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Preface

If you want to improve your understanding of calculus, then this book is for you. It can sup-
plement standard texts at the high-school senior, trade-school, and college undergraduate 
levels. It can also serve as a self-teaching or home-schooling supplement. Prerequisites include 
intermediate algebra, geometry, and trigonometry. It will help if you’ve had some precalculus 
(sometimes called “analysis”) as well.

This book contains three major sections. Part 1 involves differentiation in one variable. 
Part 2 is devoted to integration in one variable. Part 3 deals with partial differentiation and 
multiple integration. You’ll also get a taste of elementary differential equations.

Chapters 1 through 9, 11 through 19, and 21 through 29 end with practice exercises. You 
may (and should) refer to the text as you solve these problems. Worked-out solutions appear 
in Apps. A, B, and C. Often, these solutions do not represent the only way a problem can be 
figured out. Feel free to try alternatives!

Chapters 10, 20, and 30 contain question-and-answer sets that finish up Parts 1, 2, and 
3, respectively. These chapters will help you review the material.

A multiple-choice final exam concludes the course. Don’t refer to the text while taking 
the exam. The questions in the exam are more general (and easier) than the practice exercises 
at the ends of the chapters. The exam is designed to test your grasp of the concepts, not to see 
how well you can execute calculations. The correct answers are listed in App. D.

In my opinion, most textbooks place too much importance on “churning out answers,” 
and often fail to explain how and why you get those answers. I wrote this book to address these 
problems. I’ve tried to introduce the language gently, so you won’t get lost in a wilderness of 
jargon. Many of the examples and problems are easy, some take work, and a few are designed 
to make you think hard.

If you complete one chapter per week, you’ll get through this course in a school year. But 
don’t hurry. When you’ve finished this book, I recommend Calculus Demystified by Steven G. 
Krantz and Advanced Calculus Demystified by David Bachman for further study. If Chap. 29 
of this book gets you interested in differential equations, I recommend Differential Equations 
Demystified by Steven G. Krantz as a first text in that subject.

Stan Gibilisco
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Calculus is the mathematics of functions, which are relationships between sets consisting of 
objects called elements. The simplest type of function is a single-variable function, where the 
elements of two sets are paired off according to certain rules. 

Mappings
Imagine two sets of points defined by the large rectangles in Fig. 1-1. Suppose you’re inter-
ested in the subsets shown by the hatched ovals. You want to pair off the points in the top oval 
with those in the bottom oval. When you do this, you create a mapping of the elements of one 
set into the elements of the other set.

Domain, range, and variables

All the points involved in the mapping of Fig. 1-1 are inside the ovals. The top oval is called 
the domain. That’s the set of elements that we “go out from.” In Fig. 1-1, these elements are 
a through f. The bottom oval is called the range. That’s the set of elements that we “come in 
toward.” In Fig. 1-1, these elements are v through z.

In any mapping, the elements of the domain and the range can be represented by vari-
ables. A nonspecific element of the domain is called the independent variable. A nonspecific 
element of the range is called the dependent variable. The mapping assigns values of the depen-
dent (or “output”) variable to values of the independent (or “input”) variable.

Ordered pairs

In Fig. 1-1, the mapping can be defined in terms of ordered pairs, which are two-item lists 
showing how the elements are assigned to each other. The set of ordered pairs defined by the 
mapping in Fig. 1-1 is

{(a,v ), (b,w ), (c,v ), (c,x ), (c,z ), (d,y ), (e,z ), ( f,y )}

3

CHAPTER 

1

Single-Variable Functions



Within each ordered pair, an element of the domain (a value of the independent variable) 
is written before the comma, and an element of the range (a value of the dependent variable) is 
written after the comma. Whenever you can express a mapping as a set of ordered pairs, then 
that mapping is called a relation.

Are you confused?
You won’t see spaces after the commas inside of the ordered pairs, but you’ll see spaces after the commas 
separating the ordered pairs in the list that make up the set. These aren’t typographical errors! That’s the 
way they should be written.

4 Single-Variable Functions

Range

a

b

c

d

e

v

w

x

y z

f

Domain

Figure 1-1  A relation defines how the elements of a set are assigned to 
the elements of another set. 



Modifying a relation

A function is a relation in which every element in the domain maps to one, but never more 
than one, element in the range. This is not true of the relation shown in Fig. 1-1. Element c
in the domain maps to three different elements in the range: v, x, and z.

In a function, it’s okay for two or more values of the independent variable to map to a 
single value of the independent variable. But it is not okay for a single value of the indepen-
dent variable to map to two or more values of the dependent variable. A function can be 
many-to-one, but never one-to-many. Sometimes, in order to emphasize the fact that no value 
of the independent variable maps into more than one value of the dependent variable, we’ll 
talk about this type of relation as a true function or a legitimate function.

The relation shown in Fig. 1-1 can be modified to make it a function. We must eliminate 
two of the three pathways from c in the domain. It doesn’t matter which two we take out. If we 
remove the pathways represented by (c,v ) and (c,z ), we get the function illustrated in Fig. 1-2.

Mappings  5
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Figure 1-2  A function is a relation in which every element of the 
domain is assigned to one, but never more than one, 
element of the range.



6  Single-Variable Functions

Here’s an informal way to think of the difference between a relation and a function. A rela-
tion correlates things in the domain with things in the range. A function operates on things in the 
domain to produce things in the range. A relation merely sits there. A function does something!

Three physical examples

Let’s look at three situations that we might encounter in science. All three of the graphs 
in Fig. 1-3 represent functions. The changes in the value of the independent variable can be 
thought of as causative, or at least contributing, factors that affect the value of the dependent 
variable. We can describe these situations as follows:

• The outdoor air temperature is a function of the time of day.
• The number of daylight hours on June 21 is a function of latitude.
• The time required for a wet rag to dry is a function of the air temperature.

A mathematical example

Imagine a relation in which the independent variable is called x and the dependent variable is 
called y, and for which the domain and range are both the entire set of real numbers (also called 
the reals). Our relation is defined as

y = x + 1

This is a function between x and y, because there’s never more than one value of y for any value 
of x. Mathematicians name functions by giving them letters of the alphabet such as f, g, and 
h. In this notation, the dependent variable is replaced by the function letter followed by the 
independent variable in parentheses. We can write

f (x ) = x + 1

to represent the above equation, and then we can say, “f of x equals x plus 1.” When we write 
a function this way, the quantity inside the parentheses (in this case x ) is called the argument
of the function.

The inverse of a relation

We can transpose the domain and the range of any relation to get its inverse relation, also called 
simply the inverse if the context is clear. The inverse of a relation is denoted by writing a 
superscript −1 after the name of the relation. It looks like an exponent, but it isn’t meant to be.

The inverse of a relation is always another relation. But when we transpose the domain 
and range of a function, we don’t always get another true function. If we do, then the function 
and its inverse reverse, or “undo,” each other’s work.

Suppose that x and y are variables, f and f    −1 are functions that are inverses of each other, 
and we know these two facts:

f (x ) = y

and

f  −1 ( y) = x



Then the following two facts are also true:

f    −1 [ f (x )] = x

and

f  [ f    −1 ( y )] = y
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Figure 1-3  At A, the air temperature is a function of the time of day. At 
B, the number of daylight hours on June 21 is a function of 
the latitude (positive is north; negative is south). At C, the 
drying time for a wet rag is a function of the air temperature.
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8  Single-Variable Functions

Are you confused?
It’s reasonable to wonder, “Can we tell whether or not a relation is a function by looking at its 
graph?” The answer is yes. Consider a graph in which the independent variable is represented 
by the horizontal axis, and the dependent variable is represented by the vertical axis. Imagine a 
straight, vertical line extending infinitely upward and downward. We move this vertical line to the 
left and right, so the point where it intersects the independent-variable axis sweeps through every 
possible argument of the relation. A graph represents a function “if and only if” that graph never 
crosses a movable vertical line at more than one point. Let’s call this method of graph-checking 
the vertical-line test.

Here’s a note!
In mathematics, the expression “if and only if” means that logical implication works in both direc-
tions. In the above example, we are really saying two things:

• If a graph represents a function, then the graph never crosses a movable vertical line at more 
than one point.

• If a graph never crosses a movable vertical line at more than one point, then the graph repre-
sents a function.

The expression “if and only if” is abbreviated in text as “iff.” In logic, it’s symbolized by a double-
shafted, double-headed arrow pointing to the left and right (⇔).

Here’s a challenge!
Imagine that the independent and dependent variables of the functions shown in Fig. 1-3 are reversed. 
This gives us some weird assertions.

• The time of day is a function of the outdoor air temperature.
• Latitude is a function of the number of daylight hours on June 21.
• The air temperature is a function of the time it takes for a wet rag to dry.

Only one of these statements translates into a mathematical function. Which one?

Solution
You can test the graph of a relation to see if its inverse is a function by doing a horizontal-line test.
It works like the vertical-line test, but the line is parallel to the independent-variable axis, and it 
moves up and down instead of to the left and right. The inverse of a relation represents a function 
if and only if the graph of the original relation never intersects a movable horizontal line at more 
than one point.

When you test the graphs shown in Figs. 1-3A and B, you’ll see that they fail the horizontal-line test. 
That means that the inverses aren’t functions. When you transpose the independent and dependent vari-
ables in Fig. 1-3C, you get another function, because the graph passes the horizontal-line test.



Linear Functions
When the argument changes in a linear function, the value of the dependent variable changes 
in constant proportion. That proportion can be positive or negative. It can even be zero, in 
which case we have a constant function.

Slope and intercept

In conventional coordinates, linear functions always produce straight-line graphs. Conversely, 
any straight line represents a linear function, as long as that line isn’t parallel to the dependent-
variable axis.

The slope, also called the gradient, of a straight line in rectangular coordinates (where the axes 
are perpendicular to each other and the divisions on each axis are of uniform size) is an expres-
sion of the steepness with which the line goes upward or downward as we move to the right. A 
horizontal line, representing a constant function, has a slope of zero. A line that ramps upward as 
we move to the right has positive slope. A line that ramps downward as we move to the right has 
negative slope. Figure 1-4 shows a line with positive slope and another line with negative slope.

To calculate the slope of a line, we must know the coordinates of two points on that line. 
If we call the independent variable x and the dependent variable y, then the slope of a line, 
passing through two points, is equal to the difference in the y-values divided by the difference 
in the x-values. We abbreviate “the difference in” by writing the uppercase Greek letter delta
(Δ). Let’s use a to symbolize the slope. Then

a = Δy/Δx

2 4 6–6

2

4

6

–2

–4

–6

x

y

–4 –2

y-intercept is 3

y-intercept is –2 Slope is
negative

Slope is
positive

Figure 1-4 Graphs of two linear functions.
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10  Single-Variable Functions

We read this as “delta y over delta x.” Sometimes the slope of a straight line is called rise over 
run. This makes sense as long as the independent variable is on the horizontal axis, the depen-
dent variable is on the vertical axis, and we move to the right.

An intercept is a point where a graph crosses an axis. We can plug 0 into a linear equation 
for one of the variables, and solve for the other variable to get its intercept. In a linear func-
tion, the term y-intercept refers to the value of the dependent variable y at the point where the 
line crosses the y axis. In Fig. 1-4, the line with positive slope has a y-intercept of 3, and the 
line with negative slope has a y-intercept of −2.

Standard form for a linear function

If we call the dependent variable x, then the standard form for a linear function is

f (x ) = ax + b

where a and b are real-number constants, and f is the name of the function. As things work 
out, a is the slope of the function’s straight-line graph. If we call the dependent variable y, then 
b is the y-intercept. We can substitute y in the equation for f (x), writing

y = ax + b

Either of these two forms is okay, as long as we keep track of which variable is independent
and which one is dependent!

Are you confused?
If the graph of a linear relation is a vertical line, then the slope is undefined, and the relation 
is not a function. The graph of a linear function can never be parallel to the dependent-variable 
axis (or perpendicular to the independent-variable axis). In that case, the graph fails the verti-
cal-line test.

Here’s a challenge!
Rewrite the following equation as a linear function of x, and graph it on that basis:

12x + 6y = 18

Solution
We must rearrange this equation to get y all by itself on the left side of the equals sign, and an expres-
sion containing only x and one or more constants on the right side. Subtracting 12x from both sides 
gives us:

6y = −12x + 18

Dividing each side by 6 puts it into the standard form for a linear function:

y = (−12x )/6 + 18/6 = −2x + 3



If we name the function f, then we can express the function as

f (x ) = −2x + 3

In the graph of this function, the y-intercept is 3. We plot the y-intercept on the y axis at the mark for 
3 units, as shown in Fig. 1-5. That gives us the point (0,3). To find the line, we must know the coordi-
nates of one other point. Let’s find the x-intercept! To do that, we can plug in 0 for y to get 

0 = −2x + 3

Adding 2x to each side and then dividing through by 2 tells us that x = 3/2. Therefore, the point (3/2,0) 
lies on the line. Now that we know (0,3) and (3/2,0) are both on the line, we can draw the line through 
them.

Here’s a twist!
When we move from (0,3) to (3/2,0) in Fig. 1-5, we travel in the negative y direction by 3 units, so 
Δy = −3. We also move in the positive x direction by 3/2 units, so Δx = 3/2. Therefore

Δy/Δx = −3/(3/2) = −2

reflecting the fact that the slope of the line is −2. We’ll always get this same value for the slope, no matter 
which two points on the line we choose. Uniformity of slope is characteristic of all linear functions. But 
there are functions for which it isn’t so simple.

4 6–6

2

6

–2

–4

–6

x

y

–4 –2

Slope = –2

(0,3)
y-intercept is 3 (3/2,0)

x-intercept is 3/2

f (x) = –2x + 3
y = –2x + 3

Figure 1-5 Graph of the linear function y = −2x + 3.
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12  Single-Variable Functions

Nonlinear Functions
When the value of the argument changes in a nonlinear function, the value of the dependent 
variable also changes, but not always in the same proportion. The slope can’t be defined for 
the whole function, although the notion of slope can usually exist at individual points. In 
rectangular coordinates, the graph of a nonlinear function is always something other than a 
straight line.

Square the input

Let’s look at a simple nonlinear relation. The domain is the entire set of reals, and the range is 
the set of nonnegative reals. The equation is

y = x 2

If we call the relation g, we can write

g (x) = x 2

For every value of x in the domain of g, there is exactly one value of y in the range. Therefore, 
g is a function. But, as we can see by looking at the graph of g shown in Fig. 1-6, the reverse is 
not true. For every nonzero value of y in the range of g, there are two values of x in the domain. 
These two x-values are always negatives of each other. For example, if y = 49, then x = 7 or 
x = −7. This means that the inverse of g is not a function.

2 4 6–2–4–6
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x

y

4 Slope
varies

g (x) = x2

y = x2

Figure 1-6 Graph of the nonlinear function y = x2.



Cube the input

Here’s another nonlinear relation. The domain and range both span the entire set of reals. The 
equation is

y = x 3

This is a function. If we call it h, then:

h (x) = x 3

For every value of x in the domain of h, there is exactly one value of y in the range. The reverse 
is also true. For every value of y in the range of h, there is exactly one x in the domain. This 
means that the inverse of h is also a function. We can see this by looking at the graph of h
(Fig. 1-7). When a function is one-to-one and its inverse is also one-to-one, then the function 
is called a bijection.

Are you confused?
Have you noticed that in Fig. 1-7, the y axis is graduated differently than the x axis? There’s a reason 
for this. We want the graph to fit reasonably well on the page. It’s okay for the axes in a rectangular 
coordinate system to have increments of different sizes, as long as each axis maintains a constant 
increment size all along its length.

2 4 6–2–4–6
x

y

Slope
varies

30

20

10

–10

–20

–30

y = x3
h (x) = x3

Figure 1-7 Graph of the nonlinear function y = x3.
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14  Single-Variable Functions

Here’s a challenge!
Look again at the functions g and h described above, and graphed in Figs. 1-6 and 1-7. The inverse of 
h is a function, but the inverse of g is not. Mathematically, demonstrate the reasons why.

Solution
Here’s the function g again. Remember that the domain is the entire set of reals, and the range is the 
set of nonnegative reals:

y = g (x ) = x 2

If you take the equation y = x2 and transpose the positions of the independent and dependent variables, 
you get

x = y 2

This is the same as

y = ± (x1/2)

The plus-or-minus symbol indicates that for every value of the independent variable x you plug in 
you’ll get two values of y, one positive and the other negative. You can also write

g−1 (x) = ± (x1/2)

The function g is two-to-one (except when y = 0), and that’s okay. But the inverse relation is one-to-
two (except when y = 0). So, while g−1 is a legitimate relation, it is not a function.

The function h has an inverse that is also a function. Remember from your algebra and set theory 
courses that the inverse of any bijection is also a bijection. You have

h (x ) = x 3

and

h−1 (x ) = x 1/3

If a function is one-to-one over a certain domain and range, then you can transpose the values of the 
independent and dependent variables while leaving their names the same, and you can also transpose the 
domain and range. That gives you the inverse, and it is a function. However, if a function is many-to-one, 
then its inverse is one-to-many, so that inverse is not a function.

“Broken” Functions
Relations and functions often show “gaps,” “jumps,” or “blow-ups” in their graphs. This can 
happen in countless different ways. Let’s look at some examples.



A three-part function

Figure 1-8 is a graph of a function where the value is −3 if the argument is negative, 0 if the 
argument is 0, and 3 if the argument is positive. Let’s call the function f. Then we can write

f (x ) = −3 if x < 0

=  0 if x = 0

=  3 if x > 0

Even though this function takes two jumps, there are no gaps in the domain. The function is 
defined for every real number x.

The reciprocal function

Figure 1-9 is a graph of the reciprocal function. We divide 1 by the argument. If we call this 
function g, then we can write

g (x ) = 1/x

This graph has a two-part blow-up at x = 0. As we approach 0 from the left, the graph blows 
up negatively. As we approach 0 from the right, it blows up positively. The function is defined 
for all values of x except 0.

2 4 6–2–4–6

2

6

–2

–4

–6

x

y

4y = –3 if x < 0
y = 0 if x = 0
y = 3 if x > 0

Figure 1-8  Graph of the “broken” function y = −3
if x < 0, y = 0 if x = 0, y = 3 if x > 0.
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16  Single-Variable Functions

The tangent function

Figure 1-10 is a graph of the tangent function from trigonometry. If we call this function h,
then we can write

h (x ) = tan x

This graph blows up at infinitely many values of the independent variable! It is defined for 
all values of x except odd-integer multiples of p /2.

Are you confused?
Does it seem strange that a function can jump abruptly from one value to another, skip over individual 
points, or even blow up to “infinity” or “negative infinity”? You might find this idea difficult to com-
prehend if you’re the literal-minded sort. But as long as a relation passes the test for a function accord-
ing to the rules we’ve defined, it’s a legitimate function.

Here’s a challenge!
Draw a graph of the relation obtained by rounding off an argument to the nearest integer smaller 
than or equal to itself. Call the independent variable x and the dependent variable y. Here are some 
examples to give you the idea:

If x = 3, then y = 3

If x = −6, then y = −6

2 4 6

–2–4–6

2

6

–2

–4

–6

x

y

4

y = 1/x

Figure 1-9 Graph of the “broken” function y = 1/x.



If x = π, then y = 3

If x = −π, then y = −4

If x = 4.999, then y = 4

If x = −5.001, then y = −6

Is the relation represented by this graph a function? How can we tell?

Solution
This graph is shown in Fig. 1-11. It passes the vertical-line test, so it represents a function. We can also tell 
that this relation is a function by the way it’s defined. No matter what the argument, the relation maps it to 
one, but only one, integer. This type of function is called a step function because of the way its graph looks.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 

–3 p

3 p

3

2

1

y

x

–1

–2

–3

y = tan x

Figure 1-10 Graph of the “broken” function y = tan x.
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18  Single-Variable Functions

represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  Imagine a mapping from the set of all integers onto the set of all nonnegative integers in 
which the set of ordered pairs is

{(0,0), (1,1), (−1,2), (2,3), (−2,4), (3,5), (−3,6), (4,7), (−4,8), . . . }

   Is this relation a function? If so, why? If not, why not? Is its inverse a function? If so, 
why? If not, why not?

 2.  Consider a mapping from the set of all integers onto the set of all nonnegative integers 
in which the set of ordered pairs is

{(0,0), (1,1), (−1,1), (2,2), (−2,2), (3,3), (−3,3), (4,4), (−4,4), . . . }

   Is this relation a function? If so, why? If not, why not? Is its inverse a function? If so, 
why? If not, why not?

 3. Consider the following linear function:

f (x ) = 4x − 5

  What is the inverse of this? Is it a function?

x

y

6

4

2

–4

–6

–6 –4 –2 2 4 6

Figure 1-11  Graph of a step function. Every argument 
is rounded off to the nearest integer smaller 
than or equal to itself.



 4. Consider the following linear function:

g (x ) = 7

  What is the inverse of this? Is it a function?

 5.  In the Cartesian coordinate xy plane, the equation of a circle with radius 1, centered at 
the origin (0,0), is

x 2 + y 2 = 1

   This particular circle is called the unit circle. Is its equation a function of x ? If so, why? 
If not, why not?

 6.  Is the equation of the unit circle, as expressed in Prob. 5, a function of y ? If so, why? If 
not, why not?

 7. Consider the nonlinear function we graphed in Fig. 1-6:

g (x) = x 2

   As we saw, the inverse relation, g−1, is not a function. But it can be modified so it 
becomes a function of x by restricting its range to the set of positive real numbers. 
Show with the help of a graph why this is true. Does g−1 remain a function if we 
allow the range to include 0?

 8.  We can modify the relation g−1 from the previous problem, making it into a function 
of x, by restricting its range to the set of negative real numbers. Show with the help 
of a graph why this is true. Does g−1 remain a function if we allow the range to 
include 0?

 9.  Look again at Figs. 1-8 through 1-10. All three of these graphs pass the vertical-
line test for a function. This is true even though the relation shown in Fig. 1-9 is not 
defined when x = 0, and the relation shown in Fig. 1-10 is not defined when x is any 
odd-integer multiple of p /2. Now suppose that we don’t like the gaps in the domains 
in Figs. 1-9 and 1-10. We want to modify these functions to make their domains 
cover the entire set of real numbers. We decide to do this by setting y = 0 whenever 
we encounter a value of x for which either of these relations is not defined. Are the 
relations still functions after we do this to them?

10.  Consider again the functions graphed in Figs. 1-8 through 1-10. The inverse of one of 
these functions is another function. That function also happens to be its own inverse. 
Which one of the three is this?
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CHAPTER

2

Limits and Continuity

While Isaac Newton and Gottfried Wilhelm Leibniz independently developed the differen-
tial calculus in the seventeenth century, they both wanted to figure out how to calculate the 
instantaneous rate of change of a nonlinear function at a point in space or time, and then 
describe the rate of change in general, as a function itself. In the next few chapters, we’ll do 
these things. But first, let’s be sure we have all the mathematical tools we need!

Concept of the Limit
As the argument (the independent variable or input) of a function approaches a particular 
value, the dependent variable approaches some other value called the limit. The important 
word here is approaches. When finding a limit, we’re interested in what happens to the func-
tion as the argument gets closer and closer to a certain value without actually reaching it.

Limit of an infinite sequence

Let’s look at an infinite sequence S that starts with 1 and then keeps getting smaller:

S =  1, 1/2, 1/3, 1/4, 1/5, . . . 

As we move along in S from term to term, we get closer and closer to 0, but we never get all the 
way there. If we choose some small positive number r, no matter how tiny, we can always find 
a number in S (if we’re willing to go out far enough) smaller than r but larger than 0. Because 
of this fact, we can say, “If n is a positive integer, then the limit of S, as n gets endlessly larger, 
is 0.” We write this symbolically as

Lim
n→∞ S = 0

The expression “n → ∞” translates to “as n approaches infinity.” When talking about limits, 
mathematicians sometimes say “approaches infinity” to mean “gets endlessly larger” or “gets 



arbitrarily large.” This expression is a little bit obscure, because we can debate whether large 
numbers are really closer to “infinity” than small ones. But we’ll often hear that expression 
used, nevertheless.

When talking about this sequence S, we can also say, “The limit of 1/n, as n approaches 
infinity, is equal to 0,” and write

Lim
n→∞  1/n = 0

Limit of a function

Now let’s think about what takes place if we don’t restrict ourselves to positive-integer argu-
ments. Let’s consider the function

g (x ) = 1/x

and allow x to be any positive real number. As x gets larger, g (x) gets smaller, approaching 0 
but never getting there. We can say, “The limit of g (x), as x approaches infinity, is 0,” and 
write

Lim
n→∞ g (x ) = 0

This is the same as the situation with the infinite sequence of positive integers, except that the 
function approaches 0 smoothly, rather than in jumps.

Are you a nitpicker?

Let’s state the above expression differently. For every positive real number r, there exists a positive real 
number s such that

0 < g (s ) < r

Also, if t is a real number larger than s, then

0 < g (t ) < g (s ) < r

Think about this language for awhile. It’s a formal way of saying that as we input larger and larger positive 
real numbers to the function g, we get smaller and smaller positive reals that “close in” on 0. This statement 
also tells us that even if we input huge numbers such as 1,000,000, 1,000,000,000, or 1,000,000,000,000 
to the function g, we’ll never get 0 when we calculate g (x ). We can’t input “infinity” in an attempt to get 
0 out of g, either. “Infinity” isn’t a real number!

Are you confused?

If the notion of “closing in on 0” confuses you, look at the graph of the function g for large values of x. As 
you move out along the x axis in the positive direction, the curve gets closer and closer to the x axis, where 
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22 Limits and Continuity

g (x) = 0. No matter how close the curve gets to the axis, you can always get it to come closer by moving 
out farther in the positive x direction, as shown in Fig. 2-1. But the curve never reaches the x axis.

Sum rule for two limits

Consider two functions f (x) and g (x) with different limits. We can add the functions and take 
the limit of their sum, and we’ll get the same thing as we do if we take the limits of the functions 
separately and then add them. Let’s call this the sum rule for two limits and write it symbolically as

Lim
x →k  [ f (x ) + g (x )] = Lim

x →k f (x ) + Lim
x →k g (x )

where k, the value that x approaches, can be a real-number constant, another variable, or 
“infinity.” This rule isn’t restricted to functions. It holds for any two expressions with defin-
able limits. It also works for the difference between two expressions. We can write

Lim
x →k  [ f (x ) − g (x )] = Lim

x →k f (x ) − Lim
x →k g (x )

g (x)

g (x) = 1/x

x

x

x

Axis

Curve

Keep

going

Keep

going

Magnify

Figure 2-1  As x increases endlessly, the value of 1/x
approaches 0, but it never actually becomes 
equal to 0.



In verbal terms, we can say these two things:

• The limit of the sum of two expressions is equal to the sum of the limits of the expressions.
• The limit of the difference between two expressions is equal to the difference between 

the limits of the expressions (in the same order).

Multiplication-by-constant rule for a limit

Now consider a function with a defined limit. We can multiply that limit by a constant, and 
we’ll get the same thing as we do if we multiply the function by the constant and then take the 
limit. Let’s call this the multiplication-by-constant rule for a limit. We write it symbolically as

c Lim
x →k f (x ) = Lim

x →k c [ f (x )]

where c is a real-number constant, and k is, as before, a real-number constant, another vari-
able, or “infinity.” As with the sum rule, this holds for any expressions with definable limits, 
not only for functions. In verbal terms, we can say this:

• A constant times the limit of an expression is equal to the limit of the expression times 
the constant.

Here’s a challenge!

Determine the limit, as x approaches 0, of a function h (x) that raises x to the fourth power and then takes 
the reciprocal:

h (x ) = 1/x 4

Symbolically, this is written as

Lim
x→0  1/x 4

Solution

As x starts out either positive or negative and approaches 0, the value of 1/x4 increases endlessly. No matter how 
large a number you choose for h (x), you can always find something larger by inputting some x whose absolute 
value is small enough. In this situation, the limit does not exist. You can also say that it’s not defined.

Once in awhile, someone will write the “infinity” symbol, perhaps with a plus sign or a minus sign 
in front of it, to indicate that a limit blows up (increases without bound) positively or negatively. For 
example, the solution to this “challenge” could be written as

Lim
x→0

 1/x 4 = ∞

or as

Lim
x→0

 1/x 4 = + ∞
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24 Limits and Continuity

Continuity at a Point
When we scrutinize a function or its graph, we might want to talk about its continuity at a 
point. But first, we must know the value of the function at that point, as well as the limit as 
we approach it from either direction.

Right-hand limit at a point

Consider the following function, which takes the reciprocal of the input value:

g (x ) = 1/x

We can’t define the limit of g (x ) as x approaches 0 from the positive direction, because the 
function blows up as x gets smaller positively, approaching 0. To specify that we approach 0 
from the positive direction, we can refine the limit notation by placing a plus sign after the 
0, like this:

Lim
x → +0

g (x )

This expression reads, “The limit of g (x ) as x approaches 0 from the positive direction.” We 
can also say, “The limit of g (x ) as x approaches 0 from the right.” (In most graphs where x
is on the horizontal axis, the value of x becomes more positive as we move toward the right.) 
This sort of limit is called a right-hand limit.

Right-hand continuity at a point

What about some other point, such as where x   = 1? As we approach the point where x = 1 from 
the positive direction, g starts out at positive values smaller than 1 and increases, approaching 
1. We can see this with the help of Fig. 2-2, which is a graph of g drawn in the vicinity of the 
point where x = 1. (Each division on the axes represents 1/2 unit.) This graph tells us that

Lim
x →1+ g (x ) = 1

We can calculate the actual value of g for x = 1, getting

g (1) = 1/1 = 1

Now suppose that:

• We can define the right-hand limit of a function at a certain point
• We can define the actual value of the function at that point
• The limit and the actual value are the same

When all three of these things are true, we say that the function is right-hand continuous at that 
point. Some texts will tell us that g is continuous on the right at the point. In this example, g is 
right-hand continuous at x = 1.



Left-hand limit at a point

Let’s expand the domain of g to the entire set of reals except 0, for which g is not defined because 
1/0 is not defined. Suppose that we start out with negative real values of x and approach 0 from 
the left. As we do this, g decreases endlessly, as we can see by looking at Fig. 2-3. (Here, each 
division on the axes represents 1 unit.) Another way of saying this is that g increases negatively 
without limit, or that it blows up negatively. Therefore,

Lim
x → −0

g (x )

is not defined. We read the above symbolic expression as, “The limit of g (x ) as x approaches 
0 from the negative direction.” We can also say, “The limit of g (x ) as x approaches 0 from the 
left.” This sort of limit is called a left-hand limit.

Left-hand continuity at a point

Now let’s look again at the point in the graph g where x = 1. Suppose we approach this point 
from the left, that is, from the negative direction. The value of g starts out at positive values larger 
than 1. As x increases and approaches 1, g decreases, getting closer and closer to 1. Figure 2-4 
illustrates what happens here. (Each division on the axes represents 1/2 unit.) We have

Lim
x→ −1 g (x ) = 1

Each axis
increment
is 1/2 unit

g (1) = 1Lim g (x) = 1 
x 1+

x

g (x )

g (x) = 1/x

Figure 2-2  The limit of the function g (x) = 1/x as x
approaches 1 from the right is equal to the 
value of the function when x = 1. In this 
graph, each axis division represents 1/2 unit.
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x

Lim g (x)
x –0

is not defined

Each axis
increment
is 1 unit

g (x)

g (x) = 1/x

Figure 2-3  As x approaches 0 from the negative 
direction, the value of 1/x increases 
negatively without limit. In this graph, 
each axis division represents 1 unit.

Each axis
increment
is 1/2 unit

g (1) = 1

g (x) = 1/x

x

g (x)

Lim g (x) = 1
x 1–

Figure 2-4  The limit of the function g (x) = 1/x as x
approaches 1 from the left is equal to the 
value of the function when x = 1. In this 
graph, each axis division represents 1/2 unit.



We already know that g (1) = 1. Just as we did when approaching from the right, we can say 
that g is left-hand continuous at the point where x = 1. Some texts will say that g is continuous
on the left at that point.

Are you confused?

It’s easy to get mixed up by the meanings of “negative direction” and “positive direction,” and how these 
relate to the notions of “left-hand” and “right-hand.” These terms are based on the assumption that we’re 
talking about the horizontal axis in a graph, and that this axis represents the independent variable. In most 
graphs of this type, the value of the independent variable gets more negative as we move to the left, and 
more positive as we move to the right. This is true no matter where on the axis we start.

As we travel along the horizontal axis, we might be in positive territory the whole time; we might be in 
negative territory the whole time; we might cross over from the negative side to the positive side or vice-
versa. Whenever we come toward a point from the left, we approach from the negative direction, even if 
that point corresponds to something like x = 567. Whenever we come toward a point from the right, we 
approach from the positive direction, even if the point is at x = −53,535. The location of the point doesn’t 
matter. The important thing is the direction from which we approach.

“Total” continuity at a point

Now that we’ve defined right-hand and left-hand continuity at a point, we can define conti-
nuity at a point in a “total” sense. When a function is both left-hand continuous and right-
hand continuous at a point, we say that the function is continuous at that point. Conversely, 
whenever we say that a function is continuous at a point, we mean that it’s continuous as we 
approach and then reach the point from both the left-hand side and the right-hand side.

Here’s a challenge!

Suppose we modify the function g (x) = 1/x by changing the value for x = 1. Let’s call this new function 
g∗. The domain remains the same: all real numbers except 0. The only difference between g ∗ and g is that 
g∗ (1) is not equal to 1, but instead is equal to 4, as shown in Fig. 2-5. (In this graph, each axis division is 
1 unit.) We have seen that the original function g is both right-hand continuous and left-hand continuous 
at (1,1), so we know that g is “totally” continuous at (1,1). But what about g ∗? Is this modified function 
continuous at the point where x = 1? Is it left-hand continuous there? Is it right-hand continuous there?

Solution

The answer to each of these three questions is “No.” The function g ∗ is not continuous at the point where 
x = 1. It’s not right-hand continuous or left-hand continuous there. The limit of g ∗ as we approach x = 1 
from either direction is equal to 1. That is,

Lim
x→ +1 g ∗ (x ) = 1
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and

Lim
x→ −1

g ∗ (x ) = 1

As we move toward the point where x = 1 from either direction along the curve, it seems as if we should 
end up at the point (1,1) when the value of x reaches 1. But when we look at the actual value of g∗ at x = 1, 
we find that it’s not equal to 1. There is a discontinuity in g ∗ at the point where x = 1. We can also say that 
g∗ is not continuous at the point where x = 1, or that g∗ is discontinuous at the point where x = 1.

Here’s another challenge!

Look again at the step function we saw in Fig. 1-11 near the end of Chap. 1. Is this function right-hand 
continuous at point where x = 3? Is it left-hand continuous at that point?

Solution

A portion of that function is reproduced in Fig. 2-6, showing only the values in the vicinity of our point 
of interest. Let’s call the function s (x ). We can see from this drawing that

Lim
x → +3

s (x ) = 3

x

Each axis
increment
is 1 unit

g (x )

(1,4)

g* (x) = 1/x when x ≠ 1
          = 4 when x = 1

Figure 2-5  A modified function g ∗, which is the same as 
g except that the point (1,1) has been moved 
to (1,4).



and

Lim
x→ −3 s (x ) = 2

The value of the function at the point where x = 3 is s (3) = 3. The right-hand limit and the actual value 
are the same, so s is right-hand continuous at the point where x = 3. But s is not left-hand continuous at 
the point where x = 3, because the left-hand limit and the actual value are different. The same situation 
occurs at every integer value of x in the step function illustrated in Fig. 1-11. Because s is not continuous 
from both the right and the left at any point where x is an integer, s is not continuous at any such point. 
This function has an infinite number of discontinuities!

Continuity of a Function
A real-number function in one variable is a continuous function if and only if it is continuous 
at every point in its domain. Imagine a line or curve that’s smooth everywhere, with no gaps, 
no jumps, and no blow-ups in its domain. That’s what a continuous function looks like when 
graphed.

Linear functions

All linear functions are continuous. A real-number linear function L always has an equation 
of this form:

L (x ) = ax + b

Lim s (x) = 2 
x 3 –

Lim s (x) = 3
x 3 +

x

6

4

2

2 4 6

s (x)

Figure 2-6  Limits of a step function, 
s (x), at the point where x = 3.
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30 Limits and Continuity

where x is the independent variable, a is a nonzero real number, and b can be any real number. 
In rectangular coordinates, the graph of a linear function is a straight line that extends forever 
in two opposite directions. It never has a discontinuity.

Figure 2-7 shows four generic graphs of linear functions. The independent variable is on 
the horizontal axis, and the dependent variable is on the vertical axis.

Quadratic functions

All single-variable, real-number quadratic functions are continuous. The general form of a 
quadratic function Q is

Q (x ) = ax 2 + bx + c

where x is the independent variable, a is a nonzero real, and b and c can be any reals. In rect-
angular coordinates, the graph of a quadratic function is always a parabola that opens either 
straight up or straight down. The domain includes all reals, but the range is restricted to either 
the set of all reals greater than or equal to a certain absolute minimum, or the set of all reals less than 
or equal to a certain absolute maximum. There are never any gaps, jumps, or blow-ups in the graph
within the domain.

Figure 2-8 shows four generic graphs of quadratic functions. The independent variable is 
on the horizontal axis, and the dependent variable is on the vertical axis.

Figure 2-7  Linear functions are always continuous. Imagine the 
lines extending smoothly forever from both ends.



Cubic functions

All single-variable, real-number cubic functions are continuous. The general form of a cubic 
function C is

C (x ) = ax 3 + bx 2 + cx + d

where x is the independent variable, a is a nonzero real, and b, c, and d can be any reals. In rect-
angular coordinates, the graph of a cubic function looks like a badly distorted letter “S” tipped 
on its side, perhaps flipped over backward, and then extended forever upward and downward.

Unlike a quadratic function, which has a limited range with an absolute maximum or an 
absolute minimum, the range of a cubic function always spans the entire set of reals, although the 
graph can have a local maximum and a local minimum. The contour of the graph depends on the 
signs and values of a, b, c, and d. There are no gaps, blow-ups, or jumps within the domain.

Figure 2-9 shows four generic graphs of cubic functions. The independent variable is on 
the horizontal axis, and the dependent variable is on the vertical axis.

Polynomial functions

All single-variable, real-number polynomial functions are continuous. We can write the general 
form of an nth-degree polynomial function (let’s call it Pn) as follows, where n is an integer 
greater than 3, and x is never raised to a negative power:

Pn (x ) = anx n + an−1x n−1 + an−2x n−2 + · · · + a1x + b

Figure 2-8  Quadratic functions are always continuous. Imagine 
the curves extending smoothly forever from both ends.
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Here, x is the independent variable, a1, a2, a3, . . . , and an are called the coefficients, and b is 
called the stand-alone constant. The leading coefficient an, can be any real except 0. All the other 
coefficients, and the stand-alone constant, can be any real numbers.

The domain of an nth-degree polynomial function extends over the entire set of real 
numbers. If n is even, the range is restricted to either the set of all reals greater than or equal 
to a certain absolute minimum, or the set of all reals less than or equal to a certain absolute 
maximum. If n is odd, the range spans the entire set of reals, but there may be one or more 
local maxima and minima. The contour of the graph can be complicated, but there are never 
any gaps, blow-ups, or jumps within the domain.

Other continuous functions

Plenty of other functions are continuous. You can probably think of a few right away, remem-
bering your algebra, trigonometry, and precalculus courses.

Discontinuous functions

A real-number function in one variable is called a discontinuous function if and only if it is not
continuous at one or more points in its domain. Imagine a function whose graph is a line or 
curve with at least one gap, blow-up, or jump. That’s what a discontinuous function looks like 
when graphed.

Sometimes a discontinuous function can be made continuous by restricting the domain. 
We eliminate all portions of the domain that contain discontinuities. For example, the function 
g∗, described earlier in this chapter and graphed in Fig. 2-5, is not continuous over the set of 
positive reals, because there’s a discontinuity at the point where x = 1. But we can make g∗

Figure 2-9  Cubic functions are always continuous. Imagine the 
curves extending smoothly forever from both ends.



continuous if we restrict its domain so that x > 1. We can also make it continuous if we restrict 
the domain so that 0 < x < 1, or so that x < 0. In fact, there are infinitely many ways we can 
restrict the domain and get a continuous function!

Here’s a challenge!

Look again at the function g (x ) = 1/x that we worked with earlier in this chapter. If we define the domain 
of g as the set of all positive reals except 0, is this function continuous? If we include x = 0 in the domain 
and give the function the value 0 there, calling the new function g #, is this function continuous?

Solution

As long as we don’t allow x to equal 0, the function g (x ) = 1/x is both right-hand continuous and left-hand 
continuous at every point in the restricted domain. That means it’s a continuous function, even though its 
graph takes a huge jump. The blow-up in the graph does not represent a true discontinuity in g, because 
we don’t allow x = 0 in the domain.

Now suppose that we modify the function to allow x = 0 in the domain, calling the new function g #

and including (0,0). Because neither the right-hand limit nor the left-hand limit is equal to 0 as x ap-
proaches 0, the function g # is neither right-hand continuous nor left-hand continuous at the point where 
x = 0. Because of this single discontinuity, g # is not a continuous function.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Find the limit of the infinite sequence

1/10, 1/102, 1/103, 1/104, 1/105, . . . 

 2.   In a series, a partial sum is the sum of all the term up to, and including, a certain term. 
As we include more and more terms in a series, the partial sum usually changes. Find 
the limit of the partial sum of the infinite series

1/10 + 1/102 + 1/103 + 1/104 + 1/105 + · · ·

  as the number of terms in the partial sum approaches infinity.

 3.  Let x be a positive real number. Does the following limit exist? If so, find it. If not, 
explain why not.

Lim
x →∞  1/x 2
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 4.  Let x be a positive real number. Does the following limit exist? If so, find it. If not, 
explain why not.

Lim
x → +0

 1/x 2

 5.  Consider the base-10 logarithm function (symbolized log10). Sketch a graph of the 
function f (x ) = log10 x for values of x from 0.1 to 10, and for values of f  from −1 to 1. 
Determine

Lim
x → −3

 log10 x

 6. Look again at f (x ) = log10 x. Find

Lim
x → +3  log10 x

 7.  Based on the answers to Probs. 5 and 6, can we say that f (x ) = log10 x is continuous at 
the point where x = 3? If so, why? If not, why not?

 8.  Is the function f (x ) = log10 x continuous over the set of positive reals? If not, where are 
the discontinuities? Is this function continuous over the set of nonnegative reals (that is, 
all the positive reals along with 0)? If not, where are the discontinuities?

 9.  Sketch a graph of the absolute-value function (symbolized by a vertical line on either 
side of the independent variable) for values of the domain from approximately −6 to 6. 
Is this function continuous over the set of all reals? If not, where are the discontinuities?

10.  Sketch a graph of the trigonometric cosecant function for values of the domain 
between, and including, −3p radians and 3p radians. Is this function continuous if 
we restrict the domain to this closed interval? If not, where are the discontinuities? 
Remember that the cosecant (symbolized csc) of a quantity is equal to the reciprocal of 
the sine (symbolized sin). That is, for any x,

csc x = 1 / (sin x )
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All single-variable linear functions have straight-line graphs. The slope of such a graph can be 
found easily using ordinary algebra. In this chapter, we’ll learn a technique that allows us to 
find the slope of a graph whether its function is linear or not.

Vanishing Increments
When we want to find the slope of a curve at a point, we’re looking for the instantaneous rate 
of change in a function for a specific value of the independent variable. The instantaneous rate 
of change is the slope of a tangent line at that point on the curve.

What is a tangent line?

In the rectangular coordinate plane, a tangent line intersects a curve at a point, and has the 
same slope as the curve at that point. Figure 3-1 shows two examples of straight lines tangent 
to curves at certain points (at A and B), and two examples of straight lines that are not tangent 
to the same curves at those same points (at C and D).

Slope between two points

Imagine a nonlinear function whose graph is a curve in the rectangular xy-plane, and whose 
equation is

y = f (x )

Suppose that we want to find the slope of a line tangent to the curve at a specific point (x0,y0).
Let’s call this “mystery slope” M. We can approximate M by choosing some point (x,y ) that’s 
near (x0,y0) and that is also on the curve, as shown in Fig. 3-2. We construct a line through 
the two points. The slope of that line is close to M. The difference in the y-values between our 
two points (x,y ) and (x0,y0) is

Δy = y − y0
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A B

C D

Figure 3-1  At A and B, the dashed lines are tangent to the 
curves at the points shown by the dots. At C and D, 
the lines are not tangent to the curves.

(x0,y0)

(x,y)

y = f (x)

Δy

Δx

Slope of line =
Δy/Δx

Figure 3-2  The slope of a curve at a point (x0,y0) can be 
approximated by constructing a line through that 
point and a nearby point (x,y), and then finding the 
slope of the line, Δy /Δx.



and the difference in the x-values is

Δx = x − x0

The slope of the line through the two points is

Δy /Δx = ( y − y0) / (x − x0)

This slope is approximately the same as M. The accuracy of our approximation depends on how 
close together the two points are. We’ll get the best results if we choose (x,y ) as close to (x0,y0) as 
possible. But we can’t make the points identical in an effort to find M exactly. If we do that, we 
get Δy = 0 and Δx = 0. Then when we try to calculate the slope, we get 0/0. That’s no help!

Converging points

In Chap. 2, we reviewed the theory of limits, which Newton and Leibniz used centuries ago to 
figure out instantaneous rates of change in the values of functions. Isaac Newton called these 
rates of change fluxions. We call them derivatives.

In the situation of Fig. 3-2, we can’t put (x,y ) directly on top of the point (x0,y0); if we do, 
our problem reduces to nonsense. But we can move (x,y ) toward (x0,y0) until the two points 
are arbitrarily close together. We get the points as close to each other as we can imagine—and 
then a little closer! We minimize Δx until it’s “too small to see.”

As Δx shrinks to almost nothing, Δy does the same. Imagine the point (x,y ) getting to 
within a hair’s width, then a bacterium’s length, then a proton’s diameter of (x0,y0). As this occurs, 
the slope of the line through the two points gets arbitrarily close to M, as shown in Fig. 3-3. The 
actual value of M is therefore equal to the limit of Δy /Δx as Δx approaches 0:

M = Lim
xΔ →0

Δy /Δx
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(x0,y0)

(x,y)

y = f (x )

Slope of curve
at point =
dy/dx

Δy

Δx

Figure 3-3  As (x,y) approaches (x0,y0), the increments Δy and 
Δx become smaller, and the line approaches the slope 
of the curve at the point (x0,y0). We call this slope 
dy /dx.
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We now have a way to find the slope of a curve or the instantaneous rate of change in 
any function, as long as we can find the limit of Δy /Δx as Δx approaches 0. This limit is the 
derivative of the function.

Mathematicians call the arbitrarily tiny quantities Δy and Δx differentials, and sometimes 
symbolize them dy and dx, respectively. They are called infinitesimals in some texts. We can 
express the exact “mystery slope” as

M = dy /dx

Are you confused?
You might ask, “What’s the difference between y and f (x ) here? Are they different names for the same 
thing?” If y is the dependent variable in a function f (x ), then they are indeed the same. As you work with 
calculus in the future, you’ll likely see the derivative of a function y = f (x ) written in many different ways. 
Here are some of the variants you should watch for:

dy /dx

y ′
df (x ) / dx

d  /  dx f (x )

df /dx

f   ′(x )

f   ′

Here’s a challenge!
Find the slope M of a line tangent to the graph of the function

f (x ) = x 2

at the point (x0,y0) = (1,1) in rectangular xy-coordinates, where y = f (x ). What does this slope 
represent?

Solution
Let’s set up a two-point scheme, choosing a movable point (x,y ) near (1,1) as shown in Fig. 3-4. The func-
tion tells us that y = x 2 for all possible values of x and y. The x-value of our movable point is

x = 1 + Δx

The y-value of our movable point is

y = 1 + Δy = (1 + Δx )2 = 1 + 2Δx + (Δx )2

The slope of the line passing through our two points is

Δy /Δx = ( y − 1) / (x − 1)



Substituting the quantity [1 + 2Δx + (Δx )2] in place of y in the above equation, and also substituting the 
quantity (1 + Δx ) in place of x, we get

Δy /Δx = [1 + 2Δx + (Δx )2 − 1] / (1 + Δx − 1)

which can be simplified to

Δy /Δx = [2Δx + (Δx )2] / Δx

and further to

Δy /Δx = 2 + Δx

To find the slope of the line tangent to the curve at the point (1,1), we must find

M = Lim
xΔ →0

Δy /Δx

In this case, it turns out to be

M = Lim
xΔ →0

 2 + Δx

It’s easy to see that the quantity (2 + Δx ) approaches 2 as Δx approaches 0. That limit, 2, is the slope of 
the line tangent to the curve at the point (1,1). It’s also the derivative of the function f (x ) = x 2 at the point 
where x = 1.

3

2

1

0
1 2 30

(1,1)

f (x) = x2

x

Δy

Δx

Slope of line =
Δy /Δx

y or
f (x)

Movable point
(x,y) =
(1+Δx, 1+Δy)

Figure 3-4   Finding the slope of a line tangent to the graph of 
f (x ) = x 2 at the point (1,1).
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Basic Linear Functions
We have just recreated an example of the original “Newton-Leibniz magic,” which allows us 
to find the slope of a line tangent to a curve, or to find the instantaneous rate of change in 
a nonlinear function, at a specified point. Now let’s work out some derivatives over whole 
domains for some basic linear functions.

Simply a constant

Imagine a constant function in which the dependent variable always has the same value, no 
matter what we input for the independent variable. If we call the function f, then we can 
describe it simply enough:

f (x ) = a

where x is the independent variable and a is a real number. Let’s find the derivative function 
f   ′ at some unspecified point (x0,y0).

We begin by creating a movable point (x,y ) near (x0,y0), as shown in Fig. 3-5. In the rect-
angular xy-plane, y = a for all possible values of x. The x-value of our movable point is x0 + Δx.
The y-value is a. The derivative at (x0,y0) can be approximated by calculating the slope of a 
straight line passing through (x0,y0) and (x,y ). That slope is

Δy /Δx = ( y − y0) / (x − x0)

If we substitute a for y, a for y0, and the quantity (x0 + Δx ) for x in this equation, we get

Δy /Δx = (a − a) / (x0 + Δx − x0)

which can be simplified to

Δy /Δx = 0/Δx = 0

Slope of line =
Δy/Δx

f (x) = a
(x0,y0)

Movable point
(x,y) =
(x0+Δx,y0+Δy)

Δx

Δy = 0

Figure 3-5  Finding the derivative of the constant 
function f (x ) = a at a point (x0,y0).



Δy

Δx

Slope of line =
Δy/Δx

f (x) = ax

(x0,y0)

(x,y) = 
Movable point

(x0+Δx,y0+Δy)

Figure 3-6  Finding the derivative of the basic linear function 
f (x) = ax at a point (x0,y0).

The derivative f   ′(x0) is

f   ′(x0) = Lim
xΔ →0

 0

No limit can be more straightforward than this! The derivative f   ′(x0) is equal to 0, no matter 
what we choose for x0. By doing this exercise, we’ve shown that for any constant function

f (x ) = a

the derivative function is

f   ′(x ) = 0

which is called, appropriately enough, the zero function.

Multiply x by a real constant

Now we’ll find the derivative of a basic linear function in which the independent variable is 
multiplied by a real-number constant. Again, let’s call the function f. Then

f (x ) = ax

where x is the independent variable and a is the constant. Let’s figure out f   ′ at a nonspecific 
point (x0,y0).

We can invent a movable point (x,y ) near (x0,y0), as shown in Fig. 3-6. In rectangular 
xy-coordinates, y = ax for all possible values of x and y. The x-value of our movable point is

x = x0 + Δx

Basic Linear Functions  41



42  What’s a Derivative?

The y-value of the movable point is

y = ax = a (x0+Δx ) = ax0 + aΔx

We can approximate the derivative by finding the slope of a straight line passing through the 
points (x0,y0) and (x,y ). That slope is

Δy /Δx = ( y − y0) / (x − x0)

We know that y0 = ax0, because f tells us that any x-value must be multiplied by a to get the 
corresponding y-value. In the above equation, let’s substitute the quantity (ax0 + aΔx ) for y,
substitute ax0 for y0, and substitute the quantity (x0 + Δx ) for x. That gives us

Δy /Δx = (ax0 + aΔx − ax0) / (x0 + Δx − x0)

which can be simplified to

Δy /Δx = a (x0 + Δx − x0) / Δx

and further to

Δy /Δx = aΔx /Δx

and finally to

Δy /Δx = a

The derivative f   ′(x0) is therefore

f   ′(x0) = Lim
xΔ →0

a

This limit here is equal to a. That’s all there is to it! Therefore,

f   ′(x0) = a

no matter what value of x0 we choose. This result tells us that for any basic linear function of 
the form

f (x ) = ax

the derivative function is

f   ′(x ) = a

which is a constant function.



Here’s a challenge!
Using the calculus techniques we’ve learned so far (not plain algebra!), find the derivative of the 
function

f (x ) = −4x + 5

at the general point (x0,y0) in rectangular xy-coordinates, where y = f (x ). What does this result tell us?

Solution
Once again, let’s start out by creating a movable point (x,y ) near (x0,y0). Figure 3-7 shows the slant of the 
line. (The coordinate grid is not shown because it would make the illustration needlessly messy. It’s the 
slope we’re interested in, anyhow!). In rectangular xy-coordinates, we can graph our function in the slope-
intercept form as

y = −4x + 5

The x-value of our movable point is, as always,

x = x0 + Δx

The y-value of our movable point is

y = −4(x0 + Δx ) + 5 = −4x0 − 4Δx + 5

Δy

Δx

Slope of line =
Δy/Δx

(x0,y0)

Movable point
(x,y) =
(x0+Δx,y0+Δy)

f (x) = –4x + 5

Figure 3-7  Finding the derivative of the 
function f (x ) = −4x + 5 at a 
point (x0,y0).
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We approximate the derivative by finding the slope of a straight line through (x0,y0) and (x,y ). That slope is

Δy /Δx = ( y − y0) / (x − x0)

Our function f tells us that y0 = −4x0 + 5. Now, in the above equation, let’s substitute the quantity (−4x0 −
4Δx + 5) in place of y, substitute the quantity (−4x0 + 5) in place of y0, and substitute the quantity (x0 + Δx ) 
in place of x. That gives us

Δy /Δx = [−4x0 − 4Δx + 5 − (−4x0 + 5)] / (x0 + Δx − x0)

We had better be careful with the signs here! We can rewrite the above equation as

Δy /Δx = (−4x0 − 4Δx + 5 + 4x0 − 5) / (x0 + Δx − x0)

which can be simplified to

Δy /Δx = −4Δx /Δx

and finally to

Δy /Δx = −4

We got rid of a big mess in a hurry! Now we can say that the derivative f   ′(x0) is

f   ′(x0) = Lim
xΔ →0

−4

This is, again, trivial. The limit is equal to −4. Therefore,

f   ′(x0) = −4

no matter what value of x0 we choose. This tells us that the derivative of the linear function

f (x ) = −4x + 5

is the function

f   ′(x ) = −4

The stand-alone constant, 5, in f (x ) can be changed to any other real number, and we’ll still end up with 
the same derivative function, f   ′(x ) = −4.

Basic Quadratic Functions
The next step in understanding differentiation (the process of finding derivatives) is to do it 
with some basic quadratic functions.



Square x and multiply by constant

Let’s keep using the name f   for our functions. Using the same techniques as we have for sim-
pler functions, we’ll now find the derivative of

f (x ) = ax 2

where x is the independent variable and a is a real number. Our mission is to determine f   ′ at 
a point (x0,y0). In rectangular xy-coordinates, we can plot this function as the graph of

y = ax 2

By now, the routine ought to be getting familiar, and we shouldn’t need to draw a graph and 
label the points, curve, and lines. We create a movable point (x,y ) near (x0,y0). The x-value of 
the movable point is, as always,

x = x0 + Δx

The y-value of the movable point is

 y = ax 2 = a(x0 + Δx )2 = a[x0
2 + 2x0Δx + (Δx )2]

 = ax0
2 + 2ax0Δx + a(Δx )2

The derivative is approximately equal to the slope of a straight line passing through the points 
(x0,y0) and (x,y ). That slope is, as always,

Δy /Δx = ( y − y0) / (x − x0)

If we plug the value x0 into our function, we get y0 = ax0
2. In the above equation, let’s 

substitute

• The quantity [ax0 + 2ax0Δx + a(Δx )2] in place of y
• The value ax0

2 in place of y0

• The quantity (x0 + Δx ) in place of x

That gives us

Δy /Δx = [ax0
2 + 2ax0Δx + a(Δx )2 − ax0

2] / (x0 + Δx − x0)

which can be simplified to

Δy /Δx = [2ax0Δx + a(Δx )2] / Δx

and finally to

Δy /Δx = 2ax0 + aΔx

Basic Quadratic Functions  45



46  What’s a Derivative?

The derivative f   ′(x0) is therefore

f   ′(x0) = Lim
xΔ →0

 2ax0 + aΔx

As Δx approaches 0, the second addend in the expression, aΔx, approaches 0 because it is a 
constant multiple of Δx. The first addend, 2ax0, is not affected by changes in Δx. The limit of 
the entire expression is therefore equal to 2ax0, telling us that

f   ′(x0) = 2ax0

for any real number x0. On this basis, we can say that for any function of the form

f (x ) = ax 2

the derivative function is

f   ′(x ) = 2ax

Are you confused?
In each of these drills, just before we take the limit, we encounter ratios with Δx in the denominator. We 
also find Δx in each of the terms of the numerator. That lets us cancel out Δx in both the numerator and 
the denominator, so the expression is no longer a fraction. “But,” you might object, “we’re forcing Δx
down to 0 when we take the limit, aren’t we? How can we play around with these little Δx factors if they 
all ultimately turn out to be 0? Aren’t we dividing by 0 when we do this?”

That is an excellent question. But there’s no need to worry! The quantity Δx is never equal to 0, so it’s 
all right to divide by it, cancel it out, and treat it like any nonzero real number. It can get as close to 0 as we 
dare to imagine, either on the negative side or the positive side, but it is never true that Δx = 0. We’re see-
ing what happens to expressions that contain Δx as it gets arbitrarily close to 0, so Δx “thinks it’s 0 when it’s 
really not”! This might seem sneaky, almost deceptive—but it works, and it lies at the root of the branch of 
mathematics that Newton called infinitesimal calculus, and that people nowadays call differential calculus.

Here’s a challenge!
Using the calculus techniques we’ve learned so far, find the derivative of the function

f (x ) = −7x 2 + 2x

at the general point (x0,y0) in rectangular xy-coordinates, where y = f (x ).

Solution
We can plot this function as the graph of

y = −7x 2 + 2x



If it helps you envision the situation, you can go ahead and draw the graph by locating a few points that 
satisfy the function, and then filling in a smooth curve that passes through those points. We create the 
usual movable point (x,y ) near (x0,y0). The x-value of this point is

x = x0 + Δx

The y-value of the movable point is

y = −7x 2 + 2x = −7(x0 + Δx )2 + 2(x0 + Δx )

= −7[x0
2 + 2x0 Δx + (Δx )2] + 2x0 + 2Δx

= −7x0
2 − 14x0 Δx − 7(Δx )2 + 2x0 + 2Δx

The slope of a straight line passing through (x0,y0) and (x,y ), which approximates the derivative we’re 
looking for, is

Δy /Δx = ( y − y0) / (x − x0)

The function dictates that y0 = −7x0
2 + 2x0. In the above equation, let’s substitute

• The quantity [−7x0
2 − 14x0Δx − 7(Δx )2 + 2x0 + 2Δx] in place of y

• The quantity (−7x0
2 + 2x0) in place of y0

• The quantity (x0 + Δx ) in place of x

When we make these substitutions and then find the slope, we get

Δy /Δx = [−7x0
2 − 14x0Δx − 7(Δx )2 + 2x0 + 2Δx − (−7x0

2 + 2x0)] / (x0 + Δx − x0)

The signs are tricky in the numerator here, so we have to be careful! Let’s rewrite the above equation as

Δy /Δx = [−7x0
2 − 14x0Δx − 7(Δx )2 + 2x0 + 2Δx + 7x0

2 − 2x0] / (x0 + Δx − x0)

which can be simplified to

Δy /Δx = [−14x0 Δx − 7(Δx )2 + 2Δx ] / Δx

and finally to

Δy /Δx = −14x0 − 7Δx + 2

The derivative f   ′(x0) is

f   ′(x0) = Lim
xΔ →0

−14x0 − 7Δx + 2

As Δx approaches 0, the second addend, −7Δx, approaches 0 because it’s a constant multiple of Δx. The first 
addend, −14x0, and the third addend, 2, have nothing to do with Δx, so they stay the same as Δx
approaches 0. The limit of the entire expression is therefore −14x0 + 2, so we have

f   ′(x0) = −14x0 + 2
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for any real number x0. We’ve just shown that

f (x ) = −7x 2 + 2x

has the derivative function

f   ′(x ) = −14x + 2

Basic Cubic Functions
To differentiate a basic cubic function, we can go through the same process as we did to dif-
ferentiate the basic linear and quadratic functions. Some of the expressions are a little more 
complicated this time, but otherwise everything works out in a similar way.

Cube x and multiply by constant

Let’s go through our trusty routine to find the derivative of a function f in which we cube the 
independent variable x and then multiply by the constant a, like this:

f (x ) = ax  3

As in previous situations, we’ll determine f   ′ at a nonspecific point (x0,y0). In the xy-plane, we 
can plot the graph of

y = ax 3

The x-value of a movable point (x,y ) in the vicinity of (x0,y0) is, once again,

x = x0 + Δx

The y-value of the movable point is

y = ax 3 = a(x0 + Δx )3 = a[x0
3 + 3x0

2Δx + 3x0(Δx )2 + (Δx )3]

          = ax0
3 + 3ax0

2Δx + 3ax0(Δx )2 + a(Δx )3

The slope of a line passing through (x0,y0) and (x,y ) is

Δy/Δx = ( y − y0) / (x − x0)

The function says that y0 = ax0
3. In the above equation, let’s substitute

• The quantity [ax0
3 + 3ax0

2Δx + 3ax0(Δx )2 + a(Δx )3] for y
• The quantity ax0

3 for y0

• The quantity (x0 + Δx ) for x



That gives us

Δy /Δx = [ax0
3 + 3ax0

2Δx + 3ax0(Δx )2 + a(Δx )3 − ax0
3] / (x0 + Δx − x0)

which simplifies to

Δy /Δx = [3ax0
2Δx + 3ax0(Δx )2 + a(Δx )3] / Δx

and finally to

Δy /Δx = 3ax0
2 + 3ax0Δx + a(Δx )2

The derivative f   ′(x0) is therefore

f   ′(x0) = Lim
xΔ →0  3ax0

2 + 3ax0Δx + a(Δx )2

As Δx approaches 0, the second addend, 3ax0Δx, approaches 0 because it is a constant multiple 
of Δx. The third addend, a(Δx )2, also approaches 0. It’s a constant multiple of (Δx )2, which 
must approach 0 as Δx approaches 0. The first addend, 3ax0

2, stays the same no matter what 
Δx becomes. The limit of the entire expression is therefore 3ax0

2, showing that

f   ′(x0) = 3ax0
2

for any real number x0. Therefore, any function of the form

f (x ) = ax 3

has the derivative

f   ′(x ) = 3ax 2

Here’s a challenge!
Using the calculus techniques we’ve learned so far, find the derivative of the function

f (x ) = 2x 3 − 5x

at the general point (x0,y0) in rectangular xy-coordinates, where y = f (x ).

Solution
We can plot this function as the graph of

y = 2x 3 − 5x
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We create the usual movable point (x,y ) near (x0,y0). The x-value of this point is

x = x0 + Δx

The y-value of the movable point is

y = 2x 3 − 5x = 2(x0 + Δx )3 − 5(x0 + Δx )

 = 2[x0
3 + 3x0

2Δx + 3x0(Δx )2 + (Δx )3] − 5x0 − 5Δx

 = 2x0
3 + 6x0

2Δx + 6x0(Δx )2 + 2(Δx )3 − 5x0 − 5Δx

The slope of a line through (x0,y0) and (x,y ) is

Δy /Δx = ( y − y0) / (x − x0)

The original function tells us that y0 = 2x0
3 − 5x0. In the above equation, let’s substitute

• The quantity [2x0
3 + 6x0

2Δx + 6x0(Δx )2 + 2(Δx )3 − 5x0 − 5Δx] in place of y
• The quantity (2x0

3 − 5x0) in place of y0

• The quantity (x0 + Δx ) in place of x

When we make these substitutions, we get

Δy /Δx = [2x0
3 + 6x0

2Δx + 6x0(Δx )2 + 2(Δx )3 − 5x0 − 5Δx − (2x0
3 − 5x0)] / (x0 + Δx − x0)

which can be rewritten as

Δy /Δx = [2x0
3 + 6x0

2Δx + 6x0(Δx )2 + 2(Δx )3 − 5x0 − 5Δx − 2x0
3 + 5x0)] / (x0 + Δx − x0)

This can be simplified to

Δy /Δx = [6x0
2Δx + 6x0(Δx )2 + 2(Δx )3 − 5Δx )] / Δx

and finally to

Δy /Δx = 6x0
2 + 6x0 Δx + 2(Δx )2 − 5

The derivative f   ′(x0) is

f   ′(x0) = Lim
xΔ →0

 6x0
2 + 6x0Δx + 2(Δx )2 − 5

As Δx approaches 0, the second addend, 6x0Δx, approaches 0 because it is a multiple of Δx. The third ad-
dend, 2(Δx )2, approaches 0 because it’s a constant multiple of (Δx )2. The first addend, 6ax0

2, and the fourth 
addend, −5, are unaffected by changes in Δx. The limit of the entire expression is therefore 6x0

2 − 5, so

f   ′(x0) = 6x0
2 − 5



for any real number x0. That means our original function

f (x ) = 2x 3 − 5x

has the derivative function

f   ′(x ) = 6x 2 − 5

Here’s another challenge!
In the above scenario, consider the addends in the expression for f as two separate functions g and h, like 
this:

g (x ) = 2x 3

and

h (x ) = −5x

On this basis, we can say that

f (x ) = g (x ) + h (x )

Show that the derivative of this particular sum is equal to the sum of the derivatives:

f   ′(x ) = g ′(x ) + h ′(x )

Solution
First, let’s figure out the derivative function g′ using the general rule we’ve already derived. Using the rule 
for the derivative of a variable cubed and then multiplied by a constant, we get

g ′(x ) = 6x 2

Using the rule for the derivative of a variable multiplied by a constant, we get

h ′(x ) = −5

Adding these results gives us

g ′(x ) + h ′(x ) = 6x 2 − 5

This is what we got when we calculated f   ′(x ) in the previous “challenge.”
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Are you astute?
After all this repetition, you’ve probably noticed that some of the terms in the examples are always the 
same as corresponding terms in other examples. You’ve also seen that certain pairs of terms always can-
cel out, making the expressions simpler. In the numerators, you always end up subtracting f (x0) from 
f (x0 + Δx ). In the denominators, you always end up subtracting x0 from x0. In the end, you always get 
a ratio of the form

[ f (x0 + Δx ) − f (x0)] / Δx

Whenever you calculate a derivative using the techniques in this chapter, you’re actually generating the 
above expression, and then finding its limit as Δx approaches 0. In fact, the derivative f   ′ (x0) of a function 
f (x ) at the point where x = x0 is commonly defined as

f   ′(x0) = Lim
xΔ →0  [ f (x0 + Δx ) − f (x0)] / Δx

If we can differentiate the function at every point in its domain, then the formula can be generalized to

f   ′(x ) = Lim
xΔ →0  [ f (x + Δx ) − f (x )] / Δx

Remember that Δx can be either positive or negative. The limit, as shown above, must work from both the 
left and from the right, and the two results must agree. In my opinion, this definition is worth memoriz-
ing. You might put it into “mathematical verse,” breaking the thoughts down line by line:

To find the derivative of a function
f of x,

take f of “x plus a little something,”
then subtract f of x from that,

then divide by the little something,
and finally find the limit

as the little something
shrinks

until it’s practically nothing.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Find the derivative of the quadratic function:

f (x ) = x 2

  at the points where x = −3, x = −2, and x = −1.



   Here’s a hint for this exercise and all the rest to follow: You may use the general 
formulas we derived in the text to find these derivatives. Those formulas are theorems
now—facts we can use again and again—because we’ve proven them true. You don’t 
have to go through the ritual of setting up a movable point, approximating the slope, 
and then finding the limit of that slope as Δx approaches 0.

 2. Find the derivative of the quadratic function:

f (x ) = x 2

  at the points where x = 0, x = 1, x = 2, and x = 3.

 3. Find the derivative of the quadratic function:

f (x ) = −2x 2

  at the points where x = −3, x = −2, and x = −1.

 4. Find the derivative of the quadratic function:

f (x ) = −2x 2

  at the points where x = 0, x = 1, x = 2, and x = 3.

 5. Find the derivative of the quadratic function:

f (x ) = −7x 2 + 2x

  at the points where x = −3, x = −2, and x = −1.

 6. Find the derivative of the quadratic function:

f (x ) = −7x 2 + 2x

  at the points where x = 0, x = 1, x = 2, and x = 3.

 7. Find the derivative of the cubic function:

f (x ) = 5x 3

  at the points where x = −3, x = −2, and x = −1.

 8. Find the derivative of the cubic function:

f (x ) = 5x 3

  at the points where x = 0, x = 1, x = 2, and x = 3.
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 9. Find the derivative of the cubic function:

f (x ) = 2x 3 − 5x

  at the points where x = −3, x = −2, and x = −1.

10. Find the derivative of the cubic function:

f (x ) = 2x 3 − 5x

  at the points where x = 0, x = 1, x = 2, and x = 3.



In Chap. 3, every function we saw was differentiable, meaning that it had a derivative at every 
possible point. But there are functions for which derivatives don’t exist at certain points. In 
this chapter, we’ll learn how to tell when a function is differentiable, and when it is not.

Let’s Look at the Graph
There’s a quick and easy way to see if a function is differentiable at every point in its domain, 
or if there are some points at which it’s nondifferentiable (impossible to differentiate). We can 
simply graph it! If the graph appears to have a definable slope at every point, then the function 
is probably differentiable. We can look for three signs that indicate differentiation problems.

Is there a gap?

Figure 4-1 is a graph of the function f (x ) = 1/x. This graph has a gap. We can’t define the 
function when x = 0. Because the function has no value when x = 0, the graph can’t have a 
slope at the point where x = 0.

It’s tempting to make an intuitive leap here. Could a line running straight up and down 
along the axis labeled f (x ) be tangent to the graph? That’s a fine idea, but there’s no point on 
the graph at which such a line could come into contact! A tangent line always touches a curve 
at a point.

Because we can’t define the slope of a line tangent to the graph of this function at the 
point where x = 0, we can’t define the derivative there, either. Even if we add the point (0,0) to 
define f  ( x ) = 1/x  for all real numbers, we can’t make the function differentiable at the point 
where x = 0, as we’ll see later in this chapter.

Is there a jump?

Figure 4-2 is a graph of a function that takes a jump. This function is defined for all real num-
bers, although there is a discontinuity. At every point on the line except the one where the 
jump occurs, the slope, and therefore the derivative, appears to be 0. Let’s look closely at the 
point where x = 0. At this point, we have f  (0) = 3. What is the slope of this graph at (0,3)?
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x

f (x)

f (x) = 1/x

2 4 6–4–6

2

6

–4
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4
“Gap” at x = 0 

Figure 4-1  This function has a gap at x = 0, because it is 
not defined there. It is discontinuous at the 
point where x = 0.
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6
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f (x) = –3 when x < 0
        = 3 when x ≥ 0

“Jump” at x = 0 

–2

Figure 4-2  This function takes a jump at x = 0, even 
though it is defined there. It is discontinuous 
at the point where x = 0.



We might think that the slope at the point (0,3) is parallel to the x axis, running along the 
part of the graph that lies to the right of that point. After all, the whole graph looks horizontal. 
I might try to convince you, based on that notion, that the function has a slope of 0 at every 
point in its domain, including (0,3). But you could argue that a tangent line at the jump is 
not horizontal but vertical, running along the f (x ) axis and passing through (0,−3) as well as 
(0,3). That makes just as much (or just as little) sense.

The slope of this graph at the point where x = 0 can’t be defined with certainty. Therefore, 
the derivative does not exist for this function at the point where x = 0. Both this function 
and the one with the gap (Fig. 4-1) have discontinuities. As things work out, if a function is 
discontinuous at a particular point, then it has no derivative there. Turning this logic “inside-
out” gives us one of the most important facts in calculus:

• If a function has a derivative at a point, then the function is continuous there.

Is there a corner?

Figure 4-3 shows the graph of a function that’s defined over the entire set of real numbers, and 
that’s continuous everywhere as well. But there’s something strange about this function at the point 
where x = 2. It has no gap there, and its value doesn’t jump there, but the curve turns a corner.

The slope of a tangent line can’t be defined at the point where x = 2. The trouble here is 
similar to the problem we encountered in Fig. 4-2. If we want to talk about the slope at the 
point (2,4) on this graph, should we base our idea on the half-parabola to the left, or on the 
half-line to the right? Neither idea is better, but they disagree.
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“Corner” at x = 2 

Figure 4-3  This function turns a corner at x = 2, 
although it is continuous over the entire set 
of real numbers.
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Are you confused?
You might still wonder why we can’t define the slope of the graph in Fig. 4-3 at the point (2,4). You might 
say, “Suppose we choose two movable points, one on either side of (2,4), and draw a line through them. 
As we move these two points closer and closer to (2,4), one along the half-parabola and the other along 
the half-line, won’t they approach a line having a slope of 2 and running through the point (2,4)? Won’t 
that line be a legitimate tangent line?” No, there are two problems with that idea.

First, it’s “illegal” to use two movable points in an attempt to find a line whose slope indicates a derivative. 
That’s not the way it’s done according to the definition at the end of Chap. 3. We must approach the fixed point, 
in this case (2,4), from one side at a time, and use it as one of the points through which we draw the line. Then 
we must be sure that we end up with the same line when we approach from the left as we do when we approach 
from the right. Only then can we assign it a slope and determine the derivative based on that slope.

Second, even if it were “legal” to use two movable points to find the line, the slope of that line would 
depend on the “relative rates of approach” in a situation like the one we see in Fig. 4-3. If the point on 
the left is always twice as far away from (2,4) as the point on the right, for example, we will end up with a 
different line than we will get if the two points are always at the same distance from (2,4). By adjusting the 
“relative rates of approach” of the two points, we could get a line with any slope between 0 and 4!

Here’s a challenge!
Look again at the graph of the function f (x ) = 1/x, shown in Fig. 4-1. Can we tell, by visual inspection, 
what happens to f   ′(x ) as x increases endlessly (that is, “approaches positive infinity”)? Can we tell what 
happens to f  ′(x ) as x decreases endlessly (that is, “approaches negative infinity”)?

Solution
Yes, we can get an idea of what happens in these cases, although looking at a graph doesn’t constitute a math-
ematical proof of anything. In this particular graph, as x increases endlessly (that is, “approaches positive infin-
ity”), the slope of the curve, and therefore the derivative f   ′(x ), appears to approach 0 from the negative direction. 
As x decreases endlessly (“approaches negative infinity”), the slope of the curve, and therefore the derivative, again 
appears to approach 0 from the negative direction. We can write these statements symbolically as

As x → +∞, f   ′(x ) → 0−

and

As x → −∞, f   ′(x ) → 0−

Don’t get confused here. The function itself behaves quite differently than its derivative! As x increases 
endlessly in the positive direction, the value of the function approaches 0 from the positive direction. As x
increases endlessly in the negative direction, the value of the function approaches 0 from the negative direc-
tion. We can write these statements symbolically as

As x → +∞, f (x ) → 0+

and

As x → −∞, f (x ) → 0−



When We Can Differentiate
Now that we have a visual idea of what it means for a function to be differentiable at a point, 
let’s get a little more formal. We can call a function differentiable at a single point, over an 
interval, or over its entire domain.

• A function is differentiable at a point if and only if the function has a derivative, as 
defined at the end of Chap. 3, at that point.

• A function is differentiable over an interval if and only if it has a derivative, as defined 
at the end of Chap. 3, at every point in that interval.

• A function is differentiable in general (or simply differentiable) if and only if it has a 
derivative, as defined at the end of Chap. 3, at every point in its domain.

Try to find the limits

When we want to know whether or not a function is differentiable at a particular point, 
we can try to find the derivative at that point and see if the result makes sense. If we get 
a meaningful and unambiguous result, then the derivative exists at the point. Otherwise, 
it doesn’t.

For all the functions f (x ) we examined in Chap. 3, we were able to find the following 
limit at any point where the independent variable was equal to some specific value x0:

f   ′(x0) = Lim
xΔ →0

 [ f (x0 + Δx ) − f (x0)] / Δx

If the notion of a derivative is to make any sense for a function f  (x ) at the point where 
x = x0, the value x0 must be in the domain. That is to say, f  (x0) must be defined. Once we 
know that, then we must be able to find the above limit whether Δx is positive or negative. In 
other words, the limit has to exist as we approach x0 from the right, and it also has to exist as 
we approach x0 from the left. That’s not all! For f  (x ) to have a derivative at the point where 
x = x0, the right-hand and left-hand limits, as defined in Chap. 2, must be the same. Stated 
symbolically,

f   ′(x0) = Lim
xΔ → +0

 [ f (x0 + Δx ) − f (x0)] / Δx

must be identical to

f   ′(x0) = Lim
xΔ → −0

 [ f (x0 + Δx ) − f (x0)] / Δx

Example

Figure 4-4 is a graph of a quadratic function that is defined and continuous over the entire 
set of real numbers:

f (x ) = x 2 − 3
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Let’s see whether or not this function is differentiable at the point where x = −2.5. We set up 
the limit

Lim
xΔ →0

 [ f (−2.5 + Δx ) − f (−2.5)] / Δx

We can calculate f (−2.5) easily enough:

f (−2.5) = (−2.5)2 − 3
 = 6.25 − 3
 = 3.25

Now we can write the limit as

Lim
xΔ →0

 [(−2.5 + Δx )2 − 3 − 3.25] / Δx

which expands to

Lim
xΔ →0

 [6.25 − 5Δx + (Δx )2 − 3 − 3.25] / Δx

and then simplifies to

Lim
xΔ →0

 [−5Δx + (Δx )2] / Δx

x

f (x)

2 4 6–2–4–6

2

6

–6

4

f (x) = x2 – 3

–4

x = –2.5

f ¢ (–2.5) = –5

Figure 4-4  This function is differentiable at the point 
where x = −2.5.



and finally to

Lim
xΔ →0

−5 + Δx

Whether Δx is positive or negative (that is, whether Δx approaches 0 from the right or the 
left), it’s easy to see that this limit is equal to −5. Therefore,

f   ′(−2.5) = −5

Now that we’ve found the derivative at the point where x = −2.5, we can conclude that the 
function is differentiable there.

Another example

Let’s reexamine the function we saw in Fig. 4-2. Suppose we want to find out if this function 
is differentiable at the point where x = 3. In the vicinity of this point, we can imagine that 
the function is

f (x ) = 3

as shown in Fig. 4-5. To see whether or not this function is differentiable at the point where 
x = 3, we can try to find the derivative there by setting up the limit

Lim
xΔ →0

 [ f  (3 + Δx ) − f (3)] / Δx
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f (x) = –3 when x < 0
        = 3 when x ≥ 0
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Figure 4-5 This function is differentiable at the point 
where x = 3, but not where x = 0.
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We know that f  (3) = 3, so we can rewrite this limit as

Lim
xΔ →0

 [ f (3 + Δx ) − 3] / Δx

We must keep in mind that this limit has to be evaluated as Δx becomes very small either posi-
tively or negatively, approaching 0 from either the right or the left. In either of those scenarios, 
the value of f (3 + Δx ) remains constant at 3. That allows us to simplify the above limit to

Lim
xΔ →0

 (3 − 3) / Δx

and then to

Lim
xΔ →0

 0/Δx

This limit is equal to 0. No matter how small we make Δx, it’s still a tiny positive or negative 
real number (never 0), so 0/Δx is always equal to 0. Therefore

f   ′(3) = 0

Having found a well-defined derivative at the point where x = 3, we can be sure that the func-
tion is differentiable there.

Are you confused?
“Wait!” you say. “In the two examples we just finished, we didn’t find the left-hand and the right-hand 
limits separately! Doesn’t the definition of the derivative, given at the end of Chap. 3, require us to do 
that?” Yes, it does. But in the two examples we just finished, we were able to perform both tasks together, 
because it was apparent that the two limits would be the same if we calculated them individually. If your 
mind demands absolute rigor (not a bad trait for a mathematician), you can do both limit calculations 
separately in every case. In the following challenge, we’ll see a situation where that attitude serves us well.

Here’s a challenge!
Let’s try to find the derivative of the function shown in Fig. 4-5 at the point where x = 0, first by approaching 
the point from the right, and then by approaching from the left. What can we conclude from this result?

Solution
Before we start, let’s state the function mathematically. To fully describe it, we must write it in two parts, 
like this:

f (x ) = −3 when x < 0

= 3 when x ≥ 0

First, let’s approach 0 from the right, that is, from the positive side. Geometrically, we’ll move from right 
to left along the upper half-line, or the portion to the right of the vertical axis. We set up the limit

Lim
xΔ → +0

 [ f (0 + Δx ) − f (0)] / Δx



We know that f (0) = 3, so we can rewrite this limit as

Lim
xΔ → +0

 [ f (0 + Δx ) − 3] / Δx

As Δx becomes small positively, the value of f (0 + Δx ) remains constant at 3, so we can rewrite the above 
limit as

Lim
xΔ → +0

 (3 − 3) / Δx

and then to

Lim
xΔ → +0

 0/Δx

This limit is equal to 0. No matter how small we make Δx, it’s always a positive real number, so 0/Δx = 0. 
This result makes sense. The right-hand part of the half-line is horizontal, so we should expect the deriva-
tive, which represents the slope, to be 0.

Now let’s approach 0 from the left (from the negative side). In the graph, this is the equivalent of moving 
from left to right along the lower half-line, which lies to the left of the vertical axis. We set up the limit

Lim
xΔ → −0

 [ f (0 + Δx ) − f (0)] / Δx

Remember that Δx is negative now, not positive! We know that f (0) = 3, so we can rewrite this limit as

Lim
xΔ → −0

 [ f (0 + Δx ) − 3] / Δx

As Δx becomes smaller and smaller negatively, f (0 + Δx ) remains constant, maintaining a value of −3 (not 
3, as it does to the right of the vertical axis), so we can rewrite the above limit as

Lim
xΔ → −0

 (−3 − 3) / Δx

and then to

Lim
xΔ → −0

−6/Δx

Here, the value of Δx becomes smaller and smaller negatively, becoming arbitrarily close to 0, but never 
quite getting there. The ratio −6/Δx is always a positive real, because it’s a negative divided by a negative. 
As Δx approaches 0, the ratio −6/Δx blows up; it gets arbitrarily large. The limit is not defined. This result 
tells us that the function

f (x ) = −3 when x < 0

= 3 when x ≥ 0

is nondifferentiable at the point where x = 0.

When We Can’t Differentiate
The “challenge” we just finished involves a function that can be differentiated everywhere 
except at a single point. The problem in this particular case is caused by a discontinuity at the 
point where x = 0. There are other ways that a function can be nondifferentiable at a point.
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Example

Let’s consider another function with a discontinuity, but of a different sort than the one in the 
“challenge” we solved a moment ago. Figure 4-6 is a graph of the modified reciprocal function

f (x ) = 1/x when x ≠ 0
= 0 when x = 0

This function is defined over the entire set of real numbers, but it has a discontinuity at (0,0). 
If we want to find out whether or not f (x ) is differentiable at the point where x = 0, we must 
set up the limit

Lim
xΔ →0

 [ f (0 + Δx ) − f (0)] / Δx

and evaluate it both from the right and from the left. Let’s do it from the right first. We write 
this as

Lim
xΔ → +0

 [ f (0 + Δx ) − f (0)] / Δx

which simplifies to

Lim
xΔ → +0

 [ f (Δx ) − f (0)] / Δx

x

f (x)

f (x) = 1/x when x ≠ 0
       = 0 when x = 0
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(0,0)

Figure 4-6  This function isn’t continuous at the point 
where x = 0, and it isn’t differentiable there, 
either.



because 0 + Δx = Δx. We are told that f  (0) = 0, so we can simplify further, getting

Lim
xΔ → +0

f (Δx ) / Δx

The function tells us to take the reciprocal of whatever nonzero number we put in. That 
means we can rewrite the above expression as

Lim
xΔ → +0

 [1/(Δx )] / Δx

which simplifies to

Lim
xΔ → +0

 1/(Δx )2

As Δx approaches 0 from the right (the positive side), the ratio 1/(Δx )2 grows arbitrarily large 
in the positive sense. That’s because we’re taking the reciprocal of (Δx )2, an endlessly shrinking 
positive real. The above limit blows up positively; it’s not defined.

The same thing happens when we approach 0 from the left. We can rework the sequence 
of steps, replacing Δx → 0+ with Δx → 0− in every instance, to arrive at

Lim
xΔ → −0

 1/(Δx )2

This limit blows up positively, just as the right-hand limit does, so it’s undefined as well. Actu-
ally, this second exercise is overkill. Once we showed that the right-hand limit doesn’t exist 
at the point where x = 0, we gathered enough information to know that our function isn’t 
differentiable there.

It’s tempting to say that the discontinuity here is somehow “worse” than the one in the func-
tion shown by Fig. 4-5. In the earlier case, a limit could be defined from one side, at least. This 
time, there is no definable limit from either side. We can be “double-sure” that the function

f (x ) = 1/x when x ≠ 0
= 0 when x = 0

is nondifferentiable at the point where x = 0.

Another example

Figure 4-7 is a graph of the absolute-value function, which can be written in two-part fashion 
like this:

f (x ) = x when x ≥ 0
      = −x when x < 0

This function is defined and continuous over the entire set of reals. If x > 0 or x < 0, the 
absolute-value function behaves as a linear function, and it is therefore differentiable when we 
restrict the domain to either the set of strictly positive reals or the set of strictly negative reals.

As we can see by examining Fig. 4-7, the graph turns a corner. The slope changes sud-
denly from −1 to 1 as we move to the right through the point where x = 0. When the slope of 
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a graph changes abruptly at a point, we should suspect that point as a likely place where the 
function is nondifferentiable! Let’s find out if that’s the case here. First, we’ll evaluate the limit 
of the slope as we approach the point where x = 0 from the right:

Lim
xΔ → +0

 [ f (0 + Δx ) − f (0)] / Δx

Because 0 + Δx = Δx, this can be simplified to

Lim
xΔ → +0

 [ f (Δx ) − f (0)] / Δx

We can simplify further, knowing that f (0) = 0:

Lim
xΔ → +0

f (Δx ) / Δx

When Δx is small and positive, f (Δx ) = Δx. That means we can simplify the limit even more, 
writing it as

Lim
xΔ → +0

Δx /Δx

Obviously, Δx /Δx = 1. That means we have

Lim
xΔ → +0

 1

x

f (x)

f (x) = |x |

2 4 6–2–4–6

2

6

–2

–4

–6

4

(0,0)

Figure 4-7  This function is continuous at the point 
where x = 0, but it isn’t differentiable there.



This limit is equal to 1. We can believe this easily enough. The right-hand half of the graph is 
a half-line with a slope of 1.

Now, let’s take the limit of the slope as we approach the point where x = 0 from the left. 
We write

Lim
xΔ → −0

 [ f (0 + Δx ) − f (0)] / Δx

Because 0 + Δx = Δx, this can be simplified to

Lim
xΔ → −0

 [ f (Δx ) − f (0)] / Δx

Knowing that f (0) = 0, we can substitute and rewrite this as

Lim
xΔ → −0

f (Δx ) / Δx

When we take the absolute value of a negative number, the function simply reverses the sign 
of the number, so when Δx is small and negative, f (Δx ) = −Δx. That means we can simplify 
the limit some more, writing it as

Lim
xΔ → −0

−Δx /Δx

The ratio −Δx /Δx is always equal to −1, so we have

Lim
xΔ → −0

−1

This is equal to −1, a sensible result. The left-hand part of the graph is a half-line with a slope 
of −1.

We have found the limits in the prescribed form, both from the right and from the left. 
But they aren’t the same, showing that the function

f (x ) = |x |

is nondifferentiable at the point where x = 0. (The vertical lines in this equation indicate that 
the absolute value is to be taken of whatever quantity appears between them.)

Are you confused?
“I see what’s going on now,” you say. “If the slope of a graph changes suddenly at a point, then even if the 
function is continuous, there’s no derivative at that point. If we approach the point from one side, the 
slope approaches a certain value, but if we approach the point from the other side, the slope approaches a 
different value. A derivative can’t be defined as more than one slope at a time. Is that right?” Yes, that geo-
metrically describes the situation. It’s not rigorous, but it’s a good way to talk about it informally.

Then you ask, “What about a function where two different curves terminate and meet at a single 
point, but their slopes approach the same value at the point? Is such a two-part function differentiable at 
the point where the curves come together?” That is a great question! You’ll learn the answer (in one case, 
anyway ) as you work out Exercise 10 at the end of this chapter.
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Here’s a challenge!
Look once again at the function graphed in Fig. 4-3. Show that it’s nondifferentiable at the point where x = 2.

Solution
There are two components to the function. When the input is smaller than 2, the output is the square of 
the input. When the input is 2 or larger, the output has a constant value of 4. We can express this situa-
tion by writing

f (x ) = x 2 when x < 2
   = 4 when x ≥ 2

The function is defined and continuous over the set of real numbers, but the slope of its graph abruptly changes 
at the point where x = 2. We can attempt to find the derivative at the point where x = 2 by evaluating

Lim
xΔ →0

 [ f (2 + Δx ) − f (2)] / Δx

from both the right and the left. Let’s do it from the right first. We have

Lim
xΔ → +0

 [ f (2 + Δx ) − f (2)] / Δx

When Δx is small and positive, we’re in the part of the function with a constant value of 4. We’re told 
that f (2) = 4. When we substitute 4 in place of f (2 + Δx ), and substitute 4 in place of f (2) in the above 
expression, it becomes

Lim
xΔ → +0

(4 − 4) / Δx

which simplifies to

Lim
xΔ → +0

0/Δx

and further to

Lim
xΔ → +0

0

This limit is obviously equal to 0. When we examine the graph, that conclusion seems reasonable, because 
the part of the graph to the right of the point where x = 2 appears as a straight, horizontal line.

Now let’s go to the left of the point where x = 2, into the part of the graph that has a parabolic shape. 
When Δx is small and negative, we’re in the zone where the function squares the input. We now must 
work with the limit

Lim
xΔ → −0

[ f (2 + Δx ) − f (2)] / Δx

We must not forget that f (2) = 4. When we substitute (2 + Δx )2 for f (2 + Δx ), and substitute 4 for f (2) 
in the above expression, it becomes

Lim
xΔ → −0

[(2 + Δx )2 − 4] / Δx



When we square the binomial, we get

Lim
xΔ → −0

[4 + 4Δx + (Δx )2 − 4] / Δx

which can be simplified to

Lim
xΔ → −0

[4Δx + (Δx )2] / Δx

and further to

Lim
xΔ → −0

4 + Δx

This limit is equal to 4. That’s a sensible outcome. The slope of the parabola, if it were complete, would be 
4 at the point where x = 2. But that’s not the same value as we got when we evaluated the right-hand limit. 
Having found a disagreement between the right-hand and left-hand limits of the slope, we know that this 
function is nondifferentiable at the point where x = 2.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Sketch a graph of the following function:

f (x ) = 1/x when x < −1
    = −1 when x ≥ −1

   At what point or points does it appear, based on the graph, that this function is 
nondifferentiable?

 2. Verify the answer to Prob. 1 mathematically.

 3. Sketch a graph of the following function:

f (x ) = x when x ≤ 3
    = 1 when x > 3

   At what point or points does it appear, based on the graph, that this function is 
nondifferentiable?

 4. Verify the answer to Prob. 3 mathematically.

 5.  Sketch a graph of the following function, noting the subtle difference between it and 
the function described in Prob. 3:

f (x ) = x when x < 3
     = 1 when x ≥ 3
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   At what point or points does it appear, based on the graph, that this function is 
nondifferentiable?

 6. Verify the answer to Prob. 5 mathematically.

 7. Sketch a graph of the following function:

f (x ) = x 2 when x < 1
     = x 3 when x ≥ 1

   At what point or points does it appear, based on the graph, that this function is 
nondifferentiable?

 8. Verify the answer to Prob. 7 mathematically.

 9. Sketch a graph of the following function:

f (x ) = x 2 when x < 1
           = 2x − 1 when x ≥ 1

   At what point or points does it appear, based on the graph, that this function is 
nondifferentiable?

10. Verify the answer to Prob. 9 mathematically.



In this chapter, we’ll learn how to differentiate a function that raises a variable to a large inte-
ger power. We’ll learn how to differentiate the sum of two functions. Then we’ll combine these 
rules to differentiate functions that can be written in polynomial form.

Power Rule
In Chap. 3, we learned how to find the derivatives of monomial (single-term) quadratic and 
cubic functions. Now let’s develop a rule for finding the derivative of any monomial function 
of the form

f (x ) = a x n

where a is a real-number constant and n is a positive integer larger than 2. We’ll call this the 
power rule for derivatives.

Power of a binomial

Think of the binomial a + b, where a and b are nonzero real numbers. (The value of b can 
be either positive or negative, so we can stick with the plus sign in the notation.) When such 
an expression is raised to successive positive integer powers, it generates an increasingly com-
plicated series of terms, each of which consists of a power of a, a power of b, or a product of 
powers of a and b. Consider

(a + b)n = (a + b)(a + b)(a + b) · · · (n times)

where n is an integer larger than 2. When we multiply this expression out in full (a tedious 
process if n is large), we always get a polynomial that starts with a n, followed by terms that 
consist of successively smaller powers of a multiplied by successively larger powers of b, until 
we get to the last term, which is bn. Each term in the multiplied-out polynomial, containing 

71

CHAPTER 

5

Differentiating Polynomial 
Functions



72 Differentiating Polynomial Functions

powers of both a and b, has a numerical coefficient, a constant by which the product of powers 
of a and b is multiplied. Here are the first few cases:

(a + b)3 = a 3 + 3a 2b + 3ab 2 + b 3

(a + b)4 = a 4 + 4a 3b + 6a 2b 2 + 4ab 3 + b4

(a + b )5 = a 5 + 5a 4b + 10a 3b 2 + 10a 2b 3 + 5ab4 + b 5

(a + b)6 = a 6 + 6a 5b + 15a 4b 2 + 20a 3b 3 + 15a 2b 4 + 6ab 5 + b 6

As long as n > 2, we will always notice the following facts about the multiplied-out polyno-
mial:

• The first term is a n.
• The second term is na (n −1)b.
• We can factor b 2 out of the third term and each term after that.

Now instead of a and b, let’s call the terms in the binomial by different names. How about 
x 0 and Δx ? That gives us

(x 0 + Δx )n = (x 0 + Δx )(x 0 + Δx )(x 0 + Δx ) · · · (n times)

When we multiply this out, we get a polynomial that starts with x 0
n, followed by terms that 

consist of successively smaller powers of x 0 times successively larger powers of Δx, until we get 
to the last term, which is (Δx )n. We always find that:

• The first term is x 0
n.

• The second term is nx 0
(n−1)Δx.

• We can factor (Δx )2 out of the third term and each one after that.

Deriving the rule

Now we’ll work out a formula that tells us the derivative of a function f   in which we take the nth 
power of a real variable x and then multiply by a real constant a. It’s a monomial of the form

f (x ) = ax n

where n is an integer larger than 2. Let’s determine f   ′ at a nonspecific point (x 0,y0). Imagine 
that, in the xy-plane, we plot the graph of

y = ax n

as a curve. The domain is always the entire set of reals, no matter what n happens to be. The 
range is the set of nonnegative reals if n is even, and the set of all reals if n is odd. (Try graph-
ing a few functions of this form, and see for yourself !) The x-value of a movable point (x,y ) 
in the vicinity of (x 0,y0) is

x = x 0 + Δx



The y-value of the movable point is

y = ax n = a (x 0 + Δx )n = a [x 0
n + nx 0

(n −1)Δx + S ]

where S is a series, each term of which has a factor of (Δx )2, so

S = r (Δx )2

where r is some real constant built up by adding and multiplying other constants. Substituting 
r (Δx )2 for S in the above equation, we can say that the y-value of the movable point is

y = a [ x 0
n + nx 0

(n −1)Δx + r (Δx )2] = ax 0
n + anx 0

(n −1)Δx + ar (Δx )2

The slope of a line through (x 0,y0) and (x,y ), which approximates f   ′ (x 0), is

Δy /Δx = (y − y0) / (x − x 0)

The function tells us that y0 = ax 0
n. In the above equation, let’s substitute

• The quantity [ax 0
n + anx 0

(n −1)Δx + ar (Δx )2] for y
• The quantity ax 0

n for y0

• The quantity (x 0 + Δx ) for x

That gives us

Δy /Δx = [ax 0
n + anx 0

(n −1)Δx + ar (Δx )2 − ax 0
n] / (x 0 + Δx − x 0)

which simplifies to

Δy /Δx = [anx 0
(n −1)Δx + ar (Δx )2] / Δx

and further to

Δy /Δx = anx 0
(n−1) + arΔx

The derivative f  ′(x 0) is therefore

f   ′(x 0) = Lim
xΔ →0

anx 0
(n−1) + arΔx

As Δx approaches 0, the second addend, arΔx, approaches 0 because it is a constant multiple of 
Δx. The first addend, anx 0

(n−1), doesn’t change no matter what Δx happens to be, because Δx isn’t 
a factor in this term at all. The limit of the entire expression is therefore anx 0

(n−1), telling us that

f   ′(x 0) = anx 0
(n−1)

for any real number x 0. Therefore, any function of the form

f (x ) = a x n
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has the derivative

f   ′(x ) = anx (n−1)

where a is a nonzero real constant and n is an integer larger than 2.

Are you confused?
You might wonder, “Why do we restrict n to integers larger than 2? Won’t the above formula work if n = 1 or 
n = 2 ?” Yes, it will. We covered those cases in the linear and quadratic examples that we worked out in Chap. 3, 
so we don’t have to do them again. To make the above derivation work, we had to set things up to get a factor 
of (Δx )2 out of every term in the polynomial after the second one. That can only happen if n > 2.

Here’s a challenge!
Consider the function f (x ) = x4. Sketch a graph of this function for values of x between, and including, 0 
and 1. Using a calculator, find the value of x (call it x 0) at which the slope of the curve is equal to 1. Round 
the answer off to three decimal places.

Solution
Figure 5-1 shows this situation. First, let’s find the derivative using the power rule, letting a = 1 and n = 4. 
We have

f ′ (x ) = 4x (4−1) = 4x 3

x

f (x)

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.6 0.8 1.0

f (x) = x4

f ¢ (x0) = 1

x0 = ?

f ¢ (x) = 4x 3

Figure 5-1  Graph of f (x ) = x4 for 0 ≤ x ≤ 1. At what 
value of x is the derivative equal to 1?



We can solve the following equation to get the value of x for which the slope of the curve is equal to 1:

4x 0
3 = 1

Dividing through by 4, we get

x 0
3 = 1/4

Taking the 1/3 power of each side tells us that

x 0 = (1/4)1/3

We should remember that the 1/3 power is the positive real cube root. We’re not interested in nonreal 
complex-number roots in this case, because we’re restricted to interval between, and including, the real 
numbers 0 and 1. A calculator produces the result, rounded to three decimal places, of

x 0 = 0.630

Sum Rule
In Chap. 3, we found derivatives of a few functions that were sums of other functions. Perhaps 
you noticed that the derivative of the whole sum was the same as the sum of the derivatives of 
its addends. That was no accident!

Definition and notation

Let’s be sure we know what’s meant by the sum of two functions. When we want to add two 
functions, we simply add the expressions that define those functions. For example, if

f1 (x ) = 6x 3

and

f2 (x ) = −3x

then

f1 (x ) + f2 (x ) = 6x 3 − 3x

Here’s another example. If

f1 (x ) = −2x 2

and

f2 (x ) = 5x + 3
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then

f1 (x ) + f2 (x ) = −2x 2 + 5x + 3

When two functions f1 and f2 operate on the same variable such as x, we can denote their sum 
in various ways. Here are the three most common formats:

f1 (x ) + f2 (x )
( f1 + f2) (x )

f1 + f2

The rule in brief

The sum rule for two derivatives tells us this:

• The derivative of the sum of two differentiable functions of a single real variable is 
equal to the sum of their derivatives.

This rule always works, as long we stick with the same variable in both functions, and as long 
as the functions are both differentiable at all the points that interest us. Stated symbolically, if 
f1 and f2 are differentiable functions of the same variable, then

( f1 + f2 )′ = f1′ + f2′

Are you confused?
Have you noticed that sometimes we write f (x ) to denote a function and f   ′(x ) to denote its derivative, 
and then later we write f and f   ′ to denote the same things? Don’t let this bother you. As long as we know 
that f and f   ′ operate on the same variable, it doesn’t matter whether or not we include the variable in 
parentheses after the name of the function.

When we want to be sure we know which variable we’re talking about, then it’s a good idea to include 
the parentheses and the variable. This can be important in multi-variable calculus, which we’ll study later 
in this book. It’s also important if we’re talking about something other than the independent variable itself, 
such as the number 4 or the expression (x + Δx ).

Example

Consider the following functions of x. Note that the third function is the sum of the first two:
  f1 (x ) = 6x 3

   f2 (x ) = −3x
( f1 + f2) (x ) = 6x 3 − 3x



We can find the derivatives of the first two functions using rules we’ve already learned:

   f1′(x ) = 18x 2

f2′(x ) = −3

The sum of the derivatives is

f1′(x ) + f2′(x ) = 18x 2 − 3

If we use the definition at the end of Chap. 3 to calculate the derivative of the sum function 
using limits, we will get

 ( f1 + f2)′ (x ) = 18x 2 − 3

which is the same as the result we get when we find the derivatives of component functions 
separately and then add them.

Another example

Let’s look at an example involving functions of the variable y. Again, the third function is the sum
of the first two:

f1 ( y ) = −2y2

  f2 ( y ) = 5y + 3
   ( f1 + f2) ( y ) = −2y2 + 5y + 3

When we find the derivatives of these two component functions, we get

   f1′( y ) = −4y
f2′( y ) = 5

The sum of these derivative functions is

f1′( y ) + f2′( y ) = −4y + 5

Again using the definition at the end of Chap. 3, we can show that

( f1 + f2 )′ ( y ) = −4y + 5

This is what we get when we determine the derivatives separately and add them.

Mathematical induction

If you’ve taken any number-theory or set-theory courses, you’ve learned about a technique 
called mathematical induction. If you haven’t seen this technique before, or if you’ve forgot-
ten how it works, here’s a brief review. Mathematical induction allows you to prove infinitely 
many facts in a finite number of steps.
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Imagine an infinite sequence of statements called S1, S2, S3, and so on. Suppose that 
you want to prove all these statements true. You can’t prove every statement one by one, 
because you don’t have an infinite amount of time. But suppose that you can demonstrate 
two things:

• The first statement S1 is true, and
• If a statement Sn (where n can be any positive integer) in the sequence is true, then the 

next statement Sn+1 in the sequence is also true.

Once you have done these two things, the first statement “automatically” proves the second 
statement. That, in turn, “automatically” proves the third statement. The logical process can 
go on forever, like an endless chain reaction! It proves that all the statements in the sequence 
are true, even if there are infinitely many of them.

Are you confused?
By now you might wonder how mathematical induction can help you prove anything that has to do with 
adding derivatives. The following “challenge” will answer that question!

Here’s a challenge!
Extrapolate the sum rule for two derivatives to show that it works for the sum of any number of derivatives.

Solution
The sum rule for two derivatives says that for any two differentiable functions f1 and f2,

( f1 + f2)′ = f1′ + f2′

Let’s call this statement S1 in an infinite sequence of truths we intend to prove. We are given the fact that this 
initial statement is true. Now imagine an unlimited supply of differentiable functions called f1, f2, f3, . . . , and 
so on, forever! According to our sequencing scheme, the second statement, S2 (which we haven’t proven 
yet) is

( f1 + f2 + f3)′ = f1′ + f2′ + f3′

The third statement, S3 (which, again, remains to be proved) is

( f1 + f2 + f3 + f4)′ = f1′ + f2′ + f3′ + f4′

Imagine that we have been assured of the truth of statement Sn saying that, for any n + 1 differentiable 
functions f1, f2, f3, . . . , and so on up to fn+1,

( f1 + f2 + f3 + · · · + fn+1)′ = f1′ + f2′ + f3′ + · · · fn+1′



We must show that if Sn is true, then the next statement Sn+1 is also true, which would tell us that for any 
n + 2 differentiable functions f1, f2, f3, . . . , and so on up to fn+2,

( f1 + f2 + f3 + · · · + fn+1+ fn+2)′ = f1′ + f2′ + f3′ + · · · + fn+1′ + fn+2′

Now let’s temporarily change a couple of names, like this:

• Call the sum of functions f1 + f2 + f3 + · · · + fn+1 by the nickname g
• Call the sum of functions f1′ + f2′ + f3′ + · · · + fn+1′  by the nickname h

On that basis, we can rewrite Sn as

g ′ = h

Let’s pick a function “out of the air” and call it fn+2. (We can call it anything we want, so why not that?) 
We add this new function to g and then take the derivative:

( g + fn+2)′

According to the sum rule for two derivatives, we know that

( g + fn+2)′ = g ′ + fn+2′

We also know that g′ = h, so we can substitute in the above equation to get

( g + fn+2)′ = h + fn+2′

When we give g and h their original names back, the above expression expands to

( f1 + f2 + f3 + · · · + fn+1 + fn+2)′ = f1′ + f2′ + f3′ + · · · + fn+1′ + fn+2′

That’s exactly the statement Sn+1! Having fulfilled the requirements of the mathematical induction 
routine, we’re entitled to claim that the derivative of a sum is equal to the sum of the derivatives, no matter 
how many functions are involved. We can now call this rule simply the sum rule for derivatives.

Summing the Powers
If we give a function the name f and tell it to operate on a variable x, then f   is an nth-degree 
polynomial function if and only if it can be written in this form:

f (x ) = anx n + an−1x n−1 + an−2x n−2 + · · · + a1x + a0

where each addend is called a term, the subscripted letters a1, a2, a3, . . . , and an represent real 
numbers called the coefficients of the terms, the subscripted letter a0 represents the stand-alone
constant or constant term, and n is a positive integer.
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How it looks

Here are some examples of polynomial functions. They are of degree 4, 5, 7, and 11, 
respectively:

f1 (x ) = 6x4 − 3x 3 + 3x 2 + 2x + 5
f2 (x ) = 3x5 − 4x 3

f3 (x ) = −x7 − 5x4 + 3x 3 − x 2 − 29
f4 (x ) = −4x11

In all but the first of these functions, some of the coefficients are equal to 0. The coefficient an

by which x n is multiplied, called the leading coefficient, can’t be 0 in an nth-degree polynomial 
function. If we set an = 0 in a polynomial function f (x ), we end up with

f (x ) = 0x n + an−1x n−1 + an−2x n−2 + · · · + a1x + a0

This expression is not technically wrong, but it contains a useless term. It’s really a single-variable 
polynomial function of degree n − 1:

f (x ) = an−1x n−1 + an−2x n−2 + · · · + a1x + a0

We assume, of course, that an−1 ≠ 0!

Break it down

Look closely at the general form for an nth-degree polynomial function. Then look at each of 
the four examples above. Every one of these functions has something in common. They’re all 
sums of monomial power functions. For example,

g (x ) = 6x4 − 3x 3 + 3x 2 + 2x + 5

is the sum of a monomial fourth-degree (or quartic) function, a monomial cubic function, a 
monomial quadratic function, a monomial linear function, and a constant function. Let’s give 
each of these functions the name of g with a subscript indicating its degree, like this:

 g4 (x ) = 6x4

  g3 (x ) = −3x 3

 g2 (x ) = 3x 2

 g1 (x ) = 2x
 g0 (x ) = 5

We can write g (x ) as the sum of these:

g (x ) = g4 (x ) + g3 (x ) + g2 (x ) + g1 (x ) + g0 (x )

We’ve learned that the derivative of a sum is always equal to the sum of the derivatives. We’ve 
also learned how to differentiate any function that takes the variable to a nonnegative integer 



power and then multiplies it by a constant. Therefore, we have the tools to differentiate any 
polynomial function.

Differentiate each term

Once we’ve broken a polynomial function down into its terms, we can use the power rule to 
differentiate each one of them. In the above situation, we get these derivatives:

g4′ (x ) = 24x 3

g3′ (x ) = −9x 2

 g2′ (x ) = 6x
 g1′ (x ) = 2
 g0′ (x ) = 0

Put it back together

To do the final step in working out the derivative of the polynomial function, we add the 
derivatives of the individual terms together in order of highest-to-lowest powers:

g ′(x ) = g4′ (x ) + g3′ (x ) + g2′ (x ) + g1′ (x ) + g0′ (x )
                = 24x 3 − 9x 2 + 6x + 2 + 0 = 24x 3 − 9x 2 + 6x + 2

Are you confused?
Do you  wonder what happens if we try to find the derivative of a function that raises the variable to a 
negative-integer power such as −5, or to a non-integer rational power such as 3/5 or −3.7, or even to an 
irrational power such as π or the square root of 2? What about functions that don’t involve exponents, such 
as the sine or cosine? We’ll explore the derivatives of some such functions in Chap. 7.

Here’s a challenge!
The sum rule for two derivatives, stated earlier in this chapter, says that if f1 and f2 are differentiable func-
tions of the same variable, then

( f1 + f2)′ = f1′ + f2′

We’ve seen some examples of this rule “in action,” but we haven’t proved it yet. Now is the time!

Solution
Before we begin the proof, let’s make four changes to the notation:

• Include the name of the variable (we’ll use x )
• Change the names of the functions to f and g
• Write δ (lowercase Greek delta) instead of Δx to represent a shrinking increment
• Leave out “δ → 0” beneath “Lim” (but remember that it’s implied)
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These changes will make the expressions clearer than they would be otherwise. They’ll also help you get 
used to some of the alternative ways that things can be written down in calculus. We want to prove that if 
f and g are differentiable functions of x, then

( f + g )′ (x ) = f   ′ (x ) + g ′ (x )

According to the definition at the end of Chap. 3, the derivative of our sum function, written the “new 
way,” is

( f + g )′ (x ) = Lim  [( f + g ) (x + δ) − ( f + g ) (x )] / δ

We can rewrite this as

Lim  {[ f (x + δ) + g (x + δ)] − [ f (x ) + g (x )]} / δ

which can be rearranged to

Lim  [ f (x + δ) + g (x + δ) − f (x ) − g (x )] / δ

and further to

Lim  {[ f (x + δ) − f (x )] + [ g (x + δ) − g (x )]} / δ

and still further to

Lim  [ f (x + δ) − f (x )] / δ + [ g (x + δ) − g (x )] / δ

In Chap. 2, we learned that the limit of a sum is equal to the sum of the limits. Using that rule, we can 
split the above limit into a sum of two limits, getting

Lim  [ f (x + δ) − f (x )] / δ + Lim  [ g (x + δ) − g (x )] / δ

To finish, we can apply the definition of the derivative “backward” to both of these limits and rewrite the 
above expression as

f   ′(x ) + g ′(x )

We started out with ( f + g)′ (x ) and ended up with f   ′(x ) + g ′(x ), showing that these two expressions are 
equivalent. Mission accomplished!

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!



 1. Determine the derivatives of the following functions:

    (a) f (x ) = −8x 5

    (b) g (z ) = 12z 7

    (c) h (t ) = −21t 21

 2.  Consider the function f3 (x ) = x 3 in the interval 0 ≤ x ≤ 1. Find x 0 in this interval, 
accurate to three decimal places, such that f3′ (x 0) = 1. (It’s okay to use a calculator.)

 3.  Consider the function f5 (x ) = x5 in the interval 0 ≤ x ≤ 1. Find x 0 in this interval, 
accurate to three decimal places, such that f5′ (x 0) = 1. (It’s okay to use a calculator.)

 4.  Consider the infinite set of functions fn (x ) = x n in the interval 0 ≤ x ≤ 1, where n is an 
integer larger than or equal to 2. Find a general expression for x 0 in this interval, such 
that fn′ (x 0) = 1. (A calculator is useless here!)

 5.  Sketch a multi-curve graph that shows fn (x ) = x n in the interval 0 ≤ x ≤ 1 for n = 3, 
n = 4, and n = 5. On each curve, show the point x 0 at which fn′ (x 0) = 1 as a solid dot. 
To plot the points, use the values obtained in the solutions of problems we’ve already 
solved in this chapter. Draw lines tangent to the curves at these points.

 6.  Consider again the set of functions fn (x ) = x n, where n is an integer larger than or equal 
to 2. Find a general expression for the value of fn′ (1).

 7.  Consider (yet again!) the set of functions fn (x ) = x n, where n is an integer larger than or 
equal to 2. Find a general expression for the value of fn′ (0).

 8. Find the derivative of the function

f (x ) = 8x 7 + 4x 6 − 3x 5 + x 4 + x 2 − 3

 9. Find the derivative of the function

f (x ) = a5x 5 + a4x 4 + a3x 3 + a2x 2 + a1x + a0

    where a5, a4, a3, a2, a1, and a0 are real numbers, and a5 ≠ 0.

10. Write an expression for the derivative of the general polynomial function

f (x ) = anx n + an−1x n−1 + an−2x n−2 + · · · + a2x 2 + a1x + a0

    where an, an−1, an−2, . . . , a1, and a0 are real numbers, and an ≠ 0.
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CHAPTER

6

More Rules for Differentiation

The functions we’ve differentiated so far have all been specialized. Often, we’ll want to dif-
ferentiate more general functions built up by multiplication, division, or other processes. 
Sometimes we’ll encounter a function of another function! In this chapter, we’ll learn some 
more useful rules for differentiation.

Multiplication-by-Constant Rule
We can take any function and multiply it by a constant, and the result is another function. 
There’s a convenient rule that applies to derivatives when this is done.

Definition and notation

When we want to find the product of a function and a constant, we multiply the expression of 
the function by that constant. For example, if

f (x ) = 6x 3

and

c = −3

then

c [ f (x )] = −3 × 6x 3 = −18x 3

Here’s another example. If

f (x ) = 5x 2 + 3x − 7



and

c = 2

then

c [ f (x )] = 2 × (5x 2 + 3x − 7) = 10x 2 + 6x − 14

We can write c f   by itself, without including the variable in parentheses, as long as we know 
which variable we’re dealing with. We can also write c f  if we don’t want to restrict f to a par-
ticular variable, or if we want to let f   operate on all sorts of things. (Functions can operate on 
expressions more complicated than plain variables.)

The rule in brief

The multiplication-by-constant rule for differentiation tells us this:

• If we take the derivative of a differentiable function after it has been multiplied by a 
constant, we get the same result as we do if we take the derivative of the function and 
then multiply by the constant.

This rule always works, provided that the function is differentiable at every point that interests 
us. Stated symbolically, if f   is a differentiable function and c is a real-number constant, then

(c f   )′ = c ( f   ′ )

and

(c f   )′ = (  f   ′  )c

Example

Let’s apply this rule to the first example we saw a few moments ago:

f (x ) = 6x 3

and

c = −3

When we differentiate the product of the function and the constant, we get

(c f   )′ (x ) = d  /dx (−3 × 6x 3) = d /dx (−18x 3) = −54x 2

When we differentiate the function first and then multiply by the constant, we get

c [ f   ′ (x )] = −3 × (d  /dx 6x 3) = −3 × 18x 2 = −54x 2
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Another example

Now let’s work on the second example we saw earlier:

f (x ) = 5x 2 + 3x − 7

and

c = 2

When we multiply the function by the constant before we differentiate, we get

(c f   )′ (x ) = d  /dx [2 × (5x 2 + 3x − 7)] = d  /dx (10x 2 + 6x − 14) = 20x + 6

When we multiply by the constant after we differentiate, we obtain

c [ f   ′ (x )] = 2 × [d  /dx (5x 2 + 3x − 7)] = 2 × (10x + 3) = 20x + 6

Are you confused?
“Wait,” you might say. “What does this new notation d  /dx mean?” The answer is that is isn’t actually new; 
it was introduced in Chap. 3. You can read d  /dx as “the derivative with respect to x.” If you see

d  /dx 8x 3

it means “the derivative, with respect to x, of 8x 3.” The variable doesn’t necessarily have to be x. If it hap-
pens to be y and you see

d  /dy ( y 2 + 2y + 1)

you would read it as “the derivative, with respect to y, of the quantity ( y 2 + 2y + 1).”

Here’s a challenge!
Prove the multiplication-by-constant rule for differentiation.

Solution
The proof of this rule is similar to the proof of the rule for the sum of two derivatives, which we carried out 
at the end of Chap. 5. Once again, let’s make some changes to conventional notation before we begin:

• Include the name of the variable (we’ll use x )
• Write δ instead of Δx to represent a shrinking increment
• Leave out “δ → 0” beneath “Lim” (but remember that it’s implied)

We want to prove that if f  is a differentiable function of x, and c is a real-number constant, then

(c f   )′ (x ) = c [ f   ′ (x )]
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According to the definition at the end of Chap. 3, the derivative of our product function, written the “new 
way,” is

(c f   )′ (x ) = Lim  [(c f   ) (x + δ) − (c f   ) (x )] / δ

We can rewrite the right side of this equation as

Lim  {c [ f (x + δ)] − c [ f (x )]} / δ

which can be rearranged to

Lim c {[ f (x + δ) − f (x )] / δ}

In Chap. 2, we learned that a constant times the limit of an expression is equal to the limit of the expression 
times the constant. Using that rule, we can “pull out the constant” and rewrite the above expression as

c {Lim  [ f (x + δ) − f (x )] / δ}

Inside the curly braces, we have the derivative of the function f all by itself. That’s because, by definition,

Lim  [ f (x + δ) − f (x )] / δ = f   ′ (x )

Therefore,

c {Lim  [ f (x + δ) − f (x )] / δ} = c [ f   ′ (x )]

We began with the expression (c f   )′ (x ) and derived c [ f   ′ (x )] from it, showing that these two expressions 
are equivalent.

Product Rule
When two functions are multiplied, the result is another function. Sometimes a function can 
be broken down into a product of two simpler functions. But the derivative of the product of 
two functions is not the simple product of the derivatives!

Definition and notation

To determine the product of two functions, we multiply the expression of the first function 
by the expression of the second. For example, if

f (x ) = 6x 3

and

g (x ) = −3x
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then

f g (x ) = (6x 3)(−3x ) = −18x 4

Here’s another example. If we have

f (x ) = (x 2 + 2x )

and

g (x ) = (2x 2 − 3)

then

f g (x ) = (x 2 + 2x )(2x 2 − 3) = 2x 4 + 4x 3 − 3x 2 − 6x

When we want to denote the product of functions f   and g, we can write f g   without including 
the variable in parentheses, as long as both functions operate on the same variable or expression.

The rule in brief

The two-function product rule for differentiation tells us this:

• To find the derivative of the product of two differentiable functions, we multiply the 
derivative of the first function by the second function, then multiply the derivative of 
the second function by the first function, and finally add the two products.

For this rule to apply, both functions must be differentiable at every point that interests us. 
Stated symbolically, if f and g are differentiable functions, then

( f g ) ′ = f   ′g + g ′ f

Example

Let’s see how this rule works, using the examples we saw a few moments ago. First, consider

f (x ) = 6x 3

and

g (x ) = −3x

When we differentiate the product of the functions, we get

( f g )′ (x ) = d  /dx [(6x 3)(−3x )] = d  /dx (−18x 4) = −72x 3
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When we use the product rule, we get

[ f   ′(x )][g (x )] + [g ′(x )][ f (x )] = [d  /dx (6x 3)](−3x ) + [d  /dx (−3x )](6x 3)

                                     = (18x 2)(−3x ) + (−3)(6x 3) = −72x 3

Another example

In the second situation, we have

f (x ) = (x 2 + 2x )

and

g (x ) = (2x 2 − 3)

When we differentiate the product of the functions, we get

( f g )′(x ) = d  /dx [(x 2 + 2x )(2x 2 − 3)] = d  /dx (2x 4 + 4x 3 − 3x 2 − 6x )

       = 8x 3 + 12x 2 − 6x − 6

When we use the product rule, we get

[ f   ′(x )][g (x )] + [g ′(x )][ f (x )] = [d  /dx (x 2 + 2x )](2x 2 − 3) + [d  /dx (2x 2 − 3)](x 2 + 2x )

                     = (2x + 2)(2x 2 − 3) + (4x )(x 2 + 2x ) = 8x 3 + 12x 2 − 6x − 6

Are you confused?
You must be careful when writing the product of two functions. It’s easy to inadvertently write the expres-
sion for a function of a function instead. For example, if you put down

f  [g (x )]

you tell your readers to apply the function g to the variable x, and then apply the function f to the variable 
g (x ). In other words, you indicate “f of g of x.” If you want to denote the product “f of x times g of x,”
you should write

[ f  (x )][g (x )]

or

f  (x ) × g (x )
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If you don’t want to specify the independent variable, things get trickier. If you write

f  ( g )

you indicate “f of g,” meaning that function f should be applied to the output of function g. If you want 
to show “f times g,” you should write

f g

or

f   × g

Here’s a challenge!
Based on the rules we’ve learned so far, prove that if f1 and f2 are differentiable functions of the same vari-
able, and if a1 and a2 are constants, then

(a1 f1 + a2 f2)′ = a1( f1′ ) + a2( f2′ )

This is called the linear combination rule for differentiation.

Solution
This proof is amazingly simple, once we realize that a1 f1 and a2 f2 are both functions, so they can both be 
treated that way in all respects. Therefore, according to the sum rule for two derivatives, we have

(a1f1 + a2f2)′ = (a1f1)′ + (a2f2)′

The multiplication-by-constant rule for differentiation tells us that

(a1f1)′ = a1( f1′ )

and

(a2 f2 )′ = a2( f2′ )

Substituting these expressions in the first equation, we obtain

(a1 f1 + a2 f2 )′ = a1( f1′ ) + a2( f2′ )

Reciprocal Rule
We can take the reciprocal of a function (as long as it’s not the zero function) and get another 
function. But in general, the derivative of a reciprocal is not the reciprocal of the derivative. 
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There’s another complication, too. We must be careful about specifying the domain when we 
work with the reciprocal of a function.

Definition and notation

To find the reciprocal of a function, we divide 1 by the expression of the function. For example, if

f (x ) = x 2

then

1 / [ f (x )] = 1 / (x 2) = x−2

Here’s another example. If

f (x ) = 2x 2 − 8

then

1 / [ f (x )] = 1 / (2x 2 − 8) = (2x 2 − 8)−1

Caution!

We can express the reciprocal of f (x ) by writing [ f (x )]−1, but this brings us near dangerous 
territory! We can’t write an exponent −1 immediately after f to indicate the reciprocal of f. If 
we put down f   −1, we denote the inverse function, not the reciprocal function.

With numbers and algebraic expressions, the terms “inverse” and “reciprocal” are often 
used interchangeably, because the multiplicative inverse and the reciprocal are the same thing. 
But when we deal with functions, there’s a big difference between an inverse and a reciprocal. 
Suppose we have a function f of a variable x such that

f (x ) = 5x

Then the reciprocal function is

[ f (x )]−1 = 1/(5x )

But the inverse function is

f   −1(x ) = x /5

The reciprocal is 1 divided by the function. The inverse is a completely different function; it 
“undoes” or “reverses” the work of the original function.
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The rule in brief

The reciprocal rule for differentiation tells us this:

• To find the derivative of the reciprocal of a differentiable function, we must first find 
the derivative of the original function, then multiply by −1, and finally divide by the 
square of the original function.

Stated symbolically, if f  is a differentiable function, then

(1/f   )′ = −f   ′ / ( f   2  )

The square of a function is, as we should expect, the expression of the function multiplied by 
itself.

For this rule to apply, the function f must be differentiable at every point that interests us. 
Generally, that means that f can’t have a gap, take a jump, turn a corner, or blow up. In addi-
tion, f can’t attain the value 0 anywhere in its domain. If it does, we end up having to divide 
by 0 to take the reciprocal.

More caution!

If a function is differentiable throughout its domain, then the reciprocal function is not neces-
sarily differentiable at every point in its domain. In the example above, the function

f (x ) = 5x

is defined over the entire set of real numbers x, but the reciprocal function

[ f (x )]−1 = 1/(5x )

is not defined for x = 0. There’s a discontinuity, so the reciprocal function is not differentiable 
over the entire set of reals. We can make the reciprocal function differentiable only if we 
restrict the domain to keep the discontinuity out.

Example

Let’s apply the reciprocal rule for differentiation to a couple of common functions. First, we’ll 
look at

g (x ) = 1/x 2

This is the reciprocal of a function we can call f (x ), as follows:

f (x ) = x 2

The negative of the derivative of f (x ) is

−f   ′ (x ) = −2x



and the square of f (x ) is

[ f (x )]2 = (x 2)2 = x 4

We can now set up the derivative of g (x ) using the rule:

g  ′(x ) = {1 / [ f (x )]} ′ = −f   ′(x ) / [ f (x )]2 = −2x /x 4 = −2/x 3

This holds only as long as x ≠ 0. If x = 0, then g (x ) is undefined, so its derivative is undefined 
as well.

Another example

Now let’s look at another example we saw earlier in this chapter. Let

h (x ) = 1 / (2x 2 − 8)

which is the reciprocal of a function we can call f (x ), like this:

f (x ) = 2x 2 − 8

Taking the derivative of f (x ), we get

f   ′ (x ) = 4x

Multiplying by −1 gives us

−f   ′ (x ) = −4x

The square of f (x ) is

[ f (x )]2 = (2x 2 − 8)2 = 4x 4 − 32x 2 + 64

Using the reciprocal rule for differentiation, we obtain

  h′(x ) = {1 / [ f (x )]}′  = −f   ′ (x ) / [ f (x )]2 = − 4x / (4x 4 − 32x 2 + 64)

= −x / (x 4 − 8x 2 + 16)

If x = 2 or x = −2, then h (x ) is undefined, so h′(x ) is also undefined. Those values of x are the 
zeros of f (x ), where

2x 2 − 8 = 0

The function h (x ) is nondifferentiable at the points where x = 2 and x = −2.
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Are you confused?
Whenever you apply the reciprocal rule, a function appears in the denominator of a fraction. When 
that denominator function attains the value 0, a discontinuity occurs, and the main function is not 
differentiable at that point. You might wonder, “Does this mean that any reciprocal function has at 
least one point at which it can’t be differentiated? If that’s true, then reciprocal functions are never
differentiable in the general sense.” Well, as things work out, plenty of reciprocal functions are dif-
ferentiable over the entire set of real numbers. You’ll encounter an example as you work through the 
exercises at the end of this chapter.

Here’s a challenge!
Find the derivative of the function

q (x ) = 1 / (x 2 + x − 2)

in the set of real numbers. Indicate the real values of x, if any, for which this function is nondifferentiable.

