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Introduction

alculus is the great Mount Everest of math. Most of the world is content to
just gaze upward at it in awe. But only a few brave souls attempt the ascent.

Or maybe not.

In recent years, calculus has become a required course not only for math,
engineering, and physics majors, but also for students of biology, economics,
psychology, nursing, and business. Law schools and MBA programs welcome
students who’ve taken calculus because it demonstrates discipline and clarity of
mind. High schools now have multiple math tracks that include calculus, from the
basic college prep track to the AP tracks that prepare students for the Advanced
Placement exam.

So perhaps calculus is more like a well-traveled Vermont mountain, with lots of
trails and camping spots, plus a big ski lodge on top. You may need some stamina
to conquer it, but with the right guide (this book, for example!), you’re not likely
to find yourself swallowed up by a snowstorm half a mile from the summit.

About This Book

You can learn calculus. That’s what this book is all about. In fact, as you read these
words, you may well already be a winner, having passed a course in Calculus I.
If so, then congratulations and a nice pat on the back are in order.

Having said that, I want to discuss a few rumors you may have heard about
Calculus II:

¥ Calculus Il'is harder than Calculus 1.
¥ Calculus Il is harder, even, than either Calculus Il or Differential Equations.

¥ Calculus Il is more frightening than having your home invaded by zombies in
the middle of the night and will result in emotional trauma requiring years of
costly psychotherapy to heal.
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Now, I admit that Calculus II is harder than Calculus I. Also, I may as well tell you
that many — but not all — math students find it to be harder than the two semes-
ters of math that follow. (Speaking personally, I found Calc II to be easier than
Differential Equations.) But I’'m holding my ground that the long-term psycho-
logical effects of a zombie attack far outweigh those awaiting you in any one-
semester math course.

The two main topics of Calculus II are integration and infinite series. Integration is
the inverse of differentiation, which you study in Calculus I. (For practical pur-
poses, integration is a method for finding the area of unusual geometric shapes.)
An infinite series is a sum of numbers that goes on forever, like1+2+3+...or
1 1 1

Sttt Roughly speaking, most teachers focus on integration for the first

two-thirds of the semester and infinite series for the last third.

This book gives you a solid introduction to what’s covered in a college course in
Calculus II. You can use it either for self-study or while enrolled in a Calculus II
course.

So feel free to jump around. Whenever I cover a topic that requires information
from earlier in the book, I refer you to that section in case you want to refresh
yourself on the basics.

Here are two pieces of advice for math students (remember them as you read the
book):

3 Study a little every day. | know that students face a great temptation to let
a book sit on the shelf until the night before an assignment is due. This is a
particularly poor approach for Calc Il. Math, like water, tends to seep in slowly
and swamp the unwary!

So, when you receive a homework assignment, read over every problem

as soon as you can and try to solve the easy ones. Go back to the harder
problems every day, even if it's just to reread and think about them. You'll
probably find that over time, even the most opaque problem starts to make
sense.

3 Use practice problems for practice. After you read through an example and
think you understand it, copy the problem down on paper, close the book,
and try to work it through. If you can get through it from beginning to end,
you're ready to move on. If not, go ahead and peek, but then try solving the
problem later without peeking. (Remember, on exams, no peeking is allowed!)

Calculus Il For Dummies



Conventions Used in This Book

Throughout the book, I use the following conventions:

¥ ltalicized text highlights new words and defined terms.

3 Boldfaced text indicates keywords in bulleted lists and the action parts of
numbered steps.

3 Monofont text highlights web addresses.

¥ Angles are measured in radians rather than degrees, unless | specifically state
otherwise. (See Chapter 2 for a discussion about the advantages of using
radians for measuring angles.)

What You're Not to Read

All authors believe that each word they write is pure gold, but you don’t have to
read every word in this book unless you really want to. You can skip over sidebars
(those gray shaded boxes) where I go off on a tangent, unless you find that tan-
gent interesting. Also feel free to pass by paragraphs labeled with the Technical
Stuff icon.

If you’re not taking a class where you’ll be tested and graded, you can skip para-
graphs labeled with the Tip icon and jump over extended step-by-step examples.
However, if you’re taking a class, read this material carefully and practice working
through examples on your own.

Foolish Assumptions

Not surprisingly, a lot of Calculus II builds on topics introduced in Calculus I and
Pre-Calculus. So here are the foolish assumptions I make about you as you begin
to read this book:

¥ Ifyou're a student in a Calculus Il course, | assume that you passed Calculus I.
(Even if you got a D-minus, your Calc | professor and | agree that you're
good to gol)

¥ If you're studying on your own, | assume that you're at least passably familiar
with some of the basics of Calculus I.

Introduction 3



I expect that you know some things from Calculus I, Algebra, and even Pre-
Algebra, but I don’t throw you in the deep end of the pool and expect you to swim
or drown. Chapter 2 contains a ton of useful Algebra and Pre-Algebra tidbits that
you may have missed the first time around. And in Chapter 3, I give you a review
of the most important topics from Calculus I that you’re sure to need in Calculus
II. Furthermore, throughout the book, whenever I introduce a topic that calls for
previous knowledge, I point you to an earlier chapter or section so you can get a
refresher.

Icons Used in This Book

TIP

©

REMEMBER

(= =)
T
TECHNICAL
STUFF

WARNING

EXAMPLE

Here are four useful icons to help you navigate your way through the book:

Tips are helpful hints that show you the easy way to get things done. Try them
out, especially if you’re taking a math course.

This icon points out key ideas that you need to know. Make sure you understand
these ideas before reading on.

This icon points out interesting trivia that you can read or skip over as you like.

Warnings flag common errors that you want to avoid. Get clear where these traps
are hiding so you don’t fall in.

Examples walk you through a particular math exercise designed to illustrate a
particular topic. Practice makes perfect!

Beyond the Book

4

In addition to the introduction you’re reading right now, this book comes with a
free, access-anywhere Cheat Sheet containing information worth remembering
about Calculus II. To get this Cheat Sheet, simply go to www.dummies . com and type
Calculus II For Dummies Cheat Sheet in the Search box.

Calculus Il For Dummies
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Where to Go from Here

You can use this book either for self-study or to help you survive and thrive in a
course in Calculus II.

If you’re taking a Calculus II course, you may be under pressure to complete a
homework assignment or study for an exam. In that case, feel free to skip right to
the topic that you need help with. Every section is self-contained, so you can jump
right in and use the book as a handy reference. And when I refer to information
that I discuss earlier in the book, I give you a brief review and a pointer to the
chapter or section where you can get more information if you need it.

If you’re studying on your own, I recommend that you begin with Chapter 1, where
I give you an overview of the entire book, and then read the chapters from begin-
ning to end. Jump over Chapters 2 and 3 if you feel confident about your grounding
in the math leading up to Calculus II. And, of course, if you’re dying to read about
a topic that’s later in the book, go for it! You can always drop back to an easier
chapter if you get lost.
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IN THIS PART ...

See Calculus Il as an ordered approach to finding the
area of unusual shapes on the xy-graph

Use the definite integral to clearly define an area
problem

Slice an irregularly shaped area into rectangles to
approximate area

Review the math you need from Pre-Algebra, Algebra,
Pre-Calculus, and Calculus |



IN THIS CHAPTER

» Measuring the area of shapes by
using classical and analytic geometry

» Using integration to frame the area
problem

» Approximating area using
Riemann sums

» Applying integration to more
complex problems

» Seeing how differential equations are
related to integrals

» Looking at sequences and series

Chapter 1

An Aerial View of the
Area Problem

umans have been measuring the area of shapes for thousands of years. One

practical use for this skill is measuring the area of a parcel of land.

Measuring the area of a square or a rectangle is simple, so land tends to get
divided into these shapes.

Discovering the area of a triangle, circle, or polygon is also relatively easy, but as
shapes get more unusual, measuring them gets harder. Although the Greeks were
familiar with the conic sections — parabolas, ellipses, and hyperbolas — they
couldn’t reliably measure shapes with edges based on these figures.

René Descartes’s invention of analytic geometry — studying lines and curves as
equations plotted on the xy-graph — brought great insight into the relationships
among the conic sections. But even analytic geometry didn’t answer the question
of how to measure the area inside a shape that includes a curve.

CHAPTER 1 An Aerial View of the Area Problem 9



This bit of mathematical history is interesting in its own right, but I tell the story
in order to give you, the reader, a sense of what drove those who came up with the
concepts that eventually got bundled together as part of a standard Calculus II
course. I start out by showing you how integral calculus (integration for short) was
developed from attempts to answer this basic question of measuring the area of
weird shapes, called the area problem. To do this, you will discover how to approx-
imate the area under a parabola on the xy-graph in ways that lead to an ordered
system of measuring the exact area under any function.

First, I frame the problem using a tool from calculus called the definite integral.
I show you how to use the definite integral to define the areas of shapes you
already know how to measure, such as circles, squares, and triangles.

With this introduction to the definite integral, you’re ready to look at the practi-
calities of measuring area. The key to approximating an area that you don’t know
how to measure is to slice it into shapes that you do know how to measure — for
example, rectangles. This process of slicing unruly shapes into nice, crisp
rectangles — called finding a Riemann sum — provides the basis for calculating
the exact value of a definite integral.

At the end of this chapter, I give you a glimpse into the more advanced topics in a
basic Calculus II course, such as finding volume of unusual solids, looking at some
basic differential equations, and understanding infinite series.

Checking Out the Area

10

Finding the area of certain basic shapes — squares, rectangles, triangles, and
circles — is easy using geometric formulas you typically learn in a geometry class.
But a reliable method for finding the exact area of shapes containing more esoteric
curves eluded mathematicians for centuries. In this section, I give you the basics
of how this problem, called the area problem, is formulated in terms of a new con-
cept, the definite integral.

The definite integral represents the area of a region bounded by the graph of a
function, the x-axis, and two vertical lines located at the bounds of integration.
Without getting too deep into the computational methods of integration, Igive
you the basics of how to state the area problem formally in terms of the definite
integral.

PART 1 Introduction to Integration



FIGURE 1-1:
Formulas for
the area of a

rectangle,
a triangle, and
acircle.

Comparing classical and analytic geometry

In classical geometry, you discover a variety of simple formulas for finding the area
of different shapes. For example, Figure 1-1 shows the formulas for the area of a
rectangle, a triangle, and a circle.

height =2
height=1
width =1 base =1
Area = width - height = 2 Area =w=% Area = - radius? =7

On the xy-graph, you can generalize the problem of finding area to measure the
area under any continuous function of x. To illustrate how this works, the shaded
region in Figure 1-2 shows the area under the function f(x) between the vertical
linesx =aand x = b.

The area problem is all about finding the area under a continuous function between

two constant values of x that are called the bounds of integration, usually denoted
by a and b. This problem is generalized as follows:

b
Area = [(x) dx

WISDOM OF THE ANCIENTS

Long before calculus was invented, the ancient Greek mathematician Archimedes used
his method of exhaustion to calculate the exact area of a segment of a parabola. He was
also the first mathematician to come up with an approximation for 7 (pi) within about a
0.2% margin of error.

Indian mathematicians also developed quadrature methods for some difficult shapes
before Europeans began their investigations in the 17th century.

These methods anticipated some of the methods of calculus. But before calculus, no
single theory could measure the area under arbitrary curves.
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FIGURE 1-2:
A typical area
problem.

REMEMBER

y=f(x)

PV (N1

b
Area=[ f(x) dx

In a sense, this formula for the shaded area isn’t much different from the geometric
formulas you already know. It’s just a formula, which means that if you plug in the
right numbers and calculate, you get the right answer.

For example, suppose you want to measure the area under the function x*between
x = 1and x = 5. (You can see what this area looks like by flipping a few pages for-
ward to Figure 1-5.) Here’s how you plug these values into the area formula shown
previously:

5
Area = _[x2 dx
1

The catch, however, is how exactly to calculate using this new symbol. As you may
have figured out, the answer is on the cover of this book: calculus. To be more
specific, integral calculus, or integration.

Most typical Calculus II courses taught at your friendly neighborhood college or
university focus on integration — the study of how to solve the area problem. So,
if what you’re studying starts to get confusing (and to be honest, you probably will
get confused somewhere along the way), try to relate what you’re doing to this
central question: “How does what I’'m working on help me find the area under a
function?”

Finding definite answers with
the definite integral

You may be surprised to find out that you’ve known how to integrate some func-
tions for years without even knowing it. (Yes, you can know something without
knowing that you know it.)
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FIGURE 1-3:

The rectangular
area under the
function f(x) = 2,
betweena =1
andb=4
equals 6.

For example, find the rectangular area under the function y = 2 between x = 1 and
X = 4, as shown in Figure 1-3.

n
Area =1I 2 dx

This is just a rectangle with a base of 3 and a height of 2, so its area is 6. But this
is also an area problem that can be stated in terms of integration as follows:

Area = f142 dx =6

As you can see, the function I’m integrating here is f(x) = 2. The bounds of inte-
gration are 1 and 4 (notice that the greater value goes on top). You already know
that the area is 6, so you can solve this calculus problem without resorting to any
scary or hairy methods. But you’re still integrating, so please pat yourself on the
back, because I can’t quite reach it from here.

The following expression is called a definite integral:
['2dx

For now, don’t spend too much time worrying about the deeper meaning behind
the _[ symbol or the dx (which you may fondly remember from your days spent

differentiating in Calculus I). Just think of J' and dx as notation placed around a
function — notation that means area.

What’s so definite about a definite integral? Two things, really:

¥ You definitely know the bounds of integration (in this case, 1 and 4). Their
presence distinguishes a definite integral from an indefinite integral, which

CHAPTER 1 An Aerial View of the Area Problem 13



14

(= =)
T
TECHNICAL
STUFF

FIGURE 1-4:
The triangular
area under the
functiony = x,
between x=0
and x=8
equals 32.

you find out about in Chapter 5. Definite integrals always include the bounds
of integration; indefinite integrals never include them.

¥ A definite integral definitely equals a number (assuming that its limits of
integration are also numbers). This number may be simple to find or diffi-
cult enough to require a room full of math professors scribbling away with
#2 pencils. But, at the end of the day, a number is just a number. And,
because a definite integral is a measurement of area, you should expect
the answer to be a number.

When the limits of integration aren’t numbers, a definite integral doesn’t neces-
sarily equal a number. For example, expressions such as k and 2k might be used as
limits of integration to stand in for constants. In such cases, the answer to a defi-
nite integral may include the letter k. Similarly, a definite integral whose limits of
integration are sin 6 and 2 sin 8 would most likely equal a trig expression that
includes 6. To sum up, because a definite integral represents an area, it always
equals a number — though you may or may not be able to compute this number.

As another example, find the triangular area under the function y = x, between
x = 0 and x = 8, as shown in Figure 1-4.

This time, the shape of the shaded area is a triangle with a base of 8 and a height
of 8, so its area is 32 (because the area of a triangle is half the base times the
height). But again, this is an area problem that can be stated in terms of integra-
tion as follows:

Area:_[:x dx =32

8
Area =0f x dx
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The function I’m integrating here is f(x) = x and the bounds of integration are 0
and 8. Again, you can evaluate this integral with methods from classical and
analytic geometry. And, again, the definite integral evaluates to a number, which
is the area below the function and above the x-axis between x = 0 and x = 8.

Slicing Things Up

FIGURE 1-5:
The area under
the function

y =x? between
x=1andx=5.

One good way of approaching a difficult task — from planning a wedding to
climbing Mount Everest — is to break it down into smaller and more manageable
pieces.

In this section, I show you the basics of how mathematician Bernhard Riemann
used this same type of approach to calculate the definite integral using his self-
named Riemann sums, which I introduce in the earlier section “Checking Out the
Area.” Throughout this section I use the example of the area under the function
y = x2, between x = 1 and x = 5. You can find this example in Figure 1-5.

Area = Lsxzdx

5
Area =II X2 dx

Untangling a hairy problem
using rectangles

The earlier section “Checking Out the Area” tells you how to write the definite
integral that represents the area of the shaded region in Figure 1-5:

Area = Lsxzdx
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FIGURE 1-6:

Area
approximated by
two rectangles.

Unfortunately, this definite integral — unlike those earlier in this chapter —
doesn’t respond to the methods of classical and analytic geometry that I use to
solve the earlier problems. (If it did, integrating would be much easier and this
book would be a lot thinner!)

Even though you can’t solve this definite integral directly (yet!), you can approxi-
mate it by slicing the shaded region into two pieces, as shown in Figure 1-6.

Obviously, the region that’s now shaded — it looks roughly like two steps going
up but leading nowhere — is less than the area that you’re trying to find. Fortu-
nately, these steps do lead someplace, because calculating the area under them is
fairly easy.

Each rectangle has a width of 2. The tops of the two rectangles cut across where
the function x2 meets x = 1 and x = 3, so their heights are 1 and 9, respectively. So
the total area of the two rectangles is 20, because

2(1)+2(9)=2(1+9)=2(10)=20

With this approximation of the area of the original shaded region, here’s the con-
clusion you can draw:

J.lsxzdx ~20

Granted, this is a ballpark approximation with a really big ballpark. But even a
lousy approximation is better than none at all. To get a better approximation, try
cutting the figure that you’re measuring into a few more slices, as shown in
Figure 1-7.
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FIGURE 1-7:

A closer
approximation,
where the area is
approximated by
four rectangles.

Again, this approximation is going to be less than the actual area that you’re seek-
ing. This time, each rectangle has a width of 1. And the tops of the four rectangles
cut across where the function x> meets x = 1, x = 2, x = 3, and x = 4, so their heights
are 1, 4, 9, and 16, respectively. So the total area of the four rectangles is 30,
because

TM+1@+19+1(16)=1(1+4+9+16)=1(30)=30

Therefore, here’s a second approximation of the shaded area that you’re seeking:
5 2
J'l x“dx = 30

Your intuition probably tells you that your second approximation is better than
your first, because slicing the rectangles more thinly allows them to cut in closer
to the function. You can verify this intuition by realizing that both 20 and 30 are
less than the actual area, so whatever this area turns out to be, 30 must be closer
to it.

You might imagine that by slicing the area into more rectangles (say 10, or 100, or
1,000,000), you’d get progressively better estimates. And, again, your intuition
would be correct: As the number of slices increases, the result approaches 41.3333....
In fact, after enough calculation, you may very well decide to write:

Ilsxzdx =413

This, in fact, is the correct answer. And it’s a good start on solving the area prob-
lem. But to verify it, you’ll need a more reliable overall method.
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Moving left, right, or center

In the previous section, I slice the area I wish to measure into four rectangles in
Figure 1-8.

FIGURE 1-8:
Approximating
area with left

rectangles.
As you can see, the heights of the four rectangles are determined by the value of
f(x) when x is equal to 1, 2, 3, and 4, respectively — that is, f(1), f(2), f(3), and f(4).
Notice that the upper-left corner of each rectangle touches the function and
determines the height of each rectangle. This process is called approximating area
with left rectangles.
However, you can also approximate area with right rectangles by drawing the rect-
angles as shown in Figure 1-9.
X
FIGURE 1-9: x=1 x=5
Approximating
area with right
rectangles.

In this case, the upper-right corner touches the function, so the heights of the
four rectangles are f(2), f(3), f(4), and f(5).
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Additionally, you can approximate area with midpoint rectangles by drawing the
rectangles as shown in Figure 1-10.

FIGURE 1-10:
Approximating x=1 x=5
area with
midpoint
rectangles.

This time, the midpoint of the top edge of each rectangle touches the function, so
the heights of the rectangles are f(1.5), f(2.5), f(3.5), and f(4.5).

Approximations like these are called Riemann sums. In Chapter 4, you work with a
variety of methods for calculating Riemann sums.

Defining the Indefinite

Riemann sums allow you to approximate and even calculate areas that you can’t
measure using classical or analytic geometry. The downside of this method, how-
ever, is that it’s quite complicated. In fact, at this point most students throw their
hands up and say, “There has to be a better way!”

The better way is called the indefinite integral. The indefinite integral looks a lot
like the definite integral. Compare for yourself:

Definite Integrals Indefinite Integrals
5

I x2dx szdx

1

J.;sinx dx jsinx dx

Il exdx Jexdx

-1
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Solving

Like the definite integral, the indefinite integral is a tool for measuring the area
under a function. A quick way to tell them apart is by noticing that the definite
integral includes bounds of integration and the indefinite integral omits them.

Indefinite integrals provide an easier and faster way of finding the area under a
curve. This method relies on finding a general algebraic solution to an indefinite
integral, and then plugging in the bounds of integration to this solution to calcu-
late a numerical value for the area. Chapter 5 gives you the details of how definite
and indefinite integrals are related.

Indefinite integrals also provide a convenient way to calculate definite integrals.
In fact, the indefinite integral is the inverse of the derivative, which you know
from Calculus I. (Don’t worry if you don’t remember all about the derivative —
Chapter 3 gives you a thorough review.) By inverse, I mean that the indefinite
integral of a function is really the antiderivative of that function. This connection
between integration and differentiation is more than just an odd little fact: It leads
to the Fundamental Theorem of Calculus (FTC).

For example, you know from Calculus I that the derivative of x? is 2x. So you should
expect that the antiderivative — that is, the indefinite integral — of 2x is x2. This
is fundamentally correct with one small tweak, as I explain in Chapter 5.

Seeing integration as anti-differentiation allows you to solve tons of integrals
without resorting to the Riemann sum formula for integration. But integration by
finding the antiderivative can still be sticky depending on the function that
you’re trying to integrate. Mathematicians have developed a wide variety of alge-
braic techniques for evaluating integrals. Some of these methods are variable sub-
stitution (see Chapter 8), integration by parts (see Chapter 9), trig substitution
(see Chapter 10), and integration by partial fractions (see Chapter 11).

Problems with Integration

After you understand how to describe an area problem using the definite integral
(Part 2 of this book), and how to calculate integrals (Parts 2, 3, and 4), you’re
ready to get into action solving a wide range of problems.

Some of these problems know their place and stay in two dimensions. Others rise
up and create a revolution in three dimensions. In this section, I give you a taste
of these types of problems, with an invitation to check out Part 5 of this book for
a deeper look.
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Three types of problems that you’re almost sure to find on an exam involve find-
ing the area between curves, the arc length of a curve, and the volume of revolu-
tion. I focus on these types of problems and many others in Chapters 12 and 13. For
now, here’s a preview.

We can work it out: Finding the
area between curves

When you know how the definite integral represents the area under a curve, find-
ing the area between curves isn’t too difficult. Just figure out how to break the
problem into several smaller versions of the basic area problem. For example, sup-
pose that you want to find the area between the function y = sin x and y = cos x,
from x = 0 to — that is, the shaded area A in Figure 1-11.

X
FIGURE 1-11: w

The area between y=
the function
y=sinxand

y =cos x, from
3 x=0

x=0tox:I.

In this case, integrating y = cos x allows you to find the total area A + B. And inte-
grating y = sin x gives you the area of B. So you can subtract A + B — B to find the
area of A.

For more on how to find an area between curves, flip to Chapter 12.

Walking the long and winding road

Measuring a segment of a straight line or even the arc length of a section of a
circle is relatively simple when you’re using classical and analytic geometry. But
how do you measure arc length along an unusual curve produced by a polynomial,
exponential, or trig function?

For example, what’s the distance from Point A to Point B along the curve shown
in Figure 1-12?
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FIGURE 1-12:
The distance
from Point A to
Point B along the
functiony =In x.

FIGURE 1-13:
A solid of
revolution
produced by
spinning the
function
y=2sinx
around the
X-axis.
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Once again, integration is your friend. In Chapter 12, I show you how integration
provides a formula that allows you to measure arc length.

You say you want a revolution

Calculus also allows you to find the volume of unusual solids. In most cases, cal-
culating volume involves a dimensional leap into muitivariable calculus, the topic of
Calculus III. But in a few situations, setting up an integral just right allows you to
calculate volume by integrating over a single variable — that is, by using the
methods you discover in Calculus II.

Among the trickiest of these problems involves the solid of revolution of a curve. In
such problems, you’re presented with a region under a curve. You imagine the
solid that results when you spin this region around the axis, and then you calcu-
late the volume of this solid as seen in Figure 1-13.
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Clearly, you need calculus to find the area of this region. Then you need more
calculus and a clear plan of attack to find the volume. I give you all this and more
in Chapter 13.

Differential Equations

Many Calculus II courses include a chapter on differential equations (DEs for short),
which are equations that include one or more derivatives. For example:

2dy _
Y e =cos2x

Here’s what this DE is saying in words: When you square y (which is a function of x)
and then multiply it by the derivative of y over x, the result is the cosine of 2x.

Your goal is to solve this DE by finding the original function y in terms of x. To do
this, treat the derivative Z_i/c as if it were a fraction. Thus, you can multiply both
sides of this equation by dx, separating the x and y terms onto opposite sides of the
equation:

y? dy = cos2x dx
Now, you can integrate both sides to solve the problem:

_.'y2 dy = jcost dx
1 5 1.
3y =5sin 2x+C

Don’t worry if you don’t understand this integration step. Just realize that now,

you can use basic algebra to complete the problem:

y? :%sin2x+ C

y= ﬂ%sian +C

This solution provides you with the function y in terms of x that satisfies the
original DE. All this and much more is revealed in Chapter 14.

Understanding Infinite Series

The last third of a typical Calculus II course — roughly five weeks — usually
focuses on the topic of infinite series. I cover this topic in detail in Part 6. Here’s
an overview of some of the ideas you find out about there.
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Distinguishing sequences and series

A sequence is a string of numbers in a determined order. For example:

2,4,6,8, 10, ...
1111
2'48 16
1111
2'3 45"

Sequences can be finite or infinite, but calculus deals well with the infinite, so it
should come as no surprise that calculus concerns itself only with infinite sequences.

You can turn an infinite sequence into an infinite series by changing the commas
into plus signs:

2+4+6+8+10+...

1+l+l+l+i+...

2 4 8 16

1 1+l 1
3 4

l+s+5

2 =+...

5

Sigma notation, which I discuss further in Chapter 2, is useful for expressing infi-
nite series more succinctly. For example, here’s how to express these three series
using sigma notation:

0

2n=2+4+6+8+10+...

n=1
i(l)n:1+l+l+l+i+
=\ 2 2 4 8 16
ool—1+l+l+l+l+
~n 2 3 4 5 7

Chapter 15 gets you started on sequences and series.

Evaluating series

Evaluating an infinite series is often possible. That is, you can find out what all
those numbers add up to. A helpful way to get a handle on some series is to create
a related sequence of partial sums — that is, a sequence that includes the first term,
the sum of the first two terms, the sum of the first three terms, and so forth. For
example, here’s a sequence of partial sums for the second series shown earlier:
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1=1

1 .1
1+§—1§

1 1 .3
1+§+Z_IZ

1 1 1 .7
1+§+Z+§_1§
1+l+l+l+i—1E

2 4 816 16

The resulting sequence of partial sums provides strong evidence of this
conclusion:

i(l)n_Hl 1+l+i+ =2
=\ 2 2 4 8 16 7

Chapter 15 focuses on understanding related forms of sequences and series.

Identifying convergent and divergent series

© n
When a series evaluates to a number — as does Z(%) — it’s called a convergent
n=0

series. When a series isn’t convergent, it’s called a divergent series.

Identifying whether a series is convergent or divergent isn’t always simple. For
example, take another look at the third series I introduce earlier in this section:

1 1 1 1

Z = al =?
;n 1+ gty
This is called the harmonic series, but can you guess by looking at it whether it
converges or diverges? (Before you begin adding fractions, let me warn you that
the partial sum of the first 10,000 numbers is approximately 10.)

An ongoing problem as you study infinite series is deciding whether a given series
is convergent or divergent. Chapter 16 gives you a slew of tests to help you find
out. Then, in Chapter 17, you focus on how power series — convergent series that
have many of the same properties as polynomials — can be “Taylored” to approx-
imate definite integrals.
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IN THIS CHAPTER

» Recalling basic operations with
fractions

» Making sense of exponents of 0,
negative numbers, and fractions

» Graphing common continuous
functions and their transformations

» Remembering trig identities
» Playing with polar coordinates

» Working with sigma summation
notation

Chapter 2

Forgotten but Not Gone:
Review of Algebra and
Pre-Calculus

emember Charles Dickens’s A Christmas Carol? You know, Scrooge and those

ghosts from the past. Math can be just like that story: All the stuff you

thought was dead and buried for years suddenly pays a spooky visit when
you least expect it.

This quick review is designed to save you from any unnecessary sleepless nights.
Before you proceed any further on your calculus quest, make sure that you’re on
good terms with the information in this chapter.
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First, I cover a few pre-algebra topics, plus some algebra: working with fractions,
factorials, exponents, and polynomials.

Next, I cover all the pre-calculus you forgot to remember: trigonometric ratios,
radian measure, trig identities, graphing common functions, and basic transfor-
mations of functions.

To finish up, you get a quick review of polar coordinates and sigma notation.
If you still feel stumped after you finish this chapter, I recommend that you pick

up a copy of Pre-Calculus For Dummies by Deborah Rumsey, PhD, for a more in-
depth review.

Quick Review of Pre-Algebra and Algebra

28

If you’re taking a Calculus II class, you’ve obviously done a lot of math already.
Even so, sometimes it may be difficult to remember some of the easier math you
learned a long time ago. In this section, I give you a quick review of a few
pre-algebra topics that you’ll need to use in Calculus II.

Working with fractions

If you haven’t worked with fractions for a while, you might find them confusing.
In this section, I give you a quick refresher on adding, subtracting, multiplying,
and dividing fractions. If you’re really rusty on the skills, check out my book Basic
Math and Pre-Algebra All-In-One For Dummies (Wiley 2022) for a more detailed
explanation.

Adding fractions

To add fractions with the same denominator, add the numerators and keep the
denominator the same:

Ul —
+
ull Do
Il
w1l w

As you can see, you simplify your answer whenever possible. However, notice that
in the last example, I simplify the fraction but I keep it as an improper fraction

instead of changing it to the mixed number 1% Improper fractions are much eas-

ier to work with than mixed numbers, and most calculus teachers won’t expect
you to convert them. (If yours does, I apologize on behalf of all math teachers!)
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TIP

To add a pair of fractions with different denominators, find a common denomina-
tor by increasing the terms of one or both fractions.

2,7 8.7 155
3 121 1212 4
4,3 28 15 43
5 73 35 35
1,5.3,10 13
46 12 12 12

A common operation when using the Power Rule for Differentiation (see
Chapter 3) is adding 1 to a fraction. Here’s a quick way to do this in your head:

1. Add the numerator and denominator together to find the numerator of the
answer.

2. Keep the denominator the same.

For example:

Subtracting fractions

In a similar way to addition, to subtract fractions with the same denominator,
subtract the numerators and keep the denominator the same:

n74.1
°3

1
8§ 8 8 2 6

R=JEN
|
ol N
©o|lu

As with addition, simplify your answer whenever possible. And when you subtract
a larger fraction from a smaller one, the answer is negative.

To subtract a pair of fractions with different denominators, find a common
denominator by increasing the terms of one or more fraction.

2.4 10 4 6 2
3 15 15 15 15 5
3.4 15 32 17
8 540 40 40
5.3.20 9 1
6 8 24 24 24
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TIP

TIP

Subtracting 1 from a fraction is also a common operation in calculus, used when
applying the Power Rule for Integration (see Chapter 7). Here’s a quick way to
do this:

1 . Subtract the numerator minus the denominator to find the numerator of the
answer.

2. Keep the denominator the same.

For example:

9 4-9-4.5 2 ,.25_3 A e el S )
T4 T4 5 5 - -

4 5 7 7 7

Multiplying fractions

In contrast to addition and subtraction, you don’t need to find a common denomi-
nator before multiplying fractions. Simply multiply numerators and then multiply
denominators, as follows:

2,2_8
5735

6.5 1 B_3
2578 255 g4 20

3

©|
W
%)

X

-

As you can see from the third example, in some cases you can make the multipli-
cation easier by cross-canceling common factors before you multiply.

If you cross-cancel all the factors before you multiply, the multiplication will be
relatively easy and you won’t have to simplify your result at the end.

Dividing fractions

As with multiplication, you don’t need to find a common denominator when
dividing fractions. To divide fractions, turn the division into multiplication by
applying the mnemonic Keep-Change-Flip:

1. Keep the first fraction as it is.

2. Change the division sign to a multiplication sign.

3. Flip the second fraction to its reciprocal (or inverse).

For example:

5.8.59.4%
779 7°87 56
3.5.3,1_3
17°747°5720
5.3 5,10 _5 Ms_25
6 10 6 3 g5 3 9
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WARNING

TIP

Before moving on, take a closer look at the third example. Notice that the first step
when dividing is always Keep-Change-Flip. This changes the problem to
multiplication.

Never cross-cancel common factors in a division problem before you change the
problem to multiplication.

After you change problem from division to multiplication, but before you multi-
ply, cross-cancel every common factor you can. This practice makes the numbers
smaller, so the calculation will be relatively easy and you won’t have to simplify
your result at the end.

Knowing the facts on factorials

The factorial of a positive integer, represented by an exclamation point (!), is that
number multiplied by every positive integer less than itself. For example:

5=5x4x3%x2x%x1=120
Notice that the factorial of every positive number equals that number multiplied
by the next-lowest factorial. For example:
6!=6(5!)
Generally speaking, then, the following equality is true:
n!'=n(n-1)!
This equality provides the rationale for the odd-looking convention that o! = 1:

1r=1(0!)
1=0!
When factorials show up in fractions (as they do when working with infinite

series, as you see in Chapters 16 and 17), you can usually do a lot of cancellation
that makes them simpler to work with. For example:

31 3x2xl 1 1
517 5x4x3x2x1 5x4 20

Even when a fraction includes factorials with variables, you can usually simplify
it. For example:

(n+1)! (n+1)n!
nl ~  n

n+1
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Factorials turn out to be very handy when you’re working with infinite series in
Part 6. And they’re indispensible for understanding Taylor and McLaurin series in
Chapter 17.

Polishing off polynomials

A polynomial is any function of the following form:
F(X)=a X" +a, 1 X" +a, ,x" 2 +...+ax +a,

Note that every term in a polynomial is x raised to the power of a nonnegative
integer, multiplied by an integer coefficient. Here are a few examples of
polynomials:

f(x)=3x*+2x-5 f(x)=—x2+x"+100x -9 f(x)=(x*+8)(x-6)

Note that in the last example, expanding the right side of the equation changes the
polynomial to a more recognizable form, called standard form:

F(x)=(x?+8)(x-6)=x>-6x"+8x—-48

When a polynomial is in standard form, its terms are arranged with the exponents
in descending order and the constant at the end.

Integrating standard-form polynomials is relatively easy, so a good first step
when working with a polynomial in any other form is to convert it to standard
form.

Powering through powers (exponents)

When you find a power of a number, you multiply one number (the base) by itself
the number of times indicated by another number (the exponent). For example:

4% —4x4x4=64 10 =10x10x10x10 =10,000
27 =2x2x2x2x2x2x2 =128

You can use this same rule to apply a positive integer exponent to bases that are
rational, irrational, or even complicated-looking algebraic expressions like the
following:
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In this section, you extend this understanding of powers to less intuitive expo-
nents, such as 0, negative numbers, and fractions.

Understanding zero and negative exponents

Exponents of 0 and negative numbers make sense when you observe the powers
of 2, as shown in Table 2-1:

TABLE 2-1 Positive and Negative Integer Exponents of 2
2—5 2—4 2—3 2—2 2—1 20 21 22 23 24 25
11 1 1 1 1 2 4 8 16 32
32 16 8 4 2

As you can see, each power of two is twice the value of the previous one, leading
to the following conclusions about exponents that aren’t positive integers:

a1 o 1
20 -1 1_ 2 2 _ 2
2 2 2 4
This insight generalizes to other nonpositive exponents, resulting in the five rules
shown in Table 2-2, . . ; which you’ll use a lot in Calculus II:
TABLE 2-2 Rules for Simplifying Exponents
Rule xixb =x0 X yab (x)P =x x= Lﬂ xb =(¥x)*
X X
x° 1 3 3
Algebra Example x3x® = x® = =x° (x5 =x" x'=— x5 =(%x)
X X
8 3
Arithmetic Example ~ 2°.2* =21 ;_6 =7 (10%)* =10 54 = 5i4 1287 = (1128’
=1,024 49 =1,000,000 B _2_g
T 625
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Understanding fractional exponents

. . 1
An alternative way to express a square root is as a power of

E:
1

x2=+x

To see why this rule makes sense, square both sides of this equation and then
simplify using rules you already know:

X=X

You can generalize this rule for other whole-number denominators as follows:

| —

1
=3x x4 =Yx x

| =

=Ux

X

Finally, here’s the most general form of the rule for fractional exponents,
expressed in two different but equivalent ways:

[SIE

SRS
o
Q

=(¥)° x

X

I
=

For convenience, I include the first version of this formula in Table 2-2. In prac-
tice, I find this version the more useful of the two, especially when working with
numbers rather than variables. For example:

5 5

8% =(¥8)’=2°=32 87 =85 = 4/32,768 =32

As you can see, the first version of the formula keeps the intermediate results
small enough to calculate in your head. But you may find both versions helpful in
your Calculus II course.

Expressing functions using exponents

In Calculus II, expressing functions as exponents becomes essential. Here are
some examples of how to apply the rules enumerated in the previous section to
some common functions.

First, remember that you can rewrite an exponent in the denominator of a rational
expression as its reciprocal by negating the exponent. For example:
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1 1 1 -2 1 -3
f =—= f(x)=—=x f(X)=—=x
()= =x ()= ()=
You can also rewrite any radical function using a fractional exponent. For example:

f(x)=\/)7:x% f(x):%?:x% f(x)Zé/;:x%

Combining these two rules allows you to rewrite more functions using negative
fractional exponents:

1

1 = 1 1 1 1
f(X)=—==x? f()=5==x7 f(x)=q==x1
X X X

Jx Ux Vx

More complex combinations of radicals and exponents can also be expressed as
fractional exponents:

)= =7 F) =4 = x5 F) =7 < x

Finally, combining these rules with the rule for negative exponents allows you to
rewrite even more complex-looking combinations of rational and radical
functions:

3 2 3

Keep these sorts of tricks in mind as you’re starting to integrate functions like
these in Chapters 6 and 7. Turning a weird-looking function into an exponent
allows you to use the Power Rule for Integration, which is almost as simple to use
as the Power Rule for Differentiation that you know from Calculus I.

Rewriting rational functions using exponents

Recall that a rational function is a polynomial divided by another polynomial. (See
the previous section for a quick review of polynomials.)

Another key algebra skill that you’ll use a lot in Calculus II is splitting a single
rational function into the sum of two or more rational functions.
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When a rational function has a one-term polynomial in the base, you can split
that function into a sum of rational functions and simplify each resulting term.
For example:

6x°+x2 -7
2x3

F(x) =

You can split this rational function into the following three-term expression:

6x®  x* T
2x®  2x® 2x®

Now, simplify these three terms by dividing the top exponent minus the bottom
exponent:

1 4 7. 3
=3x%+-x'-5x
2 2
Notice in each case how each pair of coefficients in the numerator and denomina-
tor is simplified to a single coefficient in each term. Although this result may look
more complicated, it’s a much more useful way to express the rational function
you started with, as you’ll see when you start integrating.

Simplifying rational expressions by factoring

Many students find factoring polynomials to be difficult, disagreeable, and down-
right depressing. I can sympathize, but unfortunately, factoring is often the only
way to get an ugly rational function to behave. Here, I give you a couple of exam-
ples of rational functions that can be tamed by factoring.

To begin, remember that factoring out the greatest common factor (GCF) of both
the numerator and denominator of a fraction can often be very helpful. For
example:

9x%+6x—15
6x°% +4x%-10x
To begin, factor out the GCF on top and on the bottom, and then cancel out a com-
mon factor:
_ 3(3x"+2x-5) 3
N 2x(3x%+2x-5) 2x

Now, rewrite this result as a negative exponent:
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This form is very easy to integrate, as you’ll see in Chapters 6 and 7.

Here’s an example that requires a bit more advanced factoring:

:2x3—6x2—8x+24
5x% —5x2 -30x

Whenever you decide that factoring might be helpful, always start with GCF
factoring:

2(x® -3x%-4x+12)
- 5x(x2—x—6)

Now, the polynomial in the denominator is a factorable quadratic:

2(x®-3x%-4x+12)
S5x(x+2)(x-3)

The polynomial in the numerator is a factorable cubic. Here, I factor it by grouping
in two steps, as you should recall from Algebra II, to remind you how to do it:

2 x*(x-3)-4(x-3)] 2(x*-4)(x-3)
T 5x(x+2)(x-3) " 5x(x+2)(x-3)
You can still factor x? —4 in the numerator as a difference of squares:

C2(x+2)(x-2)(x-3)
T 5x(x+2)(x-3)

At last, you’re ready to cancel factors:

_2(x-2)
~ 5x

In an Algebra class, you’d be done. But for Calculus II, you still need to take a few
more steps to break this result into a difference of exponential functions. I outline
these steps earlier in this chapter:

24 _2x 42 4,
"~ 5x 5x 5x 5 5

This version of the function you started with is very easy to integrate using the
Power Rule for Integration, as you’ll discover in Chapters 6 and 7.
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Pre-calculus covers a wide range of relatively advanced math topics dealing with
the most commonly used functions, such as polynomials, trig functions, expo-
nentials, and logarithmic functions. Calculus uses these functions frequently, so
you really need to know them in order to do well in calculus.

What’s also true is that a typical pre-calculus course includes a lot of material that
you really don’t need in order to do calculus.

In this section, I focus on the pre-calculus topics that you really, really need to
understand as you proceed from Calculus I into Calculus II.

Trigonometry

If you love trigonometry more than the first snow day of the school year, you’re in
for a treat: Calculus II is just as chock-full of trigonometry as was Calculus I.

If you’re not a fan, well, I’'m not going to sugar-coat it: Trig is simply unavoidable
in calculus of every variety.

In this section, I fill you in on some of the most important parts of trig that you’ll
need in order to do well in your Calculus II course.

Of course, I can’t cover everything you need to know about trig here. For more

detailed information on this topic, see Trigonometry For Dummies by Mary Jane
Sterling (Wiley).

Noting trig notation
Trig notation can sometimes be a little confusing, so here are some basics.
For starters, when you see the notation

2 cos x

remember that this means 2 (cos x). So to evaluate this function for x = , evaluate
the inner function cos x first, and then multiply the result by 2:

2 cosw=2x(-1)=-2

On the other hand, the notation

Cos 2x
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means cos (2x). For example, to evaluate this function for x = 0, evaluate the inner
function 2x first, and then take the cosine of the result:

cos (2-0)=cos 0=1
Finally (and make sure you understand this one!), the notation

cos? x

means
(cosx)? =(cosx)-(cosx)

In other words, to evaluate this function for x = , evaluate the inner function cos
x first, and then take the square of the result:

cos’z =(cosm)’*=(-1)* =1

Be careful when working with notation such as sin' x and cos ' x. This notation
denotes the inverse sine and cosine operations arcsinx and arccosx. It does NOT
stand in for the reciprocal functions csc x and sec x. In my humble opinion, inverse
trig functions are confusing enough without throwing in ambiguous notation. So,
throughout this book, I use the notation arcsinx and arccos x exclusively. But your
textbook and your teacher may have other ideas, so stay alert!

Getting clear on how to evaluate trig functions really pays off when you’re apply-
ing the Chain rule (which I discuss in Chapter 3) and when integrating trig func-
tions (which I focus on in Chapter 10).

Figuring the angles with radians

When you first discovered trigonometry, you probably used degrees because they
were familiar from geometry. Along the way, you were introduced to radians and
forced to do a bunch of conversions between degrees and radians, and then in the
next chapter you went back to using degrees.

Degrees are great for certain trig applications, such as land surveying. But for
math, radians are the right tool for the job. In contrast, degrees are awkward to

work with.

For example, consider the expression sin 1,260°. You probably can’t tell just from
looking at this expression that it evaluates to 0, because 1,260° is a multiple of 180°.
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You can tell immediately that the equivalent expression sin7x is a multiple of 7.
And, as an added bonus, when you work with radians, the numbers tend to be
smaller, and you don’t have to add the degree symbol (°).

I find that students tend to understand radians more and hate them less when
they can see how they arise naturally from stuff they already know from geome-
try. To begin, recall the formula for the circumference of a circle:

Circumference = 2rr

Now, consider that a unit circle has a radius of 1, so this equation simplifies further:
Circumference =27
You probably also know that a circle has 360° all the way around its circumference,
so you can substitute this value into the equation:
360°=2r
This equivalence provides the basis for converting degrees to radians. For exam-
ple, dividing both sides by 2 gives you the value of 180° in radians:
180° =7

T
180°
radians. For example, here’s how to convert 10° to radians:

From here, you can use the conversion factor to convert from degrees to

o. % _10m_ =&
10 180° 180 18

o

- 180 .
In a similar way, you can use to convert from radians to degrees. For exam-

ple, convert :i—g radians to degrees as follows:
3r 180° 540° o
07 10

Figure 2-1 shows you some common angles in both degrees and radians.

Radians are the basis of polar coordinates, which I discuss later in this chapter.

Identifying some important trig identities

I know that committing trig identities to memory registers on the Fun Meter
someplace between alphabetizing your spice rack and vacuuming the lint filter on
your dryer. But knowing a few important trig identities can be a lifesaver when
you’re lost out on the misty calculus trails, so I recommend that you take a few
along with you.
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FIGURE 2-1:
Some common
angles in degrees
and radians.
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For starters, here are the three reciprocal identities, which you probably know
already:

1
COSX =—— tanx =——
SCX secx cotx

sinx =
C

You also need these two important identities:

Ccos X
sinx

cotx =

I call these the Basic Five trig identities. By using them, you can express any trig
expression in terms of sines and cosines. Less obviously, you can also express any
trig expression in terms of tangents and secants, or in terms of cotangents and
cosecants. Both of these facts are useful in Chapter 6, when I discuss trig
integration.

Equally indispensable are the three Pythagorean Identities. Most students remem-
ber the first and forget about the other two, but you need to know them all:

sinx+cos?x=1
l+tan’x =sec?x

l+cot’x=csc’x
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Before moving on, take a moment to notice how these three identities break the
six trig functions into three pairings:

Sines and cosines

Tangents and secants

Cotangents and cosecants

You'll find that these three pairings arise frequently when working with trig
functions in Calculus II, so keep an eye on them.

For trig substitution (which I discuss in Chapter 10), you also need the two
half-angle identities for sines and cosines:

.92 1-cos2x

sin“x = ———
2

2 1+cos2x
Ccos“ x = 5

HOW TO AVOID AN IDENTITY CRISIS
Most students remember the first Pythagorean Identity without trouble:
sin? x + cos? x = 1

If you're worried you may forget the other two Pythagorean Identities just when you
need them most, don't despair. An easy way to remember them is to divide every term
in the first square identity by cos? x to produce one new equation and by sin? x to
produce another.

sin?x  cos?x 1

7. T 2. 2
Cos“X Ccos“x cos‘x
sin?x  cos’x 1
L Y
sin“x sin“x sin“x

Now simplify these equations using the Basic Five trig identities:

1+tan®x =sec?x

1+cot’x=cscx
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Finally, the double-angle identity for sines is also useful in Calculus II:
sin2x =2sinxcosx

Beyond these, if you have a little spare time, you can include these double-angle
identities for cosines and tangents in your ever-growing list of formulas to
memorize:

cos2x =cos?x —sin®x=2cos’x-1=1-2sin’ x
2tanx

tan2x = ———5—
1-tan“x

Asymptotes

An asymptote is any straight line on a graph that a function approaches but doesn’t
touch.

For example, in the graph of the exponential function in Figure 2-4, the x-axis is
a horizontal asymptote, because the function approaches but doesn’t touch this
line as x decreases.

Similarly, all four graphs in Figure 2-7 have vertical asymptotes represented by
dashed lines.

Another way to think of an asymptote is to see that it’s a limit as a value approaches
either « or —oo. For example, you can describe the asymptote in Figure 2-4 as
follows:

lim e* =0

X—>—0
I discuss asymptotes further when I focus on graphing parent functions in the
next section.

Graphing common parent functions

A parent function is the simplest version of a function, providing a template for
other functions that have similar features, collectively called a family of functions.

In pre-calculus, you work in-depth with a relatively short list of parent functions
and their related families. This background is important in Calculus II, so you
should be familiar with how certain common functions look and behave when
drawn on a graph.
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In this section, I show you the most common graphs of parent functions. These
functions are continuous, so they’re integrable at all real values of x.

Linear and polynomial functions

Figure 2-2 shows three simple linear functions: y=n, y=x,and y= Ix|

y=n y=x y=Ix|

FIGURE 2-2:
Graphs of two
linear functions
y=nandy=xand X X X
the absolute
value function

y=lx|.
Figure 2-3 includes a few basic polynomial functions: y = x?, y = x*, and y = x*.
y y y
FIGURE 2-3:
Graphs of three 0 X 0 X 0 X
polynomial
functions, y=x%y
=x3, andy=x*

Exponential and logarithmic functions

Here are some exponential functions with whole number bases:
y=2
y=3
y=10

For every positive base, the exponential function

¥ Crosses the y-axisaty =1
¥ Explodes to infinity as x increases (that is, it has an unbounded y value)

3 Approaches y =0 as x decreases (that is, in the negative direction, the x-axis is

an asymptote)
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The most important exponential function is e*. See Figure 2-4 for a graph of this
function.

y
y=e*
4__/ 1
FIGURE 2-4: X
Graph of the
exponential

function y = e*.

The unique feature of this exponential function is that at every value of x, its slope
is ex. That is, this function is its own derivative (see Chapter 3 for more on

derivatives).

Another important function is the logarithmic function (also called the natural log
function). Figure 2-5 is a graph of the logarithmic function y = In x.

y=Inx

g

1

FIGURE 2-5:
Graph of the
logarithmic
functiony =Inx.

Notice that this function is the reflection of e* along the diagonal line y = x. So the
log function does the following:

¥ Crosses the x-axis atx =1

¥ Explodes to infinity as x increases (that is, it has an unbounded y value),
though more slowly than any exponential function

¥ Produces a y value that approaches - as x approaches 0 from the right (that is,

from the positive direction, the y-axis is an asymptote in which lim Inx = —o)
x—0"
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FIGURE 2-6:
Graphs of the trig
functions y = sin x

and y = cos x.

Furthermore, the domain of the log functions includes only positive values. That
is, inputting a nonpositive value to the log function is a big no-no, on par with
placing o in the denominator of a fraction or a negative value inside a square root.

For this reason, functions placed inside the log function often get “pretreated”
with the absolute value operator. For example:

y=In|x]|

Trigonometric functions

The two most important graphs of trig functions are the sine and cosine. See
Figure 2-6 for graphs of these functions.

AN W)
_ﬂv ,fvm m\y

S 11

Note that the x values of these two graphs are typically marked off in multiples of 7.
Each of these functions has a period of 2 — in other words, it repeats its values
after 27 units. And each has a maximum value of 1 and a minimum value of -1.

Remember that the sine function

¥ Crosses the origin

¥ Rises to avalue of 1 at%

¥ Crosses the x-axis at all multiples of i
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FIGURE 2-7:
Graphs of the trig
functions y = tan
X,y =cotx, y=sec
X, and y = csc x.

Remember that the cosine function

¥ Hasavalueof1Tatx=0
r
2

3n 57 7
¥ Crosses the x-axis, at % 7” Tﬂ Tﬂ and soon

3 Drops to a value of 0 at

The graphs of other trig functions are also worth knowing. Figure 2-7 shows
graphs of the trig functions y = tan x,y = cot x, y = sec x, and y = csc x.

1 y { 1 y ) 1
1 1 1 1 1
1 1y=tan x 1 y=cot x: 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
t t X t t t X
- 1 1 V4 1 - 1 1 3z 1
1 1 1 T T 1 T 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
I I 1 1 1
y=csc X

>

Transforming continuous functions

When you know how to graph the most common functions, you can transform
them by using a few simple tricks, as I show you in Table 2-3.

The vertical transformations are intuitive — that is, they take the function in the
direction that you’d probably expect. For example, adding a constant shifts the
function up and subtracting a constant shifts it down. Similarly, multiplying by a
constant greater than 1 results in a vertical stretch, and dividing by a constant
greater than 1 results in a vertical compression.
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TABLE 2-3 Five Vertical and Five Horizontal
Transformations of Functions

Axis Direction Transformation Example

y-axis (vertical) Shift up y=fx)+n y=e+1
Shift down y=fx)-n y=x3-2
Stretch y=nflx) y=5secx
Compress y= @ y= 311er
Reflect y=-fx) y=-(nx)

x-axis (horizontal) Shift right y=fix-n) y=e2
Shift left y=fix+n) y=(x+4)>
Stretch y= f(%) y= sec%
Compress y=finx) y =sin (mx)
Reflect y=f-%) y=ex

In contrast, the horizontal transformations are counterintuitive — that is, they
take the function in the direction that you probably wouldn’t expect. For example,
adding a constant shifts the function left and subtracting a constant shifts it right.
Similarly, multiplying by a constant greater than 1 results in a horizontal com-
pression, and dividing by a constant greater than 1 results in a horizontal stretch.

Polar coordinates

Polar coordinates are an alternative to the Cartesian coordinate system. As with
Cartesian coordinates, polar coordinates assign an ordered pair of values to every
point on the plane. Unlike Cartesian coordinates, however, these values aren’t (x, y),
but rather (r, 0).

¥ The value ris the distance to the origin.

¥ The value 6 is the angular distance from the polar axis, which corresponds to
the positive x-axis in Cartesian coordinates. (Angular distance is always
measured counterclockwise.)
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FIGURE 2-8:
Plotting

points in polar
coordinates.

Figure 2-8 shows how to plot points in polar coordinates. For example:

T
4
then travel in a circular arc

¥ To plot the point (3, ) travel 3 units from the origin on the polar axis, and
/a

4
), travel 4 units from the origin on the polar axis, and then

units (equivalent to 45°) counterclockwise.

5r
6
travel in a circular arc

¥ Toplot (4,

51
6
3
2

then travel in a circular arc 3777 units (equivalent to 270°) counterclockwise.

units (equivalent to 150°) counterclockwise.

