding the quantity (4¢" dx) to each

side, separating out the dx multipliers from the sum on the right-hand side using the
distributive law, and finally integrating straight through.

Check each of the solutions to Exercises 1 through 8 by differentiating and then
morphing, if necessary, to get the original ODE back.
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This is not a test! It’s a review of important general concepts you learned in the previous nine
chapters. Read it though slowly and let it “sink in.” If you’re confused about anything here,
or about anything in the section you've just finished, go back and study that material some
more.

Chapter 21
Question 21-1

What does a superscript —1 mean when it’s written after the name of a function? What does it
mean when it’s written after dy/dx?

Answer 21-1

When we see a superscript —1 after the name of a function, it tells us to work with the inverse
of that function. When we see a superscript —1 written after dy/dkx; it tells us to work with the
reciprocal derivative, dx/dy.

Question Z1-2

Consider the following equation. What does the expression £~ (y) mean?

dxldx=f7"(y) - dyldx

Answer 21-2

The expression £~ (y) refers to the derivative of x with respect to 3 or dx/dy. Thats the
derivative of the inverse of f'(x).
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Question Z1-3

Suppose that we have a function fof an independent variable x, along with a dependent vari-
able y such that

y=f)

How can we find £~ (y) without first figuring out the inverse function itself?

Answer 21-3

We can differentiate /() with respect to x, getting dy/dx. Then we can take the reciprocal of
dyldx, which gives us dx/dy. That’s the derivative of the inverse of -

Question 21-4

How can we express the above mentioned principle in words alone, in a way that’s easy to
remember?

Answer 21-4

We can say, “The derivative of the inverse equals the inverse of the derivative.” But we must
be careful about the context. The first time we say “inverse,” we mean “inverse function.” The
second time, we mean “multiplicative inverse” or “reciprocal.”

Question Z1-9

When we want to define the inverse of the sine function, we must first define the principal
branch to ensure that the inverse is a true function. What’s the principal branch of the sine
function?

Answer 21-9

The principal branch of the sine function is the set of all input values in the closed interval
[—7/2,7/2], giving us output values in the closed interval [-1,1]. For example, if

y=sin x
then the principal branch has a domain of

—7l2< x< 7l2

and a range of

Question Z1-6

What'’s the principal branch of the cosine function?
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Answer 21-6

The principal branch of the cosine function is the set of all input values in the closed interval
[0,7], giving us output values in the closed interval [-1,1]. If we have

J=cos x

then the principal branch has a domain of

and a range of

Question 21-7

The derivatives of the Arcsine and Arccosine functions are defined only over the gpen inter-
val (—1,1), even though the functions themselves are defined over the closed interval [-1,1].
Why?

Answer 21-7

At the extreme endpoints of the interval, the functions have defined values, but the slopes of the
graphs are undefined (“vertical”). We can see this by looking back at pages 382 and 384 (Figs.
21-1 and 21-2). Because the derivative of a function is equivalent to the slope of its graph, the
derivative must be undefined at any point where the slope of the graph is undefined.

Question 21-8

What happens if we take an input variable x, let a function operate on it to get an output vari-
able 3 and then let the inverse of the function operate on y?

Answer 21-8

We get x back again, assuming the function and its inverse are both defined, and are in fact
true functions, for xand y.

Question 21-9
Imagine a function f that operates on an input x to get an output y. That is,
fe)=y
Now suppose that at a particular input value x;, we have an output value y and a derivative
of 2. That is,

f(xl) =N
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and
f ! (xl) =2
How can we figure out the value of £~ (,)?

Answer 21-9

We can take the reciprocal of the derivative at x; to obtain the derivative of the inverse at y;,
as follows:

O =1f '=2"=12

Question 21-10

Imagine a function g that operates on an input # to get an output 2. That is,
glu)=v
Suppose that when the input is a certain value #, the output is », and the derivative is 0. That is,
g (”1) =71
and
’ —
g () =0
How can we determine g~ (#,)?

Answer 21-10

We can't, because it’s not defined. If we take the reciprocal of the derivative at # in an attempt
to find the derivative of the inverse at v;, we get

gV () =g ()] "'=0"=1/0

Chapter 22
Question 22-1

What’s the equation of a unit circle centered at the origin of the Cartesian xy-plane? What's
the equation of a circle of radius 7 centered at the origin? What's the equation of a circle of
radius 7 centered at the point (xp,5)? Can the equation of a circle in the Cartesian xy-plane
ever represent a true function of either variable? If so, how do we know? If not, why not?

Answer 22-1

The equation of a unit circle centered at the origin is

x2+y2=1
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The equation of a circle of radius  centered at the origin is
C+y=r
The equation of a circle of radius  centered at (x,)) is
(x—x0)*+ (y—p)* =1

The equation of a circle in the xy-plane is never a true function of either variable. Whichever
variable is defined as independent, the relation produces two outputs for some inputs. A true
function is not “allowed” to map into more than one output value for any single input value.

Question 22-2

What's the general form for the equation of an ellipse in the Cartesian xy-plane? Is such a rela-
tion a true function of either variable? If so, how do we know? If not, why not?

Answer 22-2

The equation of an ellipse in xy-coordinates can be written in the form
(x—x0)* /& +(y—p)/b6*=1

where x, and j, are the coordinates of the center, « is the distance from (xp,) to the curve
along a line parallel to the x axis, and 4 is the distance from (x,)) to the curve along a line
parallel to the y axis. Such a relation is never a true function of either variable, for the same
reason as the equation of a circle in the x)-plane is never a true function.

Question 22-3

What's the general form for the equation of a hyperbola in xy-coordinates? Is the relation a
true function of either variable? If so, how do we know? If not, why not?

Answer 22-3

The equation of a hyperbola can be written in the form
(x=x0)*l a*=(y—n)/ b*=1

where x, and y, are the coordinates of the center, and « and 4 are positive real-number con-
stants that determine the dimensions and shape of the curve. Such a relation is never a func-
tion of either variable. If we define x as the independent variable, then the relation produces
two outputs for most inputs. If we define y as the independent variable, then the relation
produces two outputs for all inputs.

Question 22-4

Suppose we're told to use implicit differentiation to find y”and x”for the following equation.
How does that process work?

¥+ =36
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Answer 22-4

We can find y’ by differentiating both sides of the original equation with respect to x, and then
solving the result for y’. We can find x” by differentiating both sides with respect to 3 and then
solving the result for x”.

Question 22-5

What are the steps in the implicit differentiation process to find y’for the equation stated in
Question 22-4?

Answer 22-5
Our objective is to find dy/dx. We start with

x*+y* =36

Differentiating through with respect to x, we get
dldx (x°) + dldx (y*) = dldx (36)

Term-by-term, this works out to

2x+2y'=0
Subtracting 2x from each side, we obtain

2= —2x
We can divide through by 2y if we insist that y # 0. That gives us
y'=(=2x)1(2y)

which simplifies to

y'=dyldx=—xly

Question 22-6

What are the steps in the implicit differentiation process to find x” for the equation stated in
Question 22-4?

Answer 22-6

This process follows a “parallel track” to Answer 22-5. This time, our goal is to find dx/dy.
We start with

X +y* =36
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Differentiating through with respect to 3 we get
dldy (x°) + dldy (y*) = dldy (36)
Term-by-term, this works out to
2xx’+2y=0
Subtracting 2y from each side, we obtain
2xx"=-2y
We can divide through by 2x if we insist that x# 0. That gives us
x'=(=2y) | 2x)
which simplifies to

x'=dxldy=—ylx

Question 22-7

What type of curve is represented by the following general equation?
gy =r

Here, x and y are variables, and p, ¢, and rare positive real-number constants. What are the
steps in the implicit differentiation process to find y’for this equation?

Answer 22-7

This equation represents an ellipse centered at the origin. Our objective is to find a general
formula for dy/dx. We start with

pXEgy=r
Differentiating through with respect to x, we get
dldx (px*) + dldx (qy*) = dldx (r)
Term-by-term, this works out to
2px+2qy'=0
Subtracting 2px from each side, we obtain

2qyy'=-2px
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We can divide through by 2gy if we insist that y# 0. That gives us
y'=2px) 1 2gy)
which simplifies to

y'=dyldx=(—px) | (qy)

Question 22-8

What are the steps in the implicit differentiation process to find x” for the equation stated in
Question 22-7?

Answer 22-8

This time, we want to find a general formula for dx/dy. As before, we start with

PRrqy=r
Differentiating through with respect to 3 we get

dldy (px*) + dldy (qy*) = dldy (r)
Term-by-term, this works out to
2pxx"+2qy=0

Subtracting 24y from each side, we obtain

2pxx"==2qy
We can divide through by 2px if we insist that x # 0. That gives us

y'=(29y) | 2px)

which simplifies to

y'=dyldx=(=qy) | (px)

Question 22-9

What type of curve is represented by the following general equation?

pe-gr=r

Here, x and y are variables, and p, g, and r are positive real-number constants. What are the
steps in the implicit differentiation process to find y’for this equation?
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Answer 22-9

This equation represents a hyperbola centered at the origin. We want to find a general formula

for dy/dx. We start with

Py =r
Differentiating through with respect to x, we get

dldx (px*) — dldx (qy*) = dldx (r)

Term-by-term, this works out to

2px—=2qyy'=0
Subtracting 2px from each side, we obtain

—2qyy’=-2px
We can divide through by —2¢y if we insist that y # 0. That gives us

y'=(2px) 1 (=2qy)

which simplifies to

y'=dyldx= (px) | (qy)

Question 22-10

What are the steps in the implicit differentiation process to find x” for the equation stated in
Question 22-9?

Answer 22-10

This time, we want to find a general formula for dx/d)y. As before, we start with
p-qy=r
Differentiating through with respect to y, we get
dldy (px*) — dldy (qy*) = dldy ()
Term-by-term, this works out to
2pxx’—2gy=0
Adding 2¢y to each side, we obtain

2pxx’=2qy
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We can divide through by 2px if we insist that x# 0. That gives us

x'=Q2qy) | 2px)

which simplifies to

x'=dxldy=(qy) | (px)

Chapter 23
Question 23-1

How can we informally state 'Hopital’s rule for finding limits of expressions that tend toward 0/02

Answer 23-1

If we want to find the limit of a ratio that tends toward 0/0, and if we can differentiate both
the numerator and the denominator, then the limit of the ratio of the derivatives is the same
as the limit of the original ratio.

Question 23-2

How can we state the above principle formally?

Answer 23-2

Consider two functions f (x) and g (x) with three properties. First, fand gare both differen-
tiable everywhere in some open interval containing the point where x= # (but not necessarily
differentiable at x= z itself). Second,

Lim f(x)=0
and
Lim g(x)=0

Third, g’ (x) # 0 at every point within the defined interval where x # 4. If all three of these
conditions are met, then

Lim f(x) ] g(x)= Lim f'(x)/ g’ (x)

Question 23-3

There’s an important restriction on the use of the 'Hopital rule for finding the limits of
expressions that tend toward 0/0. What is that restriction?

Answer 23-3

We must not use this rule to seek the limit of an expression that obviously blows up (that is, “runs
away” toward positive or negative infinity) as the variable approaches the limiting value.
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Question 23-4

How can we informally state 'H6pital’s rule for finding limits of expressions that tend toward
too/toeo?

Answer 23-4

If we want to find the limit of a ratio that tends toward *oo/te0 and if we can differentiate
both the numerator and the denominator, then the limit of the ratio of the derivatives is the
same as the limit of the original ratio.

Question 23-5

How can we state the above rule formally?

Answer 23-5
Suppose that fand gare functions of a variable x, and both functions are differentiable over
an open interval containing the point where x = 2 (but not necessarily differentiable at x= 2

itself). Also suppose that

Lim f(x) = oo
and
Lim g(x)=too

Finally, suppose that g’ (x) # 0 at every point in the interval where x # 4. If all three of these
conditions are met, then

Lim f(x)/ g(x)= Lim f'(x)/ g’ (x)

Question 23-6

Another of 'Hépital’s rules can help us evaluate the limit of an expression as the value of the
variable approaches 4co or —eo. What's that rule, stated formally?

Answer 23-6

Suppose that f (x) and g (x) are differentiable functions, and g’(x) # 0 as the value of x
increases or decreases without bound. Also, suppose that one of these four things is true:

Lim f(x)=0 and Lim g(x)=0

x—>+oo

Lim f(x)=0 and Lim g(x)=0

Lim f(x)=%co and Lim g(x)=reo
x—>+oo x—>+oo

Lim f(x)=%co and Lim g(x)=reo

x—>—o0
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Then

ézg fx) ! gx)= fi"f f(x) 1 g (x)

Question 23-7

Suppose that we want to find the limit of the product of two functions, one of which
approaches 0 and the other of which approaches +eo. How can we rearrange this expression so
we can use 'Hépital’s principles in an attempt to evaluate it?

Answer 23-7

We can take the function that approaches 0 and divide it by the reciprocal of the function
that approaches +eo. This gives us a ratio that approaches 0/0, so we can use 'Hépital’s rule
for limits of that type.

Question 23-8

Suppose that we want to find the limit of the difference between two functions, both of which
approach +eo. How can we rearrange this expression so we can try to use 'H6pital’s principles
to evaluate it?

Answer 23-8

Using algebra, we can try to rewrite the expression as a ratio that approaches an expression
of the form 0/0 or teo/teo, and then use the appropriate 'Hépital rule in an attempt to find
the limit.

Question 23-9

Imagine that we've been told to figure out the limit of an expression that tends toward one of
these forms:

oo 0
—0 .0
—oo + (eo)
oo + (—eo)

oo — (o)

How can we rearrange expressions such as these so we can use 'Hopital’s principles in an
attempt to evaluate them?

Answer 23-9

Whenever we see a limit whose expression tends toward one of these forms, we can convert it
to a form we already know how to deal with, as follows:

* The form oo - 0 is equivalent to 0 - (+eo)
* The form —eo - 0 is equivalent to 0 - (—eo)
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* The form —oo 4 (40) is equivalent to +eo — (40)
* The form 4oeo 4 (=) is equivalent +eo — (4o0)
* The form —oo — (=) is equivalent to +eo — (40)

Question 23-10

How can we evaluate the following limit, where the first factor tends toward 0 and the second
factor tends toward negative infinity as x approaches 0 from the left?

Lim xln (—x)
x—=0—

Answer 23-10

Let’s rewrite this as the limit of a ratio by putting ¥ in the denominator. When we do that,
we obtain

Lim [In (=x)]/ 57!
x—0-

Both the numerator and the denominator in this ratio tend toward negative infinity as x
approaches 0 from the left, so we can apply the 'Hépital rule for limits of expressions of the
form —eo/(—e0). Let’s call the functions

f(x)=In (—x)

and

Because we approach 0 from the left, x is always negative, so
In (—x) =1n x|

Therefore, we can rewrite our functions as

F) =1lnlxl
and
gx)=x"
The derivatives are
) =x"

and

¢ ()=
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Therefore
Lim f(x)/g(x) = Lim f'(x)/ ¢ (x) = Lim X (=)
The rightmost expression can be simplified with algebra:
(=) = (1x) [ (=172 = (1/x) (=) = —x
Now we have the manageable limit

Lim —x
x—0—

This expression approaches 0 as x approaches 0 from the left. We've determined that

Lim xln(-x)=0

x—=0—

Chapter 24
Question 24-1

Suppose that we have a surface in Cartesian xyzspace, and we can define a relation H so that
z=H (xy)

is represented by this surface. How can we apply the vertical-line test to see if A is a true func-
tion of xand y?

Answer 24-1

Imagine a straight, infinitely long vertical line parallel to the zaxis. We move this line around,
so the point where it intersects the xy-plane sweeps through every possible ordered pair (x,y).
The graph of H represents a true function if and only if the movable vertical line never cuts
through the surface at more than one point, as shown in Fig. 30-1.

Question 24-2

Imagine a function f (x,y) in Cartesian xyz-space, whose graph shows up as a surface. If we
cut through this surface with a plane perpendicular to the x axis, we get a curve. What sort of
function does this curve represent? If we take the derivative of this function, what do we get?

Answer 24-2

The curve represents a function of 3 with x treated as a constant. If we take the derivative of
this function, we get a partial derivative of f'(x,y) with respect to .

Question 24-3

Imagine the same function f (x,y) as the one stated in Question 24-2. If we cut through this
surface with a plane perpendicular to the yaxis, we get a curve. What sort of function does this
curve represent? If we take the derivative of this function, what do we get?
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Figure 30-1 Illustration for Question and Answer 24-1.

Answer 24-3

The curve represents a function of x, with y held constant. If we take the derivative, we get a
partial derivative of f (x,y) with respect to x.

Question 24-4

What's the multiplication-by-constant rule for partial differentiation?

Answer 24-4

If we take the partial derivative of a multi-variable function affer it has been multiplied by a
constant, we get the same result as we do if we take the partial derivative of the function and
then multiply by the constant, as long as we differentiate with respect to the same variable on
both occasions.

Question 24-9

What's the sum rule for partial differentiation?

Answer 24-5

The partial derivative of the sum of two or more multi-variable functions is equal to the sum
of their partial derivatives with respect to the same variable.

Question Z4-6

What's the difference rule for partial differentiation?
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Answer 24-6

The partial derivative of the difference between two multi-variable functions is equal to the
difference between their partial derivatives, as long as both partial derivatives are found with
respect to the same variable, and as long as we keep the subtraction in the same order.

Question 24-7

Consider the following function, in which the domain is a set of real-number ordered triples
(x,2) with z # 0, and the range is a set of real numbers w. What’s the general partial deriva-
tive dw/ dx?

w=g(xy2 =e+y +Inlzl

Answer 24-7

To find the partial derivative with respect to x, we hold y and z constant. That makes the
second and third terms constants, so their derivatives are both 0. The derivative of the
first term with respect to x is €', because the exponential function is its own derivative.

Therefore

Jw/dx=e"+0+0=¢"

Question 24-8

What's the general partial derivative dw/ dy of the function stated in Question 24-7?

Answer 24-8

To find the partial derivative with respect to 3 we hold x and z constant. That makes the first
and third terms constants, so their derivatives are both 0. The derivative of the second term
with respect to y is equal to 2y. Therefore

ow/dy=0+2y+0=2y

Question Z4-9

What's the general partial derivative dw/dz of the function stated in Question 24-7?

Answer 24-9

To find the partial derivative with respect to z, we hold x and y constant. That makes the first
and second terms constants, so their derivatives are both 0. The derivative of the third term
with respect to zis equal to 2. Therefore

dwl/dz=0+0+z'=z"
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Question 24-10

For the function stated in Question 24-7, how can we find these three specific partial derivatives?
0/0x(0,2,4)
019y (0,2,4)
0/0z(0,2,4)

Answer 24-10

We simply plug in the numbers to the results we have obtained. When we do that for each
partial derivative in turn, we obtain

0/0x(0,2,4) = =1
0/0y(0,2,4)=2-2=4
0/0z(0,2,4) =4"'=1/4

Chapter 29
Question 29-1

Imagine a function f of two variables x and y giving us an output z, like this:

z=f(xy)

How do we determine the second partial of f with respect to x, denoted 0>z/dx*? How do we
determine the second partial of # with respect to 3 denoted 9°z/dy*?

Answer 25-1

To determine 0%z/9x?, we treat yas a constant and differentiate with respect to x twice. To find
%zl ayz, we treat x as a constant and differentiate with respect to y twice.

Question 29-2

What is the multiplication-by-constant rule for second partials?

Answer 29-2

If we take the second partial of a multi-variable function affer it has been multiplied by a
constant, we get the same result as we do if we take the second partial of the function and
then multiply by the constant, as long as we differentiate with respect to the same variable
throughout the process.

Question 29-3

What is the sum rule for second partials?
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Answer 29-3

The second partial of the sum of two or more multi-variable functions is equal to the sum of
their second partials, as long as all the partial derivatives are found with respect to the same
variable.

Question 25-4

What is the difference rule for second partials?

Answer 29-4

The second partial of the difference between two multi-variable functions is equal to
the difference between their second partials, as long as we differentiate with respect to
the same variable throughout the process, and as long as we keep the subtraction in the
same order.

Question 29-9

Once again, suppose that we have a function fof two variables xand y giving us an output z
as follows:

z=f(xy)

How do we determine the mixed partial of £ with respect to x and then 3 denoted 0z/dydx?

Answer 25-5

To figure out 9°z/dydx, we hold y constant and differentiate the original function f with
respect to x, obtaining dz/dx. Then we take the function dz/dx, hold x constant, and dif-
ferentiate it with respect to y.

Question 29-6

How do we determine the mixed partial of f (as stated in Question 25-5) with respect to y and
then x, denoted 0°z/dxdy?

Answer 29-6

To figure out 0°z/dxdy we hold x constant and differentiate f against j, getting dz/0y. Then
we take dz/0dy, hold y constant, and differentiate against x.

Question 29-7

If we start with the two-variable function f stated in Question 25-5 and work out both mixed
partials, and if we havent made any mistakes in our work, how will the function 9°z/dydx
compare with the function 9°z/dxdy?

Answer 25-7
They will be identical.
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Question 29-8

Imagine that we have a function g of three variables x, y and z along with an output variable
w, so that

w= g (%2

How can we find the second partial of grelative to x? Relative to y? Relative to z? Let’s denote
these second partials as 0*w/ dx?, 0*w/ dy’*, and 9*w/ dz” respectively.

Answer 25-8

The processes are similar, but we must be careful which variables we hold constant. It’s easy
to get confused!

* To find the second partial with respect to x, we treat yand z as constants, differentiate
the original function against x to get dw/0dx, and then differentiate dw/dx against x to
get 9°w/ dx”.

* To find the second partial with respect to y we treat xand zas constants, differentiate
the original function against y to get dw/ dy, and then differentiate dw/ dy against y to
get 9°w/ dy’.

* To find the second partial with respect to z, we treat x and y as constants, differentiate
the original function against z to get dw/ dz, and then differentiate dw/ dz against z to

get °w/ dz”.

Question 25-9

Suppose that we want to find all of the mixed second partials of a three-variable function g
such that

w= g (x%2)

where x, 3 and z are the independent variables, and w is the dependent variable. How many
different mixed second partials are there? How do we find them?

Answer 25-9

There are six different mixed second partials, representing the fact that there are six different
permutations of two objects (xand y) taken out of three (x, y and 2).

We can differentiate against x and then y to get 0*w/ dydx.
We can differentiate against x and then z to get 9*w/ dzdx.
We can differentiate against y and then x to get 9*w/ dxdy.
We can differentiate against y and then zto get 0*w/dzdy.
We can differentiate against zand then x to get 9*w/ dxdz.
We can differentiate against zand then y to get 0*w/dydz.
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Question 29-10

How can we find the six mixed second partials for the following three-variable function?

w=h(xp2) =x7ye

Answer 25-10

Let’s find the mixed partials in the order listed in Answer 25-9. The first partial of the original
function relative to x is found by holding y and z constant, obtaining

dw/dx=—3x""y’e*
To differentiate dw/ dx against 3 we hold x and z constant to get
*w/ dydx=—6x"ye*
To differentiate dw/ dx against z we hold x and y constant to get
Q*w/ dzdx=—3x"y’¢"

The first partial of the original function relative to y is found by holding x and z constant,
obtaining

dw/dy=2x7ye*
To differentiate dw/ dy against x, we hold y and z constant to get
*w/ dxdy=—6x"ye*
To differentiate dw/ dy against z, we hold x and y constant to get
*w/ 0zdy=2x"ye*

The first partial of the original function relative to z is found by holding x and y constant,
obtaining

dw/dz=x7y’e”
To differentiate dw/ dz against x, we hold y and z constant to get
*w/ dxdz=—3x"*y e
To differentiate dw/ dz against 3 we hold xand z constant to get

*w/ dydz=2x"ye*



522  Review Questions and Answers

Chapter 26
Question 26-1

Figure 30-2 shows a right circular cylinder in Cartesian xyz-space. The left-hand face of the
cylinder lies in the yz-plane. The axis of the cylinder is along the coordinate x axis. The radius
is 7and the height (shown here as length) is /. How can we integrate to find the lateral-surface

area A of this cylinder?

Answer 26-1

We integrate the circumference of a circular slice along the length of the cylinder’s surface
from its left-hand end where x= 0 to its right-hand end where x = 5, getting

A= } 27Ty dx
0

Question 26-2

Look at Fig. 30-2 again. How can we integrate to find the volume Vof the cylinder?

Answer 26-2

We integrate the area of a cross-sectional disk along the length of the cylinder, starting at the
left-hand face where x = 0, and moving along the x axis until we reach the right-hand face

where x = 4. That gives us

h
V= j 7T dx
0
+z
Circular slice: L
Circumference _x
= 271'!' % N
. R R
Disk area Ly L
=mr T 1 ,-'/?

Figure 30-2 Illustration for Questions and Answers 26-1 and

26-2.
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Question 26-3

How can we integrate to find the volume of a right circular cylinder whose radius 7is 10 units
and whose length 4 is 7 units?

Answer 26-3

To find the volume V] we use the integral formula
)
V= J Tt dx
0
We know that =10 and /=7, so the integral becomes

7 7 7
V= | 710 de = [ 1007dx=1007x | =1007-7 - 1007 0=7007
0 0 0

Question 26-4

Figure 30-3 shows a right circular cone in xyz-space. The apex is at the origin and the base is
parallel to the yz-plane. The cone’s axis lies along the coordinate x axis. The radius at the base
is 7 the height (shown here as length) is 4, and the slant height is s. The distance between the
apex and any particular point on the cone’s shell is z How can we integrate to find the slant-
surface area A of this cone?

Circular slice:
Circumference
=2n(rt/s)
Disk area

= n(rx/h)?

Figure 30-3 Illustration for Questions and Answers 26-4 and
26-6.
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Answer 26-4

We can integrate the function representing the circumference of a circular cross-sectional slice
along a straight line from the apex, where = 0, to any point on the outer edge of the base,
where #=s. When we do this, we get

A= J Q7rtls) dr = I Q27rls)tdr
0 0

Question 26-5

How can we integrate to find the slant-surface area A of a right circular cone whose radius 7 is
1 unit and whose slant height sis 2 units?

Answer 26-9

To find A, we use the integral formula
A= j Q27rls)tdt
0
We’ve been told that »=1 and s= 2, so we have

2 2 2
A= J Q- 1/2)¢tdr = J. Tt dt = 7Z't2/2] =27-0=2rx
0 0 0

Question 26-6

Look again at Fig. 30-3. How can we integrate to find V] the cone’s interior volume?

Answer 26-6

We can integrate the function representing the area of a cross-sectional disk along the axis of
the cone from its apex where x= 0 to its base where x= 4, getting

) b
V= I 7T (rxl h)? dx= J (7 h*)x? dx
0

0

Question 26-7

How can we integrate to find the volume V of a right circular cone whose radius 7 is 1 unit
and whose height 4 is also 1 unit?

Answer 26-7

To find V] we use the integral formula
b
V= j (7l h*)x* dx
0

We've been told that =1 and /=1, so we have
1 1 1
V=[(z-VI1")2 ds = [ nc de=7dl3 | = n/3-0=173
0 0

0
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Question 26-8

Figure 30-4 shows a sphere in xyz-space. The center is at the origin. The radius is . As we travel
over the sphere’s surface, zis the distance between the right-hand pole and any particular point
on the surface, as shown. How can we integrate to find the surface area A of the sphere?

Answer 26-8

We integrate the function representing the circumference of a circular slice by traveling half-
way around the sphere from 7= 0 to #= 77 That’s
r
A= 27[7_[ sin (¢/7) dt
0

Question 26-9

Figure 30-5 shows another sphere in xyz-space. The center is at the origin. The radius is 7 As
we travel straight through the sphere, x is the distance between the origin and the center of a
disk whose radius is 7. How can we integrate to find the volume Vof the sphere?

Answer 26-9

We integrate the function representing the area of a cross-sectional disk along the x axis
from the left-hand pole of the sphere (where x = —7) to the right-hand pole (where x = 7).
Therefore

V= j (7mr* — %) dx

-r

Circular slice: +tz

Circumference
=2zmrsin (t/1)

Finish

Figure 30-4 Illustration for Question and Answer
26-8.
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+z

Area of disk
= 7r? —nx?

Start Finish

+X

4

Figure 30-5 Illustration for Question and Answer
26-9.

Question 26-10

How can we integrate to find the surface area and volume of a sphere whose radius 7is 1 unit?

Answer 26-10

To determine the surface area A, we must find
r
A= 27rrj sin (¢/r) dt
0
We know that 7= 1, so the integral becomes

Y /4

A= Zﬂ'J- sin tdt = —27cos t ] = —27mcos T— (27 cos 0) =27+ 2wx=4rx
O O

The volume V can be found by using the formula

V= _[ (7mr* — 7x?) dx
Because » = 1, we have

1 1
V= I (- 7tx?) dx= 7mx— w513 ] =(r—7/3) — (—7+ 7/3) =27xl3 + 27/3 = 47/3
-1 -1
Chapter 27
Question 27-1

How do we find a repeated definite integral of a single-variable function f'(x)?
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Answer 27-1

First, we take the indefinite integral with respect to x, which gives us

[ F) de=F ()

where £ is the basic antiderivative of £ We ignore the constant of integration, because we
intend to find a definite integral. Next, we integrate again to get

7y de= [ [ £o) de] de=F ()

where £ is the second basic antiderivative of f” As with the first integral, we ignore the con-
stant of integration. If we specify an interval with bounds x = # and x = & for both integrals,
we get

b
E@ | =EWG-F@
We can write out the complete repeated integral like this:

}fﬂmww=5w—5w

a a

Question 27-2

What precautions must we take when we calculate a repeated definite integral of a single-
variable function?

Answer 27-2

We must wait until we have integrated both times before we evaluate the expression over the
defined interval. The bounds of integration on both integral symbols must be identical.

Question 27-3

How can we find the repeated definite integral of the cosine function over the interval from
0t 7w

Answer 27-3

Let’s call the variable z. Then we can state our problem as

T

Vs
_[ j cos z dz dz
00
The first basic antiderivative is
j cos zdz=sin z

Integrating again without the constant gives us

J sin z dz=—cos z



528  Review Questions and Answers

The repeated definite integral is therefore

'[ J. cos z dz dz = —cos z] = —cos T—(—cos0)=1—-(-1)=2

00 0
Question 27-4
What’s the difference between the mathematical volume and the true geometric volume of a
solid in 3D space?
Answer 27-4

Mathematical volume is the direct result of the integration process. As such, it can be posi-
tive, negative, or zero. True geometric volume, also called “real-world volume,” can never be
negative.

Question 27-9

Imagine a function z = f (x,) whose graph is a surface in Cartesian xyz-space. We want to
find the mathematical volume of the solid object defined by this surface and a rectangle in the
xy-plane enclosed by the lines x = 2, x = 4, y= ¢, and y = d. How can we do this by integrating
with respect to x and then with respect to y?

Answer 27-5
We integrate f (x,y) against x from 4 to b, getting
b
_[ [ (xy) dx
This gives us a function of y that we integrate from ¢ to 4. The entire double integral can be
written as
d b
'[ [ J. f(xy) dx] dy
or as
d b
'[ J. [ (xy) dxdy
Question 27-6

How can we find the mathematical volume of the solid described in Question 27-5 by inte-
grating with respect to y and then with respect to x?

Answer 27-6
We integrate f (x,y) against y from ¢ to d, getting

T f(xy) dy
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This gives us a function of x that we integrate from « to 4 to get

[ [ ] feey) dy] de

which can also be written as

f(xy) dy dx

N —
S C—

Question 27-7

Suppose that we calculate both integrals as denoted in Answers 27-5 and 27-6 for a particular
solid object in xyz-space. How should they compare, assuming we haven't made any mistakes?

Answer 27-7
They should be equal to each other. That is, we should get

d b b d

J. J.f(x,y) dx dy = '[ f(xy) dy dx
Question 27-8

Imagine a function f that is defined at every point inside a rectangle R in the x)-plane of
Cartesian xyz-space. Let’s say that

z=f(xy)

The graph of f is a surface; let’s call it S. With respect to R, S defines a solid object that we
call 7, as shown in Fig. 30-6. How can we approximate the mathematical volume of 7 using
a grid of squares in R?

Figure 30-6 Illustration for Question and Answer 27-8.
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Answer 27-8

Imagine breaking up the solid into square prisms whose heights are defined by the value of z
in a selected corner of each prism’s top face. Suppose that we make the x)-plane grid for the
prisms increasingly fine while staying inside R. This causes the number of prisms to increase.
If we keep doing this indefinitely, the sum of the prisms’ mathematical volumes approaches
the mathematical volume of 7.

Question 27-9

Imagine the same function, region, and surface as described in Question 27-8. How can we
illustrate the process of finding the mathematical volume of 7'by integrating with respect to
xand then with respect to 3 as we did in Answer 27-5 above?

Answer 27-9

Figure 30-7 shows how this works. We slice 7"into slabs perpendicular to the yaxis and paral-
lel to the xz-plane. Then we integrate against x from x = 4 to x = b, determining the area of
a slab with y held constant. Finally, we integrate the function that describes how the slab area
varies as we move along the y axis from y = cto y = d.

Question 27-10

Imagine the same function, region, and surface as described in Questions 27-8 and 27-9. How
can we illustrate the process of finding the mathematical volume of 7 by integrating with
respect to y and then with respect to x, as we did in Answer 27-6 above?

Answer 27-10

Figure 30-8 is a diagram of this process. We slice 7 into slabs perpendicular to the x axis and
parallel to the yzplane. Then we integrate against y from y = cto y = 4, finding the area of a

+Z

Cross-sectional slab %
NN
N

. Pl

_______
z -

Figure 30-7 Illustration for Question and Answer 27-9.
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+Z

=d
T §\\\
i \\\\\\ \\\\ o > X
R e
: \\\\“ e
/)//
X= X=
Cross-
sectional {
slab

—Z

Figure 30-8 Illustration for Question and Answer 27-10.

slab with x held constant. Finally, we integrate the function that describes how the slab area
varies as we move along the x axis from x = 2to x = 4.

Chapter 28
Question 28-1

Imagine a solid object 7"defined by a surface Sin Cartesian xyzspace that represents a function

z=f(xy)

We want to double integrate to find the mathematical volume of 7'with respect to a non-
rectangular region of integration Rin the xy-plane, enclosed by the graphs of

y=gx)

and

y=h(x)
What's the first step in the process?

Answer 28-1

We slice 7'into slabs perpendicular to the x axis, and therefore parallel to the yz-plane. Each
slab is bounded by R, S, and two vertical lines (parallel to the zaxis), one passing through the
graph of ¢ (x), and the other passing through the graph of 4 (x). This situation is illustrated
in Fig. 30-9.
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Figure 30-9 Illustration for Questions and Answers 28-1
through 28-4.
Question 28-2

What's the second step in the process for finding the mathematical volume of the solid object
T'described in Question 28-1 and illustrated in Fig. 30-9?

Answer 28-2
We can define the area A of a cross-sectional slab for a constant value of x by finding
h(x)
A= J‘ f(xy) dy
g(x)
Question 28-3

What’s the final step in finding the mathematical volume V of the solid 7 described in
Question 28-1 and illustrated in Fig. 30-92

Answer 28-3

We note the x values of the points where the graphs of gand /4 intersect in the x)-plane. These
are x= a and x = b as shown in Fig. 30-9. Next, we integrate the function that expresses the
area of a slab vs. the value of x, over the interval from x= z to x= 4. That integral is

b b h(x)
V=IAdx=J.[ J. f(x,y)dy]dx
a a g(x)
This double integral can also be written out as

b hlx)

V=J. J‘ [ (xy) dy dx

a g(x)
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Question 23-4

Refer to Fig. 30-9 once again. Imagine that were integrating the function that defines the area
A of a cross-sectional slab as we move parallel to the x axis. The surface S represents a positive
constant function f (x,y), so S lies entirely “above” the xy-plane. How does A change as we
move from x= ato x = b?

Answer 28-4

Let’s start out at the point where x = a. The cross-sectional slab is a line segment parallel
to the z axis and “above” the xy-plane. As such, it has no mathematical area. As we move
toward the right along the x axis, the slab is slender at first, but it becomes progressively
wider. As we keep moving, the width, and therefore the mathematical area, of the slab
increases until it reaches a maximum at some value of x between « and 4. As we keep
moving toward the right along the x axis, the slab slims back down and its mathematical
area decreases until, when we reach x = 4, it collapses into a line segment with no mathe-
matical area.

Question 28-5

What is the proper structure of Cartesian xyz-space? That is, in what relative way should the
three axes be oriented?

Answer 28-5

Imagine the x axis so that the positive values go “east” and the negative values go “west.”
Then imagine the y axis so that the positive values go “north” and the negative values go
“south.” Finally imagine the z axis so that the positive values go “straight up” and the
negative values go “straight down.” All three axes should intersect at a single point, the
origin, where

x=y=2z=0

Once this relative orientation has been defined for the axes, we should consider the whole
structure as if it were rigid, made of stiff metal rods, for example. We can then turn, tumble,
or roll the entire structure in any way we want, and the nature of the system will not change.
All of the Cartesian xyz-space graphs in this book show the axes in this relative orientation,
although the points of view differ.

Question 28-6

Imagine a solid object 7 defined by a surface Sin Cartesian xyz-space that represents a function

z=f(xy)

We want to double integrate to find the mathematical volume of 7'with respect to a non-
rectangular region of integration R in the xy-plane, enclosed by the graphs of

x=g(y)
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and

x=h(y)

What's the first step in the process?

Answer 28-6

We slice 7'into slabs perpendicular to the y axis. Each slab is bounded by R, S, and two verti-
cal lines (parallel to the z axis). One vertical line passes through the graph of g (y), and the
other vertical line goes through the graph of 4 (y), as shown in Fig. 30-10. Note the subtle
difference between this graph and Fig. 30-9. We've changed our point of view. Previously, we
looked toward the origin from somewhere near the negative y-axis. Now, we're looking toward

the origin from somewhere near the positive x-axis.

Question 28-7

What's the second step in the process for finding the mathematical volume of 7"described in

Question 28-6 and illustrated in Fig. 30-102

Answer 28-7
We can define the area A of a cross-sectional slab for a constant value of y by finding
h(y)
A= | fley) ds
g0y

S
x=g(y)

\\\\

-y })‘\t\\\\\\\\

x=h(y) — \\\“ o

Cross-
sectional
slab

+X

Figure 30-10
through 28-10.

+Z

——--Z

—Z

\‘

L. _z

Sz

Compare with
Fig. 30-9. Note
difference in
point of view!

Hlustration for Questions and Answers 28-6
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Question 28-8

What’s the final step in finding the mathematical volume of the solid described in Question 28-6
and illustrated in Fig. 30-10?

Answer 28-8

We integrate, over the interval from y= a to y = b, the function that tells us the area of a slab
depending on the value of y. That integral is

b b h(y)
V=J. Aa’y='[|: I f(x,y)dx]dy
a a 2(»)
This double integral can also be written as
b h(y)
V= j I [ (xy) dx dy
a g()/)

Question 28-9

Refer again to Fig. 30-10. Imagine that we're integrating the function that defines the area A
of a cross-sectional slab as we move from y = 2 to y = b. The surface S represents a positive
constant function f (x,y). How does A vary as we move from y = ato y = 4?

Answer 28-9

This situation is similar to the one described in Answer 28-4. The only significant difference
is that this time, we're going along the y axis instead of along the x axis. We begin at y = 4,
where the cross-sectional slab is really nothing more than a line segment parallel to the zaxis.
As we move along the y axis in the positive direction, the slab starts out slim, but widens. The
mathematical area increases until it reaches a maximum somewhere between y = zand y = 4. As
we keep moving along the y axis, the slab’s mathematical area decreases until, when we reach
y = b, it becomes a line segment again.

Question 28-10

What would happen to the mathematical volume of the solid 7 shown in Fig. 30-10 if we
were to integrate the function defining the area of the movable slab from y = 4 to y = 4, instead
of from y = a2 to y = b? What would happen to the true geometric volume?

Answer 28-10

The mathematical volume would be multiplied by —1, because we would have reversed the
direction of one of the integrals. The true geometric volume of the solid would not change,
however. We'd still be working with the same “real-world” object!

Chapter 29
Question 29-1

How can we recognize an elementary first-order ordinary differential equation (ODE)?
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Answer 29-1

Imagine an equation consisting of an independent variable x, a dependent variable y and a
continuous function £ We have an elementary first-order ODE if we can morph this equation
into the standard form

dyldx= f(x)

Question 29-2

How can we solve an elementary first-order ODE once we have it in the standard form
described in Answer 29-1?

Answer 29-2

To solve this type of equation, we integrate both sides with respect to x, getting
y=H(x)
where H is a family of functions, any two of which differ by some real-number constant, but

are otherwise identical. The constant arises because we must take the indefinite integral to get
rid of the derivative.

Question 29-3

How can we solve the following elementary first-order ODE?
dyldx— cos x=—¢*

Answer 29-3

We begin by manipulating the equation into the standard form. Let’s add cos x to both sides.
Then we get

dyldx=—e*+ cos x

That’s in the standard form for an elementary first-order ODE. Taking the indefinite integral
of both sides with respect to x gives us

[ (yids) de= [ (=" + cos x) d
The general antiderivatives are
[ yids) de=y+
J (—e*+ cos x) dx=—e"+sin x+ ¢

where ¢ and ¢, are the constants of integration. Putting the antiderivatives together into a
single equation, we obtain

yta=—e"+sinx+c
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When we subtract ¢; from each side, we get
y=—e*+sinx—q+ o
We can add —¢ to o, call the sum ¢, and then write the solution as
y=H(x)=—e"+sinx+c

where H (x) represents the entire family of functions, all of which would be identical except
for the fact that they differ by real-number constants.

Question 29-4

Can the constant in the solution to an elementary first-order ODE, such as the one we found
in Answer 29-3, be eliminated or resolved into a specific real number?

Answer 29-4

Sometimes it can, but not always. If the constant of integration cancels itself out, as often happens
in physical-science problems, we can eliminate it. But in the purely mathematical solution, we
must leave the constant in. That’s because it can’t be resolved into any particular real number.

Question 29-9

How can we get the following elementary first-order ODE into the standard form, allowing
us to solve it by taking the indefinite integral of both sides with respect to x?

dy+ cos x dx=3x" dx+ 8x dx— 7 dx

Answer 29-9

We can divide the entire equation through by dx, obtaining
dyldx+ cos x=3x>+8x—7

When we subtract cos x from both sides, we get the standard form
dyldx=3x*+ 8x—7 — cos x

Question 29-6

How can we recognize an elementary second-order ODE?

Answer 29-6

Imagine that we encounter an equation with an independent variable x and a dependent vari-
able y along with a continuous function £ We have an elementary second-order ODE if we
can manipulate it into the form

d*yldx* = f (x)
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Question 29-7

What strategy can we use to solve an equation in the form shown in Answer 29-6?