Solution
This is the reciprocal of a function we can call f (x ), as follows:

f (x ) = x 2 + x − 2

Taking the derivative of f (x ), we get

f   ′ (x ) = 2x + 1

Multiplying by −1 gives us

−f   ′ (x ) = −2x − 1

The square of f (x ) is

[ f (x )]2 = (x 2 + x − 2)2 = x 4 + 2x 3 − 3x 2 − 4x + 4

Using the reciprocal rule for differentiation, we obtain

q ′ (x ) = {1 / [ f (x )]}′  = −f   ′ (x ) / [ f (x )]2 = (−2x − 1) / (x 4 + 2x 3 − 3x 2 − 4x + 4)

If x = 1 or x = −2, then q (x ) is undefined, so q ′ (x ) is also undefined. Those values of x are the zeros of

f (x ) = x 2 + x − 2

which forms the denominator of q (x ). We can find these zeros either by factoring the quadratic or by 
using the quadratic formula.



Quotient Rule
We can take the quotient of two functions and get another function, but we must restrict the 
domain to be sure that the second function (the denominator or divisor) cannot attain the 
value 0. The derivative of a quotient is not, in general, merely the quotient of the derivatives. 
It’s a little more complicated than that.

Definition and notation

When we want to divide a function by second function, we divide the expression of the first 
function by the expression of the second one. We find the ratio of the expressions that define 
the functions. Consider

f (x ) = 8x 2

and

g (x ) = 4x

In this case,

[ f (x )] / [g (x )] = (8x 2) / (4x ) = 2x

provided x ≠ 0. Here’s another example. Suppose we have

f (x ) = x 2 − x − 20

and

g (x ) = x − 5

The quotient in this case, as long as x ≠ 5, is

[ f (x )] / [g (x )] = (x 2 − x − 20) / (x − 5) = x + 4

The rule in brief

The quotient rule for differentiation tells us this:

• To find the derivative of the quotient of two differentiable functions, we multiply the 
derivative of the first function by the second function, then multiply the derivative of 
the second function by the first function, then subtract the second product from the 
first product, and finally divide by the square of the second function.

If we want to use this rule, then both functions, as well as their ratio, must be differentiable at 
every point that interests us. (Sometimes a derivative exists for the quotient of two functions 
even when this rule can’t be applied. We’ll see an example of this shortly.) In addition, the 
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denominator function can’t attain the value 0 anywhere in its domain. Stated symbolically, if 
f  and g are differentiable functions, then

( f  /g )′ = ( f   ′ g − g  ′ f  ) / g 2

for all points where g does not become 0.

Example

Let’s see how this rule works, using the examples from above. First, consider

f (x ) = 8x 2

and

g (x ) = 4x

When we differentiate the quotient of the functions, we get

( f  / g )′ (x ) = d  /dx [(8x 2) / (4x )] = d  /dx (2x ) = 2

When we use the quotient rule, we get

 ( f  /g )′ (x ) = {[ f   ′ (x )][ g (x )] − [ g  ′ (x )][ f (x )]} / [ g (x )]2

   = {[d  /dx (8x 2)](4x ) − [d  /dx (4x )](8x 2)} / (4x )2

   = [(16x )(4x ) − 4 × (8x 2)] / (16x 2) = (64x 2 − 32x 2) / (16x 2)
   = (32x 2) / (16x 2) = 2

This works only as long as g (x ) ≠ 0. That means the derivative of the quotient function is 
defined for all real numbers except 0.

Another example

Now let’s look at these two functions:

f (x ) = x 2 − x − 20

and

g (x ) = x − 5

When we differentiate the quotient of these, we get

( f  /g )′ (x ) = d  /dx [(x 2 − x − 20) / (x − 5)] = d  /dx (x + 4) = 1
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When we use the quotient rule, we get

 (f  / g)′ (x )  = {[ f   ′ (x )][g (x )] − [g ′ (x )][ f (x )]} / [ g (x )]2

= {[d  /dx (x 2 − x − 20)](x − 5) − [d  /dx (x − 5)]( x 2 − x − 20)} / (x − 5)2

 = [(2x − 1)(x − 5) − 1 × (x 2 − x − 20)] / (x 2 − 10x + 25)
 = [(2x 2 − 11x + 5) − (x 2 − x − 20) / (x 2 − 10x + 25)
 = (2x 2 − 11x + 5 − x 2 + x + 20) / (x 2 − 10x + 25)
 = (x 2 − 10x + 25) / (x 2 − 10x + 25) = 1

This works provided g (x ) ≠ 0. That means the derivative of the quotient function is defined 
for all real numbers except 5. That value of x is the zero of

g (x ) = x − 5

which forms the denominator in the quotient.

Are you astute?
The quotient of two functions can be differentiable in general, even if one or both of them individually 
is not. At first you might think that this sort of thing can’t occur. But once in awhile it happens. Here’s 
an example.

Take a look at Fig. 6-1. The derivatives of f (x ) and g (x ) both abruptly change at the point where x = 0. 
Specifically:

  f   ′ (x ) = −2  when x < 0

f   ′ (x ) = 2  when x > 0

   g ′ (x ) = −1  when x < 0

 g ′ (x ) = 1  when x > 0

Neither derivative is defined at the point where x = 0, so neither function is differentiable in general. You 
can’t use the quotient rule to find [ f (x ) / g (x )]′  unless you leave x = 0 out of the domains.

Nevertheless, a derivative exists for f (x ) / g (x ) over the entire set of reals, including x = 0. Because 
g (x ) never becomes equal to 0, you know that

f (x ) / g (x ) = 2 ( | x | + 1) / ( | x | + 1) = 2

Therefore,

[ f (x ) / g (x )]′ = d  /dx 2 = 0

for all real numbers x. The graph of [ f (x ) / g (x )]′  is a line with a slope of 0 at every point along its infinite 
length, and that passes through the point (0,2). There is no discontinuity at the point (0,2) or anywhere else.

Here’s a challenge!
Derive the quotient rule for differentiation from the other rules we’ve learned so far.
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Solution
Whenever we want to divide a quantity by another, we can multiply the first quantity by the reciprocal 
of the second, as long as the second quantity is not equal to 0. Knowing that, it seems that we should be 
able to derive the quotient rule for differentiation from the product and reciprocal rules for differentiation. 
Let’s try that approach and see if it works.

Suppose that we’re given two functions called f and g, and the domain is restricted so the value of g can 
never become 0. We can write the reciprocal of g as (1/g). Our knowledge of algebra tells us that

f / g = f    × (1/g )

Let’s insert a “times sign” (×) if there is any risk denoting a function of a function when we mean to denote 
a function times a function. The reciprocal rule for differentiation tells us that

(1/g )′ = −g ′ / (  g 2  )

The product rule for differentiation allows us to write

[ f   × (1/g )]′ = f   ′ × (1/g ) + (1/g )′ f
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differentiable at the point where x = 0.



When we substitute (  f  / g )′ for [ f   × (1/g )]′ on the left-hand side of this equation, and we also substitute 
[−g ′ / (g 2)] for (1/g)′  on the right-hand side, we get

( f  / g)′ = f   ′ × (1/g ) + [−g  ′ / ( g 2  )] f

We can simplify this to

( f  / g )′ = f   ′ /g − g ′ f / g 2

Now let’s multiply the quotient immediately after the equals sign by the quantity ( g /g ). We know that 
( g /g ) is defined under our domain restriction—that is, g ≠ 0—so it’s equal to 1. When we do that, the 
above equation becomes

( f  /g )′ = ( f   ′/g )( g /g ) − g ′ f  / g 2

We can multiply out the term immediately to the right of the equals sign to get

( f  / g)′ = f   ′ g  / g2 − g ′ f  / g 2

Now we have a difference of two fractions with a common denominator on the right-hand side of the 
equation. Consolidating this into a single fraction, we get

( f  / g )′ = (f   ′g − g ′ f  ) / g 2

That’s the quotient rule for differentiation!

Chain Rule
When a function operates on the output of another function, the combination is a third func-
tion known as a composite function. Sometimes it’s called a function of a function. We can use a 
procedure called the chain rule for differentiation to find the derivative of a composite function.

Definition and notation

To determine a function of a function, we apply the second function to the output of the first. 
In other words, we apply the first (or “inner”) function to its independent variable, and then 
we apply the second (or “outer”) function to the value of the first function. For example, if

f (x ) = 6x 3

and

g ( y ) = −3y

then

g [ f (x )] = −3 × (6x 3) = −18x 3
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Here’s another example. If

f (x ) = (x 3 + 1)

and

g ( y ) = (4y 2 − 3y )

then

g [ f (x )] = 4 × (x 3 + 1)2 − 3 × (x 3 + 1)
                                        =  4 × (x6 + 2x 3 + 1) − 3x 3 − 3 = 4x6 + 5x 3 + 1

To make things look simpler, we can write g ( f   ) without including the first function’s 
independent variable. But we don’t want to give our readers the idea that we mean the product 
g f or g × f. Some texts put a small letter o, which stands for “of,” between the two functions. 
In this situation they’d write g (  f   ) as g o f.

Note that g (  f   ) is rarely the same as f ( g ). The function-of-a-function operation is not, 
in general, commutative.

The rule in brief

The chain rule can be stated informally like this:

• To differentiate a function of a function, we multiply the derivative of the “outer” 
function by the derivative of the “inner” function.

For the chain rule to apply, both functions must be differentiable at every point that interests 
us. Stated symbolically, if f and g are differentiable functions of the same single variable, then

[ g ( f   )]′ = g ′ ( f   ) × f   ′

If we want to include an independent variable (say x ) in the notation, then we can write the 
above statement as

{ g [ f (x )]}′ = g ′ [ f (x )] × f   ′(x )

taking care not to confuse the multiplication symbol with the variable x.

Are you confused?
The above notation can baffle some people, because the difference between the two expressions

{ g [ f (x )]}′



and

g  ′ [ f (x )]

is subtle. Let’s clarify this before we go any further! The first expression, stated as an ordered list of instruc-
tions, reads like this:

• Apply the function f  to the variable x.
• Apply the function g to that output.
• Differentiate the function g with respect to x to get the final result.

The second expression tells us to do these things in order:

• Apply the function f  to the variable x.
• Differentiate the function g with respect to some arbitrary variable other than x. (We can call it 

anything we want, such as y .)
• Plug in f (x ) as that other variable.
• Apply the derivative function g ′ to that output to get the final result.

Example

Let’s see how this rule works. Consider the first of the two examples we saw a short while ago:

f (x ) = 6x 3

and

g ( y ) = −3y

When we differentiate the composite function directly, we get

{ g [ f (x )]}′ = d  /dx (−18x 3) = −54x 2

The derivatives of the individual functions are

f   ′(x ) = 18x 2

and

g ′( y ) = −3

When we apply the chain rule, we get

{ g [ f (x )]}′ = g ′ [ f (x )] × f   ′(x ) = −3 × d  /dx (6x 3) = −3 × 18x 2 = −54x 2

Chain Rule  101



102 More Rules for Differentiation

Another example

Now let’s see what happens with the composite of the two functions

f (x ) = (x 3 + 1)

and

g ( y ) = (4y 2 − 3y )

The derivatives of the individual functions are

f   ′(x ) = 3x 2

and

g ′( y ) = 8y − 3

Differentiating the composite function directly gives us

{g [ f (x )]}′ = d  /dx (4x 6 + 5x 3 + 1) = 24x 5 + 15x 2

When we apply the chain rule, we get

{g [ f (x )]}′ = g ′ [ f (x )] × f   ′ (x ) = [8 × (x 3 + 1) − 3] × d  /dx (x 3 + 1)
      = (8x 3 + 5) (3x 2) = 24x 5 + 15x 2

Are you confused?
If you aren’t certain that you understand how the chain rule works, make up some more examples in the 
same format as the previous two. First, differentiate the composite function as a whole. Then, use the 
chain rule. You should always get the same final answer either way. Problems like this are “self-checking.” 
If you make a mistake anywhere, you’ll probably get answers that don’t agree with each other.

Here’s a challenge!
Show that the following statement is not true in general:

g (f   ) = f ( g )

Solution
It’s easy to prove that a statement isn’t universally true. We simply find a situation called a counterexample
where it’s false. Consider

f (x ) = (x 3 + 1)



and

g ( y ) = (4y 2 − 3y )

We’ve already determined that

g [ f (x )] = 4x 6 + 5x 3 + 1

Working the other way, we get

f  [ g ( y )] = (4y 2 − 3y )3 + 1 = 64y 6 − 144y 5 + 108y 4 − 27y 3 + 1

The function g ( f   ) operates on a variable we call x, and the function f  ( g ) operates on a variable we call 
y. But the names of the variables aren’t important. The composite functions g ( f   ) and f ( g ) do different 
things. That’s what matters!

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Find the derivative of the polynomial function

f (x ) = −4x 4 + 2x 3 − x 2 − x + 1

  Then find the derivative of

g (x ) = 2 × (−4x 4 + 2x 3 − x 2 − x + 1) = −8x 4 + 4x 3 − 2x 2 − 2x + 2

    Verify that g ′ = 2f   ′.

 2. Find the derivative of the polynomial function

f (x ) = −40x 4 + 20x 3 − 10x 2 − 10x + 10

    Then find the derivative of

g (x ) = (1/5) × (−40x 4 + 20x 3 − 10x 2 − 10x + 10) = −8x 4 + 4x 3 − 2x 2 − 2x + 2

    Verify that g  ′ = (1/5) f   ′.
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 3.  Show that the two-function product rule for differentiation is commutative. That is, 
show that if f and g are differentiable functions, then

( f  g )′ = ( g  f   )′

 4.  Based on the two-function product rule for differentiation, derive a three-function 
product rule for differentiation. Assume that all three functions are differentiable.

 5. Find the derivative of the function

p ( y ) = 1 / ( y 2 + 1)

     in the set of real numbers. Indicate the real values of y, if any, for which this function is 
nondifferentiable.

 6. Find the derivative of the function

r ( y ) = 1 / ( y 2 − 1)

     in the set of real numbers. Indicate the real values of y, if any, for which this function is 
nondifferentiable.

 7. Find the derivative of the function

s ( z ) = (z4 − 1) / (z2 + 1)

     in the set of real numbers. First differentiate s (z ) directly after dividing out the 
quotient. Then differentiate s (z ) using the quotient rule. Indicate the real values of z, if 
any, for which this function is nondifferentiable.

 8. Find the derivative of the function

t (z ) = (z4 − 1) / (z2 − 1)

     in the set of real numbers. First differentiate t (z ) directly after dividing out the 
quotient. Then differentiate t (z ) using the quotient rule. Indicate the real values of z, if 
any, for which this function is nondifferentiable.

 9. Consider the functions

f (x ) = x 3 − 4x 2

    and

g ( y ) = y 2 + 5y

    Differentiate the composite function g ( f   ) directly. Then do it using the chain rule.



10. Consider the functions

f (x ) = x 2 − 4x

    and

g ( y ) = 2y 2 + 7y

    Differentiate the composite function g (  f   ) directly. Then do it using the chain rule.
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CHAPTER

7

A Few More Derivatives

In this chapter, we’ll learn how to differentiate functions that raise a variable to a negative inte-
ger power, or to a non-integer real power. We’ll also look at the derivatives of the sine, cosine, 
exponential, and logarithmic functions.

Real-Power Rule
We’ve seen how the power rule can be used to differentiate functions with a variable raised to 
a positive integer power and then multiplied by a real-number constant. Now we’ll take that 
rule further. The power to which the variable is raised can be any real number.

The old rule extended

In Chaps. 4 and 5, we showed that any function of the form

f (x ) = ax n

has the derivative

f   ′(x ) = anx (n −1)

where a is a nonzero real constant and n is a positive integer. This rule applies not only to 
positive integer exponents, but for all real-number exponents. We can rewrite the rule by sub-
stituting k in place of n, where k represents a real number. If

f (x ) = ax k

then

f   ′(x ) = akx (k −1)



There’s an important restriction. If k ≤ 1, then we must be sure that x ≠ 0. Otherwise, when 
we take the derivative, we’ll end up dividing by 0 when we raise the variable x to the power 
of k − 1.

Three examples

Let’s work out the derivatives of three simple functions that have exponents other than posi-
tive integers. First, consider

f (x ) = 7x −5

We multiply the coefficient 7 by the exponent −5 to get −35. That’s the new coefficient. Then 
we reduce the exponent by 1, making it −6. The result:

f   ′(x ) = −35x −6

provided x ≠ 0. Next, let’s differentiate

g ( y ) = (5/3)y 3/5

Again, we multiply the coefficient by the exponent, getting 1. Then we reduce the exponent 
by 1, getting −2/5. The result:

g ′( y ) = y −2/5

provided y ≠ 0. Finally, let’s consider the function

h (z ) = −4z −3.7

Going through the same ritual, taking care with signs and subtraction, we get a new coeffi-
cient of −3.7 × (−4) or 14.8, and a new exponent of −3.7, −1, or −4.7. The result:

h ′(z ) = 14.8z −4.7

Are you confused?
If you’re not sure what a rational-number exponent is, think back to what you learned in algebra. Remem-
ber the definition of the term rational number, and then remember how negative-integer powers and recipro-
cal powers are defined. A rational number q can always be expressed as a ratio, like this:

q = a /b

where a is an integer and b is a positive integer. If you talk about the quantity x q, you’re really talking about 
x a /b, or x raised to the power a /b. That’s the same as the positive b th root of x a. That is,

x a /b = ( x a)1/b
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This definition doesn’t make sense if x = 0 and a ≤ 0. In that case, you end up dividing by 0 when you 
work out the expression.

Irrational-number exponents are a little more esoteric. You’ll get a chance to “wrap your mind around 
them” at the end of this chapter.

Here’s a challenge!
Consider the following function, in which the exponent appears as an endless, repeating decimal:

p (v) = 44v 0.09090909...

What’s the derivative of this function?

Solution
At first glance, this might seem insoluble. But let’s look closely at the exponent, which is 0.09090909 . . . . 
In algebra, we learned that when we see an endless, repeating decimal fraction whose absolute value is less 
than 1, we can take the sequence of digits and divide it by an equal number of 9s, and we get a fraction 
equivalent to that endless decimal. In this situation we get 09/99, which reduces to 1/11. Now we have

p (v) = 44v 1 /11

To differentiate, we multiply the coefficient 44 by the exponent 1/11 to get 4. That’s the new coefficient. 
Then we reduce the exponent by 1, making it −10/11. The result:

p ′(v ) = 4v −10/11

provided v ≠ 0.

Sine and Cosine Functions
Now that we’ve learned how to differentiate functions in which the variable is raised to a 
power, let’s look at two functions that work in a different way: the sine and the cosine.

What’s the sine?

In trigonometry, you learned that the sine function acts on angles. The unit-circle model (Fig. 7-1) 
defines the sine of x (sin x ) for all possible angles x. The value of x is given in radians (rad). 
Positive angles go counterclockwise from the right-hand horizontal axis or “due east.” Nega-
tive angles go clockwise from “due east.” In Fig. 7-1, each axis division represents 1/4 unit, so 
the circle has a radius of 1 unit.

The sine of an angle is the vertical-axis coordinate of the point where the radial ray inter-
sects the unit circle. Because this circle has a radius of 1 unit, the sine function can never attain 
values larger than 1 or smaller than −1. Figure 7-1 shows the situation for an angle of 2p/3 rad 
(x = 2p/3), which is 1/3 of a rotation.

Remember that all angle expressions for trigonometric functions are given in radians 
(never in degrees) unless you’re told specifically otherwise!
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What’s the cosine?

The cosine function can also be defined in terms of the unit circle, as shown in Fig. 7-2. As 
before, positive angles are expressed as counterclockwise rotation of the radial ray, and nega-
tive angles are expressed as clockwise rotation.

The cosine of the angle is the horizontal-axis coordinate of the point where the radial ray 
intersects the circle. As with the sine, the cosine can never be larger than 1 or smaller than −1.
This drawing illustrates the case where x = 2p/3.

Both the sine and the cosine functions are defined, continuous, and differentiable over 
the entire set of real numbers. An angle of 2p represents a complete counterclockwise rotation 
of the ray extending straight out from the origin. Angles larger than 2p represent more than 
one complete counterclockwise rotation. Negative angles go clockwise instead of counter-
clockwise. For example, an angle of −2p/3 translates to 1/3 of a clockwise rotation. An angle 
of −2p is a full clockwise rotation. Angles smaller than −2p (or larger negatively ) represent 
more than a full clockwise rotation.

Derivative of the sine

Suppose we graph the function f (x ) = sin x for values of x between −3p and 3p. The result 
is the solid curve in Fig. 7-3. Because of its wavelike appearance, this curve is often called a 
sine wave. If we examine it closely, we can see that its slope is 0 when it reaches a crest or local
maximum, and the slope is also 0 when it reaches a trough or local minimum. A point of maxi-
mum slope occurs 1/4 of a rotation, or p/2 rad, after every trough. A point of minimum slope 
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Figure 7-2  The unit-circle model for the cosine function. 
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Figure 7-3  The derivative of the sine is the cosine. 
This can be seen when the two functions 
are graphed as waves and then compared.
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occurs p /2 rad after every crest. The curve crosses the x axis at every point where the slope is 
maximum or minimum.

If we plot a graph of the slope of the sine function, which represents its derivative, for 
many points along the x axis, we’ll see that the graph of the derivative is another wave, shown 
by the dashed curve in Fig. 7-3. It has the same shape and size as the sine wave. This particular 
wave shape occurs often in physics and engineering. The general term for it is sinusoid.

In Fig. 7-3, we can see that the derivative wave is displaced by p /2 rad to the left of the 
original wave. This amount of displacement is sometimes called a quarter wavelength or a 
quarter cycle. In this example, the dashed wave represents the cosine function. Therefore, if 
we differentiate

f (x ) = sin x

we get

f   ′(x ) = cos x

Derivative of the cosine

Now let’s graph the function g (x ) = cos x for values of x between −3p and 3p. We get the 
solid curve shown in Fig. 7-4. This wave, like the sine wave, has a slope of 0 when it reaches 
a crest or a trough. Also like the sine wave, a point of maximum slope occurs p /2 rad after 

Sine and Cosine Functions  111

–3p

3p

3

2

1

–1

–2

–3

x

Value of
function

g (x) = cos x g ¢ (x) = –sin x

Figure 7-4  The derivative of the cosine is the negative 
of the sine.



every trough, and a point of minimum slope occurs p /2 rad after every crest. The cosine wave
is a sinusoid, just like the sine wave. The only difference between the cosine wave and the sine 
wave is the horizontal position, also called the phase.

When we graph the slope of the cosine function for many points, we find that the graph of 
the derivative is another sinusoid, shown by the dashed curve in Fig. 7-4. The derivative wave 
is, as in the earlier case with the sine wave, displaced p /2 rad to the left of the original. This new 
wave is an “upside-down” sine wave, so it represents the negative of the sine function. If 

g (x ) = cos x

then the derivative is

g ′(x ) = − sin x

Example

Now that we’ve learned how to differentiate two new functions, we can differentiate any func-
tion that contains them in a sum, product, reciprocal, or quotient. We can also use the chain 
rule to differentiate composite functions containing them. Let’s try an example:

f (x ) = −3x4 + 2 cos x

Using the sum rule, we know that

f   ′(x ) = d /dx (−3x4) + d / dx (2 cos x )

The power rule and the multiplication-by-constant rule allow us to rewrite this as

f   ′(x ) = −12x 3 + 2 d /dx (cos x )

We know that the derivative of the cosine is the negative of the sine. Therefore

f   ′(x ) = −12x 3 + 2 · (− sin x ) = −12x 3 − 2 sin x

Are you confused?
The little dot in the first part of the above equation represents multiplication. It’s often used instead of the 
traditional “times sign,” which some people think looks like the letter x representing a variable. If we were 
to write the first part of the above equation with the conventional “times sign,” we would get

f   ′(x ) = −12x 3 + 2 × (− sin x )

Some people might confuse this with the completely different equation

f   ′(x ) = −12x 3 + 2x (− sin x )
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Let’s agree that from now on, whenever we feel tempted to use a “times sign” to represent multiplication, 
we’ll use the dot. This dot should be elevated above the base line. Otherwise, it could be confused with 
a decimal point! But let’s also remember that we can often indicate multiplication without writing any 
symbol at all, as in expressions such as 2x, xy, or 12ab2x 3.

Another example

Let’s try differentiating a product of trigonometric functions. Consider

q (x ) = sin x cos x

We can name the individual functions as

f (x ) = sin x

and

g (x ) = cos x

The derivatives are

f   ′(x ) = cos x

and

g ′(x ) = − sin x

Applying the product rule for differentiation gives us

  q ′(x ) = ( f g )′ (x ) = f   ′(x ) g (x ) + g ′(x ) f (x )
                             = cos x cos x + (− sin x ) sin x = (cos x )2 − (sin x )2

With positive integer powers of trigonometric functions such as the sine and the cosine, 
the exponent is customarily written directly after the abbreviated name of the function. 
For example, instead of (sin x )2, we write sin2 x. We can therefore rewrite the above 
equation as

q ′(x ) = cos 2 x − sin2 x

Be warned!

The above notational trick is never used for negative integer powers of trig functions. For 
example, when we write sin−1 x, we actually mean the inverse of the sine of x, also called the 
Arcsine. This isn’t even a function unless its domain is restricted.
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Here’s a challenge!
Consider a function p (x ) that we get when we take sin x and then square the result:

p (x ) = sin2 x

Differentiate this function. Indicate the values, if any, for which it is nondifferentiable.

Solution
We must use the chain rule in this situation. Let’s name the component functions like this:

f (x ) = sin x

and

g ( y ) = y2

The derivatives of the component functions are

f  ′(x ) = cos x

and

g ′( y ) = 2y

Now we can write the derivative of the composite function using the chain rule:

p′(x ) = { g [ f (x )]}′ = g ′ [ f (x )] · f   ′(x ) = 2 sin x cos x

Both of the component functions are continuous and differentiable over the entire set of reals. We never 
get a denominator that can become equal to 0, because we never have to divide by anything. Therefore, 
the composite function is differentiable over the entire set of reals.

Natural Exponential Function
Imagine some function, other than the zero function, that’s its own derivative. You might 
wonder, “Does such a function exist? If so, what does it look like?” We can say this much 
about it: The slope of its graph must equal the value of the function at every point in the 
domain. As things turn out, infinitely many such functions exist.

What’s a natural exponential?

The natural exponential of a quantity is what you get when you raise a unique irrational-
number constant, called Euler’s constant or the exponential constant, to a power equal to that 
quantity. Euler’s constant is symbolized by e.
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If you have a good scientific calculator, it should have a key marked ex. To get an idea of 
the approximate value of e, enter “1” and then hit the e x key. You’ll get 2.718 followed by a 
string of digits. Because e is irrational, this string of digits is endless and nonrepeating.

Here are some examples of natural exponentials, rounding to three decimal places except 
for e 0, which is exactly 1:

 e 2 ≈ 7.389
 e 1.478 ≈ 4.384
 e 1 ≈ 2.718
 e 0.8347 ≈ 2.304
 e 0 = 1
 e −0.5 ≈ 0.607
 e −1 ≈ 0.368
 e −1.7 ≈ 0.183
 e −2 ≈ 0.135

The wavy equals sign (≈) means “is approximately equal to.”

What does it look like?

Figure 7-5 is a graph of the natural exponential function. Its domain is the entire set of real 
numbers, and it is continuous at every point in the domain. The function has no gap, does 
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not have a singularity (that is, it doesn’t blow up), and it doesn’t turn any corners. The natural 
exponential function is therefore differentiable over the entire set of reals.

At any point on the graph in Fig. 7-5, the slope is equal to ex. In more formal terms, we 
can write

d  / dx (e x ) = e x

Offspring functions

The natural exponential function is a parent function with infinitely many child functions, each 
of which is its own derivative. Consider the generalized function

g (x ) = ke x

where k is a constant that can be equal to any real number. Then

g ′(x ) = d /dx (kex )

Using the multiplication-by-constant rule for differentiation, we can rewrite this as

g ′(x ) = k [d /dx (ex )]

Because d /dx (ex ) = ex, we have

g ′(x ) = kex

which is exactly the same function as g (x ).

Example

Let’s differentiate an exponential function that’s a little more complicated than a direct off-
spring of the parent. Consider

p (x ) = e −x

We can rewrite this as

p (x ) = 1 / (e x )

Now let’s invent a function f, and define it as

f  (x ) = e x
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Then we have

p (x ) = 1 / [ f (x )]

The reciprocal rule for differentiation tells us that if f  is a differentiable function of a single 
variable, then

[1 / f (x )]′ = −f   ′(x ) / [ f (x )]2

In this situation, f  is differentiable, so

f   ′(x ) = ex

and

[ f (x )]2 = (e x )2 = e 2x

Therefore

p′(x ) = −e x / (e 2x ) = −[e x / (e 2x )] = −e (x −2x ) = −e −x

Are you confused?
A couple of steps in the above process might confuse you. Both of them involve rules for exponentials that 
you learned in algebra or precalculus. They’re easy to forget!

You might wonder how we got from (ex )2 to e 2x. That comes from the rule for a power of a power. If 
a, b, and c are real numbers, then

(a b)c = a bc

as long as we don’t run into some undefined expression along the way, such as 0 to the 0th power, or 0 to 
some negative power.

The transition from −[e x / (e 2x )] to − e (x −2x ) is the other step that you might not understand right away. 
This comes from a rule in algebra that deals with quotients of expressions with exponents. If a, b, and c
are real numbers and a ≠ 0, then

a b / a c = a (b −c )

Here’s a challenge!
Differentiate the function in the example we just finished, using the chain rule instead of the reciprocal 
rule. Again, that function is

p (x ) = e −x
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Solution
This time, we’ll break the function p down into two component functions. Let’s call them f and g, and 
say that

f (x ) = −x

and

g ( y ) = e y

Then the function p becomes

p = g [ f (x )]

Both f and g are differentiable, so we have

f   ′(x ) = −1

and

g ′( y ) = e y

The chain rule tells us that if f and g are differentiable functions of the variable x, then

{ g [ f (x )]}′ = g ′ [ f (x )] · f   ′(x )

Substituting the values into this formula, we get

p′(x ) = e −x · (−1) = −e −x

This agrees with what we got when we used the reciprocal rule. Which method do you think was easier?

Natural Logarithm Function
The natural exponential function has an inverse that “undoes” its work. This inverse is known 
as the natural logarithm, or simply the natural log.

What’s a natural log?

A logarithm of a quantity is a power to which a positive real constant is raised to get that quan-
tity. The constant is called the base, which is usually 10 or e. We’ll deal only with the base-e
or natural log.

In equations, the natural log is usually denoted by writing “ln” followed by the argument. 
Here are some equations that you can check out with your calculator. With the exceptions of 
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ln e, ln 1, and ln (1/e ), which are exact values, everything has been rounded to three decimal 
places.

 ln 100  ≈ 4.605
 ln 45  ≈ 3.807
 ln 10  ≈ 2.303
 ln 6  ≈ 1.792
 ln e = 1
 ln 1 = 0
 ln (1/e ) = −1
 ln 0.5  ≈ −0.693
 ln 0.1  ≈ −2.303
 ln 0.07  ≈ −2.659
 ln 0.01  ≈ −4.605

While the natural log “undoes” the natural exponential, the reverse operation also works. 
Therefore,

ln (e x ) = x

and

e (ln x ) = x

The natural log function is defined only for positive real-number arguments. In the first 
equation above, that’s not a problem, because e x is always a positive real, no matter what real 
number we input for x. In the second equation, we must restrict the domain to the positive 
reals only. As long as we confine the domain to the positive reals, the natural log function is 
continuous and differentiable.

What does it look like?

Figure 7-6 is a graph of the natural log function. Its domain is the set of positive real 
numbers, and it’s continuous at every point in that domain. The function is singular
(meaning that it blows up) as x approaches 0 from the right, but this is not a problem 
as long as we keep 0 and all the negative reals out of the domain. Once we restrict the 
domain in that way, the natural log function doesn’t have any gaps or turn any corners, 
so it’s differentiable.

At any point on the graph in Fig. 7-6, the slope is equal to 1/x. We can write this as the 
equation

d /dx (ln x ) = 1/x
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Example

Let’s work out a derivative involving a natural logarithm. Without getting complicated, but 
still requiring some thought, we’ll tackle this:

p (x ) = ln (7x − 14)

The chain rule will work here. If we call the component functions f and g, and if we express 
the above function as g ( f   ), then

f (x ) = 7x − 14

and

g ( y ) = ln y

The function f  is differentiable over the entire set of reals, but g is differentiable only as long 
as y > 0. That means we must restrict the domain of g ( f   ) so that

7x − 14 > 0
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This works out to x > 2. Now we can differentiate both functions to get

f   ′(x ) = 7

and

g ′( y ) = 1/y

The chain rule, stated once again, tells us that if f and g are differentiable functions of the 
variable x, then

{ g [ f (x )]}′ = g ′ [ f (x )] · f   ′(x )

Substituting the values into this formula, we get

p′(x ) = [1 / (7x − 14)] · 7 = 7 / (7x − 14)

We can multiply both the numerator and denominator by 1/7, reducing this to

p′(x ) = 1 / (x − 2)

Some people would rather write this as

p′(x ) = (x − 2)−1

Here’s a challenge!
Suppose we’re confronted with a differentiation problem that involves the composite of a trig function and 
a log function. Let’s find the derivative of

q (x ) = ln (cos 2x )

We’ll also define the values of x, if any, for which this function is nondifferentiable.

Solution
Before we get started with the differentiation, we had better find out where q is differentiable and where 
it is not. The natural log function is defined only for positive values of the argument. That means q is dif-
ferentiable only for those values of x such that

cos 2x > 0
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This inequality is satisfied for infinitely many open intervals. It’s awkward to express this symbolically, but 
the following arrangement gives the general idea:

From “negative infinity”

↓
−13p /4  < x  < −11p /4

−9p /4  < x  < −7p /4
−5p /4  < x  < −3p /4

−p /4  < x  < p /4
3p /4  < x  <  5p /4
7p /4  < x  <  9p /4

11p /4  < x  <  13p /4
↓

Toward “positive infinity”

Our function q is defined and continuous everywhere in each of these open intervals. There are no gaps, 
no singularities, and no corners within any single interval. But we must take note of the fact that these are 
open intervals, meaning that the end points are not included. Our function q is differentiable at any point 
within any of these open intervals, but nowhere else. You might find it helpful to graph the function

y = cos 2x

in the xy-plane to see where this function is positive, where it’s zero, and where it’s negative. Then you’ll be 
able to envision the above open intervals along the x axis.

In this situation, we’re dealing with a function of a function of a function! Another way to say this is 
to call q a triplet of nested functions. To differentiate it, we must employ the chain rule twice. Let’s call the 
component functions f, g, and h, working from the inside out. Then we have

q (x ) = h {g [ f (x )]}

where

f (x ) = 2x

   g ( y ) = cos y

 h (z ) = ln z

The derivatives are

f   ′(x ) = 2

      g ′( y ) = −sin y

 h ′(z ) = 1/z

Applied to the outer two functions, the chain rule gives us

[h ( g )]′ = h ′( g ) · g ′
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If we let g operate on f, we can rewrite this as

{h [ g (  f   )]}′ = h ′ [ g ( f   )] · [ g ( f   )]′

The chain rule, applied to the inner pair of functions, tells us that

[ g (  f   )]′ = g ′(  f   ) · f   ′

So, by substitution, we obtain

{h [ g (  f   )]}′ = h ′ [ g (  f   )] · g ′(  f   ) · f   ′

The left-hand side of the above equation happens to be the same as q ′, which is what we seek! So let’s 
substitute:

q ′ = h ′ [ g (  f   )] · g ′(  f   ) · f   ′

We can include the variable x in the above expression to see how it fits in:

q ′(x ) = h ′ {g [ f (x )]} · g ′ [ f (x )] · f   ′(x )

Now let’s plug in expressions for what each of these functions does to its argument, and also plug in the 
arguments themselves. When we do that, we get

q ′(x ) = [1 / (cos 2x )] · (−sin 2x ) · 2 = −2 (sin 2x ) / (cos 2x )

It’s time for us to invoke another well-known law from trigonometry: The sine divided by the cosine is 
equal to the tangent, abbreviated tan. Knowing this, we can rewrite the above equation as

q ′(x ) = −2 tan 2x

provided 2x is not an odd-integer multiple of p/2. That means x can’t be an odd-integer multiple of p/4.
We’ve already taken this constraint into account. Remember that the original function q is differentiable 
only within certain open intervals, none of which contains an odd-integer multiple of p/4.

Are you confused?
Way back in the 1960s, one of my math teachers asked the class at the end of an especially difficult session, 
“Are you confused by this?” When we all nodded, he said, “I don’t blame you.” The chain rule is tricky 
enough when applied once. When you apply it twice to a triplet of nested functions, it’s worse! If you’re 
disoriented by the process we just went through, put it aside for now, and look at it again tomorrow.

Where to find more derivatives

You can find some worked-out derivatives in the back of this book. Refer to App. F. You can 
also find them on the Internet. Enter the phrase “table of derivatives” into your favorite search 
engine. A few sites will calculate derivatives for you.
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Real powers in general

A general real-number exponent can be evaluated with natural logs and exponentials. From 
algebra and precalculus, remember that when you have an expression of the form x k where x
is a nonzero variable and k is any real number, then

ln (x  k ) = k ln x

Because the natural exponential function “undoes” the natural log function, you can take the 
natural exponential of both sides of the above equation to get

x  k = e (k ln x )

If you want to raise a variable to any real power, you can take the natural log of the vari-
able, multiply by the exponent, and finally take the natural exponential of that product. This 
scheme only works when x > 0, however, because the natural log of 0 or a negative quantity 
is not defined.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Differentiate the function

p (t ) = 2t 2 − 4t + 5 + 4t −1 + 6t −2

  Indicate the values of t, if any, for which the derivative is not defined.

 2. Differentiate the function

q (w ) = (w −1 + 1)(w −1 − 1)

    Indicate the values of w, if any, for which the derivative is not defined.

 3.  The reciprocal of the sine function is known as the cosecant function, abbreviated csc. 
Mathematically,

csc x = 1 / sin x

     provided x is not an integer multiple of p. Using the rules we’ve learned so far, 
differentiate the cosecant function. Indicate the values of x, if any, for which this 
function is nondifferentiable.
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 4.  The reciprocal of the cosine function is known as the secant function, abbreviated sec. 
Mathematically,

sec x = 1 / cos x

     provided x is not an odd-integer multiple of p/2. Using the rules we’ve learned so far, 
differentiate the secant function. Indicate the values of x, if any, for which this function 
is nondifferentiable.

 5.  As mentioned in the chapter text, the sine function divided by the cosine function is the 
tangent function. Mathematically,

tan x = sin x / cos x

     provided x is not an odd-integer multiple of p/2. Using the rules we’ve learned so 
far, differentiate the tangent function. Indicate the values of x, if any, for which this 
function is nondifferentiable.

 6.  The cosine function divided by the sine function is known as the cotangent function,
abbreviated cot. Mathematically,

cot x = cos x / sin x

     provided x is not an integer multiple of p. Using the rules we’ve learned so far, 
differentiate the cotangent function. Indicate the values of x, if any, for which this 
function is nondifferentiable.

 7. Differentiate this generalized function, where a is a real-number constant:

p (x ) = e ax

 8. Differentiate this generalized function, where a and b are real-number constants:

q (x ) = be ax

 9. Differentiate this generalized function, where a is a real-number constant:

r (x ) = ln ax

10. Differentiate this generalized function, where a and b are real-number constants:

s (x ) = b ln ax
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CHAPTER

8

Higher Derivatives

Functions can be differentiated more than once to get higher derivatives. Sometimes the deriv-
ative functions get simpler as we go, sometimes they get more complicated, and sometimes 
they go through repeating cycles.

Second Derivative
The second derivative of a function is the derivative of its derivative. Consider a function f of an 
independent variable x, producing a dependent variable y so that y = f (x ). The second deriva-
tive of f   with respect to x can be denoted in various ways:

d 2y /dx 2

y ′′
d  2f (x ) /dx 2

d  2/dx 2 f (x )
d  2f /dx 2

f   ′′(x )
f   ′′

If we want to find the second derivative of a function, we differentiate the function, then 
treat that derivative as a new function, and finally differentiate the new function with respect 
to the same variable or expression.

An example

Let’s find the second derivative of a polynomial function. Consider

f (x ) = − 4x4 + 5x 3 + 6x 2 − 7x + 8



Using the rules we’ve learned, we find the first derivative to be

f   ′(x ) = −16x  3 + 15x  2 + 12x − 7

Differentiating again, we get

f   ′′(x ) = −48x  2 + 30x + 12

Another example

Now let’s work out the second derivative of

f (x ) = 4x4 − 5 cos x

Using the sum rule, we obtain

f   ′(x ) = d /dx (4x4) − d /dx (5 cos x )

The power rule and the multiplication-by-constant rule can be applied to give us

f   ′(x ) = 16x 3 − 5 d /dx (cos x )

The derivative of the cosine is the negative of the sine. Therefore

f   ′(x ) = 16x 3 − 5 · (− sin x ) = 16x 3 + 5 sin x

Now let’s differentiate again. The sum rule can be used to get

f   ′′(x ) = d /dx (16x 3) + d /dx (5 sin x )

Applying the power rule and the multiplication-by-constant rule gives us

f   ′′(x ) = 48x 2 + 5 d /dx sin x

The derivative of the sine is the cosine, so we have

f   ′′(x ) = 48x 2 + 5 cos x

Still another example

Now we’ll work with a function that takes the variable to various integer powers and then adds 
the natural logarithm. Let’s find the second derivative of

g (t ) = 2t 2 + 5t − 7 + 4t −1 − t −2 + 2t −3 + ln t
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with the constraint that t > 0, because the natural log function is defined only for positive real 
numbers. The first derivative comes out as

g ′(t ) = 4t + 5 − 4t −2 + 2t −3 − 6t −4 + (1/t )

The derivative of 7 is equal to 0, so that term has vanished. Because 1/t = t −1, we can rewrite 
the above equation, putting the exponents in descending order to get

g ′(t ) = 4t + 5 + t −1 − 4t −2 + 2t −3 − 6t −4

Now we take the derivative again, obtaining

g ′′(t ) = 4 − t −2 + 8t −3 − 6t −4 + 24t −5

The derivative of 5 is equal to 0, so that term, like the constant 7 in the first derivative, goes 
away.

Are you confused?
In the graph of a function, the derivative at a point represents the slope of the curve at that point, as you 
have learned. “All right,” you say. “What does the second derivative represent graphically?” The second 
derivative at a point tells you the rate and the sense (increasing or decreasing) at which the slope changes 
at that point. Think about the graph of the function

f (x ) = 2x + 4

This is a straight line with a slope of 2 at every point. This fact shows up in the first derivative

f   ′(x ) = d /dx (2x + 4) = 2

The slope is the same everywhere along the line, so the rate at which the slope changes is 0 at any point 
you choose. This is apparent when you take the second derivative

f   ′′(x ) = d  2/dx 2 (2x + 4) = d /dx 2 = 0

Here’s a challenge!
According to legend, one day several centuries ago Sir Isaac Newton sat in an orchard and saw an apple fall. 
At the instant it snapped off the twig, the apple’s speed was zero. Then it began to move, slowly at first, 
then faster. Newton realized that falling objects don’t merely travel downward; they accelerate downward. 
Returning to his study, he must have worked out the fact that, neglecting air resistance, the acceleration of 
a falling object is constant, and it doesn’t depend on the object’s mass.

The acceleration of a falling object is the rate at which its speed increases. That’s the derivative of 
the speed with respect to time. The speed of a falling object is the rate at which its total fallen distance 
increases. That’s the derivative of the distance with respect to time. Suppose we let h represent the vertical 
fallen distance in meters (m), v represent the vertical speed in meters per second (m/s), a represent the 
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vertical acceleration in meters per second per second (m/s2), and t represent the elapsed time in seconds (s) 
after the beginning of the descent. Then

v = dh /dt

and

a  = dv /dt  = d  2h /dt 2

Now the fiction begins (except for the mathematics, which is fact!). Imagine that Sir Isaac picked up the 
apple, took it to the cliffs of Dover, tossed it off from one of the highest points he could find, and watched 
it plunge to the beach far below (Fig. 8-1). He had already figured out that the vertical fallen distance as a 
function of time would be quite close to

h = 5t 2

Sir Isaac knew that the total fall time, the vertical component of the speed at any instant, and the vertical 
(downward) component of the acceleration at any instant didn’t depend on whether he simply dropped 
the apple or whether he threw it as hard as he could—as long as the apple left his hand traveling horizon-
tally. So Sir Isaac took aim straight at the French coast across the Channel, hurling the apple with enough 
horizontal force to make sure it would clear the outcroppings below. He timed the fall, and found that the 
apple struck the beach after 4 seconds. What was the height hc of the cliff, as measured from the position 
of Sir Isaac’s hand as the apple left it? What was the vertical component va of the apple’s speed at impact? 
What was the vertical component aa of the apple’s acceleration at impact?
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Solution
We can calculate the height of the cliff, hc, by plugging in 4 for t in the equation we’ve been given. When 
we do that, we get

hc = 5 · 42 = 5 · 16 = 80 m

The vertical speed v of a falling object at time t after its release is always

v = dh /dt = d /dt (5t  2) = 10t

We can calculate the vertical speed of Newton’s apple at impact, va, by plugging in 4 for t again, getting

va = 10 · 4 = 40 m/s

The vertical acceleration function turns out to be a constant

a = d  2 /dt 2 (5t 2) = d /dt (10t ) = 10 m/s2

The vertical acceleration aa of Newton’s apple at impact was therefore 10 m/s2. In fact, the apple’s vertical 
acceleration was 10 m/s2 during its entire descent.

Third Derivative
The third derivative of a function is the derivative of its second derivative. Suppose 
we have y = f (x ). The third derivative of f with respect to x can be written in various 
ways:

d  3y /dx 3

y ′′′
d  3f (x ) /dx 3

d  3/dx 3 f (x )
d 3f /dx 3

f   ′′′(x )
f   ′′′

f   (3)(x )
f   (3)

The last two expressions contain a simple numeric superscript in parentheses. The parentheses 
indicate that we’re talking about a derivative, not a power.

If we want to find the third derivative of a function, we differentiate the function, con-
sider that derivative as a new function, differentiate that new function again with respect to 
the same variable or expression, consider that as another new function, and finally differenti-
ate it once again with respect to the same variable or expression.
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An example

Earlier in this chapter, we found the second derivatives of three functions. Now let’s work out 
the third derivatives of those same functions. Consider

f (x ) = − 4x4 + 5x 3 + 6x 2 − 7x + 8

We found the second derivative to be

f   ′′(x ) = − 48x 2 + 30x + 12

Differentiating again, we get

f   ′′′(x ) = − 96x + 30

Another example

Let’s look again at the function

f (x ) = 4x4 − 5 cos x

We found that the second derivative is

f   ′′(x ) = 48x 2 + 5 cos x

Now let’s differentiate again. Applying the sum rule, we get

f   ′′′(x ) = d /dx (48x 2) + d /dx (5 cos x )

The power rule and the multiplication-by-constant rule tell us that

f   ′′′(x ) = 96x + 5 d /dx (cos x )

The derivative of the cosine is the negative of the sine, so we have

f   ′′′(x ) = 96x + 5 · (− sin x )

which can be simplified to

f   ′′′(x ) = 96x − 5 sin x

Still another example

Let’s find the third derivative of

g (t ) = 2t 2 + 5t − 7 + 4t −1 − t −2 + 2t −3 + ln t

We found that the second derivative is

g ′′(t ) = 4 − t −2 + 8t −3 − 6t −4 + 24t −5
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We can use the generalized power rule and the sum rule to differentiate term-by-term, getting

g ′′′(t ) = 2t −3 − 24t −4 + 24t −5 − 120t −6

The derivative of 4 is equal to 0, so that term disappears from the final result.

Are you confused?
You’ve learned that the speed of an object falling straight down (neglecting air resistance) is the derivative 
of the fallen distance, and the acceleration is the second derivative of the fallen distance. “What,” you ask, 
“is the third derivative of the fallen distance?” It’s called jerk. It’s the derivative of the acceleration, or the 
second derivative of the speed. You won’t hear or read about jerk very often.

For a falling object, neglecting air resistance, the jerk is always 0 because the acceleration is constant, 
and the derivative of a constant function is the zero function. If the intensity of the earth’s gravity were 
to increase as an object fell, the jerk would not be 0. (In fact, this does occur when a meteor “falls” from 
many thousands of kilometers out in space, but it’s a gradual increase.) Perhaps you’ve been subjected to 
jerk when riding in a high-performance car with a bad driver. If you were pressed backward in your seat 
and then suddenly thrown forward against the shoulder strap, you felt it!

Here’s a challenge!
Find the second derivative of the tangent function. Start with the known first derivative, which you found 
when you solved Practice Exercise 5 in Chap. 7:

d /dx (tan x ) = sec 2 x

Indicate the values of x, if any, for which this second derivative function is nondifferentiable.

Solution
From Practice Exercise 4 in Chap. 7, we remember that the secant is the reciprocal of the cosine. We can 
therefore rewrite the above equation as

d /dx (tan x ) = [1 / (cos x )]2 = (cos x )−2

This function has discontinuities at all values of x  where cos x = 0. Those are, as we’ve seen, all odd-integer 
multiples of p/2. To find the second derivative of the tangent function, we must differentiate the cosine 
function raised to the −2 power:

d  2/dx 2 (tan x ) = d /dx (cos x )−2

Let’s use the chain rule. We’ll break the above function down into two components f and g, such that

f (x ) = cos x

and

g ( y ) = y−2
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The derivatives of the component functions are

f   ′(x ) = −sin x

and

g ′(  y ) = −2y−3

Now we can write the derivative of the composite function using the chain rule as follows:

d /dx (cos x )−2 = {g [ f (x )]}′ = g ′ [ f (x )] · f   ′(x ) = −2 · (cos x )−3 · (−sin x )

     = 2 · (cos x )−3 · sin x

We’ve just found that

d  2/dx 2 (tan x ) = 2 · (cos x )−3 · sin x

Here’s an extra credit challenge!
Find the third derivative of the tangent function. Start with the known second derivative, which we just 
finished working out. Indicate the values, if any, for which

d  2/dx 2 (tan x ) = 2 · (cos x )−3 · sin x

is nondifferentiable.

Solution
You’re on your own. That’s why you get extra credit for tackling this problem! Here’s a hint: Use the chain 
rule and the product rule for differentiation.

Beyond the Third Derivative
The fourth derivative of a function is the derivative of its third derivative, the fifth derivative is 
the derivative of the fourth derivative, and so on. The nth derivative of a function is what we 
get when we differentiate it n times, where n is a positive integer. Consider y = f (x ). The nth
derivative of f   with respect to x can be written in various ways:

d ny /dx n

d nf (x ) /dx n

d n/dx n f (x )
d nf  /dx n

f    (n) (x )
f    (n)
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As before, the parentheses around a superscript indicate that we’re talking about a derivative, 
not a power.

An example

Let’s work out the fourth derivative of the same three functions for which we have already 
found the second and third derivatives. The first original function, again, is

f (x ) = − 4x4 + 5x 3 + 6x 2 − 7x + 8

When we calculated the third derivative, we got

f   ′′′(x ) = − 96x + 30

Differentiating again, we obtain

f   (4)(x ) = − 96

Another example

Now let’s find the fourth derivative of

f (x ) = 4x4 − 5 cos x

We found its third derivative to be

f   ′′′(x ) = 96x − 5 sin x

We must differentiate again! The sum rule tells us that

f    (4)(x ) = d /dx (96x ) − d /dx (5 sin x )

Using the power rule and the multiplication-by-constant rule, we get

f    (4)(x ) = 96 − 5 d /dx sin x

The derivative of the sine is the cosine, so we have

f    (4)(x ) = 96 − 5 cos x

Still another example

Now we’ll find the fourth derivative of

g (t ) = 2t 2 + 5t − 7 + 4t −1 − t −2 + 2t −3 + ln t



We found that the third derivative is

g ′′′(t ) = 2t −3 − 24t −4 + 24t −5 − 120t −6

Using the generalized power rule and working term-by-term, we get

g (4)(t ) = −6t −4 + 96t −5 − 120t −6 + 720t −7

Are you astute?
By now, you’ll have noticed that these three functions “morph” differently as you take their derivatives 
repeatedly. In the first case, if you differentiate again, you’ll get the zero function; after that, higher deriva-
tives won’t change anything. In the second case, the constant −96 will vanish, leaving 5 or −5 times a sine 
or cosine. In the last case, you’ll always get a “nonstandard” polynomial. The exponents will get larger 
negatively, and the coefficients will alternate between positive and negative as their absolute values grow.

Can you tell, merely by looking at a function, what will occur if you differentiate it multiple times? As 
an extra-credit exercise, invent a few functions on your own. Then try to predict what will happen if you 
differentiate them over and over. Finally, do the calculations to see how accurate your predictions are.

Here’s a challenge!
Find the first nine derivatives of the sine function.

Solution
To work out all these derivatives, we need to know only that

d /dx (sin x ) = cos x

and

d /dx (cos x ) = − sin x

Succeeding derivatives are easy to find:

d  2/dx 2 (sin x ) = d /dx (cos x ) = − sin x

d  3/dx 3 (sin x ) = d /dx (− sin x ) = − cos x

d 4/dx4 (sin x ) = d /dx (− cos x ) = sin x

d  5/dx5 (sin x ) = d /dx (sin x ) = cos x

d  6/dx6 (sin x ) = d /dx (cos x ) = − sin x

d  7/dx7 (sin x ) = d /dx (− sin x ) = − cos x

d  8/dx8 (sin x ) = d /dx (− cos x ) = sin x

d 9/dx 9 (sin x ) = d /dx (sin x ) = cos x

As we keep going, the derivatives cycle endlessly through these four functions in order: negative sine, nega-
tive cosine, sine, and cosine.
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Here’s another challenge!
Find the first nine derivatives of the natural log function, given that the domain is restricted to the posi-
tive reals.

Solution
In this situation, we don’t get a cycle, but we will see a pattern. To begin, remember that

d /dx (ln x ) = x −1

We can use the generalized power rule to find higher derivatives, building our results one upon another:

d  2/dx 2 (ln x ) = d /dx (x −1) = −x −2

d  3/dx 3 (ln x ) = d /dx (−x −2) = 2x −3

d 4/dx4 (ln x ) = d /dx (2x −3) = −6x −4

d  5/dx 5 (ln x ) = d /dx (− 6x −4) = 24x −5

d  6/dx 6 (ln x ) = d /dx (24x −5) = −120x −6

d  7/dx 7 (ln x ) = d /dx (−120x −6) = 720x −7

d  8/dx 8 (ln x ) = d /dx (720x −7) = −5,040x −8

d  9/dx 9 (ln x ) = d /dx (−5,040x −8) = 40,320x −9

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. In the chapter text, we found the second, third, and fourth derivatives of

f (x ) = − 4x4 + 5x 3 + 6x 2 − 7x + 8

   Find the fifth derivative of this function.

 2. Find the sixth derivative of

f (x ) = − 4x4 + 5x 3 + 6x 2 − 7x + 8

 3. In the chapter text, we found the second, third, and fourth derivatives of

f (x ) = 4x4 − 5 cos x

   Find the fifth derivative of this function.



 4. Find the sixth derivative of

f (x ) = 4x4 − 5 cos x

 5. Find the seventh derivative of

f (x ) = 4x4 − 5 cos x

    What happens as we keep on going to the eighth, ninth, and higher derivatives?

 6. In the chapter text, we found the second, third, and fourth derivatives of

g (t ) = 2t 2 + 5t − 7 + 4t −1 − t −2 + 2t −3 + ln t

    Find the fifth derivative of this function.

 7. Find the sixth derivative of

g (t ) = 2t 2 + 5t − 7 + 4t −1 − t −2 + 2t −3 + ln t

 8. Find the seventh derivative of

g (t ) = 2t 2 + 5t − 7 + 4t −1 − t −2 + 2t −3 + ln t

    What happens (in general) as we keep on going to the eighth, ninth, and higher derivatives?

 9.  Go back to the first “challenge” in the chapter text. Suppose Sir Isaac went to another 
cliff only 50 m high, and repeated the experiment. How long did the apple take to fall 
from that cliff ? What was the vertical component va of the apple’s speed at impact? 
What was the vertical component aa of the apple’s acceleration at impact?

10. Look one more time at the first “challenge.” Imagine that, instead of working on earth, 
Sir Isaac conducted his experiment on a planet where the fallen distance h (in meters) as 
a function of time t (in seconds) was

h = 3t 2

     If the apple took 11 seconds to fall, what was the height hc of the cliff ? What was the 
vertical component va of the apple’s speed at impact? What was the vertical component 
aa of the apple’s acceleration at impact?
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CHAPTER

9

Analyzing Graphs 
with Derivatives

Derivatives can be used to help us draw and analyze graphs of functions. Let’s look at a few 
simple examples of how this process works.

Three Common Traits
A smooth curve, representing a continuous and differentiable function, has various charac-
teristics. Three of the most significant and obvious traits are concavity, extrema, and inflection
points.

Concavity

The concavity of a curve is the direction in which it bends. In part or all of the graph of a 
function, the curvature can be either concave upward or concave downward. When a curve is 
concave upward, the second derivative of the function is positive. When a curve is concave 
downward, the second derivative is negative.

Figure 9-1 shows a graph with two different regions of concavity. The portion of the curve to 
the left of the dashed line is concave upward, and d 2y  /d  2x > 0. The portion of the curve to 
the right of the dashed line is concave downward, and d  2y  /dx 2 < 0.

Extrema

When a curve has a peak or trough at a certain point relative to the surrounding region, that 
point is called an extremum (plural extrema). A peak is a local maximum, and a trough is a local
minimum. If a peak represents the largest value in the entire function, it’s the absolute maxi-
mum. If a trough is the smallest value in the function, it is the absolute minimum.

At any point where a graph reaches an extremum, the first derivative is 0. In Fig. 9-1, 
the curve has one local minimum and one local maximum. The slopes are 0 at both of these 
points. Some curves have multiple extrema. Once in a while, we’ll see a curve that has infi-
nitely many local extrema, and yet not a single absolute extremum! (The sine function over 
the domain of all reals is a good example.)



Inflection point

When a graph reaches a point where it goes from concave upward to concave downward 
or vice-versa, we have an inflection point. The second derivative is always 0 at an inflection 
point. This means that the rate of change in the curve’s slope is 0. Figure 9-2 shows six differ-
ent examples of inflection points in curves representing cubic functions.

In Fig. 9-2A, C, and E, the slope of the curve is constantly decreasing (downward con-
cavity ) to the left of the inflection point, and constantly increasing (upward concavity ) to 
the right of that point. In Fig. 9-2B, D, and F, the slope of the curve is constantly increasing 
(upward concavity ) to the left of the inflection point, and constantly decreasing (downward 
concavity ) to the right of that point.

The rate at which the slope changes can be 0 at a point, even if the slope itself is not 0 at 
that point. Figure 9-2 shows two curves (A and B) where the slope is 0 at the inflection point, 
two curves (C and F) where the slope is positive at the inflection point, and two curves (D and 
E) where the slope is negative at the inflection point.

Are you confused?
You might ask, “What do the third and higher derivatives represent in a graph?” This question, while a 
good one, is difficult to answer clearly.
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The first derivative represents the slope of a curve. The second derivative represents how fast the slope 
changes. In cubic functions such as those in Fig. 9-2, the third derivative is a constant, the absolute value 
of which indicates how horizontally spread-out the graph appears. In Fig. 9-2A, B, C, and D, the curves 
are “broad,” and the third derivatives have relatively small absolute values. In Fig. 9-2E and F, the curves 
are fairly “tight,” and the third derivatives have larger absolute values.

You can make a game out of describing how the fourth and higher derivatives translate into visual 
characteristics. But be careful! Some curves behave in ways you might not expect. The curves representing 
multiple derivatives of the sine function, for example, keep the same shape. The only change is that the 
wave train moves p/2 units to the left every time you differentiate.

140  Analyzing Graphs with Derivatives

A B

C D

E F

dy /dx < 0

dy /dx < 0

dy /dx > 0

dy /dx > 0

dy /dx = 0
dy /dx = 0

Figure 9-2  At A and B, the slope at the inflection point is 0. At C 
and F, the slope at the inflection point is positive. At D 
and E, the slope at the inflection point is negative.



Here’s a challenge!
Suppose that the function shown in Fig. 9-1 is multiplied by −1. What happens to the x-values of the 
extrema and inflection point? What happens to the range of x-values representing the zone where the 
graph is concave upward? What happens to the range of x-values where the graph is concave downward?

Solution
If the function is multiplied by −1, the entire curve is inverted with respect to the x axis. The x-values of 
the extrema and the inflection point do not change. But the local minimum becomes a local maximum, 
and the local maximum becomes a local minimum. The curve becomes concave downward in the region 
where it was concave upward before, and it becomes concave upward in the region where it was concave 
downward before.

Graph of a Quadratic Function
When a quadratic function has real-number coefficients and a real constant, its graph in the 
xy-plane is a parabola. Figure 9-3 shows several generic examples of parabolas that can repre-
sent quadratic functions of the form

y = ax 2 + bx + c
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where a, b, and c are real numbers, and a ≠ 0. Such a parabola is either concave upward or 
concave downward.

An example

Consider the quadratic function

y = x 2 − 3x + 2

Let’s graph this function in the xy-plane, and then analyze that graph. We can deter-
mine the y-intercept by plugging in 0 for x and then finding y by arithmetic. When 
we carry out the operation, we learn that the y-intercept is at the point (x,y ) = (0,2). 
The x-intercepts (or zeros) of the function, if any exist, can be found by solving the 
quadratic equation

x 2 − 3x + 2 = 0

which factors into

(x − 1)(x − 2) = 0

so its roots are x = 1 or x = 2. This tells us that the points (1,0), and (2,0) lie on the graph of 
the original quadratic function. Its first derivative is

dy /dx = 2x − 3

and its second derivative is

d  2y /dx 2 = 2

The second derivative is positive, indicating that the parabola is concave upward. We’ve found 
three points on the graph, and we know that the graph is a parabola that opens upward. Based 
on these facts, we can sketch the curve as shown in Fig. 9-4.

To find the x-value of the absolute minimum, we can average the x-intercepts, or we can 
find the x-value where the first derivative is equal to 0. This is a calculus course, so let’s use the 
derivative method! When we set the first derivative of the original quadratic function equal to 
0, we get the equation

2x − 3 = 0

This solves to x = 3/2. We can plug the x-value 3/2 into the original function to solve for y,
as follows:

y  = x 2 − 3x + 2 = (3/2)2 − 3 · (3/2) + 2 = −1/4

Now we know that the absolute minimum point is (x,y ) = (3/2,−1/4).
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Are you astute?
Have you noticed that the second derivative of a quadratic function is always a constant, equal to twice the 
leading coefficient (the coefficient of the term in which the independent variable is squared)? Geometrically, 
this means that the curve’s slope changes at a constant rate as we move from left to right along the x axis 
at a “steady speed.”

Here’s a challenge!
Look again at the function graphed in Fig. 9-4. What is the slope at the y-intercept point, (0,2)? What are 
the slopes at the two x-intercept points, (1,0) and (2,0)?

Solution
To find the slope of the curve at the point (0,2), we can plug in the x-value, which is 0, to the first-derivative 
function and calculate

dy /dx = 2x − 3 = 2 · 0 − 3 = −3

For the point (1,0), we plug in 1 for x to get

dy /dx = 2x − 3 = 2 · 1 − 3 = 2 − 3 = −1
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For the point (2,0), we plug in 2 for x to get

dy /dx = 2x − 3 = 2 · 2 − 3 = 4 − 3 = 1

Graph of a Cubic Function
A cubic curve has one of the six characteristic shapes shown in Fig. 9-2. There’s always one, 
but only one, inflection point. The overall trend of the curve is either upward (negative-to-positive) or 
downward (positive-to-negative), although the curve might reverse its direction in the vicinity 
of the inflection point.

Example

Let’s examine the cubic function

y = 5x 3 + 3x 2 + 5x + 7

We can plug in a few x-values, calculate the y-values, and tabulate the resulting numbers. Table 9-1 
is a list of coordinate values that can give us a good idea of what the curve looks like when we 
plot the corresponding points in the xy-plane. Figure 9-5 shows the graph. On the x axis, each 
division represents 1/2 unit. On the y axis, each division represents 10 units. This axis distor-
tion allows us to graph the function within a region of reasonable dimensions.

Now let’s differentiate our cubic function to see how the slope varies with the value of x.
The first derivative is

dy /dx = 15x 2 + 6x + 5

The slope follows a quadratic function. This fact makes the cubic curve inherently more com-
plicated than any quadratic curve, where the slope always follows a linear function.

The second derivative of this cubic function tells us how fast, and in what direction, the 
slope changes as we increase the value of x. When we differentiate the first derivative, we get

d  2y /dx 2 = 30x + 6
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Table 9-1. Selected values for graphing the function
y � 5x3 � 3x2 � 5x � 7.

x 5x3 � 3x2 � 5x � 7

−3 −116
−2      −31
−1        0
 0        7
 1     20
 2    69



We can find the x-value of the inflection point, where the concavity reverses, by figuring 
out where the second derivative is 0. We create a linear equation by setting d  2y  /dx 2 = 0, like 
this:

30x + 6 = 0

The solution to this equation is x = −1/5. When we plug −1/5 into the original function for 
x and then calculate y, we get

y  = 5x 3 + 3x 2 + 5x + 7 = 5 · (−1/5)3 + 3 · (−1/5)2 + 5 · (−1/5) + 7 = 152/25

The coordinates of the inflection point, written as an ordered pair, are therefore

(x,y ) = (−1/5,152/25)

This curve is concave downward to the left of the inflection point, and concave upward to the 
right of the inflection point. This is a geometric indication of the facts that

d  2y /dx 2 < 0 when x < −1/5
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and

d  2y /dx 2 > 0 when x > −1/5

Are you confused?
It’s reasonable to wonder whether there are any local minima or local maxima in this curve. There is no 
absolute minimum and no absolute maximum, because cubic curves never have them! When we examine 
Fig. 9-5, we can see that the overall trend of this curve is upward (negative-to-positive). But is this true at 
every point along the entire curve? Or does the curve reverse its direction near the inflection point? We 
can’t be sure by merely looking at Fig. 9-5.

To figure this problem out by brute force, we could plot hundreds of points with the help of a com-
puter and a good graphing program. We could also evaluate the first derivative at hundreds of x-values, 
again with the help of a computer. But there’s a more elegant way to resolve this mystery. (Mathematicians 
use the term “elegant” to describe a proof, derivation, or process that uses finesse, rather than force, to 
solve a problem.)

If the slope at the inflection point is positive, then we can be sure that the curve in Fig. 9-5 trends 
upward all the time (like the one in Fig. 9-2C), never reverses direction, and therefore has no local mini-
mum or maximum. If the slope at the inflection point is negative, then we can be sure that the curve in 
Fig. 9-5 reverses direction momentarily, trending downward (positive-to-negative) in a region near the 
inflection point. In that case, the curve has a local maximum slightly to the left of the inflection point, 
and a local minimum slightly to the right of it (like the one in Fig. 9-2E). If the slope at the inflection 
point is 0, then we know that the curve in Fig. 9-5 levels off at that point (like the one in Fig. 9-2A), but 
doesn’t reverse direction and therefore has no local minimum or maximum. Let’s see which of these three 
situations is the case here.

Here’s a challenge!
Look again at Fig. 9-5 and the function that this graph represents. What is the slope of the curve at the 
inflection point? What does this tell us about the general nature of the curve? Which of the generic profiles 
in Fig. 9-2 does this curve most closely resemble?

Solution
To find the slope of the curve at the inflection point, we plug x = −1/5 into the formula for the first 
derivative, getting

dy /dx = 15x 2 + 6x + 5 = 15 · (−1/5)2 + 6 · (−1/5) + 5 = 22/5

That’s a positive number. We have dy /dx > 0 at the inflection point. The overall trend of the curve is 
positive, and so is the slope at the inflection point. Based on all this knowledge, we can deduce that the 
curve does not reverse its direction at the inflection point, and doesn’t level off there, either. It therefore 
has no local minimum or maximum. Of the six generic profiles shown in Fig. 9-2, this curve most nearly 
resembles the one shown in drawing C.
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Graph of the Sine Function
We can use calculus to analyze the graphs of differentiable functions of many kinds, not 
only polynomial functions. Let’s look at a continuous, differentiable function that lends itself 
nicely to analysis by differentiation: the sine function from trigonometry.

Analyzing the curve

Figure 9-6 is a graph of the sine function over the limited domain where x is restricted to the 
open interval between, but not including, 0 and 2p. Remember that the x-values are in radi-
ans, not in degrees!

We’re familiar enough with trigonometry to know that this curve, with the domain 
restricted as shown in Fig. 9-6, has an absolute maximum at the point (x,y ) = (p /2,1). It has 
an absolute minimum at the point (x,y ) = (3p /2,−1). Let’s verify these two facts mathemati-
cally. The first derivative is

dy /dx (sin x ) = cos x
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and the second derivative is

d  2y /dx 2 (sin x ) = d /dx (cos x ) = − sin x

At the point where x = p /2, the first derivative is the cosine of p/2. That’s 0. The second 
derivative is the negative of the sine of p /2. That’s −1. The slope is 0 and the curve is concave 
downward, meaning that we have a maximum. At the point where x = 3p /2, the first deriva-
tive is the cosine of 3p /2. That’s 0. The second derivative is the negative of the sine of 3p /2. 
That’s 1. The slope is 0 and the curve is concave upward, telling us that we have a minimum. 
We can look at the graph and immediately see that these extrema are absolute. If we were to 
include multiple cycles of the wave (or even infinitely many, by letting the domain extend over 
the entire set of real numbers), then these extrema would be local.

It looks like the curve in Fig. 9-6 has an inflection point at (x,y ) = (p,0). If we want to be 
certain, we must look at the second derivative, which is the negative of the sine of p. That’s 0, 
so we know that (x,y ) = (p,0) is indeed a point of inflection. The curve is concave downward 
to the left of the point, and concave upward to the right of it.

Are you confused?
All of the curves we’ve seen in this chapter have represented differentiable functions. “But,” you ask, 
“what happens if a function has points or intervals where it’s nondifferentiable?” In cases of that sort, 
we can usually graph the curve, but we can’t use differentiation to evaluate it at the nondifferentiable 
points or within the nondifferentiable intervals. Even if a function clearly has an extremum at a 
certain point, we can’t verify this fact with differentiation if the function is nondifferentiable at that 
point. A good example is the absolute-value function y = |x |. This has an absolute minimum at the 
point (x,y ) = (0,0), but because the function isn’t differentiable at that point, we can’t use derivatives 
to verify that fact.

Here’s a challenge!
Sketch a graph of the square of the sine function for 0 < x < 2p. (It’s all right to use a calculator, plot 
numerous points, and then connect them all by curve fitting to obtain this sketch.) Determine the x-values 
of the extrema and the inflection points. Verify these results using the calculus techniques we’ve learned.

Solution
Figure 9-7 is a sketch of this function. Symbolically, we can denote the function as either

y = (sin x )2

or

y = sin2 x

In Chap. 7, we found that

d /dx sin2 x = 2 sin x cos x
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We can differentiate again, obtaining the second derivative, using the multiplication-by-constant rule and 
the product rule:

 d  2/dx 2 (sin2 x )  = d /dx (2 sin x cos x ) = 2 [d /dx (sin x cos x )]

  = 2 [(d /dx sin x ) cos x + (d /dx cos x ) sin x] = 2 [cos x cos x + (− sin x sin x )]

  = 2 (cos2 x −  sin2 x ) = 2 cos2 x − 2 sin2 x

To find the extrema, we must figure out all the x-values where the first derivative is 0. That means we 
must solve the equation

2 sin x cos x = 0

This is satisfied whenever sin x = 0 or cos x = 0. We’ve restricted x to positive values less than 2p, so we 
have

sin x = 0 when x = p

and

cos x = 0 when x = p /2 or x = 3p /2
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When we look at Fig. 9-7, it appears that the extrema for x = p /2 and x = 3 p /2 are maxima. We can ver-
ify that these points are maxima by checking the values of the second derivatives. For x = p /2, we have

d  2/dx 2 (sin2 x ) = 2 cos2 x − 2 sin2 x = 2 (cos p /2)2 − 2 (sin p /2)2

       = 2 · 02 − 2 · 12 = −2

The fact that the second derivative is negative indicates that the curve is concave downward, so this extre-
mum is a maximum. In the case of x = 3p/2, we have

d  2/dx 2 (sin2 x ) = 2 cos2 x − 2 sin2 x = 2 (cos 3p /2)2 − 2 (sin 3p /2)2

       = 2 · 02 − 2 · (−1)2 = −2

Again, the curve is concave downward, so we know that the function attains another maximum at this point.

Are you astute?
“Wait,” you say. “We’ve found two maxima, all right. But are they local, or is one of them absolute?” If the 
y-values are the same for both points, then they’re both local maxima. But if the y-values are different, then 
the point with the larger y-value is the absolute maximum. We’d better check this out! When we plug in 
x = p /2 to the original function, we get

y  = sin2 x = (sin p /2)2 = 12 = 1

When we plug in x = 3p /2 to the original function, we get

y  = sin2 x  = (sin 3p /2)2 = (−1)2 = 1

Now we know that these two maxima are the same, so they’re both local.

Back to the challenge!
Let’s return to the “challenge” we’ve been dealing with. There appears to be an extremum at the point 
where x = p. Figure 9-7 suggests that it’s a minimum. To verify, let’s plug in p for x and see what we get 
for the second derivative:

d  2/dx 2 (sin2 x ) = 2 cos2 x − 2 sin2 x = 2 (cos p)2 − 2 (sin p)2

            = 2 · (−1)2 − 2 · 02 = 2

It’s positive, all right! That means the curve is concave upward at this point, so it must represent a minimum. 
Within the span of x-values we’ve allowed here, it’s the absolute minimum, because we’ve left x = 0 and x =
2p out of the domain. (If we had left those points in the domain, they’d represent local minima, as would the 
point where x = p. You can verify, if you like, that all three of these minima would be the same.)

The inflection points occur where the second derivative is equal to 0. It appears that there are four such 
points in the curve of Fig. 9-7, but it’s difficult to tell exactly where they are. We must solve the following 
equation to find the x-values:

2 cos2 x − 2 sin2 x = 0
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Dividing through by 2, we get

cos2 x − sin2 x = 0

Adding sin2 x to each side gives us

cos2 x = sin2 x

We can take the square root of both sides here, keeping in mind that we have to account for the positive 
and negative values. When we do that, we get

± cos x = ± sin x

We know that the inflection points don’t occur where either the sine or the cosine are equal to 0. Those 
situations represent the extrema. We’ve already determined that the second derivatives are nonzero at those 
points. Knowing that the cosine isn’t 0 at any of the inflection points, we can divide each side of the above 
equation by ±cos x to get

±1 = (± sin x ) / (± cos x )

From trigonometry, we remember that the sine divided by the cosine is equal to the tangent. This means 
we can simplify the above equation to

± tan x = ±1

which tells us that

x = Arctan (±1)

This gives us four values within the domain we’ve allowed, which is 0 < x < 2p. Those values are

x = p /4
x = 3p /4
x = 5p /4
x = 7p /4

Here’s an extra-credit challenge!
Determine the y-values of each of the inflection points on the curve shown in Fig. 9-7. Then write down 
the complete (x,y ) coordinates of all four points.

Solution
You’re on your own. That’s why you get extra credit!
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Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these 
problems. Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the 
appendix may not represent the only way a problem can be figured out. If you think you 
can solve a particular problem in a quicker or better way than you see there, by all means 
try it!

 1. Determine the coordinates of the inflection point in the graph of the function

y = 3x 3 + 3x 2 − x − 7

 2.  What is the slope of the curve representing the function stated in Prob. 1 at the 
inflection point?

 3.  In what range of x-values is the graph of the function stated in Prob. 1 concave upward? 
In what range of x-values is it concave downward?

 4. Determine the extremum in the graph of the function

y = 4x 2 − 7

    Is this an absolute maximum or an absolute minimum?

 5.  Look again at Fig. 9-4. What is the equation of a line tangent to the curve, and passing 
through the point (2,0)?

 6. Consider the cubic function

y = x 3 + 3x 2 − 3x + 4

     Without drawing the graph, determine the coordinates of the inflection point. Then 
calculate the slope of the curve at the inflection point.

 7.  Evaluate the function stated in Prob. 6 for x = 100. We choose x = 100 because it’s 
   much greater than the absolute values of any of the coefficients. If we get a large 

positive value for y, we’ll know that the curve trends upward overall, like 
Fig. 9-2A, C, or E. If we get a large negative value for y, we’ll know that the curve 
trends downward overall, like Fig. 9-2B, D, or F. Note again the slope of the 
function at the inflection point. We found that slope in the solution to Prob. 6. 
From all this information, identify which of the six general contours from Fig. 9-2 
applies to this curve.

 8.  Consider again the function we worked with in the solutions to Probs. 6 and 7. Find 
the y-intercept of the curve. Are there any points where the slope is 0? If so, determine 
the coordinates of those points. Finally, on the basis of all the information we’ve 
gathered about this function, sketch its graph.
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 9.  Determine the slope, at the inflection point, of the curve shown in Fig. 9-6 for the 
function

y = sin x

 10.  Determine the slope, at each of the four inflection points, of the curve shown in Fig. 9-7 
for the function

y = sin2 x
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CHAPTER

10

Review Questions and Answers

Part One
This is not a test! It’s a review of important general concepts you learned in the previous nine 
chapters. Read it though slowly and let it “sink in.” If you’re confused about anything here, or 
about anything in the section you’ve just finished, go back and study that material some more.

Chapter 1

Question 1-1

How do the domain, range, and variables relate in a mapping from one set into another?

Answer 1-1

The domain is the set of elements that the mapping “goes out from.” The range is the set of ele-
ments that the mapping “goes into.” The independent variable is a nonspecific element in the 
domain, and the dependent variable is a nonspecific element of the range. The mapping assigns 
specific values of the dependent variable to specific values of the independent variable.

Question 1-2

What’s the difference between a relation and a function?

Answer 1-2

A relation is a mapping that can be defined as a set of ordered pairs. A function is a special 
sort of relation, in which a single value of the independent variable can map into at most one 
value of the dependent variable.

Question 1-3

In an ordered pair, what does the term before the comma mean? What does the term after the 
comma mean?



Answer 1-3

The term before the comma represents either the independent variable or some specific value 
of the independent variable. The term after the comma represents either the dependent vari-
able or some value of it.

Imagine that we have a relation between two sets X and Y, where set X is the domain, and 
we represent the independent variable by x. Also suppose that we call set Y the range, and we 
represent the dependent variable by y. Then we can define our relation as a set of ordered pairs 
written in the form (x,y ). If the relation maps, say, the value 3 in the domain to the value −5
in the range, then (3,−5) is an element of the relation.

Question 1-4

How can we tell whether or not a relation is a function by looking at its graph, where the 
independent variable is shown on the horizontal axis and the dependent variable is shown on 
the vertical axis?

Answer 1-4

We can imagine a straight, vertical, infinitely long line that we can move freely to the left and 
right. A graph represents a function if and only if it never crosses the movable vertical line at 
more than one point. We can call this scheme the vertical-line test for a function.

Question 1-5

How can we tell whether or not the inverse of a function is another function by looking at a 
graph of the original function? Again, assume that the independent variable is represented on 
the horizontal axis and the dependent variable is represented on the vertical axis.

Answer 1-5

We can imagine a straight, horizontal, infinitely long line that can be freely moved up and 
down. The inverse of the graphed function is a function if and only if the graph of the original 
function never crosses the horizontal line at more than one point. We can call this scheme the 
horizontal-line test for an inverse function.

Question 1-6

In each of the following relations, imagine that x is the independent variable and y is the 
dependent variable. Which of these relations, if any, is a constant function of x ? Which of 
these relations, if any, is not a function of x ?

 3x + 4y = 2
 y = 5
 x = −7
 y = x + 2
 x = 4y

Answer 1-6

The second relation is a constant function of x, because the value of the function is 5 regard-
less of the value of x. The third relation is not a function of x because, when x is equal to −7
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(which constitutes the entire domain), the dependent variable has more than one value (in 
fact, it can be any real number!). We can also say that the third relation isn’t a function because 
it doesn’t even say anything about the dependent variable. The first, fourth, and fifth relations 
can all be expressed as functions of x.

Question 1-7

In each of the following functions, imagine that t is the independent variable and u is the 
dependent variable. Which of these functions have inverse functions? How can we tell?

u = 2t 2

u = 3t 3

u = 4t 4

u = 5t 5

u = 6t 6

u = 7t 7

Answer 1-7

All three of the functions with the odd-integer exponents have inverse functions. None of the 
three functions with even-integer exponents has an inverse function (although, if considered 
as relations, they can be said to have inverse relations). We can tell which functions have 
inverse functions and which do not by plotting them as graphs with t on the horizontal axes 
and u on the vertical axes, and then conducting horizontal-line tests on each graph.

Question 1-8

How can we recognize a discontinuity in a function by looking at its graph?

Answer 1-8

A discontinuity shows up as a jump, blow-up (singularity), or gap in the graph. The line or 
curve is not smooth at the discontinuity.

Question 1-9

Can the graph of a function “turn a sharp corner” at a point and still be continuous there?

Answer 1-9

Yes. A good example is the absolute-value function. It “turns a corner” at the origin point 
(0,0), but it’s continuous there. (The absolute-value function is not differentiable at the origin, 
however.)

Question 1-10

Examine Fig. 10-1. Does this graph represent a function of x ? At what points is the relation 
discontinuous? Is the relation defined at the points where it’s discontinuous?
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Answer 1-10

This graph portrays a function of x, because it passes the vertical-line test. Discontinuities 
occur at every point where x is an odd-integer multiple of p /2. The function is not defined at 
the points where it is discontinuous.

Chapter 2

Question 2-1

Figure 10-2 is a graph of the inverse of the tangent function, also called the Arctangent func-
tion. For this inverse to be a function, the domain of the original tangent function is restricted 
to values larger than −p /2 and smaller than p /2. Here, x is the independent variable, and y is 
the dependent variable. We can write

y = Arctan x

or

y = tan −1 x
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(We mustn’t get confused when we write tan −1 in this way; it means the inverse of the tangent 
function, not the reciprocal!) What is the following limit? What does it mean?

Lim
x →∞

 Arctan x

Answer 2-1

This limit is equal to p /2. It means that as x increases endlessly in the positive direction, the 
value of the function approaches p /2.

Question 2-2

In the situation described in Question 2-1 and illustrated in Fig. 10-2, what is the following 
limit? What does it mean?

Lim
x →−∞

 Arctan x

Answer 2-2

This limit is equal to −p /2. It means that as x decreases endlessly (or increases endlessly in the 
negative direction), the value of the function approaches −p /2.
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Question 2-3

What does the following symbolic expression claim? Is it true in general?

Lim
x k→

 [ f (x ) + g (x )] = Lim
x k→

f (x ) + Lim
x k→

g (x )

Answer 2-3

This expression claims that the limit of the sum of two functions of x, as x approaches a con-
stant k, is equal to the sum of the limits of the individual functions as x approaches k. This is 
always true, assuming both functions are defined as x approaches k.

Question 2-4

What does the following symbolic expression claim? Is it true in general?

c Lim
x k→

f (x ) = Lim
x k→

c [ f (x )]

Answer 2-4

This expression claims that a constant c times the limit of a function of x, as x approaches 
another constant k, is equal to the limit of c times the function as x approaches k. This is 
always true, assuming the function is defined as x approaches k.

Question 2-5

What does the following expression claim? Is it true in general?

c Lim
x k→

f (x ) = Lim
x k→

f (c x )

Answer 2-5

This expression claims that a constant c times the limit of a function of x, as x approaches 
another constant k, is equal to the limit of the same function of cx, as x approaches k. This is 
not always true.

Question 2-6

How does the notion of left-hand continuity at a point differ from the notion of right-hand 
continuity at a point?

Answer 2-6

A function is left-hand continuous at a point if and only if

• We can define the limit of the function at the point as we approach that point from the 
left (that is, from the negative direction).

• We can define the actual value of the function at the point.
• The limit and the actual value are the same.

Part One  159



A function is right-hand continuous at a point if and only if

• We can define the limit of the function at the point as we approach that point from the 
right (that is, from the positive direction).

• We can define the actual value of the function at the point.
• The limit and the actual value are the same.

Question 2-7

Can a function be left-hand continuous at a point, but not right-hand continuous at the same 
point? If so, provide an example.

Answer 2-7

Yes, this can happen. Here’s an example. Let’s define a function f (x ) like this:

f (x ) = −1 when x ≤ 0
 = 1 when x > 0

This function is left-hand continuous at the point (0,−1), but it’s not right-hand continuous 
there. The conditions for left-hand continuity, as outlined in Answer 2-6, are satisfied. As we 
approach the point (0,−1) from the left, the limit of the function is −1, and the value of the 
function at the point is also −1. But the conditions for right-hand continuity aren’t satisfied. 
As we approach (0,−1) from the right, the limit of the function is 1, but the value of the func-
tion at the point is −1. This situation is shown in Fig. 10-3.
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Question 2-8

What do we mean when we say that a real function f (x ) is continuous in general (or simply 
continuous)? What does the graph of such a function look like?

Answer 2-8

A real-number function f (x ) is continuous in general if and only if it is both left-hand con-
tinuous and right-hand continuous at every point in its domain. When graphed, such a func-
tion looks like a line or curve that’s smooth everywhere and has no gaps, blow-ups, or jumps 
within the domain.

Question 2-9

Which, if any, of the following functions contain at least one discontinuity, if the domain is 
allowed to extend over the entire set of real numbers?

f1 (x ) = 3x2 − 7
f2 (x ) = −7x2 + 5x − 7

f3 (x ) = 4x3 − 5x2 + 8x − 14
f4 (x ) = − 6x6 − 3x4 + 2x2 + 5x − 1

f5 (x ) = −3 sin x
f6 (x ) = 4 csc x

Answer 2-9

The first four functions are all continuous, because they’re polynomial functions that can be 
written in the form

Pn (x ) = anxn + an−1xn−1 + an−2xn−2 + · · · + a1x + b

where n is a positive integer, all the a’s are real-number constants, and the variable x is never 
raised to a negative power. Such functions are always completely free of discontinuities! The 
fifth function, a constant multiple of the sine function, is continuous over the entire set of 
reals. But the sixth function, a constant multiple of the cosecant function, has discontinuities 
at all points where x is an integer multiple of p.

Question 2-10

What is the range of the function f6 (x ) stated in Question 2-9? How can this function be 
made continuous without restricting the range?

Answer 2-10

The range of this function is the union of two sets: the set of all reals larger than or equal to 4, 
and the set of all reals smaller than or equal to −4. Another way of saying this is that the range 
is the entire set of real numbers except those in the open interval (−4,4).

As stated in Question 2-9, the function f6 (x ) has discontinuities at all integer values of 
p because it’s undefined at those values of x. We can make f6 (x ) continuous if we restrict the 
domain by excluding all the values of x for which the function is undefined.
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From trigonometry, we recall that the cosecant function is the reciprocal of the sine func-
tion. That means that in Question 2-9, we have

f6 (x ) = 4 [1 /(sin x )] = 4 /(sin x )

You can draw a graph of the sine function for the half-open interval 0 ≤ x < 2p, and see that 
this span of x-values encompasses exactly one full cycle of the curve, so all possible values in 
the range are accounted for. But when x = 0 or x = p, we have sin x = 0, so its reciprocal is 
undefined. When we work with the cosecant, we have to exclude these values of x if we want 
to call the function continuous. We can account for one full cycle and keep the function con-
tinuous if we define

f6 (x ) = 4 csc x
for  0 < x < p and p < x < 2p

Of course, we can make more severe restrictions than this. For example, we could say that x
must be larger than 0 but less than p /2. If we do that sort of thing, however, we truncate the 
range. That is to say, we “cut off ” part of the cycle.

Chapter 3

Question 3-1

Suppose someone says, “A line is tangent to a curve at a point (x0,y0) in the xy-plane.” What 
does this statement mean?

Answer 3-1

The line touches the curve at the point (x0,y0), has the same slope as the curve at that point, 
and lies in the xy-plane along with the curve.

Question 3-2

Imagine that we want to approximate the slope M of the line tangent a curve in the xy-
plane at a point (x0,y0). We create a movable point (x,y) on the curve near (x0,y0). We draw a 
straight line through the two points. What is the slope M * of that line? How can this slope 
by symbolized?

Answer 3-2

The slope of the line through the two points is

M * = (y − y0) / (x − x0)

The difference y − y0 can be symbolized Δy (read “delta y”), and the difference x − x0 can be 
symbolized Δx (read “delta x”), so we can write

M * = Δy /Δx



Question 3-3

What happens to the slope M * as defined in Question and Answer 3-2, as we move the point 
(x,y) closer to the fixed point (x0,y0) along the curve, without letting the points come together?

Answer 3-3

As the movable point (x,y) approaches the fixed point (x0,y0), the slope M * of the line through 
the two points approaches the slope M of the line tangent to the curve at (x0,y0). This means 
that the slope M * approaches the slope of the curve at (x0,y0).

Question 3-4

How must we be careful while defining the slope of a line tangent to a curve in the manner 
defined in the previous question?

Answer 3-4

For this scheme to work, we must be able to uniquely define a line tangent to the curve at 
(x0,y0). The curve must not have a gap, take a jump, or turn a corner at the point. If any of 
these things happen, then we can’t uniquely define the slope of the curve at (x0,y0).

Question 3-5

If a curve has no gap, takes no jump, and turns no corner at a point (x0,y0), and if we let (x,y)
be a movable point that approaches (x0,y0) along the curve, then Δy shrinks to almost nothing 
as Δx does the same. We say that the limit of Δy /Δx as Δx approaches 0 is equal to M, the slope 
of a line tangent to the curve at the point (x0,y0). How do we write this symbolically?

Answer 3-5

We write the limit as

M = Lim
xΔ →0

Δy /Δx

Question 3-6

As the quantities Δy and Δx become arbitrarily small, we call them differentials and symbolize 
them dy and dx. How can we rewrite the limit in Answer 3-5 to reflect this concept? If we let 
f (x ) be the function that the curve portrays, what is this limit called?

Answer 3-6

We can rewrite the limit, which is called the derivative of f  with respect to x at the point 
(x0,y0), like this:

dy /dx = Lim
xΔ →0

Δy /Δx

or like this:

f   ′(x0) = Lim
xΔ →0

Δy /Δx

Other notations exist, but these are the most common.
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Question 3-7

How can the derivative of a function f (x ) at the point where x = x0 be defined without involv-
ing y in the notation?

Answer 3-7

The derivative of a function f (x ) at the point where x = x0 can be defined as

f   ′(x0) = Lim
xΔ →0

 [ f (x0 + Δx ) − f (x0)] / Δx

This is the same as the second expression in Answer 3-6, except that Δy has been replaced by 
its equivalent, the quantity

f (x0 + Δx ) − f (x0)

Question 3-8

How must we be careful when we interpret the definition (in Answer 3-7) of a derivative at 
a point?

Answer 3-8

We must remember that Δx can be either positive or negative. The process must work as we 
find the limit from either the left or the right, and the two results must agree.

Question 3-9

How can the derivative of a function f (x ) be defined in general without involving y in the 
notation?

Answer 3-9

The formula from Answer 3-7 can be generalized to

f   ′(x ) = Lim
xΔ →0

 [ f (x + Δx ) − f (x )] / Δx

Question 3-10

How must we be careful when we apply the definition ( from Answer 3-9) of a derivative in general?

Answer 3-10

We must be sure that a derivative exists for the function at every point in its domain.

Chapter 4

Question 4-1

What are the three different characteristics a curve can have that suggest that the function it 
portrays is nondifferentiable?



Answer 4-1

If the curve has a gap, makes a jump, or turns a corner, it’s a warning sign that the function is 
nondifferentiable.

Question 4-2

What do gaps, jumps, and corners in a curve look like?

Answer 4-2

Figure 10-4 shows an example of each.

Question 4-3

What other sort of gap can a function have, besides the one shown in Fig. 10-4?

Answer 4-3

When a function increases or decreases without bound (blows up) as the independent variable 
approaches a certain value, we have an extreme gap—an infinitely wide one! The reciprocal 
function, y = 1/x, is an example. The curve blows up when x = 0. The graph of the tangent 
function is another example. The curve for this function blows up whenever x is an odd-integer 
multiple of p /2.
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Question 4-4

Look back again at Questions and Answers 3-2, 3-3, and 3-4. When we want to define the 
slope of a curve at a point (x0,y0), is it okay to use two movable points, one on either side of 
(x0,y0), draw a line through them, and make those two points converge on (x0,y0)?

Answer 4-4

No. We must approach (x0,y0) from one side at a time, and use that fixed point (x0,y0) as one of 
the points through which we draw the line. Then we must be sure that we get the same limit 
when we approach from the left as we get when we approach from the right. 

Question 4-5

How can we precisely define what it means for a function to be differentiable, based on 
Answers 3-7 through 3-10?

Answer 4-5

We can call a function differentiable at a single point, over an interval, or over its entire 
domain.

• A function is differentiable at a point if and only if the function has a derivative at that 
point as defined in Answers 3-7 through 3-10.

• A function is differentiable over an interval if and only if it has a derivative, as defined 
in Answers 3-7 through 3-10, at every point in that interval.

• A function is differentiable in general (or simply differentiable) if and only if it has a 
derivative, as defined in Answers 3-7 through 3-10, at every point in its domain.

Question 4-6

If a function is discontinuous at a point, can it be differentiable there?

Answer 4-6

No. A function can’t be differentiable at a point where a discontinuity exists. Remember that 
if a function is differentiable at a point, then it is continuous at that point. The contrapositive
of this statement is logically equivalent to it: if a function is discontinuous at a point, then it 
is nondifferentiable at that point.

Question 4-7

If the slope of a graph changes suddenly at a point, then there’s no derivative at that point, 
even if the function is continuous there. Why? 

Answer 4-7

If we approach the point from one side, then Δy /Δx (as defined in Question and Answer 3-2) 
approaches a certain value. But if we approach the same point from the other side, then Δy /Δx
approaches a different value. A derivative can’t be defined as more than one limiting value for 
a single point!
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Question 4-8

What about a situation where two different curves terminate and meet at a single point, and 
Δy /Δx approaches the same value as we move toward the point from either direction? Is such 
a two-part function differentiable at the point where the curves come together?

Answer 4-8

Yes, as long as that point is on the curve. This is true even if the two curves portray completely 
different functions.

Question 4-9

Which of the following functions are differentiable in general, if the domain is allowed to 
extend over the entire set of reals?

 f1 (x ) = 3x 2 − 7
 f2 (x ) = −7x 2 + 5x − 7
 f3 (x ) = 4x 3 − 5x 2 + 8x − 14
 f4 (x ) = −6x 6 − 3x 4 + 2x 2 + 5x − 1
 f5 (x ) = −3 sin x
 f6 (x ) = 4 csc x

Answer 4-9

These are the same functions we saw in Question 2-9. The first four functions are all differen-
tiable in general, because they’re polynomial functions that can be written in the form

Pn (x ) = anx n + a n−1x n−1 + an−2x n−2 + · · · + a1x + b

where n is a positive integer, all the a’s are real-number constants, and the variable x is never 
raised to a negative power. The graphs of such functions are always free of gaps, jumps, and 
corners. The fifth function also has a graph without any gaps, jumps, or corners, so it’s diff-
erentiable in general. But the sixth function has discontinuities, so it is not differentiable in 
general.

Question 4-10

Is the following function differentiable over the entire set of reals? If not, how can we restrict 
the domain to make it differentiable in general?

g (v ) = 8v 4 − 16v 3 + 3v 2 + 2v − 7 + 6v −1

Answer 4-10

As stated, this function is nondifferentiable if the domain is the set of all real numbers. The 
term 6v −1 is not defined when v = 0, producing a discontinuity. If we restrict the domain to 
exclude the value v = 0, then the function becomes differentiable in general.
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Chapter 5

Question 5-1

What do we get when we cube the binomial a + b ? What do we get when we raise it to the 
fourth power? The fifth power? The sixth power?

Answer 5-1

Here’s what happens. It’s only a matter of working our way through the arithmetic:

 (a + b)3 = a 3 + 3a 2b + 3ab 2 + b 3

 (a + b)4 = a 4 + 4a 3b + 6a 2b 2 + 4ab 3 + b4

 (a + b)5 = a 5 + 5a 4b + 10a 3b 2 + 10a 2b 3 + 5ab 4 + b 5

 (a + b)6 = a 6 + 6a 5b + 15a 4b 2 + 20a 3b 3 + 15a 2b4 + 6ab 5 + b 6

Question 5-2

What three things can we say about the polynomial we get when we multiply out

(a + b)n

where n is an integer larger than or equal to 3?

Answer 5-2

We can be sure that

• The first term is a n.
• The second term is na (n −1)b.
• We can factor b 2 out of the third term and each one after that.

Question 5-3

What is the power rule for derivatives, as it applies to positive integer exponents?

Answer 5-3

If a is a nonzero real-number constant, x is a variable, and n is a positive integer, then any 
function of the form

f (x ) = ax n

has the derivative

f   ′(x ) = anx (n −1)
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Question 5-4

Using the power rule for derivatives, show that when we differentiate a function of the form

f (x ) = ax

where a is a real-number constant and x is a nonzero variable, we always get

f   ′(x ) = a

Explain why the power rule fails in this situation if x = 0.

Answer 5-4

We can rewrite the above function as

f (x ) = ax 1

Using the power rule for derivatives, we get

f   ′(x ) = anx (n −1) = a · 1 · x (1 −1) = ax 0

Because any nonzero real number raised to the 0th power is equal to 1, we know that

f   ′(x ) = a

as long as x ≠ 0. If x = 0, then we get the undefined expression 00. (The formula stated in the 
question is valid even if the domain of the function includes 0, but we can’t prove it from the 
power rule.)

Question 5-5

What is the sum rule for two derivatives?

Answer 5-5

The derivative of the sum of two functions is equal to the sum of their derivatives. Stated 
symbolically, if f1 and f2 are differentiable functions of the same variable, then

( f1 + f2)′ = f1′ + f2′

Question 5-6

Does the sum rule work for subtraction as well as for addition of derivatives?

Answer 5-6

Yes, the rule works for the difference of two derivatives, as long as we keep the functions and 
their derivatives in the same order, and as long as there are only two of them. If f1 and f2 are 
differentiable functions of the same variable, then

( f1 − f2)′ = f1′ − f2′
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Question 5-7

What is mathematical induction? How does it work?

Answer 5-7

Mathematical induction is a trick that allows us to prove infinitely many facts. Imagine an infinite 
sequence of statements S1, S2, S3, . . . . We can prove all of them if we can demonstrate two things:

• The first statement S1, is true, and
• If a statement Sn (where n can be any positive integer) is true, then the next statement 

S n+1 is true.

Question 5-8

Can the sum rule for two derivatives be extrapolated to work with the sum of any finite num-
ber of derivatives?

Answer 5-8

Yes. For any n differentiable functions f1, f2, f3, . . . , and fn, the derivative of their sum is equal 
to the sum of their derivatives. Stated symbolically,

( f1 + f2 + f3 + . . . + fn )′ = f1′ + f2′ + f3′ + · · · + fn′

Question 5-9

Why can’t the leading coefficient be 0 in an nth-degree polynomial function? Is it okay for any 
of the other coefficients to equal 0?

Answer 5-9

If we set the leading coefficient to 0 in an nth-degree polynomial function f (x ), we have 0x n

as the first term. That’s always equal to 0, so the whole term can be removed from the poly-
nomial. Then the “legitimate” first term contains x raised to an integer power smaller than n,
and we don’t really have an nth-degree function after all! It’s okay for one or more of the other 
coefficients to be 0, however.

Question 5-10

What is the derivative of the general polynomial function

f (x ) = anx n + an −1x n −1 + an −2x n −2 + · · · + a2x 2 + a1x + a 0

where a n, a n
 
−1, a n

 
−2, . . . , a1, and a 0 are real numbers, and an ≠ 0?

Answer 5-10

Using the power rule and the sum rule for derivatives, we can differentiate each term individu-
ally and then add them up to get

f   ′(x ) = nanx n −1 + (n − 1)an−1x n −2 + (n − 2)an
 
−2x n −3 + . . . + 2a2x + a1



Chapter 6

Question 6-1

What is the multiplication-by-constant rule for differentiation?

Answer 6-1

If we take the derivative of a differentiable function after it has been multiplied by a constant, 
we get the same result as we do if we take the derivative of the function and then multiply by the 
constant. Stated symbolically, if f   is a differentiable function and c is a real constant, then

(c f   )′ = c ( f   ′ )

and

(c f   )′ = ( f   ′ )c

Question 6-2

Does the multiplication-by-constant rule work for division by a constant?

Answer 6-2

Yes, to a limited extent. If we take the derivative of a differentiable function after it has been 
divided by a nonzero constant, we get the same result as we do if we take the derivative of the 
function and then divide by the constant. Stated symbolically, if f   is a differentiable function 
and c is a nonzero real constant, then

( f  /c)′ = ( f   ′) /c

Question 6-3

What is the two-function product rule for differentiation?

Answer 6-3

To find the derivative of the product of two differentiable functions, we multiply the deriva-
tive of the first function by the second function, then multiply the derivative of the second 
function by the first function, and finally add the two products. Stated symbolically, if f and 
g are differentiable functions, then

( f g )′ = f   ′g + g ′f

Question 6-4

How must we be careful when expressing the product of two functions?
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Answer 6-4

If we want to denote the product “f   of x times g of x,” we should write

[ f (x )][ g (x )]

or

f (x ) × g (x )

If we don’t want to specify the independent variable, we should write

f g

or

f   × g

We can also use the elevated dot (·) instead of the cross to represent multiplication. The 
important consideration is that we don’t want to mistakenly write an expression that denotes 
a function of another function!

Question 6-5

What is the reciprocal rule for differentiation?

Answer 6-5

To find the derivative of the reciprocal of a differentiable function, we must first find the 
derivative of the original function, then multiply by −1, and finally divide by the square of the 
original function. Stated symbolically, if f   is a differentiable function, then

(1/f   )′ = −f   ′/(  f   2 )

Question 6-6

How must we be careful when applying the reciprocal rule for differentiation?

Answer 6-6

For this rule to apply, the original function must never become 0 anywhere in its domain. 
If that happens, the reciprocal function will blow up at that point, and not be differentiable 
there. If a function is differentiable throughout its domain, then the reciprocal function is not 
necessarily differentiable over the same domain. We may have to restrict the domain to keep 
discontinuities out.

Question 6-7

How must we be careful when expressing the reciprocal of a function?



Answer 6-7

We can express the reciprocal of f (x ) by writing [ f (x )]−1, but we must never write the expo-
nent −1 immediately after the name of the function. If we write f   −1, we denote the inverse of 
f. That’s a totally different notion from the reciprocal!

Question 6-8

What is the quotient rule for differentiation?

Answer 6-8

To find the derivative of the quotient (or ratio) of two differentiable functions, we multiply 
the derivative of the first function by the second function, then multiply the derivative of the 
second function by the first function, then subtract the second product from the first product, 
and finally divide by the square of the second function. Stated symbolically, if f and g are diff-
erentiable functions, then

( f  /g )′ = ( f   ′g − g ′f  ) /g 2

as long as g does not become 0.

Question 6-9

How must we be careful when applying the quotient rule?

Answer 6-9

If we want to use the quotient rule for differentiation, then both functions, as well as their 
ratio, must be differentiable at every point that interests us. In addition, the denominator 
function must never become 0 anywhere in its domain. 

Question 6-10

What is the chain rule for differentiating a function of a function?

Answer 6-10

To differentiate a function of a function, we multiply the derivative of the “outer” function by 
the derivative of the “inner” function. Stated symbolically, if f and g are differentiable func-
tions of the same single variable, then

[ g ( f   )]′ = g ′( f   ) × f   ′

Chapter 7

Question 7-1

What is the real-power rule for differentiation?
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Answer 7-1

It’s an extension of the power rule for integer exponents. If x is a real variable, a is a real con-
stant, and k is a real exponent, then we can calculate the derivative of

f (x ) = ax k

by subtracting 1 from the exponent, and then multiplying a by k to get

f   ′(x ) = akx (k −1)

If k ≤ 1, then we must be sure that x ≠ 0. That may mean restricting the domain of the func-
tion. Otherwise, when we take the derivative, we’ll end up with an undefined expression when 
we take x to the power of k − 1.

Question 7-2

How can we evaluate a variable raised to a rational-number power?

Answer 7-2

Let’s remember the definition of a rational number. Any rational number q can be expressed as

q = a /b

where a is an integer and b is a positive integer. If we talk about raising a quantity to the q th
power, we’re talking about raising it to the power a /b. That means we take the quantity to the 
a th power, and then find the positive b th root of the result. If we have a function

f (x ) = x a /b

then we can rewrite it as

f (x ) = (x a)1/b

There’s a restriction here! We can’t have x = 0 and a = 0 at the same time.

Question 7-3

How can we evaluate a variable raised to a real-number power (that is, rational or irrational) 
using natural exponential and log functions?

Answer 7-3

When we have an expression of the form x k where x is a variable and k is any real number, then

ln (x k) = k ln x

We can take the natural exponential of both sides to get

x k = e (k ln x )

This only works if x > 0, because the natural log of a nonpositive quantity is not defined.



Question 7-4

Look at Fig. 10-5. Based on this information, what’s the derivative of f (x )?

Answer 7-4

In this graph, f   represents the sine function and g represents the cosine function. That is,

f  (x ) = sin x

and

g (x ) = cos x

The derivative of the sine is the cosine, so

f   ′(x ) = d /dx (sin x ) = cos x = g (x )

Question 7-5

Based on the information in Fig. 10-5, what’s the derivative of g (x )?

Answer 7-5

The derivative of the cosine is the negative of the sine, so

g ′(x ) = d /dx (cos x ) = − sin x = −f (x )
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Figure 10-5 Illustration for Questions and Answers 7-4 and 7-5.
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Question 7-6

How can we differentiate the following function using the product rule ?

q (x ) = cos2 x

Answer 7-6

To begin, let’s rewrite the function as

q (x ) = cos x cos x

We can name the individual functions in the product as

f (x ) = cos x

and

g (x ) = cos x

They’re identical, so their derivatives are identical as well. We have

f   ′(x ) = − sin x

and

g ′(x ) = − sin x

Applying the product rule for differentiation gives us

q ′(x ) = ( f g )′(x ) = f   ′(x ) g (x ) + g ′(x ) f (x )
                                = (− sin x )(cos x ) + (− sin x )(cos x ) = −2 sin x cos x

Remember that sin2 x and (sin x )2 mean exactly the same thing.

Question 7-7

How can we differentiate the function stated in Question 7-6 using the chain rule?

Answer 7-7

Let’s break down our function q (x ) into two component functions. We can name the com-
ponent functions

f (x ) = cos x

and

g ( y ) = y 2
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That means our original function is

q (x ) = g [ f (x )] 

The derivatives of the component functions are

f   ′(x ) = − sin x

and

g ′( y ) = 2y

Now we can use the chain rule to write the derivative of the composite function as

q ′(x ) = { g [ f (x )]}′ = g ′ [ f (x )] · f   ′(x )
                 = 2 (cos x )(− sin x ) = − 2 sin x cos x

Question 7-8

Under what circumstances can a function be its own derivative?

Answer 7-8

If f   is a function of the form

f (x ) = ke x

where x is a real variable and k is a real constant, then f   is its own derivative. That is,

f   ′(x ) = d /dx (ke x ) = ke x

Question 7-9

What does the symbol e mean in the above equation?

Answer 7-9

The symbol e stands for Euler’s constant, also called the exponential constant. It is an irratio-
nal number with an approximate value of 2.718. 

Question 7-10

What’s the derivative of the natural log function? How must the domain be restricted?

Answer 7-10

The derivative of the natural log function is the reciprocal function, but we must restrict the 
domain to the set of positive real numbers. We have

d /dx (ln x ) = 1/x

for x > 0. If x ≤ 0, then ln x is undefined, so its derivative is also undefined.
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Chapter 8

Question 8-1

What is the second derivative of a function?

Answer 8-1

The second derivative of a function is the derivative of its derivative, taken with respect to 
the same variable. Suppose we have a function f of an independent variable x, producing a 
dependent variable y so that

y = f (x )

The second derivative of f with respect to x can be denoted in various ways. Here are the 
expressions most often seen:

d 2y /dx 2

y ′′
d 2f (x ) /dx 2

d 2/dx 2 f (x )
d 2f /dx2

f   ′′(x )
f   ′′

Question 8-2

What does the second derivative of a function represent in a graph?

Answer 8-2

The second derivative tells us the rate and the sense (increasing or decreasing) at which the 
slope of the graph changes.

Question 8-3

When an object falls freely after it has been dropped, what is the second derivative of the total 
distance it fell with respect to time? (Assume there is no air resistance.)

Answer 8-3

The second derivative of the total distance the object fell, with respect to time, is the acceleration.

Question 8-4

How does the acceleration of a freely falling object relate to its speed and the total distance it 
fell? (Again, assume there is no air resistance.)
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Answer 8-4

The acceleration is the rate at which the speed increases. That’s the derivative of the speed with 
respect to time. The speed of a freely falling object is the rate at which the total distance it fell 
increases. That’s the derivative of the distance with respect to time.

Question 8-5

What’s the third derivative of distance with respect to time for an object that moves in a com-
plicated way?

Answer 8-5

The third derivative of distance relative to time is called the jerk. It’s the derivative of the accele- 
ration, and the second derivative of the speed. Jerk represents the rate (and the direction) of a 
change in the acceleration.

Question 8-6

What’s the jerk of an object in free fall, neglecting air resistance?

Answer 8-6

For a freely falling object, neglecting air resistance, the jerk is always zero because the accelera-
tion is constant, and the derivative of a constant function is the zero function.

Question 8-7

What’s the nth derivative of a function?

Answer 8-7

The nth derivative of a function is what we get when we differentiate the function n times with 
respect to the same variable, where n is a positive integer. Consider

y = f (x )

The n th derivative of f   with respect to x can be written in several ways. Here are the expres-
sions we’re most likely to see:

d ny /dx n

d nf (x ) /dx n

d n/dx n f (x )
d nf /dx n

f   (n)(x )
f   (n)

Question 8-8

Draw graphs comparing the sine function and its first four derivatives.
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Answer 8-8

Figure 10-6 is a four-part graph showing this relationship. Remember the four-way cycle that 
the sine function goes through as it is repeatedly differentiated:

d /dx (sin x ) = cos x
d 2/dx 2 (sin x ) = d /dx (cos x ) = − sin x

d 3/dx 3 (sin x ) = d /dx (− sin x ) = − cos x
d 4/dx 4 (sin x ) = d /dx (− cos x ) = sin x
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Figure 10-6  Illustration for Questions and Answers 8-8 
and 9-10.
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In each of the four parts of Fig. 10-6, we see the value of x on the horizontal axis, and the value 
of the function on the vertical axis.

• At A, the solid curve represents the sine function, and the dashed curve represents its 
derivative.

• At B, the solid curve represents the first derivative of the sine function, and the dashed 
curve represents its second derivative.

• At C, the solid curve represents the second derivative of the sine function, and the 
dashed curve represents its third derivative.

• At D, the solid curve represents the third derivative of the sine function, and the 
dashed curve represents its fourth derivative.

With each derivative, the whole curve moves p/2 units to the left. Therefore, when we take 
the fourth derivative, we end up 2p units to the left of where we started. If we let the domain 
extend over the entire set of real numbers, taking the fourth derivative of the sine function 
gives us the sine function all over again.

Question 8-9

What do we get if we differentiate the natural log function repeatedly?

Answer 8-9

In this situation, we don’t get a cycle, but we get a pattern. We always get a monomial func-
tion of x. The power to which the argument (independent variable) is raised starts out at −1,
and then decreases by 1 with each succeeding derivative. The coefficient starts out at 1, then 
goes to −1, and then keeps increasing in absolute value but alternating in sign. Here are the 
first nine derivatives:

d /dx (ln x ) = x −1

d 2/dx 2 (ln x ) = d /dx (x −1) = −x −2

d 3/dx 3 (ln x ) = d /dx (−x −2) = 2x −3

d 4/dx 4 (ln x ) = d /dx (2x −3) = −6x −4

d 5/dx 5 (ln x ) = d /dx (− 6x −4) = 24x −5

d 6/dx 6 (ln x ) = d /dx (24x −5) = −120x −6

d 7/dx 7 (ln x ) = d /dx (−120x −6) = 720x −7

d 8/dx 8 (ln x ) = d /dx (720x −7) = −5,040x −8

d 9/dx 9 (ln x ) = d /dx (−5,040x −8) = 40,320x −9

In every case, we must restrict the domain to x > 0, because the natural log function is defined 
only when the argument (independent variable) is positive.

Question 8-10

Imagine that we encounter a polynomial function of the form

f (x ) = anx n + an −1x n −1 + an −2x n −2 + · · · + a2x 2 + a1x + a0
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where n is a positive integer, all the a’s are real-number constants, and the variable x is never 
raised to a negative power. If we keep differentiating this function over and over, what will 
eventually occur?

Answer 8-10

Sooner or later, we’ll get the zero function as we keep taking derivatives. This will happen no 
matter how high the degree of the original function might be. Each time we differentiate, the 
degree will decrease until, at some stage, we’ll get a constant multiple of x. When we differen-
tiate that, we’ll get a constant function. When we differentiate a constant function, we always 
get the zero function. After that, all further derivatives will be the zero function.

Chapter 9

Question 9-1

What is concavity in the graph of a function? How does concavity relate to the first and sec-
ond derivatives?

Answer 9-1

The concavity of a curve is the general direction in which it “bends,” either overall or within a 
region. A curve can be concave upward or concave downward at a given point. When a curve 
is concave upward, the first derivative can be positive, negative, or 0, but the second deriva-
tive is always positive. When a curve is concave downward, the first derivative can be positive, 
negative, or 0, but the second derivative is always negative.

Question 9-2

What is an extremum in the graph of a function? How do extrema relate to the first and sec-
ond derivatives of a function?

Answer 9-2

An extremum is a point on the curve at which the function attains a maximum or minimum 
value.

If an extremum represents the largest value in the entire function, it’s called the absolute 
maximum. If it’s the largest value in its immediate region, but not necessarily in the entire 
function, then it’s called a local maximum. If an extremum represents the smallest value in the 
function, it’s called the absolute minimum. If it’s the smallest value in its immediate region, 
but not necessarily in the entire function, then it’s called a local minimum.

At any point where a graph reaches an extremum, the function’s first derivative is 0. If the 
extremum is a maximum, then the second derivative is negative at that point. If the extremum 
is a minimum, then the second derivative is positive at that point.

Question 9-3

What is an inflection point in the graph of a function? How do inflection points relate to the 
first and second derivatives?
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Answer 9-3

An inflection point is a point where a curve goes from concave upward to concave downward 
or vice versa. The first derivative can be negative, positive, or 0 at an inflection point, but the 
second derivative is always 0.

Question 9-4

What is always true about the first derivative of a quadratic function? What does the graph of 
the derivative function look like?

Answer 9-4

The first derivative of a quadratic function is always a linear function. The general form of a 
quadratic function f   in the variable x is

f (x ) = ax 2 + bx + c

where a, b, and c are real numbers, and a ≠ 0. The first derivative of this is

f   ′(x ) = 2ax + b

That’s a linear function of x. Its graph is a straight line. We might remember from our alge-
bra courses that if we let y = f (x ) in this situation, then the slope of the line is 2a, and the 
y-intercept is b.

Question 9-5

What’s the x-value of the extremum in the general quadratic function

f (x ) = ax 2 + bx + c

where a, b, and c are real numbers, and a ≠ 0 ?

Answer 9-5

We can find the extremum in a quadratic function by setting the first derivative equal to 0, 
and then solving the linear equation

2ax + b = 0

Subtracting b from both sides, we get

2ax = −b

Dividing through by 2a, which we know is okay because a ≠ 0, we obtain

x = −b /(2a)

Question 9-6

What is always true about the second derivative of a quadratic function? The third derivative?
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Answer 9-6

The second derivative of a quadratic function is always a constant function. When we take 
the derivative of f   ′ as it appears in Answer 9-4, thereby getting the second derivative of f, we 
have

f   ′′(x ) = 2a

The third derivative of a quadratic function is always the zero function. When we take the 
derivative of f   ′′ as shown above, we get

f   ′′′ (x ) = 0

Question 9-7

How do we know whether the extremum we find in a quadratic function, according to the 
methods described above, is an absolute minimum or an absolute maximum?

Answer 9-7

If the second derivative is negative, we have an absolute maximum, because the curve is con-
cave downward. If the second derivative is positive, we have an absolute minimum, because 
the curve is concave upward. That means we have a maximum if a < 0, and a minimum if a > 0 
in the general quadratic function

f (x ) = ax 2 + bx + c

where a, b, and c are real numbers, and a ≠ 0.

Question 9-8

How can we find out whether or not the natural log function has any extrema or inflection points?

Answer 9-8

To see if there is an extremum, we can take the first derivative and see if it becomes equal to 0 
anywhere in the domain. We remember from Answer 8-9 that

d /dx (ln x ) = x −1 = 1/x

There is no real number that has a reciprocal of zero. Therefore, the natural log function has 
no minima or maxima.
 To see if there are any inflection points, we take the second derivative and see if it becomes 
0 anywhere in the domain. Again consulting Answer 8-9, we have

d 2/dx 2 (ln x ) = −x −2 = −1/(x 2)

If we try to solve the equation

−1/(x 2) = 0
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we find that no real number x satisfies it. That means the natural log function has no inflec-
tion points. We can see intuitively that this function has no extrema or inflection points by 
casually looking at its graph. Now we have mathematical proof.

Question 9-9

How can we find out whether or not the natural exponential function has any extrema or 
inflection points?

Answer 9-9

To see if there is an extremum, we can take the first derivative and see if it becomes 0 any-
where. The natural exponential function is its own derivative. That is,

d /dx (e x ) = e x

There’s no real number x such that e x = 0. That means the natural exponential function has 
no minima or maxima.

Don’t get confused here. The fact that the curve approaches the x axis as we move toward 
the left (that is, as x increases negatively) does not mean that the extremum is 0. The value of 
the function keeps getting smaller and smaller positively, approaching 0, but it never actually 
attains a value of 0. In fact, there is no particular real number we can choose and say, “This is 
the smallest value that the function attains.”

To see if there are any inflection points in the graph of the natural exponential function, 
we take the second derivative and see if it becomes 0 anywhere in the domain. We have

d 2/d x 2 (e x ) = e x

The same thing happens here as with the first derivative. There is no real number to which we 
can raise e and end up with 0. That means the natural exponential function has no inflection 
points.

Question 9-10

Look again at Fig. 10-6, which shows the sine function and its first four derivatives. Also, re-read 
Answer 8-8. Based on all this information, what happens to the local maxima, the local min-
ima, and the inflection points of any of these functions when we take its derivative?

Answer 9-10

Every time we take a derivative, all the x-values of the extrema and inflection points move p /2 
units to the left (that is, in the negative direction). The y-values (if we always let y equal the 
value of the function) do not change. The local maxima are always at y = 1, the local minima 
are always at y = −1, and the inflection points are always at y = 0.
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When we differentiate a function, we see its rate of change. When we integrate a function, we 
see its accumulated value. In this chapter, we’ll learn how the concept of the integral translates 
into geometric area. Then we’ll look at three ways that integral calculus is used.

Summation Notation
Before we start “integral-building,” let’s review the mathematical shorthand for writing down 
long sums. It’s called summation notation.

Specify the series

Imagine a set of constants, all denoted by a with a subscript. Here’s an example:

{a1, a2, a3, a4, a5, a6, a7, a8}

Suppose we add these up, getting a final sum of b. We can write this as

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 = b

If we had 800 terms, getting a final sum equal to c, writing down the entire series would be 
impractical. But we could put an ellipsis (three dots) in the middle to get

a1 + a2 + a3 + · · · + a798 + a799 + a800 = c

Tag the terms

Let’s invent a variable and call it i (not to be confused with the unit imaginary number). 
Written as a subscript, i can serve as a counting tag or marker in a series containing a large 
number of terms.
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In the above situations, we can call each term by the generic name ai. In the first series, we 
add up eight ai’s to get the final sum b, and the counting tag i goes from 1 to 8. In the second 
series, we add up 800 ai’s to get the final sum c, and the counting tag i goes from 1 to 800. 
Suppose that we have a series with n terms, like this:

a1 + a2 + a3 + · · · + an−2 + an−1 + an = d

In this case, we add up n ai’s to get the final sum d.

The big sigma

Let’s go back to the series in which we add eight terms. It can be written in shorthand like 
this:

i =
∑

1

8

ai = b

We read this as, “The summation of the terms ai, from i = 1 to 8, is equal to b.” The large, 
bold symbol Σ is an uppercase Greek letter sigma, which stands for “summation” or “sum.” 
Now let’s look at the series in which 800 terms are added:

i =
∑

1

800

ai = c

We can read this as, “The summation of the terms ai, from i = 1 to 800, is equal to c.” Finally, 
let’s express the open-ended or unbounded example:

i

n

=
∑

1

ai = d

We can read this as, “The summation of the terms ai, from i = 1 to n, is equal to d.”

A more sophisticated example

Sometimes we’ll want to use something other than a place marker as the counting variable in a 
summation. The variable doesn’t have to start at 1. It can have an initial value of 0. It can even 
start out as a negative integer. And it doesn’t have to end at n. It can go on forever!

Suppose we sum a series starting with 1, then adding 1/2, then adding 1/4, then adding 
1/8, and going on forever, each time cutting the value in half. From precalculus, we recall that 
this series, even though it has infinitely many terms, adds up to 2:

1 + 1/2 + 1/4 + 1/8 + · · · = 2

We can also write this series as

1/20 + 1/21 + 1/22 + 1/23 + · · · = 2

In summation notation, it is

i =

∞

∑
0

1/2i = 2



Here’s a challenge!
Consider the same series as above, but only up to the reciprocal of the nth power of 2. Give the entire sum 
the name S. Write this fact in summation notation.

Solution
Let’s use the letter i as the counting tag. We start at i = 0 and go up to i = n, with each term having the 
value 1/2i. Therefore, the summation notation is

i

n

=
∑

0

1/2i = S

Here’s another challenge!
Think of the summation in the previous challenge, and imagine what happens as n increases endlessly—
that is, as n approaches infinity. The series gets longer; as n grows extremely large and the sum approaches 
2. Write this fact using the limit notation along with the summation notation.

Solution
We can plug the summation into a limit “template,” and then state that the whole thing is equal to 2, like 
this:

Lim
n→∞ i

n

=
∑

0

1/2i = 2

Area Defined by a Curve
Now let’s see how we can determine the area between the graph of a function and the independent- 
variable axis, as defined between two known values of the independent variable.

Defining the region 

Imagine a function f (x ) whose graph is a curve as shown in Fig. 11-1. We want to find the 
area bounded by:

• The vertical line x = a on the left
• The vertical line x = b on the right
• The curve on the bottom when f (x ) is negative
• The x axis on the top when f (x ) is negative
• The x axis on the bottom when f (x ) is positive
• The curve on the top when f (x ) is positive

Any part of the region that appears below the x axis and above the curve is considered to have 
negative area, assuming we move along the x axis in the positive direction. Any part of the 
region that appears above the x axis and below the curve is considered to have positive area,
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again assuming we move along the x axis in the positive direction. (As we’ll learn later, the 
notions of positive area and negative area reverse if we travel along the x axis in the nega-
tive direction.) The total area between the two vertical lines x = a and x = b, as defined by the 
curve and the x axis, is the sum of the areas of both shaded regions.

The area of a region like the one shown here is often called area under the curve even 
though, as we can see, some of the region might lie above the curve. To keep from getting 
confused or misled, let’s talk about the area defined by the curve in situations of this kind. In 
Fig. 11-1, the net area over the interval from x = a to x = b is less than the area of the dark-
shaded part, because there’s some negative area involved. To get the net area, we subtract the 
negative area from the positive area.

Approximating the area

Let’s divide the entire region, both the light-shaded part and the dark-shaded part, into n rectan-
gles, all of equal width, as shown in Fig. 11-2. For each rectangle, let’s call the width Δx. Then

Δx = (b − a ) /n

Figure 11-1  Generic example of area defined by a curve. If we 
move to the right, the area below the x axis (light-
shaded region) is negative. The area above the x axis 
(dark-shaded region) is positive.
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As we’ve arranged things in Fig. 11-2, the height of any particular rectangle is equal to the 
value of f (x ) along the rectangle’s right-hand edge. Let’s call the left-most rectangle number 1, 
and count up as we move to the right. Suppose we make n large. Then:

• The height of rectangle number 1 is f  (a + Δx )
• The height of rectangle number 2 is f  (a + 2Δx )
• The height of rectangle number 3 is f  (a + 3Δx )
• And so on . . .
• The height of rectangle number i is f  (a + iΔx )
• And so on . . .
• The height of rectangle number n is f  (a + nΔx )

The area of each rectangle is the width times the height. Therefore:

• The area of rectangle number 1 is Δx · f  (a + Δx )
• The area of rectangle number 2 is Δx · f  (a + 2Δx )
• The area of rectangle number 3 is Δx · f  (a + 3Δx )
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Figure 11-2  Approximating the area defined by a curve. We 
divide the region into n rectangles, all of equal width, 
and whose heights are defined by the values of the 
function along the right-hand sides. As n increases, 
the approximation improves.
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• And so on . . .
• The area of rectangle number i is Δx · f  (a + iΔx )
• And so on . . .
• The area of rectangle number n is Δx · f  (a + nΔx )

We approximate the total area by adding up the areas of the rectangles:

i

n

=
∑

1

Δx · f  (a + iΔx )

Because Δx = (b − a)/n, we can substitute the quantity (b − a) /n for Δx to get

i

n

=
∑

1

[(b − a) /n] · f  [a + i (b − a ) /n]

The shrinking increment

In the situation shown by Fig. 11-2, we have only nine rectangles, so n = 9. If we were faced 
with an actual approximation problem, we could calculate the sum of the areas of the rect-
angles by working out the arithmetic. If we wanted a better approximation, an extremely large 
number could be chosen for n, and a computer could be used to calculate the area of every 
single rectangle and then add them all up. The accuracy would be limited only by how large 
we could make n before our computer crashed.

As n increases, the width Δx of each rectangle grows smaller, and the flat tops (or bottoms) 
of the rectangles get closer to the contour of the curve. The approximation error between the 
sum of the rectangle areas and the true area defined by the curve therefore decreases. If we 
make n extremely large, that error is tiny indeed.

The Riemann magic

In the 1800s, the mathematician Bernhard Riemann decided to carry the area-approximation 
process to infinite accuracy (make the error vanish). He reasoned that if he could find the limit 
of the sum of the rectangle areas as n approached infinity, the actual area defined by a curve 
could be determined. His method resembled the schemes used by Newton and Leibniz for 
finding the slope of a curve at a point. Riemann saw that the actual area defined by the curve, 
as portrayed with a scheme such as that shown in Fig. 11-2, must be equal to

Lim
n→∞

i

n

=
∑

1

[(b − a) /n] · f  [a + i (b − a) /n]

We can express it in a simpler way by writing

Lim
xΔ →0

i

n

=
∑

1

Δx · f  (a + iΔx )

Sometimes the order of the product after the summation symbol is reversed, so it’s written as

Lim
xΔ →0

i

n

=
∑

1

[ f (a + iΔx )] · Δ x
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Are you confused?
“Wait!” you might say. “The method described above can work only if a limit, as we’ve defined it here, 
actually exists, isn’t that so? How do we know that the limit exists?” These are good questions. In some 
cases, a limit doesn’t exist, and we can’t define the area in this way. But in the generic example shown by 
Figs. 11-1 and 11-2, our intuition ought to tell us that there is such a limit. Clearly, the area has to be 
definable somehow, because we can draw it, and it’s finite. The function doesn’t have a singularity, break 
apart, or zig-zag in some way that would make the limit impossible to define.