3 To plot the point (2, ) travel 2 units from the origin on the polar axis, and

57
4 —_
(4: 6)

(e
\ 0,37 "

2

Polar coordinates allow you to plot certain shapes on the graph more simply than
Cartesian coordinates. For example, here’s the equation for a 3-unit circle cen-
tered at the origin in both Cartesian and polar coordinates:

x+y2:9 r=3

Some problems that would be difficult to solve when expressed in terms of Carte-
sian variables (x and y) become much simpler when expressed in terms of polar
variables (r and 0). To convert Cartesian variables to polar, use the following
formulas:

X =rcos6 y =rsinf
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To convert polar variables to Cartesian, use these formulas:
r:i\/xZ +y2 0 :arctan(%)

You work more with polar coordinates when doing trig substitution in
Chapter 10.

Summing up sigma notation

Mathematicians love sigma notation (>.) for two reasons. First, it provides a con-
venient way to express a long or even infinite series. But even more important, it
looks really cool and scary, which frightens people into revering mathematicians
and paying them more money.

However, when you get right down to it, 3. is just fancy notation for addition, and
even your little brother isn’t afraid of adding, so why should you be?

For example, suppose that you want to add the even numbers from 2 to 10. Of
course, you can write this expression and its solution this way:

2+4+6+8+10=30

Or you can write the same expression by using sigma notation:

5

>2n

n=1
Here, n is the index of summation — that is, the variable that you plug values into
and then add. Below the X, you’re given the starting value of n (1) and above it, the
ending value (5). So here’s how to expand the notation:

5
> 2n=2(1)+2(2)+2(3)+2(4)+2(5)=30
n=1
You can also use sigma notation to stand for the sum of an infinite number of

values — that is, an infinite series. For example, here’s how to add up all the posi-
tive square numbers:
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This compact expression can be expanded as follows:

=12422+32442+. ..

=1+4+9+16+...

This sum is, of course, infinite. But not all infinite series behave in this way. In
some cases, an infinite series equals a number. For example:

M)
n=0 2
This series expands and evaluates as follows:

1 1 1
l+s+>+=+...=2
totgtgt
When a series evaluates to a number, the series is convergent. When a series isn’t
convergent, it’s divergent. As you can see, expanding sigma notation is often an
important first step toward understanding a series and evaluating whether it con-
verges to a value or diverges infinitely.

You find out all about convergent and divergent series in Chapter 16.
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IN THIS CHAPTER

» Understanding and evaluating limits

» Seeing the relationship between a
derivative and a slope

» Differentiating with the Product and
Quotient rules

» Feeling confident with the Chain rule

» Evaluating indeterminate forms of
limits with L'H6pital’s rule

Chapter 3

Recent Memories:
Review of Calculus |

f you’re currently enrolled in a Calculus II course, I'm guessing you recently
completed Calculus I. Even so, you may feel, as many students do, that Calculus
I is kind of one big blur.

If so, this chapter is probably for you. Here, I condense down a semester’s worth
of information into a handful of bite-sized chunks that you can consume now or
as needed as Calculus II unfolds before you.

To begin, you review limits. I discuss how limits and functions are different and
give you a brief refresher on evaluating limits.

Next, I give you a review of derivatives, which is the central focus of Calculus I.
Recall that the derivative of a function allows you to calculate the slope of that
function on any point, provided that this point is differentiable — that is, provided
it has a definable slope.
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I also give you a refresher on the key methods for differentiating (finding the
derivative of) a variety of functions, such as the Power rule, the Sum rule, the
Constant Multiple rule, the Product rule, the Quotient rule, and the Chain rule.

At the end of the chapter, I discuss L’Hopital’s rule (sometimes spelled L’Hospital’s
rule), which is an important and useful way to evaluate limits. Depending on
where you are studying calculus, you may have already learned about L’Hopital’s
in Calculus I, or you may be facing it as part of your Calculus II class. Either way,
I cover the topic here.

For a more thorough review of these topics, check out Calculus For Dummies by
Mark Ryan (Wiley).

Knowing Your Limits

54

EXAMPLE

An important thread that runs through Calculus I is the concept of a limit. Limits
are also important in Calculus II. In this section, I give you a review of everything
you need to remember but may have forgotten about limits.

Telling functions and limits apart

A function provides a link between two variables: the independent variable
(usually x) and the dependent variable (usually y). A function tells you the value y
when x takes on a specific value.

For example, here’s a function:
y=x*
In this case, when x takes a value of 2, the value of y is 4.

In contrast, a limit tells you what happens to y as x approaches a certain number
without actually reaching it. For example, suppose that you’re working with the
function y = x> and want to know the limit of this function as x approaches 2. The
notation to express this idea is as follows:

lim x?

x—2

You can get a sense of what this limit equals by plugging successively closer
approximations of 2 into the function. (See Table 3-1.)
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TABLE 3-1
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m
=
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m
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EXAMPLE

@

REMEMBER

(= =)
T
TECHNICAL
STUFF

€)

EXAMPLE

Approximating lim x?

X 1.7 1.8 1.9 1.99 1.999 1.9999

y 2.89 3.24 3.61 3.9601 3.996001 3.99960001

This table provides strong evidence that the limit evaluates to 4. That is:

lim x* =4

x—2
Remember that this limit tells you nothing about what the function actually equals
when x = 2, or even whether the function exists at that point. It tells you only that
as x approaches 2, the value of the function gets closer and closer to 4. In this case,
because the function and the limit are equal, the function is continuous at this
point.

Evaluating limits

Evaluating a limit means either finding the value of the limit or showing that the
limit does not exist (abbreviated DNE).

You can evaluate many limits by replacing the limit variable with the number that
it approaches. For example:

416
x>42x 2.4 8

Sometimes this replacement shows you that a limit doesn’t exist. For example:

lim x =o does not exist

X —>00

When you find that a limit explodes to either « or —e, the limit does not exist.

Technically speaking, using an equals sign to indicate that a limit “equals”
c Or —e is mathematically sketchy, because infinity is not a value that can be
placed in an equation in this way. Most math teachers, however, will allow this

type of description of what’s happening with a limit.

Some replacements lead to apparently untenable situations, such as division by
zero. For example:

eX
Evaluate lim—.
x>0 X
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REMEMBER

To begin, plug in o for x:

This looks like a dead end, because division by zero is undefined. But, in fact, you
can actually get an answer to this problem. Remember that this limit tells you
nothing about what happens when x actually equals 0, only what happens as x
approaches 0: The denominator shrinks toward 0, while the numerator never falls
below 1, so the value fraction becomes indefinitely large. Therefore, the limit does
not exist, so here’s the answer to the problem:

lim€— DNE
x—>0 X

Here’s another example:

. 1,000,000 1,000,000
lim =

X—00 X 0

This is another apparent dead end, because « isn’t really a number, so how can it
be the denominator of a fraction? Again, the limit saves the day. It doesn’t tell you
what happens when x actually equals « (if such a thing were possible), only what
happens as x approaches «. In this case, the denominator becomes indefinitely
large while the numerator remains constant. So

.1,000,000
lim———— =

X—o© X

0
For quick reference, here are four limits that sometimes confuse the unwary:

lim™ =0 lim® DNE lim> DNE lim% =0
x—0 x>0X x> R XonX

In each case, k stands for a non-zero constant. Make sure you understand why

each limit is evaluated as it is (or shown not to exist):

Some limits are more difficult to evaluate because they’re one of several indeter-
minate forms. A good way to solve them is to use L’Hopital’s rule, which I discuss
in detail at the end of this chapter.

If you need more background in limits, refer to Calculus For Dummies by Mark Ryan
(Wiley).
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Hitting the Slopes with Derivatives

FIGURE 3-1:
Comparing a
graph of the

function y = x2
with its derivative
function y’ = 2x.

The derivative at a given point on a function is the slope of the tangent line to that
function at that point. The derivative of a function provides a “slope map” of that
function.

A good way to compare a function with its derivative is by lining them up verti-
cally. (See Figure 3-1 for an example.)

Looking at the top graph, you can see that when x = 0, the slope of the function
y = x2is 0. The bottom graph verifies this because at x = 0, the derivative function
y = 2x is also 0.

You probably can’t tell exactly what the slope of the top graph is at x = —1, although
you can see that it’s negative. To find out, look at the bottom graph and notice that
at x = —1, the derivative function equals -2, so -2 is also the slope of the top graph
at this point. Similarly, the derivative function tells you the slope at every point on
the original function.
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EXAMPLE

EXAMPLE

Referring to the limit formula
for derivatives

In Calculus I, you develop two formulas for the derivative of a function. These
formulas are both based on limits, and they’re both equally valid:

f(x+h)—f(x) F(x) = lim LX) =1 (@)

f (x):}}I)I% h x—a X—a

You probably won’t need to refer to these formulas much as you study Calculus II.
Still, please keep in mind that the official definition of a function’s derivative is
always cast in terms of a limit.

For a more detailed look at how these formulas are developed, see Calculus For
Dummies by Mark Ryan (Wiley).

Knowing two notations for derivatives

Students often find the notation for derivatives confusing. To make things
simple, think of this notation as a unary operator that works in a similar way to a
minus sign.

A minus sign attaches to the front of an expression, changing the value of that
expression to its negative. For example:

(> +4x-5)=-x2-4x+5

Similarly, the notation % attaches to the front of an expression, changing the

value of that expression to its derivative. Evaluating the effect of this notation on
the expression is called differentiation, which also produces a new but equivalent
expression.

For example:

é%(x2+4x—5):2x+4

This basic notation remains the same even when an expression is recast as a
function.

For example, differentate the function y = f(x) = x> + 4x — 5 as follows:

dy _d pn_
dx —dxf(x)—2x+4
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The notation d_y’ which means “the change in y as x changes,” was first used by
dx

Gottfried Leibniz, one of the two inventors of calculus (the other inventor was

Isaac Newton). An advantage of Leibniz notation is that it explicitly tells you the

variable over which you’re differentiating — in this case, x. When this information

is easily understood in context, a shorter notation is also available:
y=fx)=2x+4

You should be comfortable with both of these forms of notation as you move for-
ward into Calculus II. I use them interchangeably throughout this book.

Understanding Differentiation

Differentiation — the calculation of derivatives — is the central topic of Calculus I
and makes an encore appearance in Calculus II.

In this section, I give you a refresher on some of the key topics of differentiation.
I also include the 17 need-to-know derivatives in this chapter. And if you’re shaky
on the Chain rule, I offer a clear explanation that gets you up to speed.

Memorizing key derivatives

The derivative of any constant is always 0:

d

EGZO

The derivative of the variable by which you’re differentiating (in most cases, x)
is1:

d
ax—l

Here are three more derivatives that are important to remember:

iex =e* ilrlx—l ia" =a*Ina
dx dx T x dx

You need to know each of these derivatives as you move on in your study of
calculus.
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Derivatives of the trig functions

The derivatives of the six trig functions are as follows:

d . d 9 d
—sinx =cosx —tanx =sec”x —secx =secxtanx
dx dx dx
d . d 2 d
——cosx =-sinx —cotx=-csc“x ——CSCXx =—cscxcotx
dx dx dx

You need to know all of these by heart.

Derivatives of the inverse trig functions

Two notations are commonly used for inverse trig functions. One is the addition
of the power of —1 to the function: sin-?, cos-?, and so forth. The second is the
addition of arc to the function: arcsin, arccos, and so forth. They both mean the
same thing, but I prefer the arc notation, because it’s less likely to be mistaken for
an exponent.

I know that asking you to memorize these functions seems like a cruel joke. But
you really need them when you get to trig substitution in Chapter 10, so at least
have a look-see:

iB.I’CSiI'l.X' = 1 —d arctanx = 1 iarcsecx = ;
dx _x2 dx 1+ x? dx et -1
d 1 d 1 d 1
—_— =— ——arccotx =— —_ =
dx arccosx - x2 dx 1+ x2 dx arccscx xm

arccosecant — are just negations of the three other functions, so when you get
down to memorizing these derivatives, your work is cut in half: just focus on the
TIP derivatives of the arcsin, arctan, and and arcsec functions.

‘ Notice that derivatives of the three “co” functions — arccosine, arccotangent, and

The Power rule

The Power rule tells you that to find the derivative of x raised to any power, you
bring down the exponent as the coefficient of x, and then subtract 1 from the
exponent and use this as your new exponent. Here’s the general form:

d n n-1
—x"=nx
dx

Here are a few examples:

d 2 a 3 _q. 2 a1 _ 9
ax =2x dxx =3x dxx =10x

60  PART 1 Introduction to Integration



EXAMPLE

When the function that you’re differentiating already has a coefficient, multiply
the exponent by this coefficient. For example:
d d

4_g.3 a6 _ 5
dx2x =8x dx?x 42x

4421 _ 400x*
dx

The Power rule also extends to negative exponents, which allows you to differen-

tiate many fractions. For example, to differentiate %, rewrite it in its equivalent
form x ' and then use the Power rule:

d1_d a1
dx x dx~ X2

As another example, here’s how you differentiate LS:
X

d1l d 6 5
———=——Xx"=-5x"=-"
dx xs dx x6
The Power rule also extends to fractional exponents, which allows you to differ-
entiate square roots and other roots:
dy— d 3 1 -2
P
For most teachers, this is a good final answer. However, an optional step that
some teachers may insist on is to change the exponential notation back to root
notation:

1

33x?

The Sum rule

In textbooks, the Sum rule is often phrased like this: The derivative of the sum of
functions equals the sum of the derivatives of those functions. Here’s the math-
ematical translation:

L1100 + g0 = 700+ g(o)

Simply put, the Sum rule tells you that differentiating expressions term by term is
okay.

For example, suppose you want to evaluate the following:

%(sinx-rx4 —lnx)
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EXAMPLE

TIP

The expression that you’re differentiating has three terms, so by using the Sum
rule, you can break the expression into three separate derivatives and solve them
separately:

= isinx+ix4 —ilnx =cosx +4x3 —l
T dx dx dx a X

As you can see, the Sum rule also applies to expressions of more than two terms.
It also applies regardless of whether the term is positive or negative. (Some books
call this variation the Difference rule, but you get the idea.)

The Constant Multiple rule

A typical textbook gives you this sort of definition for the Constant Multiple rule:
The derivative of a constant multiplied by a function equals the product of that
constant and the derivative of that function. Check out the mathematical
translation:

d d
anf(x)fnaf(x)

In plain English, this rule tells you that moving a constant multiple — that is, a
coefficient — outside of a derivative before you differentiate is okay.

For example:

d
EStanx

To solve this, move the 5 outside the derivative, and then differentiate:

= Sitanx =5sec’x
dx

The Product rule

The derivative of the product of two functions f(x) and g(x) is equal to the deriva-
tive of f(x) multiplied by g(x) plus the derivative of g(x) multiplied by f(x). That is:

L1 800 = A1) 800+ () ()

Practice saying the Product rule like this: “The derivative of the first times the
second plus the derivative of the second times the first.” This encapsulates the
Product rule and sets you up to remember the Quotient rule. (See the next
section.)
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For example, suppose that you want to differentiate e* sin x. Start by breaking the
problem out as follows:

EXAMPLE

ie"sinx— iex sinx + isinx e
dx “ladx dx

Now you can evaluate both derivatives without much confusion:
=eX-sinx+cosx - e
You can clean this up a bit as follows:

=eX(sin x + cos x)

The Quotient rule

Here’s what the Quotient rule looks like:

d d
d (£ g 0800 -5 8(0) F() .
dx ( g(x) j B g(x)? provided g(x) #0

Practice saying the Quotient rule like this: “The derivative of the top times the

bottom minus the derivative of the bottom times the top, over the bottom squared.”
This is similar enough to the Product rule that you can remember it.

TIP
For example, suppose that you want to differentiate the following:
d x'
EXAMPLE dx | tanx

As you do with the Product rule example in the preceding section, start by break-
ing the problem out as follows:

dx dx
tan®x

(ix4 ) -tanx —(itatnx)-x4

Now evaluate the two derivatives:

_4x® -tanx -sec’x-x*

tan%x
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EXAMPLE

This answer is fine, but you can clean it up by using some algebra plus the Basic
Five trig identities from earlier in this chapter. (Don’t worry too much about these
steps unless your professor is particularly unforgiving.)

_4x*tanx sec’x-x*

tan®x tan®x
_4x3
tanx

1 cos®x
:4x3cotx—x4(—2 —
cos“ x/\ sin“x

—x*sec’xcot®x

=4x3cotx—x*cscx

:x3(4cotx—xcsc2x)

The Chain rule

I’m aware that the Chain rule is considered a major sticking point in Calculus I, so
I want to take a little time to review it.

The Chain rule allows you to differentiate nested functions — that is, functions
within functions. It places no limit on how deeply nested these functions are. In
this section, I show you an easy way to think about nested functions, and then I
show you how to apply the Chain rule simply.

Evaluating functions from the inside out

When you’re evaluating a nested function, you begin with the inner function and
move outward. For example:

f(X) = e
In this case, 2x is the inner function. To see why, suppose that you want to evalu-
ate f(x) for a given value of x. To keep things simple, say that x = 0. After plugging
in o for x, your first step is to evaluate the inner function, which I underline:
Step 1: e%(® = e°
Your next step is to evaluate the outer function:
Step2:e®=1
The terms inner function and outer function are determined by the order in which

the functions get evaluated. This is true no matter how deeply nested these func-
tions are. For example:
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TIP

EXAMPLE

3
2(x) = (InVe™ ")
Suppose that you want to evaluate g(x). To keep the numbers simple, this time let

x = 2. After plugging in 2 for x, here’s the order of evaluation from the inner func-
tion to the outer function:

Step 1: (ln\/eg(ﬂ)3 :(ln\/e—o)3
Step 2: (ln\/e_o)g =(nv1)?
Step 3: (Inv1)® = (In1)?

Step 4: (In1)3 = 03
Step5:03=0

The process of evaluation clearly lays out the five nested functions of g(x) from
inner to outer.

Differentiating functions from the outside in

In contrast to evaluation, differentiating a function using the Chain rule forces
you to begin with the outer function and move inward.

Here’s the basic Chain rule the way that you find it in textbooks:

1 (g0)] = S 1(g00) & g(0)

To differentiate nested functions using the Chain rule, write down the derivative
of the outer function, copying everything inside it, and multiply this result by the
derivative of the next function inward.

Memorize these words: “The derivative of the outside with respect to the inside
times the derivative of the inside.”

This explanation of the Chain rule may seem a bit confusing, but it’s a lot easier
to understand when you know how to find the outer function, which I explain in
the previous section, “Evaluating functions from the inside out.” A couple of
examples should help.

Suppose that you want to evaluate %sin 2x. The outer function is the sine portion,
so this is where you start:

d . d
astx —COSZX-EZX
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As you can see, I write down the derivative of the outside function (cosine), copy-
ing everything inside it, then multiply by the derivative of the inside function (2x).

To finish, you still need to find %Zx:

=cos2x-2

Rearranging this solution to make it more presentable gives you your final answer:

=2cos 2x

When you differentiate more than two nested functions, the Chain rule really lives
up to its name: As you break down the problem step by step, you string out a chain
of multiplied expressions.

For example, suppose that you want to differentiate sin3 e*. Keep in mind that the
notation sin3 e* really means (sin e¥)3. This rearrangement makes clear that the
outer function is the power of 3, so begin differentiating with this function using
the Power rule:

%(sine" )3 = 3(sine" )2 -%(sine")

Now you have a smaller derivative, %(sinex ), to evaluate. This time, the outer
function is the sine:

= 3(sine" )2 -cose” ~%ex

X

You’re almost there, with only one more derivative to go, %e :
=3(sine* )2 -cose* -e”

Again, rearranging your answer is customary:
=3e~ cos(e)sin?(e™)

Notice that for this final answer, I rewrote “sin®”

confusing) notation for powers of trig functions.

using the standard (though

Finding Limits Using L'Hopital’s Rule

L’Hopital’s rule is all about limits and derivatives, so it fits better with Calculus I
than Calculus II. But some colleges save this topic for Calculus II.

66  PART 1 Introduction to Integration



©

REMEMBER

EXAMPLE

So even though I’'m addressing this as a review topic, fear not: Here, I give you the
full story of L’Hopital’s rule, starting with how to pronounce L’Hopital (low-pee-
tahl). L’Hopital’s rule provides a method for evaluating certain indeterminate forms
of limits. First, I show you what an indeterminate form of a limit looks like, with
a list of all common indeterminate forms. Next, I show you how to use L’Hoépital’s
rule to evaluate some of these forms. And finally, I show you how to work with the
other indeterminate forms so that you can evaluate them.

Introducing L'Hopital’s rule

Suppose that you’re attempting to evaluate the limit of a function of the form

%. When replacing the limit variable with the number that it approaches results
in either % or %, L’Hopital’s rule tells you that the following equation
holds true: -

10 _ . P
Mg =g ()

Note that c can be any real number as well as « or —c.

As an example, suppose that you want to evaluate the following limit:

3

lim—
x->0SIn X
Replacing x with 0 in the function leads to the following result:

0 0

sin0 0

This is one of the two indeterminate forms that L’Ho6pital’s rule applies to, so you
can draw the following conclusion:

3\
.oxP . X

lim— = lim—- S
x-0sinx  x>0(sinx)

Next, evaluate the two derivatives:

3x?2
= l1m
x—>0COS X

Now use this new function to try another replacement of x with 0 and see what
happens:

3(0°) o

cosO 1
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WARNING

This time, the result is a determinate form, so you can evaluate the original limit
as follows:

3

lim——=
x—=0SINnXx

In some cases, you may need to apply L’Hopital’s rule more than once to get an
answer. For example:

X
. e
lim—
X%wx

Replacement of x with « results in the indeterminate form %, SO you can use
L’Hopital’s rule:
X X

. e .
lim — = lim
X0 y x—0 5y

4

In this case, the new function gives you the same indeterminate form, so use
L’Hopital’s rule again:
X

= lim
X—© 20.X'

3

Again, replacing x with « results in the indeterminate form %, but again you can
use L’Hopital’s rule. You can probably see where this example is going, so I
fast-forward to the end:

X X X

= lim =lim —— = lim =
X—>0 60X2 X0 120){ X—>0 120

When you apply L’Hopital’s rule repeatedly to a problem, make sure that every
step along the way results in one of the two indeterminate forms that the rule
applies to.

At last! The process finally yields a function with a determinate form:

e” o

120 120~

Therefore, the original limit doesn’t exist:

lim&. DNE

X—)wxs

Alternative indeterminate forms

As . . . *
L’Hopital’s rule applies only to the two indeterminate forms % and %
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TABLE 3-2

WARNING

But limits can result in a variety of other indeterminate forms for which L’Hépital’s
rule doesn’t hold. Table 3-2 is a list of the indeterminate forms that you’re most
likely to see.

Cases of Indeterminate Forms Where You Can’'t
Apply L'Hopital’s rule Directly

Case fx) g(x) Function Form
#1 0 ) fx) - gx) Indeterminate
#2 ) ) fx) - gx) Indeterminate
#3 0 0 fix)g® Indeterminate
oo 0
1 o

Because L’Hopital’s rule doesn’t hold for these indeterminate forms, applying the
rule directly gives you the wrong answer.

These indeterminate forms require special attention. In this section, I show you
how to rewrite these functions so you can then apply L’Hopital’s rule.

Case#1:0-

When f(x) = 0 and g(x) = «, the limit of f(x) - g(x) is the indeterminate form 0 - o,
which doesn’t allow you to use L'Hopital’s rule. To evaluate this limit, place the
reciprocal of g(x) in the denominator of the expression:

) g0 =160
8(0)

The limit of this equivalent function is the indeterminate form %, which allows

you to use L’Hopital’s rule. For example, suppose that you want to evaluate the
following limit:

lim xcot x
x—0"

Replacing x with 0 gives you the indeterminate form 0 - -, so rewrite the limit as

follows:

= lim X
x—0" ( 1 )
cotx
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This can be simplified a little by using the inverse trig identity for cot x:

im——
x—0*tanx

Now, replacing x with o gives you the indeterminate for 9, so you can apply
L’Hopital’s rule:

(x) . 1

= lim > = lim 5
x>0 (tanx) x>0"sec” x

At this point, you can evaluate the limit directly by replacing x with o:
1
_T_l

Therefore, the limit evaluates to 1.

Case #2: w0 - o

When f(x) = « and g(x) = «, the limit of f(x) — g(x) is the indeterminate form c — o,
which doesn’t allow you to use L’Hopital’s rule. To evaluate this limit, try to find
a common denominator that turns the subtraction into a fraction. For example:

lim (cotx —cscx)
x—0"

In this case, replacing x with 0 gives you the indeterminate form « — . A little
tweaking with the Basic Five trig identities (see Chapter 2) does the trick:

. Ccos X 1
x>0\ sinx  sinx

cosx—1
x>0+t Sinx

Now, replacing x with o gives you the indeterminate form 9, SO you can use

A 0
L’Hopital’s rule:
. (cosx-1)" .. -—sinx
x—0+  (sinx)’ 50" COSX

At last, you can evaluate the limit by directly replacing x with o.

=1=0

Therefore, the limit evaluates to 0.
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Case #3: Indeterminate powers

Case #3 comprises three distinct ways that the limit of f(x)9® can result in a form
of indeterminate power that doesn’t allow you to use L’Hopital’s rule:

¥ Whenfix)=0andg(x)=0
3 Whenfix)=-andg(x)=0
¥ Whenfix)=1and g(x) =

This indeterminate form 1= is easy to forget because it seems weird. After all, 1¥ =1
for every real number, so why should 1~ be any different? In this case, infinity
plays one of its many tricks on mathematics. You can find out more about some of
these tricks in Chapter 10.

For example, suppose that you want to evaluate the following limit:

lim x*
x—0

As it stands, this limit is of the indeterminate form 0°.

Fortunately, I can show you a trick to handle indeterminate powers. As with so
many things mathematical, mere mortals such as you and me (you and I?) prob-
ably wouldn’t discover this trick, short of being washed up on a desert island with
nothing to do but solve math problems and eat coconuts. However, somebody did
the hard work already. Remembering this recipe is a small price to pay:

1. setthelimit equal toy.

y=lim x*
x—0

2. Take the natural log of both sides, and then do some log rolling:
Iny =In }(ig(l) x*
Here are the two log-rolling steps:
First, roll the log inside the limit:
= }(11)1(1) Inx*

This step is valid because the limit of a log equals the log of a limit (I know,
those words veritably roll off the tongue).
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This recipe works with all three indeterminate forms that I talk about at the
beginning of this section. Just make sure that you keep tweaking the limit until
you have one of the two forms that are compatible with L’Hopital’s rule.

Next, roll the exponent over the log:

=lim xInx
x—0

This step is also valid, by the laws of logarithms.

Evaluate this limit as | show you in “Case #1:0 - «.”

Begin by changing the limit to a determinate form:

= |

At last, you can apply L'Hopital's rule:

1
=lim (nx) =lim —%X—
x—0 (l), x—0 _L
X xz

Now evaluating the limit isn't too bad:

2
. X .

=lim ——=1lim —-x=0
x—0 X x—0

Wait! Remember that way back in Step 2, you set this limit equal to In y. So you

have one more step!

Solve for y.
Iny=0
y=1

Yes, this is your final answer, so liII(l) x*=1.
X
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Integrals



IN THIS PART ...

Approximate area using Riemann sums

See how the Fundamental Theorem of Calculus (FTC)
frames integration as the inverse of differentiation

Calculate definite integrals using anti-differentiation



IN THIS CHAPTER

» Calculating Riemann sums using left
and right rectangles

» Using midpoint rectangles to improve
Riemann sum approximation

» Approximating area using trapezoids

» Understanding and applying
Simpson's rule for finding
Riemann sums

Chapter 4

Approximating Area
with Riemann Sums

n Chapter 1, I show you how to use a definite integral to state an area problem

on the xy-graph in mathematically precise terms. You find that, in some cases,

you can calculate the exact value of a definite integral simply by applying a bit
of geometry.

In this chapter, I show you how to approximate the value of a definite integral by
slicing an area into a finite number of rectangles, and how to calculate the result-
ing Riemann sum.

If you’ve already taken a college-level Calculus 1 course, this material may be
review; otherwise, you may be discovering it for the first time. Either way, here
you review the three methods for finding a Riemann sum that I covered briefly in
Chapter 1. Next, I show you two more methods — the Trapezoid rule and Simp-
son’s rule — which both provide successively better estimates.

Riemann sums — by whatever method you choose — are the basis for Bernhard

Riemann’s formula for calculating the definite integral. I end the chapter with an
explanation of how this formula arises by applying a limit to a Riemann sum.
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Three Ways to Approximate
Area with Rectangles

FIGURE 4-1:

Approximating

8

J(xz +1)dx by

76

0
using four left
rectangles.

Slicing an irregular shape into rectangular partitions is the most common
approach to approximating its area. (See Chapter 1 for more details on this
approach.) In this section, I show you three different techniques for approximat-
ing area with rectangles.

Using left rectangles

In Chapter 1, I give you a first look at how to use left rectangles to approximate the
solution to an area problem.

For example, suppose that you want to approximate the shaded area in the left
side of Figure 4-1. Begin by defining it as follows:

(x?+1)dx ~w(hy +hy+hy+hy)

O t—y 0

In Figure 4-1, I also show you how to make this approximation by using four left
rectangles. To draw these four rectangles, start by dropping a vertical line from
the function to the x-axis at the left-hand bound of integration — that is, x = 0.
Then, slice the area into four regions of equal width by dropping three more verti-
cal lines from the function to the x-axis at x = 2, 4, and 6.

Next, at the four points where these lines cross the function, draw horizontal lines
from left to right to make the top edges of the four rectangles. The left and top edges
define the size and shape of each left rectangle.

y y
f fy:x2+1
374
\ 171
X 1 5-- T T T X
2 46 8
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FIGURE 4-2:
Approximating
3
[xdxby by using
0

six right
rectangles.

To measure the areas of these four rectangles, you need the width and height of
each. The width of each rectangle is obviously 2. The height and area of each is
determined by the value of the function at its left edge.

To approximate the shaded area, set up a Riemann sum to add up the areas of
these four rectangles:

~2(1+5+17+37)

Notice that to set up this Riemann sum, I place the common width of the rectan-
gles (2) outside the parentheses and then add up each of the heights (1+ 5+ 17 + 37)
separately inside them. This evaluation is very simple:

=2(60) =120

The result of this Riemann sum using four left rectangles provides an approxima-
tion of 120 for the value of the definite integral.

Using right rectangles

Using right rectangles to approximate the solution to an area problem is very sim-
ilar to using left rectangles. For example, suppose that you want to use six right
rectangles to approximate the shaded area in Figure 4-2.

To draw these rectangles, start by dropping a vertical line from the function to the
x-axis at the right-hand limit of integration — that is, x = 3. Next, drop five more
vertical lines from the function to the x-axis at x = 0.5, 1, 1.5, 2, and 2.5. Then, at
the six points where these lines cross the function, draw horizontal lines from right
to left to make the top edges of the six rectangles. The right and top edges define
the size and shape of each right rectangle.

y=vx
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FIGURE 4-3:

Approximating

[ sinx dx by using
0

three midpoint
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rectangles.

To approximate the shaded area, set up the Riemann sum as follows:
3
J'\/dezw(hl +hy+hy+hy+hs+hg)
0

To measure the areas of these six rectangles, you need the width and height of
each. Each rectangle’s width is 0.5. Its height and area are determined by the value
of the function at its right edge.

~0.5(0.707 +1+1.225+1.414 +1.581+1.732)
Now, crunch the numbers:
=0.5(7.659) = 3.8295

Thus, using a Riemann sum with six right rectangles produces an approximation
of 3.831 for the shaded area.

Finding a middle ground: The Midpoint rule

Both left and right rectangles give you a decent approximation of area. So it stands
to reason that slicing an area vertically and measuring the height of each rectan-
gle from the midpoint of each slice might give you a slightly better approximation
of area.

For example, suppose that you want to use midpoint rectangles to approximate
the shaded area in Figure 4-3.

y y
N
X X
ﬂ\‘ 1 %[2?” ”\*y:sinx

Begin by defining the definite integral as a Riemann sum with three rectangles:

J'sinx dx~w(h +hy+hy)
0
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To draw these three rectangles, start by drawing vertical lines that intersect both

n 2z
"33
T
)gv 57
horizontal lines through these three points to make the tops of the three
rectangles.

the function and the x-axis at x = 0 , and 7. Next, find where the midpoints

of these three regions — that is and 5% — intersect the function. Now draw

To measure these three rectangles, you need the width and height of each to com-
3

pute the area. The width of each rectangle is 3

, and the heights are l, 1, and %

To approximate the shaded area, add up the areas of the three rectangles:

n(1 1 2
~§(§+1+§)_?~2.0944

Two More Ways to Approximate Area

Although slicing a region into rectangles is the simplest way to approximate its
area, rectangles aren’t the only shape that you can use. For finding many areas,
other shapes can yield a better approximation in fewer slices.

In this section, I show you two common alternatives to rectangular slicing: the
Trapezoid rule (which, not surprisingly, uses trapezoids) and Simpson’s rule
(which uses rectangles topped with parabolas).

Feeling trapped? The Trapezoid rule

In case you feel restricted — dare I say boxed in? — by estimating areas with only
rectangles, you can get an even closer approximation by drawing partitions as
trapezoids instead of rectangles.

For example, suppose that you want to use six trapezoids to estimate this area:
3
'f 9— x’dx
-3

You can probably tell just by looking at the graph in Figure 4-4 that using trape-
zoids gives you a closer approximation than rectangles. In fact, the area of a trap-
ezoid drawn on any slice of a function will be the average of the areas of the left
and right rectangles drawn on that slice.

CHAPTER 4 Approximating Area with Riemann Sums 79



y y
9 9
AN
4 y=9-x
X i i X
FIGURE 4-4: 3 3-2 -1 12
Approximating
3
I 9—x%dx by
3
using six
trapezoids.

To draw these six trapezoids, first plot points along the function at x = -3, -2, -1,
0, 1, 2, and 3. Next, connect adjacent points to make the top edges of the trape-
zoids. Finally, draw vertical lines through these points.

& Two of the six “trapezoids” are actually triangles. This fact doesn’t affect the cal-
culation; just think of each triangle as a trapezoid with one height equal to zero.
WARNING . . . s
To find the area of these six trapezoids, use the formula for the area of a trapezoid

w(b, +by)
2

that you know from geometry: . In this case, however, the two bases —

that is, the parallel sides of the trapezoid — are the heights on the left and right
sides. As always, the width is easy to calculate — in this case, it’s 1. Table 4-1
shows the rest of the information for calculating the area of each trapezoid.

To approximate the shaded area, find the sum of the six areas of the trapezoids:

3
j9—x2dxz2.5+6.5+8.5+8.5+6.5+2.5:35
3

Don’t have a cow! Simpson'’s rule

You may recall from geometry that you can draw exactly one circle through any
three nonlinear points. You may not recall, however, that the same is true of
parabolas: Just three nonlinear points determine a parabola.
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TABLE 4-1 Approximating Area by Using Trapezoids

Trapezoid Width Left Height Right Height Area

#1 1 9-(-32=0 9-(-22=5 @ =25
#2 1 9-(-22=5 9-(-1)2=8 @:65
#3 1 9-(-12=8 9-(02=9 @:8.5
#4 1 9-(02=9 9-(12=8 1028 _g5
#5 1 9-(12=-8 9-(22=5 1615 g5
#6 1 9-(22=5 9-(32=0 160 _s5

Simpson’s rule relies on this geometric theorem. When using Simpson’s rule, you
use left and right endpoints as well as midpoints as these three points for each
slice.

1.

2.
3.

4.

Begin slicing the area that you want to approximate into strips that
intersect the function.

Mark the left endpoint, midpoint, and right endpoint of each strip.

Top each strip with the section of the parabola that passes through these
three points.

Add up the areas of these parabola-topped strips.

At first glance, Simpson’s rule seems a bit circular: You're trying to approximate
the area under a curve, but this method forces you to measure the area inside a
region that includes a curve. Fortunately, Thomas Simpson, who invented this
rule, is way ahead on this one. His method allows you to measure these strangely
shaped regions without too much difficulty.

Without further ado, here’s Simpson’s rule:

Given that n is an even number,

_Tf(x)dxz b_a[f(x0)+4f(x1)+2f(x2)+4f(x3)+...+4f(xn,3)+2f(xn,2)}

3n +4f(xn—1)+f(xn)
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What does it all mean? As with every approximation method you’ve encountered,
the key to Simpson’s rule is measuring the width and height of each of these
regions (with some adjustments):

3 The width is represented byb%a — but Simpson'’s rule adjusts this

b-a
value to ——
3n -

3 The heights are represented by f(x) taken at various values of x — but
Simpson'’s rule multiplies some of these by a coefficient of either 4 or 2.
(By the way, these choices of coefficients are based on the known result of
the area under a parabola — not just picked out of the air!)

The best way to show you how this rule works is with an example. Suppose that
you want to use Simpson’s rule to approximate the following:

Lo
X

——

First, divide the area that you want to approximate into an even number of
regions — say, eight — by drawing nine vertical lines from x = 1 to x = 5. Now top
these regions off with parabolas as I show you in Figure 4-5.

FIGURE 4-5: X

Approximating 1 5
5

1 .
_!';dx by using

Simpson'’s rule.

The width of each region is 0.5, so adjust this by dividing by 3:

b-a 1 5-1 :%.0,5z0.167

3n 3 8
Moving on to the heights, find f(x) when x = 1, 1.5, 2, . . ., 4.5, and 5. Adjust all these
values except the first and the last by multiplying by 4 or 2, alternately.
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Now apply Simpson’s rule as follows:
5
[Lax
| X
~0.167(1+2.668+1+1.6+0.666+1.16+0.5+0.888 +0.2)

.167(9.682)~1.617

So Simpson’s rule approximates the area of the shaded region in Figure 4-5 as
1.617. (By the way, the actual area to three decimal places is about 1.609 — so
Simpson’s rule provides a pretty good estimate.)

In fact, Simpson’s rule often provides an even better estimate than this example
e leads you to believe, because a lot of inaccuracy arises from rounding off decimals.
\J In this case, when you perform the calculations with enough precision, Simpson’s

tecunicaL  rule provides the correct area to three decimal places!
STUFF

Building the Riemann Sum Formula

Riemann sums are not only a clever numerical way to estimate the area under a
function. They also provide the basis for the Riemann sum formula, which is the
official definition of the definite integral:

[PFCx) dx :iﬂgb;af(xf)

This formula provides precise algebraic method for calculating the exact area
under a function as the sum of infinitely many smaller estimated areas. In this
section, I show you how this eye-glazing formula arises from one of the simplest
geometric formulas you know: Area = widthx height.

Approximating the definite integral with
the area formula for a rectangle

I start with the simple formula introduced earlier in this section:

Area=w(hi+h2+h3+...+ hn)

This is the Riemann sum that lies at the heart of the Riemann sum formula. From
here, the first step is simply to introduce the definite integral for area into the mix:

[PFCOdx ~w(hy +hy ..+ hy)
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As you can see, I changed the equals sign (=) to the symbol for “approximately
equals” (=). In other words, the equation has been demoted to an approximation.
This change is appropriate because the definite integral is the precise area inside
the specified bounds, which the area of the partitions merely approximates.

Widening your understanding of width

The next step is to replace the variable w, which stands for the width of each rec-
tangle, with an expression that’s more useful.

Remember that the limits of integration tell you the width of the area that you’re
trying to measure, with a as the smaller value and b as the greater value. So you
can write the width of the entire area quite simply as follows:

b-a

And when you divide this area into n rectangles, each rectangle has the following
width:

b-a
n

w =

Substituting this expression into the approximation results in the following:
b b-a
L F(x) dx~ == (hy+hy +...+hy)

As you can see, all I'm doing here is expressing the variable w in terms of a, b,
and n. That’s not only way more useful, but it also removes the unknown w from
the equation.

Limiting the margin of error

Recall that when approximating area, as n increases — that is, the more rectan-
gles you draw — your approximation gets better and better. In other words, as n
approaches infinity, the area of the rectangles approaches the area you’re trying
to find.

So you may not be surprised to find that when you express this approximation in
terms of a limit, you remove the margin of error and restore the approximation to

the status of an equation:

b . b-a
L FOx) dx = lim == (hy+hy ..+ hy )
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This limit simply states mathematically what makes intuitive sense: As n
approaches infinity, the area of all the rectangles approaches the exact area that
the definite integral represents.

That’s why I’ve put the equals sign back in its rightful place in the equation.

Summing things up with sigma notation

Sigma notation — the Greek symbol = used in equations — allows you to stream-
line equations that have long strings of numbers added together. Chapter 2 gives
you a review of sigma notation, so check it out if you need a refresher.

The expression h, + h, +. ..+ h, is a great candidate for sigma notation:
n
Dhi=h+hy+...+h,
i=1

So in the equation that you’re working with, you can make a simple substitution
as follows:

b-a
n

[[£Cx) dx = lim Z h,
Heightening the functionality of height

Remember that the variable h, represents the height of a single rectangle that
you’re measuring. (The sigma notation takes care of adding up these heights.) The
last step is to replace h;, with something more functional. And functional is the
operative word, because the function determines the height of each rectangle, so I
provisionally replace h; with f(x):

b . &b-a
L f(x) dx = lim ;Tf(x,-)

Finishing with the slack factor

I’m almost done, but there’s one final adjustment I need to make:

[PFCx) dx :gi_r)lggb;af(xf)
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The notation x; represents what I call a slack factor that’s present when calculating
Riemann sums: When estimating an area by dividing it into partitions, you don’t
have to use a single slicing method. Instead, you can use any combination you like
of Left Rectangles, Right Rectangles, and so forth. In fact, you don’t even have to
divide the area into partitions that all have the same width. Partitions of essen-
tially random widths are acceptable and don’t affect the calculation.

This slack factor comes about because the limit does its job of limiting the inac-
curacies that arise from using a variety of shapes to define a Riemann sum. As n
approaches infinity — that is, as the number of shapes increases, and the area of
each individual shape decreases — all of these inconsistencies are smoothed over.

This point is a little arcane because, in practice, when mathematicians use the
Riemann sum formula for a calculation, they generally stick to a single method for
drawing the partitions (Right Rectangles is a reliable favorite).
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IN THIS CHAPTER

» Seeing how the indefinite integral is
the inverse of the derivative

» Clarifying the differences between
definite and indefinite integrals

Chapter 5

There Must Be a Better
Way — Introducing the
Indefinite Integral

n Chapter 4, I discuss the Riemann sum formula, which provides the formal

definition for the definite integral. Although this formula can be used to

calculate the definite integral, it usually results in lengthy and difficult
calculations.

There must be a better way! And, indeed, there is.

In this chapter, I introduce you to the Fundamental Theorem of Calculus (FTC),
which provides the link between the slope of a curve (the derivative) and the area
under it (the integral). This connection provides a way to calculate definite inte-
grals without resorting to the Riemann sum formula. Instead, you use the FTC to
evaluate integrals as antiderivatives — that is, by understanding integration as
the inverse of differentiation.

This insight leads an important new concept: the indefinite integral. The indefinite

integral looks similar to the definite integral but provides the power to calculate
the values of infinitely many related definite integrals using anti-differentiation.
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Spoiler alert: Using indefinite integrals is the most common way you’ll evaluate
definite integrals — and, thus, solve area problems — throughout the remainder
of Calculus II. This chapter provides the bridge from what you’ve studied in Parts 1
and 2 of this book to what you’ll focus on in Parts 3, 4, and 5.

FTC2: The Saga Begins

88

The importance of the Fundamental Theorem of Calculus (FTC for short) can hardly
be overstated. It connects the two main branches of calculus — differentiation and
integration — showing that they’re inverse operations.

This insight seems to have originated with Isaac Barrow, a mathematician at
Cambridge University at the time that, by luck, Isaac Newton happened to be a
student there. (You kind of have to ask: What are the odds that a budding theoret-
ical scientist rivaled only by Albert Einstein would attend classes taught by prob-
ably the only person on the planet who fully understood what calculus could
become, and that they’d both have the same first name?)

Newton took Barrow’s insight and formulated a set of mathematical tools that he
called The Calculus, which he then employed in calculations related to his formula-
tion of physics. As with Facebook (originally The Facebook), eventually calculus
also dropped the The.

The FTC is actually two theorems — the Fundamental Theorems of Calculus 1and 2,
which are shortened to FTC1 and FTC2. Both are important and you need to under-
stand and be able to work with them. But in my humble opinion, FTC2 is the better
place to begin this understanding.

In this section, I introduce you to FTC2, which you’ll use throughout the rest of
Calculus II. It means that you’ll almost never need to rely on the Riemann sum
formula to calculate another integral, except once or perhaps twice on your final
exam. And for that, you should be grateful!

Later in the chapter, I show you the FTC1. I also walk you through the types of
related problems that you’ll typically be expected to solve using this theorem.

Introducing FTC2

Without further ado, here’s the Fundamental Theorem of Calculus 2 (FTC2):
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EXAMPLE

FIGURE 5-1:
The area

n
jsin x dx
0

Given that f’(x) is continuous on the closed interval [q, b],
b
[£Gdx = £(b) - F(a)

The mainspring of this equation is the connection between f and its derivative
function f’. To solve an integral, you need to be able to undo differentiation and
find the original function f.

Many math books use the following notation for the FTC:
b
If(x)dx =F(b)- F(a) where F’(x) =f(x)
Both notations are equally valid, but I find this version a bit less intuitive than the

version that I just gave you, which made it clear that integration and differentia-
tion are inverse operations.

Evaluating definite integrals using FTC2

FTC2 makes evaluating definite integrals a whole lot easier. For example, suppose
that you want to evaluate the following:

s
J.sinx dx
0

This is the shaded area shown in Figure 5-1. Note that you also worked with
this integral in Chapter 4, where, using the Midpoint rule, you approximated it to
be 2.0944.
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EXAMPLE

The FTC allows you to evaluate this definite integral by thinking about it in a
new way. First, notice the following connection between the two functions sin x
and —cos x:

j[69] fx)

-COoS X sin x

Because sin x is the derivative of —cos x, the FTC allows you to draw this
conclusion:

J'sinx dx =—cosr —(—cos0)
0

Now you can solve this problem using information you know from working with
the unit circle in trig:

— (D) -(-1)=1+1=2

So the exact (not approximate) shaded area in Figure 5-1 is 2. You found this value
quickly, without drawing a bunch of rectangles!

As another example, here’s an integral you’ve seen before:
4
_[xz dx
0

Begin by noticing that the following statement is true:

(1)
dx(3x )—x

Now use the FTC to write this equation:

[t 5(#)-5(0°)

At this point, the solution becomes a matter of arithmetic:

64 64
5 0=7%

In just three simple steps, the definite integral is solved without resorting to Rie-
mann sums!
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Your New Best Friend:
The Indefinite Integral

WARNING

The Fundamental Theorem of Calculus provides insight into the connection
between a function’s slope and the area underneath it — that is, between differ-
entiation and integration.

On a practical level, the FTC also gives you an easier way to integrate, without resort-
ing to the Riemann sum formula. This easier way is called anti-differentiation — in
other words, undoing differentiation. Anti-differentiation is the method that
you’ll use to integrate throughout the remainder of Calculus II. It leads quickly to
a new key concept: the indefinite integral.

In this section, I show you step by step how to use the indefinite integral to solve
definite integrals, and I introduce the important concept of signed area. To finish
the chapter, I make sure that you understand the important distinctions between
definite and indefinite integrals.

Introducing anti-differentiation

Integration without resorting to Riemann sums depends on undoing differentia-
tion (anti-differentiation). Earlier in this chapter, I calculate a few areas infor-
mally by reversing a few differentiation formulas that you know from Calculus I.
But anti-differentiation is so important that it deserves its own notation: the
indefinite integral.

An indefinite integral is simply the notation representing the inverse of the deriva-
tive function. Thus, the following statement is true of any integrable function:

% [£Cx) dx = F(x)

This statement simply tells you that if you integrate a function and then differen-
tiate the result, the process brings you back to the function you started with.

Be careful not to confuse the indefinite integral with the definite integral. For the
moment, notice that the indefinite integral has no limits of integration. Later in this
section, I outline the differences between these two types of integrals.
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REMEMBER

Here are a few examples that clarify this important implication of the FTC:
%J.sece’x dx =sec®x %J3x5exdx:3x5ex
iJ.lnlcos?x2 | dx=Inlcos7x?|
dx

The takeaway here is that when you first integrate and then differentiate any inte-
grable function (that is, a function that can be integrated — see Chapter 6 for a
look at this important concept), the result is the function you started with.

Watch what happens, however, when you reverse this process, differentiating first
and then integrating:
d

I(iseCBx) dx=sec’x+C I(—stex)dx:3xse"+6‘
dx dx

ji(lnlcos7x2 I)dx:lnlcos7x2 l+C
dx

To understand why this happens, I'll take a simpler example that you know how
to differentiate easily:

isir1x+1=cosx isinx7100:cosx isin)H—l,OOO,OOO:cosx
dx dx dx
As you already know from Calculus I, any constant differentiates to 0. So when-
ever you integrate, your final answer needs to account for the possible presence of
a constant that may have disappeared from the expression on the previous differ-
entiation step.

The formal solution of every indefinite integral is an antiderivative up to the
addition of a constant C, which is called the constant of integration. So just mechan-
ically attach + C whenever you evaluate an indefinite integral.

Solving area problems without the
Riemann sum formula

After you know how to solve an indefinite integral by using anti-differentiation
(as I show you in the previous section), you have at your disposal a useful method
for evaluating definite integrals. This announcement should come as a great relief,
especially after reading Chapter 4, where you see that the hairy Riemann sum
formula is the official definition of the definite integral.
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Here’s how you solve an area problem using indefinite integrals:

1.
2.

3.

Formulate the area problem as a definite integral (as | show you in Chapter 1).

Solve the definite integral as an indefinite integral evaluated between the given

limits of integration.

Plug the limits of integration into this expression and simplify to find the area.

This method is, in fact, the one that you’ll use for solving area problems for the
rest of Calculus II.

For example, suppose that you want to find the shaded area in Figure 5-2.

EXAMPLE

Y43

y=3cos x

FIGURE 5-2:
The shaded

ki3

2
area J' 3cosx dx
n

2

NIy
NIy

Here’s how you do it:

1.

Formulate the area problem as a definite integral:

You're getting good at this, right?

3cosx dx

—rol N

[NE

Solve this definite integral as an indefinite integral:

x=Z
=3sinx| 2,
X=X

2
In this step, | replace the integral with the expression 3 sin x, because

i.':‘osinx:3cosx.
dx
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| also introduce the notation | 7 . You can read it (from bottom to top) as
=3

“evaluated from x equals —% to x equals % This notation is commonly used

so you can show your teacher that you know how to integrate and postpone

worrying about the limits of integration until the next step.

3. Plug these limits of integration into the expression and simplify:

LT . n
= 331n§—351n(—§)

As you can see, this step comes straight from the FTC, subtracting f(b) - fla).
Now [ just simplify this expression to find the area:

=3-(-3)=6

So the area of the shaded region in Figure 5-2 equals 6.

NO C? NO PROBLEM!

You may wonder why the constant of integration C — which is so important when
you're evaluating an indefinite integral — gets dropped when you're evaluating a defi-
nite integral. This one is easy to explain.

Remember that every definite integral is expressed as the difference between a func-
tion evaluated at one point and the same function evaluated at another point. If this
function includes a constant C, one C cancels out the other.

L3

For example, take the definite integral jcosx dx. Technically speaking, this integral is
evaluated as follows:
sinx+C[,_$
=(sin%+C)—(sin0+ c)
1 1
=5+ C-0-C= 5

As you can clearly see, the two Cs cancel each other out, so there’s no harm in dropping
them at the beginning of the evaluation rather than at the end.
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REMEMBER

FIGURE 5-3:
Measuring
signed area on

N\a'—.m‘g’

the graph

3cosx dx.

Understanding signed area

In the real world, area is always positive, so the value representing area is always
greater than 0. On the xy-graph, however, the value of an integral can be positive,
negative, or 0.

The value of an integral is negative when a function dips below the x-axis.

The definite integral takes this important distinction into account. It provides not
just the area, but the signed area of a region on the graph. For example, suppose
that you want to measure the shaded area in Figure 5-3.

y=3cos xdx

/ X
z 3z
2 2

Here’s how you do it using the steps that I outline in the previous section:

1.

2.

Formulate the area problem as a definite integral — as above, so below:
3

2
I3cosx dx
3

Solve this definite integral as an indefinite integral — once more, with
feeling:
3

. X=="
=3sinx| ?
x=

2
Plug these limits of integration into the expression and simplify:
. 3w . T
= BSmT—Ssm?
=-3-3=-6
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In this case, the signed area of the shaded region in Figure 5-3 equals —6. As you
can see, the computational method for evaluating the definite integral gives the
signed area automatically.

As another example, suppose that you want to find the total area of the two shaded
regions in Figure 5-2 and Figure 5-3. Here’s how you do it using the steps that I
outline in the previous section:

1. Formulate the area problem as a definite integral:

37
2

J. cosx dx

T

2

2. solve this definite integral as an indefinite integral:
3
. X=—"
= 3smx|xz_2£
2

3. Plug these limits of integration into the expression and simplify:

2 2
=3-3=0

= —3$in3—n—351n(—£)

This time, the signed area of the shaded region is 0. This answer makes sense,
because the unsigned area above the x-axis equals the unsigned area below it, so
these two areas cancel each other out.

Distinguishing definite and
indefinite integrals

Don’t confuse definite and indefinite integrals. Here are the key differences
between them:

A definite integral

¥ Includes limits of integration (o and b)
3 Represents the exact area of a specific set of points on a graph

¥ Evaluates to a number
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An indefinite integral

¥ Doesn'tinclude limits of integration
¥ Can be used to evaluate an infinite number of related definite integrals

¥ Evaluates to a function

For example, here’s a definite integral:

sec?x dx

St— |y

As you can see, it includes limits of integration (0 and %), so you can draw a graph

of the area that it represents. You can then use a variety of methods to evaluate
this integral as a number. This number equals the signed area between the func-
tion and the x-axis inside the limits of integration, as I discuss earlier in this
section.

In contrast, here’s an indefinite integral:

J'seczx dx

This time, the integral doesn’t include limits of integration, so it doesn’t repre-
sent a specific area. Thus, it doesn’t evaluate to a number, but to a function:

=tanx+C

You can use this function to evaluate any related definite integral. For example,
here’s how to use it to evaluate the definite integral I just gave you:

sec?x dx

St— |y

s
XX
=tanx| _}

b
= tanz —tan0

=1-0=1
So the value of this definite integral is definitely 1.
As you can see, the indefinite integral encapsulates infinitely many related defi-
nite integrals. It also provides a practical means for evaluating definite integrals.