Answer 29-7

We must take the indefinite integral of both sides, retain the constant of integration, and then
take the indefinite integral of both sides again. When we do that, we end up with an equation
of the form

y=H(x)
where H is a family of functions that contains two constants. These constants result from the

repeated indefinite integration. One of the constants stands all by itself, and the other multi-
plies the independent variable x.

Question 29-8

How can we solve the following elementary second-order ODE?

d*yldx® — 15x° = 2 sin x

Answer 29-8

Let’s begin by getting the equation into the standard form. We can add 15x° to both sides,
obtaining

d*yldx® =2 sin x + 15x°
Integrating through with respect to x gives us
[ @y1de) de= [ @sin x +15¢) ds
The general antiderivatives are
[ (@*y1de) de=dyta+ ¢,
and
[ @sinx+ 150 de =2 cos x + 155"/ 4+ &

where ¢ and ¢, are the constants of integration. Putting the general antiderivatives together
into a single equation, we obtain

dyldx + ¢, = =2 cos x + 15x%4 + ¢
Subtracting ¢ from each side gives us

dyldx = =2 cos x + 1584 — ¢, + o
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Letting the quantity (—¢, + ¢,) be a consolidated constant p, we can simplify the above equa-
tion to

dyldx=-2 cos x+ 15x*/ 4 + p
When we integrate both sides, we get
[ty de=[ -2 cos x+ 15214+ p) de
The general antiderivatives are
[ @yide) de=y+
and
J (=2 cos x+ 15x*/ 4 + p) dx=—2sin x+3x°/ 4 + px+ ¢

where ¢; and ¢ are new constants of integration (not necessarily the same as ¢, and ¢,, which
we got when we integrated the first time). Combining the right-hand sides of these equations,
we obtain

y+ o =-2sinx+3x°/4+ px+ ¢
Subtracting ¢; from each side yields

y=-2sinx+3x°/4+ px— ¢ + ¢

When we let the quantity (—¢; + ¢) be a single constant and call it g, we can simplify to obtain
the solution

y=H(x)=-2sinx+3x’/4+px+q

Question 29-9

Can we consolidate the constants p and ¢ in the solution to the elementary second-order
ODE that we found in Answer 29-8?

Answer 29-9

No, we can’t. Within an expression or equation, we can only consolidate constants that apply
to the same power or function of a single variable or set of variables. Here, p multiplies x to
the first power, while ¢ stands alone (that is, it multiplies x to the zeroth power).

Question 29-10

Suppose that we've derived a solution to an elementary first-order or second-order ODE. How
can we test our solution to be sure that it’s correct?
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Answer 29-10

To check the solution to a first-order ODE, we can differentiate once. To check the solution
to a second-order ODE, we can differentiate twice. If our solution is correct, the differentia-
tion process will produce the original ODE, or else an equation that can be manipulated into

the original ODE.



Final Exam

This exam is designed to test your general knowledge of calculus theory, not to measure how
fast you can perform calculations. A good score is at least 120 answers correct. The answers
are listed in App. D. This test is long, so don’t try to take it in a single session. Feel free to
draw diagrams, sketch graphs, or use a calculator. But don't look back at the text or refer to
outside references.

1. Consider the following generalized cubic function:
fx)=ax

where 4 is a nonzero real number. What is the derivative of this function?
(@) f'(x)=ax’I3

(b) £’ (x) = ax?

(©) f'(x)=3ax

(d) f'(x) =3ax

(e) f/(x)=ax/3

2. If f and gare differentiable functions of a real variable x, which of the following
statements is true in general?

@ {glf ()= f@).f [g(x)]
(b) {g[f(x)]}'—g' [f Gl - [ (0]
© {glf =g [f U f )]
d {gf Y=g [f )] f(x)
(@ {glf Y=g - flgx)]

3. Imagine a function whose graph shows up as a curve in rectangular xy-coordinates.
Suppose we call the function

y=px)
541
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Now suppose that we find the derivative of the function p at a particular point (x,,), and
it turns out to be equal to —4. Which of the following statements describes this situation?

(a) The slope of a line tangent to the curve at (xo,y,) is equal to —4.

(b) The y-intercept of a line tangent to the curve at (x(,yo) is equal to —4.
(c) The value of y, is —4 times the value of x.

(d) The x-intercept of a line tangent to the curve at (xy,7) is equal to —4.

(e) The value of x; is —4 times the value of y,.

4. Which of the following types of functions is not continuous?
(a) A step function.
(b) A linear function.
(c) A constant function.
(d) An absolute-value function.

(e) A quadratic function.

5. Consider the function
fx)=—x"+3x-2

graphed in rectangular coordinates. Which of the following ordered pairs, if any,
reflects an inflection point in the curve?

(@ (0,-2)

(b) (1,0)

(o) (3/2,1/4)

(d) (2,0)

(e) None of the above

6. Which of these statements are true, and which are false?

* The limit of the sum of two expressions is equal to the sum of the limits of the expres-
sions.

* The limit of the difference between two expressions is equal to the difference between
the limits of the expressions (in the same order).

* A constant times the limit of an expression is equal to the limit of the expression
times the constant.

(a) All three of the statements are true.
(b) The first statement is false, but the other two are true.
(c) The second statement is false, but the other two are true.
(d) The third statement is false, but the other two are true.
(e) All three of the statements are false.
7. In the situation shown by Fig. FE-1, the limit of g (x), as x approaches any fixed
nonzero real number 4 from the right, is equal to
(a) the limit of g (x) as x approaches 4 from the left.
(b) twice the limit of g (x) as x approaches 4 from the left.
(c) half the limit of g (x) as x approaches # from the left.
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Y

Figure FE-1 Illustration for Final Exam Questions 7
and 8.

(d) —1 times the limit of g (x) as x approaches # from the left.

(e) twice the reciprocal of the limit of ¢ (x) as x approaches 4 from the left.

In the situation shown by Fig. FE-1, ¢ (x) is
(a) a function of x, defined and continuous for all real numbers x.

(b) a function of x, undefined at the point where x = 0, but continuous for all real
numbers x.

(c) afunction of x, defined for all real numbers x, but discontinuous at the point
where x= 0.

(d) a function of x, but undefined and discontinuous for all real numbers x.

(e) not a function of x, because it fails the vertical-line test.

. If we call the independent variable x and the we call the dependent variable j, then the
slope of a line passing through two points is equal to

(a) the difference in the y values divided by the difference in the x values.

(b) the sum of the yvalues divided by the sum of the x values.

(c) the average of the y values divided by the average of the x values.

(d) the ratio of the y values times the ratio of the x values.

(e) the product of the y values times the product of the x values.



544  Final Exam

10.

11.

12.

13.

14.

Suppose we're confronted with the following composite function, and we're told to
differentiate it:

f(x) = cos [sin (In x)]

What strategy makes the most sense for tackling this problem?

(a) Apply the product rule for derivatives twice, and the chain rule once.
(b) Apply the product rule three times.

(c) Apply the chain rule twice.

(d) Apply the quotient rule for derivatives once, and the chain rule once.
(e) Give up! This function is nondifferentiable for all real numbers!

Which of the following statements is true for differentiable functions fand gof a
single real variable 2?

(a) d(f—g)/dz= dgldz— df!dz

(b) d(fg)/dz= (dgldz) (df|dz)

(o) d(f+ g)ldz= dgldz+ df!dz

(d) d(flg)!dz= (dgldz) | (df!dz)

(e) df(@)ldz=dlg(f)]]dz

Fill in the blank to make the following statement true: “To find the derivative of the

reciprocal of a differentiable function, we must first find the derivative of the original
function, then , and finally divide by the square of the original function.”

(a) take the reciprocal

(b) multiply by —1

(c) add the original function

(d) subtract the original function

(e) take the absolute value

Consider the following function f of a real variable x, where « is a real-number constant:
f(x)=al(3x)

The derivative of this function is

@) £’ (x) = (-54)/(3x°), provided x# 0

(b) f’(x) =15ax° provided x# 0

(©) f(x) =—15ax", provided x# 0

(d) £’ (x) = (=5/3)/(ax"), provided x# 0

(e) impossible to calculate without more information.

Suppose that we evaluate certain limits involving a function f (x) at the point where
x=5. When we do this, we find that the function is continuous at the point, while

Lim [£(5+ Ax) — £(5))/Ax=2

Ax—0+
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16.

17.
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and

Lim [fG+Ax)-f(5)]/Ax=8
What can we conclude about £ (5)?

(a) It’s not defined.

(b) It’s equal to 2.

(c) It’s equal to 8.

(d) It’s the arithmetic mean of 2 and 8, which is (2 + 8)/2, or 5.
(e) It’s the geometric mean of 2 and 8, which is (2 - 8)''2, or 4.

Consider the following derivative, where p, g, and r are nonzero real constants, and y
is a real variable:

dldy [ p(qy+71)]

This derivative works out as
@) pgy+pr

(b) pq+ pr

© pay

(d) 2q

O8]

Consider the following linear relation between two variables x and y:

3x+6y=4

When this relation is graphed as a function of x, the slope of the resulting straight
line is

(a) 3.

(b) 6.

(c) 2/3.

(d) —-1/2.

(e) =3/2.

Consider again the linear relation stated in Question 16. When this relation is graphed
as a function of x, the j-intercept is

(a) 3.

(b) 6.

(c) 2/3.

(d) —=1/2.

(e) —3/2.
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function
A

Figure FE-2 Illustration for Final Exam Questions 18
and 19.

18. Which graph or graphs in Fig. FE-2 contain a point at which the associated function
is clearly discontinuous within the portions of the domain and range we can see?

(a) Curve Ponly.

(b) Curves Pand Q, but not curve R.
(c) Curve Q only.

(d) Curves Pand R, but not curve Q.
(e) All three curves B Q, and R.

19. Which graph or graphs in Fig. FE-2 contain a point at which the associated function is
continuous but nondifferentiable within the portions of the domain and range we can see?
(@) Curve Ponly.

(b) Curves Pand Q, but not curve R.
() Curve Qonly.

(d) Curves Pand R, but not curve Q.
(e) All three curves B Q, and R.

20. Which of the following functions is its own derivative?
(@) fi (x)=sinx
(b) £ (x) =—¢"
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22.

23.
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(0 f(x)=2Inx
d fi(x) ="
(e) f(x)= x4

How can the following expression be precisely translated into words?

Lim x_2 = +oo
Ax—0+

(a) As xapproaches 0 from the positive direction, the limit of ¥ becomes equal to
positive infinity if x gets small enough.

(b) As xapproaches and then reaches 0 from the positive direction, x> approaches and
then reaches positive infinity.

(c) As xstarts out at 0 and then becomes positive, X starts out at positive infinity
and gets smaller.

(d) As x gets smaller and smaller but remains positive, x> gets larger and larger
positively and endlessly.

(e) None of the above verbal expressions is technically correct.

Consider the following quadratic function:

f(x)=—8x*+6x—5

What is the x value of the extremum? Is the extremum an absolute maximum or an
absolute minimum?

(a) The x value is 3/8 at an absolute maximum.

(b) The x value is 3/8 at an absolute minimum.

(c¢) The xvalue is —8 at an absolute maximum.

(d) The x value is —8 at an absolute minimum.

(e) The xvalue is 5, but it’s a local extremum, and we can’t tell whether it’s a

minimum or a maximum without more information.

Consider the following function of x, where the domain is the entire set of reals:
flx)=(1/x") -4

For what values of x, if any, is this function nondifferentiable because of a
discontinuity?

(a) x=0.
(b) x=2.
(c) x=—2and x=2.
(d) x=4.

(e) There are no discontinuities, so there is no reason to suspect that the function is
nondifferentiable on that basis.
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24.

25.

26.

27.

Consider the following function of x, where the domain is the entire set of reals:
flx)=1/(x*—4)

For what values of x, if any, is this function nondifferentiable because of a discontinuity?
(a) x=0.

(b) x=2.
(c) x=—2and x=2.
(d) x=4.

(e) There are no discontinuities, so there is no reason to suspect that the function is
nondifferentiable on that basis.

Consider the following function of x, where the domain is the entire set of reals:
fx)=1/(x—4)°

For what values of x, if any, is this function nondifferentiable because of a discontinuity?
(a) x=0.

(b) x=2.
(¢) x=—2and x=2.
(d) x=4.

(e) There are no discontinuities, so there is no reason to suspect that the function is
nondifferentiable on that basis.

Consider the graph of the function

y=-3tan x

with the domain restricted to —7z/2 < x < /2. What is the slope at the inflection point?
(@ 0

(b) 1

(0 3

(d) -1

(e) -3

A relation is a mapping that can be expressed in terms of
(a) irrational numbers.

(b) rational numbers.

(c) quotients of integers.

(d) ordered pairs.

(e) extrema and inflection points.
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Consider the following function of a real variable x:
f(x)=—87x"+22x" — 115" + 5x— 4

If we keep differentiating this function over and over, we will eventually get
(a) an exponential function.

(b) alogarithmic function.

(c) the sine function.

(d) the cosine function.

(e) the zero function.

Consider the following generalized linear function:

f(x)=ax
where a is a nonzero real number. What is the derivative of this function?
(@ f"(x)=0
b) f'(x)=a

© f'x)=a

d) f'(x)=a’l2

(€ f'(x)=x

Suppose we have a function /4 that consists of a real variable z raised to a real-number

power p, and then multiplied by a rational-number constant 4. The derivative of this
function can be expressed as

W (2) = bpzt

There is an important restriction to keep in mind, however. This derivative is not

defined if z= 0 and
(@ p>2.
(b) p>1.
(o p<1.
d) 6=0.
(e) b<O.

Consider the following derivative, where p and ¢ are nonzero real constants, and zis a
real variable:

dldz [(pz+ q)(qz— p)]

This derivative works out as

(@) z(pg=q+p)
(b) 2pgz=p* + 4°



550 Final Exam

32.

33.

34.

35.

() 22+p°— ¢
d) pP+q +z
() p+q—=z

Consider the following function of a real variable x:

Fx)=7x"+ 125 — 71x" + 65x + 84 + 42¢*

If we keep differentiating this function over and over, we will eventually get

(a) an exponential function.

(b) alogarithmic function.

(c) the sine function.

(d) the cosine function.

(e) the zero function.

Suppose we have two differentiable functions gand /4 of a single variable 3. If we add

the functions and then take the derivative of their sum with respect to 3 we get the
same result as when we

(a) differentiate the functions individually with respect to 3 and then add the
derivatives.

(b) differentiate the functions individually with respect to y then add the derivatives,
and finally divide by 2.

(c) differentiate the functions individually with respect to 3 then add the derivatives,
and finally divide by the derivative of the sum of the original functions.

(d) differentiate the functions individually with respect to 3 and then multiply the
derivatives.

(e) differentiate the functions individually with respect to 3 then multiply the
derivatives, and finally divide by the derivative of the sum of the original
functions.

In Fig. FE-3, each vertical axis division is 1 unit. Both curves are sinusoids. Knowing
these things, we can reasonably conclude that the dashed curve shows

(a) the first derivative of the function portrayed by the solid curve.

(b) the second derivative of the function portrayed by the solid curve.

(c) the third derivative of the function portrayed by the solid curve.

(d) the fourth derivative of the function portrayed by the solid curve.

(e) None of the above

For an object in free fall, neglecting air resistance, the second derivative of the vertical
fallen distance with respect to time is

(a) the vertical speed.

(b) the vertical jerk.

(c) the first derivative of the vertical speed with respect to time.
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— Each vertical division
_| represents 1 unit

Figure FE-3 Illustration for Final Exam Question 34.

(d) the first derivative of the vertical acceleration with respect to time.
(e) the first derivative of the vertical jerk with respect to time.

36. Suppose you have a function whose graph shows up as a straight line in the
rectangular xy-plane, where x is the independent variable and y is the dependent

variable. Further, suppose that the line does not pass through the origin (0,0). The
derivative of the function at a specific point (x,,) on the line is equal to

(a) the y-intercept divided by the x-intercept.
(b) the x-intercept divided by the j-intercept.
(©) yolxo.
(d) X0 /)’0-
(e) None of the above
37. Suppose we encounter a function 4 that takes a variable z to a positive-integer power 7

larger than 3, and then multiplies the result by a nonzero real constant £ How can we
express the first derivative of 4 with respect to z?

(@) ¥ (2) = nk’z"™"
(b) ¥ (2) = nkz""Y
(©) ¥ (2) = ng"™"
(d) ¥ (z) = nkz"
(e) ¥ (z)=nz"
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38.

39.

40.

41.

42.

Suppose we encounter a function g that multiplies a variable y by a nonzero real
constant ¢, and then take the product ¢y to a positive-integer power 7 larger than 3.
How can we express the first derivative of g with respect to z?

() dgldy= mc"y" "
(b) dgldy= mcy™™
(c) dgldy= my™"

(d) dgldy= mcy™

(e) dgldy=cy”

Mathematical induction is a technique that allows us to

(a) prove a general statement true if we can prove a large enough number of specific
examples true.

(b) prove, in effect, infinitely many statements in a few steps.
(c) prove that if A implies B, then “not A” implies “not B.”

(d) prove that if a theorem holds for all the rational numbers, then it holds for all the
real numbers.

(e) prove that if a theorem holds for all the rational numbers, then it holds for all the
integers.

A function is a relation in which every element in the domain maps to

(a) one or more elements in the range.

(b) at most one element in the range.

(c) another element in the domain.

(d) itself.

(e) asingle, constant element in another relation.

Consider the following generalized quadratic function:
fx) = ax

where 2 is a nonzero real number. What is the derivative of this function?
(@ f'(x)=al2

®) £ () = a

(0 f'(x)=2a

d) £’ (x)=a*2

(e) f'(x)=2ax

Which of the following functions has an inverse relation that is not a function?
Assume in each case that the domain of the original function is the entire set of reals.

(@) fi(x)=6x+4
(b) f(x) =5

(© £ (x) ==5%
(d) fi (x)=Inx
() £ (x) =4x"
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Which of the following expressions describes how the chain rule can be applied twice
when evaluating a function 4 of a function gof a function £ assuming that all three
functions are differentiable over their domains?

@ hlg(HY=H1g(f)]

b) hlg(HW=HIg(f)]- g (f)

@ (hlg(NHW=H (g g (f)-H(f)

d) hlg(NHY=H1g(OI-f

@ hlg(NHY=H(- (-1

To find the derivative of the quotient of two differentiable functions, we multiply the
derivative of the first function by the second function, then multiply the derivative of

the second function by the first function, then subtract the second product from the
first product, and finally

(a) multiply by the second function.

(b) multiply by the square of the second function.

(c) divide by the second function.

(d) divide by the square of the second function.

(e) divide by the derivative of the second function.

Figure FE-4 shows the graph of a cubic function. At which points, or in which
regions, is dy/dx positive?

(a) Region P (to the left of point Q).

(b) The region between points Q and .

(c) Point Ronly.

(d) Points Qand S only.

(e) Region 7 (to the right of point §).

In Fig. FE-4, at which points, or in which regions, is dy/dx equal to 02
(a) Region P (to the left of point Q).

(b) The region between points Q and S.

(c) Point Ronly.

(d) Points Qand S only.

(e) Region 7 '(to the right of point §).

In Fig. FE-4, at which points, or in which regions, is d*y/dx* equal to 0?
(a) Region P (to the left of point Q).

(b) The region between points Q and S.

(c) Point Ronly.

(d) Points Qand S only.

() Region 7 (to the right of point ).

Consider the following function of a real variable x:

Fx)=—87x"+22x" — 1157 + 5x— 4 + 3x!
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49.

Figure FE-4 Illustration for Final Exam Questions 45, 46, and 47.

This function is differentiable over
(a) the entire set of real numbers.
(b) the entire set of reals except 0.
(c) only the set of positive reals.

(d) only the set of nonnegative reals.

(e) only the set of negative reals.

Once again, consider the function
Fx) =—=87x* +22x° — 1152 + 5x— 4 + 35

What is the fifth derivative of f with respect to x?
@) 9 (x) =3¢

b) fO(x)=3Inx

© fP @) =0

d) £© (x) =-360/x°

(e) Nothing. This function can’t be differentiated five times.
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If f and g are differentiable functions of the same variable, and if zand & are
constants, then which of the following statements is 7oz true in general?

@ (af)=a(f")

b) (f+o'=(g+f)

© (f-g)V=(g-fY)

(d) (af +bg) =a(f)+b(g)
(e (fg)=(gf)

What is the general resolution of the following indefinite integral? Call the constant of
integration .

J 47" dt
(a) —4r7%+¢
(b) —2£7%+ ¢
(c) 4lnltl+¢
(d) —41Inlel+ ¢

(e) This integral can’t be resolved.

Suppose that f; and f; are integrable functions of x over a continuous interval (4,6). Let
b, and £, be real-number constants. Then

b b b
[N+ k@Y de=k [ ) de+h [ f(x) de

What, if anything, is wrong with this formula?
(a) Nothing is wrong,.

(b) The constants to the right of the equals sign, appearing in front of the integral
symbols, should both be 4, 4,.

(c) The constants to the right of the equals sign, appearing in front of the integral
symbols, should both be (£ + 4,).

(d) The constants to the right of the equals sign, appearing in front of the integral
symbols, should both be (£ + £,%)"".

(e) The integrands to the right of the equals sign should be £ (x) in the first integral
and £’ (x) in the second integral.

The principle of linearity for definite integrals works with any finite linear combination

of functions and constants, as long as

(a) we stay with the same variable.

(b) we stay with the same interval.

(c) each function can be integrated over the entire interval.

(d) we’re sure that (a), (b), and (c) are all true.

(e) all the constants are the same.



556 Final Exam

54. Fill in the blank to make the following sentence true: “If we integrate a function over
an interval from the minimum to the maximum, we get the integral of the
same function from the maximum to the minimum.”

(a) twice

(b) half

(c) the same result as
(d) —1 times

(e) the —1 power of

55. Refer to Fig. FE-5. What does the following expression represent?
Y Ax- f(a+ iAx)
i=1

(@) The actual area defined by the curve.

(b) The sum of the areas of the rectangles.

(c) The sum of the perimeters of the rectangles.
(d) The perimeter of the 7th rectangle.

(e) The area of the ith rectangle.

f(x)
Height of ith
rectangle
=f(a+iAX)
Xx=a
X
x=b
> Ax |« Width of every
rectangle
=AX
/ = (b-a)n

Figure FE-5 Illustration for Final Exam Questions 55 and 56.
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We can rewrite the expression stated in Question 55 to get

n

N (b—a)ln] - fla+ i(b— a)ln]
i=1
What fact, evident from Fig. FE-5, allows us to do this?
(a) The area defined by the curve is equal to the sum of the areas of the rectangles.
(b) The height of the 7th rectangle is equal to f (2 + iAx).
(c) The number of rectangles approaches infinity.
(d) The width of each rectangle is equal to 6 — a.
(e) The increment Ax is equal to (6 — a)/n.

The principle of integration by parts tells us that if fand gare integrable and
differentiable functions of a variable x, then

[ F@) g de=f) gt~ g0 f/ ()

Now look at the following equation, which is meant to show an example of
integration by parts. Is anything wrong here? If so, what can be done to make it right?

J xe’“dx=xe"—j x dx

(a) Nothing is wrong.

(b) The integrand after the second integral symbol should be ¢*, not x.
(c) The integrand after the second integral symbol should be x*/2, not x.
(d) The expression after the equals sign should be x*¢*, not xe™.

(e) The expression after the equals sign should be xIn x, not xe*.

What is the value of the following sum of definite integrals?

1

J.2xdx+ j. 2x dx
1

0

@ 0

(b) 1

(0 -1

(d) j, the positive square root of —1

(e) —j, the negative square root of —1

Suppose we encounter the indefinite integral

j [(5x—5)(x* + x— 6)1] dx
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60.

61.

62.

63.

We can use the technique of partial fractions to split the above integrand into a sum of
two manageable integrands. Those two integrands are

(a) 4(x—2)" and 2(x+3)7".

(b) (x—3/4)" and 16(x+2)"".
(©) (x—2)" and 4(x+3)7".

(d) 4(x+2/3)7" and 2(x—3/2)™".
(e) 4(x—2/3)" and 4(x—3)7"
If we want to evaluate the integral in Question 59 over the interval (0,5), we must
take note of the fact that

(a) there’s a singularity at x= 3.
(b) there’s a singularity at x = 3/2.
(c) there’s a singularity at x = 3/4.
(d) there’s a singularity at x = 2/3.
(e) there’s a singularity at x= 2.

Suppose we want to find the true geometric area between the graphs of the following
two functions:

f(x) =sin x
and

g(x)=2xI7

We can do this by integrating a certain function with respect to x, over the interval
between the points where the graphs intersect. What are the x values of those two points?

(a) —1 and 1.
(b) —zand 7.
(c) Oand 1.
(d) 0and 7.
(e) 1and 7.

If / (2) = 0, then which of the following is an antiderivative of /?
(@ 5

(b) 5z

(c) 52°

(d) 527"

(e) All of the above

Suppose that ¢ (z) is a function that is integrable over a certain interval. Someone tells us
that the following statement is true for all possible values of p, ¢, and 7in the interval:

jg(z> dz + f g (2) dz= j ¢(2) de
V4 ? q
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What, if anything, is wrong with this statement? If something is wrong with it, how
can it be changed to make it correct?

(a) Nothing is wrong with this statement. It’s true as it stands.

(b) The bounds attached to the integral symbols are wrong. We can make the
statement true by changing the lower bound of the second integral to 4 and
changing the lower bound of the third integral to p.

(c) The bounds attached to the integral symbols are wrong. We can make the
statement true by reversing the bounds of the third integral.

(d) The bounds attached to the integral symbols are wrong. We can make the
statement true by reversing the bounds of the second integral.

(e) The addition operation is wrong. We can make the statement true by changing it
to subtraction.

Suppose we have a function f'(x) that contains no singularities, and is defined and
continuous over an interval from x = « to x = b. The formula for the length of the arc
between these two points is

b
L= [{L+[f (P} da

If we want to apply this formula in any particular situation, which of the following
would we most likely want to do first?

(a) Differentiate f with respect to x.

(b) Antidifferentiate /" with respect to x.
(c) Square the function £

(d) Add 1 to the function f

(e) Take the positive square root of the function f

Consider the function
g(x)=(x"—3x+2)"

Suppose we want to calculate the arc lengths along the graph of this function over
various intervals. Which, if any, of the following intervals won't work with the formula
for arc length stated in Question 64?

(a) 2<x<0
(b) 2<x<2
(c) 3<x<4

d) 1/2<x<3/4
(e) —1/2<x<1/2

Suppose we encounter this mathematical expression:
n

Za,«zb

i=1
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How would we say or write this in words?

(a) The sequence of terms 4, from i=1 to 7, is equal to 4.
(b) The average of the terms a, from 7= 1 to #, is equal to &.
(c) The sum of the terms @, from 7=1 to 7, is equal to &.
(d) The integral of the terms 4, from /=1 to 7, is equal to 4.
(e) None of the above

67. Lets look again at a situation we saw a little while ago (Question 61). We want to find
the true geometric area between the graphs of

f(x) =sin x

and

g(x)=2xI7

We can do this by integrating a certain function with respect to x, over the interval
between the points where the graphs intersect. In this situation,

(a) the integrand is sin x — 2x/7.
(b) the integrand is sin x+ 2x/7.
(c) the integrand is —cos x — 2x/7.
(d) the integrand is —cos x + 2x/7.

(e) the integrand is cos x — 2x/7.

68. If g (#) = 7, then which of the following is an antiderivative of g?

(a) 7¢
(b) 7¢=7
(c) 7t+7

(d) 9+5)(¢/2) - 16
(e) All of the above

69. If we consult a comprehensive table of indefinite integrals, we'll find

J. (ax+6) "V dx = a'lnlax+ bl + ¢

where 2 and & are constants, and x is the variable. This formula can come in handy
when we want to use the technique of

(a) integration by parts.

(b) integration by linear differentiation.
(c) Riemann integration.

(d) improper integration.

(e) integration by partial fractions.
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70. Figure FE-6 shows the graph of a function /4 (x), along with a region defined by the
curve within the interval (=1,1) that contains a singularity at x= 0. Suppose we want
to evaluate the definite integral

j b (x) dx

-1

What'’s the correct way to do this?
(a) Find H (x), and then subtract A (-1) from H (1).

(b) Find, if possible, the improper integral of H (x) from x=—1 to x= 0. Then find,
if possible, the improper integral of H (x) from x= 0 to x= 1. Finally, assuming
both integrals are defined and finite, add them.

(c) Find, if possible, the improper integral of H (x) from x=—1 to x= 0. Then find,
if possible, the improper integral of H (x) from x= 0 to x= 1. Finally, assuming
both integrals are defined and finite, subtract them from each other and take the
absolute value of the result.

(d) Find, if possible, the improper integral of H (x) from x=—1 to x= 0. Then find,
if possible, the improper integral of H (x) from x= 0 to x= 1. Finally, assuming
both integrals are defined and finite, multiply them.

(e) Give up! It’s impossible to evaluate this integral.

h(x)

A Area defined by curve

-+ extends upward
M forever

Each vertical |-
division is
1 unit

Each horizontal division is 1/2 unit

Figure FE-6 Illustration for Final Exam Question 70.
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71.

72.

73.

74.

If £ (v) = —4v+ 8, which of the following is 7oz an antiderivative of f°?
(a) =2+ 8v

(b) -2/ +8v+8

() 2/ +8v—rx

(d) 2/ +38

() 2/ +8v+Inrx

Consider the definite integral

b

[ f)

a

Suppose that £ blows up at the upper bound 4. To approximate the value of this
integral, we can imagine a tiny positive number £ and evaluate

b-"f f(x) dx

We can make &€ smaller and smaller, always keeping it positive, and we’ll be able to get
as close to the actual value of the integral from a to & as we want, but only if

(a) the actual integral from z to 4 s positive.
(b) f(b) is positive.
(c) the actual integral from z to 4 s finite.

(d) the actual integral from # to 4 is equal to 0.

(e) £ (b) is defined.

Imagine a car in a drag race. We start a timer as soon as the car begins the race. The
total distance that the car has traveled from the starting point at any given instant in
time can be found by

(a) integrating the acceleration with respect to time.

(b) integrating the speed with respect to time.

(c) differentiating the acceleration with respect to time.

(d) differentiating the speed with respect to time.

(e) no known means.

How can we simplify the last expression in the following equation and have it remain

valid in theoretical terms? In this example, y is the variable, and ¢, ¢, and ¢ are
constants of integration.

J (5),2/3 _}’_1/2 _ 4)/—2) d)/
:J. 5},2/3 d_}/ +J. _)/_1/2 d_)/ +J. _4},—2 d_}/

=3P +a-2y"++4" + g
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(a) We can consolidate ¢, ¢;, and ¢ into a single constant of integration ¢ that’s equal
to a/3 + /3 + /3.

(b) We can consolidate ¢;, ;, and ¢; into a single constant of integration ¢ that’s equal
o 1 66.

(c) We can consolidate ¢, ¢;, and ¢ into a single constant of integration ¢ that’s equal
tocqa+o+a.

(d) We can get rid of the constants altogether.

(e) We can’t simplify the last expression any further.

The sum rule for definite integrals works when we add up any finite number of
functions, but only under certain conditions. Which conditions?

(a) All the functions must be integrable over the interval.

(b) All the integrals must be done in the same direction.

(c) The interval of integration must be the same for each function.

(d) All three conditions (a), (b), and (c) must hold true.

(e) None of the above conditions have to be true.

We want to evaluate the following integral. Why can't we use the Fundamental Theorem

of Calculus directly over the interval (2,4) in an attempt to solve this problem?
4

J (322 +2z— 6+ (2—3)"] dz
2
(a) The interval (2,4) is too narrow.
(b) The integrand function is not continuous for z < 2.
(c) The integrand function is not continuous for z > 4.
(d) The integrand function contains a singularity in the interval (2,4).

(e) We can!

Let’s look, for the third time, at the situation we saw in Questions 61 and 67. We
want to find the true geometric area between the graphs of

f(x) =sin x

and

g(x)=2xl7

We can do this by evaluating a certain expression over the interval between the x
values of the points where the graphs intersect. In this situation,

(a) the expression is sin x — x*/ 77, evaluated from —1 to 1.
(b) the expression is sin x+ x°/ 77, evaluated from —7to 7.
(c) the expression is —cos x — x*/ 77, evaluated from 0 to 1.
(d) the expression is —cos x + x*/ 7, evaluated from 0 to 7.

(e) the expression is cos x — x*/ 7T, evaluated from 1 to 7.
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78.

79.

80.

81.

Which of the following functions contains a singularity?
@ fi(x)=x"

b) () = e

(©) £ (%) =3x"+2x

d fix)=6+x)"

(e) All four of the above

Consider the sum of definite integrals

5 3

J. 7% dx+ J. X2 d

3 5

Can we rewrite this expression so that the sum rule can be used to convert it into a
single definite integral of a polynomial function? If so, how?

(a) We can’t do it.

(b) We can transpose the bounds of the first integral, and leave everything else the
same.

(c) We can transpose the bounds of the second integral, and leave everything else the
same.

(d) We can transpose the bounds of the first integral, and change the second integrand

to —x*°.

(e) We can transpose the bounds of the second integral, and change the second
integrand to —x*.

Suppose that we have two integrable functions fand gsuch that foperates on x, while
goperates on f'(x). If we see an integral of the form

b
[ gl el f (o) de

where 2 and 4 are real numbers, then the rule of substitution lets us rewrite it as
f(b)

[ s
f(a)

In the second integral, y is the equivalent of

(a) f(x) in the first integral.

(b) f(x) in the first integral.

(¢) f’(x) dxin the first integral.

(d) g’ (x) in the first integral.

(e) g’ (x) dxin the first integral.

In the second integral above (Question 80), 4y is the equivalent of

(a) f(x) in the first integral.
(b) /7 (x) in the first integral.
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(¢) f’(x) dxin the first integral.
(d) ¢’ (x) in the first integral.
(e) g’ (x) dxin the first integral.

Suppose 4, b, ¢, and d are real numbers and 2 < & < ¢ < d. Consider the following sum
of definite integrals:

b d
J 3x° dx+ j 3e" dx

Both of these integrals are defined over any interval in the set of reals, because both
of the integrands are defined and continuous over the entire set of reals. Now suppose
that we want to consolidate the above expression into a single definite integral in
which the integrand is (3x° + 3¢*). How should we set the bounds of integration?

(a) We can't, based on the information given here.

(b) The lower bound should be 4, and the upper bound should be c.
(c) The lower bound should be 4, and the upper bound should be 4.
(d) The lower bound should be 4, and the upper bound should be c.
(e) The lower bound should be 4, and the upper bound should be 4.

Suppose we want to find the true geometric area between the graphs of the following
two functions:

fl) ==

and
gix)=1=-e)x-1

We can do this by integrating a certain function with respect to x, over the interval
between the points where the graphs intersect. What are the x values of those two
points?

(a) —1 and 1.
(b) —eand e.
(c) 1and e
(d) 0and e
(e) O0and 1.

Consider a function £, a variable x, a constant 4, and an integer 7. Imagine that
f(x) = ax"
Now suppose we're told that the general antiderivative of f/ with respect to x is

F(x)=ax"V(n+1)+c¢
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where c¢is the constant of integration. This formula won’t work

(@) if n=-1.
(b) if n<—1.
(c) if nis not a rational number.
(d) if 7 is not an integer.
(e) in any case, because it's wrong!
Figure FE-7 shows the graphs of two functions in Cartesian coordinates. The true
geometric area of the region enclosed by the line and the curve is
(a) positive, because most of it lies above the independent-variable axis.
(b) positive, because most of it lies to the right of the dependent-variable axis.

85.

(c) positive, because true geometric areas are never negative.

(d) partly positive and partly negative.
(e) impossible to define, because it does not all lie in a single quadrant of the

coordinate plane.

Value of
function
(positive)
A
h (X) 'v"x‘

' “\ What's the
% area of the

) .
~ % shaded region?

4
’
7
7
1
1
1
I
I
L
1

1
1
1
1
I
1
1
1

—X <
I R A

A\

Value of
function
(negative)

Figure FE-7 Illustration for Final Exam Questions 85 and 86.
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To determine the true geometric area enclosed by the graphs in Fig. FE-7, we can

(a) integrate the function f (x) — /4 (x) over the interval between the points where the
line and the curve intersect.

(b) integrate the function 4 [ f (x)] over the interval between the points where the line
and the curve intersect.

(c) integrate the function f (x) 4+ 4 (x) over the interval between the points where the
line and the curve intersect.

(d) integrate the function [ f'(x) + 4 (x)]/2 over the interval between the points where
the line and the curve intersect.

(e) do nothing, because the region does not all lie in a single quadrant of the
coordinate plane.

Suppose we want to evaluate the definite integral
1
J' (V7 + 1B dx
0

We decide to go through the following four steps to solve this problem.

* Split the original integral into two separate integrals of monomial functions.

* Integrate those two monomial functions independently.

o If either of the monomial-function integrals is undefined, conclude that the entire
integral is undefined.

* Ifboth of the monomial-function integrals are defined, add them to get the value of
the entire integral.

What, if anything, makes this process incorrect, incomplete, or otherwise unworkable?
If anything is wrong with it, what can we do to make it work?

(a) The first and second steps are unworkable. We can’t split this integral into a sum
of two other integrals, because the exponents aren’t integers. We must therefore
tackle the integrand as a single polynomial.

(b) The third step is wrong. The entire integral is undefined only if both of the
monomial-function integrals are undefined.

(c) The fourth step is wrong. We can’t add the two monomial-function integrals; we
must find their arithmetic mean.

(d) The fourth step is wrong. We can’t add the two monomial-function integrals; we
must find their geometric mean.

(e) Nothing is wrong with this process.

Let’s look again at a situation we saw a little while ago (Question 83). We want to find
the true geometric area between the graphs of

fx)=—e
and

gx)=(1-9x-1
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89.

90.

91.

We can do this by integrating a certain function with respect to x, over the interval
between the points where the graphs intersect. In this situation,

(a) the integrand is e* — x+ ex+ 1.
(b) the integrand is —e* + x+ ex+ 1.
(c) the integrand is e*— x+ ex— 1.
(d) the integrand is —¢* — x+ ex+ 1.

(e) the integrand is ¢* — x— ex— 1.
Suppose we encounter an integral of the form

0
j b (%) dx

Which of the following statements can we make about the value of this integral
without knowing anything about 4 except the fact that 4 (0) is defined?

(a) It’s equal to 0.

(b) It’s negative.

(o) It’s positive.

(d) It’s a real number.

(e) None of the above

Suppose we encounter an integral of the form

]f f(2) dz

Which of the following statements can we make about the value of this integral
without knowing anything about fexcept the fact that £(0) is defined?

(@) Its equal to 0.

(b) It’s infinite.

(c) It’s finite.

(d) It’s not a real number.
(e) None of the above

Suppose we encounter an integral of the form

1

j g (2) dr

1

Which of the following statements can we make about the value of this integral without
knowing anything about g except the fact that g (—1) and g (1) are both defined?

(@) Its equal to 0.

(b) It’s finite.

(c) It’s infinite.
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(d) It’s an integer.
(e) None of the above

Suppose we encounter an integral of the form

].1 P(v) dv

4
Which of the following statements can we make about the value of this integral
without knowing anything about P except the fact that P (1) is defined?

(a) It’s equal to 0.

(b) It’s a positive real number.

(c) It’s undefined.

(d) It’s a negative real number.

(e) None of the above

Consider a normal probability distribution P (x) whose graph has a left-hand extreme

at x= p and a right-hand extreme at x= ¢. Suppose we find x= @such that p < @< 4.
Suppose we also have

0
I P(x) dx=1/2
?
and
q
j P(x) dx=1/2
®

What does @ represent?

(a) The least upper bound of P

(b) The standard deviation of P

(c¢) The deviation of P

(d) The greatest lower bound of P

(e) None of the above

In the situation shown by the graph of Fig. FE-8, it’s tempting to think that we can
integrate f (x) and g (x) separately over the interval between the points 2and Q where
the curves intersect, take the absolute values of both integrals, and then add those two

absolute values to get the true geometric area between the curves. Can we do this and
be sure we'll get the correct resule?

(a) Yes, but only if Pand Q are equally far from the dependent-variable axis.
(b) Yes, but only if Pand Q are both exactly on the independent-variable axis.
(c) Yes, but only if Pand Q are equally far from the independent-variable axis.
(d) Yes, but only if f'(x) and g (x) are both quadratic functions.

(e) No! Never.
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Value
of

function

f(x)

A
A}
\Y
A
1
A
A}
1
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A
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[}

[}

[}

H
A\ 4

Figure FE-8

Illustration for Final Exam Question 94.

95. Let’s look, for the third time, at the situation we saw in Questions 83 and 88. We
want to find the true geometric area between the graphs of

f(x)=—e"
and

gx)=1-e)x-1

We can do this by evaluating a certain expression over the interval between the x
values of the points where the graphs intersect. In this situation,

(a) the expression is e* — x*/2 + ex?/2 — x, evaluated from 0 to e.
(b) the expression is —¢* — x*/2 + ex*/2 + x, evaluated from 0 to 1.

(c) the expression is —e* — x*/2 — ex*/2 + x, evaluated from —e to e.

(d) the expression is —¢* — x*/2 + ex?/2 + x, evaluated from —1 to 1.

(e) the expression is —e* — x*/2 — ex*/2 — x, evaluated from 1 to e.
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96. Imagine that we have various functions of a variable x, and all of those functions can
be integrated with respect to x. Which of the following statements is false?

(a) The indefinite integral of the negative of a function is equal to the negative of the
indefinite integral of the function.

(b) The indefinite integral of the difference between two functions is equal to the
difference between the indefinite integrals of the functions, as long as the order of
subtraction stays the same.

(c) The indefinite integral of the product of two functions is equal to the product of
the indefinite integrals of the functions.

(d) The indefinite integral of the sum of two functions is equal to the sum of the
indefinite integrals of the functions, as long as the order of addition stays the same.

(e) The indefinite integral of the sum of two functions is equal to the sum of the
indefinite integrals of the functions, whether the order of addition stays the same
or not.

97. In the graph of Fig. FE-9, the length of the chord labeled with Axand Ay s

(@) Ay/Ax.

(b) (Ay+ Ax)"”.

(c) (Ay—Ax)".

There are n chords,
shown as dark,
straight line segments

Graph of function
is gray curve

All increments are of
X=4a equal size along the
X axis

Figure FE-9 Illustration for Final Exam Questions 97, 98, and 99.
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d) (Ay* + Ax?)2,
(C) (Ayz—sz)”z.

98. In Fig. FE-9, the law of the mean tells us specifically that

99.

100.

101.

(a) the length of the arc segment labeled with Ax and Ay is greater than or equal to
the length of the corresponding chord.