The integral notation

Rather than scribbling out the limit notation above, the area defined by a curve is usually 
denoted using an integration symbol along with the lower and upper bounds of the interval. 
The integral symbol looks like a vertically stretched-out letter S. Instead of

Lim
xΔ →0

i

n

=
∑

1

[ f  (a + iΔx )] · Δx

we can write

a

b

∫  f (x ) dx

This is read aloud as, “The integral from a to b of f (x ) dx.” The dx part of the expression 
comes from the shrinking of Δx to an arbitrarily small value—the differential of x—just as we 
saw when we worked out the definition of a derivative. It’s important to write down this little 
dx after any integrand (function to be integrated).

When we express an integral with a lower bound and an upper bound so it represents a 
specific area defined by a curve within an interval, we call it a definite integral. In the foregoing 
example, the lower bound is x = a and the upper bound is x = b.

Here’s a challenge!
Consider the function for which the output is the same as the input:

f  (x ) = x

Using integration, find the area defined by the curve between the bounds a = 4 and a = 8. Then calculate 
the area using plane geometry, recognizing that the region is a trapezoid.

Solution
Figure 11-3 shows how we can set up the integral using the Riemann method, constructing rectangles. 
We want to find

4

8

∫  x dx



This integral can be expressed using the long version of the limit

Lim
n→∞ i

n

=
∑

1

[(b − a) /n] · f  [a + i (b − a ) /n]

In this situation, a = 4 and b = 8. The output of the function is the same as the input. Knowing these 
things, we can rewrite the above formula as

Lim
n→∞ i

n

=
∑

1

[(8 − 4) /n] · [4 + i (8 − 4)/n]

which simplifies to

Lim
n→∞ i

n

=
∑

1

(4/n) · (4 + 4i /n )

Using algebra, we can rewrite this as

Lim
n→∞ i

n

=
∑

1

16(n + i )/n 2
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Figure 11-3  We can use integration to find the area defined by the 
curve for f  (x) = x between specific bounds.
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We can factor 16 out the sum, getting

Lim
n→∞

 16 ·
i

n

=
∑

1

(n + i )/n 2

Using the multiplication-by-constant rule for limits, we can rewrite this as

16 · Lim
n→∞ i

n

=
∑

1

(n + i )/n 2

Now let’s look at the summation part all by itself:

i

n

=
∑

1

(n + i )/n 2

We can write this series out as

(n + 1)/n 2 + (n + 2)/n 2 + (n + 3)/n 2 + · · · + (n + n )/n 2

which simplifies to

1 + (1 + 2 + 3 + · · · + n ) / n 2

From precalculus, we remember that

Lim
n→∞

 (1 + 2 + 3 + · · · + n ) / n 2 = 1/2

We must add 1 to this, which gives us

1 + (1 + 2 + 3 + · · · + n ) / n 2 = 3/2

Now we know that

Lim
n→∞ i

n

=
∑

1

(n + i )/n 2 = 3/2

Therefore

16 · Lim
n→∞ i

n

=
∑

1

(n + i )/n 2 = 16 · 3/2 = 24

That’s the integral we seek. We’ve just determined that

4

8

∫  x dx = 24

Here’s a twist!
We can verify this result by looking at Fig. 11-4, which shows the actual region under the curve. It’s a trapezoid. 
The two parallel sides have lengths of 4 units and 8 units. Averaging them gives us 6 units. We multiply that by 
4 units, the lateral distance between the parallel sides, to get 24 square units for the area of the trapezoid.

The foregoing problem was easy compared to what can happen when the Riemann method is used 
with more complicated functions. But there’s a shortcut that allows us to figure out integrals more easily. 
You’ll learn how to apply this technique in the next few chapters.
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Three Applications
Let’s look at how definite integrals are used in some “real-world” situations. First, we’ll ana-
lyze forward motion in a straight line. Then we’ll find the average value of a function over an 
interval. Finally, we’ll examine the graph of a function that describes probability.

Displacement vs. speed

Imagine a car that starts out from a standstill and accelerates on a straight, level road. Sup-
pose that when the driver presses her foot down on the accelerator, the car goes along with 
the following speed-vs.-time function s, where s (t ) is the speed in meters per second and t is 
the time in seconds:

s (t ) = 2.4t

Figure 11-5 shows a graph of this function. Let’s find out the total distance that the car travels 
between times t = 2 and t = 5. That’s the distance between the car’s location 2 seconds after it 
starts and its location 5 seconds after it starts.

Area = 24
square
units

x

f (x)

0

2

4

6

8

10

0 2 4 6 8 10

a = 4

b = 8

f (x) = x

4 
un

its

8 
un

its

4 units

Figure 11-4  In this case, the area defined by the curve can be found 
using plane geometry, because it has a trapezoidal 
shape. This result agrees with what we got by working 
out the integral.
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In classical physics, the total distance traveled by an object moving in a straight line can 
be defined using a definite integral of the function of speed vs. time. In the situation shown 
by Fig. 11-5, that integral is

2

5

∫  s (t ) dt

We could go through the Riemann process to work out this integral, just as we did in the 
“challenge” a little while ago. But we don’t have to. The graph of the function s (t ) is a straight 
line, so we can use geometry to find the area of the trapezoidal shaded region. At time t = 2, 
the speed of the car in meters per second is

s (2) = 2.4 · 2 = 4.8

At time t = 5, the speed in meters per second is

s (5) = 2.4 · 5 = 12

so the two parallel sides of the trapezoid have lengths of 4.8 units and 12 units. Averaging 
them gives us 8.4 units. We multiply that by 3 units, the lateral distance between the parallel 
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sides, to get 25.2 square units for the area. That’s the distance in meters that the car travels 
between times t = 2 and t = 5. As a definite integral, we can write this as

2

5

∫ 2.4t dt = 25.2

Average value

Imagine a function f (x ) that is continuous over its domain from x = a to x = b, as shown in 
Fig. 11-6. We can use integration to find the average value of the function over the interval 
(a,b ) between x = a and x = b. In this situation, a < b.

In geometric terms, we find the height (either positive or negative) of a rectangle whose 
area is the same as the area defined by the curve between lines x = a and x = b. If we call the 
area defined by the curve A, then

a

b

∫  f (x ) dx  = A

From geometry, we remember that the area of a rectangle is equal to its width times its 
height. Once we’ve found the integral, we know the area A. We also know the width of the 

x

f (x)

x = b

x = a

Positive
area
defined
by curve

Negative
area
defined
by curve

Total area
defined by curve
in rectangle
of width b – a

Average value
of f (x)
over interval
from x = a
to x = b

Figure 11-6  Integration can be used to find the average value of a 
nonlinear function over an interval.
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rectangle; it’s b − a. If we call the average value of the function over the interval by the rather 
fancy name f ∗

a:b, then

f ∗
a:b = A / (b − a)

We can also write

f ∗
a:b  = (b − a)−1

a

b

∫  f  (x ) dx

Normal distribution

In the graph of a probability function called a normal distribution, there’s a central peak, and 
the curve tapers off symmetrically on either side. Because of its characteristic shape, it’s some-
times called a bell-shaped curve. Figure 11-7 shows a generic graph of a normal probability 
distribution. Let’s call it P (x ). The area defined by the curve over the entire domain, which 
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extends from x = p to x = q, is equal to 1. All normal distributions have this property, which 
we can express as

p

q

∫  P (x ) dx  = 1

The mean of normal distribution, symbolized by the lowercase Greek letter mu ( m ), is 
the value of x that produces equal areas on either side. The mean can be found by imagining 
a movable, heavy, dashed vertical line that intersects the x axis. When the position of this line 
is such that the area defined by the curve to its left is half the total area (hatched region with 
down-sloping lines) and the area defined by the curve to its right is also half the total area 
(hatched region with up-sloping lines), then the vertical line intersects the x axis at the mean. 
We can describe this by writing

p

μ

∫  P (x ) dx = 1/2

and

μ

q

∫  P (x ) dx = 1/2

The standard deviation of a probability function is an expression of the extent to which 
the values are concentrated near the center. It’s symbolized by the lowercase Greek letter sigma 
(σ). A small standard deviation produces a “sharp” curve with a narrow peak and steep sides. A 
large standard deviation produces a “broad” curve with less steep sides. Imagine two movable, 
heavy, dashed vertical lines, one on either side of the mean. Suppose these vertical lines, x = a
and x = b, are such that the one on the left is the same distance from m as the one on the right, 
and the area defined by the curve between x = a and x = b is approximately 68% of the total 
area defined by the whole curve (dark-shaded region in Fig. 11-7). When this is the case, lines 
x = a and x = b are both exactly σ units away from m. That is,

m − a = σ

and

b − m = σ

We can describe the area defined by the curve for the standard deviation as

a

b

∫  P (x ) dx ≈ 0.68

Here’s a challenge!
Using the definite integral we found to describe the distance traveled by the moving car (Fig. 11-5), calculate 
the average value of the function

s (t ) = 2.4t

over the interval from t = 2 to t = 5. What does this tell us?
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Solution
To find the average value of this function, we divide the area “under the graph” in the interval by the width 
of the interval. Let’s call the average s ∗

2:5. Then

s ∗
2:5 = (5 − 2)−1

2

5

∫ 2.4t dt

We’ve already found that the area is 25.2 square units, and subtraction tells us that the width of the interval 
is 3 units. Therefore,

s ∗
2:5 = (1/3) · 25.2 = 8.4

This is the average speed of the car during the time interval.

Here’s another challenge!
Verify the solution of the above “challenge” using ordinary arithmetic. Could this alternative method be 
used if s were not a linear function?

Solution
The function s is linear, so its graph is a straight line. Therefore, the average of the speeds at 2 seconds and 
5 seconds is equal to the speed in the middle of that time interval. Let’s call that “average time” t ∗

2:5. We 
can average the time at the beginning of the interval with the time at the end to get

t ∗
2:5 = (1/2) · (5 + 2) = 7/2

The value of the function at t = 7/2 is the average speed of the car during the time interval:

t ∗
2:5 = s (t ∗

2:5) = s (7/2) = 2.4 · 7/2 = 8.4

This method of finding the average value of the function works because our speed-vs.-time function s
is linear. If it were nonlinear, its graph wouldn’t be a straight line, and we couldn’t use straightforward 
arithmetic to find the average speed. We would have to use the integral method. Situations like this are 
common in physics and engineering.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Express the first n terms of the following series in summation notation:

8 + 4 + 2 + 1 + 1/2 + 1/4 + 1/8 + · · ·
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 2. Express the first n terms of the following series in summation notation:

1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 +· · · ·. . .

 3.  Express the limits of the series stated in Probs. 1 and 2 as the number of terms increases 
endlessly. Use limit notation in conjunction with summation notation.

 4. Which, if either, of the limits we obtain by working out Prob. 3 are defined?

 5. Consider the function for which the output is the square of the input:

f  (x ) = x 2

   The graph of this function is a section of a parabola passing through (0,0) and (1,1). 
Using the Riemann method of integration, find the area defined the curve between 
x = 0 and x = 1.

 6. Based on the solution to Prob. 5, find the average value of the function

f  (x ) = x 2

  over the interval from x = 0 to x = 1.

 7. Consider the function for which the output is the cube of the input:

f  (x ) = x 3

   The graph of this function is a curve, similar to a section of a parabola but somewhat 
“sharper,” passing through (0,0) and (1,1). Using the Riemann method of integration, 
find the area defined by the curve between x = 0 and x = 1.

 8. Based on the solution to Prob. 7, find the average value of the function

f  (x ) = x 3

  over the interval from x = 0 to x = 1.

 9.  Look again at Fig. 11-5, which graphs a situation where a car’s speed steadily increases 
from a standstill. Using the Riemann method of integration, calculate how far the car 
travels in the first 5 seconds (that is, from t = 0 to t = 5).

10. Verify the solution to Prob. 9 using geometry.
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One of my favorite professors said, “Differentiation is like navigating downstream in a river system. 
Antidifferentiation is like navigating upstream in the same system. You’re in the same scene, but the 
experience is completely different.” That professor knew what he was talking about.

Concept of the Antiderivative
Antidifferentiation produces a new function that expresses the cumulative growth (or shrink-
age) of the original function.

The notation

We usually represent functions with lowercase letters such as f, g, or h. Their antiderivatives are 
denoted by uppercase italic counterparts such as F, G, or H. When seeking the antiderivative 
of a function f, we must find a function F that, when differentiated, gives us f   again.

Antiderivatives of the zero function

Let’s think about a constant function f   of a variable x that takes all the values of the domain 
and maps them into a real-number constant c. That is,

f  (x ) = c

When we differentiate f, we get

f   ′ (x ) = 0

Imagine another constant function g that maps all the values of x into 0. That’s the zero func-
tion. It’s also the derivative of f, so

f   ′ (x ) = g (x )
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It’s reasonable to suppose that we can antidifferentiate both sides here, getting

f  (x ) = G (x )

But f  (x ) = c, so it follows that

G (x ) = c

How do we know that this constant c represents the same number that we called c at the 
beginning? Well, in fact, we don’t.

Are you confused?
Now you might wonder, “What’s this constant c that we get when we antidifferentiate the zero function? 
Are we suggesting that c can be any real number? When we antidifferentiate the simplest imaginable func-
tion, the zero function, do we get infinitely many different results?” Yes. The set of all the antiderivatives 
of the zero function is the set of all real numbers. (We won’t get into what happens with imaginary and 
non-real complex numbers here.)

Now perhaps you can see why my professor compared antidifferentiation with going upstream in a 
river system. Which tributary do we take? Going downstream, we can float with the current, and we’ll 
always get to the ocean. But going upriver, we have many choices. If we start in New Orleans and take a 
steamboat up the Mississippi River, we’ll end up in a different place if we take the Ohio tributary, than we 
will if we take the Missouri tributary.

Here’s a challenge!
Draw a graph of the function

f  (x ) = 0

as a solid line or curve. Write down the antiderivatives for c = −2, c = 3, and c = 5. Draw the graphs of 
these antiderivatives as dashed lines or curves. What do these antiderivative graphs all have in common?

Solution
The general expression for the antiderivative is

F (x ) = c

where c can be any real number. Figure 12-1 shows the graphs of the three antiderivatives where c = −2,
c = 3, and c = 5, respectively:

 F−2 (x ) = −2

F3 (x ) = 3

F5 (x ) = 5

All the antiderivative graphs are straight lines with slopes of 0. The constants represent the points where 
the lines pass through the dependent-variable axis.



Some Simple Antiderivatives
Let’s look at the antiderivatives of some basic functions. We learned how to take their deriva-
tives in Part One, so we have a head start.

Antiderivatives of nonzero constant functions

After the zero function, the next simplest function is a constant function. If we call the func-
tion f, the variable x, and the constant a, then

f  (x ) = a

If we want to antidifferentiate this, we must ask ourselves, “What function or functions will 
give us f   when differentiated?” The most immediate answer is 

F0 (x ) = ax

But any of the following will also work:

 F1 (x ) = ax + 1
 F3 (x ) = ax + 3
F−2 (x ) = ax − 2
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and, in general,

F (x ) = ax + c

where c can be any real number.

Antiderivatives of basic linear functions

Now consider the basic linear function, which multiplies the variable by a nonzero constant. 
If we call the function f, the variable x, and the constant a, then 

f  (x ) = ax

The task of antidifferentiating this is a little trickier. It might take some trial and error, but we 
can make educated guesses and eventually come up with

F0 (x ) = ax 2/2

Let’s recall the rule for differentiating a basic quadratic function, and also remember the 
multiplication-by-constant rule. With the help of these principles, we can differentiate the 
above function to get

F0′(x ) = 2 · (ax /2) = ax = f  (x )

But any of the following functions will also work:

F4 (x ) = ax 2/2 + 4
 F32 (x ) = ax 2/2 + 32

F−298 (x )  = ax 2/2 − 298

because the added constants always vanish when we differentiate. In general, the antideriva-
tives have the form

F (x ) = ax 2/2 + c

where c can be any real number.

Antiderivatives of basic quadratic functions

The next level of complexity is the basic quadratic function, which squares the variable and 
then multiplies the result by a nonzero constant. If we call the function f, the variable x, and 
the constant a, then 

f  (x ) = ax 2

We can think back to the basic rules for differentiation, and it won’t take us long to see that 
the most obvious antiderivative is

F0 (x ) = ax 3/3
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Using the rule for differentiating a basic cubic function, and again remembering the 
multiplication-by-constant rule, we can verify that F0 is a legitimate antiderivative by dif-
ferentiating it to get

F0′(x ) = 3 · (ax 2/3) = ax 2 = f  (x )

As before, we can add any constant we want, and we’ll still get f (x ) when we differentiate. 
For example:

F6.33 (x ) = ax 3/3 + 6.33
 F71.05 (x ) = ax 3/3 + 71.05
F−85/13 (x ) = ax 3/3 − 85/13

and, in general,

F (x ) = ax 3/3 + c

where c can be any real number.

Antiderivatives of basic nth-degree functions

Can you guess what we must do when we want to find the antiderivative of a function that 
raises a variable to a nonnegative integer power and then multiplies by a constant? We follow 
the power rule for derivatives that we learned in Chap. 5, but we work it “backward.” If we 
call the function f, the variable x, and the constant a, then 

f  (x ) = ax n

where n is a nonnegative integer. The most straightforward antiderivative is

F0 (x ) = ax (n  +1) / (n + 1)

Using the power rule for derivatives, we can check to be sure that F0 is an antiderivative. When 
we differentiate it, we get

F0′(x ) = (n + 1) [ax (n  +1−1)] / (n + 1) = ax n = f (x )

As in all the cases we’ve seen before, we can add any constant and still get f  (x ) when we dif-
ferentiate. For example:

F6/7 (x ) = [ax (n  +1) / (n + 1)] + 6/7
      F−2e (x ) = [ax (n  +1) / (n + 1)] − 2e

F−78/π (x ) = [ax (n  +1) / (n + 1)] − 78/p
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and, in general,

F (x ) = [ax (n  +1) / (n + 1)] + c

where c can be any real number.

Real-number exponents

The rule outlined above applies not only to nonnegative integers, but to all real-number expo-
nents except −1. We can rewrite the rule by substituting k in place of n, where k represents any 
real number other than −1. If

f  (x ) = ax k

then

F (x ) = [ax (k +1) / (k + 1)] + c

If k is negative, we must be sure that x ≠ 0. Otherwise, ax k is undefined. Can you see why?
We get into trouble with this rule if k = −1, no matter what value we plug in for the vari-

able x. The problem is easy to see in an example. Suppose

f  (x ) = 3x −1

When we try to apply the rule, we get

F (x ) = [3x (−1+1) / (−1 + 1)] + c = 3x 0/0 + c

Division by 0 is not defined, so this expression doesn’t make sense! But this is an interesting situ-
ation because, as things turn out, reciprocal functions do have antiderivatives. This rule simply 
happens to be the wrong way to look for them. We’ll learn the correct way in Chap. 17.

Here’s a challenge!
Imagine that you’re in the gondola of a balloon hovering 1,000 meters above a deserted lake. You make sure 
no one is below you, and then you hold a brick over the side and let it go. Suppose the brick is so dense that 
air resistance does not affect it. Consider the vertical acceleration caused by gravity to be exactly 10 meters 
per second per second. Use antidifferentiation to derive the vertical speed as a function of time and the 
vertical displacement as a function of time. Assume that you start your timer at the instant you drop the 
brick. How long will it take for the brick to splash down after it is dropped?

Solution
The brick’s initial speed is zero, and it increases downward by 10 meters per second every second until it 
hits the water. If you call the acceleration function f and the time variable t, then

f  (t ) = 10
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Because you start the timer exactly when you drop the brick, and because the brick starts out at zero 
speed, you can set the constant c equal to 0 when you find the antiderivative. That means you can leave 
the constant out altogether, getting

F (t ) = 10t

This function expresses the vertical speed vs. time. If you take the antiderivative again and call the new 
function Φ (t ), then

Φ (t ) = 5t 2

The symbol Φ is the uppercase Greek letter phi. You can leave out the constant again here, because the 
initial vertical displacement (or “fallen distance”) is 0. The function Φ tells you the vertical displacement in 
meters vs. the elapsed time in seconds. You can verify the relationship among Φ, F, and f   by differentiating them
in succession:

Φ′ (t ) = 2 · 5t  (2−1) = 10t = F (t )

and

F ′ (t )  = 10 = f  (t )

You want to know how long it will take the brick to hit the water after you release it. This is the time t at 
which the value of Φ is equal to the altitude of the balloon (1,000 meters). You can solve the problem by 
writing the equation

5t 2 = 1,000

Dividing each side by 5, you get

t 2 = 200

Therefore, t = 2001/2, the positive square root of 200. Its value is approximately 14.14 seconds.

Indefinite Integral
The indefinite integral of a function is the collection of all its possible antiderivatives. The 
indefinite integral always includes c, the so-called constant of integration, but does not neces-
sarily tell us the exact value of that constant. It is quite sensible to call an indefinite integral an 
ambiguous integral, but you will probably never hear any mathematician use that slang.

The notation

Suppose that f   is a continuous real-number function of a variable x. The indefinite integral of 
f   is a function F such that

F ′ (x ) = f  (x )
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added to the constant of integration c. This is written as follows:

∫ f (x ) dx = F (x ) + c

where dx represents the differential of x. The above expression, if read out loud, is “the indefi-
nite integral of f (x ) dx,” or “the indefinite integral of f (x ) with respect to x.”

An example

Consider the function

f  (x ) = x 2

The derivative is

f   ′ (x ) = 2x

Now think about the following indefinite integral:

∫ 2x dx

Let’s rename the function we’re integrating. We can say that

g (x ) = 2x

At first thought, it’s tempting to suppose that the antiderivative of g is the function G such 
that

G (x ) = x 2

But the situation isn’t quite so simple, because G isn’t the only function of x that can be dif-
ferentiated to get g. Any real number c can be added to G. When we differentiate the result, 
we always get g back again, because the derivative of the constant is always 0. We can think 
of it like this:

G (x ) + c = x 2 + c

and therefore:

[G (x ) + c ]′ = 2x + 0 = 2x = g (x )

That means:

∫ 2x dx = x 2 + c

where c can be any real number.
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“Pulling out” a constant

Imagine that f  is a function of a variable x that can be integrated. Suppose that k is a real-
number constant. The indefinite integral of k times f  (x ) with respect to x is equal to k times 
the indefinite integral of f  (x ) with respect to x. As an equation, we write this fact as

∫ k [ f (x )] dx = k ∫ f (x ) dx

We can “pull the constant out” of an indefinite integral and get an equivalent expression, just 
as we can “pull the constant out” of a limit, summation, or derivative.

“Pulling out” the negative

We have a special case of the above rule when k happens to be equal to −1. In that situation, 
we can say that the indefinite integral of a negative is equal to the negative of the indefinite 
integral. We can “pull out the minus sign” like this:

∫ −[ f (x )] dx = − ∫ f (x ) dx

Sum of indefinite integrals

Suppose that f1, f2, f3, . . . , and fn are functions of a variable x, and all of those functions can be 
integrated. The indefinite integral of the sum of the functions with respect to x is equal to the 
sum of the indefinite integrals of each function with respect to x. As an equation, we write

∫ [ f1 (x ) + f2 (x ) + f3 (x ) + · · · + fn (x )] dx

= ∫ f1 (x ) dx + ∫ f2 (x ) dx + ∫ f3 (x ) dx +  · · · + ∫ fn (x ) dx

Again, when it comes to addition, we can work with indefinite integrals just as we can do with 
limits, summations, and derivatives.

Are you confused?
The difference between an antiderivative and an indefinite integral is subtle. A language or grammar 
teacher might call it “a matter of semantics.” Some texts will tell you that the antiderivative and the in-
definite integral are identical. I like to think of the indefinite integral as all the antiderivatives swarming 
around each other in an infinitely large “mathematical cloud.”

Here’s a challenge!
Let’s go back to the balloon, hovering 1,000 meters above the lake. You dropped a brick from the gondola 
and measured how long it took to splash down. The brick splashed down 14.14 seconds after you released 
it. You decide to conduct the experiment again. But this time, instead of dropping the brick, you lean out 
over the edge of the gondola and hurl the brick straight down with some force, so it starts its descent with 
a vertical speed of 5 meters per second. How long will this brick take to fall?
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Solution
Because the brick has a “head start,” the constant of integration is significant the first time you antidiffer-
entiate! The brick’s initial speed is 5 meters per second. As before, the vertical speed increases by 10 meters 
per second every second until the brick splashes down. (That’s the acceleration caused by the earth’s grav-
ity, which never changes.) If you call the acceleration function f and the time variable t, then, as before,

f  (t ) = 10

You start the timer when you hurl the brick. But, although the brick starts out at zero “fallen distance,” 
you give it an initial speed of 5 meters per second. You must account for this by adding a constant into the 
antiderivative the first time around. When t = 0 (at the moment you start the timer), the speed is 5 meters 
per second, so the antiderivative is

F (t )  = 10t + 5

This function F expresses the downward vertical speed of the brick vs. time, assuming that you hurl the 
brick straight down. Antidifferentiating again, remembering the rule for the sum of indefinite integrals and 
calling the result Φ (t ), you get

Φ (t )  = 5t 2 + 5t

The function Φ expresses the vertical displacement vs. the elapsed time. In this go-around, the constant of 
integration is 0, because the initial “fallen distance” is 0. As before, you can verify the relationship among 
Φ, F, and f   by differentiating:

Φ′ (t ) = 2 · 5t (2−1) + 5 = 10t + 5 = F (t )

and

F ′ (t )  = 10 + 0 = 10 = f  (t )

Now you’re ready to calculate how long it will take the brick to hit the water after you throw it down. This, 
once again, is the time t at which the value of Φ is equal to the altitude of the balloon. You have

5t 2 + 5t   = 1,000

This is a quadratic equation. You can get it into standard quadratic form by subtracting 1,000 from each 
side, obtaining

5t 2 + 5t   − 1,000 = 0

Dividing through by 5 gives you the simpler equation

t 2 + t   − 200 = 0

Using the quadratic formula to solve for t, you have

t = {−1 ± [12 − 4 · 1 · (−200)]1/2} / (2 · 1) = (−1 ± 8011/2) / 2
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The positive square root of 801 is approximately 28.30. Therefore,

t ≈ (−1 ± 28.30) / 2 ≈ 13.65 or  −14.65

What is happening here? Obviously, the brick can’t fall in two different lengths of time, and it is ridiculous 
to suppose that it could fall in a negative time! The only solution that makes sense is t ≈ 13.65 seconds. 
The other solution is a “phantom.” (When you have a quadratic equation that leads to a “real-world” solu-
tion, the appearance of negative “phantom solutions” is common. Don’t worry about it unless you plan to 
become a time traveler, enter an antimatter universe, or write science fiction.) By hurling the brick straight 
down with an initial speed of 5 meters per second, you got it to splash down in only a little less time than 
it took to fall when you merely dropped it. Does that surprise you?

Definite Integral
In graphical terms, the definite integral of a function over an interval is the total area between 
the curve and the independent-variable axis in that interval. In Chap. 11, we added the areas 
of a set of rectangles, making them narrower to reduce the error, and finding the exact area by 
calculating the limit as the widths of the rectangles approached 0. We can also express definite 
integrals in terms of antiderivatives. That’s easier!

The Fundamental Theorem of Calculus

Imagine that f   is a continuous real-number function of a variable x. Also suppose that a and 
b are values in the domain of f   with a < b, and F is a specific antiderivative with a constant 
of integration c. According to a law called the Fundamental Theorem of Calculus, the definite 
integral from a to b is

a

b

∫ f  (x ) dx = F (b ) − F (a )

Sometimes this is written as

a

b

∫  f  (x ) dx = F (x ) ]
a

b

where the expression on the right-hand side of the equals sign is read “F (x ) evaluated from 
a to b.”

When we find a definite integral this way, the constant of integration subtracts from itself 
because F (b ) and F (a ) are calculated with the same antiderivative (the constant of integra-
tion is the same for both). This is convenient! It let us set the constant equal to 0 or leave it 
entirely out.

An example

Suppose we’re given the following basic linear function, and we’re told to find its definite 
integral from −2 to 1:

g (x ) = 2x
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We can easily figure out the antiderivatives from our work with the basic quadratic function. 
They can be written in general as

G (x ) = x 2 + c

When we apply the Fundamental Theorem of Calculus to find the definite integral, the con-
stant of integration subtracts from itself no matter which antiderivative we choose. We might 
as well choose the one where c = 0! When we do that, we get

−
∫
2

1

g (x ) dx = G (1) − G (−2)

We can easily calculate

G (1) = 12 = 1

and

G (−2) = (−2)2 = 4

Therefore

G (1) − G (−2) = 1 − 4 = −3

so we have the final result

−
∫
2

1

2x dx = −3

Another example

Suppose we’re given the following basic quadratic function, and we’re told to find its definite 
integral from −2 to 1:

h (x ) = 6x 2

We know the antiderivatives H (x ) from our work with the basic quadratic function. They can 
be written in general as

H (x ) = 6x 3/3 + c = 2x 3 + c

As before, let’s use the case where c = 0, because the constant of integration will cancel itself 
out no matter what it is. (We can always leave the constant of integration out when we take 
advantage of the Fundamental Theorem of Calculus.) We have

−
∫
2

1

 h (x ) dx = H (1) − H (−2)
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Calculating the antiderivatives, we obtain

H (1) = 2 · 13 = 2

and

H (−2) = 2 · (−2)3 = −16

Therefore

H (1) − H (−2) = 2 − (−16) = 18

so we get the definite integral

−
∫
2

1

6x 2 dx = 18

Are you confused?
If you have trouble envisioning what’s taking place in the above examples, draw graphs of the functions g (x ) 
and h (x ), mark off the intervals of integration with the vertical lines corresponding to x = −2 and x = 1, 
and then fill in the areas bounded by these two lines, the x axis, and the curves.

Remember: If the complete region defined by an integral consists of more than one enclosed area, then 
the total area is the sum of the areas of the individual enclosed regions. Areas above the x axis are positive, 
and areas below the x axis are negative, assuming that we always move in the positive direction along the 
independent-variable axis. If the negative area is greater than the positive area, then the definite integral 
is negative.

Are you still confused?
You might wonder, “What if the lower and upper bounds of the interval are the same when we want to 
find a definite integral?” In that case, the definite integral is always 0. Suppose that you want to evaluate 
the definite integral of a function f (x ) from a to itself, with respect to x. If you apply the Fundamental 
Theorem of Calculus, then you get

a

a

∫ f  (x ) dx = F (a ) − F (a )

Remember that in any single-variable function, there can never be more than one value of the dependent 
variable (that is, one “output”) for any single value of the independent variable (“input”). Therefore, you 
can be confident that

F (a ) − F (a ) = 0

Here’s a challenge!
Once again, imagine that you’re in the balloon over the lake. You’re still hovering at an altitude of 1,000 meters. 
After expending a lot of energy (and risking your life) trying to get the brick to fall faster and gaining almost 
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nothing for the effort, you simply drop the next brick and let it fall straight down. How much speed will 
the brick gain during the third second of its descent (that is, from t = 2 to t = 3)? How far will it fall in that 
time?

Solution
The brick’s initial speed is zero, and it accelerates downward by 10 meters per second per second. As before, let’s 
call the acceleration function f  and the time variable t, so

f  (t ) = 10

To find out how much speed the brick gains from t = 2 to t = 3, we must find

2

3

∫ 10 dt

We can set the constant of integration equal to 0 because the initial speed of the brick is equal to 0. There-
fore the antiderivative, which tells us the instantaneous speed, is

F (t ) = 10t

We evaluate the definite integral by subtracting F (3) − F (2), getting

2

3

∫ 10 dt = 10 · 3 − 10 · 2 = 10

We’ve just figured out that the brick gains 10 meters per second of speed during the third second of its fall. 
To find out how far the brick falls in this same time interval, we must evaluate

2

3

∫ 10t dt

Again setting the constant of integration to 0, we get an antiderivative, which tells us the instantaneous 
“fallen distance,” of

Φ (t ) = 5t 2

This time, we evaluate

2

3

∫ 10t dt = 5 · 32 − 5 · 22 = 25

The brick falls 25 meters during the third second of its descent.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!
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 1. Draw a graph of the function

f  (x ) = 2

     as a solid line or curve. Write down the antiderivatives of this function for the constants 
of integration c = 1, c = 3, and c = −2. Draw the graphs of these antiderivatives as 
dashed lines or curves. What do these antiderivative graphs all have in common?

 2. Draw a graph of the function

f  (x )  = 2x

     as a solid line or curve. Write down the antiderivatives of this function for the constants 
of integration c = 1, c = 3, and c = −2. Draw the graphs of these antiderivatives as 
dashed lines or curves. What do these antiderivative graphs all have in common?

 3. Draw a graph of the function

f  (x )  = 3x 2

     as a solid line or curve. Write down the antiderivatives of this function for the constants 
of integration c = 5, c = 15, and c = −10. Draw the graphs of these antiderivatives 
as dashed lines or curves. On the graph, make each horizontal-axis division represent 
1 unit, and make each vertical-axis division represent 5 units. What do these 
antiderivative graphs all have in common?

 4. Draw a graph of the function

f  (x ) = 4x 3

     as a solid line or curve. Write down the antiderivatives of this function for the constants 
of integration c = 5, c = 15, and c = −10. Draw the graphs of these antiderivatives as 
dashed lines or curves. On the graph, make each horizontal-axis division represent 1 unit, 
and make each vertical-axis division represent 5 units. What do these antiderivative 
graphs all have in common?

 5.  Using the rule for antidifferentiating a basic nth-degree function and the Fundamental 
Theorem of Calculus, evaluate the definite integral of the function

f  (x ) = 8x 3

    with respect to x, from x = 0 to x = 5.

 6.  Using the rule for antidifferentiating a basic nth-degree function and the Fundamental 
Theorem of Calculus, evaluate the definite integral of the function

g (z ) = −2z 4

    with respect to z, from z = − 6 to z = − 3.
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 7.  Let’s go back to the balloon, hovering 1,000 meters above the lake. We conduct the 
experiment still another time. I lean out over the lip of the gondola ( you’re no longer 
so foolish) and toss the brick into the air with an upward vertical speed of 5 meters per 
second. It rises a short distance and then begins to fall. How long will it be from the 
time I toss the brick up until it hits the water?

 8. How fast will the brick in Prob. 7 be traveling when it splashes down?

 9.  You and I are still in the balloon. You release another brick and let it fall straight down 
with an initial speed of 0 at time t = 0, just as you did in the original experiment. How 
fast will the brick be falling at t = 5? How much vertical speed will it gain between the 
end of the 5th second and the end of the 6th second (in the interval from t = 5 to t = 6)?

10.  In the situation of Prob. 9, how far will the brick fall in the first 5 seconds? How far will 
it fall between t = 5 to t = 6?
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Until now, the functions we’ve integrated have been simple and straightforward. We’ve always 
gone in the positive direction (left-to-right) over continuous intervals. In this chapter, we’ll 
learn some rules that can help us find definite integrals in more complicated situations.

Reversal Rule
When we want to calculate a definite integral using the Fundamental Theorem of Calculus, 
we usually integrate from the minimum to the maximum value of the independent variable 
over an interval. But we can also integrate in the other direction.

The rule in brief

The reversal rule for definite integration tells us this:

• If we integrate a function over an interval from the largest to the smallest value of 
the independent variable, we get the negative of the integral from the smallest to the 
largest value. In other words, if we reverse the direction in which we integrate over a 
specific interval, we multiply the result by −1.

For this rule to work, the function must be integrable over the interval. That means the defi-
nite integral must exist, and we must be able to find it. If f  is an integrable function over an 
interval (a,b ) where a < b, then

a

b

∫ f  (x ) dx = −
b

a

∫ f  (x ) dx

Example

In the solution to Practice Exercise 5 in Chap. 12, we found that

0

5

∫ 8x 3 dx = 1,250
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Let’s go the other way and find

5

0

∫ 8x 3 dx

We can find the basic antiderivative, in which the constant of integration is 0 (in contrast to 
the general antiderivative where the constant of integration can be any real number). Our basic 
antiderivative is

F (x ) = 8x (3 +1) / (3 + 1) = 8x 4/4 = 2x 4

Plugging in the values at the bounds, we obtain

F (0) = 2 · 04 = 0

and

F (5) = 2 · 54 = 1,250

Therefore

F (0) − F (5) = 0 − 1,250 = −1,250

With the help of the Fundamental Theorem of Calculus, we can conclude that

5

0

∫ 8x 3 dx = −1,250

Another example

In the solution to Practice Exercise 6 in Chap. 12, we found that

−

−

∫
6

3

−2z 4 dz = −3,013.2

We can integrate this in the other direction by finding

−

−

∫
3

6

−2z 4 dz

The basic antiderivative is, as before,

G (z) = −2z (4+1) / (4 + 1) = −2z 5/5

Calculating the antiderivatives at the bounds, we get

G (−6) = [−2 · (−6)5] / 5  = [−2 · (−7,776)] / 5 = 15,552/5 = 3,110.4



and

G (−3) = [−2 · (−3)5] / 5  = [−2 · (−243)] / 5 = 486/5 = 97.2

By arithmetic, we get

G (−6) − G (−3) = 3,110.4 − 97.2 = 3,013.2

obtaining the final answer

−

−

∫
3

6

−2z 4 dz  = 3,013.2

Are you confused?
Usually, we think of areas defined by a curve above the independent-variable axis to be positive, and areas 
below the independent-variable axis to be negative. But, as was mentioned in Chap. 11, things work out that 
way only when we go from left to right, that is, in the positive direction along the independent-variable axis.
If we go from right to left, then the negative and positive areas reverse, as shown in Fig. 13-1.

Here’s a challenge!
Show that for any integrable function f (x ) over a real-number interval (a, b ) where a < b,

b

a

∫ f  (x ) dx = −
a

b

∫ f  (x ) dx

Solution
From the Fundamental Theorem of Calculus, we know that

b

a

∫ f  (x ) dx  = F (a ) − F (b )

and

a

b

∫ f  (x ) dx  = F (b ) − F (a )

where F  is the basic antiderivative of f.  The right-hand sides of these equations are subtractions of the 
same quantities done in opposite order. By algebra,

F (a ) − F (b ) = −[F (b ) − F (a )]

We can plug in the definite integral expressions for these differences to obtain

b

a

∫ f  (x ) dx = −
a

b

∫ f  (x ) dx
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Split-Interval Rule
Imagine that we break up an interval into two parts that don’t overlap, but are contiguous
(there is no gap between them). If we integrate the parts separately and then add the results, 
we’ll get the same thing as we do if we integrate over the whole interval.
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Figure 13-1  When we integrate in the positive x direction, areas 
above the x axis are positive, while areas below the x
axis are negative, as shown at A. When we integrate 
in the negative x direction, areas above the x axis are 
negative, while areas below the x axis are positive, as 
shown at B.



The rule in brief

The split-interval rule for definite integration tells us this:

• If f  (x ) is an integrable function over a single, continuous interval containing real 
numbers a, b, and c, then the sum of the integral from x = a to x = b plus the integral 
from x = b to x = c is equal to the integral from x = a to x = c.

When we write this symbolically, we get

b

a

∫ f  (x ) dx +
b

c

∫ f  (x ) dx = 
a

c

∫ f  (x ) dx

A special case exists when a < b < c. But this doesn’t have to be true. If a < c < b, for example, 
then the second integral in the above sum goes in the negative direction. It doesn’t matter. The 
formula works anyway!

Example

Let’s integrate a function from x = 0 to x = 2, and then from x = 2 to x = 5. We’ll see that 
the sum of these two integrals is the same as the integral from x = 0 to x = 5. First, we use the 
Fundamental Theorem of Calculus to evaluate

0

2

∫ 8x 3 dx

The basic antiderivative is

F (x ) = 2x4

Calculating the antiderivatives, we obtain

F (2) = 2 · 24 = 32

and

F (0) = 2 · 04 = 0

Therefore

F (2) − F (0) = 32 − 0 = 32

so we get the result

0

2

∫ 8x 3 dx = 32

Now, let’s work out

2

5

∫ 8x 3 dx
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This time, the antiderivatives are

F (5) = 2 · 54 = 1,250

and

F (2) = 2 · 24 = 32

Therefore

F (5) − F (2) = 1,250 − 32 = 1,218

so we have

2

5

∫ 8x 3 dx = 1,218

Now when we add, we should get

0

2

∫ 8x 3 dx +
2

5

∫ 8x 3 dx = 
0

5

∫ 8x 3 dx

In the solution to Practice Exercise 5 in Chap. 12, we found that

0

5

∫ 8x 3 dx = 1,250

Plugging in the results we’ve just obtained for the integrals from x = 0 to x = 2 and from x = 2 
to x = 5, we get the sum

32 + 1,218 = 1,250

Another example

Let’s integrate this same function from x = 0 to x = 7, and then from x = 7 to x = 5. We’ll 
see that the sum of these two integrals is the same as the integral from x = 0 to x = 5. First, 
we evaluate

0

7

∫ 8x 3 dx

Calculating the antiderivatives, we obtain

F ( 7 ) = 2 · 74 = 4,802

and

F (0) = 2 · 04 = 0
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Therefore

F ( 7 ) − F (0) = 4,802 − 0 = 4,802

so we get the result

0

7

∫ 8x 3 dx = 4,802

Now, let’s work out

7

5

∫ 8x 3 dx

The antiderivatives are

F (5) = 2 · 54 = 1,250

and

F (7) = 2 · 74 = 4,802

Therefore

F (5) − F (7) = 1,250 − 4,802 = −3,552

so we get the result

7

5

∫ 8x 3 dx = −3,552

Now when we add, we should get

0

7

∫ 8x 3 dx +
7

5

∫ 8x 3 dx = 
0

5

∫ 8x 3 dx

We’ve already determined that

0

5

∫ 8x 3 dx = 1,250

Let’s plug in the results we just got for the integrals from x = 0 to x = 7 and from x = 7 to x = 5. 
When we do this, we get

4,802 + (−3,552) = 1,250

Are you astute?
If we integrate a function from one value of the independent variable to another, it doesn’t matter how we get 
from the starting point to the finishing point. As long as the function is integrable over the entire route, we’ll 
get the same end result no matter how far afield we go, and no matter how many times we backtrack.
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Here’s a challenge!
Prove the split-interval rule in its basic form: For any function f  (x ) that’s defined and integrable over an 
interval containing the real numbers a, b, and c,

b

a

∫ f  (x ) dx +
b

c

∫ f  (x ) dx = 
a

c

∫ f  (x ) dx

Solution
From the Fundamental Theorem of Calculus, we know these three facts:

b

a

∫ f  (x ) dx  = F (b ) − F (a )

b

c

∫ f  (x ) dx  = F (c ) − F (b )

a

c

∫ f  (x ) dx  = F (c ) − F (a )

where F represents the antiderivative of f with the constant of integration equal to 0. Let’s rename the 
values of the functions at the points in the interval:

p = F (a )

q = F (b )

r = F (c )

where p, q, and r are real numbers. We know all three of these numbers exist, because we’ve been assured 
that the function f (x ) is defined and integrable over the interval containing the x-values a, b, and c. By 
substitution, we can rewrite the first two of the above integrals as

b

a

∫ f  (x ) dx  = q − p

and

b

c

∫ f  (x ) dx  = r − q

To find the sum of these, we evaluate the expression

(q − p ) + (r − q )

By algebra, this simplifies to

r − p

Substituting back the original expressions for r and p, we get

F (c ) − F (a )
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According to the Fundamental Theorem of Calculus, that’s the same as

a

c

∫ f  (x ) dx

Substitution Rule
Once in awhile, we’ll want to evaluate a definite integral that involves a composite function. 
If the integral can be written in a certain form, then it can be solved using a technique called 
the substitution rule.

The rule in brief

Imagine two functions f   and g, both of them integrable, such that f  operates on x while g
operates on f (x ). Now consider

a

b

∫ g [ f  (x )] · f   ′ (x ) dx

We can rewrite this integral in the form

f a

f b

( )

( )

∫ g ( y ) dy

where y = f  (x ). Once we’ve made this substitution, we evaluate the definite integral of the 
function g with respect to y, from y = f  (a ) to y = f  (b ). That process gives us the value of the 
original definite integral.

Example

Let’s evaluate this definite integral using the substitution method:

1

2

∫ (x + 2)4 dx

We can consider this as a composite function where

f  (x ) = x + 2

and

g ( y ) = y 4

We’re lucky here because

f   ′ (x ) = 1
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so we can rewrite the original integral in the form

1

2

∫ g [ f  (x )] · f   ′ (x ) dx

We calculate

f  (1) = 1 + 2 = 3

and

f  (2) = 2 + 2 = 4

Now we can write the integral as

3

4

∫ g ( y ) dy

which is

3

4

∫ y 4 dy

Now let’s find the indefinite integral

∫ y 4 dy

With the constant of integration set to 0, we get the antiderivative

G ( y ) = y 5/5

We calculate

G (4) − G (3) = 45/5 − 35/5 = 156.2

We’ve just found that

1

2

∫ (x + 2)4 dx = 156.2

Are you confused?
When we work out a definite integral using substitution, the bounds of integration usually change 
during the intermediate steps. Don’t let this baffle you! In the above situation, we must add 2 to both 
bounds when we integrate g ( y ) with respect to y, because that’s what the function f does to its input 
variable.
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Here’s a challenge!
Evaluate this definite integral using the substitution method:

−
∫
1

2

x (x 2 − 1)4 dx

Solution
Before we start, let’s multiply the entire integral by 1/2, and then multiply the quantity after the integral 
sign by 2. The product rule for integration allows us to do this; we’re simply multiplying the whole thing 
by 1/2 · 2, which is 1. (You’ll see why we’re playing this game in a minute.) That gives us

(1/2)
−
∫
1

2

2x (x 2 − 1)4 dx

We now have a composite function where

f  (x ) = x 2 − 1

and

g ( y ) = y 4

Our multiplication game has made things so that

f   ′ (x ) = 2x

Now we can rewrite the original integral in the form

(1/2)
−
∫
1

2

g [ f  (x )] · f   ′ (x ) dx

which gets it all ready for substitution. We calculate

f  (−1) = (−1)2 − 1 = 0

and

f  (2) = 22 − 1 = 3

so we can write the integral as

(1/2)
0

3

∫ g ( y ) dy

which is

(1/2)
0

3

∫ y 4 dy
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Now let’s find the indefinite integral

∫ y 4 dy

The basic antiderivative is

G ( y ) = y 5/5

Therefore

G (3) − G (0) = 35/5 − 05/5 = 48.6

We’re not done yet! We must multiply the above result by the constant 1/2. This gives us 24.3. We can 
now conclude that

−
∫
1

2

x (x 2 − 1)4 dx  = 24.3

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  Prove that if h is an integrable function of a variable v over an interval from v = p to v = q
where p and q are real-number constants, then

p

q

∫ h (v) dv  = 
q

p

∫ −h (v) dv

 2. As an example of the rule stated in Prob. 1, show that

1

2

∫ x 2 dx  = 
2

1

∫ −x 2 dx

 3.  Draw graphs of the two functions evaluated in the solution to Prob. 2. Show, by 
shading, the regions defined by the curves in the interval between x = 1 and x = 2. 
Explain why both areas are considered positive in this situation.

 4.  Consider the function f (x ) = x 3. Evaluate each of the integrals in the following sum, 
demonstrating the split-interval rule:

−
∫
3

0

x 3 dx +
0

3

∫ x 3 dx  = 
−
∫
3

3

x 3 dx

 5. Draw a graph of the situation in Prob. 4. Show the negative and positive areas.
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 6. Evaluate each of the integrals in the following sum:

−

−

∫
3

5

x 3 dx +
−
∫
5

3

x 3 dx  = 
−
∫
3

3

x 3 dx

 7.  Prove that for any function f (x ) that’s defined and integrable over an interval 
containing the real numbers a, b, c, and d,

b

a

∫ f  (x ) dx +
b

c

∫ f  (x ) dx +
c

d

∫ f  (x ) dx =
a

d

∫ f  (x ) dx

    Here’s a hint: See the “Challenge” at the end of the section “Split-Interval Rule.”

 8. Evaluate this definite integral using the substitution method:

−
∫
1

2

(4 − x )−2 dx

 9. Suppose we want to evaluate

−
∫
1

4

(4 − x )−2 dx

    There’s a potential problem here. What is it?

10. Try evaluating the integral stated in Prob. 9 and see what happens.
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CHAPTER

14

Improper Integrals

In this chapter, we’ll see what happens when we try to integrate a function that contains a 
singularity (blows up either positively or negatively). We’ll also learn how to integrate certain 
functions over infinitely wide intervals. Integrals of these types are called improper integrals.

Variable Bounds
Let’s look at definite integrals in which one of the bounds is variable rather than fixed. This can 
happen in either of two different ways. We can precisely adjust a bound, making it approach a 
certain limiting value, or we can let the bound “run away” (increase or decrease indefinitely).

Adjusting the upper bound

Consider a function f  of a variable x, along with two constants a and b. Let’s say that a is the 
lower bound of an open interval (a,b ) over which the function is defined, and b is the upper 
bound of that same interval. That means a < b. As we have seen, the definite integral of f  (x )
with respect to x, over the open interval from x = a to x = b, can be written

a

b

∫ f  (x ) dx

Suppose that the value of f  increases or decreases endlessly as x approaches the upper 
bound b from the negative direction (from the left). The function is defined and continu-
ous as long as x < b, but when x = b, there’s a singularity. Remember that our interval is 
open, so it does not include the end points. Because of the singularity, the integral is improper. 
To approximate it, we can imagine some extremely small positive number e (the lowercase 
Greek letter epsilon), subtract it from b, and use the difference as the upper bound instead 
of b. Then we get

a

b−

∫
ε

f  (x ) dx



We can make e as small as we want, as long as we keep it positive (as shown on the left-hand 
side of Fig. 14-1), and we’ll always be able to calculate the value of the integral. In this way, 
we can get an approximation of

a

b

∫ f  (x ) dx

that’s as close to the actual value as we want, but only if that actual value is finite.

Adjusting the lower bound

Now consider another function g of a variable x, along with two known constants c and d.
Let’s say that c is the lower bound of an open interval (c,d  ) over which g is defined, and d is 
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Figure 14-1  When an interval has a singularity, we 
can approximate the definite integral by 
choosing a bound near the singularity, but 
at which the function is defined.



236  Improper Integrals

the upper bound of that same open interval. The definite integral of g (x ) with respect to x,
over the open interval from x = c to x = d, is

c

d

∫ g (x ) dx

Imagine that g has a singularity at the lower bound, c. As x approaches c from the positive 
direction (that is, from the right), the value of f   increases or decreases endlessly. Our function 
g is defined and continuous as long as x > c. This integral, like the one in the previous section, 
is improper. We can take some minuscule positive number d (the lowercase Greek letter delta), 
add it to c, and use the sum as the lower bound instead of c, as shown on the right-hand side 
of the graph in Fig. 14-1. Then we get

c

d

+
∫

δ

g (x ) dx

We can make d as small as we want, letting it approach 0. As long as we keep d positive, we 
can get better and better approximations of

c

d

∫ g (x ) dx

as long as the actual value of the integral is finite.

“Runaway” bounds

Sometimes we’ll find ourselves in a situation where we want to figure out a definite integral 
with an unspecified upper bound. Consider the integral

a

q

∫ f  (x ) dx

where the upper bound, q, is a variable. (The lower bound, a, is a constant, as in any definite 
integral.) If q is allowed to increase endlessly as shown at the right-hand edge of Fig. 14-2, we 
approach the “one-ended” improper integral

a

∞

∫ f  (x ) dx

We can do the same thing with a lower bound. Consider the integral

p

d

∫ g (x ) dx

Here, the lower bound, p, is a variable, and the upper bound, d, is a constant. Suppose we 
make p shrink forever (that is, get larger and larger negatively) as shown at the left-hand edge 
of Fig. 14-2. In this situation, we approach the “one-ended” improper integral

−∞
∫
d

g (x ) dx



Are you confused?
You might ask, “aren’t these types of integrals always undefined? In all four of the cases shown in Figs. 14-1 
and 14-2, we go off toward infinity or negative infinity.” The answer, oddly enough, is that the integral 
is sometimes defined and finite in a situation like this. When an improper integral is infinite, it is said to 
diverge. That means the area defined by the curve over the specified open interval is infinite. But some 
improper integrals converge. In these situations, the area defined by the curve over the specified open 
interval is finite.

The convergence of certain improper integrals is one of the most fascinating phenomena in mathemat-
ics. We can have a geometric plane figure that’s infinitely wide or infinitely tall, but nevertheless has a finite 
interior area. In three dimensions, the counterpart is a solid with finite volume, but with infinite surface area. 
In the real world, such an object would allow us to cover an infinite surface with a finite amount of paint!

Here’s a challenge!
Consider the following definite integral:

1

q

∫ 5x−6 dx
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(“runs away”).



where q is the upper bound. Evaluate this definite integral for

q = 102

q = 105

q = 108

What takes place as q grows larger endlessly? Express this integral as a limit, and also as an improper integral.

Solution
If we call our function f (x ), then the basic antiderivative is

F (x ) = −x −5

When q = 102, the definite integral is

F (102) − F (1) = −[(102)−5] − [−(1−5)] = −(10−10) + 1 = 1 − 10−10

This is a little smaller than 1. When q = 105, the definite integral is

F (105) − F (1) = −[(105)−5] − [−(1−5)] = −(10−25) + 1 = 1 − 10−25

This is closer to 1 than before. When q = 108, we have

F (108) − F (1) = −[(108)−5] − [−(1−5)] = −(10−40) + 1 = 1 − 10−40

This is extremely close to 1, but it’s still not quite there! We can now see what happens as q increases with-
out limit: The value of the definite integral approaches 1, so

Lim
q→∞

F (q) − F (1)  = 1

If we want to express this fact using the integral symbology, we can write

Lim
q→∞

1

q

∫ 5x −6 dx  = 1

As an improper integral, this can be expressed as

1

∞

∫ 5x −6 dx  = 1

Singularity in the Interval
When we graph a function with a singularity, the value of the function increases or decreases 
without bound as the independent variable approaches a certain finite value. We’ve seen func-
tions like this, but we haven’t really “gotten into them.” Let’s look at them more closely.
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How to do it wrong

Suppose we want to evaluate the definite integral of a function over an interval that contains 
a singularity. Figure 14-3 is a graph of the function

f  (x ) = x −2

There’s a singularity at x = 0. Let’s try to find

−
∫
1

1

x −2 dx

by directly applying the Fundamental Theorem of Calculus, as if this were an ordinary defi-
nite integral. Unaware of the trouble that awaits us, we begin by finding the basic antideriva-
tive F.  That turns out to be

F (x ) = −x −1

Next, we evaluate F (x ) at the bounds of integration, subtracting the value at the lower bound 
from the value at the upper bound. By arithmetic,

F (1) − F (−1) = −(1−1) − [−(−1)−1] = −1 − 1 = −2
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Figure 14-3  The function f  (x ) = x −2 contains a 
singularity at x = 0. In this graph, each 
horizontal division represents 1/2 unit, and 
each vertical division represents 1 unit.



This result can’t be correct! The curve in the interval defines an area that’s entirely above the 
x axis, and we integrated in the positive direction. Therefore, if the area is finite, it must be 
positive. It can’t be −2. We must find another way to evaluate this integral.

How to do it correctly: the left-hand side

To evaluate an integral like this, we divide the interval into two parts that meet at the singular-
ity. Then we integrate on either side of the singularity. Finally, we add the two “sub-integrals.” 
In the situation we’re looking at now, the singularity is at x = 0. First, let’s evaluate

−
∫
1

0

x −2 dx

We take a tiny positive e, subtract it from the upper bound at x = 0, and obtain

−

−

∫
1

ε

x −2 dx

The basic antiderivative is

F (x ) = −x −1

When we evaluate this antiderivative from −1 to −e, we get

F (−e) − F (−1) = −(−e )−1 − [−(−1)−1] = e −1 − 1

Now consider

Lim
ε→ +0

e −1 − 1

This limit is infinite because, as e approaches 0 from the positive direction, the value of the 
quantity (e −1 − 1) grows arbitrarily large. Therefore,

Lim
ε→ +0

−

−

∫
1

ε

x −2 dx

is infinite, indicating that

−
∫
1

0

x −2 dx

is undefined. This fact is sufficient to tell us that

−
∫
1

1

x −2 dx

is undefined. We don’t have to work out the part of the integral on the right-hand side of the 
singularity to reach this conclusion. We can’t add anything to an undefined quantity and end 
up with a defined quantity! But let’s work through the right-hand portion anyway.
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How to do it correctly: the right-hand side

This time, we want to evaluate the improper integral in which the singularity exists at the 
lower bound of the open interval. That integral is

0

1

∫ x −2 dx

We’ll take a tiny positive d, add it to the lower bound at x = 0, and get

δ

1

∫ x −2 dx

Again, the basic antiderivative of our function is

F (x ) = −x −1

When we evaluate this from d to 1, we get

F (1) − F (d ) = −(1−1) − [−(d −1)] = d −1 − 1

Now we consider

Lim
δ→ +0

d −1 − 1

This limit is infinite; as d approaches 0, its reciprocal blows up. Therefore,

Lim
δ→ +0

δ

1

∫ x −2 dx

is infinite, telling us that

0

1

∫ x −2 dx

is undefined.

Here’s a challenge!
Find the definite integral of g (x ) = x −2/3 over the open interval −1 < x < 1:

−
∫
1

1

x −2/3 dx

Solution
The notion of the −2/3 power can be confusing. Let’s be sure we know what it means. Our function g takes 
the input x, squares it, takes the cube root of that, and finally takes the reciprocal of that.
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The interval of integration includes a singularity at x = 0, as shown in Fig. 14-4. We must divide the 
interval at the singularity, integrate on either side, and add the results. First, let’s work out

−
∫
1

0

x −2/3 dx

We take a tiny positive e, subtract it from the upper bound at x = 0, and obtain

−

−

∫
1

ε

x −2/3 dx

The antiderivative without the constant of integration is

G (x ) = 3x 1/3

When we evaluate this antiderivative from −1 to −e, we get

G (−e ) − G (−1) = 3 · (−e )1/3 − 3 · (−1)1/3 = 3 − 3e 1/3

x

Each horizontal division is 1/2 unit

Each vertical
division is
1 unit

x = –1 x = 1

Area defined by curve
extends upward

forever

g (x)

g (x ) = x –2/3 g (x ) = x –2/3

Figure 14-4  The function g (x ) = x −2/3 contains a 
singularity at x = 0, but the integral over the 
open interval from x = −1 to x = 1 is defined 
and finite. In this graph, each horizontal 
division represents 1/2 unit, and each vertical 
division represents 1 unit.
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Remember that the 1/3 power is the cube root. Now we consider

Lim
ε→ +0

 3 − 3e 1/3

As e approaches 0 from the positive direction, the value of e 1/3 also approaches 0 from the positive direc-
tion. Multiplying that vanishing quantity by 3 still gives us a term that approaches 0. That means the 
quantity (3 − 3e 1/3) approaches 3. We can conclude that

Lim
ε→ +0 −

−

∫
1

ε

x −2/3 dx  = 3

Therefore

−
∫
1

0

x −2/3 dx  = 3

Now let’s work through the integral on the right-hand side of the singularity. This time, we want to cal-
culate

0

1

∫ x −2/3 dx

We take a tiny positive d, add it to the lower bound at x = 0, and obtain

δ

1

∫ x −2/3 dx

Once again, the antiderivative of our function is

G (x ) = 3x 1/3

When we evaluate this from d to 1, we get

G (1) − G ( d ) = 3 · 11/3 − 3d 1/3 = 3 − 3d 1/3

We want to determine

Lim
δ→ +0

 3 − 3d 1/3

As d approaches 0 from the positive direction, the value of d 1/3 also approaches 0 from the positive direc-
tion. Multiplying that vanishing quantity by 3 still gives us a term that approaches 0. That means the 
quantity (3 − 3d 1/3) approaches 3, so

Lim
δ→ +0

δ

1

∫ x −2/3 dx  = 3

Therefore

0

1

∫ x −2/3 dx  = 3
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We’ve evaluated the integral from x = −1 up to the singularity, and found that it’s equal to 3. We’ve also evalu-
ated the integral from the singularity up to x = 1, and found that it’s equal to 3. The integral from x = −1 to 
x = 1 is the sum of the two:

−
∫
1

1

x −2/3 dx  = 
−
∫
1

0

x −2/3 dx +
0

1

∫ x −2/3 dx  = 3 + 3 = 6

The shaded region in Fig. 14-4 portrays an infinitely tall geometric plane figure with a finite interior area.

Infinite Intervals
We’ve seen what can happen when we try to integrate over an interval that’s infinitely wide. 
Let’s look further into this type of improper integral. We’ll use the same two functions that we 
integrated from x = −1 to x = 1 in the previous section:

f  (x ) = x −2

and

g (x ) = x −2/3

Example

A while ago, we figured out that the improper integral

−
∫
1

1

x −2 dx

is not defined. Now let’s integrate the same function over the interval that includes all values 
of x less than −1, as shown in Fig. 14-5. We want to evaluate

−∞

−

∫
1

x −2 dx

The antiderivative, as before, is

F (x ) = −x −1

Let’s consider the definite integral

p

−

∫
1

x −2 dx

where p is a variable that decreases endlessly (that is, it grows larger negatively without 
restraint). To find the integral, we must determine

Lim
p→−∞

F (−1) − F ( p )
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We calculate

F (−1) = −(−1)−1 = 1

As p becomes large negatively without bound, the value of F ( p ) approaches 0. We can see this 
by inputting some numbers into the antiderivative and doing the arithmetic:

F (−102) = −(−102)−1 = 10−2

F (−105) = −(−105)−1 = 10−5

F (−108) = −(−108)−1 = 10−8

Now we know that

Lim
p→−∞

F (−1) − F ( p ) = 1 − 0 = 1

Therefore

−∞

−

∫
1

x −2 dx = 1
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Figure 14-5  Integration of the function f  (x ) = x −2 over 
an interval that includes all real values of x
less than −1. In this graph, each horizontal 
division represents 1/2 unit, and each 
vertical division represents 1 unit.



Another example

We’ve already worked out the fact that

−
∫
1

1

x −2/3 dx = 6

Now let’s integrate the same function, which we call g (x ), over the interval that includes all 
values of x  larger than 1 as shown in Fig. 14-6. The improper integral is

1

∞

∫ x −2/3 dx

The antiderivative, as before, is

G (x ) = 3x 1/3

Now let’s consider the definite integral

1

q

∫ x −2/3 dx
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where q is a variable that increases endlessly. To find the integral, we must determine

Lim
q→∞

G (q ) − G (1)

We calculate

G (1) = 3 · 11/3 = 3

As q becomes large positively without bound, G (q ) also increases without bound. We know 
this because the cube root of a growing positive real number grows, and there is no limit to 
how large that cube root can become. If we multiply such a number by 3, it gets bigger still. 
Because G (q ) increases without bound as q approaches infinity, we know that

Lim
q→∞

G (q ) − G (1)

is infinite. This tells us that the improper integral

1

∞

∫ x −2/3 dx

is undefined.

Are you confused?
Do you wonder why we specify open intervals for definite integrals? We do this because it’s the “safest” 
approach. Once in awhile, we’ll encounter a definite integral where the function is undefined at one or 
both bounds. Technically, we can’t integrate all the way up to a bound where a function is undefined. 
We can approach it, but we can’t work directly with it. If we leave the endpoints out of integration
intervals, we avoid this problem. (The boundary never has any “area” anyway, so we don’t need to 
include it.)

Do you remember what the various interval notations mean? If not, here’s a refresher. If we have a vari-
able x and two constants a and b where a < b, then

(a,b ) means the open interval where a < x < b

[a,b ) means the half-open interval where a ≤ x < b

(a,b] means the half-open interval where a < x ≤ b

[a,b] means the closed interval where a ≤ x ≤ b

Are you astute?
Have you noticed that the function f, portrayed in Figs. 14-3 and 14-5, has an undefined integral over the 
interval (−1,1), but a defined one over the interval (−∞,−1)? In the first situation, the region is infinitely 
tall and has infinite area. In the second situation, the region is infinitely wide but has finite area.

Have you also noticed that the function g, shown in Figs, 14-4 and 14-6, behaves in precisely the 
opposite manner? It has a defined integral over the interval (−1,1), but an undefined one over the interval 
(1,∞). The infinitely tall region has finite area; the infinitely wide one has infinite area.
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The curves for f and g look almost the same in the graphs, but they’re a lot different mathematically. 
Whether a singularity gives us a finite integral or an undefined one depends on how “fast” the curve 
approaches the line where the singularity exists. If the curve approaches the line fast enough, then the inte-
gral is finite. Otherwise it’s undefined. Usually, the only way to know what will happen when we integrate 
over an interval with a singularity is to try it and see. If the integral is defined, we’ll come up with a limit 
that converges. If the integral is undefined, we’ll get a limit that is infinite.

How’s your imagination?
In all of the examples here, the singularities are along the coordinate axes. But there are functions with 
singularities that don’t correspond to either axis. Can you think of any?

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Evaluate the following integral. If it’s defined, state the value.

0

1

∫ −7x −8 dx

 2. Evaluate the following integral. If it’s defined, state the value.

−∞

−

∫
1

−7x −8 dx

 3. Evaluate the following integral. If it’s defined, state the value.

0

2

∫ x −3 dx

 4. Evaluate the following integral. If it’s defined, state the value.

2

∞

∫ x −3 dx

 5. Evaluate the following integral. If it’s defined, state the value.

−
∫
3

0

x −3/5 dx

 6. Evaluate the following integral. If it’s defined, state the value.

−

−∞

∫
3

x −3/5 dx
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 7.  By looking at graphs of the functions, we can see immediately that one of the following 
integrals is undefined. Which one?

2

∞

∫ x −5 dx

2

∞

∫ −5x dx

 8.  Work out the integral stated in Prob. 7 that looks as if it might be defined. If it turns 
out not to be defined, indicate why. If it’s defined, state the value.

 9.  Evaluate the following integral as if there were no singularity in the interval of 
integration. That’s the wrong way to do it, of course! But try it anyway, and see what 
happens:

−
∫
1

1

x −3 dx

   Draw a graph that lends intuitive support to the “solution” here.

10. Evaluate the integral stated in Prob. 9 using the correct approach.
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CHAPTER

15

Integrating Polynomial Functions

In this chapter, we’ll integrate functions that appear in polynomial form. Working out such 
problems involves knowing which rules to apply, and when to apply them. The rest is, as my 
teachers and professors used to say, “mere busywork.”

Three Rules Revisited
In Chap. 12, we learned three important rules that apply to indefinite integrals. They also 
apply to definite integrals under certain conditions.

The old rules

The original rules involve multiplying a function by a constant, taking the negative of a func-
tion, and adding two or more functions. Here they are again, in brief.

• If we multiply a function f  (x ) by a constant k and then integrate with respect to x, we 
get the same thing as we do by integrating f  (x ) with respect to x and then multiplying 
by the constant:

∫ k [ f  (x )] dx = k ∫ f  (x ) dx

• If we integrate the negative of a function f  (x ) with respect to x, we get the same thing 
as we do by integrating f  (x ) with respect to x and then taking the negative:

∫ −[ f  (x )] dx = − ∫ f  (x ) dx



• Imagine that f1, f2, f3, . . . , and fn  are functions of a variable x. The integral of the sum 
of the functions with respect to x is equal to the sum of the integrals of the functions 
with respect to x:

∫ [ f1 (x ) + f2 (x ) + f3 (x ) + · · · + fn (x )] dx

= ∫ f1 (x ) dx + ∫ f2 (x ) dx + ∫ f3 (x ) dx +  · · · + ∫ fn (x ) dx

The new rules

We can modify these rules to work with definite integrals, but we must be careful. We have 
to stay with the same interval of integration all the time, and we must always integrate in the 
same direction. Suppose the bounds of the interval are x = a and x = b, and we integrate start-
ing at a and finishing at b. Here are the new rules.

• If we multiply a function f  (x ) by a real constant k and then take the definite integral 
with respect to x, we get the same result as we do when we integrate with respect to x
and then multiply by the constant:

a

b

∫ k [ f  (x )] dx = k
a

b

∫ f  (x ) dx

• If we take the definite integral of the negative of a function f  (x ) with respect to x, we 
get the same result as we do when we integrate the function with respect to x and then 
take the negative:

a

b

∫ −[ f  (x )] dx = −
a

b

∫ f  (x ) dx

• The definite integral of the sum of two functions f1 (x ) and f2 (x ) with respect to x is 
equal to the sum of their definite integrals with respect to x. If f1 and f2 are integrable 
functions of the same variable x, then

a

b

∫ [ f1 (x ) + f2 (x )] dx = 
a

b

∫ f1 (x ) dx +
a

b

∫ f2 (x ) dx

This last rule, which we can call the sum rule for definite integrals, works when we add up any 
finite number of functions, as long as:

• The interval of integration is the same for each function
• All the functions are integrable over the interval
• All the integrals are done in the same direction

Are you inquisitive?
You might ask, “why does the above sum-of-integrals rule work only when both, or all, of the integration 
intervals are the same, and only when we integrate in the same direction all the time?” The best way to 
answer this question is to see what happens if we violate either or both of these restrictions.
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Suppose we want to consolidate a sum of two integrals into a single integral of the sum of both func-
tions, but the intervals differ. Here’s an example:

3

5

∫ 7x 2 dx +
4

6

∫ x 2/3 dx

We can work out the two integrals separately (assuming they’re both defined) and then add them. That’s not 
a problem, because they’re plain numbers. But if we want to consolidate the above expression into a single 
integral, we have no way of knowing what the interval should be. Should we use (3,5)? No; that won’t let 
us do anything with the values of x between 5 and 6, which are included in the second integral. Should we 
use (4,6)? No; that leaves out the values between 3 and 4 in the first integral. How about (3,6)? No; it’s too 
wide for either integral alone. What about (4,5)? No; that leaves out some of the values when we consider the 
integrals together. Now think about what happens if we integrate the functions in opposite directions:

3

5

∫ 7x 2 dx +
5

3

∫ x 2/3 dx

We can rewrite this as a difference of integrals done in the same direction:

3

5

∫ 7x 2 dx −
3

5

∫ x 2/3 dx

That’s equal to

3

5

∫ (7x 2 − x 2/3) dx

Here’s a challenge!
Consider the following two functions over the interval from x = 2 to x = 4:

g (x ) = 8x

and

h (x ) = −6x

Integrate these functions individually and add the results. Then add the functions and show that the inte-
gral of the sum is equal to the sum of the integrals.

Solution
First, let’s figure out the definite integral

2

4

∫ 8x dx

The basic antiderivative is

G (x ) = 4x 2

When we evaluate this from x = 2 to x = 4, we get

G (4) − G (2) = 4 · 42 − 4 · 22 = 48



Next, we figure out

2

4

∫ −6x dx

The basic antiderivative is

H (x ) = −3x 2

When we evaluate this from x = 2 to x = 4, we get

H (4) − H (2) = −3 · 42 − (−3 · 22) = −36

When we add these results, we get 48 + (−36), which is 12. Now, let’s add the two original functions and 
then integrate their sum. If we call the sum q (x ), then

g (x ) + h (x ) = q (x ) = 8x + (−6x ) = 2x

We want to work out

2

4

∫ 2x dx

The basic antiderivative is

Q (x ) = x 2

When we evaluate this from x = 2 to x = 4, we get

Q (4) − Q (2) = 42 − 22 = 12

Indefinite-Integral Situations
We’re now able to integrate any sum of monomial terms, where each term raises the indepen-
dent variable to a real power and then multiplies it by a real constant.

Example

Let’s resolve the indefinite integral

∫ (3z 2 + 2z − 6) dz

We have a sum of three monomial functions. Let’s call them

f 1 ( z ) = 3z 2

f 2 ( z ) = 2z
f 3 ( z ) = − 6
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The indefinite integrals are

 ∫ f 1 (z ) d z = ∫ 3z 2 dz = z 3 + c 1

∫ f 2 (z ) dz = ∫ 2z dz = z 2 + c 2

  ∫ f 3 (z ) dz = ∫ − 6 dz = − 6z + c 3

where c1, c2, and c3 are the constants of integration. These constants are not necessarily all the 
same. The original integral is

 ∫ (3z 2 + 2z − 6) dz  = ∫ f1 (z ) dz + ∫ f2 (z ) dz + ∫ f 3 (z ) dz

  = ∫ 3z 2 dz + ∫ 2z dz + ∫ −6 dz = z 3 + c1 + z 2 + c2 − 6z + c3

  = z 3 + z 2 − 6z + c1 + c2 + c3

We can consolidate c1 + c2 + c3 into a single constant c, so

∫ (3z 2 + 2z − 6) dz = z 3 + z 2 − 6z + c

Another example

Let’s find the indefinite integral

∫ (5y 2/3 − y −1/2 − 4y −2) dy

This is the integral of a sum of three monomial functions. Let’s call them

f1 ( y ) = 5y 2/3

 f2 ( y ) = −y −1/2

 f3 ( y ) = −4y −2

The indefinite integrals are

∫ f1 ( y ) dy = ∫ 5y 2/3 dy = 3y 5/3 + c1

  ∫ f2 ( y ) dy = ∫ −y −1/2 dy = −2y 1/2 + c2

 ∫ f3 ( y ) dy = ∫ −4y −2 dy = 4y −1 + c3

where c1, c2, and c3 are the constants of integration. The original integral is

 ∫ (5y 2/3 − y −1/2 − 4y −2) dy  = ∫ f 1 ( y ) dy + ∫ f2 ( y ) dy + ∫ f3 ( y ) dy

  = ∫ 5y 2/3 dy + ∫ −y −1/2 dy + ∫ −4y −2 dy 

  = 3y 5/3 + c1 − 2y 1/2 + c2 + 4y −1 + c3

  =  3y 5/3 − 2y 1/2 + 4y −1 + c1 + c2 + c3
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Consolidating c1 + c2 + c3 into a single constant c, we have

∫ (5y 2/3 − y −1/2 − 4y −2) dy = 3y 5/3 − 2y 1/2 + 4y −1 + c

Are you confused?
You might ask, “why not leave the constants of integration out until the end of the process, and then add 
in a single consolidated constant?” In most cases, we can do that. In scientific problems, the values of the 
individual constants might be significant, but in pure theoretical mathematics, they aren’t.

Here’s a challenge!
Determine the indefinite integral

∫ (x + 3)(2x 2 − 4x − 5) dx

Solution
When we multiply polynomials, we get another polynomial. In this case,

(x + 3)(2x 2 − 4x − 5) = 2x3 + 2x 2 − 17x − 15

We can therefore rewrite the above integral as

∫ (2x 3 + 2x 2 − 17x − 15) dx

Let’s take the indefinite integrals of each monomial from left to right, omit the individual constants of 
integration, and then add c as the last step. We get

∫ 2x 3 dx + ∫ 2x 2 dx + ∫ −17x dx + ∫ −15 dx

= (1/2)x 4 + (2/3)x 3 − (17/2)x 2 − 15x + c

That’s it! We’ve determined that

∫ (x + 3)(2x 2 − 4x − 5) dx = (1/2)x 4 + (2/3)x 3 − (17/2)x 2 − 15x + c

Definite-Integral Situations
Once we know how to evaluate the indefinite integrals of polynomial functions, it’s easy to 
work out definite integrals most of the time. But if the integrand (the function that we’re inte-
grating) has a singularity in the interval, then we have to use the rules we learned in Chap. 14 
when we work out the definite integral.
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Example

Let’s find the definite integral

2

4

∫ (3z 2 + 2z − 6) dz

From the previous section, we know that

∫ (3z 2 + 2z − 6) dz  = z 3 + z 2 − 6z + c

We want to evaluate this from z = 2 to z = 4. Before we start, we must be sure that the inte-
grand doesn’t have any singularities in the interval for which 2 < z < 4. To do that, we must 
look at each individual term as a function. Let’s call the integrand f, so we have

f  (z ) = 3z 2 + 2z − 6

This breaks down into the three monomial functions

f 1 (z ) = 3z 2

f 2 (z ) = 2z
f 3 (z ) = 6

The graph of f 1 is a parabola that opens upward. The graph of f2 is a line through the origin with 
a slope of 2. The graph of f3 is a line with a slope of 0. (You might want to sketch the graphs to 
see these facts.) None of these three functions blows up in the interval 2 < z < 4, so it’s okay to 
evaluate the integral by plugging in the boundary numbers to the antiderivative F (z ) and then 
subtracting the results. That antiderivative, leaving out the constant of integration, is

F (z ) = z 3 + z 2 − 6z

When we input 4 (the upper bound of the definite integral) here, we get

F (4) = 43 + 42 − 6 · 4 = 56

When we input 2 (the lower bound of the definite integral), we get

F (2) = 23 + 22 − 6 · 2 = 0

The difference is

F (4) − F (2) = 56 − 0 = 56

so we’ve determined that

2

4

∫ (3z 2 + 2z − 6) dz  = 56
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Another example

Let’s find the following definite integral. The arithmetic is messy, so we’ll approximate our 
answer with a calculator to three decimal places.

1

2

∫ (5y 2/3 − y −1/2 − 4y −2) dy

In the previous section, we found that

∫ (5y 2/3 − y −1/2 − 4y −2) d y  = 3y 5/3 − 2y 1/2 + 4y −1 + c

We want to evaluate this from y = 1 to y = 2. Let’s call the integrand f, so

f  ( y ) = 5y 2/3 − y −1/2 − 4y −2

This breaks down into

f 1 ( y ) = 5y 2/3

 f 2 ( y ) = −y −1/2

 f 3 ( y ) = −4y −2

The graph of f1 is a parabola-like curve opening upward. The graph of f2 is a curve with a 
singularity at y = 0, but we’re okay over the interval where 1 < y < 2. The graph of f 3 also 
has a singularity at y = 0, but we’re okay in the interval where 1 < y < 2. (Feel free to sketch 
graphs of these three monomial functions.) When we leave out the constant of integration, 
the antiderivative of f   is

F ( y ) = 3y 5/3 − 2y 1/2 + 4y −1

When we input 2 here, we get

F (2) = 3 · 25/3 − 2 · 21/2 + 4 · 2 −1

When we work out the above expression and round off to three decimal places at the end of 
the calculation, we get

F (2) ≈ 8.696

When we input 1 to the antiderivative F, we get

F (1)  = 3 · 15/3 − 2 · 11/2 + 4 · 1−1 = 5

The difference is

F (2) − F (1) ≈ 8.696 − 5 ≈ 3.696
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We have determined that

1

2

∫ (5y 2/3 − y −1/2 − 4y −2) dy ≈  3.696

Are you confused?
“What would happen,” you wonder, “if we try to evaluate the above integral from 0 to 1? Two of the three 
monomial terms, considered as individual functions, are singular at y = 0. Does that mean the entire inte-
gral is undefined?” Maybe, and maybe not! The only way to find out is to work out the definite integrals 
for each monomial function individually. If they’re all defined, we can add them up to get the final answer. 
If any of them is undefined, then the entire integral is undefined.

Here’s a challenge!
Evaluate the definite integral

0

1

∫ (x −1/5 − x −1/4) dx

Solution
The integrand is a sum of two monomial functions. Let’s call them

f 1 (x ) = x −1/5

and

f 2 (x ) = −x −1/4

Both of these functions are singular at x = 0. That’s the lower bound of our integration interval. One of the 
functions blows up positively, while the other one blows up negatively. Let’s go through four steps:

• Split the original integral into two separate improper integrals.
• Evaluate those two integrals independently.
• If either of them is undefined, conclude that the entire integral is undefined.
• If they are both defined, add them to get the final result.

When we break the original integral into a sum of the integrals of the monomial functions, we get

0

1

∫ x −1/5 dx +
0

1

∫ −x −1/4 dx

Let’s evaluate the left-hand addend first. We want to find

0

1

∫ x −1/5 dx
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We take a tiny positive d, add it to the lower limit at x = 0, and obtain

δ

1

∫ x −1/5 dx

The basic antiderivative is

F1 (x ) = (5/4)x 4/5

When we evaluate this from d to 1, we get

F1 (1) − F1 (d ) = (5/4) · 14 /5 − (5/4)d  4/5  = 5/4 − (5/4)d  4/5

Now we must determine

Lim
δ→ +0

5/4 − (5/4)d 4/5

As d approaches 0 from the positive direction, the value of d 4/5 also approaches 0 from the positive direc-
tion. Multiplying by 5/4 gives us a term that still approaches 0. That means the quantity [5/4 − (5/4)d 4/5]
approaches 5/4, so

Lim
δ→ +0

δ

1

∫ x −1/5 dx  = 5/4

Therefore, the left-hand addend in the “big sum” is

0

1

∫ x −1/5 dx  = 5/4

Now let’s evaluate the right-hand addend in our sum of improper integrals. This time, our task is to figure 
out

0

1

∫ −x −1/4 dx

We take a tiny positive d, add it to the lower limit at x = 0, and get

δ

1

∫ −x −1/4 dx

The basic antiderivative is

F2 (x ) = (− 4/3)x 3/4

When we evaluate this from d to 1, we get

F2 (1) − F2 (d ) = (−4/3) · 13/4 − (−4/3)d 3/4 = −4/3 + (4/3)d 3/4 = (4/3)d 3/4 − 4/3

Now we consider

Lim
δ→ +0

(4/3)d 3/4 − 4/3
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As d approaches 0 from the positive direction, the value of d 3/4 also approaches 0 from the positive direc-
tion. Multiplying by 4/3 gives us a term that still approaches 0. That means the quantity [(4/3)d 3/4 − 4/3] 
approaches −4/3, so

Lim
δ→ +0

δ

1

∫ −x −1/4 dx = −4/3

This tells us that the right-hand addend in our “big sum” is

0

1

∫ −x −1/4 dx = −4/3

We have now found the values of both addends in the expression

0

1

∫ x −1/5 dx +
0

1

∫ −x −1/4 dx

The left-hand integral is 5/4, and the right-hand one is −4/3. They’re both defined, but they have opposite 
sign. (That’s interesting when you graph both monomial functions and see how the areas combine. Make 
a sketch if you’re motivated!) We can apply the rule for adding two definite integrals to get

0

1

∫ (x −1/5 − x −1/4) dx = 5/4 − 4/3

which simplifies to

0

1

∫ (x −1/5 − x −1/4) dx = −1/12

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Work out the following sum of integrals:

5

6

∫ 3x 2 dx +
5

6

∫ −12x 2 dx

    Show that this is the same as

5

6

∫ − 9x 2 dx

 2. Work out the following sum of integrals:

5

6

∫ 3x 2 dx +
6

5

∫ −12x 2 dx
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     Note the difference in the direction of integration between the two integrals. Show that 
the above sum is the same as

5

6

∫ 15x 2 dx

 3. Work out the following difference of integrals:

5

6

∫ −12x 2 dx −
5

6

∫ 3x 2 dx

    Show that this is the same as

5

6

∫ −15x 2 dx

 4. Find the following indefinite integral:

∫ (x−2 + x −3 + x −4) dx

 5. Find the following indefinite integral:

∫ (7y )(6y − 4)(−2y + 3) dy

 6. Find the following indefinite integral:

∫ (z 8 − 1)(−3z 3 + 7z 2) dz

 7. Calculate the following definite integral:

0

1

∫ (4x 3 − 5x 2 + 7x − 4) dx

 8. Calculate the following definite integral:

−

−

∫
1

2

(x −2 + x −3 + x −4) dx

 9. Calculate the following definite integral:

0

1

∫ (x − 2)3 dx

10. Calculate the following definite integral:

−
∫
1

1

(x 1/3 + 4)2 dx
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CHAPTER

16

Areas between Graphs

When we find the definite integral of a function over an interval, there’s a geometric equivalent 
in rectangular coordinates: the area between the graph and the independent-variable axis. Now 
let’s learn how to figure out the area between the graphs of two functions over an interval.

Line and Curve
Consider two functions, plotted as graphs in the xy-plane. One of the graphs is a straight line 
represented by

f  (x ) = x + 2

This line has a slope of 1 and passes through the points (−2,0) and (0,2). The other graph is 
a curve whose function is

g (x ) = x 2 − 4

The curve is a parabola that opens upward, passing through (−2,0), (0,−4), and (2,0). Both 
of these functions are graphed in Fig. 16-1. Let’s find the total area of the region between the 
line and the curve. That’s the shaded zone.

Solve the system

To define the enclosed region between the graphs of two functions, we must find both (or all) 
of the points where the graphs intersect. We know that at any intersection point,

f  (x ) = g (x )

If we put the value of f on the left-hand side of an equation and the value of g on the right-
hand side in the situation of Fig. 16-1, we get

x + 2 = x 2 − 4



This can be rearranged to obtain the quadratic equation

x 2 − x − 6 = 0

which can be factored into

(x + 2)(x − 3) = 0

The roots of this equation are x = −2 or x = 3, the values of x that make one or the other factor 
equal to 0. When we plug x = −2 into the original functions, we get

f  (−2) = −2 + 2 = 0

and

g (−2) = (−2)2 − 4 = 0

This tells us that the graphs intersect at the point (−2,0). When we plug x = 3 into the original 
functions, we obtain

f  (3) = 3 + 2 = 5
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g (x ) = x 2 – 4

What’s the area
of the shaded
region?f (x ) = x + 2

4 6–4–6

2

6

–2

–4

–6

x

4

Value
of
function

Figure 16-1  What’s the area of the shaded region 
between the straight line and the parabola?



and

g (3) = 32 − 4 = 5

This tells us that the graphs intersect at (3,5). Now we know the points that mark the lower 
and upper bounds of the region for which we want to calculate the area. These are the only 
two points where the curves intersect, because the equation we got from both functions is a 
quadratic, which can’t have more than two real roots.

Work out the geometry

Now we must ask ourselves, “How do we calculate the area of an irregular region such as the 
shaded zone in Fig. 16-1?” In this case, we can break the region into three different plane 
figures, two of which contribute positively and one of which contributes negatively. Then we 
can add the areas that contribute positively and take away the area that contributes negatively. 
Let’s keep an eye on Fig. 16-2 as we go through this process.
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g (x ) = x2 – 4

f (x ) = x + 2

4 6–4–6

2

6

–6

x

4

–2

–4

(–2,0)

(2,0)

(3,5)

Value
of
function

Add shaded areas,
then
subtract hatched area

(3,0)

Figure 16-2  The areas of the shaded parabolic section 
and the shaded triangle are considered 
positive, and the area of the hatched region 
is considered negative. The hatched region 
is not a perfect triangle; one of its “sides” is 
part of the parabola.



As the first step, consider the lightly shaded region in Fig. 16-2 that’s bounded on the top 
by the x axis and on the bottom by the parabola. This region lies between the points where 
x = −2 and x = 2. We can find its area by evaluating

−
∫
2

2

(x 2 − 4) dx

The integrand is a polynomial. The basic antiderivative is

G (x ) = x 3/3 − 4x

When we evaluate this from x = −2 to x = 2, we obtain

G (2) − G (−2) = [(23/3 − 4 · 2)] − [(−2)3/3 − 4 · (−2)] = −32/3

This area is negative, because the region is entirely below the x axis. But we want to know the 
true geometric area between the curves, so we must consider it positive! The true geometric 
area of the lightly shaded region between the curve and the x axis in Fig. 16-2 is 32/3 square 
units.

Now let’s consider the area of the triangle bounded by the points (−2,0), (3,0), and (3,5). 
We can find this in either of two ways. We can evaluate the definite integral

−
∫
2

3

(x + 2) dx

or we can use ordinary geometry to work out the area of the triangle. Let’s use geometry; 
it’s simpler! The base length of the triangle is 5 units, and the height is 5 units. The product 
of these is 25 units. Dividing by 2 gives us 25/2 square units as the area of the dark-shaded 
triangle in Fig. 16-2. If we add this to the area of the lightly shaded region between the x axis 
and the curve, we get 32/3 + 25/2. By arithmetic, we find that this total area is 139/6 square 
units.

We’ve found an area, but the region is larger than the one we’re interested in. It encom-
passes the sum of the areas of two zones. The first zone lies above the parabola and below the 
x axis. The second zone lies below the line and above the x axis. The region of which we want 
to find the area is a little smaller. (Look again at Fig. 16-1, and compare.) To find that area, we 
must subtract the area of the hatched region that lies above the x axis but below the parabola 
in Fig. 16-2. That area is

2

3

∫ (x 2 − 4) dx

We’ve figured out G (x ), so we can plug in the numbers to get

G (3) − G (2) = (33/3 − 4 · 3) − (23/3 − 4 · 2) = 7/3

The area of the region between the line and the curve is 139/6 square units minus 7/3 square 
units, or 125/6 square units.
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Are you astute?
You might ask, “Isn’t the above scheme unnecessarily complicated? Can we subtract the function repre-
sented by the parabola (the lower graph) from the one represented by the line (the upper graph), and then 
integrate the resulting difference function between the points where the graphs intersect?” That’s a good 
question. The answer is yes. We can indeed!

Imagine slicing the region between the line and the curve into thin rectangles as shown in Fig. 16-3, 
and then working out the definite integral using the Riemann limit scheme we learned in Chap. 11. But 
this time, instead of using the x axis as the reference, suppose we use the graph that bounds the region 
on the bottom. In this case, it’s the parabola. As we make the rectangles thinner and more numerous, we 
approximate the area of the region between the curves. We can find the limit of the sum of the rectangle 
areas as their widths approach 0, and we’ll get exactly the area we want to find. In effect, we integrate the 
upper function over the interval by following the contour of lower function’s graph instead of the x axis.

Here’s a challenge!
Find the area between the line and the curve shown in Fig. 16-1 by subtracting the lower function g  from the 
upper function f, and then integrating over the interval between the points where the graphs intersect.
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g (x ) = x2 – 4

f (x ) = x + 2
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It is a lot easier
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functions!

Figure 16-3  We can find the area between two graphs 
by integrating the difference between the 
functions over the interval between the 
points where the graphs intersect.



Solution
When we subtract the function for the parabola from the function for the straight line, we get a polyno-
mial function. Let’s call it p (x ). Then

p (x ) = f (x ) − g (x ) = (x + 2) − (x 2 − 4) = −x 2 + x + 6

We want to integrate over the interval between x = −2 and x = 3, which are the x-values of the points where 
the line and the curve intersect. That means we must find

−
∫
2

3

(−x 2 + x + 6) dx

The basic antiderivative is

P (x ) = −x 3/3 + x 2/2 + 6x

When we evaluate this from x = −2 to x = 3, we obtain

P (3) − P (−2) = [−(33/3) + 32/2 + 6 · 3] − [−(−2)3/3 + (−2)2/2 + 6 · (−2)] = 125/6

Two Curves
When we want to find the area between the graphs of two polynomial functions, the hybrid 
geometry-and-calculus method won’t work. We must use calculus exclusively, although there 
might be more than one way to do it.

Two “mirrored” parabolas

Let’s find the area between the parabolas represented by

f  (x ) = x 2/2 − 2

and

g (x ) = −x 2/2 + 2

From algebra, we know that the curve for f  opens upward, and the curve for g opens down-
ward. We can find the points where the parabolas intersect by setting f  (x ) = g (x ) and solving 
the resulting equation for x, like this:

x 2/2 − 2 = −x  2/2 + 2

Adding x 2/2 to both sides, we get

x 2 − 2 = 2

We can subtract 2 from each side, obtaining

x 2 − 4 = 0
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This factors into

(x + 2)(x − 2) = 0

The roots here are x = −2 or x = 2. We can find the points where the parabolas intersect the 
dependent-variable axis by setting x = 0 for either function. When we do that, we get

f  (0) = 02/2 − 2 = −2

and

g (0) = −02/2 + 2 = 2

The vertices of the parabolas for the functions f   and g are at (0,−2) and (0,2), respectively. The 
parabolas intersect at (−2,0) and (2,0). Figure 16-4 shows the graphs of these two functions, 
along with the region they enclose.

Integrate the difference function

In this situation, the parabola for g is the upper curve, while the parabola for f   is the lower 
curve. To find the area of the enclosed region, we must integrate the difference function

p (x ) = g (x ) − f  (x ) = (−x 2/2 + 2) − (x 2/2 − 2) = −x 2 + 4
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f (x ) = x 2/2 – 2
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Figure 16-4  Calculus can be used to find the area 
between two curves. In this example, the 
curves are “mirror-image” parabolas.



Remember, we must subtract the function for the lower curve from the function for the upper 
curve to get the difference function. This ensures that we’ll end up with a positive total area 
when we integrate over the interval in the positive direction. The interval of interest is (−2,2),
so the integral we want to evaluate is

−
∫
2

2

(−x 2 + 4) dx

The basic antiderivative of the difference function is

P (x ) = −x 3/3 + 4x

When we evaluate this from x = −2 to x = 2, we obtain

P (2) − P (−2) = [−(23/3) + 4 · 2] − [−(−2)3/3 + 4 · (−2)] = 32/3

Are you confused?
You might ask, “Can’t we integrate the functions separately over the interval, take the absolute values of 
the integrals, and then add them? Won’t that give us the same result as the above method?” Yes, that will 
work here, but only because both endpoints of the interval lie on the x axis.

Here’s a challenge!
Find the area between the curves for f  (x ) and g (x ), as above and as shown in Fig. 16-4, once again. This 
time, integrate the functions separately over the interval −2 < x < 2. Consider the areas defined by either 
curve (one above the x axis and the other below it) as positive, and then add them to get the total area of 
the region enclosed by the parabolas.

Solution
Let’s begin by integrating the lower function, f  (x ), with respect to x over the interval where −2 < x < 2. 
We want to figure out

−
∫
2

2

(x 2/2 − 2) dx

Because this region lies entirely below the x axis, the definite integral will be negative. But we want to 
consider the area positive, so we must evaluate

−
−
∫
2

2

(x 2/2 − 2) dx

That’s the same as

−
∫
2

2

−(x 2/2 − 2) dx

which can be simplified to

−
∫
2

2

(−x 2/2 + 2) dx
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Now, notice that

g (x ) = −x 2/2 + 2

That’s a convenient coincidence! When we integrate f (x ) over the interval and then take the negative, 
we’re actually finding

−
∫
2

2

g (x ) dx

Therefore, our total area is twice what we get if we integrate g (x ) over the interval. That means the true 
geometric area between the curves is

2
−
∫
2

2

(−x 2/2 + 2) dx

We’ve mathematically verified a fact that appears obvious in Fig. 16-4: The upper and lower halves of the 
region between the curves are exact duplicates. Let’s do the calculations. The antiderivative of g (x ), leaving 
out the constant of integration, is

G (x ) = −x 3/6 + 2x

When we evaluate this from x = −2 to x = 2, we obtain

G (2) − G (−2) = [−(23/6) + 2 · 2] − [−(−2)3/6 + 2 · (−2)] = 16/3

This tells us that

−
∫
2

2

(−x 2/2 + 2) dx = 16/3

The total area of the region between the curves is twice this, or

2
−
∫
2

2

(−x 2/2 + 2) dx = 32/3

Singular Curves
There are infinitely many ways that two graphs can combine to create enclosed regions. Once 
in awhile, we’ll encounter an enclosed region that has one or more infinite dimensions, but 
whose area is finite. Let’s look at a situation of that sort.

An infinitely tall zone

Consider the following two functions. One of them has a graph that’s a straight line. The 
other has a graph that’s a curve with a singularity. Here they are:

f  (x ) = x

and

g (x ) = x−2/3
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Imagine the region bounded by the graph of f on the bottom, the graph of g on the right and 
on top, and the dependent-variable axis on the left. Our mission is to find the area of this 
region, shown as the shaded zone in Fig. 16-5.

Determine the interval

Before we do any calculus, we must know the interval over which we’re going to integrate. On 
the left, the interval is bounded by the dependent-variable axis, so the left-hand bound is x = 0. 
We can see that the line and the curve intersect somewhere. The x-value of the intersection 
point will be the right-hand end of our integration interval. To figure out that x-value, let’s set 
the functions equal and then solve for x. Here’s the equation we get:

x = x −2/3

Figure 16-5 shows us that the line and the curve don’t intersect at the point where x = 0. 
Therefore, x = 0 is not one of the roots of the above equation. That’s convenient, because it 
means that we can multiply both sides by x −1. When we do that, we obtain

(x −1)(x ) = (x −1)(x −2/3)
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Figure 16-5  In this example, we can calculate the area 
of the region between a line and a curve, 
even though the curve blows up at one end 
of the interval. Each horizontal division 
represents 1/2 unit. Each vertical division 
represents 1 unit.



which simplifies to

1 = x −5/3

The only real number that satisfies this equation is x = 1. (You might suspect that −1 would 
work too, but it doesn’t. Plug it in and see for yourself.) Now we know that our interval of 
integration is 0 < x < 1.

Integrate the difference function

In this scenario, the upper graph represents g and the lower graph represents f.   That means 
we must subtract f   from g   to get the difference function. If we call our difference function p
as usual, then

p (x ) = g (x ) − f  (x ) = x −2/3 − x

We want to integrate p over the interval 0 < x < 1, which is bounded on the left by the singu-
larity. That integral is

0

1

∫ (x −2/3 − x ) dx

Let’s take a tiny positive d, add it to the lower limit at x = 0 where the singularity occurs, and obtain

δ

1

∫ (x −2/3 − x ) dx

The basic antiderivative is

P (x ) = 3x 1/3 − x 2/2

When we evaluate this from d  to 1, we get

P (1) − P (d  ) = (3 · 11/3 − 12/2) − (3d  1/3 − d  2/2) = 5/2 − (3d  1/3 − d  2/2)

Now we must figure out

Lim
δ→ +0

5/2 − (3d  1/3 − d  2/2)

As d   approaches 0 from the positive direction, the values of 3d  1/3 and d  2/2 both approach 0 
as well. That means the quantity (3d  1/3 − d  2/2) approaches 0, so

Lim
δ→ +0

5/2 − (3d  1/3 − d  2/2) = 5/2

It follows that

Lim
δ→ +0

δ

1

∫ (x −2/3 − x ) dx = 5/2

Therefore

0

1

∫ (x −2/3 − x ) dx = 5/2
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We’ve found the area of the region between the curve and the line over 0 < x < 1. This area is 
finite, even though the upper function blows up at the left-hand end of the interval.

Here’s a challenge!
Solve this problem by subtracting the area defined by f   from the area defined by g over the interval 0 < x < 1. 
That is, instead of integrating the difference function, find the difference between the integrals.

Solution
As part of the solution to one of our examples in Chap. 14, we found the integral of our current function g over 
this same interval. (You might want to look back at Chap. 14 now and review that example.) The result was

0

1

∫ x −2/3 dx  = 3

This is the area of the shaded region in Fig. 16-6, bounded by the x axis on the bottom, the line x = 1 
on the right, the function g on top, and the dependent-variable axis on the left. The hatched region in 
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Figure 16-6  Alternative method of calculating the area of 
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the hatched area is considered negative. 
Each horizontal division represents 1/2 unit. 
Each vertical division represents 1 unit.



Fig. 16-6 represents the area defined by f over 0 < x < 1. That region is a triangle with a base length of 1 
unit and a height of 1 unit. Simple geometry tells us that its area is 1/2 square unit. When we subtract this 
area from the area defined by the curve for g, we obtain the net area between the curve for g and the line 
for f. If we write this as a difference of integrals, we get

0

1

∫ x −2/3 dx −
0

1

∫ x dx = 3 − 1/2 = 5/2

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Suppose the equation of the line shown in Fig. 16-1 is changed to

f  (x ) = 2x − 1

     but the equation of the parabola stays the same. Outline, step-by-step, the strategy we 
should use to find the area between the line and the curve in this situation.

 2.  Using the procedure outlined in the solution to Prob. 1, calculate the area of the region 
between the graphs of the functions

f  (x ) = 2x − 1

    and

g (x ) = x 2 − 4

 3. Find the area of the region between the graphs of the functions

f  (x ) = x

    and

g (x ) = x 2

 4.  Using a combination of geometry and calculus, figure out the area of the region 
between the graphs of the functions

f  (x ) = x
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    and

g (x ) = x 2

     as the difference between the area under the straight line and the area under the 
parabola over the interval between the intersection points.

 5. Find the area of the region between the graphs of the functions

f  (x ) = x 2

    and

g (x ) = x 3

 6. Find the total area of the region between the graphs of the functions

f  (x ) = x

    and

g (x ) = x 3

     Here’s a hint: We must evaluate the areas over the intervals −1 < x < 0 and 0 < x < 1 
separately. Explain why.

 7. Find the area of the region between the graphs of the functions

f  (x ) = 1

    and

g (x ) = x −2/3

    over the interval 0 < x < 1.

 8. Find the area of the region between the graphs of the functions

f  (x ) = 1

    and

g (x ) = x −2/3

    over the interval 1 < x < 2.
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 9. Find the total area of the region between the graphs of the functions

f  (x ) = 1

    and

g (x ) = x −2/3

    over the interval 0 < x < 2.

10. Find the area of the region between the graphs of the functions

f  (x ) = x −2

    and

g (x ) = −x−3

    over the interval 1 < x, which can also be written as (1,∞).
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Now that we’re experts at integrating polynomial functions, let’s work with the sine, cosine, 
and natural exponential. We’ll also figure out how to integrate the reciprocal function, which 
doesn’t follow the power rule for antiderivatives.

Sine and Cosine Functions
When we integrate the sine or cosine function, we obtain a function whose derivative is that 
sine or cosine function. Table 17-1 is a quick reference. Remember that general antiderivatives 
include constants of integration, while basic antiderivatives don’t.

Indefinite integrals of cosine and sine

The derivative of the sine function is the cosine function, and the derivative of any real-number 
constant c is the zero function. Therefore,

d /dx (sin x + c ) = cos x + 0 = cos x

When we go through this process the other way, we get

∫ cos x dx = sin x + c

The derivative of the negative of the cosine function is the sine function, so

d /dx (− cos x + c ) = sin x + 0 = sin x

Going backward again,

∫ sin x dx = − cos x + c

277

CHAPTER 

17

A Few More Integrals



278 A Few More Integrals

Example

Let’s figure out the area defined by the graph of the sine function over its first 1/2 cycle, as 
shown in Fig. 17-1. To do this, we must evaluate

0

π

∫ sin x dx

Note that 1/2 cycle is p radians. The basic antiderivative of the sine function, which we can 
call f  (x ), is

F (x ) = − cos x

Table 17-1. Derivatives and antiderivatives for positive and negative 
sine and cosine. The variable is x, and the constant of integration is c.

      General        Basic
Function Derivative antiderivative antiderivative

sin x cos x − cos x + c − cos x
cos x − sin x sin x + c sin x
− sin x − cos x cos x + c cos x
− cos x sin x − sin x + c − sin x

–3p

3p

3

2

1

–1

–2

–3

x

f (x ) = sin x

What’s the area
of the
shaded region?

f (x )

–3p /2

3p/2

Figure 17-1  Integration allows us to determine the 
area defined by the curve for the sine 
function over its first 1/2 cycle.



When we evaluate this from x = 0 to x = p, we get

F (p ) − F (0) = −cos p − (−cos 0) = −cos p + cos 0 = −(−1) + 1 = 2

We’ve discovered that

0

π

∫ sin x dx = 2

The area of the shaded region in Fig. 17-1 is 2 square units.

Another example

Now let’s find the area defined by the graph of

f  (x ) = sin x + 1

over the first 3/4 cycle, as shown in Fig. 17-2. We go from x = 0 to x = 3p /2. The entire wave 
is elevated by 1 unit compared with the wave in Fig. 17-1. We must work out

0

3 2π /

∫ (sin x + 1) dx
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Figure 17-2  Here’s an area problem that’s a little 
more complicated, because a constant 
has been added to the sine function.
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The basic antiderivative is

F (x ) = − cos x + x = x − cos x

When we evaluate this from x = 0 to x = 3p /2, we get

 F (3p /2) − F (0) = (3p /2 − cos 3p /2) − (0 − cos 0) = (3p /2 − 0) − (0 − 1) 

 = 3p /2 + 1

We’ve just determined that

0

3 2π /

∫ (sin x + 1) dx = 3p /2 + 1

which tells us that the area of the shaded region in Fig. 17-2 is 3p /2 + 1 square units. This is 
an irrational number approximately equal to 5.712.

Are you confused?
Do you wonder where we get the values of the trigonometric functions for various inputs? If you’ve 
forgotten the “landmarks” for the sine and the cosine, Table 17-2 can refresh your memory. These values 
are exact. The positive square root of 2, represented by 21/2, is approximately 1.414 (rounded to three 
decimal places).

Table 17-2. Selected values for the sine and cosine. 
Inputs are in radians.

x sin x cos x

↑
Cycle continues for x < 0

0 0 1
p /4 21/2/2 21/2/2
p /2 1 0
3p /4 21/2/2 −21/2/2
p 0 −1
5p /4 −21/2/2 −21/2/2
3p /2 −1 0
7p /4 −21/2/2 21/2/2
2p 0 1

Cycle continues for x > 2p
↓



Here’s a challenge!
Figure 17-3 shows the graphs of two functions and a region they define:

f  (x ) = sin x + 1

and

g (x ) = x /p

The region is bounded on the bottom by the line, on the top by the curve, and on the left by the dependent- 
variable axis. What’s the area of this zone?

Solution
Let’s begin by defining the function we’re going to integrate: the difference between f and g. Because 
f   has the upper graph and g has the lower graph, we subtract g from f. If we call our difference func-
tion q, then

q (x ) = f  (x ) − g (x ) = sin x + 1 − x /p

The next step is to figure out the interval of integration. The lower (or left-hand) bound of the interval is 
the dependent-variable axis. The upper (or right-hand) bound is the x-value of the point at which the line 
and the curve intersect. That’s the point where the two functions have equal values. Setting f  (x ) = g (x ), 
we obtain the following equation to solve:

sin x + 1 = x /p
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Figure 17-3  Calculus can be used to find the area 
between this curve and line.
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Let’s plug in p for the variable x and see what we get:

sin p + 1 = p  /p
  0 + 1 = 1

        1 = 1

Sometimes a good guess can save us a lot of algebra! Now we know that the interval of integration is 0 < x < p.
To find the area of the shaded region, we evaluate

0

π

∫ (sin x + 1 − x /p ) dx

Remember that we defined

q (x ) = sin x + 1 − x /p

The basic antiderivative is

Q (x ) = −cos x + x − x2/(2p )

When we evaluate Q at the upper bound where x = p, we get

Q (p ) = − cos p + p − p 2/2p = − (−1) + p − p /2 = 1 + p /2

When we evaluate Q at the lower bound where x = 0, we get

Q (0) = −cos 0 + 0 − 02/2p = −1 + 0 − 0 = −1

The definite integral is equal to

Q (p ) − Q (0) = 1 + p /2 − (−1) = 1 + p /2 + 1 = p /2 + 2

We’ve determined that

0

π

∫ (sin x + 1 − x /p ) dx = p /2 + 2

so the area of the shaded region in Fig. 17-3 is p /2 + 2 square units. This is an irrational number approxi-
mately equal to 3.571.

Natural Exponential Function
In Chap. 7, we learned how to differentiate the natural exponential function and its mul-
tiples. These functions don’t change when we differentiate them. Antidifferentiation doesn’t 
change them either, except for adding a constant of integration if we want to work with the 
general case.



Indefinite integrals of basic exponential functions

Because any constant multiple of the exponential function is its own derivative, it follows 
that

d /dx (ke x + c) = ke x + 0 = ke x

where e is the exponential constant, and k and c are real-number constants. When we “turn 
things around,” we obtain

∫ ke x dx = ke x + c

where c is the constant of integration.

Example

Figure 17-4 shows a graph of the function

f  (x ) = e x

along with a shaded region defined by the curve over the interval 0 < x < 1. To find the area of 
this region, we must figure out the value of

0

1

∫ e x dx
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The basic antiderivative is

F (x ) = e x

When we evaluate this from x = 0 to x = 1, we get

F (1) − F (0) = e 1 − e 0 = e − 1

which tells us that

0

1

∫ e x dx = e − 1

That’s the area of the shaded region in Fig. 17-4, expressed in square units. A calculator can 
approximate this as 1.718.

Another example

Here’s a situation involving the area between two graphs as shown in Fig. 17-5:

f  (x ) = e x

and

g (x ) = 2x

x
2–2 –1 0 1

10

5

f (x ) = e x

What’s the
area of
the
shaded
region?

Value
of
function

g (x ) = 2x

x = 1

Figure 17-5  Determination of the area of a region 
between the graphs of the exponential 
function and a straight line.



We can approach this problem in two different ways. The first strategy involves taking away 
the area A of the triangle connecting the points (0,0), (1,0), and (1,2) from the area we 
derived in the previous example. That’s a triangle with a base length of 1 unit and a height 
of 2 units, so

A = (1 · 2)/2 = 1

When we subtract this from the area defined by the exponential curve alone over the interval 
for which 0 < x < 1, we obtain

0

1

∫ e x dx − 1

which is e − 1 − 1, or e − 2 square units. The second method involves integrating the differ-
ence between the function for the line and the curve over the interval 0 < x < 1. In Fig. 17-5, 
the function f  is associated with the upper graph, and the function g is associated with the 
lower graph. If we call our difference function q, then

q (x ) = f  (x ) − g (x ) = e x − 2x

We must work out the integral

0

1

∫ (e x − 2x ) dx

The basic antiderivative is

Q (x ) = e x − x 2

When we evaluate this from x = 0 to x = 1, we get

Q (1) − Q (0) = (e 1 − 12) − (e 0 − 02) = (e − 1) − (1 − 0) = e − 2

This agrees with the “subtract-the-triangle” scheme. We’ve shown that

0

1

∫ (e x − 2x ) dx = e − 2

A calculator can approximate this as 0.718.

Here’s a challenge!
Find the area of the shaded region in Fig. 17-6, defined by the graph of the exponential function over the 
interval for x < 1. We can also write this interval as (−∞,1).
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Solution
We want to evaluate the improper integral

−∞
∫
1

e x dx

Consider this definite integral:

p

1

∫ e x dx

where p is an arbitrary real number less than 1. If we call the exponential function f, then the basic anti-
derivative is

F (x ) = e x

To find the value of the integral, we must determine

Lim
p→−∞

F (1) − F ( p )

x
2–2 –1 0 1

10

5

f (x ) = e x

f (x )

Area defined
by curve extends
to the left forever

What’s the
area of
the
shaded
region?

x = 1

Figure 17-6  Determination of the area defined 
by the graph of f  (x )  = e x over the 
interval for which x < 1.



We can quickly calculate

F (1) = e 1 = e

As p becomes large negatively without bound, the value of F ( p ) approaches 0. We can see this by input-
ting some increasingly negative numbers into the antiderivative and watching what happens: 

F (−10) = e −10 = 1/e 10

F (−100) = e −100 = 1/e 100

F (−1,000) = e −1,000 = 1/e 1,000

F (−10,000) = e −10,000 = 1/e 10,000

These are quotients with numerators always equal to 1, but with increasingly large denominators. There’s 
no limit to how large the denominators can get as we let x “run away” in the negative direction, so the 
quotients approach 0. Now we know that

Lim
p→−∞

F (1) − F ( p ) = e − 0 = e

Therefore

−∞
∫
1

e x dx = e

The area defined by the curve in Fig. 17-6 is equal to e square units.

Are you astute?
Suppose that we allow the upper bound of the interval in the previous “challenge” to vary. Imagine that, 
instead of being fixed with a value of 1, it can be any real number r we want, as shown in Fig. 17-7. We 
can show that the area defined by the curve over the interval (−∞,r ) is always equal to e r.

Let’s generalize the solution, substituting r for 1 and watching what happens as we go through the 
process. This time, we want to determine

−∞
∫
r

e x dx

where r can be any real-number constant. Now consider

p

r

∫ e x dx

where p is an arbitrary real number smaller than r. If we again call the exponential function f, the basic 
antiderivative is

F (x ) = e x

To find the value of the integral, we must determine

Lim
p→−∞

F (r ) − F ( p )
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We know straightaway that

F (r ) = e r

As p becomes large negatively without bound, the value of F (p) approaches 0, just as it did in the solution 
to the “challenge.” The same thing happens when we plug in some test numbers:

F (−10) = e −10 = 1/e 10

F (−100) = e −100 = 1/e 100

F (−1,000) = e −1,000 = 1/e 1,000

F (−10,000) = e −10,000 = 1/e 10,000

The quotients approach 0, so

Lim
p→−∞

F (r ) − F ( p ) = e r − 0 = e r

Therefore

−∞
∫
r

e x dx = e r

We’ve shown that the area defined by the graph of the exponential function f  (x ) = e x over the interval 
(− ∞,r ) is always equal to e r.

x
2–2 –1 0 1

10

5

f (x ) = e x

f (x)

Area defined by curve extends forever
to the left of the upper bound
of the interval at x = r

8–To

Upper bound is equal to r, which
can be any real number
whatsoever!

Figure 17-7  Determination of the area defined 
by the graph of f  (x ) = e x over the 
interval for which x < r, where r
can be any real number.



Reciprocal Function
In Chap. 12, we saw that the general power rule can’t be used to find antiderivatives or inte-
grals of the reciprocal function. When we try to apply that rule to a function that raises the 
independent variable to the −1 power, we end up dividing by 0. But the reciprocal function 
can be integrated!

Indefinite integral of basic reciprocal function

We’ve learned that the derivative of the natural logarithm function is the reciprocal function. 
That is,

d /dx (ln x ) = x −1

If we add a constant c to the logarithm function and then differentiate, we get

d /dx ( ln x + c ) = x −1 + 0 = x −1

When we antidifferentiate through the above equation, we obtain

∫ x −1 dx = ln x + c

where c is the constant of integration.

Are you confused?
“Wait,” you say. “The above formula suggests that if x < 0, we can take the natural log of a negative num-
ber to get the integral. But the natural logs of negative numbers aren’t defined. Do we have to leave all the 
negative numbers out?” The answer is no. We can integrate this function even when x < 0.

Look at the graph of the reciprocal function as shown in Fig. 17-8. The pair of curves is symmetrical 
with respect to the origin. We can integrate this function over any interval where x is negative, and treat 
that interval like a “mirror image” of an interval equally far from the vertical axis on the other side. If we 
take the absolute value of x before we take the logarithm, then we can define the antiderivative of the 
reciprocal function for all real-number values of x except 0. The formula is

∫ x −1 dx = ln | x | + c

We still have trouble when x = 0, because the reciprocal function is singular there. We can’t get around that.

Example

Let’s evaluate a simple definite integral for the reciprocal function. Figure 17-8 shows the 
graphical representation of

1

e

∫ x −1 dx
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If we call this function f, then the basic antiderivative is

F (x ) = ln |x |

Because x is positive throughout our interval, we can simplify this to

F (x ) = ln x

When we evaluate from x = 1 to x = e, we get

F (e ) − F (1) = ln e − ln 1 = 1 − 0 = 1

We’ve just found that

1

e

∫ x −1 dx = 1

Another example

Here’s a more exotic problem. Let’s find the area between the curves as shown in Fig. 17-9, 
over the interval for which −2 < x < −1. The function corresponding to the upper curve is

f  (x ) = x 2

2 4 6

–2–4–6

2

6

–2

–4

–6

x

4

f (x )

f (x ) = x –1

f (x ) = x –1

x = 1

What’s the
area of
the
shaded
region?

x = e

Figure 17-8  Definite integral of the reciprocal function 
over the interval for which 1 < x < e.



and the function corresponding to the lower curve is

g (x ) = x −1

We can find the difference function p by subtracting g from f, getting

p (x ) = f  (x ) − g (x ) = x 2 − x −1

The area of the shaded region can be found by evaluating

−

−

∫
2

1

(x 2 − x −1) dx

The basic antiderivative is

P (x ) = x 3/3 − ln |x |

First, we look at the situation for x = −1. We see that

P (−1) = (−1)3/3 − ln |−1| = −1/3 − ln 1 = −1/3 − 0 = −1/3
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Figure 17-9  Determination of the area of a region 
between the graphs of the reciprocal 
function and a parabola over the interval 
for which −2 < x < −1.
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Next, we look at the situation for x = −2. We have

P (−2) = (−2)3/3 − ln |−2| = −8/3 − ln 2

That’s as simple as we can get this expression, because ln 2 is irrational. Now we must subtract 
P (−2) from P (−1) to find the value of the integral. We get

P (−1) − P (−2) = −1/3 − (−8/3 − ln 2) = −1/3 + 8/3 + ln 2 = 7/3 + ln 2

We’ve figured out that

−

−

∫
2

1

(x 2 − x −1) dx = 7/3 + ln 2

That’s the area of the shaded zone in Fig. 17-9. We can use a calculator to approximate this 
as 3.026 square units.

Here’s a challenge!
Figure 17-10 shows the graphs of three functions:

f  (x ) = x 2

g (x ) = x −1

h (x ) = 4

2 4 6

–4–6

2

6

–2

–4

–6

x

Value
of
function

f (x ) = x2

(x ) = x –1g (x ) = x –1g

–2

h (x ) = 4

What’s the area
of the shaded
region?

Figure 17-10  What’s the area of the region bounded by 
the two curves and the straight line?



These three graphs enclose a region, which is shaded. The region is bounded on the right and the bottom 
by the curve for f, on the left and the bottom by the curve for g, and on the top by the line for h. What’s 
the area of the shaded zone? 

Solution
Let’s divide the enclosed region into two parts, each of which is bounded by the graphs of two of the 
functions. Figure 17-11 shows how this is done. Only the first quadrant of the coordinate plane is shown, 
because our entire region lies within that quadrant.

To begin, we find the three x-values of the points where the function graphs intersect. The x-value of the 
intersection point between the curves for f   and g can be found by setting them equal, producing the equation

x 2 = x −1

If we multiply through by x, we obtain

x 3 = 1

which solves to x = 1. We draw a dashed, vertical line representing this x-value to mark the boundary 
between the two “sub-zones” in the enclosed region. We can find the x-value of the intersection point 
between the curves for g and h by setting those functions equal, getting

x −1 = 4
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Figure 17-11  Solution to the challenge presented in Fig. 17-10.
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Multiplying through by x gives us

1 = 4x

When we divide through by 4 and transpose the sides of the equation, we get the solution

x = 1/4

We draw another dashed, vertical line representing this x-value to mark the extreme left-hand boundary 
of the enclosed region. In a similar way, the x-value of the intersection point between the curves for f and 
h can be found by solving

x 2 = 4

When we take the 1/2 power of each side, we get

x = ± 2

We aren’t interested in the root x = −2, but only in the root x = 2. We draw a third dashed, vertical line for 
this x-value to mark the extreme right-hand boundary of the enclosed region. We now have three bounds 
that define the intervals for two different definite integrals.

Let’s define the integrals we have to work out. In the shaded zone, which lies to the left of the vertical 
dashed line x = 1, we have the difference function

p (x ) = h (x ) − g (x ) = 4 − x −1

On the right-hand side of the vertical dashed line x = 1 ( hatched zone), we have the difference function

q (x ) = h (x ) − f  (x ) = 4 − x 2

The area of the shaded zone (call it A) is

1 4

1

/
∫ (4 − x −1) dx

The basic antiderivative is

P (x ) = 4x − ln |x |

When we evaluate this from x = 1/4 to x = 1, we get

P (1) − P (1/4) = (4 · 1 − ln |1|) − (4 · 1/4 − ln |1/4|) = 3 + ln (1/4)

This is an irrational number and we can’t simplify it any further, so

A =
1 4

1

/
∫ (4 − x −1) dx = 3 + ln (1/4)



The area of the hatched zone (call it B ) is

1

2

∫ (4 − x 2) dx

The basic antiderivative is

Q (x ) = 4x − x 3/3

When we evaluate this from x = 1 to x = 2, we obtain

Q (2) − Q (1) = (4 · 2 − 23/3) − (4 · 1 − 13/3) = 5/3

We have determined that

B =
1

2

∫ (4 − x 2) dx = 5/3

The total area enclosed by the three graphs, in square units is therefore

A + B = 3 + ln (1/4) + 5/3 = 14/3 + ln (1/4)

This is an irrational number, but a calculator can approximate it as 3.280 square units.

Where to find more integrals

You can find a table of indefinite integrals in the back of this book. Refer to App. G. You can 
also find them on the Internet. Enter the phrase “table of integrals” or “table of indefinite 
integrals” into your favorite search engine. A few sites will calculate definite integrals if you 
input the bounds.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Evaluate the following definite integral:

0

2π

∫ −5 sin x dx

 2.  What happens to the definite integral of the cosine function over intervals whose lower 
bounds are always 0 and whose upper bounds keep increasing positively? Here’s a hint: 
Evaluate

Lim
s →∞

0

s

∫ cos x dx
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 3. Evaluate the following definite integral:

0

1

∫ (cos x 2)(2x ) dx

  Here’s a hint: Use the substitution method for integrating composite functions.

 4. Evaluate the following definite integral:

0

π

∫ (4e x + 4 sin x ) dx

 5. Evaluate the following definite integral:

0

1

∫ 2e 2x dx

  Here’s a hint: Use the substitution method for integrating composite functions.

 6. Evaluate the following definite integral:

0

1

∫ (cos e x )(e x ) dx

  Here’s a hint: Use the substitution method for integrating composite functions.

 7. Evaluate the following integral. If it’s defined, state the value.

0

1

∫ x −1 dx

 8. Evaluate the following integral. If it’s defined, state the value.

−∞

−

∫
1

x −1 dx

 9.  Evaluate the following integral as though there were no singularity in the interval. 
That’s the wrong way to do it! But try it anyway, and see what happens:

−
∫
e

e

x −1 dx

   Note that the limits of integration are −e and e, where e is the exponential constant. 
Draw a graph that lends intuitive support to this “solution.”

 10. Evaluate the integral stated in Prob. 9 using the correct approach.



We’ve seen how integration can help us find the areas defined by, and between, graphs. In this 
chapter, we’ll learn how to determine arc length, or the distance along a curve between two 
points.

A Chorus of Chords
Let’s derive a formula for arc length along the graph of a function, as defined between two 
values of the independent variable. We’ll start by approximating, and then we’ll refine the 
estimate until we get a formula for the exact value.

Breaking up the arc

Imagine a function f  (x ) whose graph is a curve (Fig. 18-1). We want to find the length L of 
the arc between the points where x = a and x = b, assuming that a < b. If we move along the arc 
in the positive-x direction, let’s call the arc length positive. If we go in the negative-x direction, 
let’s call the length negative. No matter which interval we choose, we know that we will always 
travel either to the right or to the left over the entire interval. (Otherwise, there would be more 
than one value of the dependent variable for some values of the independent variable, and the 
graph would not represent a function.)

If the graph were a straight line, the length of the segment between the points where x = a
and x = b could be found easily. We could take b − a as the base length of a right triangle, 
take f  (b ) − f  (a ) and call it the height of the triangle, and then calculate the length L of the 
segment connecting the points using the distance formula

L = {(b − a )2 + [ f  (b ) − f  (a )]2}1/2

Obviously, the graph in Fig. 18-1 isn’t a line segment over the interval shown. But we can 
split it up into a set of line segments. Suppose we select several points on the arc with equally 
spaced x-values (Fig. 18-2). These segments are called chords. If we break the arc up into 
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f (x )

x = b

x = a

Graph of f (x )

between x = a and x = b
Arc length along curve

Figure 18-1  Arc length over an interval in a graph 
between the point where x = a and the 
point where x = b.
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Δx

Δy
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equal size along the
x axis

y = f (x )

Figure 18-2  Approximating arc length. We divide the arc into 
n chords. The x-values of the endpoints are equally 
spaced. As n increases, we get better approximations.



n chords, then the difference Δx in the x-values between adjacent pairs of points is

Δ x = (b − a ) / n

Each chord forms the hypotenuse (longest side) of a small right triangle. The base length of 
each triangle is Δx. The heights vary.

Let’s say that y = f  (x ). Then we can call the height of a particular triangle, say the i th
triangle, Δiy, as shown in Fig. 18-3. Let’s call the left-most triangle “number 1,” and count up 
as we move toward the right. If we make n large, then:

• The height of triangle number 1 is Δ1y
• The height of triangle number 2 is Δ2y
• The height of triangle number 3 is Δ3y
• And so on . . .
• The height of triangle number i is Δi y
• And so on . . .
• The height of triangle number n is Δn y

The length of each chord can be found with the Pythagorean formula:

• The length of chord number 1 is [(Δx)2 + (Δ1y)2]1/2

• The length of chord number 2 is [(Δx)2 + (Δ2y)2]1/2

A Chorus of Chords  299

x

f (x)

x = b

x = a

Δx

y = f (x )

Δ yi

This is
the i th triangle
in a set of
n triangles

Figure 18-3  Every chord is the hypotenuse of a right triangle. Each 
triangle has the same base length Δx, but the heights 
vary. Here, we’re looking at the ith triangle, whose 
height we call Δiy.



• The length of chord number 3 is [(Δx)2 + (Δ3y )2]1/2

• And so on . . .
• The length of chord number i is [(Δx)2 + (Δ iy )2]1/2

• And so on . . .
• The length of chord number n is [(Δx)2 + (Δny )2]1/2

We can get an approximation of the arc length (call it L app) by adding up the lengths of all the 
chords from i = 1 to i = n. Stated symbolically,

L app =
i

n

=
∑

1

[(Δx )2 + (Δ i y )2]1/2

The law of the mean

We’ve described how to approximate the arc length L between the two points on the graph of 
y = f  (x) for which x = a and x = b. Before we can work out a way to determine L exactly, we 
must know an important principle called the law of the mean.

Suppose we choose two points on the graph of a function y = f   (x), and these points 
describe one of the chords in an approximation of the arc length between the points. For the 
i th chord, the endpoints are where x = x i −1 and x = xi, as shown in Fig. 18-4. That chord has 
slope

Δ iy /Δx = [ f  (x i) − f  (x i −1)] / (xi − xi −1)

x

f (x )

x = xi –1

x = xi

Δ iy

Δ x

= Δ iy /Δ x

Slope
of chord

f ¢ (x ) = Δ iy /Δ x

Slope of
tangent to
curve
=

Gray curve
represents
y = f (x )

x = xi*

i*

Figure 18-4  There’s always a point on a curve, 
somewhere between the endpoints of a 
chord, for which the derivative of the 
function is equal to the slope of the 
chord.
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If f  (x ) is defined and continuous between the chord endpoints, then there is at least one point 
on the curve between the chord endpoints for which the derivative of f  is equal to the slope of 
the chord. If we call the x-value of such a point xi

∗, then

x i −1 ≤ x i
∗ ≤ x i

and

f   ′(xi
∗) = Δ iy /Δx

We don’t necessarily know the exact location of any point for which x = xi
∗. But we do know 

that at least one such point exists on the curve between the endpoints of the chord.

Are you confused?
We’re using a lot of symbols and subscripts here. Don’t let them overwhelm you! Here’s a summary of 
what they mean.

• The x-values of the endpoints of the arc are x = a and x = b.
• Δx is the difference in the x-values between any two adjacent points on the arc.
• Δx also refers to the width of every small right triangle along the arc.
• Δ i y refers to the height of the ith small right triangle in the set of n triangles along the arc.
• The value x i

∗ is the x-coordinate of a point on the curve where the derivative of the function is 
equal to the slope of the i th chord.

• L app is the approximate arc length, expressed as the sum of the lengths of a set of chords.
• L is the actual arc length, as we would measure it if we could move exactly along the curve.