Small wonder that much of Calculus II focuses on evaluating indefinite integrals.

In Part 3, you discover an ordered approach to evaluating indefinite integrals.

CHAPTER 5 There Must Be a Better Way — Introducing the Indefinite Integral 97



FTC1: The Journey Continues

FIGURE 5-4:

Understanding
the area function

98

A(x) = Tf(z)dt
0

Earlier in this chapter, I give you this piece of the Fundamental Theorem of Cal-
culus, lovingly labeled FTC2:

b
[F0o =) -f(a)

By now, you’ve had some practice using this theorem to solve area problems by
using the indefinite integral (anti-differentiation) rather than the hairy Riemann
sum formula. In this section, I roll out the other part of the Fundamental Theorem
of Calculus, FTC1.

To do this, I first introduce you to a new concept, the area function (or accumulation

function), which is a function defined by a definite integral. Then, as you get com-
fortable working with area functions, I slip you the final piece of the FTC puzzle.

Understanding area functions

To begin, I’m going to show you the bare bones of a new type of function, called
an area function, defined as follows:

A(x) = ff(t) dt

This function A(x) is an area function defined in terms of a function t. It measures
the area under f(t) from an arbitrary point s to any value of x you’d like to know
about.

Take a look at Figure 5-4 to begin getting familiar with how this type of function,
well, functions.

f(2)

e
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FIGURE 5-5:

The shaded

region

representing
2

A@)=[F(0) dt
0

EXAMPLE

Questions about area functions are often framed as visual problems, asking you to
find A(x) for a specific value of x.

For the function f(x) shown in Figure 5-4, what is A(2)?

To begin, note in this specific example that the lower bound of the definite inte-
gral is s = 0. I choose s here to represent the starting point for this area function.

To solve this problem, plug in 2 for x, as follows:
2
A2) = j () dt
0

This area corresponds to the shaded area in Figure 5-5. You don’t need calculus to
solve it. As I show you in Chapter 1, simply use geometry, calculating the area of a
rectangle with a width of 2 and a height of 3 (or, even easier, by counting the
shaded boxes):

wxh=2x3=6

f(t)

To find A(5) for the same function, plug in 5 for x:
5
A(5) = [£(6) dt
0

This time, you’re measuring the shaded area in Figure 5-6. Calculate it by mea-
suring the area of a trapezoid with bases of 2 and 5 and with a height of 3:

_bi+by 245
== h——2 3=105
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FIGURE 5-6:
The shaded
region
representing

A(5) = Tf(z) dt
0

100

REMEMBER

EXAMPLE

f(t)

Making sense of FTC1

When you’re relatively comfortable working with area functions, the Fundamen-
tal Theorem of Calculus 1 becomes much simpler to understand and work with.
Here is FTC1:

Given that f’(x) is continuous on the closed interval [a, b], for all x such that
as<x<b:

If A(x)= ff(r) dt, then :—XA(x) = F(x).

In plain English, this theorem tells you that differentiation undoes integration:
When you define an area function in terms of a definite integral with an upper
bound of x and then differentiate it, the result is the function you started with,
now framed in terms of x.

An example or two should help you see how relatively straightforward this process
can be. Here’s a new area function to work with:

A(x) = [ sint dt
97

I choose a lower bound of 97 here specifically to show you how little you have to
worry about it. Watch what happens when you differentiate this function by x:

d .

EA(X) =sinx
Differentiating by x returns the function inside the integral, with all the t’s
changed to x’s. And the lower bound of 97 completely drops out of the resulting
equation.
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Here’s another example that’s just about as ornery as I know how to make it:

©ie A(x) = T 8579 — SECL_ psin2e® 4
-273.15 lnt

EXAMPLE Differentiating this area function produces the following result:

secx _ esin2x3

d B 9
aA(x) =85x T

Again, the upper bound x replaces t in the resulting function, and the lower bound
drops out entirely.
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IN THIS PART ...

Evaluate 17 indefinite integrals as antiderivatives

Apply the Sum rule, Constant Multiple rule, and Power
rule for Integrals

Use algebra and trigonometry to prepare functions to be
integrated

Integrate functions using variable substitution



IN THIS CHAPTER

» Calculating simple integrals as
antiderivatives

» Using 17 integral formulas and
3 integration rules

» Integrating more difficult functions
using more than one integration tool

» Clarifying the difference between
integrable and nonintegrable
functions

Chapter 6

Instant Integration:
Just Add Water (And C)

n Chapter 5, I show you how to use indefinite integrals to solve area problems
framed by the definite integral.

Indefinite integrals are essentially antiderivatives, so the good news here is that
you can already evaluate a variety of definite integrals by reversing the differen-
tiation process — a major advance over using the difficult Riemann sum formula.

Throughout the remainder of Calculus II, anti-differentiation becomes your go-to
method of evaluating definite integrals. Thus, the problem evaluating indefinite
integrals as functions takes center stage.

Now some bad news: In practice, finding indefinite integrals is often a lot trickier
than differentiation. In some cases, you’ll need to revisit a variety of algebra and trig
tricks from your past. In others, integration requires a variety of new techniques.

In this chapter — and also in Chapters 7 through 11 — I focus exclusively on one

question: How do you integrate every single function on the planet? Okay, I'm
exaggerating, but not by much. I give you a manageable set of integration
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techniques that you can do with a pencil and paper, and if you know when and
how to apply them, you’ll be able to integrate everything but the kitchen sink.

First, you start integrating by thinking about integration as anti-differentiation —
that is, as the inverse of differentiation. I give you a not-too-long list of basic
integrals, which mirrors the list of basic derivatives from Chapter 3. I also give you
a few rules for breaking down functions into manageable chunks that are easier to
integrate.

I also explain the concept of integrable versus differentiable functions. You see
why, even though integration is more difficult to do in practice, more functions
are actually integrable than differentiable.

By the end of this chapter, you’ll have the tools to integrate dozens of functions
quickly and easily.

Evaluating Basic Integrals

106

In Calculus I (which I review in Chapter 3), you find that a few algorithms — such
as the Product rule, Quotient rule, and Chain rule — give you the tools to differ-
entiate just about every function your professor could possibly throw at you. In
Calculus II, students often greet the news that “there’s no Chain rule for integra-
tion” with celebratory cheers. By the middle of the semester, they usually revise
this opinion.

Using the 17 basic antiderivatives
for integrating

In Chapter 3, I give you a list of 17 derivatives to know, cherish, and above all
memorize (yes, I said memorize). Reading that list may lead you to believe that I’'m
one of those harsh iiber-math dudes who takes pleasure in cruel and unusual cur-
ricular activities.

But math is kind of like the Ghost of Christmas Past — the stuff you thought was
long ago dead and buried comes back to haunt you. And so it is with derivatives. If
you already know them, you’ll find this section easy.

The Fundamental Theorem of Calculus shows that integration is the inverse of
differentiation up to a constant C. This key theorem gives you a way to begin inte-
grating a short list of functions. In Table 6-1, I show you how to integrate these
functions by identifying them as the derivatives of functions you already know.
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TABLE 6-1

The 17 Basic Integrals (Antiderivatives)

Derivative Integral (Antiderivative)

%a=0 fodx=c
%le Ildx:x+C
%e’(:ex Ie"=e"+C
%lnx:— j‘%dx:lnx+C

d X _ X
dxn =n"Inn

nX

+C
Inn

jnxdx =

d .
——sinx =cosx

dx

_[cosxdx=sinx+C

d cosx =-sin
dx

X

Isinxdx:—cosx+C

d 2
—tanx = sec
dx

X

jseczx dx =tanx+C

d

——cotx = —CSC2 X

dx

jcsc2x dx =—-cotx+C

d
——secx =secxtanx

dx

_[sec xtanx dx =secx+C

d
——CSCX =—-cscxcotx

dx

Icsc xcotx dx =—cscx+C

d .
——arcsinx =

1

dx ,[17

dx = arcsinx +C

.[ 1
V1-x?

d
——arccosx = —
dx

xZ
1
V1-x?

dx = arccosx +C

j-_ 1
V1-x?

d 1
——arctanx = ]

dx = arctanx +C

J

dx +x?2 1+x?

iz;urccotx:— 1 5 _[— 5 dx =arccotx +C
dx l+x l1+x

d 1

——arcsecx = dx =arcsecx +C

dx xVx?-1

I;
xVx? -1

d
——arcescx = —
dx

xVx? -1

=arccscx+C

I_;
xVx? -1
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EXAMPLE

(= =)
T
TECHNICAL
STUFF

As I discuss in Chapter 5, you need to add the constant of integration C whenever
you integrate, because constants differentiate to 0. For example:

d . d . d .

——sinx =cosx ——sinx+1=cosx ——sinx —100=cosx

dx dx dx
So when you integrate using anti-differentiation, you need to account for the
potential presence of this constant:

_[cos xdx=sinx+C

Three important integration rules

After you know how to integrate using the 17 basic antiderivatives in Table 6-1,
you can expand your repertoire of functions with three additional integration
rules: the Sum rule, the Constant Multiple rule, and the Power rule. These three
rules mirror those that you know from differentiation.

The Sum rule for integration

The Sum rule for integration tells you that integrating long expressions term by
term is okay. Here it is formally:

JTFC) + g(x)1dx = [F(x)dx + [g(x)dx
For example:

J.(cosx+ e —%)dx = Icosx dx+fe*dx —J.%dx

Note that the Sum rule also applies to expressions of more than two terms. It also
applies regardless of whether the term is positive or negative. Splitting this inte-
gral into three parts allows you to integrate each part separately by using a differ-
ent anti-differentiation rule:

=sinx+e* -Inx+C

Notice that I add only one C at the end. Technically speaking, you should add one
variable of integration (say, C, C,, and C,) for each integral that you evaluate. But,
at the end, you can still declare the variable C = C, + C, + C, to consolidate all these
variables. In most cases when you use the Sum rule, you can skip this step and just
tack a C onto the end of the answer.

Some math books present the Sum rule as the Sum and Difference rule, to clarify
that adding negative values is allowed. Others present the Sum rule and the Dif-
ference rule as two distinct rules. For simplicity, I simply present the Sum rule as
a single rule for integrating the sums as well as differences of functions.
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EXAMPLE

TIP

TIP

The Constant Multiple rule for integration

The Constant Multiple rule tells you that you can move the coefficient of a func-
tion outside of the integral before you integrate. Here it is expressed in symbols:

J'nf (x)dx = njf (x)dx
For example:

'[3tanxsecx dx = BJtanxsecx dx

As you can see, this rule mirrors the Constant Multiple rule for differentiation,
allowing you to move the coefficient outside the integral to simplify the integra-
tion process. With the coefficient out of the way, integrating is now easy using an
anti-differentiation rule:

=3secx+C

The Power rule for integration
The Power rule for integration allows you to integrate any real power of x

(except —1). Here’s the Power rule expressed formally:

J'x"dx :ﬁx"” +C

For example:

1, 2, 1 3 100 5. _
_[x dx—gx +C jx dx—gx +C jx dx =

1

101
o1~ +C

The Power rule works fine for negative powers of x, which are powers of x in the

denominator. For example, to integrate the function Lz, rewrite it as a negative
x
power:

1 =)
—dx = |x""dx
[orax=]
Now, you can integrate easily using the Power rule, and then simplify:
_xlic=-Lic
X

Notice before moving on that I introduce the + C on the step where the integration
actually takes place, and then carry it along.

The Power rule also works for rational powers of x, which are roots of x.
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TIP

For example, to integrate the function vx?, rewrite it as a fractional power:
3
J'\/x3dx = J.x2dx

Now you can apply the Power rule and simplify:

5
2020 4c

5 5
Here, I complete the problem by putting the result back into radical form, but if
your teacher doesn’t require this step, happy joy!

The only real-number exponent that the Power rule doesn’t work for is —1:
1 -1
J'—dx = J'x dx
X
Now if you try using the Power rule with -1, here’s what you get:

_ %xo +C WRONG!

Fortunately, you have an anti-differentiation rule to handle this case:
1
[—dx=InlxI+C
X

In Chapter 7, you further explore how to use the Power rule for integrating a vari-
ety of rational and radical functions.

What happened to the other rules?

Integration has formulas that mirror the Sum rule, the Constant Multiple rule,
and the Power rule when it comes to differentiation. But it lacks formulas that
look like the Product rule, Quotient rule, and Chain rule. This fact may sound like
good news, but the lack of formulas makes integration a lot trickier in practice
than differentiation is.

In fact, Chapters 7 through 11 focus on a bunch of methods that mathematicians
have devised for getting around this difficulty. Chapter 7 extends your under-
standing of the methods in this chapter and gives you a few additional tools.
Chapter 8 focuses on variable substitution, which is a limited form of the Chain
rule. And in Part 3, I show you a set of more advanced ways to integrate a wider
variety of functions.
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Evaluating More Difficult Integrals

EXAMPLE

EXAMPLE

The anti-differentiation rules for integrating, which I explain earlier in this chap-
ter, greatly limit how many integrals you can compute easily. In many cases,
however, you can tweak a function to make it easier to integrate.

In this section, I show you how to integrate certain fractions and roots using the
Power rule. I also show you how to use the trig identities in Chapter 2 to stretch
your capacity to integrate trig functions.

Integrating polynomials

You can integrate any polynomial in three steps using the rules from this section:

1. Use the Sum rule to break the polynomial into its terms and integrate each of
these separately.

2. Use the Constant Multiple rule to move the coefficient of each term outside its
respective integral.

3. Use the Power rule to evaluate each integral. (You only need to add a single C
to the end of the resulting expression.)

For example, suppose that you want to evaluate the following integral:
[10x° -3x? +2x -5 dx

1. Breakthe expression into four separate integrals:
= J10x6dx - J3x3dx + JZx dx 7.[5 dx

2. Move each of the four coefficients outside its respective integral:
=10[x dx - 3[xdx +2[x dx —5[dx

3. Integrate each term separately using the Power rule:

107 3 a2
—7x 4x +x°-5x+C

Here’s another function that seems trickier at first:

JGxe* +D(x® - 4) dx
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EXAMPLE

Because no Product rule exists for integration, you may feel stuck. However, you
can transform this polynomial to standard form by distributing using the FOIL
method (First, Outside, Inside, and Last):

:Jx774x4+7x3728 dx

Now, you can apply the Sum rule, Constant Multiple rule, and Power rule to inte-
grate this function. Technically, these are three separate steps, but in practice
you’ll probably soon grow comfortable handling these calculations in one step, as
you likely did when differentiating polynomials:

lys A T

=gX TEX tgX 28x+C
You can integrate any polynomial using this method. Many integration methods I
introduce later in this book rely on this fact. So I recommend that you practice
integrating polynomials until you feel so comfortable that you could do it in your
sleep.

Integrating more complicated-looking
functions

You can combine the Sum rule, Constant Multiple rule, and Power rule to integrate
some truly hairy-looking functions. For example:

9 2, 3" 2
'|.27x +5sec” x 7 +3x dx

1 . Begin by using the Sum rule to split this function into separate terms,
gin by g P P
just as when integrating polynomials in the previous section:

:J27x9dx+f55ec2x dx—I%dxﬂ-%dx

2. Next, move the coefficients in each case outside the integral:

= 27Ix9dx+5jsec2x dx —%J'exdx+§j%dx

3. Finally, evaluate each separate integral using the appropriate
antiderivative:

_27 0 3.2
—10x +5tanx 7€ +31n|x|+C

As when integrating polynomials, you can just append a single constant C to the
result rather than add a different constant for each integral evaluated.
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When you’re comfortable integrating complicated functions in this way, you can
combine this process into a single step. For example:
J'—le —8sinx + ge" +L dx

4 5 91-x?

1 - 2 . 4 .
= %x +8cosx+§e +9arcsmx+C

Understanding Integrability

By now, you’ve probably figured out that, in practice, integration is usually harder
than differentiation. The lack of any set formulas for integrating products, quo-
tients, and compositions of functions makes integration something of an art
rather than a science.

So you may think that a large number of functions are differentiable, with a
smaller subset of these being integrable. It turns out that this conclusion is false.
In fact, the set of integrable functions is larger, with a smaller subset of these
being differentiable. To understand this fact, you need to be clear on what the
words integrable and differentiable really mean.

In this section, I shine some light on two common mistakes that students make
when trying to understand what integrability is all about. After that, I discuss
what it means for a function to be integrable, and I show you why many functions
that are integrable aren’t differentiable.

Taking a look at two red herrings
of integrability

In trying to understand what makes a function integrable, you first need to under-
stand two related issues: the difficulties in computing integrals as well as the dif-
ficulties in representing integrals as functions. These issues are valid concerns, but
they’re red herrings — that is, they don’t really affect whether a function is
integrable.
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Computing integrals

For many input functions, integrals are more difficult to compute than deriva-
tives. For example, suppose that you want to differentiate and integrate the
following function:

y = 3X5e2X

You can differentiate this function easily by using the Product rule (I take an
additional step to simplify the answer):

dy _ i 5 2x i 2x 5
I —3[dx(x )e* + dx(e )x }
= 3(5x4ez" +2e%x® )
=3x*e®(2x+5)
Because no such rule exists for integration, in this example you’re forced to seek

another method. (You find this method in Chapter 9, where I discuss integration
by parts.)

Finding solutions to integrals can be tricky business. In comparison, finding
derivatives is relatively simple — you learned most of what you need to know
about it in Calculus I.

Representing integrals as elementary functions
Beyond difficulties in computation, the integrals of certain functions simply can’t

be represented by using the functions that you’re used to.

More precisely, some integrals can’t be represented as elementary functions —
those familiar functions that you work with all the time in calculus. They include:

¥ Addition, subtraction, multiplication, and division

¥ Powers and roots

¥ Exponential functions and logarithms (usually the natural log)
¥ Trig and inverse trig functions

3 All combinations and compositions of these functions

For example, consider the following function:

EXAMPLE

x?

y=e
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You can find the derivative of this function easily using the Chain rule:

d
ae

()
h dx
=e* (2x)

2
=2xe*

This result is an elementary function, so it’s also differentiable. And because the
derivative of every elementary function is an elementary function, every elemen-
tary function is infinitely differentiable — that is, you can continue this cycle of
differentiation as long as you like.

However, the integral of the same function, Iexzdx, can’t be expressed as an ele-

mentary function — that is, it can’t be expressed as a function that you’re used to
working with.

Instead, you can express this integral either exactly (as an infinite series; see Part 6
for more on infinite series) or approximately (as a function that approximates the
integral to a given level of precision). Alternatively, you can just leave it as an

integral Iexzdx, which also expresses this function well for some purposes.

Getting an idea of what integrable
really means

When mathematicians discuss whether a function is integrable, they aren’t talk-
ing about the difficulty of computing that integral — or even whether a method
has been discovered. Each year, mathematicians find new ways to integrate classes
of obscure functions you’ll probably never have to worry about. However, this fact
doesn’t mean that previously nonintegrable functions are now integrable.

Similarly, a function’s integrability also doesn’t hinge on whether its integral can
be easily represented as another function, without resorting to infinite series.

In fact, when mathematicians say that a function is integrable, they mean only
that the integral is well defined — that is, that the integral makes mathematical
sense.

In practical terms, integrability hinges on continuity: If a function is continuous

S on a given interval, it’s integrable on that interval. Additionally, if a function has

\J only a finite number of discontinuities on an interval, it’s also integrable on that

tecunicaL  interval: Its integral equals the sum of the finite number of continuous integrals
STUFF on that interval.
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FIGURE 6-1:
The function

y=Ixlis

integrable for all
values of x, but
non-differentiable

116

atx=0.

You probably remember from Calculus I that many functions — such as those
with discontinuities, sharp turns, and vertical slopes — are non-differentiable.
Discontinuous functions are also nonintegrable. However, continuous functions
with sharp turns and vertical slopes are integrable.

For example, the function y = |x|, shown in Figure 6-1, contains a sharp point
at x = 0, so the function is non-differentiable at this point — that is, attempting
to compute the slope at 0 makes no mathematical sense. However, the same func-
tion is integrable for all values of x, because the area under this function between
any two limits of integration you care to name is a well-defined concept.

y= x|

This function is just one of infinitely many examples of a function that’s integra-
ble but not differentiable over its entire domain.

So, surprisingly, the set of differentiable functions is actually a subset of the set of
integrable functions. In practice, however, computing the integral of most func-
tions is more difficult than computing the derivative.
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IN THIS CHAPTER

» Understanding a variety of ways to
integrate rational and radical
functions

» Anti-differentiating inverse trig
functions to integrate difficult
rational functions

» Using trig identities to integrate trig
functions

» Integrating compositions of functions
with linear input functions

Chapter 7

Sharpening Your
Integration Moves

n Chapter 6, you discover how to evaluate 17 indefinite integrals using

anti-differentiation — that is, by reversing the process of finding a derivative.

You also use the Sum rule, Constant Multiple rule, and Power rule to extend the
range of functions that you can integrate.

In this chapter, you solidify these skills and extend them to integrate a wider vari-
ety of functions. You also incorporate tricks from algebra and trigonometry to
rewrite functions in equivalent forms that are more conducive to integration.

Additionally, you discover a quick way to integrate certain compositions of
functions. This insight gives you a glimpse at u-substitution, a powerful way to
integrate more complicated functions, which I discuss in greater detail in
Chapter 8.
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In Chapter 6, you discover the Power rule for Integration — the Power rule, for
short. Here it is again in all its splendor:

J.x” dx = —L_xm! +C
n+1

When you’re comfortable using this rule, you can apply it to integrate all sorts of
complicated-looking functions. In this section, I show you how to apply the Power
rule to integrate a variety of functions that don’t look like powers at first glance.

Integrating simple rational functions

Integrating a simple rational function such as iz may look tricky at first, until
x
you realize you can express this type of function using a negative exponent (see
Chapter 2 for a refresher on negative exponents):
J.iz dx = _[ x 7% dx
X
From here, you integrate using the Power rule, and simplify the result:

Ly -Lic

-1 X

This next example includes numerical values in the numerator and denominator,
which can both be moved outside the integral using the Constant Multiple rule

before you change the exponent to a negative value:

'[54? dx = %j% dx = %Ix’g dx

Now you’re ready to use the Power rule to integrate:

_4( 1Y) s
‘3( 8) +C

To complete the problem, multiply the two fractions and simplify the result:

4 s, ~_ 1 3
=~20" +C= 10X +C
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Integrating radical functions

As with rational functions, a radical such as vx may look difficult to integrate, but
expressing it using a fractional power allows you to integrate it easily:

J.\/; dx = J.x% dx

Now, integrate using the Power rule:

Here’s a two-term function that you can integrate by similar means. Begin by
using the Sum rule to split the function into two separate integrals, each expressed
as a fractional power:

J”\‘/F+% dx:jx% dx+_[x% dx

Now, evaluate both integrals using the Power rule and finish with the optional
step of putting the result back into radical notation, if this is your prof’s
preference:

7 1

== Z+2chvLC:;‘\‘/Jj-er/)7+C

~

Here’s an unfun-looking final example that pulls together a variety of skills:

To begin, apply the Sum rule and the Constant Multiple rule to separate this
expression into three integrals, pulling out a fractional coefficient in each case:

R S I 10 N O
,7'|'x4dx 1IJJJc_dx SIJFdX
Next, express each term as a power:
20t 8 g Ay 2
—7.[x dx lljx dx S_fx dx
Now, use the Power rule to integrate:

_2( 1), 5 6(10)\ 5 4 o 3
’7( 3)" 11(17)" 5(2)x *+C
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Most teachers will want to see this result simplified a bit:

2 3 60 I 8 -1
—*ﬁx *mx +§x +C

With luck, you won’t have to do this next step, but if your teacher insists on it,
here’s how to change the negative and fractional exponents back into more stan-
dard notation:

2 601\/°x”+ 8

c
L 187 s’

Using Algebra to Integrate
Using the Power Rule

120

EXAMPLE

In many cases, you can use algebra to untangle hairy expressions so that you
can integrate them using the Power rule. I discuss some of these techniques in
Chapter 2 as well. For example:

_[XG+X
XB

dx

Begin by splitting this rational expression into two separate expressions with the
same denominator:

6
X X
:J.—3+—3dx
X X

This step allows you to take advantage of the Sum rule, by splitting this expres-
sion into two separate integrals:

6
X X
=|—=dx+ | dx
[
Next, simplify each rational expression, writing each one using a single exponent:
= J'xsdx + J.x’zdx
Now you can integrate and, if needed, put the second term of the result back into

rational form:

I S RN oI SR |
—4x X +C—4x x+C
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Here’s a more difficult example that requires you to apply algebra before you
integrate:

2 2
J.(x +5\3)(_Cx—3) i

You could split the function into the product of several rational functions, but
without the Product rule or Quotient rule, you’re now stuck. Instead, bite the bul-
let and expand the numerator by distribution (FOILing), and put the denominator
in exponential form:

x*—6x% +14x2 - 30x + 45
:J . dx
x2

Next, split the expression into five separate rational terms:

xt 6x®  14x? _?)()_x 45

=TTt —dx

x2 x2  x? x2 x2

This result looks worse than what you started with, but you can now express each
term as an exponent of x times a coefficient:

—Jx 6x2+14x 30x2+45x de

Now, use the Sum rule to separate the integral into five separate integrals, and the
Constant Multiple rule to move the coefficient outside the integral in each case:

7 5 3 1 1
= Ix 2dx - 6.|.x 2dx + 14jx 2dx — 30_[x 2dx + 45_[x 2dx
Finally, you can integrate each term separately using the Power rule:

9 7 5 1
—Zx2 152, By ~20x7 +90x% +C

I’'m hoping that, when you’re faced with a problem this time-consuming,

your teacher will be content with a final answer stated in terms of rational expo-

nents of x.

To finish up, here’s a very tough example of a rational expression that requires a
lot of care and feeding before you’re able to integrate it:

2
J-4x —-4x-80 dx

3x3 —15x2
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To begin, factor both the numerator and the denominator:

J-4(x+4)(x 5)
3x%(x-5)

This step allows you to cancel out a factor of x —5:

I4(x+4)d

Now, distribute the 4 in the numerator:

:J-4X+216 d

Finally, you can separate this rational expression into two separate expressions
and then use the Sum rule and Constant Multiple rule to further simplify the
resulting integrals. I do this in separate steps, but feel free to jump to the end if
you’re getting comfortable with this set of moves:

4x 16 4x 16 1
3;{ 3x? x:'[?,x J_d - j%dﬂ?j?dx

Now, express the rational expressions that remain inside the integrals as
powers of x:

= %_[x'l dx +?Ix'2 dx

Okay, I know that was a lot, but you may also be starting to see that I’'m using the
same tricks over and over. And, at last, you’re ready to integrate:

4 16( 1 16
—glnle— 3 (—;)+C—3lnlxl—§+C

Before moving on, notice that I didn’t use the Power rule to integrate x ', which is
equivalent to % Instead, remember that I used In|x | when integrating this term.

And you should, too.

Integrating by using inverse trig functions

As you discover in Chapter 6, a short list of functions can be anti-differentiated as
the six inverse trig functions. Many students respond to this news by asking, “Do
I really have to memorize them?”

Well, it’s a good idea to at least have a passing familiarity with these functions,
because they can magically turn an impossible-looking integration into an
easy one.

PART 3 Evaluating Indefinite Integrals



TABLE 7-1

EXAMPLE

Table 7-1 gives you another look at this list.

Functions That Anti-differentiate to Inverse Trig Functions

Function Antiderivative

1
_[ dx =arcsinx +C
V1-x2
I— = dx =arccosx +C
1-x
1
Il+x2 dx =arctanx +C
1
I_1+x2 dx =arccotx +C
1
= dx =arcsecx+C
xvx© -1
I, 12 =arcescx +C
xVx© -1

Notice that only three distinct forms of these functions exist, because each pair of
co-functions differs only by a minus sign. Thus, for example, you can evaluate the

1
V1-x?
expressions. So, even if you forget about the others, I recommend that you abso-
lutely, positively memorize the arcsin x, arctan x, and arcsec x forms.

dx as either arccosx + C or —arcsinx + C, which are equivalent

integral J. -

As you can see, these functions look a little like the rational and radical functions
you’ve been working with in this chapter. However, you can’t use the Power rule
to evaluate them. For example:

J' 2 3 3 ; dx
3xVx?-1 4(1+x?)

As always, use the Sum rule and Constant Multiple rule to make the integration a
bit more manageable:

2 1 3 1
== - dx
3jx«/xz—l 4-[(1+x2)
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At this point, it looks like you’re stuck — unless you recognize that these two
functions are actually boilerplate derivatives of inverse trig functions, in which
case the problem is actually super easy:

2 3
= garcsecx - Zarctanx +C

In some cases, you may need to do a little algebra to set up a function so that it can
be integrated in this fashion. For example:

J‘; dx
J(2+2x)(3-3x)

In this case, you can FOIL the contents of the parentheses inside the radical and
then factor out a constant:

1 1
- dx = d
'[\/6—6x2 * j\/ﬁ(l—xz) "

Now, separate this radical into the product of two radicals, and use the Constant
Multiple rule to move the resulting constant outside the integral:

:J‘;dx:Lj;dx
V61 - x? NN

Voila! The result integrates easily:

1 .
=—arcsinx +C

3

Calculus teachers tend to be perfectly happy with radicals in the denominator, but
just in case your teacher isn’t, you can rationalize the denominator if necessary:

= L.ﬁarcsin)('«kc = ﬁarcsinerC

NN 6

As a final note before moving on, trig substution (which I discuss in Chapter 10)
relies on patterns based on the functions that anti-differentiate to arcsin x, arctan x,
and arcsec x. So, if you bite the bullet and memorize them now, you’ll be one step
ahead later in your Calculus II course.
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Integrating Trig Functions

TABLE 7-2

If you didn’t guess from Calculus I, trigonometry is a big topic in calculus, and this
goes double for Calculus II. And if you thought differentiating trig functions using the
Chain rule was tricky, you’ll probably find integrating them a lot harder without it.

In this section, you expand your ability to integrate trig functions.

Recalling how to anti-differentiate
the six basic trig functions

In Chapter 6, I start you off on integrating trig functions with a list of six antide-
rivatives for the six basic trig functions. For convenience, Table 7-2 recaps
this list:

Anti-differentiating the six basic trig functions

Trig function Antiderivative

Jcosxdx =sinx+C
Jsinxdx =-cosx+C
JsecZX dx =tanx+C
Jcsczx dx =—cotx+C
Jsec xtanx dx =secx+C
Jcsc xcotx dx =-cscx+C

Although this list of functions is pretty limited, you can extend it a bit by applying
trig identities, and by applying the Sum rule and Constant Multiple rule wherever
applicable.

Using the Basic Five trig identities

At first glance, some products or quotients of trig functions may seem impossible
to integrate using the formulas I give you earlier in this chapter. But you’ll be
surprised how much headway you can often make when you integrate an unfamil-
iar trig function by first tweaking it using the Basic Five trig identities that I list
in Chapter 2.
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The unseen power of these identities lies in the fact that they allow you to express
any combination of trig functions into a combination of sines and cosines. Gener-
ally speaking, the trick is to simplify an unfamiliar trig function and turn it into
something that you know how to integrate.

When you’re faced with an unfamiliar product or quotient of trig functions, follow
these steps:

1. use trig identities to turn all factors into sines and cosines.
2. Cancel factors wherever possible.
3. i necessary, use trig identities to eliminate all fractions.
For example:
Isinz xcotxsecx dx
In its current form, you can’t integrate this expression by using the rules from
this chapter. So follow these steps to turn it into an expression you can

integrate:

1 . Use the identities cot x = cos

x
andsec x = :
x cos x

€osx 1
= Jsm Ix
sinx cosx

2. Cancel both sin x and cos x in the numerator and denominator:

:Isinx dx

In this example, even without Step 3, you have a function that you can
integrate.

= —-cosx+C
Here’s another example:
J.tanxsecxcscx dx

Again, this integral looks like a dead end before you apply the Basic Five trig iden-
tities to it:

1 . Turn all three factors into sines and cosines:
_J- sinx 1 1
COSX COsXx sinx
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2. Cancel sin x in the numerator and denominator:

1
_J.COSZde

to eliminate the fraction:

3. usethe identity cos x = 1
secx

:Iseczxdx

=tanx+C

Again, you turn an unfamiliar function into one of the trig functions that you
know how to integrate. I show you lots more tricks for integrating trig functions
in Chapter 10.

Applying the Pythagorean trig identities

The Pythagorean trig identities can also be useful for turning a big old trigono-
metric mess into a function that you know how to integrate. I list all three of them
in Chapter 2. In this section, I show you how to use them all to assist you when
integrating trig functions.

Using sin®x + cos®x =1 to integrate trig functions

Everybody’s favorite Pythagorean Identity is probably sin’x + cos®x = 1. It’s rela-
tively easy to remember, and you can use it to great effect when trying to simplify
complicated-looking trig functions so you can integrate them.

For example, here’s a trig function that looks difficult until you remember this
particular identity:

J- 1-sin®x
cosx
. . N 1 sin® x
You might be tempted to break this function into ———
COSX COSX
would lead you down a blind alley. Instead, apply the Pythagorean Identity in its

, but this step

equivalent form 1—sin? x = cos® x:

2
COs™ X
o8 gy
COs X

This step allows you to simplify and then integrate as follows:

:Icosx dx =sinx+C
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Here’s a problem that allows you two chances to apply the same Pythagorean
Identity:

sin?x +cos?x
[SnXFCOSTX gy

1-cos?x

Use sin’x + cos?x =1 to rewrite both the numerator and denominator:

1
:Isinzx ax

Now, applying the reciprocal identity for sines puts the expression in a form that
you can integrate:

:Icsczx dx=-cotx+C

Using 1+ tan®x = sec®x to integrate trig functions

You already know that jsecz x dx =tanx +C. This fact makes the identity
1+ tan®x = sec’x particularly useful for integration. For example:

tanx + cot x
[fanx +cotx ;.
cotx
To begin, split this into two functions (be careful — don’t use the Sum rule to
break this integral into two integrals):

J- tanx cotx
= +

dx
cotx cotx

Next, simplify both functions:

:Jtanxtanx+1 dx :Itan2x+1 dx

Now, apply the Pythagorean Identity 1+ tan’x = sec’x, then integrate:

:Jseczx dx =tanx +C

Using 1+ cot®x = csc®x to integrate trig functions

An important integral that’s easy to evaluate is J'cscz x dx =-cotx +C. This eval-

uation makes the Pythagorean Identity 1+ cot’x =csc?x very useful for integra-
tion. For example:
sinx +cosxcotx
joinx +cosxeotx 5,
sinx
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Split this function into two pieces and simplify each:

J-sinx+cosxcotx

- - dx:.fl+cotxcotx dx:_[1+cot2x dx
sinx sinx

Now, apply the Pythagorean Identity 1+ cot’x = csc?x and integrate:

:Icsczx dx=cotx+C

Integrating Compositions of Functions
with Linear Inputs

In Chapter 6, I break the news that the Chain rule for differentiation doesn’t carry
over into integration. Lots of students greet this announcement as good news
until they realize that without a Chain rule, integration becomes much more dif-
ficult in practice than differentiation.

What makes the Chain rule so useful is that it allows you to differentiate composi-
tions of functions — even long chains of functions within functions within

functions.

For example, consider the function e*’. This is the composition of functions
f(g(x)) with:

An outer (or output) function f(x) =e*

An inner (or input) function g(x) = x?2

Before moving on, spend a moment getting comfortable with this notation. Can
2
you see why f(g(x)) =e*, given the functions f(x) and g(x) as previously defined?

Now, recall the Chain rule:
d ] ?
e f8G]=£(g(x))-g'(x)
The Chain rule allows you to differentiate this composition of functions as follows:
d 2

2 2
—e* =e* . 2x=2xe*
dx
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Because no Chain rule exists for integration, integrating the function e isn’t a
simple matter. In fact, as you discover in Chapter 6, while this function is integra-
ble, its integral cannot be expressed as an elementary function — that is, as a
function that you’re used to seeing and working with in virtually all the math
classes you’ve ever taken.

However, some actual good news for Calculus II is that, in certain cases, you can
integrate compositions of functions of the form f(g(x)) provided that:

¥ The outer function f(x) has a formula that allows you to integrate it.

¥ The inner function g(x) is of the form ax + b.

Even better, when you get comfortable with this process, you’ll find that you can
integrate some relatively hairy-looking compositions of functions very quickly!

If this information doesn’t jump out at you and make sense immediately, don’t
worry. In this section, I show you how to apply this method to a variety of com-
mon functions that you’re probably beginning to feel comfortable integrating.
After that, I discuss why this method works and then connect it to the Chain rule.

Understanding how to integrate familiar
functions that have linear inputs

If you’ve read through and practiced the material in Chapter 6 and this chapter,
I suspect that you’re beginning to grow a bit more comfortable when integrating
functions such as e, the six simple trig functions that arise from derivatives, and
functions that yield nicely to the Power rule.

In this section, I show you how to integrate compositions of functions based on
those that you already understand, but with linear inputs.

Integrating the e* function composed
with a linear input

You already know that f e*dx =e”. Building from this information, you can also

ax+b

integrate any function of the form e“*” using the following formula:

1
J'eax+bdx _ Eeax+b

PART 3 Evaluating Indefinite Integrals



EXAMPLE

The table includes four examples to show you how this works.

fezx dx :lez" +C
2
J.ef2x+5 dx e R I
2
l)r—l lx—l

Ie3 dx =3e3 +C

9 9
J‘eiﬁx+5 dx = —%eiﬁﬁs +C

Here’s an example:

1 %x+2
ge dx

To begin, use the Constant Multiple rule to move the coefficient of % outside the
integral:
3)r+
%fe“ ? dx
Now, apply the formula:

3
= %(%)ezx +C

Complete the problem by simplifying the fractions:

e
:%e4 +C

This formula works for any function of this form.

Integrating the six basic trig functions

with linear inputs

Table 7-2 earlier in this chapter gives you six trig functions that are easy to inte-
grate because they’re the derivatives of the six original trig functions. As with e”*,

you can also integrate any of these six trig functions with an input of the form
ax + b instead of x. Table 7-3 shows you some examples.
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Formulas for anti-differentiating the six basic
trig functions with linear inputs

Formula Example

jcos(ax +b) dx Icos 5x dx

1 . 1 .
—351n(ax+b)+C —gsm5x+C
jsin(ax +b) dx Isin(8x+1) dx
=—%cos(ax+b)+C =—écos(8x+1)+C
J'secz(ax+b) dx j'secz(—lx—3)dx

4

= ltan(ax +b)+C 1

a =—4tan(—zx—3)+C
J‘CSCZ((ZX+1)) dx Icsc2(10x+20) dx
- —%Cot(ax+b)+C - —%cot(10x+20)+C
Isec(ax +b)tan(ax +b) dx Isec 25xtan25x dx

1 1
7Esec(ax+b)+C 72—53ec25x+C
J'csc(ax +b)cot(ax +b) dx jcsc(O.le +1)cot(0.01x +1) dx

- _%Csc(ax 1b)+C =-100csc(0.01x +1) +C

As you can see, when using this rule for integrating variations of either sec x tan x or
csc x cot x, the linear inputs ax + b must match each other exactly. Here’s an example:

Icoslx - cscixcotix dx
2 5 5

To begin, split this integral into two separate integrals using the Sum rule:

1 3 3
—J'cosgx dx—Icschcotgx dx

Now, integrate each term separately using the appropriate formula:

1 5 3
= 251n§x 7(7§csc§x)+C

Notice that when applying the Sum rule, I add a single + C at the end. To complete
the problem, simplify the result:

1 5 3
= 2sm§x +§csch+C
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As you can see, the work here isn’t too difficult. But it does require you to keep
clear throughout the process about which antiderivative you’re using to integrate
each term, as well as what the linear input is in each case. Welcome to Calculus II!

Integrating power functions composed
with a linear input

You can also use a modified version of the Power rule to integrate power functions
with a linear input of the form ax + b. Here’s the formula:

J'(ax +b)"dx =a(n;+1)(ax +b)™!

And here are a few examples that show you how to integrate in this way:

[(5x-1)? dx = £ Gx-1*+C

[-2x+9)? ax =g (2x+9)' +C

1 ! _5(1 s
I(§x+2) dx —§(§x+2) +C
1 19 11 1 20
I(—ﬁx—S) dx ——E(—ﬁx—fS) +C

As with the Power rule, this variation also allows you to integrate negative and
fractional powers. For example, to integrate the following, rewrite it as a linear
function raised to a negative power:

jmdx =[(5x+6)dx

Now, apply this formula and, if your teacher insists, rewrite the solution as a
rational function:

1

1 -
—Llxi6)?4co— _Lc
AR A T

Here’s an example with a linear function embedded inside a root function. As
usual, begin by casting the function you’re trying to integrate as a fractional
exponent:

[3x-1*dx = [(13x —1)%dx

CHAPTER 7 Sharpening Your Integration Moves 133



134

EXAMPLE

EXAMPLE

Now, use the formula to integrate (be careful when working with those
fractions!):

3 7
:§(13x71)3 +C

This solution should be enough to please even the stuffiest professor, but just in
case, here’s how you’d rewrite it using the root symbol:

- 23w +c

Here’s an example that requires you to rewrite an integral using a negative
exponent:

j;dx = J.(—%x—4)i dx

=

Once you’ve got this key step done, just be very careful as you use the formula to
handle the numerical values. I break this out into a couple of steps so you can see
the process:

1 1
7 8 2 7( 8 2
=— (—g)(—7x—4) +sz(—7x—4) +C

If you must, make your teacher happy and recast this as a square root in the
denominator:

S S

4 (—%x—zx)

Here’s a final example that contains a trap that’s easy to step in:
1 - _5)! !
| 55 5 dx= [(3x-5)""dx NOT HELPFUL!

Did you spot the misstep? Recall that you can’t use the Power rule to integrate
exponents of —1. Instead, use the following formula:

_[ 1 dx:llnlax+b|+C
ax+b a

So, evaluate this integral as follows:

1 1
jmdx_§1n|3x—5|+c
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Knowing the handy arctan formula

I shy away from recommending that students integrate linear inputs to rational
equations that integrate to inverse trig functions. These functions can get confus-
ing, and usually require stronger medicine, such as variable substitution
(Chapter 8), trig substitution (Chapter 10), or integration with partial fractions
(Chapter 11).

Even so, I want to alert you to one handy formula that you may need later, when
integrating with partial fractions (Chapter 11):

J. 21 2dx:larctan£+C
x“+a a a

Notice that this formula allows you to integrate the sum of squares in the denomi-
nator of a rational expression.

J- 5 3 8
x2+7 x?+6x+19

To begin, apply the Sum rule and Constant Multiple rule as usual:

1 1
=5 dx-8 dx
J.x2+7 jx2+6x+19

Now, apply the formula to the first integral. I do this in two steps: first, explicitly
stating the denominator as the sum of two squares, and then applying the formula:

_ ~ 1
_5jx2+(ﬁ)2 @ ij2+6x+19 @

X 1
=——arctan—=-8| ————— dx
N/ NI I x2+6x+19
I haven't finished integrating yet, so I refrain from adding C until the end of the
problem. To evaluate the second integral, you also need to write the denominator
explicitly as the sum of squares. To do this, start by completing the square:

1
(x2+6x+9)+10 -

X 1
arctan—

=2 8
VT VT I(x+3)2+(J1_0)2

D arctan Sj

N
dx

Now, evaluate the second integral:

X x+3
—arctan—= — ——arctan +C

T N JI_O V10
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Don’t worry if the second part of this problem seems confusing. If you just focus
on applying the formula when it fits, you probably won’t need the complicated
stuff unless your teacher gives you a particularly difficult problem requiring inte-
gration by partial fractions.

Using algebra to solve more complex problems

When you know how to apply linear input functions to the set of functions that
you already know how to integrate, you can evaluate a variety of more complex
integrals. For example:

J-3x+\/_

The repetition of 3x in this example should alert you to the opportunity to use this
method, but first you need to use algebra to simplify the function. To begin, split
this function into the sum of two functions and express every rational element as
a power:

1
dx + [ GLIEN
(3x)1 Bx)*

Next, use the rule for dividing exponents to simplify each resulting function:

= (Bx)%dx +| (3x)%dx

Now, use the variation on the Power rule to evaluate both integrals and then sim-
plify the results:

- %(%)(3)()% +%(%)(3x)% iC

4 I 4 3
- — 4 4 4
21(3x) + 15(3x) +C

Using trig identities to integrate
more complex functions

In some cases, you can use identities to rewrite a trig function in a way that allows
you to apply the formulas I provide earlier in this chapter. As I mention earlier, be
sure to have the list of six basic trig antiderivatives handy (or, better yet, have
them memorized!) so you know the result you’re trying to achieve.
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Here’s a relatively quick example:
[ ax
sin“(7x)

Don’t let the presence of the constant z throw you off your game: In the numer-
ator, z is just a constant, so you can safely transfer it outside the integral:

[ !

sin“(zx)

Now, you might be tempted to use the use the Pythagorean Identity sin® x + cos? x = 1
in the denominator. However, the reciprocal identity %x =cscx leads to a better
result:

:nfcscz(nx) dx

You can integrate the function csc? x using anti-differentiation, so you can use the
formula in Table 7-3 I gave you earlier in this chapter, this time treating = simply
as a numerical coefficient to x:

=7 (%)Cot(nx) +C=cot(nx)+C

As you can see, some of the = values cancel as factors, but the input coefficient =
remains in the final answer.

Here’s a more difficult trig example, the toughest you’ve seen so far:

J- cos (2x ) dx
1-cos?(2x—1)

The repetition of the expression 2x —r is a clue to think of this function as a linear
input (remember that r is just a constant!). The trick is to get the whole function
to look like one of the six trig functions you can anti-differentiate. Begin by using
the Pythagorean Identity sin”0 + cos®6 =1 to simplify the denominator:

cos 2x-rm
J ( ) dx
sin®(2x - )

Now, by splitting the denominator into two factors, you can massage the result
into a familiar expression:

:J- cos (2x—-1)
sin(2x —7)sin(2x — )

= Jcot(Zx —-m)csc(2x —m) dx

dx
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You should recognize this result as a familiar function, so integrate:

= %csc(Zx -n)+C

Although this isn’t an easy problem, if you review the steps, you’ll probably see
that everything here is within your grasp. The repetition of the linear input 2x — =
should tip you off about the overall strategy: This repetition becomes useful only
if you can find a clever way to use trig identities to rewrite the original function as
a trig function that you already know how to integrate.

Understanding why integrating
compositions of functions with
linear inputs actually works

When you understand how to integrate compositions of functions with linear
inputs, you’re ready to understand why this trick works. And this understanding
will help you grasp variable substitution (also called u-substitution), which is the
topic of Chapter 8.

To give you this understanding, let’s return to evaluating a relatively simple
integral:

1

2x+1
e +C
2

J'e2x+1 dx =

To see why this evaluation works, I reverse the process by finding the derivative

1 oxe1.
0f§€ .

i l 2x+1 )

dx ( 2¢

As you can see, to keep the process simple, I've dropped the + C, which differenti-
ates to 0. To begin, move the coefficient of% outside the derivative:

_l i 2x+1
_Z(dxe )

Now, use the Chain rule to differentiate. I do this in several steps to clarify the
process:

— lerH .

1 2x+1 2x+1
.2 = p2X+
2

d
E(Zx +1)= 5€
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As you can see, when you apply the Chain rule to a function with a linear input
of 2x + 1, the result includes multiplication by 2. So when you undo the Chain rule
by integrating, you also need to undo this multiplication by including a coeffi-

. 1
cient of 5

This explanation also accounts for the presence of the exponent of 2x +1 in both

2x+1 2x+1

the original function e***" and the result %e +C. The Chain rule preserves this

function during differentiation, so it’s also unaffected when you reverse the pro-
cess to integrate.

To sum up, this trick for integrating familiar functions that have linear inputs
leverages the fact that every derivative of the form %(ax +b) evaluates to a, and

can therefore be reversed by multiplying by %.
In Chapter 8, you extend this idea of reversing the Chain rule when integrating to

a whole new level, which enables you to integrate much more complicated sets of
functions.
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IN THIS CHAPTER

» Understanding how variable
substitution works

» Recognizing when variable
substitution can help you

» Knowing a shortcut for using
substitution with definite integrals

Chapter S

Here's Looking at
U-Substitution

n Chapters 6 and 7, you discover how to evaluate a variety of indefinite inte-

grals. This promises to make solving area problems framed as definite integrals

much easier. But it still begs the question of how to evaluate indefinite integrals
that don’t fit so nicely into the forms you know how to anti-differentiate.

In this chapter, you discover variable substitution (also called u-substitution), a very
handy way to integrate functions that don’t appear at all friendly. I first show you
how to use this method step by step, then take you behind the scenes to under-
stand when variable substitution is likely to work well so you can feel confident
when solving problems.

To wrap up, I provide you with a shortcut for using u-substitution when evaluat-
ing definite integrals.
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Knowing How to Use U-Substitution

two functions. Without further ado, here are the five steps you need to know to

@ Variable substitution is especially useful when you’re faced with the product of
evaluate integrals using variable substitution:

REMEMBER
. Declare a variable v and use it to build part of the integral in terms of u.

Differentiate u and isolate the rest of the integral on the right side of the
equals sign.

Rewrite the integral in terms of u.

. Integrate in terms of u.

AW N=

. Substitute the original value of u into the result.

These steps may seem odd at first, but with a few repetitions, I’m confident that
they’ll start to make sense. In this section, I walk you through the how of variable
substitution so you can get a feel for it.

For example, imagine that you’re faced with this integral:

J.singx cos x dx

exampLe  The problem in this case is that the function that you’re trying to integrate is the
product of two functions — sin® x and cos x. This would be simple to differentiate
with the Product rule, but integration doesn’t have a Product rule. Here’s where
variable substitution comes to the rescue:

1. Declare a variable u and use it to build part of the integral in terms of u.
Here, | declare u as follows:
Let u=sinx
Now use u to express sin® x:

u® =sin®x
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EXAMPLE

2.

Differentiate u and isolate the rest of the integral on the right side of the
equals sign:

Notice that the expression cos x dx still remains and needs to be expressed in
terms of u. To do this, differentiate u:

du _ cosx
dx

Now, to isolate cos x dx on the right side, multiply both sides by dx:
du=cosx dx
Rewrite the integral in terms of u:

To perform this step, use the sidework you've done in the first two steps,
substituting u® for sin® x and du for cos x dx:

J'sing X cos xdx = J'ugdu

Integrate in terms of u.
This turns out to be easy now:

=%u4+C

Substitute the original value of u into the result.

That is, substitute sin x for u:

:%sin4x+C

This is the final answer.

Here’s another example of a product of functions that would be difficult to inte-

grate without u-substitution:

ijBxZ +7 dx

Here’s how you integrate it step by step:

1.

Declare a variable u as follows and use it to build part of the integral in
terms of u.

Let u=3x2+7

Here, you may ask how | know what value to assign to u. Here's the short
answer: u is the inner function, as you would identify if you were using the
Chain rule. (See Chapter 3 for a review of the Chain rule.) | explain this more
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fully in the section, “Recognizing When to Use Substitution,” later in this
chapter.

2. Differentiate u = 3x2 + 7 and isolate x:

du
E—GX
du=6x dx

From Step 1, | know that | need to replace x dx in the integral, so | divide both
sides of this equation by 6:

ldu:xdx

6
3. Rewrite the integral in terms of u:

Here | substitute vu for v3x? + 7 and %du for x dx:
_[xVsz +7dx= J.\/E(%du)
Before integrating, you can move the fraction 1 outside the integral:

6
:éJ\/LI—du

4, Integrate in terms of u:

I've taken an extra step, putting the square root in exponential form, to make
sure that you see how to do this:

1. 1
:EIUZdu
3
S

3
=%u7+C

5. To finish up, substitute 3x% + 7 for u:

g2 o\
=§(3 +7)2+C

d@ Here’s another example of a product of functions that responds well to integration
with variable substitution:

EXAMPLE 2
J.xex dx
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Before evaluating this integral, recall from Chapter 6 that the function e cannot
be integzrated as an elementary function. Yet the seemingly more complex func-
tion xe™ is relatively easy to integrate and does evaluate to an elementary func-
tion. The presence of that additional x makes all the difference. Keep an eye on this
x as you work through the following steps:

1.

Declare a variable u and use it to build part of the integral in terms of u.

Here, | set u to be that troublesome x? exponent:

Let u=x?

Differentiate u and isolate the rest of the integral on the right side of the

equals sign.
In this case, | want to write x dx in terms of u:

du
E—ZX
du=2x dx

%du:x dx

Rewrite the integral in terms of u:

To do this, substitute u for x?and %du for x dx:

J'xexzdx = J'e”(%du)

Before integrating, move the fraction % outside the integral:

L ou
= Ej.e du
Integrate in terms of u.

Again, the integration itself is arguably the simplest step:

=%e“+C

Substitute the original value of u into the result:

:%e"z +C
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EXAMPLE

Did you catch how the presence of x in xe* helped because the derivative of x? is
2x? Here’s one final example of a variable substitution that makes this connection
glaringly obvious:

100
jxggex dx

This is where the magician moves their hands slowly so you catch the sleight of
hand:
1. Declare a variable u and use it to build part of the integral in terms of u.

This time, | strategically set u to x'%;
Let u=x'""

Now, it's clear that in the next step, | need to build x *°dx in terms of u.

2. Differentiate u and isolate the rest of the integral on the right side of the
equals sign.

These steps are beginning to get repetitive, aren't they? That's actually a good
sign — it means you're catching on to the process:

du _ 99
po 100x
du=100x" dx

L ogu= %
1OOdu-x dx

3. Rewrite the integral in terms of u:
This move should begin to look more obvious as well — substitute u for x'®

and ﬁdu for x®dx, then pull the fraction out of the integral:

J'xggexmodx = J.e” (ﬁdu) = ﬁj‘e"du

4, Integrate in terms of u.
Once again, when integrating the e function, the e is for easy:

1

Zme +C

5. Ssubstitute the original value of u into the result:

1 100

Zme +C

At this point, if you’ve followed these examples reasonably well, you’re ready for
the strategy behind u-substitution.
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Recognizing When to Use U-Substitution

In the previous section, I show you the mechanics of variable substitution — that
is, how to perform variable substitution when you’re trying to integrate the prod-
uct of functions.