(b) the length of the arc over the interval from x= 4 to x= 4 is greater than or equal
to the sum of the lengths of the chords connecting all the points over that interval.

(c) there is a point on the chord labeled with Ax and Ay at which the slope of the
chord is equal to the length of the corresponding arc segment.

(d) there is a point on the arc segment labeled with Axand Ayat which the derivative of
the function representing the arc equals the slope of the corresponding chord.

(e) as the number of chords 7 increases, the sum of the chord lengths over the interval
from x = 2 to x = b approaches the true arc length over that interval.
Which of the following statements concerning Fig. FE-9 is nor necessarily true?

(a) the length of the arc segment labeled with Ax and Ay is greater than or equal to
the length of the corresponding chord.

(b) the length of the arc over the interval from x = a to x = 4 is greater than or equal
to the sum of the lengths of the chords connecting all the points over that interval.

(c) there is a point on the chord labeled with Ax and Ay at which the slope of the
chord is equal to the length of the corresponding arc segment.

(d) there is a point on the arc segment labeled with Axand Ay at which the derivative of
the function representing the arc equals the slope of the corresponding chord.

(e) as the number of chords 7 increases, the sum of the chord lengths over the interval
from x = 2 to x = b approaches the true arc length over that interval.

If we antidifferentiate the zero function twice with respect to an independent variable

x, we can, in theory, get any of the following excepr

@ 0

(b) 2

(o) 2x

d) 2x+2

(e) 2x*+2

What type of curve does the following equation represent?
11x"+2y°=22

(a) We need more information to answer this.
(b) It’s a parabola.

(c) It’s a circle.

(d) It’s an ellipse.

(e) It’s a hyperbola.
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Look again at the equation in Question 101. What is y’when x= 112
(a) It’s not defined.

(b) It’s equal to 0.

(c) Its equal to £ 22

(d) It’s equal to £ 112

(e) Its equal to — (11/2)"%

Look again at the equation in Question 101. What is y”when y=11"%?
(a) It’s not defined.

(b) It’s equal to 0.

(c) It’s equal to £ 2'2.

(d) It’s equal to £ 112,

(e) It’s equal to — (11/2)"2.

Consider a function f of two variables x and y. Suppose that we treat y as a constant,

differentiate with respect to x, keep holding y constant, and differentiate with respect
to x again. The result of this process is

(a) the zero function.

(b) a constant function.

(c) a polynomial function.

(d) a mixed second partial.

(e) None of the above

Fill in the blank to make the following statement express one of I'Hépital’s principles.
“If we want to find the limit of a ratio that tends toward , and if we can

differentiate the numerator and the denominator, then the limit of the ratio of the
derivatives is the same as the limit of the original ratio.”

(@ 1/0

(b) Zee/0

(c) 1/%eo

(d) 0/0

() X2/7

Fill in the blank to make the following statement express another of 'Hopital’s
principles. “If we want to find the limit of a ratio that tends toward _ , and if

we can differentiate the numerator and the denominator, then the limit of the ratio of
the derivatives is the same as the limit of the original ratio.”

(a) Foo/teo
(b) 0/1

(c) Zeo/0
(d) eo/1
(e) /2
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107. Imagine variables x and y along with true functions f and £ such that

108.

f=y

and

[ =x
Which of the following statements can help us differentiate £~ with respect to y?
@ DI ]=1
(b) (dxldy) = (dyldx)™
(© xy=1
d) ffp=1
(e) (dyldx)*=1
Consider a function z= f'(x,y). Imagine that the 3D graph of f is a surface that
intersects all three planes shown in Fig. FE-10, forming a curve in each plane. Suppose

that the intersection curve in the plane parallel to the xz plane represents a function that
can be differentiated. When we differentiate it, we have one of the partial derivatives of

(a) ywith respect to x.
(b) ywith respect to z.
(c) xwith respect to .
(d) zwith respect to x.

(e) zwith respect to .

+z Plane parallel to
Xz plane

Plane T
parallel to
yz plane

Plane
parallel to
Xy plane

Figure FE-10 Illustration for Final Exam Questions 108 and
109.



109.

110.

111.

112.

113.

Final Exam 575

Consider the same function z = f'(x,y) as we did in Question 108. Suppose that the
intersection curve in the plane parallel to the xz plane represents a function that can be
differentiated. When we differentiate it,

(a) we hold y constant.

(b) we hold z constant.

(c) we hold xand y constant.

(d) we hold x and z constant.

(e) we hold yand z constant.

Suppose we use 'Hopital’s rule in an attempt to find an indeterminate limit, and we
end up with a limit of the form +eo/—eo. What should we do?

(a) Give up. We can't go any further to find this limit.

(b) Conclude that the limit is not defined.

(c) Apply 'Hépital’s rule again.

(d) Conclude that the limit is equal to —oce.

(e) Conclude that the limit is equal to —1.

Consider a function 4 of two variables # and ». Suppose that we treat # as a constant,

differentiate with respect to # then treat v as a constant, and differentiate with respect
to . The result of this process is

(a) the zero function.

(b) a constant function.
(c) a polynomial function.
(d) a mixed second partial.

(e) None of the above

Imagine that we want to find the mathematical volume of a solid defined by a surface in
Cartesian xyz-space with respect to a region Rin the xy-plane. Suppose that the surface is
defined by the function 4 (x,y). When we work out the double integrals we discover that

” h(xy) dx dy= H h(xy) dydx=0
R R
What can we conclude, with certainty, from this resule?
(a) The surface is flat, and lies entirely in the xy-plane within the region R.
(b) The function fcontains a singularity somewhere in the region R.
(c) The surface is flat and horizontal, parallel to the xy-plane within the region R.

(d) The surface is perpendicular to the x)-plane at every point where it passes through
the region R.

(e) None of the above

Consider the following function in which x is the independent variable and y is the
dependent variable:

y=f)=(x+1)
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Suppose that we find the inverse relation £ ', so we have
x=1"(y)

where yis the independent variable and x is the dependent variable. How must we
restrict the domain of f to ensure that /' is a true function and is defined for all
input values?

(a) We must restrict it to the set of all reals x such that x> 1.

(b) We must restrict it to the set of all reals x such that x> 0.

(c) We must restrict it to the set of all reals x such that x> —1.

(d) We must restrict it to the set of all reals x such that =1 < x< 1.
(e) We don't have to restrict it at all; x can be any real number.

114. Assuming we have restricted the domain of f in the situation of Question 113, what is
the derivative of its inverse?

@ f"(y=3(+1)y
b)) fF () =3y(y+1)7
© f (=513

d) f" () =y"-1

@ f"y=u+n"”

115. Consider the following function g of two real independent variables s and # where the
dependent variable is a real number :

u=g(st) =s"+2st+ 1

The value of du/d¢at the point where (5,£) = (3,-2) is
(a) 2.
(b) —2.
(c) 4.
(d) o.
(e) impossible to determine without more information.
116. Consider two functions f (x) and g (x) with three properties. First, /' and gare both

differentiable with respect to x over some open interval containing x = 2, except
g
possibly at x = z itself. Second,

Lim f(x)=0
and
Lim g(x)=0

x—a
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Final Exam 577

Third, g’ (x) = 0. If all three of these conditions are met, then
Limf(x) g (x) = Limf’ (x)/ g (x)

Is anything wrong with this principle as stated here? If so, how can the principle be
rewritten to make it correct?

(a) The first condition is misstated. It should require that / and g be continuous and
differentiable over the entire set of real numbers.

(b) The second condition is misstated. It should require that the limits of both f and
¢ should be nonzero real numbers as x approaches .

(c) The third condition is misstated. It should require that ¢’ (x) be nonzero whenever
X% a.

(d) The ratio of the derivatives is upside-down in the limit on the right-hand side of
the equation. We should divide g’ (x) by f” (x).

(e) Nothing is wrong with the principle as it is written here.

Consider the following function in which the domain is a set of real-number ordered
pairs (x,y), and the range is a set of real numbers z:

z=f(xy) =7x" In Iyl

The value of dz/dx at the point (xy) = (2,1) is
(a) 0.

(b) 7.

(c) 14.

(d) 28.

(e) undefined.

In the situation of Question 117, dz/dy at the point (x,y) = (2,1) is
(a) 0.

(b) 7.

(c) 14.

(d) 28.

(e) undefined.

119. What’s the value of the following repeated integral?

1 1

J. J. 24y dy dy

-3 -3

(a) We cant evaluate it, because it’s not in a meaningful form.

(b) —112
(0 112
(d) -96

(e) 96
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120. Fill in the blank to make the following statement true: “To differentiate the inverse

121.

of a function (assuming that the inverse is a true function), we can differentiate the
original function, then find the of that derivative, and finally substitute one
variable for the other.”

(a) negative

(b) antiderivative

(c) reciprocal

(d) natural logarithm

(e) absolute value

Suppose that we want to use calculus to derive a formula for the slant-surface area of

the right circular cone shown in Fig. FE-11. To do this, we can integrate the function
that defines

(a) the circumference of each circular slice vs. the vertical distance y from the cone’s
apex.

(b) the circumference of each circular slice vs. the distance # of its edge from the cone’s
apex.

(c) the area of each disk-shaped slice vs. the distance x of its center from the cone’s apex.
(d) the area of each disk-shaped slice vs. the distance 7 of its edge from the cone’s apex.

(e) the surface area of each “sub-cone” vs. the distance x of the center of its base from
the apex of the “main cone.”

+Z

Circularor |
disk-shaped |

slice —__\

+X

Figure FE-11 Illustration for Final Exam Questions 121
and 122.
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122. If we want to use calculus to derive a formula for the volume of the right circular cone
shown in Fig. FE-11, we can integrate the function that defines

123.

124.

(a)
(b)

()
(d)
(e)

the circumference of each circular slice vs. the vertical distance y from the cone’s
apex.

the circumference of each circular slice vs. the distance 7 of its edge from the cone’s
apex.

the area of each disk-shaped slice vs. the distance x of its center from the cone’s apex.
the area of each disk-shaped slice vs. the distance 7 of its edge from the cone’s apex.

the volume of each “sub-cone” vs. the distance x of the center of its base from the
apex of the “main cone.”

Imagine a solid defined by a surface relative to a flat “base” region of finite, positive
area that lies in the xy-plane of Cartesian xyz-space. Suppose the surface is defined by
a function f'(x,y) such that, for every point within the “base” region, £ (x,y) > 0. Then
the mathematical volume of the solid

(a)
(b)
()
(d)

must be positive.
must be negative.
must be 0.

can be positive, negative, or 0.

(e) is undefined, because fcontains a singularity.

Consider the following expression involving a function of two variables. What does
this expression specifically tell us to do?

(a)

(b)

(©)

(d)

()

d b
J U] £y de] dy
c a

Integrate /" against x, and evaluate the resulting expression from y=ato y= 6,
getting another function. Then integrate that function against 3 and evaluate the
resulting expression from x= cto x=d.

Integrate f against x, and evaluate the resulting expression from x=ato x= 6,
getting another function. Then integrate that function against , and evaluate the
resulting expression from y= cto y=d.

Integrate f against 3 and evaluate the resulting expression from y=ato y= 6,
getting another function. Then integrate that function against x, and evaluate the
resulting expression from x= cto x=d.

Integrate f against y, and evaluate the resulting expression from x= zto x= b,
getting another function. Then integrate that function against x, and evaluate the
resulting expression from y= cto y=d.

Integrate f against x, getting a second function. Then integrate against y, getting
a third function. Then evaluate that function from y= a2 to y= 6. Finally, evaluate
the remaining expression from x= cto x= d.

125. What type of equation is this?

dyldx+ cos x=3x>+8x—7
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126.

(@) A second-order differential equation.
(b) A third-order differential equation.

(c) A partial differential equation.

(d) An extraordinary differential equation.

(e) An ordinary differential equation.

If we want to solve the equation in Question 125, what should we try to end up with?

(a) We should try to get xall by itself on the left-hand side, and all the derivatives on
the right-hand side.

(b) We should try to get the derivative all by itself on the left-hand side, and all the
variables and constants on the right-hand side.

(c) We should try to get the derivative of x with respect to y on the left-hand side, and
a function of y on the right-hand side.

(d) We should try to get yall by itself on the left-hand side, and a function of x plus a
constant on the right-hand side.

(e) We should try to get the derivative all by itself on the left-hand side, and nothing
but a real-number constant on the right-hand side.

127. When we define the lateral-surface area of a right circular cylinder by integrating along

its length, what are we in effect doing?

(a) Stacking up infinitely many circular cross-sections.

(b) Stacking up infinitely many disk-shaped cross-sections.

(c) Adding up the lengths of infinitely many line segments.

(d) Adding up the circumferences of infinitely many concentric circles.

(e) Adding up the lateral-surface areas of infinitely many concentric cylinders.

128. What type of equation is this?

129.

d’yl(3dx’) —2x=e"+5

(a) A partial differential equation.

(b) A cubic differential equation.

(c) An exponential differential equation.
(d) A second-order differential equation.

(e) An improper differential equation.

If we want to solve the equation in Question 128, what is the most reasonable thing to
do first?

(a) Multiply the equation through by 3.

(b) Differentiate both sides with respect to x.

(c) Take the natural logarithm of both sides.

(d) Consolidate the right-hand side into a single exponential function.

(e) Integrate through with respect to y.
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Imagine a solid defined by a surface relative to a flat “base” region of finite, positive
area that lies in the xy-plane of Cartesian xyz-space. Suppose the surface is defined by
a function g (x,y) such that, for every point within the “base” region, ¢ (x,y) = 0. Then
the mathematical volume of the solid

(a) must be positive.

(b) must be negative.

(c) must be 0.

(d) can be positive, negative, or 0.

(e) is undefined, because g contains a singularity.

Imagine that we're calculating the mathematical volume of a solid defined by a surface
in Cartesian xyz-space over a region Rin the xjy-plane. The function 4 (x,y) that
represents this surface is continuous and integrable within R We find that

” h (xy) dx dy < ” h (xy) dy dx
R R
What can we conclude, with certainty, from this result?
(a) We've made a mistake somewhere in our calculations.
(b) The average value of 4 within R is negative.
(c) The average value of / within Ris positive.
(d) Every value of / within R is negative.
(e) Every value of / within Ris positive.

Imagine a solid defined by a surface relative to a flat “base” region of finite, positive
area that lies in the xy-plane of Cartesian xyz-space. Suppose the surface is defined by a
function ¢ (x,y) such that, for every point within the “base” region, ¢ (x,y) < 0. Then
the mathematical volume of the solid

(a) must be positive.

(b) must be negative.

(c) must be 0.

(d) can be positive, negative, or 0.

(e) is undefined, because ¢ contains a singularity.

Suppose that we want to use calculus to derive a formula for the surface area of the
sphere shown in Fig. FE-12. To do this, we can integrate the function that defines

(a) the circumference of each circular slice vs. the vertical distance y of its edge from
the sphere’s center.

(b) the circumference of each circular slice vs. the arc displacement 7 of its edge from
the point where the positive x-axis passes through the sphere.

(c) the area of each disk-shaped slice vs. the distance x from the sphere’s center.

(d) the area of each disk-shaped slice vs. the arc displacement 7 of its edge from the
point where the positive x-axis passes through the sphere.

(¢) The area of each disk-shaped slice from the point where the negative x-axis passes
through the sphere to the point where the positive x-axis passes through the sphere.



582  Final Exam

+Z

Circular or
disk-shaped
slice

4

Figure FE-12  Illustration for Final Exam
Questions 133 and 134.

134. If we want to use calculus to derive a formula for the mathematical volume of the
sphere shown in Fig. FE-12, we can integrate the function that defines

(a) the circumference of each circular slice vs. the distance x of its center from the

sphere’s center.

(b) the circumference of each circular slice vs. the arc displacement 7 of its edge from

the point where the positive x-axis passes through the sphere.
(c) the area of each disk-shaped slice vs. its radius.

(d) the area of each disk-shaped slice vs. its circumference.

() The area of each disk-shaped slice from the point where the negative x-axis passes
through the sphere to the point where the positive x-axis passes through the

sphere.
135. What's the value of the following repeated integral?

10
J.J. 24y dy dy
0

-3

(a) We can't evaluate it, because it’s not in the right form.

(b) -112
(© 112
(d) -108

(e) 108
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136. Imagine a solid defined by a surface relative to a flat “base” region of finite, positive

137.

area that lies in the xy-plane of Cartesian xyz-space. Suppose the surface is defined by a
function p (x,y) such that, for at least one point within the “base” region, p (x,y) = 0.
Then the mathematical volume of the solid

(a) must be positive.

(b) must be negative.

(c) must be 0.

(d) can be positive, negative, or 0.

(e) is undefined because p contains a singularity.

Figure FE-13 illustrates a process by which we can calculate the mathematical volume

V'that's defined by a 3D solid with respect to a flat region. Which of the following
double integrals tells us how this process works?

b h(x)
@ V= | fo dyas
a gx)
b h(x)
b v="[ | fly)dedy
a gl
h(x) b
O V=] fOd | fd
g(x) a
Surface
representing +Z
f(x, y)
y=h(x
y=9()
integration
_ sectional |
y slab

Figure FE-13 Illustration for Final Exam Question 137.
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h(x) b

@ V=] [ flp dedy
g(x) 4
b h(x)

© V=] f@d [ fd
a g(x)

138. What is the solution to the following equation?
dyldx—e*=0

(a) It can’t be solved, because it contains a derivative.
(b) y= e+ ¢ where cis a real-number constant.
(0 y=1.
(d) In (dyldx) = x.
(e) dy=1n xdx.
139. Imagine a 3D coordinate system set up as Cartesian xyz-space. If the positive x-axis

runs toward us and the positive y-axis runs off to our right, then the positive z-axis
should run

(a) away from us.
(b) off to our left.
(c) straight up.
(d) straight down.
(e) None of the above
140. For a freely falling object in the earth’s gravitational field, neglecting air resistance, the
double integral of acceleration is
(a) the rate of acceleration per unit time, also called jerk.
(b) downward speed.
(¢) downward displacement.
(d) altitude.
(e) undefined.

141. Consider the following function 4, where the domain is a set of real-number ordered
triples (x,%2), and the range is a set of real numbers w:

w =h(xpz) =2y e+ 4xyz

What is dw/dx at the point (x,2) = (0,1,2)?
(a) —4¢?

(b) —e

(0

(d) 2e

(e) 262 +8
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145.
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For the function 4 stated in Question 141, what's dw/dy at (x,3,z) = (0,1,2)?
(a) —4¢?

(b) —¢?

(c) -1

d) -1+¢°

(e) —4de+ e

For the function 4 stated in Question 141, dw/dzat (x,32z) = (0,1,2) is
(a) —2e

(b) 0.

(c) 26~

(d) 4e+ 2.

(e) 8e+2¢%

Consider the following function in which x is the independent variable and y is the
dependent variable:

y=f(x)=sin (x/2)

Suppose that we find the inverse relation £, so we have
=17 ()

where yis the independent variable and x is the dependent variable. For what values of
yis this inverse relation defined?

(a) The set of all reals y such that 0 < y< 7.

(b) The set of all reals y such that y= 0.

(c) The set of all reals y such that y>—1.

(d) The set of all reals y such that -1 < y<1.

(e) The set of all reals y such that —7/2 < y< 7/2.

Suppose that we have established the domain of /™' in the situation of Question 144.
Also recall that for variables x and j,

dldx (sin x) = cos x
and

dldy (Arcsin y) = (1 — y*)™2

Based on this knowledge, what is the derivative of f~'?
@ f"()=20-y)""
b ()=0-y"12
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146.

147.

148.

149.

(© f"(y)=2cosy
(d) £ (y)=(cosy) /2
@ f(y)=2(cosy) (1 =)™

Consider the following three-variable function 4, where x, 3 and zare real-number
independent variables and w is the real-number dependent variable:

w=h(x)2) =2x2

What is the second partial of this function with respect to x?
() Fwlox*=2x2>

(b) Fwl/dx*=2y’z

() Fwlox*=2z

(d) Fwlox*=0

(e) Itis undefined.

Consider the following two-way relation:
9(x+1)+4(y—3)°=36

Where, if anywhere, is the derivative dy/dx equal to 0 on the curve representing this
relation?

(a) At the points (-1,0) and (-1,6).

(b) At the points (—=1,-6) and (-1,12).

(c) At the points (-3,3) and (1,3).

(d) At the points (=5,3) and (3,3).

(e) There’s no point where dy/dx= 0.

Consider again the two-way relation stated in Question 147. Where, if anywhere, is
the derivative dy/dx undefined on the curve representing this relation?
(@) At the points (—1,0) and (-1,6).

(b) At the points (-1,-6) and (-1,12).

(c) At the points (-3,3) and (1,3).

(d) Only at the point (-1,0).

(e) The derivative dy/dx is defined at every point on the curve.

Consider the following three-variable function 4, where x, 3 and zare real-number
independent variables and w is the real-number dependent variable:

w=h(x)2) =2xy°z

What is the second mixed partial that we get when we differentiate 4 with respect to x,
and then differentiate the result with respect to z?

(a) O*w/dzdx = 3yz°
(b) Q*w/dzox= 6y*z



150.

Final Exam

(c) Q*wldzdx=12y’z
(d) *w/dzdx=12yz
() F*wldzdx=12z

Suppose we encounter
Lim (x7?) (sin x)
x—0—

What should be our very first step if we want to evaluate this limie?
(a) Convert the expression after the limit symbol to a ratio.

(b) Apply 'Hoépital’s rule.

(c) Apply the chain rule.

(d) Differentiate the expression after the limit symbol.

(e) Give up. The expression is indeterminate, so we can't evaluate it.

587
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APPENDIX

Worked-0ut Solutions to Exercises:
Chapters 1109

These solutions do not necessarily represent the only way a problem can be figured out. If you
think you can solve a problem faster or better than the way it’s done here, by all means try it!
Always check your work to be sure your “alternative” answer is correct.

Chapter 1

1. This relation is a function. The domain is the set of all integers, and the range is the set
of all nonnegative integers. Every element of the domain maps into one, but only one,
element of the range. The inverse, which we get by reversing each ordered pair in the
original relation, is

{(0)0)> (151)) (25_1)3 (3:2)! (4)_2)’ (593)) (6’_3)> (754)5 (8’_4)! LI }

This is also a function. The domain is the set of all nonnegative integers, and the range is
the set of all integers. Every element of the domain maps into one, but only one, element
of the range.

2. This relation is a function. Once again, the domain is the set of all integers, and the
range is the set of all nonnegative integers. Every element in the domain maps into one,
but only one, element of the range. The inverse, which we get by reversing each ordered
pair in the original relation, is

{(0,0), (1,1), (1,-1), (2,2), (2,-2), (3,3), (3,-3), (4,4), (4,—4), .. . }

This is not a function! The domain is the set of all nonnegative integers, and the range
is the set of all integers. With the exception of (0,0), every element of the domain maps
into two elements of the range. A function isn’t allowed to do that.

3. Lets substitute a letter variable for f'(x). If we use 3 the function is written
y=4x-5
589
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To find the inverse, we must solve for x in terms of y. First, we add 5 to each side of the
above equation, getting

y+5=4x
Dividing through by 4 and transposing the sides of the equation left-to-right, we get
x=(y+5)/4
which can be rewritten as
x=yl4+5/4
This means that
() =yld+5/4

This is the inverse we seek. It’s a linear function of y.

4. This constant function, g (x), has the value 7 regardless of the value of x. If we graph
this function and call the dependent variable 3 we get a horizontal line through the
point y= 7. The graph of the inverse relation is a vertical line, which fails the vertical-
line test, so we know that this inverse is not a function.

5. The equation of the unit circle can be manipulated to get yin terms of x. Here is the
original equation for reference:
+y=1
If we subtract x* from each side, we get
P=1-s
Taking the positive-or-negative square root of each side gives us
y= i(l _ x2)1/2

This is a relation whose domain is the set of real numbers between, and including, —1
and 1. The range is also the set of reals between, and including, —1 and 1. The relation
is not a function. With the exception of x=—1 and x= 1, every element of the domain
maps into two elements in the range. This fact can be seen by looking at a graph of the
unit circle (Fig. A-1). The graph fails the vertical-line test as shown by the dashed line,
which intersects the circle twice.

6. The equation of the unit circle can be manipulated to get x in terms of y. Once again,
here’s the original equation for reference:

+y=1
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Each axis
division
is 1/4 unit

Figure A-1 Tllustration for the solution to Prob. 5 in
Chap. 1.

If we subtract y* from each side, we get
¥=1-y
Taking the positive-or-negative square root of each side gives us
x=2(1-yH)"

This is the same situation as we encountered in the solution to Prob. 5. The names of the
variables have been changed, that’s all! We have, once again, a relation whose domain and
range are both the set of real numbers between, and including, —1 and 1. As before, we
don’t have a function here because, with the exception of y=—1 and y=1, every element
of the domain maps into two elements in the range.

. The complete graph of the inverse relation, g, is a parabola that opens directly toward
the right. If we restrict the range of this relation to the set of positive real numbers,

we cut off the lower half of the parabola along with the point (0,0). This leaves only
the upper half of the curve, which passes the vertical-line test as shown in Fig. A-2.
Therefore, ¢! becomes a function when the range is restricted to the set of positive
reals. It remains a function if we allow the range to include 0 as well as all the positive
reals, because the graph still passes the vertical-line test. But we can’t extend the range
into the negative reals unless we remove at least some of the positive reals.
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-6+

\ 4

Figure A-2 Illustration for the solution to Prob. 7 in
Chap. 1.

8. If we restrict the range of g™ to the set of negative reals, we cut off the upper half of the
parabola along with (0,0). This leaves only the lower half, which passes the vertical-line
test as shown in Fig. A-3. Therefore, ¢! becomes a function when the range is restricted
to the set of negative reals. It remains a function if we also allow the range to include 0,
but we can’t extend the range into the positive reals unless we remove at least some of
the negative reals.

9. If we fill in the gap in the domain for the relation shown in Fig. 1-9 by setting y=0
when x= 0, we are, in effect, saying that 1/0 = 0, because the relation is

y=1/x

The mathematical truth of this can be debated! But it provides us with a y-value for every
possible real number x. The resulting relation is a function, because the graph passes the
vertical-line test. The same thing happens with the relation

y=tan x

graphed in Fig. 1-10. If we set y= 0 whenever x is an odd-integer multiple of 77/2, we still
have a function of x, because the graph still passes the vertical-line test. We should expect
to see some raised eyebrows, however, if we claim that the tangent of 7/2 is actually equal
to 0!
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-6+
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Figure A-3 Illustration for the solution to Prob. 8 in
Chap. 1.

10. The inverse of the function shown in Fig. 1-9 is also a function. We can see that this is
true by doing the horizontal-line test on the graph. We can take

y=1/x
and multiply through by x provided that x# 0, getting
xy=1
Then we can divide through by 3 again with the constraint that y# 0, getting

x=1ly

Chapter 2

1. This sequence starts out at 1/10, and then each succeeding number gets smaller by
a factor of 10. The numbers get closer and closer to 0, but never actually reach 0.
Therefore, the limit of the sequence is 0. We can write this as

Lim 1/10"=0

n—roo
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2. In decimal form, 1/10=10.1, 1/10*=0.01, 1/10° = 0.001, and so on. Let’s write the
numbers in decimal form and then arrange the sum in as an accountant would do, with
each term underneath its predecessor:

0.1

0.01
0.001
0.0001
0.00001

0.11111...

Looking at the series this way, we can see that it ultimately adds up to the nonterminating,
repeating decimal 0.11111. . .. From our algebra or number theory courses, we recall that
this endless decimal number is equal to 1/9. That’s the limit of the sequence of partial
sums in the series

1/10+ 1/10* + 1/10° + 1/10* + 1/10° + - - .

3. This limit exists, and it is equal to 0. To see why, suppose that we start out with x at
some positive real number for which the function is defined. As we increase the value
of x, the value of 1/x* decreases, but it always remains positive. If we choose some tiny
positive real number 7 no matter how close to 0 it might be, we can always find some
large value of x for which 0 < 1/x* < 7 But no matter how large we make x, the number
1/x* never becomes negative. Therefore,

Lim 1/x*=0

x—>o0

4. This limit does not exist. To see why, suppose that we start out with x at some positive real
number for which the function is defined and then decrease x; letting it get arbitrarily close
to 0 but always remaining positive. As we decrease the value of x, the value of 1/x* remains
positive and increases. If we choose some large positive real number s, no matter how
gigantic, we can always find some small, positive value of x for which 1/ > 5. Therefore,

Lim 1/x*

x—0+

is not defined.

5. Figure A-4 is a graph of the function f'(x) = log,, x for values of x from 0.1 up to 10,
and for values of f from —1 to 1. The function varies smoothly throughout this span. If
we start at values of x a little smaller than 3 and work our way toward 3, the value of f

approaches log;, 3. Therefore,

Lim log;y x=log, 3

x—3—
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-1 -

Figure A-4 Illustration for the solution to Probs. 5
through 8 in Chap. 2.

. If we start at values of x slightly larger than 3 in Fig. A-4 and then work our way toward
the point where x = 3, the value of fapproaches log), 3. It’s apparent from the graph that

Lim log;y x=log, 3

n—3+

. From the solution to Prob. 5, we can conclude that the function fis left-hand
continuous at the point where x = 3. From the solution to Prob. 6, we know that f"is
right-hand continuous at that same point. By definition, therefore, f is continuous at
the point where x= 3.

. The function f(x) = log, x is continuous if we restrict the domain to the set of positive
reals. But it’s not continuous if the domain is the set of all nonnegative reals. The base-10
logarithm of 0 is not defined, and that creates a discontinuity in f at x= 0. Not only
that, but the function has no defined limit as x approaches 0 from the right.

. Figure A-5 is a graph of the absolute-value function f'(x) = |x| for values of the domain
between approximately —6 and 6. This function is continuous over the entire set of
reals. Clearly, it is continuous over the set of positive reals because, when x> 0,

fl)=x

which is a linear function. It is also continuous over the set of negative reals because,
when x< 0,

fx)=—x
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Figure A-5 Illustration for the solution to
Prob. 9 in Chap. 2.

which, again, is a linear function. The only doubt might arise when we look at the point
where x= 0. But

Lim x|
x—0+

and

Lim x|
x—0—

are both defined and equal to 0, which is the value of f (0). Therefore, by definition, the
function f(x) = |x| is continuous at the point where x= 0.

10. Figure A-6 is a graph of the function f (x) = csc x for the domain between, and
including, =3 7 radians and 37 radians. The function is not continuous in that interval,
because it’s undefined when x is an integer multiple of 7 radians. That’s not the only
problem! The function has no defined limit as x approaches any integer multiple of 7
radians, either from the left or the right. In the interval we've specified, discontinuities
occur when x=—-37m, x=-27m, x=—7, x=0, x= 7, x= 27, and x=37.

Chapter 3

1. According to the rule we worked out for the derivative of a basic quadratic function,

flx)=x
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f(x)
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f(x) =csc x
Figure A-6 Illustration for the solution to Prob. 10 in
Chap. 2.
has the derivative function
[ (x) =2x

The x-values of interest are x=—3, x=—2, and x=—1. We have
f(=3)=2x(-3)=-6
f(=2)=2x(-2)=—4
f=D)=2x(-1)=-2

2. The function and its derivative are the same as in Prob. 1. The x-values of interest are x= 10,
x=1, x=2, and x= 3. We have

£(0)=2x0=0
F)=2x1=2
fQ)=2x2=4

f'3)=2%x3=6
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3. According to the rule we worked out for the derivative of a monomial quadratic function,
fx) =—2x
has the derivative function
f(x) =2 %X (2)x=—4x
The x-values of interest are x=—3, x=-2, and x=—1. We have

f(-3)=—4x(-3)=12
Fr(=2)=—4x(-2)=8
Fr=D)=—4x(-1)=4

4. The function and its derivative are the same as in Prob. 3. The x-values of interest are
x=0,x=1, x=2, and x= 3. We have

f0)=—4x0=0
f()=—4x1=—4
f(2)=—4x2=-8
f'(B3)=—4x3=-12

5. We found the general derivative of this function in the chapter text. The original
function, again, is

flx)==7x"+2x
The derivative function is
[ (x)= —14x+2

The x-values of interest are x=—3, x=—2, and x=—1. We have

’

Fr(=3)=—14x (-3) +2 =44
Fr(=2)=-14% (-2) +2 =30
Fr=D)=-14x (1) +2=16

6. The function and its derivative are the same as in Prob. 5. The x-values of interest are
x=0,x=1, x=2, and x= 3. We have

F0)=-14%x0+2=2

F)=-14x1+2=-12
£ =-14x2+2=-26
£/ (3)=—14%3+2=—-40
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7. According to the rule we worked out for the derivative of a monomial cubic function,

fx)=
has the derivative function
f(x) =3x5x"=15x
The x-values of interest are x=—3, x=—2, and x=—1. We have

F(=3)=15% (-3)*=135
F(=2)=15%(-2)*=60
=D =15x(-1)*=15

8. The function and its derivative are the same as in Prob. 7. The x-values of interest are x= 0,
x=1,x=2, and x= 3. We have

£ (0)=15%x0*=0

F(H)=15%x1*=15
£/ (2)=15%x2*=60
£ (3)=15%x3*=135

9. We found the derivative of this function in the chapter text. The original function is
f(x)=2x"—5x
which has the derivative function

[ (x)=6x"—
The x-values of interest are x=—3, x=—2, and x=—1. We have

= 3)— (3)2 5 =49
= (-2)?=5=19
£ 1)—6>< (—1)?=5=1

10. The function and its derivative are the same as in Prob. 9. The x-values of interest are x= 0,
x=1, x=2, and x= 3. We have

F0)=6X02=5==5
Fr)=6x12=5=1

fr@)=6x22-5=19
F1(3)=6x3"-5=49
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Chapter 4

1. Figure A-7 is a graph of the function

f(x)= 1/x whenx<-1

=—1 whenx>-1

This graph suggests that the function is defined and continuous over the entire set of real
numbers, but the slope abruptly changes at the point where x = —1. We should suspect
that the function is nondifferentiable at that point.

2. We can attempt to find the derivative at the point where x=—1 by evaluating

Lim [f(-1+Ax)—f(=1)]/Ax

Ax—0

from both the right and the left. Let’s do it from the right first. To denote this, we add a
plus sign after the 0 beneath “Lim” to get

Lim [f(=14+Ax)—f(-1)]/Ax

Ax—0+
f(x)
A
6__
4__
2__
T 2 4 6
R
6 4 T~
(-1,-1) T f(x)=1/xwhen x < -1
-4 — = —-1when x> -1
_6——
Y

Figure A-7 Illustration for the solution to Prob. 1 in
Chap. 4.
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When Ax is small and positive, we're in the straight-line part of the function with a
constant value of —1. We're told that /(1) = —1. Let’s substitute —1 for f (-1 + Ax), and
substitute —1 for £ (—1) in the above expression. Then we get

Lim [-1-(-1)]/ Ax
Ax—0+
which simplifies to
Lim 0/Ax
Ax—0+
and, because Ax is nonzero, finally to
Lim O
Ax—0+

This limit is clearly equal to 0.

Now let’s move to the left of the point where x=—1, into the curved part of the graph.
When Ax is small and negative, were in the zone where the function takes the reciprocal
of the input. This time, we write

Agirgz_ [f -1+ Ax) - f (1] /Ax

As before, f (=1) = —1. When we substitute 1/(=1 + Ax) for f (=1 + Ax), and substitute
—1 for £ (—1) in the above expression, it becomes

Afinoa_ [1/(-1+Ax) — (-1)] / Ax
which can be simplified to
Aging_ [1/(-1+Ax)+ 1] / Ax
and further to
Afing_ [Ax/ (Ax—1)] | Ax
and finally to
Lim 1/(Ax—1)

Ax—0—

As Ax approaches 0 from the left, the expression after “Lim” approaches 1/(—1), which is
equal to —1. That’s not the same value as we got when we evaluated the right-hand limit.
Having found a disagreement between the right-hand and left-hand limits, we know that
this function is nondifferentiable at the point where x=—1.

3. Figure A-8 is a graph of the function

f(x)=x whenx<3
=1 whenx>3
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f(x)
A
6__
1T (313)
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=1 when x >3
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Y

Figure A-8 Illustration for the solution to Prob. 3 in
Chap. 4.

This graph suggests that the function is defined over the entire set of reals, but
it is discontinuous at the point where x = 3. We should suspect that the function is
nondifferentiable at that point.

4. Lets evaluate the limit as we approach the point where x= 3 from the right:
ALing [fB+Ax)-f(3)]/Ax
x—>0+

The value of the function is 1 if we add any small positive quantity Ax to the input value

of 3. We also know that f'(3) = 3. Therefore, the above limit can be simplified to
Lim (1-3)/Ax
Ax—0+
and further to
Lim —2/Ax
Ax—0+

This limit does not exist. As Ax approaches 0 from the positive side, —2/Ax blows up
negatively. This fact alone is sufficient to prove that the function is nondifferentiable at
the point where x = 3.

5. Figure A-9 is a graph of the function

f(x)=x whenx<3
=1 whenx>3
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f(x)
A
6__
1T (373)
4__
1/ T 3.1)
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=1 when x> 3
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Figure A-9 Illustration for the solution to Prob. 5 in
Chap. 4.

This graph, like Fig. A-8, suggests that the function is defined over the entire set of reals,
but it is discontinuous at the point where x = 3. We should suspect that the function is
nondifferentiable at that point.

. Let’s figure out the limit as we approach the point where x = 3 once again, but this time

from the left:

ALin(;lﬁ [fB3+Ax)-f(3)]/Ax

The output value of this function is equal to the input value if we add any tiny negative
quantity Ax to the input value of 3. We also know that f'(3) = 1. Therefore, the above
limit can be simplified to

Lim B3+Ax—1)/Ax

Ax—0—

and further to

Lim 2+ Ax)/ Ax

Ax—0—
As Ax approaches 0 from the negative side, the numerator, 2 + Ax, gets arbitrarily close
to 2 while the denominator gets arbitrarily close to 0. Therefore, the limit blows up
negatively. That’s all we need to prove that the function is nondifferentiable at the point
where x= 3.
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7. Figure A-10 is a graph of the function

f(x)= x* whenx<1

=x whenx>1

This graph suggests that the function is defined and continuous over the entire set of real
numbers. It’s impossible to be sure, by visual inspection alone, whether or not the slope
of this graph changes at the point where x= 1. We should check to see if the function is
differentiable there.

8. Let’s evaluate the limit as we approach the point where x= 1 from the right. We have

Lim [f(14+Ax)—f(1)]/Ax

Ax—0+

When Ax is positive, we're in the “cubic zone.” We know that £ (1) = 1° = 1. When we
substitute (1 + Ax)? for £ (1 + Ax), and substitute 1 for (1) in the above expression, it
becomes

Lim [(1+Ax)>—1]/Ax

Ax—0+

When we cube the binomial, we get

Lim [1+3Ax+3(Ax)*+ (Ax)* — 1]/ Ax

Ax—0+
f(x)
A
6__
4__
2 (111)
14—
A
-6 -4 -2 1 2 4 6
o1
f(x)=x®when x<1 |
=x3 when x> 1
_6——
Y

Figure A-10 Illustration for the solution to Prob. 7 in
Chap. 4.
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which simplifies to

Lim [3Ax+ 3(Ax)* + (Ax)?] | Ax

Ax—0+

and further to

Lim 3+ 3Ax+ (Ax)?

Ax—0+

As Ax tends toward 0, the second and third addends in the expression also approach 0.
The limit is therefore equal to 3 + 0 + 0, which is 3.

Now let’s move to the left of the point where x = 1, into the “quadratic zone.” We
must work with the limit

Lim [f(1+Ax)—f(1)]/Ax

Ax—0+

When we substitute (1 + Ax)* for £ (1 + Ax), and substitute 1 for £ (1) in the above

expression, it becomes

Lim [(1+Ax)*—1]/Ax

Ax—0+

We can square the binomial to get

Lim (14+2Ax+ (Ax)*—1]/Ax

Ax—0—

which can be simplified to

Lim [2Ax+ (Ax)?] | Ax

Ax—0—

and further to

Lim 2+ Ax

Ax—0—

As Axapproaches 0 from the left, this expression approaches 2 + 0 from the left, telling us
that the limit is 2. That’s not the same as the limit we got when we approached from the
right. Therefore, the function is nondifferentiable at the point where x= 1.

. Figure A-11 is a graph of the function

f(x)= x* whenx<1
=2x—1 whenx>1

This graph suggests that the function is defined and continuous over the entire set of real
numbers. As in Fig. A-10, we can't be sure, by visual inspection alone, whether or not
the slope of this graph changes at the point where x = 1. We should check to see if the
function is differentiable there.
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f(x)
A
6__
4 —
2__ (11 1)
1 1+ x
-6 -4 2 1L 2 4 6
T,
_a_| f(x)=xwhen x<1
=2x—-1 when x> 1
_6 —
Y

Figure A-11 Illustration for the solution to Prob. 9 in
Chap. 4.

10. Lets evaluate the limit from the right. We have

Lim [f(1+Ax)—f(D]/Ax

Ax—0+

When Ax is small and positive, we're in the straight-line portion of the graph. We can
calculate

f)=2x1-1=1

When we substitute 2(1 + Ax) — 1 for (1 + Ax), and substitute 1 for (1) in the above
expression, it becomes

Lim [2x(1+Ax)—-1-1]/Ax
Ax—0+
When we multiply this out, we get
Lim [2+2Ax—1-1]/Ax

Ax—0+

which simplifies to

Lim 2Ax/Ax

Ax—0+
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and finally to

Lim 2
Ax—0+
Clearly, this limit is equal to 2.

When we move to the left of the point where x = 1 and let Ax approach 0 from
the negative side, we can repeat the second half of the solution to Prob. 8 step-for-step,
because we're dealing with the same curve and approaching the same point. When we
calculate the limit

Lim [f(1+Ax)—f(1)]/Ax

Ax—0+

we'll find that it is equal to 2, which is same as the limit we got when we approached the
point where x= 1 from the right. We can therefore say with confidence that this two-part
function is differentiable at the point where x= 1.

The curve in Fig. A-10 looks as if it goes smoothly through the transition point where
x= 1, but there’s actually a “jog in the road.” As we move from the quadratic part of the
curve into the cubic part, the slope changes abruptly from 2 to 3. In Fig. A-11, there’s
no abrupt change in the slope. It’s like a well-engineered road, where a curve ends and a
straightaway begins without any abrupt change in the direction.