Finding the true arc length

Now we’re ready to derive a formula that will tell us precisely how long the arc is. Look again 
at the sum that expresses the approximate length:

L app =
i

n

=
∑

1

[(Δx )2 + (Δiy )2]1/2

We can use algebra to rewrite this as

L app =
i

n

=
∑

1

[1 + (Δiy /Δx )2]1/2 Δx

By the law of the mean, there’s a point on the arc such that x = xi
∗, somewhere between the 

point where x = xi −1 and x = xi. (Look again at Fig. 18-4.) That point is in the i th interval 
along the arc, corresponding to the i th chord. Now that we know this, we can substitute 
f   ′ (xi

∗) for Δi y /Δx in the above equation to get

L app =
i

n

=
∑

1

{1 + [f   ′(xi
∗)]2}1/2 Δx

A Chorus of Chords  301



Imagine that we make n larger without end, so the chords approximate the actual arc length 
L ever more closely. As n approaches infinity, L app approaches L, so

L   = Lim
n→∞

i

n

=
∑

1

{1 + [ f   ′(xi
∗)]2}1/2 Δx

This scheme is similar to the theory Riemann used to find the area defined by a curve. When 
written in integral notation, the above statement becomes

L   = 
a

b

∫ {1 + [f   ′(x )]2}1/2 dx

A Monomial Curve
Let’s try out our newly discovered formula with a monomial function f   that cubes the variable 
x and then takes the positive square root of the result:

f   (x ) = x 3/2

Suppose we want to find the arc length along this curve from the point where x = 0 to the 
point where x = 1, as shown in Fig. 18-5.

x = 0

x = 1

f (x )

x

What’s the
length of the
solid arc?

f (x ) = x 3/2

Each axis
increment
is 1/5 unit

Figure 18-5  Calculating the arc length along the graph 
of f  (x) = x3/2, from x = 0 to x = 1.
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Arc-in-a-box method

We can find a range of possible absolute values for the arc length between two points, getting 
a way to check arc-length calculations for major errors. I call this scheme the arc-in-a-box 
method. Here’s how it works.

• Construct a box (rectangle or square) with vertical and horizontal edges, such that the 
endpoints of the arc are at opposite corners of the box.

• Be sure that the arc is entirely contained within the box.
• Be sure that the arc bends in the same sense (either clockwise or counterclockwise) 

everywhere within the box.

Once we’ve done these things, we know that the absolute value of the arc length is greater than 
or equal to the diagonal measure of the box, but less than or equal to half the perimeter of the 
box. In the situation of Fig. 18-5,

f  (0) = 03/2 = 0

and

f  (1) = 13/2 = 1

The arc length must be greater than or equal to the diagonal of the dashed gray square whose 
edges measure 1 unit. That diagonal is 21/2 (about 1.414) units long. Also, the arc length must 
be less than or equal to half the perimeter of the square. That’s 2 units. If we call the arc length 
L, then we know that

21/2 ≤ L ≤ 2

If we get an answer that lies outside these extremes, we’ll know that we’ve made a mistake in 
our calculations somewhere along the way!

Setting up the integral

Before we use the arc-length formula, we must differentiate the function. Again, our function 
is

f  (x ) = x 3/2

The derivative is

f   ′(x ) = (3/2)x 1/2

We plug (3/2)x 1/2 into the formula for the arc length in place of f   ′(x ), and we also include the 
bounds of the integration interval, getting

L = 
0

1

∫ {1 + [(3/2) x 1/2]2}1/2 dx
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This can be rewritten as

L = 
0

1

∫ [1 + (9/4)x]1/2 dx

Let’s refer to a table of integrals to resolve this. (The creators of such tables compiled them 
especially to help people like us in situations like this!) Looking through App. G in the back 
of this book, we find the form

∫ (ax + b )1/2 dx = (2/3)(ax + b)3/2 a −1 + c

where c is the constant of integration. We can reverse the addends in the binomials to get this 
into a form more convenient to use directly in the problem at hand:

∫ (b + ax )1/2 dx = (2/3)(b + ax )3/2 a −1 + c

If we let a = 9/4 and b = 1, we obtain

∫ [1 + (9/4)x ]1/2 dx = (2/3) · [1 + (9/4)x ]3/2 · (4 /9) + c

which simplifies to

∫ [1 + (9/4)x ]1/2 dx = (8/27) · [1 + (9/4)x ]3/2 + c

Working out the integral

To determine the arc length, we must evaluate the following expression over the interval from 
x = 0 to x = 1:

(8/27) · [1 + (9/4)x]3/2

Plugging in x = 1, we get

(8/27) · [(1 + (9/4) · 1]3/2 = 2,1971/2 / 27

Plugging in x = 0, we get

(8/27) · [(1 + (9/4) · 0]3/2 = 8/27

The arc length is the difference between these results, or

L =  (2,1971/2 − 8) / 27

A calculator can approximate this to 1.440 units. That’s between the constraints we derived: a 
minimum of 21/2 (approximately 1.414) and a maximum of 2.
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Here’s a challenge!
Using the techniques developed in this chapter, derive the formula for the distance of a point (x,y) = (a,b )
from the origin in Cartesian coordinates.

Solution
To begin, we must be sure we know the function we want to evaluate! Its graph is a straight line connecting 
the points (0,0) and (a,b), as shown in Fig. 18-6. The slope of this line is b /a. The y-intercept is 0, because 
the line passes through the origin. Therefore, if we call our function f, we have

f  (x ) = (b /a)x

The derivative of this is

f   ′ (x) = b /a

Keeping in mind that a and b are constants, we can plug b /a into the formula for arc length in place of f   ′(x ). 
The bounds of our interval are x = 0 and x = a, so

L =
0

a

∫ [1 + (b/a)2]1/2 dx

f (x)

x

f (x ) = (b /a)x

(0,0)

(a,b)

What’s the
length of the
solid
line segment?

Figure 18-6  We can derive the formula for the distance 
of an arbitrary point (a,b ) from the origin 
in Cartesian coordinates. In this graph, axis 
divisions are of arbitrary size.
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Using algebra, we can rewrite this as

L =
0

a

∫ [(a 2 + b 2)1/2 / a ] dx

If this looks complicated, note that the quantity [(a 2 + b 2)1/2 / a] is a constant, because it’s built up from 
other constants. For a moment, let’s rename it k, so

k = [(a 2 + b 2)1/2 / a]

That gives us

L = 
0

a

∫ k dx

The indefinite integral works out easily as

∫ k dx = kx + c

To obtain L, we evaluate the expression kx from x = 0 to x = a, getting

L = k · a − k · 0 = k · a

Let’s give k its original name back. Now we have

L = [(a 2 + b 2)1/2 / a] · a = (a 2 + b 2)1/2

This is the formula we learned in precalculus. It defines the distance in Cartesian coordinates from the 
origin to an arbitrary point (x, y ) = (a, b ).

A More Exotic Curve
Now let’s try the formula with a more complicated curve. Suppose f  is a function of x such that

f  (x ) = x 3/24 + 2x −1

Let’s find the arc length from the point where x = 2 to the point where x = 3.

Setting up the integral

The first thing to do is differentiate our function. That gives us

f   ′(x ) = x 2/8 − 2x −2

When we square this, we get

[ f   ′(x )]2 = x 4/64 − 1/2 + 4x −4
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Adding 1 gives us

1 + [ f   ′ (x )]2 = x 4/64 + 1/2 + 4x −4

We can morph the right-hand side of the above equation as follows:

x 4/64 + 1/2 + 4x −4 = x −4 (x 8/64 + x 4/2 + 4) = x −4 (x 4/8 + 2)2

 = (x −2)2 (x 4/8 + 2)2 = (x 2/8 + 2x −2)2

When we plug (x 2/8 + 2x −2)2 into the arc-length formula for {1 + [f   ′(x )]2} and include the 
bounds of integration, we obtain

L =
2

3

∫ [(x 2/8 + 2x−2)2]1/2 dx

which simplifies to

L =
2

3

∫ (x 2/8 + 2x −2) dx

The indefinite integral, leaving out the constant of integration, is

∫ (x 2/8 + 2x −2) dx = x 3/24 − 2x −1

Are you astute?
Have you noticed that this is almost identical to our original function? The only difference is that we 
subtract the two monomials, rather than adding them. This is sheer coincidence.

Working out the value

To determine the arc length, we must evaluate the following expression over the interval from 
x = 2 to x = 3:

x 3/24 − 2x −1

Plugging in x = 3, we get

33/24 − 2 · 3−1 = 11/24

Plugging in x = 2, we get

23/24 − 2 · 2−1 = −2/3
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The arc length is the difference between these results, or

L = 11/24 − (−2/3) = 9/8

Here’s a challenge!
Plot a graph of the function we just finished working with. Indicate the location of the arc whose length 
we found. Determine a range of lengths within which the arc length must lie, so we can be fairly sure that 
we didn’t make any errors in our calculation.

Solution
Figure 18-7 is a graph of the function in the first quadrant. The black portion of the curve is the arc. The 
endpoints are labeled. Function values have been worked out using arithmetic. The dashed gray box is 
constructed so the endpoints of the arc are at opposite corners. The arc length must be greater than or 
equal to diagonal measure of the box, but less than or equal to half the perimeter of the box. The diagonal 
measure is

[(43/24 − 4/3)2 + (3 − 2)2]1/2 = (697/576)1/2

f (x )

x

1 2 3 4 5

1

2

3

4

5

(2,4/3)

(3,43/24)

f (x ) = x 3/24 + 2x –1

Figure 18-7  Graph of the function f  (x ) = x3/24 + 2x−1,
showing the arc for which we found the 
length. The dashed gray box defines the 
range of possible values for the arc length.
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Using a calculator, we get approximately 1.100 units. The arc must be at least as long as this. Checking it; 
we found L = 9/8, which is 1.125 units. Now let’s determine half the perimeter of the box. That’s the sum 
of the lengths of the long side and the short side. Calculating, we get

(43/24 − 4/3) + (3 − 2) = 35/24

A calculator approximates this as 1.458 units. The arc is shorter, as we should expect.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it! If you need to refer 
to integral tables, feel free to use them.

 1.  Using the techniques we’ve learned in this chapter, find the length of the arc that goes 
1/4 of the way around the unit circle in the first quadrant of the Cartesian coordinate 
plane, from the point where x = 0 to the point where x = 1. Remember that the unit 
circle is centered at the origin and has a radius of 1 unit. Its equation is

x 2 + y 2 = 1

 2.  Draw a graph of the function and the arc we evaluated in the solution to Prob. 1. Then 
show that when we multiply this arc length by 4, we get the circumference of the circle, 
just as we can find it using the rules of geometry. Remember that the formula for the 
circumference of a circle is

C = p r 2

 where C is the circumference and r is the radius, both expressed in the same units.

 3.  Using the arc-in-a-box method, find the minimum and maximum possible lengths for 
the arc we evaluated in the solution to Prob. 1. Then verify that the arc length is indeed 
within that range.

 4.  Using the techniques we’ve learned in this chapter, find the length of the arc that goes 
part of the way around the circle

x 2 + y 2 =  4

  in the second quadrant of the Cartesian coordinate plane, from the point where x = −2
to the point where x = −1.

Practice Exercises  309



 5.  Draw a graph of the function and the arc we evaluated in the solution to Prob. 4.

 6.  Using the arc-in-a-box method, find a span of values between which the arc length we 
found in the solution to Prob. 4 must be. Verify that the arc length is within that range.

 7.  Verify that the arc length we found in the solution to Prob. 4 is exact, using ordinary 
geometry and trigonometry.

 8.  Using the techniques we’ve learned in this chapter, find the length of the arc in the 
graph of the function

f  (x ) = x 2/2

 from the point where x = 0 to the point where x = 1.

 9.  Draw a graph of the function and the arc we evaluated in the solution to Prob. 8.

 10.   Using the arc-in-a-box method, find a span of values between which the arc length 
we found in the solution to Prob. 8 must be. Verify that the arc length is within that 
range.
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It’s okay to use a reference table to resolve a difficult or unfamiliar integral. But it’s also a good 
idea to get some practice working out integrals. In this chapter, we’ll look at three techniques 
for integrating certain functions or combinations of functions.

Principle of Linearity
In Chap. 15, we learned some rules that apply to definite integrals. We can expand on them to 
get the principle of linearity, also known as the linear-combination rule for definite integration.

The old rules

Let’s review the two rules that we’re about to expand upon. They involve multiplication of a 
function by a constant, and the addition of two different functions. If we have a variable x, a 
continuous interval (a,b ), a constant k, and functions f 1 (x ) and f 2 (x ) that are integrable from 
x = a to x = b, then

a

b

∫ k [ f 1(x )] dx  = k
a

b

∫ [ f 1 (x )] dx

and

a

b

∫ [ f 1 (x ) + f 2 (x )] dx = 
a

b

∫ f 1 (x ) dx +
a

b

∫ f 2 (x ) dx

The new rule in brief

The principle of linearity combines the best features of these two older rules. We can write it 
out in formal mathematical language or as an equation. Let’s do both! First, the words:

• Let f 1 and f 2 be integrable functions of x over a continuous interval (a,b ). Let k1 and k2

be constants. The integral of k 1 times f 1 plus k 2 times f 2 over (a,b ) is equal to k1 times 
the integral of f 1 over (a,b ) plus k 2 times the integral of f 2 over (a,b ).
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And now, the equation:

a

b

∫ {k1 [ f 1 (x )] + k2 [ f 2 (x )]} dx  = k1

a

b

∫ f 1 (x ) dx + k2

a

b

∫ f 2 (x ) dx

The principle of linearity isn’t limited to two functions and constants. It works with any finite 
linear combination if we stay with the same interval, stay with the same variable, and make 
sure that each function can be integrated over the entire interval (a,b ).

Example

To demonstrate how this principle works, suppose we come across

0

π

∫ (3 sin x + 5e x ) dx

The principle of linearity allows us to rewrite this as

3
0

π

∫ sin x dx + 5 
0

π

∫ e x dx

The basic antiderivative of the sine function is the negative of the cosine function. The expo-
nential function is its own basic antiderivative. We can therefore resolve the above sum of 
integrals to

3 · [− cos p − (− cos 0)] + 5 · (e p − e 0)

which can be simplified to

3 · [cos 0 − cos p ] + 5 · (e p − e 0)

We know that cos 0  = 1, cos p = −1, and e 0 = 1, so the above expression works out to

3 · [1 − (−1)] + 5 · (e p − 1) = 1 + 5e p

The complete integral and its value can now be stated as

0

π

∫ (3 sin x + 5e x ) dx = 1 + 5e p

Don’t be fooled!

It’s easy to look at the above result and suspect that

0

π

∫ 3 sin x dx  = 1

and

0

π

∫ 5e x dx  = 5e p



These conclusions are wrong. The principle of linearity doesn’t imply anything like this. If you 
like, work out these integrals and see what their values actually are.

Are you confused?
Do you suspect that the principle of linearity can apply to a difference, just as it does for a sum? If so, 
you’re right, as long we keep the order of subtraction the same. We can express this in formal jargon:

• Let f 1 and f 2 be integrable functions of x over a continuous interval (a,b ). Let k1 and k2 be con-
stants. The integral of k1 times f 1 minus k2 times f 2 over (a,b ) is equal to k1 times the integral of f 1

over (a,b ) minus k2 times the integral of f 2 over (a,b ).

Written as an equation, it is

a

b

∫ {k1 [ f 1 (x )] − k2 [ f 2 (x )]} dx  = k1

a

b

∫ f 1 (x ) dx − k2

a

b

∫ f 2 (x ) dx

Here’s a challenge!
Prove the principle of linearity for the definite integrals of two functions, based on the sum rule and the 
multiplication-by-constant rule stated at the beginning of this chapter.

Solution
Suppose that we want to integrate a constant k1 times a function f 1, added to another constant k2 times 
another function f 2, like this:

a

b

∫ {k1 [ f 1 (x )] + k2 [ f 2 (x )]} dx

The variable is x, and the integration interval is (a,b ). The sum rule tells us that we can split this integral 
so each addend becomes a new integrand, and both of the new integrals go over the same original interval 
(a,b ). When we do that, we get

a

b

∫ k1 [ f 1 (x )] dx +
a

b

∫ k2 [ f 2 (x )] dx

We can pull the constants out of both integrals according to the multiplication-by-constant rule, which 
gives us

k1

a

b

∫ f 1 (x ) dx + k2

a

b

∫ f 2 (x ) dx

Integration by Parts
Once in awhile, you’ll encounter an integral that consists of a product of two functions, but 
can be rearranged so it becomes easier to resolve using a scheme called integration by parts.
Here’s how it works.
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An old idea revisited

Do you remember the two-function product rule for differentiation from Chap. 6? That 
rule says that if f  and g are differentiable functions of the same variable, then we can find the 
derivative of their product as a sum of two other products:

( f g )′ = f   ′g + g ′f

Suppose the independent variable is x for both functions. We can integrate both sides of the 
above equation with respect to x, getting

∫ ( f g )′dx  = ∫ ( f   ′g + g ′f   ) dx

Because the integral of a sum is equal to the sum of the integrals, we can rewrite the right-hand 
side to get

∫ ( f g )′dx = ∫ f   ′g dx + ∫ g ′f dx

Now let’s take a close look at the left-hand side of this equation. In effect, it’s telling us to take 
the antiderivative of a derivative! These two operations “undo” each other, so we can simplify 
the preceding equation to

f g   = ∫ f   ′g dx + ∫ g ′f dx

When we subtract  ∫ f   ′g dx from both sides, we get

f g − ∫ f   ′g dx  = ∫ g ′f dx

Let’s transpose the right-hand and left-hand sides. That gives us

∫ g ′f dx  = f g − ∫ f   ′g dx

This formula is useful in certain situations where we must integrate a function that’s a product 
of two others. It leaves us with another integral, as you can see. But if we’re clever (and lucky ), 
we can arrange things so the second integral is easier to figure out than the original integral 
would be if we attempted to resolve it directly.

Are you confused?
You might ask, “Aren’t the constants of integration important in the process we just finished? In par-
ticular, taking the antiderivative of a derivative gives us the same function again, but only if the constant 
of integration is 0, isn’t that right?” Yes, that’s true. However, we always have at least one indefinite integral 
somewhere in the equation in each step of the process. Those constants are always there, and because we 
never have to specify their values, we don’t have to worry about making a mistake when we manipulate the 
equations. But we must never forget to include a constant of integration as the last step in the process of 
resolving an indefinite integral.
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Variations on a theme

The formula we’ve just derived can be presented in several different forms. We can write the 
formula out in full, showing the variable x and including multiplication symbols for clarity. 
It’s messier but more revealing than the shorter version:

∫ g ′(x ) · f  (x ) dx  = f  (x ) · g (x )  − ∫ f   ′(x ) · g (x ) dx

The commutative law for multiplication ( from basic algebra) allows us to reverse the orders of prod-
ucts. Let’s use that rule with two of the three products here, and rewrite the above equation as

∫ f (x ) · g ′(x ) dx  = f  (x ) · g (x )  − ∫ g (x ) · f   ′(x ) dx

Now let’s use an alternative notation for the derivatives. In Chap. 3, we saw several different 
ways that derivatives can be denoted. Let’s substitute like this:

f   ′(x )  = df  (x ) /dx

and

g ′(x ) = dg (x ) /dx

Now we get the sloppy formula

∫ f (x ) · [dg (x ) /dx ] dx  = f  (x ) · g (x ) − ∫ g (x ) · [df  (x ) /dx ] dx

In both of the integrals here, we have differentials in numerators and denominators right next 
to each other. They’re the little dx quantities that we always write with integrals. (Sometimes 
writing them gets to be such a habit that we forget what they really mean! If you don’t remem-
ber their significance, look back at Chap. 11 under the section “The Integral Notation.”) 
These differentials divide out to give us

∫ f (x ) · dg (x ) = f  (x ) · g (x )  − ∫ g (x ) · df (x )

When we “hide” the variable x and the multiplication symbols, we get back to an abbreviated 
version of this same formula:

∫ f dg  = f g − ∫ g df

Some texts use the letters u and v instead of f   and g to represents the functions. In those 
books, you’ll see the rule for integration by parts written as

∫ u dv  = uv − ∫ v du

Are you confused?
If you’re baffled by all these different ways of saying the same thing, I understand. It’s as if I’ve told you 
“This is a calculus book” in half a dozen different languages. You may ask, “What’s the point?” I’ve gone 
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through them to give you a chance to see alternative notations. That way, you won’t be surprised when 
you’re reading a textbook or thesis and you come across a nonstandard form. My favorite version is

∫ f (x ) · g ′(x ) dx  = f  (x ) · g (x )  − ∫ g (x ) · f   ′(x ) dx

Example

Consider the following indefinite integral, which is the product of a simple linear function 
and an exponential function:

∫ x e x dx

To set up the parts, let’s say that

f  (x ) = x

and

g ′(x ) = e x

The basic antiderivative of g ′  is

g (x ) = e x

The derivative of f  is

f   ′ (x ) = 1

The formula for integration by parts tells us that

∫ x e x dx  = x e x − ∫ e x · 1 dx  = x e x − ∫ e x dx

The last term can be considered as the basic antiderivative of e x, which is, once again, simply 
the exponential function e x. Substituting back, we get

∫ x e x dx  = x e x − e x + c  = e x (x − 1) + c

where c is the constant of integration.

Are you confused?
You might wonder why we don’t include constants of integration in either of the two cases above where 
we take the antiderivative of e x. The reason is the same as when we derived the formula for integration by 
parts. We can include all those constants, and it won’t do any harm, except to make things sloppier than 
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necessary. But when we have a combination of antiderivatives in an ongoing process that eventually pro-
duces a single indefinite integral, we can wait until the last step before we add in the constant.

Here’s a challenge!
Use integration by parts to find

∫ −3x e −x dx

Solution
Solving this requires some intuition. To begin, we can rewrite this integral as

∫ 3x (−e −x ) dx

Does this maneuver seem strange? We move the minus sign “legally,” but instead of pulling it out in front 
of the integral sign, we move it further into the integrand! As things turn out, that will make the problem 
easier to solve. To set up the parts, let’s say that

f  (x )  = 3x

and

g ′(x ) = −e −x

The basic antiderivative of g ′ is

g (x ) = e −x

If you wonder how we come to this conclusion, you can differentiate g as we’ve stated it above, using the 
reciprocal rule for differentiation ( from Chap. 6) and the fact that the exponential function is its own 
derivative. You’ll end up with g ′. The derivative of f  in this situation is

f   ′(x ) = 3

The formula for integration by parts tells us that

∫ 3x (−e −x ) dx  = 3x e −x − ∫ e −x · 3 dx  = 3x e −x −  3 ∫ e −x dx

The last integral in this equation resolves to −e −x plus a constant. (That’s another “backward application” 
of the reciprocal rule for differentiation, along with multiplication by −1.) Substituting back into the 
preceding equation, we get

∫ 3x (−e −x ) dx  = 3x e −x − 3 (−e −x ) + c  = 3e −x (x + 1) + c

where c is the constant of integration.



Partial Fractions
Occasionally you’ll see an integral of a fraction that contains a constant in the numerator and 
a polynomial in the denominator. Some such integrals can be split up into sums of simpler 
integrals using the method of partial fractions.

A helpful formula

Let’s look at an indefinite integral with a constant in the numerator and linear function in the 
denominator. The general form is

∫ k / (ax + b ) dx

where x is the variable, and a, b, and k are constants. We can rewrite this using exponent nota-
tion instead of fraction notation. That gives us

∫ k (ax + b )−1 dx

When we pull out the constant, we get

k ∫  (ax + b )−1 dx

Referring to the table of integrals in App. G, we find

∫ (ax + b )−1 dx  = a −1 ln |ax + b | + c

When we include the constant k, we get

k ∫ (ax + b )−1 dx = k (a −1 ln |ax + b | + c )

where c is the constant of integration. We can also write this as

k ∫ (ax + b )−1 dx  = ka −1 ln | ax + b | + kc

which can be simplified to

k ∫ (ax + b )−1 dx  = ka −1 ln |ax + b | + c

We can “recycle” the constant c because it doesn’t have any value in particular.

A preliminary example

Let’s resolve the indefinite integral

∫ 2 (3x + 5)−1 dx
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To begin, we move the constant in front of the integral symbol, getting

2 ∫ (3x + 5)−1 dx

Then we apply the formula we derived above to get

2 · 3−1 ln |3x + 5| + c

which can be simplified to

(2/3) ln |3x + 5| + c

We have therefore determined that

∫ 2 (3x + 5)−1 dx = (2/3) ln |3x + 5| + c

“Reverse engineering”

Suppose we come across an integral of a ratio that has a linear function of x in the numerator 
and a quadratic function of x in the denominator. Here’s the general form:

∫ [(ax + b)(cx 2 + dx + e)−1] dx

where a, b, c, d, and e are constants. (In this case, e has nothing to do with the exponential 
constant. It’s an ordinary constant like the others.) If we try to resolve this integral straight-
away, we’re bound to be frustrated. But we can use algebra to rewrite many integrals of this 
sort in the form

k1 ∫ (a1x + b1)−1 dx + k2 ∫ (a2x + b2)−1 dx

where x is the variable, and a1, a2, b1, b2, k1, and k2 are constants. Both of the integrands here 
are reciprocals of linear functions. We know how to work them out!

The transformation from the first integral above to the second one involves a big intuitive 
leap. It’s unlikely to be obvious to anyone but a high-caliber mathematician. But we can get 
an idea of how it happens by doing a little bit of “reverse engineering.” We can work backward 
from the above expression until we get the one before it. That way, we can see the logic behind 
each step. Once we’ve finished working through the derivation backward, we can turn around 
and “reverse engineer” the backward derivation to get the real one.

Let’s start with the above expression, in which both addends are integrals that we already 
know how to do. We can move the constants into the integrands, getting

∫ k1(a1x + b1)−1 dx + ∫ k2(a2x + b2)−1 dx
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Remembering that the sum of two integrals is the same as the integral of the sum when both 
functions involve the same variable, we can rewrite this as

∫ [k1(a1x + b1)−1 + k2(a2x + b2)−1] dx

From algebra, we can use the general rule for adding two fractions, getting

∫ (k1a 2x + k 1b 2 + k 2a 1x + k 2b1) [(a1x + b1)(a2x + b2)]−1 dx

The numerator can be rearranged, and the denominator multiplied out, to obtain

∫ [(k 1a 2 + k 2a 1)x + (k 1b 2 + k 2b 1)] [a1a2x 2 + (a1b 2 + b 1a 2)x + b 1b 2]−1 dx

This looks a lot more complicated than it actually is. All combinations of a ’s, b ’s, and k ’s are 
constants, because they’re sums and products of constants. When we look closely, we can see 
that this integrand is the ratio of a linear function to a quadratic function. That’s obvious if 
we make the following substitutions:

• Call (k 1a 2 + k 2a 1) by the nickname a
• Call (k 1b 2 + k 2b1) by the nickname b
• Call a 1a 2 by the nickname c
• Call (a 1b 2 + b 1a2) by the nickname d
• Call b 1b 2 by the nickname e

When we assign these nicknames to our original constants, the above integral becomes

∫ [(ax + b )(cx 2 + dx + e )−1] dx

which is the original form we started with at the beginning of this section!

A working example

Now let’s work out an integral of the above form. Consider this:

∫ (2x + 8)(x 2 + 8x + 15)−1 dx

We want to get the integrand into a sum of fractions, each of which has a constant in the 
numerator and a linear function in the denominator. This is the difficult part of the process. 
From intermediate algebra, we can figure out that the integrand breaks down into the sum 
of (x + 3)−1 and (x + 5)−1. We’re lucky in this case because the numerators are both 1, and the 
coefficients of x are also both 1. That means the above integral can be rewritten as

∫ [(x + 3)−1 + (x + 5)−1] dx

Because the integral of a sum is equal to the sum of the integrals, we have

∫ (x + 3)−1 dx + ∫ (x + 5)−1 dx
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Using the formula we took earlier from App. G, we get

ln |x + 3| + ln |x + 5| + c

We have therefore found that

∫ (2x + 8)(x 2 + 8x + 15)−1 dx  = ln |x + 3| + ln |x + 5| + c

Are you confused?
Do you have trouble with the algebra here? It’s not easy. The goal always the same: Get the integrand into a 
sum of fractions in which the numerators are all constants, and the denominators are linear functions. Let’s 
go through the algebra in the example we just finished, so you can get the general idea for future problems 
of this type. Take a look at the integral we resolved:

∫ (2x + 8)(x 2 + 8x + 15)−1 dx

The denominator, a quadratic function, can ( fortunately ) be factored like this:

x 2 + 8x + 15 = (x + 3)(x + 5)

In a sum of fractions, the denominator of the sum can always be expressed as the product of the individual 
denominators. In this situation, therefore, we will have two fractions, one with a denominator of (x + 3) 
and the other with a denominator of (x + 5). To find the numerators, we must look for constants p and 
q such that

p (x + 3)−1 + q (x + 5)−1 =  (2x + 8)(x 2 + 8x + 15)−1

Do you remember the rule for adding two fractions or ratios in algebra? If not, here’s a reminder. If we 
have numbers a, b, c, and d, then

ab −1 + cd −1 =  (ad + bc )(bd )−1

provided, of course, that neither b nor d are equal to 0. If we apply this rule to the left-hand side of the 
previous equation, the expression becomes

[ p (x + 5) + q  (x + 3)] [(x + 3)(x + 5)]−1

which can be rewritten as

[p (x + 5) + q (x + 3)] (x 2 + 8x + 15)−1

Substituting this on the left-hand side of the long equation we got a minute ago (count up to the fourth 
equation before this one), we obtain

[ p (x + 5) + q (x + 3)] (x 2 + 8x + 15)−1 = (2x + 8)(x 2 + 8x + 15)−1
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Notice that the denominators are the same on both sides of this equation. (We must assume that they can 
never become 0 if the equation is to make sense.) When we multiply through by the quantity (x 2 + 8x +
15), we can get rid of the denominators, leaving ourselves with

p (x + 5) + q (x + 3) = (2x + 8)

Using the distributive law of multiplication over addition, we can rewrite this as

px + 5p + qx + 3q = 2x + 8

which can be rearranged to

(p + q )x + (5p + 3q ) = 2x + 8

We can split this into a two-by-two linear system:

p + q = 2 (the coefficient of x )

and

5p + 3q = 8 (the stand-alone constant)

This pair of simultaneous linear equations solves to p = 1 and q = 1. Those are the numerators of the two 
fractions we’ve been looking for. That means the sum of partial fractions is

(x + 3)−1 + (x + 5)−1

giving us the integral

∫ [(x + 3)−1 + (x + 5)−1] dx

From here, we have only some calculus to go through, and we’ll finish the problem with ease.

Here’s a challenge!
Use the technique of partial fractions to resolve the indefinite integral

∫ (8x + 1)(2x 2 − x − 1)−1 dx

Solution
Employing our algebra skills, we can figure out that the integrand breaks down into a sum of two constant 
multiples of reciprocal linear functions, like this:

∫ [2 (2x + 1)−1 +  3 (x − 1)−1] dx

When we split this into a sum of two integrals and pull out the constants, we get

2 ∫ (2x + 1)−1 dx +  3 ∫ (x − 1)−1 dx
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Applying the “old reliable” formula from App. G to each addend gives us

2 · 2−1 ln |2x + 1| + 3 ln |x − 1| + c

which simplifies to

ln |2x + 1| + 3 ln |x − 1| + c

The complete statement of the integral and its resolution is therefore

∫ (8x + 1)(2x 2 − x − 1)−1 dx  =  ln |2x + 1| + 3 ln |x − 1| + c

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Evaluate the following definite integral using the principle of linearity:

0

π

∫ (3 sin x − 5e x ) dx

 2. Evaluate the following definite integral using the principle of linearity:

1

2

∫ (5e x + 7x −1) dx

 3. Evaluate the following definite integral using the principle of linearity:

−
∫
π

π

/

/

2

2

(3 sin x + 2 cos x ) dx

 4.  Based on the principles we’ve learned so far, prove that if f 1 and f 2 are integrable 
functions of x over a continuous interval (a,b), and if k1 and k2 are constants, then

a

b

∫ {k1 [ f 1 (x )] − k2 [ f 2 (x )]} dx  = k1

a

b

∫ f 1 (x ) dx + k2

b

a

∫ f 2 (x ) dx

      Note the plus and minus signs, and pay attention to the direction we go over the 
interval in each case!

 5. Use integration by parts to find

∫ (3 cos x )(2x − 4) dx
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 6. Use integration by parts to find

∫ 7x 2 cos x dx

 7. Use integration by parts to evaluate

0

π

∫ (p /2 − 2x )(5 cos x ) dx

     Here’s a hint: When we integrate a definite integral by parts, we can work through the 
calculations with indefinite integrals, and restore the original bounds at the end of the 
process.

 8. Resolve the indefinite integral

∫ −5 (2x − 7)−1 dx

 9. Use the technique of partial fractions to resolve the indefinite integral

∫ 2x (x 2 − 1)−1 dx

10. Use the technique of partial fractions to resolve the indefinite integral

∫ (5x − 1)(x 2 − x − 2)−1 dx
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Part Two
This is not a test! It’s a review of important general concepts you learned in the previous nine 
chapters. Read it though slowly and let it “sink in.” If you’re confused about anything here, or 
about anything in the section you’ve just finished, go back and study that material some more.

Chapter 11

Question 11-1

How can we write the series

a 1 + a 2 + a 3 + a 4 + a 5 + a 6 = 200

using the summation notation?

Answer 11-1

It can be written like this:

i =
∑

1

6

ai = 200

Question 11-2

Consider an open-ended series, in which n terms are added up to obtain a final sum of x. How 
can this be written using the summation notation?

Answer 11-2

It can be written like this:

i

n

=
∑

1

ai = x
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Question 11-3

Suppose we sum a series starting with 1/3, then add 1/9, then add 1/27, then add 1/81, and 
go on forever, each time cutting the term to 1/3 of its previous value. How do we express this 
series in summation notation?

Answer 11-3

We write this series in summation notation as

i =

∞

∑
1

1/3i

Question 11-4

Suppose we sum a series starting with 1, then add 1/3, then add 1/9, then add 1/27, then add 
1/81, and continue forever, each time cutting the term to 1/3 of its previous value. How do we 
express this series in summation notation? How does this differ from the series in Answer 11-3?

Answer 11-4

We write this series in summation notation as

i =

∞

∑
0

1/3i

We begin at i = 0, raising 1/3 to the zeroth power (which is 1). In Answer 11-3, we started out 
at i = 1, raising 1/3 to the first power (which is 1/3).

Question 11-5

Imagine a function f graphed in the xy-plane, such that y = f  (x ). Part of the graph lies above 
the x axis, and another part lies below the x axis, as shown in Fig. 20-1. If we integrate from 
x = a to x = b while moving from left to right (so a < b), how are areas defined by the curve 
with respect to the x axis?

Answer 11-5

If we integrate in the positive-x direction (from left to right), then any part of the region 
underneath the x axis but above the curve has negative area, and any part of the region above 
the x axis but below the curve has positive area.

Question 11-6

Bernhard Riemann found that the area defined by a curve can be approximated by adding up 
the areas of rectangles as shown in Fig. 20-2. The width of each rectangle is Δx. How can this 
width be expressed in terms of the bounds x = a and x = b, and the number of rectangles n ?

Answer 11-6

The widths of all the rectangles are the same. Therefore, the width of each one is equal to the 
width of the interval from x = a to x = b, divided by the number of rectangles n:

Δx = (b − a)/n



Question 11-7

Consider the i th rectangle in Fig. 20-2. Assume that i is an integer somewhere between, and 
including, 1 (representing the leftmost rectangle) and n (representing the rightmost rectangle). 
If the curve represents our function f, what is the height of the i th rectangle?

Answer 11-7

The height of the ith rectangle is equal to

f  (a + iΔx )

which is the same as

f  [a + i (b − a)/n]

Question 11-8

Again, consider the i th rectangle in Fig. 20-2. What is the area of the i th rectangle?
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Answer 11-8

The area of the i th rectangle is equal to its width times its height, or

Δx · f  (a + iΔx )

which is the same as

[(b − a)/n] · f  [a + i (b − a) /n]

Question 11-9

How can we express the exact area defined by the curve in Fig. 20-2 as a limit in terms of 
Δx, i, n, a, and the function f ? How can we express that area as a limit in terms of i, n, a, b,
and the function f ?
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Answer 11-9

The exact area is the limit from i = 1 to n, as Δx approaches 0, of the sum of the rectangle 
areas. That’s written formally as

Lim
xΛ →∞

i

n

=
∑

1

Δx · f  (a + iΔx )

or as

Lim
n→∞

i

n

=
∑

1

[(b − a)/n] · f  [a + i (b − a) /n]

Question 11-10

How can we find the average value of a function over a specific interval, assuming the function 
is continuous and can be integrated over that interval?

Answer 11-10

Consider a function f  (x ) that is continuous from x = a to x = b, where a < b. We can deter-
mine the average value f ∗

a:b over the interval (a,b ) by integrating f   from a to b, and then divid-
ing by the interval width (b − a ). Mathematically,

f ∗
a:b  = (b − a)−1

a

b

∫ f  (x ) dx

Chapter 12

Question 12-1

What is the antiderivative of the zero function?

Answer 12-1

The antiderivative of the zero function can be any imaginable constant function.

Question 12-2

Why are all antiderivatives ambiguous by nature?

Answer 12-2

Whenever we antidifferentiate a function, we must add a constant, but we don’t necessarily 
know its value.

Question 12-3

Imagine a function f  of a variable x, such that

f  (x ) = 4

What’s the general antiderivative?
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Answer 12-3

The general antiderivative is

F (x ) = 4x + c

where c is an unspecified real-number constant.

Question 12-4

Imagine a function g of a variable y, such that

g ( y ) = a

where a is some specific real number. What’s the general antiderivative ?

Answer 12-4

The general antiderivative is

G ( y ) = ay + c

where c is an unspecified real-number constant.

Question 12-5

Imagine a function h of a variable z, such that

h (z ) = bz

where b is some specific real number. What’s the general antiderivative ?

Answer 12-5

The general antiderivative is

H (z ) = bz 2/2 + c

where c is an unspecified real-number constant.

Question 12-6

How do we find the general antiderivative of a function that raises a variable to a nonnegative 
integer power and then multiplies by a constant? Call the function f, the variable x, and the 
constant a, so that

f  (x ) = ax n

where n is a nonnegative integer.
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Answer 12-6

The general antiderivative is

F (x ) = ax (n +1)/(n + 1) + c

where c is an unspecified real-number constant.

Question 12-7

How can we expand the above rule so that it applies to any real-number power of the variable 
except the −1 power (reciprocal)?

Answer 12-7

Let k represent any real number other than −1. If

f  (x ) = ax k

then

F (x ) = ax (k +1)/(k + 1) + c

where c is an unspecified real-number constant. If k is negative, we must be sure that x ≠ 0. 
Otherwise, F (x ) is undefined.

Question 12-8

Why doesn’t the above rule work if k = −1?

Answer 12-8

We get into trouble with this rule if k = −1, because it results in our having to divide by 0. 
Consider the function

f  (x ) = ax −1

where a is a specific constant. When we try to apply the above described rule, we get

F (x ) = [ax (−1+1)/(−1 + 1)] + c = ax 0/0 + c

Question 12-9

What are the two general rules for indefinite integration that allow us to “pull out” constants 
or negatives? What’s the rule concerning the sum of indefinite integrals?

Answer 12-9

If f  is an integrable function of a variable x, and if k is a real-number constant, then

∫ k [ f  (x )] dx  = k ∫ f  (x ) dx



In the specific case where k = −1, we have

∫ −[ f  (x )] dx = − ∫ f  (x ) dx

If f1, f2, f3, . . . , and fn are integrable functions of a variable x, then

∫ [ f1 (x ) + f2 (x ) + f3 (x ) + · · · + fn (x )] dx

= ∫ f1 (x ) dx + ∫ f2 (x ) dx + ∫ f3 (x ) dx +  · · · + ∫ fn (x ) dx

Question 12-10

What is the Fundamental Theorem of Calculus for integrals? What happens to the constant 
of integration when we find a definite integral using this theorem?

Answer 12-10

Imagine that f  is a continuous real-number function of a variable x. Let a and b be values in 
the domain of f   with a < b, and let F   be a specific antiderivative with a constant of integra-
tion c. Then the definite integral from a to b is

a

b

∫ f  (x ) dx  = F (b) − F (a)

Sometimes this is written as

a

b

∫ f  (x ) dx  = F (x ) ⎤⎦
a

b

where the expression on the right-hand side of the equals sign is read “F (x ) evaluated from 
a to b.” When we find a definite integral this way, the constant of integration subtracts from 
itself and disappears.

Chapter 13

Question 13-1

What happens when we integrate a function over a certain interval in one direction, and then 
integrate the same function over the same interval in the opposite direction?

Answer 13-1

The reversal rule for definite integration tells that if f  is an integrable function of x over an 
interval between two limits a and b, then

a

b

∫ f  (x ) dx = −
b

a

∫ f  (x ) dx

Question 13-2

How can we illustrate the reversal rule as a graph, showing the areas defined by a curve that 
crosses the independent-variable axis within the interval of integration?
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Answer 13-2

When we integrate a function f (x ) over an interval (a,b ) in the positive x direction, areas 
above the x axis are positive while areas below the x axis are negative, as shown in Fig. 20-3A. 
When we integrate in the negative x direction, areas above the x axis are negative while areas 
below the x axis are positive, as shown in Fig. 20-3B.

Question 13-3

Imagine an interval split into two contiguous subintervals that don’t overlap. Suppose that 
we integrate the subintervals from left to right separately and then add the results. Then, we 
integrate over the whole interval from left to right. How do the integrals compare?
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Answer 13-3

The split-interval rule for definite integration says that if f  (x ) is a function that’s integrable 
over a continuous interval containing real numbers a, b, and c, then

b

a

∫ f  (x ) dx +
b

c

∫ f  (x ) dx = 
a

c

∫ f  (x ) dx

Question 13-4

Is it necessary to have a < b < c  for the above formula to work?

Answer 13-4

No, but the two subintervals must not overlap, and there must be no gap between them.

Question 13-5

Consider the function

f  (x ) = x p

If the domain is the set of all nonnegative real numbers, then this function is continuous and 
integrable over any interval in that domain. Now suppose we find

0

4

∫ x p dx

Then we find

4

3

∫ x p dx

Finally, we add the two definite integrals. What’s the result as a single definite integral? Here’s 
a hint: Note the directions of integration in each case.

Answer 13-5

We can apply the split-interval rule, letting a = 0, b = 4, and c = 3, obtaining

0

4

∫ x p dx +
4

3

∫ x p dx  = 
0

3

∫ x p dx

Question 13-6

If we integrate a function from one value of the independent variable to another, does it mat-
ter how we get from the starting point to the finishing point?

Answer 13-6

No. As long as the function is integrable everywhere we go, and provided we don’t change the 
starting or finishing points, we’ll always get the same final answer.

Question 13-7

What is the substitution rule for definite integration?
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Answer 13-7

Suppose that we have two integrable functions f   and g, such that f   operates on x while g oper-
ates on f  (x ). If a and b are the bounds of integration, we can rewrite

a

b

∫ g [ f  (x )] · f   ′ (x ) dx

in the form

f a

f b

( )

( )

∫ g  ( y ) dy

where y = f  (x ). Then we can evaluate this new integral to obtain the value of the original 
definite integral.

Question 13-8

How can we evaluate this definite integral using the substitution method?

0

1

∫ 3 (x + 5)2 dx

Answer 13-8

We can consider the integrand as a composite function where

f  (x ) = x + 5

and

g ( y ) = 3y 2

In this case,

f   ′ (x ) = 1

so the original integral is in the form

0

1

∫ g [ f  (x )] · f   ′ (x ) dx

We calculate

f  (0) = 0 + 5 = 5

and

f  (1)  = 1 + 5 = 6
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Now we can write the integral as

5

6

∫ g ( y ) dy =
5

6

∫ 3y 2 dy

where y = f  (x ). With the constant of integration set to 0, we get the basic antiderivative

G ( y ) = y 3

We calculate

G (6) − G (5) = 63 − 53 = 91

We’ve found that

0

1

∫ 3 (x + 5)2 dx = 91

Question 13-9

When we evaluate a definite integral using the substitution method, is it normal for the 
bounds of integration to change during part of the process?

Answer 13-9

Yes. In the above situation, we must add 5 to both bounds when we integrate g with respect to 
y. In the problem we just solved, g operates on (x + 5), not on x, so we must integrate g from 
5 to 6, not from 0 to 1.

Question 13-10

How can we evaluate the following integral using the substitution technique?

−

−

∫
5

4

e (x + 5) dx

Answer 13-10

We can consider the integrand as a composite function in which

f  ( x ) = x + 5

and

g ( y ) = e y

In this situation, we have

f   ′ (x ) = 1
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so the original integral takes the form

−

−

∫
5

4

g [ f  (x )] · f   ′ (x ) dx

We calculate the new bounds as

f  (−5) = −5 + 5 = 0

and

f  (−4) = −4 + 5 = 1

We rewrite the integral as

0

1

∫ g ( y ) dy =
0

1

∫ e y dy

The exponential function is its own basic antiderivative, so

G ( y ) = e y

When we evaluate from 0 to 1, we get

G (1) − G (0) = e 1 − e 0 = e − 1

We’ve determined that

−

−

∫
5

4

e (x + 5) dx  = e − 1

Chapter 14

Question 14-1

What’s an improper integral?

Answer 14-1

There are two major types of improper integrals. One type is a definite integral of a function 
that contains a singularity in, or at either bound of, the interval over which we want to inte-
grate. The other type is a definite integral evaluated over an infinitely wide interval.

Question 14-2

An improper integral involves a region that’s “infinitely stretched out.” Aren’t such integrals 
always undefined?

Answer 14-2

Some improper integrals are undefined, but many are defined and finite.
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Question 14-3

Consider the following definite integral of h (x ) over an open interval (a,b ) with a < b:

a

b

∫ h (x ) dx

Suppose that the value of h blows up (or down) as x approaches the upper bound b from the 
negative direction. How can we approximate the integral?

Answer 14-3

We can invent a tiny, “adjustable” positive number e, and then evaluate

a

b −

∫
ε

h (x ) dx

As we bring e closer and closer to 0, this integral approaches the actual value of

a

b

∫ h (x ) dx

assuming that this improper integral is defined and finite.

Question 14-4

Consider the following integral of h (t ) over an open interval (m,n) with m < n:

m

n

∫ h (t ) dt

Suppose that the value of h blows up (or down) as t approaches the lower bound m from the 
positive direction. How can we approximate the integral?

Answer 14-4

We can invent a tiny, “adjustable” positive number d, and then evaluate

m

n

+
∫

δ

h (t ) dt

As we make d approach 0, the above integral approaches

m

n

∫ h (t ) dt

assuming that the improper integral is defined and finite.

Question 14-5

Consider the following integral of g (z ) over an open interval (c,q ) with c < q:

c

q

∫ g (z ) dz

where the lower bound, c, is a constant but the upper bound, q, is a variable. What happens 
if we make q increase endlessly?
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Answer 14-5

If q increases indefinitely, then the definite integral of g (z ) with respect to z, evaluated from 
c  to q, approaches

c

∞

∫ g (z ) dz

Question 14-6

Consider the following integral of f  (s ) over an open interval (p,a ) with p < a:

p

a

∫ f  (s ) ds

where the upper bound, a, is a constant but the lower bound, p, is a variable. What happens 
if we make p to decrease (grow larger negatively ) without end?

Answer 14-6

If p becomes larger negatively without end, then the definite integral of f  (s ) with respect to s,
evaluated from p to a, approaches

−∞
∫
a

f  (s ) ds

Question 14-7

Figure 20-4 is a graph of a function with a singularity. Suppose we want to find

a

b

∫ g (x ) dx

What’s the correct way to work out this problem?

Answer 14-7

We must split the interval into two parts, one on either side of the singularity. Because the 
singularity is at x = 0, we should use the intervals (a,0) and (0,b ). First, we try to evaluate

a

0

∫ g (x ) dx

If this is undefined, then the original integral is undefined. If the above integral is defined and 
finite, then we try to evaluate

0

b

∫ g (x ) dx

If this is undefined, then the original integral is undefined. But if it’s defined and finite, then

a

0

∫ g (x ) dx +
0

b

∫ g (x ) dx = 
a

b

∫ g (x ) dx
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Question 14-8

How can we find the following integral?

−
∫
1

0

x −4/5/5 dx

Answer 14-8

There’s a singularity at x = 0. We can verify this fact by plugging in 0 for x in the function and 
doing the arithmetic:

g (0) = 0−4/5/5 = [1/(04/5)] / 5 = (1/0) / 5

That’s undefined because there’s a denominator of 0. To evaluate the integral, we take a tiny 
positive number e, subtract it from the upper bound at x = 0, and obtain

−

−

∫
1

ε

x −4/5/5 dx

The antiderivative without the constant of integration is

G (x ) = x 1/5

When we evaluate this antiderivative from −1 to −e, we get

G (− e ) − G (−1) = (−e )1/5 − (−1)1/5 = 1 − e 1/5

x

Area defined by curve
extends upward

forever

g (x)

g (x) g (x)

x = a x = b

Figure 20-4 Illustration for Question and Answer 14-7.



Part Two  341

Remember that the 1/5 power is the fifth root. Now we consider

Lim
ε → +0

 1 − e 1/5

As e approaches 0 from the positive direction, the value of e 1/5 also approaches 0 from the 
positive direction. That means the quantity (1 − e 1/5) approaches 1, so

Lim
ε → +0

−

−

∫
1

ε

x −4/5/5 dx = 1

Therefore

−
∫
1

0

x −4/5/5 dx = 1

Question 14-9

How can we find the following integral?

0

1

∫ x −4/5/5 dx

Answer 14-9

We take a tiny positive number d, add it to the lower bound at x = 0, and obtain

δ

1

∫ x −4/5/5 dx

Once again, the antiderivative of our function is

G (x ) = x 1/5

When we evaluate this from d to 1, we get

G (1) − G (d  ) = 11/5 − d 1/5  = 1 − d 1/5

Now we consider

Lim
δ → +0

 1 − d 1/5

As d approaches 0 from the positive direction, the value of d 1/5 also approaches 0 from the 
positive direction. That means the quantity (1 − d 1/5) approaches 1, so

Lim
δ → +0

δ

1

∫ x −4/5/5 dx  = 1

Therefore

0

1

∫ x −4/5/5 dx  = 1
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Question 14-10

How can we find the following integral?

−∞

−

∫
2

384x −7 dx

Answer 14-10

If we call our integrand function f, then the basic antiderivative is

F (x ) = −64x −6

Now let’s consider the definite integral

p

−

∫
2

384x −7 dx

where p is a variable that decreases endlessly (grows larger in the negative direction forever). 
To find this integral, we must determine

Lim
p →−∞

F (−2) − F ( p )

We can calculate

F (−2) = − 64 · (−2)−6 = −1

As p becomes large negatively without bound, F (p) approaches 0. We can see this by inputting 
some numbers into the antiderivative and doing the arithmetic:

F (−102) = − 64 · (−102)−6 = − 64 · 10−12

F (−105) = − 64 · (−105)−6 = − 64 · 10−30

F (−102) = − 64 · (−108)−6 = − 64 · 10−48

Now we know that

Lim
p →−∞

F (−2) − F ( p ) = −1 − 0 = −1

Therefore

−∞

−

∫
2

384x −7 dx = −1

Chapter 15

Question 15-1

Look back and reexamine Question and Answer 12-9 on pages 331 and 332. How can we 
modify these rules if we want to use them with definite integrals?
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Answer 15-1

Consider the functions f  (x ), f1 (x ), and f2 (x ). Suppose the bounds of integration are x = a
and x = b. Then these three rules apply:

a

b

∫ k [ f  (x )] dx = k
a

b

∫ f  (x ) dx

a

b

∫ −[ f  (x )] dx = −
a

b

∫ f  (x ) dx

a

b

∫ [ f1 (x ) + f2 (x )] dx = 
a

b

∫ f1 (x ) dx +
a

b

∫ f2 (x ) dx

The last rule can be extrapolated to any finite number of functions of x.

Question 15-2

What precautions must we take when applying the rules in Answer 15-1?

Answer 15-2

We must be sure that the interval is the same for each function, all the functions are integrable 
over the interval, and all the integrals are done in the same direction.

Question 15-3

Consider the following functions over the interval from x = 2 to x = 4:

g (x ) = 4x

and

h (x ) = 10x

Integrate these functions individually. What happens when we add the results?

Answer 15-3

First, we find the definite integral of g (x ) from x = 2 to x = 4:

2

4

∫ 4x dx

The basic antiderivative is

G (x ) = 2x 2

When we evaluate this from x = 2 to x = 4, we get

G (4) − G (2) = 2 · 42 − 2 · 22 = 24
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Next, we find the definite integral of h (x ) from x = 2 to x = 4:

2

4

∫ 10x dx

The basic antiderivative is

H (x ) = 5x 2

When we evaluate this from x = 2 to x = 4, we get

H (4) − H (2) = 5 · 42 − 5 · 22 = 60

When we add these results, we get 24 + 60, which is 84.

Question 15-4

Consider again the following two functions over the interval from x = 2 to x = 4:

g (x ) = 4x

and

h (x ) = 10x

Add the functions and then integrate. How does this compare with Answer 15-3?

Answer 15-4

If we call the sum p (x ), we have

g (x ) + h (x ) = p (x ) = 4x + 10x = 14x

We want to work out the integral

2

4

∫ 14x dx

The basic antiderivative is

P (x ) = 7x 2

When we evaluate this from x = 2 to x = 4, we get

P (4) − P (2) = 7 · 42 − 7 · 22 = 84

That’s the same result as we got in Answer 15-3.

Question 15-5

Consider the following two functions over the interval from x = −1 to x = 1:

g (x ) = −2x
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and

h (x ) = 3x 2

Integrate these functions individually. What happens when we add the results ?

Answer 15-5

First, we find the definite integral of g (x ) from x = −1 to x = 1:

−
∫
1

1

−2x dx

The basic antiderivative is

G (x ) = −x 2

When we evaluate this from x = −1 to x = 1, we get

G (1) − G (−1) = −12 − [− (−1)2] = 0

Next, we find the definite integral of h (x ) with respect to x from x = −1 to x = 1:

−
∫
1

1

3x 2 dx

The basic antiderivative is

H (x ) = x 3

When we evaluate this from x = −1 to x = 1, we get

H (1) − H (−1) = 13 − (−1)3 = 2

When we add these results, we get 0 + 2, which is 2.

Question 15-6

Consider again the following two functions over the interval from x = −1 to x = 1:

g (x ) = −2x

and

h (x ) = 3x 2

Add the functions and integrate. How does this result compare with Answer 15-5 ?

Answer 15-6

If we call the sum q (x ), we can write it in order of descending exponents as

q (x ) = 3x 2 − 2x
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We want to work out

−
∫
1

1

(3x 2 − 2x ) dx

The basic antiderivative is

Q (x ) = x 3 − x 2

When we evaluate this from x = −1 to x = 1, we get

Q (1) − Q (−1) = (13 − 12) − [(−1)3 − (−1)2] = 2

That’s the same result as we got in Answer 15-5.

Question 15-7

How can we find the following integral by breaking the integrand into monomials?

∫ (9z 2 + 8z − 7 ) dz

Answer 15-7

This is the integral of a sum of three monomial functions. Let’s call them

  f1 (z ) = 9z 2

f2 (z ) = 8z
 f3 (z ) = −7

The indefinite integrals of the individual monomials are

 ∫ f1 (z ) dz = ∫  9z 2 dz = 3z 3 + c1

∫ f2 (z ) dz = ∫ 8z dz = 4z 2 + c2

 ∫ f3 (z ) dz = ∫ −7 dz = −7z + c3

where c1, c2, and c3 are the constants of integration. The original integral is

∫ (9z 2 + 8z − 7) dz = ∫ f1 (z ) dz + ∫ f2 (z ) dz + ∫ f3 (z ) dz

= ∫ 9z 2 dz + ∫ 8z dz + ∫ −7 dz = 3z 3 + c1 + 4z 2 + c2 − 7z + c3

                 =  3z 3 + 4z 2 − 7z + c1 + c2 + c3

If we consolidate c1 + c1 + c3 into a single constant of integration c, then

∫ (9z 2 + 8z − 7) dz = 3z 3 + 4z 2 − 7z + c
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Question 15-8

How can we find the following definite integral with respect to z ?

0

1

∫ (9z 2 + 8z − 7) dz

Answer 15-8

From Answer 15-7, we know that

∫  (9z 2 + 8z − 7) dz = 3z 3 + 4z 2 − 7z + c

We want to evaluate this from z = 0 to z = 1. We must be sure that the integrand doesn’t blow 
up in the interval for which 0 < z < 1. To do that, we must look at each individual term as a 
function. Let’s call the integrand f, so we have

f  (z ) = 9z 2 + 8z − 7

This breaks down into

   f 1 (z ) = 9z 2

 f2 (z ) = 8z
f3 (z ) = 7

The graph of f1 is a parabola that opens upward. The graph of f2 is a line through the origin 
with a slope of 8. The graph of f3 is a line with a slope of 0. (Feel free to sketch the graphs to 
visualize these facts.) None of these functions is singular for 0 < z < 1, so we can input the 
boundary values to the antiderivative F (z ) and then subtract the results. Without the con-
stant of integration, that antiderivative is

F (z ) = 3z 3 + 4z 2 − 7z

When we input 1, we get

F (1) = 3 · 13 + 4 · 12 − 7 · 1 = 0

When we input 0, we get

F (0) = 3 · 03 + 4 · 02 − 7 · 0 = 0

The definite integral is

F (1) − F (0) = 0 − 0 = 0

so we’ve determined that

0

1

∫ (9z 2 + 8z − 7) dz = 0
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Question 15-9

How can we find the following integral by breaking the integrand into monomials ?

∫ ( y1/3 − y−1/3 − y−2/3) dy

Answer 15-9

This is the integral of a sum of three monomial functions. Let’s call them

 f1 ( y ) = y 1/3

f2 ( y ) = −y−1/3

f3 ( y ) = −y−2/3

The indefinite integrals of the individual monomials are

 ∫ f1 ( y ) dy = ∫ y1/3 dy = (3/4)y4/3 + c1

∫ f2 ( y ) dy = ∫ −y−1/3 dy = −(3/2)y 2/3 + c2

 ∫ f3 ( y ) dy = ∫ −y−2/3 dy = −3y1/3 + c3

where c1, c2, and c3 are the constants of integration. The original integral is

∫ ( y1/3 − y−1/3 − y−2/3) dy = ∫ f1 ( y ) dy + ∫ f2 ( y ) dy + ∫ f3 ( y ) dy

 = ∫ y1/3 dy + ∫ −y−1/3 dy + ∫ −y−2/3 dy

 =  (3/4)y4/3 + c1 − (3/2)y 2/3 + c2 − 3y 1/3 + c3

 =  (3/4)y4/3 − (3/2)y 2/3 − 3y1/3 + c1 + c2 + c3

Consolidating c1 + c2 + c3 into a single constant c, we obtain

∫ ( y1/3 − y−1/3 − y−2/3) dy = (3/4)y4/3 − (3/2)y 2/3 − 3y1/3 + c

Question 15-10

How can we calculate the following definite integral?

0

1

∫ [(6/7)x−1/7 − (5/6)x−1/6] dx

Answer 15-10

The integrand is a sum of two monomial functions. Let’s call them

f1 (x ) = (6/7)x−1/7
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and

f2 (x ) = −(5/6)x −1/6

Both of these functions are singular at x = 0, the lower bound of our interval. That means we 
must use the techniques for evaluating improper integrals, along with the sum rule. Let’s go 
through four steps:

• Split the original integral into two separate improper integrals
• Evaluate those two integrals independently
• If either of them is undefined, conclude that the entire integral is undefined
• If they are both defined, add them to get the final result

When we break the original integral into a sum of two integrals, we get

0

1

∫ (6/7)x−1/7 dx +
0

1

∫ −(5/6)x −1/6 dx

Let’s evaluate the left-hand integral first. We take a tiny positive d, add it to the lower limit at 
x = 0, and obtain

δ

1

∫ (6/7)x −1/7 dx

The basic antiderivative is

F1 (x ) = x 6/7

When we evaluate this from d to 1, we get

F1 (1) − F1 (d ) = 16/7 − d 6/7 = 1 − d 6/7

Now we must determine

Lim
δ → +0

1 − d 6/7

As d approaches 0 from the positive direction, the value of d 6/7 approaches 0. That means the 
quantity (1 − d 6/7) approaches 1, so

Lim
δ → +0

δ

1

∫ (6/7)x −1/7 dx = 1

Therefore, the left-hand addend in the “big sum” is

0

1

∫ (6/7)x −1/7 dx = 1

Now let’s evaluate the right-hand integral in our “big sum.” We take a tiny positive d, add it 
to the lower limit at x = 0, and get

δ

1

∫ −(5/6)x −1/6 dx
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The basic antiderivative is

F2 (x ) = −x5/6

When we evaluate this from d to 1, we get

F2 (1) − F2 (d ) = −15/6 − (−d 5/6) = d 5/6 − 1

Now we consider

Lim
δ → +0

d 5/6 − 1

As d approaches 0 from the positive direction, the value of d 5/6 approaches 0. Therefore, the 
quantity (d 5/6 − 1) approaches −1, so

Lim
δ → +0

δ

1

∫ −(5/6)x−1/6 dx  = −1

This tells us that the right-hand addend in our “big sum” is

0

1

∫ −(5/6)x−1/6 dx = −1

We have now found the values of both addends. The left-hand integral is 1, and the right-
hand integral is −1. We can apply the sum rule to conclude that

0

1

∫ [(6/7)x−1/7 − (5/6)x−1/6] dx = 1 + (−1) = 0

Chapter 16

Question 16-1

How can we find the true geometric area of the region between the line and the parabola in 
Fig. 20-5?

Answer 16-1

We can proceed by following these steps, in order:

• Find the function f  (x ) represented by the parabola.
• Find the function g (x ) represented by the line.
• Find the difference function f  (x ) − g (x ), remembering that must subtract the “bottom 

function” from the “top function” over the interval between the points where the 
graphs intersect.

• Integrate the difference function over the interval between the points where the graphs 
intersect.

Question 16-2

What is the function f  (x ) represented by the parabola in Fig. 20-5?
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Answer 16-2

The parabola crosses the x axis at (0,0) and (4,0), so it represents a quadratic function whose 
zeros are x = 0 and x = 4. From algebra, we can deduce that the function is of the form

f  (x ) = k (x − 0)(x − 4) = kx (x − 4) = kx 2 − 4kx

where k is a constant. To find k, we note the point (2,4) at the vertex of the parabola. These 
coordinates tell us that

f  (2) = 4 = k · (22) − 4k · 2 = − 4k

This simplifies to

4 = − 4k

which solves to k = −1. By substitution,

f  (x ) = −x 2 + 4x

6–4–6

2

6

–2

–4

–6

x

4

Value
of
function

–2

(5,–5)

(0,0)

(4,0)

(2,4)
Straight
line
g (x)

Parabola
f (x)

Figure 20-5  Illustration for Questions and Answers 
16-1 through 16-6.
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Question 16-3

What is the function g (x ) represented by the straight line in Fig. 20-5?

Answer 16-3

The slope of the line is −1 and it passes through (0,0), so we can see straightaway that

g (x ) = −x

Question 16-4

What’s the difference function q (x ) = f  (x ) − g (x ) in the situation of Fig. 20-5?

Answer 16-4

We have found that

f  (x ) = −x 2 + 4x

and

g (x ) = −x

Therefore

q (x ) = f  (x ) − g (x ) = (−x 2 + 4x ) − (−x ) = −x 2 + 5x

Question 16-5

What’s the definite integral that represents the true geometric area between the line and the 
curve in Fig. 20-5?

Answer 16-5

The bounds of integration are 0 and 5, the x-values of the points where the graphs intersect, 
so the true geometric area between the graphs is

0

5

∫ (−x 2 + 5x ) dx

Question 16-6

What’s the true geometric area between the line and the curve in Fig. 20-5?

Answer 16-6

First, we find the basic antiderivative function Q (x ). It is

Q (x ) = −x 3/3 + (5/2)x 2
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4 6–4–6

6

–4

–6

x

4

Value
of
function

f (x) = x2/2 – 2

2(–2,0) (2,0)

(0,1)

g (x)
Parabola

Figure 20-6  Illustration for Questions and Answers 
16-7 through 16-10.

When we plug in x = 5 to this, we get

Q (5) = −(53)/3 + (5/2) · 52 = 125/6

When we plug in x = 0, we get

Q (0) = −(03)/3 + (5/2) · 02 = 0

The definite integral is the difference between these, which is

Q (5) − Q (0) = 125/6 − 0 = 125/6

Therefore, the true geometric area between the line and the curve is

0

5

∫ (−x 2 + 5x ) dx = 125/6

Question 16-7

How can we find the true geometric area of the shaded region between the two parabolas 
shown in Fig. 20-6?
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Answer 16-7

We can proceed by following these steps, in order:

• Note the function f  (x ) represented by the parabola that opens upward.
• Find the function g (x ) represented by the parabola that opens downward.
• Find the difference function g (x ) − f  (x ), remembering that must subtract the “bottom 

function” from the “top function” over the interval between the points where the 
graphs intersect.

• Integrate the difference function over the interval between the points where the graphs 
intersect.

Question 16-8

What’s the function g (x ) represented by the downward-opening parabola in Fig. 20-6?

Answer 16-8

The parabola crosses the x axis at (−2,0) and (2,0). Therefore, it represents a quadratic func-
tion g (x ) whose zeros are x = −2 and x = 2. With algebra, we can work out the fact that the 
function must be of the form

g (x ) = k (x − 2)(x + 2) = kx 2 − 4k

where k is a constant. To find k, we note the point labeled at the vertex of the parabola. This 
point is (0,1), so

f  (0) = 1 = k · (02) − 4k = −4k

which simplifies to

1 = −4k

This equation solves to k = −1/4. By substitution, we get

g (x ) = (−1/4)x 2 + 1 = −x 2/4 + 1

Question 16-9

What’s the difference function p (x ) = g (x ) − f  (x ) in the situation shown by Fig. 20-6? What’s 
the integral that represents the true geometric area between the curves?

Answer 16-9

The “top function” relative to the shaded region is

g (x ) = −x 2/4 + 1
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and the “bottom function” relative to the shaded region, as we are given in Fig. 20-6, is

f  (x ) = x 2/2 − 2

The difference function is therefore

p (x ) = g (x ) − f  (x ) = (−x 2/4 + 1) − (x 2/2 − 2) = −3x 2/4 + 3

The bounds of integration are −2 and 2, the x-values of the points where the graphs intersect. 
That means the definite integral representing the true geometric area between the graphs is

−
∫
2

2

(−3x 2/4 + 3) dx

Question 16-10

What’s the true geometric area between the curves in Fig. 20-6?

Answer 16-10

We must find the basic antiderivative function P (x ) and evaluate it from −2 to 2. That anti-
derivative is

P (x ) = −x 3/4 + 3x

When we plug in x = 2 to this, we get

P (2) = −(23) / 4 + 3 · 2 = 4

When we plug in x = −2, we get

P (−2) = −(−2)3 / 4 + 3 · (−2) = −4

The definite integral is the difference between these, which is

P (2) − P (−2) = 4 − (−4) = 8

Therefore, the true geometric area between the line and the curve is

−
∫
2

2

(−3x 2/4 + 3) dx = 8

Chapter 17

Question 17-1

What are the indefinite integrals of the sine and cosine functions and their negatives?
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Answer 17-1

We find the functions whose derivatives are the functions we want to antidifferentiate, and 
then add constants of integration for each. Here they are:

    ∫ sin x dx = − cos x + c

∫ − sin x dx = cos x + c

  ∫ cos x dx = sin x + c

  ∫ − cos x dx = − sin x + c

Question 17-2

What’s the area defined by the graph of the sine function over its first 1/4 cycle?

Answer 17-2

To do this, we must evaluate

0

2π /

∫ sin x dx

If we call the sine function f  (x ), then its basic antiderivative is

F (x ) = − cos x

When we evaluate this from x = 0 to x = p /2, we get

F (p /2) − F (0) = − cos (p /2) − (− cos 0) = − cos (p /2) + cos 0 = 0 + 1 = 1

We’ve discovered that

0

2π /

∫ sin x dx  = 1

The area defined by the graph of the sine function over its first 1/4 cycle is 1 square unit.

Question 17-3

What’s true geometric area between the x axis and the graph of

f  (x ) = cos x − 1

over the interval from x = 0 to x = p ?

Answer 17-3

We must work out the value of

0

π

∫ (cos x − 1) dx
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If we call our function g (x ), then the basic antiderivative is

G (x ) = sin x − x

When we evaluate this from x = 0 to x = p , we get

G (p ) − G (0) = (sin p − p ) − (sin 0 − 0) = (0 − p ) − (0 − 0) = −p

We’ve determined that

0

π

∫ (cos x − 1) dx = −p

which tells us that the theoretical area (in terms of definite integration done directly ) defined 
by the graph of

f  (x ) = cos x − 1

over the interval (0,p ) is equal to −p square units. The true geometric area between the x axis 
and the graph, in this particular case, is the absolute value of the theoretical area, or p square 
units, because the entire region lies below the x axis. (Feel free to sketch a graph if you need 
help visualizing this.)

Question 17-4

What’s the value of

0

π

∫ (cos x + sin x ) dx

representing the sum of the cosine and sine functions over the interval (0,p )?

Answer 17-4

If we call our function g (x ), then the basic antiderivative is

G (x ) = sin x − cos x

When we evaluate this from x = 0 to x = p , we get

G (p ) − G (0) = (sin p − cos p ) − (sin 0 − cos 0) = [0 − (−1)] − (0 − 1) = 2

We’ve just determined that

0

π

∫ (cos x + sin x ) dx = 2

Question 17-5

The result in Answer 17-4 is the same as the result we got in one of the examples in Chap. 17, 
where we found that

0

π

∫ sin x dx = 2

What’s the reason for this?
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Answer 17-5

The definite integral of the cosine function over the interval (0,p ) is equal to 0. Half of the 
curve lies above the x axis and half lies below, and the two halves are mirror images over the 
interval. (If it will help you see this more clearly, sketch a graph.) That makes the cosine part 
of the integrand become 0 when we integrate it from 0 to p.

Question 17-6

How can we verify, in mathematical terms, the claim made in Answer 17-5?

Answer 17-6

Let’s see precisely what the cosine part of the integrand in Question 17-4 contributes to the 
value of the entire integral. We can do this by working out

0

π

∫ cos x dx

If we call the cosine function f  (x ), then the basic antiderivative is

F (x ) = sin x

When we evaluate this from x = 0 to x = p, we get

F (p ) − F (0) = sin p − sin 0 = 0 − 0 = 0

which shows that

0

π

∫ cos x dx = 0

Using the sum rule, the integral stated in Question 17-4 can be written as

0

π

∫ cos x dx +
0

π

∫ sin x dx

which, based on what we’ve just discovered, can be simplified to

0 +
0

π

∫ sin x dx

and further to

0

π

∫ sin x dx

This definite integral, as we determined in the chapter text, is equal to 2.

Question 17-7

What’s the value of

0

2π /

∫ (cos x + sin x ) dx

representing the sum of the cosine and sine functions over the interval (0,p /2)?
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Answer 17-7

As before, if we call our function g (x ), the basic antiderivative is

G (x ) = sin x − cos x

When we evaluate this from x = 0 to x = p /2, we get

G (p /2) − G (0) = (sin p /2 − cos p /2) − (sin 0 − cos 0) = (1 − 0) − (0 − 1) = 2

We’ve just determined that

0

2π /

∫ (cos x + sin x ) dx = 2

We cut the width of the interval in half compared with the situation in Question and Answer 
17-4, but the value of the definite integral is the same!

Question 17-8

Evaluate the definite integrals of the sine and cosine functions individually over the interval 
(0,p /2). Show that the sum of these integrals is equal to the integral of the sum function 
obtained in Answer 17-7 over the same interval.

Answer 17-8

First, let’s work out

0

2π /

∫ cos x dx

If we call the cosine function f  (x ), then the basic antiderivative is

F (x ) = sin x

When we evaluate from x = 0 to x = p /2, we get

F (p /2) − F (0) = sin p /2 − sin 0 = 1 − 0 = 1

which shows that

0

2π /

∫ cos x dx = 1

Now, let’s calculate

0

2π /

∫ sin x dx

If we call the sine function h (x ), then the basic antiderivative is

H (x ) = − cos x
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When we evaluate from x = 0 to x = p /2, we get

H (p /2) − H (0) = − cos p /2 − (− cos 0) = 0 − (−1) = 1

which tells us that

0

2π /

∫ sin x dx = 1

Therefore

0

2π /

∫ cos x dx +
0

2π /

∫ sin x dx = 1 + 1 = 2

This agrees with

0

2π /

∫ (cos x + sin x ) dx = 2

which we found before.

Question 17-9

Suppose we are given these two functions:

f  (x ) = e x

and

g (x ) = e

What’s the area of the region bounded by the graphs of these functions and the dependent-
variable axis?

Answer 17-9

Figure 20-7 shows this situation. The two curves intersect at the point (1,e) because

f  (1) = e 1 = e

and

g (1) = e

We must integrate the difference between the function for the line and the curve over the 
interval (0,1). If we call our difference function q (x ), then

q (x ) = g (x ) − f  (x ) = e − e x
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x
2–2 –1 0 1

10

5

f (x ) = e x

Value
of
function

x = 1

g (x ) = e

Figure 20-7 Illustration for Question and 
Answer 17-9.

We must work out the integral

0

1

∫ (e − e x ) dx

The basic antiderivative is

Q (x ) = ex − e x

When we evaluate from x = 0 to x = 1, we get

Q (1) − Q (0) = (e · 1 − e 1) − (e · 0 − e 0) = (e − e) − (0 − 1) = 1

We’ve shown that

0

1

∫ (e − e x ) dx = 1

That’s the area of the shaded region in Fig. 20-7.

Question 17-10

What’s the area between the curve and the line shown in Fig. 20-8, over the interval for which 
−2 < x < −1? The function corresponding to the upper line is

f  (x ) = 1 − x
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and the function corresponding to the lower curve is

g (x ) = x −1

Answer 17-10

We can find the difference function by subtracting g from f. If we call that difference function 
p (x ), then

p (x ) = f  (x ) − g (x ) = 1 − x − x −1

The area of the shaded region is

−

−

∫
2

1

(1 − x − x −1) dx

The basic antiderivative is

P (x ) = x − x 2/2 − ln |x |

First, let’s evaluate this for x = −1. We obtain

P (−1) = −1 − (−1)2/2 − ln |−1| = −3/2

4 6

–4–6

6

–2

–4

–6

x

4

Value
of
function

(x ) = x –1g

(x ) = x –1g

f (x ) = 1 – x

Figure 20-8 Illustration for Question and Answer 17-10.
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Next, we evaluate for x = −2. We have

P (−2) = −2 − (−2)2/2 − ln |−2| = −4 − ln 2

That’s as simple as we can get this expression because ln 2 is irrational, so

P (−1) − P (−2) = −3/2 − (−4 − ln 2) = 5/2 + ln 2

We’ve figured out that

a

b

∫ (1 − x − x−1) dx = 5/2 + ln 2

That’s the area between the line and the curve in Fig. 20-8. We can use a calculator and round 
off to three decimal places to get an approximation of 3.193 square units.

Chapter 18

Question 18-1

How can we informally describe the law of the mean?

Answer 18-1

Imagine two points on a smooth curve. Somewhere between these points, the derivative of the 
function is equal to the slope of the chord connecting the points.

Question 18-2

How can we formally state and illustrate the law of the mean for finding the length of an 
arc?

Answer 18-2

Suppose we choose two points on the graph of a function y = f  (x ), and these points describe 
one of the chords in an approximation of the arc length between the points. Suppose that for 
the ith chord, the endpoints are where x = xi−1 and x = xi, as shown in Fig. 20-9. Then the 
slope of the chord is

Δiy /Δx = [ f (x i) − f  (xi−1)] / (xi − xi−1)

If f  (x ) is defined and continuous between the chord endpoints, then there is at least one point 
on the curve between the chord endpoints for which f   ′ (x ) is equal to the slope of the chord. 
If we call the x-value of such a point xi

∗, then

xi−1 ≤ xi
∗ ≤ xi

and

f   ′ (xi
∗) = Δ iy /Δx
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Question 18-3

How does the formula for true arc length arise? What’s the precise length L of the arc in the 
graph of a function f  (x ) between two points where x = a and x = b ?

Answer 18-3

We get the formula by adding up the lengths of chords connecting points on the arc. As the 
number of chords increases without bound, we get a limit that defines

L =
a

b

∫ {1 + [ f   ′ (x )]2}1/2 dx

Question 18-4

What’s the arc-in-a-box method of finding the largest and smallest possible absolute values of 
the arc length between two points on the graph of a function?

Answer 18-4

The arc-in-a-box method works as follows.

• Construct a box with vertical and horizontal edges, such that the endpoints of the arc 
are at opposite corners (Fig. 20-10).

• Be sure that the arc is entirely contained within the box.
• Be sure that the arc curves in the same sense (clockwise or counterclockwise) every-

where within the box.

x

f (x)

x = xi–1

x = xi

Δ iy

Δ x

= Δ iy /Δ x

Slope
of chord

f ¢ ( ) = Δ iy/Δ x

Slope of
tangent to
curve
=

Gray curve
represents
y = f (x)

x = xi*

xi*

Figure 20-9 Illustration for Question and Answer 18-2.
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x

f (x)

f (a)

f (b)

a b

Figure 20-10  Illustration for Questions 
and Answers 18-4 and 18-5.

Once we’ve done this, we can be sure that:

• The absolute value of the arc length is greater than or equal to the diagonal measure of 
the box.

• The absolute value of the arc length is less than or equal to half the perimeter of the box.

Question 18-5

In Fig. 20-10, suppose that a = 3, b = 7, f  (a ) = −3, and f  (b ) = −1. What are the minimum 
and maximum possible lengths of the arc in the box?

Answer 18-5

The box width is the absolute value of the difference between the x-values of the points:

|b − a | = | 7 − 3| = 4

The box height is the absolute value of the difference in the function values at the points:

| f  (b ) − f  (a ) | = | (−1) − (−3) | = 2

The minimum possible arc length is the diagonal measure of the box:

(42 + 22)1/2 = (16 + 4)1/2 = 201/2

The maximum possible arc length is half the perimeter of the box:

(2 · 4 + 2 · 2) / 2 = (8 + 4) / 2 = 6

The arc length can’t be less than 201/2 units nor more than 6 units.
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Question 18-6

How can we use the arc length formula to measure a line segment along the graph of

f  (x ) = (4/3)x

from x = 0 to x = 3?

Answer 18-6

To begin, we differentiate the function, getting

f   ′ (x ) = 4/3

The formula for the arc length L, stated again for convenience, is

L =
a

b

∫ {1 + [ f   ′ (x )]2}1/2 dx

When we input 4/3 in place of f   ′ (x ), set a = 0, and set b = 3, we get

L =
0

3

∫ [1 + (4/3)2]1/2 dx

Using arithmetic, this simplifies to

L =
0

3

∫ 5/3 dx

The indefinite integral without the constant of integration is

∫ 5/3 dx = (5/3)x

When we evaluate this from 0 to 3, we get

L = (5/3) · 3 − (5/3) · 0 = 5

The line segment is 5 units long. If you sketch a graph of this situation, you’ll see that we’ve 
used calculus to evaluate the dimensions of a so-called “3-4-5 right triangle.”

Question 18-7

How can we use the arc length formula to measure a line segment along the graph of

f  (x ) = 6x − 5

from x = 8 to x = 5?

Answer 18-7

As before, we start by differentiating the function. In this case, we get

f   ′ (x ) = 6
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When we substitute 6 for f   ′ (x ) and include the bounds in the formula, we get

L =
8

5

∫ (1 + 62)1/2 dx

which simplifies to

L =
8

5

∫ 371/2 dx

The indefinite integral without the constant of integration is

∫ 371/2 dx = 371/2 x

When we evaluate this from 8 to 5, we get

L = 371/2 · 5 − 371/2 · 8 = −3 · 371/2

That’s an irrational number equal to approximately −18.248.

Question 18-8

Why is the result in Answer 18-7 negative?

Answer 18-8

The arc length is negative because we move in the negative-x direction.

Question 18-9

Consider the following function, which represents a parabola:

f  (x ) = x 2/2

How can we measure the arc from x = 0 to x = 1, as shown in Fig. 20-11?

Answer 18-9

Our first step is to differentiate the function. The derivative is

f   ′ (x ) = x

When we substitute x for f   ′ (x ) and include the bounds in the formula, we get

L =
a

b

∫ (1 + x 2)1/2 dx

From the table of integrals (App. G), we find the form

∫ (x 2 + a 2)1/2 dx  =  (x /2)(x 2 + a 2)1/2 + (1/2) a 2 ln |x + (x 2 + a 2)1/2| + c
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which can be rewritten as

∫ (a 2 + x 2)1/2 dx = (x /2)(a 2 + x 2)1/2 + (1/2) a 2 ln |x + (a 2 + x 2)1/2| + c

If we let a = 1, we obtain

∫ (1 + x 2)1/2 dx = (x /2)(1 + x 2)1/2 + (1/2) ln |x + (1 + x 2)1/2| + c

To find the arc length, we evaluate the following expression from x = 0 to x = 1:

(x /2)(1 + x 2)1/2 + (1/2) ln |x + (1 + x 2)1/2|

Plugging x = 1 into the above formula, we get

(1/2)(1 + 1)1/2 + (1/2) ln |1 + (1 + 1)1/2| = (1/2) · 21/2 + (1/2) ln |1 + 21/2|

Plugging in x = 0, we get

(0/2)(1 + 0)1/2 + (1/2) ln |0 + (1 + 0)1/2| = 0

The arc length L is the difference between these results, or

L = (1/2) · 21/2 + (1/2) ln |1 + 21/2|

f (x)

x
2

0.2

0.4

0.6

0.8

1.0

1
(0,0)

(1,1/2)

f (x) = x2/2

Width = 1

Height = 1/2

Figure 20-11  Illustration for Questions and Answers 18-9 
and 18-10.
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Using a calculator and approximating to three decimal places gives us

L ≈ 1.148

Question 18-10

How can we use the arc-in-a-box scheme to see that Answer 18-9 is reasonable?

Answer 18-10

Refer again Fig. 20-11. The width of the dashed gray box is |1 − 0|, or 1 unit. The height of 
the box is |1/2 − 0|, or 1/2 unit. The minimum possible arc length is the diagonal measure of 
the box:

[12 + (1/2)2]1/2 = (1 + 1/4)1/2 = 51/2/2

That’s an irrational number. A calculator tells us that it’s roughly 1.118 units. The maximum 
possible arc length is half the perimeter of the box:

[2 · 1 + 2 · (1/2)] / 2 = (2 + 1) / 2 = 3/2

The arc length can’t be less than 51/2/2 ≈ 1.118 nor more than 3/2 = 1.5. In Answer 18-9, we 
found that the arc length is 1.148 units, rounded to three decimal places. That’s between the 
constraints.

Chapter 19

Question 19-1

What’s the principle of linearity for definite integrals, as it applies to a sum?

Answer 19-1

Let f1 and f2 be integrable functions of x over a continuous interval (a,b). Let k1 and k2 be 
constants. Then

a

b

∫ {k1 [ f1 (x )] + k2 [ f2 (x )]} dx = k1

a

b

∫ f1 (x ) dx + k2

a

b

∫ f2 (x ) dx

Question 19-2

What’s the principle of linearity for definite integrals, as it applies to a difference?

Answer 19-2

Let f1 and f2 be integrable functions of x over a continuous interval (a,b ). Let k1 and k2 be 
constants. Then

a

b

∫ {k1 [ f1 (x )] − k2 [ f2 (x )]} dx = k1

a

b

∫ f1 (x ) dx − k2

0

1

∫ f2 (x ) dx
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Question 19-3

Does the principle of linearity for sums work with any finite number of functions and constants?

Answer 19-3

Yes, if we stay with the same interval, stay with the same variable, and make sure that each 
function can be integrated over the entire interval.

Question 19-4

How can we evaluate the following definite integral using the principle of linearity?

0

1

∫ (e x/e + 4 cos x ) dx

Answer 19-4

The principle allows us to rewrite this as

e−1

0

1

∫ e x dx +  4 
0

1

∫ cos x dx

The basic antiderivative of the cosine is the sine. The exponential function is its own basic 
antiderivative. We can therefore resolve the above sum of integrals to

e−1 (e 1 − e 0) + 4 (sin 1 − sin 0)

which simplifies to

1 − e −1 + 4 sin 1

Question 19-5

What’s the formula for integration by parts?

Answer 19-5

For any two integrable functions f  (x ) and g (x ),

∫ f (x ) · g ′ (x ) dx = f (x ) · g (x ) − ∫ g (x ) · f   ′ (x ) dx

Question 19-6

How can we find the following indefinite integral using integration by parts?

∫ (5x + 1)(2 sin x ) dx

Answer 19-6

To set up the parts, let’s consider our functions f   and g ′ to be

f  (x )  = 5x + 1
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and

g ′ (x ) = 2 sin x

Then we have

g (x ) = −2 cos x

and

f   ′ (x ) = 5

Plugging these into the formula for integration by parts, we get

∫ (5x + 1)(2 sin x ) dx = (5x + 1)(−2 cos x )  − ∫  (−2 cos x ) · 5 dx

           = (5x + 1)(−2 cos x )  + 10 ∫ cos x dx

The basic antiderivative of the cosine is the sine, so the last integral in the above equation 
becomes sin x plus a constant of integration c. Substituting, we get

∫ (5x + 1)(2 sin x ) dx = (5x + 1)(−2 cos x ) + 10 sin x + c

                       = −10x cos x − 2 cos x + 10 sin x + c

Question 19-7

How can we use integration by parts to evaluate the following indefinite integral?

∫ (p /2 sin x + x sin x ) dx

Answer 19-7

As the first step in solving this problem, we must get the integrand into the proper form. We 
can factor it to obtain

∫ (p /2 + x )(sin x ) dx

To set up the parts, let’s say that

f  (x ) = p /2 + x

and

g ′ (x ) = sin x
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Then we have

g (x ) = − cos x

and

f   ′ (x ) = 1

In this case,

 ∫ (p /2 + x )(sin x ) dx = (p /2 + x )(− cos x )  − ∫ (− cos x ) · 1 dx

          = (p /2 + x )(− cos x )  + ∫ cos x dx

The last integral can be simplified to sin x plus a constant of integration c, because the basic 
antiderivative of the cosine is the sine. Substituting back, we get

∫ (p /2 + x )(sin x ) dx = (p /2 + x )(−cos x ) + sin x + c

                = −p /2 cos x − x cos x + sin x + c

Question 19-8

Consider an integral of the form

∫ k / (ax + b) dx

where x is the variable, and a, b, and k are constants. How can we resolve this?

Answer 19-8

We can rewrite the integral as

k ∫ (ax + b)−1 dx

Then we can use an integral table such as App. G to derive the formula

k ∫ (ax + b )−1 dx  = ka −1 ln |ax + b | + c

Question 19-9

How can we resolve the following integral?

∫ − (5x + 1)−1 dx
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Answer 19-9

We move the minus sign in front of the integral symbol, getting

− ∫ (5x + 1)−1 dx

Then we apply the formula stated in Answer 19-8, obtaining

− 5−1 ln |5x + 1| + c

which can also be written as

(−1/5) ln |5x + 1| + c

Question 19-10

How can we resolve the following integral using the method of partial fractions?

∫ (6x + 8)(x 2 + 3x + 2)−1 dx

Answer 19-10

The integrand breaks down into a sum of two constant multiples of reciprocals of linear func-
tions. We get

∫ [4 (x + 2)−1 +  2 (x + 1)−1] dx

When we split this into a sum of integrals and pull out the constants, we get

4 ∫ (x + 2)−1 dx +  2 ∫  (x + 1)−1 dx

Applying the formula from Answer 19-8 to each addend gives us

4 ln |x + 2| + 2 ln |x + 1| + c
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The derivative of an inverse function can often be found directly, but sometimes an indirect 
scheme works better. Let’s examine both methods.

A General Formula
To differentiate an inverse function, we can find the derivative of the original function, find 
the reciprocal of that derivative, substitute one variable for the other, and thereby get the 
derivative of the inverse function “through the back door.”

What is an inverse function?

In Chap. 1, we learned about relations, functions, and their inverses. Let’s review the meaning 
of inverse in this context. Suppose that x and y are variables, and f  and f  −1 are functions that 
are inverses of each other. Also suppose that

f  (x ) = y

and

f  −1 ( y ) = x

Then we can be sure that

f  −1 [ f  (x )] = x

and

f  [ f  −1 ( y )] = y

377
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When we seek the inverse of a function, we might get a relation that’s not a true function, 
because some values of the independent variable map to more than one value of the depen-
dent variable. In many such cases, we can “force” the inverse of the original function to behave 
as another true function by excluding all values of either variable that map to more than one 
value of the other variable.

Differentiating “through the back door”

Let’s recall the chain rule from Chap. 6. If f and g are differentiable functions of the same 
variable x, then

{ g [ f  (x )]}′ = g ′ [ f  (x )] · f   ′ (x )

If g happens to be the inverse of f, then

{ f  −1 [ f  (x )]}′ = f  −1′ [ f  (x )] · f   ′ (x )

where f  −1′ means the derivative of the inverse function. The inverse function and the original 
function “undo” each other on the left-hand side of this equation, so it becomes

x ′ = f  −1′ [ f  (x )] · f   ′ (x )

If we say that y = f  (x ), then we can simplify to obtain

dx /dx = f  −1′ ( y ) · dy /dx

which we can further simplify to

dx /dx = (dx /dy ) (dy /dx )

Because dx /dx = 1, we have

1 = (dx /dy ) (dy /dx )

which can be rearranged to get

(dx /dy ) = (dy /dx )−1

Are you confused?
It’s easy to be confused by the use of the superscript −1 after the name of a function such as f, as compared 
with its use after an expression such as (dy /dx ). When it’s written after the name of a function, a super-
script −1 tells us to think about the inverse function. When it’s written after a quantity, a superscript −1
means that we should work with the reciprocal of that quantity.



Example: “front door”

Let’s look at a function that has a well-defined inverse, and whose domain and range are both the 
entire set of real numbers. We can find the inverse and then differentiate it directly. Consider

f  (x ) = x 3

If we call y = f  (x ), then

y = x 3

and

dy /dx = 3x 2

The inverse of f   undoes the work of f. In this case,

x  = f  −1 ( y ) = y 1/3

When we differentiate x with respect to y, we get

dx /dy = y −2/3/3

We can also write this as

f  −1′ ( y )  = y −2/3/3

This is the derivative of the inverse function, in which y is the independent variable and x is 
the dependent variable.

Same example: “back door”

Now let’s differentiate the inverse function using the alternative method we’ve just learned. 
We already know that

dy /dx = 3x 2

We find dx /dy by taking the reciprocal of dy /dx, like this:

(dx /dy ) = (dy /dx )−1 = (3x 2)−1 = x −2/3

That’s expressed in terms of x, but we want it in terms of y. We’ve seen that

x = y 1/3

Substituting, we get

x −2/3 = ( y 1/3)−2/3 = y −2/3/3
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Here’s a challenge!
Differentiate the inverse of the following function, where the domain is the set of all real numbers x such 
that x > 1. First, find the inverse and then differentiate it directly. Then, use the “back door” method.

f  (x ) = e x + 1

Solution
Let’s introduce a dependent variable y, so we have

y = f  (x )

and

x = f  −1 ( y )

We can derive x in terms of y from our knowledge of logarithms and exponentials. Here’s how f can be 
morphed into f   −1, step-by-step:

 f  (x ) = e x + 1

 y = e x + 1

 y − 1 = e x

ln ( y − 1) = ln (e x )

 ln ( y − 1) = x

 x = ln ( y − 1)

         f  −1 ( y ) = ln ( y − 1)

When we differentiate using the chain rule, we get

f  −1′ ( y ) = ( y − 1)−1 · 1 = ( y − 1)−1

That’s the “front door” method. Now let’s use the “back door” scheme. The derivative of y with respect 
to x is

dy /dx = e x

When we take the reciprocal of this, we get

dx /dy = (e x )−1

We want to express this in terms of y, not in terms of x. As part of our algebraic exercise a short while ago, 
we saw that

x = ln ( y − 1)



By substitution,

dx /dy = [e ln( y−1)]−1 = ( y − 1)−1

which can also be written as

f  −1′ ( y ) = ( y − 1)−1

This agrees with the result we got when we differentiated the inverse function directly through the “front door.”

Derivative of the Arcsine
Do you wonder what these “back door” formulas for differentiating inverse functions are use-
ful for? Let’s look at some examples of this method in action.

Restricting the domain

The sine function is a true function, regardless of its domain. We usually work only with input 
values between 0 and 2p, or perhaps −p and p. But theoretically, we can input any real num-
ber. When we seek the inverse of the sine function, however, things get more complicated. We 
can “stand the wave on end” in Cartesian xy-coordinates and say that

y = f  (x ) = sin x

and

x = f  −1 ( y ) = Arcsin y

If we want the Arcsine relation to be a true function, we must restrict the domain of the sine func-
tion before we “stand the wave on end.” The most common way to do this is to specify that

−p /2 ≤ x ≤ p /2

ensuring that the Arcsine relation is a true function of y. When we define the domain of the 
sine this way (Fig. 21-1), we capitalize the name of its inverse, writing

f  −1 ( y ) = Arcsin y

Are you confused?
Do you wonder why we restrict the domain of the sine function to values in the closed interval [−p/2,p/2] to 
define the Arcsine function? Can’t we use any closed interval that makes the mapping between the domain 
and the range a bijection? (If you don’t remember what a bijection is, review its definition in Chap. 1.) 
The answer is “Yes and no.” We can use certain other intervals. But whatever interval we choose, it must be 
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exactly 1/2 cycle (p radians) wide, either from a positive peak to the next negative peak, or from a negative 
peak to the next positive peak. The interval for which

−p /2 ≤ x ≤ p /2

is the one that most mathematicians prefer. It’s called the principal branch of the sine function.

Getting the formula

The direct approach to differentiation doesn’t work well with a function such as the Arcsine. 
We’ll have an easier time if we go through the “back door.” To illustrate, we can differentiate 
the inverse of

f  (x ) = sin x

for −p/2 ≤ x ≤ p/2. Let’s introduce the function f  −1 and the variable y so that

y = f  (x )

and

x = f  −1 ( y )

–3p

3p

–3p/2

3p/2 f (x ) = sin x

= Arcsin yf (y )–1

–3 –2

–1

1 2 3

f (x )y or

x f (y )–1or

Figure 21-1  The Arcsine function is the inverse of the sine 
function whose domain is restricted to values of 
x in the closed interval [−p /2 , p /2].
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We can express x in terms of y as

x = Arcsin y

For the original sine function, the derivative of y with respect to x is

dy /dx = cos x

When we take the reciprocal of each side, we get

dx /dy = (cos x )−1

This is the derivative of the Arcsine function, but we want it in terms of y. Before we attempt 
a substitution, let’s remember an important identity from basic trigonometry. For all values 
of x,

(cos x )2 + (sin x )2 = 1

This well-known identity can be rewritten as

(cos x )2 = 1 − (sin x )2

Taking the 1/2 power of both sides, we get

cos x = [1 − (sin x )2]1/2

We know that sin x = y, so we can substitute in the above equation to get

cos x = (1 − y 2)1/2

A while ago, we found that

dx /dy = (cos x )−1

We can now replace cos x by (1 − y2)1/2 to obtain

dx /dy = [(1 − y 2)1/2]−1

which can be simplified to

dx /dy = (1 − y 2)−1/2

This is the derivative of the Arcsine function with the independent variable y. We’ve deter-
mined that

d /dy (Arcsin y ) = (1 − y 2)−1/2
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Are you astute?
Here’s an important fact that you might have already suspected. The derivative of the Arcsine function is 
defined only over the open interval (−1,1), that is, for all real numbers y such that −1 < y < 1, even though 
the Arcsine function itself is defined over the closed interval [−1,1]. Can you see why? Here’s a hint: Look 
at the endpoints of the solid curve in the graph of Fig. 21-1, and try to imagine the slope at those points.

Derivative of the Arccosine
Differentiating the inverse of the cosine function gives us a formula similar to the one for the deriv-
ative of the inverse of the sine. Let’s define the inverse function, and then we’ll derive the formula.

Restricting the domain

The cosine function, like its “cousin” the sine, is a true function even if we allow the domain 
to encompass the entire set of real numbers. But, as with the sine, things change when we seek 
the inverse (Fig. 21-2). We have

y  = f  (x ) = cos x

and

x  = f  −1 ( y ) = Arccos y

3p

–3 –2 –1 1 2 3

f (x )y or

x f (y )–1or

2p

–2p

p

–p

f (x ) = x

= yf (y )–1

cos

Arccos

–3p

Figure 21-2  The Arccosine function is the inverse of the 
cosine function whose domain is restricted to 
values of x in the closed interval [0,p ].



but if we want the Arccosine relation to be a true function, we must restrict the domain of the 
cosine to the values 0 ≤ x ≤ p. When we do this, we capitalize the name of its inverse, writing

f  −1 ( y ) = Arccos y

Are you confused?
You might wonder, as with the sine and Arcsine, why we restrict the domain of the cosine function to the 
interval [0,p ] to get the Arccosine function. The reason is the same as that for the sine and Arcsine, except 
that the interval is shifted by 1/4 cycle. The zone for which 0 ≤ x ≤ p is the principal branch.

Getting the formula

Differentiating the Arccosine is similar to differentiating the Arcsine. Let’s go through the 
process step-by-step. We’ll start by letting

f  (x ) = cos x

for 0 ≤ x ≤ p. We define the function f  −1 and the variable y so that

y = f  (x )

and

x = f  −1 ( y )

We can express x in terms of y as

x = Arccos y

The derivative dy /dx is

dy /dx = −sin x

When we take the reciprocal of this, we get

dx /dy = (− sin x )−1

We want to get the right-hand side in terms of y. That familiar trigonometric identity comes 
in handy again! For all values of x,

(cos x )2 + (sin x )2 = 1

which can be rewritten as

(sin x )2 = 1 − (cos x )2
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Taking the 1/2 power of both sides gives us

sin x = [1 − (cos x )2]1/2

We can multiply through by −1 to obtain

− sin x = −[1 − (cos x )2]1/2

We know that cos x = y, so we can substitute for x in the right-hand side to get

− sin x = −(1 − y 2)1/2

A while ago, we found that

dx /dy = (− sin x )−1

We can replace − sin x by − (1 − y2)1/2 in the above equation, obtaining

dx /dy = [−(1 − y 2)1/2]−1

which simplifies to

dx /dy = −(1 − y 2)−1/2

We have just figured out that

d /dy (Arccos y ) = −(1 − y 2)−1/2

Are you astute?
The derivative of the Arccosine function is defined only over the open interval (−1,1), even though the 
function itself is defined over the closed interval [−1,1]. The reason is the same as that for the Arcsine func-
tion and its derivative.

Here’s a challenge!
Consider the following sum of composite functions:

h (z ) = Arcsin (z /2) + Arccos (z 2/2)

Define the domain of h, and then differentiate it.



Solution (part 1)
The domain of the Arcsine function is the set of all inputs that produce defined outputs. That’s the set 
of all real numbers in the closed interval [−1,1]. In our situation, the argument of the Arcsine is z /2, so 
the domain of that function is the set of all z for which −2 ≤ z ≤ 2. For the Arccosine function, the 
domain is, again, the set of all reals in the closed interval [−1,1], so the domain of the right-hand 
term in the sum is the set of all z for which −21/2 ≤ z ≤  21/2. The domain of h is therefore the set of 
all z for which −21/2 ≤ z ≤ 21/2.

Are you confused?
Do you wonder why the domain of h is the set of all z in [−21/2,21/2], and not the set of all z in [−1,1] or 
the set of all z in [−2,2]? The reason is that the domain of h must be the intersection of the domains of the 
functions in the sum. In other words, if the output of h is to make any sense, we must get a defined output 
from the Arcsine function when we input z /2 to it, and we must get a defined output from the Arccosine 
function when we input z 2/2 to it. This happens for any real number z in [−21/2,21/2], but not for any z
outside of that interval.

Solution (part 2)
Now that we know the domain of h, we can differentiate the two terms in the sum independently, and 
then add the results. Let’s call those terms

p (z ) = Arcsin (z /2)

and

q (z ) = Arccos (z 2/2)

We’ve already determined the derivatives of the Arcsine and Arccosine functions. If we let the independent 
variable be z, then

d /dz (Arcsin z ) = (1 − z 2)−1/2

and

d /dz (Arccos z ) = −(1 − z 2)−1/2

Using the chain rule to differentiate p and q, we get

p ′ (z ) = [1 − (z / 2)]−1/2 (1/2) = [1 − (z / 2)]−1/2 / 2

and

q ′ (z ) = −[1 − (z 2/2)]−1/2 (z ) = −z [1 − (z 2/2)]−1/2

The derivative h ′ is the sum p ′ + q ′, so

h ′ (z ) = [1 − (z /2)]−1/2 / 2 − z [1 − (z 2/2)]−1/2
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Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these 
problems. Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the 
appendix may not represent the only way a problem can be figured out. If you think 
you can solve a particular problem in a quicker or better way than you see there, by all 
means try it!

 1.  Differentiate the inverse of the following function over the domain x > 0. First, find the 
inverse and then differentiate it directly. Then, use the “back door” method.

f  (x )  = x 2 + 2

 2.  Differentiate the inverse of the following function over the domain x > 0. First, find the 
inverse and then differentiate it directly. Then, use the “back door” method.

f  (x ) = ln x

 3.  Differentiate the inverse of the following function. First, find the inverse and then 
differentiate it directly. Then, use the “back door” method.

f  (x ) = x 5 + 4

 4. Define the domain of the following function. Then, differentiate it with respect to x.

f  (x ) = 5 Arcsin x

 5. Define the domain of the following function. Then, differentiate it with respect to t.

g (t ) = − 6t 2 Arcsin t

 6. Define the domain of the following function. Then, differentiate it with respect to z.

h (z ) = Arccos z 2

 7. Define the domain of the following function. Then, differentiate it with respect to v.

f  (v ) = 3v 3 Arccos (v /3)



 8. Define the domain of the following function. Then, differentiate it with respect to s.

h (s ) = Arcsin s 3 − Arccos 2s

 9. Define the domain of the following function. Then, differentiate it with respect to w.

g (w ) = (Arccos w 2 − Arcsin w 2) /2

10. Define the domain of the following function. Then, differentiate it with respect to x.

f  (x ) = Arcsin e x
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CHAPTER

22

Implicit Differentiation

Until now, we’ve seen functions with the dependent variable on the left-hand side of an equa-
tion, and an expression containing the independent variable on the right-hand side. In this 
chapter, we’ll differentiate relations that aren’t so clearly denoted.

Two-Way Relations
When we see a two-variable equation that isn’t expressed as an obvious function of either vari-
able, we can usually differentiate it if we accept some ambiguity and restrict the domain.

How shall we write it ?

Any equation in two variables is a two-way relation. The mappings are inverses of each other, 
although one or both may fail to be true functions. Consider

y = x 2 + 1

Here, y is a true function of x, and the equation is written in the usual form for a function. 
But we can also write

y − 1 = x 2

If we take the positive-and-negative square root of each side and then transpose the sides, we get

x = ±( y − 1)1/2

This is a relation in which x is expressed in terms of y, but it’s not a true function because it 
assigns more than one value of the dependent variable x to any real-number input value of y
larger than 1. There’s also another distinction. The domain of the function

y = x 2 + 1



is the entire set of real numbers. But the domain of the relation

x = ±( y − 1)1/2

must be restricted to the set of reals y such that y ≥ 1 if we want a real-number output.

Equations of circles

When working with graphs in the Cartesian xy-plane, we can write the general equation for a 
circle in the standard form

(x − x 0)2 + ( y − y 0)2 = r 2

where x 0 and y 0 are real constants that tell us the coordinates (x 0,y 0) of the center of the circle, 
and r is a positive real constant that tells us the radius (Fig. 22-1). When the circle is centered 
at the origin, the formula is simpler because x 0 = 0 and y 0 = 0. Then we have

x 2 + y 2 = r 2

The simplest possible case is the unit circle, centered at the origin and having a radius equal 
to 1. Its equation is

x 2 + y 2 = 1
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Equations of ellipses

The general form for the equation of an ellipse in the Cartesian xy-plane, as shown in 
Fig. 22-2, is

(x − x 0)2/a 2 + ( y − y 0 )2 /b 2 = 1

where x 0 and y 0 are real constants representing the coordinates (x 0,y 0) of the center of the 
ellipse, a is a positive real constant that represents the distance from (x 0,y 0) to the curve along a 
line parallel to the x axis, and b is a positive real constant that tells us the distance from (x 0,y 0)
to the curve along a line parallel to the y axis. When we plot x on the horizontal axis and y
on the vertical axis (the usual scheme), a is the length of the horizontal semi-axis or “horizon-
tal radius” of the ellipse, and b is the length of the vertical semi-axis or “vertical radius.” For 
ellipses centered at the origin, we have x 0 = 0 and y 0 = 0, so the general equation is

x 2 /a 2 + y 2 /b 2 = 1

Equations of hyperbolas

The general form for the equation of a hyperbola in the Cartesian xy-plane, as shown in 
Fig. 22-3, is

(x − x 0)2/a 2 − ( y − y 0)2/b 2 = 1

x y0 0,( )
b

a

x

y

Figure 22-2  Graph of the ellipse for (x − x 0)2 /a 2 +
( y − y 0)2/b 2 = 1.



where x 0 and y 0 are real constants that tell us the coordinates (x 0,y 0) of the center. The dimen-
sions are more difficult to define than those of a circle or an ellipse. Suppose that D is a 
rectangle whose center is at (x 0,y 0), whose vertical edges are tangent to the hyperbola, and 
whose corners lie on the asymptotes of the hyperbola. (An asymptote, as we remember from 
precalculus, is a straight line that a curve approaches but never reaches as we move away from 
the origin.) When we define D this way, then a is the distance from (x 0,y 0) to D along a line 
parallel to the x axis, and b is the distance from (x 0,y 0) to D along a line parallel to the y axis. 
We call a the length of the horizontal semi-axis, and we call b the length of the vertical semi-
axis. For hyperbolas centered at the origin, we have x 0 = 0 and y 0 = 0, so the general equation 
becomes

x 2 /a 2 − y 2 /b 2 = 1

The simplest possible case is the unit hyperbola whose equation is

x 2 − y 2 = 1
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Are you confused?
The equations of ellipses and hyperbolas don’t always appear in the standard forms. Don’t let this baffle 
you! Suppose you see the equation

x 2/3 + y 2/4 = 1

This is in the standard form for an ellipse. If you multiply through by 12, you get

4x 2 + 3y 2 = 12

You can then subtract 3y 2 from each side, getting

4x 2 = 12 − 3y 2

This represents the same curve as the original equation. But if you saw it for the first time, you might not 
realize that the graph is an ellipse in the xy-plane.

Two-Way Derivatives
We can differentiate a two-variable relation with respect to either variable, even if the equation 
does not look like it’s in any standard form. This process is called implicit differentiation.

Example: unit circle

Let’s scrutinize the equation of the unit circle, which has a radius of 1 and is centered at the 
origin. Again, that equation is

x 2 + y 2 = 1

The above equation can be rewritten as

y = ±(1 − x 2)1/2

or

x = ±(1 − y 2)1/2

The top equation produces a real-number output y only when −1 ≤ x ≤ 1. The bottom equa-
tion produces a real-number output x only when −1 ≤ y ≤ 1. When we find derivatives with 
respect to either variable, we must remember these limitations.

Let’s find y ′ by differentiating both sides of the original equation with respect to x, and 
then solving the result for y ′. We start with

x 2 + y 2 = 1



Differentiating through, we get

d /dx (x 2) + d /dx (y 2) = d /dx (1)

Term-by-term, this works out to

2x + 2yy ′ = 0

Do you wonder how we get 2yy ′ here? It comes from the chain rule. We must use that rule 
when we differentiate y 2 with respect to x, because we have a composite relation. First, x maps 
into y. Then, y maps into y 2. Think of the derivative like this:

d /dx ( y 2 ) = [d /dy ( y 2 )] (dy /dx) = 2y (dy /dx) = 2yy ′

We can subtract 2x from each side of the equation

2x + 2yy ′ = 0

to obtain

2yy ′ = −2x

We can divide through by 2y if we insist that y ≠ 0. That gives us

y ′ = (−2x) /(2y)

which simplifies to

y ′ = −x /y

We’ve found the derivative dy /dx of the two way-relation. It’s in terms of both x and y, but 
that’s a common result in implicit differentiation. This derivative exists only for values of x
between, but not including, −1 and 1. If x = −1 or x = 1, then we get y = 0 when we solve 
for it in the original equation, making y ′  undefined. If x < −1 or x > 1, then y isn’t part of 
the real-number relation. (It would be part of the relation if we let it be a complex number, 
but we aren’t going into the realm of complex numbers here.) 

Now let’s find x ′ by differentiating both sides with respect to y, and then solving the result 
for x ′. We have

d /dy (x 2) + d /dy ( y 2) = d /dy (1)

When we differentiate term-by-term, we get

2xx ′ + 2y = 0
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As before, the chain rule is needed on d /dy (x 2) to get 2xx ′. When we subtract 2y from each 
side, we obtain

2xx ′ = −2y

We can divide each side by 2x while insisting that x ≠ 0, getting

x ′ = (−2y) / (2x)

which simplifies to

x ′ = −y /x

We’ve found the derivative dx /dy. But there’s a restriction, just as there was with the other 
derivative. The value of x ′ is defined only for −1 < y < 1. When we have y = −1 or y = 1, then 
we get x = 0 when we solve for it in the original equation, making x ′ undefined. When we 
have y < −1 or y > 1, then x isn’t in the relation, so x ′ is again undefined.

Example: ellipse

Consider the equation of an ellipse centered at (x 0,y 0) = (1,−1), with a horizontal semi-axis of a = 2 
units and a vertical semi-axis of b = 3 units. Figure 22-4 is a graph of this ellipse. Its equation is

(x − 1)2 / 4 + (y + 1)2 / 9 = 1

2 4 6–4–6

6

–4

–6

x

y

4

Center is
at (1,–1)

a = 2b = 3

Figure 22-4  Graph of the ellipse for 
(x − 1)2 /4 + (y + 1)2 / 9 = 1.
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Before we start differentiating, we should find the domains for both mappings in our 
two-way relation. The x-coordinate of the center is x 0 = 1. The horizontal semi-axis is 2 units 
long. Knowing these facts, we can see that the relation is defined only for values of x up to, 
and including, 2 units to the left or right of x 0. That is,

1 − 2 ≤ x ≤ 1 + 2

which means we must have

−1 ≤ x ≤ 3

The y-coordinate of the center is y 0 = −1. The vertical semi-axis measures 3 units. Therefore, 
the relation is defined only for values of y up to, and including, 3 units above and below y 0.
That is,

−1 − 3 ≤ y ≤ −1 + 3

which means we must have

−4 ≤ y ≤ 2

To find y ′ (the derivative dy /dx), let’s get the original equation into a form that’s easier to 
work with. Here’s the original equation for the ellipse:

(x − 1)2 / 4 + ( y + 1)2 / 9 = 1

We can multiply through by 36 to get

9 (x − 1)2 + 4 ( y + 1)2 = 36

Expanding the squared binomials gives us

9 (x 2 − 2x + 1) + 4 ( y 2 + 2y + 1) = 36

which multiplies out to

9x 2 − 18x + 9 + 4y 2 + 8y + 4 = 36

Subtracting 9 from each side and then subtracting 4 from each side, we get an equation with 
the variables all on the left and a constant alone on the right:

9x 2 − 18x + 4y 2 + 8y = 23

Differentiating this term-by-term with respect to x, we get

d /dx (9x 2) − d /dx (18x) + d /dx (4y 2) + d /dx (8y ) = d /dx (23)
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This works out to

18x − 18 + 8yy ′ + 8y ′ = 0

Note, once again, that we must use the chain rule on d /dx (4y 2) to get 8yy ′. When we add the 
quantity (18 − 18x ) to each side, we get

8yy ′ + 8y ′ = 18 − 18x

The left side can be rewritten to give us

(8y + 8) y ′ = 18 − 18x

Dividing through by the quantity (8y + 8) with the restriction that y ≠ −1, we get

y ′ = (18 − 18x ) / (8y + 8) = (9 − 9x ) /(4y + 4)

We’ve found dy /dx, but it has meaning only for −1 < x < 3. If x = −1 or x = 3, then the original 
equation for the ellipse tells us that y = −1, making y ′  undefined because the denominator 
of our ratio, the quantity (4y + 4), becomes 0. If x < −1 or x > 3, then y isn’t part of the real-
number relation at all, so the derivative can’t exist.

Now let’s work out x ′ (the derivative dx /dy). We’ve already morphed the equation of the 
ellipse into the convenient form

9x 2 − 18x + 4y 2 + 8y = 23

When we differentiate term-by-term with respect to y, we have

d /dy (9x 2) − d /dy (18x) + d /dy (4y 2) + d /dy (8y) = d /dy (23)

Applying the rules of differentiation including the chain rule when necessary, we get

18xx ′ − 18x ′ + 8y + 8 = 0

Adding the quantity (−8 − 8y ) to each side, we get

18xx ′ − 18x ′ = −8 − 8y

The left side can be rewritten to give us

(18x − 18) x ′ = −8 − 8y

Dividing through by the quantity (18x − 18) with the restriction that x ≠ 1, we get

x ′ = (−8 − 8y) / (18x − 18) = (−4 − 4y) / (9x − 9) = (4y + 4) / (9 − 9x)

We’ve found dx /dy, but it’s defined only when −4 < y < 2. If y = −4 or y = 2, then the original 
equation for the ellipse tells us that x = 1, making x ′ undefined because the denominator of 
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our ratio, the quantity (9 − 9x ), becomes 0. If y < −4 or y > 2, then x isn’t in the relation at 
all, so the derivative is meaningless.

Example: hyperbola

Consider the equation of a hyperbola centered at (x 0,y 0) = (1,−1), with a horizontal semi-axis 
of a = 2 units and a vertical semi-axis of b = 3 units. This hyperbola is graphed in Fig. 22-5, 
and its equation is

(x − 1)2 / 4 − (y + 1)2 / 9 = 1

Let’s find the domains for the two parts of this relation. The x-coordinate of the center is 
x 0 = 1. The length of the horizontal semi-axis is 2 units. Knowing these things and examining 
Fig. 22-5, we can see that the relation is defined only for values of x that are at least 2 units to 
the left of x 0, or at least 2 units to the right of x 0. That is,

x ≤ 1 − 2  or x ≥ 1 + 2
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which means we must have

x ≤ −1  or x ≥ 3

The y-coordinate of the center is y 0 = −1. The vertical semi-axis measures 3 units. When we 
look at the graph, we can see that these facts, while interesting geometrically, don’t place any 
restrictions on the domain of the relation when y is the independent variable. The relation that 
maps y to x is defined for all real numbers y.

To find y ′, let’s get the equation into a more workable form. Here, again, is the original 
equation:

(x − 1)2 / 4 − (y + 1)2 / 9 = 1

Multiplying through by 36 gives us

9 (x − 1)2 − 4 ( y + 1)2 = 36

Expanding the squared binomials produces

9 (x 2 − 2x + 1) − 4 (y 2 + 2y + 1) = 36

which multiplies out to

9x 2 − 18x + 9 − 4y 2 − 8y − 4 = 36

Subtracting 9 from each side and then adding 4 to each side, we get

9x 2 − 18x − 4y 2 − 8y = 31

Differentiating this term-by-term with respect to x, we get

d /dx (9x 2) − d /dx (18x) − d /dx (4y 2) − d /dx (8y) = d /dx (31)

This works out to

18x − 18 − 8yy ′ − 8y ′ = 0

Adding the quantity (18 − 18x) to each side, we get

−8yy ′ − 8y ′ = 18 − 18x

The left side can be rewritten to give us

(−8y − 8) y ′ = 18 − 18x

Dividing through by the quantity (−8y − 8) with the restriction that y ≠ −1, we get

y ′ = (18 − 18x ) / (−8y − 8) = (9 − 9x ) / (−4y − 4) = (9x − 9) / (4y + 4)

This expression has meaning only when x < −1 or x > 3. If x = −1 or x = 3, then the original 
equation for the hyperbola tells us that y = −1, making y ′  undefined because the denominator 



of our ratio, (4y + 4), is equal to 0. If −1 < x < 3, then y isn’t part of the real-number relation, 
so there can be no derivative.

Now let’s work out x ′. We’ve already got the equation into a form that’s easy to work with:

9x 2 − 18x − 4y 2 − 8y = 31

When we differentiate term-by-term with respect to y, we have

d /dy (9x 2) − d /dy (18x) − d /dy (4y 2) − d /dy (8y) = d /dy (31)

Working it out term-by-term yields

18xx ′ − 18x ′ − 8y − 8 = 0

Adding the quantity (8y + 8) to each side, we get

18xx ′ − 18x ′ = 8y + 8

The left side can be rewritten to give us

(18x − 18) x ′ = 8y + 8

Dividing through by the quantity (18x − 18) with the restriction that x ≠ 1, we get

x ′ = (8y + 8) / (18x − 18) =  (4y + 4) / (9x − 9)

We’ve found dx /dy, and it’s defined over the entire set of real numbers y. We can see this by 
looking at Fig. 22-5. There’s no point on the curve for which its slope is parallel to the x axis. 
The curve never passes through any point where x = 1, which would be necessary to get a zero 
denominator in dx /dy.

Are you astute?
Let’s look again at the derivatives we’ve obtained for the unit circle, the ellipse, and the hyperbola in this 
section. Have you noticed that they follow a pattern? For the unit circle, we got

y ′ = −x /y

and

x ′ = −y /x

For the ellipse, we found that

y ′ = (9 − 9x) / (4y + 4)

and

x ′ = (4y + 4) / (9 − 9x)
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For the hyperbola, we derived

y ′ = (9x − 9) / (4y + 4)

and

x ′ = (4y + 4) / (9x − 9)

In each case, y ′ and x ′ are reciprocals of each other. These are not coincidences ! Think about it. When we 
work out y ′, we’re finding dy /dx. When we work out x ′, we’re finding dx /dy. When we write the derivatives 
as ratios in this way, it’s easy to see that if both derivatives are defined, we have

dy /dx = (dx /dy)−1

and

dx /dy = (dy /dx)−1

This principle is so reliable that you can use it to check your work whenever you’re doing implicit differen-
tiation of an equation in two variables. Work out the derivatives both ways. You should always get mutual 
reciprocals. If you don’t, you’ve made a mistake somewhere. 

Are you confused?
You might wonder if any two-way relation involving positive integer powers of the variables can be reduced 
to the standard form for a line, parabola, circle, ellipse, or hyperbola. The answer is no—at least, not if 
either variable is raised to an integer power larger than 2. Make up some equations in which one or both 
variables are raised to integer powers of 3 or larger, and then plot their graphs.

Ponder this!
Imagine the set of all possible two-way relations where the exponents of the variables are either 1 or 2, and 
never anything else. It’s tempting to suppose that any such relation must represent a line, parabola, circle, 
ellipse, or hyperbola. What do you think? Is this proposition true, or not?

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.  What type of curve does the following equation represent? Put the equation in standard 
form for that type of curve. If the curve has a center, what are its coordinates? If the 
curve has semi-axes, how long are they?

3y 2 = 12x 2 − 48



 2.  What type of curve does the following equation represent? Put the equation in standard 
form. If the curve has a center, where is it? If it has semi-axes, how long are they ?

4x 2 + y 2 + 8x + 2y + 1 = 0

 3.  What are the coordinates of the center of the circle represented by the following 
equation? What’s the radius of that circle ?

2x 2 = 288 − 2y 2

 4.  Determine the values of x and y for which the two-way relation stated in Prob. 1 is 
defined. Then find y ′ and x ′, and verify that they are reciprocals of each other.

 5.  Determine the values of x and y for which the two-way relation stated in Prob. 2 is 
defined. Then find y ′ and x ′, and verify that they are reciprocals of each other.

 6.  Determine the values of x and y for which the two-way relation stated in Prob. 3 is 
defined. Then find y ′ and x ′, and verify that they are reciprocals of each other.

 7. Look again at the equation for the unit circle

x 2 + y 2 = 1

     and the derivatives we found for it. What are the two values of y ′ for x = 1/2? What are 
the two values of x ′ for y = 2−1/2?

 8. Look again at the equation for the ellipse

(x − 1)2/4 + (y + 1)2/9 = 1

     whose graph is shown in Fig. 22-4. Examine the derivatives we found. What is y ′ for x = 1? 
What is x ′ for y = −1?

 9. Look again at the equation for the hyperbola graphed in Fig. 22-5:

(x − 1)2 / 4 − (y + 1)2/9 = 1

    Examine the derivatives we found. What is y ′ when x = −3?

10.  Prove that for any specific value of x, the derivatives y ′ for the two-way relation 
representing a circle centered at the origin, are always exact negatives of each other. 
We must assume, of course, that the value we choose for x is part of the real-number 
relation.
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CHAPTER

23

The L’Hopital Principles

In this chapter, we’ll learn how to evaluate limits using the l’Hôpital (pronounced lo-pi-TALL) 
principles, named after the French mathematician Guillaume François Antoine de l’Hôpital 
(1661–1704), who described the rules in one of the first calculus textbooks ever written. 
Sometimes you’ll see his name spelled l’Hôspital.

Expressions That Tend Toward 0/0
Imagine that we want to find the limit of a ratio in which both the numerator and the 
denominator approach 0. This is an example of an indeterminate expression. We can’t evaluate 
0/0 directly, because it’s undefined. But we might be able to evaluate it indirectly.

How it works

If we want to find the limit of a ratio that tends toward 0/0, and if we can differentiate the 
numerator and the denominator, then the limit of the ratio of the derivatives is the same as 
the limit of the original ratio.

Imagine two functions f  (x ) and g (x ) with three properties. First, f   and g  are both differ-
entiable everywhere in some open interval around the point x = a (except maybe not exactly 
at x = a ). Second,

Lim
x a→

f  (x ) = 0

and

Lim
x a→

g (x ) = 0

Third, g ′ (x ) ≠ 0 at every point within the defined interval where x ≠ a. If all three of these 
conditions are met, then

Lim
x a→

f  (x ) /g (x ) = Lim
x a→

f   ′ (x ) /g ′ (x )



Example

Let’s figure out the following limit, where the numerator and denominator both approach 0 
as x approaches 1:

Lim
x →1

 (3x − 3) /(x − 1)

If we name the numerator and the denominator

f  (x ) = 3x − 3

and

g (x ) = x − 1

respectively, then our limit is of the form

Lim
x →1

f  (x ) /g (x )

The derivatives are

f   ′ (x ) = 3

and

g ′ (x )  = 1

The l’Hôpital rule for expressions that tend toward 0/0 tells us that

Lim
x →1

f  (x ) /g (x ) = Lim
x →1

f   ′ (x ) /g ′ (x ) = Lim
x →1

 3/1

The value of the final (rightmost) expression is obviously 3, no matter what happens to x.
Therefore, we know that

Lim
x →1

 (3x − 3) /(x − 1)  = 3

Applying the rule twice

Let’s scrutinize a more complicated limit in which the numerator and denominator both 
approach 0 as x approaches 1:

Lim
x →1

 (3x 2 − 6x + 3) /(x 2 − 2x + 1)

If we name the functions

f  (x ) = 3x 2 − 6x + 3
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and

g (x ) = x 2 − 2x + 1

then the derivatives are

f   ′ (x ) = 6x − 6

and

g ′ (x ) = 2x − 2

The l’Hôpital rule for expressions that tend toward 0/0 tells us that

Lim
x →1

f  (x ) /g (x ) = Lim
x →1

f   ′ (x ) /g ′ (x ) = Lim
x →1

 (6x − 6) /(2x − 2)

This new expression, like the original one, approaches 0/0 as x approaches 1. The limit still 
defies direct evaluation, but we can apply l’Hôpital’s principle again. Let’s differentiate the 
numerator and denominator a second time, getting

f   ′′ (x ) = 6

and

g ′′ (x ) = 2

The l’Hôpital rule now indicates that

Lim
x →1

f   ′ (x ) /g ′ (x ) = Lim
x →1

f   ′′ (x ) /g ′′ (x ) = Lim
x →1

 6/2

This is equal to 3, no matter what happens to x. This third limit must be equal to the second 
one we found, which in turn must equal the original one. Therefore

Lim
x →1

 (3x 2 − 6x + 3) /(x 2 − 2x + 1) = 3

Are you confused?
Do you wonder if the l’Hôpital rule always leads to a resolution for the limit of an expression that tends 
toward 0/0? The answer is no, it doesn’t. Sometimes a limit “runs away” toward positive or negative infinity 
(or both!) when we try to apply the rule to it. In cases like that, we must conclude that the limit is infinite.

Here’s a challenge!
Evaluate the following limit, where the numerator and denominator both approach 0 as x approaches 1. 
If the limit is infinite, then say so.

Lim
x→1

 (5x − 5) /(3x 2 − 6x + 3)



Solution
If we name the functions

f  (x ) = 5x − 5

and

g (x ) = 3x 2 − 6x + 3

then the derivatives are

f   ′ (x ) = 5

and

g ′ (x ) = 6x − 6

Using the l’Hôpital principle, we find that

Lim
x→1

f  (x ) /g (x ) = Lim
x→1

f   ′ (x ) /g ′ (x ) = Lim
x→1

 5 /(6x − 6)

The numerator in the final limit stays constant at 5, but the denominator approaches 0 as x approaches 1. 
The absolute value of the quantity [  f   ′ (x ) /g ′ (x )] therefore increases without bound as x approaches 1. 
If we approach 1 from the left (values smaller than 1, but increasing) the ratio “runs away” toward nega-
tive infinity, but if we approach from the right (values larger than 1, but decreasing) the ratio “runs away” 
toward positive infinity.

An important restriction

“Well,” you might say, “suppose we apply the l’Hôpital rule to the above limit a second time? 
Will that resolve it?” Let’s try it and see. The second derivatives of the functions are

f   ′′ (x ) = 0

and

g ′′ (x ) = 6

producing the apparent result

Lim
x →1

f   ′ (x ) /g ′ (x ) = Lim
x →1

f   ′′ (x ) /g ′′ (x ) = Lim
x →1

 0/6

This limit appears to be equal to 0. But this isn’t a legitimate answer, because we have violated 
a critical restriction on the use of l’Hôpital’s rule. We must never use this tactic to look for the 
limit of an expression that obviously blows up as the variable approaches the limiting value.
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It was okay to use the l’Hôpital rule the first time in the preceding “challenge,” because 
we were faced with an expression that tended toward 0/0. But the second application of the 
rule was inappropriate.

Expressions That Tend Toward éÇ/éÇ
Now think of a limit where the numerator and the denominator both “run away” toward 
positive or negative infinity. We can’t work with infinity directly as if it were a number. But we 
might be able to find the limit of such a ratio by differentiation.

