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Preface

Calculus is one of the milestones of Western thought. Building on ideas of
Archimedes, Fermat, Newton, Leibniz, Cauchy, and many others, the calcu-
lus is arguably the cornerstone of modern science. Any well-educated person
should at least be acquainted with the ideas of calculus, and a scientifically lit-
erate person must know calculus solidly.

Calculus has two main aspects: differential calculus and integral calculus.
Differential calculus concerns itself with rates of change. Various types of
change, both mathematical and physical, are described by a mathematical quan-
tity called the derivative. Integral calculus is concerned with a generalized type
of addition, or amalgamation, of quantities. Many kinds of summation, both
mathematical and physical, are described by a mathematical quantity called
the integral.

What makes the subject of calculus truly powerful and seminal is the Funda-
mental Theorem of Calculus, which shows how an integral may be calculated by
using the theory of the derivative. The Fundamental Theorem enables a number
of important conceptual breakthroughs and calculational techniques. It makes
the subject of differential equations possible (in the sense that it gives us ways
to solve these equations).

Calculus Demystified® explains these ideas in a step-by-step and accessible
manner. The author, a renowned teacher and expositor, has a strong sense of
the level of the students who will read this book, their backgrounds, and their
strengths, and presents the material in accessible morsels that the student can
study on his or her own. Well-chosen examples and cognate exercises will rein-
force the ideas being presented. Frequent review, assessment, and application

xi
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of the ideas will help students to retain and to internalize all the important
concepts of calculus.

This book will give the student a firm grounding in calculus. The student
who has mastered the book will be able to go on to study physics, engineering,
chemistry, computational biology, computer science, and other basic scientific
areas that use calculus.

Calculus Demystified is a valuable addition to the self-help literature.
Written by an accomplished and experienced teacher (the author of How to
Teach Mathematics), this book will aid the student who is working without
a teacher. It will provide encouragement and reinforcement as needed, and
diagnostic exercises will help the student to measure his or her progress.

Steven G. Krantz



How to Use This Book

Calculus is the language of science. Ever since the time of Isaac Newton and
Gottfried Wilhelm von Leibniz, calculus has been our key tool for opening up
and examining nature. Calculus is the most powerful and versatile collection of
analytical tools ever devised by mankind. It is an essential part of our knowledge
of the world around us, and everyone should be acquainted with its fundamen-
tal principles.

Calculus need not be difficult. The main ideas—functions, limits, derivatives,
and integrals—can all be described using everyday language. The key to getting
a grasp on the concepts is to work examples. And that is what this book will
do for you: It will work dozens of examples, and then walk you through many
more. It will pause to point out the pitfalls and points of confusion. It will look
back to assess what we have learned and then proceed ahead in measured steps.

The book has many learning tools to help you make your way through the
subject. Every new idea has features called “You Try It.”” This gives you im-
mediate practice, at the moment of impact, with the new idea. Additional fea-
tures called “Math Note” point out interesting byways and confusing points
and matters of interest. Finally, the “‘Still Struggling?”’ passages help students
over difficult points.

Every chapter ends with a quiz to give you practice and to make sure you
have mastered the material at hand. The quizzes are of course “open book.”
You definitely want to refer back to the material you have read as you solve
the problems. And the answers are provided at the back of the book. You
should actually write out the solution of each problem—because this is a good
skill to have, and so that you can compare your answers with those in the
book. By writing out the solutions you will also have an archive of your work.

xiii
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A satisfactory score on any quiz is 70%. If you don’t achieve that score on your
first try, then do some reviewing of the trickier parts of the text and try again.
It is best not to proceed until you are comfortable with the chapter you are
finishing.

There is a Final Exam at the end of the book. This draws together the entire
learning experience, and helps you to see everything you have learned. The
Final Exam is multiple choice and is practically oriented. It will help you to
feel good about the concrete and useful body of mathematics that you have
mastered. A score of 75% is a passing grade on the Final Exam.

A good pace for this book is one chapter per week. You ought to be able to
cover each section in a chapter in two or three hours. You don’t want to rush
through the material, but you don’t want to go too slowly either. Set a steady
pace for yourself and endeavor to stick to it. There is no substitute for strong
work habits.

When you finish this book, it should be part of your working reference li-
brary. You should refer back to it in later courses, and look things up as you
need them. This is an easy book to dip into. We encourage you to do so.

Calculus is fun and exciting. It is full of new ideas—and very important ones.
These are ideas that you will see repeatedly as you go on in engineering or
physics or business or any life path where analytical thinking plays a role.

The key ideas of calculus are ones that make sense in many different con-
texts. Rates of change are central to the way that we understand the world
around us. Aggregation and summation are incisive means of drawing informa-
tion together. The amazing fact about calculus is that these two key ideas are
related—by the Fundamental Theorem of Calculus. That is one of the main things
that you will learn in this book. Learn the Fundamental Theorem and you have
learned what calculus is all about.

You should read the book with pencil in hand. You will want to calculate
and try things as frequently as possible. Be sure to do the quizzes. And take the
Final Exam to be sure that you have mastered the material.