Chapter 5

1. The derivatives of these functions can be found by using the power rule. When this rule
is applied, the results are as follows:

(@) f’(x)=—40x"
(b) ¢’ (z) =84z°
(o) ¥ (r) =—441+*

2. We can apply the power rule because £ (x) is a monomial power function. We get
£ (x) =3

We want to find x; in the interval 0 < x< 1, such that the value of this derivative is equal
to 1. To do that, we set

3.96'02 =1
Dividing through by 3 and then taking the 1/2 power of each side tells us that
xo = (1/3)""

The 1/2 power of a quantity is the positive square root of that quantity. Were not interested
in the negative square root here, because we're restricted to 0 < x< 1. A calculator tells us
that, to three decimal places,

x0=0.577
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3. We can again apply the power rule. In this case, we get
£ (x) = 5x"
To find x in the interval 0 < x< 1 such that £ (x) = 1, we set
Sxpi=1
Dividing through by 5 and then taking the 1/4 power of each side tells us that
xo=(1/5)"

The 1/4 power of a quantity is the positive real fourth root of that quantity. We're not
interested in negative real roots or in nonreal complex roots in this case, because we're
restricted to the positive real interval 0 < x< 1. Using a calculator, we obtain

Xo = 0669

4. This time, we apply the power rule in a general sense to get
7 (x) = nx
To find x in the interval 0 < x< 1 such that £, (x) = 1, we set
nx™V =1
Dividing through by 7 and then taking the 1/(z—1) power of each side tells us that
xo = (1/m)0=1)

The 1/(n—1) power of a quantity is the positive real (n—1) root of that quantity. As before,
we’re not interested in negative real roots or in nonreal complex roots here, because we're
restricted to the positive real interval 0 < x< 1.

5. Figure A-12 is a graph of the functions £, (x) = x” in the interval 0 < x< 1 for n= 3,
n=4, and n= 5. On each curve, the dot shows the point where the slope is 1. We
didn’t actually work out the case for 7= 4, but the graph shows an educated guess!

6. We apply the power rule in a general sense to get
S () = nxD
To find the value £, (1), we substitute 1 for x, getting
A)=nx1"V=n
7. We again apply the power rule generally, obtaining

17 (x) = nx")
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Tangent lines
with slopes
equal to 1

Figure A-12 Illustration for the solution to Prob. 5 in Chap. 5.

To find the value £, (0), we substitute 0 for x, which gives us
£(0)=nx 0" =000 =0

8. To find the derivative of this polynomial function, we can apply the power rule to each
term in the polynomial separately. That gives us

F/ () = 56x° + 24x° — 15x" + 4x° + 2x— 0
The last term of 0 is useless, of course, so we can write
£/ () = 56x° + 24x° — 15x" + 4 + 2x
9. We again apply the power rule to each term individually, getting

£ (x) =5Sasx® + da + 3asx* + 2ax+ 4, + 0
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Taking off the last term of 0 gives us

F (%) =5asx* + day® + 3asx* + 2ax + 4

10. Once again, we can apply the power rule to each term. We know that the last term will
be 0 so we don’t have to write it. The derivative is

f(x)=na,x"+(n—1Da, x>+ n—-2)a,,x7 +...+2;x+ a

Chapter 6

1. The original function f is
Flo)=—4x'+2x° —x* —x+ 1
Its derivative is
[ (x) =—16x" + 6x° — 2x— 1
When we multiply this function by 2, we get
267 (x) =2 X (—16%° + 62 — 2x— 1) = =32x> + 12* — 4x— 2
The original function gis
g(x) =2 X (—4x*+ 26" = —x+ 1) =—8x" + 4x° — 2x* — 2x+ 2
Its derivative is
g (x) =-32x"+ 125" — 4x— 2

which is exactly the same as 2/ (x).

2. The original function f is
£ (x) =—40x" + 20x° — 10x* — 10x+ 10
Its derivative is
£’ (x) =—160x" + 60x* — 20x— 10
When we multiply this function by 1/5, we get

(1/5) £/ (x) = (1/5) X (=160x° + 60x* — 20x— 10) = —32x" + 12x* — 4x— 2
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The original function gis
g (x) = (1/5) X (—40x" + 20x° — 10x* — 10x+ 10) = =8x* + 4x® — 2x* — 2x+ 2
Its derivative is
g (x)=-32x"+ 125" — 4x—2
which is exactly the same as (1/5) f” (x). It’s worth noting here that the statement

g (x)=(1/5) f (x)

can also be written as

@) =[f" /5

Whenever we multiply a function by the reciprocal of a constant, it’s the same as dividing
that function by the constant. This gives us a way to define division of a function by a
constant. Of course, the constant must be nonzero!

. Here’s the original statement of the two-function product rule for differentiation:

(fo'=f'g+gf

The commutative law for addition (from basic algebra) allows us to transpose the addends
on the right side, getting

(fo) =¢f+f'¢g

The expression ¢’f+ f’gis equal to (gf") according to the two-function product rule for
differentiation “stated backward.” Therefore, we can conclude that

(fo) =(gf)

. Suppose we have three differentiable functions f; g, and 4. The two-function product
rule for differentiation tells us that

(fo) =f'g+¢'f
and
(gh) =g'h+Fg

Let’s rename fg, calling it p (for “product”) instead. Then we can restate the first of the
above two equations as

P =retef
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We want to find (fgh)’, which is the same thing as finding (p/)’". The two-function

product rule for differentiation can be applied here, giving us
(ph) =p h+Hp
Substituting fg back in for p gives us

(fgh)'=(f" h+F fg

Once again taking advantage of the two-function product rule for differentiation, we can
expand the first addend on the right side to get

(feh)=(f'g+&'f) h+ W fg

The distributive law for multiplication over addition (from basic algebra) allows us to
reorganize the right side further, getting

(Jgh) =f"gh+ & fh+hfg
This can be expressed another way, which some people find easier to remember:
(fgh) =f"gh+ [ h+fgh’
When reading or writing something like this, we must remember that the prime symbol,

indicating the derivative, applies only to the single function or parenthetical expression
immediately to its left.

5. We want to find the derivative of the function
p(y)zl/(y2+1)
which is the reciprocal of a function we can call g like this:
g =y+1
Taking the derivative of g, we get
£ =2
Multiplying by —1 gives us
£ () =-2y
The square of gis

[g(MP=0P+ 1) =y +2)"+1
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Now we can apply the reciprocal rule for differentiation to obtain

P ={1gW == ! gW’P=-2y/ (Y +2y°+1)

Our function p is defined for all reals because the original denominator function, g never
becomes 0. The function p is also continuous, and it doesnt turn any corners as we can
see if we graph it. (The graph is not included here. If you want, feel free to draw it and
see for yourself.) We can therefore say with confidence that p is differentiable over the
entire set of reals.

. This function looks a lot like the one we worked with in Prob. 5. The only difference is
that there’s a minus sign in place of the plus sign. But that makes a big difference in the
extent to which the function is differentiable! We want to find the derivative of

r(y)zll(yz—l)

which is the reciprocal of a function we can call £ like this:

f=y-1
Taking the derivative of f; we get
=2
Multiplying by —1 gives us
- () =2y

The square of £ is
FP=0-1)=) -2y +1
The reciprocal rule for differentiation tells us that
A =1L1f DN ="/ F)FP =291 (=2 +1)
If y=1 or y=—1, then 7 (y) is undefined, so #(y) is also undefined. Those values of y

are the zeros of the denominator function f'(y). These discontinuities tell us that 7 (y) is
nondifferentiable at the points where y=1 and y=-1.

. We want to find the derivative of
s() =G =1/ (2+1)
which is the quotient of two functions we can call f'and g, as follows:

flz)=z' -1
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and
g(z)=2"+1
When we differentiate the quotient directly, we get
(flg) (z)=dldz ("= 1) | (+ )] =dldz (7 = 1) =2z

When we apply the quotient rule, we get

(flg) (&) ={lf" @llg )] - [¢ DI @} [g )P
={[dldz (z" = 1)](z* + 1) = [d]dz (F + 1) 1 (=1} /(22 +1)?
=[42)(Z+1) - 2z)(z" = 1]/ (" +222+ 1)
=422+ 42 -222+22) ] (&' +22+ 1)
=22 4+42+22) 1 (Z*+22+ 1) =22 +222+ 1)/ (& +22°+ 1) =2z

This works for all real numbers, because the denominator function g never attains the
value 0. The original function is therefore differentiable over the entire set of reals.

8. This time, we want to find the derivative of
t(z)=("=1)/(£=1)

which is the quotient of two functions we can call fand g, as follows:

fl@)=z-1
and
g(z)=2z"-1
When we differentiate the quotient directly, we get
(flg) (z)=dldz[(z" = 1) | ("= 1) =dldz (z*+ 1) =22
When we apply the quotient rule, we get

(flg) () ={[f"(2)]g (2)] - [¢' (@I f )]} / [g(2)]?
={[dldz (z" — D)](* = 1) = [dldz (Z* - 1)] (" = 1)} / (&> = 1)*
((427) (22— 1) — 22)(* = D]/ (z" =22+ 1)
=(42°— 4722 -222+22) 1 (2 =22+ 1)
=2 -4 +22)/ (2" =222+1) =2z2(z" =222+ 1)/ (& =222+ 1) =2z

The function g (z) becomes 0 when z =1 or z=—1. Nondifferentiable points in 7 (z)
therefore exist where z = 1 and z=—1, because # (z) blows up at those values of z.
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Here are the functions again, for reference:

f(x) =5 — 4x
and

g =y +5y
The composite function we want to differentiate is

gL ()] = (= 4x)? + 5(x° — 4x%) = x° — 8% + 16x* + 5x° — 20x°
When we differentiate this directly, we get
{g[F ()Y =dldx (x° — 8x° + 16x* + 5x° — 20x%) = 6x° — 40x* + 64x° + 15 — 40x
Differentiating the functions individually, we obtain
f(x) =3x>—8x

and

g()=2y+5
When we apply the chain rule, we get

{glf Y =g [f (] X f7 (%) = [2 X («* — 4x%) + 5] (3x" — 8x)
=(2x° — 8x* + 5) (3x* — 8x) = 6x° — 40x" + 64x> + 15x* — 40x

which agrees with the result we got when we differentiated the composite function
directly.

Here are the functions again, for reference:
f (%) =x"—4x
and
gN=2"+7y
The composite function we want to differentiate is
gl f ()] =2 X (x —4x)* + 7 X (* — 4x) = 2x* — 16x° + 39x* — 28x
When we differentiate this composite function directly, we get

{g[f ()l =dldx(2x* — 16x° + 39x* — 28x) = 8x° — 48x” + 78x— 28
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When we differentiate the functions individually, we get
f(x)=2x—4
and
g =4y+7
Applying the chain rule gives us

glf O =g [f O] X f(x) = [4x (x> —4x) + 7] 2x—4)
= (4x* —16x+7) 2x—4) = 8x® — 48x* + 78x— 28

which agrees with the result we got when we differentiated the composite function directly.

Chapter 7

1. Here’s the function we want to differentiate:
p(&) =2 —4t+5+4r"+ 617
We can differentiate each term individually according to the real-number power rule, and
then add the differentiated terms up. The derivative of the middle term is 0, so we can
skip it in the final sum, getting

p () =4r—4— 47— 1217

The function p (#) is nondifferentiable at = 0, because that value generates fractions with
denominators equal to 0. But p (#) is differentiable for all nonzero values of ~

2. Here’s the function we want to differentiate:
g(w)=@w'+ D' -1
We can approach this in two different ways. We can treat the factors individually and use
the product rule to find the derivative of ¢, or we can multiply the factors together first
and then differentiate. Lets use the second method. We have
W'+ D)w'-)=w?—-w'+w'-1=w?-1
When we differentiate this, we obtain
g (w) =—2w>

The function ¢ (w) is nondifferentiable at w = 0, because that value generates a fraction
with a denominator of 0. But ¢ (w) is differentiable for all nonzero values of w.
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3. We can use the reciprocal rule for differentiation, which tells us that if /'is a
differentiable function of a single variable, then

(11 F)Y ==f"1f?

We are told to find the derivative of the cosecant, which is the reciprocal of the sine.
Using the reciprocal rule, we get

(csc x)” =[1/ (sin x)]” =—(sin x)"/ sin® x = —cos x / sin® x

Some derivative tables show this result in a different form. If you come across a table
like that, try converting the expression in that table to the one shown here, or vice versa.
You should be able to show that the two expressions are equivalent. The function csc x is
nondifferentiable when sin x= 0. That includes all integer multiples of 7z Discontinuities
occur at those values of x; the reciprocal of the sine is singular there.

4. Again, we can use the reciprocal rule for differentiation. We want to find the derivative
of the secant, which is the reciprocal of the cosine. Using the reciprocal rule, we get

(sec x)"'=[1/ (cos x)]"=—(cos x)"/ cos* x=sin x/ cos® x

As with the solution to Prob. 3, some derivative tables show this in a different form.
You should be able to show that the two expressions are equivalent. The function
sec x is nondifferentiable when cos x = 0. That includes all odd integer multiples of
7/2. Discontinuities occur at those values of x; the reciprocal of the cosine is singular
there.

5. In this situation, we'll use the quotient rule for differentiation. This rule tells us that if £
and gare differentiable functions of the same variable, then

(flg)" =(f'g—&flg

We want to find the derivative of the tangent function, which is the sine divided by the
cosine. Let

£(x) =sin x
and

g (x) = cos x
The derivatives are

£ (x) = cos x
and

g (x) =—sin x



618  Worked-Out Solutions to Exercises: Chapters 1 to 9

Therefore

(tan x)” = (sin x/ cos x)” = [(sin x)” cos x— (cos x)”sin x] / cos® x

= [cos x cos x— (—sin x) sin x] / cos® x= (cos* x+ sin® x) / cos® x
Now it’s time to remember one of the cardinal rules of trigonometry:
cos® x+sin® x=1
We can therefore simplify the above equation to
(tan x)'=1/ cos* x
By definition, we know that
1/ cos x=sec x

That means we can simplify our solution further to
(tan x)"= sec® x
The function sec” x is nondifferentiable whenever cos x= 0. That includes all odd integer

multiples of 77/2. Discontinuities occur at those values of x; the reciprocal of the cosine
is singular there.

6. This is a sort of “fraternal twin” to Prob. 5. We want to find the derivative of the
cotangent function, which is the cosine divided by the sine. Again, let’s use the
derivative-of-a-quotient formula

(fle=(f'g-gf) g

This time, we'll assign

f(x)=cos x
and

¢ (x) =sin x
The derivatives are

£’ (x) =—sin x

and

¢ (x) =cos x
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Therefore

(cot x)"= (cos x/sin x)"= [(cos x)sin x— (sin x)” cos x] / sin* x
= (—sin xsin x— cos x cos x) / sin® x= (—sin’® x — cos® x) / sin® x

= —(sin® x+ cos’ x) / sin® x

We can again use the trigonometry rule that helped us in Prob. 5, reversing the order of

the addends:

sin® x+ cos® x=1
This allows us to reduce the above equation to

(cot x)’=—-1/sin* x
By definition, we know that
1/sin x=csc x

That means we can simplify our solution further to

(cot x)'=—csc? x
The function —csc” x is nondifferentiable whenever sin x = 0. That includes all integer

multiples of 7. Discontinuities occur at those values of x; the reciprocal of the sine is
singular there.

. Here’s the function we want to differentiate:
p(x)=e"

Let’s use the chain rule. We can break the function p down into two component functions

fand g such that

/%) =ax
and

gy =¢
Then the function p becomes

r=£(f)

Both f and gare differentiable, so

f(x)=a
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and
g=e
The chain rule says that if fand gare differentiable functions of the same variable, then
e =g (H)-f
Substituting the values we've defined into this formula, we get
P (x)=e" a=ae”
8. This time, we want to find an expression for the derivative of
q (x) = be™

Let’s use the results of the solution to Prob. 7 to help us solve this problem. We can
rewrite the function g as

qg(x)=b-p(x)
where p is the function defined in Prob. 7 and its and solution:
px)=e™
Therefore
g (x)=16-p )]
The multiplication-by-constant rule for differentiation allows us to rewrite this as
9 (x)=0b-p'(x)
We already know that
P’ (x) = ae™
Therefore,

g (x)=b- ae™ = abe™

9. We want to differentiate
r(x)=In ax

This function is defined and continuous if and only if ax > 0. That means we must
restrict the domain to the positive reals if 2> 0, and to the negative reals if 2 < 0. (We
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can’t have 2= 0, because in that case ax= 0, and In 0 is not defined.) Our function never
. . S 1 .

turns a corner at any point where it is defined. That means it’s differentiable at all such

points. Let’s break into components fand g, such that

f(x)=ax
and
g(y)=lny
Then we have
r=g(f)

The derivatives of the components are
) =a
and
g)=1y
The chain rule tells us that
(g =" () f
Substituting the values we've defined into this formula, we get

r(x)=1/(ax)-a=1/x

We want to find an expression for the derivative of
s(x)=0bIn ax
Using the results of the solution to Prob. 9, we can rewrite the function s as
s(x)=6-r(x)
where 7 is the function defined in Prob. 9 and its solution 9:
r(x)=1n ax
Therefore

sS(x)=1[6-rx)
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The multiplication-by-constant rule lets us rewrite this as
sS(x)=6-7"(x)
We already know that
¥ (x) =1/x
Therefore,
g’ (x)=6-(1/x)=blx

The same constraints apply here as in the solution to Prob. 9. We must restrict the domain
to the positive reals if 2> 0, and to the negative reals if 2 < 0.

Chapter 8

1. The fifth derivative of this function is the derivative of its fourth derivative. We found

the fourth derivative to be the constant function
F@ (x) =-96
Differentiating this, we get
FO(x)=0

because the derivative of a constant function is always the zero function.

. The sixth derivative of our original function is the derivative of

f(S) (x) =0

This is also the zero function. We've reached “the end of the line” in this sequence of
derivatives. If we keep differentiating further, nothing changes!

. We found the fourth derivative to be

£ (x) =965 cos x
The sum rule tells us that
FO (x) = dldx 96 — dl dx (5 cos x)

Using the multiplication-by-constant rule, and knowing that the derivative of any
constant iS Cqual to 0, w¢e get

FO (x)=0-5 d/dx (cos x)
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The derivative of the cosine is the negative of the sine, and we get rid of the 0. That leaves
us with

fO(x)==5 " (=sin x) =5 sin x

4. The sixth derivative is the result of differentiating the fifth derivative. That means

f© (x) = dldx (5 sin x) =5 dldx (sin x) =5 cos x

5. The seventh derivative is the result of differentiating the sixth derivative. That means
£ (x) = dldx (5 cos x) =5 dldx (cos x) =5 - (=sin x) = =5 sin x

As we keep on differentiating, we'll go through a four-way cycle. Looking all the way back to
the original function and then listing its succeeding derivatives up to the seventh, we see:

f(x) =4x* =5 cos x
"(x) =16x°+ 5 sin x
f
[ (x) =48x"+ 5 cos x
[ (x) =96x— 5 sin x
f(4> (x) =96 =5 cos x
O (x) =5 sin x
2 ()
© (x) =5 cos x
F9 )
f7 ==5sin x

From here, we can extrapolate the higher derivatives:

f® =5 cos x
F?(x) =5sin x
F19 (%) =5 cos x

FIY =-5sin x

(12) —

[P ==5cos x
£ (x) =5 sin x
£ (x) =5 cos x

f9 ==55sin x

\J

And so on, forever

6. When we calculated the fourth derivative, we got

g9 (1) =—6r*+ 967 — 120¢° + 72077
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Finding the fifth derivative involves differentiating this function, one term at a time, and
then adding the terms back up. When we do this, we get

g% () =24r° - 480£° + 72017 — 5,040¢°
7. To find the sixth derivative, we differentiate the result of the solution to Prob. 6 to get

29 (1) =-1207°+2,88077 — 5,040£° + 40,3207

8. To find the seventh derivative, we differentiate the result of the solution to Prob. 7 to get
&7 (1) =720¢7 = 20,1607 + 40,3207 — 362,88071°

If we write down the original function and then list all the derivatives we've found so far,
1n succession, we see a general pattern:

g(t)=20+5t—7+4r' = +27+1Int

g =4t+5+ ' —4r*+2¢° - 61"

g () =4—r2+8°— 6"+ 2417
g7 (1) =267 = 241"+ 24F° — 12017°
g (1) =—6r"+96¢° — 120£°+ 72077
g% (1) =24r° — 480¢° + 720¢7 — 5,040¢
29 (#) =-120£°+2,880¢7 — 5,040£° + 40,320
gm (#) =72077 —20,160¢8 + 40,3207 — 362,880 17

d

And so on, forever

9. We're told that the height of the cliff, 4, is 50 m. We can find the descent time #by

using the equation for total fallen distance vs. time, plugging in 50 for 4, to get
50= 57
Dividing through by 10, we obtain
10=7

This solves to = 102, which is approximately 3.16 s. The vertical speed v of a falling

object at time ¢ after its release is always
v=dhldt=dldr (5¢) = 10¢
We can calculate the vertical speed at impact, v, by plugging in 3.16 for # getting

v,=10.3.16=31.6 m/s
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The vertical acceleration « of a falling object at time zafter its release is always
a=d?dt* (5¢) = dldr (102) =10 m/s®

so the vertical acceleration 4, of the apple at impact was 10 m/s’, the same as it was when
the apple was thrown from the higher cliff.

10. We can calculate the height of the cliff, /4, by plugging in 11 for zin the equation
h=3¢
that describes total fallen distance 4 vs. time #on the “alien planet.” When we do that, we get
h=3-11"=3-.121=363m
The vertical speed v of a falling object at time zafter its release on this planet is always
v=dpldt=dldt (3¢’) = 6¢

We can calculate the vertical speed of the “alien apple” at impact, v,, by plugging in 11
for 1, getting

1,=6-11=066 m/s
The vertical acceleration a of a falling object on this planet at time rafter its release is always

a=d*df(3t*) = dldt (6¢) = 6 m/s®

The “alien apple” was therefore accelerating downward at 6 m/s* when it landed.

Chapter 9

1. Let’s determine the x-value of the inflection point first. The original function is
y=3x"+3x"—x-7
The first derivative is
dyldx=9x>+ 6x—1
and the second derivative is
d*yldx® =18x+6

The inflection point occurs where the second derivative is equal to 0. We must therefore
solve the equation

18x+6=0
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Using algebra, we find that x=—1/3. Plugging this into the original cubic, we get
y=30+3x"—x—-7=3-(-1/3>+3.(-1/3)*— (-1/3) = 7 =-58/9
The coordinates of the inflection point are therefore (x,y) = (~=1/3,-58/9).
2. When we found the first derivative of the function stated in Prob. 1, we got

dyldx=9x" + 6x—1

To find the slope of the graph at the inflection point, we plug the x-value of the inflection
point into the above equation, getting

dylds=9x* + 6x—1=9 - (<1/3)*+6 - (~1/3) =1 =—2

3. From our knowledge of inflection points, we can be sure that curve of the function
stated in Prob. 1 is concave upward on one side of the inflection point, and concave
downward on the other side. A curve is concave upward at a point if and only if the
second derivative is positive at that point. A curve is concave downward at a point if
and only if the second derivative is negative at that point. Let’s set x= 0, which is in the
zone to the right (that is, on the positive side) of the inflection point where x=—1/3.
Plugging this into the second derivative, we get

d*yldx*=18x+6=18-0+6=6

The fact that this is a positive number tells us that the curve is concave upward to the right
of the inflection point, where x> —1/3. The curve must therefore be concave downward
to the left of the inflection point, where x < —1/3.

4. Here is the quadratic function again, for reference:
y=4x"-7
When we differentiate, we get
dyldx = 8x

The extremum is the point at which the first derivative is equal to 0. That means we must
solve the equation

8x=0

for x. That’s easy! We get x= 0, which is the x-value of the extremum. To find the y-value
of the extremum, we substitute 0 for x in the original quadratic function, getting

y=4x'-7=4-0"-7=-7

The extremum point is therefore (x,y) = (0,—7). Because the leading coefficient is positive
in the polynomial for the original function, we know that the parabola opens upward, so
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this extremum is an absolute minimum. We can also tell by taking the second derivative and
noting that it’s equal to 8, which is positive, indicating that the curve is concave upward.

5. In the chapter text, we found that the slope of the parabola of Fig. 9-4 is equal to 1 at
the point (2,0). Now let’s recall, from algebra, the point-slope form of a linear equation:

V=N = m(X_Xo)

where (x,y,) are the coordinates of the known point, and 2 is the slope of the line. We've
determined that x, =2, y, =0, and 7 =1, so we can plug in these numbers to get the equation

y=0=1.(x—2)
which simplifies to
y=x—2

That’s the equation of a line tangent to the parabola, passing through the point (2,0).

6. Here’s the cubic function again, for reference:
y=x+3x"—3x+4
The first derivative is
dyldx=3x"+6x—3
The second derivative is
d’yldx* = 6x+6

We can find the x-value of the inflection point by setting 4*y/dx* = 0. That gives us the

linear equation
6x+6=0
which solves to x=—1. Plugging this value into the original cubic and solving for y, we get
y=x+3x"-3x+4=(-1P+3.(-1)’-3-(-1)+4=9

The coordinates of the inflection point are therefore (x,y) = (=1,9). We can find the slope
of the curve at this point by plugging the x-value into the first derivative, obtaining

dyldx=3x"+6x—3=3.(-1)’+6-(-1)-3=-6

7. When we plug x= 100 into the original cubic function, we get

y=x+3x"—3x+4=100"+3 - 100> -3 - 100 + 4 = 1,029,704
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That’s “way up there” in the positive y direction. The inflection point, by comparison, is near
the origin. This means that the curve, being a cubic, trends upward in the overall sense.
But in the solution to Prob. 6, we found that the slope at the inflection point is negative,
indicating that in the vicinity of that point, the curve trends downward! We must therefore
conclude that the graph reverses itself in a small region near the inflection point. On the basis
of this information, we can be sure that this curve matches the general profile of Fig. 9-2E.

8. To find the y-intercept, we plug x= 0 into the original function and then calculate the
result. That gives us

y=x+3x*—-3x+4=0"+3.0"-3.0+4=4
This tells us that the point (x,y) = (0,4) is on the curve. To find the points where the

slope is 0, we can set the first derivative equal to 0 and then solve the resulting equation.
Remember that

dyldx=3x"+6x—3

so the quadratic equation is

3x* +6x—3=0
Let’s use the quadratic formula to see if this equation has any real roots, and if so, to find
them. If you don’t remember that formula, here’s a reminder. When we have a quadratic
equation of the form

ax* + bx+c=0
then the roots are

x=[-bx (¥ —4ad" | (2a)

In this case, 2= 3, b= 06, and ¢=—3. We therefore get

x={-6+[6°-4-3.(=3)]"}/(2-3)==1+2"20r—-1-2"2

For graphing purposes, we can use a calculator to approximate these x-values as 0.414 and
—2.414. Let’s plug these into the cubic and do the arithmetic. For x= 0.414, we have

y=x+3x"=3x+4=0414+3-0.414"-3.0.414+4=3.343
The coordinates of one local extremum are therefore approximately
(%) = (0.414,3.343)
Thats good enough for graphing purposes! In the case of x=—2.414, we have

y=x +3x* - 3x+ 4= (2414 + 3 - (-2.414) - 3 - (-2.414) + 4 = 14.657
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The coordinates of the other local extremum are approximately
(x,y) = (2.414,14.657)
We now have this information:

* The y-intercept point is (0,4)

* The inflection point is (—1,9)

* One local extremum point is approximately (0.414,3.343)

* The other local extremum point is approximately (=2.414,14.657)

* The function trends upward in the overall sense, but reverses between the local extrema

That’s enough data to sketch a reasonably good graph, as shown in Fig. A-13. Each
division on the x axis represents 1/2 unit. Each division on the y axis represents
4 units.

. To find this slope, we plug the known x-value at the inflection point into the equation
for the derivative. That’s x= 7. Remember that

dldx (sin x) = cos x

The slope at the inflection point is therefore equal to cos 7; or —1.

Local y
maximum A
(-2.414,14.657) 1

24
(approx.)

\ 1

DL e A B O I
-3 =2 [-1 4L 2 3
-8 +
Inflection T Local
point -16 +— minimum
(-1,9) A1 (0.414, 3.343)
_oq - (approx.)

\4

Figure A-13 Illustration for the solution to Prob. 8 in
Chap. 9.
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10. The x-values of the inflection points, which we figured out in the chapter text, are

x=7l4

x=37l4
x=57l4
x=7rl4

The derivative of the square of the sine function, as we found in Chap. 7 and repeated
in Chap. 9, is

dldxsin® x= 2 sin x cos x

Finding the slope at each of the inflection points involves plugging in the values and
doing the arithmetic. Note that the exact values of the sines we'll encounter are

sin 77/4 = 1/(2"?)
sin 377/4 = 1/(2"7)
sin 577/4 =—1/(2"?)
sin 77z/4 =—1/(2"?)

and the exact values of the cosines are

cos /4 = 1/(2'?)
cos 37c/4 =—1/(2"%)
cos 57l4 =—1/(2"?)
cos 77l4d=1/(2"%)

Now let’s go through the calculations, taking care not to get the signs mixed up. At the
first (left-most) inflection point in Fig. 9-7, we have a slope of

2sin /4 cos wl4=2-1/(2'%) - 1/(2'"») =1
At the second inflection point, we have a slope of
2 sin 3714 cos 37/4 =2 - 1/2"2) - [=1/(2"?)] = -1
At the third inflection point, the slope is
2sin 572/4 cos Sxl4d =2 - [-1/(2")] - [(-1/(2")] =1
At the fourth (right-most) inflection point, the slope is

2sin 77xl4 cos 7xl4 =2 - [-1/(2"7)] - 1/(2V%) = -1
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Worked-0ut Solutions to Exercises:
Chapters 11019

These solutions do not necessarily represent the only way a problem can be figured out. If you
think you can solve a problem faster or better than the way it’s done here, by all means try it!
Always check your work to be sure your “alternative” answer is correct.

Chapter 11

1. To write the first # terms of a series in summation notation, we must figure out how it
can be portrayed as a function of a steadily increasing sequence of integers, preferably

1,2,3,4,56,7,...

Then we decide on a counting tag, give it a name such as 7 and let it follow the above
sequence. Here, our working series starts with 8, and we divide by 2 to get the second
term. To get each succeeding term, we divide by 2. The series can be rewritten as

8/2°+8/2' +8/22+8/2° +. ..

Alternatively, we can begin the series with a numerator of 16 and divide by increasing
powers of 2 starting with the first power, like this:

16/2' + 16/22 + 16/2° + 16/2% + . . .

That allows us to start indexing at 7 = 1, so the summation notation is

i 16/2
i=1

for the first # terms of the series.

2. In this series, we begin with 1/2, which is 7/ (1 + 7) if we let 7 = 1. We increase 7 by 1
to get the next term in the series, which is 2/3. Next, we increase the original numerator

631



632 Worked-Out Solutions to Exercises: Chapters 11 to 19

and denominator by 2 to get 3/4. Then we add 3 to the original numerator and
denominator. Then we add 4 to both, then we add 5 to both, and so on. The first »
terms in the series can be expressed as

S i(1+0)
i=1

3. To express the limit of the series stated in Probs. 1 and 2 as the number of terms grows
endlessly, we write down the limits as 7 approaches infinity. In the first case, we have

n—oeo 4

Lim z 16/2
i=1
and in the second case,

Lim 2 il (1+9)
n—oo P

4. The first limit in the solution to Prob. 3 is defined, because the series converges
(approaches a specific limiting value) as the number of terms grows endlessly. The
whole infinite series adds up to 16. Therefore

n—oo

Lim Z 16/2'=16
i=1
The second limit is not defined because the series

1/2+2/3+3/4+4/5+5/6+6/7+7/8--.

does not converge. W hen a series does not converge, it is said to diverge.

5. We want to find
I
J X dx
0
This integral can be expressed in the limit form

%l_)ni i (6= a)ln] - fla+ i(b— a)ln]
Here, 2=0and 6=1, so Wc: :clan rewrite the above expression as
Lim 3 [(1 =0}/ - [0+ (1 = )/
which simplifies to -
Lin 3 71
i=1

Let’s look at the summation part alone:

n
z i’
i=1
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‘We can write this series out as
V/w®+ 22 n® + 3% n + - - -+ n?ln?®
which simplifies to
(12+22+3*+.- .+ nd) /n®

From precalculus, recall that

Lim (12°4+2*4+3*4+...+n)/n*=1/3

n—oo
Now we know that

Li 3 2nd =1/
ninjo 21 n 3

i=1
That’s the integral we're looking for. We've figured out that

'1[ X dx=1/3

0

. To determine the average value, we must find the height of a rectangle whose area is 1/3
square unit (the definite integral) and whose width is 1 unit (the distance from x=0 to
x=1). If we call the rectangle’s area 4, its height 4, and its width w; then

A= hw
from basic geometry. In this situation, A = 1/3 and w =1, so
1/3=4H-1

Therefore, » = 1/3. That’s the average value of the function

flx)=x
over the interval from x=0 to x= 1.
. This time, we've been told to find
1
j x> dx
0

This can be expressed in limit form as

n

Lim Z (b= a)ln] - fla+ i(b— a)ln]

n—oc 4
i=1
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In this situation, 2 = 0 and & = 1, so we can rewrite the above expression as

Lim 2 [(1=0)/n] - [0+ i(1—0)/n)?

i=1
which simplifies to

n
Lim 2 21t
n—>o0 i1

=

The summation alone is

n

2 Plat
i=1
When we write this series out, we obtain
lat+221n + 3+ o+ Pt
which simplifies to
(P+22+3+...+4%/ n'

Recall from precalculus that

Lim (P+2°+3+...+#°)/n'=1/4

n—oo

Therefore

Lim 2 Plnt=1/4
i=1

n—eo 4

That’s the integral we want. We've worked out the fact that
1
j X de=1/4
0

8. We can again use the rectangle-area method to find the average value. This time, we
must find the height of a rectangle whose area is 1/4 of a square unit and whose width
is 1 unit. If we call the area A, the height 4, and the width w as we did in the solution to
Prob. 6, then again,

A= hw
This time, A=1/4 and w=1, so
1/4=5h-1
This solves to » = 1/4. The average value of the function
flo)=x

over the interval from x=0 to x= 1 is therefore equal to 1/4.
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9. Remember the function that describes the car’s speed vs. time:
s(¢)=2.4¢
We want to find

j 2.4¢dt
0

This integral can be expressed as

n—oo £

Lim i (b= a)ln] -s[a+ i(b— a)ln]
i=1

In this scenario, 2= 0 and 4= 5, so we can rewrite the above expression as

Lim 3 (5= 0)/n] - 2.4 [0+ i(5 - )]
e 4=

which simplifies to

n—oo £

Lim Y 60i/n’
i=1
When we factor 60 out of the sum and the limit, we obtain

60 Lim Z iln*
e i

The summation part by itself is

2 iln?
i=1
We can write this series out as
Un*+2/n*+3/n*+- -+ nln’
which simplifies to
14+2+3+---+n/n’

As we saw in the chapter text,

n

Lim Z A+2+3+---+n/n*=1/2

n—oe 4
i=1

Written in summation form, this is
n
Lim 2 iln*=1/2

n—sco 4
i=1
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Therefore

60 Lim S i/n? = 30
ni}ni ;Zn

We've determined that
5
J 2.4t dt = 30
0

This tells us that the car travels 30 meters in the first 5 seconds.

10. We can verify this result by finding the area of the triangle bounded on the top by the
graph of the function, on the right by the line 7= 5, and on the bottom by the #axis in
Fig. 11-5. The height 4 of the triangle is equal to the value of the function when #=5:

h=s(5)=24-5=12

The width w of the triangle is the distance between # =0 and # = 5, which is 5 units. The
area A of a triangle is half its width times its height. In this case,

A=hwl/2=12.5/2=30

This agrees with the result we got with the Riemann method.

Chapter 12

1. The general antiderivative is
F(x)=2x+¢

where ¢ can be any real number. Figure B-1 shows the graphs of the three antiderivatives
where ¢ =1, ¢ =3, and ¢= -2 respectively:

F(x)=2x+1
E(x)=2x+3
Fo(x)=2x-2

All the antiderivative graphs are straight lines with slopes of 2. The constants correspond
to the points where the lines pass through the dependent-variable axis.

2. The general antiderivative is

Fx)=x"+¢
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Value
of

function /

Fi (x)=2x+1

Figure B-1 Illustration for the solution to Prob. 1 in
Chap. 12.

where ¢ can be any real number. Figure B-2 shows the graphs of the three antiderivatives
where c=1, ¢= 3, and ¢= -2 respectively:

Fi(x)=x"+1
E(x)=x"+3
Fo(x)=x*-2

All the antiderivative graphs are parabolas that open upward. The constants correspond
to the points where the curves pass through the dependent-variable axis. The curves all
have identical orientations and contours; the only difference is their vertical positions.

. The general antiderivative is
Fx)=x+¢

where ¢ can be any real number. Figure B-3 shows the graphs of the three antiderivatives
where ¢ =5, ¢ =15, and ¢=—10 respectively:
E(x)=x+5
Fis(x)=x"+15
Fio(x)=x-10
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Figure B-2 Illustration for the solution to Prob. 2 in
Chap. 12.

On this graph, each horizontal division represents 1 unit, and each vertical division
represents 5 units. All the antiderivative graphs are cubic curves. The constants correspond
to the points where the curves pass through the dependent-variable axis. The curves all
have identical orientations and contours; the only difference is their vertical positions.

4. The general antiderivative is
Fx)=x*+¢

where ¢ can be any real number. Figure B-4 shows the graphs of the three antiderivatives
where ¢=5, ¢=15, and ¢=—10 respectively:

F (x)=x"+5
F15 (X) :x4+ 15
ElO (x) =x4_ 10

On this graph, each horizontal division represents 1 unit, and each vertical division
represents 5 units. All the antiderivative graphs are quartic (fourth-degree) curves.
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Each horizontal
division is 1 unit

Each vertical
division is 5 units

Fo0(x) = x3-10

Figure B-3 Illustration for the solution to Prob. 3 in
Chap. 12. Each horizontal-axis division represents
1 unit. Each vertical-axis division represents
5 units.

The constants correspond to the points where the curves pass through the dependent-
variable axis. The curves all have identical orientations and contours; the only difference
is their vertical positions.

5. We've been given the following cubic function and told to find its definite integral from
x=0tox=5:

fx)=8x
Let’s remember the rule for differentiating basic 7th-degree functions. If we have

f(x) = ax"
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Fis (X)=x%+15
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Figure B-4 Illustration for the solution to Prob. 4 in
Chap. 12. Each horizontal-axis division
represents 1 unit. Each vertical-axis division
represents 5 units.

where 7 is a nonnegative integer, then the antiderivative in which the constant of
integration is equal to 0 is

F(x)=ax"V [ (n+1)
From this formula, the antiderivative of our cubic function is
F (x) =8x%" /(3 + 1) =8x%/4 =2x*

We can omit the constant of integration whenever we use the Fundamental Theorem of
Calculus. Let’s use that theorem to evaluate

5
J. 8x° dx
0
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Calculating the antiderivatives, we obtain
F(5)=2-5"=1,250
and
F0)=2-(0"=0
Therefore
F(5)—-F(0)=1,250
so we get the final answer

5
j 8x> dx=1,250
0

. We've been given the following quartic function and told to find its definite integral
from z=-6to z=—3:
g (2)=-2z"

According to the rule for differentiating basic nth-degree functions, the antiderivative,
not including the constant of integration, is

G (2) =2V (4+1)=-22/5
We can use this antiderivative to evaluate the definite integral
3
J. 2z dz

6
Calculating the antiderivatives, we obtain

G(-3)=[-2-(=3)°]/5 =[-2-(-243)] / 5=486/5=97.2
and
G (-6)=[2-(=6)°]1/5 =[-2-(-7,776)] | 5=15,552/5=3,110.4
Therefore
G (-3) - G (-6)=97.2-3,110.4 = -3,013.2

so we get the final answer

-3
j 2% dz=-3,013.2
-6
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7. Because the brick starts out having been tossed upward, its initial downward vertical
speed is —5 meters per second. As always (on earth, at least), the downward vertical
speed increases by 10 meters per second every second until the brick splashes down. If
we call the acceleration function f and the time variable 7 then, as before,

f(r)=10

I start the timer when I toss the brick. When 7= 0, the vertical downward speed is
—5 meters per second, so the antiderivative is

F(:)=10t-5
This function Fexpresses the vertical downward speed of the brick vs. time, assuming that
I toss the brick straight up. (That’s why I had to lean out to toss it; otherwise it would’ve
gone up into the balloon and then fallen back into the gondola!) Antidifferentiating

again, remembering the rule for the sum or difference of indefinite integrals, and calling
the result @ (z), we get

D (1) =5+ -5¢
The function ® expresses the “fallen distance” vs. the elapsed time. As before, the constant
of integration is 0, because the initial “fallen distance” is 0. Let’s calculate how long it
will take the brick to hit the water after I've tossed it up. This, once again, is the time zat
which the value of @ is equal to the altitude of the balloon. We have

52— 5+=1,000

We can get this equation into the standard quadratic form by subtracting 1,000 from
each side, obtaining

5¢*—5¢—1,000=0
Dividing through by =5 gives us the simpler equation
-t +1t+200=0
Using the quadratic formula to solve for z we have
r={-1£[1°-4.(=1)-200]"}/[2- (-1)] = (-1 £ 801" / (-2)
The positive square root of 801 is approximately 28.30. Therefore,
t=(-1%28.30) / (-2) = —13.65 or 14.65

The only solution that makes sense is # = 14.65 seconds. The other solution is a “phantom
negative.”
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8. To figure this out, we plug #= 14.65 into the function for downward vertical speed vs.

10.

time. That’s the antiderivative of the acceleration function. We found that to be
F(:)=10t-5
Therefore, the vertical speed of the brick at splashdown is
F(r)=10r—5=10-14.65 -5 = 141.5
The brick is falling at 141.5 meters per second when it splashes down. It’s a good thing

there are no boats, rafts, or swimmers on the lake. We wouldn’t want a brick to land on
anybody at that speed!