In this section, I clarify when to use variable substitution. When you can see what
makes a function conducive to this method, you’ll find the strategy of choosing a

u-value much easier.

Variable substitution works best in two cases. In this section, I first show you the
simpler case, and then the more complex case.

The simpler case: f(x) - f'(x)
The best case for variable substitution occurs when you want to integrate a func-

tion multiplied by its derivative. If you get good at spotting these opportunities,
you can actually use the following formula:

= [FCOF()dx = %[f(x)]2 iC

Here are a few examples:

Integral Evaluation
Isinxcosx dx :%sinzx-rC
Itanxseczx dx :%tanzx-rC

Inx _1 2
IT dx —2(111)() +C
J‘(3x277x+4)(6x77) dx :%(3x2—7x+4)2+c

Here’s an example:

2
EXAMPLE J'tan xsec” x dx
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The main thing to notice here is that the derivative of tan x is sec? x. I do this in
two ways, first using variable substitution and then using the formula, which is
admittedly way easier.

1. Declare u and use it to build part of the integral in terms of u.

Letu=tanx

2. Differentiate and isolate x as usual:
du _ sec’x
dx
du=sec? x dx

3. Rewrite the integral in terms of u:

J.tan xsecxdx = _[u du

4. This integration couldn’t be much easier:

_15
—2u +C

5. Substitute back tan x for u:

:%tan2x+C

When you know how this variable substitution works, you can just use the formula
that I gave you:

J.tanxsecz x dx :%tan2 x+C

In some cases, you may have an integral that you can tweak to make the formula
work. An example should make this clear:

[(10x* +1)7x dx

In this case, if the contents outside the parentheses were 20x rather than 7x, you’d
be all set. Here, you can build the function you’d like to see. To begin, use the
Constant Multiple rule to bring the 7 outside the integral:

=7[(10x* +1)x dx
Now, you’d like to multiply inside the integral by a factor of 20, so multiply the

outside by 21—0:

:%f(10x2+1)20x dx
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EXAMPLE

Now, the integral has the form = .f f(x)f’(x)dx, so you can use the formula and
simplify:

:%%(10){24-1)2 +C

7

= 4g(10x%+1) +C

But if you find this method a little confusing and you’re worried that you’ll make

a calculation error, you can always do a u-substitution, letting u=10x*+1 and
du =20x dx. Either method yields the same result.

The more complex case: g(f(x)) - f'(x) when
you know how to integrate g(x)

When you’ve practiced integrating functions of the form f(x)-f’(x), you’re ready
for the more complex case g(f(x))-f’(x), where g(x) is a function that you know
how to integrate.
The notation here is a little opaque, so here’s an example:

J'xB\/x“ —ldx
Notice that x4 — 1, which is tucked inside the square root, has a derivative of 4x3,

which looks a lot like another part of the integral. So here’s the declaration, fol-
lowed by the differentiation and some simple algebra:

Now you can rewrite the whole integral in terms of u:
1
J.\/E(%du) = %J.uzdu

At this point, you can solve the integral easily:

No| w

u+C

N
w| o
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EXAMPLE

To complete the problem, plug in x* —1 for u and simplify:

— l( 4_ 1)% +C
"6
As you can see, the trick to this technique is identifying one part of the function

you’re trying to integrate that differentiates to another part.
Here’s a hairy-looking integral that also responds well to substitution:

T dx

J' 2x+1
(x2 +x-5 )§
The key insight here is that the numerator of this fraction is the derivative of the
inner function in the denominator. So set u to the denominator and differentiate:

Letu=x2+x-5

du
a—ZX‘Fl

du=(2x+1)dx

Almost like magic, the results are ready to be substituted into the integral:

_4
= I u 3du
Again, the integration step is relatively easy:
1

1
=-3u *+C=-3(x*+x-5)3+C

By now, if you’ve worked through the examples in this chapter, you’re probably
beginning to see opportunities to make variable substitutions. Here’s another
example that looks entirely heinous until you see the opportunity:

J'e“’“‘ cscxdx

Notice that the derivative of cot x is —csc? x, so this looks like another good candi-
date for u-substitution:

Letu=cotx
du
dx
—du =csc?x dx

= —CSC2 X
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This results in the following substitution:

= Je“(fdu)
= 7_|.e”du

Again, this is another integral that you can solve easily:

=—e"+C=—e“""+C

Using Substitution to Evaluate
Definite Integrals

In the first two sections of this chapter, I cover how and when to evaluate indefi-
nite integrals with variable substitution. All this information also applies to eval-
uating definite integrals, but I also have a time-saving trick that you should know.

When using variable substitution to evaluate a definite integral, you can save

yourself some trouble at the end of the problem. Specifically, you can leave the
solution in terms of u by changing the limits of integration.

m For example, suppose that you’re solving an area problem and need to evaluate
the following definite integral:

=1
LR e P
x=
Notice that I explicitly give the limits of integration as x = 0 and x = 1. This is just
a notational change to remind you that the limits of integration are values of x.

This fact becomes important later in the problem.

This is a great opportunity to use variable substitution as follows:

Letu=x%+1
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You’re now ready to make the substitution in terms of u and integrate:

Recall that when solving a definite integral, you use the notation shown here to
indicate that you still need to crunch the numbers and solve for a value. Before
continuing, I’ll simplify:

3 |x=1
13

u

w|—

x=0

If this were an indefinite integral, your next step would be to rewrite u in terms of x.
But when using variable substitution with definite integrals, you can also choose
to rewrite x in terms of u. To do this, substitute the limits of integration (0 and 1)
for x into the substitution equation u = x> + 1:

u=1%*+1=2

u=0%+1=1

Now use these values of u as your new limits of integration:

3 |u=2
— 2

u

w|—

u=1

Evaluate this expression as I show you in Chapter 5:

192 g2
STEw

1
=3(8-D

V8 -1
3

Thus, this value is the area you’re looking for.
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IN THIS PART ...

Apply integration by parts as a consequence of the
Product rule

Integrate a wide variety of trigonometric functions
Use trig substitution to evaluate integrals

Evaluate rational functions by integrating with partial
fractions



IN THIS CHAPTER

» Making the connection between the
Product rule and integration by parts

» Knowing how and when integration
by parts works

» Integrating by parts by using the
Dl-agonal method

» Practicing the Dl-agonal method on
the four most common products of
functions

Chapter 9
Parting Ways:
Integration by Parts

n Calculus I, you find that the Product rule allows you to calculate the derivative

of any two functions that are multiplied together. (I review this rule in Chapter 3,

in case you need a refresher.) But integrating the product of two functions isn’t
quite as simple.

Unfortunately, no formula allows you to integrate the product of two indiscrimi-
nate functions. As a result, a variety of techniques have been developed to handle
products of functions on a case-by-case basis.

In this chapter, I show you the most widely applicable technique for integrating
products, called integration by parts. First, I demonstrate how the formula for inte-
gration by parts follows the Product rule. Then I show you how the formula works
in practice. After that, I give you a list of the products of functions that are likely
to yield to this method. I also give you a mnemonic to help you decide the best way
to split up the function you’re integrating.

After you understand the principle behind integration by parts, I give you a
method — called the DI-agonal method — for performing this calculation effi-
ciently and without errors. This method works especially well when you need to
perform integration by parts two or more times to evaluate a single integral.
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To finish up, I show you examples of how to use this method to integrate the four
most common products of functions.

Introducing Integration by Parts

Integration by parts is a happy consequence of the Product rule (discussed in
Chapter 3). In this section, I show you how to tweak the Product rule to derive the
formula for integration by parts. I show you two versions of this formula — a
complicated version and a simpler one — and then recommend that you memo-
rize the second one. I show you how to use this formula, and then I give you a
heads-up as to when integration by parts is likely to work best.

Reversing the Product rule

The Product rule (see Chapter 3) enables you to differentiate the product of two
functions:

%[f(X) 8(O]=F1(x)-g(x) +g'(x)-f(x)

Through a series of mathematical somersaults, you can turn this equation into a
formula that’s useful for integrating. This derivation doesn’t have any truly diffi-
cult steps, but the notation along the way is mind-deadening, so don’t worry if
you have trouble following it. Knowing how to derive the formula for integration
by parts is less important than knowing when and how to use it, which I focus on
in the rest of this chapter.

The first step is simple: Just rearrange the right side of the equation into an equiv-
alent form.

%[f(X) 8(0]=f(x)-8'(x) +8(x)-£1(x)
Next, rearrange the terms of the equation:
f(x)-g'(x) = %[f(X) -8(xX)]=g(x)-F(x)
Now integrate both sides of this equation:
Jr0g () de = [ £ 100801 - g0Or (0 ax
Use the Sum rule to split the integral on the right in two:

[foOg () dx=| %[f(x)g(x)] dx - [g()F(x) dx
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The first of the two integrals on the right undoes the derivative:
[FC)g°(x) dx = F(x)g(x) = [OF(x) dx

This is the formula for integration by parts. But because it’s so hairy looking, the
following substitution is used to simplify it:

Let u = f{x) Letv=g(x)
du = f’(x) dx dv = g’(x) dx

Here’s the friendlier version of the same formula, which you should memorize:
_[u du=uv—jv du

That’s not so bad, right? Memorize it! (Say after me: “The integral of u dv equals
uv minus the integral of v du.”)

Although the integrals in this formula may look like you’re integrating one vari-

able by a different variable, remember that both u and v are functions of x. So,
you’re integrating one function of x times another function of x by dx.

Knowing how to integrate by parts

The formula for integration by parts gives you the option to break the product of
two functions down to its factors and integrate it in an altered form.

To integrate by parts:

Decompose the entire integral (including dx) into two factors.

Let the factor without dx equal u and the factor with dx equal dv.

1.
2.
3. Differentiate u to find du, and integrate dv to find v.
4. usethe formula j'u dv =uv—- j'v du.

5.

Evaluate the right side of this equation to solve the integral.

For example, suppose that you want to evaluate this integral:

_[x Inx dx
In its current form, you can’t perform this computation, so integrate by parts:

1. Decompose the integral into In x and x dx.

2. Letu=Inxand dv=xdx.
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3. Differentiate In x to find du and integrate x dx to find v:

Letu=Inx Let dv =x dx
du 1
axx ~[dU:dex
du:ldx U:lx2
X 2

4, Using these values for u, du, v, and dv, you can use the formula
J'u dv=uv- j'v du to rewrite the integral as follows:

- L) f(Le2)L
J'xlnx dx—(lnx)(Zx ) J'(Zx )xdx
Notice that the integral you're trying to evaluate shows up on the left side of

this equation. At this point, algebra is useful to simplify the right side:

L a1
—Ex Inx ijdx

5. Evaluate the integral on the right:

I N I Y AT
—2x Inx 2(2))( +C

You can simplify this answer just a bit:

B SNE TN
—2xlnx 4x +C

This version of the result is your final answer.

Knowing when to integrate by parts

After you know the basic mechanics of integrating by parts, as I show you in the
previous section, it’s important to recognize when integrating by parts is useful.

To start off, here are two important cases when integration by parts is definitely
the way to go:

¥ The logarithmic function In x

¥ The first four inverse trig functions (arcsin x, arccos x, arctan x, and arccot x)
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Beyond these cases, integration by parts is useful for integrating the product of
more than one function. For example:

» xInx
¥ xarcsecx
» x2sinx

¥ efcosx

Notice that in each case, you can recognize the product of functions because the
variable x appears more than once in the function.

Whenever you’re faced with integrating the product of functions, consider vari-
@ able substitution (which I discuss in Chapter 8) before you think about integration
by parts. For example, x cos (x2) is a job for variable substitution, not integration

TIP by parts.

You can use integration by parts to integrate any of the functions listed in

Table 9-1.

TABLE 9-1 Knowing When to Integrate by Parts
Function Example Differentiate u to Find du  Integrate dv to Find v
Log function Iln X dx In x dx
Log times algebraic [x*In x dx Inx X4 dx
Log composed with algebraic  [In x’dx Inx3 dx
Inverse trig forms Iarcsinx dx arcsin x dx
Algebraic times sine Ixzsinx dx X2 sin x dx
Algebraic times cosine I3x5 cosxdx  3x° cos x dx
Algebraic times exponential J%x“’e“dx %xz e dx
Sine times exponential Ie7 sinx dx sin x e? dx
Cosine times exponential Ie" cosx dx Cos X e dx
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When you’re integrating by parts, here’s the most basic rule when deciding which
term to integrate and which to differentiate: If you only know how to integrate
one of the two, that’s the one you integrate!

Here’s how to (finally!) integrate the all-important natural log function:

5.

J'lnxdx

Decompose the integral into In x and dx.
Let u=Inxand dv=dx.
As you can see, | assign the variables v and dv as shown in Table 9-1.

Differentiate In x to find du and integrate dx to find v:

Letu=Inx Let dv =dx
du 1
o x J.dU:J.dx
du:ldx v=Xx
X

Using these values for u, du, v, and dv, you can use the formula
Iu dv=uv- Iv du to rewrite the integral as follows:

Jlnx dx = (lnx)(x)—j(x)%dx

As usual, a difficult integral now shows up on the right as something that's
easier to evaluate. Begin by simplifying:

1
:Exlnx—_[l dx

Evaluate the integral on the right:

=xInx-x+C

This trick of “differentiating to integrate” that I use for In x carries over to the
first four inverse trig functions. For example:

J.arcsin x dx
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Like magic, integration by parts allows you to evaluate this useful integral.

Decompose the integral into arcsin x and dx.
Let u = arcsin x and dv = dx.
Again, | assign the variables v and dv as shown in Table 9-1.

Differentiate arcsin x to find du and integrate dx to find v:

Let u = arcsinx Let dv =dx
du 1
dx — 2 IdU:de
du = 1 dx v=x
1-x2

Using these values for u, du, v, and dv, you can use the formula
J'u dv=uv- jv du to rewrite the integral as follows:

. . 1
J'arcsmx dx = (arcsmx)(x)—_[(x) mdx

As usual, take a moment to simplify the right side:

X

N

Evaluate the integral on the right.

= Xxarcsinx — j dx

This looks like a casebook study in u-substitution (see Chapter 8 for more

details):

u=1-x?
du=-2x dx

—%dx =x dx

Now, rewrite this integral in terms of u, evaluate it, and rewrite it in terms of x
(again, these steps make more sense if you're familiar with Chapter 8):

. 171
7xarcsmx—(—§jﬁdu)

1, -1
:xarcsinx+§ju 2du

1
= xarcsinx +%(2u2)+C

= xarcsinx +vl-x% +C
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The DI-agonal method is basically integration by parts with a chart that helps you
organize information. This method is especially useful when you need to integrate
by parts more than once to solve a problem. In this section, I show you how to use
the DI-agonal method to evaluate a variety of integrals.

Looking at the DI-agonal chart

The DI-agonal method avoids using u and dv, which are easily confused (espe-
cially if you write the letters u and v as sloppily as I do!). Instead, a column for
differentiation is used in place of u, and a column for integration replaces dv.

Use the following chart for the DI-agonal method:

As you can see, the chart contains two columns: the D column for differentiation,
which has a plus sign and a minus sign, and the I column for integration. You may
also notice that the D and the I are placed diagonally in the chart — yes, the name
DI-agonal method works on two levels (so to speak).

Using the DI-agonal method

Earlier in this chapter, I provide a list of functions that you can integrate by parts.
The DI-agonal method works for all these functions. I also give you the mnemonic
Lovely Integrals Are Terrific (which stands for Logarithmic, Inverse trig, Alge-
braic, Trig) to help you remember how to assign values of u and dv — that is, what
to differentiate and what to integrate.
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EXAMPLE

TIP

To use the DI-agonal method:

1.

2.
3.

4.

Write the value to differentiate in the box below the D and the value to
integrate (omitting the dx) in the box below the /.

Differentiate down the D column and integrate down the / column.
Add the products of all full rows as terms.
I explain this step in further detail in the examples that follow.

Add the integral of the product of the two lowest diagonally adjacent
boxes.

| also explain this step in greater detail in the examples.

Don’t spend too much time trying to figure this process out. The upcoming exam-
ples show you how it’s done and give you plenty of practice. I show you how to use
the DI-agonal method to integrate products that include logarithmic, inverse trig,
algebraic, and trig functions.

L is for logarithm

You can use the DI-agonal method to evaluate the product of a log function and an
algebraic function.

For example, suppose that you want to evaluate the following integral:

J'lenx dx

Whenever you integrate a product that includes a log function, the log function
always goes in the D column.

1.

Write the log function in the box below the D and the rest of the function
value (omitting the dx) in the box below the .

+Inx
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2. Differentiate In x and place the answer in the D column. ..

Notice that in this step, the minus sign already in the box attaches to %

D x?

1 .3
X
+ Inx 3

Here's what you write:

1 3
+lnx(§x )
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REMEMBER

4. Addthe integral of the two lowest diagonally adjacent boxes that are

circled.
|
D x?
+ Inx 1 x3 N
— 1
& X

Here's what you write:

1 3 IERTR
(+lr1x)(§x )+J( x)(3x )dx
At this point, you can simplify both terms and then integrate the second term:

_ 1.3 1¢2
—§x lnx—g_[x dx

L (L)L
_SX Inx (3)(3x )+C
1

_1 s 1 3
—3x Inx 9x +C

Therefore, this is the correct answer:

2 R 1 3
J'x Inx dx-§x lnx—§x +C

| is for inverse trig

As I mention earlier in this chapter, you can integrate four of the six inverse trig
functions (arcsin x, arccos x, arctan x, and arccot x) using integration by parts.
Before, I integrated arcsin x, so now I’ll use the DI-agonal method to integrate
arccos x. (By the way, if you haven’t gotten around to memorizing the derivatives
of the six inverse trig functions, which I give you in Chapter 3, tick tock. . .)

Whenever you integrate a product that includes an inverse trig function, this
function always goes in the D column.
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Cm For example, suppose that you want to integrate the following:

J'arccos X dx
EXAMPLE

1 . Write the inverse trig function in the box below the D, and the rest of the
function value (omitting the dx) in the box below the /.

D 1

+arccos x

Note that the number 1 goes into the / column.

2. Differentiate arccos x and place the answer in the D column, and then
integrate 1 and place the answer in the / column.

D 1

+arccos x X
)
1-x2

3. Addthe product of the full row that'’s circled.

|

D 1

+ arccos x X
-

Here's what you write:

(+arccos x)(x)
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WARNING

Add the integral of the lowest diagonal that's circled.

D 1

+rccos X N
e

Here's what you write:

(+arccosx)(x)+ J - (— \/11_2 j(x)dx
-Xx

Take a step to simplify this result:

X

V1-x?

Now, you can see that you need to do a variable substitution to integrate the
second term (see Chapter 8 to find out why):

Xarccosx + j dx

Letu=1-x2
du=-2x dx

1
—Edu =x dx

This variable substitution introduces a new variable u. Don't confuse this u with
the u used for integration by parts.

1 1
= Xarccosx + IE(_fdu)

1
:xarccosx—%.[u 2(du)

1
= Xarccosx —%(2112) +C

= xarccosx —vu +C

Substituting 1 — x? for u and simplifying gives you this answer:

=xarccosx —v1-x2 +C

Therefore, Iarccosx dx = xarccosx —v1-x2 +C.

CHAPTER 9 Parting Ways: Integration by Parts 167



168

EXAMPLE

A is for algebraic

If you’re a bit skeptical that the DI-agonal method is really worth the trouble, I
guarantee you that you’ll find it useful when handling algebraic factors.

For example, suppose that you want to integrate the following:
J'x3 sinx dx

This example is a product of functions, so integration by parts is an option. Going
down the LIAT checklist, you notice that the product doesn’t contain a log factor
or an inverse trig factor. But it does include the algebraic factor x3, so place this
factor in the D column and the rest in the I column. By now, you’re probably get-
ting good at using the chart, so I’ve filled it in for you here:

D sin x

+x3 —Cos X

-3x?

Your next step is normally to write the following:
+(x3 )(—cos X)+ j(—sz )(—Cosx)dx

But here comes trouble: The only way to calculate the new integral is by doing
another integration by parts, and then another. And, peeking ahead a bit, here’s
what you have to look forward to:

= (x3 )(—cos x)— [(3x2 )(—sinx) - J-(Gx)(—sinx)de

=(x?)(~cosx)- {(3x2 )(=sinx) - [(Gx)(cosx) - _[6cosx de}
At last, after integrating by parts three times, you finally have an integral that you
can solve directly. If evaluating this expression looks like fun (and if you think you

can do it quickly on an exam without dropping a minus sign along the way!), by
all means go for it. If not, I show you a better way. Read on.
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TIP

EXAMPLE

To integrate an algebraic function multiplied by a sine, a cosine, or an exponential
function, place the algebraic factor in the D column and the other factor in the I
column. Differentiate the algebraic factor down to zero, and then integrate the
other factor the same number of times. You can then copy the answer directly
from the chart.

Simply extend the DI chart as I show you here:

|
D sin x
[+ x — cosx ||
| - 3x - sinx |
[+ 6x cosx ||
| - 6 sin x |
+ 0

Notice that you just continue the patterns in both columns. In the D column, con-
tinue alternating plus and minus signs and differentiate until you reach 0. And in
the I column, continue integrating.

The very pleasant surprise is that you can now copy the answer from the chart.
This answer contains four terms (+ C, of course), which I copy directly from the
four circled rows in the chart:

X3 (=€0s X) - 3x2 (-sin x) + 6x (cos x) - 6 (sin x) + C

But wait! Didn’t I forget the final integral on the diagonal? Actually, no; but this
integral is J.Osinx dx, which integrates to a constant — that is, + C.

Here’s another example, just to show you again how easy the DI-agonal method
is for products with algebraic factors:

_[3x Se2Xdx
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EXAMPLE

Without the DI chart, this problem is one gigantic miscalculation waiting to hap-
pen. But the chart keeps track of everything. Check it out:

I

D e
+ 3 17 e
- 15| e
+ 60x° 17 e
— 180x2 11—6 e~
+ 360x 37 &
- 360 |G €
+ 0

Now just copy from the chart, add C, and simplify:

= +(3x5 )(%ez")—(ISx4 )(%ezx)+ (60x3 )(%e“)—(lSOx2 )(%e“)
+(360x)(%e2x)—(360)(%e2")+C

3 e 15 agoe (15 3 2c 45 5 oon A5 ox A4S ax -

Fxe 7xe 5 7xe 7 xe 3
This answer is perfectly acceptable, but if you want to get fancy, factor out %e“

and leave a reduced polynomial:

= %e“(4x5 ~10x* +20x° ~30x* +30x-15)+C

Tis for trig

You can use the DI-agonal method to integrate the product of either a sine or a
cosine and an exponential.

For example, suppose that you want to evaluate the following integral:

X
je3 sinx dx
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TIP

When integrating either a sine or cosine function multiplied by an exponential
function, make your DI-agonal chart with five rows rather than four. Then place
the trig function in the D column and the exponential in the I column.

|

x

D e’

x

+sinx 3e3

x

- COS X 9e3
+-sin X

This time, you have two rows to add as well as the integral of the product of the
lowest diagonal:

(Sinx)(3e§ j + (—COSX)(%)Sf j + j(—sinx)[9e§ jdx

This may seem like a dead end because the resulting integral looks so similar to
the one that you’re trying to evaluate. Oddly enough, however, this similarity
makes solving the integral possible. To see why this works, on the next step I sim-
plify every term and also explicitly include the original integral back into the
problem:

X X X X

'|.e§ sinx dx = Begsinx—9e§cosx—9je§sinx dx

X
Can you now see that the integral J'eE sinx dx appears on both sides of the equa-
tion? To clarify the next few steps, substitute the variable I for the integral that
you’re trying to solve. This action isn’t strictly necessary, but it makes your course
of action much more straightforward:

x x
I=3e3sinx—9e3 cosx -9/

At this point, you now solve for I using a little basic algebra:

X X

107 =3e3 sinx —9e3 cosx
x x

_ 3e3sinx —9e? cosx

I 10

CHAPTER 9 Parting Ways: Integration by Parts 171



Finally, substitute the original integral back into the equation, and add C:

J'egsinx dx = %[363sinx —9e3 COSX]+C

Optionally, you can clean up this answer a bit by factoring:

X
=-——e3(sinx-3cosx)+C

S|
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IN THIS CHAPTER

» Memorizing the basic trig integrals

» Integrating powers of sines and
cosines, tangents and secants, and
cotangents and cosecants

» Understanding the three cases for
using trig substitution

» Avoiding trig substitution when
possible

Chapter 10

Trig Substitution:
Knowing All the (Tri)
Angles

rig substitution is another technique to throw into your ever-expanding bag
of integration tricks. It allows you to integrate functions that contain radi-

cals of polynomials such as v4 — x? and other similar difficult functions.

Trig substitution may remind you of variable substitution, which I discuss in
Chapter 8. With both types of substitution, you break the function that you want
to integrate into pieces and express each piece in terms of a new variable. With
trig substitution, however, you express these pieces as trig functions.

So before you can do trig substitution, you need to be able to integrate a wider
variety of products and powers of trig functions. The first few parts of this chapter
give you the skills that you need. After that, I show you how to use trig substitu-
tion to express complicated-looking radical functions in terms of trig functions.
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Integrating the Six Trig Functions

You already know how to integrate sin x and cos x from Chapter 6, but for com-
pleteness, here are the integrals of all six trig functions:

J'sinxdx:—cosx+C _[cosxdx:sinx+C
J'tanxdx:lnlsecx|+C Jcotxdx:lnlsinx|+C

jsecxdx:lnlsecx+taan+C Icscxdx:lnlcscx—cotxHC

Please commit these to memory — you need them! For practice, you can also try
differentiating each result to show why each of these integrals is correct.

Integrating Powers of Sines and Cosines

Later in this chapter, when I show you trig substitution, you need to know how to
integrate powers of sines and cosines in a variety of combinations. In this section,
I show you what you need to know.

Odd powers of sines and cosines

You can integrate any function of the form sin™x cos” x when m is odd, for any real
value of n. For this procedure, keep in mind the handy trig identity: sin x + cos?
X =1
1
For example, here’s how you integrate sin’ x cos3 x:
1. Peel offasinxand place it next to the dx:
1 1

J'sin7xcos3 x dx = Isinﬁxcos?' xsinx dx
2. Apply the trig identity sin? x = 1 - cos? x to express the rest of the sines in

the function as cosines:

1
3 3 .
:I(l—coszx) cos? xsinx dx
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3. Use the variable substitution u = cos x and du = -sin x dx:
3 l
:7I(17u2) u3du

4. Nowthat you have the function in terms of powers of u, the worst is
over. You can expand the function out, turning it into a polynomial. This
is just algebra:

:—I(l—u2)(1—u2)(l—uz)u%du

1
:—I(1—3u2+3u4—u6)u§du
A R 1)
:—fu3—3u3+3u3 —u3du

5. To continue, use the Sum rule and Constant Multiple rule to separate this
into four integrals, as | show you in Chapter 6. Be careful — don't forget
to distribute that minus sign to all four integrals!

= —Iu%du + 3_'.11%6111 - BIU%du + Iu%du

6. Atthis point, you can evaluate each integral separately using the Power
rule:

9 2 9 ¥ 3 =
m —EU +le +C

7. Finally, use u = cos x to reverse the variable substitution:

4 10 16 22

__2 3 - B y_L 3 2 3
= 4.COS X+10COS X 16COS X+22COS x+C

Notice that when you substitute back in terms of x, the power goes next to the cos
rather than next to the x, because you’re raising the entire function cos x to a
power. (See Chapter 2 if you’re unclear about this point.)

Similarly, you integrate any function of the form sin™ x cos" x when n is odd, for
any real value of m. These steps are practically the same as those in the previous

example. For instance, here’s how you integrate sin~4 x cos5 x:

1. Peel offacosxand place it next to the dx:

Isin’4xcos5x dx = Isin"‘xcos“xcosx dx
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2. Apply the trig identity cos? x = 1 - sin? x to express the rest of the cosines
in the function as sines:

:Isin’4x(1—sin2x)2cosx dx

3. Use the variable substitution u = sin x and du = cos x dx:
_J‘ -4 2\2
=|u (l—u ) du

4, Now, distribute, evaluate the integral, and reverse the variable
substitution:

:Ju"‘ —2u?+1du

:—%u‘:‘ +2u +u+C

= —%(sinx)’3 +2(sinx) " +sinx+C
__Lesc3x+2cscx +sinx+C

3

to csc x. This problem is a good example of why I always use the notation arcsin x.
(and not the ambiguous sin”' x) to express the inverse sin function, to avoid
TP unnecessary confusion between these two functions.

‘ Note that the two terms that include sin x with a negative exponent get simplified

Even powers of sines and cosines

To integrate sin? x and cos? x, use the two half-angle trig identities that I show you
in Chapter 2:

.9 1-cos2x 9 1+ cos2x
sin”x = ———— Cos" X =——F——

For example, here’s how you integrate cos? x:

1. usethe half-angle identity for cosine to rewrite the integral in terms of
cos 2x:

J.coszx dx = I% dx

2. Use the Constant Multiple rule to move the denominator outside the
integral:

= %J.(l +cos2x) dx
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3. Distribute the function and use the Sum rule to split it into several
integrals:

= %(J.l dx + Icos 2x dx)
4. Evaluate the two integrals separately:

1 1. 1 1.
—E(x+531n2x)+C—§x+zsm2x+C

As a second example, here’s how you integrate cos# x:

1. usethetwo half-angle identities to rewrite the integral in terms of cos 2x:

2
Jcos“x dx:_[(%) dx

_ ,[( 1+cos2x )( 1+cos2x )dx
- 2 2

_ I 1+2c0s2x +cos”2x
- 4

dx

2. Use the Constant Multiple rule to move the denominators outside the
integral:

= %J.l +2c082x +cos?2x dx

3. Distribute the function and use the Sum rule to split it into several
integrals:

= %(Jl dx + j2cos 2x dx + J.c0322x dx)

4. Evaluate the resulting odd-powered integrals by using the procedure
from the earlier section, “Odd powers of sines and cosines,” and evaluate
the even-powered integrals by returning to Step 1 of the previous
example.

In this case, evaluating the first two integrals is easy, but the third requires you
to use the half-angle identity again:

4

:l(x+sin2x+J'#dx)
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Fortunately, this integration isn't too bad:

1 1. 1 1
= Z(x-rEstx + J'de +§Icos4x dx)

1 . 1 1 .
7Z(x+sm2x+§x+§sm4x)+c

3 1. 1 .
= §x+zsm2x +§sm4x+ C

Integrating Powers of Tangents
and Secants

When you’re integrating powers of tangents and secants, here’s the rule to
remember: Eeeven powers of seeecants are eeeasy. The threee Es in the keeey words
should help you remember this rule. By the way, odd powers of tangents are also
easy. You’re on your own remembering this fact!

In this section, I show you how to integrate tan™ x sec” x for all positive integer

values of m and n. You use this skill later in this chapter, when I show you how to
do trig substitution.

Even powers of secants

To integrate tan™ x sec" x when n is even — for example, tan® x secé x — follow
these steps:

1. Peel offasec2xand place it next to the dx:

jtansxsecs xdx= jtansxsec4 xsec? x dx

2. Usethe trig identity 1+ tan? x = sec? x to express the remaining secant
factors in terms of tangents:

= Jtangx(l +tan? x)2 sec?x dx
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3. Use the variable substitution u = tan x and du = sec? x dx, distribute,
and then integrate as usual:

:Ju8(1+u2)2du
:Ju8 +2u'® + udu
_Ll o, 2 n

1 13
qu tp¥ tizd +C

19 2 1 g3
—gtan x+11tar1 x+13tan x+C

To integrate tan™ x when m is even — for example, tan4 x — follow these steps:

1. Peel off atan® x and use the trig identity tanZ x = secZ x — 1 to express it
in terms of tan x:

J'tan“x dx = Jtanzx(secz X - l)dx
2. Distribute to split the integral into two separate integrals:
= J'tanzxsec2 X dx — jtanzx dx

3. Evaluate the first integral using the procedure | show you earlier in this
section: u = tan x and du = sec? x dx, distribute, and then integrate as
usual:

:Juz dufj.tanzx dx
= %u‘"’ —Itanzx dx
= %tan3 X - ftanzx dx

4. Evaluate the second integral using the trig identity tan® x = sec* x —1to
express it in terms of sec x.

tan® x — Isec2x —1dx

W= W=

tan® x —tanx + x +C
To integrate sec” x when n is even — for example, sect x — follow these steps:

1. Peel offsec? x and use the trig identity 1+ tan x = sec? x to express the
function in terms of tangents:

Isec“x dx = I(1+tan2x)sec2x dx
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Distribute and split the integral into two integrals:

= Jseczx dx +J'tan2xseczx dx

Integrate the first term easily as tan x, and use u = tan x and du = sec® x dx
to integrate the second term:

=tanx + juz du
=tanx +%u3 +C

=tanx +%tan3+ C

Odd powers of tangents

To integrate tan™ x sec” x when m is odd — for example, tan? x sec® x — follow
these steps:

1.

2.

Peel off a tan x and a sec x and place them next to the dx:

J'tan7xsecg X = jtansxsecs xsecxtanx dx

Use the trig identity tan” x = sec” x — 1 to express the remaining tangent
factors in terms of secants:

3
= J(secz X —1) sec® xsecxtanx dx

Use the variable substitution u = sec x and du = sec x tan x dx:
:J.(u2 —I)Susdu

:J'(u2 —1)(u2 —1)(112 —l)usdu

= JuM —3u?+3u" —u® du

At this point, the integral is a polynomial, and you can evaluate it as
I show you in Chapter 7.

1 s 3 13,3 n 159
—15u 13u +11u 9u +C

Lo, 3 3., 3 o 1 g
= {5 sec” x - Jgsec’ x+ysec’ x - gsec x+C
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To integrate tan™ x by itself when m is odd, use a trig identity to convert the func-
tion to sines and cosines as follows:

m sin™ x . m “m
'[tan xdx:_[—dx:jsm xcos " x dx
cos™ x

After that, you can integrate using the procedure from the earlier section, “0Odd
powers of sines and cosines.”

Other tangent and secant cases

For all other combinations of tangent and secant functions (apart from the two
cases I mention earlier in this section), use integration by parts, as I discuss in
Chapter 9.

This is the hardest case, so fasten your seat belt. To integrate sec” x when n is
odd — for example, sec3 x — follow these steps:

1 . Peel offasecx:
Jsech dx = Iseczxsecx dx

2. Integrate by parts (see Chapter 9) as follows:

u=secx dv =sec?x dx
du=secxtanx dx v=tanx

J'u dU=llU—J.U du
J'sech dx =secxtanx — Itanzxsecx dx
3. Use the trig identity tan x = sec? x —1 to rewrite this integral:

J.sec?'x dx = secxtanx —'f(seczx —1)secx dx
J.secsx dx =secxtanx —jsecsx dx + jsecx dx

Jsech dx =secxtanx —Isecsx dx +Inlsecx +tanx|

4. Follow the algebraic procedure that | outline in Chapter 9.

First, substitute the variable / for the integral on both sides of the equation:

I=Inlsecx +tanx |-/ +tanxsecx
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Now solve this equation for /:
2] =Inlsecx +tanx|+tanxsecx

I= %ln Isecx +tanx | +%tanxsecx

Now you can substitute the integral back for /. Don't forget, however, that you
need to add a constant to the right side of this equation, to cover all possible
solutions to the integral:

Isech dx = %ln Isecx +tanx| +%tanxsecx+ C

That’s your final answer.

To integrate tan™x sec” x when m is even and n is odd, transform the function into
an odd power of secants, and then use the method that I outline in the previous
example.

For example, here’s how you integrate tan? x sec x:

1. usethe trusty trig identity tan? x = sec? x - 1 to convert all the tangents to
secants:

jtanzxsecx dx = J.(seczx ~1)secx dx

2. Distribute the function and split the integral using the Sum rule:

= Isec3x dx—Isecx dx

= Jsecax dx —Inlsecx+tanx|
3. Evaluate the first integral as shown in the previous example.

I truly hope that you never have to integrate secs x, let alone higher odd powers of
a secant. But if you do, the basic procedure I outline here will provide you with a

value for _[sec5x dx in terms of Isec3x dx.

Good luck!
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Integrating Powers of Cotangents
and Cosecants

TIP

The methods for integrating powers of cotangents and cosecants are very close to
those for tangents and secants, which I show you in the preceding section.

Here’s how to integrate cot® x csc® x:

1. Peeloffacsc?x and place it next to the dx:

jcotgxcsc6 xdx = jcotgxcsc“ xcse? x dx

2. Uusethe trig identity 1 + cot? x = csc? x to express the remaining cosecant
factors in terms of cotangents:

2
= Icotsx(1+cot2x) csc?x dx
3. Use the variable substitution u = cot x and du = -csc? x dx:

:—'fug(1+u2 )zdu

At this point, the integral is a polynomial, and you can evaluate it as I show you in
Chapter 7.

Notice that the steps here are virtually identical to those for tangents and secants.
The biggest change here is the introduction of a minus sign in Step 3. So to find
out everything you need to know about integrating cotangents and cosecants, try
all the examples in the previous section, but switch every tangent to a cotangent
and every secant to a cosecant.

Sometimes, knowing how to integrate cotangents and cosecants can be useful for
integrating negative powers of other trig functions — that is, powers of trig func-
tions in the denominator of a fraction.

2
C?SG * The methods that I out-

sin” x
line earlier don’t work very well in this case, but you can use trig identities to

express it as cotangents and cosecants:

For example, suppose that you want to integrate

cos’x cos’x 1

—& —3 — =cot?xcsc? x
sinx  sin“x sin”x

I show you more about this method in the next section, “Integrating Weird Com-
binations of Trig Functions.”
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Integrating Weird Combinations of
Trig Functions

You don’t really have to know how to integrate every possible trig function to
pass Calculus II. If you can do all the techniques that I introduce earlier in this
chapter — and I admit that’s a lot to ask! — you’ll be able to handle most of what
your professor throws at you with ease. You'll also have a good shot at hitting any
curveballs that come at you on an exam.

But in case you’re nervous about the exam and would rather study than worry, in
this section I show you how to integrate a wider variety of trig functions. I don’t
promise to cover all possible trig functions exhaustively. But I do give you a few
additional ways to think about and categorize trig functions that could help you
when you’re in unfamiliar territory.

You can express every product of powers of trig functions, no matter how weird,
as the product of any pair of trig functions. The three most useful pairings (as you
may guess from earlier in this chapter) are sine and cosine, tangent and secant,
and cotangent and cosecant. Table 10-1 shows you how to express all six trig
functions as each of these pairings.

TABLE 10-1 Expressing the Six Trig Functions as a Pair of Trig Functions

Trig Function  As Sines & Cosines  As Tangents & Secants  As Cotangents & Cosecants

tan x sinx tan x 1
cosx cotx

cot x cos X 1 cotx
sinx tanx

secx 1 secx cscx
cosx cotx

CcsC X 1 secx cscx
sinx tanx

For example, look at the following function:

cosxcot® xcsc? x

sin® xtanxsecx
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As it stands, you can’t do much to integrate this monster. But try expressing it in
terms of each of the three pairings of trig functions:

_cos®x
sin® x

_seczx
tan® x
6 2
=cot’ xcscx

As it turns out, the most useful pairing for integration in this case is cot® x csc? x.
No fraction is present — that is, both terms are raised to positive powers — and
the cosecant term is raised to an even power, so you can use the same basic pro-
cedure that I show you in the earlier section, “Even powers of secants.”

Using Trig Substitution

TIP

Trig substitution is similar to variable substitution (which I discuss in Chapter 8),
using a change in variable to turn a function that you can’t integrate into one that
you can. With variable substitution, you typically use the variable u. With trig sub-
stitution, however, you typically use the variable 6.

Trig substitution allows you to integrate a whole slew of functions that you can’t
integrate otherwise. These functions have a special, uniquely scary look to them
and are variations on these three themes:

(@ - bx?)" (@ + bx?)" (bx? - @)

Trig substitution is most useful when n is % or a negative number — that is, for

hairy square roots and polynomials in the denominator of a fraction. When n is a
relatively low positive integer like 2, 3, or maybe 4, your best bet is to express the
function as a polynomial and integrate it using the Power rule, as I show you in
Chapter 6.

In this section, I show you how to use trig substitution to integrate functions like
these. But, before you begin, take this simple test.

Trig substitution is:

A, Easy and fun — even a child can do it!
B.  Notsobadwhen you know how.

C.  Aboutas attractive as drinking bleach.
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TIP

I wish I could tell you that the answer is A, but then I'd be a big liarmouth and
you’d never trust me again. So I admit that trig substitution is less fun than a toga
party with a hot date. At the same time, your worst trig substitution nightmares
don’t have to come true, so please put the bottle of bleach back in the laundry
room.

I have the system right here, and if you follow along closely, I give you the tool
that you need to make trig substitution mostly a matter of filling in the blanks.
Trust me — have I ever lied to you?

Distinguishing three cases for
trig substitution

Trig substitution is useful for integrating functions that contain three very recog-
nizable types of polynomials in either the numerator or denominator. Table 10-2
lists the three cases that you need to know about.

The Three Trig Substitution Cases

Case Radical of Polynomial Example
Sine case (02 - bx?) J'x/4 —x2dx
Tangent case (@2 + bx?)" J’%dx
(4+9x%)
1
Secant case (bx2 - a?)" ———dx
J V16x? -1

The first step to trig substitution is being able to recognize and distinguish these
three cases when you see them.

Knowing the formulas for differentiating the inverse trig functions can help you
remember these cases:

iarcsinx = 1 iarctanx = ! iaurcsecx = _
dx 11— X2 dx 1+x? dx 2 -1

Note that the differentiation formula for arcsin x contains a polynomial that looks
like the sine case: a constant minus x2. The formula for arctan x contains a poly-
nomial that looks like the tangent case: a constant plus x>. And the formula for
arcsec x contains a polynomial that looks like the secant case: x> minus a constant.
So if you already know these formulas, you don’t have to memorize any additional
information.
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Integrating the three cases

Trig substitution is a five-step process:

1. prawthe trig substitution triangle for the correct case.

2. Identify the separate pieces of the integral (including dx) that you need to
express in terms of 6.

3. Express these pieces in terms of trig functions of 6.
4. Rewrite the integral in terms of 6 and evaluate it.
5. substitute x for 9in the result.

Don’t worry if these steps don’t make much sense yet. In this section, I show you
how to do trig substitution for each of the three cases.

The sine case

When the function you’re integrating includes a term of the form (a> - bx?>)", draw
your trig substitution triangle for the sine case. For example, suppose that you
want to evaluate the following integral:

j\/4 —xtdx

This is a sine case, because a constant minus a multiple of x> is being raised to a

power (%) Here’s how you use trig substitution to handle the job:

1. prawthe trig substitution triangle for the correct case.

Figure 10-1 shows you how to fill in the triangle for the sine case. Notice that the
radical goes on the adjacent side of the triangle. Then, to fill in the other two
sides of the triangle, | use the square roots of the two terms inside the radical —
thatis, 2 and x. | place 2 on the hypotenuse and x on the opposite side.

1
X
FIGURE 10-1:
A trig substitution 12
triangle for the
sine case. 4-x?
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You can check to make sure that this placement is correct by using the
Pythagorean Theorem:

x2+(\/4—x2 )2:22

Identify the separate pieces of the integral (including dx) that you need to
express in terms of 6.

In this case, the function contains two separate pieces that contain x:
V4 - x* and dx.

Express these pieces in terms of trig functions of 6.

This is the real work of trig substitution, but when your triangle is set up
properly, this work becomes a lot easier. In the sine case, all trig functions
should be sines and cosines.

To represent the radical portion as a trig function of 6, first build a fraction

using the radical V4 — x* as the numerator and the constant 2 as the denomi-
nator. Then set this fraction equal to the appropriate trig function:

4 x?

5 =cos6

Because the numerator is the adjacent side of the triangle and the denomina-

tor is the hypotenuse (%) this fraction is equal to cos 6.

Now a little algebra gets the radical alone on one side of the equation:

V4 —x? =2cos0

Next, you want to express dx as a trig function of 8. To do so, build another
fraction with the variable x in the numerator and the constant 2 in the
denominator. Then set this fraction equal to the correct trig function.

This time, the numerator is the opposite side of the triangle and the denomina-

tor is the hypotenuse (%) so this fraction is equal to sin 6:

X .
— =sinf

[\

Now solve for x and then differentiate:

x =2sin6
dx =2cos6 db
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Rewrite the integral in terms of # and evaluate it:

I\/4 —x?dx

= J(Zcos@)(Zcose) do

= 4_(00320 do

Knowing how to evaluate trig integrals really pays off here. | cut to the chase in
this example, but earlier in this chapter (in the section, “Integrating Powers of

Sines and Cosines”), | show you how to integrate all sorts of trig functions like
this one:

=20+sin260+C

To change those two 0 terms into x terms, reuse the following equation:

%:sin@
X
0 —arcs1n7

So here’s a substitution that gives you an answer:

= 2arcsin% + sin(2arcsin§) +C

This answer is perfectly valid, so, technically speaking, you can stop here. How-
ever, professors typically frown upon the nesting of trig and inverse trig func-

tions, so they’ll prefer a simplified version of sin(Zarcsin£ ) To find this simplified

2

version, do the following:

1.

2.

Start by applying the double-angle sine formula (see Chapter 2) to sin 26:

sin 260 = 2sinBcosO + C

Now use your trig substitution triangle to substitute values for sin 6 and
cos @in terms of x:

:2(5)[W] !

_ 2 _2
2 5 |TgxVA-x

To finish, substitute this expression for that problematic second term to
get your final answer in a simplified form:

20. +sin20 +C = 2arcsin%+%xx/4 -xt+C
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WARNING

FIGURE 10-2:

A trig substitution
triangle for the
tangent case.

The tangent case

When the function you’re integrating includes a term of the form (a? + x?)", draw
your trig substitution triangle for the tangent case. For example, suppose that you
want to evaluate the following integral:

1
— . d
j(4+9x2)2 3

This is a tangent case, because a constant plus a multiple of x? is being raised to a
power (—2). Here’s how you use trig substitution to integrate:

1. prawthe trig substitution triangle for the tangent case.

Figure 10-2 shows you how to fill in the triangle for the tangent case. Notice
that the radical of what's inside the parentheses goes on the hypotenuse of
the triangle. Then, to fill in the other two sides of the triangle, use the square
roots of the two terms inside the radical — that is, 2 and 3x. Place the constant
term 2 on the adjacent side and the variable term 3x on the opposite side.

With the tangent case, make sure not to mix up your placement of the variable
and the constant. You really need to place that x term on the opposite side of

the triangle!
i
Y
oy 3x
4
2

2. Identify the separate pieces of the integral (including dx) that you need to
express in terms of 6.

In this case, the function contains two separate pieces that contain x:

1
(4 Tor? )2 and dx
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3.

Express these pieces in terms of trig functions of 6.

In the tangent case, all trig functions should be initially expressed as tangents
and secants. To represent the rational portion as a trig function of 6, build a

fraction using the radical v4 + 9x? as the numerator and the constant 2 as the
denominator. Then set this fraction equal to the appropriate trig function:

V4 1 9x?

5 =secl

Because this fraction is the hypotenuse of the triangle over the adjacent side,
it's equal to sec 8. Now use algebra and trig identities to tweak this equation
into shape:

V4 +9x?% =2sech

2

4+9x?
ﬁ = 1656C40
1 1

(4 +9x2 )2 " 16sec’o

Next, express dx as a trig function of 6. To do so, build another fraction with the
variable 3x in the numerator and the constant 2 in the denominator:
3x
T =tan0
This time, the fraction is the opposite side of the triangle over the adjacent
side, so it equals tan 6. Now solve for x and then differentiate:

2

_ _2 .2
xfgtan9 dx = 3sec 6 do

Express the integral in terms of § and evaluate it:

1 1 2
I(4+9x2)2 B = fsecto 35040

Now some cancellation and reorganization turns this nasty-looking integral
into something manageable:

%J.cosze do

At this point, use your skills from the earlier section, “Even powers of sines and
cosines,” to evaluate this integral:

1 |
EQ +%sm29 +C
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5. Change the two 6 terms back into x terms:
You need to find a way to express 8 in terms of x. Here's the simplest way:

3x
tanf = 7

0= arctanSTx

So here's a substitution that gives you an answer:

1 1 . 1 3x 1 . 3x
E9+%sm2@+C—EarctanT+%sm(2arctan7)+C

This answer is valid, but most professors won’t be crazy about that ugly second
term, with the sine of an arctangent. To simplify it, do the following:

1. Apply the double-angle sine formula (see Chapter 2) to %sinZ@:

1 . 1
%sm% = 4—Ssm0 cos0

2. Nowuse your trig substitution triangle to substitute values for sin § and
cos #in terms of x:

L[ 3x )( 2 j: 6x _ x
48\ Jarox? \Va+9x2 ) 48(4+9x%) (32+72x°)
3. Finally, use this result to express the answer in terms of x:

) 1 1 3x X
150 + 9 5in20 + C = gearctan= +(32+72X2)+C

The secant case

When the function that you’re integrating includes a term of the form (bx> — a),
draw your trig substitution triangle for the secant case. For example, suppose that
you want to evaluate this integral:

1
—dx
J V16x? -1
This is a secant case, because a multiple of x> minus a constant is being raised to

a power (—%) Integrate using trig substitution as follows:

PART 4 Advanced Integration Techniques



1. prawthe trig substitution triangle for the secant case.

Figure 10-3 shows you how to fill in the triangle for the secant case. Notice that
the radical goes on the opposite side of the triangle. Then, to fill in the other
two sides of the triangle, use the square roots of the two terms inside the
radical — that is, 1 and 4x. Place the constant 1 on the adjacent side and the
variable 4x on the hypotenuse.

You can check to make sure that this placement is correct by using the

2
Pythagorean Theorem: 1% + (\/16x2 -1 ) =(4x)%

1% ;
FIGURE 10-3: V16x-1
Atrig
substitution
triangle for the 9
secant case. 1

2. Identify the separate pieces of the integral (including dx) that you need to
express in terms of 6.

In this case, the function contains two separate pieces that contain x:
B S
V16x* -1

3. Express these pieces in terms of trig functions of 6.

and dx

In the secant case (as in the tangent case), all trig functions should be initially
represented as tangents and secants.

To represent the radical portion as a trig function of 6, build a fraction by using
the radical vV16x% —1 as the numerator and the constant 1 as the denominator.
Then set this fraction equal to the appropriate trig function:

Vi6x? -1

1 =tan6

Notice that this fraction is the opposite side of the triangle over the adjacent
side (%) so it equals tan 6. Setting the reciprocals equal gives you this
equation:

1
16x2—1 tanf
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Next, express dx as a trig function of 8. To do so, build another fraction with the
variable x in the numerator and the constant 1 in the denominator:

4TX=sec9

This time, the fraction is the hypotenuse over the adjacent side of the triangle

(%) which equals sec 8. Now solve for x and differentiate to find dx:

x:%sec@ dx:%sec@tan@ do

4, Express the integral in terms of § and evaluate it:

1 1 1
Ve %l 1

secOtan0do = %J‘secade

Now use the formula for the integral of the secant function from the section,
“Integrating the Six Trig Functions,” earlier in this chapter:

= %ln IsecO +tané | +C

5. Change the two 6 terms back into x terms:

In this case, you don't have to find the value of 8 because you already know the
values of sec 8 and tan 6 in terms of x from Step 3. So substitute these two
values to get your final answer:

:%ln|4x+\/16x2—1|+c

Knowing when to avoid trig substitution

Now that you know how to use trig substitution, I give you a skill that can be even
more valuable: avoiding trig substitution when you don’t need it. For example,
look at the following integral:

'[(1 —4x? )zdx

This may look like a good place to use trig substitution, but it’s an even better
place to use a little algebra to expand the problem into a polynomial:

= [(1-8x* +16x*)dx

Now, you can integrate each of these three terms separately using the Power rule,
as I show you all the way back in Chapter 6.
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Similarly, look at this integral:

X
s

You can use trig substitution to evaluate this integral if you want to. (You can also
walk to the top of the Empire State Building instead of taking the elevator if that
tickles your fancy.) However, the presence of that little x in the numerator should
tip you off that variable substitution will work just as well (flip to Chapter 8 for
more on variable substitution):

Letu=x%-49
du=2xdx

%du:xdx

Using this substitution results in the following integral:
Ll gy —Jx?-
_2j\/5 du=u+C=x*-49+C

Done! I probably don’t need to tell you how much time and aggravation you can
save by working smarter rather than harder. So I won’t!
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IN THIS CHAPTER

» Rewriting complicated fractions as
the sum of two or more partial
fractions

» Knowing how to use partial fractions
in four distinct cases

» Integrating with partial fractions

» Using partial fractions with improper
rational expressions

Chapter 11

Rational Solutions:
Integration with
Partial Fractions

et’s face it: At this point in your math career, you have bigger things to worry

about than adding a couple of fractions. And if you’ve survived integration by

parts (Chapter 9) and trig integration (Chapter 10), multiplying a few poly-
nomials isn’t going to kill you either.

So here’s the good news about partial fractions: They’re based on simple arithme-
tic and algebra. In this chapter, I introduce you to the basics of partial fractions
and show you how to use them to evaluate integrals. I illustrate four separate
cases in which partial fractions can help you integrate functions that would
otherwise be a big o]’ mess.

Now here’s the bad news: Although the concept of partial fractions isn’t difficult,
using them to integrate is just about the most tedious thing you encounter in this
book. And as if that weren’t enough, partial fractions only work with proper
rational functions, so I show you how to distinguish these from their ornery cous-
ins, improper rational functions. I also give you a big blast from the past, a refresher
on polynomial division, which I promise is easier than you remember it to be.
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Strange but True: Understanding
Partial Fractions
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EXAMPLE

Partial fractions are useful for integrating rational functions — that is, functions in
which a polynomial is divided by a polynomial. The basic tactic behind partial
fractions is to split up a rational function that you can’t integrate into two or more
simpler functions that you can integrate.

In this section, I show you a simple analogy for partial fractions that involves only
arithmetic. After you understand this analogy, partial fractions make a lot more
sense. At the end of the section, I show you how to solve an integral using partial
fractions.