How it works

This l’Hôpital principle is almost identical to the 0/0 version, except for a couple of changes 
in the “numbers.” As before, suppose that f  and g  are functions of a variable x, and both func-
tions are differentiable over an open interval containing x = a, except possibly at x = a itself. 
Also suppose that

Lim
x a→

f  (x ) = ±∞

and

Lim
x a→

g (x ) = ±∞

Here, the symbol ±∞ means “positive infinity or negative infinity.” Furthermore, suppose that 
g ′ (x ) ≠ 0 at every point in the defined interval where x ≠ a. If all these things are true, then

Lim
x a→

f  (x ) /g (x ) = Lim
x a→

f   ′ (x ) /g ′ (x )

Example

Let’s look at the limit, as x approaches 0 from the right, of the natural logarithm function 
divided by the reciprocal function:

Lim
x → +0

 (ln x ) /(x −1)

We can name the functions

f  (x ) = ln x

and

g (x ) = x −1

In this case, we have

Lim
x → +0

f  (x ) = −∞  and Lim
x → +0

g (x ) = +∞



The derivatives are

f   ′ (x ) = x −1

and

g ′ (x ) = −x −2

Using the l’Hôpital principle for expressions that tend toward ±∞/±∞, we find that

Lim
x → +0

f  (x ) /g (x ) = Lim
x → +0

f   ′ (x ) /g ′ (x ) = Lim
x → +0

x −1 /(−x −2)

The last expression in the above equation is awkward, but it can be rewritten as

x −1 /(−x −2) = (1/x ) /(−1/x 2) = (1/x ) (−x 2) = −x 2/x = −x

We can do these maneuvers without inadvertently dividing by 0. That’s because x, while it 
might become vanishingly small, never actually equals 0. Now our limit is

Lim
x → +0

−x

This expression tends toward 0, so we can conclude that

Lim
x → +0

 (ln x ) /(x −1) = 0

Another variant of the rule

Here’s a l’Hôpital principle that can help us find the limit of an expression as the value of the 
variable increases or decreases endlessly. Suppose that f   and g are functions of a variable x,
both functions are differentiable, and g ′ (x ) ≠ 0 as x approaches positive or negative infinity. 
Also, suppose that one of the following things is true:

Lim
x →+∞

f  (x ) = 0  and Lim
x →+∞

g (x ) = 0

Lim
x →−∞

f  (x ) = 0  and Lim
x →−∞

g (x ) = 0

Lim
x →+∞

f  (x ) = ±∞  and Lim
x →+∞

g (x ) = ±∞

Lim
x →−∞

f  (x ) = ±∞  and Lim
x →−∞

g (x ) = ±∞

In any situation like this,

Lim
x a→

f  (x ) /g (x ) = Lim
x a→

f   ′ (x ) /g ′ (x )
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Another example

Let’s figure out the limit, as x is positive and increases without bound, of the ratio of the natu-
ral logarithm function to the exponential function:

Lim
x →+∞

 (ln x ) /e x

We can name the functions

f  (x ) = ln x

and

g (x ) = e x

The values of these functions both tend toward positive infinity as x increases without bound. 
That is,

Lim
x →+∞

f  (x ) = +∞  and Lim
x →+∞

g (x ) = +∞

The derivatives are

f   ′ (x ) = x −1

and

g ′ (x ) = e x

Applying the wisdom of l’Hôpital, we find that

Lim
x →+∞

f  (x ) /g (x ) = Lim
x →+∞

f   ′ (x ) /g ′ (x ) = Lim
x →+∞

x −1 /e x

The rightmost expression can be rewritten as

x −1 /e x = (1/x ) (1/e x ) = 1 /( x e x ) = (x e x )−1

We must find

Lim
x →+∞

 ( x e x )−1

As x approaches positive infinity, both x and e x do the same, so the product x e x tends toward 
positive infinity as well. The reciprocal therefore tends toward 0, so

Lim
x →+∞

 ( ln x ) /e x = 0

410 The L’Hôpital Principles



Are you astute?
Occasionally, you’ll want to find the limit of a ratio that can be converted into another form and then 
evaluated directly, even though it looks like it needs one of l’Hôpital’s rules. If you think you can simplify 
an expression before working out the limit, go ahead and try it! You might get a ratio that’s easier to man-
age, or an expression that doesn’t involve a quotient at all. For example, if you have a ratio where a vari-
able is raised to negative powers in both the numerator and the denominator, you can try to simplify the 
expression with algebra before looking for the limit.

Other Indeterminate Limits
Occasionally, you’ll encounter the limit of an indeterminate product, sum, or difference. If 
such an expression can be converted to a ratio of the form 0/0 or ±∞/±∞, then you may be 
able to use one of l’Hôpital’s principles to evaluate it. 

Expressions that tend toward 0 . (+Ç) or 0 . (-Ç)

Let’s examine the limit, as x approaches 0 from the left (that is, from the negative side), of the 
product of the sine function and the reciprocal function:

Lim
x → −0

 (sin x ) (x −1)

In this situation, the sine function approaches 0 while the reciprocal function tends toward 
negative infinity. We can rewrite the expression as a ratio to get

Lim
x → −0

 (sin x ) /x

Now both the numerator and the denominator approach 0, so we can apply the l’Hôpital rule 
for the form 0/0. Let’s name the functions in our ratio

f  (x ) = sin x

and

g (x ) = x

The derivatives are

f   ′ (x ) = cos x

and

g ′ (x ) = 1
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Therefore

Lim
x → −0

f  (x ) /g (x ) = Lim
x → −0

f   ′ (x ) /g ′ (x ) = Lim
x → −0

 (cos x ) /1 = Lim
x → −0

 (cos x )

The rightmost expression approaches 1 as x approaches 0 from the left. We have determined 
that

Lim
x → −0

 (sin x ) (x −1) = 1

Expressions that tend toward +Ç - (+Ç)

Let’s work out the following limit of a difference in which both terms tend toward positive 
infinity as x approaches 0 from the right (that is, from the positive side):

Lim
x → +0

 4x −1 − 4(e x − 1)−1

Using algebra, we can rearrange the expression to get a ratio so our limit becomes

Lim
x → +0

 (4e x − 4 − 4x ) /(xe x − x )

As x approaches 0 from the right, both the numerator and the denominator in the above 
expression tend toward 0. We can apply the l’Hôpital rule for limits of this form. Let’s call the 
numerator and denominator functions

f  (x ) = 4e x − 4 − 4x

and

g (x ) = x e x − x

The derivatives are

f   ′ (x ) = 4e x − 4

and

g ′ (x ) = e x + x e x − 1

Therefore

Lim
x → +0

f  (x ) /g (x ) = Lim
x → +0

f   ′ (x ) /g ′ (x ) = Lim
x → +0

 (4e x − 4) /(e x + x e x − 1)

As x approaches 0 from the right, the numerator and denominator in the above ratio both 
approach 0, so we must apply l’Hôpital’s rule again. The second derivatives are

f   ′′ (x ) = 4e x
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and

g ′′ (x ) = e x + e x + xe x = 2e x + xe x

Now we have

Lim
x → +0

f   ′ (x ) /g ′ (x ) = Lim
x → +0

f   ′′ (x ) /g ′′ (x ) = Lim
x → +0

 (4e x ) /(2e x + x e x )

As x approaches 0 from either direction, f   ′′ (x ) approaches 4 and g ′′ (x ) approaches 2. We 
have found that

Lim
x → +0

 4x −1 − 4(e x − 1)−1 = 4/2 = 2

Expressions tending toward +Ç . 0, -Ç . 0, -Ç + (+Ç), +Ç + (-Ç),
or -Ç - (-Ç)

Whenever we see a limit whose expression tends toward positive infinity times 0, negative 
infinity times 0, negative infinity plus positive infinity, positive infinity plus negative infinity, 
or negative infinity minus negative infinity, we can convert it to a form we already know how 
to work with, as follows:

• The form +∞ · 0 is equivalent to 0 · (+∞)
• The form −∞ · 0 is equivalent to 0 · (−∞)
• The form −∞ + (+∞) is equivalent to +∞ − (+∞)
• The form +∞ + (−∞) is equivalent +∞ − (+∞)
• The form −∞ − (−∞) is equivalent to +∞ − (+∞)

Are you confused?
Don’t be flabbergasted by the way we bandy around the notions of positive and negative infinity (and 
the symbols +∞ and −∞) as if they’re real numbers. They’re not, of course! But expressions like these are 
convenient, even though they aren’t technically rigorous.

Here’s a challenge!
Evaluate the following limit, where the first term tends toward negative infinity and the second term tends 
toward positive infinity as x decreases endlessly (that is, becomes large negatively without bound):

Lim
x→−∞

x 3 + x 2

Solution
Let’s use algebra to rearrange the expression to get a ratio. We can morph it like this:

x 3 + x 2 = x 3 + (x −2)−1 = x 3 + (1/x −2) = (x + 1) /(x −2)
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Our limit can now be written as

Lim
x→−∞

 (x + 1) /(x −2)

As x becomes large negatively without bound, the numerator tends toward negative infinity while the denom-
inator tends toward 0. That means the ratio tends toward negative infinity, so we can conclude that

Lim
x→−∞

x 3 + x 2 = Lim
x→−∞

 (x + 1)/(x −2) = −∞

Here’s a lesson!
Perhaps the greatest challenge in regards to l’Hôpital’s rules is knowing when we can apply them to advan-
tage, and when we can’t. These principles are useful only when we encounter, or can derive, the limit of a 
ratio that tends toward 0/0 or ±∞/±∞. In other situations, l’Hôpital’s rules rarely work and should not be 
used. If we apply them inappropriately, we will likely get invalid results.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.  Evaluate the following limit, where the numerator and denominator both approach 0 as x
approaches 0. (We can approach from the left or from the right; it doesn’t matter.) If the 
limit is infinite, then say so.

Lim
x →0

 (sin x )/(8x )

 2.  Evaluate the following limit, where the numerator and denominator both approach 0 as 
x approaches 1 (from either side). If the limit is infinite, then say so.

Lim
x →1

 (6x 2 − 12x + 6)/(x 2 − 2x + 1)

 3.  Evaluate the following limit, where the numerator and denominator both approach 0 as 
x approaches 0 (from either side). If the limit is infinite, then say so.

Lim
x →0

 (12 sin x − 12x ) /x 3

 4.  Evaluate the following limit, where the numerator and denominator both tend toward 
positive infinity as x increases endlessly. If the limit is infinite, then say so.

Lim
x →+∞

 7x  /(ln x )
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 5.  Evaluate the following limit, where the numerator and denominator both tend toward 
positive infinity as x increases endlessly. If the limit is infinite, then say so.

Lim
x →+∞

e x /x 2

 6.  Evaluate the following limit, where the numerator and denominator both tend toward 
positive infinity as x approaches 0 from the right. If the limit is infinite, then say so.

Lim
x → +0

x −3 /x −2

 7.  Evaluate the following limit. Compare it to the limit of the same expression as x
approaches 0 from the negative side, which we found equal to 1 in the chapter text.

Lim
x → +0

 (sin x ) x −1

 8.  Evaluate the following limit, where the first factor tends toward 0 and the second factor 
tends toward negative infinity as x approaches 0 from the left. If the limit is infinite, 
then say so.

Lim
x → −0

x 5 ln |x |

 9.  Evaluate the following limit, where both terms tend toward positive infinity as x
approaches 0 from the right. If the limit is infinite, then say so.

Lim
x → +0

 2x −1 − 3(e x − 1)−1

10.  Evaluate the following limit, where both terms tend toward positive infinity as x
approaches p /2 from the left. If the limit is infinite, then say so.

Lim
x → −π /2

 sec x − tan x
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CHAPTER

24

Partial Derivatives

In this chapter, we’ll learn how to differentiate multi-variable functions with two or three inde-
pendent variables. When graphed, such functions require three or four dimensions, respec-
tively. We can draw three-dimensional (3D) graphs on a flat page or computer screen if we 
include perspective. Four-dimensional (4D) graphs can’t be drawn, so we must rely entirely 
on equations.

Multi-Variable Functions
As we’ve learned, a function is a special sort of mapping from the elements of one set (the 
domain) to the elements of another set (the range). Until now, the domain of every func-
tion we’ve encountered has been a set of real numbers. But we can also have functions whose 
domains are sets of ordered pairs or triples of real numbers.

Two inputs, one output

Imagine that we want to define the topography (terrain) of a rolling prairie in terms of a func-
tion. We need three dimensions: east-west position, north-south position, and elevation. We 
choose a starting point and call it the origin of Cartesian three-space in variables x, y, and z.
At the origin, we assign x = 0, y = 0, and z = 0. That’s the ordered triple (x,y,z ) = (0,0,0). We 
define the coordinate axes like this:

• Positive values of x are east of the origin
• Negative values of x are west of the origin
• Positive values of y are north of the origin
• Negative values of y are south of the origin
• Positive values of z are above the origin
• Negative values of z are below the origin

For convenience, let’s say that z = 0 at sea level, so the xy-plane is at sea level within a few kilo-
meters of the origin, where we can ignore the curvature of the earth. Unless we’re in a strange 



part of the world or somewhere underwater in the ocean, we’ll always find that the elevation 
z is positive.

Suppose that we wander around on the prairie and measure the elevation of the terrain 
above the xy-plane as a function of our horizontal location in terms of x and y. We spend a 
long time at this, taking down notes to make a detailed topographical map of the region. That 
map represents a function f that maps ordered pairs (x,y ) into values of z, so we can write

z = f  (x,y )

If we split the ordered pairs into individual real numbers, we can say that our function f has 
two independent (input) variables, x and y. The dependent variable, z, is the output.

If f   is a true function, then there can never be more than one value of z for any particular 
ordered pair (x,y ). In our prairie analogy, this translates into “No outcroppings, no overhangs, 
and no caves.” In the real world, most prairie regions fit that description.

A pure-mathematics example

Figure 24-1 illustrates the graph of a simple function with two independent variables. (Actu-
ally, this drawing shows only a few curves on the true surface, which resembles a tall, thin bowl 
that extends infinitely upward.) This object is a paraboloid, which is what we get when we 
rotate a parabola on its axis to create a two-dimensional surface. The domain of the function 
is represented by the entire xy-plane. The range is the set of values on the z axis larger than a 
certain minimum, represented by the apex or vertex of the paraboloid, or its lowest point. We 
can envision curves on the paraboloid, formed by its intersection with various flat planes in 
space. If we cut the paraboloid with a vertical plane, such a curve is a parabola. If we cut the 
paraboloid with a horizontal plane, such a curve is a circle.
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The vertical-line test

If the axis of the paraboloid in Fig. 24-1 is parallel to the z axis, then the surface represents a 
function of the variables x and y. If we call the function f, then

z = f  (x,y )

because there is never more than one output value z for any input pair (x,y ). Do you remem-
ber the vertical-line test for a single-variable function? (If not, look back at Chap. 1.) We can 
apply a similar rule to the graph of a two-variable function in xyz-space, as long as that graph 
appears as a surface.

Imagine a straight, infinitely long vertical line parallel to the z axis. We move this line 
around, so the point where it intersects the xy-plane sweeps through every possible ordered 
pair (x,y ). Our graph represents a function if and only if the movable vertical line never cuts 
through the surface at more than one point. The paraboloid in Fig. 24-1 passes this test. Some 
surfaces, such as a sphere, fail the test. They represent relations, but not true functions, in 
Cartesian xyz-space.

Three inputs, one output

Let’s perform a different experiment on the prairie. Imagine that we’re no longer restricted to the 
surface. We choose a starting point and call it the origin, as before. But this time, we make all 
three of the variables x, y, and z independent. Their literal meanings are the same as before:

• Positive values of x are east of the origin
• Negative values of x are west of the origin
• Positive values of y are north of the origin
• Negative values of y are south of the origin
• Positive values of z are above the origin
• Negative values of z are below the origin

The difference between this situation and the previous one is that our elevation (or altitude) 
doesn’t depend on the location. Altitude is now an independent variable, along with the east-
west and north-south positions. Let’s say that the dependent variable is the wind speed, and 
call it w. The value of w depends on where we are in space: the values of x, y, and z. Any change 
in x, y, or z is likely to produce a change in w.

Suppose that we launch weather balloons from numerous places all around the prairie. The 
balloons rise into the air, reaching various east-west positions, north-south positions, and altitudes. 
Each balloon has a weather-monitoring device with a radio transmitter that sends us wind-speed 
data for points (x,y,z ) scattered around in the sky. We check all this data at 12:00 noon, local time, 
on a certain day. Then we compile the data to get points in a relation g such that

w = g (x,y,z )

This relation g maps ordered triples (x,y,z ) to a fourth number, represented by the variable w.
In the real world, g must be a true function. We can’t have more than one wind speed at any 
single point at noon on the day of our experiment. There’s never more than one value of w for 
any particular ordered triple (x,y,z ).



What about time?

If we add another independent variable to the mix—time, represented by t —we’ll get a func-
tion of four variables, with inputs consisting of ordered quadruples (x,y,z,t) and the dependent 
variable w. The inclusion of time as a variable makes our experiment more difficult, because 
we must take wind-speed readings from our weather instruments at frequent intervals, not 
only at noon. These added tasks complicate our function, and the larger amount of data com-
plicates any graph that we try to create. Such a graph would occupy five dimensions: east-west 
position, north-south position, altitude, time, and wind speed!

Are you confused?
We can’t easily envision a vertical line test in the weather-balloon scenarios we’ve just described, because 
we’re working in more than three dimensions. Any “vertical line” is perpendicular to each of the independent-
variable axes, and parallel to the dependent-variable axis Cartesian four-space or Cartesian five-space.

To see if a relation with three or more independent variables is a true function, we must rely on math-
ematics and intuition. Sometimes this is easy, and sometimes it’s hard. We know that it’s impossible to have 
more than one wind speed at any place and time. But in a pure-mathematics situation with no physical 
analogy, it can be difficult to test a relation to see if it’s a true function.

Two Independent Variables
If we want to find the derivative of a function f  (x,y ), we can try to differentiate f with respect 
to x alone or with respect to y alone. If we’re successful, the results are called partial derivatives.
If it’s impossible to find both of the partial derivatives, then we must conclude that f  (x,y ) isn’t 
entirely differentiable.

“Slope” of a surface at a point

Examine Fig. 24-1 again. Imagine that we want to find the slope at a particular point on the 
surface. On most surfaces, there are infinitely many tangent lines at any specific point. All of 
those lines lie in a single tangent plane. The surface “rests on” the tangent plane the way a ball 
rests on a floor.

If we want to fully define the “slope” of a surface at a point, we must define the orientation 
of the plane tangent to the surface at that point. This can be done by calculating the direction 
numbers of a line passing through the point perpendicular to the tangent plane. That’s a little 
complicated, but we don’t have to worry about it here.

We can partially define the “slope” of the surface at a point by cutting through that surface 
with a flat plane perpendicular to any of the three coordinate axes. When we do that, we get 
curves. Note that:

• Any plane perpendicular to the y axis is parallel to the xz-plane.
• Any plane perpendicular to the x axis is parallel to the yz-plane.
• Any plane perpendicular to the z axis is parallel to the xy-plane.
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If we have z = f  (x,y ), then we’re interested in planes of the first or second types. A plane of 
the first type lets us define z as a function of x for some fixed value of y. A plane of the second 
type allows us to define z as a function of y for some fixed value of x. If both of these partial 
functions are differentiable, we can find the partial derivatives of f  (x,y ).

Derivative with respect to x

Let’s slice the surface in Fig. 24-1 with a flat plane parallel to the xz-plane. There are infinitely 
many such planes to choose from, all perpendicular to the y axis and passing through some 
point on that axis. Any plane that intersects the surface does so along a curve. If we select one 
of the planes parallel to the xz-plane and stay within it, then we can find the derivative dz /dx
for the intersection curve in that plane. Figure 24-2 illustrates an example. If we select another 
plane parallel to the xz-plane, then we can find dz /dx for the new curve.

We can find the general partial derivative of f with respect to x if we treat y as a constant. 
(This can be tricky, because we’re used to thinking of y as a variable.) General partial deriva-
tives are written like the general derivatives of single-variable functions, but using a “curly d”
instead of an ordinary d to represent a differential. We can write the general partial derivative 
of f with respect to x in any of the following ways:

∂z /∂x
∂f  (x,y )/∂x

∂f /∂x
∂/∂x f  (x,y )

∂/∂x f
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Figure 24-2  Graph showing a partial derivative of z = f  (x,y ) 
with respect to x at a point P on the surface.



If we select a point P on the curve, then we can figure out the slope of the line through P
tangent to the curve in a plane perpendicular to the y axis. This is a partial derivative of f   with 
respect to x at the point P.

Derivative with respect to y

Now suppose we take the surface shown in Fig. 24-1 and slice it with a flat plane parallel to 
the yz-plane. Once again, there are infinitely many such planes. They are all perpendicular 
to the x axis, and they all go through some point on that axis. As before, any such plane 
that intersects the surface does so along a curve. If we choose one of these planes and work 
entirely in it, then we can find dz /dy for the curve where the plane and the surface intersect. 
If we move our reference plane back and forth, always keeping it parallel to the yz-plane and 
perpendicular to the x axis, we get other curves with other derivatives. Figure 24-3 shows 
one such scenario.

If we treat x as a constant, we can work out the general partial derivative of f   with respect 
to y. In the situation we’re dealing with now, we can write the partial derivative of f   with 
respect to y in any of these formats:

∂z /∂y
∂f  (x,y )/∂y

∂f /∂y
∂/∂y f  (x,y )

∂/∂y f
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If we choose a particular point Q on the curve, then we can figure out the slope of the line 
through Q tangent to the curve in a plane perpendicular to the x axis. This is a partial deriva-
tive of f   with respect to y at P.

Example

Let’s look at a simple function in which the domain is a set of real-number ordered pairs (x,y ), 
and the range is a set of real numbers z. We will derive the general partial derivatives ∂z /∂x
and ∂z /∂y. Here’s the function:

z = f  (x,y ) = x 3y 5

To differentiate f with respect to x, we treat y as a constant and x as the independent variable. 
Because y is a constant, so is y5. The partial derivative with respect to x is therefore

∂z /∂x = 3x 2y 5

To differentiate f   with respect to y, we treat x as a constant and y as the independent variable. 
Because x is a constant, so is x 3. The partial derivative with respect to y is therefore

∂z /∂y = 5x 3y 4

Are you confused?
Do you wonder which rules for single-variable differentiation also work for partial differentiation? Two 
of the rules that we learned in Part 1 can be expanded to create three tools that can help us find partial 
derivatives.
The multiplication-by-constant rule for partial derivatives says:

• If we take the partial derivative of a multi-variable function after it has been multiplied by a con-
stant, we get the same result as we do if we take the partial derivative of the function and then
multiply by the constant, as long as we differentiate with respect to the same variable both times.

The sum rule for partial derivatives tells us this:

• The partial derivative of the sum of two or more multi-variable functions is equal to the sum of 
their partial derivatives, as long as all the partial derivatives are found with respect to the same 
variable.

We can combine these two rules to obtain the difference rule for two partial derivatives, which says:

• The partial derivative of the difference between two multi-variable functions is equal to the differ-
ence between their partial derivatives, as long as both partial derivatives are found with respect to 
the same variable, and as long as we keep the subtraction in the same order.
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Another example

Let’s derive the general partial derivatives ∂z /∂x and ∂z /∂y for the two-variable polynomial 
function

z = f  (x,y ) = 5x5 + 2x 2y−2 + 4xy3

To differentiate with respect to x, we treat y as a constant. The derivative of the first term with 
respect to x is easy to find, because y doesn’t appear there at all; it’s 25x 4. In the second term, 
x 2 is multiplied by the product of 2 and y−2, so its derivative with respect to x is equal to 2x
times 2y−2, which is 4xy−2. In the third term, x is multiplied by the product of 4 and y3, so 
its derivative with respect to x is equal to 1 times 4y3, which is 4y3. When we add these three 
derivatives, we get

∂z /∂x = 25x 4 + 4xy−2 + 4y3

To differentiate f  (x,y ) with respect to y, we hold x constant. The derivative of the first term 
with respect to y is 0. That’s because x is a constant, so 5x 5 is also a constant, and the derivative 
of a constant is always 0. In second term, 2x 2 is a constant, so the derivative with respect to y is 
equal to 2x 2 times −2y −3, which is −4x 2y −3. In the third term, 4x is a constant, so the derivative 
with respect to y is equal to 4x times 3y 2, which is 12xy 2. Adding these results, we get

∂z /∂y = 0 + (−4x 2y −3) + 12xy 2 = −4x 2y −3 + 12xy 2

Here’s a challenge!
For the function stated in the last example, find the derivative with respect to x at the point (x,y ) = (1,−2).
Mathematically, we write this as

∂/∂x (1,−2)

Then find the derivative with respect to y at the point (x,y ) = (2,3), which we formally write as

∂/∂y (2,3)

Solution
To find ∂/∂x (1,−2), we plug in the values x = 1 and y = −2 to the general derivative formula

∂z /∂x = 25x 4 + 4xy−2 + 4y3

Working out the arithmetic, we obtain

∂/∂x (1,−2) = 25 · 14 + 4 · 1 · (−2)−2 + 4 · (−2)3 = 25 + 1 + (−32) = −6
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To find ∂/∂y (2,3), we plug in x = 2 and y = 3 to the general derivative formula

∂z /∂y = −4x 2y−3 + 12xy 2

The arithmetic yields

∂/∂y (2,3) = −4 · 22 · 3−3 + 12 · 2 · 32 = −16/27 + 216 = 5,816 / 27

Three Independent Variables
If we want to differentiate a function that has three independent variables, say w = g (x,y,z ), 
we can try to differentiate with respect to x, with respect to y, or with respect to z. If we suc-
ceed at these tasks, we obtain partial derivatives. If it’s impossible to find all three of the partial 
derivatives, then g is not fully differentiable.

Derivatives with respect to x, y, and z

We can find the general partial derivative of a function w = g (x,y,z ) with respect to x if we 
treat both y and z as constants. It’s written in one of these ways:

∂w /∂x
∂g (x,y,z )/∂x

∂g /∂x
∂/∂x g (x,y,z )

∂/∂x g

The same thing can be done with the other two independent variables. If we hold x and z
constant, we can find the partial derivative with respect to y. If we hold x and y constant, we 
can work out the partial derivative with respect to z. The same notations as those above can 
be used for these partial derivatives. Simply replace every occurrence of ∂x with either ∂y or 
∂z, as applicable.

Example

Let’s find ∂w /∂x, ∂w /∂y, and ∂w /∂z for the following function g. The domain is a set of real-
number ordered triples (x,y,z ), and the range is a set of real numbers w.

w = g (x,y,z ) = x 3y−1z 2

To figure out ∂w /∂x, we hold y and z constant and let x be the independent variable. When we 
do that, y−1z 2 is a constant, because it’s the result of arithmetic operations on other constants. 
The derivative with respect to x is therefore

∂w /∂x = 3x 2y−1z 2
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To find ∂w /∂y, we keep x and z constant and think of y as the independent variable. In that 
case, x 3z 2 is a constant, so we have

∂w/∂y = −x 3y−2z 2

To determine ∂w /∂z, we hold x and y constant and consider z as the independent variable. 
This means that x 3y−1 is a constant, so we obtain

∂w/∂z = 2x 3y−1z

Another example

Now we’ll find ∂w /∂x, ∂w /∂y, and ∂w /∂z for a more complicated function h. The domain is, as 
before, a set of real-number ordered triples (x,y,z ), and the range is a set of real numbers w.

w = h (x,y,z ) = 2e xy −2e z + 4xyz

To figure out ∂w /∂x, we hold y and z constant and think of x as the independent variable. 
In the first term, y −2e z is a constant, so the derivative with respect to x is 2e xy −2e z. In the 
second term, yz is a constant, so the derivative with respect to x is 4yz. Adding these two 
results gives us

∂w/∂x = 2e xy −2e z + 4yz

To find ∂w/∂y, we keep x and z constant, while y is the independent variable. The first term 
has the constant 2e xe z, so its derivative with respect to y is −4e xy −3e z. In the second term, 4xz
is a constant, so the derivative with respect to y is 4xz. Adding, we get

∂w/∂y = −4e xy −3e z + 4xz

To figure out ∂w/∂z, we hold x and y constant and let z be the independent variable. In the 
first term, 2e xy −2 is a constant, so the derivative with respect to z is 2e xy −2e z. In the second 
term, 4xy is a constant, so the derivative with respect to z is 4xy. Adding yields

∂w/∂z = 2e xy −2e z + 4xy

Are you confused?
Do you wonder what happens when y = 0 in either of the previous examples? In both situations, there’s 
a factor where y is raised to a negative-integer power, so if we input y = 0, we get an undefined quantity. 
Both functions have singularities. Because neither g nor h is defined at any point where y = 0, none of their 
partial derivatives are defined at such points.
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Here’s a challenge!
Find all three partial derivatives at the point (x,y,z ) = (2,3,4) for the function in the first example we 
worked out above:

w = g (x,y,z )  = x 3y−1z 2

Solution
To work out ∂/∂x (2,3,4), we input x = 2, y = 3, and z = 4 to the general partial derivative ∂w /∂x. That 
derivative is

∂w /∂x = 3x 2y−1z 2

Working out the arithmetic, we get

∂/∂x (2,3,4) = 3 · 22 · 3−1 · 42 = 3 · 4 · (1/3) · 16 = 64

To find ∂/∂y (2,3,4), we input x = 2, y = 3, and z = 4 to the general partial derivative ∂w /∂y. That deriva-
tive is

∂w/∂y = −x 3y−2z 2

When we work out the arithmetic, we get

∂/∂y (2,3,4) = −(23) · 3−2 · 42 = −8 · (1/9) · 16 = −128/9

To calculate ∂/∂z (2,3,4), we input x = 2, y = 3, and z = 4 to the formula for ∂w /∂z. That derivative is

∂w/∂z = 2x 3y−1z

Doing the arithmetic, we obtain

∂/∂z (2,3,4) = 2 · 23 · 3−1 · 4 = 2 · 8 · (1/3) · 4 = 64/3

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.  Look back at Fig. 24-1. Suppose that we call y the dependent variable, so the surface 
defines

y = g (x,z )

    where x and z are the independent variables. Is g a true function? Why or why not?



 2. In Fig. 24-1, suppose that we call x the dependent variable, so the surface defines

x = h (y,z )

    where y and z are the independent variables. Is h a true function? Why or why not?

 3.  Consider the following function, in which the domain is a set of real ordered pairs (x,y ), 
and the range is a set of real z’s. Find the general partial derivative ∂z /∂x.

z = f  (x,y ) = −x 2 + 2xy + 4y3

 4. Find the general partial derivative ∂z /∂y of the function stated in Prob. 3.

 5. For the function stated in Prob. 3, find ∂/∂x (1,1) and ∂/∂y (1,1).

 6. For the function stated in Prob. 3, find ∂/∂x (−2,−3) and ∂/∂y (−2,−3).

 7.  Consider the following function, in which the domain is a set of real ordered triples 
(x,y,z ), and the range is a set of reals w. Find the general partial derivative ∂w/∂x.

w = g (x,y,z )  = xy ln |z | − 2x 2y3z 4

 8. Find the general partial derivative ∂w/∂y of the function stated in Prob. 7.

 9. Find the general partial derivative ∂w/∂z of the function stated in Prob. 7.

10. For the function stated in Prob. 7, find these three specific partial derivatives:

∂/∂x (−1,2,e )
∂/∂y (−2,−1,2e )
∂/∂z (1,−2,0)
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25

Second Partial Derivatives

We can differentiate single-variable functions more than once, as we have seen. The same is 
true with multi-variable functions. In this chapter, we’ll learn how to partially differentiate 
two-variable and three-variable functions twice in succession.

Two Variables, Second Partials
Imagine a function f of two real-number input variables x and y, giving us a real-number 
output z:

z = f  (x,y )

We can differentiate f   twice with respect to x or twice with respect to y, getting new functions 
of those variables. The new functions are called simple second partial derivatives, or second
partials.

Second partials relative to x or y

To determine the second partial of f   with respect to x, we must treat y as a constant, dif-
ferentiate with respect to x as we learned to do in Chap. 24, and then differentiate with 
respect to x again. The second partial of f   with respect to x can be denoted in any of the 
following ways:

∂2z /∂x 2

∂2f  (x,y)/∂x 2

∂2f  /∂x 2

∂2/∂x 2 f  (x,y )
∂2/∂x 2 f



If we treat x as a constant, then we can generate the second partial of f   with respect to y. First, 
we work out ∂z /∂y, and then we differentiate that function with respect to y. This second 
partial can be represented by any of the following expressions:

∂2z /∂y 2

∂2f  (x,y )/∂y 2

∂2f  /∂y 2

∂2/∂y 2 f  (x,y )
∂2/∂y 2 f

We’ll use the first notations in these lists, assuming that the independent variables are x and y,
and the dependent variable is z.

Example

Let’s find both of the second partials, ∂2z /∂x 2 and ∂2z /∂y 2, of the monomial function

z = f  (x,y ) = x 3y 5

We worked out the first partial with respect to x in Chap. 24 by holding y constant, getting

∂z /∂x = 3x 2y 5

To find the second partial with respect to x, we keep holding y constant, and then we differ-
entiate with respect to x  again. Because y is a constant, so is y 5. Therefore

∂2z /∂x 2 = 6xy 5

The first partial with respect to y, as we found in Chap. 24, was derived by holding x constant 
and differentiating with respect to y. We obtained

∂z /∂y = 5x 3y 4

To figure out the second partial with respect to y, we keep treating x as a constant and differ-
entiate relative to y again. Because x is a constant, so is 5x 3. Therefore

∂2z /∂y 2 = 20x 3y 3

Are you confused?
It’s reasonable to wonder whether the multiplication-by-constant rule, the sum rule, and the difference 
rule for first partial derivatives also apply to second partials. They do, under certain conditions.
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The multiplication-by-constant rule for second partials says:

• If we take the second partial of a multi-variable function after it has been multiplied by a constant, 
we get the same result as we do if we take the second partial of the function and then multiply by 
the constant, as long as we differentiate with respect to the same variable throughout the process.

The sum rule for second partials says:

• The second partial of the sum of two or more multi-variable functions is equal to the sum of their 
second partials, as long as all the partial derivatives are found with respect to the same variable.

The difference rule for second partials says:

• The second partial of the difference between two multi-variable functions is equal to the differ-
ence between their second partials, as long as we differentiate with respect to the same variable 
throughout the process, and as long as we keep the subtraction in the same order.

Another example

Let’s derive the second partials ∂2z /∂x 2 and ∂2z /∂y 2 of the polynomial function

z = f  (x,y ) = 5x5 + 2x 2y −2 + 4xy 3

In Chap. 24, we differentiated this function term-by-term with respect to x to get the first partial

∂z /∂x = 25x 4 + 4xy −2 + 4y 3

Let’s continue to hold y constant and differentiate with respect to x again. In the first term, the 
constant is 25. In the second term, the constant is 4y −2. The third term is a pure constant, 4y 3,
so it will disappear when we differentiate it with respect to x. Working through, we get

∂2z /∂x 2 = 100x 3 + 4y −2 + 0 = 100x 3 + 4y −2

The first partial of the original function f with respect to y, as we found in Chap. 24, is

∂z /∂y = −4x 2y−3 + 12xy 2

We keep treating x as a constant, and we differentiate the first partial relative to y. In the first 
term, −4x 2 is a constant. In the second term, 12x is a constant. We therefore have

∂2z /∂y 2 = 12x 2y −4 + 24xy

Here’s a challenge!
For the original function f in the example we just finished, find the specific second partial with respect to x
at the point (x,y ) = (1,−2). We denote this as

∂2/∂x 2 (1,−2)



Then find the specific second partial with respect to y at the point (x,y ) = (2,1). We denote this as

∂2/∂y 2 (2,1)

Solution
To find the second partial with respect to x at (1,−2), we input x = 1 and y = −2 to the general formula

∂2z /∂x 2 = 100x 3 + 4y −2

Calculating, we get

∂2/∂x 2 (1,−2) = 100 · 13 + 4 · (−2)−2 = 100 + 1 = 101

To find ∂2/∂y 2 (2,1), we input x = 2 and y = 1 to the general formula

∂2z /∂y 2 = 12x 2y −4 + 24xy

The arithmetic gives us

∂2/∂y 2 (2,1) = 12 · 22 · 1−4 + 24 · 2 · 1 = 48 + 48 = 96

Two Variables, Mixed Partials
Once again, let’s consider a function f  of two real-number inputs x and y, giving us a real-
number output z, so

z = f  (x,y )

We’ve seen what happens when we differentiate f  twice with respect to x or y. But we can dif-
ferentiate f   with respect to x and then differentiate ∂z /∂x relative to y. Alternatively, we can 
differentiate f   relative to y and then differentiate ∂z /∂y relative to x. If we do either of these 
things, we get a general mixed second partial derivative, also called a mixed partial.

Differentiating with respect to x and then y

When we work out the mixed partial of f  with respect to x and then y, we can write the result as

∂/∂y (∂z /∂x )

assuming, of course, that we use the names of the function and the variables so that

z = f  (x,y )
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This same mixed partial can be denoted in other ways, too, such as:

∂2z /∂y∂x
∂2f  (x,y )/∂y∂x

∂2f /∂y∂x
∂2/∂y∂x f  (x,y )

∂2/∂y∂x f

Are you confused?
In the denominators of the above differential ratios, the variables appear in reverse order from the way the 
differentiation is done. Although we differentiate with respect to x and then with respect to y, the denomi-
nator says ∂y ∂x. This is nothing more than a notational convention, but it can be confusing.

Differentiating with respect to y and then x

We can go the other way as well. First, we work out ∂z /∂y, and then we differentiate that 
function with respect to x. This second partial can be represented by any of the following 
expressions:

∂/∂z (∂x /∂y)
∂2z /∂x∂y

∂2f  (x,y)/∂x∂y
∂2f  /∂x∂y

∂2/∂x∂y f  (x,y )
∂2/∂x∂y f

Again, the variables in the denominators of the differential ratios appear backward from the 
way we do the differentiation. We differentiate with respect to y and then x, but the denomi-
nator says ∂x∂y.

Example

Let’s find the two mixed partials, ∂2z /∂y∂x and ∂2z /∂x∂y, of a function that we’ve worked 
with before:

z = f  (x,y ) = x 3y 5

To find ∂2z /∂y∂x, we differentiate f with respect to x, and then differentiate the resulting 
function with respect to y. The first partial derivative with respect to x is

∂z /∂x = 3x 2y 5



To differentiate relative to y, we hold x constant in ∂z /∂x. That makes 3x 2 a constant, so we 
have

∂2z /∂y∂x = 15x 2y 4

To find ∂2z /∂x∂y, we differentiate f  relative to y, and then differentiate the resulting function 
relative to x. We’ve already seen that

∂z /∂y = 5x 3y 4

To differentiate with respect to x, we hold y constant in ∂z /∂y. That means y 4 is a constant, 
so

∂2z /∂x∂y = 15x 2y 4

The two mixed partials are the same. Do you think this is mere happenstance? Let’s try another 
example and see if the coincidence occurs again.

Another example

Let’s find the two mixed partials, ∂2z /∂y∂x and ∂2z /∂x∂y, of the trinomial function we’ve 
worked with before:

z = f  (x,y ) = 5x 5 + 2x 2y −2 + 4xy 3

The first partial relative to x, which we’ve already found, is

∂z /∂x = 25x 4 + 4xy −2 + 4y 3

Now we hold x constant in ∂z /∂x and differentiate with respect to y, getting

∂2z /∂y∂x = 0 − 8xy −3 + 12y 2 = −8xy −3 + 12y 2

To find ∂2z /∂x∂y, we differentiate relative to y and then relative to x. We’ve seen that

∂z /∂y = −4x 2y −3 + 12xy 2

To find the derivative of this function with respect to x, we hold y constant, getting

∂2z /∂x∂y = −8xy −3 + 12y 2

The two mixed partials are the same again!

A theorem

If you like, make up several two-variable functions and find their mixed partials “both ways.” 
If you work out all the derivatives correctly, you’ll see that the mixed partials are always the 
same, regardless of which variable you differentiate against (that is, with respect to) first. 
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Mathematicians have proved that this is always the case. It’s an important theorem in the 
calculus of two-variable functions.

Here’s a challenge!
For the original function f in the example we just finished, calculate the value of the mixed partial 
∂2z /∂y∂x at the point (x,y ) = (3,1). We denote this as

∂2/∂y∂x (3,1)

Then find the value of the mixed partial ∂2z /∂x∂y at the point (x,y ) = (2,0), written as

∂2/∂x∂y (2,0)

Solution
To find ∂2/∂y ∂x (3,1), we input x = 3 and y = 1 to the general formula

∂2z /∂y∂x = −8xy −3 + 12y 2

The arithmetic yields

∂2/∂y∂x (3,1) = −8 · 3 · 1−3 + 12 · 12 = −24 + 12 = −12

To find ∂2/∂x∂y (2,0), we plug in x = 2 and y = 0 to the general formula

∂2z /∂x∂y = −8xy −3 + 12y 2

The arithmetic gives us

∂2/∂x ∂y (2,0) = −8 · 2 · 0−3 + 12 · 02

The first term contains 0 to the −3 power. That’s undefined, so the entire expression is undefined at the 
point (x,y ) = (2,0). In fact, the mixed partials are undefined at any point where y = 0.

Three Variables, Second Partials
Let’s see what happens when we differentiate a three-variable function twice. As we did in 
Chap. 24, let’s name the function and variables

w = g (x,y,z )

We can try to differentiate twice with respect to x, twice with respect to y, or twice with respect 
to z. If all the functions are differentiable, we will obtain second partials.
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Second partials with respect to x, y, or z

We can find the second partial of g with respect to x if we treat both y and z as constants, and 
then differentiate against x twice in succession. The expression for this second partial can be 
written in any of these forms:

∂2w/∂x 2

∂2g (x,y,z)/∂x 2

∂2g/∂x 2

∂2/∂x 2 g (x,y,z )
∂2/∂x 2 g

If we hold x and z constant, we can find the second partial with respect to y, and denote it in 
any of these ways:

∂2w/∂y 2

∂2g (x,y,z )/∂y 2

∂2g /∂y 2

∂2/∂y 2 g (x,y,z )
∂2/∂y 2 g

If we hold x and y constant, we can find the second partial relative to z. As you can guess, we 
can denote this in any of the following formats:

∂2w/∂z 2

∂2g (x,y,z )/∂z 2

∂2g /∂z 2

∂2/∂z 2 g (x,y,z )
∂2/∂z 2 g

As we did earlier in this chapter, we will use the first notations in these lists, remembering that 
we’re calling x, y, and z the independent variables, while w is the dependent variable.

Example

Let’s find ∂2w/∂x 2, ∂2w/∂y 2, and ∂2w/∂z 2 for the function we worked with in the first three-
variable example in Chap. 24:

w = g (x,y,z ) = x 3y −1z 2

We found ∂w/∂x by treating y and z as constants and differentiating the function relative to 
x. That gave us

∂w/∂x = 3x 2y −1z 2
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Continuing to hold y and z constant, we can differentiate with respect to x again, getting

∂2w/∂x 2 = 6xy −1z 2

We determined ∂w/∂y by holding x and z constant. Differentiating against y, we got

∂w/∂y = −x 3y −2z 2

When we keep treating x and z as constants, differentiating relative to y again yields

∂2w/∂y 2 = 2x 3y −3z 2

We figured out ∂w/∂z by holding x and y constant and differentiating against z, getting

∂w/∂z = 2x 3y −1z

Maintaining x and y as constants, we can differentiate against z again to get

∂2w/∂z 2 = 2x 3y −1

Another example

Now we’ll find ∂2w/∂x 2, ∂2w/∂y 2, and ∂2w/∂z 2 for the function we worked with in the second 
three-variable example in Chap. 24:

w = h (x,y,z ) = 2e xy −2e z + 4xyz

The first partial of the original function relative to x is

∂w/∂x = 2e xy −2e z + 4yz

We keep holding y and z constant, differentiating with respect to x again to get

∂2w/∂x 2 = 2e xy −2e z + 0 = 2e xy −2e z

The first partial of the original function relative to y is

∂w/∂y = −4e xy −3e z + 4xz

Continuing to hold x and z constant, we differentiate relative to y again, obtaining

∂2w/∂y 2 =  12e xy −4e z + 0 =  12e xy −4e z

The first partial of the original function relative to z is

∂w/∂z = 2e xy −2e z + 4xy
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If we keep treating x and y as constants, differentiating against z again gives us

∂2w/∂z 2 = 2e xy −2e z + 0 = 2e xy −2e z

Are you confused?
It’s easy to become frustrated by the fancy notation in expressions such as those we’ve been working with 
in this chapter. The situation is rarely as complicated as it looks. Remember these things, and you’ll have 
a minimum of trouble.

• Once you decide which variable you’re differentiating against, then any combination of the other 
variables should be treated as a constant, just as if it were a real number.

• The derivative of a constant times the variable you’re differentiating against is always equal to that 
constant, all by itself.

• The derivative of a constant alone is always equal to 0.

Here’s a challenge!
Find all three simple second partials at the point (x,y,z ) = (2,3,4) for the function in the first example we 
worked out above:

w = g (x,y,z ) = x 3y −1z 2

Solution
To work out ∂2/∂x 2 (2,3,4), we input x = 2, y = 3, and z = 4 to

∂2w/∂x 2 = 6xy −1z 2

Doing the arithmetic, we get

∂2/∂x 2 (2,3,4) = 6 · 2 · 3−1 · 42 = 6 · 2 · (1/3) · 16 = 64

To find ∂2/∂y2 (2,3,4), we input x = 2, y = 3, and z = 4 to

∂2w/∂y 2 = 2x 3y −3z 2

Calculating, we obtain

∂2/∂y 2 (2,3,4) = 2 · 23 · 3−3 · 42 = 2 · 8 · (1/27) · 16 = 256/27

To determine ∂2/∂z 2 (2,3,4), we input x = 2, y = 3, and z = 4 to

∂2w/∂z 2 = 2x 3y −1
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Working it out, we get

∂2/∂z 2 (2,3,4) = 2 · 23 · 3−1 = 2 · 8 · (1/3) = 16/3

Three Variables, Mixed Partials
When we differentiate a three-variable function twice, we can differentiate against one vari-
able and then another. In that case, we get a mixed partial.

Six ways to mix

There are six different ways we can find mixed second partials of a three-variable function. 
Here they are, along with the notations. Let’s call the independent variables x, y, and z, and 
let’s call the dependent variable w.

• We can differentiate against x and then y to get ∂2w/∂y∂x.
• We can differentiate against x and then z to get ∂2w/∂z∂x.
• We can differentiate against y and then x to get ∂2w/∂x∂y.
• We can differentiate against y and then z to get ∂2w/∂z∂y.
• We can differentiate against z and then x to get ∂2w/∂x∂z.
• We can differentiate against z and then y to get ∂2w/∂y∂z.

Are you confused?
As with mixed partials in two-variable functions, the sequence of differentials in the denominators can be 
misleading. Don’t be fooled! They go in the opposite order from the way we usually read text. For example, 
∂2w/∂z∂y means that we differentiate with respect to y first, and then with respect to z.

Example

Let’s look again at the monomial function g for which we found the simple second partials. 
This time, we’ll determine all six of the mixed second partials. Here’s the original function for 
reference:

w = g (x,y,z ) = x 3y −1z 2

The first partial of the original function relative to x is

∂w/∂x = 3x 2y −1z 2

To differentiate ∂w/∂x against y, we hold x and z constant, getting

∂2w/∂y∂x = −3x 2y −2z 2



To differentiate ∂w/∂x against z, we hold x and y constant, getting

∂2w/∂z∂x = 6x 2y −1z

The first partial of the original function relative to y is

∂w/∂y = −x 3y −2z 2

To differentiate ∂w/∂y against x, we hold y and z constant, getting

∂2w/∂x∂y = −3x 2y −2z 2

To differentiate ∂w/∂y against z, we hold x and y constant, getting

∂2w/∂z∂y = −2x 3y −2z

The first partial of the original function relative to z is

∂w/∂z = 2x 3y −1z

To differentiate ∂w/∂z against x, we hold y and z constant, getting

∂2w/∂x∂z = 6x 2y −1z

To differentiate ∂w/∂z against y, we hold x and z constant, getting

∂2w/∂y∂z = −2x 3y −2z

Here’s a challenge!
Find the six mixed second partials for the binomial three-variable function h that we’ve worked with a 
couple of times already. Here’s the function again, for reference:

w = h (x,y,z ) = 2e xy −2e z + 4xyz

Solution
This problem is a little bit tedious, but it’s tricky. We have many opportunities to make a mistake, but only 
one way to get it right! The first partial of the original function relative to x is

∂w/∂x = 2e xy −2e z + 4yz

To differentiate ∂w/∂x against y, we hold x and z constant to get

∂2w/∂y∂x = −4e xy −3e z + 4z
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To differentiate ∂w/∂x against z, we hold x and y constant to get

∂2w/∂z∂x = 2e xy −2e z + 4y

The first partial of the original function relative to y is

∂w/∂y = −4e xy −3e z + 4xz

To differentiate ∂w/∂y against x, we hold y and z constant to get

∂2w/∂x∂y = −4e xy −3e z + 4z

To differentiate ∂w/∂y against z, we hold x and y constant to get

∂2w/∂z∂y = −4e xy −3e z + 4x

The first partial of the original function relative to z is

∂w/∂z = 2e xy −2e z + 4xy

To differentiate ∂w/∂z against x, we hold y and z constant to get

∂2w/∂x∂z = 2e xy −2e z + 4y

To differentiate ∂w/∂z against y, we hold x and z constant to get

∂2w/∂y∂z = −4e xy −3e z + 4x

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.  Consider the following function, in which the domain is a set of real ordered pairs (x,y ),
and the range is a set of reals z. Find the second partial ∂2z /∂x 2.

z = f  (x,y ) = −x 2 + 2xy + 4y 3

 2. Find the second partial ∂2z /∂y 2 of the function stated in Prob. 1.

 3.  Find the specific second partials ∂2/∂x 2 (3,2) and ∂2/∂y2 (3,2) of the function stated in 
Prob. 1.



 4. Find the mixed second partial ∂2z /∂y∂x of the function stated in Prob. 1.

 5.  Find the mixed second partial ∂2z /∂x∂y of the function stated in Prob. 1.

 6.  Find the specific mixed partials ∂2/∂y∂x (3,2) and ∂2/∂x∂y (3,2) of the function stated 
in Prob. 1.

 7.  Consider the following function, in which the domain is a set of real ordered triples 
(x,y,z ), and the range is a set of reals w. Find ∂2w/∂x 2, ∂2w/∂y 2, and ∂2w/∂z 2.

w = g (x,y,z ) = xy ln |z | − 2x 2y 3z 4

 8. For the function stated in Prob. 7, find these three specific second partials:

∂2/∂x 2 (−1,2,e )
∂2/∂y 2 (−2,−1,2e )
∂2/∂z 2 (1,−2,0)

 9. Find all six mixed second partials for the function stated in Prob. 7.

 10.  Find all six specific mixed second partials for the function stated in Prob. 7, at the point 
where (x,y,z ) = (1,2,e ).
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CHAPTER

26

Surface-Area and Volume Integrals

In Part 2, we used integration to find areas of flat surfaces. Integration can also help us deter-
mine surface areas and volumes of solids in three dimensions (3D). In this chapter, we’ll see 
how this technique works with cylinders, cones, spheres, and prisms.

A Cylinder
Figure 26-1 shows a cylinder in Cartesian three-space. The cylinder is lying on its side, so 
its left-hand face is in the yz-plane, with the center at the origin. The axis of the cylinder lies 
along the x axis. The right-hand face is h units to the right of the left-hand face. The radius is r.
This is a right circular cylinder, meaning that the end faces are circles oriented at right angles 
to the axis.

Circumference vs. displacement

Imagine that we uniformly slice the outer shell into cylindrical cross-sectional bands, 
each of width Δx. We increase the number of bands indefinitely, so their widths become 
infinitesimals dx and they approach true geometric circles. These circles all lie in planes 
parallel to the end faces, and they all have radius r. Their circumferences are therefore 
equal to 2pr. The circumference of any particular cross-sectional circle is a function 
f of the displacement x to the right of the cylinder’s left-hand face. It’s a constant 
function:

f  (x )  = 2pr

because it doesn’t depend on where the center of the circle is located on the x axis.

Lateral-surface area integral

To find the lateral-surface area A of the cylinder (the area of the sleeve only, not includ-
ing either end face), we can integrate f  along the length of the cylinder from its left-hand 



face where x = 0 to its right-hand face where x = h. When we set up the integral, it comes 
out as

A =
0

h

∫ 2pr dx

The basic antiderivative is

F  (x ) = 2prx

When we evaluate F from x = 0 to x = h, we get

A = 2prx
0

h

]  = 2prh − 2pr · 0 = 2prh

This is familiar! We recognize it from basic geometry as the formula for the lateral-surface area 
of a cylinder in terms of its radius r and its length h.

Cross-sectional area vs. displacement

Let’s cut the cylinder uniformly into cross-sectional slices again. As before, we make the num-
ber of slices approach infinity. But now, instead of slicing through the sleeve, we cut through 
the interior. This produces coin-like slabs parallel to the cylinder faces. Every slab has equal 
thickness Δ x. As the number of slabs approaches infinity, their thicknesses become differen-
tials dx which become arbitrarily close to 0. The slabs approach two-dimensional (2D) disks 
of radius r and area pr 2. As we did with the circular slices, we can think of the area of any 

A Cylinder  443

h

r

Circular slice:
Circumference
= 2pr

= pr 2
Disk area

+x–x

+z

–z

–y

Figure 26-1  Integration can be used to find the lateral-surface 
area and volume of a cylinder.
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particular disk as a function g of its displacement x to the right of the cylinder’s left-hand face. 
This is a constant function:

g (x ) = pr 2

Volume integral

To find the volume V of the cylinder, we integrate g along the entire length, just as we did with 
the function f  for the circles. We start at the left-hand face where x = 0, and travel along the 
x axis until we reach the right-hand face where x = h. That gives us

V =
0

h

∫ pr 2 dx

The basic antiderivative is

G (x ) = pr 2x

When we evaluate G from x = 0 to x = h, we get

V = pr 2x
0

h

]  = pr 2h − pr 2 · 0 = pr 2h

This is the formula for the volume of a cylinder that we learned in 3D geometry.

Are you confused?
Do you wonder how we can add up circumferences to get area, or add up areas to get volume? How do we 
get the extra dimensions? The answer is that we’re not adding circumferences or areas in the conventional 
sense. We’re taking advantage of the same mathematical trick that Riemann used with rectangles to figure 
out the areas defined by curves in the Cartesian plane.

To determine the surface area of a cylinder, we stack infinitely many infinitely thin bands to get the 
cylinder shell. To get the volume, we stack infinitely many infinitely thin slabs to get the cylinder and its 
interior. We call the bands “circles” and the slabs “disks” because, as their widths or thicknesses approach 
0, that’s what they more and more closely resemble.

A Cone
Figure 26-2 shows a cone tipped on its side, so its apex is at the origin of Cartesian xyz-space.
Its base (the flat face at the right ) is parallel to the yz-plane. The axis of the cone is a portion 
of the coordinate x axis. The base of the cone is h units from the apex. The radius of the base 
is r units. This is a right circular cone, meaning that the base is a circle oriented at a right angles 
to the axis.



Circumference vs. displacement

We can slice the cone’s shell into cross sections, and then increase the number of slices indefi-
nitely. These slices approach circles parallel to the yz-plane, perpendicular to the x axis, and 
centered on that axis. Unlike the situation with the cylinder, these circles vary in radius, 
depending on where on the x axis we center them.

The circumference of the cone’s circular base is 2pr. Any point on the edge of the base is 
s units from the apex, where s is the slant height of the cone as shown in the figure. The slant 
height is

s = (r 2 + h 2)1/2

The radius of any particular cross section is directly proportional to its distance from the apex 
as measured along the shell of the cone. Let’s call this distance t, and invent an axis for it as 
shown. This t axis can be any straight line connecting the cone’s apex with some point on the 
edge of its base. The radius of a circular slice whose edge is t units from the apex is therefore 
equal to r times t /s, so its circumference is 2p (rt /s ).

We can describe the circumference of any particular cross-sectional circle as a function 
f of the distance t between its edge and the cone’s apex. This isn’t a constant function, as with 
the cylinder. Instead, we have

f  (t ) = 2p (rt /s ) = (2pr/s )t

where 2pr/s is a constant, and t is the independent variable.
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Are you confused?
Do you wonder why we define the circumferences of our cross-sectional circles in terms of the displace-
ment t along the cone’s shell, rather than in terms of the displacement x along the cone’s axis? When we 
want to find the surface area of an object, we must integrate a function that’s defined on that surface. If we 
cut through the cone’s interior from the apex to the center of the base, the resulting distance h is less than 
the slant height s. If we try to derive the surface-area formula that way, we’ll get answers that are only h/s
of what they should be.

Slant-surface area integral

Let A be the slant-surface area of the cone (that is, the surface area not including the base). We 
can integrate f  (t ) along a straight line in the cone’s shell from the apex, where t = 0, to any 
point on the outer edge of the base, where t = s. This gives us the definite integral

A =
0

s

∫ (2pr /s )t dt

The basic antiderivative is

F  (t ) = [(2pr /s)t 2] / 2 = (pr /s )t 2

When we evaluate F from t = 0 to t = s, we get

A = (pr /s )t 2

0

s

]  = (pr /s )s 2 − (pr /s ) · 02 = prs

This formula is taught in some basic geometry courses, but not all. If you go to the Internet 
and do a search on the phrase “surface area of a cone,” you’ll find that this is indeed the for-
mula for the slant-surface area of a cone in terms of its base radius r and its slant height s. If 
you want the formula in terms of the radius and the true height h, then you can substitute the 
quantity (r 2 + h 2)1/2 in place of s, getting

A = pr (r 2 + h 2)1/2

Cross-sectional area vs. displacement

Now let’s slice up the cone through its interior, getting disks parallel to the base. Each disk has 
a radius that’s directly proportional to its distance x from the apex. The largest such disk is the 
base itself. The radius of any particular disk is equal to r times x /h, so its area is p (rx /h)2.

We can describe the area of a cross-sectional disk as a function g of its distance x between 
its center and the cone’s apex. In this situation, we travel straight through the cone rather than 
on its shell, because we’re concerned with the cone’s interior, not its surface. We have

g (x ) = p (rx /h )2 = (pr 2/h 2)x 2

where pr 2 /h2 is a constant, and x is the independent variable.



Volume integral

To find the volume V, we integrate our function g along the axis of the cone from its apex 
where x = 0 to its base where x = h. This gives us

V =
0

h

∫ (pr 2/h 2)x 2 dx

The basic antiderivative is

G (x ) = [(pr 2/h 2)x 3] / 3

When we evaluate G from x = 0 to x = h, we get

V = [(pr 2/h2)x 3] / 3
0

h

]  = [(pr 2/h 2)h 3] / 3 − [(pr 2/h 2) · 03] / 3 = pr 2h /3

This is the familiar geometric formula for the volume of a cone in terms of its base radius r
and its height h.

Here’s a challenge!
Using integration, find the slant-surface area and volume of a cone with a base radius r of 3 units and a 
height h of 4 units. Then compare these results with the values obtained using the standard geometric 
formulas.

Solution
To begin, we must find the slant height of the cone. We’re told that r = 3 and h = 4. Remembering the 
formula for slant height s in terms of r and h, we can calculate

s = (r 2 + h 2)1/2 = (32 + 42)1/2 = (9 + 16)1/2 = 251/2 = 5

The circumference of a circular slice as a function f of the distance t between its edge and the cone’s apex is

f  (t ) = (2pr /s )t = (2p · 3/5)t = (6p /5)t

To find the slant-surface area A, we must calculate

A =
0

5

∫ (6p /5)t dt

The basic antiderivative is

F  (t ) = [(6p /5)t 2] / 2 = (3p /5)t 2
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When we evaluate F from t = 0 to t = 5, we get

A = (3p /5)t 2

0

5

]  = (3p /5) · 52 − (3p /5) · 02 = (3p /5) · 25 = 15p

Using the geometric formula, we get the same result:

A = prs = p · 3 · 5 = 15p

Now let’s calculate the volume. The area of a cross-sectional disk as a function g of the distance x between 
its center and the cone’s apex is

g (x ) = (pr 2/h 2)x 2 = (p · 32/42)x 2 = (9p /16)x 2

To find the volume V, we integrate g along the axis of the cone from its apex where x = 0 to its base where 
x = 4, getting

V =
0

4

∫ (9p /16)x 2 dx

The basic antiderivative is

G (x ) = [(9p /16)x 3] / 3 = (3p /16)x 3

Evaluating G from x = 0 to x = 4, we get

V = [(3p /16)x 3

0

4

]  = (3p /16) · 43 − (3p /16) · 03 = (3p /16) · 64 = 12p

The formula from 3D geometry tells us that

V = pr 2h /3 = p · 32 · 4/3 = 12p

A Sphere
Figure 26-3 shows a sphere in Cartesian xyz-space. The center of the sphere is at the origin, 
and its radius is r. Let’s use integration to derive general formulas for the surface area and the 
volume of this sphere.

Circumference vs. arc displacement

We can slice the sphere’s outer surface into cross sections parallel to the yz-plane, and then 
force the number of slices to increase endlessly. When we have infinitely many such slices, 
each one is a circle on the sphere’s shell. Suppose we start at the far right-hand pole as shown 
in Fig. 26-3, where the sphere intersects the positive x axis. We move toward the left until we 
reach the opposite pole where the sphere intersects the negative x axis. The radius of a circular 



slice depends on its distance t, as measured over the sphere’s surface, from the starting point. 
The smallest possible distance is t = 0, and the largest possible value is t = pr, or half the 
sphere’s circumference.

We can write down a function that describes the radius of any particular cross-sectional 
circle based on the arc distance t. If we call the function f   *, we have

f   * (t ) = r sin (t /r )

Here, t /r is the angle, in radians, between any point on the circle’s edge and the far right-hand 
pole of the sphere. The circumference of such a circle is 2p times its radius. If f is the function 
that describes this circumference, then

f  (t ) = 2p f   * (t ) = 2pr sin (t /r )

Surface-area integral

To find the surface area A of the sphere, we must integrate f halfway around the sphere from 
t = 0 to t = pr. We can write that integral as

A =
0

πr

∫ 2pr sin (t /r ) dt = 2pr
0

πr

∫ sin (t /r ) dt

When we look through App. G, the table of indefinite integrals, we find the formula

∫ sin ax dx = −a−1 cos ax + c
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From this, letting a = r−1, we can infer that the basic antiderivative of the last integrand above is

F * (t ) = −r cos (t /r )

The basic antiderivative of the complete function f  is 2pr times this, or

F  (t ) = −2pr 2 cos (t /r )

When we evaluate F from t = 0 to t = pr, we get

A = −2pr 2 cos (t /r )
0

πr

]  = −2pr 2 cos p − (−2pr 2 cos 0) = 2pr 2 + 2pr 2 = 4pr 2

This is the well-known geometric formula for the surface area of a sphere in terms of its radius r.

Are you confused?
You might wonder why we follow a geodesic on the sphere’s surface instead of cutting through the sphere 
along the x axis to define the circumferences of the cross-sectional circles. (On any sphere, a geodesic is 
a circle whose center is at the center of the sphere. A geodesic, also called a great circle, is as large as any 
circle on the sphere can be. On the earth’s surface, for example, all meridians are geodesics because they 
pass through both poles.)

The situation here is similar to the case with the cone. When we use integration to figure out the 
surface area of a solid, remember that we must integrate on, or over, that surface. If we cut straight 
through the sphere, then we travel a distance equal to the sphere’s diameter, or twice the radius. But 
we want to go halfway around the sphere’s circumference. That distance is greater than the diameter 
by a factor of p/2.

Cross-sectional area vs. displacement

Imagine that we cut up the sphere into solid disks instead of circles, all parallel to the yz-plane
with their edges on the sphere’s shell (Fig. 26-4). The radius r0 of such a disk is a function of 
the x-value of the point through which its center passes. Imagine x as the base of a right tri-
angle (shown in dashed gray), r0 as its height, and r as its hypotenuse. From the Pythagorean 
theorem in geometry, we know that

x 2 + r0
2 = r 2

so therefore

r0 = (r 2 − x 2)1/2
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With this information, we can describe the area of any particular cross-sectional disk as a 
function of x. We use the formula for the area of a disk in terms of its radius. If we call our 
function g, then

g (x ) = pr0
2 = p [(r 2 − x 2)1/2]2 = p (r 2 − x 2) = pr 2 − px 2

In this situation, we travel straight through the sphere rather than over its surface. When think-
ing about volume, we’re concerned with the whole sphere, interior included, and not only the 
surface. This makes our job easier than it was when we derived the formula for the surface area. 
This time, as we integrate, we can travel a straight path instead of having to follow an arc.

Volume integral

We can define the volume V of the sphere by integrating our function g along the x axis from 
the left-hand pole of the sphere to the right-hand pole. The lower bound is therefore at the 
point where x = −r, and the upper bound is at x = r. We have

V =
−
∫
r

r

(pr 2 − px 2) dx

Keep in mind that r, the radius of the sphere, is a constant, so the basic antiderivative is

G (x ) = pr 2x − px 3/3
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When we evaluate G from x = −r to x = r, we get

V = (pr 2x − p x 3/3)
−r

r

]  = (pr 3 − pr 3/3) − (−pr 3 + pr 3/3) = 4pr 3/3

We recognize this from our courses in geometry as the formula for the volume of a sphere in 
terms of its radius r.

Here’s a challenge!
Using integration, find the surface area and volume of a sphere with a radius of 2 units. Compare the 
results with the values obtained using the formulas from 3D geometry.

Solution
As we find the surface area of the sphere, Fig. 26-3 can be helpful for reference. Remember that the cir-
cumference of a cross-sectional circle as a function of the arc displacement t is described by

f  (t ) = 2pr sin (t /r )

To find the surface area A, we integrate f halfway around the sphere from t = 0 to t = pr. We know that r = 2, so

A =
0

πr

∫ 2pr sin (t /r ) dt = 4p
0

2π

∫ sin (t /2) dt

The table of indefinite integrals (App. G) gives us the formula

∫ sin ax dx = −a−1 cos ax + c

Letting a = 1/2 and leaving out the constant of integration, we obtain

∫ sin (t /2) dt = −2 cos (t /2)

The basic antiderivative F of the complete function f  is 4p times this, or

F  (t ) = −8p cos (t /2)

When we evaluate F from t = 0 to t = 2p, we get

A = −8p cos (t /2)
0

2π

]  = −8p cos p − (−8p cos 0) = 8p + 8p = 16p

The formula from solid geometry gives us

A = 4pr 2 = 4p · 22 = 16p

Now, let’s refer to Fig. 26-4 as we work out the volume. The area of any particular cross-sectional disk, 
based on the location of its center along the x axis, is

g (x ) = pr 2 − px 2



We’ve been told that r = 2, so this function becomes

g (x ) = 4p − px 2

The sphere’s volume V is obtained by integrating the function g along the x axis from the point where x =
−2 to the point where x = 2. Therefore,

V =
−
∫
2

2

(4p − px 2) dx

The basic antiderivative is

G (x ) = 4px − px 3/3

When we evaluate G from x = −2 to x = 2, we get

   V = (4px − px 3/3)
−2

2

]  = (4p · 2 − p · 23/3) − [4p · (−2) − p · (−2)3/3]

=  (8p − 8p /3) − [−8p − (−8p /3)] = 16p /3 + 16p /3 = 32p /3

From solid geometry, we can calculate the volume as

V = 4pr 3/3 = 4p · 23/3 = 32p /3

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.  Using the integration techniques in this chapter, find the lateral-surface area of a 
cylinder with a radius of 2 units and a length of 5 units. Compare this with the result 
using the formula from 3D geometry.

 2.  Find the volume of the cylinder described in Prob. 1, first using integration, and then 
using the formula from 3D geometry.

 3.  Using integration, find the slant-surface area of a cone with a radius of 12 units and a slant 
height of 13 units. Compare this with the result using the formula from 3D geometry.

 4.  Find the volume of the cone described in Prob. 3, first using integration, and then using 
the formula from 3D geometry.

 5.  Using integration, find the surface area of a sphere with a radius of 10 units. Compare 
this with the result using the formula from 3D geometry.

 6.  Find the volume of the sphere described in Prob. 3, first using integration, and then 
using the formula from 3D geometry.
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 7.  Derive a formula for the lateral-surface area (not including either flat end face) of a 
rectangular prism using integration. Assume that the length of the prism is h, and the 
end faces are rectangles of dimensions a and b as shown in Fig. 26-5.

 8. From 3D geometry, verify that the formula derived in the solution to Prob. 7 is correct.

 9.  Derive a formula for the volume of a rectangular prism using integration. Assume that 
the length of the prism is h, and the end faces are rectangles of dimensions a and b as 
shown in Fig. 26-5.

10.  From 3D geometry, verify that the formula derived in the solution to Prob. 9 is correct.

+x–x

+z

–z

–y
h

a

b

Rectangular
cross-sectional
slice

Figure 26-5  Illustration for Practice Exercises 7 through 10.



In this chapter, we’ll develop a method of integrating single-variable functions twice in succes-
sion. Then we’ll integrate two-variable functions twice, first with respect to one variable and 
then with respect to the other.

Repeated Integrals in One Variable
Just as we can differentiate a single-variable function twice, we can integrate a single-variable func-
tion twice. We must set the constants of integration to 0 with each repetition to avoid ambiguity.

Multiple definite integrals

Let’s start out with a constant function. If we call the function f, the variable x, and the con-
stant k, then

f  (x ) = k

The indefinite integral with respect to x is

∫ k dx = kx + c

where c is the constant of integration. Suppose that we set c = 0 and then integrate again with 
respect to x. That gives us

∫ ( ∫ k dx ) dx = ∫ kx dx = kx 2/2 + d

where d is another constant of integration. If we set d = 0 and then specify an interval with 
bounds x = a and x = b for both integrals, we get

kx 2/2
a

b

]  = kb 2/2 − ka 2/2
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We can write out the complete repeated integral like this:

a

b

∫
a

b

∫ k dx dx  = kx 2/2
a

b

]  = kb 2/2 − ka 2/2

We must write two differentials dx here, one for each integral.

Are you confused?
In this scheme, we find basic antiderivatives twice in succession, and then evaluate the final expression at
the end of the process. We don’t find the first definite integral and then integrate again. (We will operate 
that way later in this chapter with functions of two variables, but that approach won’t work with functions 
of one variable.)

Example

Let’s try our newfound skill on a monomial linear function (a constant times a variable). Sup-
pose we want to find

1

2

∫
1

2

∫ 12t dt dt

First, we find the indefinite integral without the constant of integration. That’s the basic 
antiderivative

∫  12t dt = 6t 2

Now we integrate again, leaving out the constant of integration to get

∫  6t 2 dt  = 2t 3

The repeated definite integral is therefore

1

2

∫
1

2

∫ 12t dt dt = 2t 3

1

2

]  = 2 · 23 − 2 · 13 = 16 − 2 = 14

Another example

The sine and the cosine functions behave in interesting ways when we integrate them over and 
over. Let’s consider the example

π

π

/2
∫

π

π

/2
∫ sin z dz dz

The first basic antiderivative is

∫  sin z dz = − cos z



Integrating again without the constant gives us

∫ − cos z dz = − sin z

The repeated definite integral is therefore

π

π

/2
∫

π

π

/2
∫ sin z dz dz = − sin z

π

π

/
]

2

= − sin p − (− sin p /2) = 0 − (−1) = 1

Here’s a challenge!
In Chap. 8, we worked out a problem involving a fictitious episode with Sir Isaac Newton, an apple, and 
the cliffs of Dover. According to our make-believe story, Sir Isaac took an apple to the cliffs, tossed it off, 
and watched it plunge to the beach. He (and we) knew the function that defined the apple’s vertical fallen 
distance vs. time. He timed the fall, and saw that the apple struck the beach after 4 seconds. Based on that 
data, we calculated the height hc of the cliff.

Now let’s change the story. Suppose that Sir Isaac knew only that the apple would accelerate vertically 
downward at a constant rate of 10 meters per second per second. He knew that this would be true, 
neglecting air resistance, no matter how heavy the apple was. He timed the fall and saw that the apple 
struck the beach after 4 seconds (Fig. 27-1). Calculate the height hc of the cliff on this basis. Remember 
that the apple’s vertical speed is the derivative of its vertical fallen distance over time, and its vertical 
acceleration is the derivative of its vertical speed at any instant in time.
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Vertical acceleration
is a constant
10 meters per second
per second

t = 4 seconds

hc = ?

Figure 27-1  Sir Isaac hurls an apple from the cliffs of 
Dover. The vertical acceleration is 
10 meters per second per second, and the 
apple takes 4 seconds to fall. What is the 
altitude hc of the apple above the beach at 
the instant it leaves Sir Isaac’s hand?



Solution
To work this out, we integrate the acceleration function twice, from t = 0 seconds (when the apple leaves 
Sir Isaac’s hand) to t = 4 seconds (when the apple lands). The acceleration function is a constant 10, so 
our repeated integral is

0

4

∫
0

4

∫ 10 dt dt

The first basic antiderivative is

∫  10 dt = 10t

When we take the basic antiderivative again, we get

∫  10t dt = 5t 2

The repeated definite integral is

0

4

∫
0

4

∫ 10 dt dt = 5t 2

0

4

] = 5 · 42 − 5 · 02 = 80 − 0 = 80

The height of the cliff, hc, is 80 meters. This is the same answer that we got when we worked out the solu-
tion in Chap. 8.

Double Integrals in Two Variables
While repeated integration can be done with single-variable functions, we’re more likely to 
encounter it with functions of two variables. An interesting application is calculating the 
mathematical volume of an object in 3D coordinates. In Chap. 26, we were concerned with 
the true geometric volume or “real-world” volume of a solid object. “Real-world” volume can 
never be negative. Mathematical volume can be positive, negative, or zero. We’ll see how this 
works in this chapter and the next.

Prisms and slabs

Imagine a function f of variables x and y in Cartesian xyz-space. Suppose that the graph of the 
function is a surface such as the one as shown in Fig. 27-2. For any given point (x,y,z) on the 
surface, we have

z = f  (x,y )

We can approximate the mathematical volume of the object defined by this surface with 
respect to any rectangular region in the xy-plane, as long as the function f  is defined for every 
point (x,y ) in that region. The object is a solid whose “base” lies in the xy-plane.

Imagine breaking up the solid into square prisms whose heights are defined by the value 
of z in a selected corner of each prism’s top face. (In Fig. 27-2, that point is the one where the 
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x and y values are smallest.) The defined height of the prism is shown as a heavy, dashed verti-
cal line that runs along one of its corners. In this example, the height of the prism is positive 
(z > 0), so its mathematical volume is positive. If the height were negative (z < 0), then the 
prism’s mathematical volume would be negative. If the height of the prism were zero, then its 
mathematical volume would be zero.

Now imagine that we make the xy-plane grid for the prisms increasingly fine while 
staying inside the same rectangular region. In Fig. 27-2, the grid has eight squares along 
the x axis and eight squares along the y axis. That means there are 82, or 64, prisms in 
total. We could increase this to 80 by 80, getting 6,400 prisms; then to 800 by 800, 
getting 640,000 prisms; then to 8,000 by 8,000, getting 64,000,000 prisms; and so on 
without end. As the number of prisms increases while the rectangular region stays the 
same, our approximation of the solid’s mathematical volume improves. As the number of 
prisms approaches infinity, the sum of their individual mathematical volumes approaches 
the actual mathematical volume of the solid defined by the surface relative to the rectan-
gular region.

In practice, it’s difficult to add up the mathematical volumes of rectangular prisms, as 
portrayed in Fig. 27-2, to find the mathematical volume of a solid defined by a surface with 
respect to a plane region. But there’s an easier way. We can integrate f (x,y ) with respect 
to one of the variables, in effect slicing the solid crosswise into flat, thin slabs. Then we 
can integrate the resulting function with respect to the other variable. When we do this, 
we stack up the slabs, rather than assembling an array of prisms, to get the mathematical 
volume of the solid.
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the xy-plane by breaking the solid into square 
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Slabs parallel to the xz-plane

Let’s slice the solid into arbitrarily thin vertical slabs parallel to the xz-plane, find their areas by 
integration, and then integrate the function defining those areas along the y axis. This scheme 
is diagrammed in Fig. 27-3. We must work through two separate integrals.

First, we integrate f  (x,y ) with respect to x, treating y as a constant. We can think of this 
as a “partial antiderivative.” But we must consider the limits of integration, too. Suppose that 
the x-value edges of the rectangle in the xy-plane are x = a and x = b, as shown in the drawing. 
That means we must determine

a

b

∫ f  (x,y ) dx

Once we’ve worked out this definite integral, we get a function of y alone. We integrate that 
function with respect to y, and evaluate the result from y = c to y = d. The bounds of this inter-
val represent the y-value edges of the rectangle in the xy-plane, as shown. When we finish this 
process, we have the value of

c

d

∫ [
a

b

∫ f  (x,y ) dx ] dy

If we give the xy-plane region a name such as R, we can rewrite the above expression in the 
shortened form

R
∫∫ f  (x,y ) dx dy

+x–x
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Figure 27-3  We can integrate twice to find the volume enclosed by 
a surface with respect to a rectangular region in the xy-
plane by integrating with respect to x and then with 
respect to y.
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Slabs parallel to the yz-plane

There’s nothing special about the way we sliced up the solid in the above example. We can just 
as easily slice it into slabs parallel to the yz-plane. As before, we find the slabs’ areas by integra-
tion, but this time we first integrate f  (x,y ) with respect to y. Then we integrate the function 
defining those areas as we move along the x axis. This scheme is shown in Fig. 27-4.

As we integrate f  (x,y ) with respect to y, we hold x constant. Imagine that the y-value 
edges of the rectangle in the xy-plane are y = c and y = d. We figure out the definite integral

c

d

∫ f  (x,y ) dy

When we do this, we get a function of x. We integrate this new function with respect to x over 
the interval from x = a to x = b, obtaining

a

b

∫ [
c

d

∫ f  (x,y ) dy ] dx

As before, we can call the xy-plane region R. The above expression can then be written as

R
∫∫ f  (x,y ) dy dx

Are you confused?
There’s an obvious difference between the two processes described above, and a subtle difference in the 
integral expressions we write at the end. In the first case, we get differentials in the order dx dy. In the 
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–y
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f (x,y)
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sectional
slab

+y
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integration

y = d

y = c

x = a x = b

Figure 27-4  We can integrate twice to find the volume enclosed by a 
surface with respect to a rectangular region in the xy-plane
by integrating with respect to y and then with respect to x.



second process, they come out as dy dx. It’s reasonable to ask, “Does the order of the differentials matter?” 
From a pure mathematics point of view, there’s a theoretical difference between

R
∫∫ f  (x,y ) dx dy

and

R
∫∫ f  (x,y ) dy dx

But in practice, the quantity we’re describing—the mathematical volume of the solid—is the same either 
way. If these schemes really work (and they do, as long as the function is integrable over the entire region R), 
then they must give us identical results. After all, it’s the same object, no matter how we slice it! This 
fact comes out of a theorem proved early in the  twentieth century by the Italian mathematician Guido 
Fubini.

Iterated Integrals in Two Variables
When we calculate a double definite integral for a two-variable function as described above, 
first with respect to one independent variable and then with respect to the other, the process 
is called iterated integration.

Example

Consider the surface described by this two-variable function f   in Cartesian xyz-space:

f (x,y) = 3x 2 + 3y 2 + 1

We will calculate the mathematical volume of the solid defined by f   with respect to the square 
region in the xy-plane whose edges are x = −1, x = 1, y = −1, and y = 1.

First, let’s find the mathematical volume of the solid using double integration, slicing 
through the solid to create slabs parallel to the xz-plane by integrating with respect to x, and 
then stacking up the slabs by integrating with respect to y. Written in the shorthand form, our 
double integral is

R
∫∫ (3x 2 + 3y 2 + 1) dx dy

where R is the square in the xy-plane with respect to which we want to find the mathematical 
volume. Written out “the long way,” which more completely shows us what we must do, the 
iterated integral is

−
∫
1

1

[
−
∫
1

1

(3x 2 + 3y 2 + 1) dx ]dy
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The integral inside the large square brackets is

−
∫
1

1

(3x 2 + 3y 2 + 1) dx

To integrate with respect to x, we treat y as a constant, just as if we wanted to find the partial 
derivative with respect to x. But here, we’re finding a “partial antiderivative.” We obtain

x3 + 3xy 2 + x
−1

1

]

Evaluating the expression from x = −1 to x = 1, we get

(1 + 3y 2 + 1) − (−1 − 3y 2 − 1) = 6y 2 + 4

We substitute this new one-variable equation in place of the integral inside the large square 
brackets above, obtaining

−
∫
1

1

(6y 2 + 4) dy

The basic antiderivative should be evaluated from −1 to 1, so we must calculate

2y 3 + 4y
−1

1

]

Working out the arithmetic, we get

(2 · 13 + 4 · 1) − [2 · (−1)3 + 4 · (−1)] = 12

Now let’s go the other way by slicing up the object in planes parallel to the yz-plane, and 
then integrating with respect to x. Written in the shorthand form, our double integral is

R
∫∫ (3x 2 + 3y 2 + 1) dy dx

The iterated integral is

−
∫
1

1

[
−
∫
1

1

(3x 2 + 3y 2 + 1) dy ]dx

The integral inside the large square brackets is

−
∫
1

1

(3x 2 + 3y 2 + 1) dy
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To integrate with respect to y, we hold x constant, getting the antiderivative

3x 2y + y 3 + y
−1

1

]

Evaluating the expression from y = −1 to y = 1, we get

(3x 2 + 1 + 1) − (−3x 2 − 1 − 1) = 6x 2 + 4

We substitute this for the integral inside the large square brackets above, obtaining

−
∫
1

1

(6x 2 + 4) dx

This resolves to

2x 3 + 4x
−1

1

]

Working out the arithmetic, we get the same result as we did when we found the mathemati-
cal volume the other way:

(2 · 13 + 4 · 1) − [2 · (−1)3 + 4 · (−1)] = 12

Another example

Let’s try our iterated-integration skills with a region that isn’t centered at the origin. We should 
expect to get the same answer either way we do the integration, but the routes will differ. 
Here’s a surface described by a two-variable function g in xyz-space:

g (x,y ) = 2x − y

Our task is to calculate the mathematical volume of the solid defined by g with respect to the 
rectangle in the xy-plane whose edges are at x = 0, x = 2, y = 0, and y = 4.

This problem is interesting because, if we graph the function g in xyz-space (or get a 
computer to do it for us), we’ll see that in the rectangular region we’ve specified, some of the 
surface is “above” the xy-plane (z > 0) and some of the surface is “below” the xy-plane (z < 0). 
Any portions of the solid’s mathematical volume where z < 0 will contribute negatively to our 
final answer. We should not be surprised if this object has a zero or negative net mathematical 
volume.

First, let’s slice through the solid in planes parallel to the xz-plane by integrating with 
respect to x, and then we’ll integrate with respect to y. Written in the shorthand form, our 
double integral is

R
∫∫ (2x − y )  dx dy
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The iterated integral is

0

4

∫ [
0

2

∫ (2x − y ) dx ] dy

The inside integral is

0

2

∫ (2x − y ) dx

We treat y as a constant, obtaining the antiderivative

x  2 − xy
0

2

]
Evaluating the expression from x = 0 to x = 2, we get

(22 − 2y ) − (02 − 0y ) = 4 − 2y

We substitute this single-variable equation in place of the integral inside the large square 
brackets above, obtaining

0

4

∫ (4 − 2y ) dy

The antiderivative is

4y − y  2

0

4

]
Working out the arithmetic, we get

(4 · 4 − 42) − (4 · 0 − 02) = 0

The object has zero mathematical volume, even though it’s three-dimensional! The average 
position of the surface within the rectangular region happens to coincide exactly with the 
xy-plane, although the surface is oriented at a slant. With respect to the region we’ve defined 
in the xy-plane, the positive and negative portions of the solid’s mathematical volume are 
equal and opposite, so they cancel each other out.

Now let’s slice up the solid in planes parallel to the yz-plane, and then integrate with respect 
to x. If we do everything right, we should get a final answer of 0 again. In shorthand, we have

R
∫∫ (2x − y )  dy dx

The iterated integral is

0

2

∫ [
0

4

∫ (2x − y ) dy ] dx

The inside integral is

0

4

∫ (2x − y ) dy
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To integrate with respect to y, we hold x constant, getting

2xy − y  2/2
0

4

]

Evaluating the expression from y = 0 to y = 4, we get

(2x · 4 − 42/2) − (2x · 0 − 02/2) = 8x − 8

We substitute this for the integral inside the large square brackets above, obtaining

0

2

∫ (8x − 8) dx

This resolves to

4x  2 − 8x
0

2

]
Evaluating, we get

(4 · 22 − 8 · 2) − (4 · 02 − 8 · 0) = 0

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.  Imagine that we’re in a hovering dirigible above the surface of an otherwise uninhabited 
planet, where gravity causes falling objects to accelerate at 24 feet per second per 
second. We drop a brick, which reaches the surface after 14 seconds. Assuming that air 
resistance is not a factor, what’s our altitude?

 2.  We test-drive a car on a flat, straight road. Before starting the experiment, we bring 
the car to a stop and mark our position. Then we accelerate at an increasing rate of 6t
meters per second per second, where t represents the elapsed time, in seconds, after the 
start. Find the function that expresses our distance in meters from the starting position 
as time passes.

 3.  In the situation of Prob. 3, how many meters will we travel in the first second? The first 
2 seconds? The first 3 seconds? The first 4 seconds? If we can keep up this increasing 
rate of acceleration for 10 seconds, how far from the starting point will we end up?

 4.  Consider the flat surface described by the following constant function in Cartesian xyz-
space:

f  (x,y ) = 4
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     Draw a simple 3D graph of this situation. Then, using the formula from 3D geometry, 
calculate the mathematical volume of the rectangular box defined by f with respect to 
the region whose edges are segments of the lines x = −3, x = 5, y = −5, and y = 3 in the 
xy-plane.

 5.  Find the mathematical volume of the box described in Prob. 4 by integrating f   relative 
to the region, first with respect to x and then with respect to y.

 6.  Find the mathematical volume of the box described in Prob. 4 by integrating f   relative 
to the region, first with respect to y and then with respect to x.

 7. Consider the surface described by the following function in Cartesian xyz-space:

f  (x,y ) = 4x + 4y

      Integrate against x and then against y to find the mathematical volume of the solid that 
this surface defines with respect to the region whose edges are segments of the lines x = 1, 
x = 3, y = 0, and y = 5 in the xy-plane.

 8.  Find the mathematical volume of the region described in Prob. 7 by integrating against 
y and then against x.

 9.  Consider the surface described by the following function in Cartesian xyz-space:

f  (x,y ) = x  2 + 2xy + y 2

      Integrate against x and then against y to find the mathematical volume of the solid 
that this surface defines with respect to the region whose edges are segments of the 
lines x = 1, x = 3, y = 0, and y = 5 in the xy-plane.

10.  Find the mathematical volume of the region described in Prob. 9 by integrating against 
y and then against x.
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CHAPTER

28

More Volume Integrals

We could devote a dozen chapters to double integration. Obviously, we don’t have room for 
that, but let’s look at a few examples that are a little more complicated than the ones we saw 
in the last chapter.

Slicing and Integrating
Imagine that we’re working in Cartesian xyz-space, and we want to find the mathematical 
volume of a solid defined by a surface with respect to some flat, but non-rectangular, integra-
tion region R in the xy-plane. Suppose that R has a finite, positive area, and is enclosed by the 
graphs of two functions

y = g (x )

and

y = h (x )

We can break up the solid into slabs, just as we can with rectangular regions of integration. 
Figure 28-1 shows a situation of this sort.

First, we slice

When the boundaries of R are functions of x, the best way to find the mathematical volume 
of the solid is to slice it into slabs perpendicular to the x axis, and therefore parallel to the yz-
plane. This is the way it’s done in Fig. 28-1. The illustrated slab is bounded by the region of 
integration, the surface, and two vertical lines representing values of y. One vertical line passes 
through the graph of g (x ), and the other vertical line goes through the graph of h (x ). Here, 
“vertical” means “parallel to the z axis.”



Next, we integrate

For any given value of x, we have a unique slab as defined above. We can find the area A of the 
slab by integrating the surface function f (x,y ) with respect to y, from g (x ) to h (x ) for that 
particular value of x. That is,

A =
g x

h x

( )

( )

∫ f (x,y ) dy

If we choose a different value of x, we get a different slab, and its area is likely to be different. 
We can choose slabs that intersect the x axis anywhere from x = a to x = b as shown in Fig. 28-1, 
and the value of the above integral varies accordingly. We integrate with respect to y, so we 
must treat x as a constant when working out the antiderivative.

Finally, we integrate again

Imagine that we’re at the point where x = a in the situation of Fig. 28-1. Here, the cross-
sectional slab is actually a line segment parallel to the z axis. As such, it has no area. As we 
start moving toward the right along the x axis, the slab is slender, but growing. As we keep 
moving, the area of the slab increases until it reaches a maximum at some value of x between 
a and b. (Figure 28-1 shows the slab near that maximum-area point.) As we get close to x =
b, the slab becomes slimmer until, when x finally attains the value b, the slab collapses into 
another line segment parallel to the z axis.
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If we integrate the function that expresses the Area A of a slab with respect to our position 
on the x axis, we obtain the mathematical volume V of the solid defined by the region of 
integration R and the surface:

V =
a

b

∫ A dx

This can be written out in full as

V = [
( )

( )

a

b

g x

h x

∫ ∫ f (x,y ) dy] dx

or as

V = 
a

b

∫
g x

h x

( )

( )

∫ f (x,y ) dy dx

If we’re sure we have explicitly defined the region of integration R, we can write the above 
expression in the shorthand form

V = 
R
∫∫ f (x,y ) dy dx

Base Bounded by Curve and x Axis
Imagine a flat region R with a finite, positive area in the xy-plane of Cartesian xyz-space. Sup-
pose that R is bounded by the x axis and the graph of a nonlinear function h (x ). If the graph 
of h (x ) doesn’t intersect the x axis twice, then the region must also be bounded by one or 
two lines parallel to the y axis to ensure that it’s completely enclosed. Figure 28-2 shows an 
example of a situation like this. Here, the functions whose graphs define R are

g (x ) = 0

and

h (x ) = 3x 2

On the right, R is bounded by the line x = 2 to ensure that the base of the solid is a completely 
enclosed region.

Are you confused?
Have you noticed that the coordinate axes appear different in Fig. 28-2 than they have looked in earlier 
examples? We’re taking a new perspective on xyz-space. In all the 3D graphs portrayed until now, we’ve 
seen the situation from out in space near the negative y-axis, looking in toward the origin. Now, we’re 
out in space near the positive z-axis, looking in toward the origin. Things look different, but the relative 
orientations of the positive and negative x, y, and z axes are the same as they’ve always been.



This new vantage point gives us a good broadside view of the xy-plane, so we can clearly see the shape of 
the region of integration. Unfortunately, this perspective makes it difficult to show the surface represented 
by f (x,y ). But if that surface is flat and level, we can imagine it as a sheet parallel to the page on which 
Fig. 28-2 is printed. Such a sheet might be “in front of ” the page or “behind” it, depending on whether 
f (x,y ) is positive or negative.

The proper structure of Cartesian xyz-space

Whenever you see Cartesian xyz-space, the axes always are (or should be) oriented in a certain 
way relative to each other, regardless of the point of view. You learned this relationship in pre-
calculus. This is a good time to review it. Think in terms of compass directions and altitude.

Draw an x axis so that the positive values go “east” and the negative values go “west.” Then 
draw a y axis going “north” and “south,” at a right angle to the x axis. These two axes intersect 
at the point where x = 0 and y = 0. The positive y-values go “north,” and the negative y-
values go “south.” Now imagine a third axis, the z axis, which is “vertical” and perpendicular 
to both the x axis and the y axis. The positive z-values go “upward,” and the negative z-values 
go “downward.” The z axis passes through the point where the x axis and y axis intersect. At 
this point, z = 0.
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Now imagine this set of three mutually perpendicular lines, which all intersect at a single 
point where x = 0, y = 0, and z = 0, as a rigid structure in space, as if each axis were an inflex-
ible rod. No matter where you go, the structure stays the same, even though its appearance 
changes as your perspective changes. If you have a 3D computer graphing program and you 
experiment with it for awhile, you’ll be able to create some beautiful examples of this type of 
coordinate structure.

If you like, look back at all the drawings you’ve seen so far in this book showing Cartesian 
xyz-space. You’ll notice that the axes are oriented in the same relative way, regardless of your 
point of view. It’s important that Cartesian xyz-space always be set up in exactly this fashion. 
Otherwise, sooner or later, you’ll get seriously confused because you’ll end up with graphs that 
are “inside-out,” “upside-down,” or “backward”!

Flat, level surface

Let’s calculate the mathematical volume of a solid with respect to the region in Fig. 28-2, as 
defined by a surface whose function is

f (x,y ) = 4

This surface is a plane parallel to the xy-plane and 4 units “in front of” it, as seen from the 
perspective of Fig. 28-2. Written in the shorthand form, our double integral is

R
∫∫ 4 dy dx

The x-value interval for the region of integration is (0,2), so the iterated integral is

[
( )

( )

0

2

∫ ∫
g x

h x

4 dy]dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ 4 dy

which resolves to

4y
g x

h x

( )

( )

]

We remember that the functions whose graphs define the region of integration R are

g (x ) = 0

and

h (x ) = 3x 2
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Evaluating 4y from y = 0 to y = 3x 2, we get

4 · 3x 2 − 4 · 0 = 12x 2

We substitute this for the integral inside the square brackets above, obtaining

0

2

∫ 12x 2 dx

which resolves to

4x 3

0

2

]

Working out the arithmetic to derive the mathematical volume V, we get

V = 4 · 23 − 4 · 03 = 32

Flat, sloping surface

Now let’s see what happens with a surface that’s flat, but not parallel to the xy-plane. Imagine 
a solid with respect to the region of integration R in Fig. 28-2 as defined by

f (x,y ) = 2x + 4y

In shorthand form, the double integral is

R
∫∫ (2x + 4y ) dy dx

The x-value interval enclosing R is, as before, (0,2). Therefore, we can write the iterated 
integral as

[
( )

( )

0

2

∫ ∫
g x

h x

(2x + 4y ) dy ]dx

The integral inside the large square brackets represents the area of a cross-sectional slab with 
x held constant:

g x

h x

( )

( )

∫ (2x + 4y ) dy

We integrate against y to obtain

2xy + 2y2

g x

h x

( )

( )

]
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Again, we remember that the xy-plane functions whose graphs define the region of integration 
R are

g (x ) = 0

and

h (x ) = 3x 2

Evaluating the quantity (2xy + 2y2) from y = 0 to y = 3x 2 yields 

[2x · 3x 2 + 2(3x 2)2] − (2x · 0 + 2 · 02) = 6x 3 + 18x4

Substituting this for the integral inside the large square brackets above, we get

0

2

∫ (6x 3 + 18x4) dx

which resolves to

3x4/2 + 18x5/5
0

2

]

Working out the arithmetic to get the mathematical volume V, we obtain

V = (3 · 24/2 + 18 · 25/5) − (3 · 04/2 + 18 · 05/5) = 696/5

Warped surface

Imagine a solid defined by the following function with respect to the region of integration R
shown in Fig. 28-2:

f (x,y ) = 3x 2 + y

This surface is not flat, but warped, making our problem a little more complicated than the 
situation in the previous examples. Written in shorthand form, the double integral is

R
∫∫ (3x 2 + y ) dy dx

As before, the span of x values for the region of integration is (0,2). The iterated integral is 
therefore

[
( )

( )

g x

h x

∫∫
0

2

(3x 2 + y ) dy]dx

474 More Volume Integrals



The integral inside the large square brackets is

g x

h x

( )

( )

∫ (3x 2 + y ) dy

Holding x constant and integrating against y, we get

3x 2y + y2/2
g x

h x

( )

( )

]

The functions whose graphs define the base of the solid are

g (x ) = 0

and

h (x ) = 3x 2

Evaluating the quantity (3x 2y + y2/2) from y = 0 to y = 3x 2, we get

[3x 2 · 3x 2 + (3x 2)2/2] − (3x 2 · 0 + 02/2) = 27x4/2

We substitute this for the integral inside the large square brackets above to obtain

0

2

∫ 27x4/2 dx

which resolves to

27x5/10
0

2

]

Working out the arithmetic, we get a mathematical volume of

V = 27 · 25/10 − 27 · 05/10 = 432/5

Base Bounded by Curve and Line
Consider a region in the xy-plane, bounded by a parabola representing g (x ) and a straight line 
representing h (x ) as shown in Fig. 28-3. In this situation, the functions whose graphs define 
the region R are

g (x ) = x 2 − 4
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and

h (x ) = x + 2

Let’s calculate the mathematical volumes of solids with respect to R, as defined by three dif-
ferent surfaces.

Flat, level surface

Imagine a flat surface 4 units “in front of” the xy-plane. The function for this surface is

f (x,y ) = 4

Written in shorthand, the double integral for the mathematical volume of the solid is

R
∫∫ 4 dy dx
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The interval representing the span of x values for R is (−2,3). These are the x values of the 
points where the parabola and the line intersect in Fig. 28-3. The iterated integral is there-
fore

[
( )

( )

−
∫ ∫
2

3

g x

h x

4 dy]dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ 4 dy

which resolves to

4y
g x

h x

( )

( )

]

Again, the functions whose graphs define R are

g (x ) = x 2 − 4

and

h (x ) = x + 2

When we evaluate 4y from y = x 2 − 4 to y = x + 2, we obtain

4 · (x + 2) − 4 · (x 2 − 4) = −4x 2 + 4x + 24

We substitute this for the integral inside the square brackets above, obtaining

−
∫
2

3

(−4x 2 + 4x + 24) dx

which resolves to

−4x 3/3 + 2x 2 + 24x
−2

3

]

Working out the arithmetic, we get

V = (−4 · 33/3 + 2 · 32 + 24 · 3) − [−4 · (−2)3/3 + 2 · (−2)2 + 24 · (−2)] = 250/3

Base Bounded by Curve and Line  477



478  More Volume Integrals

Flat, sloping surface

Let’s calculate the mathematical volume of a solid relative to the region of integration R in Fig. 
28-3 as defined by

f  (x,y ) = 4x

The graph of this function is a flat, sloping surface. In shorthand, we have

R
∫∫ 4x dy dx

The x-value interval enclosing R is (−2,3), so can write the iterated integral as

[
( )

( )

−
∫ ∫
2

3

g x

h x

4x dy ]dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ 4x dy

When we integrate against y, holding x constant, we obtain

4xy
g x

h x

( )

( )

]

Again, the xy-plane functions whose graphs define R are

g (x ) = x 2 − 4

and

h (x ) = x + 2

When we evaluate 4xy from y = x 2 − 4 to y = x + 2, we get

4x (x + 2) − 4x (x 2 − 4) = −4x 3 + 4x 2 + 24x

Substituting this for the integral inside the square brackets above, we get

−
∫
2

3

(−4x 3 + 4x 2 + 24x ) dx

which resolves to

−x4 + 4x 3/3 + 12x 2

−2

3

]



Working out the arithmetic, we obtain

V = (−34 + 4 · 33/3 + 12 · 32) − [−(−2)4 + 4 · (−2)3/3 + 12 · (−2)2] = 125/3

Warped surface

Now imagine a warped surface in Cartesian xyz-space that represents

f (x,y ) = x 2

Let’s find the mathematical volume of the solid defined by this surface and the region illus-
trated in Fig. 28-3. The shorthand form of the double integral is

R
∫∫ x 2 dy dx

The interval of x values is (−2,3), so the iterated integral is

[
( )

( )

−
∫ ∫
2

3

g x

h x

x 2 dy ] dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ x 2 dy

Holding x constant and integrating with respect to y, we get

x 2y
g x

h x

( )

( )

]

As in the previous two examples, the functions whose graphs define the region of integration 
in the xy-plane are

g (x ) = x 2 − 4

and

h (x ) = x + 2

Evaluating x 2y from y = x 2 − 4 to y = x + 2 produces

x 2(x + 2) − x 2(x 2 − 4) = −x4 + x 3 + 6x 2

When we substitute this for the integral inside the large square brackets above, we get

−
∫
2

3

(−x4 + x 3 + 6x 2) dx
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which resolves to

−x5/5 + x4/4 + 2x 3

−2

3

]

Working out the arithmetic to derive the mathematical volume, we get

V = (−35/5 + 34/4 + 2 · 33) − [−(−2)5/5 + (−2)4/4 + 2 · (−2)3] = 125/4

Here’s a challenge!
Calculate the mathematical volume of a solid with respect to the region of integration in Fig. 28-3 as 
defined by

f (x,y ) = −x

This function’s graph is a flat, sloping surface that cuts through the xy-plane along the y axis.

Solution
The shorthand form of the double integral for the mathematical volume is

R
∫∫ −x dy dx

The x-value interval enclosing the region of integration is (−2,3), so can write the iterated integral as

[
( )

( )

−
∫ ∫
2

3

g x

h x

−x dy ] dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ −x dy

When we hold x constant and integrate against y, we obtain

−xy
g x

h x

( )

( )

]

Once again, the xy-plane functions whose graphs enclose the region of integration are

g (x ) = x 2 − 4

and

h (x ) = x + 2



When we evaluate −xy from y = x 2 − 4 to y = x + 2, we get

−x (x + 2) − [−x (x 2 − 4)] = x 3 − x 2 − 6x

Substituting this for the integral inside the large square brackets above, we get

−
∫
2

3

(x 3 − x 2 − 6x ) dx

which resolves to

x4/4 − x 3/3 − 3x 2

−2

3

]

Working out the arithmetic, we obtain

V = (34/4 − 33/3 − 3 · 32) − [(−2)4/4 − (−2)3/3 − 3 · (−2)2] = −125/12

Base Bounded by Two Curves
Now let’s look at a region in the xy-plane that’s bounded by two parabolas as shown in Fig. 28-4. 
Here, the functions whose graphs define the region of integration are

g (x ) = x 2/2 − 2

and

h (x ) = −x 2/2 + 2

We will calculate the mathematical volumes of solids with respect to this region, as defined by 
three different surfaces in xyz-space.

Flat, level surface

Let’s find the mathematical volume of a solid relative to the region of integration R in Fig. 28-4, 
as defined by

f (x,y ) = 4

The short form of the double integral is

R
∫∫ 4 dy dx
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The span of x values for R is (−2,2). The iterated integral is therefore

[
( )

( )

−
∫ ∫
2

2

g x

h x

4 dy]dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ 4 dy

Integrating with respect to y, we get

4y
g x

h x

( )

( )

]

We recall that the functions whose graphs enclose the region of integration are

g (x ) = x 2/2 − 2

4 6–4

6

–4

–6

4

(x) = x2/2 – 2g

(–2,0) (2,0)

(0,2)

(0,–2)
+z

–z

(x) = –x2/2 + 2h

Region of
integration

+x–x

+y

–y

Cross-
sectional
slab

Figure 28-4  A region in the xy-plane between two curves. We can 
integrate twice to find the mathematical volume defined 
by a surface (not shown) with respect to this region.



and

h (x ) = −x 2/2 + 2

Evaluating 4y from y = x 2/2 − 2 to y = −x 2/2 + 2, we get

4 · (−x 2/2 + 2) − 4 · (x 2/2 − 2) = −4x 2 + 16

We substitute this for the integral inside the large square brackets above, obtaining

−
∫
2

2

(−4x 2 + 16) dx

which resolves to

−4x 3/3 + 16x
−2

2

]

Working out the arithmetic to derive the solid’s mathematical volume, we get

V = (−4 · 23/3 + 16 · 2) − [−4 · (−2)3/3 + 16 · (−2)] = 128/3 

Flat, sloping surface

Let’s find the mathematical volume of a solid relative to the region in Fig. 28-4 as defined 
by the following function, which represents a sloping surface that cuts through the xy-plane
along the x axis:

f (x,y ) = 2y

In shorthand form, the double integral is

R
∫∫ 2y dy dx

The span of x values over the region of integration is (−2,2). The iterated integral is therefore

[
( )

( )

−
∫ ∫
2

2

g x

h x

2y dy]dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ 2y dy
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Integrating with respect to y, we get

y 2

g x

h x

( )

( )

]

Once again, the functions whose graphs enclose our xy-plane region of integration are

g (x ) = x 2/2 − 2

and

h (x ) = −x 2/2 + 2

Evaluating y2 from y = x 2/2 − 2 to y = −x 2/2 + 2, we get

(−x 2/2 + 2)2 − (x 2/2 − 2)2 = 0

Substituting this for the integral inside the large square brackets above, we get

−
∫
2

2

0 dx

which resolves to

0
−2

2

]

Working out the arithmetic is a trivial task. We have simply

V = 0 − 0 = 0

The surface lies partly above the xy-plane and partly below it. The mathematical volume rela-
tive to the region of integration R on the positive y-side of (or “above”) the x axis is positive, 
but the mathematical volume relative to R on the negative y-side of (or “below”) the x axis is 
negative to the same extent. Therefore, they cancel each other out, giving us a mathematical
volume of 0—even though the solid, if we could construct it in the “real world,” would have 
a finite and positive geometric volume!

Warped surface

Finally, let’s see what happens when we have a warped surface that cuts through the xy-plane
exactly along the y axis. This time, we’ll figure out the mathematical volume of a solid defined 
by the region of integration in Fig. 28-4 and the function

f (x,y ) = x 3

In shorthand form, the double integral is

R
∫∫ x 3 dy dx



The span of x values is, once again, (−2,2), so the iterated integral is

[
( )

( )

−
∫ ∫
2

2

g x

h x

x 3 dy ]dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ x 3 dy

Integrating with respect to y, we get

x 3y
g x

h x

( )

( )

]

The functions whose graphs define our xy-plane region are

g (x ) = x 2/2 − 2

and

h (x ) = −x 2/2 + 2

Evaluating x 3y from y = x 2/2 − 2 to y = −x 2/2 + 2, we get

x 3(−x 2/2 + 2) − x 3(x 2/2 − 2) = −x5 + 4x 3

Substituting this for the integral inside the large square brackets above, we get

−
∫
2

2

(−x5 + 4x 3) dx

which resolves to

−x 6/6 + x4

−2

2

]

Working out the arithmetic, we obtain

V = (−26/6 + 24) − [−(−2)6 + (−2)4] = 0

The mathematical volume on the positive x-side (or “to the right”) of the y axis is positive, 
and the mathematical volume on the negative x-side (or “to the left”) of the y axis is negative 
to an equal extent. The positive and negative mathematical volumes precisely cancel, leaving 
us with a mathematical volume of zero for the entire solid.
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Are you confused?
In this chapter, we always slice the solid regions so that the slabs are perpendicular to the x axis and parallel to 
the yz-plane. We never go the other way, slicing the solid into slabs perpendicular to the y axis and parallel to the 
xz-plane. If you wonder why, go ahead and try to solve one of the above problems that way! It will be difficult, 
because in all the examples here, we define the base region of the solid using functions of x, not functions of y.

Once in awhile, we’ll encounter base regions in the xy-plane that are defined as functions of y, with x
as the dependent variable. For example, suppose that we have

x = g (y )

and

x = h (y )

In situations like this, it’s easier to find the solid’s mathematical volume by slicing it into slabs perpendicu-
lar to the y axis and parallel to the xz-plane, and then integrating from y = a to y = b as shown in Fig. 28-5. 
When we compare this with Fig. 28-1, it’s apparent that we’ve changed our point of view. The mathemati-
cal calculations are a little different; but geometrically, the process works in the same way. We get

V = [
( )

( )

a

b

g y

h y

∫ ∫ f (x,y ) dx ]dy

+x

–x

+z

–z

Surface
representing
f (x,y)

Cross-
sectional
slab

Region
of
integration

–y +y

= ay = by
= g ( )yx

= h ( )yx

Figure 28-5  Sometimes it’s easier to slice a solid into 
slabs perpendicular to the y axis, rather than 
perpendicular to the x axis. Here, we see the 
situation from a point of view near the positive 
x-axis, looking in toward the origin.



which can also be written as

V = 
g y

h y

a

b

( )

( )

∫∫ f (x,y ) dx dy

If we call the region of integration R, we can shorten this further to

V = 
R
∫∫ f (x,y ) dx dy

In the volume integral, we now have dx dy instead of dy dx. This tells us to integrate first with respect 
to x to get the areas of the slabs for constant values of y, and then to integrate with respect to y to get the 
mathematical volume of the solid.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.  Refer to Fig. 28-6. Imagine that we’re doing the second integral in the iteration, looking 
at the areas of the cross-sectional slabs as we move from x = a to x = b. The surface 

Figure 28-6 Illustration for Practice Exercise 1.

+x–x

+z

–z

–y

Surface
representing
f (x,y)

Region
of
integration

x = b

y = g (x)

y = h (x)

x = a

Line along which
surface and region
intersect

Line along which
surface and region
intersect
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representing f (x,y ) is flat, and cuts through the region of integration. The surface lies 
partly “above” the xy-plane and partly “below” it. Describe how the area of the cross-
sectional slab varies as we move from x = a to x = b. (This exercise is difficult, but is 
intended to stimulate your imagination!)

 2.  For the solid defined by the flat, level surface f (x,y ) = 4 and the shaded region in 
Fig. 28-2, we found V = 32. This mathematical volume can also be found by 
determining the true geometric area of the region of integration and then multiplying 
by 4, which is the height of the solid. Find the mathematical volume this way, and 
verify that the result agrees with what we got in the chapter text.

 3.  Refer again to Fig. 28-2. Consider a solid defined by the following function and the 
region of integration shown:

f (x,y ) = 2x − 6y

   Calculate the mathematical volume of this solid using the method we’ve learned in this 
chapter.

 4.  Refer to Fig. 28-2 one more time. Consider a solid defined by the following function 
and the region of integration shown:

f (x,y ) = 3x 2 − 4y

   Calculate the mathematical volume of this solid using the method we’ve learned in this 
chapter.

 5.  For the solid defined by the flat, level surface f (x,y ) = 4 and the shaded region in 
Fig. 28-3, we found V = 250/3. This mathematical volume can also be found by 
determining the true geometric area of the region of integration and then multiplying 
by 4, which is the height of the solid. Find the mathematical volume this way, and 
verify that the result agrees with what we got in the chapter text.

 6.  Refer again to Fig. 28-3. Consider a solid defined by the following function and the 
region of integration shown:

f (x,y ) = −4x

   Calculate the mathematical volume of this solid using the method we’ve learned in this 
chapter.

 7.  Refer to Fig. 28-3 one more time. Consider a solid defined by the following function 
and the region of integration shown:

f (x,y ) = −x 2

   Calculate the mathematical volume of this solid using the method we’ve learned in this 
chapter.



 8.  For the solid defined by the flat, level surface f (x,y ) = 4 and the shaded region in 
Fig. 28-4, we found V = 128/3. This mathematical volume can also be found by 
determining the true geometric area of the region of integration and then multiplying 
by 4, which is the height of the solid. Find the mathematical volume this way, and 
verify that the result agrees with what we got in the chapter text.

 9.  Refer again to Fig. 28-4. Consider a solid defined by the following function and the 
region of integration shown:

f (x,y ) = 2x + 1

   Calculate the mathematical volume of this solid using the method we’ve learned in this 
chapter.

 10.  Refer to Fig. 28-4 one more time. Consider a solid defined by the following function 
and the region of integration shown:

f (x,y ) = 2y − 1

   Calculate the mathematical volume of this solid using the method we’ve learned in this 
chapter.
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A differential equation contains one or more derivatives or differentials along with variables 
and constants. In this chapter, we’ll look at a few extremely basic examples of ordinary differ-
ential equations (ODEs ), which don’t have partial derivatives.

Elementary First-Order ODEs
An elementary first-order ODE can be manipulated into an equation with only a derivative on 
the left-hand side, and only a single-variable function on the right-hand side.

How to recognize one

Imagine an independent variable x and a dependent variable y along with a continuous func-
tion f  (x ), bundled into an equation. We have an elementary first-order ODE if we can morph 
it into the standard form

dy /dx = f  (x )

To solve this, our objective is to eliminate the derivative and obtain an equation of the form

y = H (x )

where H is a family of functions. We call it a family because it contains a constant whose value 
can change, giving rise to a set of functions that are similar but not identical. The constant 
arises when we take an indefinite integral as part of the solution process.

Example 1

Let’s start with something simple that’s in the standard form for an elementary first-order 
ODE to begin with:

dy /dx = −2x

CHAPTER 
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When we integrate both sides with respect to x, we get

∫ (dy /dx ) dx = ∫ −2x dx

Because these are indefinite integrals, each has its own constant of integration when we work 
it out. We obtain the general antiderivatives

∫ (dy /dx ) dx = y + c 1

and

∫ −2x dx = −x 2 + c 2

where c 1 and c 2 are the constants. When we take the right-hand sides of these two equations 
and combine them, we get

y + c 1 = −x 2 + c 2

Subtracting c 1 from each side gives us

y = −x 2 − c 1 + c 2

We can consolidate c 1 and c 2 into a single constant c, like this:

−c 1 + c 2 = c

That simplifies our solution equation to

y = H (x ) = −x 2 + c

where H is the family of solution functions.

Example 2

Let’s work out an elementary first-order ODE where the left-hand side is a little more com-
plicated:

dy /dx − 6x 2 = −e x

Adding 6x 2 to both sides, we get

dy /dx = −e x + 6x 2

Integrating both sides with respect to x, we get

∫ (dy /dx ) dx = ∫ (−e x + 6x 2) dx
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The general antiderivatives are

∫ (dy /dx ) dx = y + c 1

and

∫ (−e x + 6x 2 ) dx = −e x + 2x 3 + c 2

Putting these antiderivatives together into a single equation, we obtain

y + c 1 = −e x + 2x 3 + c 2

When we subtract c 1 from each side, we get

y = −e x + 2x 3 − c 1 + c 2

As before, we can consolidate c 1 and c 2 into a single constant c, writing the solution as

y = H (x ) = −e x + 2x 3 + c

Example 3

Now we’ll tackle something more messy, in which we find a polynomial along with a trigono-
metric function. Let’s solve

dy /dx + cos x = 3x 2 + 8x − 7

If we subtract cos x from both sides, we get

dy /dx = 3x 2 + 8x − 7 − cos x

This is in the standard elementary first-order ODE form. When we integrate both sides, we 
get

∫ (dy /dx ) dx = ∫ (3x 2 + 8x − 7 − cos x ) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c 1

and

∫ (3x 2 + 8x − 7 − cos x ) dx = x 3 + 4x 2 − 7x − sin x + c 2

where c 1 and c 2 are the constants of integration. Combining the right-hand sides of these two 
equations, we get

y + c 1 = x 3 + 4x 2 − 7x − sin x + c 2



Subtracting c 1 from both sides gives us

y = x 3 + 4x 2 − 7x − sin x − c 1 + c 2

Once again, we can consolidate the constants and call the combination c, getting

y = H (x ) = x 3 + 4x 2 − 7x − sin x + c

Are you confused?
You might wonder if the constant in the solution to an elementary first-order ODE be eliminated or 
resolved into a specific real number. Sometimes it can, but not always. In many physics and engineering 
situations, the constant of integration cancels itself out. We saw an example of how that sort of thing can 
happen when we calculated the height of Sir Isaac’s cliff in Chap. 27. For the constant to disappear or at-
tain a specific real-number value, we must define certain initial conditions, such as when to start a timer or 
where to start a race. The purely mathematical solution to an elementary first-order ODE always includes 
a constant whose value we don’t necessarily know, because it’s the result of taking indefinite integrals.

Elementary Second-Order ODEs
A differential equation can contain a second derivative along with a function. Then we have 
an elementary second-order ODE.

How to recognize one

Consider an equation with an independent variable x and a dependent variable y, along with 
a continuous function f  (x ). We have an elementary second-order ODE if we can morph it 
into the form

d  2y /dx 2 = f  (x )

To solve this type of equation, our objective is to get something of the form

y = H (x )

where H is a family of functions that contains two constants, which result from repeated 
indefinite integration.

Example 4

Let’s solve an elementary second-order ODE that consists only of a second derivative and a 
monomial linear function:

d  2y /dx 2 = −2x
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When we take the indefinite integrals of both sides with respect to x, we get

∫ (d 2y /dx 2) dx = ∫ −2x dx

Because these are indefinite integrals, each has its own constant of integration. We obtain the 
general antiderivatives

∫ (d 2y /dx 2) dx = dy /dx + c 1

and

∫ −2x dx = −x 2 + c 2

where c 1 and c 2 are constants. When we combine these two antiderivatives into a single equa-
tion, we get

dy /dx + c 1 = −x 2 + c 2

Subtracting c 1 from each side, we get

dy /dx = −x 2 − c 1 + c 2

Letting the quantity (−c 1 + c 2 ) be a consolidated constant p, we can simplify to

−c 1 + c 2 = p

That gives us

dy /dx = −x 2 + p

We recognize this as an elementary first-order ODE. When we integrate both sides, we get

∫ (dy /dx ) dx = ∫ (−x 2 + p ) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c 3

and

∫ (−x 2 + p ) dx = −x 3 /3 + px + c 4

where c 3 and c 4 are new constants. When we combine the right-hand sides of these two equa-
tions, we get

y + c 3 = −x 3 /3 + px + c 4



Subtracting c 3 from each side produces

y = −x 3 /3 + px − c 3 + c 4

We can consolidate c 3 and c 4 and call the combination q, like this:

−c 3 + c 4 = q

That simplifies our solution equation to

y = H (x ) = −x 3 /3 + px + q

where H is the family of solution functions, and p and q are constants whose values we don’t 
necessarily know.

Example 5

Now let’s solve an elementary second-order ODE that isn’t quite so neat:

d  2y /dx 2 − 12x 2 = 2e x

Adding 12x 2 to both sides, we get

d  2y /dx 2 = 2e x + 12x 2

Integrating through with respect to x gives us

∫ (d  2y /dx 2 ) dx = ∫ (2e x + 12x 2) dx

The general antiderivatives are

∫ (d  2y /dx 2) dx = dy /dx + c 1

and

∫ (2e x + 12x 2) dx = 2e x + 4x 3 + c 2

Putting the general antiderivatives together into a single equation, we obtain

dy /dx + c 1 = 2e x + 4x 3 + c 2

Subtracting c 1 from each side gives us

dy /dx = 2e x + 4x 3 − c 1 + c 2

Letting the quantity (−c 1 + c 2 ) be a consolidated constant p, we can simplify to

dy /dx = 2e x + 4x 3 + p
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When we integrate both sides of this elementary first-order ODE, we get

∫ (dy /dx ) dx = ∫ (2e x + 4x 3 + p ) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c 3

and

∫ (2e x + 4x 3 + p ) dx = 2e x + x 4 + px + c 4

where c 3 and c 4 are new constants. Combining the right-hand sides of these equations, we 
get

y + c 3 = 2e x + x 4 + px + c 4

Subtracting c 3 from each side yields

y = 2e x + x 4 + px − c 3 + c 4

When we add −c 3 to c 4 and call the sum q, we can simplify to obtain the solution

y = H (x ) = 2e x + x 4 + px + q

Example 6

Now let’s solve the following elementary second-order ODE:

d  2y /dx 2 − cos x = 3x 2 + 6x + 10

Adding cos x to both sides, we get

d  2y /dx 2 = 3x 2 + 6x + 10 + cos x

Integrating both sides gives us

∫ (d  2y /dx 2) dx = ∫ (3x 2 + 6x + 10 + cos x ) dx

The general antiderivatives are

∫ (d  2y /dx 2) dx = dy /dx + c 1

and

∫ (3x 2 + 6x + 10 + cos x ) dx = x 3 + 3x 2 + 10x + sin x + c 2



Combining these results into a single equation, we obtain

dy /dx + c 1 = x 3 + 3x 2 + 10x + sin x + c 2

Subtracting c 1 from each side yields

dy /dx = x 3 + 3x 2 + 10x + sin x − c 1 + c 2

Adding −c 1 and c 2 to get a single constant p, we obtain

dy /dx = x 3 + 3x 2 + 10x + sin x + p

Integrating through with respect to x gives us

∫ (dy /dx ) dx = ∫ (x 3 + 3x 2 + 10x + sin x + p ) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c 3

and

∫ (x 3 + 3x 2 + 10x + sin x + p ) dx = x 4 /4 + x 3 + 5x 2 − cos x + px + c 4

where c 3 and c 4 are new constants. Combining the right-hand sides of the above equations 
into a single equation yields

y + c 3 = x 4 /4 + x 3 + 5x 2 − cos x + px + c 4

When we subtract c 3 from each side, we get

y = x 4 /4 + x  3 + 5x 2 − cos x + px − c 3 + c 4

We can add −c 3 to c 4, getting a single constant q to produce the solution

y = H (x ) = x 4 /4 + x 3 + 5x 2 − cos x + px + q

Are you confused?
Do you wonder why we can’t consolidate p and q in the solutions to the elementary second-order ODEs 
in Examples 4 through 6, the way we combined c 1 and c 2 in the solutions to the elementary first-order 
ODEs in Examples 1 through 3? The reason goes back to the algebra of polynomials. Within an expres-
sion or equation, we can only consolidate constants that apply to the same power or function of a single 
variable or set of variables.

In the elementary first-order ODEs, the constants c 1 and c 2 both stood alone. We could treat them both 
as multiples of 1, which is x 0, so we could merge them into a single constant. But in the solutions to the 
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elementary second-order ODEs, the constant p multiplies x or x 1, while q multiplies 1 or x 0. The different 
powers of x can’t be merged into a monomial, so we have no convenient way to combine their multiples.

Are you astute?
You might ask, “After we’ve derived a solution to an ODE, how do we know if it’s correct?” To 
check the solution to a first-order ODE, we differentiate our answer once. To check the solution to 
a second-order ODE, we differentiate our answer twice. If we’ve done everything right, we should 
either get the original ODE straightaway, or else get something that we can morph into the original 
ODE.

Here’s a challenge!
Differentiate the solutions in each of the examples we worked out in this chapter. If necessary, morph the 
derivatives to get back the original equations, thereby showing that our solutions were correct.

Solution
We must check each of the examples in the order they appeared. The first three were elementary first-order 
ODEs, and the second three were elementary second-order ODEs.

Checking example 1. We finished with the solution

y = −x 2 + c

Differentiating both sides gives us

dy /dx = −2x

That was the original equation.

Checking example 2. We derived the solution

y = −e x + 2x 3 + c

Differentiating through, we get

dy /dx = −e x + 6x 2

Subtracting 6x 2 from each side gives us the original equation, which was

dy /dx − 6x 2 = −e x

Checking example 3. Our solution equation was

y = x 3 + 4x 2 − 7x − sin x + c

When we differentiate through, we obtain

dy /dx = 3x 2 + 8x − 7 − cos x



Adding cos x to both sides produces the ODE we began with, which was

dy /dx + cos x = 3x 2 + 8x − 7

Checking example 4. We ended with the solution

y = −x 3 /3 + px + q

Differentiating both sides gives us

dy /dx = −x 2 + p

Differentiating again yields

d  2y /dx 2 = −2x

That’s the equation we started with.

Checking example 5. We derived the solution equation

y = 2e x + x 4 + px + q

Differentiating both sides, we obtain

dy /dx = 2e x + 4x 3 + p

When we differentiate a second time, we get

d  2y /dx 2 = 2e x + 12x 2

Subtracting 12x 2 from each side produces the original differential equation

d  2y /dx 2 − 12x 2 = 2e x

Checking example 6. The solution we obtained was

y = x 4 /4 + x 3 + 5x 2 − cos x + px + q

We differentiate both sides to get

dy /dx = x 3 + 3x 2 + 10x + sin x + p

Differentiating again yields

d  2y /dx 2 = 3x 2 + 6x + 10 + cos x

We can subtract cos x from both sides to get the original equation

d  2y /dx 2 − cos x = 3x 2 + 6x + 10
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For further study

Differential equations are an outgrowth of calculus. This chapter was written only to give you 
a glimpse into the topic by showing you how to solve some of the simplest possible ODEs. 
Differential Equations Demystified by Steven G. Krantz (McGraw-Hill, 2005) offers an excel-
lent introduction to the subject.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1. Solve the differential equation

dy /dx = sin x + 3

 2. Solve the differential equation

dy /dx + sin x = cos x

 3. Solve the differential equation

2dy /dx − 4e x = 16x 3

 4. Solve the differential equation

d  2y /dx 2 = cos x + 5x

 5. Solve the differential equation

d  2y /dx 2 + 2 sin x = 3 cos x

 6. Solve the differential equation

2d  2y /dx 2 − 2e x = 24x 2

 7. Solve the differential equation

dy /(3dx ) + 6x −2 = e x

    Here’s a hint: As the first step, multiply through by 3.



 8. Solve the differential equation

dy − 4e x dx = x 2 dx + 2x dx

    Here’s a hint: As the first step, divide through by dx.

 9.  Solve the differential equation stated in Prob. 8 by adding the quantity (4e x dx ) to each 
side, separating out the dx multipliers from the sum on the right-hand side using the 
distributive law, and finally integrating straight through.

10.  Check each of the solutions to Exercises 1 through 8 by differentiating and then 
morphing, if necessary, to get the original ODE back.
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CHAPTER

30

Review Questions and Answers

Part Three
This is not a test! It’s a review of important general concepts you learned in the previous nine 
chapters. Read it though slowly and let it “sink in.” If you’re confused about anything here, 
or about anything in the section you’ve just finished, go back and study that material some 
more.

Chapter 21

Question 21-1

What does a superscript −1 mean when it’s written after the name of a function? What does it 
mean when it’s written after dy /dx ?

Answer 21-1

When we see a superscript −1 after the name of a function, it tells us to work with the inverse 
of that function. When we see a superscript −1 written after dy /dx, it tells us to work with the 
reciprocal derivative, dx /dy.

Question 21-2

Consider the following equation. What does the expression f  −1′ ( y ) mean?

dx /dx = f  −1′ ( y ) · dy /dx 

Answer 21-2

The expression f  −1′ ( y ) refers to the derivative of x with respect to y, or dx /dy. That’s the 
derivative of the inverse of f  (x ).



Question 21-3

Suppose that we have a function f of an independent variable x, along with a dependent vari-
able y such that

y  = f  (x )

How can we find f  −1′ ( y ) without first figuring out the inverse function itself ?

Answer 21-3

We can differentiate f  (x ) with respect to x, getting dy /dx. Then we can take the reciprocal of 
dy /dx, which gives us dx /dy. That’s the derivative of the inverse of f.

Question 21-4

How can we express the above mentioned principle in words alone, in a way that’s easy to 
remember?

Answer 21-4

We can say, “The derivative of the inverse equals the inverse of the derivative.” But we must 
be careful about the context. The first time we say “inverse,” we mean “inverse function.” The 
second time, we mean “multiplicative inverse” or “reciprocal.”

Question 21-5

When we want to define the inverse of the sine function, we must first define the principal 
branch to ensure that the inverse is a true function. What’s the principal branch of the sine 
function?

Answer 21-5

The principal branch of the sine function is the set of all input values in the closed interval 
[−p /2,p /2], giving us output values in the closed interval [−1,1]. For example, if

y = sin x

then the principal branch has a domain of

−p /2 ≤ x ≤ p /2

and a range of

−1 ≤ y ≤ 1

Question 21-6

What’s the principal branch of the cosine function?
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Answer 21-6

The principal branch of the cosine function is the set of all input values in the closed interval 
[0,p ], giving us output values in the closed interval [−1,1]. If we have

y = cos x

then the principal branch has a domain of

0 ≤ x ≤ p

and a range of

−1 ≤ y ≤ 1

Question 21-7

The derivatives of the Arcsine and Arccosine functions are defined only over the open inter-
val (−1,1), even though the functions themselves are defined over the closed interval [−1,1]. 
Why?

Answer 21-7

At the extreme endpoints of the interval, the functions have defined values, but the slopes of the 
graphs are undefined (“vertical”). We can see this by looking back at pages 382 and 384 (Figs. 
21-1 and 21-2). Because the derivative of a function is equivalent to the slope of its graph, the 
derivative must be undefined at any point where the slope of the graph is undefined.

Question 21-8

What happens if we take an input variable x, let a function operate on it to get an output vari-
able y, and then let the inverse of the function operate on y ?

Answer 21-8

We get x back again, assuming the function and its inverse are both defined, and are in fact 
true functions, for x and y.