. As in the first experiment, the brick’s initial speed is 0, and it accelerates downward by

10 meters per second. If the acceleration function is £ and the time variable is # then
f(r)=10
We can leave out the constant of integration when we find the antiderivative
F(z)=10¢
This function expresses the vertical speed vs. time. When 7= 5, we have
F(r)=10-5=50
After 5 seconds, the brick is falling at 50 meters per second. When #= 6,
F(r)=10-6=060
At the end of the 6th second, the brick is falling at 60 meters per second. Between #=5 and
t= 6, the brick gains 10 meters per second of downward vertical speed. It doesn’t seem
as if we've done definite integration here. But indirectly, we have. We subtracted one
antiderivative (at #=5) from another (at = 6). According to the Fundamental Theorem

of Calculus, we've just figured out that

6
j 10 dr=10
5

Let’s take the antiderivative again and call the new function ® (#), just as we did in the
first experiment. Then

D (1) =5¢2

Once again, we can leave out the constant of integration. The function @ tells us the
vertical displacement in meters vs. the elapsed time in seconds. When 7= 5, we have

(D(t)=5-52:5-25=125
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The brick falls 125 meters in the first 5 seconds. When = 6, we have
D(1)=5-6*=5-36=180

The brick falls 180 meters in the first 6 seconds. Therefore, it falls 180 — 125, or 55,
meters between £=5 and #= 6. As in the solution to Prob. 9, it doesn’t seem as if we've
done formal integration here, but we've found a definite integral in a practical sense. We
subtracted the antiderivative at the end of a time interval from the antiderivative at the
beginning of the interval. According to the Fundamental Theorem of Calculus, we've
determined that

6
j 10t dt=55
5

Chapter 13

1. According to the reversal rule for integration (which we've already proved),
q P
I b (v) dZ/:—J b (v) dv
P q
The right-hand side of this equation is the same as

-1 ]i b (v) dv
q

The multiplication-by-constant rule tells us that we can rewrite this as
P
J =1/ (v)] dv

q
which is the same as
]7
J. -h (v) dv
q
We've just shown that if / is an integrable function of a variable v over an interval from
v=pto v= g where p and g are real-number constants, then

q P
I bh(w) dv= J. -h (v) dv
P q
2. To solve this problem, we must merely do some calculations, being careful with the
plus and minus signs. First, we want to evaluate the integral of a function over a specific
interval going in the positive direction along the x axis:
2
j x* dx
1
If we call our function £ (x) = x?, then we have the basic antiderivative

F(x)=x13
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We calculate
F(2)=2%3=8/3
and
F()=1/3=1/3
Therefore
FQ2)-F(1)=8/3-1/3=7/3

so we know that
2
J. X de=713
1
Next, we must evaluate the integral of the negative of the function, going in the negative
direction along the x axis over the same interval as before:
1

J.—xz dx

2

If we call the function g (x) = —x7, then we have the basic antiderivative
G (x)=—-x13

We calculate

G (1)=—(1°)/3=-1/3
and

G (2)=—(2)/3=-8/3
Therefore

G(1)-GQ2)=-1/3-(-8/3)=-1/3+8/3=7/3

So we know that

-1

[~ dx=713

2
We've just demonstrated the following specific example of the theorem we proved in the
solution to Prob. 1:

2 1
J.xz dx= J.—xz dx
2

1
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3. Figure B-5 shows graphs of both functions, along with the regions defined by the curves
in the interval between x= 1 and x= 2. When we integrate f (x) over the interval in the
positive direction, we get a positive result because the region lies above the x axis. When
we integrate g (x) over the same interval in the negative direction, we also get a positive

result, because were calculating the negative of a negative area.

4. We want to show that

0 3 3
Jx3dx+ Jx3dx= ngdx
3 0 3

Let’s call our function £ (x) = x”. We have the basic antiderivative

F(x) =4
First, we'll integrate over the interval from —3 to 0. We calculate

F0)=0%4=0

and

F(-3)=(-3)1/4=81/4

Value
of
function
f(x)=x2 A
6 —
T Integrate
4 from1to2
T Positive area
oL | going positive
1 /=7
>
-6 -4 -2 ‘i‘ E 4 6
Lo\ !Negative area
H % | going negative
; T \‘ =7/3
!4 \  Integrate
i . i from2to 1
e
g (x) = —x2 H v y

Tllustration for the solution to Prob. 3 in

Figure B-5
Chap. 13.
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Therefore
F(@Q)—F(-3)=0-81/4=-81/4

so we know that
0
j x> dx=—-81/4
3
Next, we integrate over the interval from 0 to 3. This time, we have

F(3)=3"4=81/4
and
F(0)=0%4=0
Therefore
F(3)-F(0)=81/4—0=81/4

which tells us that
3
J x> dx=81/4
0

The sum of these two integrals is

0 3
j 3 dy + ij dx=—81/4+81/4=0
-3 0

Finally, let’s integrate over the interval from —3 to 3. We calculate
F (3)=3%4=281/4
and
F(=3)=(-3)"4=81/4
Therefore
F(3)—F(-3)=81/4-81/4=0
which demonstrates that
-3

We've shown that the sum of the integrals from —3 to 0 and from 0 to 3 is equal to 0, and
that the integral from —3 to 3 is also equal to 0. Mission accomplished!
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5. Figure B-6 shows a graph of the function, along with the regions defined by the curve
in the intervals between x=—3 and x= 0 and between x= 0 and x = 3. Each horizontal
division represents 1 unit, and each vertical division represents 5 units. When we
integrate from —3 to 0, we get a negative result, because the region lies below the x axis
and we’re integrating in the positive direction along that axis. When we integrate
from 0 to 3, we get a positive result, because the region lies above the x axis and we're
integrating in the positive direction along that axis. The two intervals give us equal but
opposite integrals, so they add up to 0.

6. This time, we must go through calculations to show that

-5 3 3
Jx3dx+J.x3dx=J.x3dx
-3 s 3

We already know that

x> dx=0

Le—w

Value
of
function

Integrate
from 0

Sum of areas 03

=0 T

Area = 81/4

Area =-81/4
Each horizontal

Integrate division is 1 unit
from =3 -1
to 0 ne Each vertical
division is 5 units
f(x)=x3 v

Figure B-6 Illustration for the solution to Prob. 5 in
Chap. 13. Each horizontal-axis division
represents 1 unit. Each vertical-axis division
represents 5 units.
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Now, our mission is to verify that

-5 3
J.x3dx+ Jx3a’x=0
3 s

As before, let’s call our function f'(x) = x°, giving us the basic antiderivative
F (x) = "4

First, we integrate from —3 to —5. Calculating the antiderivatives, we get

F (=5) = (=5)"/4 = 625/4
and

F(-3)=(-3)"/4=81/4
Therefore

F (=5) — F (=3) = 625/4 — 81/4 = 544/4 =136

so we know that

]5 x° dx=136

-3

Next, we integrate from —5 to 3. We have
F(3)=3"4=81/4
and
F (=5) = (=5)"/4 = 625/4
Therefore
F (3) = F (=5) = 81/4 — 625/4 = —544/4 = —136

which tells us that
3
J x> de=-136
s

The sum of these two integrals is

-5 3
jx3¢x+ jx34x=136+(—136):o
-5

-3

649
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7. From the Fundamental Theorem of Calculus, we know these four facts:

b
[ fx) de=F ()~ F (9

c

[ F&) de=F (9~ F(®)

S

d
[ fx) de=F(d)~ F (o)

d
jf(x) dx=F (d) - F (a)

where F represents the antiderivative of f with the constant of integration equal to 0.
Now let’s rename the values of the functions at the points in the interval:

~

II
™ ™

a

&

~
Il

c)

(
(
(
(d)

where p, g, 1, and sare real numbers. All four of these numbers exist, because f is defined
over the interval containing the x-values 4, 4, ¢, and 4. By substitution, we can rewrite the
first three of the above integrals as

T fx)dx=g-p
jf(x) dx=r—gq
.

jf(x) dx=s—7r

To find the sum of these three definite integrals, we can evaluate
(g=p)+(r=g9+(s—7)
By algebra, this simplifies to
s=p
Substituting back the original expressions for sand p, we get

F(d)-F(a)
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According to the Fundamental Theorem of Calculus, that’s
d
j F(x) dx

. We've been told to determine the definite integral
2
[ 4= x)?ds
.|
We can consider this as a composite function in which

flx)=4—-x
and
g=y"
In this situation,
Fx)=—1
which means that
—f"(x) =1

so we can rewrite the original integral in the form
2
[ lf @) [ ()] de
3

The multiplication-by-constant rule for integration allows us to put the minus sign in
front of the integral sign, giving us

2
— [ glf G- f(x) dx
-1

We can get rid of the minus sign if we reverse the bounds of integration, because reversing
the bounds multiplies a definite integral by —1. Now we have

-1
[ glFe - £ () dx
2

Our integral is now in the form that’s ready for substitution. We can calculate the
“temporary bounds” as

f@)=4-2=2

and
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We can write the integral as

5
f g dy
2
which is
5
[72dy
2
Remember that were using y as a nickname for f'(x). Let’s find the indefinite integral
J ytdy
With the constant of integration set to 0, we get the antiderivative
G(y)=—y'

Now we calculate the values and subtract, getting
GB)-GQ2)=-5"YH-[-2H]=-1/5-(=1/2) =3/10

We've determined that

2
j (4 — x)2 dx=3/10
-1

9. In this situation, one of the bounds of our integration interval is at x= 4. When x = 4, the
quantity (4 — x)~* is a fraction with a denominator of 0. That’s undefined. Therefore,
this function blows up at one end of our interval. As we'll see in the next chapter, that
presents a special challenge.

10. We've been told to determine, if possible, the definite integral
4
[ 4-x2d
5
Following the same process as in the solution to Prob. 8, we get

-1
[ lFe1- £ ) e
This is ready for substitution. \Xje calculate the “temporary bounds” as
f@d)=4-4=0
and
fED=4-(-1)=5

Now we can write the integral as
5

[ e d

0
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which is

5

[7d

0
As before, yis a nickname for f (). With the constant of integration set to 0, we get

G(y)=-y"
Now we calculate
GO -G0)=-5"Y-=0"==1/5-(=1/0)=-1/5+1/0

The last expression is not defined, because its second term is 1/0. We've determined that
the definite integral

4
[ 4= x)?ds
3

is undefined.

Chapter 14

1. Let’s call our function f and call the independent variable x. Our improper integral is
1

I 7578 dx
0
Let’s take a tiny positive &, add it to the lower bound at x= 0, and get
1
j —7x" dx
é

Without the constant of integration, the basic antiderivative is
F(x)=x7
When we evaluate this from Jdto 1, we get
F()-F©)=1"-0"=1-0"
Now we must work out the limit

Lim 1-067

60+
As Japproaches 0 from the positive side, the quantity 0~ increases endlessly. When we
subtract this increasing positive quantity from 1, we get a result that blows up negatively.

Therefore

Lim j. —7x78 dx

50+



654  Worked-Out Solutions to Exercises: Chapters 11 to 19

is infinite, telling us that
1

J. —7x8 dx
0
is undefined.
2. We want to evaluate
-1
J —7x78 dx

Let’s take a number p smaller than —1 and use it as the lower bound. Then we have
4

J. —7x8 dx
P

The antiderivative, as in Prob. 1, is
Fx)=x7

To find the value of the improper integral, we must determine

Lim F(-1)-F (p)

p—r>—eo

We can calculate that
F(-1)=(-1)7=~1
As p becomes large negatively, F (p) approaches 0 from the negative direction, so

Lim F(-1)—F ()= -1-0=—1

p——eo

Therefore
1
Lim | —7x%dx=-1

p—>—oo

telling us that
4

J. 7578 de=—1

—oco

3. Let’s call our function £ and call the independent variable x. We want to evaluate

2
j X7 dx
0

Let’s take a tiny positive dand add it to the lower bound at x= 0, getting
2
J X7 dx
[
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The antiderivative with the constant of integration set to 0 is
F(x)=-x7/2
When we evaluate this from Jdto 2, we get
FQ)-F(0)=-2712-(=0%/2 =-1/18+ 5?*2=0712-1/8
Now, we must look at the limit
Lim 87%/2-1/8

5§50+

As dbecomes arbitrarily small while remaining positive, d 2 increases without bound, so
07*/2 — 1/8 also grows without bound. Therefore

2
Lim I X2 dx
5—0+
is infinite, telling us that
2
J X dx
0
is undefined.
. We want to evaluate
j X2 dx
2

Let’s consider a large positive number ¢ as the upper bound, so the integral becomes
q
j X7 dx
2

The antiderivative, as we found in the solution to Prob. 3, is

F(x)=—x72/2
To find the integral, we must determine
I,;L’Z Fq)-F(Q2)
We calculate
F(2)=-222=-1/8
As g becomes large positively, the value of F (¢) approaches 0, so

Lim F(g)—F(2)=0-(-1/8)=1/8

g—ee
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Therefore

oo

J. X2 dx=1/8

2
5. We want to evaluate
0
J 35 e
3
Let’s call this function f (x). It has a singularity at x = 0. We can take a tiny positive

number & subtract it from the upper bound at x = 0 where the singularity occurs, and
obtain

—&
j X35 dx
3
Leaving out the constant of integration, the basic antiderivative is

F (x) = (5/2)x*°
When we evaluate Fat x=—3, we get
F(=3)=(5/2) - (-3)"=(5/2) - 9'"
When we evaluate Fat x= —¢&, we get
F(-9=(52) - (-&*
The difference is
F(—&—-F (-3)=(5/2) - (=& = (5/2) - 9'°

Now consider
UT(wm.eam—6Qy9“
£—0+

As £approaches 0 from the positive direction, the value of (—£)*°, which is the fifth root
of the quantity (—¢)%, approaches 0. If we multiply by 5/2, it still approaches 0. Now we
know that

Lim (5/2) - (=&*° = (5/2) - 9" =—(5/2) - 9!

-0+

so therefore

—£

Lim K de=—(5/2) - 9'°
£—0+ et
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This tells us that
0
J. x—3/5 dx: _(5/2) . 91/5

3
This is an irrational number. With a calculator, we can approximate it to —3.880.

. We want to evaluate
[ dx
3

This is the same function f'(x) as we worked with in Prob. 5. This time, we're integrating
from —3 in the negative direction, indefinitely. Consider a large positive number ¢. Let’s
see what happens to

TI 315
X0 dx

-3

as we make ¢ increase without bound. (That means —¢g grows larger negatively without
bound). The basic antiderivative, as we found in the solution to Prob. 5, is

F (x) = (5/2)x*°
When we evaluate the antiderivative at x= -3, we get
F(=3)=(5/2) - (-3)"° = (5/2) - 9'°
When we evaluate the antiderivative at x=—g, we get
F (=)= (5/2) - (=)

When we subtract the antiderivative at the “start” of our integration interval from the
antiderivative at the “finish,” we get

F(=q—F(-3)=(5/2)- (-¢)*" = (5/2) - 9"°
Now consider

Lim (5/2) - (—¢q)*° = (5/2) - 9'°

g—eo

As g grows positively without bound, the value of (—q)y >, which is the fifth root of the
quantity (—¢)?, also increases positively without bound. When we multiply this quantity
by 5/2, we make it grow even faster. Now we know that the above limit is infinite, so

-
Lim X5 dx

g—>eo
-3
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is also infinite. We must conclude that

J‘ 35 e
3
is undefined.

7. When we consider the graph of the function, the second of the two integrals is
obviously undefined. That integral is

J —5x dx
2
If we call the function f'(x), then

flx)=—5x

The graph of f (x) is a straight line with a slope of =5, passing through the origin. If
we start integrating at x = 2 and proceed in the positive direction, the “curve” defines
trapezoidal regions that grow endlessly larger, always with a left-hand edge —10 units
long. We don't have to do any calculations to see this. It’s obvious from the graph. (If you
can't envision this graph in your “mental eye,” you can sketch it.)

8. It seems that the following integral might be defined:

]: X dx
2

Let’s try to evaluate it. The antiderivative, not including the constant of integration, is
F (x)=—x/4

Now consider the integral

q
j X dx
2

where ¢ is some large positive number. To evaluate this, we must determine

Lim F(q)— F (2)

g

where ¢ increases without bound. We can easily calculate
FQ)=—2%4=-1/64
As g becomes large, the value of F (¢) approaches 0, so

Lim F(q) — F (2) =0— (-1/64) = 1/64

g—eo
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Therefore

oo

j X dye=1/64

2

. Lets try to evaluate

1

J X2 dx

-1
using the Fundamental Theorem of Calculus directly, as if the interval contains no
singularity. (It does, as we know, at x= 0.) The basic antiderivative is

F(x)=—x72/2
When we evaluate Fstraight through from —1 to 1, we get
F()-F(1)=-17%2-[-(-1)"12]=-1/2—(-1/2) =0

Let’s look at this situation in the coordinate plane. Figure B-7 is a graph of

fl)=x7
f(x)
A
Area defined
6 by curve
— extends upward
4 - forever

Area defined
by curve =
extends downward 6
forever

A\

Figure B-7 Illustration for the solution to Probs. 9 and
10 in Chap. 14. This graph, while accurate in
itself, might reinforce the mistaken idea that
the integral of the function is equal to 0 over
the interval shown.
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10.

with the boundaries x=—1 and x = 1 drawn in. The areas defined by the two parts of the
curve are shaded. The negative area, which exists on the left-hand side of the vertical axis,
is shaded lightly. The positive area, which appears on the right-hand side of the vertical
axis, is shaded more darkly. It’s tempting to imagine that these areas, even though both
might be infinite, are equal and opposite. Figure B-7 can reinforce the mistaken notion
that

1

J. X2 dx

2
is defined and equal to 0. In the next solution, we'll see that this is not the case.
Let’s work out the part of the integral on the right-hand side of the singularity:

1

j X2 dx

0
We can take a tiny positive &, add it to the lower bound at x= 0, and get

1

J 3 dx
S
The basic antiderivative is
F(x)=—x72/2

When we evaluate Ffrom dto 1, we get
FQ)-F©O)=-1%2-(=062%2)=-1/12+622=07%2-1/2
Now, we must look at the limit

Lim 07°2—-1/2

6—0+
The quantity (07°/2) increases endlessly as 0 approaches 0 from the positive direction,
$0

Lim _1[ X dx

50+

is infinite. Therefore,
1
J‘ X2 dx
0
is undefined. This fact alone is sufficient to tell us that

I

J. x2 dx

-1
is undefined. We don’t have to evaluate the left-hand part of the integral; no matter what
we add to this undefined quantity, we'll get another undefined quantity.
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Chapter 19

1. Here’s the sum of integrals we've been told to evaluate:
6 6
j 3x% dx + j —12x dx
5 5
We can name the functions like this:
g (x) =3x
and
b (x) ==12x7
First, let’s figure out the definite integral of g (x) with respect to x from x=5 to x=6:
6
j 3x? dx
5
The basic antiderivative, leaving out the constant of integration, is
G(x)=x
When we evaluate this from x=5 to x= 6, we get
G6)-G(5)=6-5"=216-125=91

Next, we figure out the definite integral of 4 (x) with respect to x from x=5 to x= 6:
6

j—12x2 dx

5
The antiderivative, leaving out the constant of integration, is

H(x) = —4x3
When we evaluate this from x=5 to x= 6, we get
HG)-H(B)=—4-6"—(—4-5) =-364

When we add these results, we get 91 — 364, which is —273. Now, let’s add the two
functions together and then integrate their sum. Remember that

g (x)= 3x?
and

h(x) =—12x7
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Therefore, if we call the sum function g, we have
g2 x)+h(x)=¢g(x)=3x"— 125" =-9x°

We want to work out the integral
6
J —9x? dx
5

The antiderivative, leaving out the constant of integration, is

When we evaluate this from x=5 to x= 6, we get
Q6 -Q(B)=-3-6"-(-3-5)=-273

This is the same as the result we got when we integrated the two functions separately and
then added the integrals.

2. We've been told to evaluate this sum of integrals:
6 6
J.3x2 dx + J. —12x° dx
s 5

Note the difference in the direction between the first and second integrals in this sum!
Let’s use the function names from the solution to Prob. 1:

g (x)= 3x?
and
b (x) =—-12x7

In the solution to Prob. 1, we determined that
6
I 3x? dx=91
5

and

6
I —12x? dx=—-364

5

According to the rule for reversing the direction of integration over a fixed interval,

5
j —12x% dx=—(—364) = 364
6
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When we add these results, we get
'6[ 3x% dx + j' —12x% dx=91 + 364 = 455
Now, let’s evaluate 5 ’
e

We can invent a new name ¢ (x) and 5assign it to the function we’re integrating above:

g (x) = 155
The antiderivative without the constant of integration is

Q(x)=5%
When we evaluate Q from x=5 to x= 6, we get

Q06)-Q((5)=5-6"-5-5"=455

This is the same as the result we got when we integrated the two functions separately and
then added the integrals.

. Here’s the difference of integrals we've been told to evaluate:
6 6

J. —12x% dx — J. 3x? dx

5 5

Let’s keep using the same function names from the solutions to Probs. 1 and 2:

g (x) =3x7
and
b (x)=—12x%

In the solution to Prob. 1, we found that
6
j —12x% dx=—364
5

and

6
J. 3x% dx=91
5

The difference between these two definite integrals is

6 6
j—12x2 d — j3x2¢x=—364—91 =455
5

5
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Our next step is to work out
6

[ ~15x
5
Let’s invent a new name p (x) and assign it to the function we're integrating:

P (x) =—15x

The basic antiderivative (that is, without the constant of integration) is

When we evaluate this from x=5 to x= 6, we get
P©) = P(5) =56 — (5 - 5 =455

This is the same as the result we got when we integrated the two functions separately and
then subtracted the integrals.

4. We've been told to find
J (24 572+ 57 d

This is the integral of a sum of three monomial functions of x. Let’s call them

fi(x) =x7
f(x)=x7
f(x)=x"*

If we temporarily leave out the constants of integration, then the indefinite integrals of
these monomial functions are

J £ (x) de=—x"!
[ £ de= 1122
[ £ o) de= (130
The original integral without a constant of integration is
f (7 + 57+ 579 dxzj X2 dx +J X dx +J X dx
=—x"'+(=1/2)x%+ (-1/3)x7
Adding in a constant of integration ¢, we end up with

.[ (A O+ de=—x"+ (-1/2)x7 + (—1/3)x° + ¢
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. We've been told to find
[ on@y-ae20+3) by
Let’s multiply the factors to get a single polynomial:
(79)(6y—4)(=2y + 3) = -84y’ + 182y° — 84y
The integral we want to evaluate is now
| 84y + 182y~ 84y) dy

This is the integral of a sum of three monomial functions of y. We can call them

fi () =-84y°
£ (y) =182y°
£ () =-84y

If we temporarily leave out the constants of integration, then the indefinite integrals of
these monomial functions are

[ £ =21y
[ £) dy=a8213)y°
[ £ dy=—s2y°
The summed-up integral without a constant of integration is
[ 84y + 182y~ 84y) dy=-21y" + (182/3)y’ + ~42y°

Adding in the consolidated constant of integration ¢, and writing the original integrand
on the left-hand side of the equation, we have the final answer

J (7y)(6y—4)(=2y+3) dy= —21)/4 +(182/3)y° + —42y° + ¢

. We've been told to find
[ =132 +72) de
We begin by multiplying the factors together to get
(28 =1)(-32°+72) =-32" + 72" + 32> - 72*
The integral we want to evaluate is now

J. (32" + 7214+ 323 -~ 72%) dz
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This is the integral of a sum of four monomial functions of z. We can call them

fi (z) =-3z"
f(2)=72"
£ (z) =32
£ (2) =72

If we temporarily leave out the constants of integration, then the indefinite integrals of
these monomial functions are

[ £ (@) de = -114)2"
[ £ d= =Gz
[ £ & = G14)2*

| fi@) de =(713)2°

The complete integral, leaving out the constant of integration, is
j (32" + 72" +32° = 72%) dz=(-1/4) 2" + (7/111) 2" + (3/4)z" — (7/3)2°

Adding in the constant of integration ¢, and writing the original integrand on the left-
hand side, we have

J (28 = 1)(-32" +72%) dz= (-1/4)z" + (7/111) 2" + (3/4)z* = (7/3)2° + ¢

7. We've been told to find

1
J (4x* — 5x* + 7x—4) dx

0

Let’s start by working out the indefinite integral

J (4x® — 5x* + 7x— 4) dx

The integrand is the sum of four monomial functions of x. Let’s call them
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None of these functions has any singularities, so we can work out a definite integral
for any of them over any interval. That means we can integrate the entire polynomial
function (which is the sum of the monomial functions) over any interval. The basic
antiderivatives of the monomial functions are

F (x) = «*

F (x) = (-5/3)x
F; (x) = (712)x
F; (x) =—4x

The antiderivative of the original integrand is the sum of all these:
F(x)=F (x)+ FE (x)+ F (x) + F (x) = x" = (5/3)x® + (7/2)x* — 4x
When we input 1 (the starting x-value of our interval) here, we get
F()=1"=(5/3)- 1P+ 7/2) - 1*-4-1=-7/6
When we input 0 (the finishing x-value), we get
F(1)=0=(5/3)-0°+(7/12) - 0>°=4-0=0
The definite integral is therefore

F(1)-F(0)=-7/6-0=-7/6

The complete answer to our problem is

1
j (45 = 55>+ 7x— 4) dx=-716
0

. We’ve been told to find
)
_[ 2+ X2+ 5 dx
.|

We begin by working out

J (24 572+ 7% d
This is the integral of the sum of the monomial functions

fi(x) =x7
fx)=x7
f(x)=x"*
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Each of these functions has one singularity, which occurs at x = 0. But were okay in the
interval where —2 < x < —1. None of the three functions blows up anywhere in that span.
The basic antiderivatives are

F (x)=—x"
F (x) = (-1/2)x7
F; (x) = (-1/3)x7

The basic antiderivative of the original integrand is therefore
Fx)=F (x)+F (x)+F(x)=—x"'—(1/2)x%— (1/3)x

We must remember that we've been told to integrate over the interval in the negative
direction, from x=—1 to x=—2! We input —2 (the finishing x-value) first, getting

F(2)=—(=2)"-(1/2)(-2)2 - (1/3)(=2)> =5/12
When we input —1 (the starting x-value), we get
FED=—=D)"=-@0/2)1)2=1/3)(-1)?=5/6

The definite integral is obtained by taking the finishing antiderivative minus the starting
antiderivative. This gives us

F(=2)—=F (-1)=5/12-5/6 =-5/12

Therefore, the original definite integral is

-2
I (2 + 72+ x5 dxe=-5/12

-1

9. We've been told to determine

1
j (x—2)% dx
0

Before we begin integrating, let’s multiply out the cubed binomial, getting a straightforward
polynomial. When we do that, we get

(x=2P=x"-6x>+12x—8

Now we're ready to work out the indefinite integral

j (X — 6x2 + 125— 8) dic
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This is the integral of the sum of four functions

file)=x
£ (x) =—6x°
f (x) =12x
fi () =-8

None of these functions has any singularities, so we’re okay with any interval of integration.
The basic antiderivatives are

Fy (x) = (1/4)

B (x) =-25°
F; (x) = 6x*
F (x) =—8x

The basic antiderivative of the original integrand is
Fx)=F (x)+ 5 x)+F (x) + F (x) = (1/4)x* — 2x° + 6x* — 8x
When we input 1 here, we get
F()=(1/4)-1"=2-1°+6-1>*-8-1=-15/4
When we input 0, we get
F0)=(1/4)-0"-2-0°+6-0*-8-0=0
The definite integral is
F()-F(0)=-15/4-0=-15/4

The complete answer to our problem is

1
j (x—2)3 dx=—15/4
0

We've been told to determine
1
[ G+ 42 d
3

To solve this problem, we should begin by multiplying out the squared binomial, getting
a straightforward polynomial. That gives us

(x"P+4)* =5+ 8x"° + 16
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Now we must work out
J’ (2 + 8x"7 + 16) dx

Our integrand is the sum of the three monomial functions

fl (x) — x2/3
£ (x) =8x'7
£ (x) =16

None of these functions has any singularities, so we don’t have to be concerned about
evaluating any improper integrals. The basic antiderivatives are

F, (x) = (3/5)%"
Fz (x) — 6x4/3
E (x) =16x

The basic antiderivative of the original integrand is therefore

F(x)=F (x)+F (x)+ E (x) = (3/5)x”? + 6x + 16x
When we input 1 to this function, we get

F(1)=3/5)-1""+6-1"+16-1=113/5

When we input —1, we get

F(E1D)=@3/5) - (-1)°+6- (-1)"+16- (-1) =-53/5
The definite integral is

F (1) = F (1) =113/5 = (=53/5) = 166/5

The complete answer to our problem is

1
j (x'2 + 4)? dx=166/5
-1

Chapter 16

1. Figure B-8 illustrates the graphs of the two functions we now have. We want to find the
area of the shaded region. The functions are

fx)=2x-1
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Value
of

function
A

900 =x2 -4

What's the area
of the shaded
region?

fx) =2x-1 !

Figure B-8 Illustration for the solution to Probs. 1 and 2
in Chap. 16.

and
g (x)=x"—4

To find this area, the first thing we should do is determine the x-values of the points
where the line and the curve intersect. Then we should find the difference function

px)=f(x)—g )

Finally, we should integrate p(x) with respect to x in the positive direction over the
interval between the two intersection points.

. To find the intersection points, let’s set / (x) = g (x), obtaining the single-variable
equation

2x—1=x*—4

Adding the quantity (=2x + 1) to each side, transposing the left-hand and right-hand

sides, and rearranging into standard quadratic form, we get

¥ =2x—-3=0
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This factors into
(x+1)(x—3)=0
The roots of this quadratic equation are x = —1 or x = 3. These are the x-values of the

points where the line and the curve intersect, and are the bounds over which we should
integrate the difference function. That difference function is

p)=Ffx)—g(x)=Q2x—1)—(x¥*—4) =—x"+2x+3

Now we must evaluate
3

J (—x* + 2x+ 3) dx
-1
The antiderivative, leaving out the constant of integration, is

P(x)=—x*13 + x> + 3x

When we evaluate this from x=—1 to x= 3, we obtain

P(3)—-P(1)=[-(313)+3*+3-3] = [-(-1)’/3+ (-1)*+3 - (-1)] =32/3

3. First, we must find the intersection points between the line and the curve. Here are the
functions again, for reference:

fx)=x
and
g(x)=x

They're graphed in Fig. B-9, and the area we want to find is indicated by the shading.
Let’s set these two functions equal, so we get

x=x2

To put this into standard quadratic form, we can subtract x from each side and then
transpose the sides. That gives us

¥ —x=0
which factors into

x(x—1)=0
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Value
of
function
AN

—+  Whatis
this
area?

R _I. Each axis division
is 1/5 unit

4 —_—

\4

Figure B-9 Illustration for the solution to Prob. 3 in
Chap. 16. Each axis division represents
1/5 unit.

This tells us that roots are x= 0 or x= 1. These are the bounds of the interval over which
we must integrate the difference function

P)=f(x)—gx)=x—x"=—x"+x

Remember that we subtract the “bottom function” from the “top function.” Now we
want to find

j' (—x* + x) dx
The basic antiderivative is '
P(x)=—x*13 + x%/2
When we evaluate this from x= 0 to x= 1, we obtain

P (1) = P(0) =[-(1%/3) + 1°/2] = (=0°/3 + 0*/2) = 1/6

. Refer to Fig. B-10. To begin, we determine the area of the shaded region, which is
a triangle with a base length of 1 unit and a height of 1 unit. To find the area, we
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Value
of
function
AN

AN (1.0

(0,0)

R - Add shaded area,
o then
f(x) = )f,o' subtract hatched area

P Each axis division

T is 1/5 unit
\ 2

Figure B-10 Illustration for the solution to Prob. 4 in
Chap. 16. Each axis division represents
1/5 unit.

multiply 1 by 1 and then divide by 2, getting 1/2 square unit. From this, we must
subtract the area of the region defined by the parabola over the interval 0 < x < 1. That’s
the hatched zone. Its area is

1
I X% dx
0
The antiderivative, leaving out the constant of integration, is
F(x)=x13
When we evaluate this from x=0 to x= 1, we obtain
FQ)-F0)=1%3-0%3=1/3

When we subtract this from the area of the triangle, we get 1/2 — 1/3, which is 1/6 square
unit. That’s the same answer we got in the solution to Prob. 3.

5. Before we think about the integral, we must find the intersection points between the
line and the curve. Here are the functions once again:

flx)=x
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and
g ) =x
They're graphed in Fig. B-11. Setting the functions equal, we get
X =x

To put this into standard cubic form, we can subtract x* from each side and then transpose
the sides to get

X—xr=0
which factors into
Px—=1)=0

The real roots of this equation are x= 0 or x = 1. These x-values represent the bounds
of our integration integral. The “top function” is f and the “bottom function” is g. The
difference function is

px)=flx)—gx)=x"—-x"=—x+%

Value

of

function
'\‘ A ':'
\ -+ Whatis
N F()=x2 _ this

area?

_| Each axis division
is 1/5 unit

Y

Figure B-11 Illustration for the solution to Prob. 5 in
Chap. 16. Each axis division represents
1/5 unit.



676  Worked-Out Solutions to Exercises: Chapters 11 to 19
Now we want to find

(—x® + %) dx

(S

The basic antiderivative is
P(x)=—x"4 + %13

When we evaluate this from x=0 to x= 1, we obtain
P(1) = P(0) = [-(1%4) + 1°/3] — (=0%/4 + 0%/3) = 1/12

6. Once again, the first thing we must do is find the intersection points between the line
and the curve. The functions are

fx)=x
and
g (x)=x’

Figure B-12 is a graph of this situation. Setting the functions equal, we get

.X'=.X'3

To put this equation into standard cubic form, we subtract x from each side and then
transpose the sides to get

x?—x=0

which factors into
x(x—1D(x+1)=0

The real roots of this equation are x = —1, x = 0, or x = 1. Bounding the region of
interest for the interval =1 < x < 0, the “top function” is g and the “bottom function”
is /* Bounding the region of interest for 0 < x < 1, it’s the other way around; the “top”
function is f and the “bottom function” is g. When we look at Fig. B-12, it’s tempting
to suppose that the two regions have equal area, but we had better not assume it without
proof! To be sure we get the right result, we must evaluate the areas of the two shaded
regions separately.

Let’s find the area of the shaded region in the third quadrant first. That’s the region at
the lower left. The difference function is

P =g () —flx)=x—x
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Value
of
function

What is
this
total area?

| Each axis division
is 1/5 unit

\4

Figure B-12 Illustration for the solution to Prob. 6 in
Chap. 16. Each axis division represents
1/5 unit.

To get a positive value for this integral, we must find the absolute value of
])‘ (2% = x) dx
The basic antiderivative is )
P(x)=x14—x*2
When we evaluate this from x=—1 to x= 0, we obtain
P(0) — P(=1) = (04 — 0%/2) = [(-1)¥/4 — (=1)*/2] =—1/4

The absolute value is 1/4. Now let’s find the area of the shaded region in the first quadrant.
The difference function in this case is
qx)=f(x) =g (x) =x—x
This time, we must determine the definite integral
'1[ (x—x°) dx

0
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The basic antiderivative is

Q (x) = x%2 — x4

When we evaluate this from x= 0 to x= 1, we obtain
Q1) — Q(0)=(1%/2—1%/4) — (0°/2 — 0*/4) = 1/4
Now we are certain that the areas of the two shaded regions are equal. When we add

them, we get the true geometric area between the line and the curve over the interval
from x=—1 to x— 1. That area is 1/4 + 1/4 = 1/2 square unit.

7. Here are the functions again, for reference:
flo=1
and
g (x)=x7

Imagine the region bounded by the graph of fon the bottom, the graph of gon the right,
and the dependent-variable axis on the left, as shown in Fig. B-13. The region has no top;

Value
of
function
A
Area bounded
i i byline and
Tt curve
i extends upward
i |+ forever
Each vertical -
division is :'__':
1 unit I .
P
,"——I'. g(x):x‘2/3
H \
PTG
POV
" -1 ‘\ :
f(X)_1 '/I ‘\i.
T T x
\ 4 1

Each horizontal division is 1/2 unit

Illustration for the solution to Prob. 7 in
Chap. 16. Each horizontal-axis division
represents 1/2 unit. Each vertical-axis

division represents 1 uni.

Figure B-13
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it goes upward forever. We've been told to find the area of the shaded region, and that the
interval of integration is 0 < x < 1. The line and the curve intersect where x = 1 as the
illustration suggests, because

f=1
and
g)=1%=1

The upper curve represents gand the lower curve represents f; so we subtract f from g to
get the difference function

px)=gx)—flx)=x"-1

We want to integrate p over the interval 0 < x < 1, which is bounded on the left by the
singularity. That integral is

'll. (¥ =1) dx
0

Let’s take a tiny positive number Jand add it to the lower bound at x= 0 to obtain
y
1

J' ( 23 1) dx
5

The basic antiderivative is
P(x)=3x"-x

When we evaluate this from dto 1, we get
P)=P(@)=(-1"~1) - (38"~ 5)=2- (35"~ 9)
Now we must figure out

Lim 2—- (36" -0)

50+

As Japproaches 0 from the positive direction, the values of 36" and dboth approach 0.
That means the quantity (38" — &) approaches 0, so

Lim 2—-(36""-0)=2

50+

It follows that

50+

1
Lim j (23— 1) dx=2
)
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Therefore
1
[ P =1) de=2
0

The area of the shaded region in Fig. B-13 is 2 square units, even though it’s infinitely

tall.
8. The two functions in this situation are the same as the ones in Prob. 7. Here they are
again, for reference:
fl)=1
and
_ 23
g)=x

This time, imagine the region bounded by the graph of g on the bottom, the graph
of fon the top, and the line x = 2 on the right. We've been told to find the area of

the shaded region in Fig. B-14, and that the interval of integration is 1 < x < 2. In the

Value
of
function
A
Pl
—
1 1
] 1
1 1
—
1 1
1 1
—
1 1
. i
Each vertical i
division is :'__':
1 unit P
il
Pl g =xe
] 1
1 1
| [ N |
1 1
1 1
1 1
1 -1 1
1 1 1 1
! Yo |
’ -1 N 1
=1/ N
id L~ I
_____ - 1 .'~-.g,_
< T AN T I R ninioks I
<71 T T Tt 7 T 1111 >X
v 1 2

Each horizontal division is 1/2 unit

Figure B-14 Illustration for the solution to Prob. 8 in
Chap. 16. Each horizontal-axis division
represents 1/2 unit. Each vertical-axis

division represents 1 unit.
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solution to Prob. 7, we showed that the line and the curve intersect where x = 1. The
upper curve represents fand the lower curve represents g, so we must subtract g from fto
get the difference function. If we call that function ¢, then

g (x) =f(x) — g (x) =1 — 523

We want to integrate g over the interval 1 < x < 2. That integral is
2

J (=2
The basic antiderivative is 1
Q (x) = x—3x"
When we evaluate this from 1 to 2, we get
QR-Q)=2-3-2")-(1-3-1"=4-3.2!8
We have determined that

2
[ -5 de=4-3.2""
1

That’s the area of the shaded region in Fig. B-14. It’s an irrational number; we can use a
calculator to approximate it as 0.220 square units.

. To find the total area in the interval 0 < x < 2, we can add the areas we got in the

solutions to Probs. 7 and 8. The situation is illustrated in Fig. B-15. The area that we
found in the solution to Prob. 7 (and shown in Fig. B-13) was

1

j (¥ = 1) dx=2

0
The area that we found in the solution to Prob. 8 (and shown in Fig. B-14) was

2
[ (=x) dx=4-3.21
1

The total area is the sum of these, or 6 — 3 - 21 square units. This is an irrational number.
A calculator tells us that it’s equal to approximately 2.220 square units.

For reference, the two functions in this situation are
flx)=x7

and
g(x)=—x"

We're interested in the shaded zone in the graph of Fig. B-16. This region is bounded by
the curve for gon the bottom, the curve for fon the top, and the line x = 1 on the left.
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Value
of
function
A
| Area bounded
i |i by line and
T4 curve
i3 extends upward
1|+ forever
Each vertical -
division is i
1 unit ]
{1l tgw=x20
=1/ N
o e M L Tdeeepeee
< T Tttt [ 1111 >X
v 1 2

Each horizontal division is 1/2 unit

Illustration for the solution to Prob. 9 in
Chap. 16. Each horizontal-axis division
represents 1/2 unit. Each vertical-axis

division represents 1 unit.

Figure B-15

The zone has no boundary on the right, because it extends in the positive x direction
forever. We've been told to integrate over the infinitely wide interval 1 < x, which can also
be expressed as (1,00). We must subtract gfrom f to get the difference function. If we call

that function ¢, then
g =f@) —g () =5 () =247

The area of the shaded region is equal to

[ 2427 d
1
Imagine a positive real number s that we can make as large as we want. If we allow s to

grow larger endlessly, the above integral can be expressed as
N
Lim J. (x4 x7) dx
s—>o0 |
e antiderivative of our difference function g without the constant of integration is
The antiderivative of our diff funct thout th tant of integrat

Qx)=—x"4+(—x2)=—x"—x72
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Value
of
function
AN .
4
V(X)) =x?
Eachaxis | %
divisionis —+ % Area
. Y
1/2 unit £ \, between
1 s curves
- | | Bl LTS
«< | |

extends
to the right
forever

Second -
and
third
quadrants |
not —
shown

Figure B-16

Illustration for the solution to Prob. 10 in
Chap. 16. Each axis division represents 1/2

unit. The second and third quadrants are not
shown.

To find the limit of the integral stated above, we must figure out
Lim Q(s) = Q(1)
s—>o00

As s grows larger endlessly, the value of Q (s) approaches 0 from the negative side. We can
see this by inputting some actual numbers and watching the trend:

Q(10)=-10"—10"2/2

Q(10%) =—(10%)" - (10)72/2
Q(10%) =—(10%" - (10%2/2
Q (10%) = —(10%" — (10%)%/2

As sbecomes larger without limit, Q (5) converges on 0. We can easily calculate the value
of our antiderivative when the input is 1:

QM)=-0"H-Q0H2=-1-1/2=-3/2

683
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Now we know that
Lim Q()—Q(1)=0-(-3/2)=0+3/2=3/2
Therefore

N

Lim j (2 + x7) dx=3/2

§—>00

which tells us that
[ 2+ de=312
1

That’s the area of the shaded zone in Fig. B-16. Despite the fact that the region is infinitely
elongated toward the right, it encloses a finite area.

Chapter 17

1. Here’s the integral we've been told to evaluate:

2r
I =5 sin x dx

0
We can pull out the constant 5 to get

2
5 j —sin x dx
Let’s call the integrand function 0
f(x)=—sin x
The basic antiderivative is
F (x) =cos x
When we evaluate this from x=0 to x =27, we get
FQr)—F(0)=cos2mr—cos0=1-1=0
The definite integral we seek is five times this, which is also 0. We've found that

2
J —5sinxdx=0
0

2. We want to see what happens to the definite integral of the cosine function over
intervals whose lower bounds are always at x = 0 and whose upper bounds increase
endlessly in the positive direction. That is, we want to evaluate

s

Lim | cos x dx
s—>00

0
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Let’s call the integrand function
g (x) =cos x
The basic antiderivative is
G (x) =sin x
When we evaluate this from x=0 to x =5, we get
G(G)—G0)=sins—sin0=sins—0=sin s

As s increases endlessly, sin s goes through a cycle that ranges over the entire set of reals
between, and including, —1 and 1. The value of s never settles on any specific real number
in this closed interval; it oscillates forever back and forth. That means

K
Lim | cos x dx
s—yoo

0
is undefined. The integral never “settles down” as the interval grows. It oscillates like the
function itself, but the phase (that is, the horizontal position of the “wave train”) is not
the same. Try graphing the sine and cosine functions together on the same coordinate
plane, and see for yourself.