Looking at partial fractions

To get a look at how to decompose a fraction to the sum partial fractions, suppose

that you want to split the fraction % into a sum of two smaller fractions.
Start by decomposing the denominator down to its factors — 3 and 5 — and
setting the denominators of these two smaller fractions to these numbers:

u_AaB

15 3 5
Now, if you add these two fractions by using the obvious common denominator of
15, you get the following result:

14_A N B _5A+3B

153 5 15
So, looking at the numerators, to find an A and a B, you want to find an integer
solution to this equation:

5A+3B=14

Now, just by eyeballing this equation and noodling around, you can probably find
the nice integer solution A = 1and B = 3, so:

14 1.3

15 35
This procedure doesn’t just work for % Instead, it’s guaranteed to work for all
numerators that are integers. To solve for some numerators, however, you may
need to use negative fractions.
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REMEMBER
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For example, the fraction % seems too small to be a sum of thirds and fifths, until
you discover:

1
15

vl w

w|no

So, going forward, a “sum” of partial fractions may, in fact, be either a sum or a
difference.

How does that sound so far? Make sense?

Using partial fractions with
rational expressions

The technique of breaking up fractions into sums of two or more fractions also
works for rational expressions. Importantly, it can provide a strategy for integrat-
ing functions that you can’t compute directly.

For example, suppose that you’re trying to evaluate this integral:

J. 26 dx
x“-9

You can’t integrate this function directly, but if you break it into the sum of two
simpler rational expressions, you can use the Sum rule to solve them separately.
And, fortunately, the polynomial in the denominator factors easily:

6 6
x2-9 (x+3)(x-3)

So set up this polynomial fraction just as I do with the regular fractions in the
previous section:

6 __A B
(x+3)(x-3) x+3 x-3

Just as with fractions, this sum is guaranteed to work if you can find the values of
A and B. To do this, add this pair of fractions using the common denominator you
started with:

6 A B A(x-3)+B(x+3)
(x+3)(x—3)_x+3+x—3_ (x+3)(x-3)

This gives you the following equation in the numerators:

A(x-3)+B(x+3)=6
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Solving

This equation may look like it has too many variables. But the trick is that it works
for all values of x. You can exploit this fact by picking helpful values of x to find the
values of A and B. Watch what happens when you substitute the roots of the origi-
nal polynomial (3 and -3) for x:

ABB-3)+B(3+3)=6 A(-3-3)+B(-3+3)=6
6B=6 6A=6
B=1 A=-1

Now substitute these values of A and B back into the rational expressions:

6 o1,
(x+3)(x-3) x+3 x-3

Wait, what? Does this result really equal the original rational expression? Before
moving on, I'll take a moment to verify it:

-1 N 1 -1(x-3)+1(x+3) —-x+3+x+3 _ 6
x+3 x-3 (x+3)(x-3) T (x+3)(x-3) (x+3)(x-3)

Yes! And this sum of two rational expressions is a whole lot friendlier to integrate
than what you started with. To begin, use the Sum rule to split up the integral:

J’_ 1 + 1
x+3 x-3
1 1
i ot o
Now, each of these integrals is simply a power function with a linear input of the
form ax + b (see Chapter 7):

dx

=-Inlx+3l+Inlx-31+C

If you’ve followed this example all the way to the end, you’ve now got the begin-
nings of a solid understanding of how integration with partial fractions works.

In the next section, I outline four distinct cases where you can use this technique
to integrate complicated rational functions.

Integrals by Using Partial Fractions

In the previous section, I show you how to use partial fractions to split a compli-
cated rational function into several smaller and more-manageable functions. And
although this technique will certainly amaze your friends at parties, you may be
wondering why it’s worth learning.
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REMEMBER

Q

When using partial fractions, the real payoff comes when you start integrating.
Lots of times, you can integrate a big rational function by breaking it into the sum
of several bite-sized chunks. Here’s a bird’s-eye view of how to use partial frac-
tions to integrate a rational expression:

1. set up the rational expression as a sum of partial fractions with
unknowns (A4, B, C, and so forth) in the numerators.

| call these unknowns rather than variables to distinguish them from x, which
remains a variable for the whole problem.

2. Find the values of all the unknowns and plug them into the partial
fractions.

3. Integrate the partial fractions separately by whatever method works.

Setting up a sum of partial fractions isn’t difficult, but you have four distinct cases
to watch out for. Each case results in a different setup — some easier than others.

Try to become familiar with these four cases, because I use them throughout this
chapter. Your first step in any problem that involves partial fractions is to recog-
nize which case you’re dealing with so that you can solve the problem.

TIP
Each of these cases is listed in Table 11-1.
TABLE 11-1 The Four Cases for Setting Up Partial Fractions
Case Example As Partial Fractions
Case 1: Distinct A + 5 +... 1 =é+ B + ¢
linear factors linear factor  linear factor x(x+2)(x-5) x x+2 x-5
Case 2: Repeated A B x-3 A B
linear factors linear factor (linear factor)? e (x-D?  x-1 ’ (x-1)?
Case 3: Distinct A+Bx C+Dx 5x+4 _Ax+B (Cx+D
irreducible quadratic factor  quadratic factor """ (x? +3)(x*-1) Cox2+3 0 x%-1
quadratic factors
Case 4: Repeated Ax+B Cx+D + 5x%+x+7 A+ Bx C+Dx
quadratic factors quadratic factor ~ (quadratic factor)? (Frx+1) Tl ixal + (P rx+1)?

In the rest of this section, I focus on these four cases one by one.
Here’s a warning: Some of this math is really tough! As you proceed, if you begin

to feel like you’re sailing into the heart of darkness, I encourage you to take a
break and focus on something else. Many teachers give a nod to this material with
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REMEMBER

EXAMPLE

TIP

one or two relatively simple problems. Others may ask you to set up an integral to
be solved but not actually solve it. Still others may ask you for a partial solution,
allowing you to leave the most difficult parts of the problem alone.

So, as you read, try to get a handle on whatever part of the process you can.
As I mention in Chapter 19, your best is all you can do.

Case 1: Distinct linear factors

The simplest case in which partial fractions are helpful is when the denominator
is the product of distinct linear factors — that is, linear factors that are non-
repeating. This is the case I show you earlier in this chapter. It’s also the most
likely scenario on any test you may encounter.

For each distinct linear factor in the denominator, add a partial fraction of the
following form:

A
linear factor

Setting up partial fractions

For example, suppose that you want to evaluate the following integral:

1
J FCI R

The denominator is the product of three distinct linear factors — x, (x + 2), and
(x — 5) — so it’s equal to the sum of three fractions with these factors as
denominators:

v A B  C
x(x+2)(x-5) x x+2 x-5

The number of distinct linear factors in the denominator of the original expres-
sion determines the number of partial fractions. In this example, the presence of
three factors in the denominator of the original expression yields three partial
fractions.

Solving for unknowns A, B, and C

To find the values of the unknowns A, B, and C, first get a common denominator
on the right side of this equation (the same denominator that’s on the left side).
To do this, multiply each unknown by the denominators of the other terms:

_A(x+2)(x-5)+Bx(x—-5)+Cx(x+2)
B x(x+2)(x-5)
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The result is an equation with the same denominator on both sides, so you can
multiply both sides by this denominator:

1 _A(x+2)(x-5)+Bx(x-5)+Cx(x+2)
x(x+2)(x-5) x(x+2)(x-5)
1=A(x+2)(x-5)+Bx(x-5)+Cx(x +2)

The result seems to have too many variables to solve. But, as I show you in the
previous section, to find the values of A, B, and C, substitute the roots of the three
factors (0, —2, and 5) for x in three separate equations. When you do this, the
equations magically solve themselves:

1= A(2)(5) 1=B(-2)(-2-5) 1=C(5)(5+2)
1=104 1=14B 1=35C
1 1 1

Plugging these values back into the original equation gives you:

1 1 1 1
X(x+2)(x—5)  10x T4(x+2)  35(x-5)

Evaluating the integral

This resulting expression is equivalent to what you started with, but it’s much
easier to integrate.

1 1 1 1
J-x(x+2)(x75) dx:f’m+14(x+2)+35(x75) dx

To do so, use the Sum rule to break it into three integrals, and the Constant Mul-
tiple rule to move fractional coefficients outside each integral:

1,1 1 1 1 1
T PR e AR

Now, each of these integrals is simply a linear input to the function %, which I
show you how to integrate in Chapter 7:

1 1 1
——Elnx+ﬁln(x+2)+%ln(x—5)+C
e The C here is distinct from the C used earlier in the problem. If your teacher is a
& stickler, you might need to call this integration constant K or something else to

Tecunicar  distinguish it from C.
STUFF
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Case 2: Repeated linear factors

Repeated linear factors are a bit more difficult to work with because each factor
requires more than one partial fraction.

For each squared linear factor in the denominator, add two partial fractions in the
following form:

A B
- = 2
linear factor = (linear factor)

For each quadratic factor in the denominator that’s raised to the third power, add
three partial fractions in the following form:

A B C
. = 7t 3
linear factor ~ (linear factor) (linear factor)

Generally speaking, when a linear factor is raised to the nth power, add n partial
fractions.

Setting up partial fractions

For example, suppose that you want to evaluate the following integral:

J- x-3

x_1)? dx

This expression contains all linear factors, but one of these factors (x + 5) is non-
repeating and the other (x — 1) is raised to the third power. Set up your partial
fractions this way:

x-3 A B

oD x-1 (x-1?

Solving for unknowns A and B

Now, use the common denominator (x —1)* to sum up these two partial fractions
into a single rational expression:

_A(x-D+8B
(x-1)?
The result again is an equation with the same denominator on both sides, so you
can simply drop the denominators:
x-3 _Ax-D+B

(x-D*  (x-D?
x-3=A(x-1)+B
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In this case, the denominator has only one root (1), so plug this value in for x and
solve:

1-3=A(1-1)+B
B=-2

Now, plug this value back into the previous equation and simplify:
x-3=A(x-1)-2
x-3=Ax-A-2
x-1=Ax-A
Although this equation has two variables, you can factor out x — 1 on the right and
then divide by this value to find A:
x-1=A(x-1)
A=1
Now, plug in 1 for A and -2 for B into the original equation:

x-3 _ 1 . -2
(x-D* x-1 (x-1?

Evaluating the integral

This may not look like progress, but the resulting integral is much easier to
evaluate:

x-3 1 -2
j(x—l)z dx:-.'x*1+(x—1)2 dx

Now, you can change this integral to a pair of integrals and solve each one sepa-
rately using the method I outline in Chapter 7. I do this in several steps so you can
follow along:

1 1
o ) dx—2.f(x71)2 dx

:jﬁ dx-2[(x-1)* dx
=Inlx-11-2(-D(x-D7"'+C

:lnlx—1|+i+C
x-1

In my humble opinion, this is about as difficult a partial fractions problem as I
would ever put on an exam.
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REMEMBER

EXAMPLE

TIP

Case 3: Distinct quadratic factors

A difficult case where you can use partial fractions is when the denominator is the
product of distinct quadratic factors — that is, quadratic factors that are nonrepeat-
ing. Here, setting up the partial fractions isn’t so bad, but the rest of the problem
tends to be a lot of work. This is where you hope that, on an exam, your teacher
assigns a problem like this but explicitly asks you to set up but not evaluate the inte-
gral. Oh, happy day!

For each distinct quadratic factor in the denominator, add a partial fraction of the
following form:

A+ Bx
quadratic factor

Setting up partial fractions
For example, suppose that you want to evaluate this integral:
J- 5x+4
(x- 2)(3(2 + 3)
The first factor in the denominator is linear, but the second is quadratic and can’t

be decomposed to linear factors. So set up your partial fractions as follows:

S5x +4 A  Bx+C

(x-2)(x*+3) x=2" 743

As with distinct linear factors (Case 1), the number of distinct quadratic factors in
the denominator tells you how many partial fractions you get. So in this example,
two factors in the denominator yield two partial fractions.

Not so bad, right? This is more than I can promise for the rest of the problem.

Solving for unknowns A, B, and C

Now, as in the previous examples, your next step is to add the two partial fractions
using the original denominator:

A2 +3)+(Bx+C)(x-2)
- (x-2(x*+3)

The result is an equation that, as usual, permits you to drop the denominator:

5x+4 A +3)+ (Bx+C)(x-2)

(x—-2)(x*+3) (x-2)(x*+3)
5x+4=A(x*+3)+(Bx+C)(x-2)
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Now, letting x = 2 results in an equation you can solve for A:

5(2)+4=A2%+3)+[B(2)+C](2-2)
14=74
A=2
Plug in 2 for A:
5x+4=2(x>+3)+(Bx+C)(x-2)

Unfortunately, you can’t solve the remaining equation for B or C by plugging in
other values of x. Instead, distribute and simplify this equation as much as you can:

5x+4=2x*+6+Bx*-2Bx+Cx-2C
5x —2=2x”+Bx*-2Bx+Cx-2C
The result may look hopeless. But remember, this equation is true for all values of x.

Thus, you can separate it into three separate equations, each containing common
powers of x:

0=2x2 + Bx?
5x =-2Bx +Cx
-2=-2C

Now, solving the first equation gives you the value of B, and solving the third
equation gives you the value of C (by the way, the second equation also confirms
that these values are correct):

0=2x?%+ Bx? -2=-2C
B=-2 c=1

At last, you can now substitute these three values back into the original equation:

5x+4 _ 2 +—2x+1
(x-2)(x%+3) x-2 x*4+3

It’s possible that, on a quiz or test, your teacher will ask you to go this far and no
further with a problem of this difficulty. Be sure to keep an eye on directives like
this before you burst into tears or quit university for a promising job in the mer-
chant marine.

Evaluating the integral

Here, the hard work finally begins to pay off, because the new version of this
function is much easier to integrate than the original:
—2x+1

2
dxf'[x_2+ 213 dx

J' 5x+4
(x-2)(x*+3)
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As usual, break this integral in two:

1 —2x+1
_2-[_3(—2 dx+j 213 dx
You can also further split up the second integral as follows:

:2_" 1 —2X dx
x=2 X +3 X +3

1
72j—x_2 arx—zjx2+ dx+jx 3 dx
At this point, you can evaluate the first two integrals by methods you already
know. Evaluate the first as I've done throughout this chapter, as shown in
Chapter 7:

dx
3

Evaluate the second integral with variable substitution, as I show you in
Chapter 8, using u = x> + 3 and du = 2x dx:

=2In|x-21-Inlx®+31+ L ax
x“+3

Finally, you can solve the third integral using the following handy little formula
that I provide you with in Chapter 7:

j 21 2dx:larctanﬁwLC
X" +a a a

In this specific case, a =+3:

—oInlx—21-Inlx?+3|+—arctan—+C

V3 V3

Speaking personally, I’m fine with radicals in the denominator, as are most pro-
fessors as you ascend higher up the great math mountain.

Case 4: Repeated quadratic factors

And if you thought that last example was bad, your worst nightmare when it
comes to partial fractions is when the denominator includes repeated quadratic
factors. I really hope your professor doesn’t force you to integrate one of these
monsters all the way to the bitter end, but if so, here’s what you do:
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EXAMPLE

For each squared quadratic factor in the denominator, add two partial fractions in
the following form:

Ax+B . Cx+D
quadratic factor  (quadratic factor)?

For each quadratic factor in the denominator that’s raised to the third power, add
three partial fractions in the following form:

Ax+B Cx+D Ex+F
quadratic factor = (quadratic factor)? = (quadratic factor)?

Generally speaking, when a quadratic factor is raised to the nth power, add n par-
tial fractions.

Setting up partial fractions

I’ll keep the example as simple as I can, but you still won’t like it:

J- 5x3 +x+7
(x* +x+1)?

This denominator has one quadratic expression that’s squared, but it’s a doozy.
(Stay tuned.) Here’s how you set up the partial fractions:

5x°+x+7 _ A+Bx C + Dx
(x+x+D? xP+x+1 (xP+x+1)?

Solving for unknowns A, B, C, and D

Continue by rewriting the left side of this equation using a common
denominator:

_(A+B)(x*+x+D+C+Dx
(x*+x+1)?

Now, set the two rational expressions equal, and allow the denominators to can-
cel out:

5x°+x+7 _(A+BX)(x*+x+1D)+C+Dx

(x*+x+1)? (x*+x+1)?

5x° +x+7=(A+Bx)(x2+x+1)+C+Dx

Distribute on the left side of this equation:

5x2+x+7=Ax*+Ax+A+Bx® +Bx? +Bx+C +Dx
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The result looks to be unsolvable. But it holds for all values of x, so you can sepa-
rate this equation into the following four equations based on the x values:

5x° = Bx®
0=Ax*+ Bx*
x =Ax+ Bx+ Dx
T=A+C

This system of equations in four variables is actually pretty easy to solve: A = -5,
B =5, C =12, and D = 1. Substitute all of these variables back into the original
equation:

5x+x+7  —5+5x 12+ x
(xP+x+D? xP+x+1 (xP+x+D)?

Evaluating the integral

As tedious as the previous step is, the most difficult part of this process is per-
forming the actual evaluation. Here’s where it stands so far:

5x3 +x+7 -5+5x 12+x
J- 2 2dx:.[ 2 2 2
(x“+x+1) x“+x+1 (x“+x+1)

Now, apply the Sum rule and Constant Multiple rule to this integral. (But don’t
split up the rational expressions! You see why in a moment):

x-1 x+12
J' 2 I 2 2
x“+x+1 (x“+x+1)

As you can see, [ made a few small algebraic adjustments to these integrals. Now,
you’re at the end of all the tricks you already know. There’s only one more I can
show you, and then you will be enlightened. (Okay, maybe not — but you’ll defi-
nitely have a good shot at acing your Calculus II midterm!)

At this point, your strategy is to do a variable substitution (see Chapter 8) on both
integrals using u = x2 + x + 1 and du = 2x + 1. To do this, multiply both integrals by
1/> and then multiply both numerators by 2:

J 2x -2 J' 2x +24
2% +x+1 "2 (x*+x+1)?

Notice that this adjustment doesn’t change the value of either integral. And nei-
ther do either of these next two steps:

2.[2x+1 3 2J~ 2x+1+23

X +x+1 (x +x+l)2
2x+1 -3 1 2x +1 1 23
———dxt 5 [ dX 5 [
ij +x+1 2jx +x+1 '|.()c2+x+1)2 2".(x2+x+1)2
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Now, the first and third of these four integrals are solved very easily using the
u-substitution you set up (I skip the fine points here, but see Chapter 8 for more
details):

3

5 2 5 - 1 1
—Elnlx +x+1|+ij.m dx+§ln|x +x+1l+= J.

23
20 (xt+x+1)?

What happens with the remaining integrals? Assuming you’re still with me on
this journey, first use the Constant Multiple rule to move the numerators outside
the integrals:

1

:élnlx +x+1|——[ dx+lln|x +x+1|+—_[—
(x*+x+1)?

2 X +x+1 2

Now, recall this arctan formula from Chapter 7, which you used in the previous
section:

J. 21 2dx:laurctan£+C
x“+a a a

To use it in the second integral, you want to rewrite the denominator as the sum

of squares by completing the square:

_15 ; dx:_EI; dx:_E ; dx

2% x1 2 (x2+x+l)+§ 2 ( 1)2+[\/§j2

Now, applying the arctan formula gives you the following result:

1
X+
:7125 iarctan£ +C:7%(%arctan%)+C
2 2
2x +1
=-5+/3arctan +C
V3

To evaluate the integral in the fourth and final term, you need to apply the tangent
case of trig substitution, as I show you in Chapter 10. To do this, use the work you
just did on the second term to rewrite the fourth as follows:

2
) dx:2 1

ety o (5))

dx

23( 1

23\ x4 x+1 2
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Now, your trig substitution triangle will have an opposite side of x + l, an adja-

2 2
cent side of ?, and a hypotenuse of (x+%) +(§J . This integration is long

and messy, but when the smoke clears, the answer is:

4643 2x4l (“%)(gj
? 3 (M)Z(ﬁf

2 2

So, for the final answer to the problem, I patch in the completed integrals for the
second and fourth terms:

_E 2 . 2x +1 l 2
721n|x +x+11-53 arctan 5 +21n|x +x+11
(x+l) 3
+—46\/§ arctan2x+1+ 2 2
9 V3 12 (V3Y
(“i) 2

I sincerely hope that your professor doesn’t spring something like this on you in
an exam. In my opinion, a problem this difficult should be reserved for an extra-
credit assignment, or at worst a group project.

Beyond the Four Cases: Knowing How
to Set Up Any Partial Fraction

212

I have some great news: You'll probably never have to set up a partial fraction any
more complex than those that I show you in the previous section. So relax.

I add this section because I'm aware that, while some students like to get this stuff
on a case-by-case basis, others prefer to be shown an overall pattern so they can
get the Zen math experience. If this is your path, read on. If not, feel free to skip
ahead.

Additionally, it’s possible that your teacher might ask you to set up but not evaluate
a big, complicated integral using partial fractions. A question like this may seem
difficult, but it could be a lot easier than a simpler-looking question where you
actually have to evaluate an integral.
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So here’s the important information: You can break any rational function into a
sum of partial fractions. You just need to understand the pattern for repeated
higher-degree polynomial factors in the denominator. This pattern is simplest to
understand with an example. Suppose that you’re working with the following
rational function:

5x+1
(7x* 1) (x+2)% (k% +1)

In this function, the denominator includes a problematic factor that’s a fourth-
degree polynomial raised to the fifth power. You can’t decompose this factor further,
so the function falls outside the four cases I outline earlier in this chapter. Here’s
how you break this rational function into partial fractions:

_ Ax}+Bx?+Cx+D Ex®+Fx*+Gx+H Ix*+Jx>+Kx+L

Txt+1 (7xt+1)" (7x*+1)°
+Mx3 +Nx®+O0x+P . Qx®+Rx*>+Sx+T
(7x4+1)4 (7x4+1)5
U Vv Wx+X Yx+Z

+
X+2 (x+2)% x*+1 (XZ+U2

As you can see, I completely run out of capital letters. As you can also see, the
problematic factor of (7x4 + 1)5 spawns five partial fractions — that is, the same
number as the power it’s raised to. Furthermore:

¥ The numerator of each of these fractions is a polynomial of one degree less
than the exponent of 4.

¥ The denominator of each of these fractions is a carbon copy of the polynomial
inside the first set of parentheses, but in each case raised to a different power
up to and including the original exponent of 5.

The remaining two factors in the denominator — a repeated linear (Case 2 in the
previous section) and a repeated quadratic (Case 4) — give you the remaining four
fractions, which look tiny and simple by comparison.

Clear as mud? Spend a little time with this example and the pattern should become
clearer. Notice, too, that the four cases that I outline earlier in this chapter all fol-
low this same general pattern.

You’ll probably never have to work with anything as complicated as this — let

alone try to integrate it! — but when you understand the pattern, you can break
any rational function into partial fractions without worrying which case it is.
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Integrating Improper Rationals

214

REMEMBER

Integration by partial fractions works with proper rational expressions but not with
improper rational expressions. In this section, I show you how to tell these two
beasts apart. Then I show you how to use polynomial division to turn improper
rationals into more acceptable forms. Finally, I walk you through an example in
which you integrate an improper rational expression by using everything in this
chapter.

Distinguishing proper and improper
rational expressions

Telling a proper fraction from an improper one is easy: A fraction is proper if the
numerator (disregarding sign) is less than the denominator, and it’s improper
otherwise. With rational expressions, the idea is similar, but instead of comparing
the value of the numerator and denominator, you compare their degrees. The
degree of a polynomial is its highest power of x. (Flip to Chapter 2 for a refresher
on polynomials.)

A rational expression is proper if the degree of the numerator is less than the
degree of the denominator, and it’s improper otherwise.

For example, look at these three rational expressions:

x2+2 x> —5x*
x3 3x2-1 3x*t-2

In the first example, the numerator is a second-degree polynomial and the
denominator is a third-degree polynomial, so the rational expression is proper. In
the second example, the numerator is a fifth-degree polynomial and the denomi-
nator is a second-degree polynomial, so the expression is improper. In the third
example, the numerator and denominator are both fourth-degree polynomials, so
the rational expression is improper.

Trying out an example

In this section, I show you an example that walks you through just about every-
thing in this chapter. Suppose that you want to integrate the following rational
function:

"-x4—x3—5x+4 »
(x-2)(x*+3)

PART 4 Advanced Integration Techniques



This looks like a good candidate for partial fractions, as I show you earlier in the
section, “Case 3: Distinct quadratic factors.” But before you can express it as par-
tial fractions, you need to determine whether it’s proper or improper. The degree
of the numerator is 4 and (because the denominator is the product of a linear and
a quadratic) the degree of the entire denominator is 3. Thus, this is an improper
polynomial fraction. (See the section, “Distinguishing proper and improper
rational expressions,” earlier in this chapter.) As a result, you can’t integrate by
parts.

However, you can use polynomial division to turn this improper polynomial frac-
tion into an expression that includes a proper polynomial fraction. To begin, FOIL
the denominator of the fraction:

(x72)(x2+3)=x372x2+3x76

Now, divide the numerator by the FOILed version of the denominator - if you
need more explanation of this process, check out Algebra 2 For Dummies by Mary
Jane Sterling (Wiley, 2019):

x+1

x3—2x2+3x—6>x4—x3+0x2—5x+4
—(x“—2x3 +3x? —6x)
x3-3x%+x+4
—(x3 —2x? +3x—6)

x2 —2x+10

Thus, you can rewrite the function you’re trying to integrate as follows:

xt—x®-5x+4 il —x2-2x+10
(x—2)(x2+3) (x—2)(x2+3)

As you can see, the first two terms of this expression are simple to integrate.
(Don’t forget about them!) To set up the remaining term for integration, use par-
tial fractions:

—x*-2x+10 A  Bx+C

(x-2)(x*+3) X2 X713

Get a common denominator on the right side of the equation:

“x2-2x+10  A(x*+3)+(Bx+C)(x-2)

(x-2)(x*+3) (x-2)(x*+3)
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Now multiply both sides of the equation by this denominator:
X2 -2x+10=A?+3)+(Bx+ O)x-2)

Notice that (x — 2) is a linear factor, so you can use the root of this factor to find
the value of A. To find this value, let x = 2 and solve for A:

-(2)-2(2)+10=A2>+3)+(B2+ O)(2 - 2)
2=7A
2
A=7
Substitute this value into the equation:

—x2—2x+10:%(x2+3)+(Bx+C)(x—2)

At this point, to find the values of B and C, you need to split the equation into a
system of two equations, as I show you earlier in this chapter:

—x? —2x+10:%x2+%+Bx2 +Cx —2Bx -2C
(%+B+1)x2 +(—23+C+2)x+(%—2€—10):0
This splits into three equations:
2
7+B+1 =0
-2B+C+2=0
6
i 2C-10=0
The first and the third equations show you that B = 7% and C = ,g, Now you can

plug the values of A, B, and C back into the sum of partial fractions:

2 N -9x -32
T-2)  7(x2+3)

Make sure that you remember to add in the two terms (x + 1) that you left behind
just after you finished your polynomial division:

2 —9x -32

Ix4—x3—5x+4 N
(x=2) 7(x*+3)

—(x—Z)(x2+3)dx:'[ x+1+
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Thus, you can rewrite the original integral as the sum of five separate integrals:

32 1

- dx
79 x%43

jx dx +_[dx +%Iﬁdx—%{ﬁdx

You can solve the first two of these integrals by looking at them, and the next two
by variable substitution. The last is done by using the following rule:

I 21 de:larctan£+C
xX“+n n n

Here’s the solution so that you can work the last steps yourself:

1, +x+glnlx—2l—%ln|x2 +3|—£arctani+C

2 7 73 NE)
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IN THIS PART ...

Calculate the area between curves on the xy-graph
Find the arclength of functions
Solve tricky volume of revolution problems

Integrate to solve separable differential equations



IN THIS CHAPTER

» Evaluating improper integrals

» Solving area problems with more
than one function

» Measuring the area between
functions

» Finding unsigned areas

» Understanding the Mean Value
Theorem and calculating average
value

» Figuring out arc length

Chapter 12

Forging into New Areas:
Solving Area Problems

ith your toolbox now packed with the hows of calculating integrals, this
chapter (along with Chapters 13 and 14) introduces you to some of the
whys of calculating them.

I start with a simple rule for expressing an area as two separate definite integrals.
Then I focus on improper integrals, which are integrals that are either horizon-
tally or vertically infinite. Next, I give you a variety of practical strategies for
measuring areas that are bounded by more than one function. I look at measuring
areas between functions, and I also get you clear on the distinction between signed
area and unsigned area.

After that, I introduce you to the Mean Value Theorem for Integrals, which pro-
vides the theoretical basis for calculating average value. Finally, I show you a
formula for calculating arc length, which is the exact length between two points
along a function.
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Breaking Us in Two

Here’s a simple but handy rule that looks complicated but is really very easy:
[*FCodx =[x+ [ FC0)dx

This rule just says that you can split an area into two pieces and then add up the
pieces to get the area that you started with.

For example, the entire shaded area in Figure 12-1 is represented by the following
integral, which you can evaluate easily:

b .
Iosmxdx
——cosx[%
=-cosn —(—cos0)
=1+1=2
y
y=sin x
\ X
T
FIGURE 12-1:
Splitting the area
J”sinxdx into X_E
0 "3
two smaller
pieces.

T
3
results in two separate integrals:

Drawing a vertical line at x =< and splitting this area into two separate regions

n
o . g .
J'gsmxdx +I,,smxdx
3
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It should come as no great shock that the sum of these two smaller regions equals
the entire area:

us
X=7 =
=—cosx| _§ —cosx|*"
x=Z
3
3 T
=—-c0s+ +c0s0—cosm +Ccos+

3 3
=cos0-cosrx

=1+1=2

Although this idea is ridiculously simple, splitting an integral into two or more
integrals becomes a powerful tool for solving a variety of the area problems in this
chapter.

Improper Integrals

Improper integrals come in two varieties — horizontally infinite and vertically
infinite:

3 A horizontally infinite (or Type 1) improper integral contains either o or - (or
both) as a limit of integration. See the next section, “Getting horizontal,” for
examples of this type of integral.

3 Avertically infinite (or Type 2) improper integral contains at least one vertical
asymptote. | discuss this further in the later section, “Going vertical.”

Improper integrals become useful for solving a variety of problems in Chapter 13.
They’re also useful for getting a handle on infinite series in Part 6. Evaluating an
improper integral is a three-step process:

1. Express the improper integral as the limit of an integral.

2. Evaluate the integral by whatever method works.

3. Evaluate the limit.

In this section, I show you, step by step, how to evaluate both types of improper
integrals.

Getting horizontal

The first type of improper integral occurs when a definite integral has a limit of
integration that’s either « or —~ This type of improper integral is easy to spot
because infinity is right there in the integral itself. You can’t miss it.
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For example, suppose that you want to evaluate the following improper integral:

J.widx

153
Here’s how you do it, step by step:

1. Express the improper integral as the limit of an integral.

When the upper limit of integration is « use this equation:
o . c

| _f(x)dx = lim | f(x)dx

So here’s what you do:

w1 el
J.lydx:llm —dx

c—ood 1 5

2. Evaluate the integral:

lim - o
Cc—a0l 2X2 x=1

—lim(—L+l)
- 2c¢* 2

3. Evaluate the limit.

Here, the first term tends to 0 and drops out of the expression:

1
2
Before moving on, reflect for one moment that the area under an infinitely long
curve is actually finite. Ah, the magic and power of calculus!

Similarly, suppose that you want to evaluate the following:
J.ioe“r”‘dx
Here’s how you do it:

1. Express the integral as the limit of an integral.

When the lower limit of integration is -, use this equation:

[° £Codx = lim [*F(x)dx
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So here's what you write:

J.ioes"dx = lim Izesxdx

c—>—o

2. Evaluate the integral:
x=0
lim (les)( j
Cc—>—o0| 5 x=c
(1o 1 s )
CILIEC( 5¢ "5¢

. 1 1 5
33110(3*39 )

3. Evaluate the limit.
In this case, as c approaches -, the first term, % is unaffected. As for the
second term, recall that the function e* has an asymptote at 0 as x becomes

1

= e also approaches 0,

more negative. Thus, as ¢ approaches —o, the limit of —
so this term drops out:

1
"5
Again, calculus tells you that, in this case, the area under an infinitely long curve is
convergent — that s, it’s a finite area that can be expressed as a real number value.

Of course, sometimes the area under an infinitely long curve is divergent — it’s
infinitely large and cannot be expressed as a real number. In these cases, the
improper integral can’t be evaluated because the limit does not exist (DNE). Here’s
a quick example that illustrates this situation:

w1
J.l ;dx

It may not be obvious that this improper integral represents an infinitely large
area. After all, the value of the function approaches 0 as x increases. But watch
how this evaluation plays out:

1. Express the improper integral as the limit of an integral:

J'Ooldx =lim Cldx
1 x

c—ood 1 X

2. Evaluate the integral:

. X=C
= limlnx

C—00

x=1

=lim(lnc —Inl)
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WARNING

At this point, you can see that the limit explodes to infinity, so it doesn’t exist.
Therefore, the improper integral is divergent, because the area that it represents
is infinite.

Going vertical

Vertically infinite improper integrals are harder to recognize than those that are
horizontally infinite. An integral of this type contains at least one vertical asymp-
tote in the area that you’re measuring. (A vertical asymptote is a value of x where
f(x) equals either « or —«. See Chapter 2 for more on asymptotes.) The asymptote
may be a limit of integration or it may fall someplace between the two limits of
integration.

Don’t try to slide by and evaluate improper integrals as proper integrals. In most
cases, you’ll get the wrong answer!

In this section, I show you how to handle both cases of vertically infinite improper
integrals.

Handling asymptotic limits of integration

Suppose that you want to evaluate the following integral:
11
—dx
.[ 0/x
At first glance, you may be tempted to evaluate this as a proper integral. But this

function has an asymptote at x = 0. The presence of an asymptote at one of the
limits of integration forces you to evaluate this one as an improper integral.

1. Express the integral as the limit of an integral:

11 11
—dx = lim | —dx
J-O\/)? c—>0+'|’c \/.;
Notice that in this limit, c approaches 0 from the right — that is, from the
positive side — because this is the direction of approach from inside the limits
of integration. (That's what the little plus sign (*) in the limit means.)

2. Evaluate the integral.

This integral is easily evaluated as x 2, using the Power rule as | show you in
Chapter 7, so | spare you the details here:

x=1
lim 2+/x

c—>0" —c
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WARNING

FIGURE 12-2:
A graph of the
improper
integral
Jgsecz x dx.

3. Evaluate the limit:

lim (2v1 - 2v/c)
c—>0"

At this point, direct substitution provides you with your final answer:

=2

Piecing together discontinuous integrands

In Chapter 6, I discuss the link between integrability and continuity: If a function
is continuous on an interval, it’s also integrable on that interval. (Flip to Chapter 6
for a refresher on this concept.)

Some integrals that are vertically infinite have asymptotes not at the edges but
someplace in the middle. The result is a discontinuous integrand — that is, a func-
tion with a discontinuity on the interval that you’re trying to integrate.

Discontinuous integrands are the trickiest improper integrals to spot — you really
need to know how the graph of the function that you’re integrating behaves. (See
Chapter 2 to see graphs of the elementary functions.)

To evaluate an improper integral of this type, separate it at each asymptote into
two or more integrals, as I demonstrate earlier in the section, “Breaking Us in

Two.” Then evaluate each of the resulting integrals as an improper integral, as I
show you in the previous section.

For example, suppose that you want to evaluate the following integral:
[ysec?
,5ecTx dx

Because the graph of sec x contains an asymptote at x = % (see Chapter 2 for a

view of this graph), the graph of sec> x has an asymptote in the same place, as you

see in Figure 12-2.
y
/ \y: sec’x

NIy
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To evaluate this integral, break it into two integrals at the value of x where the
asymptote is located:

4
s - T
J'Oseczx dxzfgseCZx dx+J,,sec2x dx
2

Now evaluate the sum of the two resulting integrals.

You can save yourself a lot of work by noticing when two regions are symmetrical.
@ In this case, the asymptote at x = % splits the shaded area into two symmetrical

. regions. So you can find one integral and then double it to get your answer:

=2 I 2sec? x dx
0
Now use the steps from the previous section to evaluate this integral.
1. Express the integral as the limit of an integral:

=2 lim‘[;sec2 x dx

C*)z

In this case, the vertical asymptote is at the upper limit of integration, so c
approaches % from the left — that is, from inside the interval where you're

measuring the area.

2. Evaluate the integral:

X=C

=2limtanx =2limtanc—tan0=2limtanc
c»Z >z X
2 x=0 2 2

3. Evaluate the limit.

Now, when you try to plug in % for ¢, you see that tanx = % is undefined,
because the function tan x has an asymptote at x = I sothe limit does not

2
exist (DNE). Therefore, the integral that you're trying to evaluate also does not

exist because the area that it represents is infinite.
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Finding the Unsigned Area of Shaded
Regions on the xy-Graph

REMEMBER

Recall that the definite integral allows you to find the signed area under any inter-
val of a single function. But when you want to find the area of a shaded region on
the xy-graph defined by more than one function, you sometimes need to be crea-
tive and piece together a solution. You also need to be aware of how to turn signed
area into unsigned area — that is, flip negative area into positive area — because,
in most cases, that’s what the problem is asking for.

Professors love these problems as exam questions, because they test your reason-
ing skills as well as your calculus knowledge.

To solve problems like these, the trick is to break down the problem into two or
more regions that you can measure by using the definite integral, and then use
addition or subtraction to find the area of the shaded region that you’re look-
ing for.

In this section, I get you up to speed on problems that involve more than one defi-
nite integral. Throughout these examples, the problem is asking for the unsigned
area of the shaded region.

Finding unsigned area when a region
is separated horizontally

To solve some shaded-region problems, you need to separate a region into two
smaller areas that line up horizontally on the xy-graph. In some cases, this type
of problem gives you more than one function to integrate. In others, a single func-
tion crosses the x-axis, forcing you to integrate that function more than once. In
this section, I show you how to solve both types of problems.

Crossing the line to find unsigned area

When a shaded region you’re looking for is divided into two pieces because a func-
tion crosses the x-axis, the area below the x-axis is negative area as measured by
the definite integral. But in most cases, a question of this type is asking you to find
the unsigned area of the shaded region. So, to measure the area below the x-axis as
positive, use the following formula:

Unsigned Area = Integral above x-axis —Integral below x-axis
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Cm For example, in Figure 12-3, the goal is to find the area of the shaded region,
which implies unsigned area. In this case, if you try to use the single integral

2 . .
EXAMPLE IO x* ~1 dx, your result will be incorrect.

y
fy=x-1
FIGURE 12-3: X
Finding the / 2

unsigned shaded
areaof y=x%-1
between x=0
and x = 2.

To handle this problem, use the following two integrals to measure each individual
area:

Unsigned Area = Integral above x-axis —Integral below x-axis

:jlsz -1 dx—I;xS—l dx

The first integral in the formula measures the region above the x-axis (from 1 to 2),
and the second measures the region below it (from o0 to 1). Evaluate both integrals

as follows:
b ]
s} [3ori-[ori o)
-2 ()4
7

2

Therefore, the total unsigned area of the shaded region in Figure 12-3 is %
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EXAMPLE

FIGURE 12-4:
Finding the
shaded

area for
y=3x%-12x+9.

In the previous problem, the point where the function crosses the x-axis is rela-
tively easy to find. Sometimes, however, you need to find this point by setting the
function to zero and solving it.

For example, the shaded region in Figure 12-4 is a combined unsigned area based

on the function y = 3x> — 12x + 9. To solve this problem, you need to split the inte-
gral into two pieces, but you’re not sure what limits of integration to use.

y=3x*-12x +9

To begin, find the two roots of the function by setting it to zero and factoring:

0=3x%-12x+9
0=x?-4x+3
0=(x-1)(x-3)
x=1and 3

Now, use these values to set up your integral, using a positive value for the first
integral and a negative value for the second:

Unsigned Area = Integral above x-axis — Integral below x-axis

- jO‘3x2 ~12x+9 dx—jf’:sxz ~12x+9 dx
Integrate:

[xS —6x2 +9x|i1}—[x3 —6x2 +9x|ij}
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EXAMPLE

FIGURE 12-5:
Finding the area
under f(x) =sinx
and g(x) =cosx

T
from 0 to 5

Fortunately, the evaluation isn’t so bad:
=[(1-6+9)-0]-[(27-54+27)—-(1-6+9)]
=4-(-4)=8

Surprisingly, the two shaded regions are both the same size, each with an unsigned
area of 4, so the combined area is 8.

Calculating the area under
more than one function
Sometimes, a single geometric area is described by more than one function. To

find the area of a shaded region defined in this way, separate the region into two
(or more) sections and calculate the area of each.

For example, suppose that you want to find the shaded region shown in
Figure 12-5.

The first thing to notice is that the shaded area isn’t under a single function, so
you can’t expect to use a single integral to find it. Instead, the region labeled A is
under y = sin x and the region labeled B is under y = cos x. First, set up separate
integrals to find the area of both of these regions:

3 T
A:I“sinxdx B:_[,Zrcosxdx
0 T
Now set up an equation to find their combined area:

T T
A+B:.f(‘)‘sinxdx+.f§cosxdx
4
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TIP

EXAMPLE

FIGURE 12-6:
Finding the area
of the shaded
region under
f(x) :§x+§ and

4 2
g(xX)=-x*+2x+3
between x=0
and x = 3.

At this point, you can evaluate each of these integrals separately. But there’s an
easier way.

Because region A and region B are symmetrical, they have the same area. So you
can find their combined area by doubling the area of a single region:

=2A = 2j0?sinxdx

I choose to double region A because the integral limits of integration are easier to
calculate with, but doubling region B also works. Now integrate to find your
answer:
=T
=2(-cosx)|,_¢

= 2(—005%—(—0050))

V2
=2(—7+1j
=2-+/2~0.586

In some problems, you may need to use algebra to find where a pair of functions
intersect so you can split the integral into two pieces.

For example, to find the shaded region in Figure 12-6, you need to combine defi-

nite integrals of both f(x) and g(x). But where, exactly, does the first integral end
and the second begin?

_3,,3
f(x) = S

S

glx)=—x2+2x+3
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To find the point between x = 0 and x = 3 where the two functions intersect, set
them equal and solve for x. Here, I use the quadratic formula:

3.3
gXt =% +2x+3
» 5. 3
X *ZX*E—O
_ —b++b*—4ac
B 2a
5 5\* 3} 5, 121 5 11
x:4i\/(‘4) () S 54 s, n, .3
2(1) 2 2 8§78 4

The value of x you’re looking for is 2, so use this as the upper bound integral of f(x)
and the lower bound of g(x):

23 3
j04x+2dx+J —x%2+2x+3dx

Integrate:

(352435
8 2

x=2 1
]+[——x3 +x%+3x
x=0 3

x=3
x=2 j
At this point, if you’ve set up and evaluated the integral correctly, many profes-
sors will spare you the agony of the final evaluation:

x=2

=[%x2 +%x ]+[—%x3 +x%+3x Xg]
[5(2)2 +§(2)}—0+[—l(3)3 +3? +3(3)}—[—%(2)3 22 +3(2)}

( +3)+(—9+9+9) (—§+4+6)
2

On a test, you may get to the end of a problem like this and find that your answer

is obviously incorrect — for example, if it’s negative or an unrealistically great
positive value. If this happens and you can’t find the error, write your professor a

TIP little note acknowledging the problem. (For example: “Unsigned area should be

positive — my arithmetic must be wrong!”) Most teachers will appreciate not
only the honesty, but that you could explain the discrepancy in your answer.
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REMEMBER

EXAMPLE

FIGURE 12-7:
Finding the area
between
f(x)=x

and g(x) = x%

EXAMPLE

Measuring a single shaded region
between two functions

As with the problems earlier in this section, when finding an area between two
functions, you’re looking for unsigned rather than signed area. To find the area of
a single shaded region between two functions, use the following formula:

Unsigned Area = Integral of top function — Integral of bottom function

For example, suppose that you want to calculate the shaded area in Figure 12-7.

y=x

y=vx

First, notice that the two functions f(x) = vx and g(x) = x” intersect where x = 0
and x = 1. Use these limits of integration in the Unsigned Area formula as follows:

Unsigned Area =Integral of top function — Integral of bottom function

=J':)\/)7dx - J:)xzdx

With the problem set up properly, now all you have to do is evaluate the two
integrals:

CRNES

So the area between the two curves is %

In the previous example, the entire shaded region was above the x-axis. In
Figure 12-8, however, the shaded region includes area that’s both above and below
the x-axis. Fortunately, the same formula works in this case as well.
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FIGURE 12-8:
Finding the area
between the top

function
f(x)=1-x"and
the bottom
function

g(x)=x*-1.

/\/X

y=1-x*

This time, both functions intersect each other and the x-axis at the same two val-
ues of x: x = —1and x = 1. Use the Unsigned Area formula with —1 and 1 as the limits
of integration, as follows:

Unsigned Area = Integral of top function —Integral of bottom function

= J.il(l —x* )dx - J-lil(x2 —l)dx

Solving this equation gives you the answer that you’re looking for (be careful with
all those minus signs!):

x=1
1 x=1
x=-1 j - (§X3 - xlx:_l )

Thus, the area of the shaded region in Figure 12-8 is %

Finding the area of two or more shaded
regions between two functions

In the previous section, you used the following formula for finding the area of a
shaded region between a pair of functions:

Unsigned Area =Integral of top function —Integral of bottom function
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In some cases, you may need to apply this formula more than once to get a final
answer. This situation occurs when a pair of functions intersect, so that the top and
bottom functions exchange positions.

For example, suppose that you want to find the shaded area in Figure 12-9. This
time, the shaded area is two separate regions. Region A is bounded above by
1

g(x) =x3 and below by f(x) = x. However, for region B, the situation is reversed,
EXAMPLE

1
and the region is bounded above by f(x) = x and below by g(x) = x 3.

y by V=X
1
| —— y= X3

FIGURE 12-9:
Finding the area
of the combined

shaded regions
between f(x)=x

1
and g(x) = x3.

The first step is finding where the two functions intersect — that is, where the
following equation is true:

ol

X=X

Fortunately, it’s not too difficult to see that x = 1 satisfies this equation.

Now you need to apply the formula twice as follows:

Unsigned Area A = Integral of top function —Integral of bottom function
=J.:)x%dx—ﬁ)x dx

Unsigned Area B = Integral of top function —Integral of bottom function

= J.fx dx — szédx
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TIP

At this point in the problem, take a step back to make sure you’ve set up the prob-
lem correctly. Yes, g(x) is the top function from 0 to 1, and the bottom function
from 1 to 2. Good to go!

Now you’re forced to do some calculus:

4 .
[ 3 - ] (30 -5

=0.75-0.5=0.25
XZJ
)

X

S w

x=2
x=1 J_[ x=1

4
:(%(2)2_1(1)2)_[%( -3y j

1
:(2—— —( i—% ~15-1.89+0.75=0.36

To complete the problem, add the areas of the two shaded regions:

0.25+0.36=0.61

Thus, the combined area of the two shaded regions A and B in Figure 12-9 is
approximately 0.61.

The Mean Value Theorem for Integrals

238

The Mean Value Theorem for Integrals guarantees that for every definite integral, a
rectangle with the same area and width exists. Moreover, if you superimpose this
rectangle on the definite integral, the top of the rectangle intersects the function.
This rectangle, by the way, is called the mean-value rectangle for that definite inte-
gral. Its existence allows you to calculate the average value of the definite integral.

The existence of the rectangle with the same area as the integral is a nice conse-
quence of the MVT for Integrals.
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WARNING

FIGURE 12-10:

A definite integral
and its mean-
value rectangle
have the same
width and area.

Calculus boasts two Mean Value Theorems — one for derivatives and one for inte-
grals. This section discusses the Mean Value Theorem for Integrals. You can find
out about the Mean Value Theorem for Derivatives in Calculus All-In-One For
Dummies by Mark Ryan (Wiley).

The best way to see how this theorem works is with a visual example. The first
graph in Figure 12-10 shows the region described by the definite integral A = j fxzdx.

This region obviously has a width of 1, and you can evaluate it easily:

1 3

2 dx =1 _Llgyp_Lqps T
J.lxdxfgx =5(2)-5(1)’ =5

x=2
=1

Thus, the area is %

The second graph in Figure 12-10 shows a rectangle with a width of 1 and an area
of % It should come as no surprise that this rectangle’s height is also 1, so the top

3
of this rectangle intersects the original function.

y=xt

A

y=xt

w|~

The fact that the top of the mean-value rectangle intersects the function is mostly
a matter of common sense. After all, the height of this rectangle represents the
average value that the function attains over a given interval. This value must fall
someplace between the function’s maximum and minimum values on that
interval.

Here’s the formal statement of the Mean Value Theorem for Integrals: If f(x) is a
continuous function on the closed interval [q, b], then there exists a number ¢ in

that interval such that:

[*FCodx =) -(b-a)

CHAPTER 12 Forging into New Areas: Solving Area Problems 239



This equation may look complicated, but it’s basically a restatement of this famil-
iar equation for the area of a rectangle:

Area = Height x Width

In other words, start with a definite integral that expresses an area, and then
draw a rectangle of equal area with the same width (b — a). The height of that
rectangle — f(c) — is such that its top edge intersects the function where x = c.

The value f(c) is the average value of f(x) over the interval [q, b]. You can calculate
it by rearranging the equation stated in the theorem:

F(c) = blTa [FCodx

For example, here’s how you calculate the average value of the shaded area in
Figure 12-11:

1 4 3
f(c):—4_2-j2x dx

5[0 -3@")
- %(64 ~4)=30

Not surprisingly, the average value of this integral is 30, a value between the
function’s minimum of 8 and its maximum of 64.

y y
64 f
y=x° y=x3
30+
8-t
X X
2 4 2 4

FIGURE 12-11:
The dglfinite
integral [, x’dx
and its mean-

value rectangle.
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Calculating Arc Length

EXAMPLE

FIGURE 12-12:
Measuring the
arc length along
y =x?from (0, 0)
to (2, 4).

The arc length of a function on a given interval is the length from the starting
point to the ending point as measured along the graph of that function.

In a sense, arc length is similar to the practical measurement of driving distance.
For example, you may live only 5 miles from work “as the crow flies,” but when
you check your odometer, you may find that the actual drive is closer to 7 miles.
Similarly, the straight-line distance between two points is always less than the
arc length along a curved function that connects them.

The formula for the arc length along a function y = f(x) from a to b is as follows:

2
_[b 1+(d_y) dx
Ix

a

Using the formula, however, often involves trig substitution. (See Chapter 10 for a
refresher on this method of integration.)

For example, suppose that you want to calculate the arc length along the function
y = x* from the point where x = 0 to the point where x = 2. (See Figure 12-12.)

(0,0) 2

Before you begin, notice that if you draw a straight line between these two points,
(0, 0) and (2, 4), its length is +20 ~ 4.4721. So the arc length should be slightly
greater.

To calculate the arc length, first find the derivative of the function x:

dy _
a72x
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Now plug this derivative and the limits of integration into the formula as follows:

J'(Z)JI +(2x)%dx
= ﬁx}l +4x2dx

Calculating arc length usually gives you an opportunity to practice trig
substitution — in particular, the tangent case (see Chapter 10 for a more detailed
explanation). When you draw your trig substitution triangle, place v1+4x? on the
hypotenuse, 2x on the opposite side, and 1 on the adjacent side. This gives you the
following substitutions:

V1+4x? =seco

2x =tanf
X :%tane
dx = %5602 6 do

The result is this integral:

Lisec?odo

5 f sec
Notice that I remove the limits of integration because I plan to change the variable
back to x before computing the definite integral. I spare you the details of evaluat-
ing this integral, but you can see them in Chapter 10. Here’s the result:

= %(ln IsecO +tan6 | +tanfsecH) +C
Now write each sec ¢ and tan ¢ in terms of x:

%(ln|\/1 +4x% + 2x| +2xV1+4x? )+ c
At this point, I’'m ready to evaluate the definite integral that I left off earlier:

IE\/I +4x’dx

= %(ln|\/1 +4x% + 2x| +2xV1+4x? )

x=0
- %(1n|\/1 A2 + 2(2)| + 221+ 4(2)? )70

You can either take my word that the second part of this substitution works out to
0 or you can calculate it yourself. To finish up:

x=2

= %m INI7 +41+V17
~0.5236 +4.1231 = 4.6467
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IN THIS CHAPTER

» Understanding the meat-slicer
method for finding volume

» Using inverses to make a problem
easier to solve

» Solving problems with solids of
revolution and surfaces of revolution

» Finding the space between two
surfaces

» Considering the shell method for
finding volume

Chapter 13

Pump Up the Volume:
Using Calculus to Solve
3-D Problems

n Chapter 12, I show you a bunch of different ways to use integrals to find area.
In this chapter, you add a dimension by discovering how to use integrals to find
volumes and surface areas of solids.

First, I show you how to find the volume of a solid by using the meat-slicer
method, which is really a 3-D extension of the basic integration tactic you already
know from Chapter 1: slicing an area into an infinite number of pieces and adding
them up.

As with a real meat slicer, this method works best when the blade is slicing

vertically — that is, perpendicular to the x-axis. So I also show you how to use
inverses to rotate some solids into the proper position.
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After that, I show you how to solve two common types of problems that calculus
teachers just love: finding the volume of a solid of revolution and finding the area
of a surface of revolution.

With these techniques in your back pocket, you move on to more complex prob-
lems, where a solid is described as the space between two surfaces. These prob-
lems are the 3-D equivalent of finding an area between two curves, which I discuss
in Chapter 12.

To finish up, I give you an additional way to find the volume of a solid: the shell
method. Then, I provide some practical perspective on all the methods in the
chapter so that you know when to use them.

Slicing Your Way to Success

244

Did you ever marvel at the way in which a meat slicer turns an entire salami into
dozens of tasty little paper-thin circles? Even if you’re a vegetarian, calculus pro-
vides you with an animal-friendly alternative: the meat-slicer method for mea-
suring the volume of solids.

The meat-slicer method works best with solids that have similar cross sections. (I
discuss this further in the following section.) Here’s the plan:

1. Findan expression that represents the area of a random cross section of the
solid in terms of x.

2. Usethis expression to build a definite integral (in terms of dx) that represents
the volume of the solid.

3. Evaluate this integral.
Don’t worry if these steps don’t make a whole lot of sense yet. In this section, I

show you when and how to use the meat-slicer method to find volumes that would
be difficult or impossible without calculus.