You will find that this book contains bibliographic references of the form
[SCH1]. That is an acronym that summarizes the identity of the book. Using
this acronym, you can easily locate the item in the Bibliography.

This is a seminal journey in your education, and one that you will look back
on with pride and pleasure. Happy hunting!
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chapter 1

Basics

This chapter reviews key ideas from precalculus. Master this chapter and you

will be well-prepared for calculus.

CHAPTER OBJECTIVES

In this chapter, you will learn

« Number lines

Graphing

» Sets

« Idea of a function

+ Trigonometry

« Plotting the graph of a function
« Composition of functions

« Inverse of a function
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1.0 Introductory Remarks

Calculus is one of the most important parts of mathematics. It is fundamental
to all of modern science. How could one part of mathematics be of such
central importance? It is because calculus gives us the tools to study rates of
change and motion. All analytical subjects, from biology to physics to chemistry
to engineering to mathematics, involve studying quantities that are growing or
shrinking or moving—in other words, they are changing. Astronomers study the
motions of the planets, chemists study the interaction of substances, physicists
study the interactions of physical objects. All of these involve change and
motion.

In order to study calculus effectively, you must be familiar with cartesian
geometry, with trigonometry, and with functions. We will spend this first
chapter reviewing the essential ideas. Some readers will study this chapter selec-
tively, merely reviewing selected sections. Others will, for completeness, wish to
review all the material. The main point is to get started on calculus (Chapter 2).

1.1 Number Systems

The number systems that we use in calculus are the natural numbers, the inte-
gers, the rational numbers, and the real numbers. Let us describe each of these:

e The natural numbers are the system of positive counting numbers 1, 2, 3,
... . We denote the set of all natural numbers by N.

e The integers are the positive and negative whole numbers: ..., -3, —2,
—1,0,1, 2, 3, ... . We denote the set of all integers by Z.

e The rational numbers are quotients of integers. Any number of the form
p/q, with p,q € Z and q # 0, is a rational number. We say that p/q and
r/s represent the same rational number precisely when ps = gr. Of course,
you know that in displayed mathematics we write fractions in this way:

1,27
2 3 6
e The real numbers are the set of all decimals, both terminating and non-
terminating. This set is rather sophisticated, and bears a little discussion.
A decimal number of the form

x =3.16792
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is actually a rational number, for it represents

316792

x=3.16792 = 100000°

A decimal number of the form

m=4.27519191919...,

with a group of digits that repeats itself interminably, is also a rational
number. To see this, notice that

100 - m =427.519191919. ..
and therefore we may subtract:

100m = 427.519191919...

m= 4.275191919...

Subtracting, we see that
99m = 423.244

or

423244
~ 99000 °

So, as we asserted, m is a rational number or quotient of integers.

The third kind of decimal number is one which has a non-terminating
decimal expansion that does not keep repeating. An example is 3.14159265
... . This is the decimal expansion for the number that we ordinarily call
7. Such a number is irrational, that is, it cannot be expressed as the quo-
tient of two integers.

In summary: There are three types of real numbers: (i) terminating decimals,
(ii) non-terminating decimals that repeat, (iii) non-terminating decimals that
do not repeat. Types (i) and (ii) are rational numbers. Type (iii) are irrational
numbers.

YOU TRY IT What type of real number is 3.41287548754875. ..7 Can you
express this number in more compact form?

3
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FIGURE 1.1

1.2 Coordinates in One Dimension
We envision the real numbers as laid out on a line, and we locate real numbers
from left to right on this line. If a < b are real numbers then a will lie to the
left of b on this line. See Figure 1.1.

exampLE 1.1
On a real number line, plot the numbers —4, —1, 2, and 6. Also plot the
sets S={xeR:—-8<x< —-5}and T={tcR:7 <t<9}. Label
the plots.

SOLUTION
Figure 1.2 exhibits the indicated points and the two sets. These sets are
called half-open intervals because each set includes one endpoint and not
the other.

MATH NOTE The notation S = {x € R: —8 < x < —5} is called set builder
notation. It says that S is the set of all numbers x such that x is greater than or equal
to —8 and less than —5. We will use set builder notation throughout the book.

If an interval contains both its endpoints, then it is called a closed interval. If an
interval omits both its endpoints, then it is called a open interval. See Figure 1.3.

FIGURE 1.2
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closed interval open interval
[, O O
FIGURE 1.3
-9 -6 -3 0 3 6 9
d . . . - !
< ‘ ‘ ‘ ‘ D ‘

FIGURE 1.4

EXAMPLE 1.2
Find the set of points that satisfy x — 2 < 4 and exhibit it on a number line.

SOLUTION
We solve the inequality to obtain x < 6. The set of points satisfying this
inequality is exhibited in Figure 1.4.

ExAmPLE 1.3
Find the set of points that satisfies the condition

Ix+3] <2 (%)

and exhibit it on a number line.

SOLUTION
In case x + 3 > Othen |x + 3| = x + 3 and we may write condition (*) as

x+3<2
or
x < —1.