Question 21-9

Imagine a function f   that operates on an input x to get an output y. That is,

f  (x ) = y

Now suppose that at a particular input value x1, we have an output value y1 and a derivative 
of 2. That is,

f  (x1) = y1
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and

f   ′ (x1) = 2

How can we figure out the value of f   −1′ ( y1)?

Answer 21-9

We can take the reciprocal of the derivative at x1 to obtain the derivative of the inverse at y1, 
as follows:

f   −1′ ( y1) = [ f   ′ (x1)]−1 = 2−1 = 1/2

Question 21-10

Imagine a function g that operates on an input u to get an output v. That is,

g (u ) = v

Suppose that when the input is a certain value u1, the output is v1 and the derivative is 0. That is,

g (u1) = v1

and

g ′ (u1) = 0

How can we determine g −1′ (v1)?

Answer 21-10

We can’t, because it’s not defined. If we take the reciprocal of the derivative at u1 in an attempt 
to find the derivative of the inverse at v1, we get

g −1′ (v1) = [ g ′ (u1)]−1 = 0−1 = 1/0

Chapter 22

Question 22-1

What’s the equation of a unit circle centered at the origin of the Cartesian xy-plane? What’s 
the equation of a circle of radius r centered at the origin? What’s the equation of a circle of 
radius r centered at the point (x0,y0)? Can the equation of a circle in the Cartesian xy-plane 
ever represent a true function of either variable? If so, how do we know? If not, why not?

Answer 22-1

The equation of a unit circle centered at the origin is

x 2 + y 2 = 1
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The equation of a circle of radius r centered at the origin is

x 2 + y 2 = r 2

The equation of a circle of radius r centered at (x0,y0) is

(x − x 0)2 + ( y − y0)2 = r 2

The equation of a circle in the xy-plane is never a true function of either variable. Whichever 
variable is defined as independent, the relation produces two outputs for some inputs. A true 
function is not “allowed” to map into more than one output value for any single input value.

Question 22-2

What’s the general form for the equation of an ellipse in the Cartesian xy-plane? Is such a rela-
tion a true function of either variable? If so, how do we know? If not, why not?

Answer 22-2

The equation of an ellipse in xy-coordinates can be written in the form

(x − x 0)2 / a 2 + ( y − y0)2 / b 2 = 1

where x0 and y0 are the coordinates of the center, a is the distance from (x0,y0) to the curve 
along a line parallel to the x axis, and b is the distance from (x0,y0) to the curve along a line 
parallel to the y axis. Such a relation is never a true function of either variable, for the same 
reason as the equation of a circle in the xy-plane is never a true function.

Question 22-3

What’s the general form for the equation of a hyperbola in xy-coordinates? Is the relation a 
true function of either variable? If so, how do we know? If not, why not?

Answer 22-3

The equation of a hyperbola can be written in the form

(x − x 0)2 / a 2 − ( y − y0)2 / b 2 = 1

where x0 and y0 are the coordinates of the center, and a and b are positive real-number con-
stants that determine the dimensions and shape of the curve. Such a relation is never a func-
tion of either variable. If we define x as the independent variable, then the relation produces 
two outputs for most inputs. If we define y as the independent variable, then the relation 
produces two outputs for all inputs.

Question 22-4

Suppose we’re told to use implicit differentiation to find y ′ and x ′ for the following equation. 
How does that process work?

x 2 + y 2 = 36
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Answer 22-4

We can find y ′ by differentiating both sides of the original equation with respect to x, and then 
solving the result for y ′. We can find x ′ by differentiating both sides with respect to y, and then 
solving the result for x ′.

Question 22-5

What are the steps in the implicit differentiation process to find y ′ for the equation stated in 
Question 22-4?

Answer 22-5

Our objective is to find dy /dx. We start with

x 2 + y 2 = 36

Differentiating through with respect to x, we get

d /dx (x 2) + d /dx ( y 2) = d /dx (36)

Term-by-term, this works out to

2x + 2yy ′ = 0

Subtracting 2x from each side, we obtain

2yy ′ = −2x

We can divide through by 2y if we insist that y ≠ 0. That gives us

y ′ = (−2x ) / (2y )

which simplifies to

y ′ = dy /dx = −x /y

Question 22-6

What are the steps in the implicit differentiation process to find x ′ for the equation stated in 
Question 22-4?

Answer 22-6

This process follows a “parallel track” to Answer 22-5. This time, our goal is to find dx /dy. 
We start with

x 2 + y 2 = 36
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Differentiating through with respect to y, we get

d /dy (x 2) + d /dy ( y 2) = d /dy (36)

Term-by-term, this works out to

2xx ′ + 2y = 0

Subtracting 2y from each side, we obtain

2xx ′ = −2y

We can divide through by 2x if we insist that x ≠ 0. That gives us

x ′ = (−2y ) / (2x )

which simplifies to

x ′ = dx /dy = −y /x

Question 22-7

What type of curve is represented by the following general equation?

px 2 + q y 2 = r

Here, x and y are variables, and p, q, and r are positive real-number constants. What are the 
steps in the implicit differentiation process to find y ′ for this equation?

Answer 22-7

This equation represents an ellipse centered at the origin. Our objective is to find a general 
formula for dy /dx. We start with

px 2 + q y 2 = r

Differentiating through with respect to x, we get

d /dx ( px 2) + d /dx (q y 2) = d /dx (r )

Term-by-term, this works out to

2px + 2q yy ′ = 0

Subtracting 2px from each side, we obtain

2q yy ′ = −2px
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We can divide through by 2qy if we insist that y ≠ 0. That gives us

y ′ = (−2px ) / (2q y )

which simplifies to

y ′ = dy /dx = (−px ) / (q y )

Question 22-8

What are the steps in the implicit differentiation process to find x ′ for the equation stated in 
Question 22-7?

Answer 22-8

This time, we want to find a general formula for dx /dy. As before, we start with

px 2 + q y 2 = r

Differentiating through with respect to y, we get

d /dy ( px 2 ) + d /dy (q y 2) = d /dy (r )

Term-by-term, this works out to

2pxx ′ + 2q y = 0

Subtracting 2q y from each side, we obtain

2pxx ′ = −2q y

We can divide through by 2px if we insist that x ≠ 0. That gives us

y ′ = (−2q y ) / (2px )

which simplifies to

y ′ = dy /dx = (−q y ) / (px )

Question 22-9

What type of curve is represented by the following general equation?

px 2 − q y 2 = r

Here, x and y are variables, and p, q, and r are positive real-number constants. What are the 
steps in the implicit differentiation process to find y ′ for this equation?
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Answer 22-9

This equation represents a hyperbola centered at the origin. We want to find a general formula 
for dy /dx. We start with

px 2 − q y 2 = r

Differentiating through with respect to x, we get

d /dx (px 2) − d /dx (q y 2) = d /dx (r )

Term-by-term, this works out to

2px − 2q yy ′ = 0

Subtracting 2px from each side, we obtain

−2q yy ′ = −2px

We can divide through by −2qy if we insist that y ≠ 0. That gives us

y ′ = (−2px ) / (−2q y )

which simplifies to

y ′ = dy /dx = (px ) / (q y )

Question 22-10

What are the steps in the implicit differentiation process to find x ′ for the equation stated in 
Question 22-9?

Answer 22-10

This time, we want to find a general formula for dx /dy. As before, we start with

px 2 − q y 2 = r

Differentiating through with respect to y, we get

d /dy (px 2) − d /dy (q y 2) = d /dy (r )

Term-by-term, this works out to

2pxx ′ − 2q y = 0

Adding 2q y to each side, we obtain

2pxx ′ = 2q y



We can divide through by 2px if we insist that x ≠ 0. That gives us

x ′ = (2q y ) / (2px )

which simplifies to

x ′ = dx /dy = (q y ) / (px )

Chapter 23

Question 23-1

How can we informally state l’Hôpital’s rule for finding limits of expressions that tend toward 0/0?

Answer 23-1

If we want to find the limit of a ratio that tends toward 0/0, and if we can differentiate both 
the numerator and the denominator, then the limit of the ratio of the derivatives is the same 
as the limit of the original ratio.

Question 23-2

How can we state the above principle formally?

Answer 23-2

Consider two functions f  (x ) and g (x ) with three properties. First, f and g are both differen-
tiable everywhere in some open interval containing the point where x = a (but not necessarily 
differentiable at x = a itself ). Second,

Lim
x a→

 f  (x ) = 0

and

Lim
x a→

 g (x ) = 0

Third, g ′ (x ) ≠ 0 at every point within the defined interval where x ≠ a. If all three of these 
conditions are met, then

Lim
x a→

 f  (x ) / g (x ) =  Lim
x a→

 f   ′ (x ) / g ′ (x )

Question 23-3

There’s an important restriction on the use of the l’Hôpital rule for finding the limits of 
expressions that tend toward 0/0. What is that restriction?

Answer 23-3

We must not use this rule to seek the limit of an expression that obviously blows up (that is, “runs 
away” toward positive or negative infinity ) as the variable approaches the limiting value.
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Question 23-4

How can we informally state l’Hôpital’s rule for finding limits of expressions that tend toward 
±∞/±∞?

Answer 23-4

If we want to find the limit of a ratio that tends toward ±∞/±∞ and if we can differentiate 
both the numerator and the denominator, then the limit of the ratio of the derivatives is the 
same as the limit of the original ratio.

Question 23-5

How can we state the above rule formally?

Answer 23-5

Suppose that f and g are functions of a variable x, and both functions are differentiable over 
an open interval containing the point where x = a (but not necessarily differentiable at x = a 
itself ). Also suppose that

Lim
x a→

 f  (x ) = ±∞   

and

Lim
x a→

 g (x ) = ±∞

Finally, suppose that g ′ (x ) ≠ 0 at every point in the interval where x ≠ a. If all three of these 
conditions are met, then

Lim
x a→

 f  (x ) / g (x ) = Lim
x a→

 f   ′ (x ) / g ′ (x )

Question 23-6

Another of l’Hôpital’s rules can help us evaluate the limit of an expression as the value of the 
variable approaches +∞ or −∞. What’s that rule, stated formally?

Answer 23-6

Suppose that f  (x ) and g (x ) are differentiable functions, and g ′ (x ) ≠ 0 as the value of x 
increases or decreases without bound. Also, suppose that one of these four things is true:

Lim
x →+∞

 f  (x ) = 0   and   Lim
x →+∞

 g (x ) = 0

Lim
x →−∞

 f  (x ) = 0   and   Lim
x →−∞

 g (x ) = 0

      
Lim
x →+∞

 f  (x ) = ±∞   and   Lim
x →+∞

 g (x ) = ±∞

      
Lim
x →−∞

 f  (x ) = ±∞   and   Lim
x →−∞

 g (x ) = ±∞



Then

Lim
x a→

 f  (x ) / g (x ) = Lim
x a→

 f   ′ (x ) / g ′ (x )

Question 23-7

Suppose that we want to find the limit of the product of two functions, one of which 
approaches 0 and the other of which approaches +∞. How can we rearrange this expression so 
we can use l’Hôpital’s principles in an attempt to evaluate it?

Answer 23-7

We can take the function that approaches 0 and divide it by the reciprocal of the function 
that approaches +∞. This gives us a ratio that approaches 0/0, so we can use l’Hôpital’s rule 
for limits of that type.

Question 23-8

Suppose that we want to find the limit of the difference between two functions, both of which 
approach +∞. How can we rearrange this expression so we can try to use l’Hôpital’s principles 
to evaluate it?

Answer 23-8

Using algebra, we can try to rewrite the expression as a ratio that approaches an expression 
of the form 0/0 or ±∞/±∞, and then use the appropriate l’Hôpital rule in an attempt to find 
the limit.

Question 23-9

Imagine that we’ve been told to figure out the limit of an expression that tends toward one of 
these forms:

+∞ · 0
−∞ · 0

−∞ + (+∞)
+∞ + (−∞)
−∞ − (−∞)

How can we rearrange expressions such as these so we can use l’Hôpital’s principles in an 
attempt to evaluate them?

Answer 23-9

Whenever we see a limit whose expression tends toward one of these forms, we can convert it 
to a form we already know how to deal with, as follows:

• The form +∞ · 0 is equivalent to 0 · (+∞)
• The form −∞ · 0 is equivalent to 0 · (−∞)
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• The form −∞ + (+∞) is equivalent to +∞ − (+∞)
• The form +∞ + (−∞) is equivalent +∞ − (+∞)
• The form −∞ − (−∞) is equivalent to +∞ − (+∞)

Question 23-10

How can we evaluate the following limit, where the first factor tends toward 0 and the second 
factor tends toward negative infinity as x approaches 0 from the left?

Lim
x → −0

 x ln (−x )

Answer 23-10

Let’s rewrite this as the limit of a ratio by putting x−1 in the denominator. When we do that, 
we obtain

Lim
x → −0

 [ln (−x )] / x−1

Both the numerator and the denominator in this ratio tend toward negative infinity as x 
approaches 0 from the left, so we can apply the l’Hôpital rule for limits of expressions of the 
form −∞/(−∞). Let’s call the functions

f  (x ) = ln (−x )

and

g (x ) = x−1

Because we approach 0 from the left, x is always negative, so

ln (−x ) = ln |x |

Therefore, we can rewrite our functions as

f  (x ) = ln |x |

and

g (x ) = x−1

The derivatives are

f   ′ (x ) = x−1

and

g ′ (x ) = −x −2
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Therefore

Lim
x → −0

 f  (x ) / g (x )  = Lim
x → −0

 f   ′ (x ) / g ′ (x )  = Lim
x → −0

 x−1 / (−x−2)

The rightmost expression can be simplified with algebra:

x−1 / (−x−2) = (1/x ) / (−1/x 2) = (1/x ) (−x 2) =  −x

Now we have the manageable limit

Lim
x → −0

 −x

This expression approaches 0 as x approaches 0 from the left. We’ve determined that

Lim
x → −0

 x ln (−x ) = 0

Chapter 24

Question 24-1

Suppose that we have a surface in Cartesian xyz-space, and we can define a relation H so that

z = H (x,y )

is represented by this surface. How can we apply the vertical-line test to see if H is a true func-
tion of x and y ?

Answer 24-1

Imagine a straight, infinitely long vertical line parallel to the z axis. We move this line around, 
so the point where it intersects the xy-plane sweeps through every possible ordered pair (x,y ). 
The graph of H represents a true function if and only if the movable vertical line never cuts 
through the surface at more than one point, as shown in Fig. 30-1.

Question 24-2

Imagine a function f  (x,y ) in Cartesian xyz-space, whose graph shows up as a surface. If we 
cut through this surface with a plane perpendicular to the x axis, we get a curve. What sort of 
function does this curve represent? If we take the derivative of this function, what do we get?

Answer 24-2

The curve represents a function of y, with x treated as a constant. If we take the derivative of 
this function, we get a partial derivative of f  (x,y ) with respect to y.

Question 24-3

Imagine the same function f  (x,y ) as the one stated in Question 24-2. If we cut through this 
surface with a plane perpendicular to the y axis, we get a curve. What sort of function does this 
curve represent? If we take the derivative of this function, what do we get?
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Answer 24-3

The curve represents a function of x, with y held constant. If we take the derivative, we get a 
partial derivative of f  (x,y ) with respect to x.

Question 24-4

What’s the multiplication-by-constant rule for partial differentiation?

Answer 24-4

If we take the partial derivative of a multi-variable function after it has been multiplied by a 
constant, we get the same result as we do if we take the partial derivative of the function and 
then multiply by the constant, as long as we differentiate with respect to the same variable on 
both occasions.

Question 24-5

What’s the sum rule for partial differentiation?

Answer 24-5

The partial derivative of the sum of two or more multi-variable functions is equal to the sum 
of their partial derivatives with respect to the same variable.

Question 24-6

What’s the difference rule for partial differentiation?
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Answer 24-6

The partial derivative of the difference between two multi-variable functions is equal to the 
difference between their partial derivatives, as long as both partial derivatives are found with 
respect to the same variable, and as long as we keep the subtraction in the same order.

Question 24-7

Consider the following function, in which the domain is a set of real-number ordered triples 
(x,y,z) with z ≠ 0, and the range is a set of real numbers w. What’s the general partial deriva-
tive ∂w /∂x ?

w = g (x,y,z)  = e x + y 2 + ln |z |

Answer 24-7

To find the partial derivative with respect to x, we hold y and z constant. That makes the 
second and third terms constants, so their derivatives are both 0. The derivative of the 
first term with respect to x is ex, because the exponential function is its own derivative. 
Therefore

∂w /∂x = e x + 0 + 0 = ex

Question 24-8

What’s the general partial derivative ∂w / ∂y of the function stated in Question 24-7?

Answer 24-8

To find the partial derivative with respect to y, we hold x and z constant. That makes the first 
and third terms constants, so their derivatives are both 0. The derivative of the second term 
with respect to y is equal to 2y. Therefore

∂w / ∂y = 0 + 2y + 0 = 2y

Question 24-9

What’s the general partial derivative ∂w/∂z of the function stated in Question 24-7?

Answer 24-9

To find the partial derivative with respect to z, we hold x and y constant. That makes the first 
and second terms constants, so their derivatives are both 0. The derivative of the third term 
with respect to z is equal to z−1. Therefore

∂w / ∂z = 0 + 0 + z −1 = z −1
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Question 24-10

For the function stated in Question 24-7, how can we find these three specific partial derivatives?

∂/∂x (0,2,4)
∂/∂y (0,2,4)
∂/∂z (0,2,4)

Answer 24-10

We simply plug in the numbers to the results we have obtained. When we do that for each 
partial derivative in turn, we obtain

∂/∂x (0,2,4) = e 0 = 1
∂/∂y (0,2,4) = 2 · 2 = 4
∂/∂z (0,2,4) = 4−1 = 1/4

Chapter 25

Question 25-1

Imagine a function f   of two variables x and y, giving us an output z, like this:

z = f  (x,y )

How do we determine the second partial of f   with respect to x, denoted ∂2z /∂x 2? How do we 
determine the second partial of f   with respect to y, denoted ∂2z / ∂y 2?

Answer 25-1

To determine ∂2z /∂x 2, we treat y as a constant and differentiate with respect to x twice. To find 
∂2z /∂y 2, we treat x as a constant and differentiate with respect to y twice.

Question 25-2

What is the multiplication-by-constant rule for second partials?

Answer 25-2

If we take the second partial of a multi-variable function after it has been multiplied by a 
constant, we get the same result as we do if we take the second partial of the function and 
then multiply by the constant, as long as we differentiate with respect to the same variable 
throughout the process.

Question 25-3

What is the sum rule for second partials?



Answer 25-3

The second partial of the sum of two or more multi-variable functions is equal to the sum of 
their second partials, as long as all the partial derivatives are found with respect to the same 
variable.

Question 25-4

What is the difference rule for second partials?

Answer 25-4

The second partial of the difference between two multi-variable functions is equal to 
the difference between their second partials, as long as we differentiate with respect to 
the same variable throughout the process, and as long as we keep the subtraction in the 
same order.

Question 25-5

Once again, suppose that we have a function f of two variables x and y, giving us an output z, 
as follows:

z = f  (x,y )

How do we determine the mixed partial of f   with respect to x and then y, denoted ∂2z /∂y∂x?

Answer 25-5

To figure out ∂2z /∂y∂x, we hold y constant and differentiate the original function f   with 
respect to x, obtaining ∂z / ∂x. Then we take the function ∂z / ∂x, hold x constant, and dif-
ferentiate it with respect to y.

Question 25-6

How do we determine the mixed partial of f  (as stated in Question 25-5) with respect to y and 
then x, denoted ∂2z /∂x∂y ?

Answer 25-6

To figure out ∂2z /∂x∂y, we hold x constant and differentiate f   against y, getting ∂z /∂y. Then 
we take ∂z /∂y, hold y constant, and differentiate against x.

Question 25-7

If we start with the two-variable function f   stated in Question 25-5 and work out both mixed 
partials, and if we haven’t made any mistakes in our work, how will the function ∂2z /∂y∂x 
compare with the function ∂2z /∂x∂y ?

Answer 25-7

They will be identical.
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Question 25-8

Imagine that we have a function g of three variables x, y, and z, along with an output variable 
w, so that

w = g (x,y,z)

How can we find the second partial of g relative to x ? Relative to y ? Relative to z ? Let’s denote 
these second partials as ∂2w / ∂x 2, ∂2w / ∂y 2, and ∂2w / ∂z 2 respectively.

Answer 25-8

The processes are similar, but we must be careful which variables we hold constant. It’s easy 
to get confused!

• To find the second partial with respect to x, we treat y and z as constants, differentiate 
the original function against x to get ∂w /∂x, and then differentiate ∂w /∂x against x to 
get ∂2w / ∂x 2.

• To find the second partial with respect to y, we treat x and z as constants, differentiate 
the original function against y to get ∂w / ∂y, and then differentiate ∂w / ∂y against y to 
get ∂2w / ∂y 2.

• To find the second partial with respect to z, we treat x and y as constants, differentiate 
the original function against z to get ∂w / ∂z, and then differentiate ∂w / ∂z against z to 
get ∂2w / ∂z 2.

Question 25-9

Suppose that we want to find all of the mixed second partials of a three-variable function g 
such that

w = g (x,y,z )

where x, y, and z are the independent variables, and w is the dependent variable. How many 
different mixed second partials are there? How do we find them?

Answer 25-9

There are six different mixed second partials, representing the fact that there are six different 
permutations of two objects (x and y ) taken out of three (x, y, and z).

• We can differentiate against x and then y to get ∂2w / ∂y∂x.
• We can differentiate against x and then z to get ∂2w / ∂z∂x.
• We can differentiate against y and then x to get ∂2w / ∂x∂y.
• We can differentiate against y and then z to get ∂2w / ∂z∂y.
• We can differentiate against z and then x to get ∂2w / ∂x∂z.
• We can differentiate against z and then y to get ∂2w / ∂y∂z.



Question 25-10

How can we find the six mixed second partials for the following three-variable function?

w = h (x,y,z)  = x−3y 2e z

Answer 25-10

Let’s find the mixed partials in the order listed in Answer 25-9. The first partial of the original 
function relative to x is found by holding y and z constant, obtaining

∂w /∂x = −3x −4y 2e z

To differentiate ∂w / ∂x against y, we hold x and z constant to get

∂2w / ∂y∂x = −6x−4ye z

To differentiate ∂w /∂x against z, we hold x and y constant to get

∂2w / ∂z∂x = −3x−4y 2e z

The first partial of the original function relative to y is found by holding x and z constant, 
obtaining

∂w / ∂y = 2x −3ye z

To differentiate ∂w / ∂y against x, we hold y and z constant to get

∂2w / ∂x∂y = −6x−4ye z

To differentiate ∂w / ∂y against z, we hold x and y constant to get

∂2w / ∂z∂y = 2x −3ye z

The first partial of the original function relative to z is found by holding x and y constant, 
obtaining

∂w / ∂z = x −3y 2e z

To differentiate ∂w / ∂z against x, we hold y and z constant to get

∂2w / ∂x∂z = −3x −4y 2e z

To differentiate ∂w / ∂z against y, we hold x and z constant to get

∂2w / ∂y∂z = 2x −3ye z
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Chapter 26

Question 26-1

Figure 30-2 shows a right circular cylinder in Cartesian xyz-space. The left-hand face of the 
cylinder lies in the yz-plane. The axis of the cylinder is along the coordinate x axis. The radius 
is r and the height (shown here as length) is h. How can we integrate to find the lateral-surface 
area A of this cylinder?

Answer 26-1

We integrate the circumference of a circular slice along the length of the cylinder’s surface 
from its left-hand end where x = 0 to its right-hand end where x = h, getting

A  = 
0

h

∫ 2pr dx

Question 26-2

Look at Fig. 30-2 again. How can we integrate to find the volume V of the cylinder?

Answer 26-2

We integrate the area of a cross-sectional disk along the length of the cylinder, starting at the 
left-hand face where x = 0, and moving along the x axis until we reach the right-hand face 
where x = h. That gives us

V  = 
0

h

∫ pr 2 dx

h

r

Circular slice:
Circumference
= 2pr

= pr 2
Disk area

+x–x

+z

–z

–y

Figure 30-2  Illustration for Questions and Answers 26-1 and 
26-2.



Question 26-3

How can we integrate to find the volume of a right circular cylinder whose radius r is 10 units 
and whose length h is 7 units?

Answer 26-3

To find the volume V, we use the integral formula

V  = 
0

h

∫ pr 2 dx

We know that r = 10 and h = 7, so the integral becomes

V  = 
0

7

∫ p · 102 dx  = 
0

7

∫ 100p dx = 100px ⎤⎦
0

7

 = 100p · 7 − 100p · 0 = 700p

Question 26-4

Figure 30-3 shows a right circular cone in xyz-space. The apex is at the origin and the base is 
parallel to the yz-plane. The cone’s axis lies along the coordinate x axis. The radius at the base 
is r, the height (shown here as length) is h, and the slant height is s. The distance between the 
apex and any particular point on the cone’s shell is t. How can we integrate to find the slant-
surface area A of this cone?
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h

r

Circular slice:
Circumference
= 2p

= p 2

(r / )

(rx /h)
Disk area

t s
s

t

+x

+z

–z

–y

Figure 30-3  Illustration for Questions and Answers 26-4 and 
26-6.
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Answer 26-4

We can integrate the function representing the circumference of a circular cross-sectional slice 
along a straight line from the apex, where t = 0, to any point on the outer edge of the base, 
where t = s. When we do this, we get

A  = 
0

s

∫ (2prt /s) dt  = 
0

s

∫ (2pr /s )t dt

Question 26-5

How can we integrate to find the slant-surface area A of a right circular cone whose radius r is 
1 unit and whose slant height s is 2 units?

Answer 26-5

To find A, we use the integral formula

A  = 
0

s

∫ (2pr /s )t dt

We’ve been told that r = 1 and s = 2, so we have

A = 
0

2

∫ (2p · 1/2)t dt  = 
0

2

∫ pt dt =  pt 2/2 ⎤⎦
0

2

 = 2p − 0 = 2p

Question 26-6

Look again at Fig. 30-3. How can we integrate to find V, the cone’s interior volume?

Answer 26-6

We can integrate the function representing the area of a cross-sectional disk along the axis of 
the cone from its apex where x = 0 to its base where x = h, getting

V = 
0

h

∫ p (rx /h)2 dx = 
0

h

∫ (pr 2/h 2 )x 2 dx

Question 26-7

How can we integrate to find the volume V of a right circular cone whose radius r is 1 unit 
and whose height h is also 1 unit?

Answer 26-7

To find V, we use the integral formula

V = 
0

h

∫ (pr 2/h 2 )x 2 dx

We’ve been told that r = 1 and h = 1, so we have

V = 
0

1

∫ (p · 12/12)x 2 dx  = 
0

1

∫ px 2 dx  = px 3/3 ⎤⎦
0

1

 = p / 3 − 0 = p / 3 
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Question 26-8

Figure 30-4 shows a sphere in xyz-space. The center is at the origin. The radius is r. As we travel 
over the sphere’s surface, t is the distance between the right-hand pole and any particular point 
on the surface, as shown. How can we integrate to find the surface area A of the sphere?

Answer 26-8

We integrate the function representing the circumference of a circular slice by traveling half-
way around the sphere from t = 0 to t = pr. That’s

A = 2pr
0

πr

∫ sin (t /r ) dt

Question 26-9

Figure 30-5 shows another sphere in xyz-space. The center is at the origin. The radius is r. As 
we travel straight through the sphere, x is the distance between the origin and the center of a 
disk whose radius is r0. How can we integrate to find the volume V of the sphere?

Answer 26-9

We integrate the function representing the area of a cross-sectional disk along the x axis 
from the left-hand pole of the sphere (where x = −r ) to the right-hand pole (where x = r ). 
Therefore

V  = 
−
∫
r

r

(pr 2 − px 2 ) dx

r

–y

+x–x

+z

–z

Finish

Start

Circular slice:
Circumference
= 2pr sin (t /r)

Sphere

t

Figure 30-4  Illustration for Question and Answer 
26-8.
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Question 26-10

How can we integrate to find the surface area and volume of a sphere whose radius r is 1 unit?

Answer 26-10

To determine the surface area A, we must find

A = 2pr
0

πr

∫ sin (t /r ) dt

We know that r = 1, so the integral becomes

A  =  2p
0

π

∫ sin t dt  =  −2p cos t ⎤⎦
0

π

 =  −2p cos p − (−2p cos 0) = 2p + 2p = 4p

The volume V can be found by using the formula

V  = 
−
∫
r

r

(pr 2 − p x 2) dx

Because r  = 1, we have

V = 
−
∫
1

1

(p − p x 2) dx = px − p x 3/3 ⎤⎦
−1

1

 = (p − p /3) − (−p + p /3) = 2p /3 + 2p /3 = 4p /3

Chapter 27

Question 27-1

How do we find a repeated definite integral of a single-variable function f  (x )?

–y

+x–x

+z

–z

Sphere

Start Finish

r0r

x

Area of disk
= pr 2 –px 2

Figure 30-5  Illustration for Question and Answer 
26-9.
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Answer 27-1

First, we take the indefinite integral with respect to x, which gives us

∫  f  (x ) dx  = F1 (x )

where F1 is the basic antiderivative of f. We ignore the constant of integration, because we 
intend to find a definite integral. Next, we integrate again to get

∫ F1 (x ) dx = ∫ [ ∫ f  (x ) dx ] dx = F2 (x )

where F2 is the second basic antiderivative of f. As with the first integral, we ignore the con-
stant of integration. If we specify an interval with bounds x = a and x = b for both integrals, 
we get

F2 (x ) ⎤⎦
a

b

 = F2 (b) − F2 (a)

We can write out the complete repeated integral like this:

a

b

a

b

∫∫ f  (x ) dx dx = F2 (b) − F2 (a)

Question 27-2

What precautions must we take when we calculate a repeated definite integral of a single-
variable function?

Answer 27-2

We must wait until we have integrated both times before we evaluate the expression over the 
defined interval. The bounds of integration on both integral symbols must be identical.

Question 27-3

How can we find the repeated definite integral of the cosine function over the interval from 
0 to p ?

Answer 27-3

Let’s call the variable z. Then we can state our problem as

00

ππ

∫∫ cos z dz dz

The first basic antiderivative is

∫  cos z dz = sin z

Integrating again without the constant gives us

∫  sin z dz = −cos z 
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The repeated definite integral is therefore

00

ππ

∫∫ cos z dz dz = −cos z ⎤⎦
0

π
 =  −cos p − (−cos 0) = 1 − (−1) = 2

Question 27-4

What’s the difference between the mathematical volume and the true geometric volume of a 
solid in 3D space?

Answer 27-4

Mathematical volume is the direct result of the integration process. As such, it can be posi-
tive, negative, or zero. True geometric volume, also called “real-world volume,” can never be 
negative.

Question 27-5

Imagine a function z = f  (x,y ) whose graph is a surface in Cartesian xyz-space. We want to 
find the mathematical volume of the solid object defined by this surface and a rectangle in the 
xy-plane enclosed by the lines x  = a, x  = b, y = c, and y  = d. How can we do this by integrating 
with respect to x and then with respect to y ?

Answer 27-5

We integrate f  (x,y ) against x from a to b, getting

a

b

∫ f  (x,y ) dx

This gives us a function of y that we integrate from c to d. The entire double integral can be 
written as

c

d

∫ ⎡⎣
a

b

∫ f  (x,y ) dx⎤⎦  dy

or as

a

b

c

d

∫∫ f  (x,y ) dx dy

Question 27-6

How can we find the mathematical volume of the solid described in Question 27-5 by inte-
grating with respect to y and then with respect to x ?

Answer 27-6

We integrate f  (x,y ) against y from c to d, getting

c

d

∫ f  (x,y ) dy
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This gives us a function of x that we integrate from a to b to get

a

b

∫ ⎡⎣
c

d

∫ f  (x,y ) dy ⎤⎦  dx

which can also be written as

a

b

∫
c

d

∫ f  (x,y ) dy dx

Question 27-7

Suppose that we calculate both integrals as denoted in Answers 27-5 and 27-6 for a particular 
solid object in xyz-space. How should they compare, assuming we haven’t made any mistakes?

Answer 27-7

They should be equal to each other. That is, we should get

c

d

∫
a

b

∫ f  (x,y ) dx dy = 
c

d

a

b

∫∫ f  (x,y ) dy dx

Question 27-8

Imagine a function f   that is defined at every point inside a rectangle R in the xy-plane of 
Cartesian xyz-space. Let’s say that

z  = f  (x,y )

The graph of f   is a surface; let’s call it S. With respect to R, S defines a solid object that we 
call T, as shown in Fig. 30-6. How can we approximate the mathematical volume of T using 
a grid of squares in R ?

+x–x

+z

–z

+y

–y

Square
prism

R

S

T

T

Figure 30-6  Illustration for Question and Answer 27-8.
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Answer 27-8

Imagine breaking up the solid into square prisms whose heights are defined by the value of z 
in a selected corner of each prism’s top face. Suppose that we make the xy-plane grid for the 
prisms increasingly fine while staying inside R. This causes the number of prisms to increase. 
If we keep doing this indefinitely, the sum of the prisms’ mathematical volumes approaches 
the mathematical volume of T.

Question 27-9

Imagine the same function, region, and surface as described in Question 27-8. How can we 
illustrate the process of finding the mathematical volume of T by integrating with respect to 
x and then with respect to y, as we did in Answer 27-5 above?

Answer 27-9

Figure 30-7 shows how this works. We slice T into slabs perpendicular to the y axis and paral-
lel to the xz-plane. Then we integrate against x from x  = a to x  = b, determining the area of 
a slab with y held constant. Finally, we integrate the function that describes how the slab area 
varies as we move along the y axis from y  = c to y  = d.

Question 27-10

Imagine the same function, region, and surface as described in Questions 27-8 and 27-9. How 
can we illustrate the process of finding the mathematical volume of T by integrating with 
respect to y and then with respect to x, as we did in Answer 27-6 above?

Answer 27-10

Figure 30-8 is a diagram of this process. We slice T into slabs perpendicular to the x axis and 
parallel to the yz-plane. Then we integrate against y from y  = c to y  = d, finding the area of a 

+x–x

+z

–z

–y

x = a x = b

y = c

Cross-sectional slab
y = d

S

R

T

T

Figure 30-7  Illustration for Question and Answer 27-9.
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slab with x held constant. Finally, we integrate the function that describes how the slab area 
varies as we move along the x axis from x  = a to x  = b.

Chapter 28

Question 28-1

Imagine a solid object T defined by a surface S in Cartesian xyz-space that represents a function

z = f  (x,y )

We want to double integrate to find the mathematical volume of T with respect to a non-
rectangular region of integration R in the xy-plane, enclosed by the graphs of

y = g (x )

and

y = h (x )

What’s the first step in the process?

Answer 28-1

We slice T into slabs perpendicular to the x axis, and therefore parallel to the yz-plane. Each 
slab is bounded by R, S, and two vertical lines (parallel to the z axis), one passing through the 
graph of g (x ), and the other passing through the graph of h (x ). This situation is illustrated 
in Fig. 30-9.

+x–x

+z

–z

–y
Cross-
sectional
slab

+y
y = d

y = c

x = a x = b

S

R

T

T

Figure 30-8  Illustration for Question and Answer 27-10.



Question 28-2

What’s the second step in the process for finding the mathematical volume of the solid object 
T described in Question 28-1 and illustrated in Fig. 30-9?

Answer 28-2

We can define the area A of a cross-sectional slab for a constant value of x by finding

A  = 
g x

h x

( )

( )

∫  f  (x,y ) dy

Question 28-3

What’s the final step in finding the mathematical volume V of the solid T described in 
Question 28-1 and illustrated in Fig. 30-9?

Answer 28-3

We note the x values of the points where the graphs of g and h intersect in the xy-plane. These 
are x = a and x = b as shown in Fig. 30-9. Next, we integrate the function that expresses the 
area of a slab vs. the value of x, over the interval from x = a to x = b. That integral is

V  = 
a

b

∫  A dx = 
a

b

∫ ⎡⎣
g x

h x

( )

( )

∫  f  (x,y ) dy ⎤⎦  dx

This double integral can also be written out as

V = 
a

b

∫
g x

h x

( )

( )

∫  f  (x,y ) dy dx

+x–x

+z

–z

–y
Cross-
sectional
slab

+y x = b

y = g (x)

y = h (x)
x = a

S

R

T

Figure 30-9  Illustration for Questions and Answers 28-1 
through 28-4.
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Question 28-4

Refer to Fig. 30-9 once again. Imagine that we’re integrating the function that defines the area 
A of a cross-sectional slab as we move parallel to the x axis. The surface S represents a positive 
constant function f  (x,y ), so S lies entirely “above” the xy-plane. How does A change as we 
move from x = a to x  = b ?

Answer 28-4

Let’s start out at the point where x  = a. The cross-sectional slab is a line segment parallel 
to the z axis and “above” the xy-plane. As such, it has no mathematical area. As we move 
toward the right along the x axis, the slab is slender at first, but it becomes progressively 
wider. As we keep moving, the width, and therefore the mathematical area, of the slab 
increases until it reaches a maximum at some value of x between a and b. As we keep 
moving toward the right along the x axis, the slab slims back down and its mathematical 
area decreases until, when we reach x  = b, it collapses into a line segment with no mathe-
matical area.

Question 28-5

What is the proper structure of Cartesian xyz-space ? That is, in what relative way should the 
three axes be oriented?

Answer 28-5

Imagine the x axis so that the positive values go “east” and the negative values go “west.” 
Then imagine the y axis so that the positive values go “north” and the negative values go 
“south.” Finally imagine the z axis so that the positive values go “straight up” and the 
negative values go “straight down.” All three axes should intersect at a single point, the 
origin, where

x  = y  = z  = 0

Once this relative orientation has been defined for the axes, we should consider the whole 
structure as if it were rigid, made of stiff metal rods, for example. We can then turn, tumble, 
or roll the entire structure in any way we want, and the nature of the system will not change. 
All of the Cartesian xyz-space graphs in this book show the axes in this relative orientation, 
although the points of view differ.

Question 28-6

Imagine a solid object T defined by a surface S in Cartesian xyz-space that represents a function

z = f  (x,y )

We want to double integrate to find the mathematical volume of T with respect to a non-
rectangular region of integration R in the xy-plane, enclosed by the graphs of

x = g ( y )



and

x = h ( y )

What’s the first step in the process?

Answer 28-6

We slice T into slabs perpendicular to the y axis. Each slab is bounded by R, S, and two verti-
cal lines (parallel to the z axis). One vertical line passes through the graph of g ( y ), and the 
other vertical line goes through the graph of h ( y ), as shown in Fig. 30-10. Note the subtle 
difference between this graph and Fig. 30-9. We’ve changed our point of view. Previously, we 
looked toward the origin from somewhere near the negative y-axis. Now, we’re looking toward 
the origin from somewhere near the positive x-axis.

Question 28-7

What’s the second step in the process for finding the mathematical volume of T described in 
Question 28-6 and illustrated in Fig. 30-10?

Answer 28-7

We can define the area A of a cross-sectional slab for a constant value of y by finding

A  = 
g y

h y

( )

( )

∫   f  (x,y ) dx

+x

–x

+z

–z

Cross-
sectional
slab

–y +y

= ay = by
= g ( )yx

= h ( )yx

R

S T

Compare with
Fig. 30-9. Note
difference in
point of view!

Figure 30-10  Illustration for Questions and Answers 28-6 
through 28-10.
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Question 28-8

What’s the final step in finding the mathematical volume of the solid described in Question 28-6 
and illustrated in Fig. 30-10?

Answer 28-8

We integrate, over the interval from y = a to y = b, the function that tells us the area of a slab 
depending on the value of y. That integral is

V  = 
a

b

∫  A dy = 
a

b

∫ ⎡⎣
g y

h y

( )

( )

∫  f  (x,y ) dx ⎤⎦  dy

This double integral can also be written as

V = 
a

b

∫
g y

h y

( )

( )

∫  f  (x,y ) dx dy

Question 28-9

Refer again to Fig. 30-10. Imagine that we’re integrating the function that defines the area A 
of a cross-sectional slab as we move from y  = a to y  = b. The surface S represents a positive 
constant function f  (x,y ). How does A vary as we move from y  = a to y  = b ?

Answer 28-9

This situation is similar to the one described in Answer 28-4. The only significant difference 
is that this time, we’re going along the y axis instead of along the x axis. We begin at y  = a, 
where the cross-sectional slab is really nothing more than a line segment parallel to the z axis. 
As we move along the y axis in the positive direction, the slab starts out slim, but widens. The 
mathematical area increases until it reaches a maximum somewhere between y  = a and y  = b. As 
we keep moving along the y axis, the slab’s mathematical area decreases until, when we reach 
y  = b, it becomes a line segment again.

Question 28-10

What would happen to the mathematical volume of the solid T shown in Fig. 30-10 if we 
were to integrate the function defining the area of the movable slab from y  = b to y  = a, instead 
of from y  = a to y  = b ? What would happen to the true geometric volume?

Answer 28-10

The mathematical volume would be multiplied by −1, because we would have reversed the 
direction of one of the integrals. The true geometric volume of the solid would not change, 
however. We’d still be working with the same “real-world” object!

Chapter 29

Question 29-1

How can we recognize an elementary first-order ordinary differential equation (ODE)?
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Answer 29-1

Imagine an equation consisting of an independent variable x, a dependent variable y, and a 
continuous function f. We have an elementary first-order ODE if we can morph this equation 
into the standard form

dy /dx = f  (x )

Question 29-2

How can we solve an elementary first-order ODE once we have it in the standard form 
described in Answer 29-1?

Answer 29-2

To solve this type of equation, we integrate both sides with respect to x, getting

y = H (x )

where H is a family of functions, any two of which differ by some real-number constant, but 
are otherwise identical. The constant arises because we must take the indefinite integral to get 
rid of the derivative.

Question 29-3

How can we solve the following elementary first-order ODE?

dy /dx − cos x = −e x

Answer 29-3

We begin by manipulating the equation into the standard form. Let’s add cos x to both sides. 
Then we get

dy /dx = −e x + cos x

That’s in the standard form for an elementary first-order ODE. Taking the indefinite integral 
of both sides with respect to x gives us

∫ (dy /dx ) dx = ∫ (−e x + cos x ) dx

The general antiderivatives are

      ∫ (dy /dx ) dx = y + c1

∫ (−e x + cos x ) dx = −e x + sin x + c2

where c1 and c2 are the constants of integration. Putting the antiderivatives together into a 
single equation, we obtain

y + c1 = −e x + sin x + c2
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When we subtract c1 from each side, we get

y = −e x + sin x − c1 + c2

We can add −c1 to c2, call the sum c, and then write the solution as

y = H (x ) = −e x + sin x + c

where H (x ) represents the entire family of functions, all of which would be identical except 
for the fact that they differ by real-number constants.

Question 29-4

Can the constant in the solution to an elementary first-order ODE, such as the one we found 
in Answer 29-3, be eliminated or resolved into a specific real number?

Answer 29-4

Sometimes it can, but not always. If the constant of integration cancels itself out, as often happens 
in physical-science problems, we can eliminate it. But in the purely mathematical solution, we 
must leave the constant in. That’s because it can’t be resolved into any particular real number.

Question 29-5

How can we get the following elementary first-order ODE into the standard form, allowing 
us to solve it by taking the indefinite integral of both sides with respect to x ?

dy + cos x dx = 3x 2 dx + 8x dx − 7 dx

Answer 29-5

We can divide the entire equation through by dx, obtaining

dy /dx + cos x = 3x 2 + 8x − 7

When we subtract cos x from both sides, we get the standard form

dy /dx = 3x 2 + 8x − 7 − cos x

Question 29-6

How can we recognize an elementary second-order ODE?

Answer 29-6

Imagine that we encounter an equation with an independent variable x and a dependent vari-
able y, along with a continuous function f. We have an elementary second-order ODE if we 
can manipulate it into the form

d 2y /dx 2 = f  (x )
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Question 29-7

What strategy can we use to solve an equation in the form shown in Answer 29-6?

Answer 29-7

We must take the indefinite integral of both sides, retain the constant of integration, and then 
take the indefinite integral of both sides again. When we do that, we end up with an equation 
of the form

y = H (x )

where H is a family of functions that contains two constants. These constants result from the 
repeated indefinite integration. One of the constants stands all by itself, and the other multi-
plies the independent variable x.

Question 29-8

How can we solve the following elementary second-order ODE?

d 2y /dx 2 − 15x 3 = 2 sin x

Answer 29-8

Let’s begin by getting the equation into the standard form. We can add 15x 3 to both sides, 
obtaining

d  2y /dx 2 = 2 sin x  + 15x 3

Integrating through with respect to x gives us

∫ (d  2y /dx 2) dx = ∫ (2 sin x  + 15x 3) dx

The general antiderivatives are

∫ (d  2y /dx 2) dx = dy /dx + c1

and

∫ (2 sin x  + 15x 3 ) dx = −2 cos x  + 15x 4 / 4 + c2

where c1 and c2 are the constants of integration. Putting the general antiderivatives together 
into a single equation, we obtain

dy /dx  + c1 = −2 cos x  + 15x 4/ 4 + c2

Subtracting c1 from each side gives us

dy /dx  =  −2 cos x  + 15x4/ 4 − c1 + c2
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Letting the quantity (−c1 + c2) be a consolidated constant p, we can simplify the above equa-
tion to

dy /dx = −2 cos x + 15x4/ 4 + p

When we integrate both sides, we get

∫ (dy /dx ) dx = ∫ (−2 cos x + 15x4/ 4 + p) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c3

and

∫ (− 2 cos x + 15x  4/ 4 + p) dx = − 2 sin x + 3x 5 / 4 + px + c4

where c3 and c4 are new constants of integration (not necessarily the same as c1 and c2, which 
we got when we integrated the first time). Combining the right-hand sides of these equations, 
we obtain

y + c3 = −2 sin x + 3x 5 / 4 + px + c4

Subtracting c3 from each side yields

y = −2 sin x + 3x 5 / 4 + px − c3 + c4

When we let the quantity (−c3 + c4) be a single constant and call it q, we can simplify to obtain 
the solution

y = H (x ) = −2 sin x + 3x 5 / 4 + px + q

Question 29-9

Can we consolidate the constants p and q in the solution to the elementary second-order 
ODE that we found in Answer 29-8?

Answer 29-9

No, we can’t. Within an expression or equation, we can only consolidate constants that apply 
to the same power or function of a single variable or set of variables. Here, p multiplies x to 
the first power, while q stands alone (that is, it multiplies x to the zeroth power ).

Question 29-10

Suppose that we’ve derived a solution to an elementary first-order or second-order ODE. How 
can we test our solution to be sure that it’s correct?
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Answer 29-10

To check the solution to a first-order ODE, we can differentiate once. To check the solution 
to a second-order ODE, we can differentiate twice. If our solution is correct, the differentia-
tion process will produce the original ODE, or else an equation that can be manipulated into 
the original ODE.



This exam is designed to test your general knowledge of calculus theory, not to measure how 
fast you can perform calculations. A good score is at least 120 answers correct. The answers 
are listed in App. D. This test is long, so don’t try to take it in a single session. Feel free to 
draw diagrams, sketch graphs, or use a calculator. But don’t look back at the text or refer to 
outside references.

 1. Consider the following generalized cubic function:

f  (x ) = ax 3

  where a is a nonzero real number. What is the derivative of this function?
(a) f ′ (x ) = ax 2/3
(b) f  ′ (x ) = ax 2

(c) f  ′ (x ) = 3ax 2

(d) f  ′ (x ) = 3ax
(e) f  ′ (x ) = ax /3

 2.  If f   and g are differentiable functions of a real variable x, which of the following 
statements is true in general?
(a) { g [ f  (x )]}′ = g ′ [ f  (x )] · f  ′ [ g (x )]
(b) { g [ f  (x )]}′ = g ′ [ f  (x )] · [ f  ′(x )]2

(c) { g [ f  (x )]}′ = g ′ [ f  (x )]/[ f  ′(x )]2

(d) { g [ f  (x )]}′ = g ′ [ f  (x )] · f  ′(x )
(e) { g [ f  (x )]}′ = g ′(x ) · f  ′ [ g (x )]

 3.  Imagine a function whose graph shows up as a curve in rectangular xy-coordinates. 
Suppose we call the function

y = p (x )
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   Now suppose that we find the derivative of the function p at a particular point (x 0,y0), and 
it turns out to be equal to −4. Which of the following statements describes this situation?
(a) The slope of a line tangent to the curve at (x 0,y 0) is equal to −4.
(b) The y-intercept of a line tangent to the curve at (x 0,y 0) is equal to −4.
(c) The value of y 0 is −4 times the value of x 0.
(d) The x-intercept of a line tangent to the curve at (x 0,y 0) is equal to −4.
(e) The value of x 0 is −4 times the value of y 0.

 4. Which of the following types of functions is not continuous?
(a) A step function.
(b) A linear function.
(c) A constant function.
(d) An absolute-value function.
(e) A quadratic function.

 5. Consider the function
f  (x ) = −x 2 + 3x − 2

   graphed in rectangular coordinates. Which of the following ordered pairs, if any, 
reflects an inflection point in the curve?
(a) (0,−2)
(b) (1,0)
(c) (3/2,1/4)
(d) (2,0)
(e) None of the above

 6. Which of these statements are true, and which are false?
 •  The limit of the sum of two expressions is equal to the sum of the limits of the expres-

sions.
 •  The limit of the difference between two expressions is equal to the difference between 

the limits of the expressions (in the same order).
 •  A constant times the limit of an expression is equal to the limit of the expression 

times the constant.
(a) All three of the statements are true.
(b) The first statement is false, but the other two are true.
(c) The second statement is false, but the other two are true.
(d) The third statement is false, but the other two are true.
(e) All three of the statements are false.

 7.  In the situation shown by Fig. FE-1, the limit of g (x ), as x approaches any fixed 
nonzero real number k from the right, is equal to
(a) the limit of g (x ) as x approaches k from the left.
(b) twice the limit of g (x ) as x approaches k from the left.
(c) half the limit of g (x ) as x approaches k from the left.
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(d) −1 times the limit of g (x ) as x approaches k from the left.
(e) twice the reciprocal of the limit of g (x ) as x approaches k from the left.

 8.  In the situation shown by Fig. FE-1, g (x ) is
(a) a function of x, defined and continuous for all real numbers x.
(b) a function of x, undefined at the point where x = 0, but continuous for all real 

numbers x.
(c) a function of x, defined for all real numbers x, but discontinuous at the point 

where x = 0.
(d) a function of x, but undefined and discontinuous for all real numbers x.
(e) not a function of x, because it fails the vertical-line test.

 9.  If we call the independent variable x and the we call the dependent variable y, then the 
slope of a line passing through two points is equal to
(a) the difference in the y values divided by the difference in the x values.
(b) the sum of the y values divided by the sum of the x values.
(c) the average of the y values divided by the average of the x values.
(d) the ratio of the y values times the ratio of the x values.
(e) the product of the y values times the product of the x values.
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x

g (x)

g (x) = /x  when  x = 0
= 0  when x = 0

/2

Each axis
increment
is 1 unit

Figure FE-1  Illustration for Final Exam Questions 7 
and 8.
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 10.  Suppose we’re confronted with the following composite function, and we’re told to 
differentiate it:

f  (x ) = cos [sin (ln x )]

  What strategy makes the most sense for tackling this problem?
(a) Apply the product rule for derivatives twice, and the chain rule once.
(b) Apply the product rule three times.
(c) Apply the chain rule twice.
(d) Apply the quotient rule for derivatives once, and the chain rule once.
(e) Give up! This function is nondifferentiable for all real numbers!

 11.  Which of the following statements is true for differentiable functions f and g of a 
single real variable z?
(a) d ( f − g ) /dz = dg /dz − df  /dz
(b) d  ( fg ) /dz = (dg /dz ) (df /dz )
(c) d  ( f + g ) /dz = dg /dz + df  /dz
(d) d  ( f  /g ) /dz = (dg /dz ) / (df  /dz )
(e) d [ f  (g )] /dz = d [ g ( f   )] / dz

 12.  Fill in the blank to make the following statement true: “To find the derivative of the 
reciprocal of a differentiable function, we must first find the derivative of the original 
function, then ________, and finally divide by the square of the original function.”
(a) take the reciprocal
(b) multiply by −1
(c) add the original function
(d) subtract the original function
(e) take the absolute value

 13.  Consider the following function f   of a real variable x, where a is a real-number constant:

f  (x ) = a /(3x 5)

  The derivative of this function is 
(a) f   ′ (x ) = (−5a)/(3x 6), provided x ≠ 0
(b) f   ′ (x ) = 15ax 6, provided x ≠ 0
(c) f   ′ (x ) = −15ax−6, provided x ≠ 0
(d) f   ′ (x ) = (−5/3)/(ax 4), provided x ≠ 0
(e) impossible to calculate without more information.

 14.  Suppose that we evaluate certain limits involving a function f  (x ) at the point where 
x = 5. When we do this, we find that the function is continuous at the point, while

Lim
xΔ → +0

 [ f  (5 + Δx ) − f  (5)]/Δx = 2
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  and

Lim
xΔ → −0

 [ f  (5 + Δx ) − f  (5)] / Δx = 8

  What can we conclude about f   ′ (5)?
(a) It’s not defined.
(b) It’s equal to 2.
(c) It’s equal to 8.
(d) It’s the arithmetic mean of 2 and 8, which is (2 + 8)/2, or 5.
(e) It’s the geometric mean of 2 and 8, which is (2 · 8)1/2, or 4.

 15.  Consider the following derivative, where p, q, and r are nonzero real constants, and y
is a real variable:

d /dy [ p (q y + r )]

  This derivative works out as
(a) p q y + pr
(b) p q + pr
(c) p q y
(d) p q
(e) q

 16. Consider the following linear relation between two variables x and y:

3x + 6y = 4

   When this relation is graphed as a function of x, the slope of the resulting straight 
line is
(a) 3.
(b) 6.
(c) 2/3.
(d) −1/2.
(e) −3/2.

 17.  Consider again the linear relation stated in Question 16. When this relation is graphed 
as a function of x, the y-intercept is
(a) 3.
(b) 6.
(c) 2/3.
(d) −1/2.
(e) −3/2.
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 18.   Which graph or graphs in Fig. FE-2 contain a point at which the associated function 
is clearly discontinuous within the portions of the domain and range we can see?
(a) Curve P only.
(b) Curves P and Q, but not curve R.
(c) Curve Q only.
(d) Curves P and R, but not curve Q.
(e) All three curves P, Q, and R.

 19.  Which graph or graphs in Fig. FE-2 contain a point at which the associated function is 
continuous but nondifferentiable within the portions of the domain and range we can see?
(a) Curve P only.
(b) Curves P and Q, but not curve R.
(c) Curve Q only.
(d) Curves P and R, but not curve Q.
(e) All three curves P, Q, and R.

 20. Which of the following functions is its own derivative?
(a) f1 (x ) = sin x
(b) f2 (x ) = −e x

x

Value of
function

P

Q
R

P

Figure FE-2  Illustration for Final Exam Questions 18 
and 19.
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(c) f3 (x ) = 2 ln x
(d) f4 (x ) = x−1

(e) f5 (x ) = x 4/4

 21. How can the following expression be precisely translated into words?

Lim
xΔ → +0

x−2 = +∞

(a) As x approaches 0 from the positive direction, the limit of x−2 becomes equal to 
positive infinity if x gets small enough.

(b) As x approaches and then reaches 0 from the positive direction, x−2 approaches and 
then reaches positive infinity.

(c) As x starts out at 0 and then becomes positive, x−2 starts out at positive infinity 
and gets smaller.

(d) As x gets smaller and smaller but remains positive, x−2 gets larger and larger 
positively and endlessly.

(e) None of the above verbal expressions is technically correct.

 22. Consider the following quadratic function:

f  (x ) = −8x 2 + 6x − 5

   What is the x value of the extremum? Is the extremum an absolute maximum or an 
absolute minimum?
(a) The x value is 3/8 at an absolute maximum.
(b) The x value is 3/8 at an absolute minimum.
(c) The x value is −8 at an absolute maximum.
(d) The x value is −8 at an absolute minimum.
(e) The x value is 5, but it’s a local extremum, and we can’t tell whether it’s a 

minimum or a maximum without more information.

 23. Consider the following function of x, where the domain is the entire set of reals:

f  (x ) = (1/x 2) − 4

   For what values of x, if any, is this function nondifferentiable because of a 
discontinuity?
(a) x = 0.
(b) x = 2.
(c) x = −2 and x = 2.
(d) x = 4.
(e) There are no discontinuities, so there is no reason to suspect that the function is 

nondifferentiable on that basis.
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 24.  Consider the following function of x, where the domain is the entire set of reals:

f  (x ) = 1 / (x 2 − 4)

   For what values of x, if any, is this function nondifferentiable because of a discontinuity?
(a) x = 0.
(b) x = 2.
(c) x = −2 and x = 2.
(d) x = 4.
(e) There are no discontinuities, so there is no reason to suspect that the function is 

nondifferentiable on that basis.

 25. Consider the following function of x, where the domain is the entire set of reals:

f  (x ) = 1 / (x − 4)2

   For what values of x, if any, is this function nondifferentiable because of a discontinuity?
(a) x = 0.
(b) x = 2.
(c) x = −2 and x = 2.
(d) x = 4.
(e) There are no discontinuities, so there is no reason to suspect that the function is 

nondifferentiable on that basis.

 26. Consider the graph of the function

y = −3 tan x

   with the domain restricted to −p/2 < x < p/2. What is the slope at the inflection point?
(a) 0
(b) 1
(c) 3
(d) −1
(e) −3

 27. A relation is a mapping that can be expressed in terms of
(a) irrational numbers.
(b) rational numbers.
(c) quotients of integers.
(d) ordered pairs.
(e) extrema and inflection points.
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 28. Consider the following function of a real variable x:

f  (x ) = −87x 4 + 22x 3 − 11x 2 + 5x − 4

  If we keep differentiating this function over and over, we will eventually get
(a) an exponential function.
(b) a logarithmic function.
(c) the sine function.
(d) the cosine function.
(e) the zero function.

 29.  Consider the following generalized linear function:

f  (x ) = ax

  where a is a nonzero real number. What is the derivative of this function?
(a) f   ′ (x ) = 0
(b) f   ′ (x ) = a
(c) f   ′ (x ) = a 2

(d) f   ′ (x ) = a 2/2
(e) f   ′ (x ) = x

 30.  Suppose we have a function h that consists of a real variable z raised to a real-number 
power p, and then multiplied by a rational-number constant b. The derivative of this 
function can be expressed as

h′ (z ) = bpz (p−1)

   There is an important restriction to keep in mind, however. This derivative is not 
defined if z = 0 and
(a) p > 2.
(b) p > 1.
(c) p ≤ 1.
(d) b = 0.
(e) b < 0.

 31.  Consider the following derivative, where p and q are nonzero real constants, and z is a 
real variable:

d /dz [( pz + q )(q z − p)]

  This derivative works out as
(a) z (pq − q + p )
(b) 2pqz − p 2 + q 2
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(c) z 2 + p 2 − q 2

(d) p 2 + q 2 + z
(e) p + q − z

 32. Consider the following function of a real variable x:

f  (x ) = 7x 4 + 12x 3 − 71x 2 + 65x + 84 + 42e x

  If we keep differentiating this function over and over, we will eventually get
(a) an exponential function.
(b) a logarithmic function.
(c) the sine function.
(d) the cosine function.
(e) the zero function.

 33.  Suppose we have two differentiable functions g and h of a single variable y. If we add 
the functions and then take the derivative of their sum with respect to y, we get the 
same result as when we
(a) differentiate the functions individually with respect to y, and then add the 

derivatives.
(b) differentiate the functions individually with respect to y, then add the derivatives, 

and finally divide by 2.
(c) differentiate the functions individually with respect to y, then add the derivatives, 

and finally divide by the derivative of the sum of the original functions.
(d) differentiate the functions individually with respect to y, and then multiply the 

derivatives.
(e) differentiate the functions individually with respect to y, then multiply the 

derivatives, and finally divide by the derivative of the sum of the original 
functions.

 34.  In Fig. FE-3, each vertical axis division is 1 unit. Both curves are sinusoids. Knowing 
these things, we can reasonably conclude that the dashed curve shows
(a) the first derivative of the function portrayed by the solid curve.
(b) the second derivative of the function portrayed by the solid curve.
(c) the third derivative of the function portrayed by the solid curve.
(d) the fourth derivative of the function portrayed by the solid curve.
(e) None of the above

 35.  For an object in free fall, neglecting air resistance, the second derivative of the vertical 
fallen distance with respect to time is
(a) the vertical speed.
(b) the vertical jerk.
(c) the first derivative of the vertical speed with respect to time.
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(d) the first derivative of the vertical acceleration with respect to time.
(e) the first derivative of the vertical jerk with respect to time.

 36.  Suppose you have a function whose graph shows up as a straight line in the 
rectangular xy-plane, where x is the independent variable and y is the dependent 
variable. Further, suppose that the line does not pass through the origin (0,0). The 
derivative of the function at a specific point (x 0,y 0) on the line is equal to
(a) the y-intercept divided by the x-intercept.
(b) the x-intercept divided by the y-intercept.
(c) y 0 /x 0.
(d) x 0 /y 0.
(e) None of the above

 37.  Suppose we encounter a function h that takes a variable z to a positive-integer power n
larger than 3, and then multiplies the result by a nonzero real constant k. How can we 
express the first derivative of h with respect to z ?
(a) h′ (z ) = nk nz (n−1)

(b) h′ (z ) = nkz (n−1)

(c) h′ (z ) = nz (n−1)

(d) h′ (z ) = nk z n

(e) h′ (z ) = nz n

–3p p3
x

Value of
function

Each vertical division
represents 1 unit

–p–2p p 2p

Figure FE-3 Illustration for Final Exam Question 34.
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 38.  Suppose we encounter a function g that multiplies a variable y by a nonzero real 
constant c, and then take the product cy to a positive-integer power m larger than 3. 
How can we express the first derivative of g with respect to z ?
(a) dg /dy = mc my (m−1)

(b) dg /dy = mcy (m−1)

(c) dg /dy = my (m−1)

(d) dg /dy = mcy m

(e) dg /dy = cy m

 39. Mathematical induction is a technique that allows us to
(a) prove a general statement true if we can prove a large enough number of specific 

examples true.
(b) prove, in effect, infinitely many statements in a few steps.
(c) prove that if A implies B, then “not A” implies “not B.”
(d) prove that if a theorem holds for all the rational numbers, then it holds for all the 

real numbers.
(e) prove that if a theorem holds for all the rational numbers, then it holds for all the 

integers.

 40. A function is a relation in which every element in the domain maps to
(a) one or more elements in the range.
(b) at most one element in the range.
(c) another element in the domain.
(d) itself.
(e) a single, constant element in another relation.

 41. Consider the following generalized quadratic function:

f  (x ) = ax 2

  where a is a nonzero real number. What is the derivative of this function?
(a) f   ′ (x ) = a/2
(b) f   ′ (x ) = a
(c) f   ′ (x ) = 2a
(d) f   ′ (x ) = a 2/2
(e) f   ′ (x ) = 2ax

 42.  Which of the following functions has an inverse relation that is not a function? 
Assume in each case that the domain of the original function is the entire set of reals.
(a) f1 (x ) = 6x + 4
(b) f2 (x ) = x 3

(c) f3 (x ) = −5x 5

(d) f4 (x ) = ln x
(e) f5 (x ) = 4x 2
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 43.  Which of the following expressions describes how the chain rule can be applied twice 
when evaluating a function h of a function g of a function f, assuming that all three 
functions are differentiable over their domains?

(a) {h [ g ( f )]}′ = h′ [ g ( f )]
(b) {h [ g ( f )]}′ = h′ [ g ( f )] · g ′ ( f )
(c) {h [ g ( f )]}′ = h′ (g ) · g ′ ( f ) · h′ ( f   )
(d) {h [ g ( f )]}′ = h′ [ g ( f )] · f  ′
(e) {h [ g ( f )]}′ = h′ (g ) · g ′ ( f ) · f  ′

 44.  To find the derivative of the quotient of two differentiable functions, we multiply the 
derivative of the first function by the second function, then multiply the derivative of 
the second function by the first function, then subtract the second product from the 
first product, and finally

(a) multiply by the second function.
(b) multiply by the square of the second function.
(c) divide by the second function.
(d) divide by the square of the second function.
(e) divide by the derivative of the second function.

 45.  Figure FE-4 shows the graph of a cubic function. At which points, or in which 
regions, is dy /dx positive?

(a) Region P (to the left of point Q ).
(b) The region between points Q and S.
(c) Point R only.
(d) Points Q and S only.
(e) Region T (to the right of point S ).

 46. In Fig. FE-4, at which points, or in which regions, is dy /dx equal to 0?

(a) Region P (to the left of point Q ).
(b) The region between points Q and S.
(c) Point R only.
(d) Points Q and S only.
(e) Region T (to the right of point S ).

 47. In Fig. FE-4, at which points, or in which regions, is d 2y /dx  2 equal to 0?
(a) Region P (to the left of point Q ).
(b) The region between points Q and S.
(c) Point R only.
(d) Points Q and S only.
(e) Region T (to the right of point S ).

 48. Consider the following function of a real variable x:

f  (x ) = −87x 4 + 22x 3 − 11x 2 + 5x − 4 + 3x−1
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  This function is differentiable over
(a) the entire set of real numbers.
(b) the entire set of reals except 0.
(c) only the set of positive reals.
(d) only the set of nonnegative reals.
(e) only the set of negative reals.

 49. Once again, consider the function

f  (x ) = −87x 4 + 22x 3 − 11x 2 + 5x − 4 + 3x−1

  What is the fifth derivative of f   with respect to x ?
(a) f   (5) (x ) = 3e x

(b) f   (5) (x ) = 3 ln x
(c) f   (5) (x ) = 0
(d) f   (5) (x ) = −360/x 6

(e) Nothing. This function can’t be differentiated five times.

x

y

P

Q

R

S

T

Figure FE-4 Illustration for Final Exam Questions 45, 46, and 47.
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 50.  If f   and g  are differentiable functions of the same variable, and if a and b are 
constants, then which of the following statements is not true in general?
(a) (af )′ = a ( f  ′)
(b) ( f + g )′ = ( g + f )′
(c) ( f − g )′ = ( g − f )′
(d) (af + bg )′ = a ( f  ′) + b (g ′)
(e) ( f g )′ = ( g f )′

 51.  What is the general resolution of the following indefinite integral? Call the constant of 
integration c.

∫  4t −1 dt

(a) −4t −2 + c
(b) −2t −2 + c
(c) 4 ln |t | + c
(d) −4 ln |t | + c
(e) This integral can’t be resolved.

 52.  Suppose that f1 and f2 are integrable functions of x over a continuous interval (a,b). Let 
k1 and k2 be real-number constants. Then

a

b

∫ {k1 [ f1 (x )]  + k2 [ f2 (x )]} dx = k1

a

b

∫  f1 (x ) dx + k2

a

b

∫  f2 (x ) dx

  What, if anything, is wrong with this formula?
(a) Nothing is wrong.
(b) The constants to the right of the equals sign, appearing in front of the integral 

symbols, should both be k1k2.
(c) The constants to the right of the equals sign, appearing in front of the integral 

symbols, should both be (k1 + k2).
(d) The constants to the right of the equals sign, appearing in front of the integral 

symbols, should both be (k1
2 + k2

2)1/2.
(e) The integrands to the right of the equals sign should be f1′ (x ) in the first integral 

and f2′ (x ) in the second integral. 

 53.  The principle of linearity for definite integrals works with any finite linear combination 
of functions and constants, as long as
(a) we stay with the same variable.
(b) we stay with the same interval.
(c) each function can be integrated over the entire interval.
(d) we’re sure that (a), (b), and (c) are all true.
(e) all the constants are the same.
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 54.  Fill in the blank to make the following sentence true: “If we integrate a function over 
an interval from the minimum to the maximum, we get ________ the integral of the 
same function from the maximum to the minimum.”
(a) twice
(b) half
(c) the same result as
(d) −1 times
(e) the −1 power of

 55. Refer to Fig. FE-5. What does the following expression represent?

i

n

=
∑

1

Δx · f  (a + iΔx )

(a) The actual area defined by the curve.
(b) The sum of the areas of the rectangles.
(c) The sum of the perimeters of the rectangles.
(d) The perimeter of the i th rectangle.
(e) The area of the i th rectangle.

x

f (x)

x = b

Δx Width of every
rectangle
= Δx
= (b –a)/n

x = a

Height of i th
rectangle
= f (a + iΔx)

Figure FE-5 Illustration for Final Exam Questions 55 and 56.
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 56. We can rewrite the expression stated in Question 55 to get

i

n

=
∑

1

[(b − a)/n] · f  [a + i (b − a)/n]

  What fact, evident from Fig. FE-5, allows us to do this?
(a) The area defined by the curve is equal to the sum of the areas of the rectangles.
(b) The height of the i th rectangle is equal to f  (a + iΔx ).
(c) The number of rectangles approaches infinity.
(d) The width of each rectangle is equal to b − a.
(e) The increment Δx is equal to (b − a)/n.

 57.  The principle of integration by parts tells us that if f and g are integrable and 
differentiable functions of a variable x, then

∫ f  (x ) · g ′ (x ) dx = f  (x ) · g (x ) − ∫ g (x ) · f  ′ (x ) dx

   Now look at the following equation, which is meant to show an example of 
integration by parts. Is anything wrong here? If so, what can be done to make it right?

∫ xe  x dx = xe x − ∫ x dx

(a) Nothing is wrong.
(b) The integrand after the second integral symbol should be e x, not x.
(c) The integrand after the second integral symbol should be x 2/2, not x.
(d) The expression after the equals sign should be x 2e x, not xe x.
(e) The expression after the equals sign should be x ln x, not xe x.

 58.  What is the value of the following sum of definite integrals?

0

1

∫ 2x dx +
1

0

∫ 2x dx

(a) 0
(b) 1
(c) −1
(d) j, the positive square root of −1
(e) −j, the negative square root of −1

 59. Suppose we encounter the indefinite integral

∫ [(5x − 5)(x 2 + x − 6)−1] dx
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   We can use the technique of partial fractions to split the above integrand into a sum of 
two manageable integrands. Those two integrands are
(a) 4(x − 2)−1  and  2(x + 3)−1.
(b) (x − 3/4)−1  and  16(x + 2)−1.
(c) (x − 2)−1  and  4(x + 3)−1.
(d) 4(x + 2/3)−1  and  2(x − 3/2)−1.
(e) 4(x − 2/3)−1  and  4(x − 3)−1.

 60.  If we want to evaluate the integral in Question 59 over the interval (0,5), we must 
take note of the fact that
(a) there’s a singularity at x = 3.
(b) there’s a singularity at x = 3/2.
(c) there’s a singularity at x = 3/4.
(d) there’s a singularity at x = 2/3.
(e) there’s a singularity at x = 2.

 61.  Suppose we want to find the true geometric area between the graphs of the following 
two functions:

f  (x ) = sin x

  and

g (x ) = 2x /p

   We can do this by integrating a certain function with respect to x, over the interval 
between the points where the graphs intersect. What are the x values of those two points?
(a) −1 and 1.
(b) −p and p .
(c) 0 and 1.
(d) 0 and p .
(e) 1 and p .

 62. If h (z ) = 0, then which of the following is an antiderivative of h ?
(a) 5
(b) 5z
(c) 5z 2

(d) 5z −1

(e) All of the above

 63.  Suppose that g (z ) is a function that is integrable over a certain interval. Someone tells us 
that the following statement is true for all possible values of p, q, and r in the interval:

p

q

∫ g (z ) dz +
p

r

∫ g (z ) dz =
q

r

∫ g (z ) dz



Final Exam  559

   What, if anything, is wrong with this statement? If something is wrong with it, how 
can it be changed to make it correct?
(a) Nothing is wrong with this statement. It’s true as it stands.
(b) The bounds attached to the integral symbols are wrong. We can make the 

statement true by changing the lower bound of the second integral to q and 
changing the lower bound of the third integral to p.

(c) The bounds attached to the integral symbols are wrong. We can make the 
statement true by reversing the bounds of the third integral.

(d) The bounds attached to the integral symbols are wrong. We can make the 
statement true by reversing the bounds of the second integral.

(e) The addition operation is wrong. We can make the statement true by changing it 
to subtraction.

 64.  Suppose we have a function f  (x ) that contains no singularities, and is defined and 
continuous over an interval from x = a to x = b. The formula for the length of the arc 
between these two points is

L =
a

b

∫ {1 + [ f  ′ (x )]2}1/2 dx

   If we want to apply this formula in any particular situation, which of the following 
would we most likely want to do first?
(a) Differentiate f   with respect to x.
(b) Antidifferentiate f   with respect to x.
(c) Square the function f.
(d) Add 1 to the function f.
(e) Take the positive square root of the function f.

 65. Consider the function 

g (x ) = (x 2 − 3x + 2)−1

   Suppose we want to calculate the arc lengths along the graph of this function over 
various intervals. Which, if any, of the following intervals won’t work with the formula 
for arc length stated in Question 64?
(a) −2 < x < 0
(b) −2 < x < 2
(c) 3 < x < 4
(d) 1/2 < x < 3/4
(e) −1/2 < x < 1/2

 66. Suppose we encounter this mathematical expression:

i

n

=
∑

1

ai = b
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  How would we say or write this in words?
(a) The sequence of terms ai, from i = 1 to n, is equal to b.
(b) The average of the terms ai, from i = 1 to n, is equal to b.
(c) The sum of the terms ai, from i = 1 to n, is equal to b.
(d) The integral of the terms ai, from i = 1 to n, is equal to b.
(e) None of the above

 67.  Let’s look again at a situation we saw a little while ago (Question 61). We want to find 
the true geometric area between the graphs of

f  (x ) = sin x

  and

g (x ) = 2x /p

   We can do this by integrating a certain function with respect to x, over the interval 
between the points where the graphs intersect. In this situation,
(a) the integrand is sin x − 2x /p .
(b) the integrand is sin x + 2x /p .
(c) the integrand is −cos x − 2x /p .
(d) the integrand is −cos x + 2x /p .
(e) the integrand is cos x − 2x /p .

 68. If g (t ) = 7, then which of the following is an antiderivative of g ?
(a) 7t
(b) 7t − 7
(c) 7t + 7
(d) (9 + 5)(t /2) − 16
(e) All of the above

 69.  If we consult a comprehensive table of indefinite integrals, we’ll find

∫  (ax + b )−1 dx = a−1 ln |ax + b | + c

   where a and b are constants, and x is the variable. This formula can come in handy 
when we want to use the technique of
(a) integration by parts.
(b) integration by linear differentiation.
(c) Riemann integration.
(d) improper integration.
(e) integration by partial fractions.
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 70.  Figure FE-6 shows the graph of a function h (x ), along with a region defined by the 
curve within the interval (−1,1) that contains a singularity at x = 0. Suppose we want 
to evaluate the definite integral

−
∫
1

1

h (x ) dx

  What’s the correct way to do this?
(a) Find H (x ), and then subtract H (−1) from H (1).
(b) Find, if possible, the improper integral of H (x ) from x = −1 to x = 0. Then find, 

if possible, the improper integral of H (x ) from x = 0 to x = 1. Finally, assuming 
both integrals are defined and finite, add them.

(c) Find, if possible, the improper integral of H (x ) from x = −1 to x = 0. Then find, 
if possible, the improper integral of H (x ) from x = 0 to x = 1. Finally, assuming 
both integrals are defined and finite, subtract them from each other and take the 
absolute value of the result.

(d) Find, if possible, the improper integral of H (x ) from x = −1 to x = 0. Then find, 
if possible, the improper integral of H (x ) from x = 0 to x = 1. Finally, assuming 
both integrals are defined and finite, multiply them.

(e) Give up! It’s impossible to evaluate this integral.

x

Each horizontal division is 1/2 unit

Each vertical
division is
1 unit

x = –1 x = 1

Area defined by curve
extends upward

forever

(x)h

(x) = xh –4/5(x) = xh –4/5

Figure FE-6 Illustration for Final Exam Question 70.
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 71. If f  (v) = −4v + 8, which of the following is not an antiderivative of f  ?
(a) −2v2 + 8v
(b) −2v2 + 8v + 8
(c) −2v2 + 8v − p
(d) −2v2 + 8
(e) −2v2 + 8v + ln p

 72. Consider the definite integral

a

b

∫ f  (x ) dx

   Suppose that f   blows up at the upper bound b. To approximate the value of this 
integral, we can imagine a tiny positive number e and evaluate

a

b −

∫
ε

f  (x ) dx

   We can make e smaller and smaller, always keeping it positive, and we’ll be able to get 
as close to the actual value of the integral from a to b as we want, but only if
(a) the actual integral from a to b is positive.
(b) f  (b) is positive.
(c) the actual integral from a to b is finite.
(d) the actual integral from a to b is equal to 0.
(e) f  (b) is defined.

 73.  Imagine a car in a drag race. We start a timer as soon as the car begins the race. The 
total distance that the car has traveled from the starting point at any given instant in 
time can be found by
(a) integrating the acceleration with respect to time.
(b) integrating the speed with respect to time.
(c) differentiating the acceleration with respect to time.
(d) differentiating the speed with respect to time.
(e) no known means.

 74.  How can we simplify the last expression in the following equation and have it remain 
valid in theoretical terms? In this example, y is the variable, and c1, c2, and c3 are 
constants of integration.

∫ (5y 2/3 − y−1/2 − 4y−2) dy

     = ∫ 5y 2/3 dy + ∫ −y−1/2 dy + ∫ −4y−2 dy

= 3y5/3 + c1 − 2y1/2 + c2 + 4y−1 + c3
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(a) We can consolidate c1, c2, and c3 into a single constant of integration c that’s equal 
to c1/3 + c2/3 + c3/3.

(b) We can consolidate c1, c2, and c3 into a single constant of integration c that’s equal 
to c1c2c3.

(c) We can consolidate c1, c2, and c3 into a single constant of integration c that’s equal 
to c1 + c2 + c3.

(d) We can get rid of the constants altogether.
(e) We can’t simplify the last expression any further.

 75.  The sum rule for definite integrals works when we add up any finite number of 
functions, but only under certain conditions. Which conditions?
(a) All the functions must be integrable over the interval.
(b) All the integrals must be done in the same direction.
(c) The interval of integration must be the same for each function.
(d) All three conditions (a), (b), and (c) must hold true.
(e) None of the above conditions have to be true.

 76.  We want to evaluate the following integral. Why can’t we use the Fundamental Theorem 
of Calculus directly over the interval (2,4) in an attempt to solve this problem?

2

4

∫ [(3z 2 + 2z − 6 + (z − 3)−1/3] dz

(a) The interval (2,4) is too narrow.
(b) The integrand function is not continuous for z < 2.
(c) The integrand function is not continuous for z > 4.
(d) The integrand function contains a singularity in the interval (2,4).
(e) We can!

 77.  Let’s look, for the third time, at the situation we saw in Questions 61 and 67. We 
want to find the true geometric area between the graphs of

f  (x ) = sin x

  and

g (x ) = 2x /p

   We can do this by evaluating a certain expression over the interval between the x
values of the points where the graphs intersect. In this situation,
(a) the expression is sin x − x 2/p , evaluated from −1 to 1.
(b) the expression is sin x + x 2/p , evaluated from −p to p .
(c) the expression is −cos x − x 2/p , evaluated from 0 to 1.
(d) the expression is −cos x + x 2/p , evaluated from 0 to p .
(e) the expression is cos x − x 2/p , evaluated from 1 to p .
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 78. Which of the following functions contains a singularity?
(a) f1 (x ) = x  2

(b) f2 (x ) = e x

(c) f3 (x ) = 3x  2 + 2x
(d) f4 (x ) = (5 + x )−1

(e) All four of the above

 79.  Consider the sum of definite integrals

3

5

∫ 7x 2 dx +
5

3

∫ x 2/3 dx

   Can we rewrite this expression so that the sum rule can be used to convert it into a 
single definite integral of a polynomial function? If so, how?
(a) We can’t do it.
(b) We can transpose the bounds of the first integral, and leave everything else the 

same.
(c) We can transpose the bounds of the second integral, and leave everything else the 

same.
(d) We can transpose the bounds of the first integral, and change the second integrand 

to −x 2/3.
(e) We can transpose the bounds of the second integral, and change the second 

integrand to −x 2/3.

 80.  Suppose that we have two integrable functions f and g such that f operates on x, while 
g operates on f  (x ). If we see an integral of the form

a

b

∫ g [ f  (x )] · f   ′ (x ) dx

  where a and b are real numbers, then the rule of substitution lets us rewrite it as

f a

f b

( )

( )

∫ g ( y ) dy

  In the second integral, y is the equivalent of
(a) f  (x ) in the first integral.
(b) f   ′ (x ) in the first integral.
(c) f   ′ (x ) dx in the first integral.
(d) g ′ (x ) in the first integral.
(e) g ′ (x ) dx in the first integral.

 81. In the second integral above (Question 80), dy is the equivalent of
(a) f  (x ) in the first integral.
(b) f   ′ (x ) in the first integral.



Final Exam  565

(c) f  ′ (x ) dx in the first integral.
(d) g ′ (x ) in the first integral.
(e) g ′ (x ) dx in the first integral.

 82.  Suppose a, b, c, and d are real numbers and a < b < c < d. Consider the following sum 
of definite integrals:

a

b

∫ 3x  5 dx +
c

d

∫ 3e x dx

   Both of these integrals are defined over any interval in the set of reals, because both 
of the integrands are defined and continuous over the entire set of reals. Now suppose 
that we want to consolidate the above expression into a single definite integral in 
which the integrand is (3x 5 + 3e x ). How should we set the bounds of integration?
(a) We can’t, based on the information given here.
(b) The lower bound should be a, and the upper bound should be c.
(c) The lower bound should be a, and the upper bound should be d.
(d) The lower bound should be b, and the upper bound should be c.
(e) The lower bound should be b, and the upper bound should be d.

 83.  Suppose we want to find the true geometric area between the graphs of the following 
two functions:

f  (x ) = −e x

  and

g (x ) = (1 − e )x − 1

   We can do this by integrating a certain function with respect to x, over the interval 
between the points where the graphs intersect. What are the x values of those two 
points?
(a) −1 and 1.
(b) −e and e.
(c) 1 and e.
(d) 0 and e.
(e) 0 and 1.

 84. Consider a function f, a variable x, a constant a, and an integer n. Imagine that

f  (x ) = axn

  Now suppose we’re told that the general antiderivative of f   with respect to x is

F  (x ) = ax (n+1)/(n + 1) + c
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  where c is the constant of integration. This formula won’t work
(a) if n = −1.
(b) if n < −1.
(c) if n is not a rational number.
(d) if n is not an integer. 
(e) in any case, because it’s wrong!

 85.  Figure FE-7 shows the graphs of two functions in Cartesian coordinates. The true 
geometric area of the region enclosed by the line and the curve is
(a) positive, because most of it lies above the independent-variable axis.
(b) positive, because most of it lies to the right of the dependent-variable axis.
(c) positive, because true geometric areas are never negative.
(d) partly positive and partly negative.
(e) impossible to define, because it does not all lie in a single quadrant of the 

coordinate plane.

h (x)

f (x)

–x

Value of
function
(positive)

Value of
function
(negative)

+x

What’s the
area of the
shaded region?

Figure FE-7 Illustration for Final Exam Questions 85 and 86.
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 86. To determine the true geometric area enclosed by the graphs in Fig. FE-7, we can
(a) integrate the function f  (x ) − h (x ) over the interval between the points where the 

line and the curve intersect.
(b) integrate the function h [ f  (x )] over the interval between the points where the line 

and the curve intersect.
(c) integrate the function f  (x ) + h (x ) over the interval between the points where the 

line and the curve intersect.
(d) integrate the function [ f  (x ) + h (x )]/2 over the interval between the points where 

the line and the curve intersect.
(e) do nothing, because the region does not all lie in a single quadrant of the 

coordinate plane.

 87. Suppose we want to evaluate the definite integral

0

1

∫ (x−1/7 + x−1/3) dx

  We decide to go through the following four steps to solve this problem.

 • Split the original integral into two separate integrals of monomial functions.
 • Integrate those two monomial functions independently.
 •  If either of the monomial-function integrals is undefined, conclude that the entire 

integral is undefined.
 •  If both of the monomial-function integrals are defined, add them to get the value of 

the entire integral.

   What, if anything, makes this process incorrect, incomplete, or otherwise unworkable? 
If anything is wrong with it, what can we do to make it work?
(a) The first and second steps are unworkable. We can’t split this integral into a sum 

of two other integrals, because the exponents aren’t integers. We must therefore 
tackle the integrand as a single polynomial.

(b) The third step is wrong. The entire integral is undefined only if both of the 
monomial-function integrals are undefined. 

(c) The fourth step is wrong. We can’t add the two monomial-function integrals; we 
must find their arithmetic mean.

(d) The fourth step is wrong. We can’t add the two monomial-function integrals; we 
must find their geometric mean.

(e) Nothing is wrong with this process.

 88.  Let’s look again at a situation we saw a little while ago (Question 83). We want to find 
the true geometric area between the graphs of

f  (x ) = −e x

            and

g (x ) = (1 − e)x − 1
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   We can do this by integrating a certain function with respect to x, over the interval 
between the points where the graphs intersect. In this situation,
(a) the integrand is e x − x + ex + 1.
(b) the integrand is −e x + x + ex + 1.
(c) the integrand is e x − x + ex − 1.
(d) the integrand is −ex − x + ex + 1.
(e) the integrand is e x − x − ex − 1.

 89. Suppose we encounter an integral of the form

–

0

∞
∫ h (x ) dx

   Which of the following statements can we make about the value of this integral 
without knowing anything about h except the fact that h (0) is defined?
(a) It’s equal to 0.
(b) It’s negative.
(c) It’s positive.
(d) It’s a real number.
(e) None of the above

 90. Suppose we encounter an integral of the form

−∞

∞

∫ f  (z ) dz

   Which of the following statements can we make about the value of this integral 
without knowing anything about f except the fact that f  (0) is defined?
(a) It’s equal to 0.
(b) It’s infinite.
(c) It’s finite.
(d) It’s not a real number.
(e) None of the above

 91. Suppose we encounter an integral of the form

−
∫
1

1

g (t ) dt

   Which of the following statements can we make about the value of this integral without 
knowing anything about g except the fact that g (−1) and g (1) are both defined?
(a) It’s equal to 0.
(b) It’s finite.
(c) It’s infinite.
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(d) It’s an integer.
(e) None of the above

 92.  Suppose we encounter an integral of the form

−

−

∫
1

1

P (v) dv

   Which of the following statements can we make about the value of this integral 
without knowing anything about P except the fact that P (−1) is defined?
(a) It’s equal to 0.
(b) It’s a positive real number.
(c) It’s undefined.
(d) It’s a negative real number.
(e) None of the above

 93.  Consider a normal probability distribution P (x ) whose graph has a left-hand extreme 
at x = p and a right-hand extreme at x = q. Suppose we find x = j such that p < j < q.
Suppose we also have

p

ϕ

∫  P (x ) dx = 1/2

  and

ϕ

q

∫  P (x ) dx = 1/2

  What does j represent?
(a) The least upper bound of P.
(b) The standard deviation of P.
(c) The deviation of P.
(d) The greatest lower bound of P.
(e) None of the above

 94.  In the situation shown by the graph of Fig. FE-8, it’s tempting to think that we can 
integrate f  (x ) and g (x ) separately over the interval between the points P and Q where 
the curves intersect, take the absolute values of both integrals, and then add those two 
absolute values to get the true geometric area between the curves. Can we do this and 
be sure we’ll get the correct result?
(a) Yes, but only if P and Q are equally far from the dependent-variable axis.
(b) Yes, but only if P and Q are both exactly on the independent-variable axis.
(c) Yes, but only if P and Q are equally far from the independent-variable axis.
(d) Yes, but only if f  (x ) and g (x ) are both quadratic functions.
(e) No! Never.
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 95.  Let’s look, for the third time, at the situation we saw in Questions 83 and 88. We 
want to find the true geometric area between the graphs of

f  (x ) = −e x

      and

g (x ) = (1 − e )x − 1

   We can do this by evaluating a certain expression over the interval between the x
values of the points where the graphs intersect. In this situation,
(a) the expression is e x − x 2/2 + ex 2/2 − x, evaluated from 0 to e.
(b) the expression is −e x − x 2/2 + ex  2/2 + x, evaluated from 0 to 1.
(c) the expression is −e x − x 2/2 − ex 2/2 + x, evaluated from −e to e.
(d) the expression is −e x − x 2/2 + ex 2/2 + x, evaluated from −1 to 1.
(e) the expression is −e x − x 2/2 − ex 2/2 − x, evaluated from 1 to e.

x

Value
of
functionf (x)

g (x)

P Q

Figure FE-8 Illustration for Final Exam Question 94.
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 96.  Imagine that we have various functions of a variable x, and all of those functions can 
be integrated with respect to x. Which of the following statements is false?
(a) The indefinite integral of the negative of a function is equal to the negative of the 

indefinite integral of the function.
(b) The indefinite integral of the difference between two functions is equal to the 

difference between the indefinite integrals of the functions, as long as the order of 
subtraction stays the same.

(c) The indefinite integral of the product of two functions is equal to the product of 
the indefinite integrals of the functions.

(d) The indefinite integral of the sum of two functions is equal to the sum of the 
indefinite integrals of the functions, as long as the order of addition stays the same.

(e) The indefinite integral of the sum of two functions is equal to the sum of the 
indefinite integrals of the functions, whether the order of addition stays the same 
or not.

 97. In the graph of Fig. FE-9, the length of the chord labeled with Δx and Δy is
(a) Δy /Δx.
(b) (Δy + Δx )1/2.
(c) (Δy − Δx )1/2.

x

f (x)

x = b

x = a

Graph of function
is gray curve

Δx

Δy

All increments are of
equal size along the
x axis

y = f (x )

There are n chords,
shown as dark,
straight line segments

Figure FE-9 Illustration for Final Exam Questions 97, 98, and 99.



572  Final Exam

(d) (Δy  2 + Δx  2)1/2.
(e) (Δy  2 − Δx  2)1/2.

98.  In Fig. FE-9, the law of the mean tells us specifically that
(a) the length of the arc segment labeled with Δx and Δy is greater than or equal to 

the length of the corresponding chord.
(b) the length of the arc over the interval from x = a to x = b is greater than or equal 

to the sum of the lengths of the chords connecting all the points over that interval.
(c) there is a point on the chord labeled with Δx and Δy at which the slope of the 

chord is equal to the length of the corresponding arc segment.
(d) there is a point on the arc segment labeled with Δx and Δy at which the derivative of 

the function representing the arc equals the slope of the corresponding chord.
(e) as the number of chords n increases, the sum of the chord lengths over the interval 

from x = a to x = b approaches the true arc length over that interval.

 99. Which of the following statements concerning Fig. FE-9 is not necessarily true?
(a) the length of the arc segment labeled with Δx and Δy is greater than or equal to 

the length of the corresponding chord.
(b) the length of the arc over the interval from x = a to x = b is greater than or equal 

to the sum of the lengths of the chords connecting all the points over that interval.
(c) there is a point on the chord labeled with Δx and Δy at which the slope of the 

chord is equal to the length of the corresponding arc segment.
(d) there is a point on the arc segment labeled with Δx and Δy at which the derivative of 

the function representing the arc equals the slope of the corresponding chord.
(e) as the number of chords n increases, the sum of the chord lengths over the interval 

from x = a to x = b approaches the true arc length over that interval.

 100.  If we antidifferentiate the zero function twice with respect to an independent variable 
x, we can, in theory, get any of the following except
(a) 0
(b) 2
(c) 2x
(d) 2x + 2
(e) 2x 2 + 2

 101. What type of curve does the following equation represent?

11x 2 + 2y 2 = 22

(a) We need more information to answer this.
(b) It’s a parabola.
(c) It’s a circle.
(d) It’s an ellipse.
(e) It’s a hyperbola.
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 102. Look again at the equation in Question 101. What is y ′ when x = 11?

(a) It’s not defined.
(b) It’s equal to 0.
(c) It’s equal to ± 21/2.
(d) It’s equal to ± 111/2.
(e) It’s equal to − (11/2)1/2.

 103. Look again at the equation in Question 101. What is y ′ when y = 111/2?

(a) It’s not defined.
(b) It’s equal to 0.
(c) It’s equal to ± 21/2.
(d) It’s equal to ± 111/2.
(e) It’s equal to − (11/2)1/2.

 104.  Consider a function f   of two variables x and y. Suppose that we treat y as a constant, 
differentiate with respect to x, keep holding y constant, and differentiate with respect 
to x again. The result of this process is

(a) the zero function.
(b) a constant function.
(c) a polynomial function.
(d) a mixed second partial.
(e) None of the above

 105.  Fill in the blank to make the following statement express one of l’Hôpital’s principles. 
“If we want to find the limit of a ratio that tends toward ________, and if we can 
differentiate the numerator and the denominator, then the limit of the ratio of the 
derivatives is the same as the limit of the original ratio.”

(a) 1/0
(b) ±∞/0
(c) 1/±∞
(d) 0/0
(e) ±2 /p

 106.  Fill in the blank to make the following statement express another of l’Hôpital’s 
principles. “If we want to find the limit of a ratio that tends toward ________, and if 
we can differentiate the numerator and the denominator, then the limit of the ratio of 
the derivatives is the same as the limit of the original ratio.”

(a) ±∞/±∞
(b) 0/1
(c) ±∞/0
(d) ±∞/1
(e) ±p /2



574  Final Exam

 107. Imagine variables x and y along with true functions f   and f −1 such that

f  (x ) = y

       and

f −1( y ) = x

  Which of the following statements can help us differentiate f −1 with respect to y ?
(a) [ f  ′( y )]/[ f −1′ (x )] = 1
(b) (dx /dy ) = (dy /dx )−1

(c) xy = 1
(d) f  (x ) f  ( y ) = 1
(e) (dy /dx )2 = 1

 108.  Consider a function z = f  (x,y ). Imagine that the 3D graph of f   is a surface that 
intersects all three planes shown in Fig. FE-10, forming a curve in each plane. Suppose 
that the intersection curve in the plane parallel to the xz plane represents a function that 
can be differentiated. When we differentiate it, we have one of the partial derivatives of
(a) y with respect to x.
(b) y with respect to z.
(c) x with respect to y.
(d) z with respect to x.
(e) z with respect to y.

+x–x

+z

–z

+y

Plane
parallel to
yz plane

Plane parallel to
xz plane

Plane
parallel to
xy plane

–y

Figure FE-10 Illustration for Final Exam Questions 108 and 
109.
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 109.  Consider the same function z = f  (x,y ) as we did in Question 108. Suppose that the 
intersection curve in the plane parallel to the xz plane represents a function that can be 
differentiated. When we differentiate it,
(a) we hold y constant.
(b) we hold z constant.
(c) we hold x and y constant.
(d) we hold x and z constant.
(e) we hold y and z constant.

 110.  Suppose we use l’Hôpital’s rule in an attempt to find an indeterminate limit, and we 
end up with a limit of the form +∞/−∞. What should we do?
(a) Give up. We can’t go any further to find this limit.
(b) Conclude that the limit is not defined.
(c) Apply l’Hôpital’s rule again.
(d) Conclude that the limit is equal to −∞.
(e) Conclude that the limit is equal to −1.

 111.  Consider a function h of two variables u and v. Suppose that we treat u as a constant, 
differentiate with respect to v, then treat v as a constant, and differentiate with respect 
to u. The result of this process is
(a) the zero function.
(b) a constant function.
(c) a polynomial function.
(d) a mixed second partial.
(e) None of the above

 112.  Imagine that we want to find the mathematical volume of a solid defined by a surface in 
Cartesian xyz-space with respect to a region R in the xy-plane. Suppose that the surface is 
defined by the function h (x,y ). When we work out the double integrals we discover that

R
∫∫ h (x,y ) dx dy =

R
∫∫ h (x,y ) dy dx = 0

  What can we conclude, with certainty, from this result?
(a) The surface is flat, and lies entirely in the xy-plane within the region R.
(b) The function f contains a singularity somewhere in the region R.
(c) The surface is flat and horizontal, parallel to the xy-plane within the region R.
(d) The surface is perpendicular to the xy-plane at every point where it passes through 

the region R.
(e) None of the above

 113.  Consider the following function in which x is the independent variable and y is the 
dependent variable:

y = f  (x ) = (x + 1)3
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  Suppose that we find the inverse relation f −1, so we have

x = f −1 ( y )

   where y is the independent variable and x is the dependent variable. How must we 
restrict the domain of f   to ensure that f −1 is a true function and is defined for all 
input values?
(a) We must restrict it to the set of all reals x such that x ≥ 1.
(b) We must restrict it to the set of all reals x such that x ≥ 0.
(c) We must restrict it to the set of all reals x such that x ≥ −1.
(d) We must restrict it to the set of all reals x such that −1 ≤ x ≤ 1.
(e) We don’t have to restrict it at all; x can be any real number.

 114.  Assuming we have restricted the domain of f   in the situation of Question 113, what is 
the derivative of its inverse?
(a) f −1′ ( y ) = 3 ( y + 1)2

(b) f −1′ ( y ) = 3y ( y + 1)2

(c) f −1′ ( y ) = y−2/3/3
(d) f −1′ ( y ) = y1/3 − 1
(e) f −1′ ( y ) = ( y + 1)1/3

 115.  Consider the following function g of two real independent variables s and t, where the 
dependent variable is a real number u:

u = g (s,t ) = s 2 + 2st + t 2

  The value of ∂u /∂t at the point where (s,t ) = (3,−2) is
(a) 2.
(b) −2.
(c) 4.
(d) 0.
(e) impossible to determine without more information.

 116.  Consider two functions f  (x ) and g (x ) with three properties. First, f   and g are both 
differentiable with respect to x over some open interval containing x = a, except 
possibly at x = a itself. Second,

Lim
x a→

f  (x ) = 0

  and

Lim
x a→

g (x ) = 0
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  Third, g ′ (x ) = 0. If all three of these conditions are met, then

Lim
x a→

f  (x ) / g (x ) = Lim
x a→

f   ′ (x ) / g ′ (x )

   Is anything wrong with this principle as stated here? If so, how can the principle be 
rewritten to make it correct?
(a) The first condition is misstated. It should require that f   and g be continuous and 

differentiable over the entire set of real numbers.
(b) The second condition is misstated. It should require that the limits of both f   and 

g   should be nonzero real numbers as x approaches a.
(c) The third condition is misstated. It should require that g ′ (x ) be nonzero whenever 

x ≠ a.
(d) The ratio of the derivatives is upside-down in the limit on the right-hand side of 

the equation. We should divide g ′ (x ) by f   ′ (x ).
(e) Nothing is wrong with the principle as it is written here.

 117.  Consider the following function in which the domain is a set of real-number ordered 
pairs (x,y ), and the range is a set of real numbers z:

z = f  (x,y ) = 7x 2 ln |y |

  The value of ∂z /∂x at the point (x,y ) = (2,1) is
(a) 0.
(b) 7.
(c) 14.
(d) 28.
(e) undefined.

 118. In the situation of Question 117, ∂z /∂y at the point (x,y ) = (2,1) is
(a) 0.
(b) 7.
(c) 14.
(d) 28.
(e) undefined.

 119. What’s the value of the following repeated integral?

−
∫
3

1

−
∫
3

1

24y dy dy

(a) We can’t evaluate it, because it’s not in a meaningful form.
(b) −112
(c) 112
(d) −96
(e) 96
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 120.  Fill in the blank to make the following statement true: “To differentiate the inverse 
of a function (assuming that the inverse is a true function), we can differentiate the 
original function, then find the _______ of that derivative, and finally substitute one 
variable for the other.”
(a) negative
(b) antiderivative
(c) reciprocal
(d) natural logarithm
(e) absolute value

 121.  Suppose that we want to use calculus to derive a formula for the slant-surface area of 
the right circular cone shown in Fig. FE-11. To do this, we can integrate the function 
that defines
(a) the circumference of each circular slice vs. the vertical distance y from the cone’s 

apex.
(b) the circumference of each circular slice vs. the distance t of its edge from the cone’s 

apex.
(c) the area of each disk-shaped slice vs. the distance x of its center from the cone’s apex.
(d) the area of each disk-shaped slice vs. the distance t of its edge from the cone’s apex.
(e) the surface area of each “sub-cone” vs. the distance x of the center of its base from 

the apex of the “main cone.”

t

+x

+z

–z

–y

Circular or
disk-shaped
slice

Figure FE-11  Illustration for Final Exam Questions 121 
and 122.
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 122.  If we want to use calculus to derive a formula for the volume of the right circular cone 
shown in Fig. FE-11, we can integrate the function that defines
(a) the circumference of each circular slice vs. the vertical distance y from the cone’s 

apex.
(b) the circumference of each circular slice vs. the distance t of its edge from the cone’s 

apex.
(c) the area of each disk-shaped slice vs. the distance x of its center from the cone’s apex.
(d) the area of each disk-shaped slice vs. the distance t of its edge from the cone’s apex.
(e) the volume of each “sub-cone” vs. the distance x of the center of its base from the 

apex of the “main cone.”

 123.  Imagine a solid defined by a surface relative to a flat “base” region of finite, positive 
area that lies in the xy-plane of Cartesian xyz-space. Suppose the surface is defined by 
a function f  (x,y ) such that, for every point within the “base” region, f  (x,y ) > 0. Then 
the mathematical volume of the solid
(a) must be positive.
(b) must be negative.
(c) must be 0.
(d) can be positive, negative, or 0.
(e) is undefined, because f contains a singularity.

 124.  Consider the following expression involving a function of two variables. What does 
this expression specifically tell us to do?

[ ∫∫
a

b

c

d

f  (x,y ) dx ] dy

(a) Integrate f   against x, and evaluate the resulting expression from y = a to y = b,
getting another function. Then integrate that function against y, and evaluate the 
resulting expression from x = c to x = d.

(b) Integrate f   against x, and evaluate the resulting expression from x = a to x = b,
getting another function. Then integrate that function against y, and evaluate the 
resulting expression from y = c to y = d.

(c) Integrate f   against y, and evaluate the resulting expression from y = a to y = b,
getting another function. Then integrate that function against x, and evaluate the 
resulting expression from x = c to x = d.

(d) Integrate f   against y, and evaluate the resulting expression from x = a to x = b,
getting another function. Then integrate that function against x, and evaluate the 
resulting expression from y = c to y = d.

(e) Integrate f   against x, getting a second function. Then integrate against y, getting 
a third function. Then evaluate that function from y = a to y = b. Finally, evaluate 
the remaining expression from x = c to x = d.

 125. What type of equation is this?

dy /dx + cos x = 3x 2 + 8x − 7
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(a) A second-order differential equation.
(b) A third-order differential equation.
(c) A partial differential equation.
(d) An extraordinary differential equation.
(e) An ordinary differential equation.

 126. If we want to solve the equation in Question 125, what should we try to end up with?
(a) We should try to get x all by itself on the left-hand side, and all the derivatives on 

the right-hand side.
(b) We should try to get the derivative all by itself on the left-hand side, and all the 

variables and constants on the right-hand side.
(c) We should try to get the derivative of x with respect to y on the left-hand side, and 

a function of y on the right-hand side.
(d) We should try to get y all by itself on the left-hand side, and a function of x plus a 

constant on the right-hand side.
(e) We should try to get the derivative all by itself on the left-hand side, and nothing 

but a real-number constant on the right-hand side.

 127.  When we define the lateral-surface area of a right circular cylinder by integrating along 
its length, what are we in effect doing?
(a) Stacking up infinitely many circular cross-sections.
(b) Stacking up infinitely many disk-shaped cross-sections.
(c) Adding up the lengths of infinitely many line segments.
(d) Adding up the circumferences of infinitely many concentric circles.
(e) Adding up the lateral-surface areas of infinitely many concentric cylinders.

 128. What type of equation is this?

d 2y /(3dx 2) − 2x = e x + 5

(a) A partial differential equation.
(b) A cubic differential equation.
(c) An exponential differential equation.
(d) A second-order differential equation.
(e) An improper differential equation.

 129.  If we want to solve the equation in Question 128, what is the most reasonable thing to 
do first?
(a) Multiply the equation through by 3.
(b) Differentiate both sides with respect to x.
(c) Take the natural logarithm of both sides.
(d) Consolidate the right-hand side into a single exponential function.
(e) Integrate through with respect to y.
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 130.  Imagine a solid defined by a surface relative to a flat “base” region of finite, positive 
area that lies in the xy-plane of Cartesian xyz-space. Suppose the surface is defined by 
a function g (x,y ) such that, for every point within the “base” region, g (x,y ) = 0. Then 
the mathematical volume of the solid
(a) must be positive.
(b) must be negative.
(c) must be 0.
(d) can be positive, negative, or 0.
(e) is undefined, because g contains a singularity.

 131.  Imagine that we’re calculating the mathematical volume of a solid defined by a surface 
in Cartesian xyz-space over a region R in the xy-plane. The function h (x,y ) that 
represents this surface is continuous and integrable within R. We find that

R
∫∫ h (x,y ) dx dy < 

R
∫∫ h (x,y ) dy dx

  What can we conclude, with certainty, from this result?
(a) We’ve made a mistake somewhere in our calculations.
(b) The average value of h within R is negative.
(c) The average value of h within R is positive.
(d) Every value of h within R is negative.
(e) Every value of h within R is positive.

 132.  Imagine a solid defined by a surface relative to a flat “base” region of finite, positive 
area that lies in the xy-plane of Cartesian xyz-space. Suppose the surface is defined by a 
function q (x,y ) such that, for every point within the “base” region, q (x,y ) < 0. Then 
the mathematical volume of the solid
(a) must be positive.
(b) must be negative.
(c) must be 0.
(d) can be positive, negative, or 0.
(e) is undefined, because q contains a singularity.

 133.  Suppose that we want to use calculus to derive a formula for the surface area of the 
sphere shown in Fig. FE-12. To do this, we can integrate the function that defines
(a) the circumference of each circular slice vs. the vertical distance y of its edge from 

the sphere’s center.
(b) the circumference of each circular slice vs. the arc displacement t of its edge from 

the point where the positive x-axis passes through the sphere.
(c) the area of each disk-shaped slice vs. the distance x from the sphere’s center.
(d) the area of each disk-shaped slice vs. the arc displacement t of its edge from the 

point where the positive x-axis passes through the sphere.
(e) The area of each disk-shaped slice from the point where the negative x-axis passes 

through the sphere to the point where the positive x-axis passes through the sphere.
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 134.  If we want to use calculus to derive a formula for the mathematical volume of the 
sphere shown in Fig. FE-12, we can integrate the function that defines
(a) the circumference of each circular slice vs. the distance x of its center from the 

sphere’s center.
(b) the circumference of each circular slice vs. the arc displacement t of its edge from 

the point where the positive x-axis passes through the sphere.
(c) the area of each disk-shaped slice vs. its radius.
(d) the area of each disk-shaped slice vs. its circumference.
(e) The area of each disk-shaped slice from the point where the negative x-axis passes 

through the sphere to the point where the positive x-axis passes through the 
sphere.

135.  What’s the value of the following repeated integral?

−
∫∫
3

0

0

1

24y dy dy

(a) We can’t evaluate it, because it’s not in the right form.
(b) −112
(c) 112
(d) −108
(e) 108

–y
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Figure FE-12  Illustration for Final Exam 
Questions 133 and 134.
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 136.  Imagine a solid defined by a surface relative to a flat “base” region of finite, positive 
area that lies in the xy-plane of Cartesian xyz-space. Suppose the surface is defined by a 
function p (x,y ) such that, for at least one point within the “base” region, p (x,y ) = 0. 
Then the mathematical volume of the solid
(a) must be positive.
(b) must be negative.
(c) must be 0.
(d) can be positive, negative, or 0.
(e) is undefined because p contains a singularity.

 137.  Figure FE-13 illustrates a process by which we can calculate the mathematical volume 
V that’s defined by a 3D solid with respect to a flat region. Which of the following 
double integrals tells us how this process works?

(a) V =
a

b

∫
g x

h x

( )

( )

∫ f  (x,y ) dy dx

(b) V =
a

b

∫
g x

h x

( )

( )

∫ f  (x,y ) dx dy

(c) V =
g x

h x

( )

( )

∫ f  ( y ) dy
a

b

∫ f  (x ) dx

+x–x

+z

–z

–y

Surface
representing
f (x, y)

Cross-
sectional
slab

+y

Region
of
integration

x = b

y = g (x)

y = h (x)
x = a

Figure FE-13 Illustration for Final Exam Question 137.
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(d) V =
g x

h x

( )

( )

∫
a

b

∫ f  (x,y ) dx dy

(e) V =
a

b

∫ f  (x ) dx
g x

h x

( )

( )

∫ f  ( y ) dy

 138. What is the solution to the following equation?

dy /dx − e x = 0

(a) It can’t be solved, because it contains a derivative.
(b) y = e x + c, where c is a real-number constant.
(c) y = 1.
(d) ln (dy /dx ) = x.
(e) dy = ln x dx.

 139.  Imagine a 3D coordinate system set up as Cartesian xyz-space. If the positive x-axis
runs toward us and the positive y-axis runs off to our right, then the positive z-axis
should run
(a) away from us.
(b) off to our left.
(c) straight up.
(d) straight down.
(e) None of the above

 140.  For a freely falling object in the earth’s gravitational field, neglecting air resistance, the 
double integral of acceleration is
(a) the rate of acceleration per unit time, also called jerk.
(b) downward speed.
(c) downward displacement.
(d) altitude.
(e) undefined.

 141.  Consider the following function h, where the domain is a set of real-number ordered 
triples (x,y,z ), and the range is a set of real numbers w:

w = h (x,y,z ) = 2e xy−2e z + 4xyz

  What is ∂w /∂x at the point (x,y,z ) = (0,1,2)?
(a) −4e 2

(b) −e
(c) 0
(d) 2e
(e) 2e 2 + 8
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 142. For the function h stated in Question 141, what’s ∂w /∂y at (x,y,z ) = (0,1,2)?
(a) −4e 2

(b) −e 2

(c) −1
(d) −1 + e 2

(e) −4e + e 2

 143. For the function h stated in Question 141, ∂w /∂z at (x,y,z ) = (0,1,2) is
(a) −2e.
(b) 0.
(c) 2e 2.
(d) 4e + e 2.
(e) 8e + 2e 2.

 144.  Consider the following function in which x is the independent variable and y is the 
dependent variable:

y = f  (x ) = sin (x /2)

  Suppose that we find the inverse relation f −1, so we have

x = f −1 ( y )

   where y is the independent variable and x is the dependent variable. For what values of 
y is this inverse relation defined?
(a) The set of all reals y such that 0 ≤ y ≤ p .
(b) The set of all reals y such that y ≥ 0.
(c) The set of all reals y such that y ≥ −1.
(d) The set of all reals y such that −1 ≤ y ≤ 1.
(e) The set of all reals y such that −p /2 ≤ y ≤ p /2.

 145.  Suppose that we have established the domain of f −1 in the situation of Question 144. 
Also recall that for variables x and y,

d /dx (sin x ) = cos x

  and

d /dy (Arcsin y ) = (1 − y 2)−1/2

  Based on this knowledge, what is the derivative of f −1?
(a) f −1′ ( y ) = 2 (1 − y 2)−1/2

(b) f −1′ ( y ) = (1 − y 2)−1/2 / 2
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(c) f −1′ ( y ) = 2 cos y
(d) f −1′ ( y ) = (cos y ) / 2
(e) f −1′ ( y ) = 2 (cos y ) (1 − y 2 )−1/2

 146.  Consider the following three-variable function h, where x, y, and z are real-number 
independent variables and w is the real-number dependent variable:

w = h (x,y,z ) = 2xy 2z 3

  What is the second partial of this function with respect to x ?
(a) ∂2w /∂x 2 = 2xz 3

(b) ∂2w /∂x 2 = 2y 2z
(c) ∂2w /∂x 2 = 2z
(d) ∂2w /∂x 2 = 0
(e) It is undefined.

 147. Consider the following two-way relation:

9 (x + 1)2 + 4 ( y − 3)2 = 36

   Where, if anywhere, is the derivative dy /dx equal to 0 on the curve representing this 
relation?
(a) At the points (−1,0) and (−1,6).
(b) At the points (−1,−6) and (−1,12).
(c) At the points (−3,3) and (1,3).
(d) At the points (−5,3) and (3,3).
(e) There’s no point where dy /dx = 0.

 148.  Consider again the two-way relation stated in Question 147. Where, if anywhere, is 
the derivative dy /dx undefined on the curve representing this relation?
(a) At the points (−1,0) and (−1,6).
(b) At the points (−1,−6) and (−1,12).
(c) At the points (−3,3) and (1,3).
(d) Only at the point (−1,0).
(e) The derivative dy /dx is defined at every point on the curve.

 149.  Consider the following three-variable function h, where x, y, and z are real-number 
independent variables and w is the real-number dependent variable:

w = h (x,y,z ) = 2xy 2z 3

   What is the second mixed partial that we get when we differentiate h with respect to x,
and then differentiate the result with respect to z ?
(a) ∂2w /∂z∂x = 3yz 3

(b) ∂2w /∂z∂x = 6y 2z 2
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(c) ∂2w /∂z∂x = 12y 2z
(d) ∂2w /∂z∂x = 12yz
(e) ∂2w /∂z∂x = 12z

 150. Suppose we encounter

Lim
x → −0

 (x −2) (sin x )

  What should be our very first step if we want to evaluate this limit?
(a) Convert the expression after the limit symbol to a ratio.
(b) Apply l’Hôpital’s rule.
(c) Apply the chain rule.
(d) Differentiate the expression after the limit symbol.
(e) Give up. The expression is indeterminate, so we can’t evaluate it.
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These solutions do not necessarily represent the only way a problem can be figured out. If you 
think you can solve a problem faster or better than the way it’s done here, by all means try it! 
Always check your work to be sure your “alternative” answer is correct.

Chapter 1
 1.  This relation is a function. The domain is the set of all integers, and the range is the set 

of all nonnegative integers. Every element of the domain maps into one, but only one, 
element of the range. The inverse, which we get by reversing each ordered pair in the 
original relation, is

{(0,0), (1,1), (2,−1), (3,2), (4,−2), (5,3), (6,−3), (7,4), (8,−4), . . . }

This is also a function. The domain is the set of all nonnegative integers, and the range is 
the set of all integers. Every element of the domain maps into one, but only one, element 
of the range.

 2.  This relation is a function. Once again, the domain is the set of all integers, and the 
range is the set of all nonnegative integers. Every element in the domain maps into one, 
but only one, element of the range. The inverse, which we get by reversing each ordered 
pair in the original relation, is

{(0,0), (1,1), (1,−1), (2,2), (2,−2), (3,3), (3,−3), (4,4), (4,−4), . . . }

This is not a function! The domain is the set of all nonnegative integers, and the range 
is the set of all integers. With the exception of   (0,0), every element of the domain maps 
into two elements of the range. A function isn’t allowed to do that.

 3. Let’s substitute a letter variable for f  (x ). If we use y, the function is written

y = 4x − 5
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To find the inverse, we must solve for x in terms of y. First, we add 5 to each side of the 
above equation, getting

y + 5 = 4x

Dividing through by 4 and transposing the sides of the equation left-to-right, we get

x = ( y + 5)/4

which can be rewritten as

x = y /4 + 5/4

This means that

f −1 ( y ) = y /4 + 5/4

This is the inverse we seek. It’s a linear function of y.

 4.  This constant function, g (x ), has the value 7 regardless of the value of x. If we graph 
this function and call the dependent variable y, we get a horizontal line through the 
point y = 7. The graph of the inverse relation is a vertical line, which fails the vertical-
line test, so we know that this inverse is not a function.

 5.  The equation of the unit circle can be manipulated to get y in terms of x. Here is the 
original equation for reference:

x 2 + y 2 = 1

If we subtract x 2 from each side, we get

y 2 = 1 − x 2

Taking the positive-or-negative square root of each side gives us

y = ±(1 − x 2)1/2

This is a relation whose domain is the set of real numbers between, and including, −1
and 1. The range is also the set of reals between, and including, −1 and 1. The relation 
is not a function. With the exception of x = −1 and x = 1, every element of the domain 
maps into two elements in the range. This fact can be seen by looking at a graph of the 
unit circle ( Fig. A-1). The graph fails the vertical-line test as shown by the dashed line, 
which intersects the circle twice.

 6.  The equation of the unit circle can be manipulated to get x in terms of y. Once again, 
here’s the original equation for reference:

x 2 + y 2 = 1
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If we subtract y 2 from each side, we get

x 2 = 1 − y 2

Taking the positive-or-negative square root of each side gives us

x = ±(1 − y 2)1/2

This is the same situation as we encountered in the solution to Prob. 5. The names of the 
variables have been changed, that’s all! We have, once again, a relation whose domain and 
range are both the set of real numbers between, and including, −1 and 1. As before, we 
don’t have a function here because, with the exception of y = −1 and y = 1, every element 
of the domain maps into two elements in the range.

 7.  The complete graph of the inverse relation, g−1, is a parabola that opens directly toward 
the right. If we restrict the range of this relation to the set of positive real numbers, 
we cut off the lower half of the parabola along with the point (0,0). This leaves only 
the upper half of the curve, which passes the vertical-line test as shown in Fig. A-2. 
Therefore, g−1 becomes a function when the range is restricted to the set of positive 
reals. It remains a function if we allow the range to include 0 as well as all the positive 
reals, because the graph still passes the vertical-line test. But we can’t extend the range 
into the negative reals unless we remove at least some of the positive reals.
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x 2 + y 2 = 1

Figure A-1  Illustration for the solution to Prob. 5 in 
Chap. 1.
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 8.  If we restrict the range of g −1 to the set of negative reals, we cut off the upper half of the 
parabola along with (0,0). This leaves only the lower half, which passes the vertical-line 
test as shown in Fig. A-3. Therefore, g −1 becomes a function when the range is restricted 
to the set of negative reals. It remains a function if we also allow the range to include 0, 
but we can’t extend the range into the positive reals unless we remove at least some of 
the negative reals.

 9.  If we fill in the gap in the domain for the relation shown in Fig. 1-9 by setting y = 0 
when x = 0, we are, in effect, saying that 1/0 = 0, because the relation is

y = 1/x

The mathematical truth of this can be debated! But it provides us with a y-value for every 
possible real number x. The resulting relation is a function, because the graph passes the 
vertical-line test. The same thing happens with the relation

y = tan x

graphed in Fig. 1-10. If we set y = 0 whenever x is an odd-integer multiple of p /2, we still 
have a function of x, because the graph still passes the vertical-line test. We should expect 
to see some raised eyebrows, however, if we claim that the tangent of p /2 is actually equal 
to 0!

2 4 6–2–4–6

2

6

–2

–4

–6

x

y

4

y = (x1/2)+

Figure A-2   Illustration for the solution to Prob. 7 in 
Chap. 1.
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10.  The inverse of the function shown in Fig. 1-9 is also a function. We can see that this is 
true by doing the horizontal-line test on the graph. We can take

y = 1/x

and multiply through by x provided that x ≠ 0, getting

xy = 1

Then we can divide through by y, again with the constraint that y ≠ 0, getting

x = 1/y

Chapter 2
 1.  This sequence starts out at 1/10, and then each succeeding number gets smaller by 

a factor of 10. The numbers get closer and closer to 0, but never actually reach 0. 
Therefore, the limit of the sequence is 0. We can write this as

Lim
n→∞

 1/10n = 0
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Figure A-3  Illustration for the solution to Prob. 8 in 
Chap. 1.
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 2.  In decimal form, 1/10 = 0.1, 1/102 = 0.01, 1/103 = 0.001, and so on.  Let’s write the 
numbers in decimal form and then arrange the sum in as an accountant would do, with 
each term underneath its predecessor:

 0.1
 0.01
 0.001
 0.0001
 0.00001
 . . .
 ⎯⎯⎯⎯
 0.11111. . . 

Looking at the series this way, we can see that it ultimately adds up to the nonterminating, 
repeating decimal 0.11111. . . . From our algebra or number theory courses, we recall that 
this endless decimal number is equal to 1/9. That’s the limit of the sequence of partial 
sums in the series

1/10 + 1/102 + 1/103 + 1/104 + 1/105 + · · ·

 3.  This limit exists, and it is equal to 0. To see why, suppose that we start out with x at 
some positive real number for which the function is defined. As we increase the value 
of x, the value of 1/x 2 decreases, but it always remains positive. If we choose some tiny 
positive real number r, no matter how close to 0 it might be, we can always find some 
large value of x for which 0 < 1/x 2 < r. But no matter how large we make x, the number 
1/x 2 never becomes negative. Therefore,

Lim
x →∞

 1/x 2 = 0

 4.  This limit does not exist. To see why, suppose that we start out with x at some positive real 
number for which the function is defined and then decrease x, letting it get arbitrarily close 
to 0 but always remaining positive. As we decrease the value of x, the value of 1/x 2 remains 
positive and increases. If we choose some large positive real number s, no matter how 
gigantic, we can always find some small, positive value of x for which 1/x 2 > s. Therefore,

Lim
x → +0

 1/x 2

is not defined.

 5.  Figure A-4 is a graph of the function f  (x ) = log10 x for values of x from 0.1 up to 10, 
and for values of f   from −1 to 1. The function varies smoothly throughout this span. If 
we start at values of x a little smaller than 3 and work our way toward 3, the value of f
approaches log10 3. Therefore, 

Lim
x → −3

 log10 x = log10 3



 6.  If we start at values of x slightly larger than 3 in Fig. A-4 and then work our way toward 
the point where x = 3, the value of f approaches log10 3. It’s apparent from the graph that

Lim
n→ +3

 log10 x = log10 3

 7.  From the solution to Prob. 5, we can conclude that the function f   is left-hand 
continuous at the point where x = 3. From the solution to Prob. 6, we know that f   is 
right-hand continuous at that same point. By definition, therefore, f   is continuous at 
the point where x = 3.

 8.  The function f  (x ) = log10 x is continuous if we restrict the domain to the set of positive 
reals. But it’s not continuous if the domain is the set of all nonnegative reals. The base-10 
logarithm of 0 is not defined, and that creates a discontinuity in f   at x = 0. Not only 
that, but the function has no defined limit as x approaches 0 from the right. 

 9.  Figure A-5 is a graph of the absolute-value function f  (x ) = |x | for values of the domain 
between approximately −6 and 6. This function is continuous over the entire set of 
reals. Clearly, it is continuous over the set of positive reals because, when x > 0,

f  (x ) = x

which is a linear function. It is also continuous over the set of negative reals because, 
when x < 0,

f  (x ) = −x
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Figure A-4   Illustration for the solution to Probs. 5 
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which, again, is a linear function. The only doubt might arise when we look at the point 
where x = 0. But

Lim
x → +0

 |x |

and

Lim
x → −0

 |x |

are both defined and equal to 0, which is the value of f   (0). Therefore, by definition, the 
function f  (x ) = |x | is continuous at the point where x = 0.

10.  Figure A-6 is a graph of the function f  (x ) = csc x for the domain between, and 
including, −3p radians and 3p radians. The function is not continuous in that interval, 
because it’s undefined when x is an integer multiple of p radians. That’s not the only 
problem! The function has no defined limit as x approaches any integer multiple of p
radians, either from the left or the right. In the interval we’ve specified, discontinuities 
occur when x = −3p, x = −2p, x = −p, x = 0, x = p, x = 2p, and x = 3p.

Chapter 3
 1. According to the rule we worked out for the derivative of a basic quadratic function,

f  (x ) = x 2

2 4 6–2–4–6
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f (x)

f (x) = |x|

Figure A-5  Illustration for the solution to 
Prob. 9 in Chap. 2.



has the derivative function

f   ′ (x ) = 2x

The x-values of interest are x = −3, x = −2, and x = −1. We have

f   ′ (−3) = 2 × (−3) = −6
f   ′ (−2) = 2 × (−2) = −4
f   ′ (−1) = 2 × (−1) = −2

 2.  The function and its derivative are the same as in Prob. 1. The x-values of interest are x = 0, 
x = 1, x = 2, and x = 3. We have

f   ′ (0) = 2 × 0 = 0
f   ′ (1) = 2 × 1 = 2
f   ′ (2) = 2 × 2 = 4
f   ′ (3) = 2 × 3 = 6
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 3.  According to the rule we worked out for the derivative of a monomial quadratic function,

f  (x ) = −2x 2

has the derivative function

f   ′(x ) = 2 × (−2)x = −4x

The x-values of interest are x = −3, x = −2, and x = −1. We have

 f   ′ (−3) = −4 × (−3) = 12
 f   ′ (−2) = −4 × (−2) = 8
 f   ′ (−1) = −4 × (−1) = 4

 4.  The function and its derivative are the same as in Prob. 3. The x-values of interest are 
x = 0, x = 1, x = 2, and x = 3. We have

f   ′ (0) = −4 × 0 = 0
  f   ′ (1) = −4 × 1 = −4
  f   ′ (2) = −4 × 2 = −8

    f   ′ (3) = −4 × 3 = −12

 5.  We found the general derivative of this function in the chapter text. The original 
function, again, is

f  (x ) = −7x 2 + 2x

The derivative function is

f   ′ (x ) = −14x + 2

The x-values of interest are x = −3, x = −2, and x = −1. We have

f   ′ (−3) = −14 × (−3) + 2 = 44
f   ′ (−2) = −14 × (−2) + 2 = 30
f   ′ (−1) = −14 × (−1) + 2 = 16

 6.  The function and its derivative are the same as in Prob. 5. The x-values of interest are 
x = 0, x = 1, x = 2, and x = 3. We have

f   ′ (0) = −14 × 0 + 2 = 2
    f   ′ (1) = −14 × 1 + 2 = −12
    f   ′ (2) = −14 × 2 + 2 = −26
    f   ′ (3) = −14 × 3 + 2 = −40



 7. According to the rule we worked out for the derivative of a monomial cubic function,

f  (x ) = 5x 3

has the derivative function

f   ′ (x ) = 3 × 5x 2 = 15x 2

The x-values of interest are x = −3, x = −2, and x = −1. We have

  f   ′ (−3) = 15 × (−3)2 = 135
f   ′ (−2) = 15 × (−2)2 = 60
f   ′ (−1) = 15 × (−1)2 = 15

 8.  The function and its derivative are the same as in Prob. 7. The x-values of interest are x = 0, 
x = 1, x = 2, and x = 3. We have

f   ′ (0) = 15 × 02 = 0
  f   ′ (1) = 15 × 12 = 15
  f   ′ (2) = 15 × 22 = 60

    f   ′ (3) = 15 × 32 = 135

 9. We found the derivative of this function in the chapter text. The original function is

f  (x ) = 2x 3 − 5x

which has the derivative function

f   ′ (x ) = 6x 2 − 5

The x-values of interest are x = −3, x = −2, and x = −1. We have

  f   ′ (−3) = 6 × (−3)2 − 5 = 49
  f   ′ (−2) = 6 × (−2)2 − 5 = 19
f   ′ (−1) = 6 × (−1)2 − 5 = 1

 10.  The function and its derivative are the same as in Prob. 9. The x-values of interest are x = 0, 
x = 1, x = 2, and x = 3. We have

  f   ′ (0) = 6 × 02 − 5 = −5
f   ′ (1) = 6 × 12 − 5 = 1

  f   ′ (2) = 6 × 22 − 5 = 19
   f   ′ (3) = 6 × 32 − 5 = 49
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Chapter 4

 1. Figure A-7 is a graph of the function

  f  (x ) =  1/x  when x < −1
  = −1 when x ≥ −1

This graph suggests that the function is defined and continuous over the entire set of real 
numbers, but the slope abruptly changes at the point where x = −1. We should suspect 
that the function is nondifferentiable at that point.