Finding the volume of a solid with
congruent cross sections

Before I get into calculus, I want to provide a little bit of background on finding
the volume of solids. Spending a few minutes thinking about how volume is meas-
ured without calculus pays off big-time when you step into the calculus arena.
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FIGURE 13-1:
Finding the
volume of an
odd-looking solid
with a constant
height.

This is strictly no-brainer stuff — some basic, solid geometry that you probably
know already. So just lie back and coast through this section.

One of the simplest solids to find the volume of is a prism. A prism is a solid that
has all congruent cross sections in the shape of a polygon. That is, no matter how
you slice a prism parallel to its base, its cross section is the same shape and area
as the base itself.

The formula for the volume of a prism is simply the area of the base times the
height:

V=A xh

So if you have a triangular prism with a height of 3 inches and a base area of
2 square inches, its volume is 6 cubic inches.

This formula also works for cylinders — which are sort of prisms with a circular
base — and generally any solid that has congruent cross sections. For example,
the odd-looking solid in Figure 13-1 fits the bill nicely. In this case, you’re given
the information that the area of the base is 7 cm? and the height is 4 cm, so the
volume of this solid is 28 cm3.

Finding the volume of a solid with congruent cross sections is always simple —
well, simple as long as you know two things:

¥ The area of the base — that is, the area of any cross section

3 The height of the solid
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FIGURE 13-2:
Estimating the

volume of a
hyperbolic

cooling tower by
slicing it into

246

cylindrical
sections.

TECHNICAL
STUFF

Finding the volume of a solid with
similar cross sections

In the previous section, you didn’t have to use any calculus brain cells. But now,
suppose that you want to find the volume of the scary-looking hyperbolic cooling
tower on the left side of Figure 13-2.

What makes this problem out of the reach of the formula for prisms and cylinders?
In this case, slicing parallel to the base always results in the same shape — a
circle — but the area may differ. That is, the solid has similar cross sections rather
than congruent ones.

You can estimate this volume by slicing the solid into numerous cylinders, finding
the volume of each cylinder by using the formula for constant-height solids, and
adding these separate volumes. Of course, making more slices improves your esti-
mate. And, as you may already suspect, adding the limit of an infinite number of
slices gives you the exact volume of the solid.

Hmmm . .. this is beginning to sound like a job for calculus. In fact, what I hint at
in this section is the meat-slicer method, which works well for measuring solids
that have similar cross sections.

When a problem asks you to find the volume of a solid, look at the picture of the
solid and figure out how to slice it up so that all the cross sections are similar. This
is a good first step in understanding the problem so that you can solve it.

To measure weird-shaped solids that don’t have similar cross sections, you usu-
ally need multivariable calculus, which is the subject of Calculus III.
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FIGURE 13-3:

A pyramid
skewered on the
x-axis of a graph
fromx=0
tox=3.

Measuring the volume of a pyramid

Suppose that you want to find the volume of a pyramid with a 6-x-6-unit square
base and a height of 3 units. Geometry tells you that you can use the following
formula:
v=Lon-L36)3)-36
=gbh=3 =

This formula works just fine, but it doesn’t give you insight into how to solve sim-
ilar problems; it works only for pyramids. The meat-slicer method, however, pro-
vides an approach to the problem that you can generalize to use for many other
types of solids.

To start out, I skewer this pyramid on the x-axis of a graph, as shown in
Figure 13-3. Notice that the vertex of the pyramid is at the origin, and the center
of the base is at the point (3, 0).

To find the exact volume of the pyramid, here’s what you do:
1. Findan expression that represents the area of a random cross section of
the pyramid in terms of x.

At x =1, the cross section is 22 =4, At x = 2, it's 4> = 16. And at x = 3, it's 62 = 36.
So generally speaking, the area of the cross section is:

A= (2x)% = 4x?
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2. Use this expression to build a definite integral that represents the
volume of the pyramid.

In this case, the limits of integration are 0 and 3, so:
34,2

4 :J. 4x“dx
0

3. Evaluate this integral:

x=3
3

=X

3

x=0

= 3(3)°~0=36

This is the same answer provided by the formula for the pyramid. But this method
can be applied to a far wider variety of solids.

Measuring the volume of a weird solid

After you know the basic meat-slicer technique, you can apply it to any solid with
a cross section that’s a function of x. In some cases, these solids are harder to
describe than they are to measure. For example, have a look at Figure 13-4.

The solid in Figure 13-4 consists of two exponential curves — one described by
the equation y = e* and the other described by placing the same curve directly in
front of the x-axis — joined by straight lines. The other sides of the solid are
bounded planes slicing perpendicularly in a variety of directions.

FIGURE 13-4: /

Measuring the
volume of a solid
based on two
exponential
curves in space
fromx=0
tox=1.
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Notice that when you slice this solid perpendicular with the x-axis, its cross
section is always an isosceles right triangle. This is an easy shape to measure, so
the slicing method works nicely to measure the volume of this solid. Here are the
steps:

1. Findan expression that represents the area of a random cross section of
the solid.

The triangle on the y-axis has a height and base of 1 — that is, €°. And the
triangle on the line x = 1 has a height and base of e', which is e. In general, the
height and base of any cross-section triangle is e*.

So here’s how to use the formula for the area of a triangle to find the area of a
cross section in terms of x:

1 Loosyioxy_ 1 ox
Azibhzi(e )(e )=§e2

2. Usethis expression to build a definite integral that represents the
volume of the solid.

Now that you know how to measure the area of a cross section, integrate to
add all the cross sections fromx=0tox=1:

_ 11 2x
V_Iofe dx

3. Evaluate this integral to find the volume.

_1 1 2x
—Ejoe d
]- 2x x=
=—e
4 x=0
1 > 19
—Ze 4e
~1.597

Turning a Problem on Its Side

When using a real meat slicer, you need to find a way to turn whatever you’re
slicing on its side so that it fits in the machine. The same is true for calculus
problems.
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FIGURE 13-5:

Using inverses to
get a problem
ready for the
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meat-slicer
method.

A

WARNING

For example, suppose that you want to measure the volume of the solid shown in
Figure 13-5. The base of this solid (light gray) is bounded on its sides by the func-
tion y = x4 between the x-axis at the bottom and y = 2 across the top. The figure is
3 units high, such that the cross section when you slice parallel with the x-axis is
a series of isosceles triangles, each with a height of 3 and a base that’s the width
across the function y = x4.

The good news is that this solid has cross sections that are all similar triangles, so
the meat-slicer method will work. Unfortunately, as the problem currently stands
(upright), you’d have to make your slices perpendicular to the y-axis. But to use
the meat-slicer method, you need to make your slices perpendicular to the x-axis.

To solve the problem, you first need to flip the solid over to the x-axis, as shown
on the right side of Figure 13-5. The easiest way to do this is to use the inverse of
the function y = x4. To find the inverse, switch x and y in the equation and solve
for y:

X=y4

1
i(x“ ) =y
1
Note that the resulting equation, J_r(x“)z y, in this case isn’t a function of x
because a single x-value can produce more than one y-value. However, you can
use this equation in conjunction with the meat-slicer method to find the volume
that you’re looking for.
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1. Findan expression that represents the area of a random cross section of

the solid.
1

The cross section is an isosceles triangle with a height of 3 and a base of 2x 4,
so use the formula for the area of a triangle:

1 1 1 1
A= 2bh 2(Zx ](3) 3x

2. Usethis expression to build a definite integral that represents the
volume of the solid.

1
V= 3xtdx
0

3. Evaluate the integral.

Two Revolutionary Problems

Calculus professors are always on the lookout for new ways to torture their stu-
dents. Okay, that’s a slight exaggeration. Still, sometimes it’s hard to fathom
exactly why a problem without much practical use makes the Calculus Hall of
Fame.

In this section, I show you how to tackle two problems of dubious practical value
(unless you consider the practicality of passing Calculus II!). First, I show you how
to find the volume of a solid of revolution, which is a solid created by spinning a
function around an axis. The meat-slicer method, which I discuss in the previous
section, also applies to problems of this kind.
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FIGURE 13-6:
A solid of

revolution of y = 2
sin x around the

252

X-axis.

TIP

Next, I show you how to find the area of a surface of revolution, a surface created by
spinning a function around an axis. Fortunately, a formula exists for solving this
type of problem.

Solidifying your understanding
of solids of revolution

A solid of revolution is created by taking a function, or part of a function, and
spinning it around an axis — in most cases, either the x-axis or the y-axis.

For example, Figure 13-6 shows the function y = 2 sin x between x = 0 and x = %

Every solid of revolution has circular cross sections perpendicular to the axis of
revolution. When the axis of revolution is the x-axis (or any other line that’s par-
allel with the x-axis), you can use the meat-slicer method directly, as I show you
earlier in this chapter.

However, when the axis of revolution is the y-axis (or any other line that’s paral-
lel with the y-axis), you need to modify the problem as I show you in the earlier
section, “Turning a Problem on Its Side.”

To find the volume of this solid of revolution, use the meat-slicer method:

1. Findan expression that represents the area of a random cross section of
the solid (in terms of x).

This cross section is a circle with a radius of 2 sin x:

A=nr’ =n(2sinx)? =4z sin®x
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2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.
This time, the limits of integration are from 0 to %:
V= J747r sin? x dx
0

T
= 4nI02 sin®x dx

3. Evaluate this integral by using the half-angle formula for sines, as | show
you in Chapter 10:

_ 47r.[05 (l—c;)st) dx

= 27r[_[(;;1 dx —L?cost dxj

x=

z
2
x=0

4. Now evaluate (very carefully!):

= 2;{(%—0)—(%5“1” —0)}

=7

~ 9.8696

= 277[x|i_02 —%sian

So the volume of this solid of revolution is approximately 9.8696 cubic units.

Later in this chapter, I give you more practice measuring the volume of solids of
revolution.

Skimming the surface of revolution

The nice thing about finding the area of a surface of revolution is that there’s a
formula you can use. Memorize it and you’re halfway done.

To find the area of a surface of revolution between a and b, use the following
formula:

2
A= jfznr, h +(Z—)yc) dx
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This formula looks long and complicated, but it makes more sense when you
spend a minute thinking about it. The integral is made from two pieces:

3 The arc-length formula, which measures the length along the surface
(see Chapter 12)

2
Arclength = J':,}l + (%) dx

3 The formula for the circumference of a circle, which measures the length
around the surface

C=2nr

So multiplying these two pieces together is similar to multiplying length and
width to find the area of a rectangle. In effect, the formula allows you to measure
surface area as an infinite number of little rectangles.

When you’re measuring the surface of revolution of a function f(x) around the
x-axis, substitute r = f(x) into the formula I gave you:

A=["2 PO+ [ F (20 ) dx

For example, suppose that you want to find the surface of revolution that’s shown
in Figure 13-7.

FIGURE 13-7:
Measuring the
surface of
revolution of
¥ =x3 between
x=0andx=1.
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To solve this problem, first note that for f(x) = x°, the derivative f'(x) = 3x% So
set up the problem as follows:

A= [ 2mx®\1+(3x%) dx
To start off, simplify the problem a bit:
= 27r'|.01x3m dx
You can solve this problem by using the following variable substitution:

Let u=1+9x*

du =36x>dx

Now substitute u for 1 + 9x4 and %du for x3 dx into the equation:
1 10
=527 L Judu

Notice that I’ve changed the limits of integration as follows: When x = 0, u = 1; and
when x = 1, u = 10. Next, simplify a bit:

1 10
= ETKJ-I \/L—ldll

Now you can perform the integration:

u=1

Finally, crunch the numbers:

N| w

1 3
22—77'[(10) —ﬁﬂ'(l)
1 1
= 2—771'10\/1_0—2—777.'
~ 3.5631

So the surface area for this solid of revolution is roughly 3.5631 square units.
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Finding the Space Between

FIGURE 13-8:

A vase-shaped
solid between

two surfaces of
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revolution.

In Chapter 12, I show you how to find the area between two curves by subtracting
one integral from another. This same principle applies in three dimensions to find
the volume of a solid that falls between two different surfaces of revolution.

The meat-slicer method, which I describe earlier in this chapter, is useful for
many problems of this kind. The trick is to find a way to describe the donut-
shaped area of a cross section as the difference between two integrals: one inte-
gral that describes the whole shape minus another that describes the hole.

For example, suppose that you want to find the volume of the solid shown in
Figure 13-8.

7

This solid looks something like a bowl turned on its side. The outer edge is the
1

solid of revolution around the x-axis for the function x3. The inner edge is the
solid of revolution around the x-axis for the function vx. And the resulting

volume resides on the graph between x =0 and x =%. Here’s how to solve this
problem:

1. Findan expression that represents the area of a random cross section of

the solid.
1

That is, find the area of the outer circle with a radius of x 3 and subtract the

area of the inner circle with a radius of vx:
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Total Area = Area of outer circle — Area of inner circle
= ﬂ(xg) —7[(\/7)2
2
=r (x 3 - x)

2. Usethis expression to build a definite integral that represents the
volume of the solid.

1
The limits of integration this time are 0 and 7
1 2
szozn(x3 —x]dx
3. solvethe integral:
1r 2
—nj.oz(x:‘ —xj dx
12 1
:ﬂ[J02x3dx—J02x de

x=0

4. Now evaluate this expression:
- n{[%(%)g —@—(%(%)2 —0)}
{34}
~(0.189-0.125) =0.064
So the volume in this case is approximately 0.064 cubic units.

Here’s a problem that brings together everything you’ve worked with from the
meat-slicer method: Find the volume of the solid shown in Figure 13-9. This soli3d

falls between the surface of revolution y = In x and the surface of revolution y = x 4,
bounded below by y = 0 and above by y = 1. The cross section of this solid is shown
on the right-hand side of Figure 13-9: a circle with a hole in the middle.
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FIGURE 13-9:
Another solid
formed between
two surfaces of
revolution.

FIGURE 13-10:
Use inverses to
rotate the
problem from
Figure 13-9 so
you can use the
meat-slicer
method.

258

Notice, however, that this cross section is perpendicular to the y-axis. To use the
meat-slicer method, the cross section must be perpendicular to the x-axis. Modify
the problem using inverses, solving each equation for y as I show you in the sec-
tion, “Turning a Problem on Its Side,” earlier in this chapter:

=W

x=lny x=y
X _ 4
e'=y 3

y

The resulting problem is shown in Figure 13-10.
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Now you can use the meat-slicer method to solve the problem:

1. Findan expression that represents the area of a random cross section of
the solid.

That is, find the area of a circle with a radius of e¥ and subtract the area of a
4

circle with a radius of x 3. This is just geometry, but | take it slowly so you can
see all the steps. Remember that the area of a circle is nr:

Total area = Area of outer circle — Area of inner circle

_n(e")z—n(xgjz

8
=re® —zx3

2. Use this expression to build a definite integral that represents the
volume of the solid.

The limits of integration are 0 and 1:

8
V:r[ﬂezx —mx3 )dx
0

3. Evaluate the integral:

8
1 1 =
:J ﬂezde*J‘ wx3dx
0 0
=1 11]*=1
* 3n =

T 2x _O 33
o 11

X= x=0

T 2 T 37 2 37 U
== - —| == 3 _2 3
‘(2e 2e) (11(1) T (® ]
T2 _E_ 37T
T2° T2
~2.9218

So the volume of this solid is approximately 2.9218 cubic units.

Playing the Shell Game

The shell method is an alternative to the meat-slicer method I discuss earlier in
this chapter. It allows you to measure the volume of a solid by measuring the vol-
ume of many concentric surfaces of the volume, called “shells.”
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Although the shell method works only for solids with circular cross sections, it’s
ideal for solids of revolution around the y-axis, because you don’t have to use
inverses of functions — a method I show you how to use in the section, “Turning
a Problem on Its Side,” earlier in this chapter. Here’s how the shell method works:

1. Findan expression that represents the area of a random shell of the solid in
terms of x.

2. Usethis expression to build a definite integral (in terms of dx) that represents
the volume of the solid.

3. Evaluate this integral.

As you can see, this method resembles the meat-slicer method. The main differ-
ence is that you’re measuring the area of shells instead of cross sections.

Peeling and measuring a can of soup

You can use a can of soup — or any other can that has a paper label on it — as a
handy visual aid to give you insight into how the shell method works. To start out,
go to the pantry and get a can of soup.

Suppose that your can of soup is industrial size, with a radius of 3 inches and a
height of 8 inches. You can use the formula for a cylinder to figure out its volume
as follows:

V=A h=3n-8=72n

Another option for finding the volume is the meat-slicer method, as I show you
earlier in this chapter. A third option, which I focus on here, is the shell method.

To understand the shell method, slice the can’s paper label vertically, and care-
fully remove it from the can, as shown in Figure 13-11. (While you’re at it, take a
moment to read the label so that you’re not left with “mystery soup.”)

Notice that the label is simply a rectangle. Its shorter side is equal in length to the
height of the can (8 inches) and its longer side is equal to the circumference
(C =2zr =27 -3 inches =6 inches). So the area of this rectangle is 48n square
inches.

Now here’s the crucial step: Imagine that the entire can is made up of infinitely
many labels wrapped concentrically around each other, all the way to its core. The

area of each of these rectangles is:

A=2nx-8="16nx
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FIGURE 13-11:
Removing the
label from a can
of soup can help
you understand
the shell method. 6in

The variable x in this case is any possible radius, from 0 (the radius of the circle at
the very center of the can) to 3 (the radius of the circle at the outer edge). Here’s
how you use the shell method, step by step, to find the volume of the can:

1. Findan expression that represents the area of a random shell of the can
(in terms of x).
You just did that:
A=2nx-8=16mx

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the can.

Remember that, with the shell method, you're adding up all the shells from the
center (where the radius is 0) to the outer edge (where the radius is 3). So use
these numbers as the limits of integration:

V= 16mxdx
0
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FIGURE 13-12:
Using the shell
method to find

the volume of a
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solid of
revolution.

3. Evaluate this integral:

x=3

=167t-%x2

x=0

=8rx? |
x=0

4. Now evaluate this expression:

=8n(32-0=72n

The shell method verifies that the volume of the can is 72r cubic inches.

Using the shell method without inverses

One advantage of the shell method over the meat-slicer method comes into play
when you’re measuring a volume of revolution around the y-axis.

Earlier in this chapter, I tell you that the meat-slicer method works best when a
solid is on its side — that is, when you can slice it perpendicular to the x-axis. But
when the similar cross sections of a solid are perpendicular to the y-axis, you need
to use inverses to realign the problem before you can start slicing. (See the sec-
tion, “Turning a Problem on Its Side,” earlier in this chapter, for more details.)

This realignment step isn’t necessary for the shell method. This makes the shell
method ideal for measuring solids of revolution around the y-axis. For example,
suppose that you want to measure the volume of the solid shown in Figure 13-12.
This is a solid of revolution formed by sweeping the function cos x from x = 0 to

xX= % around the y-axis.
—_— —
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Here’s how the shell method can give you a solution without using inverses:

1.

Find an expression that represents the area of a random shell of the solid
(in terms of x).

Remember that each shell is a rectangle with two different sides: One side is
the height of the function at x — that is, cos x. The other is the circumference of
the solid at x — that is, 2mx. So to find the area of a shell, multiply these two
numbers together:

A =2mx cos x

Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

In this case, remember that you're adding up all the shells from the center

(at x = 0) to the outer edge (at x = % ).

s
= JOZ 2nxcosx dx
L
= 277_[02 xcosx dx

Evaluate the integral.

This integral is pretty easy to solve using integration by parts (see Chapter 9):

X
2r(xsinx + cosx)|x 2

x=(0

Now evaluate this expression:

Zn[(%sin%+cos%)—(Osin0+c050)}

2n[(%+0)—(0+1)}

:27:[%—1}

~ 3.5864

So the volume of the solid is approximately 3.5864 cubic units.
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Knowing When and How
to Solve 3-D Problems

264

Because students are so often confused when it comes to solving 3-D calculus
problems, here’s a final perspective on all the methods in this chapter and how to
choose among them.

First, remember that every problem in this chapter falls into one of these two
categories:

¥ Finding the area of a surface of revolution

¥ Finding a volume of a solid

In the first case, use the formula I provide in the section, “Skimming the surface
of revolution,” earlier in this chapter.

In the second case, remember that the key to measuring the volume of any solid
is to slice it up in the direction where it has similar cross sections whose area can be
measured easily — for example, a circle, a square, or a triangle. So your first ques-
tion is whether these similar cross sections are arranged horizontally or
vertically.

3 Horizontally means that the solid is already in position for the meat-slicer
method. (If it's helpful, imagine slicing salami in a meat-slicer. The salami must
be aligned lying on its side — that is, horizontally — before you can begin slicing.)

¥ Vertically means that the solid is standing upright so that the slices are
stacked on top of each other.

When the cross sections are arranged horizontally, the meat-slicer method is the
easiest way to handle the problem (see the section, “Slicing Your Way to Success,”
earlier in this chapter).

When the cross sections are arranged vertically, however, your next question is
whether these cross sections are circles:

¥ Ifthe cross sections are not circles, you must use inverses to flip the solid in
the horizontal direction (as | discuss in the section, “Turning a Problem on
Its Side”).

¥ Ifthey are circles, you can either use inverses to flip the solid in the horizontal
direction (as | discuss in the section, “Turning a Problem on Its Side”) or use
the shell method (as | discuss in the section, “Playing the Shell Game”).
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IN THIS CHAPTER

» Classifying different types of
differential equations (DEs)

» Understanding the connection
between DEs and integrals

» Checking a proposed solution to a DE

» Using a variety of methods to
solve DEs

Chapter 14

What's So Different
about Differential
Equations?

he very mention of differential equations (DEs for short) strikes a spicy

combination of awe, horror, and utter confusion into nonmathematical

minds. Even intrepid calculus students have been known to consider a
career in art history when these untamed beasts come into focus on the radar
screen. Just what are differential equations? Where do they come from? Why are
they necessary? And how in the world do you solve them?

In this chapter, I answer these questions and give you some familiarity with DEs.
I show you how to identify the basic types of DEs so that if you’re ever at a math
department cocktail party (lucky you!), you won’t feel completely adrift. I relate
DEs to the integrals that you discover earlier in the book. I show you how to build
your own DEs so you’ll always have a hobby to pass the time, and I also demon-
strate how to check DE solutions. In addition, you discover how DEs arise in phys-
ics. Finally, I give you a few simple methods for solving some basic differential
equations.
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Basics of Differential Equations

266

In a nutshell, a differential equation, or DE, is any equation that includes at least
one derivative. For example:

dy _ oy d’y 1oy dly d’y d’  dy

—— =sinxe =—Z+102 = Rl AP AT A AR Y

ae S dx2+10dx+9y 0 dx4+dx3+dx2+dx+y cosx

Solving a differential equation means finding the value of the dependent variable
in terms of the independent variable. Throughout this chapter, I use y as the
dependent variable, so the goal in each problem is to solve for y in terms of x.

In this section, I show you how to classify DEs. I also show you how to build DEs
and check the solution to a DE.

Classifying DEs

As with other equations that you’ve encountered in this book, differential equa-
tions come in many varieties. And different varieties of DEs can be solved using
different methods. In this section, I show you some important ways to clas-
sify DEs.

Ordinary and partial differential equations

An ordinary differential equation (ODE) has only derivatives of one variable — that
is, it has no partial derivatives (derivatives with two or more variables). Here are
a few examples of ODEs:

dy . (2 dy _ x d’y dy _

i = xsin(x”)cosy g —Yescx+e W+4xya+5y—0
In contrast, a partial differential equation (PDE) has at least one partial derivative.
Here are a few examples of PDEs:

ou odu ou ou ou ov ov

Pt e — XY et el = _ 2= _p2Z
6x+6y+u e 35x2+78x6y+ e 0 o k8x2 v

Ordinary differential equations are usually the topic of a typical Differential Equa-
tions class in college. They’re a step or two beyond what you’re used to working
with, but many students actually find Differential Equations an easier course than
Calculus II (generally considered the most difficult class in the calculus series).
However, ODEs are limited in how well they can actually express physical reality.
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The real quarry is partial differential equations. A lot of physics gets done with
these little gems. Unfortunately, solving PDEs is one giant leap forward in math
from what the average calculus student is used to. Delving into the kind of math
that makes PDEs come alive is typically reserved for graduate school.

Order of DEs

Differential equations are further classified according to their order. This classifi-
cation is similar to the classification of polynomial equations by degree. (See
Chapter 2 for more on polynomials.)

First-order ODEs contain only first derivatives. For example:

Ay _ ex dy _g 2x Ay g2y
- e defsmy+26 lnxydx72x +y—tanx
Higher-order ODEs are classified, as polynomials are, by the greatest order of their

derivatives. Here are examples of second-, third-, and fourth-order ODEs.

dy

dx -10y=e

Second-order ODE: a* Y Y
dx?
Third-order ODE: a’ Z a* )2/ +y=0
dx® dx
L odly
Fourth-order ODE: x> Py +cosy=x
Ix

As with polynomials, generally speaking, a higher-order DE is more difficult to
solve than one of lower order.

Linear DEs

What constitutes a linear differential equation depends slightly on who you ask.
For practical purposes, a linear first-order DE fits into the following form:

D+ aCyy=b(x)

where a(x) and b(x) are functions of x. Here are a few examples of linear first-
order DEs:

dy dy
o TYX dax

dy i
+4xy =-Inx g ysinx=e

A linear second-degree DE fits into the following form:

dy dy
+b—=—+cy=0
dx dx "
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where g, b, and ¢ are all constants. Here are some examples:

QU
N

a7y gdy 4, dy  5dy
dx2+3dx+4y—0 2dx2+5dx

Il
(e}

+6y=0

&
no

Note that the constant a can always be reduced to 1, resulting in adjustments to
the other two coefficients. Linear second-degree DEs are usually an important
topic in a college-level course in differential equations. Solving them requires
knowledge of matrices and complex numbers that is beyond the scope of this
book.

Looking more closely at DEs

You don’t have to play professional baseball to enjoy baseball. Instead, you can
enjoy the game from the bleachers or, if you prefer, from a nice cushy chair in
front of the TV. Similarly, you don’t have to get too deep into differential equa-
tions to gain a general understanding of how they work. In this section, I give you
front-row seats to the game of differential equations.

How every integral is a DE

The integral is a particular example of a more general type of equation — the dif-
ferential equation. To see how this is so, suppose that you’re working with this
nice little integral:

y:_[cosxdx

Differentiating both sides turns it into a DE:

dy _
E =COSX

Of course, you know how to solve this DE by thinking of it as an integral:
y=sinx+C

So in general, when a DE is of the form
dy _
i)

with f(x) an arbitrary function of x, you can express that DE as an integral and
solve it by integrating.
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Why building DEs is easier than solving them

The reason that the DE in the last section is so simple to solve is that the derivative
is isolated on one side of the equation. DEs attain a new level of difficulty when the
derivative isn’t isolated.

A good analogy can be made in lower math, when you make the jump from arith-
metic to algebra. For example, here’s an arithmetic problem:

x:207(42+3)

Even though this is technically an algebra problem, you can solve it without alge-
bra because x is isolated at the start of the problem. However, the ballgame
changes when x becomes more enmeshed in the equation. For example:

2x3 - x2+5x=0

Arithmetic isn’t strong enough for this problem, so algebra takes over. Similarly,
when derivatives get entangled into the fabric of an equation — as in most of the
DEs I show you earlier in the section, “Classifying DEs” — integrating is no lon-
ger effective and the search for new methods begins.

Although solving DEs is often tricky, building them is easy. For example, suppose
you start with this simple quadratic equation:

y=3x*+4x-5

Now find the first and second derivatives:

dy _

dx =6x+4
2

d_32’26

dx

Adding up the left and right sides of all three equations gives you the following
differential equation:

dy dzy_ 2
y+dx+dx2—3x +10x+5

Because you built the equation yourself, you know what y equals. But if you handed
this equation off to some other students, they probably wouldn’t be able to guess
how you built it, so they would have to do some work to solve it for y. For example,
here’s another DE:

dx dx? dx?®

CHAPTER 14 What's So Different about Differential Equations? 269



270

This equation probably looks difficult because you don’t have much information.
And yet, after I tell you the solution, it appears simple:

. d 2 3
y=smnx —y:COSX d—y:—sinx d—y:—cosx

dx dx? dx?
But even after you have the solution, how do you know whether it’s the only solu-
tion? For starters, y = —sin x, y = cos x, and y = —cos x are also solutions. Do other
solutions exist? How do you find them? And how do you know when you have
them all?

Another difficulty arises when y itself becomes tangled up in the equation. For
example, how do you solve this equation for y?

dy _sinx
dx e’

As you can see, differential equations contain treacherous subtleties that you
don’t find in basic calculus.

Checking DE solutions

Even if you don’t know how to find a solution to a differential equation, you can
always check whether a proposed solution works. This is simply a matter of plug-
ging the proposed value of the dependent variable — I use y throughout this
chapter — into both sides of the equation to see whether equality is maintained.

For example, here’s a DE:

[

_ 3x
p 3y +4e” cosx

You may not have a clue how to begin solving this DE, but imagine that an angel
lands on your pen and offers you this solution:

y =4e**sinx

You can check to see whether this angel really knows math by plugging in this
value of y as follows:

dy _ 3x

dx73y+4e cosx
i4e3"sinx:3(483)‘sir1x)+4e3"cosx
dx

4(3€3X sinx +e>* cosx) =12e** sinx + 4>  cosx

12e3* sinx +4e** cosx =12¢* sinx + 4e** cos x

Because the left and right sides of the equation are equal, the angel’s solution
checks out.
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Solving Differential Equations

(= =
T
TECHNICAL
STUFF

In this section, I show you how to solve a few types of DEs. First, you solve
everybody’s favorite DE, the separable equation. Next, you put this understanding
to work to solve an initial-value problem (IVP). Finally, I show you how to solve a
linear first-order DE using an integrating factor.

Solving separable equations

Differential equations become harder to solve the more entangled they become. In
certain cases, however, an equation that looks all tangled up is actually easy to
tease apart. Equations of this kind are called separable equations (or autonomous
equations), and they fit into the following form:

D )2

Separable equations are relatively easy to solve. For example, suppose that you
want to solve the following problem:

dy _sinx
dx e’

You can think of the symbol % as a fraction and isolate the x and y terms of this
equation on opposite sides of the equal sign:
e’dy =sinx dx
Now integrate both sides:
J'eydy = Jsinx dx
e’ +C,=-cosx+C,

In an important sense, the previous step is questionable because the variable of
integration is different on each side of the equal sign. You may think, “No prob-
lem, it’s all integration!” But imagine if you tried to divide one side of an equation
by 2 and the other by 3, and then laughed it off with “It’s all division!” Clearly,
you’d have a problem. The good news, however, is that, for technical reasons
beyond the scope of this book, integrating both sides by different variables actu-
ally produces the correct answer.

C, and C, are both constants, so you can use the equation C = C, — C, to simplify the
equation:

e’ =-cosx+C
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Next, use a natural log to undo the exponent, and then simplify:

Ine” =In(-cosx +C)
y=In(-cosx+C)

To check this solution, substitute this value for y into both sides of the original
equation:

dy sinx
dx e’
sinx

d
—In(-cosx+C) = —eln(—cosx+C)

dx

%ln(fcosx +C)= —7czlsr;x+ c
1 sino = sinx

—cosx+C —cosx+C
sinx _ sinx

—cosx+C  -cosx+C

Solving initial-value problems

In Chapter 5, I show you that the definite integral is a particular example of a
whole family of indefinite integrals. In a similar way, an initial-value problem (IVP)
is a particular example of a solution to a differential equation. Every IVP gives you
extra information — called an initial value — that allows you to use the general
solution to a DE to obtain a particular solution.

For example, here’s an initial-value problem:

dy

p ysec’x y(0)=5

This problem includes not only a DE but also an additional equation. To under-
stand what this equation tells you, remember that y is a dependent variable, a
function of x. So the notation y(0) = 5 means “when x = 0, y = 5.” You see how this
information comes into play as I continue with this example.

To solve an IVP, you first have to solve the DE. Do this by finding its general solu-
tion without worrying about the initial value. Fortunately, this DE is a separable

equation, which you know how to solve from the last section:

1 2
—dy =sec”“x dx
y y
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Integrate both sides:
J.ldy = jseczx dx
y
Iny=tanx+C

In this last step, I use C to consolidate the constants of integration from both sides
of the equation into a single constant C. (If this doesn’t make sense, I explain why
this works in the section, “Solving separable equations,” earlier in this chapter.)
Next, I undo the natural log by using e:

elny — etanx+C

y= etanx+C

y= etanx . eC
Because €€ is a constant, this equation can be further simplified using the substi-
tution D = e%
tanx

y=De

Before moving on, check to make sure that this solution is correct by substituting
this value of y into both sides of the original equation:

dy _ 2

dx =ysec Xx
iDetanx — Detanx sec2x
dx

De'™* sec? x = De™* sec? x

tanx

This checks out, so y = De is, indeed, the general solution to the DE. To solve the
initial-value problem, however, I need to find the specific value of the variable D
by using the additional information I have: When x = 0, y = 5. Plugging both of
these values into the equation makes it possible to solve for D:

5= DetanO

5=De"

5=D
Now plug this value of D back into the general solution of the problem to get the
IVP solution:

tanx

y=>5e
This solution satisfies not only the differential equation % = ysec” x but also the
initial value y(0) = 5.
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IN THIS PART ...

Understand the relationships among an infinite series,
its generating sequence, and its sequence generating of
partial sums

Calculate the value of a convergent geometric series
Distinguish convergent and divergent series

Express functions as Taylor and Maclaurin series



IN THIS CHAPTER

» Knowing a variety of notations for
sequences

» Telling whether a sequence is
convergent or divergent

» Expressing series in both sigma
notation and expanded notation

» Testing a series for convergence or
divergence

Chapter 15

Following a Sequence,
Winning the Series

ust when you think the semester is winding down, your Calculus II professor
introduces a new topic: infinite series.

When you get right down to it, series aren’t really all that difficult. After all, a
series is just a bunch of numbers added together. Sure, it happens that this bunch
is infinite, but addition is just about the easiest math on the planet.

But then again, the last month of the semester is crunch time. You’re already
anticipating final exams and looking forward to a break from studying. By the
time you discover that the prof isn’t fooling and really does expect you to know
this material, infinite series can lead you down an infinite spiral of despair: Why
this? Why now? Why me?

Don’t worry. In this chapter, I show you the basics of series. First, you wade into
these new waters slowly by examining infinite sequences. When you understand
sequences, series make a whole lot more sense. Then I introduce you to infinite
series. I discuss how to express a series in both expanded notation and sigma
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notation, and then I make sure you’re comfortable with sigma notation. I also
show you how every series is related to two sequences.

Next, I introduce you to the all-important topic of convergence and divergence.
This concept looms large, so I give you the basics in this chapter and save the
more complex information for Chapter 16. Finally, I introduce you to a few impor-
tant types of series.

Introducing Infinite Sequences

278

A sequence of numbers is simply a bunch of numbers in a particular order. For
example:

1,4,9,16,25,... %, 27, 37, 4x, ... L 1 1.1
23 15
2,3,57,11,13,...  2,-2,2,-2,... 0,1,-1,2-2,3,...

When a sequence goes on forever, it’s an infinite sequence. Calculus — which
focuses on all things infinite — concerns itself predominantly with infinite
sequences.

Each number in a sequence is called a term of that sequence. So in the sequence 1,
4, 9,16, . . ., the first term is 1, the second term is 4, and so forth.

Understanding sequences is an important first step toward understanding series,
so read on to get started.

Understanding notations for sequences

The notation for defining a sequence is a variable with the subscript n surrounded
by braces. For example:

111
273 4

{a,}=1{1 4, 9,16, ...} {bn}:{l, } {c,}={4n, 6m, 87, 107, ...}
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WARNING

TIP

You can reference a specific term in the sequence by using the subscript:
a =1 b3=§ cg=14r

Make sure you understand the difference between notation with and without
braces:

3 The notation {a,} with braces refers to the entire sequence.

» The notation a, without braces refers to the nth term of the sequence.

When defining a sequence, instead of listing the first few terms, you can state a
rule based on n. (This is similar to how a function is typically defined.) For
example:

{a,}, where a, =n* {b,}, where b, :% {c,}, wherec, =2(n+1)

Sometimes, for increased clarity, the notation includes the first few terms plus a
rule for finding the nth term of the sequence. For example:

) 1 1 1
_ 2 — - = -
{an}—{1,4,9,...,n,...} {b,} {1,2, 3 e

{c,}={4rn, 6m, 87, ..., 2(n+Dr, ...}

This notation can be made more concise by appending starting and ending values
for n:

fay={n), b= el

n=1

This last example points out the fact, although in most cases a sequence begins
with n = 1 by convention, this starting value can be modified if needed.

Don’t let the fancy notation for number sequences get to you. When you’re faced
with a new sequence that’s defined by a rule, jot down the first four or five num-
bers in that sequence. After you see the pattern, you’ll likely find that a problem
is much easier to solve.
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Looking at converging and
diverging sequences
Every infinite sequence is either convergent or divergent. Here’s what each means:
3 A convergent sequence has a limit — that is, the limit of the nth term
approaches a real number.

3 Adivergent sequence doesn't have a limit.

For example, here’s a convergent sequence:

1 1 11
{an}_ la Ev g: Zv gv }

This sequence approaches 0, so:
lim{a,}=0
Thus, this sequence converges to o.

Here’s another convergent sequence:

{b,}= {7, 9, 7%, 8%, 7%, 8%,
This time, the sequence approaches 8 from above and below, so:

lim{b,}=8
In many cases, however, a sequence diverges — that is, it fails to approach any real
number. Divergence can happen in two ways. The most obvious type of divergence

occurs when a sequence explodes to infinity or negative infinity — that is, it gets
farther and farther away from o with every term. Here are a few examples:

-1,-2,-3,-4,-5,-6,-7,... In1,In2,In3,In4,In5,... 2,3,57,11,13,17,...

In each of these cases, the sequence approaches either « or —«, so the limit of the
sequence does not exist (DNE). Therefore, the sequence is divergent.

A second type of divergence occurs when a sequence oscillates between two or
among more than two values. For example:

9,7070707... 010-1,010-1,... 1,121231,2341,...
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In these cases, the sequence bounces around indefinitely, never settling in on a
value. Again, the limit of the sequence does not exist, so the sequence is divergent.

Introducing Infinite Series

TABLE 15-1

In contrast to an infinite sequence (which is an endless list of numbers), an
infinite series is an endless sum of numbers. You can change any infinite sequence
to an infinite series simply by changing the commas to plus signs. Table 15-1
shows three examples of infinite sequences and infinite series:

Infinite Sequences versus Infinite Series

Sequences Series

1,2 3,4,5,6,... 1+2+3+4+5+6+...

1 l l l l l 1+l+l+l+l+l+
7273 4567 2 3 4 5 6
17 1°1°1-1°1 .
2’4 816" 32° 64" " 2 4 8 16 32 64

The two principal notations for series are sigma notation and expanded notation.
Sigma notation provides an explicit rule for generating the series (see Chapter 2 for
the basics of sigma notation). Expanded notation gives enough of the first few
terms of a series so that the pattern generating the series becomes clear.

For example, here are three series defined using both forms of notation:

iZn:2(1)+2(2)+2(3)+2(4)...
n=1
=2+4+6+8+...

1l 1,1, 1.1
4n 40 4l 4% g3

n=0
—1+l+i+L+
74716 64 7
- n 3 6
—n——3+—4+—5+—6...

n=3€ e e e e
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REMEMBER

As you can see, the index for a series — that is, the starting value of the variable n
(or sometimes i) — can start at any integer. To generate the first term of the
series, plug in the first index value for n. Add additional terms by increasing n by
1 repeatedly until you get a sense of how the series behaves.

As with sequences (see the section, “Introducing Infinite Sequences,” earlier in
this chapter), every series is either convergent or divergent:

3 A convergent series evaluates to a real number.

¥ Adivergent series doesn't evaluate to a real number.

To show how evaluation of a series connects with convergence and divergence, I
give you a few examples. To start out, consider this convergent series:

i(l)n —1+l+l+l+
“\2) 2748
Notice that as you add this series from left to right, term by term, the running
total is a sequence that approaches 2:

3715

v g g
This sequence is called the sequence of partial sums for this series. I discuss
sequences of partial sums in greater detail later in the section, “Connecting a
Series with Its Two Related Sequences.”

For now, please remember that the value of a series equals the limit of its sequence
of partial sums. In this case, because the limit of the sequence is 2, you can eval-
uate the series as follows:

B4 -

n=0

Thus, this series converges to 2.
Often, however, a series diverges — that is, it doesn’t equal any real number. As
with sequences, divergence can happen in two ways. The most obvious type of

divergence occurs when a series explodes to infinity or negative infinity. For
example:

D—n=—1+(-2)+(-3)+(-4)+...
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This time, watch what happens as you add the series term by term:
-1,-3,-6,-10, ...

Clearly, this sequence of partial sums diverges to negative infinity, so the series is
divergent as well.

A second type of divergence occurs when a series alternates between positive and
negative values in such a way that the series never approaches a value. For
example:

o0

DD =1+ -1+1+ -1+
n=0

So here’s the related sequence of partial sums:
1,0,1,0,...

In this case, the sequence of partial sums alternates forever between 1 and 0, so
it’s divergent; therefore, the series is also divergent. This type of series is called,
not surprisingly, an alternating series. I discuss alternating series in greater depth
in Chapter 16.

weeks of Calculus II. Many of your exam questions will ask you to determine

Convergence and divergence are arguably the most important topics in your final
whether a given series is convergent or divergent.

TIP

Later in this chapter, I show you how to decide whether certain important types of
series are convergent or divergent. Chapter 16 also gives you a ton of handy tools
for answering this question more generally. For now, just keep this important idea
of convergence and divergence in mind.

Getting Comfy with Sigma Notation

Sigma notation is a compact and handy way to represent series.

Okay — that’s the official version of the story. What’s also true is that sigma
notation can be unclear and intimidating — especially when the professor starts
scrawling it all over the blackboard at warp speed while explaining some complex
proof. Lots of students get left in the chalk dust (or dry-erase marker fumes).
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TIP

At the same time, sigma notation is useful and important because it provides a
concise way to express series and mathematically manipulate them.

In this section, I give you a bunch of handy tips for working with sigma notation.
Some of the uses for these tips become clearer as you continue to study series later
in this chapter and in Chapters 16 and 17. For now, just add these tools to your
toolbox and use them as needed.

Writing sigma notation in expanded form

When you’re working with an unfamiliar series, begin by writing it out using both
sigma and expanded notation. This practice is virtually guaranteed to increase
your understanding of the series. For example:

0 2’1
;3n
As it stands, you may not have much insight into what this series looks like, so
expand it out:

$20_2.4.8 .16 32,
~3n 36 9 1216 7

As you spend a bit of time generating this series, it begins to grow less frighten-
ing. For one thing, you may notice that in a race between the numerator and
denominator, the numerator starts out less than the denominator but eventually
catches up and pulls ahead. Because the terms eventually grow greater than 1, the
series explodes to infinity, so it diverges.

Seeing more than one way
to use sigma notation

Virtually any series expressed in sigma notation can be rewritten in a slightly
altered form. For example:

1,1 1.1,
8716 32764

You can express this series in sigma notation as follows:

i(l)"_l+i+i+i+
z) T8 16 3 e T

n=3
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Alternatively, you can express the same series in any of the following ways:

S-S

n=0

Depending on the problem that you’re trying to solve, you may find one of these
expressions more advantageous than the others. For example, the comparison
tests that I introduce in Chapter 16 often require you to use a specific value of n for
the starting value of the index. For now, just be sure to keep in mind the flexibility
at your disposal when expressing a series in sigma notation.

Discovering the Constant Multiple
rule for series

In Chapter 6, you discover that the Constant Multiple rule for integration allows
you to simplify an integral by factoring out a constant. This option is also available
when you’re working with series. Here’s the rule:

D can=c) an

For example:

7 N |
A
;rf ;nz

To see why this rule works, first expand the series so you can see what you’re
working with:

ii—7+z+z+i+
“=npz 49 16 7

Working with the expanded form, you can factor a 7 from each term:

1 1 1
=7 1+Z+§+E+”')

Now express the contents of the parentheses in sigma notation:
S|
=75
;nz

As if by magic, this procedure demonstrates that the two sigma expressions are
equal. But this magic is really nothing more exotic than your old friend from grade
school, the distributive property.
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Examining the Sum rule for series

Here’s another handy tool for your growing toolbox of sigma tricks. This rule mir-
rors the Sum rule for integration (see Chapter 6), which allows you to split a sum
inside an integral into the sum of two separate integrals. Similarly, you can break
a sum inside a series into the sum of two separate series:

D (Ant+ba)=Y an+ Y b

For example:

n+1
72 9n

n=1

A little algebra allows you to split this fraction into two terms:
(noo 1
=2 onton
n=1 2 2

Now the rule allows you to split this result into two series:

This sum of two series is equivalent to the series that you started with. As with the
Sum rule for integration, expressing a series as a sum of two simpler series tends
to make problem-solving easier. Generally speaking, as you proceed onward with
series, any trick you can find to simplify a difficult series is a good thing.

Connecting a Series with Its
Two Related Sequences

Every series has two related sequences. Recall that the distinction between a
sequence and a series is as follows:

¥ Asequence is a list of numbers separated by commas (for example: 1,2, 3, .. .).

¥ Aseriesis a sum of numbers separated by plus signs (for example: 1+2+3+...).

When you see how a series and its two related sequences are distinct but also
related, you gain a clearer understanding of how series work.
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A series and its defining sequence

The first sequence related to a series is simply the sequence that defines the series
in the first place. For example, Table 15-2 shows three series written in both
sigma notation and expanded notation, each paired with its defining sequence.

When a sequence {a,} is already defined, you can use the notation £ a, to refer to
the related series starting at n = 1. For example:

1 1 1 1
{a"}—{?} ZG,,—1+Z+§+E+...

Understanding the distinction between a series and the sequence that defines it is
important for two reasons. First, and most basic, you don’t want to get the con-
cepts of sequences and series confused. But second, the sequence that defines a
series can provide important information about the series. See Chapter 16 to find
out about the nth-term test, which provides a connection between a series and its
defining sequence.

TABLE 15-2 Series and Their Two Related Sequences
Series Defining Sequence Sequence of Partial Sums
in:1+2+3+4+5+6.,. 1,23 4,5,6,... 1, 3,6, 10, 15,21, ...
n=1
o1 1 1.1 .1 1 11111 3 11 25 137 147
;H_1+E+§+Z+g+€+... Logi g5 5 1, 5 6 12 60 60
51 1.1.1,1 .11 1111 1 1 1 3 7 15 31 63
Zz—n—§+z+§+ﬁ+§+m~ 2’ 4’816’ 32 64’ " 92'4°8 16 32" 64"

n

A series and its sequences of partial sums

Gb You can learn a lot about a series by finding the partial sums of its first few terms.
For example, here’s a series that you’ve seen before:

EXAMPLE © 1 n 1 1 1 1
;(E) =§+Z+§+E+...
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And here are the first four partial sums of this series:

s 2
5= 33 =343
I e
ERRR

As you can see, the expression generates this sequence of partial sums.

2"
Thus, you can calculate the value where the original series converges by calculat-
ing the limit of this sequence:

n n n
lim2 _lzlim{1+(l) }:1+lim(l) =1
n—w 2” n—w 2 n—o\ 2

Therefore:
i(l)n:l+l+l+i+ =1
~\2 2 4 8 16 '

In general, every series X a, has a related sequence of partial sums {S,}. For exam-
ple, here are a few such pairings:

(1 1.1 .1 1 13715 }
;(2) :2+4+8+E+ {Sn}_{Zv 4’8 16’
“n 1,234 (17 2316
DIV AR A {S"}‘{Z’ 6 12’ 60 }

- 1 1 1 1 3 11 25

2n-lrgt3ty (=l 3 & 13
Every series and its related sequence of partial sums are either both convergent or
both divergent. Moreover, if they’re both convergent, both converge to the same
number.

REMEMBER
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This rule should come as no big surprise. After all, a sequence of partial sums sim-
ply gives you a running total of where a series is going. Still, this rule can be

helpful.

m For example, suppose that you want to know whether the following sequence is
convergent or divergent:

EXAMPLE . 3 11 25 137 147

What the heck is this sequence, anyway? Upon deeper examination, however, you
discover that it’s the sequence of partial sums for a very simple series:

1 3
"2
1+l+l:£

2 3 6
1+l+l+l:§

2 3 4 12

1 1 1 1 137

This series, called the harmonic series, is divergent, so you can conclude that its
sequence of partial sums also diverges.

Recognizing Geometric Series and p-Series

At first glance, many series look strange and unfamiliar. But a few big categories
of series belong in the Hall of Fame. When you know how to identify these types
of series, you have a big head start on discovering whether they’re convergent or
divergent. In some cases, you can also find out the exact value of a convergent
series without spending all eternity adding numbers.

In this section, I show you how to recognize and work with two common types of
series: geometric series and p-series.

Getting geometric series

A geometric series is any series of the following form:

o0
Zar”:a+ar+ar2+ar3+...
n=0
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EXAMPLE

EXAMPLE

Here are a few examples of geometric series:
0

32" =1+2+4+8+16+...

n=0

ii:l+i+#+#+
10" 10 100 * 1,000 "

n=0
= 3 3 3 3
Z(:) Too" ~ >+ 700 * 10,000 * 1,000,000 "

In the first series, a = 1and r = 2. In the second, a =1and r = % And in the third,

1
a-3andr—m.

If you’re unsure whether a series is geometric, you can test it as follows:

1. Leta equal the first term of the series.
2. Letr equal the second term divided by the first term.

3. Check to see whether the series fits the form a +ar2 +ar* +ar* +. . ..

For example, suppose that you want to find out whether the following series is
geometric:

8,6,9 .27, 81 243,
575710 40 160 640

Use the procedure I outline as follows:

1. Leta equal the first term of the series:

a8
°5

2. Letr equal the second term divided by the first term:
_56.8_3
"5°5 4

3. Check to see whether the series fits the forma +ar2 +ar* +ar* +. . . :

8 8 ( 3) 6 8(3\*_9 8(3\ 27
a=x ar=—=|—=|=% 2_2(2) =2 32|12} =22

5 5\4/75 4 5(4) 0 v 5(4) 40
As you can see, this series is geometric. To find the limit of a geometric series
a+ar+ar*+ard+.. ., use the following formula:
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So the limit of the series in the previous example is:
8

=8(3\" §5 _
Ssla) -

4.3
1 5

|
u1| o

When the limit of a series exists, as in this example, the series is called convergent.

So you say that this series converges to % In some cases, however, the limit of a

geometric series does not exist (DNE). In that case, the series is divergent.
Here’s the complete rule that tells you whether a series is convergent or divergent:

For any geometric series a +ar + ar?>+ar’ +. . ., if r falls in the open set (-1, 1), the
) a . . .
series converges to ﬁ; otherwise, the series diverges.

An example makes clear why this is so. Look at the following geometric series:

5 25 125 625

1+Z+E+ﬁ+ﬁ+'“

In this case,a=1andr = % Because r > 1, each term in the series is greater than
the term that precedes it, so the series grows at an ever-accelerating rate.

This series illustrates a simple but important rule of thumb for deciding whether
a series is convergent or divergent: A series can be convergent only when its
related sequence converges to zero. I discuss this important idea (called the
nth-term test) further in Chapter 16.

Similarly, look at this example:
1+ _é +2_5+ _E +@+
4] 16 64 ) 256 7
This time,a=1andr = —% Because r < —1, the odd terms grow increasingly posi-
tive and the even terms grow increasingly negative. So the related sequence of

partial sums alternates wildly from the positive to the negative, with each term
further from zero than the preceding term.

A series in which alternating terms are positive and negative is called an alternat-
ing series. I discuss alternating series in greater detail in Chapter 16.

Generally speaking, the geometric series is the only type of series that has a sim-

ple formula to calculate its value. So when a problem asks for the value of a series,
try to put it in the form of a geometric series.
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For example, suppose that you’re asked to calculate the value of this series:

5., 10,20 40,
77217637189 "

The fact that you’re being asked to calculate the value of the series should tip you
off that it’s geometric. Use the procedure I outline earlier to find a and r:

=7 T21°7°3

So here’s how to express the series in sigma notation as a geometric series in
terms of a and r:

n=0 7

3

= — —_— —_—t —

iSZ" 5 10 20 40+
721 63 189 7

At this point, you can use the formula for calculating the value of this series:

53 15
71

Pinpointing p-series

Another important type of series is called the p-series. A p-series is any series in
the following form, where each successive term is a fraction whose denominator
is a counting number raised to a constant power p:

Here are a few other examples of p-series:
ii:1+i+L+L+...
“nb 32 243 1,024

ii:l+L+L+l+L+
3 V2 V32 T

Zé:1+2+3+4+...
n

n=1
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WARNING

Don’t confuse p-series with geometric series (which I introduce in the previous
section). Here’s the difference:

n
¥ Ageometric series has the index n in the exponent — for example, Z(%) .

¥ Ap-series has the index n in the base — for example, ZLZ
n

As with geometric series, a simple rule exists for determining whether a p-series
is convergent or divergent.

A p-series converges when p > 1 and diverges when p < 1.

I give you a proof of this theorem in Chapter 16. In this section, I show you why a
few important examples of p-series are either convergent or divergent.

Harmonizing with the harmonic series

When p = 1, the p-series takes the following form:

il:l+l+l+l+
n 2 3 4

n=1

This p-series is important enough to have its own name: the harmonic series. The
harmonic series is divergent.

Testing p-serieswhenp=2,p=3,andp=4

Here are the p-series when p equals the first few counting numbers greater than 1:

1 1 1 1 1 1 1 1

— =l+-+s+-—=+... — =1+t ++...
;nz 49 16 ij 8 27 64
ii—l+i+i+#+
“npt 16 81 256

Because p > 1, these series are all convergent.
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Testing p-series when p = %

When p = %, the p-series looks like this:

- 1 1 1 1 1 1 1 1 1
=+

ﬁ+ﬁ+§ \/g ﬁ+ﬁ+ﬁ+§+ﬁ+“.