. We want to evaluate the following definite integral, which involves the product of a
composite function and another function:

1
J. (cos x*)(2x) dx
0

We can use the substitution rule here if we give the component functions the names

fx) =
and
g(y)=cosy
When we differentiate f (x), we get
[ (x)=2x
This means we can use substitution to rewrite the above integral in the form
(1
frﬂﬁ@
F(0)

The bounds of this integral are

£(0)=0>=0
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and
fy=1*=1
SO We can rewrite it as
1
[ 2
which, in this case, is '
j cos y dy

We're using y as a nickname for f (x).OThe basic antiderivative of gis
G (y)=siny
When we evaluate this from 0 to 1, we obtain
G(1)—G(O0)=sinl —sin0=sin1—-0=sin1

This tells us that

1

J (cos x*)(2x) dx=sin 1

0
A calculator tells us that sin 1 = 0.841, rounded to three decimal places. (Remember that
we're dealing with radians here, not degrees.)

4. Our task is to evaluate the definite integral
T
J (4e* + 4 sin x) dx
0
Let’s start by factoring the constant 4 out of the integrand and putting it in front of the
entire integral. That gives us

T
4 I (e*+ sin x) dx
0
If we call the integrand function
f(x)=¢"+sin x
then the basic antiderivative is
F (x) = ¢*+ (—cos x) = ¢* — cos x
When we evaluate this from x= 0 to x= 7, we get

F-F@0)=(e"—cosm)—(—cos0)=[e"—(-1)]=(1-1)
=(e"+1)—0=¢"+1
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The definite integral we seek is four times this, which is 4¢” + 4. We've found that

T
j (de*+ 4 sin x) dx=4e" + 4
0
Using a calculator and rounding to three decimal places, we get 96.563.

. We want to evaluate

1
J. 2e* dx
0
Our integrand is a composite function. Let’s give the component functions the names
f(x)=2x
and
gy)=¢
The derivative of f is
flx)=2
We can use substitution to rewrite the above integral in the form
£
[ e
f(0)

When we evaluate /" at the bounds, we obtain
£(0)=2.0=0
and
fy=2.1=2

so the integral becomes

g () dy

O ey

which is
2
I e’ dy
0

The basic antiderivative is

G(y=¢
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When we evaluate this from y=0 to y=2, we get
GR)—-G0)=e*—e"=¢"—1
which tells us that
j' 2edx=e*—1
0

When we round to three decimal places with a calculator, we get 6.389.

6. We've been told to figure out the value of
1
J. (cos €*)(e*) dx
0

The integrand is a composite function. Using substitution, we can give the component
functions the names

fx)=¢"
and
g(y)=cosy
When we differentiate £, we get
flx)=¢
We can therefore rewrite the above integral in the form
S
[ewd
f0)

When we calculate the bounds of this integral, we get

fO)=e'=1
and
f)=e'=¢
so it becomes
!ﬂﬁ@

which is
e

I cos y dy

1
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the basic antiderivative is
G (y)=siny
When we evaluate this from y=1 to y= ¢, we obtain
G (-G (1) =sine—sin 1

which tells us that

'1[ (cos ¢¥)(e*) dx=sin e—sin 1

0

We can use a calculator to work this out so we get a decimal expression. When we do that
and round off to three decimal places, we get —0.431.

. Let’s call the function f and the independent variable x. Our integral is

1

J. X" dx

0
This is an improper integral, because the reciprocal function of x is singular at x = 0.
Lets take a tiny positive &, and add it to the lower bound at x = 0. Then our integral
becomes

1

J. X" dx

S
The basic antiderivative of the integrand function is

F (x) =In Ixl

The interval of integration doesnt include any negative values of x, so we can modify
this to

Fx)=lnx
When we evaluate this from dto 1, we get
F(1)-F()=In1-lndo=0-lno=-Ind
Now, let’s look at the limit
(sLj’(ﬁ —Ind

As & approaches 0 from the positive side, the natural log of ¢ attains values that can
become arbitrarily large in the negative direction. That means that the above limit blows
up positively, so
1
Lim [ " dx

50+
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is infinite. From this fact, we can conclude that
1

I xdx
0
is undefined.
8. We want to evaluate
-1
J x ' dx

—oo

The basic antiderivative of the integrand function is
F (x) =1n Ixl
To find the integral, we must determine
Lim F(-1)-F (p)

p—>—eo

where p is a real-number constant that grows arbitrarily large in the negative direction.
We can calculate that

F(E1)=Inl-1l=ln1=0

As p becomes large negatively, F (p) grows large to an unlimited extent while remaining
positive. It’s convenient to show this by inputting the negatives of increasing positive
integer powers of e. Here are a few examples:

F(=e)=Inl-ell=lne*=2
F(=e®) =Ilnl-e®l=1n¢*=20

F (=) =1n 1-e** =1n ¢’ = 200

There’s no limit to how large F () can become, if we make p large enough negatively.
From that fact, we can conclude that

Lim Inl-11—-1nlpl

p—>—eo

is infinite. Therefore
4
J x ' dx

is undefined.

9. Lets try to evaluate

j X dx

—e
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as if the interval didn’t contain a singularity. (It does, as we know, at x= 0. But we’ve been
told to ignore this fact.) The basic antiderivative is

F (x)=In x|
When we evaluate this directly from —e to ¢, we get
F—F(—¢=Inlel—Ilnl-el=lne—lne=1-1=0
Let’s look at this situation in the coordinate plane. Figure B-17 is a graph of

flx)=x"

with the bounds x= —¢ and x = ¢ drawn in. It looks as if the negative and positive areas
defined by the curves cancel each other. They would if they were defined and finite. But
they are not, as we'll discover when we solve the next problem.

Refer again to Fig. B-17. Let’s work out the part of the integral on the right-hand side
of the singularity. To do that, we must evaluate

e

J. X dx

Area defined
6 by curve

—t extends upward
forever

Area defined
by curve A+
extends downward 1 6
forever

Figure B-17 Illustration for the solution to Probs. 9 and
10 in Chap. 17. This graph might suggest
that the integral is 0 over the interval from
—eto e. But that isn’t the case!
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Let’s take a tiny positive &, add it to the lower bound where x= 0, and get
J. x 1 dx
S
The basic antiderivative is
F (x)=Inlxl

Our interval does not span any negative values of x, so we can eliminate the absolute
value symbols here. When we evaluate from d'to ¢, we get

F(g—F(0)=lne—lnd=1-1no
Now, we must look at the limit

Lim 1-lnod
60+
As O approaches 0 from the positive side, its natural log becomes arbitrarily large in the
negative direction. Therefore, the quantity (1 — In 0) blows up, so
Lim J. x ' dx
50+
is infinite, indicating that
'[ x ' dx
0
is undefined. This fact is all we need to conclude that
J. x 1 dx
is undefined. Remember that we can’t add an undefined quantity to anything and expect
to get a sum that’s defined! This is true even if both undefined quantities appear as if they
ought to be additive inverses.

Chapter 18

1. The equation of the unit circle isn’t written in a form that we usually see for a function.
There’s a good reason: The equation doesn't represent a function unless we restrict its
range. Here’s the equation again, for reference:

x2+y2=1

If we consider only the first quadrant, representing that part of the circle where xand yare
both positive, and if we let y= f'(x), then we can rearrange the equation to get

FG) =1 -
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We want to find the arc length from the point where x= 0 to the point where x=1. We
begin by differentiating our function. We can do that using the chain rule, getting

£ x) ==x(1— )"

If you've forgotten how the chain rule works, you might want to go back to Chap. 6 and
review it. When we square the derivative, we get

[ (o)) = x*(1 = x)7
Adding 1 gives us
L+ [/ 0P =1+ %1 — x?)!
We can morph the right-hand side of this equation using algebra to get
L+ [f7 ()P =0-x)"

The arc length L that we seek is the definite integral from x= 0 to x= 1, whose integrand
is the positive square root of the above quantity. That’s
i
I = J‘ [(1=x2)7" di
0
which can be simplified to

1
L= j (1 = %272 dy
0

Using an integral table such as App. G, we can see that the indefinite integral, leaving out
the constant of integration, is

J (1 = x3)™ dx= Arcsin x

Ihat’s the inverse sine function, which you’ll learn more about in Cha . 21.
You’ll also learn Why the “A” in “Arcsin” is capitalized in equations!) W hen we evaluate
q
thiS function from x=0tox= 1, weE get

L=Arcsin 1 —Arcsin 0=7/2 -0=7/2

A calculator will tell us that this is approximately 1.571 units, rounded to three decimal
places.

. Figure B-18 is a graph of the unit circle. Each axis division represents 1/5 unit. For the
endpoint where x=1,

f(l) — [1 _ (_1)2]1/2 — (1 _ 1)1/2 — 01/2 — O
For the endpoint where x=0,

f(o) — [1 _ 02]1/2 — 11/2 =1
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f(x)
(0,1)

Each axis
increment
is 1/5 unit

\4

Figure B-18 Illustration for the solution to Probs. 2
and 3 in Chap. 18. Each axis division
represents 1/5 unit.

The arc whose length we found is shown as a solid black curve. It’s clearly equal to 1/4 of
the circumference C of the circle. That means C'is four times the arc length:

C=4.-7l2=2rx

From basic Euclidean geometry, we remember that 27 units represents the circumference
of a circle whose radius is 1 unit.

3. In Fig. B-18, the dashed gray square shows the guideline for using the arc-in-a-box
method. If we say that y= f(x), then we can call the arc’s endpoints

(2, p) = (1,0)
and
(x2,92) = (0,1)
The distance between these points, representing the diagonal measure of the box, is

[(y2 =)+ G =)= [(1 = 0>+ [(0—1)*]"
— [12 + (_1)2]1/2 — (1 + 1)1/2 — 21/2
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Using a calculator, we can see that this is approximately 1.414 units, rounded to three
decimal places. Half the perimeter of the box is easily seen to be 1 + 1, or 2, units. In the
solution to Prob. 1, we found L = 1.571, which is between these two limits.

. As in Prob. 1, our equation is not written in the standard function form. Here it is
again, for reference:

X +yP=4

If we consider only that part of the circle in the second quadrant, and if we let y= f(x),
then we can rearrange the equation to get

fG) =@ =)
When we differentiate this using the chain rule, we get
[/x)=—x(4 =)
When we square this derivative, we obtain
[f" (01 = x*(4 = %)
Adding 1 gives us
L+ [/ )P =1+ x*(4—x)"
We can morph the right-hand side using algebra to get
1+ [f )P =4-4-x)"
The arc length L that we seek is the definite integral from x=—2 to x=—1 of the positive
square root of the above quantity. That’s
L= _f [4-(4— )" dy
which can be simplificd o
L= ]12-(4—x2)‘1/2dx
and further to ;

-1
L=2 [ (4= dy
-2

Using an integral table such as App. G, we can see that the indefinite integral, leaving out
the constant of integration, is

J. (4 — x*)72 dx= Arcsin (x/2)
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We want to evaluate this from x= -2 to x=—1. By convention, the domain of the sine
function is restricted to the interval [-7/2,7/2] to ensure that Arcsin is a true function.
(Chap.21 will explain this.) When we do that, we get

L = Arcsin (=2/2) — Arcsin (—1/2) = Arcsin (—1) — Arcsin (—1/2)
=—7x/2 - (—xl6)=—xl2 + 7l6 =—7x/3

Now we must remember that our arc length L is twice this, because the entire definite
integral is supposed to be multiplied by 2. Therefore

L=-27/3

The arc length comes out negative in this solution only because of the way we restrict
Arcsin. We can take the absolute value to get the “real-world arc length,” so

|LI=1-2x/3l =27x/3

A calculator approximates this as 2.094 units, rounded to three decimal places.

5. Figure B-19 is a graph of a circle with radius 2, centered at the origin. Its equation is

x+yt=4

f(x)

f(x)=(4 —x?)12
g

Each axis
T increment
1 is 1/2 unit

A\ 4

Figure B-19 Illustration for the solution to Probs. 5
and 6 in Chap. 18. Each axis division
represents 1/2 unit.
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Each axis division represents 1/2 unit. For the arc’s endpoint where x= -2, we have
F2)=[4— (27" =(4-4)"2=0"=0
For the arc’s endpoint at x=—1, we have
fED=[4- D=4 -1)"?=3""2

The arc whose length we found is shown as a solid black curve.

. In Fig. B-19, the dashed gray rectangle shows the arc-in-the-box guide. Suppose we say
that y= f (). Then we can call the arc’s endpoints

(xliyl) = (_2'!0)

and
(xz,)’z) = (_1:31/2)

The distance between these points, representing the diagonal measure of the box and the
minimum possible arc length, is

[(y2= )" + (2= )" = {3 = 0)* + [(-1) = (=2)]}'
— [(31/2)2 + 12]1/2 — (3 + 1)1/2 — 41/2 =2

Half the perimeter of the box, is 1 + 3"* units. Using a calculator and rounding to three
decimal places, we obtain 2.732 units as the maximum possible arc length. We found that
the arc is 277/3 units long. That value is within the arc-in-the-box constraints.

. Figure B-20 illustrates how we can show that the result of L= 27/3 we got in
the solution to Prob. 4 is exactly right. The radius 7 of the circle is 2 units, so its
circumference C'is

C=2mr=2r-2=4r
The ratio of the arc length to the circumference is therefore
LIC=Qx/3)/ (47)=1]6

This tells us that the arc turns through an angle that is exactly 1/6 of a circle. A complete
circle has 2 zradians. If the arc length we found in the solution to Prob. 4 is correct, the arc
should turn through exactly 27/6, or 77/3, radians. We can verify this with trigonometry.
We set up a right triangle as shown. The cosine of an angle @ inside a right triangle is
equal to the length of the adjacent side (in this case 1 unit) divided by the length of the
hypotenuse (in this case 2 units). That means we should have

Arccos (1/2) = 7/3

This is a valid equation, which proves that the arc length we found is exactly right.
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(-1,3"2) 1

f(x)=(4 —x?)12

cos@=1/2 |  Each axis
therefore T increment
0 =rn/3 4 is 1/2 unit

\4

Figure B-20 Illustration for the solution to Prob. 7 in

Chap. 18. Each axis division represents
1/2 unit.

8. Lets begin by differentiating the function
fx)=x%2
The derivative is
) =x

When we plug x into the formula for the arc length in place of f”’(x), and if we also
include the bounds of the integration interval, we get

1
L= I (1+x9)" dx
0
Now let’s consider the indefinite integral
J‘ (1 +X2)1/2 afx

When we search through a table of integrals such as App. G at the back of this book, we'll
find the form

J. (P +a)" = (x12)(* + A"+ (1/2) 2 1n lx+ (x> + a1+ ¢
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where ais a general constant, and cis the constant of integration. Let’s reverse the addends
in the integrand. We can eliminate the absolute-value signs, because we won’t encounter
any negatives in the calculations to come. Now our equation is

J. (@ + )" dx= (x/2)(* + 2D+ (1/2) & In [x+ (x* + )] + ¢
If we substitute 1 in place of 2 and get rid of the constant of integration, we obtain
[ (4 de= (122 + 1)+ (112) In [+ (2 + 1))

To determine the arc length, we must evaluate the following expression over the interval
from x=0to x=1:

(x/2)(2+ 1"+ (1/2) In [x+ (2 + 1)
Plugging in x= 1, we get

(1/2) - (P+ DY 4+ (1/2) - In [T+ (12 + DY =(1/2) - 2124+ (1/2) - In (1 + 2'?)
=(1/2) - 2" +1n (1 + 2'?)]

Plugging in x= 0, we get

0/2) - (0> + D2+ (1/2) - In [0 + (0* + D)
=0+(1/2)-In1=0+(1/2)-0=0+0=0

The arc length is the difference between these results, or simply the value for x= 1:
L=(1/2) - 2" +1n (1 + 23]

Let’s use a calculator to approximate this. When we round off to three decimal places, we
get L= 1.148 units.

9. Figure B-21 is a graph of the parabola representing the function
fx)=x12
Each axis division represents 1/4 unit. For the endpoint at x= 0,
£(0)=042=0/2=0
For the endpointat x=1,
F)y=142=1/2

The arc whose length we found is shown as a solid black curve.
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f(x) = x2/2

Each axis
increment 1
is 1/4 unit

\4

Figure B-21 Illustration for the solution to Probs. 9
and 10 in Chap. 18. Each axis division
represents 1/4 unit.

10. In Fig. B-21, the dashed gray rectangle shows the arc-in-the-box guide. Suppose we say
that y= £ (x). Then we can call the arc’s endpoints

(xn}h) = (0,0)
and
(xz,)/z) = (1)1/2)

The distance between these points, representing the diagonal of the box and the minimum
possible arc length, is

(2= 3%+ G = 0112 = (112 = 0+ (1= 0" = (1/d + 1) = (5/4)
Using a calculator, we find that this is approximately 1.118 units. Half the perimeter of

the box, representing the maximum possible arc length, is 1 + 1/2, or 1.5 units. In the
solution to Prob. 8, we found that

L=(1/2) - 2" +1n (1+2)] = 1.148

This value lies between the arc-in-the-box constraints.
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Chapter 19

1. We've been told to evaluate the definite integral
jf (3 sin x—5¢%) dx
The principle of linearity for subotraction allows us to rewrite this as
3 ]Esinxalx— 5 ]T. " dx
0 0

The basic antiderivative of the sine is the negative of the cosine. The exponential function
is its own basic antiderivative. We can therefore evaluate the above sum of integrals as

3 - [—cos - (—cos 0)] =5 - (¢"— ¢°)
which simplifies to
3-[cosO—cosm—5-(e"—¢°)
We know that cos 0 =1, cos 7=—1, and ¢’ = 1, so the above expression becomes
3-1=-(=D]=5-("=1)=3.2=5"+5=11-5¢"

The complete integral and its solution can be written out in full as
V4
J (Bsin x—5€") dx=11—-5¢"
0

2. We've been told to evaluate the definite integral
2
[ Ger+7x7) dx
1
The principle of linearity allows us to rewrite this as
2 2
5 I e dx + 7Ix’1dx
1 1
The exponential function is its own basic antiderivative. The antiderivative of the
reciprocal function is the absolute value of the natural logarithm. Because we're dealing
entirely with positive values in our integration interval, we don't have to worry about
absolute values. We can therefore express the above sum of integrals as
5-(e*—¢e)+7-(In2-1In1)
Because In 1 =0 and ¢' = ¢, we can simplify this to

5-(¢*—e)+71n2
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We can get rid of the parentheses, rewriting the above expression as
5¢2—5¢+71In2
The complete integral and its solution can be written out in full as

2
J. (5e*+7xY) dx=5¢*—5¢+71n2
1

3. Here’s the integral we want to evaluate:

/2
'[ (3 sin x+ 2 cos x) dx
-r/2
Using the principle of linearity, we can rearrange this to get
/2 /2
3 J sin x dx + 2 J. cos x dx
-r/2 -r/2

The basic antiderivative of the sine is the negative of the cosine. The basic antiderivative
of the cosine is the sine. Knowing these things, we can evaluate the above as

3. {—cos /2 — [—cos (=7z/2)]} + 2 - [sin 7t/2 — sin (—7/2)]
which simplifies to
3. [cos (—/2) — cos /2] + 2 - [sin 7/2 — sin (—7/2)]

We know that cos 77/2 =0, cos —z/2 =0, sin /2 = 1, and sin —7/2 = —1, so the above
becomes

3.0-0)+2-1-(-1]=3-0+2-2=4

The complete integral and its solution can be written out in full as
/2

J. (3 sin x+ 2 cos x) dx=4

-r/2

4. Let’s start with this:
b

[tk LA 1= ko [ GO} b

a
According to the principle of linearity for subtraction, we can rewrite this as

/elj.fl(x)dx— /ezj.ﬁ(x)dx

Changing the subtraction to addition along with multiplication by —1, we get

/elj.fl(x)dx+ (-1-4A) j.ﬁ(x)dx
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which can be rewritten as

k j.fl(x)dx+ by (—'Tﬁ(x)dx)

The reversal rule lets us get rid of the minus sign and reverse the bounds of the second
integral. That gives us the result we've been told to find:

klj.fl(x)dx+ /ezj.ﬁ(x)dx
a b

. Here’s the integral we want to resolve:
[ G cos x)2x-4)
To set up the parts, let’s say that
f(x)=2x—4
and
g (x) =3 cos x
The basic antiderivative of g’, not including the constant of integration, is
g(x)=3sinx
The derivative of £ is
fr)=2
For reference, the general formula for integration by parts is
[ £ g de=f g -] g f o) de
In this situation, we have
[ 3 cos x) 2~ 4) de= Q-G sin )~ [ Bsinx) -2 ds
= (2x=4)Gsinx) - 6 [ sinxds
The basic antiderivative of the sine is the negative of the cosine, so the last integral in the
above expression becomes —cos x plus a constant of integration. Substituting back into
the preceding equation, we get

J. (3 cos x)(2x—4) dx=2x—4)(3sin x) — 6 - (—cos x) + ¢

= 6xsinx—12sin x+ 6 cos x+ ¢

where c¢is the constant of integration.
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6. Here’s the integral we want to resolve:
[ 75 cos x
To set up the parts, let’s say that
fx)=7x
and
2’ (x) =cos x
The basic antiderivative of g’ is
g (x)=sinx
The derivative of f'is
[ (x) = 14x
Again for reference, the general formula for integration by parts is
[£@ g @ de=fe)- g -] g () ds
In this case,

J. 7x* cos x dx=7x* sin x—I sin x - (14x) dx=7x" sin x—J. 14x sin x dx
Now we've encountered another integral that requires us to apply the technique of
integration by parts! Let’s keep the above equation in mind as a “marker.” A little later
on, we'll want to come back to it. The new integral we must find is

J. l4xsin x dx
Let’s call the parts
[ (x) = 14x
and
g+ (x) =sin x
The antiderivative of ¢/, not including the constant of integration, is
g+ (x) =—cos x

The derivative of fxis

F(x) =14
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An adaptation of the general formula for integration by parts tells us that

[ £ g de=fo(0 g )= g () £ )
In this situation, we have
J 14 xsin x dx= 14x (—cos x) —J —cos x- 14 dx=—14xcos x+ 14 J cos x dx
The basic antiderivative of the cosine is the sine, so we can simplify the above to
= —l4xcos x+ 14 sin x
Remember that we're leaving out the constants of integration until we get to the end of
this process. Now, the above expression can be substituted in place of the last integral in

the equation we designated as a “marker” earlier. That equation (with the middle portion
removed) is

'[ 7x* cos x dx="7x" sin x—j 14x sin x dx
Substitution gives us the complete solution to our problem:

J 7x* cos x dx=7x*sin x— (—14x cos x+ 14 sin x) + ¢

= 7x*sin x+ l4xcos x— 14 sin x+ ¢
. Here’s the integral we want to evaluate:

V(1

I (712 — 2x)(5 cos x) dx

0

First, let’s find the indefinite integral. Then we can put the bounds back in and work out
the definite integral. We want to resolve

J. (7212 — 2x)(5 cos x) dx

To set up the parts, let’s say that

fx)=rml2-2x
and

g (x)=5cos x
The basic antiderivative of g’ is

g(x)=5sinx
The derivative of f'is

fx)==2
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Once again for reference, the general formula for integration by parts is
[£@ g@di=f g0-[ g /() ds
In this case,
[ (212 22)(5 cos ) de= (212 - 2)(5 sin x) = [ (5sinx) - (-2) i
= (7/2-2)(5sinx) +10 [ sin x dx

The last integral in the above expression can be simplified to —cos x, because the basic
antiderivative of the sine is the negative of the cosine. We don't need the constant of
integration, because we are going to evaluate a definite integral. Substituting back into
the preceding equation, we get

J‘ (712 —2x)(5 cos x) dx= (7/2 — 2x)(5 sin x) — 10 cos x

= 57/2 sin x— 10xsin x— 10 cos x

Now we must evaluate

V9
57/2 sin x— 10xsin x— 10 cos x]
0

In this expression, the large square bracket with the values at the extreme right translates
as “evaluated from 0 to 7.” First, let’s plug 77 in to obtain

5712 sin 7— 107zsin 7— 10 cos 7= (57/2) - 0—10x-0—10 - (-1)
=0-0-(-10)=10

When we plug 0 into the same expression, we get

572/2sin0—10-0sin0—10cos 0=(57/2)-0—-10x-0—-10-1
=0-0-10=-10

The definite integral is the difference between these results, which is
10 - (=10) = 10 + 10 = 20

We conclude that

J (712 = 2x)(5 cos x) dx=20
0

8. Here’s the integral we want to resolve:

[ -5 @e-7y" e
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To begin, we move the constant in front of the integral symbol, getting
=5 [ @x=7)" de
Then we use the indefinite integral formula from App. G to obtain
-5-2"In2x=71+¢
which can be simplified to
(=5/2) In 2x—=7l+ ¢

Therefore

j =5 (25— 7)" dy=(=5/2) In 12— 71 + ¢

Here’s the integral we want to resolve:
J 2x (x* =17 dx
With algebra, we can break the integrand into a sum of reciprocals of linear functions:
[ e+ -
When we split this into a sum of integrals, we get
J (x+ 1) dx+ J (x— D7 dx
Adapting and applying the formula from App. G to each addend gives us
Inlx+1l+Inlx—11+¢

The complete statement of the integral and its resolution is

J 2x(x* =D dx=Inlx+ 1l +Inlx—1l+¢

Here’s the integral we want to resolve:
J GBx—=1D(x*—x—2)"dx

With the help of algebra and intuition, the integrand breaks down into a sum of two
constant multiples of reciprocal linear functions, like this:

[ 26D+ 3 -2 de
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When we split this into a sum of two integrals and pull out the constants, we get
2 J. (x+1)'dx+ 3 J. (x—2)" dx
Applying the usual formula from App. G to each addend gives us
2Inlx+ 1+31lnlx=21+¢
The complete statement of the integral and its resolution is

j Gx—1D*—x—2)""dx=2Inlx+1+3Inlx—2l+¢



APPENDIX

Worked-0ut Solutions to Exercises:
Chapters 21 to 29

These solutions do not necessarily represent the only way a problem can be figured out. If you
think you can solve a problem faster or better than the way it’s done here, by all means try it!
Always check your work to be sure your “alternative” answer is correct.

Chapter 21

1. We've been told to differentiate the inverse of
flx)=x"+2

for x> 0. (Do you know why we've restricted the domain this way?) Let

y=fx)
and
x=f"()
We can derive x in terms of y using simple algebra:
flx)=x"+2
y=x"+2
y—2=x
(}/_ 2)1/2 = x
x = (},_ 2)1/2

y=0G-2"

709
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Remember that if there’s any ambiguity in a fractional power, it always denotes the positive value
unless otherwise specified. The 1/2 power therefore means the positive square root, so we know
that /' is a true function. When we differentiate directly using the chain rule, we get

frym=M-2"1/2

Now let’s use the alternative formula we learned in the chapter text. The derivative of y
with respect to x is

dyldx=2x
When we take the reciprocal of each side of this equation, we get
dxldy= (2x)™"

This is the derivative of the inverse function, but we want to state it in terms of y, not in
terms of x. A moment ago, we found that

x=(y—2)""
By substitution,

dxldy=12(y—2)"1"=[(y—2)""/2
which can also be written as

" =1y-27"12

This agrees with the result we got when we differentiated the inverse function directly.

. We want to differentiate the inverse of

fx)=Inx
for x> 0. (Do you know why we've restricted the domain this way?) Let’s call
y=f )
and
x=f"(y)
We can derive x in terms of y from our knowledge of natural logarithms and exponentials:
f(x)=lnx
y=Ilnx
o) = e(ln x)
e’=x
x=¢

ffy=e
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When we differentiate this directly, we get

fr=e

because the exponential function is its own derivative. Now let’s use the alternative
method. We have

dyldx=x"
When we take the reciprocal of both sides here, we get
dxldy= (x")"=x

This is the derivative of the inverse function, but we want to state it in terms of . A
moment ago, we found that

x=e
By substitution,
dx/dy= ¢
which can also be written as
Frn=e

This agrees with the result we got when we differentiated the inverse function directly.

. Our task is to find the derivative of the inverse of
fl)=x>+4

As in the previous problems, let’s call

y=fx)
and
x=f"(y)
Deriving x in terms of y, we go through the algebra as follows:
flx) =x’+4
y =x"+4
y—4 =x
(}’_ 4)1/5 =5
x = (y_ 4)1/5

) =0G-49"
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When we differentiate this directly, we get
) =G-49""5
Now let’s use the alternative method. The derivative of y with respect to x is
dyldx=5x"
When we take the reciprocal of both sides of this equation, we get
dxldy=x"*I5
We want to get the right-hand side in terms of y. A moment ago, we found that
x=(y—4)""
By substitution,
dxldy=1[(y—4)"1"*/5
which can also be written as

F"()=0-4""15

This agrees with the result we got when we differentiated the inverse directly.

4. We've been told to find the domain and the derivative of the function
f(x) =5 Arcsin x
with respect to x. The domain of the Arcsine function is the set of all reals in [-1,1]. The

domain of 5 times the Arcsine is also the set of all reals in [-1,1]. We can express the
derivative of our function f as

d/dx (5 Arcsin x)
Pulling out the constant, we get
5 dldx (Arcsin x)
Using the formula we derived in the chapter text, this becomes

5 (1 _ xZ)—l/Z

5. We want to find the domain and the derivative of

g (#) =—6¢* Arcsin ¢
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with respect to £ The domain of the Arcsine function is the set of all reals in [-1,1]. The
domain of —6#* times the Arcsine is also the set of all reals in [-1,1]. Our function gis the
product of two functions. Let’s call them

p(t)=-6¢
and

q (#) = Arcsin ¢
The derivatives are

p () =-12¢
and

g’ (1) =(1-¢)""

According to the product rule for derivatives,

£=p'9+q'p

When we substitute the expressions we've derived for p, ¢, p”, and ¢”in the above formula,
we get

g () =—=12¢Arcsin £+ (1 — £2)7"2 (=6¢%) = =12¢ Arcsin £— 6¢* (1 — £2)7?

. We want to find the domain and the derivative of
b (2) = Arccos z*

The domain is the set of all reals z such that —1 < z* < 1. That means z can be any real
number in the closed interval [-1,1]. The half-open portion [-1,0) of the allowed interval
for z* isn’t “used” because that would require z to be imaginary, but this doesn’t present
a problem for us. We're concerned only with real-number values of z. Our function 4 is
a composite function. Using the chain rule along with the formula for the derivative of
the Arccosine, we get

b (2) =—[1 - ()3 2z) =2z (1 —zH)"?
. We want to find the domain and the derivative of

f(v) =30 Arccos (v/3)

This function is the product of a cubic and the Arccosine. The domain of the cubic is
the set of all reals. The argument of the Arccosine is v/3, so the domain is the set of reals
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8.

vsuch that —1 < »/3 < 1. Therefore, the input » for the Arccosine factor of f'can be any
real number in the interval [=3,3]. The domain of f is the intersection of the domains of
its factors, or the set of all reals » such that =3 < v < 3. Our function f is the product of
two functions. Let’s call them

p (v) =372
and
g (v) = Arccos (v/3)
The derivatives are
p (v) =9
and
g’ (v) ==[1= (/3] (1/3) ==(1 = »*19) / 3

Note that we've used the chain rule to differentiate g. According to the product rule for
derivatives,

g=p'q9+4'p

When we substitute the expressions we've derived for p, ¢, p’, and ¢”in the above formula,
we get

£’ (v) =99 Arccos (v/3) + [-(1 = */9)™"% | 3] (37°)
=92% Arccos (v/3) — v* (1 — */9)71?

‘We want to find the domain and derivative of
b (s) = Arcsin s* — Arccos 2s

This is a difference of two functions. Let’s call them p and ¢, and say that

2 (s) = Arcsin s
and

q (s) = Arccos 2s
The domain of p is the set of all real numbers s, such that s is in the interval [-1,1]. That
means we must have —1 < s< 1. The domain of ¢ is the set of all real numbers s, such that

2sis in the interval [-1,1]. That means we must have —1/2 < < 1/2. The domain of 4 is
the set of all s in the intersection of the domains of p and g. In this case, that’s the same
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as the domain of ¢, or —1/2 < s< 1/2. To find the derivative of 4, we differentiate p and ¢
separately, and then subtract. We must use the chain rule in both instances, getting

&)= = (@177 (35 =3 (1 - 7"
and

q'(s) ==[1-Q29)1"(2)=-2(1-4sH)""
The derivative 4’is the difference p”— ¢’, or

P ()=32 1 —=5)"—[2(1=4s)"] =32 (1 =242 (1 —4sH)712

. We want to find the domain and derivative of
g (w) = (Arccos w* — Arcsin w?) / 2

This is a difference of two functions, divided by a constant. Let’s say that

p (w) = Arccos w?
and

g (w) = Arcsin w*
The domain of pis the set of all real numbers u, such that w? is in the interval [-1,1]. That
means we must have —1 < w < 1. The domain of g is the same. Therefore, the domain
of gis the set of all w such that =1 < w < 1. The half-open portion [-1,0) of the allowed
interval for w? isn’t “used” because that would require w to be imaginary, but that’s okay;
we're concerned only with real-number values of w. To find ¢’, let’s differentiate p and ¢
separately, then subtract, and finally multiply by 1/2, which is the same as dividing by 2.
We must use the chain rule to find the derivatives of p and g, getting

2 (w)=-[1- (™" Qw)=-2w (1 - )"
and
7 () = [1 - W] Qu) = 2 (1 - )™
The difference is
p(w)—q (w)==2wl —u*)" 2wl - W =—4w (1 - w)?

Multiplying by 1/2 gives us the final result

g (w)==2w(l -’
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10. We want to find the domain and derivative of
f(x) = Arcsin ¢*
The domain of f is the set of all real numbers x, such that —1 < ¢*< 1. That means x can
be anything less than or equal to 0. The half-open portion [-1,0) of the allowed interval
for ¢* isn’t “used” because e* is never negative for any real x. Differentiation requires us

to use the chain rule, but it’s easy because the natural exponential function is its own
derivative:

f’ (.X') — [1 _ (ex)Z]—l/z (ex) = ¢* (1 _ er)—llz

Chapter 22

1. Here’s the equation we've been given:
3y* =12x* — 48
We can subtract 12x” from both sides, getting
—12x* + 3y° = —48
Multiplying through by —1 gives us
12x* —3y* = 48

When we divide through by 48, we end up with an equation that’s in the standard form
for a hyperbola:

14—y 116 =1

The center is at (0,0). The horizontal semi-axis is 2 units long (the positive square root of
4), and the vertical semi-axis is 4 units long (the positive square root of 16).

2. Here’s the equation we've been given:
4+ Y +8x+2y+1=0
Let’s rearrange this to get the monomials for each variable together:
4x* +8x+ " +2y +1=0

The last three terms form a perfect square in y, so we can factor the trinomial they form
into a binomial squared. When we do that, we get

4x* +8x+ (y+1)°=0
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Dividing through by 4, we obtain
¥+ 2x+(y+1)*/4=0
Now let’s add 1 to each side, inserting it as the third term on the left:
X+ 2x+1+(y+1)°/4=1

We can factor the first three terms because they are a perfect square in x, getting an
equation in the standard form for an ellipse:

(x+ 1)+ (y+ 1) /4=1

The center is at (=1,—1). The horizontal semi-axis is 1 unit long (the positive square root
of 1, the unwritten denominator of the first squared binomial), and the vertical semi-axis
is 2 units long (the positive square root of 4).

. Here’s the equation we've been given:
227 =288 — 2)7
We can add 2 )/2 to each side, getting
2x* +2y* =288
Dividing through by 2 gives us
X4yt =144
which can be rewritten as
¥+ =127
The standard form for the equation of a circle is
(x=x0)* + (y=p0)*=1"

where x; and y, represent the coordinates of the center, and ris the radius. In this situation,
xo =0 and y, = 0, so the circle is centered at the origin. We have »= 12, so the radius is
12 units.

. In the solution to Prob. 1, we found that the equation represents a hyperbola. In
standard form, that equation is

x4 -y 16=1

The x-coordinate of the center is x,= 0. The horizontal semi-axis is 2 units long. Therefore,
the relation is defined for

x<0—-2 or x=20+2
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which means we must have
x<-=2 or x22
There are no restrictions on the domain when yis the independent variable. The relation
that maps y into x is defined for all real numbers y.
To find y’, lets get the equation into a more manageable form. Here’s the original
equation again:
14—y 116=1

Multiplying through by 16 gives us

4x’ —y* =16
Differentiating with respect to x, we have

dldx (4x*) — d/ldx (y*) = d/dx (16)

This works out to

8x—2y" =0
Subtracting 8x from each side produces

-2y’ =-8x
Dividing through by —2y with the restriction that y # 0, we get

y'=(-8x)/ (=2y) =4xly

This is defined only when x < =2 or x> 2. If x= -2 or x= 2, then the equation of the
original hyperbola solves to y = 0, making y” undefined because the denominator, y, in
the derivative is equal to 0. If =2 < x < 2, then y isn’t part of the relation, so there is no
derivative.

Now let’s work out x”. We've already morphed the original equation into a form thats
easy to contend with:

4x* —y* =16
When we differentiate term-by-term with respect to y, we have
d/dy (4x*) — d/dy (y*) = d/dy (16)
Working it out, we get

8xx" —2y=0
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We can add 2y to each side, producing
8xx’ =2y
Dividing through by 8x with the restriction that x# 0, we end up with
x'=2y) 1 (8x)=y/ (4x)

We've found dx/dy, and it’s defined over the entire set of real numbers y. (If you arent
sure why this is true, sketch a graph of the hyperbola. There’s no point on the curve
for which its slope is parallel to the x axis. But that would have to occur to make dx/dy

undefined.)

Checking back on our results, we can see that that y"and x”are reciprocals of each
other, as we should expect. We've found that

y' =4xly
and

x" =yl (4x)

. In the solution to Prob. 2, we found that the equation represents an ellipse. In standard
form, that equation is

(x+ 1)+ (y+ 1) /4=1

The x-coordinate of the center is xy = —1. The horizontal semi-axis is 1 unit long.
Therefore, the relation is defined for

-1-1<x<-1+1
which means we must have
—-2<x<0

The y-coordinate of the center is y, = —1. The vertical semi-axis is 2 units long. Therefore,
the relation is defined for

1-2<y< 142
which means we must have
-3<y<1

To find y’, let’s go back to the original equation, because it’s easier to differentiate than
the equation for the ellipse in standard form. Here it is again:

4" +y"+8x+2y+1=0
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Differentiating with respect to x, we get
dldx (4x7) + d/dx (y°) + d/dx (8x) + d/dx (2y) + d/dx (1) = d/dx (0)
This works out to
8x+2y +8+2y +0=0
Dividing through by 2 and getting rid of the extraneous term 0, we get
dx+y +4+y =0
Adding the quantity (—4x— 4) to each side yields
w Aty =—4x—4
which can be rewritten as
(y+1)y =—4x—4
Dividing through by the quantity (y+ 1) with the understanding that y# —1, we get
y =(4x—4)1(y+1)

This is defined only when =2 < x < 0. If x = =2 or x = 0, then the equation of the
original ellipse tells us that y=—1, making y” undefined because the denominator of the
ratio becomes 0. If x < =2 or x> 0, then y isn’t part of the relation, so there can be no
derivative.

Now let’s figure out x”. We'll work again with the original equation, because it’s easy
to differentiate term-by-term:

4" +y"+8x+2y+1=0
Taking the derivatives of the terms with respect to y, we get
dldy (4x7) + d/dy (y°) + d/dy (8x) + d/dy (2y) + d/dy (1) = d/dy (0)
This works out to
8xx” +2y+8x"+2+0=0
Dividing through by 2 and getting rid of the extraneous term 0, we get
4xx" +y+4x" +1=0

Adding the quantity (—y— 1) to each side yields

4xx” +4x" =—y—1
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which can be rewritten as
(4x+4) x" =—y—1
Dividing through by the quantity (4x + 4) with the understanding that x # —1, we get
'=(y—1)/ (4x+4)=(y+ 1)/ (—4x—4)

This is defined only when =3 < y< 1. If y=—3 or y= 1, then the equation of the original
ellipse tells us that x = —1, making x” undefined because the denominator of the ratio
becomes 0. If y < =3 or y> 1, then xisn’t part of the relation, so x” can’t exist.

Checking back on our results, we can see that that y and x”are reciprocals of each
other. We've found that

y =(4x—-4) 1 (y+1)

and

x'=(y+ 1)/ (~4x—4)

. In the solution to Prob. 3, we found that the equation represents a circle. In standard
form, it’s

X+ =144

The circle is centered at the origin, and the radius is 12 units. That means the two-way
relation is defined for

—12<x<12
and
—12<y<12

To find y’, let’s use the standard form directly. When we differentiate with respect to
x term-by-term, we get

dldx (x*) + dldx (y*) = d/dx (144)
which works out to
2x+2yy'=0
Dividing through by 2, we get

x+y'=0
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Subtracting x from each side produces

w'=—x
Dividing through by y with the restriction that y# 0, we obtain

y'=—xly
We've found the derivative dy/dx of the two-way relation. This derivative exists only for
values of x such that =12 < x < 12. If x=—12 or x= 12, then we get y= 0 when we solve
for it in the original equation, making y”undefined. If x < —12 or x> 12, then yisn’t part
of the relation, so again, y”is undefined.

Now let’s find x” by differentiating both sides with respect to y, and then solving the
result for x”. We have

dldy (x*) + d/dy (y°) = d/dy (144)
When we differentiate each term, we get
2xx” +2y=0

Dividing through by 2, we get

xx” +y=0
When we subtract y from each side, we obtain

xx’ =—y

We can divide each side by x while insisting that x # 0 to obtain

x' =—ylx
We've found the derivative dx/dy. But there’s a restriction, just as there was with the other
derivative. The value of x” is defined only for =12 < y < 12. When y=—-12 or y = 12,
then we get x= 0 when we solve for it in the original equation. That makes x” undefined.
When we have y < —12 or y> 12, then xisn't in the relation, so x” is undefined.

Checking back on our results, we can see that that y”and x”are reciprocals of each
other, as we should expect. We've found that

y'=—xly
and
x =—ylx

Have you noticed that the formulas we got for y” and x” are the same for this circle
as for the unit circle? This happens when we implicitly differentiate the equation for
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any circle centered at the origin, regardless of its radius. If that seems strange to you,
remember that we're taking a ratio. As things work out, the ratio is independent of
the circle’s radius, even though the denominator and numerator change with the
radius.