 2. We can attempt to find the derivative at the point where x = −1 by evaluating

Lim
xΔ →0

 [ f  (−1 + Δx ) − f  (−1)] / Δx

from both the right and the left. Let’s do it from the right first. To denote this, we add a 
plus sign after the 0 beneath “Lim” to get

Lim
xΔ → +0

 [ f  (−1 + Δx ) − f  (−1)] / Δx

x

f (x)
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–4–6
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4

f (x)
=
= 1/x when x

–1 when x –1
< –1

≥
(–1, –1)

Figure A-7   Illustration for the solution to Prob. 1 in 
Chap. 4.



When Δx is small and positive, we’re in the straight-line part of the function with a 
constant value of −1. We’re told that f   (−1) = −1. Let’s substitute −1 for f   (−1 + Δx ), and 
substitute −1 for f   (−1) in the above expression. Then we get

Lim
xΔ → +0

[−1 − (−1)] / Δx

which simplifies to

Lim
xΔ → +0

 0/Δx

and, because Δx is nonzero, finally to

Lim
xΔ → +0

 0

This limit is clearly equal to 0.
Now let’s move to the left of the point where x = −1, into the curved part of the graph. 

When Δx is small and negative, we’re in the zone where the function takes the reciprocal 
of the input. This time, we write

Lim
xΔ → −0

 [ f   (−1 + Δx ) − f   (−1)] / Δx

As before, f   (−1) = −1. When we substitute 1/(−1 + Δx ) for f   (−1 + Δx ), and substitute 
−1 for f   (−1) in the above expression, it becomes

Lim
xΔ → −0

 [1/(−1 + Δx ) − (−1)] / Δx

which can be simplified to

Lim
xΔ → −0

 [1/(−1 + Δx ) + 1] / Δx

and further to

Lim
xΔ → −0

 [Δx / (Δx − 1)] / Δx

and finally to

Lim
xΔ → −0

 1/(Δx − 1)

As Δx approaches 0 from the left, the expression after “Lim” approaches 1/(−1), which is 
equal to −1. That’s not the same value as we got when we evaluated the right-hand limit. 
Having found a disagreement between the right-hand and left-hand limits, we know that 
this function is nondifferentiable at the point where x = −1.

 3. Figure A-8 is a graph of the function

f   (x ) = x when x ≤ 3
    = 1 when x > 3
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This graph suggests that the function is defined over the entire set of reals, but 
it is discontinuous at the point where x = 3. We should suspect that the function is 
nondifferentiable at that point.

 4. Let’s evaluate the limit as we approach the point where x = 3 from the right:

Lim
xΔ → +0

[ f  (3 + Δx ) − f  (3)] / Δx

The value of the function is 1 if we add any small positive quantity Δx to the input value 
of 3. We also know that f  (3)  = 3. Therefore, the above limit can be simplified to

Lim
xΔ → +0

(1 − 3) / Δx

and further to

Lim
xΔ → +0

−2/Δx

This limit does not exist. As Δx approaches 0 from the positive side, −2 /Δx blows up 
negatively. This fact alone is sufficient to prove that the function is nondifferentiable at 
the point where x = 3.

 5. Figure A-9 is a graph of the function

f  (x ) = x when x < 3
  = 1 when x ≥ 3
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Figure A-8   Illustration for the solution to Prob. 3 in 
Chap. 4.



This graph, like Fig. A-8, suggests that the function is defined over the entire set of reals, 
but it is discontinuous at the point where x = 3. We should suspect that the function is 
nondifferentiable at that point.

 6.  Let’s figure out the limit as we approach the point where x = 3 once again, but this time 
from the left:

Lim
xΔ → −0

 [ f  (3 + Δx ) − f  (3)] / Δx

The output value of this function is equal to the input value if we add any tiny negative 
quantity Δx to the input value of 3. We also know that f  (3) = 1. Therefore, the above 
limit can be simplified to

Lim
xΔ → −0

 (3 + Δx − 1) / Δx

and further to

Lim
xΔ → −0

 (2 + Δx ) / Δx

As Δx approaches 0 from the negative side, the numerator, 2 + Δx, gets arbitrarily close 
to 2 while the denominator gets arbitrarily close to 0. Therefore, the limit blows up 
negatively. That’s all we need to prove that the function is nondifferentiable at the point 
where x = 3.
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 7. Figure A-10 is a graph of the function

f  (x ) = x 2 when x < 1
  = x 3 when x ≥ 1

This graph suggests that the function is defined and continuous over the entire set of real 
numbers. It’s impossible to be sure, by visual inspection alone, whether or not the slope 
of this graph changes at the point where x = 1. We should check to see if the function is 
differentiable there.

 8. Let’s evaluate the limit as we approach the point where x = 1 from the right. We have

Lim
xΔ → +0

[ f  (1 + Δx ) − f  (1)] / Δx

When Δx is positive, we’re in the “cubic zone.” We know that f  (1) = 13 = 1. When we 
substitute (1 + Δx )3 for f  (1 + Δx ), and substitute 1 for f  (1) in the above expression, it 
becomes

Lim
xΔ → +0

[(1 + Δx )3 − 1] / Δx

When we cube the binomial, we get

Lim
xΔ → +0

[1 + 3Δx + 3(Δx )2 + (Δx )3 − 1] / Δx
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Figure A-10  Illustration for the solution to Prob. 7 in 
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which simplifies to

Lim
xΔ → +0

[3Δx + 3(Δx )2 + (Δx )3] / Δx

and further to

Lim
xΔ → +0

3 + 3Δx + (Δx )2

As Δx tends toward 0, the second and third addends in the expression also approach 0. 
The limit is therefore equal to 3 + 0 + 0, which is 3.

Now let’s move to the left of the point where x = 1, into the “quadratic zone.” We 
must work with the limit

Lim
xΔ → +0

 [ f  (1 + Δx ) − f  (1)] / Δx

When we substitute (1 + Δx )2 for f  (1 + Δx ), and substitute 1 for f  (1) in the above 
expression, it becomes

Lim
xΔ → +0

 [(1 + Δx )2 − 1] / Δx

We can square the binomial to get

Lim
xΔ → −0

 (1 + 2Δx + (Δx )2 − 1] / Δx

which can be simplified to

Lim
xΔ → −0

[2Δx + (Δx )2] / Δx

and further to

Lim
xΔ → −0

 2 + Δx

As Δx approaches 0 from the left, this expression approaches 2 + 0 from the left, telling us 
that the limit is 2. That’s not the same as the limit we got when we approached from the 
right. Therefore, the function is nondifferentiable at the point where x = 1.

 9. Figure A-11 is a graph of the function

f  (x ) = x 2 when x < 1
 = 2x − 1 when x ≥ 1

This graph suggests that the function is defined and continuous over the entire set of real 
numbers. As in Fig. A-10, we can’t be sure, by visual inspection alone, whether or not 
the slope of this graph changes at the point where x = 1. We should check to see if the 
function is differentiable there.
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 10. Let’s evaluate the limit from the right. We have

Lim
xΔ → +0

 [ f  (1 + Δx ) − f  (1)] / Δx

When Δx is small and positive, we’re in the straight-line portion of the graph. We can 
calculate

f  (1) = 2 × 1 − 1 = 1

When we substitute 2(1 + Δx ) − 1 for f  (1 + Δx ), and substitute 1 for f  (1) in the above 
expression, it becomes

Lim
xΔ → +0

 [2 × (1 + Δx ) − 1 − 1] / Δx

When we multiply this out, we get

Lim
xΔ → +0

 [2 + 2Δx − 1 − 1] / Δx

which simplifies to

Lim
xΔ → +0

 2Δx /Δx

x

f (x)

2 4 6–2–4–6

2

6

–2

–6

4

(1, 1)

f (x) = x 2 when x <
= when x ≥ 1

1
2x – 1

–4

Figure A-11   Illustration for the solution to Prob. 9 in 
Chap. 4.



and finally to

Lim
xΔ → +0

 2

Clearly, this limit is equal to 2.
When we move to the left of the point where x = 1 and let Δx approach 0 from 

the negative side, we can repeat the second half of the solution to Prob. 8 step-for-step, 
because we’re dealing with the same curve and approaching the same point. When we 
calculate the limit

Lim
xΔ → +0

 [ f  (1 + Δx ) − f  (1)] / Δx

we’ll find that it is equal to 2, which is same as the limit we got when we approached the 
point where x = 1 from the right. We can therefore say with confidence that this two-part 
function is differentiable at the point where x = 1.

The curve in Fig. A-10 looks as if it goes smoothly through the transition point where 
x = 1, but there’s actually a “jog in the road.” As we move from the quadratic part of the 
curve into the cubic part, the slope changes abruptly from 2 to 3. In Fig. A-11, there’s 
no abrupt change in the slope. It’s like a well-engineered road, where a curve ends and a 
straightaway begins without any abrupt change in the direction.

Chapter 5

 1.  The derivatives of these functions can be found by using the power rule. When this rule 
is applied, the results are as follows:

   (a) f   ′ (x ) = −40x  4

   (b) g ′ (z ) = 84z 6

   (c) h′ (t ) = −441t  20

 2. We can apply the power rule because f3 (x ) is a monomial power function. We get

f3′ (x ) = 3x 2

We want to find x0 in the interval 0 ≤ x ≤ 1, such that the value of this derivative is equal 
to 1. To do that, we set

3x 0
2 = 1

Dividing through by 3 and then taking the 1/2 power of each side tells us that

x 0 = (1/3)1/2

The 1/2 power of a quantity is the positive square root of that quantity. We’re not interested 
in the negative square root here, because we’re restricted to 0 ≤ x ≤ 1. A calculator tells us 
that, to three decimal places,

x 0 = 0.577
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 3. We can again apply the power rule. In this case, we get

f5′ (x ) = 5x 4

To find x 0 in the interval 0 ≤ x ≤ 1 such that f5′ (x ) = 1, we set

5x 0
4 = 1

Dividing through by 5 and then taking the 1/4 power of each side tells us that

x 0 = (1/5)1/4

The 1/4 power of a quantity is the positive real fourth root of that quantity. We’re not 
interested in negative real roots or in nonreal complex roots in this case, because we’re 
restricted to the positive real interval 0 ≤ x ≤ 1. Using a calculator, we obtain

x 0 = 0.669

 4. This time, we apply the power rule in a general sense to get

fn′ (x ) = nx (n−1)

To find x 0 in the interval 0 ≤ x ≤ 1 such that fn′ (x ) = 1, we set

nx 0
(n−1) = 1

Dividing through by n and then taking the 1/(n−1) power of each side tells us that

x 0 = (1/n)[1/(n−1)]

The 1/(n−1) power of a quantity is the positive real (n −1) root of that quantity. As before, 
we’re not interested in negative real roots or in nonreal complex roots here, because we’re 
restricted to the positive real interval 0 ≤ x ≤ 1.

 5.  Figure A-12 is a graph of the functions fn (x ) = x n in the interval 0 ≤ x ≤ 1 for n = 3, 
n = 4, and n = 5. On each curve, the dot shows the point where the slope is 1. We 
didn’t actually work out the case for n = 4, but the graph shows an educated guess!

 6. We apply the power rule in a general sense to get

fn′ (x ) = nx (n−1)

To find the value fn′ (1), we substitute 1 for x, getting

fn′ (1) = n × 1(n−1) = n

 7. We again apply the power rule generally, obtaining

fn′ (x ) = nx (n−1)



To find the value fn′ (0), we substitute 0 for x, which gives us

fn′ (0) = n × 0(n−1) = 0(n−1) = 0

 8.  To find the derivative of this polynomial function, we can apply the power rule to each 
term in the polynomial separately. That gives us

f   ′ (x ) = 56x 6 + 24x 5 − 15x 4 + 4x 3 + 2x − 0

The last term of 0 is useless, of course, so we can write

f   ′ (x ) = 56x 6 + 24x 5 − 15x 4 + 4x 3 + 2x

 9. We again apply the power rule to each term individually, getting

f   ′ (x ) = 5a5x 4 + 4a4x 3 + 3a3x 2 + 2a2x + a1 + 0
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Taking off the last term of 0 gives us

f   ′ (x ) = 5a5x 4 + 4a4x 3 + 3a3x 2 + 2a2x + a1

10.  Once again, we can apply the power rule to each term. We know that the last term will 
be 0 so we don’t have to write it. The derivative is

f   ′ (x ) = na nx n−1 + (n − 1)a n−1x n−2 + (n − 2)a n−2x n−3 + . . . + 2a2x + a1

Chapter 6

 1. The original function f   is

f  (x ) = −4x 4 + 2x 3 − x 2 − x + 1

Its derivative is

f   ′ (x ) = −16x 3 + 6x 2 − 2x − 1

When we multiply this function by 2, we get

2f   ′ (x ) = 2 × (−16x 3 + 6x 2 − 2x − 1) = −32x 3 + 12x 2 − 4x − 2

The original function g is

g (x ) = 2 × (−4x 4 + 2x 3 − x 2 − x + 1) = −8x 4 + 4x 3 − 2x 2 − 2x + 2

Its derivative is

g ′ (x ) = −32x 3 + 12x 2 − 4x − 2

which is exactly the same as 2f   ′ (x ).

 2. The original function f   is

f  (x ) = −40x 4 + 20x 3 − 10x 2 − 10x + 10

Its derivative is

f   ′ (x ) = −160x 3 + 60x 2 − 20x − 10

When we multiply this function by 1/5, we get

(1/5) f   ′ (x ) = (1/5) × (−160x 3 + 60x 2 − 20x − 10) = −32x 3 + 12x 2 − 4x − 2



The original function g is

g (x ) = (1/5) × (−40x 4 + 20x 3 − 10x 2 − 10x + 10) = −8x 4 + 4x 3 − 2x 2 − 2x + 2

Its derivative is

g ′ (x ) = −32x 3 + 12x 2 − 4x − 2

which is exactly the same as (1/5) f   ′ (x ). It’s worth noting here that the statement

g ′ (x ) = (1/5) f   ′ (x )

can also be written as

g ′ (x ) = [ f   ′ (x )] / 5

Whenever we multiply a function by the reciprocal of a constant, it’s the same as dividing 
that function by the constant. This gives us a way to define division of a function by a 
constant. Of course, the constant must be nonzero!

 3. Here’s the original statement of the two-function product rule for differentiation:

( f g )′ = f   ′g + g ′f

The commutative law for addition ( from basic algebra) allows us to transpose the addends 
on the right side, getting

( f g )′ = g ′f + f   ′g

The expression g ′f + f   ′g is equal to ( g f   )′ according to the two-function product rule for 
differentiation “stated backward.” Therefore, we can conclude that

( f g )′ = ( g f   )′

 4.  Suppose we have three differentiable functions f, g, and h. The two-function product 
rule for differentiation tells us that

( f g )′ = f   ′g + g ′f

and

( g h )′ = g ′h + h′g

Let’s rename f g, calling it p ( for “product”) instead. Then we can restate the first of the 
above two equations as

p ′ = f   ′g + g ′f

Chapter 6  611



612  Worked-Out Solutions to Exercises: Chapters 1 to 9

We want to find ( f gh )′, which is the same thing as finding ( ph )′. The two-function 
product rule for differentiation can be applied here, giving us

(ph )′ = p ′ h + h′ p

Substituting f g back in for p gives us

( f gh )′ = ( f g )′ h + h′ f g

Once again taking advantage of the two-function product rule for differentiation, we can 
expand the first addend on the right side to get

( f gh )′ = ( f   ′g + g ′f   ) h + h′ f g

The distributive law for multiplication over addition ( from basic algebra) allows us to 
reorganize the right side further, getting

( f g h )′ = f   ′ g h + g ′ f h + h′ f g

This can be expressed another way, which some people find easier to remember:

( f g h )′ = f   ′ g h + f g ′ h + f g h ′

When reading or writing something like this, we must remember that the prime symbol,
indicating the derivative, applies only to the single function or parenthetical expression 
immediately to its left.

 5. We want to find the derivative of the function

p ( y ) = 1 / ( y 2 + 1)

which is the reciprocal of a function we can call g, like this:

g ( y ) = y 2 + 1

Taking the derivative of g, we get

g ′ ( y ) = 2y

Multiplying by −1 gives us

−g ′ ( y ) = −2y

The square of g is

[ g ( y )]2 = ( y 2 + 1)2 = y4 + 2y 2 + 1



Now we can apply the reciprocal rule for differentiation to obtain

p ′ ( y ) = {1 / [g ( y )]}′  = −g ′ ( y ) / [g ( y )]2 = −2y / ( y4 + 2y 2 + 1)

Our function p is defined for all reals because the original denominator function, g, never 
becomes 0. The function p is also continuous, and it doesn’t turn any corners as we can 
see if we graph it. (The graph is not included here. If you want, feel free to draw it and 
see for yourself.) We can therefore say with confidence that p is differentiable over the 
entire set of reals.

 6.  This function looks a lot like the one we worked with in Prob. 5. The only difference is 
that there’s a minus sign in place of the plus sign. But that makes a big difference in the 
extent to which the function is differentiable! We want to find the derivative of

r ( y ) = 1 / ( y 2 − 1)

which is the reciprocal of a function we can call f, like this:

f  ( y ) = y 2 − 1

Taking the derivative of f, we get

f   ′ ( y ) = 2y

Multiplying by −1 gives us

−f   ′ ( y ) = −2y

The square of f   is

[ f  ( y )]2 = ( y 2 − 1)2 = y4 − 2y 2 + 1

The reciprocal rule for differentiation tells us that

r′ ( y ) = {1 / [ f  ( y )]}′  = −f   ′ ( y ) / [ f  ( y )]2 = −2y / ( y4 − 2y 2 + 1)

If y = 1 or y = −1, then r ( y ) is undefined, so r′ ( y ) is also undefined. Those values of y
are the zeros of the denominator function f  ( y ). These discontinuities tell us that r ( y ) is 
nondifferentiable at the points where y = 1 and y = −1.

 7. We want to find the derivative of

s (z ) = (z 4 − 1) / (z 2 + 1)

which is the quotient of two functions we can call f  and g, as follows:

f  (z ) = z 4 − 1
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and

g (z ) = z 2 + 1

When we differentiate the quotient directly, we get

( f /g )′ (z ) = d /dz [(z 4 − 1) / (z 2 + 1)] = d /dz (z 2 − 1) = 2z

When we apply the quotient rule, we get

   ( f /g )′ (z ) = {[ f   ′ (z )][ g (z )] − [ g ′ (z )][ f  (z )]} / [ g (z )]2

 = {[d /dz (z 4 − 1)](z 2 + 1) − [d /dz (z 2 + 1)] (z 4 − 1)} / (z 2 + 1)2

 = [(4z 3)(z 2 + 1) − (2z )(z 4 − 1)] / (z 4 + 2z 2 + 1) 
 = (4z 5 + 4z 3 − 2z 5 + 2z ) / (z 4 + 2z 2 + 1)
 = (2z 5 + 4z 3 + 2z ) / (z 4 + 2z 2 + 1) = 2z (z 4 + 2z 2 + 1) / (z 4 + 2z 2 + 1) = 2z

This works for all real numbers, because the denominator function g never attains the 
value 0. The original function is therefore differentiable over the entire set of reals.

 8. This time, we want to find the derivative of

t (z ) = (z 4 − 1) / (z 2 − 1)

which is the quotient of two functions we can call f and g, as follows:

f   (z ) = z 4 − 1

and

g (z ) = z 2 − 1

When we differentiate the quotient directly, we get

( f /g )′ (z ) = d /dz [(z 4 − 1) / (z 2 − 1)] = d /dz (z 2 + 1) = 2z

When we apply the quotient rule, we get

   ( f /g )′ (z ) = {[ f   ′(z )][g (z )] − [g ′ (z )][ f  (z )]} / [g (z )]2

 = {[d /dz (z 4 − 1)](z 2 − 1) − [d /dz (z 2 − 1)] (z 4 − 1)} / (z 2 − 1)2

 =  [(4z 3)(z 2 − 1) − (2z )(z 4 − 1)] / (z 4 − 2z 2 + 1) 
 = (4z 5 − 4z 3 − 2z 5 + 2z ) / (z 4 − 2z 2 + 1)
 = (2z 5 − 4z 3 + 2z ) / (z 4 − 2z 2 + 1) = 2z (z 4 − 2z 2 + 1) / (z 4 − 2z 2 + 1) = 2z

The function g (z ) becomes 0 when z = 1 or z = −1. Nondifferentiable points in t (z ) 
therefore exist where z = 1 and z = −1, because t (z ) blows up at those values of z.



 9. Here are the functions again, for reference:

  f   (x ) = x 3 − 4x 2

and

g ( y ) = y 2 + 5y

The composite function we want to differentiate is

g [ f  (x )] = (x 3 − 4x 2)2 + 5(x 3 − 4x 2) = x 6 − 8x 5 + 16x 4 + 5x 3 − 20x 2

When we differentiate this directly, we get

{ g [ f  (x )]}′  = d /dx (x 6 − 8x 5 + 16x 4 + 5x 3 − 20x 2) = 6x 5 − 40x 4 + 64x 3 + 15x 2 − 40x

Differentiating the functions individually, we obtain

f   ′ (x ) = 3x 2 − 8x

and

g ′ ( y ) = 2y + 5

When we apply the chain rule, we get

{ g [ f   (x )]}′ = g ′ [ f   (x )] × f   ′ (x ) = [2 × (x 3 − 4x 2) + 5] (3x 2 − 8x )
                                   = (2x 3 − 8x 2 + 5) (3x 2 − 8x ) = 6x 5 − 40x 4 + 64x 3 + 15x 2 − 40x

which agrees with the result we got when we differentiated the composite function 
directly.

10. Here are the functions again, for reference:

f   (x ) = x 2 − 4x

and

g ( y ) = 2y 2 + 7y

The composite function we want to differentiate is

g [ f   (x )] = 2 × (x 2 − 4x )2 + 7 × (x 2 − 4x ) = 2x 4 − 16x 3 + 39x 2 − 28x

When we differentiate this composite function directly, we get

{ g [ f   (x )]}′  = d /dx (2x 4 − 16x 3 + 39x 2 − 28x ) = 8x 3 − 48x 2 + 78x − 28
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When we differentiate the functions individually, we get

f   ′ (x ) = 2x − 4

and

g ′ ( y ) = 4y + 7

Applying the chain rule gives us

{g [ f  (x )]}′ = g ′ [ f   (x )] × f   ′ (x ) = [4 × (x 2 − 4x ) + 7] (2x − 4)
   =  (4x 2 −16x + 7) (2x − 4) = 8x 3 − 48x 2 + 78x − 28

which agrees with the result we got when we differentiated the composite function directly.

Chapter 7
 1. Here’s the function we want to differentiate:

p (t ) = 2t 2 − 4t + 5 + 4t −1 + 6t −2

We can differentiate each term individually according to the real-number power rule, and 
then add the differentiated terms up. The derivative of the middle term is 0, so we can 
skip it in the final sum, getting

p ′ (t ) = 4t − 4 − 4t −2 − 12t −3

The function p (t ) is nondifferentiable at t = 0, because that value generates fractions with 
denominators equal to 0. But p (t ) is differentiable for all nonzero values of t.

 2. Here’s the function we want to differentiate:

q (w ) = (w−1 + 1)(w −1 − 1)

We can approach this in two different ways. We can treat the factors individually and use 
the product rule to find the derivative of q, or we can multiply the factors together first 
and then differentiate. Let’s use the second method. We have

(w−1 + 1)(w−1 − 1) = w−2 − w−1 + w−1 − 1 = w −2 − 1

When we differentiate this, we obtain

q ′ (w ) = −2w −3

The function q (w ) is nondifferentiable at w = 0, because that value generates a fraction 
with a denominator of 0. But q (w ) is differentiable for all nonzero values of w.
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 3.  We can use the reciprocal rule for differentiation, which tells us that if f   is a 
differentiable function of a single variable, then

(1 / f  )′ = −f   ′ /f 2

We are told to find the derivative of the cosecant, which is the reciprocal of the sine. 
Using the reciprocal rule, we get

(csc x )′  = [1 / (sin x )]′  = −(sin x )′ / sin2 x = −cos x / sin2 x

Some derivative tables show this result in a different form. If you come across a table 
like that, try converting the expression in that table to the one shown here, or vice versa. 
You should be able to show that the two expressions are equivalent. The function csc x is 
nondifferentiable when sin x = 0. That includes all integer multiples of p. Discontinuities 
occur at those values of x; the reciprocal of the sine is singular there.

 4.  Again, we can use the reciprocal rule for differentiation. We want to find the derivative 
of the secant, which is the reciprocal of the cosine. Using the reciprocal rule, we get

(sec x )′ = [1 / (cos x )]′ = −(cos x )′ / cos2 x = sin x / cos2 x

As with the solution to Prob. 3, some derivative tables show this in a different form. 
You should be able to show that the two expressions are equivalent. The function 
sec x is nondifferentiable when cos x = 0. That includes all odd integer multiples of 
p /2. Discontinuities occur at those values of x; the reciprocal of the cosine is singular 
there.

 5.  In this situation, we’ll use the quotient rule for differentiation. This rule tells us that if f
and g are differentiable functions of the same variable, then

( f /g )′ = ( f   ′g − g ′f  ) /g 2

We want to find the derivative of the tangent function, which is the sine divided by the 
cosine. Let

f  (x ) = sin x

and

g (x ) = cos x

The derivatives are

f   ′ (x ) = cos x

and

g ′ (x ) = −sin x
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Therefore

 (tan x )′  = (sin x / cos x )′  = [(sin x )′ cos x − (cos x )′ sin x ] / cos2 x
    = [cos x cos x − (−sin x ) sin x] / cos2 x = (cos2 x + sin2 x ) / cos2 x

Now it’s time to remember one of the cardinal rules of trigonometry:

cos2 x + sin2 x = 1

We can therefore simplify the above equation to

(tan x )′ = 1 / cos2 x

By definition, we know that

1 / cos x = sec x

That means we can simplify our solution further to

(tan x )′ = sec2 x

The function sec2 x is nondifferentiable whenever cos x = 0. That includes all odd integer 
multiples of p /2. Discontinuities occur at those values of x ; the reciprocal of the cosine 
is singular there.

 6.  This is a sort of “fraternal twin” to Prob. 5. We want to find the derivative of the 
cotangent function, which is the cosine divided by the sine. Again, let’s use the 
derivative-of-a-quotient formula

( f  /g )′ = ( f   ′g − g ′f  ) / g 2

This time, we’ll assign

f  (x ) = cos x

and

g (x ) = sin x

The derivatives are

f   ′ (x ) = −sin x

and

g ′ (x ) = cos x



Therefore

(cot x )′ = (cos x / sin x )′ = [(cos x )′ sin x − (sin x )′  cos x ] / sin2 x
     =  (−sin x sin x − cos x cos x ) / sin2 x = (−sin2 x − cos2 x ) / sin2 x
      = −(sin2 x + cos2 x ) / sin2 x

We can again use the trigonometry rule that helped us in Prob. 5, reversing the order of 
the addends:

sin2 x + cos2 x = 1

This allows us to reduce the above equation to

(cot x )′ = −1 / sin2 x

By definition, we know that

1 / sin x = csc x

That means we can simplify our solution further to

(cot x )′ = −csc2 x

The function −csc2 x is nondifferentiable whenever sin x = 0. That includes all integer 
multiples of p. Discontinuities occur at those values of x ; the reciprocal of the sine is 
singular there.

 7. Here’s the function we want to differentiate:

p (x ) = e ax

Let’s use the chain rule. We can break the function p down into two component functions 
f and g, such that

f   (x ) = ax

and

g ( y ) = e y

Then the function p becomes

p = g ( f   )

Both f   and g are differentiable, so

f   ′ (x ) = a
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and

g ′ ( y ) = e y

The chain rule says that if f and g are differentiable functions of the same variable, then

[ g ( f   )]′ = g ′ ( f   ) · f   ′

Substituting the values we’ve defined into this formula, we get

p ′ (x ) = e ax · a = ae ax

 8. This time, we want to find an expression for the derivative of

q (x ) = be ax

Let’s use the results of the solution to Prob. 7 to help us solve this problem. We can 
rewrite the function q as

q (x ) = b · p (x )

where p is the function defined in Prob. 7 and its and solution:

p (x ) = e ax

Therefore

q ′ (x ) = [b · p (x )]′

The multiplication-by-constant rule for differentiation allows us to rewrite this as

q ′ (x ) = b · p ′ (x )

We already know that

p ′ (x ) = ae ax

Therefore,

q′ (x ) = b · ae ax = abe ax

 9. We want to differentiate

r (x ) = ln ax

This function is defined and continuous if and only if ax > 0. That means we must 
restrict the domain to the positive reals if a > 0, and to the negative reals if a < 0. (We 



can’t have a = 0, because in that case ax = 0, and ln 0 is not defined.) Our function never 
turns a corner at any point where it is defined. That means it’s differentiable at all such 
points. Let’s break r into components f and g, such that

f   (x ) = ax

and

g ( y ) = ln y

Then we have

r = g ( f   )

The derivatives of the components are

f   ′ (x ) = a

and

g ′ ( y ) = 1/y

The chain rule tells us that

[ g ( f   )]′ = g ′ ( f   ) · f   ′

Substituting the values we’ve defined into this formula, we get

r ′ (x ) = 1 / (ax ) · a = 1/x

10. We want to find an expression for the derivative of

s (x ) = b ln ax

Using the results of the solution to Prob. 9, we can rewrite the function s as

s (x ) = b · r (x )

where r is the function defined in Prob. 9 and its solution 9:

r (x ) = ln ax

Therefore

s ′ (x ) = [b · r (x )]′
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The multiplication-by-constant rule lets us rewrite this as

s ′ (x ) = b · r ′ (x )

We already know that

r ′ (x ) = 1/x

Therefore,

q ′ (x ) = b · (1/x ) = b /x

The same constraints apply here as in the solution to Prob. 9. We must restrict the domain 
to the positive reals if a > 0, and to the negative reals if a < 0.

Chapter 8
 1.  The fifth derivative of this function is the derivative of its fourth derivative. We found 

the fourth derivative to be the constant function

f   (4) (x ) = −96

Differentiating this, we get

f   (5) (x ) = 0

because the derivative of a constant function is always the zero function.

 2. The sixth derivative of our original function is the derivative of

f   (5) (x ) = 0

This is also the zero function. We’ve reached “the end of the line” in this sequence of 
derivatives. If we keep differentiating further, nothing changes!

 3. We found the fourth derivative to be

f   (4) (x ) = 96 − 5 cos x

The sum rule tells us that

f   (5) (x ) = d /dx 96 − d /dx (5 cos x )

Using the multiplication-by-constant rule, and knowing that the derivative of any 
constant is equal to 0, we get

f   (5) (x ) = 0 − 5 d /dx (cos x )



The derivative of the cosine is the negative of the sine, and we get rid of the 0. That leaves 
us with

f   (5) (x ) = − 5 · (−sin x ) = 5 sin x

 4. The sixth derivative is the result of differentiating the fifth derivative. That means

f   (6) (x ) = d /dx (5 sin x ) = 5 d /dx (sin x ) = 5 cos x

 5. The seventh derivative is the result of differentiating the sixth derivative. That means

f   (7) (x ) = d /dx (5 cos x ) = 5 d /dx (cos x ) = 5 · (−sin x ) = −5 sin x

As we keep on differentiating, we’ll go through a four-way cycle. Looking all the way back to 
the original function and then listing its succeeding derivatives up to the seventh, we see:

 f   (x ) = 4x 4 − 5 cos x
 f   ′ (x ) = 16x 3 + 5 sin x
 f   ′′ (x )  = 48x 2 + 5 cos x
 f   ′′′ (x )  = 96x − 5 sin x
 f   (4) (x )  = 96 − 5 cos x
 f   (5) (x )  = 5 sin x
 f   (6) (x )  = 5 cos x
 f   (7) = −5 sin x

From here, we can extrapolate the higher derivatives:

 f   (8) = −5 cos x
 f   (9) (x )  = 5 sin x
 f   (10) (x )  = 5 cos x
 f   (11) = −5 sin x
 f   (12) = −5 cos x
 f   (13) (x )  = 5 sin x
 f   (14) (x )  = 5 cos x
 f   (15) = −5 sin x
 ↓
 And so on, forever

 6. When we calculated the fourth derivative, we got

g (4) (t ) = −6t −4 + 96t −5 − 120t −6 + 720t −7
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Finding the fifth derivative involves differentiating this function, one term at a time, and 
then adding the terms back up. When we do this, we get

g (5) (t ) = 24t −5 − 480t −6 + 720t −7 − 5,040t −8

 7. To find the sixth derivative, we differentiate the result of the solution to Prob. 6 to get

g (6) (t ) = −120t −6 + 2,880t −7 − 5,040t −8 + 40,320t −9

 8.  To find the seventh derivative, we differentiate the result of the solution to Prob. 7 to get

g (7) (t ) = 720t −7 − 20,160t −8 + 40,320t −9 − 362,880t −10

If we write down the original function and then list all the derivatives we’ve found so far, 
in succession, we see a general pattern:

     g (t ) = 2t 2 + 5t − 7 + 4t −1 − t −2 + 2t −3 + ln t
    g ′ (t ) = 4t + 5 + t −1 − 4t −2 + 2t −3 − 6t −4

   g ′′ (t ) = 4 − t −2 + 8t −3 − 6t −4 + 24t −5

  g ′′′ (t ) = 2t −3 − 24t −4 + 24t −5 − 120t −6

 g (4) (t ) = −6t −4 + 96t −5 − 120t −6 + 720t −7

 g (5) (t ) = 24t −5 − 480t −6 + 720t −7 − 5,040t −8

 g (6) (t ) = −120t −6 + 2,880t −7 − 5,040t −8 + 40,320t −9

 g (7) (t ) = 720t −7 − 20,160t −8 + 40,320t −9 − 362,880t −10

↓
And so on, forever

 9.  We’re told that the height of the cliff, hc, is 50 m. We can find the descent time t by 
using the equation for total fallen distance vs. time, plugging in 50 for hc to get

50 =  5t 2

Dividing through by 10, we obtain

10 = t 2

This solves to t = 101/2, which is approximately 3.16 s. The vertical speed v of a falling 
object at time t after its release is always

v = dh /dt = d /dt (5t 2) = 10t

We can calculate the vertical speed at impact, va, by plugging in 3.16 for t, getting

va = 10 · 3.16 = 31.6 m/s



The vertical acceleration a of a falling object at time t after its release is always

a = d 2/dt  2 (5t 2) = d /dt (10t )  = 10 m/s2

so the vertical acceleration aa of the apple at impact was 10 m/s2, the same as it was when 
the apple was thrown from the higher cliff.

10. We can calculate the height of the cliff, hc, by plugging in 11 for t in the equation

h = 3t 2

that describes total fallen distance h vs. time t on the “alien planet.” When we do that, we get

hc = 3 · 112 = 3 · 121 = 363 m

The vertical speed v of a falling object at time t after its release on this planet is always

v = dh /dt = d /dt (3t 2) = 6t

We can calculate the vertical speed of the “alien apple” at impact, va, by plugging in 11 
for t, getting

va = 6 · 11 = 66 m/s

The vertical acceleration a of a falling object on this planet at time t after its release is always

a = d  2/dt 2(3t  2) = d /dt (6t ) = 6 m/s2

The “alien apple” was therefore accelerating downward at 6 m/s2 when it landed.

Chapter 9
 1. Let’s determine the x-value of the inflection point first. The original function is

y = 3x 3 + 3x 2 − x − 7

The first derivative is

dy /dx = 9x 2 + 6x − 1

and the second derivative is

d  2y /dx 2 = 18x + 6

The inflection point occurs where the second derivative is equal to 0. We must therefore 
solve the equation

18x + 6 = 0
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Using algebra, we find that x = −1/3. Plugging this into the original cubic, we get

y  = 3x 3 + 3x 2 − x − 7 = 3 · (−1/3)3 + 3 · (−1/3)2 − (−1/3) − 7 = −58/9

The coordinates of the inflection point are therefore (x,y ) = (−1/3,−58/9).

 2. When we found the first derivative of the function stated in Prob. 1, we got

dy /dx = 9x 2 + 6x − 1

To find the slope of the graph at the inflection point, we plug the x-value of the inflection 
point into the above equation, getting

dy /dx = 9x 2 + 6x − 1 = 9 · (−1/3)2 + 6 · (−1/3) − 1 = −2

 3.  From our knowledge of inflection points, we can be sure that curve of the function 
stated in Prob. 1 is concave upward on one side of the inflection point, and concave 
downward on the other side. A curve is concave upward at a point if and only if the 
second derivative is positive at that point. A curve is concave downward at a point if 
and only if the second derivative is negative at that point. Let’s set x = 0, which is in the 
zone to the right (that is, on the positive side) of the inflection point where x = −1/3.
Plugging this into the second derivative, we get

d  2y /dx  2 = 18x + 6 = 18 · 0 + 6 = 6

The fact that this is a positive number tells us that the curve is concave upward to the right 
of the inflection point, where x > −1/3. The curve must therefore be concave downward 
to the left of the inflection point, where x < −1/3.

 4. Here is the quadratic function again, for reference:

y = 4x 2 − 7

When we differentiate, we get

dy /dx = 8x

The extremum is the point at which the first derivative is equal to 0. That means we must 
solve the equation

8x = 0

for x. That’s easy! We get x = 0, which is the x-value of the extremum. To find the y-value 
of the extremum, we substitute 0 for x in the original quadratic function, getting

y = 4x 2 − 7 = 4 · 02 − 7 = −7

The extremum point is therefore (x,y ) = (0,−7). Because the leading coefficient is positive 
in the polynomial for the original function, we know that the parabola opens upward, so 



this extremum is an absolute minimum. We can also tell by taking the second derivative and 
noting that it’s equal to 8, which is positive, indicating that the curve is concave upward.

 5.  In the chapter text, we found that the slope of the parabola of Fig. 9-4 is equal to 1 at 
the point (2,0). Now let’s recall, from algebra, the point-slope form of a linear equation:

y − y0 = m(x − x0)

where (x0,y0) are the coordinates of the known point, and m is the slope of the line. We’ve 
determined that x0 = 2, y0 = 0, and m = 1, so we can plug in these numbers to get the equation

y − 0 = 1 · (x − 2)

which simplifies to

y = x − 2

That’s the equation of a line tangent to the parabola, passing through the point (2,0).

 6. Here’s the cubic function again, for reference:

y = x 3 + 3x 2 − 3x + 4

The first derivative is

dy /dx = 3x 2 + 6x − 3

The second derivative is

d  2y /dx 2 = 6x + 6

We can find the x-value of the inflection point by setting d  2y /dx 2 = 0. That gives us the 
linear equation

6x + 6 = 0

which solves to x = −1. Plugging this value into the original cubic and solving for y, we get

y = x 3 + 3x 2 − 3x + 4 = (−1)3 + 3 · (−1)2 − 3 · (−1) + 4 = 9

The coordinates of the inflection point are therefore (x,y ) = (−1,9). We can find the slope 
of the curve at this point by plugging the x-value into the first derivative, obtaining

dy /dx = 3x 2 + 6x − 3 = 3 · (−1)2 + 6 · (−1) − 3 = −6

 7. When we plug x = 100 into the original cubic function, we get

y = x 3 + 3x 2 − 3x + 4 = 1003 + 3 · 1002 − 3 · 100 + 4 = 1,029,704
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That’s “way up there” in the positive y direction. The inflection point, by comparison, is near 
the origin. This means that the curve, being a cubic, trends upward in the overall sense. 
But in the solution to Prob. 6, we found that the slope at the inflection point is negative, 
indicating that in the vicinity of that point, the curve trends downward! We must therefore 
conclude that the graph reverses itself in a small region near the inflection point. On the basis 
of this information, we can be sure that this curve matches the general profile of Fig. 9-2E.

 8.  To find the y-intercept, we plug x = 0 into the original function and then calculate the 
result. That gives us

y = x 3 + 3x 2 − 3x + 4 = 03 + 3 · 02 − 3 · 0 + 4 = 4

This tells us that the point (x,y ) = (0,4) is on the curve. To find the points where the 
slope is 0, we can set the first derivative equal to 0 and then solve the resulting equation. 
Remember that

dy /dx = 3x 2 + 6x − 3

so the quadratic equation is

3x 2 + 6x − 3 = 0

Let’s use the quadratic formula to see if this equation has any real roots, and if so, to find 
them. If you don’t remember that formula, here’s a reminder. When we have a quadratic 
equation of the form

ax 2 + bx + c = 0

then the roots are

x = [−b ± (b2 − 4ac)1/2] / (2a)

In this case, a = 3, b = 6, and c = −3. We therefore get

x = {−6 ± [62 − 4 · 3 · (−3)]1/2} / (2 · 3) = −1 + 21/2 or −1 − 21/2

For graphing purposes, we can use a calculator to approximate these x-values as 0.414 and 
−2.414. Let’s plug these into the cubic and do the arithmetic. For x = 0.414, we have

y = x 3 + 3x 2 − 3x + 4 = 0.4143 + 3 · 0.4142 − 3 · 0.414 + 4 = 3.343

The coordinates of one local extremum are therefore approximately

(x,y ) = (0.414,3.343)

That’s good enough for graphing purposes! In the case of x = −2.414, we have

y = x 3 + 3x 2 − 3x + 4 = (−2.414)3 + 3 · (−2.414)2 − 3 · (−2.414) + 4 = 14.657



The coordinates of the other local extremum are approximately

(x,y ) = (−2.414,14.657)

We now have this information:

• The y-intercept point is (0,4)
• The inflection point is (−1,9)
• One local extremum point is approximately (0.414,3.343)
• The other local extremum point is approximately (−2.414,14.657)
• The function trends upward in the overall sense, but reverses between the local extrema

That’s enough data to sketch a reasonably good graph, as shown in Fig. A-13. Each 
division on the x axis represents 1/2 unit. Each division on the y axis represents 
4 units.

 9.  To find this slope, we plug the known x-value at the inflection point into the equation 
for the derivative. That’s x = p. Remember that

d /dx (sin x ) = cos x

The slope at the inflection point is therefore equal to cos p, or −1.

x

y

2 3–1–2–3

8

16

24

–8

–16

–24

(0, 4)

(–1, 9)

Inflection
point

Local
maximum
(–2.414,14.657)
(approx.)

(0.414, 3.343)

Local
minimum

(approx.)

Figure A-13  Illustration for the solution to Prob. 8 in 
Chap. 9.
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 10. The x-values of the inflection points, which we figured out in the chapter text, are

x = p /4
  x = 3p /4
  x = 5p /4
  x = 7p /4

The derivative of the square of the sine function, as we found in Chap. 7 and repeated 
in Chap. 9, is

d /dx sin2 x = 2 sin x cos x

Finding the slope at each of the inflection points involves plugging in the values and 
doing the arithmetic. Note that the exact values of the sines we’ll encounter are

sin p /4 = 1/(21/2)
          sin 3p /4 = 1/(21/2)

sin 5p /4 = −1/(21/2)
sin 7p /4 = −1/(21/2)

and the exact values of the cosines are

  cos p /4 = 1/(21/2)
 cos 3p /4 = −1/(21/2)
 cos 5p /4 = −1/(21/2)

cos 7p /4 = 1/(21/2)

Now let’s go through the calculations, taking care not to get the signs mixed up. At the 
first (left-most ) inflection point in Fig. 9-7, we have a slope of

2 sin p /4 cos p /4 = 2 · 1/(21/2) · 1/(21/2) = 1

At the second inflection point, we have a slope of

2 sin 3p /4 cos 3p /4 = 2 · 1/(21/2) · [−1/(21/2)] = −1

At the third inflection point, the slope is

2 sin 5p /4 cos 5p /4 = 2 · [−1/(21/2)] · [(−1/(21/2)] = 1

At the fourth (right-most ) inflection point, the slope is

2 sin 7p /4 cos 7p /4 = 2 · [−1/(21/2)] · 1/(21/2) = −1



These solutions do not necessarily represent the only way a problem can be figured out. If you 
think you can solve a problem faster or better than the way it’s done here, by all means try it! 
Always check your work to be sure your “alternative” answer is correct.

Chapter 11
 1.  To write the first n terms of a series in summation notation, we must figure out how it 

can be portrayed as a function of a steadily increasing sequence of integers, preferably

1, 2, 3, 4, 5, 6, 7, . . .

Then we decide on a counting tag, give it a name such as i, and let it follow the above 
sequence. Here, our working series starts with 8, and we divide by 2 to get the second 
term. To get each succeeding term, we divide by 2. The series can be rewritten as

8/20 + 8/21 + 8/22 + 8/23 + · · ·

Alternatively, we can begin the series with a numerator of 16 and divide by increasing 
powers of 2 starting with the first power, like this:

16/21 + 16/22 + 16/23 + 16/24 + · · ·

That allows us to start indexing at i = 1, so the summation notation is

i

n

=
∑

1

16/2i

for the first n terms of the series.

 2.  In this series, we begin with 1/2, which is i / (1 + i ) if we let i = 1. We increase i by 1 
to get the next term in the series, which is 2/3. Next, we increase the original numerator 
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and denominator by 2 to get 3/4. Then we add 3 to the original numerator and 
denominator. Then we add 4 to both, then we add 5 to both, and so on. The first n
terms in the series can be expressed as

i

n

=
∑

1

 i / (1 + i )

 3.  To express the limit of the series stated in Probs. 1 and 2 as the number of terms grows 
endlessly, we write down the limits as n approaches infinity. In the first case, we have

Lim
n→∞

i

n

=
∑

1

16/2i

and in the second case,

Lim
n→∞

i

n

=
∑

1

 i / (1 + i )

 4.  The first limit in the solution to Prob. 3 is defined, because the series converges 
(approaches a specific limiting value) as the number of terms grows endlessly. The 
whole infinite series adds up to 16. Therefore

Lim
n→∞

i

n

=
∑

1

16/2i = 16

The second limit is not defined because the series

1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 · · ·

does not converge. When a series does not converge, it is said to diverge.

 5. We want to find

0

1

∫ x 2 dx

This integral can be expressed in the limit form

Lim
n→∞

i

n

=
∑

1

[(b − a )/n] · f  [a + i (b − a)/n]

Here, a = 0 and b = 1, so we can rewrite the above expression as

Lim
n→∞

i

n

=
∑

1

[(1 − 0)/n] · [0 + i (1 − 0)/n]2

which simplifies to

Lim
n→∞

i

n

=
∑

1

i 2/n 3

Let’s look at the summation part alone:

i

n

=
∑

1

i 2/n 3

632  Worked-Out Solutions to Exercises: Chapters 11 to 19



We can write this series out as

12/n 3 + 22/n 3 + 32/n 3 + · · · + n 2/n 3

which simplifies to

(12 + 22 + 32 + · · · + n 2) / n 3

From precalculus, recall that

Lim
n→∞

  (12 + 22 + 32 + · · · + n 2 ) / n 3 = 1/3

Now we know that

Lim
n→∞

i

n

=
∑

1

i 2/n 3 = 1/3

That’s the integral we’re looking for. We’ve figured out that

0

1

∫ x 2 dx = 1/3

 6.  To determine the average value, we must find the height of a rectangle whose area is 1/3 
square unit (the definite integral) and whose width is 1 unit (the distance from x = 0 to 
x = 1). If we call the rectangle’s area A, its height h, and its width w, then

A = hw

from basic geometry. In this situation, A = 1/3 and w = 1, so

1/3 = h · 1

Therefore, h = 1/3. That’s the average value of the function

f  (x ) = x 2

over the interval from x = 0 to x = 1.

 7. This time, we’ve been told to find

0

1

∫ x 3 dx

This can be expressed in limit form as

Lim
n→∞

i

n

=
∑

1

[(b − a)/n] · f  [a + i (b − a)/n]
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In this situation, a = 0 and b = 1, so we can rewrite the above expression as

Lim
n→∞

i

n

=
∑

1

[(1 − 0)/n] · [0 + i (1 − 0)/n]3

which simplifies to

Lim
n→∞

i

n

=
∑

1

i 3/n4

The summation alone is

i

n

=
∑

1

i 3/n4

When we write this series out, we obtain

13/n4 + 23/n4 + 33/n4 + · · · + n 3/n 4

which simplifies to

(13 + 23 + 33 + · · · + n 3) / n 4

Recall from precalculus that

Lim
n→∞

  (13 + 23 + 33 + · · · + n 3) / n4 = 1/4

Therefore

Lim
n→∞

i

n

=
∑

1

i 3/n 4 = 1/4

That’s the integral we want. We’ve worked out the fact that

0

1

∫ x 3 dx = 1/4

 8.  We can again use the rectangle-area method to find the average value. This time, we 
must find the height of a rectangle whose area is 1/4 of a square unit and whose width 
is 1 unit. If we call the area A, the height h, and the width w as we did in the solution to 
Prob. 6, then again,

A = hw

This time, A = 1/4 and w = 1, so

1/4 = h · 1

This solves to h = 1/4. The average value of the function

f  (x ) = x 3

over the interval from x = 0 to x = 1 is therefore equal to 1/4.
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 9. Remember the function that describes the car’s speed vs. time:

s (t ) = 2.4t

We want to find

0

5

∫ 2.4t dt

This integral can be expressed as

Lim
n→∞

i

n

=
∑

1

[(b − a)/n] · s [a + i (b − a)/n]

In this scenario, a = 0 and b = 5, so we can rewrite the above expression as

Lim
n→∞

i

n

=
∑

1

[(5 − 0)/n] · 2.4 · [0 + i (5 − 0)/n]

which simplifies to

Lim
n→∞

i

n

=
∑

1

60i /n 2

When we factor 60 out of the sum and the limit, we obtain

60 Lim
n→∞

i

n

=
∑

1

i /n 2

The summation part by itself is

i

n

=
∑

1

i /n 2

We can write this series out as

1/n 2 + 2/n 2 + 3/n 2 + · · · + n /n 2

which simplifies to

 (1 + 2 + 3 + · · · + n) / n 2

As we saw in the chapter text,

Lim
n→∞

i

n

=
∑

1

(1 + 2 + 3 + · · · + n) / n 2 = 1/2

Written in summation form, this is

Lim
n→∞

i

n

=
∑

1

i /n 2 = 1/2
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Therefore

60 Lim
n→∞

i

n

=
∑

1

i /n 2 = 30

We’ve determined that

0

5

∫ 2.4t dt  = 30

This tells us that the car travels 30 meters in the first 5 seconds.

 10.  We can verify this result by finding the area of the triangle bounded on the top by the 
graph of the function, on the right by the line t = 5, and on the bottom by the t axis in 
Fig. 11-5. The height h of the triangle is equal to the value of the function when t = 5:

h = s (5) =  2.4 · 5 = 12

The width w of the triangle is the distance between t = 0 and t = 5, which is 5 units. The 
area A of a triangle is half its width times its height. In this case,

A = hw / 2 = 12 · 5/2 = 30

This agrees with the result we got with the Riemann method.

Chapter 12
 1. The general antiderivative is

F  (x ) = 2x + c

where c can be any real number. Figure B-1 shows the graphs of the three antiderivatives 
where c = 1, c = 3, and c = −2 respectively:

 F 1 (x ) = 2x + 1
 F3 (x ) = 2x + 3
F−2 (x ) = 2x − 2

All the antiderivative graphs are straight lines with slopes of 2. The constants correspond 
to the points where the lines pass through the dependent-variable axis.

 2. The general antiderivative is

F  (x ) = x 2 + c



where c can be any real number. Figure B-2 shows the graphs of the three antiderivatives 
where c = 1, c = 3, and c = −2 respectively:

 F 1 (x ) = x 2 + 1
 F3 (x ) = x 2 + 3
F−2 (x ) = x 2 − 2

All the antiderivative graphs are parabolas that open upward. The constants correspond 
to the points where the curves pass through the dependent-variable axis. The curves all 
have identical orientations and contours; the only difference is their vertical positions.

 3. The general antiderivative is

F  (x ) = x 3 + c

where c can be any real number. Figure B-3 shows the graphs of the three antiderivatives 
where c = 5, c = 15, and c = −10 respectively:

 F5 (x ) = x 3 + 5
 F 15 (x ) = x 3 + 15
F−10 (x ) = x 3 − 10
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2 4 6

6

x

4

Value
of
function

F1 (x ) = 2x + 1

F3 (x) = 2x + 3

F (x ) = 2x – 2–2

f (x) = 2

–2–4–6

–2

–4

–6

Figure B-1   Illustration for the solution to Prob. 1 in 
Chap. 12.
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On this graph, each horizontal division represents 1 unit, and each vertical division 
represents 5 units. All the antiderivative graphs are cubic curves. The constants correspond 
to the points where the curves pass through the dependent-variable axis. The curves all 
have identical orientations and contours; the only difference is their vertical positions.

 4. The general antiderivative is

F  (x ) = x 4 + c

where c can be any real number. Figure B-4 shows the graphs of the three antiderivatives 
where c = 5, c = 15, and c = −10 respectively:

F5 (x ) = x 4 + 5
 F 15 (x ) = x 4 + 15
F−10 (x ) = x 4 − 10

On this graph, each horizontal division represents 1 unit, and each vertical division 
represents 5 units. All the antiderivative graphs are quartic (fourth-degree) curves. 

2 4 6

6

x

Value
of
function

–2–4–6

–4

–6

F1 (x) = + 1x 2

F3 (x) = + 3x 2

F (x) = –  2–2 x 2

f (x) = 2x

Figure B-2   Illustration for the solution to Prob. 2 in 
Chap. 12.



The constants correspond to the points where the curves pass through the dependent-
variable axis. The curves all have identical orientations and contours; the only difference 
is their vertical positions.

 5.  We’ve been given the following cubic function and told to find its definite integral from 
x = 0 to x = 5:

f  (x ) = 8x 3

Let’s remember the rule for differentiating basic n th-degree functions. If we have

f  (x ) = axn
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x

Value
of
function

Each horizontal
division is 1 unit

Each vertical
division is 5 units

F (x) = + x 3 55

F (x) = + x 3 1515

F (x) = – x 3
–10 10

f (x) = x23

Figure B-3   Illustration for the solution to Prob. 3 in 
Chap. 12. Each horizontal-axis division represents 
1 unit. Each vertical-axis division represents 
5 units.
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where n is a nonnegative integer, then the antiderivative in which the constant of 
integration is equal to 0 is

F  (x ) = ax (n+1) / (n + 1)

From this formula, the antiderivative of our cubic function is

F  (x ) = 8x (3+1) / (3 + 1) = 8x 4/4 = 2x 4

We can omit the constant of integration whenever we use the Fundamental Theorem of 
Calculus. Let’s use that theorem to evaluate

0

5

∫ 8x 3 dx

x

Value
of
function

Each horizontal
division is 1 unit

f (x) = 4x3

F (x) = – x–10  104

F (x) = + x 1515
4

F (x) = + x 55
4

Each vertical
division is 5 units

Figure B-4   Illustration for the solution to Prob. 4 in 
Chap. 12. Each horizontal-axis division 
represents 1 unit. Each vertical-axis division 
represents 5 units.



Calculating the antiderivatives, we obtain

F  (5) = 2 · 54 = 1,250

and

F  (0) = 2 · (0)4 = 0

Therefore

F  (5) − F  (0) = 1,250

so we get the final answer

0

5

∫ 8x 3 dx = 1,250

 6.  We’ve been given the following quartic function and told to find its definite integral 
from z = −6 to z = −3:

g  (z ) = −2z 4

According to the rule for differentiating basic nth-degree functions, the antiderivative, 
not including the constant of integration, is

G  (z ) = −2z (4+1) / (4 + 1) = −2z 5/5

We can use this antiderivative to evaluate the definite integral

−

−

∫
6

3

−2z 4 dz

Calculating the antiderivatives, we obtain

G  (−3) = [−2 · (−3)5] / 5  = [−2 · (−243)] / 5 = 486/5 = 97.2

and

G  (−6) = [−2 · (−6)5] / 5  = [−2 · (−7,776)] / 5 = 15,552/5 = 3,110.4

Therefore

G  (−3) − G  (−6) = 97.2 − 3,110.4 = −3,013.2

so we get the final answer

−

−

∫
6

3

−2z 4 dz = −3,013.2
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 7.  Because the brick starts out having been tossed upward, its initial downward vertical 
speed is −5 meters per second. As always (on earth, at least ), the downward vertical 
speed increases by 10 meters per second every second until the brick splashes down. If 
we call the acceleration function f   and the time variable t, then, as before,

f  (t ) = 10

I start the timer when I toss the brick. When t = 0, the vertical downward speed is 
−5 meters per second, so the antiderivative is

F  (t ) = 10t − 5

This function F expresses the vertical downward speed of the brick vs. time, assuming that 
I toss the brick straight up. (That’s why I had to lean out to toss it; otherwise it would’ve 
gone up into the balloon and then fallen back into the gondola!) Antidifferentiating 
again, remembering the rule for the sum or difference of indefinite integrals, and calling 
the result Φ (t ), we get

Φ (t ) = 5t 2 − 5t

The function Φ expresses the “fallen distance” vs. the elapsed time. As before, the constant 
of integration is 0, because the initial “fallen distance” is 0. Let’s calculate how long it 
will take the brick to hit the water after I’ve tossed it up. This, once again, is the time t at 
which the value of Φ is equal to the altitude of the balloon. We have

5t  2 − 5t = 1,000

We can get this equation into the standard quadratic form by subtracting 1,000 from 
each side, obtaining

5t  2 − 5t − 1,000 = 0

Dividing through by −5 gives us the simpler equation

−t  2 + t + 200 = 0

Using the quadratic formula to solve for t, we have

t  = {−1 ± [12 − 4 · (−1) · 200]1/2} / [2 · (−1)] = (−1 ± 8011/2) / (−2)

The positive square root of 801 is approximately 28.30. Therefore,

t ≈ (−1 ± 28.30) / (−2) ≈ −13.65 or 14.65

The only solution that makes sense is t ≈ 14.65 seconds. The other solution is a “phantom 
negative.”



 8.  To figure this out, we plug t ≈ 14.65 into the function for downward vertical speed vs. 
time. That’s the antiderivative of the acceleration function. We found that to be

F  (t ) = 10t − 5

Therefore, the vertical speed of the brick at splashdown is

F  (t ) = 10t − 5 ≈ 10 · 14.65 − 5 ≈ 141.5

The brick is falling at 141.5 meters per second when it splashes down. It’s a good thing 
there are no boats, rafts, or swimmers on the lake. We wouldn’t want a brick to land on 
anybody at that speed!

 9.  As in the first experiment, the brick’s initial speed is 0, and it accelerates downward by 
10 meters per second. If the acceleration function is f   and the time variable is t, then

f  (t ) = 10

We can leave out the constant of integration when we find the antiderivative

F  (t ) = 10t

This function expresses the vertical speed vs. time. When t = 5, we have

F  (t ) = 10 · 5 = 50

After 5 seconds, the brick is falling at 50 meters per second. When t = 6,

F  (t ) = 10 · 6 = 60

At the end of the 6th second, the brick is falling at 60 meters per second. Between t = 5 and 
t = 6, the brick gains 10 meters per second of downward vertical speed. It doesn’t seem 
as if we’ve done definite integration here. But indirectly, we have. We subtracted one 
antiderivative (at t = 5) from another (at t = 6). According to the Fundamental Theorem 
of Calculus, we’ve just figured out that

5

6

∫ 10 dt = 10

10.  Let’s take the antiderivative again and call the new function Φ (t ), just as we did in the 
first experiment. Then

Φ (t ) = 5t  2

Once again, we can leave out the constant of integration. The function Φ tells us the 
vertical displacement in meters vs. the elapsed time in seconds. When t = 5, we have

Φ (t ) = 5 · 52 = 5 · 25 = 125
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The brick falls 125 meters in the first 5 seconds. When t = 6, we have

Φ (t ) = 5 · 62 = 5 · 36 = 180

The brick falls 180 meters in the first 6 seconds. Therefore, it falls 180 − 125, or 55, 
meters between t = 5 and t = 6. As in the solution to Prob. 9, it doesn’t seem as if we’ve 
done formal integration here, but we’ve found a definite integral in a practical sense. We 
subtracted the antiderivative at the end of a time interval from the antiderivative at the 
beginning of the interval. According to the Fundamental Theorem of Calculus, we’ve 
determined that

5

6

∫ 10t dt = 55

Chapter 13
 1. According to the reversal rule for integration (which we’ve already proved), 

p

q

∫ h (v ) dv = −
q

p

∫ h (v ) dv

The right-hand side of this equation is the same as

−1
q

p

∫ h (v ) dv

The multiplication-by-constant rule tells us that we can rewrite this as

q

p

∫ −1 [h (v )] dv

which is the same as

q

p

∫ −h (v ) dv

We’ve just shown that if h is an integrable function of a variable v over an interval from 
v = p to v = q where p and q are real-number constants, then

p

q

∫ h (v ) dv = 
q

p

∫ −h (v ) dv

 2.  To solve this problem, we must merely do some calculations, being careful with the 
plus and minus signs. First, we want to evaluate the integral of a function over a specific 
interval going in the positive direction along the x axis:

1

2

∫ x 2 dx

If we call our function f  (x ) = x 2, then we have the basic antiderivative

F  (x ) = x 3/3



We calculate

F  (2) = 23/3 = 8/3

and

F  (1) = 13/3 = 1/3

Therefore

F  (2) − F  (1) = 8/3 − 1/3 = 7/3

so we know that

1

2

∫ x 2 dx = 7/3

Next, we must evaluate the integral of the negative of the function, going in the negative 
direction along the x axis over the same interval as before:

2

1

∫ −x 2 dx

If we call the function g  (x ) = −x 2, then we have the basic antiderivative

G  (x ) = −x 3/3

We calculate

G  (1) = −(13)/3 = −1/3

and

G  (2) = −(23)/3 = −8/3

Therefore

G  (1) − G  (2) = −1/3 − (−8/3) = −1/3 + 8/3 = 7/3

So we know that

2

1−

∫ −x 2 dx = 7/3

We’ve just demonstrated the following specific example of the theorem we proved in the 
solution to Prob. 1:

1

2

∫ x 2 dx = 
2

1

∫ −x 2 dx
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 3.  Figure B-5 shows graphs of both functions, along with the regions defined by the curves 
in the interval between x = 1 and x = 2. When we integrate f  (x ) over the interval in the 
positive direction, we get a positive result because the region lies above the x axis. When 
we integrate g  (x ) over the same interval in the negative direction, we also get a positive 
result, because we’re calculating the negative of a negative area.

 4. We want to show that

−
∫
3

0

x 3 dx +
0

3

∫ x 3 dx = 
−
∫
3

3

x 3 dx

Let’s call our function f  (x ) = x 3. We have the basic antiderivative

F  (x ) = x4/4

First, we’ll integrate over the interval from −3 to 0. We calculate

F  (0) = 04/4 = 0

and

F  (−3) = (−3)4/4 = 81/4

4 6–2–4–6

2

6

–2

–4

–6

x

4

Value
of
function

f (x) = x2

g (x) = –x2

Integrate
from 1 to 2

Integrate
from 2 to 1

Positive area
going positive
= 7/3

Negative area
going negative
= 7/3

Figure B-5   Illustration for the solution to Prob. 3 in 
Chap. 13.



Therefore

F  (0) − F  (−3) = 0 − 81/4 = −81/4

so we know that

−
∫
3

0

x 3 dx = −81/4

Next, we integrate over the interval from 0 to 3. This time, we have

F  (3) = 34/4 = 81/4

and

F  (0) = 04/4 = 0

Therefore

F  (3) − F  (0) = 81/4 − 0 = 81/4

which tells us that

0

3

∫ x 3 dx = 81/4

The sum of these two integrals is

−
∫
3

0

x 3 dx +
0

3

∫ x 3 dx = −81/4 + 81/4 = 0

Finally, let’s integrate over the interval from −3 to 3. We calculate

F  (3) = 34/4 = 81/4

and

F  (−3) = (−3)4/4 = 81/4

Therefore

F  (3) − F  (−3) = 81/4 − 81/4 = 0

which demonstrates that

−
∫
3

3

x 3 dx = 0

We’ve shown that the sum of the integrals from −3 to 0 and from 0 to 3 is equal to 0, and 
that the integral from −3 to 3 is also equal to 0. Mission accomplished!
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 5.  Figure B-6 shows a graph of the function, along with the regions defined by the curve 
in the intervals between x = −3 and x = 0 and between x = 0 and x = 3. Each horizontal 
division represents 1 unit, and each vertical division represents 5 units. When we 
integrate from −3 to 0, we get a negative result, because the region lies below the x axis 
and we’re integrating in the positive direction along that axis. When we integrate 
from 0 to 3, we get a positive result, because the region lies above the x axis and we’re 
integrating in the positive direction along that axis. The two intervals give us equal but 
opposite integrals, so they add up to 0.

 6. This time, we must go through calculations to show that

−

−

∫
3

5

x 3 dx +
−
∫
5

3

x 3 dx = 
−
∫
3

3

x 3 dx

We already know that

−
∫
3

3

x 3 dx = 0

x

Value
of
function

Each horizontal
division is 1 unit

Each vertical
division is 5 units

f (x) = x3

Integrate
from –3
to 0

Integrate
from 0
to 3

Area = –81/4

Area = 81/4

Sum of areas
= 0

Figure B-6   Illustration for the solution to Prob. 5 in 
Chap. 13. Each horizontal-axis division 
represents 1 unit. Each vertical-axis division 
represents 5 units.



Now, our mission is to verify that

−

−

∫
3

5

x 3 dx +
−
∫
5

3

x 3 dx = 0

As before, let’s call our function f  (x ) = x 3, giving us the basic antiderivative

F  (x ) = x4/4

First, we integrate from −3 to −5. Calculating the antiderivatives, we get

F  (−5) = (−5)4/4 = 625/4

and

F  (−3) = (−3)4/4 = 81/4

Therefore

F  (−5) − F  (−3) = 625/4 − 81/4 = 544/4 = 136

so we know that

−

−

∫
3

5

x 3 dx = 136

Next, we integrate from −5 to 3. We have

F  (3) = 34/4 = 81/4

and

F  (−5) = (−5)4/4 = 625/4

Therefore

F  (3) − F  (−5) = 81/4 − 625/4 = −544/4 = −136

which tells us that

−
∫
5

3

x 3 dx = −136

The sum of these two integrals is

−

−

∫
3

5

x 3 dx +
−
∫
5

3

x 3 dx = 136 + (−136) = 0
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 7. From the Fundamental Theorem of Calculus, we know these four facts:

a

b

∫ f  (x ) dx = F  (b) − F  (a)

b

c

∫ f  (x ) dx = F  (c) − F  (b)

c

d

∫ f  (x ) dx = F  (d ) − F  (c )

a

d

∫ f  (x ) dx = F  (d ) − F  (a )

where F represents the antiderivative of f   with the constant of integration equal to 0. 
Now let’s rename the values of the functions at the points in the interval:

 p = F  (a )
q = F  (b)
 r = F  (c )
  s = F  (d )

where p, q, r, and s are real numbers. All four of these numbers exist, because f   is defined 
over the interval containing the x-values a, b, c, and d. By substitution, we can rewrite the 
first three of the above integrals as

a

b

∫ f  (x ) dx = q − p

b

c

∫ f  (x ) dx = r − q

c

d

∫ f  (x ) dx = s − r

To find the sum of these three definite integrals, we can evaluate

(q − p) + (r − q) + (s − r)

By algebra, this simplifies to

s − p

Substituting back the original expressions for s and p, we get

F  (d ) − F  (a )



According to the Fundamental Theorem of Calculus, that’s

a

d

∫ f  (x ) dx

 8. We’ve been told to determine the definite integral

−
∫
1

2

(4 − x )−2 dx

We can consider this as a composite function in which

f  (x ) = 4 − x

and

g  ( y ) = y−2

In this situation,

f   ′ (x ) = −1

which means that

−f   ′ (x ) = 1

so we can rewrite the original integral in the form

−
∫
1

2

g [ f  (x )] · [−f   ′ (x )] dx

The multiplication-by-constant rule for integration allows us to put the minus sign in 
front of the integral sign, giving us

−
−
∫
1

2

g [ f  (x )] · f   ′ (x ) dx

We can get rid of the minus sign if we reverse the bounds of integration, because reversing 
the bounds multiplies a definite integral by −1. Now we have

2

1−

∫ g [ f  (x )] · f   ′ (x ) dx

Our integral is now in the form that’s ready for substitution. We can calculate the 
“temporary bounds” as

f  (2) = 4 − 2 = 2

and

f  (−1) = 4 − (−1) = 5
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We can write the integral as

2

5

∫ g  ( y ) dy

which is

2

5

∫ y−2 dy

Remember that we’re using y as a nickname for f  (x ). Let’s find the indefinite integral

∫  y−2 dy

With the constant of integration set to 0, we get the antiderivative

G  ( y ) = −y−1

Now we calculate the values and subtract, getting

G  (5) − G  (2) = −(5−1) − [−(2−1)] = −1/5 − (−1/2) = 3/10

We’ve determined that

−
∫
1

2

(4 − x )−2 dx = 3/10

 9.  In this situation, one of the bounds of our integration interval is at x = 4. When x = 4, the 
quantity (4 − x )−2 is a fraction with a denominator of 0. That’s undefined. Therefore, 
this function blows up at one end of our interval. As we’ll see in the next chapter, that 
presents a special challenge.

10. We’ve been told to determine, if possible, the definite integral

−
∫
1

4

(4 − x )−2 dx

Following the same process as in the solution to Prob. 8, we get

4

1−

∫ g [ f  (x )] · f   ′ (x ) dx

This is ready for substitution. We calculate the “temporary bounds” as

f  (4) = 4 − 4 = 0

and

f  (−1) = 4 − (−1) = 5

Now we can write the integral as

0

5

∫ g  ( y ) dy



which is

0

5

∫ y−2 dy

As before, y is a nickname for f  (x ). With the constant of integration set to 0, we get

G  ( y ) = −y−1

Now we calculate

G  (5) − G  (0) = −(5−1) − (−0−1) = −1/5 − (−1/0) = −1/5 + 1/0

The last expression is not defined, because its second term is 1/0. We’ve determined that 
the definite integral

−
∫
1

4

(4 − x )−2 dx

is undefined.

Chapter 14
 1. Let’s call our function f, and call the independent variable x. Our improper integral is

0

1

∫ −7x−8 dx

Let’s take a tiny positive d, add it to the lower bound at x = 0, and get

δ

1

∫ −7x−8 dx

Without the constant of integration, the basic antiderivative is

F  (x ) = x−7

When we evaluate this from d to 1, we get

F  (1) − F  (d ) = 1−7 − d −7  = 1 − d −7

Now we must work out the limit

Lim
δ → +0

 1 − d −7

As d approaches 0 from the positive side, the quantity d −7 increases endlessly. When we 
subtract this increasing positive quantity from 1, we get a result that blows up negatively. 
Therefore

Lim
δ → +0

δ

1

∫ −7x−8 dx
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is infinite, telling us that

0

1

∫ −7x−8 dx

is undefined.

 2. We want to evaluate

−∞

−

∫
1

−7x−8 dx

Let’s take a number p smaller than −1 and use it as the lower bound. Then we have

p

−

∫
1

−7x−8 dx

The antiderivative, as in Prob. 1, is

F  (x ) = x−7

To find the value of the improper integral, we must determine

Lim
p→−∞

F  (−1) − F  ( p )

We can calculate that

F  (−1) = (−1)−7 = −1

As p becomes large negatively, F  ( p ) approaches 0 from the negative direction, so

Lim
p→−∞

F  (−1) − F  (p) = −1 − 0 = −1

Therefore

Lim
p→−∞

p

−

∫
1

−7x−8 dx = −1

telling us that

−∞

−

∫
1

−7x−8 dx = −1

 3. Let’s call our function f, and call the independent variable x. We want to evaluate

0

2

∫ x−3 dx

Let’s take a tiny positive d and add it to the lower bound at x = 0, getting

δ

2

∫ x−3 dx



The antiderivative with the constant of integration set to 0 is

F  (x ) = −x−2/2

When we evaluate this from d to 2, we get

F  (2) − F  (d ) = −2−2/2 − (−d −2)/2  = −1/8 + d −2/2 = d −2/2 − 1/8

Now, we must look at the limit

Lim
δ → +0

d −2/2 − 1/8

As d becomes arbitrarily small while remaining positive, d −2 increases without bound, so 
d −2/2 − 1/8 also grows without bound. Therefore

Lim
δ → +0

δ

2

∫ x−3 dx

is infinite, telling us that

0

2

∫ x−3 dx

is undefined.

 4. We want to evaluate

2

∞

∫ x−3 dx

Let’s consider a large positive number q as the upper bound, so the integral becomes

2

q

∫ x−3 dx

The antiderivative, as we found in the solution to Prob. 3, is

F  (x ) = −x−2/2

To find the integral, we must determine

Lim
q→∞

F  (q ) − F  (2)

We calculate

F  (2) = −2−2/2 = −1/8

As q becomes large positively, the value of F  (q) approaches 0, so

Lim
q→∞

F  (q) − F  (2) = 0 − (−1/8) = 1/8
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Therefore

2

∞

∫ x−3 dx = 1/8

 5. We want to evaluate

−
∫
3

0

x−3/5 dx

Let’s call this function f  (x ). It has a singularity at x = 0. We can take a tiny positive 
number e, subtract it from the upper bound at x = 0 where the singularity occurs, and 
obtain

−

−

∫
3

ε

x−3/5 dx

Leaving out the constant of integration, the basic antiderivative is

F  (x ) = (5/2)x 2/5

When we evaluate F at x = −3, we get

F  (−3) = (5/2) · (−3)2/5 = (5/2) · 91/5

When we evaluate F at x = −e, we get

F  (−e) = (5/2) · (−e)2/5

The difference is

F  (−e) − F  (−3) = (5/2) · (−e)2/5 − (5/2) · 91/5

Now consider

Lim
ε → +0

 (5/2) · (−e)2/5 − (5/2) · 91/5

As e approaches 0 from the positive direction, the value of  (−e)2/5, which is the fifth root 
of the quantity (−e)2, approaches 0. If we multiply by 5/2, it still approaches 0. Now we 
know that

Lim
ε → +0

 (5/2) · (−e)2/5 − (5/2) · 91/5 = −(5/2) · 91/5

so therefore

Lim
ε → +0

−

−

∫
3

ε

x−3/5 dx = −(5/2) · 91/5



This tells us that

−
∫
3

0

x−3/5 dx = −(5/2) · 91/5

This is an irrational number. With a calculator, we can approximate it to −3.880.

 6. We want to evaluate

−

−∞

∫
3

x−3/5 dx

This is the same function f  (x ) as we worked with in Prob. 5. This time, we’re integrating 
from −3 in the negative direction, indefinitely. Consider a large positive number q. Let’s 
see what happens to

−

−

∫
3

q

x−3/5 dx

as we make q increase without bound. (That means −q grows larger negatively without 
bound). The basic antiderivative, as we found in the solution to Prob. 5, is

F  (x ) = (5/2)x 2/5

When we evaluate the antiderivative at x = −3, we get

F  (−3) = (5/2) · (−3)2/5 = (5/2) · 91/5

When we evaluate the antiderivative at x = −q, we get

F  (−q) = (5/2) · (−q )2/5

When we subtract the antiderivative at the “start” of our integration interval from the 
antiderivative at the “finish,” we get

F  (−q) − F  (−3) = (5/2) · (−q )2/5 − (5/2) · 91/5

Now consider

Lim
q→∞

  (5/2) · (−q )2/5 − (5/2) · 91/5

As q grows positively without bound, the value of  (−q )2/5, which is the fifth root of the 
quantity (−q )2, also increases positively without bound. When we multiply this quantity 
by 5/2, we make it grow even faster. Now we know that the above limit is infinite, so

Lim
q→∞

−

−

∫
3

q

x−3/5 dx
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is also infinite. We must conclude that

−

−∞

∫
3

x−3/5 dx

is undefined.

 7.  When we consider the graph of the function, the second of the two integrals is 
obviously undefined. That integral is

2

∞

∫ −5x dx

If we call the function f  (x ), then

f  (x ) = −5x

The graph of f  (x ) is a straight line with a slope of −5, passing through the origin. If 
we start integrating at x = 2 and proceed in the positive direction, the “curve” defines 
trapezoidal regions that grow endlessly larger, always with a left-hand edge −10 units 
long. We don’t have to do any calculations to see this. It’s obvious from the graph. (If you 
can’t envision this graph in your “mental eye,” you can sketch it.)

 8. It seems that the following integral might be defined:

2

∞

∫ x−5 dx

Let’s try to evaluate it. The antiderivative, not including the constant of integration, is

F  (x ) = −x−4/4

Now consider the integral

2

q

∫ x−5 dx

where q is some large positive number. To evaluate this, we must determine

Lim
q→∞

F  (q ) − F  (2)

where q increases without bound. We can easily calculate

F  (2) = −(2−4)/4 = −1/64

As q becomes large, the value of F  (q ) approaches 0, so

Lim
q→∞

F  (q ) − F  (2) = 0 − (−1/64) = 1/64
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Therefore

2

∞

∫ x−5 dx = 1/64

 9. Let’s try to evaluate

−
∫
1

1

x−3 dx

using the Fundamental Theorem of Calculus directly, as if the interval contains no 
singularity. (It does, as we know, at x = 0.) The basic antiderivative is

F  (x ) = −x−2/2

When we evaluate F straight through from −1 to 1, we get

F  (1) − F  (−1) = −1−2/2 − [−(−1)−2/2] = −1/2 − (−1/2) = 0

Let’s look at this situation in the coordinate plane. Figure B-7 is a graph of

f  (x ) = x−3

2 4 6

–2–4–6

2

6

–2

–4

–6

x

4

f (x)

Area defined
by curve
extends upward
forever

Area defined
by curve
extends downward
forever

f (x) = x –3

Figure B-7   Illustration for the solution to Probs. 9 and 
10 in Chap. 14. This graph, while accurate in 
itself, might reinforce the mistaken idea that 
the integral of the function is equal to 0 over 
the interval shown.
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with the boundaries x = −1 and x = 1 drawn in. The areas defined by the two parts of the 
curve are shaded. The negative area, which exists on the left-hand side of the vertical axis, 
is shaded lightly. The positive area, which appears on the right-hand side of the vertical 
axis, is shaded more darkly. It’s tempting to imagine that these areas, even though both 
might be infinite, are equal and opposite. Figure B-7 can reinforce the mistaken notion 
that

−
∫
1

1

x−3 dx

is defined and equal to 0. In the next solution, we’ll see that this is not the case.

10. Let’s work out the part of the integral on the right-hand side of the singularity:

0

1

∫ x−3 dx

We can take a tiny positive d, add it to the lower bound at x = 0, and get

δ

1

∫ x−3 dx

The basic antiderivative is

F  (x ) = −x−2/2

When we evaluate F from d to 1, we get

F  (1) − F  (d ) = −1−2/2 − (−d −2/2) = −1/2 + d −2/2 = d −2/2 − 1/2

Now, we must look at the limit

Lim
δ → +0

d −2/2 − 1/2

The quantity (d −2/2) increases endlessly as d approaches 0 from the positive direction, 
so

Lim
δ → +0

δ

1

∫ x−3 dx

is infinite. Therefore,

0

1

∫ x−3 dx

is undefined. This fact alone is sufficient to tell us that

−
∫
1

1

x−3 dx

is undefined. We don’t have to evaluate the left-hand part of the integral; no matter what 
we add to this undefined quantity, we’ll get another undefined quantity.



Chapter 15

 1. Here’s the sum of integrals we’ve been told to evaluate:

5

6

∫ 3x 2 dx +
5

6

∫ −12x 2 dx

We can name the functions like this:

g  (x ) = 3x 2

and

h (x ) = −12x 2

First, let’s figure out the definite integral of g  (x ) with respect to x from x = 5 to x = 6:

5

6

∫ 3x 2 dx

The basic antiderivative, leaving out the constant of integration, is

G  (x ) = x 3

When we evaluate this from x = 5 to x = 6, we get

G  (6) − G  (5) = 63 − 53 = 216 − 125 = 91

Next, we figure out the definite integral of h (x ) with respect to x from x = 5 to x = 6:

5

6

∫ −12x 2 dx

The antiderivative, leaving out the constant of integration, is

H (x ) = −4x 3

When we evaluate this from x = 5 to x = 6, we get

H (6) − H (5) = −4 · 63 − (−4 · 53) = −364

When we add these results, we get 91 − 364, which is −273. Now, let’s add the two 
functions together and then integrate their sum. Remember that

g  (x ) = 3x 2

and

h (x ) = −12x 2
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Therefore, if we call the sum function q, we have

g  (x ) + h (x ) = q (x ) = 3x 2 − 12x 2 = −9x 2

We want to work out the integral

5

6

∫ −9x 2 dx

The antiderivative, leaving out the constant of integration, is

Q (x ) = −3x 3

When we evaluate this from x = 5 to x = 6, we get

Q (6) − Q (5) = −3 · 63 − (−3 · 53) = −273

This is the same as the result we got when we integrated the two functions separately and 
then added the integrals.

 2. We’ve been told to evaluate this sum of integrals:

5

6

∫ 3x 2 dx +
5

6

∫ −12x 2 dx

Note the difference in the direction between the first and second integrals in this sum! 
Let’s use the function names from the solution to Prob. 1:

g  (x ) = 3x 2

and

h (x ) = −12x 2

In the solution to Prob. 1, we determined that

5

6

∫ 3x 2 dx = 91

and

5

6

∫ −12x 2 dx = −364

According to the rule for reversing the direction of integration over a fixed interval,

6

5

∫ −12x 2 dx = −(−364) = 364



When we add these results, we get

5

6

∫ 3x 2 dx +
6

5

∫ −12x 2 dx = 91 + 364 = 455

Now, let’s evaluate

5

6

∫ 15x 2 dx

We can invent a new name q (x ) and assign it to the function we’re integrating above: 

q (x ) = 15x 2

The antiderivative without the constant of integration is

Q (x ) = 5x 3

When we evaluate Q from x = 5 to x = 6, we get

Q (6) − Q (5) = 5 · 63 − 5 · 53 = 455

This is the same as the result we got when we integrated the two functions separately and 
then added the integrals.

 3. Here’s the difference of integrals we’ve been told to evaluate:

5

6

∫ −12x 2 dx −
5

6

∫ 3x 2 dx

Let’s keep using the same function names from the solutions to Probs. 1 and 2:

g  (x ) = 3x 2

and

h (x ) = −12x 2

In the solution to Prob. 1, we found that

5

6

∫ −12x 2 dx = −364

and

5

6

∫ 3x 2 dx = 91

The difference between these two definite integrals is

5

6

∫ −12x 2 dx −
5

6

∫ 3x 2 dx = −364 − 91 = −455
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Our next step is to work out

5

6

∫ −15x 2 dx

Let’s invent a new name p (x ) and assign it to the function we’re integrating: 

p (x ) = −15x 2

The basic antiderivative (that is, without the constant of integration) is

P (x ) = −5x 3

When we evaluate this from x = 5 to x = 6, we get

P (6) − P (5) = −5 · 63 − (−5 · 53) = −455

This is the same as the result we got when we integrated the two functions separately and 
then subtracted the integrals.

 4. We’ve been told to find

∫  (x−2 + x−3 + x−4) dx

This is the integral of a sum of three monomial functions of x. Let’s call them

f 1 (x ) = x−2

 f2 (x ) = x−3

 f3 (x ) = x−4

If we temporarily leave out the constants of integration, then the indefinite integrals of 
these monomial functions are

       ∫ f 1 (x ) dx = −x−1

∫ f2 (x ) dx = (−1/2)x−2

∫ f3 (x ) dx = (−1/3)x−3

The original integral without a constant of integration is

 ∫  (x−2 + x−3 + x−4) dx = ∫ x−2 dx + ∫ x−3 dx + ∫ x−4 dx

 = −x−1 + (−1/2)x−2 + (−1/3)x−3

Adding in a constant of integration c, we end up with

∫ (x−2 + x−3 + x−4) dx = −x−1 + (−1/2)x−2 + (−1/3)x−3 + c



 5. We’ve been told to find

∫  (7y )(6y − 4)(−2y + 3) dy

Let’s multiply the factors to get a single polynomial:

(7y )(6y − 4)(−2y + 3) = −84y3 + 182y 2 − 84y

The integral we want to evaluate is now

∫  (−84y 3 + 182y 2 − 84y ) dy

This is the integral of a sum of three monomial functions of y. We can call them

 f 1 ( y ) = −84y 3

 f2 ( y ) = 182y 2

f3 ( y ) = −84y

If we temporarily leave out the constants of integration, then the indefinite integrals of 
these monomial functions are

∫ f 1 ( y ) dy = −21y 4

    ∫ f2 ( y ) dy = (182/3)y 3

∫ f3 ( y ) dy = −42y 2

The summed-up integral without a constant of integration is

∫  (−84y 3 + 182y 2 − 84y ) dy = −21y 4 + (182/3)y 3 + −42y 2

Adding in the consolidated constant of integration c, and writing the original integrand 
on the left-hand side of the equation, we have the final answer

∫  (7y )(6y − 4)(−2y + 3) dy = −21y 4 + (182/3)y 3 + −42y 2 + c

 6. We’ve been told to find

∫  (z 8 − 1)(−3z 3 + 7z 2) dz

We begin by multiplying the factors together to get

(z 8 − 1)(−3z 3 + 7z 2) = −3z 11 + 7z 10 + 3z 3 − 7z 2

        The integral we want to evaluate is now

∫  (−3z 11 + 7z 10 + 3z  3 − 7z  2) dz
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          This is the integral of a sum of four monomial functions of z. We can call them

   f 1 (z ) = −3z 11

 f2 (z ) = 7z 10

f3 (z ) = 3z 3

  f4 (z ) = −7z 2

If we temporarily leave out the constants of integration, then the indefinite integrals of 
these monomial functions are

  ∫ f 1 (z ) dz = (−1/4)z 12

  ∫ f2 (z ) dz = (7/11)z 11

∫ f3 (z ) dz = (3/4)z 4

 ∫ f4 (z ) dz = (−7/3)z 3

The complete integral, leaving out the constant of integration, is

∫  (−3z 11 + 7z 10 + 3z 3 − 7z 2) dz = (−1/4)z 12 + (7/11)z 11 + (3/4)z 4 − (7/3)z 3

Adding in the constant of integration c, and writing the original integrand on the left-
hand side, we have

∫  (z 8 − 1)(−3z 3 + 7z 2) dz = (−1/4)z 12 + (7/11)z 11 + (3/4)z 4 − (7/3)z 3 + c

 7. We’ve been told to find

0

1

∫ (4x 3 − 5x 2 + 7x − 4) dx

Let’s start by working out the indefinite integral

∫  (4x 3 − 5x 2 + 7x − 4) dx

The integrand is the sum of four monomial functions of x. Let’s call them

 f 1 (x ) = 4x 3

    f2 (x ) = −5x 2

f3 (x ) = 7x
f4 (x ) = −4



None of these functions has any singularities, so we can work out a definite integral 
for any of them over any interval. That means we can integrate the entire polynomial 
function (which is the sum of the monomial functions) over any interval. The basic 
antiderivatives of the monomial functions are

F 1 (x ) = x 4

       F2 (x ) = (−5/3)x 3

     F3 (x ) = (7/2)x 2

   F4 (x ) = −4x

The antiderivative of the original integrand is the sum of all these:

F  (x ) = F 1 (x ) + F2 (x ) + F3 (x ) + F4 (x ) = x 4 − (5/3)x 3 + (7/2)x 2 − 4x

When we input 1 (the starting x-value of our interval) here, we get

F  (1) = 14 − (5/3) · 13 + (7/2) · 12 − 4 · 1 = −7/6

When we input 0 (the finishing x-value), we get

F  (1) = 04 − (5/3) · 03 + (7/2) · 02 − 4 · 0 = 0

The definite integral is therefore

F  (1) − F  (0) = −7/6 − 0 = −7/6

The complete answer to our problem is

0

1

∫ (4x 3 − 5x 2 + 7x − 4) dx = −7/6

 8. We’ve been told to find

−

−

∫
1

2

(x−2 + x−3 + x−4) dx

We begin by working out

∫  (x−2 + x−3 + x−4) dx

This is the integral of the sum of the monomial functions

f 1 (x ) = x−2

 f2 (x ) = x−3

 f3 (x ) = x−4
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Each of these functions has one singularity, which occurs at x = 0. But we’re okay in the 
interval where −2 < x < −1. None of the three functions blows up anywhere in that span. 
The basic antiderivatives are

        F 1 (x ) = −x−1

F2 (x ) = (−1/2)x−2

F3 (x ) = (−1/3)x−3

The basic antiderivative of the original integrand is therefore

F  (x ) = F 1 (x ) + F2 (x ) + F3 (x ) = −x−1 − (1/2)x−2 − (1/3)x−3

We must remember that we’ve been told to integrate over the interval in the negative 
direction, from x = −1 to x = −2! We input −2 (the finishing x-value) first, getting

F  (−2) = −(−2)−1 − (1/2)(−2)−2 − (1/3)(−2)−3 = 5/12

When we input −1 (the starting x-value), we get

F  (−1) = −(−1)−1 − (1/2)(−1)−2 − (1/3)(−1)−3 = 5/6

The definite integral is obtained by taking the finishing antiderivative minus the starting 
antiderivative. This gives us

F  (−2) − F  (−1) = 5/12 − 5/6 = −5/12

Therefore, the original definite integral is

−

−

∫
1

2

(x−2 + x−3 + x−4) dx = −5/12

 9. We’ve been told to determine

0

1

∫ (x − 2)3 dx

Before we begin integrating, let’s multiply out the cubed binomial, getting a straightforward 
polynomial. When we do that, we get

(x − 2)3 = x 3 − 6x 2 + 12x − 8

Now we’re ready to work out the indefinite integral

∫  (x 3 − 6x 2 + 12x − 8) dx



This is the integral of the sum of four functions

 f 1 (x ) = x 3

 f2 (x ) = −6x 2

 f3 (x ) = 12x
 f4 (x ) = −8

None of these functions has any singularities, so we’re okay with any interval of integration. 
The basic antiderivatives are

 F 1 (x ) = (1/4)x4

 F2 (x ) = −2x 3

 F3 (x ) = 6x 2

 F4 (x ) = −8x

The basic antiderivative of the original integrand is

F  (x ) = F 1 (x ) + F2 (x ) + F3 (x ) + F4 (x ) = (1/4)x 4 − 2x 3 + 6x 2 − 8x

When we input 1 here, we get

F  (1) = (1/4) · 14 − 2 · 13 + 6 · 12 − 8 · 1 = −15/4

When we input 0, we get

F  (0) = (1/4) · 04 − 2 · 03 + 6 · 02 − 8 · 0 = 0

The definite integral is

F  (1) − F  (0) = −15/4 − 0 = −15/4

The complete answer to our problem is

0

1

∫ (x − 2)3 dx = −15/4

10. We’ve been told to determine

−
∫
1

1

(x 1/3 + 4)2 dx

To solve this problem, we should begin by multiplying out the squared binomial, getting 
a straightforward polynomial. That gives us

(x 1/3 + 4)2 = x 2/3 + 8x 1/3 + 16
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Now we must work out

∫  (x 2/3 + 8x 1/3 + 16) dx

Our integrand is the sum of the three monomial functions

 f 1 (x ) = x 2/3

 f2 (x ) = 8x1/3

 f3 (x ) = 16

None of these functions has any singularities, so we don’t have to be concerned about 
evaluating any improper integrals. The basic antiderivatives are

 F 1 (x ) = (3/5)x5/3

 F2 (x ) = 6x4/3

 F3 (x ) = 16x

The basic antiderivative of the original integrand is therefore

F  (x ) = F 1 (x ) + F2 (x ) + F3 (x ) = (3/5)x 5/3 + 6x 4/3 + 16x

When we input 1 to this function, we get

F  (1) = (3/5) · 15/3 + 6 · 14/3 + 16 · 1 = 113/5

When we input −1, we get

F  (−1) = (3/5) · (−1)5/3 + 6 · (−1)4/3 + 16 · (−1) = −53/5

The definite integral is

F  (1) − F  (−1) = 113/5 − (−53/5) = 166/5

The complete answer to our problem is

−
∫
1

1

(x 1/3 + 4)2 dx = 166/5

Chapter 16
 1.  Figure B-8 illustrates the graphs of the two functions we now have. We want to find the 

area of the shaded region. The functions are

f  (x ) = 2x − 1



and

g  (x ) = x 2 − 4

To find this area, the first thing we should do is determine the x-values of the points 
where the line and the curve intersect. Then we should find the difference function

p (x ) = f  (x ) − g  (x )

Finally, we should integrate p (x ) with respect to x in the positive direction over the 
interval between the two intersection points. 

 2.  To find the intersection points, let’s set f  (x ) = g  (x ), obtaining the single-variable 
equation

2x − 1 = x 2 − 4

Adding the quantity (−2x + 1) to each side, transposing the left-hand and right-hand 
sides, and rearranging into standard quadratic form, we get

x 2 − 2x − 3 = 0

Chapter 16  671

g (x) = x2 – 4

What’s the area
of the shaded
region?
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2

6
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–6
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4
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of
function

f (x) = 2x – 1

Figure B-8   Illustration for the solution to Probs. 1 and 2 
in Chap. 16.



672  Worked-Out Solutions to Exercises: Chapters 11 to 19

This factors into

(x + 1)(x − 3) = 0

The roots of this quadratic equation are x = −1 or x = 3. These are the x-values of the 
points where the line and the curve intersect, and are the bounds over which we should 
integrate the difference function. That difference function is

p (x ) = f  (x ) − g  (x ) = (2x − 1) − (x 2 − 4) = −x 2 + 2x + 3

Now we must evaluate

−
∫
1

3

(−x 2 + 2x + 3) dx

The antiderivative, leaving out the constant of integration, is

P (x ) = −x 3/3 + x 2 + 3x

When we evaluate this from x = −1 to x = 3, we obtain

P (3) − P (−1) = [−(33/3) + 32 + 3 · 3] − [−(−1)3/3 + (−1)2 + 3 · (−1)] = 32/3

 3.  First, we must find the intersection points between the line and the curve. Here are the 
functions again, for reference:

f  (x ) = x

and

g  (x ) = x 2

They’re graphed in Fig. B-9, and the area we want to find is indicated by the shading. 
Let’s set these two functions equal, so we get

x = x 2

To put this into standard quadratic form, we can subtract x from each side and then 
transpose the sides. That gives us

x 2 − x = 0

which factors into

x (x − 1) = 0



This tells us that roots are x = 0 or x = 1. These are the bounds of the interval over which 
we must integrate the difference function

p (x ) = f  (x ) − g  (x ) = x − x 2 = −x 2 + x

Remember that we subtract the “bottom function” from the “top function.” Now we 
want to find

0

1

∫ (−x 2 + x ) dx

The basic antiderivative is

P (x ) = −x 3/3 + x 2/2

When we evaluate this from x = 0 to x = 1, we obtain

P (1) − P (0) = [−(13/3) + 12/2] − (−03/3 + 02/2) = 1/6

 4.  Refer to Fig. B-10. To begin, we determine the area of the shaded region, which is 
a triangle with a base length of 1 unit and a height of 1 unit. To find the area, we 

x

Value
of
function

g (x) = x 2

f (x) = x Each axis division
is 1/5 unit

What is
this
area?

Figure B-9   Illustration for the solution to Prob. 3 in 
Chap. 16. Each axis division represents 
1/5 unit.
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multiply 1 by 1 and then divide by 2, getting 1/2 square unit. From this, we must 
subtract the area of the region defined by the parabola over the interval 0 < x < 1. That’s 
the hatched zone. Its area is

0

1

∫ x 2 dx

The antiderivative, leaving out the constant of integration, is

F  (x ) = x 3/3

When we evaluate this from x = 0 to x = 1, we obtain

F  (1) − F  (0) = 13/3 − 03/3 = 1/3

When we subtract this from the area of the triangle, we get 1/2 − 1/3, which is 1/6 square 
unit. That’s the same answer we got in the solution to Prob. 3.

 5.  Before we think about the integral, we must find the intersection points between the 
line and the curve. Here are the functions once again:

f  (x ) = x 2

x

Value
of
function

g (x) = x 2

f (x) = x

Each axis division
is 1/5 unit

(0,0) (1,0)

(1,1)

Add shaded area,
then
subtract hatched area

Figure B-10   Illustration for the solution to Prob. 4 in 
Chap. 16. Each axis division represents 
1/5 unit.



and

g  (x ) = x 3

They’re graphed in Fig. B-11. Setting the functions equal, we get

x 2 = x 3

To put this into standard cubic form, we can subtract x 2 from each side and then transpose 
the sides to get

x 3 − x 2 = 0

which factors into

x 2(x − 1) = 0

The real roots of this equation are x = 0 or x = 1. These x-values represent the bounds 
of our integration integral. The “top function” is f   and the “bottom function” is g. The 
difference function is

p (x ) = f  (x ) − g  (x ) = x 2 − x 3 = −x 3 + x 2

x

Value
of
function

Each axis division
is 1/5 unit

What is
this
area?

(x) = x 2f

g (x) = x3

g (x) = x3

Figure B-11   Illustration for the solution to Prob. 5 in 
Chap. 16. Each axis division represents 
1/5 unit.

Chapter 16  675



676  Worked-Out Solutions to Exercises: Chapters 11 to 19

Now we want to find

0

1

∫ (−x 3 + x 2) dx

The basic antiderivative is

P (x ) = −x4/4 + x 3/3

When we evaluate this from x = 0 to x = 1, we obtain

P (1) − P (0) = [−(14/4) + 13/3] − (−04/4 + 03/3) = 1/12

 6.  Once again, the first thing we must do is find the intersection points between the line 
and the curve. The functions are

f  (x ) = x

and

g  (x ) = x  3

Figure B-12 is a graph of this situation. Setting the functions equal, we get

x = x  3

To put this equation into standard cubic form, we subtract x from each side and then 
transpose the sides to get

x  3 − x = 0

which factors into

x (x − 1)(x + 1) = 0

The real roots of this equation are x = −1, x = 0, or x = 1. Bounding the region of 
interest for the interval −1 < x < 0, the “top function” is g and the “bottom function” 
is f. Bounding the region of interest for 0 < x < 1, it’s the other way around; the “top” 
function is f   and the “bottom function” is g. When we look at Fig. B-12, it’s tempting 
to suppose that the two regions have equal area, but we had better not assume it without 
proof! To be sure we get the right result, we must evaluate the areas of the two shaded 
regions separately.

Let’s find the area of the shaded region in the third quadrant first. That’s the region at 
the lower left. The difference function is

p (x ) = g  (x ) − f  (x ) = x 3 − x



To get a positive value for this integral, we must find the absolute value of

−
∫
1

0

(x 3 − x ) dx

The basic antiderivative is

P (x ) = x4/4 − x 2/2

When we evaluate this from x = −1 to x = 0, we obtain

P (0) − P (−1) = (04/4 − 02/2) − [(−1)4/4 − (−1)2/2] = −1/4

The absolute value is 1/4. Now let’s find the area of the shaded region in the first quadrant. 
The difference function in this case is

q (x ) = f  (x ) − g  (x ) = x − x  3

This time, we must determine the definite integral

0

1

∫ (x − x  3) dx

x

Value
of
function

Each axis division
is 1/5 unit

g (x) = x3

g (x) = x3

f (x) = x

What is
this
total area?

Figure B-12   Illustration for the solution to Prob. 6 in 
Chap. 16. Each axis division represents 
1/5 unit.
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The basic antiderivative is

Q (x ) = x  2/2 − x 4/4

When we evaluate this from x = 0 to x = 1, we obtain

Q (1) − Q (0) = (12/2 − 14/4) − (02/2 − 04/4) = 1/4

Now we are certain that the areas of the two shaded regions are equal. When we add 
them, we get the true geometric area between the line and the curve over the interval 
from x = −1 to x − 1. That area is 1/4 + 1/4 = 1/2 square unit.

 7. Here are the functions again, for reference:

f  (x ) = 1

and

g  (x ) = x−2/3

Imagine the region bounded by the graph of f on the bottom, the graph of g on the right, 
and the dependent-variable axis on the left, as shown in Fig. B-13. The region has no top; 

x

Each horizontal division is 1/2 unit

Each vertical
division is
1 unit

Area bounded
by line and
curve
extends upward
forever

Value
of
function

(x) = x –2/3g

(x) = 1f

1

Figure B-13   Illustration for the solution to Prob. 7 in 
Chap. 16. Each horizontal-axis division 
represents 1/2 unit. Each vertical-axis 
division represents 1 unit.



it goes upward forever. We’ve been told to find the area of the shaded region, and that the 
interval of integration is 0 < x < 1. The line and the curve intersect where x = 1 as the 
illustration suggests, because

f  (1) = 1

and

g  (1) = 1−2/3 = 1

The upper curve represents g and the lower curve represents f, so we subtract f  from g to 
get the difference function

p (x ) = g  (x ) − f  (x ) = x−2/3 − 1

We want to integrate p over the interval 0 < x < 1, which is bounded on the left by the 
singularity. That integral is

0

1

∫ (x−2/3 − 1) dx

Let’s take a tiny positive number d and add it to the lower bound at x = 0 to obtain

δ

1

∫ (x−2/3 − 1) dx

The basic antiderivative is

P (x ) = 3x 1/3 − x

When we evaluate this from d to 1, we get

P (1) − P (d ) = (3 · 11/3 − 1) − (3d 1/3 − d ) = 2 − (3d 1/3 − d )

Now we must figure out

Lim
δ → +0

  2 − (3d 1/3 − d )

As d approaches 0 from the positive direction, the values of 3d 1/3 and d both approach 0. 
That means the quantity (3d 1/3 − d ) approaches 0, so

Lim
δ → +0

  2 − (3d 1/3 − d ) = 2

It follows that

Lim
δ → +0

δ

1

∫ (x−2/3 − 1) dx = 2
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Therefore

0

1

∫ (x−2/3 − 1) dx = 2

The area of the shaded region in Fig. B-13 is 2 square units, even though it’s infinitely 
tall.

 8.  The two functions in this situation are the same as the ones in Prob. 7. Here they are 
again, for reference:

f  (x ) = 1

and

g  (x ) = x−2/3

This time, imagine the region bounded by the graph of g on the bottom, the graph 
of f  on the top, and the line x = 2 on the right. We’ve been told to find the area of 
the shaded region in Fig. B-14, and that the interval of integration is 1 < x < 2. In the 

x

Each horizontal division is 1/2 unit

Each vertical
division is
1 unit

Value
of
function

(x) = x –2/3g

(x) = 1f

1 2

Figure B-14   Illustration for the solution to Prob. 8 in 
Chap. 16. Each horizontal-axis division 
represents 1/2 unit. Each vertical-axis 
division represents 1 unit.



solution to Prob. 7, we showed that the line and the curve intersect where x = 1. The 
upper curve represents f and the lower curve represents g, so we must subtract g from f to 
get the difference function. If we call that function q, then

q (x ) = f  (x ) − g  (x )  = 1 − x−2/3

We want to integrate q over the interval 1 < x < 2. That integral is

1

2

∫ (1 − x−2/3) dx

The basic antiderivative is

Q (x ) = x − 3x1/3

When we evaluate this from 1 to 2, we get

Q (2) − Q (1) = (2 − 3 · 21/3) − (1 − 3 · 11/3) = 4 − 3 · 21/3

We have determined that

1

2

∫ (1 − x−2/3) dx = 4 − 3 · 21/3

That’s the area of the shaded region in Fig. B-14. It’s an irrational number; we can use a 
calculator to approximate it as 0.220 square units.

 9.  To find the total area in the interval 0 < x < 2, we can add the areas we got in the 
solutions to Probs. 7 and 8. The situation is illustrated in Fig. B-15. The area that we 
found in the solution to Prob. 7 (and shown in Fig. B-13) was

0

1

∫ (x−2/3 − 1) dx = 2

The area that we found in the solution to Prob. 8 (and shown in Fig. B-14) was

1

2

∫ (1 − x−2/3) dx = 4 − 3 · 21/3

The total area is the sum of these, or 6 − 3 · 21/3 square units. This is an irrational number. 
A calculator tells us that it’s equal to approximately 2.220 square units.

 10. For reference, the two functions in this situation are

f  (x ) = x−2

and

g  (x ) = −x−3

We’re interested in the shaded zone in the graph of Fig. B-16. This region is bounded by 
the curve for g on the bottom, the curve for f  on the top, and the line x = 1 on the left. 
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The zone has no boundary on the right, because it extends in the positive x direction 
forever. We’ve been told to integrate over the infinitely wide interval 1 < x, which can also 
be expressed as (1,∞). We must subtract g from f   to get the difference function. If we call 
that function q, then

q (x ) = f  (x ) − g  (x ) = x−2 − (−x−3) = x−2 + x−3

The area of the shaded region is equal to

1

∞

∫ (x−2 + x−3) dx

Imagine a positive real number s that we can make as large as we want. If we allow s to 
grow larger endlessly, the above integral can be expressed as

Lim
s→∞

1

s

∫ (x−2 + x−3) dx

The antiderivative of our difference function q without the constant of integration is

Q (x ) = −x−1 + (−x−2/2) = −x−1 − x−2/2

x

Each horizontal division is 1/2 unit

Each vertical
division is
1 unit

Area bounded
by line and
curve
extends upward
forever

Value
of
function

(x) = x –2/3g

(x) = 1f

1 2

Figure B-15   Illustration for the solution to Prob. 9 in 
Chap. 16. Each horizontal-axis division 
represents 1/2 unit. Each vertical-axis 
division represents 1 unit.



To find the limit of the integral stated above, we must figure out

Lim
s→∞

Q (s ) − Q (1)

As s grows larger endlessly, the value of Q (s ) approaches 0 from the negative side. We can 
see this by inputting some actual numbers and watching the trend:

 Q (10) = −10−1 − 10−2/2

Q (102) = −(102)−1 − (102)−2/2

Q (103) = −(103)−1 − (103)−2/2

Q (104) = −(104)−1 − (104)−2/2

As s becomes larger without limit, Q (s) converges on 0. We can easily calculate the value 
of our antiderivative when the input is 1:

Q (1) = −(1−1) − (1−2)/2 = −1 − 1/2 = −3/2

Value
of
function

x

Area
between
curves

extends
to the right
forever

f (x) = x –2

Each axis
division is
1/2 unit

g (x) = –x –3

Second
and
third
quadrants
not
shown

Figure B-16   Illustration for the solution to Prob. 10 in 
Chap. 16. Each axis division represents 1/2 
unit. The second and third quadrants are not 
shown.
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Now we know that

Lim
s→∞

Q (s) − Q (1) = 0 − (−3/2) = 0 + 3/2 = 3/2

Therefore

Lim
s→∞

1

s

∫ (x−2 + x−3) dx = 3/2

which tells us that

1

∞

∫ (x−2 + x−3) dx = 3/2

That’s the area of the shaded zone in Fig. B-16. Despite the fact that the region is infinitely 
elongated toward the right, it encloses a finite area.

Chapter 17
 1. Here’s the integral we’ve been told to evaluate:

0

2π

∫ −5 sin x dx

We can pull out the constant 5 to get

5
0

2π

∫ −sin x dx

Let’s call the integrand function

f  (x ) = −sin x

The basic antiderivative is

F  (x ) = cos x

When we evaluate this from x = 0 to x = 2p, we get

F  (2p ) − F  (0) = cos 2p − cos 0 = 1 − 1 = 0

The definite integral we seek is five times this, which is also 0. We’ve found that

0

2π

∫ −5 sin x dx = 0

 2.  We want to see what happens to the definite integral of the cosine function over 
intervals whose lower bounds are always at x = 0 and whose upper bounds increase 
endlessly in the positive direction. That is, we want to evaluate

Lim
s →∞

0

s

∫ cos x dx



Let’s call the integrand function

g  (x ) = cos x

The basic antiderivative is

G  (x ) = sin x

When we evaluate this from x = 0 to x = s, we get

G  (s ) − G  (0) = sin s − sin 0 = sin s − 0 = sin s

As s increases endlessly, sin s goes through a cycle that ranges over the entire set of reals 
between, and including, −1 and 1. The value of s never settles on any specific real number 
in this closed interval; it oscillates forever back and forth. That means

Lim
s →∞

0

s

∫ cos x dx

is undefined. The integral never “settles down” as the interval grows. It oscillates like the 
function itself, but the phase (that is, the horizontal position of the “wave train”) is not 
the same. Try graphing the sine and cosine functions together on the same coordinate 
plane, and see for yourself.

 3.  We want to evaluate the following definite integral, which involves the product of a 
composite function and another function:

0

1

∫ (cos x 2)(2x ) dx

We can use the substitution rule here if we give the component functions the names

f  (x ) = x 2

and

g  ( y ) = cos y

When we differentiate f  (x ), we get

f   ′ (x ) = 2x

This means we can use substitution to rewrite the above integral in the form

f

f

( )

( )

0

1

∫ g  ( y ) dy

The bounds of this integral are

f  (0) = 02 = 0
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and

f  (1) = 12 = 1

so we can rewrite it as

0

1

∫ g  ( y ) dy

which, in this case, is

0

1

∫ cos y dy

We’re using y as a nickname for f  (x ). The basic antiderivative of g is

G  ( y ) = sin y

When we evaluate this from 0 to 1, we obtain

G  (1) − G  (0) = sin 1 − sin 0 = sin 1 − 0 = sin 1

This tells us that

0

1

∫ (cos x 2)(2x ) dx = sin 1

A calculator tells us that sin 1 ≈ 0.841, rounded to three decimal places. (Remember that 
we’re dealing with radians here, not degrees.)

 4. Our task is to evaluate the definite integral

0

π

∫ (4e x + 4 sin x ) dx

Let’s start by factoring the constant 4 out of the integrand and putting it in front of the 
entire integral. That gives us

4
0

π

∫ (e x + sin x ) dx

If we call the integrand function

f  (x ) = e x + sin x

then the basic antiderivative is

F  (x ) = e x + (−cos x ) = e x − cos x

When we evaluate this from x = 0 to x = p, we get

F  (p) − F  (0) = (e p − cos p) − (e0 − cos 0) = [e p − (−1)] − (1 − 1)
      =  (e p + 1) − 0 = e p + 1



The definite integral we seek is four times this, which is 4e p + 4. We’ve found that

0

π

∫ (4e x + 4 sin x ) dx = 4e p + 4

Using a calculator and rounding to three decimal places, we get 96.563.

 5. We want to evaluate

0

1

∫ 2e 2x dx

Our integrand is a composite function. Let’s give the component functions the names

f  (x ) = 2x

and

g  ( y ) = e y

The derivative of f   is

f   ′ (x ) = 2

We can use substitution to rewrite the above integral in the form

f

f

( )

( )

0

1

∫ g  ( y ) dy

When we evaluate f   at the bounds, we obtain

f  (0) = 2 · 0 = 0

and

f  (1) = 2 · 1 = 2

so the integral becomes

0

2

∫ g  ( y ) dy

which is

0

2

∫ e y dy

The basic antiderivative is

G  ( y ) = e y
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When we evaluate this from y = 0 to y = 2, we get 

G  (2) − G  (0) = e 2 − e 0 = e 2 − 1

which tells us that

0

1

∫ 2e 2x dx  = e 2 − 1

When we round to three decimal places with a calculator, we get 6.389.

 6. We’ve been told to figure out the value of

0

1

∫ (cos e x )(e x ) dx

The integrand is a composite function. Using substitution, we can give the component 
functions the names

f  (x ) = e x

and

g  ( y ) = cos y

When we differentiate f, we get

f   ′ (x ) = e x

We can therefore rewrite the above integral in the form

f

f

( )

( )

0

1

∫ g  ( y ) dy

When we calculate the bounds of this integral, we get

f  (0) = e 0 = 1

and

f  (1) = e 1 = e

so it becomes

1

e

∫ g  ( y ) dy

which is

1

e

∫ cos y dy



the basic antiderivative is

G  ( y ) = sin y

When we evaluate this from y = 1 to y = e, we obtain

G  (e) − G  (1) = sin e − sin 1

which tells us that

0

1

∫ (cos e x )(e x ) dx = sin e − sin 1

We can use a calculator to work this out so we get a decimal expression. When we do that 
and round off to three decimal places, we get −0.431.

 7. Let’s call the function f   and the independent variable x. Our integral is

0

1

∫ x−1 dx

This is an improper integral, because the reciprocal function of x is singular at x = 0. 
Let’s take a tiny positive d, and add it to the lower bound at x = 0. Then our integral 
becomes

δ

1

∫ x−1 dx

The basic antiderivative of the integrand function is

F  (x ) = ln |x |

The interval of integration doesn’t include any negative values of x, so we can modify 
this to

F  (x ) = ln x

When we evaluate this from d to 1, we get

F  (1) − F  (d ) = ln 1 − ln d = 0 − ln d = − ln d

Now, let’s look at the limit

Lim
δ → +0

−ln d

As d  approaches 0 from the positive side, the natural log of d attains values that can 
become arbitrarily large in the negative direction. That means that the above limit blows 
up positively, so

Lim
δ → +0

δ

1

∫ x−1 dx
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is infinite. From this fact, we can conclude that

0

1

∫ x−1 dx

is undefined.

 8. We want to evaluate

−∞

−

∫
1

x−1 dx

The basic antiderivative of the integrand function is

F  (x ) = ln |x |

To find the integral, we must determine

Lim
p→−∞

F  (−1) − F  ( p )

where p is a real-number constant that grows arbitrarily large in the negative direction. 
We can calculate that

F  (−1) = ln |−1| = ln 1 = 0

As p becomes large negatively, F  ( p ) grows large to an unlimited extent while remaining 
positive. It’s convenient to show this by inputting the negatives of increasing positive 
integer powers of e. Here are a few examples:

F  (−e 2) = ln |−e 2| = ln e 2 = 2
   F  (−e 20) = ln |−e 20| = ln e 20 = 20

     F  (−e 200) = ln |−e 200| = ln e 200 = 200

There’s no limit to how large F  ( p ) can become, if we make p large enough negatively. 
From that fact, we can conclude that

Lim
p→−∞

  ln |−1| − ln |p |

is infinite. Therefore

−∞

−

∫
1

x−1 dx

is undefined.

 9. Let’s try to evaluate

−
∫
e

e

x−1 dx



as if the interval didn’t contain a singularity. (It does, as we know, at x = 0. But we’ve been 
told to ignore this fact.) The basic antiderivative is

F  (x ) = ln |x |

When we evaluate this directly from −e to e, we get

F  (e) − F  (−e) = ln |e | − ln |−e | = ln e − ln e = 1 − 1 = 0

Let’s look at this situation in the coordinate plane. Figure B-17 is a graph of

f  (x ) = x−1

with the bounds x = −e and x = e drawn in. It looks as if the negative and positive areas 
defined by the curves cancel each other. They would if they were defined and finite. But 
they are not, as we’ll discover when we solve the next problem.

 10.  Refer again to Fig. B-17. Let’s work out the part of the integral on the right-hand side 
of the singularity. To do that, we must evaluate

0

e

∫ x−1 dx

2 4 6

–2–4–6

2

6

–2

–4

–6

x

4

f (x)

x = –e

x = e

f (x) = x –1

Area defined
by curve
extends upward
forever

Area defined
by curve
extends downward
forever

Figure B-17   Illustration for the solution to Probs. 9 and 
10 in Chap. 17. This graph might suggest 
that the integral is 0 over the interval from 
−e to e. But that isn’t the case!
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Let’s take a tiny positive d, add it to the lower bound where x = 0, and get

δ

e

∫ x−1 dx

The basic antiderivative is

F  (x ) = ln |x |

Our interval does not span any negative values of x, so we can eliminate the absolute 
value symbols here. When we evaluate from d to e, we get

F  (e) − F  (d ) = ln e − ln d = 1 − ln d

Now, we must look at the limit

Lim
δ → +0

  1 − ln d

As d approaches 0 from the positive side, its natural log becomes arbitrarily large in the 
negative direction. Therefore, the quantity (1 − ln d ) blows up, so

Lim
δ → +0

δ

e

∫ x−1 dx

is infinite, indicating that

0

e

∫ x−1 dx

is undefined. This fact is all we need to conclude that

−
∫
e

e

x−1 dx

is undefined. Remember that we can’t add an undefined quantity to anything and expect 
to get a sum that’s defined! This is true even if both undefined quantities appear as if they 
ought to be additive inverses.

Chapter 18

 1.  The equation of the unit circle isn’t written in a form that we usually see for a function. 
There’s a good reason: The equation doesn’t represent a function unless we restrict its 
range. Here’s the equation again, for reference:

x 2 + y 2 = 1

If we consider only the first quadrant, representing that part of the circle where x and y are 
both positive, and if we let y = f  (x ), then we can rearrange the equation to get

f  (x ) = (1 − x 2)1/2



We want to find the arc length from the point where x = 0 to the point where x = 1. We 
begin by differentiating our function. We can do that using the chain rule, getting

f   ′ (x ) = −x (1 − x 2)−1/2

If you’ve forgotten how the chain rule works, you might want to go back to Chap. 6 and 
review it. When we square the derivative, we get

[ f   ′ (x )]2 = x  2(1 − x  2)−1

Adding 1 gives us

1 + [ f   ′ (x )]2 = 1 + x  2(1 − x  2)−1

We can morph the right-hand side of this equation using algebra to get

1 + [ f   ′ (x )]2 = (1 − x  2)−1

The arc length L that we seek is the definite integral from x = 0 to x = 1, whose integrand 
is the positive square root of the above quantity. That’s

L =
0

1

∫ [(1 − x  2)−1]1/2 dx

which can be simplified to

L =
0

1

∫ (1 − x  2)−1/2 dx

Using an integral table such as App. G, we can see that the indefinite integral, leaving out 
the constant of integration, is

∫  (1 − x  2)−1/2 dx = Arcsin x

That’s the inverse sine function, which you’ll learn more about in Chap. 21. 
( You’ll also learn why the “A” in “Arcsin” is capitalized in equations!) When we evaluate 
this function from x = 0 to x = 1, we get

L = Arcsin 1 − Arcsin 0 = p /2 − 0 = p /2

A calculator will tell us that this is approximately 1.571 units, rounded to three decimal 
places.

 2.  Figure B-18 is a graph of the unit circle. Each axis division represents 1/5 unit. For the 
endpoint where x = 1,

f  (1) = [1 − (−1)2]1/2 = (1 − 1)1/2 = 01/2 = 0

For the endpoint where x = 0,

f  (0) = [1 − 02]1/2 = 11/2 = 1
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The arc whose length we found is shown as a solid black curve. It’s clearly equal to 1/4 of 
the circumference C of the circle. That means C is four times the arc length:

C = 4 · p /2 = 2p

From basic Euclidean geometry, we remember that 2p units represents the circumference 
of a circle whose radius is 1 unit.

 3.  In Fig. B-18, the dashed gray square shows the guideline for using the arc-in-a-box 
method. If we say that y = f  (x ), then we can call the arc’s endpoints

(x1,y1) = (1,0)

and

(x 2,y 2) = (0,1)

The distance between these points, representing the diagonal measure of the box, is

[( y 2 − y1)2 + (x 2 − x1)2]1/2 = [(1 − 0)2 + [(0 − 1)2]1/2

           = [12 + (−1)2]1/2 = (1 + 1)1/2 = 21/2

f (x)

x

(0,1)

(1,0)

Each axis
increment
is 1/5 unit

f (x) = (1 – x 2)1/2

Figure B-18   Illustration for the solution to Probs. 2 
and 3 in Chap. 18. Each axis division 
represents 1/5 unit.



Using a calculator, we can see that this is approximately 1.414 units, rounded to three 
decimal places. Half the perimeter of the box is easily seen to be 1 + 1, or 2, units. In the 
solution to Prob. 1, we found L ≈ 1.571, which is between these two limits.

 4.  As in Prob. 1, our equation is not written in the standard function form. Here it is 
again, for reference:

x  2 + y 2 = 4

If we consider only that part of the circle in the second quadrant, and if we let y = f  (x ), 
then we can rearrange the equation to get

f  (x ) = (4 − x  2)1/2

When we differentiate this using the chain rule, we get

f   ′ (x ) = −x (4 − x 2)−1/2

When we square this derivative, we obtain

[ f   ′ (x )]2 = x  2(4 − x  2)−1

Adding 1 gives us

1 + [ f   ′ (x )]2 = 1 + x  2(4 − x  2)−1

We can morph the right-hand side using algebra to get

1 + [ f   ′ (x )]2 = 4 · (4 − x  2)−1

The arc length L that we seek is the definite integral from x = −2 to x = −1 of the positive 
square root of the above quantity. That’s

L =
−

−

∫
2

1

[4 · (4 − x 2)−1]1/2 dx

which can be simplified to

L =
−

−

∫
2

1

2 · (4 − x 2)−1/2 dx

and further to

L = 2
−

−

∫
2

1

(4 − x 2)−1/2 dx

Using an integral table such as App. G, we can see that the indefinite integral, leaving out 
the constant of integration, is

∫  (4 − x 2)−1/2 dx = Arcsin (x /2)
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We want to evaluate this from x = −2 to x = −1. By convention, the domain of the sine 
function is restricted to the interval [−p /2,p /2] to ensure that Arcsin is a true function. 
(Chap.21 will explain this.) When we do that, we get

L = Arcsin (−2/2) − Arcsin (−1/2) = Arcsin (−1) − Arcsin (−1/2)
      = −p /2 − (−p /6) = −p /2 + p /6 = −p /3

Now we must remember that our arc length L is twice this, because the entire definite 
integral is supposed to be multiplied by 2. Therefore

L = −2p /3

The arc length comes out negative in this solution only because of the way we restrict 
Arcsin. We can take the absolute value to get the “real-world arc length,” so

|L | = |−2p /3|  = 2p /3

A calculator approximates this as 2.094 units, rounded to three decimal places.

 5. Figure B-19 is a graph of a circle with radius 2, centered at the origin. Its equation is

x  2 + y  2 = 4

f (x )

x

Each axis
increment
is 1/2 unit

f (x) = ( – x 2)1/24

(–2,0)

(–1,3 )1/2

Figure B-19   Illustration for the solution to Probs. 5 
and 6 in Chap. 18. Each axis division 
represents 1/2 unit.



Each axis division represents 1/2 unit. For the arc’s endpoint where x = −2, we have

f  (−2) = [4 − (−2)2]1/2 = (4 − 4)1/2 = 01/2 = 0

For the arc’s endpoint at x = −1, we have

f  (−1) = [4 − (−1)2]1/2 = (4 − 1)1/2 = 31/2

The arc whose length we found is shown as a solid black curve.

 6.  In Fig. B-19, the dashed gray rectangle shows the arc-in-the-box guide. Suppose we say 
that y = f  (x ). Then we can call the arc’s endpoints

(x 1,y1) = (−2,0)

and

(x 2,y 2) = (−1,31/2)

The distance between these points, representing the diagonal measure of the box and the 
minimum possible arc length, is

[( y 2 − y1)2 + (x 2 − x1)2]1/2 = {(31/2 − 0)2 + [(−1) − (−2)]2}1/2

       = [(31/2)2 + 12]1/2 = (3 + 1)1/2 = 41/2 = 2

Half the perimeter of the box, is 1 + 31/2 units. Using a calculator and rounding to three 
decimal places, we obtain 2.732 units as the maximum possible arc length. We found that 
the arc is 2p /3 units long. That value is within the arc-in-the-box constraints.

 7.  Figure B-20 illustrates how we can show that the result of L = 2p /3 we got in 
the solution to Prob. 4 is exactly right. The radius r of the circle is 2 units, so its 
circumference C is

C = 2pr = 2p · 2 = 4p

The ratio of the arc length to the circumference is therefore

L /C = (2p /3) / (4p ) = 1/6

This tells us that the arc turns through an angle that is exactly 1/6 of a circle. A complete 
circle has 2p radians. If the arc length we found in the solution to Prob. 4 is correct, the arc 
should turn through exactly 2p /6, or p /3, radians. We can verify this with trigonometry. 
We set up a right triangle as shown. The cosine of an angle q inside a right triangle is 
equal to the length of the adjacent side (in this case 1 unit ) divided by the length of the 
hypotenuse (in this case 2 units). That means we should have

Arccos (1/2) = p /3

This is a valid equation, which proves that the arc length we found is exactly right.
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 8. Let’s begin by differentiating the function

f  (x ) = x  2/2

The derivative is

f   ′ (x ) = x

When we plug x into the formula for the arc length in place of f   ′ (x ), and if we also 
include the bounds of the integration interval, we get

L =
0

1

∫ (1 + x  2)1/2 dx

Now let’s consider the indefinite integral

∫  (1 + x  2)1/2 dx

When we search through a table of integrals such as App. G at the back of this book, we’ll 
find the form

∫  (x 2 + a 2)1/2 = (x /2)(x 2 + a 2)1/2 + (1/2) a 2 ln |x + (x  2 + a 2 )1/2| + c

f (x )

x

Each axis
increment
is 1/2 unit

f (x ) = ( – x 2)1/24

(–2,0)

(–1,3 )1/2

θ

cos θ = 1/2
therefore
θ = p/3

Figure B-20   Illustration for the solution to Prob. 7 in 
Chap. 18. Each axis division represents 
1/2 unit.



where a is a general constant, and c is the constant of integration. Let’s reverse the addends 
in the integrand. We can eliminate the absolute-value signs, because we won’t encounter 
any negatives in the calculations to come. Now our equation is

∫  (a 2 + x 2)1/2 dx = (x /2)(x 2 + a 2)1/2 + (1/2) a 2 ln [x + (x  2 + a 2)1/2] + c

If we substitute 1 in place of a and get rid of the constant of integration, we obtain

∫  (1 + x 2)1/2 dx = (x /2)(x 2 + 1)1/2 + (1/2) ln [x + (x  2 + 1)1/2]

To determine the arc length, we must evaluate the following expression over the interval 
from x = 0 to x = 1:

(x /2)(x 2 + 1)1/2 + (1/2) ln [x + (x 2 + 1)1/2]

Plugging in x = 1, we get

(1/2) · (12 + 1)1/2 + (1/2) · ln [1 + (12 + 1)1/2] = (1/2) · 21/2 + (1/2) · ln (1 + 21/2)
        = (1/2) · [21/2 + ln (1 + 21/2)]

Plugging in x = 0, we get

(0/2) · (02 + 1)1/2 + (1/2) · ln [0 + (02 + 1)1/2]
     =  0 + (1/2) · ln 1 = 0 + (1/2) · 0 = 0 + 0 = 0

The arc length is the difference between these results, or simply the value for x = 1:

L = (1/2) · [21/2 + ln (1 + 21/2)]

Let’s use a calculator to approximate this. When we round off to three decimal places, we 
get L ≈ 1.148 units.

 9. Figure B-21 is a graph of the parabola representing the function

f  (x ) = x  2/2

Each axis division represents 1/4 unit. For the endpoint at x = 0,

f  (0) = 02/2 = 0/2 = 0

For the endpoint at x = 1,

f  (1) = 12/2 = 1/2

The arc whose length we found is shown as a solid black curve. 
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10.  In Fig. B-21, the dashed gray rectangle shows the arc-in-the-box guide. Suppose we say 
that y = f  (x ). Then we can call the arc’s endpoints

(x1,y1) = (0,0)

and

(x 2,y 2) = (1,1/2)

The distance between these points, representing the diagonal of the box and the minimum 
possible arc length, is

[( y 2 − y1)2 + (x 2 − x1)2]1/2 = [(1/2 − 0)2 + (1 − 0)2]1/2 = (1/4 + 1)1/2 = (5/4)1/2

Using a calculator, we find that this is approximately 1.118 units. Half the perimeter of 
the box, representing the maximum possible arc length, is 1 + 1/2, or 1.5 units. In the 
solution to Prob. 8, we found that

L = (1/2) · [21/2 + ln (1 + 21/2)] ≈  1.148

This value lies between the arc-in-the-box constraints.

f (x )

x

Each axis
increment
is 1/4 unit

(0,0)

f (x) = x2/2 (1,1/2)

Figure B-21   Illustration for the solution to Probs. 9 
and 10 in Chap. 18. Each axis division 
represents 1/4 unit.