1
—1=1+
n=1_95

n

Because p < 1, this series diverges. To see why it diverges, notice that when n is a

1

k
. : . 11

term in the harmonic series — 1, -, 3 plus many more terms. Because the har-

monic series is divergent, this series is also divergent.

square number, say n = k?, the nth term equals . So this p-series includes every
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» Understanding convergence and
divergence

» Using the nth-term test to prove that
a series diverges

» Applying the versatile integral test,
ratio test, and root test

» Distinguishing absolute convergence
and conditional convergence

Chapter 16

Where Is This Going?
Testing for Convergence
and Divergence

esting for convergence and divergence is The Main Event in your Calculus II

study of series. In Chapter 15, I mention that when a series converges, it can

be evaluated as a real number. However, when a series diverges, it can’t be
evaluated as a real number, because it either explodes to positive or negative
infinity or fails to settle in on a single value.

In Chapter 15, I give you two tests for determining whether specific types of series
(geometric series and p-series) are convergent or divergent. In this chapter, I give
you seven more tests that apply to a much wider range of series.

The first of these is the nth-term test, which is sort of a no-brainer. With this test
under your belt, I move on to two comparison tests: the direct comparison test and
the limit comparison test. These are relatively simple to use, but each hinges on
your finding a useful series for comparison (called a benchmark series), which
isn’t always easy. Next, I show you three more difficult tests: the integral test, the
ratio test, and the root test.
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Finally, you work with alternating series, in which terms are alternately positive
and negative (as I discuss in Chapter 15). I contrast alternating series with positive
series (which are the series you’re already familiar with), and I show you how to
turn a positive series into an alternating series and vice versa. Then I show you
how to prove whether an alternating series is convergent or divergent by using the
alternating series test. To finish up, I introduce you to the important concepts of
absolute convergence and conditional convergence.

Whew. You better get started!

Starting at the Beginning

296

When testing for convergence or divergence, don’t get too hung up on where the
series starts. For example:

This is just a harmonic series with the first 1,000 terms lopped off:

_ 1 + L + L +
~ 1,001 1,002 1,003 "

These fractions may look tiny, but the harmonic series diverges (see Chapter 15)
and removing a finite number of terms from the beginning of this series doesn’t
change this fact.

The lesson here is that, when you’re testing for convergence or divergence, what’s
going on at the beginning of the series is irrelevant. Feel free to lop off the first
few billion or so terms of a series if it helps you to prove that the series is conver-
gent or divergent.

Similarly, in most cases you can add on a few terms to a series without changing
whether it converges or diverges. For example, you can start this series anywhere
from n = 1 to n = 999 without changing the fact that it diverges (because it’s a
harmonic series). Just be careful, because if you try to start the series from n = o0,

. 1 A . .
you’re adding the term =, which is a big no-no. However, in most cases you can

extend an infinite series without causing problems or changing the convergence
or divergence of the series.
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& Although eliminating terms from the beginning of a series doesn’t affect whether
the series is convergent or divergent, it does affect the sum of a convergent series.
warnINg  FOT example:

i(l)n :l+l+l+l+i+ =2
=\ 2 2 4 8 16 7
Lopping off the first few terms of this series — say, 1, %,
the fact that it’s convergent. But it does change the value that the series converges
to. For example:

] [
2) "8 16 4

n=3

and% — doesn’t change

Using the nth-Term Test for Divergence

The nth-term test for divergence is the first test that you need to know. It’s easy,
and it enables you to identify lots of series as divergent. It can be summarized as
follows:

If the limit of sequence {a,} doesn't equal 0, then the series £ a, is divergent.

To show you why this test works, I define a sequence that meets the necessary
condition — that is, a sequence that doesn’t approach o:

1 2

3 n
{an}_EY §7 Zv “eey

n+1l""

Notice that the limit of the sequence is 1 rather than 0. So here’s the related series:

1,23,
“n+l 234 7

Because this series is the sum of an infinite number of terms that are very close
to 1, it naturally produces an infinite sum, so it’s divergent.

The fact that the limit of a sequence {a,} equals 0 doesn’t necessarily imply that

the series X a, is convergent.

WARNING
For example, the harmonic sequence {1, %, %, %, ...; approaches 0, but (as I tell
you in Chapter 15) the harmonic series il =1+ 1 + 1 + 1 +...1is divergent.
“n 2 3 4
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When testing for convergence or divergence, always perform the nth-term test
first. It’s a simple test, and plenty of teachers include it on exams because it’s easy
to grade but still catches the unwary student.

If the defining sequence of a series doesn’t approach 0, the series diverges;
otherwise, you need to move on to other tests.

Let Me Count the Ways
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Tests for convergence or divergence tend to fall into two categories: one-way tests
and two-way tests. I explain both in the following sections.

One-way tests

A one-way test allows you to draw a conclusion only when a series passes the test,
not when it fails. Typically, passing the test means that a given necessary condition
has been met, but that this condition isn’t sufficient to show that the opposite
is true.

As a somewhat silly example that has nothing to do with math, if you’re in Dallas,
then you’re necessarily in Texas. But if you’re not in Dallas, this isn’t sufficient
information to conclude that you’re not in Texas. (You could be in Houston, or
Chicago, or Singapore, so you don’t know whether or not you’re in Texas.)

The nth-term test for divergence is a perfect example of a one-way test: If a series
passes the test — that is, if the limit of its defining sequence equals something
other than 0 — the series is divergent. But if the series fails the test, you can draw
no conclusion — it may be convergent or divergent.

Later in this chapter, you discover two more one-way tests: the direct comparison
test and the limit comparison test.

Two-way tests

A two-way test allows you to draw one conclusion when a series passes the test and
the opposite conclusion when a series fails the test. As with a one-way test, pass-
ing the test means that a given condition has been met. Failing the test means that
the negation of that condition has been met.
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For example, the test for geometric series is a two-way test. (See Chapter 15 to
find out more about testing geometric series for convergence and divergence.) If a
series passes the test — that is, if r falls in the open set (-1, 1) — the series is
convergent. And if the series fails the test — that is, if r < —1 or r > 1 — the series
is divergent.

Similarly, the test for p-series is also a two-way test. (See Chapter 15 for more on
this test.)

Keep in mind that no test — even a two-way test — is guaranteed to give you an
& answer. Think of each test as a tool. If you run into trouble trying to cut a piece of
wood with a hammer, it’s not the hammer’s fault: You just chose the wrong tool
warning  for the job. Likewise, if you can’t find a clever way to demonstrate either the con-
dition or its negation required by a specific test, you’re out of luck. In that case,

you may need to use a different test that’s better suited to the problem.

Later in this chapter, I show you three more two-way tests: the integral test, the
ratio test, and the root test.

Choosing Comparison Tests

Comparison tests allow you to use stuff that you know to find out stuff that you
want to know. The stuff that you know is more eloquently called a benchmark
series — a series whose convergence or divergence you've already proven. The
stuff that you want to know is, of course, whether an unfamiliar series converges
or diverges.

As with the nth-term test, comparison tests are one-way tests: When a series
passes the test, you prove what you’ve set out to prove (that is, either convergence
or divergence). But when a series fails the test, the result of a comparison test in
inconclusive.

In this section, I show you two basic comparison tests: the direct comparison test
and the limit comparison test.

Getting direct answers with the
direct comparison test

You can use the direct comparison test to prove either convergence or divergence,
depending on how you set up the test.
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EXAMPLE

To prove that a series converges:

1. Find a benchmark series that you know converges.
2. Show that each term of the series you're testing is less than or equal to the
corresponding term of the benchmark series.

To prove that a series diverges:

1. Find a benchmark series that you know diverges.
2. Show that each term of the series you're testing is greater than or equal to the

corresponding term of the benchmark series.

For example, suppose that you’re asked to determine whether the following series
converges or diverges:

S U U U
S T2 50T

It’s hard to tell just by looking at it whether this particular series is convergent or
divergent. However, it looks a bit like a p-series with p = 2:
1 1 1

el
Benchmarkserles.;?—l+4+9+16+,,,

You know that this p-series converges (see Chapter 15 if you’re not sure why), so
use it as your benchmark series. Now your task is to show that every term in the
series you’re testing is less than the corresponding term of the benchmark series:
First term: l<1 Second term: l<l Third term: i<l
2 54 10 9
This looks good, but to complete the proof formally, here’s what you want to
show:
1 1
<—
n*+1° n?

You can cross-multiply to simplify this inequality, because both denominators are
greater than 1, and then subtract n* from both sides:

n®<n?+1
0<1
This statement is clearly true, which verifies the original statement, 21 I < iz
n-+ n

Thus, every term in the series being tested is less than the corresponding term
in the convergent benchmark series. Therefore, both series are convergent.
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As another example, suppose that you want to test the following series for con-
vergence or divergence:

3 3 3

21_ 3+ tlegrz+

This time, the series reminds you of the trusty harmonic series, which you know
is divergent:

+l+l+
gtgte

Benchmark series: Z% =1+ % + %

n=1

Using the harmonic series as your benchmark, compare the two series term by
term:

First term: 3 >1 Second term: %>% Third term: 1 >%

Again, you have reason to be hopeful, but to complete the proof formally, you
want to show the following:

>

S|lw
S|

This time, you can simply multiply both sides by n, which is justified because n is
positive:

321

In this case, you’ve shown that every term in the test series is greater than the
corresponding term in the divergent benchmark series, so both series are
divergent.

As a third example, suppose that you’re asked to show whether this series is con-
vergent or divergent:

z 1, 1, 1,1,
(n+1)(n+2) “6t12720"30

In this case, multiplying out the denominators is a helpful first step:

S

min +3n+2

Now the series looks a little like a p-series with p = 2, so make this your bench-
mark series:

Lol L1,
2or=lrgrgrygt
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The benchmark series converges, so you want to show that every term of the test
series is less than the corresponding term of the benchmark. This looks likely
because:

1

. o1 1
12< Third term: =<

20 9

| =

First term: %< 1 Second term:

However, to convince the professor, you want to show that every term of the test
series is less than the corresponding term:

As with the first example in this section, you can cross-multiply because both
denominators are greater than 0, and then subtract:

n><n®+3n+2
0<3n+2

This verifies the original inequality, so the test series is, indeed, less than the
benchmark series, which means that the test series is also convergent.

Testing your limits with the
limit comparison test

As with the direct comparison test, the limit comparison test works by choosing a
benchmark series whose behavior you know and using it to provide information
about a test series whose behavior you don’t know.

Here’s the limit comparison test: Given a test series X a, and a benchmark series
% b,, find the following limit:

im 9n
nm.

If this limit evaluates as a positive number, then either both series converge or

both diverge.

As with the direct comparison test, when the test succeeds, what you learn depends
on what you already know about the benchmark series. If the benchmark series
converges, so does the test series. However, if the benchmark series diverges, so
does the test series.

Remember, however, that this is a one-way test: If the test fails, you can draw no
conclusion about the test series.
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The limit comparison test is especially good for testing infinite series based on
rational expressions.

For example, suppose that you want to see whether the following series converges
or diverges:

0

n-5
SHn?+l

When testing an infinite series based on a rational expression, choose a bench-
mark series that’s proportionally similar — that is, whose numerator and denom-
inator differ by the same number of degrees.

In this example, the numerator is a first-degree polynomial, and the denominator
is a second-degree polynomial. (For more on polynomials, see Chapter 2.) So the
denominator is one degree greater than the numerator. Therefore, I choose a
benchmark series that’s proportionally similar — the trusty harmonic series:

0

. 1
Benchmark series: E "
n=1

Before you begin, take a moment to get clear on what you’re testing, and jot it
down. In this case, you know that the benchmark series diverges. So if the test

succeeds, you prove that the test series also diverges. (If it fails, however, you’re
back to square one because this is a one-way test.)

Now set up the limit (by the way, it doesn’t matter which series you put in the
numerator and which in the denominator):

n-5

n®+1

lim
n—ow

n
At this point, you just crunch the numbers:

2
lim (n-5)n  lim ™ 2—5n
e nt 4+l noe T4l

Notice at this point that the numerator and denominator are both second-degree
polynomials, so the limit of this rational function is simply the ratio of the two
leading coefficients:

1
—-=1
1
As if by magic, the limit evaluates to a positive number, so the test succeeds.

Therefore, the test series diverges. Remember, however, that you made this magic
happen by choosing a benchmark series in proportion to the test series.
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Another example should make this crystal clear. Discover whether this series is
convergent or divergent:

i n®-2
San®—n®-2

When you see that this series is based on a rational expression, you immediately
think of the limit comparison test. Because the denominator is two degrees higher
than the numerator, choose a benchmark series with the same property:

Benchmark series ziz
n=111
Before you begin, jot down the following: The benchmark converges, so if the test

succeeds, the test series also converges. Next, set up your limit:

n—oo

(”3—2)”2 . n®-2n?
=lim 3
oo 4n’ —n® -2 noe4n’ —n° -2

Again, the numerator and denominator have the same degree, so the limit of this
rational function is the ratio of the two leading coefficients:

1

4

The test succeeds, so the test series converges. As you can see, a well-chosen bench-
mark series can be a very powerful tool for proving convergence or divergence.

Two-Way Tests for Convergence
and Divergence

304

In the previous section, I give you a variety of tests for convergence or divergence
that work in one direction at a time. That is, passing the test gives you an answer,
but failing it provides no information.

The tests in this section all have one important feature in common: Regardless of
whether the series passes or fails, whenever the test gives you an answer, that
answer tells you whether the series is convergent or divergent.
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Integrating a solution with the integral test

Just when you thought that you wouldn’t have to think about integration until two
days before your final exam, here it is again. The good news is that the integral test
gives you a two-way test for convergence or divergence.

Here’s the integral test:

For any series of the form Zf(x), consider its associated integral J:f(x)dx.

If this integral converges, the series also converges; however, if this integral
diverges, the series also diverges.

In most cases, you use this test to find out whether a series converges or diverges
by testing its associated integral. Of course, changing the series to an integral
makes all the integration tricks that you already know and love available to you.

For example, here’s how to use the integral test to show that the harmonic series
is divergent. First, here’s your series:

il:1+l+l+l+...
“x 2 3 4

The integral test tells you that this series converges or diverges depending on
whether the following definite integral converges or diverges:

o 1
J‘l ;dx

To evaluate this improper integral, express it as a limit, as I show you in
Chapter 12:

el
=lim | —dx
c—oodl X

This is simple to integrate and evaluate:

xX=c
x=1

=lim(Inc —In1)
>0

:lim[lnx

C—®

=limlnc-0=w

C—®

Because the limit explodes to infinity, the integral doesn’t exist. Therefore, the
integral test verifies that the harmonic series is divergent.
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As another example, suppose that you want to discover whether the following
series is convergent or divergent:

&1
“ nlnn
Notice that this series starts at n = 2, because n = 1 would produce the term %

To use the integral test, transform the sum into this definite integral, using 2 as
the lower limit of integration:

J.x 1 dx
2 xInx
Again, rewrite this improper integral as the limit of an integral (see Chapter 12):

dx

imJ'
c»0d2 xInx

To solve the integral, use the following variable substitution:

u=Inx
1
du=—dx
X

So you can rewrite the integral as follows:

lim lnCldu

c—odIn2 [
Note that as the variable changes from x to u, the limits of integration change from
2 and c to In 2 and In c. This change arises when I plug the value x = 2 into the
equation u = In x, so u = In 2. (For more on using variable substitution to evaluate
definite integrals, see Chapter 8.)

At this point, you can evaluate the integral:

u=
lim(lnu

C—>0

Inc
2) =lim[In(Inc)-In(In2)] =00

You can see without much effort that as c approaches infinity, so does In ¢, and the
rest of the expression doesn’t affect this. Therefore, the series that you’re testing
is divergent.
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Rationally solving problems
with the ratio test

The ratio test is especially good for handling series that include factorials. Recall
that the factorial of a counting number, represented by the symbol !, is that num-
ber multiplied by every counting number less than itself. For example:

5/=5-4-3-2-1=120

Flip to Chapter 2 for some handy tips on factorials that may help you in this
section.

To use the ratio test, take the limit (as n approaches «) of the (n + 1)th term
divided by the nth term of the series:

an+1
dan

lim

n—ow

At the risk of destroying all the trust that you and I have built between us over
these pages, I must confess that there are not two, but three possible outcomes to
the ratio test:

¥ [f this limit is less than 1, the series converges.

¥ Ifthis limitis greater than 1, the series diverges.

¥ Ifthis limit equals 1, the test is inconclusive.

But I'm sticking to my guns and calling this a two-way test, because — depending
on the outcome — it can potentially prove either convergence or divergence.

For example, suppose that you want to find out whether the following series is
convergent or divergent:

0 2!1

n:lT!

Before you begin, expand the series so you can get an idea of what you’re working
with. I do this in two steps to make sure the arithmetic is correct:

+2~2~2-2+
4.3.2.1 7

CHAPTER 16 Where Is This Going? Testing for Convergence and Divergence 307



308

To find out whether this series converges or diverges, set up the following limit:

2n+1
i (1 D!

n—o an

n!

For starters, notice that I’'m free to omit the absolute value bars because the values
here are all positive. As you can see, I place the function that defines the series in
the denominator. Then I rewrite this function, substituting n + 1 for n, and I place
the result in the numerator. Now evaluate the limit:

(2n+1 )(n!)
=11m-—-—-——---=
> (n+1)Y(2")

At this point, to see why the ratio test works so well for exponents and factorials,
factor out a 2 from 2" and an n + 1 from (n + 1)!:

_ 2(2")(nh
=lim——-—--—-
= (n+1)(nh(2")

This trick allows you to simplify the limit greatly:

:limi:0<1
n—o n+1

Because the limit is less than 1, the series converges.

Rooting out answers with the root test

The root test works best with series that have powers of n in both the numerator
and denominator.

To use the root test, take the limit (as n approaches «) of the nth root of the nth
term of the series:

lim % a,|

n—o

As with the ratio test, even though I call this a two-way test, there are really three
possible outcomes:

¥ Ifthe limitis less than 1, the series converges.
¥ Ifthe limitis greater than 1, the series diverges.

¥ If the limit equals 1, the test is inconclusive.
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For example, suppose that you want to decide whether the following series is con-
vergent or divergent:

& (Inn)”
; n"

This would be a very hairy problem to try to solve using the ratio test. To use the
root test, take the limit of the nth root of the nth term:

n
lim glf—(ln r;)
n—ow n

Notice that, as often happens with the ratio test (see the previous section), here I
omitted the absolute value bars because the terms of the series are all positive.
Although this expression looks worse than what you started with, it begins to look
better when you separate the numerator and denominator into two roots:

= lim Ndnm)®

n—o njn
n

Now a lot of cancellation is possible:

=lim Inn
n—wo N
Suddenly, the problem doesn’t look so bad. The numerator and denominator both
approach «, so you’d love to apply L’Hopital’s rule. One small problem, however,
is that n originated as an index of summation, so it’s a discrete variable that only
accepts positive integers as inputs. Thus, technically speaking, you can’t differen-
tiate functions of n because they aren’t continuous. A workaround here is to
declare a similar limit using x, a variable whose domain is explicitly the real
numbers:

Inx

lim ——

x—>wo X

I know . .. this limit looks the same as the previous one, except every n is has been
replaced by an x. This change, however, permits you to apply L’Hopital’s rule to
complete the problem.

d
——(Inx)
—dfl - lim% -0<1
)

Because the limit is less than 1, the same is true of the limit in n that you were
originally working with; therefore, the series is convergent.
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Each of the series that I discuss earlier in this chapter (and most of those in
Chapter 15) have one thing in common: Every term in the series is positive. So
each of these series is a positive series. In contrast, a series that has infinitely many
positive and infinitely many negative terms is called an alternating series.

Most alternating series flip back and forth between positive and negative terms so
that every odd-numbered term is positive and every even-numbered term is neg-
ative, or vice versa. This feature adds another spin onto the whole question of
convergence and divergence. In this section, I show you what you need to know
about alternating series.

Eyeballing two forms of the
basic alternating series

The most basic alternating series comes in two forms. In the first form, the
odd-numbered terms are negated; in the second, the even-numbered terms are
negated.

Without further ado, here’s the first form of the basic alternating series:

(D" =-1+1-1+1-..

n=1
As you can see, in this series the odd terms are all negated. And here’s the second
form, whose even terms are negated:

(D" =1-141-1+..
n=1

Obviously, in whichever form it takes, the basic alternating series is divergent
because it never converges on a single sum but instead jumps back and forth
between two sums for all eternity. Although the functions that produce these basic
alternating series aren’t of much interest by themselves, they get interesting
when they’re multiplied by an infinite series.

Making new series from old ones

You can turn any positive series into an alternating series by multiplying the
series by (—1)" or (—1)"".. For example, here’s an old friend, the harmonic series:

1 1 1 1
z;—l+§+§+z+...

n=1
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To negate the odd terms, multiply by (-1)™

Seprlo g1 1,10
>(-D —=-l+g Tt

n=1
To negate the even terms, multiply by (-1)":

s eprtlog 1,11
;( D=1 sty =gt

Alternating series based on
convergent positive series

If you know that a positive series converges, any alternating series based on this
series also converges. This simple rule allows you to list a ton of convergent alter-
nating series. For example:

REMEMBER

21\ 111
r;)(—l) (E) —1—§+Z—§+
St Lo 111

r;( 1 n2—1 iT9 16t
S g 9,4 2 4
S =22 g g

The first series is an alternating version of a geometric series with r = % The sec-

ond is an alternating variation on the familiar p-series with p = 2. The third is an
alternating series based on a series that I introduce in the section, “Rationally
solving problems with the ratio test,” earlier in this chapter. In each case, the
non-alternating version of the series is convergent, so the alternating series is
also convergent.

To see why this works, consider the first of these three series, and calculate the
first few partial sums:

5i=20(3) =1

n=0

2 L1\ 11
$:=2(-D (E) =1-3=3

S a1\ . 1.1 3
$3=2(D (E) “l-3+777

4 a1 "7 1 1 1 5
Si=2(D (5) =1-3+378"%
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Notice that the partial sums for this series alternately increase and decrease.
Additionally, because the terms of the original series approach 0, the partial sums
tend to alternate less and less erratically — that is, they hone in on a specific
value. You may not know how to calculate this value, but you can still state that
such a value exists, so the series is convergent.

As you see in the next section, “Checking out the alternating series test,” this is a
specific case of a broader test for convergence. For now, just remember that if a
positive series converges, the alternating version of this series also converges.

Checking out the alternating series test

As I discuss in the previous section, when you know that a positive series is con-
vergent, you can assume that any alternating series based on that series is also
convergent. In contrast, some divergent positive series become convergent when
transformed into alternating series.

Fortunately, I can give you a simple test to decide whether an alternating series is
convergent or divergent.

An alternating series converges if these two conditions are met:

¥ Its defining sequence converges to zero — that is, it passes the nth-
term test.

3 Its terms are non-increasing (ignoring minus signs) — that is, each term
is less than or equal to the term before it.

These conditions are fairly easy to test for, making the alternating series test one
of the easiest tests in this chapter. For example, here are three alternating series:

&l
— nl_: —_— —_—— —

;( D=l gt

2 a1 11 1
U LT P S S

) R AN I

e . 111 11

nZ:z(—l) nlnn 2In2 3In3  4Ind 55 "

Just by eyeballing them, you can see that each of these series meets both criteria
of the alternating series test, so they’re all convergent. Notice, too, that in each
case, the positive version of the same series is divergent. This underscores an
important point: When a positive series is convergent, an alternating series based
on it is also necessarily convergent; but when a positive series is divergent, an
alternating series based on it may be either convergent or divergent.
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Technically speaking, the alternating series test is a one-way test: If the series
passes the test — that is, if both conditions hold — the series is convergent. How-
ever, if the series fails the test — that is, if either condition isn’t met — you can
draw no conclusion.

In practice, however — and I’m going out on a thin mathematical limb here — I'd
say that when a series fails the alternating series test, you have strong circum-
stantial evidence that the series is divergent.

Why do I say this? First of all, notice that the first condition is the good old-
fashioned nth-term test. If any series fails this test, you can just chuck it on the
divergent pile and get on with the rest of your day.

Second, it’s rare when a series — any series — meets the first condition but fails
to meet the second condition. Sure, it happens, but you really have to hunt around
to find a series like that. And even when you find one, the series usually settles
down into an ever-decreasing pattern fairly quickly.

For example, take a look at the following alternating series:

2
Sl 1,9 1,25 9 49
;( 1)) 57 =2 1+8 1+32 6+to8

Clearly, this series passes the first condition of the alternating series test — the
nth-term test — because the denominator explodes to infinity at a much faster
rate than the numerator.

What about the second condition? Well, the first three terms are increasing (dis-
regarding sign), but beyond these terms the series settles into an ever-decreasing
pattern. So you can chop off the first few terms and express the same series in a
slightly different way:

19 e
=3 1+8 1+n§5( 1)) o

This version of the series is non-increasing, so now it passes the two conditions
of the alternating series test with flying colors; therefore it’s convergent. Obvi-
ously, adding a few constants to this series doesn’t make it divergent, so the orig-

inal series is also convergent.

So when you’re testing an alternating series, here’s what you do:

¥ Test for the first condition — that is, apply the nth-term test.

If the series fails, it's divergent by the nth-term test, so you're done.
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¥ If the series passes the nth-term test, test for the second condition —
that is, see whether its terms eventually settle into a constantly decreas-
ing pattern (ignoring their sign, of course).

In most cases, you’ll find that a series that meets the first condition also meets the
second, which means that the series is convergent.

In the rare cases when an alternating series meets the first condition of the alter-
nating series test but doesn’t meet the second condition, you can draw no conclu-
sion about whether that series converges or diverges.

These cases really are rare, but I show you one so you know what to do in case your
professor decides to get cute on an exam:

1 1 1 1 1 1 1 1 1 1 1 1

Both of these series meet the first criteria of the alternating series test but fail to
meet the second, so you can draw no conclusion based on this test. In fact, the
first series is convergent and the second is divergent. Spend a little time studying
them and I believe that you’ll see why. (Hint: Try to break each series apart into
two separate series.)

Understanding absolute and
conditional convergence

In the previous two sections, I demonstrate this important fact: When a positive
series is convergent, an alternating series based on it is also necessarily conver-
gent; but when a positive series is divergent, an alternating series based on it may
be either convergent or divergent.

So for any alternating series, you have three possibilities:

¥ An alternating series is convergent, and the positive version of that series is
also convergent.

¥ An alternating series is convergent, but the positive version of that series is
divergent.

¥ An alternating series is divergent, so the positive version of that series must
also be divergent.
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The existence of three possibilities for alternating series makes a new concept
necessary: the distinction between absolute convergence and conditional
convergence.

Table 16-1 tells you when an alternating series is absolutely convergent, condi-
tionally convergent, or divergent.

TABLE 16-1 Understanding Absolute and Conditional
Convergence of Alternating Series

An Alternating Series Is: When That Series Is: And Its Related Positive Series Is:
Absolutely Convergent Convergent Convergent

Conditionally Convergent Convergent Divergent

Divergent Divergent Divergent

Here are a few examples of alternating series that are absolutely convergent:

i(—l)”(%)nzl—%+l_%

1
nll R S TN
;( DY r=l-3+5 16"
n12" 9 4 2. 4
D R i

I pulled these three examples from the section, “Alternating series based on con-
vergent positive series,” earlier in this chapter. In each case, the positive version
of the series is convergent, so the related alternating series must be convergent as
well. Taken together, these two facts mean that each series converges absolutely.

And here are a few examples of alternating series that are conditionally
convergent:

sepytlog 11
>(-D nil S

= 2
d B 1 1 1
2D —n— ZTE 2
i 1 1 N 1 1 N
nlnn “2In2 3In3 " 4In4  5Inb
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I pulled these examples from the section, “Checking out the alternating series
test,” earlier in this chapter. In each case, the positive version of the series
diverges, but the alternating series converges (by the alternating series test).
So each of these series converges conditionally.

Finally, here are some examples of alternating series that are divergent:

S(-D"n=1-2+3-4+ ...
n=1

c ymn 123 4
2D =gt s
11 1.1 1 .1

As you can see, the first two series fail the nth-term test, which is also the first
condition of the alternating series test, so these two series diverge. As for the third
series, it’s basically a divergent harmonic series minus a convergent geometric
series — that is, a divergent series with a finite number subtracted from it — so
the entire series diverges.

Testing alternating series

Suppose that somebody (like your professor) hands you an alternating series that
you’ve never seen before and asks you to determine whether it’s absolutely con-
vergent, conditionally convergent, or divergent. Here’s what you do:

1. Apply the alternating series test.

In most cases, this test tells you whether the alternating series is convergent or
divergent:

If it's divergent, you're done! (The alternating series is divergent.)

If it's convergent, the series is either absolutely convergent or conditionally
convergent. Proceed to Step 2.

If the alternating series test is inconclusive, you can't rule any option out.
Proceed to Step 2.

2. Rewrite the alternating series as a positive series by:
Removing (-1)" or (-1)™" when you're working with sigma notation.

Changing the minus signs to plus signs when you're working with
expanded notation.
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3. Testthis positive series for convergence or divergence by using any of the
tests in this chapter or Chapter 15:

If the positive series is convergent, the alternating series is absolutely
convergent.

If the positive series is divergent and the alternating series is convergent,
the alternating series is conditionally convergent.

If the positive series is divergent but the alternating series test is inconclu-
sive, the series is either conditionally convergent or divergent, but you still
can't tell which.

In most cases, you’re not going to get through all these steps and still have a
doubt about the series. In the unlikely event that you do find yourself in this posi-
tion, see whether you can break the alternating series into two separate series —
one with positive terms and the other with negative terms — and study these two
series for whatever clues you can.
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IN THIS CHAPTER

» Understanding elementary functions

» Seeing power series as polynomials
with infinitely many terms

» Expressing functions as a Maclaurin
series

» Discovering the Taylor series as a
generalization of the Maclaurin series

» Approximating expressions with the
Taylor and Maclaurin series

Chapter 17

Dressing Up Functions
with the Taylor Series

he infinite series known as the Taylor series is one of the most brilliant

mathematical achievements you’ll ever come across. It’s also quite a lot to

get your head around. Although many calculus books tend to throw you in
the deep end with the Taylor series, I prefer to take you by the hand and help you
wade in slowly.

The Taylor series is a specific form of the power series. In turn, it’s helpful to
think of a power series as a polynomial with an infinite number of terms. So,
in this chapter, I begin with a discussion of polynomials. I contrast polynomials
with other elementary functions, pointing out a few reasons mathematicians like
polynomials so much (often to the exclusion of their families and friends).

Then I move on to power series, showing you how to discover when a power series
converges or diverges. I also discuss the interval of convergence for a power series,
which is the set of x values for which that series converges. After that, I introduce
you to the Maclaurin series — a simplified, but powerful, version of the Taylor
series.
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Finally, the main event: the Taylor series. First, I show you how to use the Taylor
series to evaluate other functions; you’ll most likely need that for your final exam.
I introduce you to the Taylor remainder term, which allows you to find the margin
of error when making an approximation. To finish up the chapter, I show you why
the Taylor series works, which helps to make sense of the series, but may not be
strictly necessary for passing an exam.

Elementary Functions

320

In Chapter 6, I discuss elementary functions, which are those familiar functions
that you work with all the time in calculus. You discover that every elementary
function is infinitely differentiable — that is, its derivative is an elementary func-
tion that is also differentiable.

In this section, I discuss some of the difficulties of working with elementary func-
tions. In contrast, I show you why a small subset of elementary functions — the
polynomials — is much easier to work with. To finish, I consider the advantages
of expressing elementary functions as polynomials when possible.

Identifying two drawbacks of
elementary functions

Differentiating elementary functions tends to be relatively simple, and always
produces a result that is also an elementary function. Unfortunately, integration
is another matter. For example, here’s an integral that can’t be evaluated as an
elementary function (the proof of this fact is pretty hairy and depends on some-
thing called Risch’s algorithm, so I hope you’ll take my word on it):

J.e"zdx

So even though the set of elementary functions is large and complex enough to
confuse most math students, for you — the emerging calculus guru — it’s a rather
small pool.

Another problem with elementary functions is that many of them are difficult to
evaluate for a given value of x. Even the simple function sin x isn’t so simple to
evaluate because (except for 0) every integer input value results in an irrational
output for the function. For example, what’s the value of sin 3?
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Appreciating why polynomials
are so friendly

In contrast to other elementary functions, polynomials are just about the friendli-
est functions around. Here are just a few reasons:

¥ Polynomials are easy to integrate (see Chapter 6 to see how to compute the
integral of every polynomial).

¥ Polynomials are easy to evaluate for any value of x.

¥ Polynomials are infinitely differentiable — that is, you can calculate the value
of the first derivative, second derivative, third derivative, and so on, infinitely.

Representing elementary
functions as series

The tactic of expressing complicated functions as polynomials (and other simple
functions) motivates much of the study of infinite series.

Although series may seem difficult to work with — and, admittedly, they do pose
their own specific set of challenges — they have two great advantages that make
them useful for integration:

¥ Aninfinite series breaks easily into terms. So in most cases, you can use
the Sum rule to break a series into separate terms and evaluate these terms
individually.

3 Series tend to be built from a recognizable pattern. So if you can figure out
how to integrate one term, you can usually generalize this method to inte-
grate every term in the series.

Specifically, power series include many of the features that make polynomials
easy to work with. I discuss power series in the next section.

Power Series: Polynomials on Steroids

In Chapter 15, I introduce the geometric series:

o0
Yax"=a+ax+ax’ +ax® +...
n=0
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I also show you a simple formula to figure out whether the geometric series con-
verges or diverges.

The geometric series is a simplified form of a larger set of series called the power
series.

A power series is any series of the following form:

o0
Deax"=cotex+eax’ox’ 4o
n=0

Notice how the power series differs from the geometric series:

¥ In ageometric series, every term has the same coefficient.

3 Inapower series, the coefficients may be different — usually according to a
rule that's specified in the sigma notation.

Here are a few examples of power series:

o0
Snx"=x+2x" +3x% +4xt + .
n=0

&1 L, 1.1 1 1 5
;wa Z+8x+ﬁx tam X

n on_, 1 o 1 4 1 54
Z( 1)) (2 T —1—2—!x TR TR

You can think of a power series as a polynomial with an infinite number of terms.
For this reason, many useful features of polynomials (which I describe earlier in
this chapter) carry over to power series.

The most general form of the power series is as follows:

ch(x —a)"=cp+c(x—a)+cy(x—a) +ey(x—a)d +...

n=0
This form is for a power series that’s centered at a. Notice that when a = 0, this
form collapses to the simpler version I introduce earlier in this section. So a power
series in this form is centered at 0.

Integrating power series

In Chapter 6, I show you a three-step process for integrating polynomials. Because
power series resemble polynomials, they’re simple to integrate using the same
basic process:
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1. UsetheSumruleto integrate the series term by term.

2. Usethe Constant Multiple rule to move each coefficient outside its respective
integral.

3. Use the Power rule to evaluate each integral.
For example, take a look at the following integral:
,[Z nl+2 XndX'
n=0 2

At first glance, this integral of a series may look scary. But to give it a chance to
show its softer side, I expand the series out as follows:

—J( = x+—x MELINCI P

32

Now you can apply the three steps for integrating polynomials to evaluate this
integral.

1. usethe Sumruleto integrate the series term by term:
“(Laxs (L Lo [Ly?
—J.4dx+'|'8xdx+.f16x dx+j32x dx +...

2. Use the Constant Multiple rule to move each coefficient outside its
respective integral:

1 1 1 o 3
Zj.dx+§'[xdx+ﬁj.x dx+—Ix dx +..
3. Use the Power rule to evaluate each integral:
1 » 1 5 1 4

1
_ZX+EX +Ex +mx +...

Notice that this result is another power series, which you can turn back into sigma
notation:

- n+l
=2 e (n+ 1)2 mz X

n=0

Thus, you can evaluate the integral of one power series as a second power series:

< 1 n h - 1 n+1
,[Z n+2 X = n+2 X
n=0 2 n=0 (n + 1)2
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Stand back a minute and admire that you’re actually able to make sense of this
morass of mathematical symbols. While you’re at it, also notice that you’ve inte-
grated a power series — a polynomial with infinitely many terms — and produced
another power series.

This is an example of how the set of power series is closed under the operation of
integration - that is, every power series integrates to another power series. And
this closure is very important because, if you can count on the integral of a power
series behaving in a predetermined way, you can use it in a variety of abstract and
even creative ways without worrying too much about the details.

Understanding the interval of convergence

As with geometric series and p-series (which I discuss in Chapter 15), an
advantage to power series is that they converge or diverge according to a well-
understood pattern.

Unlike these simpler series, however, a power series often converges or diverges
based on its x value. This leads to a new concept when dealing with power series:
the interval of convergence.

The interval of convergence for a power series is the set of x values for which that
series converges.

The interval of convergence is never empty

Every power series converges for some value of x. That is, the interval of conver-
gence for a power series is never the empty set.

Although this fact has useful implications, it’s actually pretty much a no-brainer.
For example, take a look at the following power series:

Sxt=l+x+x*+x’+xt 4.

n=0
When x = 0, this series evaluatesto1+0+0+ 0 +. . ., so it obviously converges to 1.
Similarly, take a peek at this power series:

0

> n(x+5)"=(x+5)+2(x+5)° +3(x+5)° +4(x +5)* +...
n=0
This time, when x = -5, the series converges to 0, just as trivially as the last

example — that is, it converges, but not in a way that’s particularly surprising or
helpful.

PART 6 Infinite Series



©

REMEMBER

EXAMPLE

Note that in both of these examples, the series converges trivially at x = a for a
power series centered at a. (See the beginning of the section, “Power Series: Poly-
nomials on Steroids.”) As you can see, every series of this type has to converge for
at least one value of x. Series that converge for only one value of x, however, aren’t
particularly useful or interesting.

Three varieties for the interval of convergence

Three possibilities exist for the interval of convergence of any power series:

3 The series converges only when x = a.

¥ The series converges on some interval (open or closed at either end) centered
ata.

¥ The series converges for all real values of x.

For example, suppose that you want to find the interval of convergence for:
>nx"=x+2x"+3x* +4x* + ..
n=0

This power series is centered at 0, so it converges trivially when x = 0. Using the
ratio test (see Chapter 16), you can find out whether it converges for any other
values of x. To start out, set up the following limit:

(n+Dx"!

nx"

lim

n—oo

To evaluate this limit, start out by canceling x* in the numerator and
denominator:

lim (n+D)]x|
n—w n

This step simplifies the expression considerably. Furthermore, remember that n is
always positive, so the absolute value pertains only to x. Fortunately, this value
can be pulled outside the limit, and then the limit that remains equals 1:
= tim Dy 1= x|
n—o n

From this result, the ratio test tells you that the series:

¥ Convergeswhen-1<x<1
¥ Divergeswhenx<-1andx>1

3 May converge or diverge when x =1 and x = -1
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Fortunately, it’s easy to see what happens in these two remaining cases. Here’s
what the series looks like when x = 1:

Z n(D)"=1+2+3+4+..

n=0

Clearly, the series diverges. Similarly, here’s what it looks like when x = -1:
Sn(-1)"=-1+2-3+4— .
n=0

This alternating series swings wildly between negative and positive values, so it
also diverges.

As a final example, suppose that you want to find the interval of convergence for
the following series:

2 2 x4 6

2( Dn(Zn)' 1—2—!+4—!—ﬁ+...

As in the last example, this series is centered at 0, so it converges trivially when
x = 0. The real question is whether it converges for other values of x. Because this
is an alternating series, I apply the ratio test to the positive version of it to see
whether I can show that it’s absolutely convergent:

x2(n+1)

. (2(n2+1))!

n—oo X
2n)!
First off, I want to simplify this a bit:
x2n+2
(2n+2)!

= lim >

n—oo| X
n)!
2n+2
—im| X Gm!
n—o (2n+2)' xZn

Next, I expand out the exponents and factorials, as I show you in Chapter 16:

_ lim x2nx? (@2n)!
T oo (2n+2)(2n+1)(2n)! e 2n

At this point, a lot of canceling is possible, enabling me to evaluate the limit:

B . I T
AR @nr(2ntD

=|**|im Zn+2)(2n+1)
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At last, the x-term, which requires the absolute value bars, is isolated in the
numerator. This allows you to move it outside the limit, making the limit itself
very simple to evaluate:

:|x2|-0:0

This time, the limit is 0, which falls between —1 and 1 for all values of x. This result
tells you that the series converges absolutely for all values of x, so the alternating
series also converges for all values of x.

Expressing Functions as Series

In this section, you begin to explore how to express functions as infinite series.
I begin by showing some examples of formulas that express sin x and cos x as
series. These examples lead to a more general formula for expressing a wider
variety of elementary functions as series.

This formula is the Maclaurin series, a simplified but powerful version of the more
general Taylor series, which I introduce later in this chapter.

Expressing sin x as a series

Here’s an odd formula that expresses the sine function as an alternating series:

2n+1

sinx = Z;}(—l)” —(2); Y

To make sense of this formula, use expanded notation:

. _ 3 X5 X7
Slnx—x—yﬂ’ﬁ—wﬁ'...
Notice that this is a power series (which I discuss earlier in this chapter). To get a
quick sense of how it works, here’s how you can find the value of sin 0 by substi-
tuting o for x:
3 5 7
sin0=0- o + 00

3! ﬁ—W-F...:O

As you can see, the formula verifies what you already know: sin 0 = 0.
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You can use this formula to approximate sin x for any value of x to as many
decimal places as you like. For example, look what happens when you substitute 1
for x in the first four terms of the formula:

sin1~1—l+L—L
T7 6 120 5,040
~0.841468

Note that the actual value of sin 1 to six decimal places is 0.841471, so this estimate
is correct to five decimal places — not bad! And, of course, this estimate could be
improved by generating more terms of the series, plugging in 1 for x, and crunch-
ing the numbers.

Table 17-1 shows the value of sin 3 approximated to six terms. Note that the actual
value of sin 3 is approximately 0.14112, so the six-term approximation is correct
to three decimal places. Again, not bad. Though, this one wasn’t quite as good as
the estimate for sin 1.

Approximating the Value of sin 3

# of Terms  Substitution Approximation
1 3 3

: 3_1;_3! -1.5

3 3—33—3!+35—5! 0.525

4 3—%—%%—?—%—: 0.09107

5 3—?3’,—3!+3;—i—3;—:+?§—5; 0.14531

6 3—3—3+?’—5—3—7+3—9—3—11 0.14087

As a final example, Table 17-2 shows the value of sin 10 approximated out to eight
terms. The true value of sin 10 is approximately —0.54402, so by any standard this
is a poor estimate. Nevertheless, if you continue to generate terms, this estimate
continues to get better and better, to any level of precision you like. If you doubt
this, notice that after five terms, after swinging around wildly, the approxima-
tions are beginning to settle in closer to the actual value, even though they’re still
way off. Each successive approximation from now on will land closer and closer to
-0.54402, to any level of precision you’d like.
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TABLE 17-2 Approximating the Value of sin 10

# of Terms  Substitution Approximation
1 10 10
3
2 10—13% -156.66667
3 10— 1§| SL 676.66667
7
4 10-10° O SL—I% -1307.460317
3 5) 7 9
5 10- 1:9' %—%Ngl' 1448272
10® L 10° 107 , 10° 10"
6 10 ——=— 310 ﬁ—T‘FT—l—I! -1056.938
103 105 107 10° 10"  10°
103 L10° 107 10° 10" 10" 10"
8 0-Sr+Sr—%r+or 1 131 151 213750

Expressing cos x as a series

In the previous section, I show you a formula that expresses the value of sin x for
all values of x as an infinite series. Differentiating both sides of this formula leads
to a similar formula for cos x:

d d x* dx* dx’

T T i 3T T s e

Now evaluate these derivatives:

2 4 6

cosx:173%+5%77%+,..

Finally, simplify the result a bit:

cosx—l—x—2+x—4—x—6+
T YR TR
As you can see, the result is another power series (which I discuss earlier in this

chapter). Here’s how you write it with sigma notation:
2n

CcosX = HZO( ) @)
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To gain some confidence that this series really works as advertised, note that the
substitution x = 0 provides the correct equation cos 0 = 1. Furthermore, substitut-
ing x = 1 into the first four terms gives you the following approximation:
cosl=1-2+ L1 _ 05400777
2 24 720

This estimate is accurate to four decimal places.

Introducing the Maclaurin Series

330

In the previous two sections, I show you formulas for expressing both sin x and
cos x as infinite series. You may begin to suspect that there’s some sort of method
behind these formulas. Without further ado, here it is:

S0

f(x) = ZTX

n=0 :
Behold the Maclaurin series, a simplified version of the much-heralded Taylor
series, which I introduce in the next section.

The notation f" means “the nth derivative of f.” This should become clearer in the
expanded version of the Maclaurin series:

Fx) = F(0)+ £ (0)x + fﬂz(!o) x?+ f”’3(!0) x4

The Maclaurin series is the template for the two formulas I introduce earlier in
this chapter. It allows you to express many other functions as power series by fol-
lowing these steps:

1. Find the first few derivatives of the function until you recognize a pattern.

7. Substitute 0 for x into each of these derivatives.

3. Plug these values, term by term, into the formula for the Maclaurin series.

4. possible, express the series in sigma notation.
For example, suppose that you want to find the Maclaurin series for e,

1. Find the first few derivatives of e* until you recognize a pattern:
fx)=e
[ =e
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f (x)=e"

fOx) = e
2. substitute 0 for x into each of these derivatives.
flo)=¢®
f(0)=¢®
f(x)=e’
f(n)(x) =0
3. Plug these values, term by term, into the formula for the Maclaurin
series:
0 0 0 2 e’ 3
e¥=e +e x+ix +Tx +...
x2 X3
=1+X+?+?+...

4. possible, express the series in sigma notation:

To check this formula, use it to estimate e° and e! by substituting 0 and 1, respec-
tively, into the first six terms:

e’=1+0+0+0+0+0+...=1
. L1 1.1 5166
e ~1+1+2 57927 120 =2.7166
This exercise nails e° exactly and approximates e* to two decimal places. And, as
with the formulas for sin x and cos x that I show you earlier in this chapter, the
Maclaurin series for ex allows you to calculate this function for any value of x to
any number of decimal places.

As with the other formulas, however, the Maclaurin series for e* works best when

x is close to 0. As x moves away from 0, you need to calculate more terms to get the
same level of precision.
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But now, you can begin to see why the Maclaurin series tends to provide better
approximations for values close to 0: The number 0 is “hardwired” into the for-
mula as f(0), f'(0), f"(0), and so forth.

Figure 17-1 illustrates this point. The first graph shows sin x approximated by
using the first two terms of the Maclaurin series — that is, as the third-degree

x3

polynomial x BEIE The subsequent graph shows an approximation of sin x with

eight terms as a 15th-degree polynomial.

As you can see, the second approximation greatly improves on the previous one.
Furthermore, each equation tends to provide its best approximation when x is
close to 0.

A TALE OF THREE SERIES

It's easy to get confused about the three categories of series that | discuss in this
chapter. Here's a helpful way to think about them:
® The power series is a subcategory of infinite series.

® The Taylor series (named for mathematician Brook Taylor) is a subcategory of
power series.

® The Maclaurin series (named for mathematician Colin Maclaurin) is a subcategory
of the Taylor series.

After you have that down, consider that the power series has two basic forms:

® The specific form, which is centered at zero, so a drops out of the expression.
® The general form, which isn't centered at zero, so a is part of the expression.

Furthermore, each of the other two series uses one of these two forms of the power
series:

® The Maclaurin series uses the specific form, so it's less powerful and simpler to
work with.

® The Taylor series uses the general form, so it's more powerful and harder to
work with.
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FIGURE 17-1:
Approximating
sin x by using the
Maclaurin series.

Introducing the Taylor Series

Like the Maclaurin series (which I introduce in the previous section), the Taylor
series provides a template for representing a wide variety of functions as power
series.

In fact, the Taylor series is really a more general version of the Maclaurin series.
The advantage of the Maclaurin series is that it’s a bit simpler to work with. The
advantage to the Taylor series is that you can tailor it to obtain a better approxi-
mation of many functions.

Here’s the Taylor series in all its glory:

oo £(n)
=3 x-ay’
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As with the Maclaurin series, the Taylor series uses the notation f to indicate the
nth derivative. Here’s the expanded version of the Taylor series:

f(x)=Ff(a)+f (a)(x-a) +$(x—a)2 +%(x —a)’+...

Notice that the Taylor series includes the variable a, which isn’t found in the
Maclaurin series. Or, more precisely, in the Maclaurin series, a = 0, so it drops out
of the expression.

The explanation for this variable can be found earlier in this chapter, in the sec-
tion, “Power Series: Polynomials on Steroids.” In that section, I show you two
forms of the power series:

3 Asimpler form centered at 0, which corresponds to the Maclaurin series

3 A more general form centered at g, which corresponds to the Taylor series

In the next section, I show you the advantages of working with this extra variable.

Computing with the Taylor series

The presence of the variable a makes the Taylor series more complex to work with
than the Maclaurin series. But this variable provides the Taylor series with greater
flexibility, as the next example illustrates.

In the section, “Expressing Functions as Series,” earlier in this chapter, I attempt
to approximate the value of sin 10 with the Maclaurin series. Unfortunately, tak-
ing this calculation out to eight terms still results in a poor estimate. This problem
occurs because the Maclaurin series always takes a default value of a = 0, and 0
isn’t close enough to 10.

This time, I use only four terms of the Taylor series to make a much better approx-
imation. The key to this approximation is a shrewd choice for the variable a:

Leta=3n

This choice has two advantages: First, this value of a is close to 10 (the value of x),
which makes for a better approximation. Second, it’s an easy value for calculating
sines and cosines, so the computation shouldn’t be too difficult.

To start off, substitute 10 for x and 3= for a in the first four terms of the Taylor
series:

. _ 2 .o _ 3
(sm 37r)(10 3r) +(sm 37r)(10 3r)

sin10 ~ sin3z +(sin' 37 )(10-37) + 50 31
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REMEMBER

WARNING

Next, substitute in the first, second, and third derivatives of the sine function and
simplify:

=sin3x + (cos37)(0.5752) —

(sin37)(0.5752)*  (cos37)(0.5752)°
2! 3!

The good news is that sin 3= = 0, so the first and third terms fall out:

= (cos37)(0.5752) —

(co0s37)(0.5752)°
30

At this point, you probably want to grab your calculator:

=-1(0.5752) —[—%(0.5752)3}
=-0.5752+0.0317 = —0.5434

This approximation is correct to two decimal places — quite an improvement over
the estimate from the Maclaurin series!

Examining convergent and
divergent Taylor series

Earlier in this chapter, I show you how to find the interval of convergence for a
power series — that is, the set of x values for which that series converges.

Because the Taylor series is a form of power series, you shouldn’t be surprised
that every Taylor series also has an interval of convergence. When this interval is
the entire set of real numbers, you can use the series to find the value of f(x) for
every real value of x.

However, when the interval of convergence for a Taylor series is bounded — that
is, when it diverges for some values of x — you can use it to find the value of f(x)
only on its interval of convergence.

For example, here are the three important Maclaurin series I've introduced so far
in this chapter:

2n+1 3 5 7
X X X
sinx = Z( 1) (2n+1)' X—T'Fﬁ—ﬁ"’...
2n 2 4 6

CcosXx = Z( D" (Zn)' 1_T+I_ﬁ+"'
o n 2 3

x X x° X
e’ = =l+x+5-+57+
nZgn 2 3!
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All three of these series converge for all real values of x (you can check this by
using the ratio test, as I show you earlier in this chapter), so each equals the value
of its respective function.

Now consider the following function:

I express this function as a Maclaurin series, using the steps that I outline earlier
in this chapter in the section, “Expressing Functions as Series.”

1. Find the first few derivatives of f (x)=

until you recognize a pattern:

1-x

Fon=—1—

(1-x)
N
f(x)_(l—x)3
vo\__ 6
Py
(n) _ n!
f (X) - (I*X)IHI

2. Ssubstitute 0 for x into each of these derivatives:
f0)=1
f=2
fr0)=6

f70) = n!

3. Plug these values, term by term, into the formula for the Maclaurin
series:

1 _ , 7 2 (0 3
1_x—f(0)+f(0)x+ o X TR Xt

=l+x+x?+x3+...

4. possible, express the series in sigma notation:

1

1-x

x"=l+x+xt+x3

1
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To test this formula, I use it to find f(x) when x = %
1 1 1 1

f(i):1+§+z+§+...:2

You can test the accuracy of this expression by substituting %into 1 x:

1

1 1

f(g)—l_—l—z
2

As you can see, the formula produces the correct answer. Now I try to use it to find
1

f(x) when x = 5, noting that the correct answer should be %— 5= Ve

f5)=1+5+25+125+...= WRONG!

What happened? This series converges only on the interval (-1, 1), so the formula
produces only the value f(x) when x is in this interval. When x is outside this inter-
val, the series diverges, so the formula is invalid.

Expressing functions versus
approximating functions

It’s important to be crystal clear in your understanding about the difference
between two key mathematical practices:

¥ Expressing a function as an infinite series

3 Approximating a function by using a finite number of terms of series

Both the Taylor series and the Maclaurin series are variations of the power series.
You can think of a power series as a polynomial with infinitely many terms. Also,
recall that the Maclaurin series is a specific form of the more general Taylor series,
arising when the value of a is set to 0.

Every Taylor series (and, therefore, every Maclaurin series) provides the exact
value of a function for all values of x where that series converges. That is, for any
value of x on its interval of convergence, a Taylor series converges to f(x).

In practice, however, adding up an infinite number of terms simply isn’t possible.
Nevertheless, you can approximate the value of f(x) by adding a finite number
from the appropriate Taylor series. You do this earlier in the chapter to estimate
the value of sin 10 and other expressions.
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An expression built from a finite number of terms of a Taylor series is called a
Taylor polynomial, T,(x). Like other polynomials, a Taylor polynomial is identified
by its degree. For example, here’s the fifth-degree Taylor polynomial, T.(x), that
approximates e*:

x°  x' x

e“~l+x+ 5+ + =

2 3 4 5
2T "3 4 T

Generally speaking, a higher-degree polynomial results in a better approxima-
tion. And because this polynomial comes from the Maclaurin series, where a = 0,
it provides a much better estimate for values of e when x is near 0. For the value
of e when x is near 100, however, you get a better estimate by using a Taylor pol-
ynomial for ex with a = 100:
100 100 100
e* ~e'™ 1 e (x ~100) +‘32—,(x ~100)2 +63—'(x ~100)3 +e4—,(x-100)4

e100 5
+ ?(x - 100)

To sum up, remember the following:

3 A convergent Taylor series expresses the exact value of a function.

» ATaylor polynomial, T (x), from a convergent series approximates the value of
a function.