. In the chapter text, we found these general derivatives for the unit circle:

Y ==xly
and

x =—ylx
To calculate either derivative at a point, we must know both the x and the y values at that
point. We want to find y” when x = 1/2. Let’s solve for y by plugging x = 1/2 into the
equation for the unit circle. For reference, that equation is

+y=1
Substituting, we obtain

(172 +y° =1
Morphing this equation produces
y=1-(1/2=1-1/4=3/4
Solving for y gives us the two values
y=+(3/4)2 = 4312/
We finish by calculating
y ==xly =—(1/2) | [£3"*/2] = £37'?

Now we want to find x"when y= 2", First we solve for x by plugging the given value for
y into the equation for the unit circle. That gives us

o+ 71 =1
Morphing, we get
P=1-2P=1-2"=1-1/2=1/2
Solving for x, we obtain the two values

x=H(1/2)"2 = £1/2"2 = 42712
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To finish, we calculate
x'=—ylx= (=272 | (x27) =+1
8. Here’s the original equation representing the ellipse shown in Fig. 22-4:
(x—1)*/4+(y+1)0/9=1

We found the derivatives

Yy =0-9x)/ (4y+4)
and

x" =(4y+4) /(9 -9x)
When x= 1, we get

y’=09-9-1)/(4y+4) =0/ (4y—4)

This is defined and equal to 0, as long as x= 1 is part of the relation. In the chapter text,
we found that the requirement is

-1<x<3

We're within the allowed interval, so when x = 1, we have y” = 0. Now let’s look at what
happens to x”when y=—1. We obtain

x'=[4-(-1)+4]1/(9-9x)=0/(9—9x)

This is defined and equal to 0, as long as y=—1 is part of the relation. We found that we
must have

—4<y<2

Our value of y=—1 is in the relation, so when y=—1, we have x"= 0.

9. Here’s the standard-form equation for the hyperbola shown in Fig. 22-5:
(x—114-(y+1)°/9=1
We found these derivatives:
Y =09x=9)/ (4y+4)
and

X = (4y+4)/ (9x—9)
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When x= -3, we get
y'=1[9-(=3)-9]/(4y+4)=-36/(4y+4)=-9/(y+1)
In the chapter text, we found that y” is defined for x < —1 or x> 3. Our value x= -3
is therefore within the “left-hand” allowed zone. Let’s find the actual numbers for y’.
Plugging x=—3 into the original equation for the hyperbola, we get
(-3-10/4-(y+1*/9=1
which simplifies to
4—(y+1)/9=1
Subtracting 4 from each side and then multiplying through by -9, we get
(y+1)7=27
We can take the plus-or-minus square root of each side to obtain
y+1=1427"
A minute ago, we found that when x=—3, we have
Yy ==9/(y+1
Substituting +27" for the quantity (y+ 1), we get
Y ==9/(y+1)=-9/(*27") =49 /27" =£3"

Lets start with the general equation for a circle centered at the origin in Cartesian
xy-coordinates. That equation is

x*+ y2 =’
where 7is the radius. When we differentiate each term with respect to x, we get
dldx (x*) + d/dx (y*) = d/dx (?)

Because 7 is a constant, 72 is also a constant. When we work out the derivatives of each
term, we get

2x+2y" =0
Dividing through by 2 produces

x+y =0
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Subtracting x from each side, we get

W=—x
We can divide through by y if we insist that y # 0. That gives us the familiar ratio
y'==xly
Now let’s solve for y in terms of x, using the original equation
X+ yz =7’
We can subtract x* from each side to obtain
Y=oy
We can take the square root of both sides of this equation, but we must include both the
positive and the negative values to be sure that we account for the complete circle. That
gives us
y=(2 — )"
Substituting into the equation we obtained for the derivative, we get
y'=—xly=—x/[2(r* = )" =1x/ (= )"

The expression at the right-hand end describes two quantities that are exact negatives of
each other for any x in the relation:

xl (r2 = %)
and

—x/(i’z _ x2)1/2

Chapter 23

1. We've been told to evaluate the following limit, where the numerator and denominator
both approach 0 as x approaches 0 (from either side):

Lim (sin x) / (8x)
x—0
If we name the functions

f(x) =sin x
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and
g(x)=8x
then the derivatives are
[ (x) =cos x
and
g (x)=8

According to the 'Hépital rule,
Lirgz fx)/ g(x)= Lz'noz f(x) ] g (x) = Ling (cos x) /8

The numerator of our last expression, cos x, approaches 1 as x approaches 0. The
denominator is always 8. Therefore,

Lim (sinx) / (8x)=1/8
x—0

. We've been told to evaluate the following limit, where the numerator and denominator
both approach 0 as x approaches 1 (from either side):

];z_)nlfz (6x* = 12x+6) [ (x* = 2x+ 1)
If we name the functions
fx)=6x"—12x+6

and

gx)=x"—2x+1
then we have

[ (x)=12x—12
and

g (x)=2x-2

The 'Hépital rule tells us that

Lz'nlz fx)/ g(x)= Lz'nli f(x) g (x) = Linla (12x—12) / 2x—2)
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This expression, like the first one, tends toward 0/0 as xapproaches 1. We can differentiate
the numerator and denominator again to obtain

f7(x)=12
and
g// (x) =2
The 'Hépital rule now indicates that
Lim f'(x) | g (x)= Lim " (x) /| g’ (x)= Lim 12/2
x—1 x—1 x—1
Our last expression is equal to 6, no matter what the value of x. We've found that

Lim (6x*—12x+6) / (x* = 2x+1)=6

x—1

3. Our mission is to evaluate the following limit, where the numerator and denominator
both approach 0 as x approaches 0 (from either side):

Lim (12 sin x— 12x) / x°

x—0
If we name the functions
f(x)=12sin x— 12x
and

3

glx)=x
then the derivatives are
[ (x) =12 cos x— 12
and
g (x) =3x
According to 'Hépital,
51_)7;3 fx)/ g(x)= fz_)ng f(x) g (x)= {}Z}g (12 cos x—12) / (3x?)

This expression approaches 0/0 as x approaches 0, just as the first one does. Let’s apply
the ’'Hopital rule again. Differentiating a second time, we get

[ (x)==12sin x
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and
g’ (x) =6x
The rule now indicates that
g;_);ooz f(x) ! g (x)= éing f7(x) 1 g’ (x) = %l_f'g (12 sin x) / (6x)

We still have an expression that tends toward 0/0 as x approaches 0, so we can apply the
I’'Hépital rule a third time. We obtain

[ (x) ==12 cos x
and
g7 (x)=6
Therefore,
f% 7 (x) 1 g’ (x) = éinoq 7 (x) 1 g (x) = %@"g (—12cosx) /6

As x approaches 0, the numerator in the rightmost expression approaches —12, because
cos x approaches 1. The denominator is always 6. We can therefore conclude that our
original limit is defined and is equal to —12/6, or —2. That is,

Lim (12sin x—12x) [ x>=-2

x—0

. We want to evaluate the limit, as x is positive and increases without end, of 7x divided
by the natural logarithm of x:

Lim 7x/ (In x)

¥+
Let’s name the functions

fx)=7x
and

g(x)=Ilnx

Both f(x) and g (x) tend toward positive infinity as x increases endlessly. The derivatives
are

f)=7
and

g ) =x"
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Applying 'Hopital’s rule, we find that
Lim f(x)/ g(x)= Lim ' (x)/ g (x)= Lim 7/ (x")
X—>oo X—>oo X—>+oo
The expression in the last limit above can be rewritten as
71 () =7x

If’s easy to see that 7x tends toward positive infinity as x increases without end. We've
found that

Lim 7x/ (In x) = +oo

X —>+oo

5. We've been told to evaluate the following limit, where the numerator and denominator
both tend toward positive infinity as x increases endlessly:

Lim "/ x*

x—>+00
Let’s name the functions
flx)=¢"
and
gx)=x°

When we differentiate them, we obtain
fr)=e
and
g (x) =2x
The 'Hoépital rule tells us that
Lim f(x)1gx)= Lim f ‘()1 g (%)= Lim ¢/ (2x)
We have another expression where the numerator and denominator both tend toward

positive infinity as x increases without end. Let’s apply 'Hopital’s rule again. The second
derivatives of our functions are

f// (x) ="
and

g (x)=2
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The 'Hopital rule says that
Lim ' (x) 1 g (x)= Lim f"(x)]g" (x)= Lim &2
X—>Foo X—>+o0 X—>+o0

The numerator of the final expression in the above equation tends toward positive infinity
as x increases forever, but the denominator is a constant 2. That means

Lim &*] x* =400

x—>too

. We want to work out the following limit, where the numerator and denominator both
tend toward positive infinity as x approaches 0 from the right:

Lim %2/ x7
x—0+
Let’s simplify the expression before we seek the limit. With algebra, we can manipulate
it like this:
=1 (1) = (1/x%) (WD) =% %P =%
Now we have reduced the problem to
Lim x'
x—0+

The value of x™' tends toward positive infinity as x approaches 0 from the right, so

Lim x7 ] x% =400
x—0+

. We've been told to evaluate the limit, as x approaches 0 from the right, of the product
of the sine function and the reciprocal function:

Lim (sin x) x7!
x—=0+

When we rewrite the expression as a ratio, we have

Lim (sin x) / x
x—=0+

As xapproaches 0 from the right, the numerator and denominator of this expression both
approach 0 from the right. We can therefore apply the 'Hépital rule for limits whose
expressions take the form 0/0. Let’s call the functions

f(x) =sin x
and

gx)=x
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The derivatives are
[ (x) =cos x
and
g=1
so we have
Lim f(x)/g(x)= Lim )¢ x)= Lim (cos x) / 1
The rightmost expression approaches 1 as x approaches 0 from the right, so
Lim (sinx) x'=1

x—0+

This is the same as the limit we got when we approached 0 from the left in the chapter
text. In that case, both sin x and x were negative, producing a positive ratio (minus over
minus equals plus). In the example here, both sin xand xare positive, again producing a
positive ratio (plus over plus equals plus).

8. We want to evaluate the following limit, where the first factor tends toward 0 and the
second factor tends toward negative infinity as x approaches 0 from the left:

Lim x°In |xl
x—0-
Let’s rewrite this as the limit of a ratio by putting ¥ in the denominator, getting
Lim (Inlxl) / %7
x—0-—

Both the numerator and the denominator in this ratio tend toward negative infinity as x
approaches 0 from the left, so we can apply the 'Hopital rule for limits of expressions of
the form —oo/(—e0). Let’s call the functions

F) =1nlxl
and
gx)=x"
The derivatives are
fr)=x"

and
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Therefore
Lim f()] ()= Lim f'()] ¢’ ()= Lim " [ (-5+°)
The rightmost expression can be simplified with algebra:
(=559 = (1x) 1 (=5/x%) = (1/x) [x* / (=5)] = —x°/ (5x) ==/ 5
Now we have the manageable limit
Lim —x°15
Lim

This expression approaches 0 as x approaches 0 from the left. We've determined that

Lim x°Inlxl=0
x—0—

. We've been told to evaluate the following limit, where both terms tend toward positive
infinity as x approaches 0 from the right:

Lim 2x"'—=3(e*—1)"
x—0+
We can rewrite the expression in this limit as a ratio, getting
Lim (2¢"—2—3x)/ (xe"— x)
x—0+

As xapproaches 0 from the right, the numerator and denominator of the above ratio both
approach 0, so the 'Hépital rule for limits of expressions tending toward 0/0 applies.
Let
Fx)=2¢"—2-3x
and
g(x)=xe"—x
The derivatives are
f(x)=2¢"-3
and
g (x)=e"+xe*—1

Therefore

Lim f(x)/g(x)= Lim f'(x)/ g (x)= Lim (2¢*=3)/ (e*+xe*—1)
x>0+ x—0+ x—0+
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As xapproaches 0 from the right, the numerator in the above ratio approaches —1, while
the denominator approaches 0 from the right. The ratio grows large endlessly in the
negative direction, so the limit is negative-infinite. We can conclude that the original
limit is

le 2X_1 - 3(€X— 1)_1 = —o0

x—0+

10. We've been told to evaluate the following limit, where both terms tend toward positive
infinity as x approaches 77/2 from the left:

Lim sec x—tan x
x—r/2-

We know from trigonometry that
sec x= (cos x)!
and
tan x= (sin x) / (cos x)
so we can rewrite the limit as

Lim (cos x)™' = (sin x) / (cos x)
x—>m/2—

Let’s manipulate the expression to obtain a ratio:

(cos x)™' — (sin x) / (cos x) = (cos x — cos xsin x) / (cos x)*

= (1 —sin x) / (cos x)
Our limit is now

Lz'f?a (1 —sin x) / (cos x)
x—mw/2—

As xapproaches 77/2 from the left, the numerator and denominator both approach 0. We
can use the 'Hopital rule for ratios of the form 0/0. Let’s call the functions

fx)=1-sinx
and
2 (x) = cos x
The derivatives are

[ (x) =—cos x
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and
¢ (x) = —sin x
Therefore
Lim f(x)/g(x)= Lim Fx) g x)= Lim_(~cos x) / (=sin x)

Lim (cos x) / (sin x)
x—=m/2-

The cosine over the sine equals the cotangent, so the above limit is

Lim cotx
x—T/2—

From trigonometry, we know that cot 7/2 = 0. Our original limit is therefore

Lim secx—tanx=0
x—>a/2—

Chapter 24

1. If we consider y to be the dependent variable in the situation of Fig. 24-1, the surface
defines a relation
y=g(x%2)

where xand zare the independent variables. To see if this surface represents a true function
of xand z, we can imagine a movable straight line that’s always parallel to the yaxis, which
is the dependent-variable axis. If this line never intersects the surface at more than one
point, then gis a true function. Otherwise, gis not a true function. It’s visually apparent
that any such line passing through the surface must intersect it twice, unless the line is
tangent to the surface. Therefore,

y=g(x%2)
is not a true function of xand z.

2. This time, x is our dependent variable, so the surface defines a relation
x=h(p2)

where yand zare the independent variables. To test this graph to see if it represents a true
function of y and 2, we can imagine a movable straight line parallel to the x axis. We can
see that any such line passing through the paraboloid will go through twice, unless the
line is tangent to the surface. This tells us that

x=h(yz2)

is not a true function of yand z.
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3. For reference, our original function is
z=f(xy) =—x>+ 2xy+ 4y’

To differentiate f'with respect to x, we treat y as a constant and let x be the independent
variable. The derivative of the first term with respect to x is —2x. The second term
contains the constant 2y. Its derivative with respect to x is equal to 2y. The third term is
the constant we get by cubing y and then multiplying by 4. Its derivative with respect to
x is equal to 0, because the derivative of a constant is always 0. Therefore,

0z/0x=—-2x+2y+0=—-2x+2y

4. Once more, our original function is
z=f(xy) =—x>+ 2xy+ 4y’

To differentiate f with respect to j we treat x as a constant, so the independent variable
is 3 The first term is the constant we get when we square x and then take the negative,
so its derivative with respect to yis 0. In second term, 2x is a constant. Its derivative with
respect to yis equal to that constant 2x. The derivative of the third term with respect to y
is 12y%. Adding these results, we get

0z/0y =0+ 2x+ 12y* = 2x+ 12y*

5. To find 9/0x (1,1), we plug in the values x=1 and y=1 to the general equation for
0z/0dx we got in the solution to Prob. 3. That gives us

x(1,1)=-2.1+2-1=-2+2=0

To find 9/dy (1,1), we plug in x=1 and y=1 to the general equation for dz/dy we got in
the solution to Prob. 4, getting

0/0y(1,1)=2-1+12.1>=2+12=14

6. To find 9/0x (—2,-3), we plug in x=—-2 and y=—3 to the general equation for dz/dx
we got in the solution to Prob. 3 to get

0/0x(-2,-3)=-2-(-2)+2-(-3) =4+ (-6) =2

To find 9/dy (—2,-3), we plug in the values x=—2 and y=—3 to the general equation for
0z/dy we got in the solution to Prob. 4, obtaining

My (=2,-3) =2 (=2) + 12 - (-3)*=—4 +12.9=—4 + 108 = 104
7. The original function is

w=g(x32) = xyln |zl — 2x7y%z"
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provided z# 0, because In 10! is undefined. To figure out dw/ dx, we hold yand zconstant
and think of x as the independent variable. In the first term, y In |zl is a constant, so
the derivative with respect to xis y In |zl. In the second term, y3z4 is a constant, so the
derivative with respect to x is 4xy° z*. Subtracting these two results gives us

dw/dx=yln |zl — 4xy°2*

. Again, our original function is

w=g(xnz) =xyln |zl — 2x%y%z*

provided z # 0. To find dw/dy, we keep x and z constant and let y be the independent
variable. The first term contains the constant x In |zl, so its derivative with respect to yis
xIn Izl. In the second term, 2x?z* is the constant, and the variable y is cubed; that means
the derivative with respect to y is 6x*yz". Subtracting, we get

dw/dy = xIn |zl — 6x%y*2*

. Once more for reference, the original function is

w=g(xnz) = xyln |zl = 2x%y%z*
provided z# 0. To figure out dw/dz, we hold xand y constant and let zbe the independent
variable. In the first term, xy is a constant, so the derivative with respect to zis equal to xy
times the derivative of In |zl. That’s xyz"". In the second term, 2x’y’ is a constant, so the

derivative with respect to zis 8x’y°z’. Subtracting these derivatives yields

dwldz=xyz "' — 8x°y’z

To work out d/dx (—1,2,¢), we put x=—1, y=2, and z= e into dw/ dx from the
solution to Prob. 7. The general formula is

dw/dx=yln Izl — 4xy°2*
Working out the arithmetic, we get
0/0x(=1,2,¢) =2 -Inlel—4.(=1)-2°. & =2+ 32¢

To find d/dy (=2,—-1,2¢), we plug in x= -2, y=—1, and z= 2e to dw/dy we got in the
solution to Prob. 8. The general formula is

dw/dy= xIn Izl — 6x*y*z"
When we do the arithmetic, we obtain

910y (2,~1,2¢) ==2 - In 12¢l = 6 - (=2)* - (=1)*- (2¢)*=-2 - In (2e) — 384¢"
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To calculate d/0z (1,-2,0), we plug in x=1, y=-2, and z= 0 to dw/dzfrom the solution
to Prob. 9. The general formula is

dw/dz=xyz' — 8x°y’°2’
The arithmetic yields
0/0z(1,-2,0)=1-(=2)-0"'=8-1*.(=2)*. 0’
We can stop here! The first term is undefined, because it contains the reciprocal of 0. We

must conclude that d/dz (1,-2,0) is not defined. The original function is singular at any
point where z= 0, so we should not be surprised at this result.

Chapter 29

1. We want to find the second partial of the following function with respect to x:
z=f(xy) =—x>+ 2xy+ 4y’
The first partial dz/dx appears in the solution to Prob. 3 in Chap. 24. That partial is

0z/0x=—2x+ 2y

To find 9%z/9x?, we differentiate again with respect to x, continuing to hold y constant.
When we do that, we get

Pz/dx*=-2+0=-2

2. We found the first partial with respect to y in the solution to Prob. 4 in Chap. 24. That

derivative is
dz/dy=2x+ 12y

To obtain the second partial with respect to 3 we hold x constant and differentiate the
above function relative to y getting

°z/dy* = 0+ 24y=24y

3. To find the second partial with respect to xat (3,2), we input x=3 and y=2 to
0’z/0x* =2

We have no calculations to do here! The specific second partial is equal to —2, no matter
what x or yvalues we input. To find 0*/dy* (3,2), we plugin x=3 and y=2 to

0°z/0y* = 24y
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The arithmetic gives us
99y* (3,2) =24 - 2 =48

In this case, the specific second partial derivative is affected only by the value of y It
doesn’t matter what happens to x.

. We want to find 0°z/dy0dx for the function
z=f(xy) =—x>+ 2xy+ 4y’

We must differentiate / with respect to x, and then differentiate 0z/dx with respect to .
The first partial relative to x, which we've seen before, is

0z/dx=—2x+2y
Holding x constant and differentiating with respect to 3 we get

0°z/0ydx=0+2=2

. To find 9°z/0xdy, we differentiate with respect to y and then with respect to x. We've
already seen that

0z/0y = 2x+ 1257
To differentiate with respect to x, we hold y constant, getting

0°z/0xdy=2+0=2

. The mixed second partials are both constant functions with a value of 2. The values of
the input variables are irrelevant, so we simply have

0°10y0dx (3,2) =2
and

P10y (3,2) = 2

. We found the first partials for this function in the solutions to Probs. 7, 8, and 9 in
Chap. 24. For reference, the original function is

2.3 4

w=g(xpz) =xylnlzl - 2x%y’°z
We must insist that z# 0 no matter what we do with this function. That’s because, if
we let z= 0, then g contains the factor In |01, which is undefined. The first partial of the

original function relative to x is

dw/dx=yln Izl — 4xy°2*
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Differentiating against x again, we get
Pw/ox* =0 —4y’z" =—4y°7"
The first partial of the original function relative to y is
dw/dy=xIn |zl — 6x*y°2*
Differentiating against y again, we get
*w/dy* =0 — 12x7yz" = —12x%y2"

The first partial of the original function relative to z is

dwldz=xyz' — 8x’y°2
Differentiating against z again, we get

Fwloz =—xyz° — 24x°y°7

8. To work out 0*/0x* (—1,2,¢), we input x=—1, y=2, and z= eto
*w/dx* =—4y%z"
Doing the arithmetic, we get
040x* (—1,2,e) =—4 - 2> . & =-32¢
To find 9°/9y* (-2,—1,2¢), we input x=—2, y=—1, and z=2¢to
*w/dy* = —12x%y2"*
Calculating, we get
0%0y* (2,-1,2¢) =—12 - (-2)* - (-1) - (2¢)*=768¢
To determine 0°/0z” (1,-2,0), we input x=1, y=—2,and 2= 0 to
Fwldz® =—xyz° — 24x*y’z*
The first term here contains z 2, which is not defined for z= 0. We remember that the

original function g is singular at any point where z = 0, so we conclude that g is not
differentiable at (1,-2,0). This specific second partial is undefined.

9. We've been told to find all six mixed second partials for the function

w=g(xpz) =xylnlzl — 2x%y’2"
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provided that z# 0, because In 10l is not defined. From the solution to Prob. 7, the first
partial of the original function relative to x is

dw/dx=yln |zl — 4xy°5"
To differentiate dw/dx against 3 we hold x and z constant to get
*w/dydx=1In |zl — 12x)%z"
To differentiate dw/0x against z, we hold x and y constant to get
’wldzdx=yz"' — 16xy°7
From the solution to Prob. 7, the first partial of the original function relative to yis
dw/dy=xIn |zl — 6xy*2*
To differentiate dw/dy against x, we hold y and z constant to get
*w/dxdy=In |zl — 12x)*z"
To differentiate dw/dy against z we hold xand y constant to get
P*wldzdy=xz"' — 24x7y’2’
From the solution to Prob. 7, the first partial of the original function relative to zis
dwldz=xyz' — 8x7y°2’
To differentiate dw/dz against x, we hold y and z constant to get
’wldxdz=yz"' — 16xy°z
To differentiate dw/dz against y we hold x and z constant to get
Pwldydz=xz"' — 24x7y* 2

Solving this problem requires some tricky arithmetic! To find 9°/dydx (1,2,e), we input
x=1,y=2,and z=ceto

*w/dydx=In |zl — 12xy°2"*
Calculating, we get
Ploydx(1,2,¢) =lne—12.1.22. =1 — 484
To work out 0*/0zdx (1,2,¢), we input x=1, y=2, and z= e to

’wldzdx=yz"' — 16xy°7
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Calculating, we get
0%/020x (1,2,e) =2¢'—16-1.2%. > =2¢"—128¢°
To work out 0°/0xdy (1,2,¢), we input x=1, y=2, and z= e to
*w/dxdy=1In |zl — 12x)*z"
Calculating, we get
0*/0xdy (1,2,¢) =lne—12-1.2%. ¢ =1 —48¢*
To work out 0°/0z0dy (1,2,¢), we input x =1, y =2, and z= ¢ to
Fwldzdy = xz ' — 24x7y* 2
Calculating, we get
0’/0z0y (1,2,e) =¢' =24 .12.2>. &> =¢' — 96¢°
To work out 0*/0xdz (1,2,¢), we input x=1, y=2, and z= eto
*w/dxdz=yz ' — 16xy°2
Calculating, we get
0*/0x0z (1,2,e) =2¢'—-16-1.2°. 2 =2¢"'- 1287
To work out 0°/0ydz (1,2,¢), we input x=1, y=2, and z=eto
Pwldydz=xz"' — 24xy’2’
Calculating, we get

9°/0y0z (1,2,e) =¢' —24.17.2*. *=¢' — 96¢°

Chapter 26

1. We've been told that the radius of the cylinder is 2 units and its length is 5 units.
Therefore, »=2 and /= 5. The circumference of a cross-sectional circle is a function
fof the displacement x to the right of the cylinder’s left-hand face:

fx)=2mr=2rx-2=4r
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To find the lateral-surface area A, we integrate falong the cylinder from x=0 to x= 5,
getting

5
A= | dmds
0
The basic antiderivative is
F(x)=4mx
When we evaluate this antiderivative from x= 0 to x= 5, we obtain
5
A=dmx | =4z 547 0=207
0
The formula from solid geometry tells us that
A=2rrh=27r-2-5=207x
. We know that the radius of the cylinder is 2 units and the length is 5 units. The area of
a cross-sectional disk, cut perpendicular to the cylinder’s axis and also perpendicular to
the x axis, is a constant function
gx)=m?=rm-2"=4r
To find the volume V] we integrate galong the cylinder from x=0 to x = 5. That gives us
5
V= dmdx
0
The basic antiderivative is
G (x)=4nx
When we evaluate this antiderivative from x= 0 to x=5, we get
5
V=dnx| =4r-5-47-0=207
0
This is the same numerical value as we got for the lateral-surface area, but it’s 7oz the same
quantity! Remember that volume is expressed in cubic units, while area is expressed in square
units. The fact that they’re both represented by the same number is a coincidence for this
particular cylinder. When we use the formula from 3D geometry for the volume, we get
V=rnr’th=rm-2"-5=207
. We're told that the radius of the cone is 12 units and the slant height is 13 units.
Therefore, =12 and s= 13. The circumference of a circular slice as a function fof the

distance ¢ between it and the cone’s apex is
p

f(t)=Qrrls)t=2m-12/13)t= 247/13)¢



744 Worked-Out Solutions to Exercises: Chapters 21 to 29

To find the slant-surface area A, we evaluate the definite integral
A= If (247/13)¢t dr
The basic antiderivative is O
F (1) =1[24r/13)¢*) 1 2=(127x/13)¢

When we evaluate Ffrom =0 to z= 13, we get

13
A= (127/13)¢ ] = (1272/13) - 13* - (127/13) - 0* = (127/13) - 169 = 1567
0
Using the geometric formula, we get

A=rnmrs=rm-12-13=1567x

4. Again, we have r =12 and s = 13. We haven't been told the true height 4 of the cone.
The Pythagorean theorem from geometry tells us that

sS=r+h°
so therefore
/]: (52 _ 7'2)1/2 — (132 _ 122)1/2: (169 _ 144)1/2 — 251/2= 5

The area of a cross-sectional disk as a function g of the distance x between its center and
the cone’s apex is

g (x) = (w1 h)x* = (- 12*/5%)x* = (144 7/25)x

To find the cone’s volume V] we integrate galong the axis of the cone from its apex, where
x=0, to its base, where x=5, getting

5
V= j (14475125)x° dx
0
The basic antiderivative is
G (x) = [(1447/25)x°] | 3 = (487/25)x°

Evaluating G from x = 0 to x = 5, we get

5
V=[(487/25)x> ] = (487/25) - 5° — (487/25) - 0> = (487/25) - 125 = 2407

0

The formula from solid geometry tells us that

V=rnr*hl3=rm-12*.5/3 = - 144 - 5/3 = 2407
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5. The circumference of a cross-sectional circle as a function of the arc displacement #is

described by
f () =27mrsin (¢/7) = 27+ 10 sin (£/10) = 207z sin (£/10)
To find the surface area A, we integrate f from = 0 to r= 77 We know that = 10, so
A= 1(')[” 207 sin (¢/10) dt= 207:1(')[” sin (¢/10) dt
The table of integrals, Aopp. G, gives us the formulao
J. sin ax dx=—da ' cos ax+ ¢
Letting 2= 1/10 and leaving out the constant of integration, we obtain
[ sin (¢/10) dr=-10 cos (+/10)
The basic antiderivative F of the complete function f is 207 times this, or

F (tr) =-2007 cos (¢/10)

When we evaluate Ffrom #=0 to £= 107, we get

107

A=-2007mcos (¢/10) ] =-2007 cos 7— (—2007 cos 0)
0

= 2007+ 2007 = 4007

Using the formula from solid geometry, we get
A=4dnr’=4mr-10°=4007

6. The area of any particular cross-sectional disk cutting through the sphere, based on the
location of the disk’s center along the x axis, is

g (x)=mr* —
We’ve been told that »= 10, so this function becomes
g (x) =1007— 7mx’

The sphere’s volume Vis obtained by integrating the function galong the x axis from the
point where x=—10 to the point where x= 10. That gives us

10
V= j (1007 — 72x%) dx

-10
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The basic antiderivative is
G (x)=100mx— mx’/3

When we evaluate G from x=—10 to x= 10, we get

10
V= (1007 — 2x*/3) | =(1007- 10 = 7+ 10°/3) = [1007 - (~10) — 7+ (~10)*/3]
-10

(1,000 1,0007/3) — [-1,0007 - (—1,0007/3)]
2,0007/3 + 2,0007/3 = 4,0007/3

From solid geometry, we can calculate the volume as

V=4nr’l3=4r-10°13 =4,0007/3

7. As is shown in Fig. 26-5 and reproduced here in Fig. C-1, the left-hand face of the
prism is in the yz-plane. The right-hand face is 4 units to the right of the left-hand face.
The faces are rectangles measuring # units tall and & units deep. Imagine that we cut the
outer shell into cross-sectional slices, and then increase the number of slices indefinitely.
The slices are all rectangles parallel to the end faces. Like those faces, they all measure #
units tall and 4 units deep. The perimeter of any particular cross-sectional rectangle is a
constant function fof the displacement x to the right of the cylinder’s left-hand face:

f(x)=2a+2b

+z

Rectangular slice:

Perimeter = 2a + 2b N

Area = ab : :
- o a

—X <A r-—r,—-r-++f—|—|—> +X
L ; /b
Y h—>

il

—Z

Figure C-1 Illustration for the solution to Probs. 7 through 10
in Chap. 26.
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Remember that we're treating all three prism dimensions 4, 4, and / as fixed constants. To
find the lateral-surface area A (not including either end face), we integrate the constant
function falong the prism from its left-hand face, where x = 0, to its right-hand face,
where x= A. The definite integral is

b
A= j (2a+2b) dx
0
The basic antiderivative is
F(x)=Qa+2b)x

When we evaluate this expression from x= 0 to x= A, we get
b
A=Q2a+2b)x ] =Qa+2bh— 2a+2b)-0=Qa+2bh=2ah+2bh
0

. We can derive a formula for the lateral-surface area of a prism in terms of @, 4, and A as
shown in Fig. C-1 by adding up the areas of each of the four rectangles that form the prism’s
sleeve. Two of the rectangles, which appear at the front and back of the prism as shown

in Fig. C-1, measure # units tall by /4 units long, so they both have area 2. The other two
rectangles, which appear at the top and bottom of the prism, measure & units deep by 4
units long. (The lateral-surface area doesn't include the areas of the end faces, which appear

at the left and right.) When we add up the areas of the faces making up the sleeve, we get
A=ah+ ab+ bh+ bh=2ah+20bh

This agrees with the formula we got by integration.

. Let’s keep referring to Fig. C-1. We can cut our prism into cross-sectional slices again,
and make the number of slices approach infinity. But instead of slicing through only
the outer shell, we cut through the interior, getting filled-in rectangles. These regions
are all parallel to the prism’s end faces, and they all measure  units tall by & units
deep. The area of any particular cross-sectional rectangle is a constant function g of the
displacement x to the right of the cylinder’s left-hand face:

g(x)=ab
To find the volume V] we integrate galong the prism from x= 0 to x= 4. That gives us
V= j{ ab dx
The basic antiderivative is '
G (x) = abx

When we evaluate this antiderivative from x= 0 to x= 4, we get
b
V= abx ] =abh—ab-0 = abh

0
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10. In solid geometry, we learned that the volume Vof a rectangular prism is equal to the
product of the measures of its edges in each dimension. In this situation (Fig. C-1),
those measures are 4, b, and 4. Therefore

= abb

This agrees with the formula we derived by integration.

Chapter 27

. The acceleration of gravity on the planet is 24 feet per second per second. This is a
constant. Let’s integrate the acceleration function twice with respect to time, from =0
seconds (when we drop the brick) to #= 14 seconds (when the brick lands). That gives

us
14 14
J j 24 dt dt
The first basic antiderivative is
J. 24 dt=24¢

Antidifferentiating again, we get
j 24rdt=12¢"

The repeated integral tells us that our altitude, in feet, is

14 14 14
jj24dtdz—12r ]=12-14-12.0°=2352
0 0 0

2. Our acceleration rate depends on time. If we call the acceleration function £ then

f(2) =6¢
where ¢ is the time, in seconds, after we start moving. The first basic antiderivative is
J 6t dt=3¢?
Antidifferentiating again, we get
J 3t dt=1

This function describes the distance we travel from the starting point, in meters, as a
function of the time # in seconds, after the starting instant. If we call the function 4,
then

h(r)=1¢
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3. To find the distance that the car travels in any particular length of time after it starts
moving, we plug in the time values to the function 4 (#) that we derived in the solution
to Prob. 2. After 1 second, we travel

bh(1)=1° =1 meter
After 2 seconds, our total distance is
b (2) = 2% = 8 meters
After 3 seconds, our total distance is
b (3) = 3° = 27 meters
In the first 4 seconds, we cover a distance of
b (4) = 4% = 64 meters
If we can keep this acceleration-increase rate steady for 10 seconds, we will have gone
b (10) = 10° = 1,000 meters
4. We have a flat surface described by

flxy) =4

Let’s use ordinary geometry to find the mathematical volume of the box defined by
[ relative to the region whose edges are at x=—3, x=5, y=-5, and y= 3 in the x)-plane.
Figure C-2 is a simplified graph of this situation. The base and the top of the box both

+z z-intercept

Surface _ of surface
representing 4 =(0, 0, 4)
fix,y)=4 €
i y=3
F— +x
y=-5

-y integration

—Z

Figure C-2 Illustration for the solution to Probs. 4 through 6 in
Chap. 27.
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measure 8 units by 8 units. The height of the box is 4 units. The mathematical volume
V'is therefore

V=8.8-4=256
5. Here’s the two-variable constant function f'in Cartesian xyz-space that describes the surface:

[ loy) =4

We want to calculate the mathematical volume of the solid box relative to the region
in the xy-plane whose edges are at x = =3, x= 75, y = =5, and y = 3 by integrating with
respect to x and then with respect to 3 In shorthand, our double integral is

[[4dcdy

R
Written out in full, the iterated integral is

j.(f4dx>dy

S -3
The integral inside the large parentheses is
5
[ 4dx
-3
which resolves to
5
4x ]
-3

Evaluating, we get
4.5-4.(-3)=32
We substitute this in place of the integral inside the parentheses above, obtaining
3
| 324

-5

Integrating against j we get

3
32y ]
-5

Doing the arithmetic, we get:

32-3-32-(-5)=256
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6. This time, we'll integrate the constant function with respect to y first, and then with
respect to x. Written in the shorthand form, our double integral is

[ 4 dy ds

R

The iterated integral is

i(}4dy) dx

3 =S
The inside integral is
3
J. 4 dy
-5
which resolves to
3
4y ]

=
Evaluating from =5 to 3 yields

4.3-4.(-5)=32

Now we have the definite integral

5

j 32 dx

3
which resolves to

5
32x ]
3
Working out the arithmetic, we get the same mathematical volume as we did in the
solutions to Probs. 4 and 5:

32.5-32-(=3) =256

7. Here’s the function in Cartesian xyz-space that describes the surface of interest:
f(xy) =4x+4y

We want to calculate the mathematical volume of the solid relative to the region in the
xy-plane whose edges are at x=1, x=3, y=0, and y= 5 by integrating with respect to x
and then with respect to 3 In shorthand, our double integral is

[] Gx+4y) dedy
R
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Written out in full, the iterated integral is

3

j [ [ (x+dp) de] dy

The integral inside the large sc(l)uareI brackets is

j. (4x+4y) dx
Integrating with respect to x gives Llls

2x* + 4xy 3]
Evaluating this expression from x=1 to x= 3,1WC get
(2-3*+4-3))—(2-1"+4-y)=16+38y

We substitute this for the integral inside the large square brackets above, obtaining
5

I (16 + 8y) dy
0
Integrating against 3 we get
5
16y+4y* ]
0

Working out the arithmetic yields

(16-5+4-5H-(16-0+4-0% =180

8. Let’s calculate the mathematical volume again, but this time we'll integrate with respect
to y and then with respect to x. The shorthand integral is

.U. (4x+4y) dy dx

R

Written out in full, the iterated integral is

3 5
j [J (4x+4y) dy] dx
1 0
The integral inside the square brackets is
5
j (4 + 4y) dy
0
which resolves to

5
4xy+2y° ]
0
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Evaluating this expression from y=0 to y= 5 yields
(4x-54+2-5)—(4x-0+2-0%)=20x+50
We substitute this in place of the integral inside the large square brackets above to get
j. (20x+ 50) dx
which resolves to 1
10x” + 50x3]
Evaluating, we obtain 1

(10-3*4+50-3)—(10-1°+50-1) =180

. Here’s the function in Cartesian xyz-space that describes the surface of interest:
fley)=x"+2xy+ 5

Let’s find the mathematical volume of the solid relative to the region in the xy-plane
whose edges are at x=1, x=3, y=0, and y= 5 by integrating with respect to xand then
with respect to y. In shorthand, our double integral is

J.J. (x*+2xy+ y°) dx dy
R

Written out in full, the iterated integral is
5003
j [ J (o + 2xy+ y°) dx] dy
0 1

The integral inside the large brackets is
3
I (* +2xy+ ) dx
1

Integrating with respect to x gives us

13+ 5y + xyzs]
Evaluating from x=1to x= 3, we get 1
(3°13+3°y+3y") — (1’13 + I’y + y°) = 29" + 8y + 26/3
We substitute this for the integral inside the large square brackets above, obtaining
5

J (29° + 8y +26/3) dy

0
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which works out to
2y°13 + 4y* + 26y/3 5]
When we evaluate this, we get '
(2-5%/3+4-5*+26-5/3)—(2-0°/3+4-0°+26-0/3) =680/3

10. Now we'll figure out the mathematical volume by integrating with respect to y and then
with respect to x. The shorthand integral is

[J &+ 20y+ %) dy e
The iterated integral is !
j [ j (F + 23y +y) dy ] dx

The integral inside the squa;e broackets is

_5[ (X +2xy+ %) dy
Integrating with respect to 3 we Oget

xX’y+xy"+y°13 5]
Evaluating this expression from y=0to y=5 yiefds

(> 5+x-5+53) = (x*- 04+ x- 0>+ 0°/3) = 5x* + 25x+ 125/3

We substitute this for the integral inside the large square brackets above, obtaining
3
[ 5 +25x+12513) d
1

which resolves to

3
5x313 + 25x%/2 + 125x/3 ]
1

Grinding out the arithmetic to evaluate this expression, we end up with

(5-3%3+25-3%/2+125-3/3)=(5-1%/3+25.1%2+125.1/3) = 680/3

Chapter 28

1. Imagine that we're at the point where x= z in the situation of Fig. 28-6. Here, the
cross-sectional slab is a line segment parallel to the zaxis and “above” the x)-plane. As
such, it has no area, either geometric or mathematical. As we start moving toward the
right along the x axis, the slab starts out slender and tall, and becomes progressively
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wider but shorter (less tall). As we keep moving, the mathematical area of the slab
increases until it reaches a maximum at some value of x where 2 < x < 4. But as the

slab keeps getting shorter, its area decreases until, at the line where the surface and the
region intersect, its mathematical area becomes 0. As we keep moving toward the right
along the x axis, the slab acquires negative mathematical area, which becomes more
negative until, at another value of x between # and 4, the slab attains its maximum
negative mathematical area. As we get close to x= 4, the slab becomes “negatively taller”
but slimmer until, when we reach x = 4, it collapses into a line segment parallel to the
z-axis but below the xy-plane, and, as in the beginning, it has no area, either geometric

or mathematical.

. Figure C-3 shows the region in the x)-plane for which we want to find the true
geometric area. We can do this by integrating the difference function

q(x)=h(x) - g(x)
over the interval from x= 0 to x= 2. Because g (x) = 0, we have
q (x) =5 (x)
The definite integral representing the area A of the region is therefore

A=-z b(x)dx=2[3x2dx

+y
A :
h (x) = 3x? -+
y 16+ ,"'
y 12 - -mmmmeeeeeee $——(2,12)
\“ 87* "'i
g(x=0 \ € / ———Region of
(the x axis) N 4 Vi i integration
e e o
-3 -2 —1 1 2 3
(0,0) (2,0)

Figure C-3 Illustration for the solution to Probs. 2, 3, and 4 in
Chap. 28.
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which resolves to

S
1]
x®
W
o o

Evaluating, we get
A=2°-0°=8
The height of the solid is 4, so the total volume Vis
V=4A=4-8 =32

This agrees with the result we got by double integration.

3. We've been told to find the mathematical volume of a solid with respect to the region of
integration shown in Fig. 28-2 (simplified here in Fig. C-3) as defined by

f(xy)=2x—0y

In shorthand form, the double integral is
” (2x—6y) dy dx
R

The x-value interval enclosing the region is (0,2), so the iterated integral is

h(x)

[ j (2x—6y) dy] dx

g(x)

O —y o

The integral inside the large square brackets is

h(x)
J. (2x—6y) dy

g(x)

When we integrate against y while holding x constant, we obtain

h(x)
2xy=3y" |
g(x)

The xy-plane functions whose graphs define the shaded region are
gx)=0
and
b (x) = 3x*
Evaluating the quantity (2xy— 3y°) from y= 0 to y=3x" yields

[2x-3x*—3(3x)] — 2x-0—3-0%) =6x>—27x*
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Substituting this for the integral inside the large square brackets above, we get
'2[ (6x7 — 27x") dx
which resolves to 0
3x%2 = 27x°15 j
Working out the arithmetic to get the solid’s matlzematical volume, we obtain
V=(3-2%2-27-2°/5)— (3 - 0*/2 =27 - 0°/5) = —744/5
The negative result tells us that the surface, on the average, lies “below” the xy-plane

where z < 0. If we could see the surface in Fig. C-3, it would lie mostly “behind” the
region of integration.