Chapter 19

 1. We’ve been told to evaluate the definite integral

0

π

∫ (3 sin x − 5e x ) dx

The principle of linearity for subtraction allows us to rewrite this as

3
0

π

∫ sin x dx −  5 
0

π

∫ e x dx

The basic antiderivative of the sine is the negative of the cosine. The exponential function 
is its own basic antiderivative. We can therefore evaluate the above sum of integrals as

3 · [−cos p − (−cos 0)] − 5 · (e p − e 0)

which simplifies to

3 · [cos 0 − cos p] − 5 · (e p − e 0)

We know that cos 0 = 1, cos p = −1, and e 0 = 1, so the above expression becomes

3 · [1 − (−1)] − 5 · (e p − 1) = 3 · 2 − 5e p + 5 = 11 − 5e p

The complete integral and its solution can be written out in full as

0

π

∫ (3 sin x − 5e x ) dx = 11 − 5e p

 2. We’ve been told to evaluate the definite integral

1

2

∫ (5e x + 7x−1) dx

The principle of linearity allows us to rewrite this as

5
1

2

∫ e x dx +  7 
1

2

∫ x−1 dx

The exponential function is its own basic antiderivative. The antiderivative of the 
reciprocal function is the absolute value of the natural logarithm. Because we’re dealing 
entirely with positive values in our integration interval, we don’t have to worry about 
absolute values. We can therefore express the above sum of integrals as

5 · (e 2 − e 1) + 7 · (ln 2 − ln 1)

Because ln 1 = 0 and e 1 = e, we can simplify this to

5 · (e 2 − e ) + 7 ln 2
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We can get rid of the parentheses, rewriting the above expression as

5e 2 − 5e + 7 ln 2

The complete integral and its solution can be written out in full as

1

2

∫ (5e x + 7x−1) dx = 5e 2 − 5e + 7 ln 2

 3. Here’s the integral we want to evaluate:

−
∫
π

π

/

/

2

2

(3 sin x + 2 cos x ) dx

Using the principle of linearity, we can rearrange this to get

3
−
∫
π

π

/

/

2

2

sin x dx +  2
−
∫
π

π

/

/

2

2

cos x dx

The basic antiderivative of the sine is the negative of the cosine. The basic antiderivative 
of the cosine is the sine. Knowing these things, we can evaluate the above as

3 · {−cos p /2 − [−cos (−p /2)]} + 2 · [sin p /2 − sin (−p /2)]

which simplifies to

3 · [cos (−p /2) − cos p /2] + 2 · [sin p /2 − sin (−p /2)]

We know that cos p /2 = 0, cos −p /2 = 0, sin p /2 = 1, and sin −p /2 = −1, so the above 
becomes

3 · (0 − 0) + 2 · [1 − (−1)] = 3 · 0 + 2 · 2 = 4

The complete integral and its solution can be written out in full as

−
∫
π

π

/

/

2

2

(3 sin x + 2 cos x ) dx = 4

 4. Let’s start with this:

a

b

∫ {k1 [ f 1 (x )] − k2 [ f2 (x )]} dx

According to the principle of linearity for subtraction, we can rewrite this as

k1

a

b

∫ f 1 (x ) dx − k2

a

b

∫ f2 (x ) dx

Changing the subtraction to addition along with multiplication by −1, we get

k1

a

b

∫ f 1 (x ) dx +  (−1 · k2)
a

b

∫ f2 (x ) dx



which can be rewritten as

k1

a

b

∫ f 1 (x ) dx + k2 (−
a

b

∫ f2 (x ) dx)

The reversal rule lets us get rid of the minus sign and reverse the bounds of the second 
integral. That gives us the result we’ve been told to find:

k1

a

b

∫ f 1 (x ) dx + k2

b

a

∫ f2 (x ) dx

 5. Here’s the integral we want to resolve:

∫  (3 cos x )(2x − 4) dx

To set up the parts, let’s say that

f  (x ) = 2x − 4

and

g ′ (x ) = 3 cos x

The basic antiderivative of g ′, not including the constant of integration, is

g  (x ) = 3 sin x

The derivative of f   is

f   ′ (x ) = 2

For reference, the general formula for integration by parts is

∫ f  (x ) · g ′ (x ) dx = f  (x ) · g  (x ) − ∫ g  (x ) · f   ′ (x ) dx

In this situation, we have

∫  (3 cos x )(2x − 4) dx = (2x − 4)(3 sin x ) − ∫  (3 sin x ) · 2 dx

             =  (2x − 4)(3 sin x ) −  6 ∫  sin x dx

The basic antiderivative of the sine is the negative of the cosine, so the last integral in the 
above expression becomes −cos x plus a constant of integration. Substituting back into 
the preceding equation, we get

∫  (3 cos x )(2x − 4) dx = (2x − 4)(3 sin x ) − 6 · (−cos x ) + c
   =  6x sin x − 12 sin x + 6 cos x + c

where c is the constant of integration.
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 6. Here’s the integral we want to resolve:

∫  7x 2 cos x dx

To set up the parts, let’s say that

f  (x ) = 7x 2

and

g ′ (x ) = cos x

The basic antiderivative of g ′ is

g  (x ) = sin x

The derivative of f   is

f   ′ (x ) = 14x

Again for reference, the general formula for integration by parts is

∫ f  (x ) · g ′ (x ) dx = f  (x ) · g  (x ) − ∫ g  (x ) · f   ′ (x ) dx

In this case,

∫  7x 2 cos x dx = 7x 2 sin x − ∫  sin x · (14x ) dx = 7x 2 sin x − ∫  14x sin x dx

Now we’ve encountered another integral that requires us to apply the technique of 
integration by parts! Let’s keep the above equation in mind as a “marker.” A little later 
on, we’ll want to come back to it. The new integral we must find is

∫  14x sin x dx

Let’s call the parts

f * (x ) = 14x

and

g *′ (x ) = sin x

The antiderivative of g *′, not including the constant of integration, is

g * (x ) = −cos x

The derivative of f * is

f *′ (x ) = 14



An adaptation of the general formula for integration by parts tells us that

∫ f * (x ) · g*′ (x ) dx = f * (x ) · g * (x ) − ∫ g * (x ) · f *′ (x ) dx

In this situation, we have

∫  14 x sin x dx =  14x (−cos x ) − ∫ −cos x · 14 dx = −14x cos x + 14 ∫  cos x dx

The basic antiderivative of the cosine is the sine, so we can simplify the above to

= −14x cos x + 14 sin x

Remember that we’re leaving out the constants of integration until we get to the end of 
this process. Now, the above expression can be substituted in place of the last integral in 
the equation we designated as a “marker” earlier. That equation (with the middle portion 
removed) is

∫  7x 2 cos x dx = 7x 2 sin x − ∫  14x sin x dx

Substitution gives us the complete solution to our problem:

∫  7x 2 cos x dx = 7x 2 sin x − (−14x cos x + 14 sin x ) + c

   =  7x 2 sin x + 14x cos x − 14 sin x + c

 7. Here’s the integral we want to evaluate:

0

π

∫ (p /2 − 2x )(5 cos x ) dx

First, let’s find the indefinite integral. Then we can put the bounds back in and work out 
the definite integral. We want to resolve

∫  (p /2 − 2x )(5 cos x ) dx

To set up the parts, let’s say that

f  (x ) = p /2 − 2x

and

g ′ (x ) = 5 cos x

The basic antiderivative of g ′ is

g  (x ) = 5 sin x

The derivative of f   is

f   ′ (x ) = −2
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Once again for reference, the general formula for integration by parts is

∫ f  (x ) · g ′ (x ) dx = f  (x ) · g  (x ) − ∫ g  (x ) · f   ′ (x ) dx

In this case,

∫  (p /2 − 2x )(5 cos x ) dx = (p /2 − 2x )(5 sin x )  − ∫  (5 sin x ) · (−2) dx

    =   (p /2 − 2x )(5 sin x )  + 10 ∫  sin x dx

The last integral in the above expression can be simplified to −cos x, because the basic 
antiderivative of the sine is the negative of the cosine. We don’t need the constant of 
integration, because we are going to evaluate a definite integral. Substituting back into 
the preceding equation, we get

∫  (p /2 − 2x )(5 cos x ) dx = (p /2 − 2x )(5 sin x ) − 10 cos x

     =  5p /2 sin x − 10x sin x − 10 cos x

Now we must evaluate

5p /2 sin x − 10x sin x − 10 cos x
0

π

]

In this expression, the large square bracket with the values at the extreme right translates 
as “evaluated from 0 to p.” First, let’s plug p in to obtain

5p /2 sin p − 10p sin p − 10 cos p  = (5p /2) · 0 − 10p · 0 − 10 · (−1)
    = 0 − 0 − (−10) = 10

When we plug 0 into the same expression, we get

5p /2 sin 0 − 10 · 0 sin 0 − 10 cos 0 = (5p /2) · 0 − 10p · 0 − 10 · 1
         = 0 − 0 −10 = −10

The definite integral is the difference between these results, which is

10 − (−10) = 10 + 10 = 20

We conclude that

0

π

∫ (p /2 − 2x )(5 cos x ) dx = 20

 8. Here’s the integral we want to resolve:

∫ −5 (2x − 7)−1 dx



To begin, we move the constant in front of the integral symbol, getting

−5 ∫ (2x − 7)−1 dx

Then we use the indefinite integral formula from App. G to obtain

−5 · 2−1 ln |2x − 7| + c

which can be simplified to

(−5/2) ln |2x − 7| + c

Therefore

∫ −5 (2x − 7)−1 dx = (−5/2) ln |2x − 7| + c

 9. Here’s the integral we want to resolve:

∫  2x (x 2 − 1)−1 dx

With algebra, we can break the integrand into a sum of reciprocals of linear functions:

∫  [(x + 1)−1 + (x − 1)−1] dx

When we split this into a sum of integrals, we get

∫  (x + 1)−1 dx + ∫  (x − 1)−1 dx

Adapting and applying the formula from App. G to each addend gives us

ln |x + 1| + ln |x − 1| + c

The complete statement of the integral and its resolution is

∫  2x (x 2 − 1)−1 dx = ln |x + 1| + ln |x − 1| + c

10. Here’s the integral we want to resolve:

∫  (5x − 1)(x 2 − x − 2)−1 dx

With the help of algebra and intuition, the integrand breaks down into a sum of two 
constant multiples of reciprocal linear functions, like this:

∫  [2 (x + 1)−1 +  3 (x − 2)−1] dx
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When we split this into a sum of two integrals and pull out the constants, we get

2 ∫  (x + 1)−1 dx +  3 ∫  (x − 2)−1 dx

Applying the usual formula from App. G to each addend gives us

2 ln |x + 1| + 3 ln |x − 2| + c

The complete statement of the integral and its resolution is

∫  (5x − 1)(x 2 − x − 2)−1 dx = 2 ln |x + 1| + 3 ln |x − 2| + c



These solutions do not necessarily represent the only way a problem can be figured out. If you 
think you can solve a problem faster or better than the way it’s done here, by all means try it! 
Always check your work to be sure your “alternative” answer is correct.

Chapter 21
 1. We’ve been told to differentiate the inverse of

f  (x ) = x 2 + 2

for x > 0. (Do you know why we’ve restricted the domain this way?) Let

y = f  (x )

and

x = f   −1 ( y )

We can derive x in terms of y using simple algebra:

 f  (x )  = x 2 + 2
 y  = x 2 + 2
 y − 2  = x 2

  ( y − 2)1/2  = x
 x  = ( y − 2)1/2

 f  −1 ( y )  = ( y − 2)1/2

709

APPENDIX 

C

Worked-Out Solutions to Exercises: 
Chapters 21 to 29



Remember that if there’s any ambiguity in a fractional power, it always denotes the positive value 
unless otherwise specified. The 1/2 power therefore means the positive square root, so we know 
that f   −1 is a true function. When we differentiate directly using the chain rule, we get

f   −1′ ( y ) = [( y − 2)−1/2] / 2

Now let’s use the alternative formula we learned in the chapter text. The derivative of y 
with respect to x is

dy /dx = 2x

When we take the reciprocal of each side of this equation, we get

dx /dy = (2x )−1

This is the derivative of the inverse function, but we want to state it in terms of y , not in 
terms of x. A moment ago, we found that

x = ( y − 2)1/2

By substitution,

dx /dy = [2( y − 2)1/2]−1 = [( y − 2)−1/2]/2

which can also be written as

f   −1′ ( y ) = [( y − 2)−1/2]/2

This agrees with the result we got when we differentiated the inverse function directly.

 2. We want to differentiate the inverse of

f  (x ) = ln x

for x > 0. (Do you know why we’ve restricted the domain this way?) Let’s call

y = f  (x )

and

x = f   −1 ( y )

We can derive x in terms of y from our knowledge of natural logarithms and exponentials:

f  (x ) = ln x
      y = ln x

      e  y = e ( ln x )

e y = x
  x = e y

      f   −1 ( y ) = e y
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When we differentiate this directly, we get

f   −1′ ( y ) = e y

because the exponential function is its own derivative. Now let’s use the alternative 
method. We have

dy /dx = x −1

When we take the reciprocal of both sides here, we get

dx /dy = (x −1)−1 = x

This is the derivative of the inverse function, but we want to state it in terms of y. A 
moment ago, we found that

x = e y

By substitution,

dx /dy = e y

which can also be written as

f   −1′ ( y ) = e y

This agrees with the result we got when we differentiated the inverse function directly.

 3. Our task is to find the derivative of the inverse of

f  (x ) = x 5 + 4

As in the previous problems, let’s call

y = f  (x )

and

x = f   −1 ( y )

Deriving x in terms of y , we go through the algebra as follows:

 f  (x )  = x  5 + 4
 y  = x  5 + 4
 y − 4  = x  5

 ( y − 4)1/5  = x
 x  = ( y − 4)1/5

 f   −1 ( y )  = ( y − 4)1/5
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When we differentiate this directly, we get

f   −1′ ( y ) = ( y − 4)−4/5/5

Now let’s use the alternative method. The derivative of y with respect to x is

dy /dx = 5x  4

When we take the reciprocal of both sides of this equation, we get

dx /dy = x −4/5

We want to get the right-hand side in terms of y. A moment ago, we found that

x = ( y − 4)1/5

By substitution,

dx /dy = [( y − 4)1/5]−4 / 5

which can also be written as

f   −1′ ( y ) = ( y − 4)−4/5 / 5

This agrees with the result we got when we differentiated the inverse directly.

 4. We’ve been told to find the domain and the derivative of the function

f  (x ) = 5 Arcsin x

with respect to x. The domain of the Arcsine function is the set of all reals in [−1,1]. The 
domain of 5 times the Arcsine is also the set of all reals in [−1,1]. We can express the 
derivative of our function f   as

d /dx (5 Arcsin x )

Pulling out the constant, we get

5 d /dx (Arcsin x )

Using the formula we derived in the chapter text, this becomes

5 (1 − x 2)−1/2

 5. We want to find the domain and the derivative of

g (t ) = −6t  2 Arcsin t
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with respect to t. The domain of the Arcsine function is the set of all reals in [−1,1]. The 
domain of −6t  2 times the Arcsine is also the set of all reals in [−1,1]. Our function g is the 
product of two functions. Let’s call them

p (t ) = − 6t  2

and

q (t ) = Arcsin t

The derivatives are

p ′ (t ) = −12t

and

q ′ (t ) = (1 − t  2)−1/2

According to the product rule for derivatives,

g ′ = p ′ q + q ′ p

When we substitute the expressions we’ve derived for p, q, p ′, and q ′ in the above formula, 
we get

g ′ (t ) = −12t Arcsin t + (1 − t  2)−1/2 (−6t  2) = −12t Arcsin t − 6t  2 (1 − t  2)−1/2

 6. We want to find the domain and the derivative of

h (z ) = Arccos z 2

The domain is the set of all reals z such that −1 ≤ z 2 ≤ 1. That means z can be any real 
number in the closed interval [−1,1]. The half-open portion [−1,0) of the allowed interval 
for z 2 isn’t “used” because that would require z to be imaginary, but this doesn’t present 
a problem for us. We’re concerned only with real-number values of z. Our function h is 
a composite function. Using the chain rule along with the formula for the derivative of 
the Arccosine, we get

h ′ (z ) = −[1 − (z  2)2]−1/2 (2z ) = −2z (1 − z 4)−1/2

 7. We want to find the domain and the derivative of

f  (v ) = 3v 3 Arccos (v /3)

This function is the product of a cubic and the Arccosine. The domain of the cubic is 
the set of all reals. The argument of the Arccosine is v /3, so the domain is the set of reals 
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v such that −1 ≤ v /3 ≤ 1. Therefore, the input v for the Arccosine factor of f  can be any 
real number in the interval [−3,3]. The domain of f   is the intersection of the domains of 
its factors, or the set of all reals v such that −3 ≤ v ≤ 3. Our function f   is the product of 
two functions. Let’s call them

p (v ) = 3v 3

and

q (v ) = Arccos (v /3)

The derivatives are

p ′ (v ) = 9v 2

and

q ′ (v ) = −[1 − (v /3)2]−1/2 (1/3) = −(1 − v 2/9)−1/2 / 3

Note that we’ve used the chain rule to differentiate q. According to the product rule for 
derivatives,

g ′ = p ′ q + q ′ p

When we substitute the expressions we’ve derived for p, q, p ′, and q ′ in the above formula, 
we get

      f   ′ (v ) = 9v 2 Arccos (v /3) + [−(1 − v 2/9)−1/2 / 3] (3v 3)
= 9v 2 Arccos (v /3) − v 3 (1 − v 2/9)−1/2

 8. We want to find the domain and derivative of

h (s ) = Arcsin s 3 − Arccos 2s

This is a difference of two functions. Let’s call them p and q, and say that

p (s ) = Arcsin s 3

and

q (s ) = Arccos 2s

The domain of p is the set of all real numbers s, such that s 3 is in the interval [−1,1]. That 
means we must have −1 ≤ s ≤ 1. The domain of q is the set of all real numbers s, such that 
2s is in the interval [−1,1]. That means we must have −1/2 ≤ s ≤ 1/2. The domain of h is 
the set of all s in the intersection of the domains of p and q. In this case, that’s the same 



as the domain of q, or −1/2 ≤ s ≤ 1/2. To find the derivative of h, we differentiate p and q 
separately, and then subtract. We must use the chain rule in both instances, getting

p ′ (s ) = [1 − (s 3)2]−1/2 (3s  2) = 3s 2 (1 − s 6)−1/2

and

q ′ (s )  = −[1 − (2s )2]−1/2 (2) = −2 (1 − 4s  2)−1/2

The derivative h ′ is the difference p ′ − q ′, or

h ′ (s ) = 3s 2 (1 − s 6)−1/2 − [−2 (1 − 4s  2)−1/2] = 3s 2 (1 − s 6)−1/2 + 2 (1 − 4s  2)−1/2

 9. We want to find the domain and derivative of

g (w ) = (Arccos w 2 − Arcsin w 2) / 2

This is a difference of two functions, divided by a constant. Let’s say that

p (w ) = Arccos w 2

and

q (w ) = Arcsin w 2

The domain of p is the set of all real numbers w, such that w 2 is in the interval [−1,1]. That 
means we must have −1 ≤ w ≤ 1. The domain of q is the same. Therefore, the domain 
of g is the set of all w such that −1 ≤ w ≤ 1. The half-open portion [−1,0) of the allowed 
interval for w 2 isn’t “used” because that would require w to be imaginary, but that’s okay; 
we’re concerned only with real-number values of w. To find g ′, let’s differentiate p and q 
separately, then subtract, and finally multiply by 1/2, which is the same as dividing by 2. 
We must use the chain rule to find the derivatives of p and q, getting

p ′ (w ) = −[1 − (w 2)2]−1/2 (2w ) = −2w (1 − w4)−1/2

and

q ′ (w ) = [1 − (w 2)2]−1/2 (2w ) = 2w (1 − w4)−1/2

The difference is

p ′ (w ) − q ′ (w ) = −2w (1 − w4 )−1/2  − 2w (1 − w4)−1/2 = −4w (1 − w4 )−1/2

Multiplying by 1/2 gives us the final result

g ′ (w ) = −2w (1 − w4)−1/2
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 10. We want to find the domain and derivative of

f  (x ) = Arcsin e x

The domain of f   is the set of all real numbers x, such that −1 ≤ e x ≤ 1. That means x can 
be anything less than or equal to 0. The half-open portion [−1,0) of the allowed interval 
for e x isn’t “used” because e x is never negative for any real x. Differentiation requires us 
to use the chain rule, but it’s easy because the natural exponential function is its own 
derivative:

f   ′ (x ) = [1 − (e x )2]−1/2 (e x ) = e x (1 − e 2x )−1/2

Chapter 22
 1. Here’s the equation we’ve been given:

3y 2 = 12x 2 − 48

We can subtract 12x  2 from both sides, getting

−12x 2 + 3y 2 = −48

Multiplying through by −1 gives us

12x 2 − 3y 2 = 48

When we divide through by 48, we end up with an equation that’s in the standard form 
for a hyperbola:

x 2/4 − y 2/16 = 1

The center is at (0,0). The horizontal semi-axis is 2 units long (the positive square root of 
4), and the vertical semi-axis is 4 units long (the positive square root of 16).

 2. Here’s the equation we’ve been given:

4x 2 + y 2 + 8x + 2y + 1 = 0

Let’s rearrange this to get the monomials for each variable together:

4x 2 + 8x + y 2 + 2y  + 1 = 0

The last three terms form a perfect square in y , so we can factor the trinomial they form 
into a binomial squared. When we do that, we get

4x 2 + 8x + ( y + 1)2 = 0



Dividing through by 4, we obtain

x 2 + 2x + ( y + 1)2 / 4 = 0

Now let’s add 1 to each side, inserting it as the third term on the left:

x 2 + 2x + 1 + ( y + 1)2 / 4 = 1

We can factor the first three terms because they are a perfect square in x, getting an 
equation in the standard form for an ellipse:

(x + 1)2 + ( y + 1)2 / 4 = 1

The center is at (−1,−1). The horizontal semi-axis is 1 unit long (the positive square root 
of 1, the unwritten denominator of the first squared binomial), and the vertical semi-axis 
is 2 units long (the positive square root of 4).

 3. Here’s the equation we’ve been given:

2x 2 = 288 − 2y 2

We can add 2y 2 to each side, getting

2x 2 + 2y 2 = 288

Dividing through by 2 gives us

x 2 + y 2 = 144

which can be rewritten as

x 2 + y 2 = 122

The standard form for the equation of a circle is

(x − x 0)2 + ( y − y 0)2 = r  2

where x 0 and y 0 represent the coordinates of the center, and r is the radius. In this situation, 
x 0 = 0 and y 0 = 0, so the circle is centered at the origin. We have r = 12, so the radius is 
12 units.

 4.  In the solution to Prob. 1, we found that the equation represents a hyperbola. In 
standard form, that equation is

x  2/4 − y  2/16 = 1

The x-coordinate of the center is x 0 = 0. The horizontal semi-axis is 2 units long. Therefore, 
the relation is defined for

x ≤ 0 − 2 or x ≥ 0 + 2
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which means we must have

x ≤ −2 or x ≥ 2

There are no restrictions on the domain when y is the independent variable. The relation 
that maps y into x is defined for all real numbers y.

To find y ′, let’s get the equation into a more manageable form. Here’s the original 
equation again:

x 2/4 − y 2/16 = 1

Multiplying through by 16 gives us

4x 2 − y 2 = 16

Differentiating with respect to x, we have

d /dx (4x 2) − d /dx ( y 2) = d /dx (16)

This works out to

8x − 2yy ′  = 0

Subtracting 8x from each side produces

−2yy ′  = −8x

Dividing through by −2y with the restriction that y ≠ 0, we get

y ′ = (−8x ) / (−2y ) = 4x /y

This is defined only when x < −2 or x > 2. If x = −2 or x = 2, then the equation of the 
original hyperbola solves to y = 0, making y ′  undefined because the denominator, y , in 
the derivative is equal to 0. If −2 < x < 2, then y isn’t part of the relation, so there is no 
derivative.

Now let’s work out x ′. We’ve already morphed the original equation into a form that’s 
easy to contend with:

4x 2 − y 2 = 16

When we differentiate term-by-term with respect to y , we have

d /dy (4x  2) − d /dy ( y  2 ) = d /dy (16)

Working it out, we get

8xx ′  − 2y = 0



We can add 2y to each side, producing

8xx ′ = 2y

Dividing through by 8x with the restriction that x ≠ 0, we end up with

x ′ = (2y ) / (8x ) = y / (4x )

We’ve found dx /dy , and it’s defined over the entire set of real numbers y. (If you aren’t 
sure why this is true, sketch a graph of the hyperbola. There’s no point on the curve 
for which its slope is parallel to the x axis. But that would have to occur to make dx /dy 
undefined.)

Checking back on our results, we can see that that y ′ and x ′ are reciprocals of each 
other, as we should expect. We’ve found that

y ′  = 4x /y

and

x ′  = y / (4x )

 5.  In the solution to Prob. 2, we found that the equation represents an ellipse. In standard 
form, that equation is

 (x + 1)2 + ( y + 1)2 / 4 = 1

The x-coordinate of the center is x 0 = −1. The horizontal semi-axis is 1 unit long. 
Therefore, the relation is defined for

−1 − 1  ≤  x  ≤  −1 + 1

which means we must have

−2 ≤ x ≤ 0

The y-coordinate of the center is y 0 = −1. The vertical semi-axis is 2 units long. Therefore, 
the relation is defined for

−1 − 2  ≤  y  ≤  −1 + 2

which means we must have

−3 ≤ y ≤ 1

To find y ′, let’s go back to the original equation, because it’s easier to differentiate than 
the equation for the ellipse in standard form. Here it is again:

4x 2 + y 2 + 8x + 2y + 1 = 0
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Differentiating with respect to x, we get

d /dx (4x 2) + d /dx ( y 2) + d /dx (8x ) + d /dx (2y ) + d /dx (1) = d /dx (0)

This works out to

8x + 2yy ′  + 8 + 2y ′  + 0 = 0

Dividing through by 2 and getting rid of the extraneous term 0, we get

4x + yy ′  + 4 + y ′  = 0

Adding the quantity (−4x − 4) to each side yields

yy ′ + y ′ = −4x − 4

which can be rewritten as

 ( y + 1) y ′  = −4x − 4

Dividing through by the quantity ( y + 1) with the understanding that y ≠ −1, we get 

y ′  = (−4x − 4) / ( y + 1)

This is defined only when −2 < x < 0. If x = −2 or x = 0, then the equation of the 
original ellipse tells us that y = −1, making y ′  undefined because the denominator of the 
ratio becomes 0. If x < −2 or x > 0, then y isn’t part of the relation, so there can be no 
derivative.

Now let’s figure out x ′. We’ll work again with the original equation, because it’s easy 
to differentiate term-by-term:

4x 2 + y 2 + 8x + 2y + 1 = 0

Taking the derivatives of the terms with respect to y , we get

d /dy (4x 2) + d /dy ( y 2) + d /dy (8x ) + d /dy (2y ) + d /dy (1) = d /dy (0)

This works out to

8xx ′  + 2y + 8x ′  + 2 + 0 = 0

Dividing through by 2 and getting rid of the extraneous term 0, we get

4xx ′  + y + 4x ′  + 1 = 0

Adding the quantity (−y − 1) to each side yields

4xx ′  + 4x ′  = −y − 1



which can be rewritten as

 (4x + 4) x ′  = −y − 1

Dividing through by the quantity (4x + 4) with the understanding that x ≠ −1, we get 

x ′ = (−y − 1) / (4x + 4) = ( y + 1) / (−4x − 4)

This is defined only when −3 < y < 1. If y = −3 or y = 1, then the equation of the original 
ellipse tells us that x = −1, making x ′  undefined because the denominator of the ratio 
becomes 0. If y < −3 or y > 1, then x isn’t part of the relation, so x ′  can’t exist.

Checking back on our results, we can see that that y ′ and x ′ are reciprocals of each 
other. We’ve found that

y ′  = (−4x − 4) / ( y + 1)

and

x ′  = ( y + 1) / (−4x − 4)

 6.  In the solution to Prob. 3, we found that the equation represents a circle. In standard 
form, it’s

x 2 + y 2 = 144

The circle is centered at the origin, and the radius is 12 units. That means the two-way 
relation is defined for

−12 ≤ x ≤ 12

and

−12 ≤ y ≤ 12

To find y ′, let’s use the standard form directly. When we differentiate with respect to 
x term-by-term, we get

d /dx (x  2 ) + d /dx ( y  2 ) = d /dx (144)

which works out to

2x + 2yy ′ = 0

Dividing through by 2, we get

x + yy ′ = 0
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Subtracting x from each side produces

yy ′ = −x

Dividing through by y with the restriction that y ≠ 0, we obtain

y ′ = −x /y

We’ve found the derivative dy /dx of the two-way relation. This derivative exists only for 
values of x such that −12 < x < 12. If x = −12 or x = 12, then we get y = 0 when we solve 
for it in the original equation, making y ′ undefined. If x < −12 or x > 12, then y isn’t part 
of the relation, so again, y ′ is undefined.

Now let’s find x ′  by differentiating both sides with respect to y , and then solving the 
result for x ′. We have

d /dy (x 2) + d /dy ( y 2) = d /dy (144)

When we differentiate each term, we get

2xx ′  + 2y = 0

Dividing through by 2, we get

xx ′  + y = 0

When we subtract y from each side, we obtain

xx ′  = −y

We can divide each side by x while insisting that x ≠ 0 to obtain

x ′  = −y /x

We’ve found the derivative dx /dy. But there’s a restriction, just as there was with the other 
derivative. The value of x ′ is defined only for −12 < y < 12. When y = −12 or y = 12, 
then we get x = 0 when we solve for it in the original equation. That makes x ′  undefined. 
When we have y < −12 or y > 12, then x isn’t in the relation, so x ′  is undefined.

Checking back on our results, we can see that that y ′ and x ′ are reciprocals of each 
other, as we should expect. We’ve found that

y ′ = −x /y

and

x ′  = −y /x

Have you noticed that the formulas we got for y ′ and x ′ are the same for this circle 
as for the unit circle? This happens when we implicitly differentiate the equation for 



any circle centered at the origin, regardless of its radius. If that seems strange to you, 
remember that we’re taking a ratio. As things work out, the ratio is independent of 
the circle’s radius, even though the denominator and numerator change with the 
radius.

 7. In the chapter text, we found these general derivatives for the unit circle:

y ′  = −x /y

and

x ′  = −y /x

To calculate either derivative at a point, we must know both the x and the y values at that 
point. We want to find y ′  when x = 1/2. Let’s solve for y by plugging x = 1/2 into the 
equation for the unit circle. For reference, that equation is

x 2 + y 2 = 1

Substituting, we obtain

 (1/2)2 + y 2 = 1

Morphing this equation produces

y 2 = 1 − (1/2)2 = 1 − 1/4 = 3/4

Solving for y gives us the two values

y = ± (3/4)1/2 = ±31/2/2

We finish by calculating

y ′  = −x /y  = −(1/2) / [± 31/2/2] =  ± 3−1/2

Now we want to find x ′ when y = 2−1/2. First we solve for x by plugging the given value for 
y into the equation for the unit circle. That gives us

x 2 + (2−1/2)2 = 1

Morphing, we get

x 2 = 1 − (2−1/2)2 = 1 − 2−1 = 1 − 1/2 = 1/2

Solving for x, we obtain the two values

x = ±(1/2)1/2 = ±1/21/2 = ±2−1/2
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To finish, we calculate

x ′ = −y /x = (−2−1/2) / (±2−1/2) = ±1

 8. Here’s the original equation representing the ellipse shown in Fig. 22-4:

(x − 1)2 / 4 + ( y + 1)2 / 9 = 1

We found the derivatives

y ′  = (9 − 9x ) / (4y + 4)

and

x ′  = (4y + 4) / (9 − 9x )

When x = 1, we get

y ′ = (9 − 9 · 1) / (4y + 4) = 0 / (4y − 4)

This is defined and equal to 0, as long as x = 1 is part of the relation. In the chapter text, 
we found that the requirement is

−1 ≤ x ≤ 3

We’re within the allowed interval, so when x  = 1, we have y ′  = 0. Now let’s look at what 
happens to x ′ when y = −1. We obtain

x ′  = [4 · (−1) + 4] / (9 − 9x ) = 0 / (9 − 9x )

This is defined and equal to 0, as long as y = −1 is part of the relation. We found that we 
must have

−4 ≤ y ≤ 2

Our value of y = −1 is in the relation, so when y = −1, we have x ′ = 0.

 9. Here’s the standard-form equation for the hyperbola shown in Fig. 22-5:

 (x − 1)2 / 4 − ( y + 1)2 / 9 = 1

We found these derivatives:

y ′  = (9x − 9) / (4y + 4)

and

x ′  = (4y + 4) / (9x − 9)



When x = −3, we get

y ′ = [9 · (−3) − 9] / (4y + 4) = −36 / (4y + 4) = −9 / ( y + 1)

In the chapter text, we found that y ′  is defined for x < −1 or x > 3. Our value x = −3 
is therefore within the “left-hand” allowed zone. Let’s find the actual numbers for y ′. 
Plugging x = −3 into the original equation for the hyperbola, we get

 (−3 − 1)2 / 4 − ( y + 1)2 / 9 = 1

which simplifies to

4 − ( y + 1)2 / 9 = 1

Subtracting 4 from each side and then multiplying through by −9, we get

 ( y + 1)2 = 27

We can take the plus-or-minus square root of each side to obtain

y + 1 = ±271/2

A minute ago, we found that when x = −3, we have

y ′  = −9 / ( y + 1)

Substituting ±271/2 for the quantity ( y + 1), we get

y ′  = −9 / ( y + 1) = −9 / (± 271/2) = ± 9 / 271/2 = ± 31/2

 10.  Let’s start with the general equation for a circle centered at the origin in Cartesian 
xy-coordinates. That equation is

x 2 + y 2 = r  2

where r is the radius. When we differentiate each term with respect to x, we get

d /dx (x 2) + d /dx ( y 2) = d /dx (r  2)

Because r is a constant, r  2 is also a constant. When we work out the derivatives of each 
term, we get

2x + 2yy ′  = 0

Dividing through by 2 produces

x + yy ′  = 0
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Subtracting x from each side, we get

yy ′ = −x

We can divide through by y if we insist that y ≠ 0. That gives us the familiar ratio

y ′ = −x /y

Now let’s solve for y in terms of x, using the original equation

x 2 + y 2 = r  2

We can subtract x 2 from each side to obtain

y 2 = r  2 − x 2

We can take the square root of both sides of this equation, but we must include both the 
positive and the negative values to be sure that we account for the complete circle. That 
gives us

y = ±(r  2 − x 2)1/2

Substituting into the equation we obtained for the derivative, we get

y ′ = −x /y = −x / [±(r  2 − x 2)1/2] = ±x / (r  2 − x 2)1/2

The expression at the right-hand end describes two quantities that are exact negatives of 
each other for any x in the relation: 

x / (r  2 − x 2)1/2

and

−x / (r  2 − x 2)1/2

Chapter 23
 1.  We’ve been told to evaluate the following limit, where the numerator and denominator 

both approach 0 as x approaches 0 (from either side ):

Lim
x →0

 (sin x ) / (8x )

If we name the functions

f  (x ) = sin x



and

g (x ) = 8x

then the derivatives are

f   ′ (x ) = cos x

and

g ′ (x ) = 8

According to the l’Hôpital rule,

Lim
x →0

 f  (x ) / g (x ) = Lim
x →0

 f   ′ (x ) / g ′ (x ) = Lim
x →0

 (cos x ) / 8

The numerator of our last expression, cos x, approaches 1 as x approaches 0. The 
denominator is always 8. Therefore,

Lim
x →0

 (sin x ) / (8x ) = 1/8

 2.  We’ve been told to evaluate the following limit, where the numerator and denominator 
both approach 0 as x approaches 1 (from either side ):

Lim
x →1

 (6x 2 − 12x + 6) / (x 2 − 2x + 1)

If we name the functions

f  (x ) = 6x 2 − 12x + 6

and

g (x ) = x 2 − 2x + 1

then we have

f   ′ (x ) = 12x − 12

and

g ′ (x ) = 2x − 2

The l’Hôpital rule tells us that

Lim
x →1

 f  (x ) / g (x ) = Lim
x →1

 f   ′ (x ) / g ′ (x ) = Lim
x →1

 (12x − 12) / (2x − 2)
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This expression, like the first one, tends toward 0/0 as x approaches 1. We can differentiate 
the numerator and denominator again to obtain

f   ′′ (x ) = 12

and

g ′′ (x ) = 2

The l’Hôpital rule now indicates that

Lim
x →1

 f   ′ (x ) / g ′ (x ) = Lim
x →1

 f   ′′ (x ) / g ′′ (x ) = Lim
x →1

 12/2

Our last expression is equal to 6, no matter what the value of x. We’ve found that

Lim
x →1

 (6x 2 − 12x + 6) / (x 2 − 2x + 1) = 6

 3.  Our mission is to evaluate the following limit, where the numerator and denominator 
both approach 0 as x approaches 0 (from either side ):

Lim
x →0

 (12 sin x − 12x ) / x  3

If we name the functions

f  (x ) = 12 sin x − 12x

and

g (x ) = x  3

then the derivatives are

f   ′ (x ) = 12 cos x − 12

and

g ′ (x ) = 3x 2

According to l’Hôpital,

Lim
x →0

 f  (x ) / g (x ) = Lim
x →0

 f   ′ (x ) / g ′ (x ) = Lim
x →0

 (12 cos x − 12) / (3x 2)

This expression approaches 0/0 as x approaches 0, just as the first one does. Let’s apply 
the l’Hôpital rule again. Differentiating a second time, we get

f   ′′ (x ) = −12 sin x



and

g ′′ (x ) = 6x

The rule now indicates that

Lim
x →0

 f   ′ (x ) / g ′ (x ) = Lim
x →0

 f   ′′ (x ) / g ′′ (x ) = Lim
x →0

 (−12 sin x ) / (6x )

We still have an expression that tends toward 0/0 as x approaches 0, so we can apply the 
l’Hôpital rule a third time. We obtain

f   ′′′ (x ) = −12 cos x

and

g ′′′ (x ) = 6

Therefore,

Lim
x →0

 f   ′′ (x ) / g ′′ (x ) = Lim
x →0

 f   ′′′ (x ) / g ′′′ (x ) = Lim
x →0

 (−12 cos x ) / 6

As x approaches 0, the numerator in the rightmost expression approaches −12, because 
cos x approaches 1. The denominator is always 6. We can therefore conclude that our 
original limit is defined and is equal to −12/6, or −2. That is,

Lim
x →0

 (12 sin x − 12x ) / x  3 = −2

 4.  We want to evaluate the limit, as x is positive and increases without end, of 7x divided 
by the natural logarithm of x:

Lim
x →+∞

 7x / (ln x )

Let’s name the functions

f  (x ) = 7x

and

g (x ) = ln x

Both f  (x ) and g (x ) tend toward positive infinity as x increases endlessly. The derivatives 
are

f   ′ (x ) = 7

and

g ′ (x ) = x−1
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Applying l’Hôpital’s rule, we find that

Lim
x →+∞

 f  (x ) / g (x ) = Lim
x →+∞

 f   ′ (x ) / g ′ (x ) = Lim
x →+∞

 7 / (x−1)

The expression in the last limit above can be rewritten as

7 / (x−1) = 7x

It’s easy to see that 7x tends toward positive infinity as x increases without end. We’ve 
found that

Lim
x →+∞

 7x / (ln x ) = +∞

 5.  We’ve been told to evaluate the following limit, where the numerator and denominator 
both tend toward positive infinity as x increases endlessly:

Lim
x →+∞

 e x / x 2

Let’s name the functions

f  (x ) = e x

and

g (x ) = x 2

When we differentiate them, we obtain

f   ′ (x ) = e x

and

g ′ (x ) = 2x

The l’Hôpital rule tells us that

Lim
x →+∞

 f  (x ) / g (x ) = Lim
x →+∞

 f   ′ (x ) / g ′ (x ) = Lim
x →+∞

 e x / (2x )

We have another expression where the numerator and denominator both tend toward 
positive infinity as x increases without end. Let’s apply l’Hôpital’s rule again. The second 
derivatives of our functions are

f   ′′ (x ) = e x

and

g ′′ (x ) = 2



The l’Hôpital rule says that

Lim
x →+∞

 f   ′ (x ) / g ′ (x ) = Lim
x →+∞

 f   ′′ (x ) / g ′′ (x ) = Lim
x →+∞

 e x/2

The numerator of the final expression in the above equation tends toward positive infinity 
as x increases forever, but the denominator is a constant 2. That means

Lim
x →+∞

 e x / x 2 = +∞

 6.  We want to work out the following limit, where the numerator and denominator both 
tend toward positive infinity as x approaches 0 from the right:

Lim
x → +0

 x−3 / x−2

Let’s simplify the expression before we seek the limit. With algebra, we can manipulate 
it like this:

x−3 / x−2 = (1/x  3) / (1/x 2) = (1/x  3) (x 2) = x 2 / x  3 = x−1

Now we have reduced the problem to

Lim
x → +0

 x−1

The value of x−1 tends toward positive infinity as x approaches 0 from the right, so

Lim
x → +0

 x−3 / x−2 = +∞

 7.  We’ve been told to evaluate the limit, as x approaches 0 from the right, of the product 
of the sine function and the reciprocal function:

Lim
x → +0

 (sin x ) x−1

When we rewrite the expression as a ratio, we have

Lim
x → +0

 (sin x ) / x

As x approaches 0 from the right, the numerator and denominator of this expression both 
approach 0 from the right. We can therefore apply the l’Hôpital rule for limits whose 
expressions take the form 0/0. Let’s call the functions

f  (x ) = sin x

and

g (x ) = x
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The derivatives are

f   ′ (x ) = cos x

and

g ′ (x ) = 1

so we have

Lim
x → +0

 f  (x ) / g (x ) = Lim
x → +0

 f   ′ (x ) / g ′ (x ) = Lim
x → +0

 (cos x ) / 1

The rightmost expression approaches 1 as x approaches 0 from the right, so

Lim
x → +0

 (sin x ) x−1 = 1

This is the same as the limit we got when we approached 0 from the left in the chapter 
text. In that case, both sin x and x were negative, producing a positive ratio (minus over 
minus equals plus ). In the example here, both sin x and x are positive, again producing a 
positive ratio (plus over plus equals plus ).

 8.  We want to evaluate the following limit, where the first factor tends toward 0 and the 
second factor tends toward negative infinity as x approaches 0 from the left:

Lim
x → −0

 x  5 ln |x |

Let’s rewrite this as the limit of a ratio by putting x−5 in the denominator, getting

Lim
x → −0

 (ln |x |) / x−5

Both the numerator and the denominator in this ratio tend toward negative infinity as x 
approaches 0 from the left, so we can apply the l’Hôpital rule for limits of expressions of 
the form −∞/(−∞). Let’s call the functions

f  (x ) = ln |x |

and

g (x ) = x−5

The derivatives are

f   ′ (x ) = x−1

and

g ′ (x ) = −5x−6



Therefore

Lim
x → −0

 f  (x ) / g (x ) = Lim
x → −0

 f   ′ (x ) / g ′ (x ) = Lim
x → −0

 x−1 / (−5x−6)

The rightmost expression can be simplified with algebra:

x−1 / (−5x−6) = (1/x ) / (−5/x  6) = (1/x ) [x  6 / (−5)] = −x  6 / (5x ) = −x  5 / 5

Now we have the manageable limit

Lim
x → −0

 −x  5 / 5

This expression approaches 0 as x approaches 0 from the left. We’ve determined that

Lim
x → −0

 x  5 ln |x | = 0

 9.  We’ve been told to evaluate the following limit, where both terms tend toward positive 
infinity as x approaches 0 from the right:

Lim
x → +0

 2x−1 − 3(e x − 1)−1

We can rewrite the expression in this limit as a ratio, getting

Lim
x → +0

 (2e x − 2 − 3x ) / (xe x − x )

As x approaches 0 from the right, the numerator and denominator of the above ratio both 
approach 0, so the l’Hôpital rule for limits of expressions tending toward 0/0 applies. 
Let

f  (x ) = 2e x − 2 − 3x

and

g (x ) = xe x − x

The derivatives are

f   ′ (x ) = 2e x − 3

and

g ′ (x ) = e x + xe x − 1

Therefore

Lim
x → +0

 f  (x ) / g (x ) = Lim
x → +0

 f   ′ (x ) / g ′ (x ) = Lim
x → +0

 (2e x − 3) / (e x + x e x − 1)
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As x approaches 0 from the right, the numerator in the above ratio approaches −1, while 
the denominator approaches 0 from the right. The ratio grows large endlessly in the 
negative direction, so the limit is negative-infinite. We can conclude that the original 
limit is

Lim
x → +0

 2x−1 − 3(e x − 1)−1 = −∞

 10.  We’ve been told to evaluate the following limit, where both terms tend toward positive 
infinity as x approaches p /2 from the left:

Lim
x → −π /2

 sec x − tan x

We know from trigonometry that

sec x = (cos x )−1

and

tan x = (sin x ) / (cos x )

so we can rewrite the limit as

Lim
x → −π /2

 (cos x )−1 − (sin x ) / (cos x )

Let’s manipulate the expression to obtain a ratio:

(cos x )−1 − (sin x ) / (cos x ) = (cos x − cos x sin x ) / (cos x )2

      =  (1 − sin x ) / (cos x )

Our limit is now

Lim
x → −π /2

 (1 − sin x ) / (cos x )

As x approaches p /2 from the left, the numerator and denominator both approach 0. We 
can use the l’Hôpital rule for ratios of the form 0/0. Let’s call the functions

f  (x ) = 1 − sin x

and

g (x ) = cos x

The derivatives are

f   ′ (x ) = −cos x



and

g ′ (x ) = −sin x

Therefore

Lim
x → −π /2

 f  (x ) / g (x ) = Lim
x → −π /2

 f   ′ (x ) / g ′ (x ) = Lim
x → −π /2

 (−cos x ) / (−sin x )

      = Lim
x → −π /2

 (cos x ) / (sin x )

The cosine over the sine equals the cotangent, so the above limit is

Lim
x → −π /2

 cot x

From trigonometry, we know that cot p /2 = 0. Our original limit is therefore

Lim
x → −π /2

 sec x − tan x = 0

Chapter 24
 1.  If we consider y to be the dependent variable in the situation of Fig. 24-1, the surface 

defines a relation

y  = g (x,z )

where x and z are the independent variables. To see if this surface represents a true function 
of x and z, we can imagine a movable straight line that’s always parallel to the y axis, which 
is the dependent-variable axis. If this line never intersects the surface at more than one 
point, then g is a true function. Otherwise, g is not a true function. It’s visually apparent 
that any such line passing through the surface must intersect it twice, unless the line is 
tangent to the surface. Therefore,

y  = g (x,z )

is not a true function of x and z.

 2. This time, x is our dependent variable, so the surface defines a relation

x = h ( y,z )

where y and z are the independent variables. To test this graph to see if it represents a true 
function of y and z, we can imagine a movable straight line parallel to the x axis. We can 
see that any such line passing through the paraboloid will go through twice, unless the 
line is tangent to the surface. This tells us that

x = h ( y,z )

is not a true function of y and z.
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 3. For reference, our original function is

z = f  (x,y ) = −x 2 + 2xy + 4y  3

To differentiate f  with respect to x, we treat y as a constant and let x be the independent 
variable. The derivative of the first term with respect to x is −2x. The second term 
contains the constant 2y. Its derivative with respect to x is equal to 2y. The third term is 
the constant we get by cubing y and then multiplying by 4. Its derivative with respect to 
x is equal to 0, because the derivative of a constant is always 0. Therefore,

∂z /∂x = −2x + 2y + 0 = −2x + 2y

 4. Once more, our original function is

z = f  (x,y ) = −x 2 + 2xy + 4y  3

To differentiate f  with respect to y, we treat x as a constant, so the independent variable 
is y. The first term is the constant we get when we square x and then take the negative, 
so its derivative with respect to y is 0. In second term, 2x is a constant. Its derivative with 
respect to y is equal to that constant 2x. The derivative of the third term with respect to y 
is 12y 2. Adding these results, we get

∂z /∂y = 0 + 2x + 12y 2 = 2x + 12y 2

 5.  To find ∂/∂x (1,1), we plug in the values x = 1 and y = 1 to the general equation for 
∂z/∂x we got in the solution to Prob. 3. That gives us

∂/∂x (1,1) = −2 · 1 + 2 · 1 = −2 + 2 = 0

To find ∂/∂y (1,1), we plug in x = 1 and y = 1 to the general equation for ∂z /∂y we got in 
the solution to Prob. 4, getting

∂/∂y (1,1) = 2 · 1 + 12 · 12 = 2 + 12 = 14

 6.  To find ∂/∂x (−2,−3), we plug in x = −2 and y = −3 to the general equation for ∂z /∂x 
we got in the solution to Prob. 3 to get

∂/∂x (−2,−3) = −2 · (−2) + 2 · (−3) = 4 + (−6) = −2

To find ∂/∂y (−2,−3), we plug in the values x = −2 and y = −3 to the general equation for 
∂z/∂y we got in the solution to Prob. 4, obtaining

∂/∂y (−2,−3) = 2 · (−2) + 12 · (−3)2 = −4 + 12 · 9 = −4 + 108 = 104

 7. The original function is

w = g (x,y,z ) = xy ln |z | − 2x 2y  3z 4
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provided z ≠ 0, because ln |0| is undefined. To figure out ∂w / ∂x, we hold y and z constant 
and think of x as the independent variable. In the first term, y ln |z | is a constant, so 
the derivative with respect to x is y ln |z |. In the second term, y  3z 4 is a constant, so the 
derivative with respect to x is 4xy  3z 4. Subtracting these two results gives us

∂w / ∂x = y ln |z | − 4xy  3z 4

 8. Again, our original function is

w = g (x,y,z ) = xy ln |z | − 2x 2y  3z 4

provided z ≠ 0. To find ∂w /∂y, we keep x and z constant and let y be the independent 
variable. The first term contains the constant x ln |z |, so its derivative with respect to y is 
x ln |z |. In the second term, 2x 2z 4 is the constant, and the variable y is cubed; that means 
the derivative with respect to y is 6x 2y 2z 4. Subtracting, we get

∂w /∂y  = x ln |z | − 6x 2y 2z 4

 9. Once more for reference, the original function is

w = g (x,y,z ) = xy ln |z | − 2x 2y  3z 4

provided z ≠ 0. To figure out ∂w /∂z, we hold x and y constant and let z be the independent 
variable. In the first term, xy is a constant, so the derivative with respect to z is equal to xy 
times the derivative of ln |z |. That’s xyz−1. In the second term, 2x 2y  3 is a constant, so the 
derivative with respect to z is 8x 2y  3z 3. Subtracting these derivatives yields

∂w /∂z = xyz−1 − 8x 2y  3z 3

 10.  To work out ∂/∂x (−1,2,e ), we put x = −1, y = 2, and z = e into ∂w / ∂x from the 
solution to Prob. 7. The general formula is

∂w /∂x = y ln |z | − 4xy  3z 4

Working out the arithmetic, we get

∂/∂x (−1,2,e ) = 2 · ln |e | − 4 · (−1) · 23 · e4 = 2 + 32e4

To find ∂/∂y (−2,−1,2e ), we plug in x = −2, y = −1, and z = 2e to ∂w /∂y we got in the 
solution to Prob. 8. The general formula is

∂w /∂y = x ln |z | − 6x 2y 2z 4

When we do the arithmetic, we obtain

∂/∂y (−2,−1,2e ) = −2 · ln |2e | − 6 · (−2)2 · (−1)2 · (2e )4 = −2 · ln (2e ) − 384e4
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To calculate ∂/∂z (1,−2,0), we plug in x = 1, y = −2, and z = 0 to ∂w/∂z from the solution 
to Prob. 9. The general formula is

∂w / ∂z = xyz−1 − 8x 2y  3z 3

The arithmetic yields

∂/∂z (1,−2,0) = 1 · (−2) · 0−1 − 8 · 12 · (−2)3 · 03

We can stop here! The first term is undefined, because it contains the reciprocal of 0. We 
must conclude that ∂/∂z (1,−2,0) is not defined. The original function is singular at any 
point where z = 0, so we should not be surprised at this result.

Chapter 25
 1. We want to find the second partial of the following function with respect to x:

z = f  (x,y ) = −x 2 + 2xy + 4y  3

The first partial ∂z /∂x appears in the solution to Prob. 3 in Chap. 24. That partial is

∂z /∂x = −2x + 2y

To find ∂2z /∂x 2, we differentiate again with respect to x, continuing to hold y constant. 
When we do that, we get

∂2z / ∂x 2 = −2 + 0 = −2

 2.  We found the first partial with respect to y in the solution to Prob. 4 in Chap. 24. That 
derivative is

∂z / ∂y = 2x + 12y 2

To obtain the second partial with respect to y, we hold x constant and differentiate the 
above function relative to y, getting

∂2z / ∂y 2 =  0 + 24y = 24y

 3. To find the second partial with respect to x at (3,2), we input x = 3 and y = 2 to

∂2z /∂x 2 = −2

We have no calculations to do here! The specific second partial is equal to −2, no matter 
what x or y values we input. To find ∂2/∂y 2 (3,2), we plug in x = 3 and y = 2 to

∂2z /∂y 2 = 24y



The arithmetic gives us

∂2/∂y 2 (3,2) = 24 · 2 = 48

In this case, the specific second partial derivative is affected only by the value of y. It 
doesn’t matter what happens to x.

 4. We want to find ∂2z /∂y ∂x for the function

z = f  (x,y ) = −x 2 + 2xy + 4y  3

We must differentiate f   with respect to x, and then differentiate ∂z /∂x with respect to y. 
The first partial relative to x, which we’ve seen before, is

∂z /∂x = −2x + 2y

Holding x constant and differentiating with respect to y, we get

∂2z /∂y∂x = 0 + 2 = 2

 5.  To find ∂2z /∂x∂y, we differentiate with respect to y and then with respect to x. We’ve 
already seen that

∂z /∂y  = 2x + 12y 2

To differentiate with respect to x, we hold y constant, getting

∂2z /∂x∂y = 2 + 0 = 2

 6.  The mixed second partials are both constant functions with a value of 2. The values of 
the input variables are irrelevant, so we simply have

∂2/∂y∂x (3,2) = 2

and

∂2/∂x∂y (3,2) = 2

 7.  We found the first partials for this function in the solutions to Probs. 7, 8, and 9 in 
Chap. 24. For reference, the original function is

w = g (x,y,z )  = xy ln |z | − 2x 2y  3z 4

We must insist that z ≠ 0 no matter what we do with this function. That’s because, if 
we let z = 0, then g contains the factor ln |0|, which is undefined. The first partial of the 
original function relative to x is

∂w /∂x = y ln |z | − 4xy  3z 4
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Differentiating against x again, we get

∂2w /∂x 2 = 0 − 4y  3z 4 = −4y  3z 4

The first partial of the original function relative to y is

∂w /∂y = x ln |z | − 6x 2y 2z 4

Differentiating against y again, we get

∂2w /∂y 2 = 0 − 12x 2yz 4 = −12x 2yz 4

The first partial of the original function relative to z is

∂w /∂z = xyz−1 − 8x 2y  3z 3

Differentiating against z again, we get

∂2w /∂z 2  = −xyz−2 − 24x 2y  3z 2

 8. To work out ∂2/∂x 2 (−1,2,e ), we input x = −1, y = 2, and z = e to

∂2w /∂x 2 = −4y  3z 4

Doing the arithmetic, we get

∂2/∂x 2 (−1,2,e ) = −4 · 23 · e4 = −32e4

To find ∂2/∂y 2 (−2,−1,2e ), we input x = −2, y = −1, and z = 2e to

∂2w /∂y 2 = −12x 2yz 4

Calculating, we get

∂2/∂y 2 (−2,−1,2e ) = −12 · (−2)2 · (−1) · (2e )4 = 768e4

To determine ∂2/∂z 2 (1,−2,0), we input x = 1, y = −2, and z = 0 to

∂2w /∂z  2  = −xyz−2 − 24x  2y  3 z  2

The first term here contains z−2, which is not defined for z = 0. We remember that the 
original function g is singular at any point where z = 0, so we conclude that g is not 
differentiable at (1,−2,0). This specific second partial is undefined.

 9. We’ve been told to find all six mixed second partials for the function

w = g (x,y,z )  = xy ln |z | − 2x 2y  3z 4



provided that z ≠ 0, because ln |0| is not defined. From the solution to Prob. 7, the first 
partial of the original function relative to x is

∂w /∂x = y ln |z | − 4xy  3z 4

To differentiate ∂w /∂x against y, we hold x and z constant to get

∂2w /∂y∂x = ln |z | − 12xy 2z 4

To differentiate ∂w/∂x against z, we hold x and y constant to get

∂2w /∂z∂x = yz−1 − 16xy  3z 3

From the solution to Prob. 7, the first partial of the original function relative to y is

∂w /∂y = x ln |z | − 6x 2y 2z 4

To differentiate ∂w /∂y against x, we hold y and z constant to get

∂2w /∂x∂y = ln |z | − 12xy 2z 4

To differentiate ∂w /∂y against z, we hold x and y constant to get

∂2w /∂z∂y = xz−1 − 24x 2y 2z 3

From the solution to Prob. 7, the first partial of the original function relative to z is

∂w /∂z = xyz−1 − 8x 2y  3z 3

To differentiate ∂w/∂z against x, we hold y and z constant to get

∂2w /∂x∂z = yz−1 − 16xy  3z 3

To differentiate ∂w /∂z against y, we hold x and z constant to get

∂2w /∂y∂z = xz−1 − 24x 2y 2z 3

 10.  Solving this problem requires some tricky arithmetic! To find ∂2/∂y∂x (1,2,e ), we input 
x  = 1, y  = 2, and z  = e to

∂2w /∂y∂x = ln |z | − 12xy 2z 4

Calculating, we get

∂2/∂y ∂x (1,2,e ) = ln e − 12 · 1 · 22 · e4 = 1 − 48e4

To work out ∂2/∂z∂x (1,2,e ), we input x = 1, y = 2, and z = e to

∂2w /∂z∂x = yz−1 − 16xy  3z 3
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Calculating, we get

∂2/∂z∂x (1,2,e ) = 2e−1 − 16 · 1 · 23 · e 3 = 2e−1 − 128e 3

To work out ∂2/∂x∂y (1,2,e ), we input x = 1, y = 2, and z = e to

∂2w /∂x∂y = ln |z | − 12xy 2z 4

Calculating, we get

∂2/∂x∂y (1,2,e ) = ln e − 12 · 1 · 22 · e4 = 1 − 48e4

To work out ∂2/∂z∂y (1,2,e ), we input x  = 1, y  = 2, and z = e to

∂2w /∂z∂y = xz−1 − 24x 2y 2z 3

Calculating, we get

∂2/∂z∂y (1,2,e ) = e−1 − 24 · 12 · 22 · e 3 = e−1 − 96e 3 

To work out ∂2/∂x∂z (1,2,e ), we input x = 1, y = 2, and z = e to

∂2w /∂x∂z = yz−1 − 16xy  3z 3

Calculating, we get

∂2/∂x∂z (1,2,e ) = 2e−1 − 16 · 1 · 23 · e3 = 2e−1 − 128e3  

To work out ∂2/∂y ∂z (1,2,e ), we input x = 1, y = 2, and z = e to

∂2w /∂y∂z = xz−1 − 24x 2y 2z 3

Calculating, we get

∂2/∂y ∂z (1,2,e ) = e−1 − 24 · 12 · 22 · e 3 = e−1 − 96e 3 

Chapter 26
 1.  We’ve been told that the radius of the cylinder is 2 units and its length is 5 units. 

Therefore, r = 2 and h = 5. The circumference of a cross-sectional circle is a function 
f  of the displacement x to the right of the cylinder’s left-hand face:

f  (x ) = 2pr = 2p · 2 = 4p



To find the lateral-surface area A, we integrate f along the cylinder from x = 0 to x = 5, 
getting

A  = 
0

5

∫ 4p dx

The basic antiderivative is

F  (x ) = 4px

When we evaluate this antiderivative from x = 0 to x = 5, we obtain

A = 4px ⎤⎦
0

5

 = 4p · 5 − 4p · 0 = 20p

The formula from solid geometry tells us that

A = 2prh = 2p · 2 · 5 = 20p

 2.  We know that the radius of the cylinder is 2 units and the length is 5 units. The area of 
a cross-sectional disk, cut perpendicular to the cylinder’s axis and also perpendicular to 
the x axis, is a constant function

g (x ) = pr  2 = p · 22 = 4p

To find the volume V, we integrate g along the cylinder from x = 0 to x  = 5. That gives us

V  = 
0

5

∫ 4p dx

The basic antiderivative is

G (x ) = 4px

When we evaluate this antiderivative from x = 0 to x = 5, we get

V = 4px ⎤⎦
0

5

 = 4p · 5 − 4p · 0 = 20p

This is the same numerical value as we got for the lateral-surface area, but it’s not the same 
quantity! Remember that volume is expressed in cubic units, while area is expressed in square 
units. The fact that they’re both represented by the same number is a coincidence for this 
particular cylinder. When we use the formula from 3D geometry for the volume, we get

V = pr  2h = p · 22 · 5 = 20p

 3.  We’re told that the radius of the cone is 12 units and the slant height is 13 units. 
Therefore, r = 12 and s = 13. The circumference of a circular slice as a function f of the 
distance t between it and the cone’s apex is

f  (t ) = (2pr /s )t = (2p · 12/13)t = (24p /13)t
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To find the slant-surface area A, we evaluate the definite integral

A  = 
0

13

∫ (24p /13)t dt

The basic antiderivative is

F  (t ) = [(24p /13)t  2] / 2 = (12p /13)t  2

When we evaluate F from t = 0 to t = 13, we get

A = (12p /13)t  2 ⎤⎦
0

13

 = (12p /13) · 132 − (12p /13) · 02 = (12p /13) · 169 = 156p

Using the geometric formula, we get

A = prs = p · 12 · 13 = 156p

 4.  Again, we have r  = 12 and s  = 13. We haven’t been told the true height h of the cone. 
The Pythagorean theorem from geometry tells us that

s 2 = r  2 + h 2

so therefore

h = (s  2 − r  2)1/2 = (132 − 122)1/2 = (169 − 144)1/2 = 251/2 = 5

The area of a cross-sectional disk as a function g of the distance x between its center and 
the cone’s apex is

g (x ) = (pr  2/h 2)x 2 = (p · 122/52)x 2 = (144p /25)x 2

To find the cone’s volume V, we integrate g along the axis of the cone from its apex, where 
x = 0, to its base, where x = 5, getting

V  = 
0

5

∫ (144p /25)x 2 dx

The basic antiderivative is

G (x ) = [(144p /25)x  3] / 3 = (48p /25)x  3

Evaluating G from x  = 0 to x  = 5, we get

V = [(48p /25)x  3 ⎤⎦
0

5

 = (48p /25) · 53 − (48p /25) · 03 = (48p /25) · 125 = 240p

The formula from solid geometry tells us that

V = pr  2h /3 = p · 122 · 5/3  = p · 144 · 5/3 = 240p



 5.  The circumference of a cross-sectional circle as a function of the arc displacement t is 
described by

f  (t ) = 2pr sin (t /r) = 2p · 10 sin (t /10) = 20p sin (t /10)

To find the surface area A, we integrate f   from t = 0 to t = pr. We know that r = 10, so

A  = 
0

10π

∫ 20p sin (t /10) dt = 20p
0

10π

∫ sin (t /10) dt

The table of integrals, App. G, gives us the formula

∫ sin ax dx = −a−1 cos ax + c

Letting a = 1/10 and leaving out the constant of integration, we obtain

∫ sin (t /10) dt = −10 cos (t /10)

The basic antiderivative F of the complete function f   is 20p times this, or

F  (t ) = −200p cos (t /10)

When we evaluate F from t = 0 to t = 10p, we get

A = −200p cos (t /10) ⎤⎦
0

10π
 = −200p cos p − (−200p cos 0)

      =  200p + 200p = 400p

Using the formula from solid geometry, we get

A = 4pr  2 = 4p · 102 = 400p

 6.  The area of any particular cross-sectional disk cutting through the sphere, based on the 
location of the disk’s center along the x axis, is

g (x ) = pr  2 − px 2

We’ve been told that r = 10, so this function becomes

g (x ) = 100p − px 2

The sphere’s volume V is obtained by integrating the function g along the x axis from the 
point where x = −10 to the point where x = 10. That gives us

V  = 
−
∫
10

10

(100p − px 2 ) dx
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The basic antiderivative is

G (x ) = 100px − px  3/3

When we evaluate G from x = −10 to x = 10, we get

V = (100px − px  3/3) ⎤⎦
−10

10

 = (100p · 10 − p · 103/3) − [100p · (−10) − p · (−10)3/3]

 =  (1,000p − 1,000p /3) − [−1,000p − (−1,000p /3)]
 =  2,000p /3 + 2,000p /3 = 4,000p /3

From solid geometry, we can calculate the volume as

V = 4pr  3/3 = 4p · 103/3 = 4,000p/3

 7.  As is shown in Fig. 26-5 and reproduced here in Fig. C-1, the left-hand face of the 
prism is in the yz-plane. The right-hand face is h units to the right of the left-hand face. 
The faces are rectangles measuring a units tall and b units deep. Imagine that we cut the 
outer shell into cross-sectional slices, and then increase the number of slices indefinitely. 
The slices are all rectangles parallel to the end faces. Like those faces, they all measure a 
units tall and b units deep. The perimeter of any particular cross-sectional rectangle is a 
constant function f of the displacement x to the right of the cylinder’s left-hand face:

f  (x ) = 2a + 2b

Figure C-1  Illustration for the solution to Probs. 7 through 10 
in Chap. 26.
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Area = ab



Remember that we’re treating all three prism dimensions a, b, and h as fixed constants. To 
find the lateral-surface area A (not including either end face ), we integrate the constant 
function f along the prism from its left-hand face, where x = 0, to its right-hand face, 
where x = h. The definite integral is

A  = 
0

h

∫ (2a + 2b) dx

The basic antiderivative is

F  (x ) = (2a + 2b)x

When we evaluate this expression from x = 0 to x = h, we get

A = (2a + 2b)x ⎤⎦
0

h

 = (2a + 2b)h − (2a + 2b) · 0 = (2a + 2b)h = 2ah + 2bh

 8.  We can derive a formula for the lateral-surface area of a prism in terms of a, b, and h as 
shown in Fig. C-1 by adding up the areas of each of the four rectangles that form the prism’s 
sleeve. Two of the rectangles, which appear at the front and back of the prism as shown 
in Fig. C-1, measure a units tall by h units long, so they both have area ah. The other two 
rectangles, which appear at the top and bottom of the prism, measure b units deep by h 
units long. (The lateral-surface area doesn’t include the areas of the end faces, which appear 
at the left and right.) When we add up the areas of the faces making up the sleeve, we get

A = ah + ah + bh + bh = 2ah + 2bh

This agrees with the formula we got by integration.

 9.  Let’s keep referring to Fig. C-1. We can cut our prism into cross-sectional slices again, 
and make the number of slices approach infinity. But instead of slicing through only 
the outer shell, we cut through the interior, getting filled-in rectangles. These regions 
are all parallel to the prism’s end faces, and they all measure a units tall by b units 
deep. The area of any particular cross-sectional rectangle is a constant function g of the 
displacement x to the right of the cylinder’s left-hand face:

g (x ) = ab

To find the volume V, we integrate g along the prism from x = 0 to x = h. That gives us

V  = 
0

h

∫ ab dx

The basic antiderivative is

G (x ) = abx

When we evaluate this antiderivative from x = 0 to x = h, we get

V = abx ⎤⎦
0

h

 = abh − ab · 0  = abh
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 10.  In solid geometry, we learned that the volume V of a rectangular prism is equal to the 
product of the measures of its edges in each dimension. In this situation (Fig. C-1), 
those measures are a, b, and h. Therefore

V  = abh

This agrees with the formula we derived by integration.

Chapter 27
 1.  The acceleration of gravity on the planet is 24 feet per second per second. This is a 

constant. Let’s integrate the acceleration function twice with respect to time, from t = 0 
seconds (when we drop the brick) to t = 14 seconds (when the brick lands ). That gives 
us

0

14

0

14

∫∫ 24 dt dt

The first basic antiderivative is

∫  24 dt = 24t

Antidifferentiating again, we get

∫  24t dt = 12t  2

The repeated integral tells us that our altitude, in feet, is

0

14

0

14

∫∫ 24 dt dt = 12t  2 ⎤⎦
0

14

 = 12 · 142 − 12 · 02 = 2,352

 2. Our acceleration rate depends on time. If we call the acceleration function f, then

f  (t ) = 6t

where t is the time, in seconds, after we start moving. The first basic antiderivative is

∫  6t dt = 3t  2

Antidifferentiating again, we get

∫  3t  2 dt = t 3

This function describes the distance we travel from the starting point, in meters, as a 
function of the time t, in seconds, after the starting instant. If we call the function h, 
then

h (t ) = t 3



 3.  To find the distance that the car travels in any particular length of time after it starts 
moving, we plug in the time values to the function h (t ) that we derived in the solution 
to Prob. 2. After 1 second, we travel

h (1) = 13  = 1 meter

After 2 seconds, our total distance is

h (2) = 23 = 8 meters

After 3 seconds, our total distance is

h (3) = 33 = 27 meters

In the first 4 seconds, we cover a distance of

h (4) = 43  = 64 meters

If we can keep this acceleration-increase rate steady for 10 seconds, we will have gone

h (10) = 103 = 1,000 meters

 4. We have a flat surface described by

f  (x,y ) = 4

Let’s use ordinary geometry to find the mathematical volume of the box defined by 
f   relative to the region whose edges are at x = −3, x = 5, y = −5, and y = 3 in the xy-plane. 
Figure C-2 is a simplified graph of this situation. The base and the top of the box both 
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measure 8 units by 8 units. The height of the box is 4 units. The mathematical volume 
V is therefore

V = 8 · 8 · 4 = 256

 5.  Here’s the two-variable constant function f   in Cartesian xyz-space that describes the surface:

f  (x,y ) = 4

We want to calculate the mathematical volume of the solid box relative to the region 
in the xy-plane whose edges are at x  = −3, x = 5, y  = −5, and y  = 3 by integrating with 
respect to x and then with respect to y. In shorthand, our double integral is

R
∫∫ 4 dx dy

Written out in full, the iterated integral is

−
∫
5

3

(
−
∫
3

5

4 dx )  dy

The integral inside the large parentheses is

−
∫
3

5

4 dx

which resolves to

4x ⎤⎦
−3

5

Evaluating, we get

4 · 5 − 4 · (−3) = 32

We substitute this in place of the integral inside the parentheses above, obtaining

−
∫
5

3

32 dy

Integrating against y, we get

32y ⎤⎦
−5

3

Doing the arithmetic, we get:

32 · 3 − 32 · (−5) = 256



 6.  This time, we’ll integrate the constant function with respect to y first, and then with 
respect to x. Written in the shorthand form, our double integral is

R
∫∫ 4 dy dx

The iterated integral is

−
∫
3

5

(
−
∫
5

3

4 dy )  dx

The inside integral is

−
∫
5

3

4 dy

which resolves to

4y ⎤⎦
−5

3

Evaluating from −5 to 3 yields

4 · 3 − 4 · (−5) = 32

Now we have the definite integral

−
∫
3

5

32 dx

which resolves to

32x ⎤⎦
−3

5

Working out the arithmetic, we get the same mathematical volume as we did in the 
solutions to Probs. 4 and 5:

32 · 5 − 32 · (−3) = 256

 7. Here’s the function in Cartesian xyz-space that describes the surface of interest:

f  (x,y ) = 4x + 4y

We want to calculate the mathematical volume of the solid relative to the region in the 
xy-plane whose edges are at x = 1, x = 3, y = 0, and y = 5 by integrating with respect to x 
and then with respect to y. In shorthand, our double integral is

R
∫∫ (4x + 4y ) dx dy
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Written out in full, the iterated integral is

0

5

∫ ⎡⎣
1

3

∫ (4x + 4y ) dx ⎤⎦  dy

The integral inside the large square brackets is

1

3

∫ (4x + 4y ) dx

Integrating with respect to x gives us

2x  2 + 4xy ⎤⎦
1

3

Evaluating this expression from x = 1 to x = 3, we get

 (2 · 32 + 4 · 3y ) − (2 · 12 + 4 · y ) = 16 + 8y

We substitute this for the integral inside the large square brackets above, obtaining

0

5

∫ (16 + 8y ) dy

Integrating against y, we get

16y + 4y 2 ⎤⎦
0

5

Working out the arithmetic yields

 (16 · 5 + 4 · 52) − (16 · 0 + 4 · 02) = 180

 8.  Let’s calculate the mathematical volume again, but this time we’ll integrate with respect 
to y and then with respect to x. The shorthand integral is

R
∫∫ (4x + 4y ) dy dx

Written out in full, the iterated integral is

1

3

∫ ⎡⎣
0

5

∫ (4x + 4y ) dy ⎤⎦  dx

The integral inside the square brackets is

0

5

∫ (4x + 4y ) dy

which resolves to

4xy + 2y 2 ⎤⎦
0

5



Evaluating this expression from y = 0 to y = 5 yields

 (4x · 5 + 2 · 52) − (4x · 0 + 2 · 02) = 20x + 50

We substitute this in place of the integral inside the large square brackets above to get

1

3

∫ (20x + 50) dx

which resolves to

10x 2 + 50x ⎤⎦
1

3

Evaluating, we obtain

 (10 · 32 + 50 · 3) − (10 · 12 + 50 · 1) = 180

 9. Here’s the function in Cartesian xyz-space that describes the surface of interest:

f  (x,y ) = x 2 + 2xy + y 2

Let’s find the mathematical volume of the solid relative to the region in the xy-plane 
whose edges are at x = 1, x = 3, y = 0, and y = 5 by integrating with respect to x and then 
with respect to y. In shorthand, our double integral is

R
∫∫ (x 2 + 2xy + y 2) dx dy

Written out in full, the iterated integral is

0

5

∫ ⎡⎣
1

3

∫ (x 2 + 2xy + y 2) dx ⎤⎦  dy

The integral inside the large brackets is

1

3

∫ (x 2 + 2xy + y 2) dx

Integrating with respect to x gives us

x  3/3 + x 2y + xy 2 ⎤⎦
1

3

Evaluating from x = 1 to x = 3, we get

(33/3 + 32y + 3y 2) − (13/3 + 12y + y 2) = 2y 2 + 8y + 26/3

We substitute this for the integral inside the large square brackets above, obtaining

0

5

∫ (2y 2 + 8y + 26/3) dy
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which works out to

2y  3/3 + 4y 2 + 26y /3 ⎤⎦
0

5

When we evaluate this, we get

(2 · 53/3 + 4 · 52 + 26 · 5/3) − (2 · 03/3 + 4 · 02 + 26 · 0/3) = 680/3

 10.  Now we’ll figure out the mathematical volume by integrating with respect to y and then 
with respect to x. The shorthand integral is

R
∫∫ (x 2 + 2xy + y 2) dy dx

The iterated integral is

1

3

∫ ⎡⎣
0

5

∫ (x 2 + 2xy + y 2) dy ⎤⎦  dx

The integral inside the square brackets is

0

5

∫ (x 2 + 2xy + y 2) dy

Integrating with respect to y, we get

x 2y + xy 2 + y  3/3 ⎤⎦
0

5

Evaluating this expression from y = 0 to y = 5 yields

 (x 2 · 5 + x · 52 + 53/3) − (x 2 · 0 + x · 02 + 03/3) = 5x 2 + 25x + 125/3

We substitute this for the integral inside the large square brackets above, obtaining

1

3

∫ (5x 2 + 25x + 125/3) dx

which resolves to

5x  3/3 + 25x 2/2 + 125x /3 ⎤⎦
1

3

Grinding out the arithmetic to evaluate this expression, we end up with

 (5 · 33/3 + 25 · 32/2 + 125 · 3/3) − (5 · 13/3 + 25 · 12/2 + 125 · 1/3) = 680/3

Chapter 28
 1.  Imagine that we’re at the point where x = a in the situation of Fig. 28-6. Here, the 

cross-sectional slab is a line segment parallel to the z axis and “above” the xy-plane. As 
such, it has no area, either geometric or mathematical. As we start moving toward the 
right along the x axis, the slab starts out slender and tall, and becomes progressively 



wider but shorter (less tall). As we keep moving, the mathematical area of the slab 
increases until it reaches a maximum at some value of x where a < x < b. But as the 
slab keeps getting shorter, its area decreases until, at the line where the surface and the 
region intersect, its mathematical area becomes 0. As we keep moving toward the right 
along the x axis, the slab acquires negative mathematical area, which becomes more 
negative until, at another value of x between a and b, the slab attains its maximum 
negative mathematical area. As we get close to x = b, the slab becomes “negatively taller” 
but slimmer until, when we reach x = b, it collapses into a line segment parallel to the 
z-axis but below the xy-plane, and, as in the beginning, it has no area, either geometric 
or mathematical.

 2.  Figure C-3 shows the region in the xy-plane for which we want to find the true 
geometric area. We can do this by integrating the difference function

q (x ) = h (x ) − g (x )

over the interval from x = 0 to x = 2. Because g (x ) = 0, we have

q (x ) = h (x )

The definite integral representing the area A of the region is therefore

A  = 
0

2

∫ h (x ) dx  = 
0

2

∫ 3x 2 dx

+x–x

+y

1 2 3–2–3

4

8

12

16

(2, 12)

(2, 0)(0, 0)

Region of
integration

g (x) = 0 
(the x axis)

–1

(x) = 3x 2h

Figure C-3  Illustration for the solution to Probs. 2, 3, and 4 in 
Chap. 28.
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which resolves to

A = x  3 ⎤⎦
0

2

Evaluating, we get

A = 23 − 03 = 8

The height of the solid is 4, so the total volume V is

V = 4A = 4 · 8  = 32

This agrees with the result we got by double integration.

 3.  We’ve been told to find the mathematical volume of a solid with respect to the region of 
integration shown in Fig. 28-2 (simplified here in Fig. C-3) as defined by

f  (x,y ) = 2x − 6y

In shorthand form, the double integral is

R
∫∫ (2x − 6y ) dy dx

The x-value interval enclosing the region is (0,2), so the iterated integral is

0

2

∫ ⎡⎣
g x

h x

( )

( )

∫ (2x − 6y ) dy ⎤⎦  dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ (2x − 6y ) dy

When we integrate against y while holding x constant, we obtain

2xy − 3y 2 ⎤⎦
( )

( )

g x

h x

The xy-plane functions whose graphs define the shaded region are

g (x ) = 0

and

h (x ) = 3x 2

Evaluating the quantity (2xy − 3y 2) from y = 0 to y = 3x 2 yields 

 [2x · 3x 2 − 3(3x 2)2] − (2x · 0 − 3 · 02) = 6x  3 − 27x  4



Substituting this for the integral inside the large square brackets above, we get

0

2

∫ (6x  3 − 27x  4) dx

which resolves to

3x  4/2 − 27x  5/5 ⎤⎦
0

2

Working out the arithmetic to get the solid’s mathematical volume, we obtain

V = (3 · 24/2 − 27 · 25/5) − (3 · 04/2 − 27 · 05/5) = −744/5

The negative result tells us that the surface, on the average, lies “below” the xy-plane 
where z < 0. If we could see the surface in Fig. C-3, it would lie mostly “behind” the 
region of integration.

 4.  We want to find the mathematical volume of a solid defined by the following function 
with respect to the region of integration shown in Fig. 28-2 (simplified here in Fig. C-3) 
as defined by

f  (x,y ) = 3x 2 − 4y

Written in shorthand, our double integral is

R
∫∫ (3x 2 − 4y ) dy dx

Again, the span of x values is (0,2). The iterated integral is therefore

0

2

∫ ⎡⎣
g x

h x

( )

( )

∫ (3x 2 − 4y ) dy ⎤⎦  dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ (3x 2 − 4y ) dy

Holding x constant and integrating against y, we get

3x 2y − 2y 2 ⎤⎦
( )

( )

g x

h x

The xy-plane functions whose graphs define the region of integration are

g (x ) = 0

and

h (x ) = 3x 2
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Evaluating the quantity (3x 2y − 2y 2) from y = 0 to y = 3x 2, we get

[3x 2 · 3x 2 − 2 · (3x 2)2] − (3x 2 · 0 − 2 · 02) = −9x  4

We substitute this for the integral inside the large square brackets above to obtain

0

2

∫ −9x  4 dx

which resolves to

−9x  5/5 ⎤⎦
0

2

Working out the arithmetic, we get a mathematical volume of

V = −9 · 25/5 − (−9 · 05/5) = −288/5

 5.  First, we must find the true geometric area A, between the line and the curve shown 
in Fig. 28-3 (simplified here in Fig. C-4) by subtracting the lower function g from the 
upper function h, and then integrating over the interval between the points where the 

4 6–4–6

2

6

–2

–4

–6

4

Region
of
integration

g (x) = x2 – 4

(x) = x + 2h

+x–x

+y

–y

(–2, 0)

(3, 5)

Figure C-4  Illustration for the solution to Probs. 5, 6, and 7 
in Chap. 28.



graphs intersect. When we subtract the function for the parabola from the function for 
the straight line, we get

p (x ) = h (x ) − g (x ) = (x + 2) − (x 2 − 4) = −x 2 + x + 6

We integrate p (x ) over the interval between x = −2 and x = 3, which are the x values of 
the points where the line and the curve intersect:

A = 
−
∫
2

3

(−x 2 + x + 6) dx

which resolves to

A = −x  3/3 + x 2/2 + 6x ⎤⎦
−2

3

Working out the arithmetic, we get

A = [−(33/3) + 32/2 + 6 · 3] − [−(−2)3/3 + (−2)2/2 + 6 · (−2)] = 125/6

To find the volume of the solid, we must multiply this area by 4, which is the height of 
the solid. That gives us

V = 4A = 4 · 125/6 = 250/3

This agrees with the result we got by double integration.

 6.  We want to calculate the mathematical volume of a solid with respect to the region 
in Fig. 28-3 (simplified here in Fig. C-4) as defined by the following function, which 
represents a flat surface oriented at a slant:

f  (x,y ) = −4x

In shorthand, we have

R
∫∫ −4x dy dx

The x-value interval enclosing the region of integration is (−2,3), so we can write the 
iterated integral as

−
∫
2

3

⎡⎣
g x

h x

( )

( )

∫ −4x dy ⎤⎦  dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ −4x dy

When we integrate against y, we obtain

−4xy ⎤⎦
( )

( )

g x

h x
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The xy-plane functions whose graphs define the region of integration are

g (x ) = x 2 − 4

and

h (x ) = x + 2

We evaluate −4xy from y = x 2 − 4 to y = x + 2 to get

−4x (x + 2) − [−4x (x 2 − 4)] = 4x  3 − 4x 2 − 24x

Substituting this for the integral inside the large square brackets above, we get

−
∫
2

3

(4x  3 − 4x 2 − 24x ) dx

which resolves to

x  4 − 4x  3/3 − 12x 2 ⎤⎦
−2

3

Calculating to get the mathematical volume of the solid, we obtain

V = (34 − 4 · 33/3 − 12 · 32) − [(−2)4 − 4 · (−2)3/3 − 12 · (−2)2] = −125/3 

 7. Imagine a warped surface in xyz-space that represents the function

f  (x,y ) = −x 2

We want to find the mathematical volume of the solid defined by this surface and the 
region illustrated in Fig. 28-3 (simplified here in Fig. C-4). The shorthand form of the 
double integral is

R
∫∫ −x 2 dy dx

The interval representing the span of x values is (−2,3), so the iterated integral is

−
∫
2

3

⎡⎣
g x

h x

( )

( )

∫ −x 2 dy ⎤⎦  dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ −x 2 dy

Integrating with respect to y, we get

−x 2y ⎤⎦
( )

( )

g x

h x



The functions whose graphs define the region in the xy-plane are

g (x ) = x 2 − 4

and

h (x ) = x + 2

Evaluating −x 2y from y = x 2 − 4 to y = x + 2 produces

−x 2(x + 2) − [−x 2(x 2 − 4)] = x  4 − x  3 − 6x 2

When we substitute this for the integral inside the large square brackets above, we get

−
∫
2

3

(x  4 − x  3 − 6x 2) dx

which resolves to

x  5/5 − x  4/4 − 2x  3 ⎤⎦
−2

3

Working out the arithmetic to derive the mathematical volume, we get

V = (35/5 − 34/4 − 2 · 33) − [(−2)5/5 − (−2)4/4 − 2 · (−2)3] = −125/4

 8.  First, we must find the true geometric area A, between the curves shown in Fig. 28-4 
(and simplified here in Fig. C-5) by subtracting the lower function g from the upper 
function h, and then integrating over the interval between the points where the graphs 
intersect. We must integrate the difference function

p (x ) = h (x ) − g (x ) = (−x 2/2 + 2) − (x 2/2 − 2) = −x 2 + 4

The interval of interest is (−2,2), so the integral we want to evaluate is

A  = 
−
∫
2

2

(−x 2 + 4) dx

which resolves to

A = −x  3/3 + 4x ⎤⎦
−2

2

When we evaluate this, we obtain

A = [−(23/3) + 4 · 2] − [−(−2)3/3 + 4 · (−2)] = 32/3

To find the mathematical volume, we multiply this area by 4, which is the mathematical 
height of the solid. That gives us

V = 4A = 4 · 32/3 = 128/3

This agrees with the result we got by double integration.
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 9.  We’ve been told to figure out the mathematical volume of a solid defined by the region 
shown in Fig. 28-4 (simplified here in Fig. C-5) and the function

f  (x,y ) = 2x + 1

In shorthand form, the double integral is

R
∫∫ (2x + 1) dy dx

The span of x values is (−2,2), so the iterated integral is

−
∫
2

2

⎡⎣
g x

h x

( )

( )

∫ (2x + 1) dy ⎤⎦  dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ (2x + 1) dy

Integrating against y, we hold x constant to get

2xy + y ⎤⎦
( )

( )

g x

h x

4 6–4

6

–4

–6

4

(x) = x2/2 – 2g

(–2, 0) (2, 0)

(0, 2)

(0, –2)

(x) = –x2/2 + 2h

Region of
integration

+x–x

+y

–y

Figure C-5  Illustration for the solution to Probs. 8, 9, and 10 
in Chap. 28.



The functions whose graphs define our xy-plane region are

g (x ) = x 2/2 − 2

and

h (x ) = −x 2/2 + 2

Evaluating the quantity (2xy + y ) from y = x 2/2 − 2 to y = −x 2/2 + 2, we get

[2x (−x 2/2 + 2) + (−x 2/2 + 2)] − [2x (x 2/2 − 2) + (x 2/2 − 2)] = −2x  3 − x 2 + 8x + 4

Substituting this for the integral inside the large square brackets above, we get

−
∫
2

2

(−2x  3 − x 2 + 8x + 4) dx

which resolves to

−x  4/2 − x  3/3 + 4x 2 + 4x ⎤⎦
−2

2

Working out the arithmetic, we obtain

V = (−24/2 − 23/3 + 4 · 22 + 4 · 2) − [−(−2)4/2 − (−2)3/3 + 4 · (−2)2 + 4 · (−2)] = 32/3

10.  We want find the mathematical volume of a solid relative to the region in Fig. 28-4 
(simplified here in Fig. C-5), as defined by the following function:

f  (x,y ) = 2y − 1

In shorthand form, the double integral is

R
∫∫ (2y − 1) dy dx

The span of x-values is (−2,2). The iterated integral is therefore

−
∫
2

2

⎡⎣
g x

h x

( )

( )

∫ (2y − 1) dy ⎤⎦  dx

The integral inside the large square brackets is

g x

h x

( )

( )

∫ (2y − 1) dy

Integrating with respect to y, we get

y 2 − y ⎤⎦
( )

( )

g x

h x

The functions whose graphs define our xy-plane region are

g (x ) = x 2/2 − 2
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and

h (x ) = −x 2/2 + 2

Evaluating the quantity ( y  2 − y ) from y = x 2/2 − 2 to y = −x  2/2 + 2, we get

 [(−x 2/2 + 2)2 − (−x 2/2 + 2)] − [(x 2/2 − 2)2 − (x 2/2 − 2)] = x 2 − 4

Substituting this for the integral inside the large square brackets above, we get

−
∫
2

2

(x 2 − 4) dx

which resolves to

x  3/3 − 4x ⎤⎦
−2

2

The arithmetic yields

V = (23/3 − 4 · 2) − [(−2)3/3 − 4 · (−2)] = −32/3

Chapter 29
 1. Here’s the differential equation we want to solve:

dy /dx = sin x + 3

Integrating both sides with respect to x, we get

∫ (dy /dx ) dx = ∫ (sin x + 3) dx

Working out the integrals gives us

∫ (dy /dx ) dx = y + c1

and

∫ (sin x + 3) dx = −cos x + 3x + c2

where c1 and c2 are constants. Combining the general antiderivatives into a single equation, 
we get

y + c1 = −cos x + 3x + c2

Subtracting c1 from each side produces

y = −cos x + 3x − c1 + c2



Combining the constants of integration into a single constant c yields the solution

y = H (x ) = −cos x + 3x + c

where H is the family of solution functions.

 2. Here’s the differential equation we want to solve:

dy /dx + sin x = cos x

First, we subtract sin x from both sides to obtain

dy /dx = cos x − sin x

When we integrate this equation through, we obtain

∫ (dy /dx ) dx = ∫ (cos x − sin x ) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c1

and

∫ (cos x − sin x ) dx = sin x + cos x + c2

Combining the general antiderivatives into a single equation, we get

y + c1 = sin x + cos x + c2

Subtracting c1 from each side gives us

y = sin x + cos x − c1 + c2

Combining the constants of integration yields the solution

y = H (x ) = sin x + cos x + c

 3. Here’s the differential equation we want to solve:

2dy /dx − 4e x = 16x  3

Dividing through by 2 gives us

dy /dx − 2e x = 8x  3

Adding 2e x to both sides, we get

dy /dx = 2e x + 8x  3
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Integrating both sides produces

∫ (dy /dx ) dx = ∫ (2e x + 8x  3) dx

The individual indefinite integrals are

∫ (dy /dx ) dx = y + c1

and

∫ (2e x + 8x  3) dx = 2e x + 2x  4 + c2

Combining the general antiderivatives into a single equation, we get

y + c1 = 2e x + 2x  4 + c2

Subtracting c1 from each side gives us

y  = 2e x + 2x  4 − c1 + c2

Combining the constants of integration, we get the solution

y  = H (x ) = 2e x + 2x  4 + c

 4. We’ve been told to solve this differential equation:

d 2y /dx 2 = cos x + 5x

When we take the indefinite integrals of both sides, we get

∫ (d   2y /dx  2) dx = ∫ (cos x + 5x ) dx

The general antiderivatives are

∫ (d   2y /dx  2) dx = dy /dx + c1

and

∫ (cos x + 5x ) dx = sin x + 5x 2/2 + c2

where c1 and c2 are constants of integration. Combining the general antiderivatives into 
a single equation, we get

dy /dx + c1 = sin x + 5x  2/2 + c2

We can rearrange this as

dy /dx = sin x + 5x 2/2 − c1 + c2



Let’s consolidate the constants, adding −c1 to c2 and calling the sum p. That gives us

dy /dx = sin x + 5x 2/2 + p

Integrating through, we get

∫ (dy /dx ) dx = ∫ (sin x + 5x 2/2 + p) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c3

and

∫ (sin x + 5x 2/2 + p) dx = −cos x + 5x  3/6 + px + c4

where c3 and c4 are new constants. Combining the general antiderivatives into a single 
equation, we get

y + c3 = −cos x + 5x  3/6 + px + c4

Subtracting c3 from each side, we get

y = −cos x + 5x  3/6 + px − c3 + c4

Adding −c3 to c4 and calling the sum q, the solution simplifies to

y = H (x ) = −cos x + 5x  3/6 + px + q

where H is the family of solution functions, and p and q are constants whose values we 
don’t necessarily know.

 5. We want to solve this differential equation:

d   2y /dx  2 + 2 sin x = 3 cos x

Subtracting the quantity (2 sin x ) from both sides, we get

d   2y /dx  2 = 3 cos x − 2 sin x

Integrating both sides gives us

∫ (d   2y /dx  2) dx = ∫ (3 cos x − 2 sin x ) dx

The general antiderivatives are

∫ (d   2y /dx  2) dx = dy /dx + c1
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and

∫ (3 cos x − 2 sin x ) dx = 3 sin x + 2 cos x + c2

Combining the general antiderivatives into a single equation, we get

dy /dx + c1 = 3 sin x + 2 cos x + c2

which can be rearranged to get

dy /dx = 3 sin x + 2 cos x − c1 + c2

Letting −c1 + c2 = p, we can simplify this to

dy /dx = 3 sin x + 2 cos x + p

When we integrate both sides of this equation, we get

∫ (dy /dx ) dx = ∫ (3 sin x + 2 cos x + p) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c3

and

∫ (3 sin x + 2 cos x + p) dx = −3 cos x + 2 sin x + px + c4

Combining the general antiderivatives into a single equation, we get

y + c3 = −3 cos x + 2 sin x + px + c4

Subtracting c3 from each side yields

y = −3 cos x + 2 sin x + px − c3 + c4

When we add −c3 to c4 and call the combination q, we can simplify our solution to

y = H (x ) = −3 cos x + 2 sin x + px + q

 6. Here’s the differential equation we’ve been told to solve:

2d   2y /dx  2 − 2e x = 24x 2

Adding 2e x to both sides, we get

2d   2y /dx  2 = 2e x + 24x 2



Dividing through by 2 gives us

d   2y /dx  2 = e x + 12x 2

Integrating both sides, we get

∫ (d   2y /dx  2) dx = ∫ (e x + 12x 2 ) dx

The general antiderivatives are

∫ (d   2y /dx  2) dx = dy /dx + c1

and

∫ (e x + 12x 2) dx = e x + 4x  3 + c2

Combining the general antiderivatives into a single equation, we get

dy /dx + c1 = e x + 4x  3 + c2

Subtracting c1 from each side yields

dy /dx = e x + 4x  3 − c1 + c2

After adding −c1 to c2 to get a single constant p, we have

dy /dx = e x + 4x  3 + p

Integrating this equation through gives us

∫ (dy /dx ) dx = ∫ (e x + 4x  3 + p) dx

These integrals work out as

∫ (dy /dx ) dx = y + c3

and

∫ (e x + 4x  3 + p) dx = e x + x  4 + px + c4

Combining the general antiderivatives into a single equation, we get

y + c3 = e x + x  4 + px + c4

When we subtract c3 from each side, we get

y = e x + x  4 + px − c3 + c4
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We can let −c3 + c4 = q to produce the solution

y = H (x ) = e x + x  4 + px + q

 7. We’ve been told to solve this differential equation:

dy /(3dx ) + 6x−2 = e x

Multiplying through by 3, we get

dy /dx + 18x−2 = 3e x

Subtracting 18x−2 from both sides gives us

dy /dx = 3e x − 18x−2

Integrating both sides produces

∫ (dy /dx ) dx = ∫ (3e x − 18x−2) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c1

and

∫ (3e x − 18x−2) dx  = 3e x + 18x−1 + c2

Combining the general antiderivatives into a single equation, we get

y + c1 = 3e x + 18x−1 + c2

Subtracting c1 from each side produces

y = 3e x + 18x−1 − c1 + c2

We can let −c1 + c2 = c to produce the solution

y = H (x ) = 3e x + 18x−1 + c

 8. Here’s the differential equation we’ve been told to solve:

dy − 4e x dx = x 2 dx + 2x dx

Dividing through by dx, we obtain

dy /dx − 4e x = x 2 + 2x



Adding 4e x to both sides, we get

dy /dx = x 2 + 2x + 4e x

When we integrate through with respect to x, we get

∫ (dy /dx ) dx = ∫ (x 2 + 2x + 4e x ) dx

The general antiderivatives are

∫ (dy /dx ) dx = y + c1

and

∫ (x 2 + 2x + 4e x ) dx = x  3/3 + x 2 + 4e x + c2

Combining the general antiderivatives into a single equation, we get

y + c1 = x  3/3 + x 2 + 4e x + c2

Subtracting c1 from each side yields

y = x  3/3 + x 2 + 4e x − c1 + c2

Combining the constants of integration gives us the solution

y = H (x ) = x  3/3 + x 2 + 4e x + c

 9. Once again, here’s the differential equation we want to solve:

dy − 4e x dx = x  2 dx + 2x dx

Adding the quantity (4e x dx ) to both sides, we obtain

dy = x 2 dx + 2x dx + 4e x dx

Factoring out dx on the right-hand side, we get

dy = (x 2 + 2x + 4e x ) dx

When we integrate straight through, we get

∫ dy = ∫ (x 2 + 2x + 4e x ) dx

The general antiderivatives are

∫ dy = y + c1
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and

∫ (x 2 + 2x + 4e x ) dx = x  3/3 + x 2 + 4e x + c2

Combining the general antiderivatives into a single equation, we get

y + c1 = x  3/3 + x  2 + 4e x + c2

Subtracting c1 from each side yields

y = x  3/3 + x 2 + 4e x − c1 + c2

Combining the constants of integration gives us the solution

y = H (x ) = x  3/3 + x 2 + 4e x + c

10.  Let’s check the solutions for Exercises 1 through 8 in order. In some cases we must 
differentiate once; in other cases we must differentiate twice. Our goal is always to get 
back the original differential equation.

  Checking solution 1. We finished with

y = −cos x + 3x + c

  Differentiating both sides gives us the original differential equation

dy /dx = sin x + 3

  Checking solution 2. We finished with

y = sin x + cos x + c

  Differentiating both sides, we get

dy /dx = cos x − sin x

  We can add sin x to both sides, getting the original differential equation

dy /dx + sin x = cos x

  Checking solution 3. We finished with

y = 2e x + 2x  4 + c

  Differentiating through produces the equation

dy /dx = 2e x + 8x  3



  We can subtract 2e x from both sides to obtain

dy /dx − 2e x = 8x  3

  Multiplying through by 2 gets us back to the original differential equation

2dy /dx − 4e x = 16x  3

  Checking solution 4. We finished with

y = −cos x + 5x  3/6 + px + q

  Differentiating each side, we get

dy /dx = sin x + 5x  2/2 + p

  Differentiating through again, we get the original differential equation

d   2y /dx 2 = cos x + 5x

  Checking solution 5. We finished with

y = −3 cos x + 2 sin x + px + q

  Differentiating each side, we get

dy /dx = 3 sin x + 2 cos x + p

  Differentiating through again, we get

d   2y /dx  2 = 3 cos x − 2 sin x

  Adding the quantity (2 sin x ) to both sides, we get the original differential equation

d   2y /dx  2 + 2 sin x = 3 cos x

  Checking solution 6. We finished with

y = e x + x  4 + px + q

  Differentiating each side, we get

dy /dx = e x + 4x  3 + p

  Differentiating through again, we get

d  2y /dx 2 = e x + 12x  2

Chapter 29  773



774  Worked-Out Solutions to Exercises: Chapters 21 to 29

  Subtracting e x from both sides gives us

d   2y /dx 2 − e x = 12x 2

  The original differential equation comes back when we multiply through by 2, yielding

2d   2y /dx  2 − 2e x = 24x 2

  Checking solution 7. We finished with

y = 3e x + 18x−1 + c

  Differentiating each side, we get

dy /dx = 3e x − 18x−2

  Adding 18x−2 to each side gives us

dy /dx + 18x−2 = 3e x

  Dividing through by 3, we get back the original differential equation

dy /(3dx ) + 6x−2 = e x

  Checking solutions 8 and 9. We finished with

y = x  3/3 + x 2 + 4e x + c

  Differentiating both sides, we get

dy /dx = x 2 + 2x + 4e x

  Subtracting 4e x from each side produces

dy /dx − 4e x = x 2 + 2x

  Multiplying through by dx, we get back the original equation

dy − 4e x dx = x 2 dx + 2x dx



     1. c     2. d     3. a     4. a     5. e
     6. a     7. a      8. c     9. a   10. c
   11. c   12. b   13. a   14. a   15. d
   16. d   17. c   18. d   19. c   20. b
   21. d   22. a   23. a   24. c   25. d
   26. e   27. d   28. e   29. b   30. c
   31. b   32. a   33. a   34. b   35. c
   36. e   37. b   38. a   39. b   40. b
   41. e   42. e   43. e   44. d   45. b
   46. d   47. c   48. b   49. d   50. c
   51. c   52. a   53. d   54. d   55. b
   56. e   57. b   58. a   59. c   60. e
   61. c   62. a   63. b   64. a   65. b
   66. c   67. a   68. e   69. e   70. b
   71. d   72. c   73. b   74. c   75. d
   76. d   77. c   78. d   79. e   80. a
   81. c   82. a   83. e   84. a   85. c
   86. a   87. e   88. d   89. e   90. e
   91. e   92. a   93. e   94. b   95. b
   96. c   97. d   98. d   99. c 100. e
 101. d 102. a 103. b 104. e 105. d
 106. a 107. b 108. d 109. a 110. c
 111. d 112. e 113. e 114. c 115. a
 116. c 117. a 118. d 119. c 120. c
 121. b 122. c 123. a 124. b 125. e
 126. d 127. a 128. d 129. a 130. c
 131. a 132. b 133. b 134. e 135. a
 136. d 137. a 138. b 139. c 140. c
 141. e 142. a 143. c 144. d 145. a
 146. d 147. a 148. c 149. b 150. a
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Special Characters in 
Order of Appearance

Symbol First use Meaning
 {a, b } Chapter 1 Set containing elements a and b
 (a,b ) Chapter 1 Ordered pair of elements a and b
 f  (x ) Chapter 1 Function or relation f   with independent variable x
 f  −1 (x ) Chapter 1 Inverse of a function or relation f  (x )
 Δx Chapter 1 Increment in x ; difference in x-values
 Δy Chapter 1 Increment in y ; difference in y-values
 ±  Chapter 1 Plus-or-minus
 Lim Chapter 2 Limit
 → Chapter 2 Symbol indicating that one quantity approaches another
 dy /dx Chapter 3 Derivative of y with respect to x
 y ′  Chapter 3 Derivative of y with respect to independent variable
 df  (x ) / dx Chapter 3 Derivative of function f  (x ) with respect to x
 d /dx f  (x )
 df  /dx
 f   ′ (x )

f   ′ Chapter 3  Derivative of function f  with respect to independent 
variable

 → +∞ Chapter 4 Increases endlessly or “approaches positive infi nity”
 → 0+ Chapter 4 Approaches 0 from the positive side
 → − ∞ Chapter 4 Decreases endlessly or “approaches negative infi nity”
 → 0− Chapter 4 Approaches 0 from the negative side
 |x | Chapter 4 Absolute value of x
 d  Chapter 5 Alternative notation for small values of Δx
 o  Chapter 6  Alternative notation for composite function or a 

function of another function
 ·  Chapter 7 Alternative notation for multiplication
 ≈  Chapter 7 Approximate equality
 . . . Chapter 11 Stand-in for terms in a set, sequence, or series



 Σ  Chapter 11 Sum or summation
 ∫  Chapter 11 Indefi nite integral

 
a

b

∫  Chapter 11 Defi nite integral over interval from a to b

 m  Chapter 11 Mean of a probability distribution
 s  Chapter 11 Standard deviation of a probability distribution

 ⎤⎦
a

b

  Chapter 12 Symbol for evaluation over interval from a to b

 ∂  Chapter 24 Symbol for partial derivative

 
a

b

a

b

∫∫  Chapter 27 Repeated integral of single-variable function from a to b

R
∫∫  Chapter 27 Double integral of two-variable function over a region R

Appendix E  777



778

APPENDIX

F

Table of Derivatives

The letter a denotes a general constant, f and g denote functions, x denotes a variable, and e
represents the exponential constant (approximately 2.71828).

Function Derivative
f  (x ) f   ′ (x )

 a 0
 ax a
 ax n nax n−1

 ln |x | x −1

 ln |g (x )| g −1(x ) g ′ (x )
 x −a −ax (−a−1)

 e x e x

 a x a x ln |a |
 a g (x ) [a g (x )] [ g ′(x )] ln |a |
 e ax ae ax

 e g (x ) [e g (x )] [ g ′ (x )]
 xe x e x + xe x

 sin x cos x
 cos x −sin x
 tan x sec 2 x
 csc x − csc x cot x
 sec x sec x tan x
 cot x − csc 2 x
 Arcsin x (1 − x 2)−1/2

 Arccos x −(1 − x 2)−1/2

 Arctan x (1 + x 2)−1



Letters a and b denote general constants, c denotes a constant of integration, f   denotes a func-
tion, x denotes a variable, and e represents the exponential constant (approximately 2.71828).

Function Indefi nite integral

 f  (x ) ∫ f  (x ) dx
 0 c
 1 x + c
 a ax + c
 x (1/2) x 2 + c
 ax (1/2) ax 2 + c
 ax 2 (1/3) ax 3 + c
 ax 3 (1/4) ax 4 + c
 ax 4 (1/5) ax5 + c
 ax −1 a ln |x | + c
 ax −2 −ax −1 + c
 ax −3 (−1/2) ax −2 + c
 ax −4 (−1/3) ax −3 + c
 ax n  for n ≠ −1 (n + 1)−1 ax n +1 + c
 (ax + b )−1 a −1 ln |ax + b | + c
 (ax + b )n  for n ≠ −1 (an + a)−1 (ax + b )n+1 + c
 x (ax + b )1/2 (1/15) a −2 (6ax − 4b )(ax + b )3/2 + c
 x (ax + b )−1/2 (1/3) a −2 (2ax − 4b )(ax + b )1/2 + c
 x (ax + b )−2 b (a 3x + a 2b )−1 + a −2 ln |ax + b | + c
 (x 2 + a 2)1/2 (x /2) (x  2 + a 2)1/2 + (1/2) a 2 ln |x + (x 2 + a 2)1/2| + c
 (x 2 − a 2)1/2 (x /2) (x 2 − a 2)1/2 − (1/2) a 2 ln |x + (x 2 − a 2)1/2| + c
 (a 2 − x 2)1/2 (x /2) (a 2 − x 2)1/2 + (1/2) a 2 Arcsin (a −1x ) + c
 (x 2 + a 2)−1/2 ln |x + (x 2 + a 2)1/2| + c
 (x 2 − a 2)−1/2 ln |x + (x 2 − a 2)1/2| + c
 (a 2 − x 2)−1/2 Arcsin (a −1x ) + c
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 (x 2 + a 2)−1  for a > 0 a −1 Arctan (a −1x ) + c
 (x 2 − a 2)−1 (1/2) a −1 ln |(x + a)−1 (x − a)| + c

(a 2 − x 2)−1  for |a | > |x | (1/2) a −1 ln |(a − x )−1 (a + x )| + c
(x 2 + a 2)−2 (2a 2x 2 + 2a 4)−1 x + (1/2) a −3 Arctan (a −1x ) + c
(x 2 − a 2)−2 (−x ) (2a 2x 2 − 2a 4)−1 − (1/4) a −3 ln |(x + a)−1 (x − a)| + c
(a 2 − x 2)−2  for |a | > |x | −x (2a 4 − 2a 2x 2)−1 + (1/4) a −3 ln |(a − x )−1 (a + x )| + c

 x (x 2 + a 2)1/2 (1/3) (x 2 + a 2)3/2 + c
 x (x 2 − a 2)1/2 (1/3) (x 2 − a 2)3/2 + c
 x (a 2 − x 2)1/2 (−1/3) (a 2 − x 2)3/2 + c
 x (x 2 + a 2)−1/2 (x 2 + a 2)1/2 + c
 x (x 2 − a 2)−1/2 (x 2 − a 2)1/2 + c
 x (a 2 − x 2)−1/2 −(a 2 − x 2)1/2 + c
 x (x 2 + a 2)−1 (1/2) ln |x 2 + a 2| + c
 x (x 2 − a 2)−1 (1/2) ln |x 2 − a 2| + c
 x (a 2 − x 2)−1  for |a | > |x | −(1/2) ln |a 2 − x 2| + c
 x (x 2 + a 2)−2 (−2x 2 − 2a 2)−1 + c
 x (x 2 − a 2)−2 −(1/2) (x 2 − a 2)−1 + c
 x (a 2 − x 2)−2  for |a | > |x | (1/2) (a 2 − x 2)−1 + c
 e x e x + c
 e ax a −1 e ax + c
 a e bx b −1a e bx + c
 x e ax a −1x e ax − a −2 e ax + c
 x 2 e bx b −1x 2 e bx − 2b−2x e bx + 2b−3 e b x + c
 ln |x | x ln |x | − x + c
 x n ln |x |  for n ≠ −1 (n + 1)−1 x (n+1) ln |x | − (n + 1)−2 x (n +1) + c
 x −1 ln x (1/2) ln2 |x | + c
 sin x − cos x + c
 cos x sin x + c
 tan x ln |sec x | + c
 csc x ln |tan (x /2)| + c
 sec x ln |sec x + tan x | + c
 cot x ln |sin x | + c
 sin ax −a −1 cos ax + c
 cos ax a −1 sin ax + c
 tan ax a −1 ln |sec ax | + c
 csc ax a −1 ln |tan (ax /2)| + c
 sec ax a −1 ln |tan (p /4 + ax /2)| + c
 cot ax a −1 ln |sin ax | + c
 sin2 x (1/2) {x − [(1/2) sin (2x )]} + c
 cos2 x (1/2) {x + [(1/2) sin (2x )]} + c
 tan2 x tan x − x + c
 csc 2 x − cot x + c
 sec 2 x tan x + c
 cot 2 x − cot x − x + c
 sin2 ax (1/2) x − (1/4) a −1 (sin 2ax ) + c
 cos2 ax (1/2) x + (1/4) a −1 (sin 2ax ) + c
 tan2 ax a −1 tan ax − x + c
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 csc 2 ax −a −1 cot ax + c
 sec 2 ax a −1 tan ax + c
 cot 2 ax −a −1 cot ax − x + c
 x sin ax a −2 sin ax − a −1x cos ax + c
 x cos ax a −2 cos ax + a −1x sin ax + c
 x 2 sin ax 2a −2x sin ax + (2a −3 − a −1x 2) cos ax + c
 x 2 cos ax 2a −2x cos ax + (a −1x 2 − 2a −3) sin ax + c
 (sin x cos x )−2 −2 cot 2x + c
 (sin x cos x )−1 ln |tan x | + c
 sin x cos x (1/2) sin2 x + c
 sin2 x cos2 x (1/8) x − (1/32) sin 4x + c
 (sin ax cos ax )−2 −2a −1 cot 2ax + c
 (sin ax cos ax )−1 a −1 ln |tan ax | + c
 sin ax cos ax (1/2) a−1 sin2 ax + c
 sin2 ax cos 2 ax (1/8) x − (1/32) (a −1) sin 4ax + c
 sec x tan x sec x + c
 Arcsin x x Arcsin x + (1 − x 2)1/2 + c
 Arccos x x Arccos x − (1 − x 2)1/2 + c
 Arctan x x Arctan x − (1/2) ln |1 + x 2| + c
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A
absolute maximum, 30, 138–139, 182
absolute minimum, 30, 138–139, 182
acceleration, 128–130, 178–179
antiderivative

basic vs. general, 222
concept of, 205–207
of basic linear function, 208, 330
of basic nth-degree function, 209–210, 

330–331
of basic quadratic function, 208–209
of constant function, 207–208, 329–331
of zero function, 205–206, 329

antidifferentiation. See antiderivative
apex of paraboloid, 417
approximation error, 194
Arccosine function, derivative of, 384–387, 504
Arcsine function, derivative of, 381–384, 504
arc

breaking into chords, 297–300
length, 297–310, 363–369

arc-in-a-box method, 303, 364–365
Arctangent function, 157–158
area

approximating, 192–194
between line and curve, 262–267, 350–353
between two curves, 267–274, 353–355
defined by curve, 191–198, 328–329
negative, 191–192, 326–327
positive, 191–192, 326–327

argument of function, 6
asymptotes of hyperbola, 393
average value of function, 200–201, 329
axis of paraboloid, 418

B
basic vs. general antiderivative, 222
bell-shaped curve, 201
bijection, definition of, 13
“broken” function, 12–14

C
Cartesian space, 417–419, 471–472, 533
chain rule, 99–103, 173, 378, 

395–396, 398
child function, 116
chord

breaking arc into, 297–300
definition of, 297–298

circle
equation of, 391, 505–506
graph of, 391
implicit differentiation of equation for, 

394–396
unit, definition of, 19

coefficient
leading, 32, 80, 143, 170
in polynomial, 32, 72, 80, 142
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composite function, 99–100, 229
concavity of graph, 138–139, 182
cone

in Cartesian xyz–space, 444–445, 523–524
right circular, 444–448, 523–523
slant height, 445, 523
slant-surface area integral, 446–448, 523
volume integral, 446–448, 524

constant function, 9, 40–41, 155, 207–208, 
329–331

constant of integration, definition of, 211
constant, stand-alone, 32
constant term, 79
continuity

of a function, 29–33
left-hand, 25–27, 159–161
at a point, 24–27
right-hand, 24–25, 159–161
“total,” at a point, 27

continuous function, 27–32
convergent integral, 237
coordinates

rectangular, definition of, 9
cosecant function,124
cosine function

derivative of, 111–112
integral of, 277–282, 355–356
inverse of, 384–387
principal branch of, 385, 503–504
unit circle model, 109–110

cotangent function, 125
counterexample, in proof, 102
crest, in wave function, 109–110
cubic function

continuity of, 31–32
derivative of basic, 48–52
general form of, 31
graph of, 144–146

curve, singular, 270–274
curves, area between, 267–274
cylinder

in Cartesian xyz-space, 442–443, 
522–523

lateral-surface area integral, 442–443, 
522

right circular, 442–445, 522–523
volume integral, 444–445, 522–523

D
definite integral, 195, 215–218
dependent variable, 3, 154–155
derivative

of Arccosine function, 384–387, 504
of Arcsine function, 381–384, 504
basic concepts of, 35–54
of basic cubic function, 48–52
of basic linear function, 40–44
of basic quadratic function, 44–48
chain rule for finding, 99–103, 

173, 378
of cosine function, 109–112
definition of, 52, 163
determining existence of, 55–69
fifth, 133
fourth, 133–135
higher, 126–137
implicit, 390–403, 506–511
of inverse function, 377–389
as limit, 38, 52
multiplication-by-constant rule, 

84–87, 171
of natural exponential function, 

114–118
of natural logarithm function, 118–124, 181
nth, 133, 179
partial, 416–427, 515–518
of polynomial function, 71–83
power rule, 71–75, 168–169
product rule, 87–90, 171–172
quotient rule, 95–99, 173
as rate of change, 37
real-power rule, 106–108, 173–174
reciprocal rule, 90–94, 172–173
second, 126–130, 178
of sine function, 109–111, 179–181
sum rule, 75–79, 169–170
third, 130–133
as tool for graph analysis, 138–153
two-way, 394–402

difference
function, 266, 268–269, 272–273
rule for partial derivatives, 422, 516–517
rule for second partials, 430, 519

differentiable function, definition of, 
59, 166
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differential
definition of, 38, 163
in integral, 195, 212

differential equation
elementary first-order ordinary, 490–493, 

535–537
elementary second-order ordinary, 493–499, 

537–540
differentiation. See derivative
direction numbers, 419
discontinuity, 28, 55–57, 156
discontinuous function, 32–33
displacement vs. speed, 198–200
distance formula, 305–306
divergent integral, 237
domain

of mapping, definition of, 3–4, 154
restricted, 33

double integral in two variables, 458–462, 
528–535

E
e, definition of, 114–115
ellipse

equation of, 392–393, 506, 508
graph of, 392
implicit differentiation of equation for, 

396–399
semi-axes of, 392

Euler’s constant, 114–115, 177
exponent

negative, 107–108
real-number, 124, 210

exponential constant, 114–115, 177
exponential function, derivative of, 

114–118
extrema of graph, 138–139

F
family of functions, 490, 536–538
fifth derivative, 133
five-space, Cartesian, 419
fluxion, 37
four-space, Cartesian, 419
fourth derivative, 133–135

fractions, partial, in integral, 318–323
function(s)

Arccosine, 384–387, 504
Arcsine, 381–384, 504
Arctangent, 157–158
average value of, 200–201, 329
“broken,” 14–17
child, 116
composite, 99–100, 229
constant, 9, 40–41, 155, 207–208, 

329–331
continuity of, 29–33
continuous, 29–32
cosine, 109–112, 277–282
cosecant, 124
cotangent, 125
cubic, 31–32, 48–52
definition of, 5, 154
difference, 266, 268–269, 272–273
differentiable, definition of, 59, 166
discontinuous, 32–33
family of, 490, 536–538
inverse of, 91, 155, 377–378, 502–505
limit of, 21–22
linear, basic, 9–11, 29–30, 40–44, 

208, 330
multiplied by constant, 84–85
natural exponential, 114–118, 282–288
nondifferentiable, 63–69, 164–165
nonlinear, 12–14
nth-degree polynomial, 79–82, 209–210
of another function, 99–100, 122
parent, 116
partial, 420
quadratic, basic, 30–31, 44–48, 208–209
quotient, 95
polynomial, 71–83
reciprocal, 15–16, 90–91, 289–295
secant, 125
sine, 108–111, 277–282
singular, 119
step, 17–18
tangent, 16–17, 123
zero, 41, 205–206, 329
zeros of, 142

Fundamental Theorem of Calculus, 
215, 332
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G
general vs. basic antiderivative, 222
geodesic, 450
geometric volume vs. mathematical volume, 458, 

528, 535
gradient

definition of, 9
of line, 9

graph
absolute maximum of, 138–139
absolute minimum of, 138–139
analysis with derivatives, 138–153
concavity of, 138–139, 182
of cubic function, 144–146
extrema of, 138–139
inflection point of, 139–141
local maximum of, 138–139
local minimum of, 138–139
of quadratic function, 141–144
of sine function, 147–151

graphs, area between, 262–276, 350–355
great circle, 450

H
higher derivatives, 126–137
horizontal-line test, 8, 155–156
hyperbola

asymptotes of, 393
equation of, 392–393, 506, 509–510
graph of, 393
implicit differentiation of equation for, 

399–402
semi-axes of, 393
unit, 393

hypotenuse, 299

I
implicit differentiation

concept and process, 390–403, 506–511
of equation for circle, 394–396
of equation for ellipse, 396–399
of equation for hyperbola, 399–402

improper integral, 234–249, 337–342
indefinite integral, 211–215
independent variable, 3, 154–155

indeterminate expression, 404
induction, mathematical, 77–78, 170
infinite sequence, limit of, 20–21
infinitesimal calculus, 46
inflection point, 139–141, 182–183
integral

convergent, 237
of cosine function, 277–282, 355–356
definite, 195, 215–218
of difference function, 268–269, 272–273
differential in, 195, 212
divergent, 237
double, in two variables, 458–462, 528–525
improper, 234–249, 337–342
indefinite, 211–215
with infinite interval, 244–248
iterated, in two variables, 462–466
multiple definite, 455–456
multiplication–by–constant rule, 213, 

250–251, 331–332, 342–343
of natural exponential function, 282–288
negation rule, 213, 250–251
by partial fractions, 318–323
by parts, 313–317, 370–372
principle of linearity for, 311–313, 369–370
of polynomial function, 250–261
of reciprocal function, 289–295
repeated, in one variable, 455–458, 526–528
reversal rule, 221–224, 332–333
Riemann, 194
of sine function, 277–282, 355–356
with singularity in interval, 238–244
split–interval rule, 224–229, 334
substitution rule, 229–232, 334–337
sum rule, 213, 250–251, 331–332, 342–343
surface–area, 442–454
volume, 442–454, 458–466, 468–489

integration. See integral
inverse

of function, 91, 155, 377–378, 502–505
function, derivative of, 377–389
multiplicative, 91
of relation, 6–8

iterated integral in two variables, 462–466
intercept

definition of, 10
variable bounds in, 234–238
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JK
jerk, 132

L
law of the mean, 300–301, 363–364
leading coefficient, 32, 80, 143, 170
legitimate function, 5
Leibniz, Gottfried Wilhelm, 20
l’Hôpital principle

for expressions that tend toward 0/0, 404–408, 
511–513

for expressions that tend toward ±∞ / ±∞,
408–411, 512–515

for expressions that tend toward 0 · (+∞),
411–412, 513

for expressions that tend toward 0 · (−∞),
411–412, 514

for expressions that tend toward +∞ − (+∞),
412–413, 513

for expressions that tend toward +∞ · 0, 413, 513
for expressions that tend toward −∞ · 0, 413, 

513
for expressions that tend toward −∞ + (+∞),

413, 513–514
for expressions that tend toward +∞ + (−∞),

413, 513–514
for expressions that tend toward (−∞) − (−∞),

413, 513–514
limit

definition of, 20
of function, 21–22
of indeterminate expression, 404–415
of infinite sequence, 20–21
left-hand, 25–26
l’Hôpital principles for finding, 404–415
multiplication-by-constant rule for, 23
right-hand, 24
sum rule for, 22–23

linear equations, simultaneous, 322
linear function

antiderivative of basic, 208, 330
continuity of, 29–30
definition of, 9
derivative of basic, 40–44
graph of, 10–11
standard form for, 10

linearity, principle for integral, 311–313, 369–370
local

maximum, 31, 109–110, 138–139, 182
minimum, 31, 109–110, 138–139, 182

logarithm
base in, 118
function, derivative of, 118–124
function, higher derivatives of, 136
natural, 118–124

M
many-to-one, 5
mapping, 3–8
mathematical induction, 77–78, 170
mathematical volume vs. “real-world” volume, 

458, 528, 535
maximum

absolute, 30, 138–139, 182
local, 31, 109–110, 138–139, 182

mean
in normal distribution, 201–202
law of, 300–301, 363–364

minimum
absolute, 30, 138–139, 182
local, 31, 109–110, 138–139, 182

mixed partial derivative
for three-variable function, 438–440, 520–521
for two-variable function, 431–434, 519–521

monomial power function, 80
multiple definite integrals, 455–456
multiplication-by-constant rule

for derivatives, 84–87, 171
for integrals, 213, 250–251, 331–332, 342–343
for limits, 24
for partial derivatives, 422, 516
for second partials, 430, 518

multiplicative inverse, 91

N
natural exponential, derivative of, 114–118
natural exponential, integral of, 282–288
natural logarithm, derivative of, 118–124, 181
natural logarithm, higher derivatives of, 136
negation rule for integrals, 213, 250–251
negative area, 191–192, 326–327
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negative-integer power, 107–108
nested functions, 122
Newton, Isaac, 20
nondifferentiable function

characteristics of, 164–165
examples of, 63–69

nonlinear function
definition of, 12
graph of, 12–14

normal distribution, 201–202
nth-degree

basic function, function, 209–210, 
330–331

polynomial function, 79–82, 209–210
nth derivative, 133, 179

O
one-to-many, 5
ordered pair, 3–4
ordered quadruple, 419
ordered triple, 416
ordinary differential equation

elementary first-order, 490–493, 535–537
elementary second-order, 493–499, 537–540

P
parabola, 30–31, 141–144
paraboloid, 417–418
parent function, 116
partial derivative, 416–441, 515–518
partial fractions, in integral, 318–323
partial functions, 420
partial sum, in series, 33
parts, integration by, 313–317, 370–372
phase, in wave, 112
polynomial function

derivative of, 71–83
nth-degree, 79–82

positive area, 191–192, 326–327
power

function, monomial, 80
negative-integer, 107–108
rational-number, 107–108, 174
real-number, 124, 174, 210
reciprocal, 107–108
rule for derivatives, 71–75, 168–169

principal branch
of cosine function, 385, 503–504
of sine function, 382, 503

principle of linearity, 311–313
product

of functions, 87–88
of function and constant, 84–85
rule for derivatives, 87–90, 171–172

Pythagorean formula, 299–300
Pythagorean theorem, 450

Q
quadratic function

antiderivative of basic, 208–209
continuity of, 30–31
derivative of basic, 44–48
general form of, 30
graph of, 141–144

quotient
of functions, 95
rule for derivatives, 95–99, 173

R
radian, 108
range

of mapping, definition of, 3–4, 154
rational-number power, 107–108, 174
real-number power, 124, 174, 210
real-power rule for derivatives, 106–108, 

173–174
“real-world” volume vs. mathematical volume, 

458, 528, 535
reciprocal

function, 15–16, 289–295
power, 107–108
rule for derivatives, 90–94, 172–173

rectangular coordinates, definition of, 9
relation

definition of, 4, 154
inverse of, 6–8
two-way, 390–394

repeated integral in one variable, 455–458, 
526–528

restricted domain, 33
reversal rule for integrals, 221–224, 332–333
Riemann, Bernhard, 194, 326
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right circular cone
in Cartesian xyz-space, 444–445, 523–524
slant height, 445, 523
slant-surface area integral, 446–448, 523
volume integral, 446–448, 524

right circular cylinder
in Cartesian xyz-space, 442–443, 522–523
lateral-surface area integral, 442–443, 522
volume integral, 444–445, 522–523

rise over run, 10

S
second derivative, 126–130, 178
second partial derivative

for three-variable function, 434–438
for two-variable function, 428–431, 518–521

semi-axes
of ellipse, 392
of hyperbola, 393

series, 189–191
simultaneous linear equations, 322
sine function

derivative of, 109–111, 179–181
graph of, 147–151
higher derivatives of, 135, 179–181
integral of, 277–282, 355–356
inverse of, 113, 381–384
principal branch of, 382, 503
unit circle model, 108–110

singular curve, 270–274
singular function, 119, 270–274
singularity

definition of, 116
in function, 116, 119
in interval for integral, 238–244

slope
definition of, 9 
of line, 9
between two points, 35–38

speed, 128–130, 178–179, 198–200
sphere

in Cartesian xyz-space, 448–449, 525–526
geodesic on, 450
great circle on, 450
surface-area integral, 449–450, 452–453, 

525–526
volume integral, 451–453, 525–526

split-interval rule for integrals, 224–229, 334
stand-alone constant, 32, 79
standard deviation, 201–202
step function, 17–18
substitution rule for integrals, 229–232, 334–337
sum

of functions, 75–76
partial, in series, 33

sum rule
for derivatives, 75–79, 169–170
for integrals, 213, 250–251, 331–332, 342–343
for limits, 22–23
for partial derivatives, 422, 516
for second partials, 430, 518–519

summation notation, 189–191, 325–326
superscript −1, meanings of, 378, 502
surface-area integral, 442–454

T
tangent

function, 16–17, 123
line, definition of, 35–36, 162
plane, 419

third derivative, 130–133
three-space, Cartesian, 416, 471–472, 533
“times sign,” alternatives, 112–113
topographical map, 417
topography, 416–417
“total” continuity at a point, 27
trough, in wave function, 109–110
true function, 5
two-way derivative, 394–402
two-way relation, 390–394

U
unit circle

definition of, 19
equation of, 391
implicit differentiation of equation for, 394–396
model for sine and cosine, 108–110

unit hyperbola, 393

V
variable, dependent, 3, 154–155
variable, independent, 3, 154–155
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vertex of paraboloid, 417
vertical-line test, 8, 155, 157, 418–419, 515–516
volume

integral, 442–454, 458–466, 468–489
mathematical vs. “real–world,” 458, 484, 528

W
wave

cosine, 111–112
function, crest in, 109–110
function, trough in, 109–110

wave (Cont.)
phase, 112
sine, 109–111

XYZ
xyz-space, structure of 471–472, 533
y-intercept, definition of, 10
zero function

antiderivative of, 205–206, 329
definition of, 41

zeros of function, 142
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