Understanding Why the
Taylor Series Works

338

The best way to see why the Taylor series works is to see how it’s constructed in
the first place. If you’ve read through this chapter until this point, you should be
ready to go.

To make sure that you understand every step along the way, however, I construct
the Maclaurin series, which is just a tad more straightforward. This construction
begins with the key assumption that a function can be expressed as a power series
in the first place:

= 2 3
f)=c+ex+o+cx3+. ..

The goal now is to express the coefficients on the right side of this equation in
terms of the function itself. To do this, I make another relatively safe assumption
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that o is in the domain of f(x). So when x = 0, all but the first term of the series
equal 0, leaving the following equation:

flo)=¢,

This process gives you the value of the coefficient c, in terms of the function. Now
differentiate f(x):

f) =c, +20x+ 3062 + 4¢3, .
At this point, when x = 0, all the x terms drop out:
fO)=¢,

So you have another coefficient, c,, expressed in terms of the function. To con-
tinue, differentiate f'(x):

f¥)=2¢,+60x + 12¢,x% + 20c 3 + . ...

Again, when x = 0, the x terms disappear:

£/ (0) =2c,
f §0) e,

By now, you’re probably noticing a pattern: You can always get the value of the
next coefficient by differentiating the previous equation and substituting o for x
into the result:

f7(x)=6c; +24c,x +60csx® +120cex> +...

" (0)=6c;

(0

o

Furthermore, the coefficients also have a pattern:

co =f(0)
¢, =f (0)
=g
s = f 3(!0)
_ 0
LY
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Substituting these coefficients into the original equation results in the familiar
Maclaurin series from earlier in this chapter:

To construct the Taylor series, use a similar line of reasoning, starting with the

() .

e/ more general form of the power series:
TECHNICAL

STUFF f)=c+cx-a)+Gx-aP+x-aP+...

In this case, setting x = a gives you the first coefficient:
flay=c¢,

Continue to find coefficients by differentiating f(x) and then repeating the process.
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IN THIS PART ...

Review the big-picture Calculus Il topics
Remember that integration is just fancy addition

Start a test by breathing, reading, and answering the
easiest question first

Find your way out of a stuck place when taking a test



IN THIS CHAPTER

» Understanding the key concepts of
integration

» Distinguishing the definite integral
from the indefinite integral

» Knowing the basics of infinite series

Chapter 18

Ten “Aha!” Insights
in Calculus I

kay, here you are near the end of the book. You’ve read every single word

that I wrote, memorized the key formulas, and worked through all the

problems. You’re all set to ace your final exam, and you’ve earned it. Good
for you! (Or maybe you just picked up the book and skipped to the end. That’s fine,
too! This is a great place to get an overview of what this Calculus II stuff is all
about.)

But still, you have this sneaking suspicion that you’re stuck in the middle of the
forest and can’t see it because of all those darn trees. Forget the equations for a
moment and spend five minutes looking over these top ten “Aha!” insights. When
you understand them, you will have a solid conceptual framework for Calculus II.

Integrating Means Finding the Area

Finding the area of a polygon or circle is easy. Integration is all about finding the
area of shapes with weird edges that are hard to work with. These edges may be
the curves that result from polynomials, exponents, logarithms, trig functions, or
inverse trig functions, or the products and compositions of these functions.
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Integration gives you a concrete way to look at this question, known as the area
problem. No matter how complicated integration gets, you can always understand
what you’re working on in terms of this simple question: “How does what I'm
doing help me find an area?”

See Chapter 1 for more about the relationship between integration and area.

When You Integrate, Area
Means Signed Area

In the real world, area is always positive. For example, there’s no such thing as a
piece of land that’s —4 square miles in area. This (real world) concept of area is
called unsigned area.

But on the xy-graph in the context of integration, area is measured as signed area,
with area below the x-axis considered to be negative area.

In this context, a 2-x-2-unit square below the x-axis is considered to be
-4 square units in signed area. Similarly, a 2-x-2-unit square that’s divided in
half by the x-axis is considered to have an area of o.

The definite integral always produces the signed area between a curve and the
x-axis, within the limits of integration. So if an application calls for the unsigned
area, you need to measure the positive area and negative area separately, change
the sign of the negative area, and add these two results together.

See Chapter 5 for more about signed area.

Integrating Is Just Fancy Addition

344

To measure the area of an irregularly shaped polygon, a good first step is to cut it
into smaller shapes that you know how to measure — for example, triangles and
rectangles — and then add up the areas of these shapes.

Integration works on the same principle. It allows you to slice a shape into smaller
shapes that approximate the area that you’re trying to measure, and then add up
the pieces. In fact, the integral sign itself is simply an elongated S, which stands
for sum.
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When integrating, that sum is called a Riemann sum. But please remember that at
the end of the day, a Riemann sum is just a fancy way to estimate area by adding
up the areas of a bunch of rectangles.

See Chapters 1 and 4 for more about how Riemann sums connect integration with
addition.

Integration Uses Infinitely Many
Infinitely Thin Slices

Here’s where integration differs from other methods of measuring area: Integra-
tion allows you to slice an area into infinitely many pieces, all of which are
infinitely thin, and then add up these pieces to find the total area.

Or, to put a slightly more mathematical spin on it: The definite integral is the limit
of the total area of all these slices as the number of slices approaches infinity and
the thickness of each slice approaches o.

That is, when you calculate a definite integral, you set up a Riemann sum to
approximate area and then apply a limit to it so that this approximation turns into
an exact measurement.

This concept is also useful when you’re trying to find volume, as I show you in
Chapter 13.

See Chapter 4 for more about how this concept of infinite slicing relates to
integration.

Integration Contains a Slack Factor

To paraphrase science fiction writer Robert Heinlein, math is a harsh mistress.
A small error at the beginning of a problem often leads to a big mistake by the end.

So finding out that you can thin-slice an area in a bunch of different ways and still
get the correct answer is refreshing. Some of these methods for thin-slicing
include left rectangles, right rectangles, and midpoint rectangles. I cover them all
in Chapter 4.
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This slack factor, as I call it, comes about because integration exploits an infinite
sequence of successive approximations. Each approximation brings you closer to
the answer that you’re seeking. So no matter what route you take to get there, an
infinite number of such approximations brings you to the answer.

A Definite Integral Evaluates to a Number

A definite integral represents the well-defined area of a shape on an xy-graph.
You can represent any such area as a number of square units, so the definite inte-
gral is a number.

See Chapters 1 and 4 for more about the definite integral.

An Indefinite Integral Evaluates
to a Function

An indefinite integral is a template that allows you to calculate infinitely many
related definite integrals by plugging in some numbers. In math, such a template
is called a function.

The input values to an indefinite integral are the two limits of integration. Speci-
fying these two values turns the indefinite integral into a definite integral, which
then outputs a number representing an area.

But if you don’t specify the limits of integration, you can still evaluate an indefi-
nite integral as a function. The process of finding an indefinite integral turns an

input function (for example, cos x) into an output function (sin x + C).

See Chapter 5 for more about the indefinite integral and Part 3 for a variety of
techniques for evaluating indefinite integrals.

Integration Is Inverse Differentiation

Integration and differentiation are inverse operations: Either of these operations
undoes the other (up to a constant C). Another way to say this is that integration
is anti-differentiation.
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Here’s an example of how differentiation undoes integration:

Jstdx:%x4+C
d(5 3
dx(4x +C) 5x

As you can see, integrating a function and then differentiating the result produces
the function that you started with.

Now here’s an example of how integration undoes differentiation:

d .
—sinx =cosx
dx

J'cosxdx =sinx+C

As you can see, differentiating a function and then integrating the result produces
the function that you started with, plus a constant C.

See Parts 2 and 3 for more on how this inverse relationship between integration

and differentiation provides a variety of clever methods for integrating compli-
cated functions.

Every Infinite Series Has
Two Related Sequences

Every infinite series has two related sequences that are important for understand-
ing how that series works: its defining sequence and its sequence of partial sums.

The defining sequence of a series is simply the sequence that defines the series in
the first place. For example, the series

Notice that the same function — in this case, % — appears in the shorter notation

for both the series and its defining sequence.
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The sequence of partial sums of a series is the sequence that results when you suc-
cessively add a finite number of terms. For example, the previous series has the
following sequence of partial sums:

31125 137

2767127 607 7

Notice that a series may diverge while its defining sequence converges, as in this
example. However, a series and its sequence of partial sums always converge or
diverge together. In fact, the definition of convergence for a series is based on the
behavior of its sequence of partial sums (see the next section for more on conver-
gence and divergence).

See Part 6 for more about infinite series.

Every Infinite Series Either
Converges or Diverges
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Every infinite series either converges or diverges, with no exceptions.

A series converges when it evaluates to (equals) a real number. For example:

On the other hand, a series diverges when it doesn’t evaluate to a real number.
Divergence can happen in two different ways. The more common type of diver-
gence is when the series explodes to « or —«. For example:

D n=1+2+3+4+...

n=1

Clearly, this series doesn’t add up to a real number — it just keeps getting bigger
and bigger forever.

Another type of divergence occurs when a series bounces forever among two or
more values. This happens only when a series is alternating (see Chapter 16 for
more on alternating series). For example:

0

S (D =-1+1-1+1-...

n=1
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The sequence of partial sums (see the previous section) for this series alternates
forever between -1 and 0, never settling into a single value, so the series diverges.

Convergent series are especially helpful when working with integrals we don’t
know how to evaluate with algebraic methods, such as u-substitution and inte-
gration by parts. Taylor/Maclaurin series are essentially polynomial approxima-

tions of functions that, like all polynomials, are simple to integrate.

See Part 6 for more about infinite series.
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IN THIS CHAPTER

» Doing a memory dump and a quick
read-through before you begin

» Getting unstuck

» Checking for mistakes

Chapter 19

Ten Tips to Take
to the Test

've never met anyone who loved taking a math test. The pressure is on, the time

is short, and that formula that you can’t quite remember is out of reach.

Unfortunately, exams are a part of every student’s life. Here are my top ten
suggestions to make test-taking just a little bit easier.

Breathe

A lot of what you may feel when facing a test — for example, butterflies in your
stomach, sweaty palms, or trembling — is simply a physical reaction to stress
that’s caused by adrenalin. Your body is preparing you for a fight-or-flight
response, but with a test, you have nothing to fight and nowhere to fly.

A few slow, deep breaths can help calm you down. If you like, picture serenity and

deep knowledge of all things mathematical entering your body on the in-breath,
and all the bad stuff exiting on the out-breath.
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Start by Doing a Memory Dump as You
Read through the Exam

When you receive your exam, do a memory dump: Write down all the formulas
you’re worried you may forget before you begin the test.

Next, take a minute to read through it so you know what you’re up against. This
practice starts your brain working (consciously or not) on the problems. As you do
this, write down any other formulas that may occur to you.

Solve the Easiest Problem First

After the initial read-through, turn to the page with the easiest problem and solve
it. This warm-up gets your brain working and usually reduces your anxiety.

Don't Forget to Write dx and + C

Remember to include those pesky little dxs in every integration statement. They
need to be there, and some professors take it very personally when you don’t
include them. You have absolutely no reason to lose points over something so
trivial.

And don’t forget that the solution to every indefinite integral ends with + C (or
whatever constant you choose). No exceptions! As with the dxs, omitting this con-
stant can cost you points on an exam, so get in the habit of including it.

Take the Easy Way Out Whenever Possible

In Chapters 6 through 11, I introduce a bunch of integration techniques. These run
the gamut from the laughably simple plug-and-play anti-differentiation formu-
las to the infuriatingly complicated integration with partial fractions. Before you
jump in to a calculation, take a moment to walk through all the methods you
know, from easiest to hardest.
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Always check first to see whether you know a simple formula: For example,

1
J.xvxz -1
ply arcsec x + C. (See Chapter 6 for a list of easy-to-use anti-differentiation
formulas.)

dx may cause you to panic until you remember that the answer is sim-

If no direct formula exists, think through whether the function you’re trying to
integrate includes a linear input to something you know how to integrate. For

example, J'secznx dx looks difficult, but it evaluates easily as %taan—C . (See

Chapter 7 to see how this method works.)

Next, ask whether a simple variable substitution is possible. For example,

2
I ;C 2dx yields nicely to u=x>+2, giving a result of %ln(x3+2)+C. (See
X+

Chapter 8 to discover how to do this.)

If all of these methods fail, try integration by parts (Chapter 9). Your last resorts
are always trig substitution (Chapter 10) and integration with partial fractions
(Chapter 11).

When you’re working on solving area problems, stay open to the possibility that
calculus may not be necessary. For example, you don’t need calculus to find the
area under a straight line or semicircle. So before you start integrating, step back
for a moment to see whether you can spot an easier way to find the answer.

If You Get Stuck, Scribble

When you look at a problem and you just don’t know which way to go, grab a piece
of scratch paper and scribble everything you can think of, without trying to make
sense of it.

Use algebra, trig identities, and variable substitutions of all kinds. Write series in
both sigma notation and expanded notation. Draw pictures and graphs. Write it all
down, even the ideas that seem worthless.

You may find that this process jogs your brain. Even copying the problem —

equations, graphs, and all — onto some scratch paper can sometimes help you to
notice something important that you missed in your first reading of the question.
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If You Really Get Stuck, Move On

I see no sense in beating your head against a brick wall, unless you like getting
brick dust in your hair. Likewise, I see no sense in spending the whole exam fro-
zen in front of one problem.

So after you scribble and scribble some more (see the previous section) and you’re
still getting nowhere with a problem, move on. You may as well make the most of
the time you’re given by solving the problems that you can solve. What’s more,
many problems seem easier on the second try. And working on other areas of the
test may remind you of some important information that you’d forgotten.

Check Your Answers

Toward the end of the test, especially if you’re stuck, take a moment to check
some of the problems that you’ve already completed. Does what you’ve written
still make sense? If you see any missing dxs or + Cs, fill them in. Make sure you
didn’t drop any minus signs. Most important, do a reality check of your answer
compared with the original problem to see whether it makes sense.

For example, suppose that you’re integrating to find an area someplace inside
a2 x2region on a graph, and your answer is 7 trillion. Obviously, something went
wrong. If you have time to find out what happened, trace back over your steps.

Although fixing a problem on an exam can be tedious, it usually takes less time
than starting (and maybe not finishing) a brand-new problem from scratch.

If an Answer Doesn’'t Make Sense,
Acknowledge It

354

Suppose you’re integrating to find an area someplace inside a 2 x 2 region on a
graph, and your answer is 7 trillion. Obviously, something went wrong. If you
have time, try to find out what went wrong and fix the problem (see the preceding
section). However, if you don’t have time to find out what happened, write a note
to the professor acknowledging the problem.
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Writing such a note lets your professor know that your conceptual understanding
of the problem is okay — that is, you get the idea that integration means area. So
if it turns out that your calculation got messed up because of a minor mistake like
a misplaced decimal point, you’ll probably lose only a couple of points for the
error.

Repeat the Mantra, “I'm Doing My Best,”
and Then Do Your Best

All you can do is your best, and even the best math student occasionally forgets a
formula or stares at an exam question and goes “Huh?”

When these moments arrive, gently remind yourself, “I’'m doing my best.” And
then do your best with what you have. Perfection is not of this world, but if you
can cut yourself a bit of slack when you’re under pressure, you’ll probably end up
doing better than you would’ve otherwise.

CHAPTER 19 Ten Tips to Take to the Test 355






Index

SYMBOLS

| (factorials), 31-32
defined, 31
fractions with, 31

7 (pi), 11

¥ (sigma notation), 281, 283-286
altered form, 284-285
Constant Multiple rule, 285
expanded form, 284
infinite series, 24, 50-51
Riemann Sum Formula, 85
Sum rule, 286

NUMBERS

3-D problems, 243-264
meat-slicer method, 243-251, 264

finding space between solids of revolution,
257-259

finding volume of pyramids, 247-248

finding volume of solids of revolution,
252-253

finding volume of solids with congruent cross
sections, 244-245

finding volume of solids with similar cross
sections, 246

finding volume of weird solids,
248-249

flipping solid on its side, 249-251, 264
shell method, 259-264
finding volume of cylinders, 260-262
steps for, 260
without inverses, 262-263
solids of revolution, 22, 251-259, 264
creating, 252
defined, 251

finding area of surface of, 253-255
finding space between, 256-259
finding volume of, 252-253

A

accumulation functions (area functions), 98-100
adding fractions, 28-29
with different denominators, 29
Power rule for Differentiation, 29
with same denominator, 28-29
Algebra and pre-Algebra, 27-37
exponents, 32-37
defined, 32
expressing functions using, 34-35
expressing rational functions using, 35-36
fractional exponents, 34
negative exponents, 33
Power rule for Integration, 35, 37
rules for simplifying, 33

simplifying rational expressions by factoring,
36-37

zero exponents, 33
factorials, 31-32
defined, 31
fractions with, 31
fractions, 28-31
adding, 28-29
dividing, 30-31
with factorials, 31
fractional exponents, 34
multiplying, 30
subtracting, 29-30
polynomials, 32
defined, 32
standard form, 32
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algebraic functions, 163, 168-170
alternating series, 283, 310-317
absolute convergence, 314-316

based on convergent positive series,
311-312

conditional convergence, 314-316
converting positive series to, 310-311
forms of, 310
testing, 312-314, 316-317
analytic geometry
classical geometry vs., 11-12
definite integrals, 15-16
origin of, 9

anti-derivatives, 20, 87, 92, 105-108. See also
indefinite integrals

anti-differentiation, 2, 20, 91-92, 105-106,
346-347

approximating area
with left rectangles, 16-18, 76-77
with midpoint rectangles, 19, 78-79
with right rectangles, 18, 77-78

arc length
of curves, 21-22
of functions, 241-242

Archimedes, 11

arctan formula, 135-136

area between curves, 21

area functions (accumulation functions),
98-100

area problem, 9-12

classical vs. analytic geometry,
11-12

defined, 10
asymptotes

asymptotic limits of integration,
226-227

defined, 43

exponential functions, 44
horizontal, 43-44
logarithmic functions, 45
vertical, 43-44
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Barrow, Isaac, 88

bounds of integration
defined, 11
definite integrals, 10, 13-15
indefinite integrals, 20

C

C (constant of integration), 92, 94, 352
Calculus 1, 53-72
derivatives, 57-66
Chain rule, 64-66
comparing to their functions, 57
Constant Multiple rule, 62
defined, 57
differentiation, 58-66
of inverse trig functions, 60
key derivatives, 59
L'Hépital's rule, 66-72
limit formula for, 58
notations for, 58
Power rule, 60-61
Product rule, 62-63
Quotient rule, 63-64
Sum rule, 61-62
of trig functions, 60
limits, 54-56
dependent variables, 54
does not exist (DNE), 55-56
evaluating, 55-56
functions vs., 54-55
independent variables, 54
indeterminate forms, 56
L'Hopital's rule, 66-72
limit formula for derivatives, 58
Calculus I
advice for students of, 2
main topics of, 2
as required course, 1



test-taking tips, 351-355

acknowledging if answer doesn’t make sense,
354-355

breathing, 351
checking your answers, 354
doing your best, 355
memory dump, 352
moving on when stuck, 354
scribbling, 353
solving easiest problem first, 352
use easiest methods first, 352-353
writing dx and + C, 352

Chain rule, 64-66

differentiating compositions of functions, 129

differentiating functions from outer function
moving inward, 65-66

evaluating functions from inner function moving
outward, 64-65

functions with linear inputs, 138-139

representing integrals as elementary
functions, 115

Cheat Sheet (companion to book), 4
circles, formula for area of, 11
classical geometry
analytic geometry vs., 11-12
definite integrals, 15-16
comparison tests, 299-304
direct comparison tests, 299-302
limit comparison tests, 302-304

compositions of functions with linear inputs,
integrating, 129-139

arctan formula, 135-136
basic trig functions, 131-133
e*function, 130-131
power functions, 133-134
using Algebra, 136
using trig identities, 136-138
why it works, 138-139
Constant Multiple rule

for differentiation, 62
for integration

e* function, 131

overview, 109

power series, 323
powers of sines and cosines, 175-177
radical functions, 119
sigma notation, 285
using Algebra, 121-122
using inverse trig functions, 123
constant of integration (C), 92, 94, 352
convergence
absolute convergence, 314-316
conditional convergence, 314-316
convergent sequences, 280-281
defined, 280

series and related sequence of partial sums,
288-289

convergent series, 282-283, 348-349
defined, 25, 51, 282
geometric series, 291
p-series, 293

series and related sequence of partial sums,
288-289

interval of, 324-327
never empty, 324-325
varieties for, 325-327
testing for, 295-317
alternating series, 312-314, 316-317
comparison tests, 299-304
irrelevance of beginning of series, 296-297
one-way tests, 298
two-way tests, 298-299, 302-309
convergent sequences, 280-281
defined, 280

series and related sequence of partial sums,
288-289

convergent series, 282-283, 348-349
defined, 25, 51, 282
geometric series, 291
p-series, 293

series and related sequence of partial sums,
288-289

cosecant
powers of, 183
trig identities, 41-42
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cosine
expressing as infinite series, 329-330
powers of, 174-178
Constant Multiple rule, 175-177
even powers, 176-178
odd powers, 174-176
Sum rule, 175, 177
trig identities, 41-42
cotangent
powers of, 183
trig identities, 41-42
cross-canceling, 30-31
cylinders, finding volume of, 260-262

D

defining sequences, 287, 347
definite integrals, 12-15, 346

approximating with area formula for rectangles,

83-84

defined, 10, 13

definiteness of, 13-14

FTC2, 89-90

indefinite integrals vs., 19-20, 96-97

non-numeric, 14

variable substitution, 151-152
dependent variables, 54
derivatives, 57-66

Chain rule, 64-66

differentiating functions from outer function
moving inward, 65-66

evaluating functions from inner function
moving outward, 64-65

comparing to their functions, 57
Constant Multiple rule, 62
defined, 57
differentiation, 59-66
defined, 58
Leibniz notation, 58-59
of inverse trig functions, 60
key derivatives, 59
L'Hépital's rule, 66-72
limit formula for, 58
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notations for, 58
Power rule, 60-61
Product rule, 62-63
Quotient rule, 63-64
Sum rule, 61-62

of trig functions, 60

DEs (differential equations),
265-273

classifications of, 266-268
linear, 267-268
order of, 267
ordinary, 266
partial, 266-267
defined, 23, 266
integrals as, 268
solving, 269-273
building vs., 269-270
checking proposed solutions, 270
initial-value problems, 272-273
separable equations, 271-272
Descartes, René, 9
Dl-agonal method, 162-172
algebraic functions, 168-170
chart for, 162
inverse trig functions, 165-167
logarithmic functions, 163-165
mnemonic for, 162
steps for, 163
trig functions, 170-172
differential equations (DEs), 265-273
classifications of, 266-268
linear, 267-268
order of, 267
ordinary, 266
partial, 266-267
defined, 23, 266
integrals as, 268
solving, 269-273
building vs., 269-270
checking proposed solutions, 270
initial-value problems, 272-273
separable equations, 271-272



differentiation, 59-66

Chain rule, 64-66

Constant Multiple rule, 62

defined, 58

derivatives of inverse trig functions, 60

derivatives of trig functions, 60

key derivatives, 59

Leibniz notation, 58-59

Mean Value Theorem for Derivatives, 239

Power rule, 60-61

Product rule, 62-63

Quotient rule, 63-64

Sum rule, 61-62
direct comparison tests, 299-302
discontinuous integrands, 227-228
divergence

divergent sequences, 280-283

defined, 280

series and related sequence of partial sums,
288-289

types of, 282-283
divergent series, 282-284, 348-349
defined, 25, 51, 282
geometric series, 291
p-series, 293-294

series and related sequence of partial sums,
288-289

types of, 282-283
testing for, 291, 295-317
alternating series, 312-314, 316-317
comparison tests, 299-304
irrelevance of beginning of series, 296-297
nth-term tests, 297-298
one-way tests, 298
two-way tests, 298-299, 302-309
divergent sequences, 280-283
defined, 280

series and related sequence of partial sums,
288-289

types of, 282-283

divergent series, 282-284, 348-349
defined, 25, 51, 282
geometric series, 291

p-series, 293-294

series and related sequence of partial sums,
288-289

types of, 282-283
dividing fractions, 30-31
does not exist (DNE), 55-56
double-angle identities, 43

E

elementary functions, 320-321

drawbacks of, 320

exponential functions
overview, 44-45
simplifying rational expressions by

factoring, 37

logarithmic functions (natural log functions)
Dl-agonal method, 163-165
integration by parts, 158-160
log rolling, 71
overview, 45-46

polynomials, 321

powers, 32-37
of cotangents and cosecants, 183
defined, 32
expressing functions using, 34-35
expressing rational functions using, 35-36
fractional exponents, 34
indeterminate powers, 71-72
negative exponents, 33
Power rule for Integration, 35, 37
rules for simplifying, 33

simplifying rational expressions by factoring,
36-37

of sines and cosines, 174-178

of tangents and secants, 178-182

zero exponents, 33
representing as series, 321
representing integrals as, 114-115
trig functions

derivatives of, 60

Dl-agonal method, 170-172

graphing, 46-47
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elementary functions (continued)
integrating, 125-129, 174, 184-185
inverse, 39, 60, 122-124, 158-161
pairings, 42
exponential functions
overview, 44-45
simplifying rational expressions by factoring, 37
exponents (powers), 32-37
of cotangents and cosecants, 183
defined, 32
expressing functions using, 34-35
expressing rational functions using, 35-36
fractional exponents, 34-35
overview, 34
Power rule, 61
rewriting functions as, 35
indeterminate powers, 71-72
negative exponents
expressing functions using exponents, 35
overview, 33
Power rule, 61
simplifying rational expressions by
factoring, 36
Power rule for Integration, 35, 37
rational expressions
rewriting exponents in denominator of, 34
simplifying by factoring exponents, 36-37
rules for simplifying, 33
of sines and cosines, 174-178
even powers, 176-178
odd powers, 174-176
of tangents and secants, 178-182
even powers of secants, 178-180

even powers of tangents with odd powers of
secants, 182

odd powers of secants, 181-182
odd powers of tangents, 180-181
zero exponents, 33

factorials (!), 31-32
defined, 31
fractions with, 31
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family of functions, 43
first-order differential equations, 267
FOIL method
integrating improper rationals, 215
integrating polynomials, 112
integration using Algebra, 121
integration using inverse trig functions, 124
fourth-order differential equations, 267
fractional exponents, 34-35
overview, 34
Power rule, 61
rewriting functions as, 35
fractions, 28-31
adding, 28-29
with different denominators, 29
Power rule for Differentiation, 29
with same denominator, 28-29
dividing, 30-31
with factorials, 31
fractional exponents, 34
integration with partial
cases for, 200-212
improper rational expressions, 214-217
rational functions, 198-200
setting up, 212-213
multiplying, 30
subtracting, 29-30
with different denominators, 29-30
Power rule for Integration, 30
with same denominator, 29

FTC (Fundamental Theorem of Calculus), 20,
87-90, 106

FTC1, 88, 98-101
area functions, 98-100
overview, 100-101

FTC2, 88-90
evaluating definite integrals using, 89-90
overview, 88-89

functions

elementary functions, 320-321
drawbacks of, 320
polynomials, 321
powers, 32-37



representing as series, 321
representing integrals as, 114-115

exponential functions
overview, 44-45
simplifying rational expressions by

factoring, 37

family of, 43

inner functions, 64

inverse trig functions
derivatives of, 60
Dl-agonal method, 165-167
integration by parts, 158-161
integration using, 122-124
notation, 39

linear functions, 44

logarithmic functions
Dl-agonal method, 163-165
integration by parts, 158-160
log rolling, 71
overview, 45-46

nested functions
Chain rule, 64

differentiating functions from outer function

moving inward, 65-66

evaluating functions from inner function

moving outward, 64-65
outer functions, 64
parent functions, 43-47
asymptotes, 43-45
exponential functions, 44-45
linear functions, 44
logarithmic functions, 45-46
polynomial functions, 44
trigonometric functions, 46-47
polynomials, 32, 44
advantages of, 321
defined, 32
degrees of, 214
integrating, 111-112
standard form, 32, 112
radical functions
expressing using exponents, 35
integrating, 119-120

rational functions
improper, 214-217

integration with partial fractions, 198-200

rewriting using exponents, 35-36

simplifying by factoring, 36-37
transformations of, 47-48

horizontal transformations, 48

vertical transformations, 47-48
trig functions

derivatives of, 60

Dl-agonal method, 170-172

graphing, 46-47

integrating, 125-129, 174, 184-185

pairings, 42

Fundamental Theorem of Calculus (FTC), 20,

87-90, 106
FTC1, 88, 98-101
area functions, 98-100
overview, 100-101
FTC2, 88-90

evaluating definite integrals using, 89-90

overview, 88-89

G

geometric series, 289-292, 321-322

H

half-angle identities, 42, 176-177
harmonic series, 25, 293
Heinlein, Robert, 345

horizontally infinite improper integrals, 223-226

identities, 40-43
Basic Five, 41-42, 64, 125-127
double-angle identities, 43
half-angle identities, 42, 176-177
indeterminate forms, 69-70

integrating compositions of functions with linear

inputs, 135-136
Pythagorean identities
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identities (continued)
integrating complex functions, 137
integrating trig functions, 127-129
overview, 41-42
Quotient rule, 64
reciprocal identities
integrating complex functions, 137
overview, 41
improper integrals, 223-228
evaluating, 223
horizontally infinite, 223-226
vertically infinite, 226-228
asymptotic limits of integration, 226-227
discontinuous integrands, 227-228
improper rational expressions
integration with partial fractions, 214-217
rational expressions vs., 214
indefinite integrals, 19-20, 87-101, 346
anti-differentiation, 91-92
definite integrals vs., 19-20, 96-97
FTC1, 88, 98-101
area functions, 98-100
overview, 100-101
FTC2, 88-90
evaluating definite integrals using, 89-90
overview, 88-89
signed area, 95-96
solving problems with, 93-94
variable substitution, 142-146
independent variables, 54
indexes for series, 282
infinite sequences, 278-280
convergent sequences, 280-281
defined, 280

series and related sequence of partial sums,
288-289

converting to infinite series, 24

defined, 24, 278

divergent sequences, 280-283
defined, 280

series and related sequence of partial sums,
288-289

types of, 282-283

364 Calculus Il For Dummies

infinite series vs., 281

notation for, 278-279

sigma notation, 24

infinite series, 23-25, 277-294

alternating series, 283

convergent series, 282-283, 348-349
defined, 25, 282
geometric series, 291
p-series, 293

series and related sequence of partial sums,
288-289

converting infinite sequences to, 24
defined, 2, 281
divergent series, 282-284, 348-349
defined, 25, 282
geometric series, 291
p-series, 293-294

series and related sequence of partial sums,
288-289

types of, 282-283
evaluating, 24-25
expanded notation, 281
expressing functions as, 327-330
cosine function, 329-330
elementary functions, 321
sine function, 327-329
geometric series, 289-292, 321-322
harmonic series, 25, 293
index for, 282
Maclaurin series, 330-333
power series, 321-327
defined, 25, 332
general form, 332
geometric series vs., 321-322
integrating, 322-324
interval of convergence, 324-327
Maclaurin series, 330-333
specific form, 332
Taylor series, 332-340
p-series, 292-294
defined, 292
testing, 293-294
sequences of partial sums, 24-25, 282-283



sigma notation, 50-51, 281, 283-286
altered form, 284-285
Constant Multiple rule, 285
expanded form, 284
Sum rule, 286

Taylor series, 332-340
computing with, 334-335
convergent, 335-337
divergent, 335-337

expressing vs. approximating functions,
337-338

why it works, 338-340

testing for convergence and divergence, 295-317

comparison tests, 299-304
irrelevance of beginning of series, 296-297
nth-term tests, 297-298
one-way tests, 298
two-way tests, 298-299, 302-309
initial-value problems (IVPs), 272-273
inner functions, 64
integral tests, 305-306
integrals
computing, 114
definite integrals, 12-15

approximating with area formula for
rectangles, 83-84

defined, 10, 13

definiteness of, 13-14

FTC2, 89-90

indefinite integrals vs., 19-20, 96-97

non-numeric, 14

variable substitution, 151-152
improper integrals, 223-228

evaluating, 223

horizontally infinite, 223-226

vertically infinite, 226-228
indefinite integrals, 19-20, 87-101

anti-differentiation, 91-92

definite integrals vs., 19-20, 96-97

FTC1, 88, 98-101

FTC2, 88-90

signed area, 95-96

solving problems with, 93-94
variable substitution, 142-146
Mean Value Theorem for Integrals, 238-240
representing as functions, 114-115
integration, 105-139, 173-185
anti-derivatives, 106-108

as anti-differentiation, 2, 20, 91-92, 105-106,
346-347

arc length of functions, 241-242

area problem, 9-12
classical vs. analytic geometry, 11-12
defined, 10

bounds of
defined, 11
definite integrals, 10, 13-15
indefinite integrals, 20

complicated functions, 112-113

compositions of functions with linear inputs,
129-139

arctan formula, 135-136
basic trig functions, 131-133
e* function, 130-131
power functions, 133-134
using Algebra, 136
using trig identities, 136-138
why it works, 138-139
computing integrals, 114
defined, 2, 343-344
definite integrals, 12-15, 346
defined, 10, 13
definiteness of, 13-14
indefinite integrals vs., 19-20, 96-97
non-numeric, 14
differential equations, 265-273
classifications of, 266-268
defined, 23, 266
integrals as, 268
solving, 269-273
improper integrals, 223-228
evaluating, 223
horizontally infinite, 223-226
vertically infinite, 226-228

Index 365



integration (continued)
indefinite integrals, 19-20, 87-101, 346
anti-differentiation, 91-92
definite integrals vs., 19-20, 96-97
FTC1, 88, 98-101
FTC2, 88-90
signed area, 95-96
solving problems with, 93-94
integrability, 115-116
inverse trig functions, 122-124
Mean Value Theorem for Integrals, 238-240
with partial fractions
cases for, 200-212
improper rational expressions, 214-217
rational functions, 198-200
setting up, 212-213
by parts, 155-172
Dl-agonal method, 162-172
inverse trig functions, 158-161
logarithmic functions, 158-160
product of functions, 159
reversing Product rule, 156-157
steps for, 157-158
when to use, 157-158
polynomials, 111-112
powers of cotangents and cosecants, 183
powers of sines and cosines, 174-178
even powers, 176-178
odd powers, 174-176
powers of tangents and secants, 178-182
even powers of secants, 178-180

even powers of tangents with odd powers of
secants, 182

odd powers of secants, 181-182
odd powers of tangents, 180-181
problem types
finding arc length of curves, 21-22
finding the area between curves, 21
finding volume of revolutions, 22
product of functions, 143-144
radical functions, 119-120
rational functions, 118
representing integrals as functions, 114-115
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Riemann Sum Formula, 83-86
Riemann Sums, 15-19, 75-80

approximating area with left rectangles, 16-18,
76-77

approximating area with midpoint rectangles,
19, 78-79

approximating area with right rectangles, 18,
77-78

defined, 10, 345
Simpson'’s rule, 80-83

slicing region for approximation, 16-19,
76-79, 345

Trapezoid rule, 79-80
rules, 108
Constant Multiple rule, 109
Power rule, 109-110
Sum rule, 108
sign for, 344
splitting areas, 222-223
Sum rule, 108
3-D problems, 243-264
meat-slicer method, 243-251
shell method, 259-263
solids of revolution, 251-259
trig functions, 125-129, 174
anti-differentiating, 125
Basic Five trig identities, 125-127
Pythagorean identities, 127-129
trig substitution, 185-195
secant case, 186, 192-194
sine case, 186-189
steps for, 187
tangent case, 186, 190-192
when to avoid, 194-195
unsigned regions, 229-238

finding area of two or more regions between
two functions, 236-238

finding when region is separated horizontally,
229-238

measuring single shaded region between two
functions, 235-236

unusual combinations of trig functions, 184-185
using Algebra, 119-124
variable substitution, 143-144



interval of convergence, 324-327
never empty, 324-325
varieties for, 325-327

inverse trig functions
derivatives of, 60
Dl-agonal method, 165-167
integration by parts, 158-161
integration using, 122-124
notation, 39

IVPs (initial-value problems), 272-273

K

Keep-Change-Flip mnemonic, 30-31

L

Leibniz, Gottfried, 59
Leibniz notation, 58-59
L'Hopital's rule
indeterminate forms where rule can be applied,
67-68

indeterminate forms where rule cannot be
applied, 68-69

indeterminate powers, 71-72

rewriting indeterminate forms so as to apply,
69-72

limit comparison tests, 302-304
limits, 54-56
dependent variables, 54
does not exist (DNE), 55-56
evaluating, 55-56
functions vs., 54-55
independent variables, 54
indeterminate forms, 56
L'Hoépital's rule, 66-72

indeterminate forms where rule can be
applied, 67-68

indeterminate forms where rule cannot be
applied, 68-69

indeterminate powers, 71-72

rewriting indeterminate forms so as to apply,
69-72

limit formula for derivatives, 58

linear differential equations,
267-268

linear factors, 201-205
distinct, 201-203
evaluating integrals, 203
setting up partial fractions, 202
solving for unknowns, 202-203
repeated, 201, 204-205
evaluating integrals, 205
setting up partial fractions, 204
solving for unknowns, 204-205
linear functions, 44

linear inputs, integrating compositions of
functions with, 129-139

arctan formula, 135-136
basic trig functions, 131-133
exfunction, 130-131
power functions, 133-134
using Algebra, 136
using trig identities, 136-138
why it works, 138-139

log rolling, 71

logarithmic functions (natural log functions)
Dl-agonal method, 163-165
integration by parts, 158-160
log rolling, 71
overview, 45-46

M

Maclaurin, Colin, 332
Maclaurin series, 330-333
Mean Value Theorem (MVT)

for derivatives, 239

for integrals, 238-240
mean-value rectangles, 238-240
meat-slicer method, 243-251, 264

finding space between solids of revolution,
257-259

finding volume of pyramids, 247-248

finding volume of solids of revolution,
252-253
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meat-slicer method (continued)

finding volume of solids with congruent cross
sections, 244-245

finding volume of solids with similar cross
sections, 246

finding volume of weird solids,
248-249

flipping solid on its side, 249-251, 264
method of exhaustion, 11
multiplying fractions, 30
multivariable calculus, 22
MVT (Mean Value Theorem)
for derivatives, 239
for integrals, 238-240

N

natural log functions (logarithmic functions)
Dl-agonal method, 163-165
integration by parts, 158-160
log rolling, 71
overview, 45-46
negative exponents
expressing functions using exponents, 35
overview, 33
Power rule, 61
simplifying rational expressions by factoring, 36
nested functions
Chain rule, 64

differentiating functions from outer function
moving inward, 65-66

evaluating functions from inner function moving
outward, 64-65

Newton, Isaac, 59, 88
nth-term tests, 291, 297-298, 312-314

(0

one-way tests, 298
ordinary differential equations (ODEs), 266
outer functions, 64
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parent functions, 43-47
asymptotes, 43-45
exponential functions, 44-45
linear functions, 44
logarithmic functions, 45-46
polynomial functions, 44
trigonometric functions, 46-47
partial differential equations (PDEs), 266-267
partial fractions, integration with
cases for, 200-212
distinct linear factors, 201-203
distinct quadratic factors, 201, 206-208
repeated linear factors, 201, 204-205
repeated quadratic factors, 201, 208-212
improper rational expressions, 214-217
rational vs., 214
rational functions, 198-200
decomposing fractions, 198-199
technique for, 199-200
setting up, 212-213

partial sums, sequences of, 24-25, 282-283,
287-289, 348

parts, integration by, 155-172
Dl-agonal method, 162-172
inverse trig functions, 158-161
logarithmic functions, 158-160
product of functions, 159
reversing Product rule, 156-157
steps for, 157-158

PDEs (partial differential equations), 266-267

pi (), 11

polar coordinates, 48-50

polynomials, 32, 44
advantages of, 321
defined, 32
degrees of, 214
integrating, 111-112
standard form, 32, 112



positive series, 310-312, 314, 316-317
power functions, integrating, 133-134
Power rule
for differentiation
adding fractions, 29
computing integrals, 114
overview, 60-61
for integration, 109-110, 118-120
complicated functions, 112
expressing functions using exponents, 35
polynomials, 111-112
power functions, 133
power series, 323
radical functions, 119-120
rational functions, 118

simplifying rational expressions by
factoring, 37

subtracting fractions, 30
using Algebra, 119-124, 136
power series, 321-327

defined, 25, 332

general form, 332

geometric series vs., 321-322

integrating, 322-324

interval of convergence, 324-327
never empty, 324-325
varieties for, 325-327

Maclaurin series, 330-333

specific form, 332

Taylor series, 332-340
computing with, 334-335
convergent, 335-337
divergent, 335-337

expressing vs. approximating functions,
337-338

why it works, 338-340
powers (exponents), 32-37
of cotangents and cosecants, 183
defined, 32
expressing functions using, 34-35

expressing rational functions using,
35-36

fractional exponents, 34-35
overview, 34
Power rule, 61
rewriting functions as, 35
indeterminate powers, 71-72
negative exponents, 33
expressing functions using exponents, 35
overview, 33
Power rule, 61
simplifying rational expressions by
factoring, 36
Power rule for Integration, 35, 37
rational expressions
rewriting exponents in denominator of, 34
simplifying by factoring exponents, 36-37
rules for simplifying, 33
of sines and cosines, 174-178
even powers, 176-178
odd powers, 174-176
of tangents and secants, 178-182
even powers of secants, 178-180

even powers of tangents with odd powers of
secants, 182

odd powers of secants, 181-182
odd powers of tangents, 180-181
zero exponents, 33
pre-Algebra. See Algebra and pre-Algebra
pre-Calculus, 38-51
asymptotes, 43
parent functions, 43-47
exponential functions, 44-45
linear functions, 44
logarithmic functions, 45-46
polynomial functions, 44
trigonometric functions, 46-47
polar coordinates, 48-50
sigma notation, 50-51
transformations of functions, 47-48
trigonometry, 38-43
radians, 39-40
trig identities, 40-43
trig notation, 38-39
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Product rule
for differentiation, 62-63
for integration, 156-157
p-series, 292-294
defined, 292
harmonic series, 293
testing, 293-294
pyramids, finding volume of, 247-248
Pythagorean identities
integrating complex functions, 137
integrating trig functions, 127-129
overview, 41-42

Q

quadratic factors
distinct, 201, 206-208
evaluating integrals, 207-208
setting up partial fractions, 206
solving for unknowns, 206-207
repeated, 201, 208-212
evaluating integrals, 210-212
setting up partial fractions, 209
solving for unknowns, 209-210
quadrature, 11
Quotient rule, 63-64

R

radians, 39-41
common angles, 41
converting degrees to, 39-40
converting to degrees, 39-40
utility of, 39-40
radical functions
expressing using exponents, 35
integrating, 119-120
ratio tests, 307-308, 325-326
rational expressions
improper
integration with partial fractions, 214-217
rational expressions vs., 214
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rewriting exponents in denominator of, 34
simplifying by factoring, 36-37
rational functions
integrating, 118
integration with partial fractions, 198-200
decomposing fractions, 198-199
technique for, 199-200
rewriting using exponents, 35-36
simplifying by factoring, 36-37
reciprocal identities
integrating complex functions, 137
overview, 41
rectangles
approximating area
with left rectangles, 16-18, 76-77
with midpoint rectangles, 19, 78-79
with right rectangles, 18, 77-78

approximating definite integrals with area
formula for, 83-84

formula for area of, 11
mean-value rectangles, 238-240
related sequences, 286-289, 347-348
series and their defining sequence, 287, 347

series and their sequences of partial sums,
287-289, 348

Riemann, Bernhard, 15, 75
Riemann Sum Formula, 83-86

approximating definite integrals with area
formula for rectangles, 83-84

defined, 83

limiting margin of error, 84-85

replacing height variable, 85

replacing width variable, 84

sigma notation, 85

slack factor, 85-86, 345-346
Riemann Sums, 15-19, 75-80

approximating area with left rectangles, 16-18,
76-77

approximating area with midpoint rectangles,
19, 78-79

approximating area with right rectangles, 18,
77-78

defined, 10, 345



formula, 83-86 Power rule for Differentiation
approximating definite integrals with area adding fractions, 29
formula for rectangles, 83-84 computing integrals, 114
defined, 83 overview, 60-61
limiting margin of error, 84-85 Power rule for Integration, 109-110, 118-120
replacing height variable, 85 complicated functions, 112
replacing width variable, 84 expressing functions using exponents, 35
sigma notation, 85 polynomials, 111-112
slack factor, 85-86, 345-346 power functions, 133
Simpson'’s rule, 80-83 power series, 323

slicing region for approximation, 16-19, radical functions. 119-120
76-79, 345 ’

Trapezoid rule, 79-81
Risch’s algorithm, 320
root tests, 308-309

rational functions, 118

simplifying rational expressions by
factoring, 37
subtracting fractions, 30

rules using Algebra, 119-124, 136
Chain rule for Differentiation, 64-66 Product rule
differentiating compositions of functions, 129 for differentiation, 62-63
differentiating functions from outer function for integration, 156-157

moving inward, 65-66

evaluating functions from inner function
moving outward, 64-65

functions with linear inputs, 138-139
representing integrals as elementary

Quotient rule, 63-64

Simpson'’s rule, 80-83

Sum rule for Differentiation, 61-62
Sum rule for Integration

functions, 115 basic trig functions, 132
Constant Multiple rule for Differentiation, 62 complicated functions, 112
Constant Multiple rule for Integration overview, 108
e function, 131 polynomials, 111-112
overview, 109 power series, 323
power series, 323 powers of sines and cosines, 175, 177
powers of sines and cosines, 175-177 radical functions, 119
radical functions, 119 sigma notation, 286
sigma notation, 285 using Algebra, 120-122
using Algebra, 121-122 using inverse trig functions, 123
using inverse trig functions, 123 Trapezoid rule, 79-81
L'Hopital's rule
indeterminate forms where rule can be s
applied, 67-68
indeterminate forms where rule cannot be secant
applied, 68-69 powers of, 178-182
indeterminate powers, 71-72 even powers of secants, 178-180
rewriting indeterminate forms so as to apply, even powers of tangents with odd powers of
69-72 secants, 182

odd powers of secants, 181-182
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secant (continued)
secant case for trig substitution, 186, 192-194
trig identities, 41-42
second-order differential equations, 267-268
separable equations, 271-272
sequences
defined, 24, 278, 286
infinite sequences, 278-280
convergent sequences, 280-281, 288-289
converting to infinite series, 24
defined, 24, 278
divergent sequences, 280-283, 288-289
infinite series vs., 281
notation for, 278-279
sigma notation, 24
of partial sums, 24-25, 282-283, 287-289, 348
related sequences, 286-289
series and its defining sequence, 287

series and its sequences of partial sums,
287-289

series

alternating series, 283, 310-317
absolute convergence, 314-316
based on convergent positive series, 311-312
conditional convergence, 314-316
converting positive series to, 310-311
forms of, 310
testing, 312-314, 316-317

defined, 286

geometric series, 289-292, 321-322

harmonic series, 25

infinite series, 23-25, 277-294

convergent series, 25, 282-283, 288-289,
291, 293

converting infinite sequences to, 24
defined, 2, 281

divergent series, 25, 282-284, 288-289, 291,
293-294

evaluating, 24-25

expanded notation, 281

index for, 282

sequences of partial sums, 24-25, 282-283
sigma notation, 50-51
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positive series, 310-312, 314, 316-317
power series, 321-327
defined, 25, 332
general form, 332
geometric series vs., 321-322
integrating, 322-324
interval of convergence, 324-327
Maclaurin series, 330-333
specific form, 332
Taylor series, 332-340
p-series, 292-294
defined, 292
harmonic series, 293
testing, 293-294
sigma notation, 281, 283-286
altered form, 284-285
Constant Multiple rule, 285
expanded form, 284
Sum rule, 286
shell method, 259-264
finding volume of cylinders, 260-262
steps for, 260
without inverses, 262-263
sigma notation (%), 281, 283-286
altered form, 284-285
Constant Multiple rule, 285
expanded form, 284
infinite series, 24, 50-51
Riemann Sum Formula, 85
Sum rule, 286
signed area, 95-97, 344
Simpson'’s rule, 80-83
sine
powers of, 174-178
Constant Multiple rule, 175-177
even powers, 176-178
odd powers, 174-176
Sumrule, 175,177
sine case for trig substitution, 186-189
trig identities, 41-42
slack factor, 85-86, 345-346
solids, 243-264



meat-slicer method, 243-251, 264

finding space between solids of revolution,
257-259

finding volume of pyramids, 247-248
finding volume of solids of revolution, 252-253

finding volume of solids with congruent cross
sections, 244-245

finding volume of solids with similar cross
sections, 246

finding volume of weird solids, 248-249
flipping solid on its side, 249-251, 264
of revolution, 22, 251-259, 264
creating, 252
defined, 251
finding area of surface of, 253-255
finding space between, 256-259
finding volume of, 252-253
shell method, 259-264
finding volume of cylinders, 260-262
steps for, 260
without inverses, 262-263
solids of revolution, 22, 251-259, 264
creating, 252
defined, 251
finding area of surface of, 253-255
finding space between, 256-259
finding volume of, 252-253
standard form, 32, 112
subtracting fractions, 29-30
with different denominators, 29-30
Power rule for Integration, 30
with same denominator, 29
Sum rule
for differentiation, 61-62
for integration
basic trig functions, 132
complicated functions, 112
overview, 108
polynomials, 111-112
power series, 323
powers of sines and cosines, 175, 177
radical functions, 119
sigma notation, 286

using Algebra, 120-122
using inverse trig functions, 123

T

tangent
powers of, 178-182

even powers of tangents with odd powers of
secants, 182

odd powers of tangents, 180-181
tangent case for trig substitution, 186, 190-192
trig identities, 41-42

Taylor, Brook, 332
Taylor series, 332-340
computing with, 334-335
convergent, 335-337
divergent, 335-337
expressing vs. approximating functions, 337-338
why it works, 338-340
testing for convergence, 295-317
alternating series, 312-314, 316-317
comparison tests, 299-304

direct comparison tests, 299-302

limit comparison tests, 302-304
irrelevance of beginning of series, 296-297
one-way tests, 298
two-way tests, 298-299, 302-309

integral tests, 305-306

ratio tests, 307-308

root tests, 308-309

testing for divergence, 295-317
alternating series, 312-314, 316-317
comparison tests, 299-304

direct comparison tests, 299-302

limit comparison tests, 302-304

irrelevance of beginning of series,
296-297

nth-term tests, 291, 297-298, 312-314
one-way tests, 298
two-way tests, 298-299, 302-309
integral tests, 305-306
ratio tests, 307-308
root tests, 308-309
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test-taking tips, 351-355

acknowledging if answer doesn’t make sense,
354-355

breathing, 351
checking your answers, 354
doing your best, 355
memory dump, 352
moving on when stuck, 354
scribbling, 353
solving easiest problem first, 352
use easiest methods first, 352-353
writing dx and + C, 352
third-order differential equations, 267
3-D problems, 243-264
meat-slicer method, 243-251, 264

finding space between solids of revolution,
257-259

finding volume of pyramids, 247-248
finding volume of solids of revolution, 252-253

finding volume of solids with congruent cross
sections, 244-245

finding volume of solids with similar cross
sections, 246

finding volume of weird solids, 248-249
flipping solid on its side, 249-251, 264
shell method, 259-264
finding volume of cylinders, 260-262
steps for, 260
without inverses, 262-263
solids of revolution, 22, 251-259, 264
creating, 252
defined, 251
finding area of surface of, 253-255
finding space between, 256-259
finding volume of, 252-253
transformations of functions, 47-48
horizontal transformations, 48
vertical transformations, 47-48
Trapezoid rule, 79-81
triangles
formula for area of, 11
Trapezoid rule, 80
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trig substitution, 185-195
secant case, 186, 192-194
sine case, 186-189
steps for, 187
tangent case, 186, 190-192
when to avoid, 194-195
trig functions
derivatives of, 60
Dl-agonal method, 170-172
graphing, 46-47
integrating, 125, 174
anti-differentiating, 125
Basic Five trig identities, 125-127
Pythagorean identities, 127-129
unusual combinations, 184-185
inverse
derivatives of, 60
integration by parts, 158-161
integration using, 122-124
notation, 39
pairings, 42
trig identities, 40-43
Basic Five, 41-42, 64, 125-127
double-angle identities, 43
half-angle identities, 42, 176-177
indeterminate forms, 69-70

integrating compositions of functions with linear

inputs, 135-136
Pythagorean identities
integrating complex functions, 137
integrating trig functions, 127-129
overview, 41-42
Quotient rule, 64
reciprocal identities
integrating complex functions, 137
overview, 41
trig substitution, 185-195
secant case, 186, 192-194
sine case, 186-189
steps for, 187
tangent case, 186, 190-192
when to avoid, 194-195



trigonometry, 38-43
radians, 39-40
trig identities, 40-43
trig notation, 38-39
two-way tests, 298-299, 302-304
integral tests, 305-306
ratio tests, 307-308
root tests, 308-309

U

unary operator, 58
unit circles, 40, 49, 90
unsigned regions, 229-238

finding area of two or more regions between
two functions, 236-238

finding when region is separated horizontally,
229-238

calculating area under more than one function,
232-234

crossing x-axis, 229-232

measuring single shaded region between two
functions, 235-236

u-substitution (variable substitution), 141-152
evaluating definite integrals, 151-152
evaluating indefinite integrals, 142-146
integrating product of functions, 142-144
powers of cotangents and cosecants, 183
powers of secants and tangents, 179-180

powers of sines and cosines, 175-176
steps for, 142
when to use, 147-151

complex functions, 149-151

functions multiplied by their derivatives,
147-149

\'

variable of summation, 50

variable substitution (u-substitution), 141-152
evaluating definite integrals, 151-152
evaluating indefinite integrals, 142-146
integrating product of functions, 142-144
powers of cotangents and cosecants, 183
powers of secants and tangents, 179-180
powers of sines and cosines, 175-176
steps for, 142
when to use, 147-151

complex functions, 149-151

functions multiplied by their derivatives,
147-149

vertically infinite improper integrals, 226-228
asymptotic limits of integration, 226-227
discontinuous integrands, 227-228

Z

zero exponents, 33
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