. We want to find the mathematical volume of a solid defined by the following function

with respect to the region of integration shown in Fig. 28-2 (simplified here in Fig. C-3)
as defined by

fxy)=3x"—4y
Written in shorthand, our double integral is

_U (3x* — 4y) dy dx

R

Again, the span of x values is (0,2). The iterated integral is therefore

2 h(x)
j [ _[ (3x* — 4y) dy] dx
0 gl
The integral inside the large square brackets is
h(x)
J (3x* —4y) dy
g(x)

Holding x constant and integrating against 3 we get

2 2 b0
3x’y—2y ]
g(x)
The xy-plane functions whose graphs define the region of integration are

g(x)=0
and

h(x) =3x
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Evaluating the quantity (3x*y — 2y°) from y=0 to y= 3x’, we get
[Bx?-3x>=2-(3x)] = (B3x*-0—2-.0%) =—9x*
We substitute this for the integral inside the large square brackets above to obtain
2
J. —9x* dx
0
which resolves to
2
-9x°/5 ]
0
Working out the arithmetic, we get a mathematical volume of

V=-9.2/5-(-9.0°/5) =-288/5

5. First, we must find the true geometric area A, between the line and the curve shown
in Fig. 28-3 (simplified here in Fig. C-4) by subtracting the lower function g from the
upper function 4, and then integrating over the interval between the points where the

(3.5)

Region
of
integration

I I > +X

Figure C-4 Illustration for the solution to Probs. 5, 6, and 7
in Chap. 28.
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graphs intersect. When we subtract the function for the parabola from the function for
the straight line, we get

P =h(x)—gx)=(x+2) — (@ —4) ==+ x+6

We integrate p (x) over the interval between x= -2 and x = 3, which are the x values of
the points where the line and the curve intersect:

3
A= j (= + x+ 6) di
-2

which resolves to

3
A=—x13+ x*/2 + 6x ]
2
Working out the arithmetic, we get

A=1[-(313) +3*2+6- 3] = [-(-2)°/3 + (-2)*/12+ 6 - (-2)] = 125/6

To find the volume of the solid, we must multiply this area by 4, which is the height of
the solid. That gives us

V=4A=4.125/6=250/3

This agrees with the result we got by double integration.

. We want to calculate the mathematical volume of a solid with respect to the region
in Fig. 28-3 (simplified here in Fig. C-4) as defined by the following function, which
represents a flat surface oriented at a slant:

[ (xy) =—4x
In shorthand, we have
'”. —4x dy dx
R

The x-value interval enclosing the region of integration is (=2,3), so we can write the
iterated integral as

3 b
J ] —Axay] e
-2 glx)
The integral inside the large square brackets is
h(x)
J. —4x dy
g(x)
When we integrate against j we obtain
h(x)
—4xy ]

g(x)
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The xy-plane functions whose graphs define the region of integration are
gx)=x"—4
and
h(x)=x+2
We evaluate —4xy from y=x"— 4 to y=x+ 2 to get
—4x(x+2) — [“4x(x* — 4)] = 4x” — 4x" — 24x
Substituting this for the integral inside the large square brackets above, we get

'3[ (4x° — 4x* — 24x) dx
which resolves to N
x*—4x*/3 — 125 ﬁ
Calculating to get the mathematical volume of th:solid, we obtain

V=03 -4.3%3-12.3) - [(-2)* =4 - (-2)*/3 - 12 - (<2)}] =-125/3

. Imagine a warped surface in xyz-space that represents the function

[xy) ==+

We want to find the mathematical volume of the solid defined by this surface and the
region illustrated in Fig. 28-3 (simplified here in Fig. C-4). The shorthand form of the
double integral is

[] = dy
R
The interval representing the span of x values is (=2,3), so the iterated integral is
30 hix)
J- [ J. —x* dy ] dx
-2 g(x)
The integral inside the large square brackets is
h(x)
j —x" dy
g(x)
Integrating with respect to y, we get
h(x)
—xzy :l

g(x)
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The functions whose graphs define the region in the xy-plane are
gx)=x"—4
and
h(x)=x+2
Evaluating —x*y from y=x" — 4 to y= x+ 2 produces
—x*(x+2) — [P (x* — 4)] = x* — %% — 657
When we substitute this for the integral inside the large square brackets above, we get

3
J. (x% = x7 — 6x?) dx
)

which resolves to

X215 — x4 — 253 3]
Working out the arithmetic to derive the mathem;_lztical volume, we get
V=(3/5-3"4-2-3) - [(-2)°/5 - (-2)*14 — 2 - (-2)*] =—125/4
. First, we must find the true geometric area A, between the curves shown in Fig. 28-4
(and simplified here in Fig. C-5) by subtracting the lower function g from the upper

function 4, and then integrating over the interval between the points where the graphs
intersect. We must integrate the difference function

pl)=h(x)—gx)=(-x124+2)— (x12-2)=—x"+4
The interval of interest is (—2,2), so the integral we want to evaluate is
A= j. (—x" + 4) dx
which resolves to N
A=—x13 +4x 2]
When we evaluate this, we obtain N

A=[-2°13)+4-2] = [-(=2)°/3+ 4 - (-2)] =32/3

To find the mathematical volume, we multiply this area by 4, which is the mathematical

height of the solid. That gives us
V=4A=4.32/3=128/3

This agrees with the result we got by double integration.
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g(x)=x%2-2

X< T 1 1> +x
-4 4 4 6
'." — Region of
H “\ % integration
:" _4 1 (01 _2) “\
! -6 \
h(x)=-x2/2 +2 v :
-y
Figure C-5 Illustration for the solution to Probs. 8, 9, and 10
in Chap. 28.

9. We've been told to figure out the mathematical volume of a solid defined by the region
shown in Fig. 28-4 (simplified here in Fig. C-5) and the function

flxy)=2x+1

In shorthand form, the double integral is

[J @x+1) dy

R

The span of x values is (=2,2), so the iterated integral is
2 hx)

J1] @+ndy]
=2 g(x)

The integral inside the large square brackets is
h(x)

J. Qx+1)dy
g(x)

Integrating against j we hold x constant to get
h(x)

2xy+y ]
2(x)
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The functions whose graphs define our x)-plane region are
g(x)=x2-2
and
h(x)==x*2+2
Evaluating the quantity (2xy+ y) from y=x%/2 — 2 to y=—x*/2 + 2, we get
Rx(=x*2+2) + (=x*2+2)] = 2x(x*/2 = 2) + (x*/2 = 2)] = =2x° — x* + 8x + 4
Substituting this for the integral inside the large square brackets above, we get

2
| 20’ =2+ 8x+ 4) d
5

which resolves to

2
—x*2 — x*13 + 427 + 4x ]
2

Working out the arithmetic, we obtain

V=(=2Y2-2/3+4.224+4.2) - [-(-2)"2 - (-2)°/3+4 - (-2)*+4 - (-2)] =32/3

10. We want find the mathematical volume of a solid relative to the region in Fig. 28-4
(simplified here in Fig. C-5), as defined by the following function:

flxy)=2y—1
In shorthand form, the double integral is

[[ @y=1) dy e

R

The span of x-values is (—2,2). The iterated integral is therefore
2 h(x

)
1] @-vd]d
-2 gl
The integral inside the large square brackets is
h(x)
[ @-1a

g(x)
Integrating with respect to j we get
,
y-y ]
g(x)
The functions whose graphs define our xj-plane region are

g(x)=x2-2
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and
h(x)=—x*2+2
Evaluating the quantity (y* — y) from y=x%/2 — 2 to y=—x?/2 + 2, we get
(=242 = (=x*2+2)] = [(x[2 -2 = (x*/2=2)] =x"— 4
Substituting this for the integral inside the large square brackets above, we get
Jz. (x* —4) dx
2

which resolves to
2
%313 — 4x ]
o

The arithmetic yields

V=(213-4-.2)—[(-2)°/3 -4 - (-2)] =-32/3

Chapter 29

1. Here’s the differential equation we want to solve:
dyldx=sin x+3
Integrating both sides with respect to x, we get
[ (yids) de= [ (sin x+3) do
Working out the integrals gives us
[ ylds) de=y+
and
I (sin x+ 3) dx=—cos x+ 3x+ ¢,

where ¢; and ¢, are constants. Combining the general antiderivatives into a single equation,
we get

Y+ =—cos x+3x+ o
Subtracting ¢ from each side produces

y=—cos x+3x— ¢+ o
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Combining the constants of integration into a single constant ¢ yields the solution
y=H(x)=—cos x+ 3x+ ¢

where H is the family of solution functions.

. Here’s the differential equation we want to solve:

dyldx+ sin x= cos x
First, we subtract sin x from both sides to obtain

dyldx= cos x—sin x
When we integrate this equation through, we obtain

J. (dyldx) dx= I (cos x—sin x) dx

The general antiderivatives are

[ ylds) ds=y+
and

J (cos x—sin x) dx=sin x+ cos x+ ¢,
Combining the general antiderivatives into a single equation, we get
y+a=sinx+cosx+ o
Subtracting ¢; from each side gives us
y=sinx+cosx—¢+ o
Combining the constants of integration yields the solution
y=H (x)=sin x+ cos x+ ¢

. Here’s the differential equation we want to solve:

2dyldx— 4e*=16x>
Dividing through by 2 gives us

dyldx—2e* = 8x>

Adding 2e* to both sides, we get

dyldx=2e*+ 8x3
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Integrating both sides produces
[ (ylds) de= [ @+ 8
The individual indefinite integrals are
[ ylds) de=y+
and
j (26 + 8x%) dyv=2¢"+ 25" + ¢,
Combining the general antiderivatives into a single equation, we get
J+a=2e"+2x"+ ¢
Subtracting ¢; from each side gives us
y=2e"+2x" -+ ¢
Combining the constants of integration, we get the solution
y=H(x)=2e"+2x"+¢
4. We've been told to solve this differential equation:
d’yldx’ = cos x+ 5x
When we take the indefinite integrals of both sides, we get
[ @y1dse?) de={ (cos x+ 5x) de
The general antiderivatives are
[ @yidse?) de= dyidsc+
and
J (cos x+ 5x) dx=sin x+ 5x*/2 + ¢,

where ¢ and ¢, are constants of integration. Combining the general antiderivatives into
a single equation, we get

dyldx+ ¢ =sin x+ 552 + ¢
We can rearrange this as

dyldx=sin x+5x°12 — ¢, + ¢
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Let’s consolidate the constants, adding —¢; to ¢, and calling the sum p. That gives us
dyldx=sin x+ 5x*12 + p
Integrating through, we get
[ @yids) de=[ (sin x+ 5212+ p) d
The general antiderivatives are
J (dyldx) dx=y+ ¢
and
'[ (sin x+ 5x%/2 + p) dx=—cos x+ 5x°/6 + px+ ¢

where ¢; and ¢ are new constants. Combining the general antiderivatives into a single
equation, we get

y+ o =—cos x+ 5x/6 + px+ ¢
Subtracting ¢; from each side, we get
y=—cos x+5x°/6 + px—c;+ ¢
Adding —¢; to ¢ and calling the sum ¢, the solution simplifies to
y=H (x) = —cos x+ 5x°/6 + px+ ¢

where H is the family of solution functions, and p and g are constants whose values we
don’t necessarily know.

. We want to solve this differential equation:
d*yldx® + 2 sin x=3 cos x
Subtracting the quantity (2 sin x) from both sides, we get
d*yldx* =3 cos x— 2 sin x
Integrating both sides gives us
J (d*yldx?) dx= '[ (3 cos x— 2 sin x) dx
The general antiderivatives are

j (d*yldx?) dx=dyldx+ o
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and
J(3 cos x— 2 sin x) dx=3sin x+ 2 cos x+ ¢,

Combining the general antiderivatives into a single equation, we get
dyldx+ ¢, =3 sin x+ 2 cos x+ ¢
which can be rearranged to get
dyldx=3sinx+2cosx—c + ¢
Letting —¢; + & = p, we can simplify this to
dyldx=3sin x+2 cos x+ p
When we integrate both sides of this equation, we get
J. (dyl dx) dx=j (3 sin x+ 2 cos x+ p) dx
The general antiderivatives are
J. (dyldx) dx=y+ ¢
and
J (3 sin x+ 2 cos x+ p) dx=—-3 cos x+ 2 sin x+ px+ ¢
Combining the general antiderivatives into a single equation, we get
Y+ g=—3cosx+2sinx+ px+ ¢
Subtracting ¢ from each side yields
y==3cosx+2sin x+ px—c;+ ¢4
When we add —¢; to ¢ and call the combination ¢, we can simplify our solution to

y=H(x)=-3cos x+2sin x+ px+ g

6. Here’s the differential equation we've been told to solve:
2d%yldx* — 2¢* = 24x°
Adding 2¢* to both sides, we get

2d%yldx* = 2¢" + 24x°
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Dividing through by 2 gives us
d*yldx® = e+ 12x°

Integrating both sides, we get

The general antiderivatives are
[ @yide?y de= dyids+
and
J (6" + 12x%) dx= "+ 4x° + ¢
Combining the general antiderivatives into a single equation, we get
dyldx+ ¢ = e+ 4x> + ¢
Subtracting ¢; from each side yields
dyldx=e"+4x’—c + o
After adding —¢; to ¢, to get a single constant p, we have
dyldx= e+ 4x> + p
Integrating this equation through gives us
[ ytds) de=[ e+ 4+ p
These integrals work out as
J (dyldx) dx=y+ ¢
and
J (e“+4x>+ p) dx=e"+x*+ px+ ¢
Combining the general antiderivatives into a single equation, we get
y+to=¢e+ x +px+ g
When we subtract ¢; from each side, we get

y=e"+ x4+px— ot
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We can let —¢; + ¢ = ¢ to produce the solution

y=H(x)=e’“+x4+px+q

7. We've been told to solve this differential equation:
dyl(3dx) + 6x7° = ¢*
Multiplying through by 3, we get
dyldx+ 18x7 =3¢*
Subtracting 18x7 from both sides gives us
dyldx=3e"— 18x7
Integrating both sides produces
[ ylds) de= [ Ger— 182
The general antiderivatives are
[ yids) de=y+
and
[ Ge— 185 de =3¢+ 186" +
Combining the general antiderivatives into a single equation, we get
y+a=3e"+18x"+ ¢
Subtracting ¢; from each side produces
y=3e"+18x"— ¢+ ¢
We can let —¢; + ¢, = ¢ to produce the solution
y=H(x)=3e"+18x"+¢
8. Here’s the differential equation we've been told to solve:
dy—4e* dx= x> dx+ 2x dx
Dividing through by dx, we obtain

dyldx—4e" = x>+ 2x
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Adding 4e* to both sides, we get
dyldx=x*+ 2x + 4¢*
When we integrate through with respect to x, we get
[ yids) de=[ 2+ 24 4%) de
The general antiderivatives are
J (dyldx) dx=y+ ¢
and
j (5 + 2x+ 4¢%) dx= 5313+ x* + 4e* + ¢
Combining the general antiderivatives into a single equation, we get
yta=x13+x"+4e"+ ¢
Subtracting ¢; from each side yields
y=xB+x+4e —a+o
Combining the constants of integration gives us the solution
y=Hx)=x13+x"+4e"+ ¢
. Once again, here’s the differential equation we want to solve:
dy— 4e* dx=x* dx+ 2x dx
Adding the quantity (4¢* dx) to both sides, we obtain
dy=x* dx+ 2x dx+ 4e” dx
Factoring out dx on the right-hand side, we get
dy= (x> + 2x+ 4¢*) dx
When we integrate straight through, we get
[ay=] (2 +2x+40) ae

The general antiderivatives are

de=y+ o

771



772 Worked-Out Solutions to Exercises: Chapters 21 to 29

and
J (K + 2x+4e*) dx=x13+ x>+ de* + o

Combining the general antiderivatives into a single equation, we get
y+a=x13+x>+4e"+ o
Subtracting ¢, from each side yields
y=xB3+x*+4e —a+o
Combining the constants of integration gives us the solution
y=Hx)=x13+x*+4e"+ ¢
10. Let’s check the solutions for Exercises 1 through 8 in order. In some cases we must

differentiate once; in other cases we must differentiate twice. Our goal is always to get
back the original differential equation.

Checking solution 1. We finished with
y=-—cosx+3x+c

Differentiating both sides gives us the original differential equation
dyldx=sin x+3
Checking solution 2. We finished with
y=sin x+ cos x+ ¢
Differentiating both sides, we get
dyldx= cos x—sin x
We can add sin x to both sides, getting the original differential equation

dyldx+ sin x= cos x

Checking solution 3. We finished with
y=2e"+ 2xi+ ¢
Differentiating through produces the equation

dyldx=2e" + 8x°
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We can subtract 2¢* from both sides to obtain
dyldx—2e" = 8x°
Multiplying through by 2 gets us back to the original differential equation
2dyldx—4e*=16x"
Checking solution 4. We finished with
y=—cos x+ 5x°/6 + px+ ¢
Differentiating each side, we get
dyldx=sin x+5x*/2 + p
Differentiating through again, we get the original differential equation

d*yldx* = cos x+ 5x
Checking solution 5. We finished with
y==3cosx+2sinx+ px+ ¢q
Differentiating each side, we get
dyldx=3 sin x+2 cos x+ p
Differentiating through again, we get

d*yldx* =3 cos x— 2 sin x

Adding the quantity (2 sin x) to both sides, we get the original differential equation

d?yldx* + 2 sin x=3 cos x
Checking solution 6. We finished with
y=e"+ xt +px+gq
Differentiating each side, we get
dyldx=e"+4x° + p
Differentiating through again, we get

d*yldx® = e+ 12x7
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Subtracting ¢* from both sides gives us
d*yldx* — "= 12x
The original differential equation comes back when we multiply through by 2, yielding
2d%yldx? — 2¢* = 24x"
Checking solution 7. We finished with
y=3e"+ 18x'+ ¢
Differentiating each side, we get

dyldx=3e"—18x7

Adding 18x7* to each side gives us
dyldx+ 18x7%=3e"
Dividing through by 3, we get back the original differential equation
dyl(3dx) + 6x7° = ¢
Checking solutions 8 and 9. We finished with
y=x13+x>+4e"+ ¢
Differentiating both sides, we get

dyldx=x"+2x+ 4e*

Subtracting 4¢* from each side produces

dyldx—4e" = x>+ 2x

Multiplying through by dx, we get back the original equation

dy—4e* dx=x* dx+ 2x dx
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Special Characters in
Order of Appearance

Symbol First use Meaning
{a, b} Chapter 1 Set containing elements # and &
(a,b) Chapter 1 Ordered pair of elements z and &
f(x) Chapter 1 Function or relation f with independent variable x
(%) Chapter 1 Inverse of a function or relation f (x)
Ax Chapter 1 Increment in x; difference in x-values
Ay Chapter 1 Increment in y; difference in y-values
+ Chapter 1 Plus-or-minus
Lim Chapter 2 Limit
- Chapter 2 Symbol indicating that one quantity approaches another
dyl dx Chapter 3 Derivative of y with respect to x
y’ Chapter 3 Derivative of y with respect to independent variable
df (x) | dx Chapter 3 Derivative of function f (x) with respect to x
d/dx f (x)
df dx
[ (%)
f Chapter 3 Derivative of function f with respect to independent
variable
—> too Chapter 4 Increases endlessly or “approaches positive infinity”
— 0+ Chapter 4 Approaches 0 from the positive side
— —oo Chapter 4 Decreases endlessly or “approaches negative infinity”
— 0— Chapter 4 Approaches 0 from the negative side
|| Chapter 4 Absolute value of x
o Chapter 5 Alternative notation for small values of Ax
o Chapter 6 Alternative notation for composite function or a
function of another function
. Chapter 7 Alternative notation for multiplication
= Chapter 7 Approximate equality
Chapter 11 Stand-in for terms in a set, sequence, or series
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Chapter 11
Chapter 11

Chapter 11

Chapter 11
Chapter 11

Chapter 12
Chapter 24

Chapter 27

Chapter 27
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Sum or summation
Indefinite integral

Definite integral over interval from z to &

Mean of a probability distribution
Standard deviation of a probability distribution

Symbol for evaluation over interval from a to &

Symbeol for partial derivative

Repeated integral of single-variable function from a to &

Double integral of two-variable function over a region R
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Table of Derivatives

The letter 2 denotes a general constant, fand g denote functions, x denotes a variable, and e
represents the exponential constant (approximately 2.71828).

Function Derivative
f(x) [ (%)

a 0

ax a

ax” nax™™!

In x| x7!

In lg (x)l g7 '(x) g (x)
X 2 ga D

e* e”

a* a*1n lal
s [2¢9] [¢(x)] In |l
e™ ae™

28 [fg(x)] [g' (x)]
xe* "+ xe*

sin x cos x

cos X —sin x

tan x sec? x

csc x —csc x cot x
sec x sec x tan x
cot x —csc? x
Arcsin x (1 —x2)712
Arccos x —(1=xH)712
Arctan x (1+xH)7!
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Table of Integrals

Letters 2 and & denote general constants, ¢ denotes a constant of integration, f denotes a func-
tion, x denotes a variable, and e represents the exponential constant (approximately 2.71828).

Function Indefinite integral

£ [ e ae

0 c

1 x+c

a ax+ c

x (1/2) x* + ¢

ax (1/2) ax*+ ¢

ax’? (1/3) ax’ + ¢

ax® (1/4) ax* + ¢

ax* (1/5) ax’ + ¢

ax™! aln lxl + ¢

ax™? —ax + ¢

ax™> (=1/2) ax*+ ¢

ax* (=1/3) ax3 + ¢

ax” for n# -1 (n+ 1)V ax"™t + ¢

(ax+ b)™! a'lnlax+ bl + ¢

(ax+ b)" for n# -1 (an+ @) (ax+ )" + ¢

x(ax+ b)'? (1/15) a2 (Gax— 4b)(ax+ 6)** + ¢

x(ax+ b)™'? (1/3) a2 Qax—4b)(ax+ )" + ¢

x(ax+ b)2 b(@Px+a*b) ' +a?lnlax+ bl + ¢

(s 4+ aH)'? (x/2) (x2+ A+ (1712) Zlnlx+ P+ D+ ¢
(x? = ) (x/2) =)= (112) Z#lnlx+ (x> = 2D + ¢
(2 = D) (x/2) (a* = x*)"* + (1/2) &® Arcsin (a7'x) + ¢
(x? 4+ )72 Inlx+ (x> 4+ )" + ¢

(x* = )72 Inlx+ (x*— )" + ¢

(2 = 5712 Arcsin (a7'x) + ¢
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P+ a)" fora>0 a ' Arctan (a7'x) + ¢

(x* = a)™! (172) a'Inl(x+ @)™ (x— a)l + ¢
(® =)' for lal > |xl (1/2) a'Inl(a—x)" (a+ x) + ¢
(P +a)>2 Qa4+ 2a*) x+ (1/2) a”® Arctan (a7'x) + ¢
(x*—a»)> (—x) Qa*x* = 24" = (1/4) a> Inl(x+ 2 (x—a)l + ¢
(® = )72 for lal > |x| —x (2a* =227+ (1/4) a Inl(a— x)" (a+ %) + ¢
x (x* + 422 (1/3) (x* + a®)** + ¢

x (¥ — 2?2 (1/3) (x* = a®)** + ¢

x (= x%)V? (=1/3) (&* = x*)** + ¢
x(x2+a2)—1/2 (x2+512)1/2+ c

x(xz_aZ)—l/z (x2—42)1/2+ c

x (2 — x?)1"2 (=Dt

x(x*+a?)™! (1/2) In ls* + 2l + ¢

x(x*—a?)™! (1/2) Inlx* = 2l + ¢

x(a* = x»)7" for lal > |xl —(1/2) In 12> = x*l + ¢

x (o + 2% (2x* =24+ ¢

x (%% — a?)™? —-(1/2) =)+ ¢

x (@ — x»)7? for lal > |xl (1/2) (> =)'+ ¢

e e+

e™ ale”+ ¢

a e’ blae™ + ¢

xe™ a'xe®—a?e”+ ¢

X e b7 e =262 e+ 267 e 4 ¢
In Ix xlnlxl—x+ ¢

x"1n lx| for n#—1 (n+ 17 x"Vn lxl = (n+ 1)2 5" + ¢
x'Inx (1/2) In® Ixl + ¢

sin x —cos x+ ¢

cos x sin x+ ¢

tan x In Isec x| + ¢

csc x In ltan (x/2)| + ¢

sec x In Isec x+ tan x| + ¢

cot x In Isin x| + ¢

sin ax —a' cos ax+ ¢

cos ax a'sinax+ ¢

tan ax a™'In Isec ax| + ¢

csc ax 27" In ltan (ax/2)| + ¢

sec ax a7 In ltan (/4 + ax/2)| + ¢

cot ax a7 In Isin ax| + ¢

sin’® x (1/2) {x—[(1/2) sin 2x)]} + ¢
cos® x (1/2) {x+ [(1/2) sin 2x)]} + ¢
tan® x tan x— x4+ ¢

csc? x —cot x+ ¢

sec? x tan x+ ¢

cot? x —cotx—x+c

sin® ax (1/2) x— (1/4) a™" (sin 2ax) + ¢
cos® ax (1/2) x+ (1/4) a™" (sin 2ax) + ¢

tan? ax atltanax —x+ ¢
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csc? ax —a' cot ax + ¢

sec? ax a'tan ax + ¢

cot? ax —a' cot ax—x+ ¢

xsin ax a?sin ax— a 'x cos ax+ ¢

X COS ax a?cos ax + a'xsin ax+ ¢

x% sin ax 2a7%xsin ax+ (24 — a7'x?) cos ax+ ¢
x* cos ax 2a7%xcos ax+ (a7'x* — 2a473) sin ax+ ¢
(sin x cos x)72 —2cot2x+c

(sin x cos x)7! In ltan x| + ¢

sin x cos x (1/2) sin* x + ¢

sin® x cos® x (1/8) x— (1/32) sin 4x+ ¢

(sin ax cos ax)™> —2a7" cot 2ax + ¢

(sin ax cos ax)™ a " In ltan ax| + ¢

sin ax cos ax (1/2) 4" sin® ax+ ¢

sin® ax cos? ax (1/8) x—(1/32) (a7") sin 4ax+ ¢

sec x tan x secx+ ¢

Arcsin x xArcsin x+ (1 —x)"? + ¢

Arccos x xArccos x— (1 =) + ¢

Arctan x xArctan x— (1/2) In [1 + %%l + ¢
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A
absolute maximum, 30, 138-139, 182
absolute minimum, 30, 138-139, 182
acceleration, 128-130, 178-179
antiderivative
basic vs. general, 222
concept of, 205-207
of basic linear function, 208, 330
of basic nth-degree function, 209-210,
330-331
of basic quadratic function, 208-209
of constant function, 207-208, 329-331
of zero function, 205-206, 329
antidifferentiation. See antiderivative
apex of paraboloid, 417
approximation error, 194
Arccosine function, derivative of, 384387, 504
Arcsine function, derivative of, 381-384, 504
arc
breaking into chords, 297-300
length, 297-310, 363-369
arc-in-a-box method, 303, 364-365
Arctangent function, 157-158
area
approximating, 192-194
between line and curve, 262-267, 350-353
between two curves, 267-274, 353-355
defined by curve, 191-198, 328-329
negative, 191-192, 326-327
positive, 191-192, 326-327

argument of function, 6

asymptotes of hyperbola, 393

average value of function, 200-201, 329
axis of paraboloid, 418

B

basic vs. general antiderivative, 222
bell-shaped curve, 201

bijection, definition of, 13
“broken” function, 12—14

C
Cartesian space, 417-419, 471-472, 533
chain rule, 99-103, 173, 378,
395-396, 398
child function, 116
chord
breaking arc into, 297-300
definition of, 297-298
circle
equation of, 391, 505-506
graph of, 391
implicit differentiation of equation for,
394-396
unit, definition of, 19
coefficient
leading, 32, 80, 143, 170
in polynomial, 32, 72, 80, 142
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composite function, 99-100, 229 D
concavity of graph, 138-139, 182 definite integral, 195, 215-218
cone dependent variable, 3, 154-155
in Cartesian xyz—space, 444-445, 523-524 derivative
right circular, 444448, 523-523 of Arccosine function, 384-387, 504
slant height, 445, 523 of Arcsine function, 381-384, 504
slant-surface area integral, 446-448, 523 basic concepts of, 35-54
volume integral, 446448, 524 of basic cubic function, 48—52
constant function, 9, 40—41, 155, 207-208, of basic linear function, 40—44
329-331 of basic quadratic function, 4448
constant of integration, definition of, 211 chain rule for finding, 99-103,
constant, stand-alone, 32 173, 378
constant term, 79 of cosine function, 109-112
continuity definition of, 52, 163
of a function, 29-33 determining existence of, 55-69
left-hand, 25-27, 159-161 fifth, 133
at a point, 24-27 fourth, 133-135
right-hand, 24-25, 159-161 higher, 126-137
“total,” at a point, 27 implicit, 390—403, 506-511
continuous function, 27-32 of inverse function, 377-389
convergent integral, 237 as limit, 38, 52
coordinates multiplication-by-constant rule,
rectangular, definition of, 9 84-87,171
cosecant function,124 of natural exponential function,
cosine function 114-118
derivative of, 111-112 of natural logarithm function, 118-124, 181
integral of, 277-282, 355-356 nth, 133, 179
inverse of, 384-387 partial, 416427, 515-518
principal branch of, 385, 503-504 of polynomial function, 71-83
unit circle model, 109-110 power rule, 71-75, 168-169
cotangent function, 125 product rule, 87-90, 171-172
counterexample, in proof, 102 quotient rule, 95-99, 173
crest, in wave function, 109—-110 as rate of change, 37
cubic function real-power rule, 106-108, 173-174
continuity of, 31-32 reciprocal rule, 90-94, 172-173
derivative of basic, 48—52 second, 126-130, 178
general form of, 31 of sine function, 109-111, 179-181
graph of, 144-146 sum rule, 75-79, 169-170
curve, singular, 270-274 third, 130-133
curves, area between, 267-274 as tool for graph analysis, 138-153
cylinder two-way, 394-402
in Cartesian xyz-space, 442-443, difference
522-523 function, 266, 268269, 272-273
lateral-surface area integral, 442443, rule for partial derivatives, 422, 516-517
522 rule for second partials, 430, 519
right circular, 442445, 522-523 differentiable function, definition of,

volume integral, 444-445, 522-523 59, 166
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differential fractions, partial, in integral, 318-323
definition of, 38, 163 function(s)

in integral, 195, 212
differential equation

elementary first-order ordinary, 490-493,

535-537

elementary second-order ordinary, 493-499,

537-540

differentiation. See derivative
direction numbers, 419
discontinuity, 28, 55-57, 156
discontinuous function, 32-33
displacement vs. speed, 198-200
distance formula, 305-306
divergent integral, 237
domain

of mapping, definition of, 3—4, 154

restricted, 33
double integral in two variables, 458-462,

528-535

E
e, definition of, 114-115
ellipse
equation of, 392-393, 506, 508
graph of, 392
implicit differentiation of equation for,
396-399
semi-axes of, 392
Euler’s constant, 114-115, 177
exponent
negative, 107-108
real-number, 124, 210
exponential constant, 114-115, 177
exponential function, derivative of,
114-118
extrema of graph, 138-139

F

family of functions, 490, 536-538
fifth derivative, 133

five-space, Cartesian, 419

fluxion, 37

four-space, Cartesian, 419

fourth derivative, 133—135

Arccosine, 384-387, 504

Arcsine, 381-384, 504

Arctangent, 157-158

average value of, 200-201, 329

“broken,” 14-17

child, 116

composite, 99—100, 229

constant, 9, 40—41, 155, 207-208,
329-331

continuity of, 29-33

continuous, 29-32

cosine, 109-112, 277-282

cosecant, 124

cotangent, 125

cubic, 31-32, 48-52

definition of, 5, 154

difference, 266, 268-269, 272-273

differentiable, definition of, 59, 166

discontinuous, 32—-33

family of, 490, 536-538

inverse of, 91, 155, 377-378, 502-505

limit of, 21-22

linear, basic, 9-11, 29-30, 40—44,
208, 330

multiplied by constant, 84-85

natural exponential, 114-118, 282-288

nondifferentiable, 63—-69, 164—165

nonlinear, 12-14

nth-degree polynomial, 79-82, 209-210

of another function, 99-100, 122

parent, 116

partial, 420

quadratic, basic, 30-31, 4448, 208-209

quotient, 95

polynomial, 71-83

reciprocal, 15-16, 90-91, 289-295

secant, 125

sine, 108—111, 277-282

singular, 119

step, 17-18

tangent, 16-17, 123

zero, 41, 205-206, 329

zeros of, 142

Fundamental Theorem of Calculus,

215, 332
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G
general vs. basic antiderivative, 222
geodesic, 450
geometric volume vs. mathematical volume, 458,
528, 535
gradient
definition of, 9
of line, 9
graph
absolute maximum of, 138139
absolute minimum of, 138—139
analysis with derivatives, 138-153
concavity of, 138-139, 182
of cubic function, 144—146
extrema of, 138—139
inflection point of, 139-141
local maximum of, 138—139
local minimum of, 138—139
of quadratic function, 141-144
of sine function, 147-151
graphs, area between, 262-276, 350-355
great circle, 450

H
higher derivatives, 126-137
horizontal-line test, 8, 155—-156
hyperbola
asymptotes of, 393
equation of, 392-393, 506, 509-510
graph of, 393
implicit differentiation of equation for,
399-402
semi-axes of, 393
unit, 393
hypotenuse, 299

I
implicit differentiation
concept and process, 390-403, 506-511
of equation for circle, 394-396
of equation for ellipse, 396-399
of equation for hyperbola, 399-402
improper integral, 234-249, 337-342
indefinite integral, 211-215
independent variable, 3, 154-155

indeterminate expression, 404
induction, mathematical, 77-78, 170
infinite sequence, limit of, 20-21
infinitesimal calculus, 46
inflection point, 139-141, 182-183
integral
convergent, 237
of cosine function, 277-282, 355-356
definite, 195, 215-218
of difference function, 268-269, 272-273
differential in, 195, 212
divergent, 237
double, in two variables, 458—462, 528-525
improper, 234-249, 337-342
indefinite, 211-215
with infinite interval, 244248
iterated, in two variables, 462—466
multiple definite, 455456
multiplication—by—constant rule, 213,
250-251, 331-332, 342-343
of natural exponential function, 282-288
negation rule, 213, 250-251
by partial fractions, 318-323
by parts, 313-317, 370-372
principle of linearity for, 311-313, 369-370
of polynomial function, 250-261
of reciprocal function, 289-295
repeated, in one variable, 455458, 526-528
reversal rule, 221-224, 332-333
Riemann, 194
of sine function, 277-282, 355-356
with singularity in interval, 238-244
split—interval rule, 224-229, 334
substitution rule, 229-232, 334-337
sum rule, 213, 250-251, 331-332, 342343
surface—area, 442—454
volume, 442454, 458—466, 468—489
integration. See integral
inverse
of function, 91, 155, 377-378, 502-505
function, derivative of, 377-389
multiplicative, 91
of relation, 68
iterated integral in two variables, 462-466
intercept
definition of, 10
variable bounds in, 234-238



JK
jerk, 132

L
law of the mean, 300-301, 363-364
leading coefficient, 32, 80, 143, 170
legitimate function, 5
Leibniz, Gottfried Wilhelm, 20
I'Hépital principle
for expressions that tend toward 0/0, 404—408,
511-513
for expressions that tend toward oo / oo,
408411, 512-515
for expressions that tend toward 0 - (+00),

411-412, 513

for expressions that tend toward 0 - (—e0),
411-412, 514

for expressions that tend toward 4eo — (+e0),
412413, 513

for expressions that tend toward +eo - 0, 413, 513
for expressions that tend toward —eo - 0, 413,
513
for expressions that tend toward —eo + (+00),
413,513-514
for expressions that tend toward 4o + (—e0),
413,513-514
for expressions that tend toward (—eo) — (—o0),
413,513-514
limit
definition of, 20
of function, 21-22
of indeterminate expression, 404—415
of infinite sequence, 20-21
left-hand, 25-26
I'Hopital principles for finding, 404—415
multiplication-by-constant rule for, 23
right-hand, 24
sum rule for, 22-23
linear equations, simultaneous, 322
linear function
antiderivative of basic, 208, 330
continuity of, 29-30
definition of, 9
derivative of basic, 40—44
graph of, 10-11
standard form for, 10
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linearity, principle for integral, 311-313, 369-370
local

maximum, 31, 109-110, 138-139, 182

minimum, 31, 109-110, 138-139, 182
logarithm

base in, 118

function, derivative of, 118—124

function, higher derivatives of, 136

natural, 118-124

M

many-to-one, 5
mapping, 3-8
mathematical induction, 77-78, 170
mathematical volume vs. “real-world” volume,
458, 528, 535
maximum
absolute, 30, 138-139, 182
local, 31, 109-110, 138-139, 182
mean
in normal distribution, 201-202
law of, 300-301, 363-364
minimum
absolute, 30, 138-139, 182
local, 31, 109-110, 138-139, 182
mixed partial derivative
for three-variable function, 438—440, 520-521
for two-variable function, 431-434, 519-521
monomial power function, 80
multiple definite integrals, 455-456
multiplication-by-constant rule
for derivatives, 84—87, 171
for integrals, 213, 250-251, 331-332, 342-343
for limits, 24
for partial derivatives, 422, 516
for second partials, 430, 518
multiplicative inverse, 91

N

natural exponential, derivative of, 114-118
natural exponential, integral of, 282288
natural logarithm, derivative of, 118-124, 181
natural logarithm, higher derivatives of, 136
negation rule for integrals, 213, 250-251
negative area, 191-192, 326-327
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negative-integer power, 107-108
nested functions, 122
Newton, Isaac, 20
nondifferentiable function
characteristics of, 164—165
examples of, 63—-69
nonlinear function
definition of, 12
graph of, 12-14
normal distribution, 201-202
nth-degree
basic function, function, 209-210,
330-331
polynomial function, 79-82, 209-210
nth derivative, 133, 179

(0)

one-to-many, 5

ordered pair, 34

ordered quadruple, 419

ordered triple, 416

ordinary differential equation
elementary first-order, 490-493, 535-537
elementary second-order, 493-499, 537-540

P
parabola, 30-31, 141-144
paraboloid, 417-418
parent function, 116
partial derivative, 416441, 515-518
partial fractions, in integral, 318-323
partial functions, 420
partial sum, in series, 33
parts, integration by, 313-317, 370-372
phase, in wave, 112
polynomial function
derivative of, 71-83
nth-degree, 79-82
positive area, 191-192, 326-327
power
function, monomial, 80
negative-integer, 107-108
rational-number, 107108, 174
real-number, 124, 174, 210
reciprocal, 107-108
rule for derivatives, 71-75, 168—169

principal branch
of cosine function, 385, 503-504
of sine function, 382, 503
principle of linearity, 311-313
product
of functions, 87—88
of function and constant, 84—85
rule for derivatives, 87-90, 171-172
Pythagorean formula, 299-300
Pythagorean theorem, 450

Q

quadratic function
antiderivative of basic, 208—-209
continuity of, 30-31
derivative of basic, 44—48
general form of, 30
graph of, 141-144

quotient
of functions, 95

rule for derivatives, 95-99, 173

R
radian, 108
range
of mapping, definition of, 3—4, 154
rational-number power, 107-108, 174
real-number power, 124, 174, 210
real-power rule for derivatives, 106-108,
173-174
“real-world” volume vs. mathematical volume,
458, 528, 535
reciprocal
function, 15-16, 289-295
power, 107-108
rule for derivatives, 90-94, 172-173
rectangular coordinates, definition of, 9
relation
definition of, 4, 154
inverse of, 6-8
two-way, 390-394
repeated integral in one variable, 455-458,
526-528
restricted domain, 33
reversal rule for integrals, 221-224, 332-333
Riemann, Bernhard, 194, 326
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right circular cone split-interval rule for integrals, 224-229, 334

in Cartesian xyz-space, 444-445, 523-524 stand-alone constant, 32, 79

slant height, 445, 523 standard deviation, 201-202

slant-surface area integral, 446448, 523 step function, 17-18

volume integral, 446448, 524 substitution rule for integrals, 229-232, 334-337
right circular cylinder sum

in Cartesian xyz-space, 442-443, 522-523 of functions, 75-76

lateral-surface area integral, 442443, 522 partial, in series, 33

volume integral, 444445, 522-523 sum rule
rise over run, 10 for derivatives, 75-79, 169-170

for integrals, 213, 250-251, 331-332, 342-343
for limits, 22-23

S for partial derivatives, 422, 516
second derivative, 126—130, 178 for second partials, 430, 518-519
second partial derivative summation notation, 189-191, 325-326
for three-variable function, 434-438 superscript —1, meanings of; 378, 502
for two-variable function, 428—431, 518-521 surface-area integral, 442-454
semi-axes
of ellipse, 392
of hyperbola, 393 T
series, 189-191 tangent
simultaneous linear equations, 322 function, 16-17, 123
sine function line, definition of, 35-36, 162
derivative of, 109-111, 179-181 plane, 419
graph of, 147-151 third derivative, 130-133
higher derivatives of, 135, 179-181 three-space, Cartesian, 416, 471-472, 533
integral of, 277-282, 355-356 “times sign,” alternatives, 112-113
inverse of, 113, 381-384 topographical map, 417
principal branch of, 382, 503 topography, 416-417
unit circle model, 108-110 “total” continuity at a point, 27
singular curve, 270-274 trough, in wave function, 109-110
singular function, 119, 270-274 true function, 5
singularity two-way derivative, 394-402
definition of, 116 two-way relation, 390-394

in function, 116, 119
in interval for integral, 238-244

slope U

definition of, 9 unit circle

of line, 9 definition of, 19

between two points, 35-38 equation of, 391
speed, 128-130, 178-179, 198-200 implicit differentiation of equation for, 394-396
sphere model for sine and cosine, 108-110

in Cartesian xyz-space, 448-449, 525-526 unit hyperbola, 393

geodesic on, 450
great circle on, 450
surface-area integral, 449450, 452453, Vv
525-526 variable, dependent, 3, 154-155
volume integral, 451453, 525-526 variable, independent, 3, 154-155
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vertex of paraboloid, 417
vertical-line test, 8, 155, 157, 418419, 515-516
volume
integral, 442454, 458-466, 468-489
mathematical vs. “real-world,” 458, 484, 528

w

wave
cosine, 111-112
function, crest in, 109—110
function, trough in, 109-110

wave (Cont.)
phase, 112
sine, 109-111

XYZ
xyg-space, structure of 471-472, 533
y-intercept, definition of, 10
zero function
antiderivative of, 205-206, 329
definition of, 41
zeros of function, 142
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