Combiningx+3 >0andx < —1gives —3 < x < —1.
On the other hand, if x + 3 < Othen |x 4 3| = —(x + 3). We may then
write condition (%) as

—(x+3) <2
or
—5<x.

Combining x 4+ 3 < 0and —5 < x gives —5 < x < —3.
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\ 4

FIGURE 1.5

We have found that our inequality |x + 3| < 2 is true precisely when
either —3 < x < —1 or —5 < x < —3. Putting these together yields
—5 < x < —1.Wedisplay this set in Figure 1.5.

YOU TRY IT Solve the inequality |x — 4| > 1. Exhibit your answer on a
number line.

YOU TRY IT Onareal number line, sketch the set {x : x> — 1 < 3}.

1.3 Coordinates in Two Dimensions
We locate points in the plane by using two coordinate lines (instead of
the single line that we used in one dimension). Refer to Figure 1.6. We
determine the coordinates of the given point P by first determining the
x-displacement, or (signed) distance from the y-axis and then determining
the y-displacement, or (signed) distance from the x-axis. We refer to this
coordinate system as (x, y)-coordinates or cartesian coordinates. The idea is

best understood by way of some examples.

exAmpPLE 1.4
Plot the points P = (3, —2),Q = (—4,6),R = (2,5),and S = (—5, —3).

YA

" 4

FIGURE 1.6
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FIGURE 1.7

SOLUTION
The first coordinate 3 of the point P tells us that the pointis located 3 units
to the right of the y-axis (because 3 is positive). The second coordinate —2
of the point P tells us that the point is located 2 units below the x-axis
(because —2 is negative). See Figure 1.7.

The first coordinate —4 of the point Q tells us that the point is loc-
ated 4 units to the left of the y-axis (because —4 is negative). The second
coordinate 6 of the point Q tells us that the point is located 6 units above
the x-axis (because 6 is positive). See Figure 1.7.

The first coordinate 2 of the point R tells us that the point is located 2
units to the right of the y-axis (because 2 is positive). The second coordi-
nate 5 of the point R tells us that the point is located 5 units above the
x-axis (because 5 is positive). See Figure 1.7.

The first coordinate —5 of the point S tells us that the point is located 5
units to the left of the y-axis (because —5 is negative). The second coordi-
nate —3 of the point S tells us that the point is located 3 units below the
x-axis (because —3 is negative). See Figure 1.7.

EXAMPLE 1.5
Give the coordinates of the points X, Y, Z, and W exhibited in Figure 1.8.

7
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=V

FIGURE 1.8

SOLUTION
The point X is 1 unit to the right of the y-axis and 3 units below the x-axis.
Therefore its coordinates are (1, —3).

The point Y is 2 units to the left of the y-axis and 1 unit above the x-axis.
Therefore its coordinates are (—2, 1).

The point Z is 5 units to the right of the y-axis and 4 units above the
x-axis. Therefore its coordinates are (5, 4).

The point W is 6 units to the left of the y-axis and 5 units below the x-
axis. Therefore, its coordinates are (—6, —5).

YOU TRY IT Sketch the points (3, —5), (2, 4), and (-, /3) on a set of axes.
Sketch the set {(x, y) : x = 3} on another set of axes.

ExAMPLE 1.6
Sketch the set of points £ = {(x, y) : y = 3}. Sketch the set of points k =
{(x,y) : x = —4}.

SOLUTION
The set £ consists of all points with y-coordinate equal to 3. This is the set
of all points that lie 3 units above the x-axis. We exhibit £ in Figure 1.9. It is
a horizontal line.
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\4

FIGURE 1.9

\ 4

FIGURE 1.10

The set k consists of all points with x-coordinate equal to —4. This is
the set of all points that lie 4 units to the left of the y-axis. We exhibit k
in Figure 1.10. It is a vertical line.

EXAMPLE 1.7
Sketch the set of points S = {(x, y) : x > 2} on a pair of coordinate axes.

SOLUTION
Notice that the set S contains all points with x-coordinate greater than 2.
These will be all points to the right of the vertical line x = 2. That set is
exhibited in Figure 1.11.
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=

R

FIGURE 1.11

YA

~=

-

\

FIGURE 1.12

YOU TRY IT Sketchtheset {(x,y) : x +y < 4}.

YOU TRY IT Identify the set (using set builder notation) that is shown in
Figure 1.12.

1.4 The Slope of a Line in the Plane

A line in the plane may rise gradually from left to right, or it may rise quite
steeply from left to right (Figure 1.13). Likewise, it could fall gradually from
left to right, or it could fall quite steeply from left to right (Figure 1.14). The
number “‘slope” differentiates among these different rates of rise or fall.
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YA

x\'\

FIGURE 1.13

Look at Figure 1.15. We use the two points P = (py, p2) and Q = (q1, 92) to
calculate the slope. It is

a2 — P2
a—p

It turns out that, no matter which two points we may choose on a given line,
this calculation will always give the same answer for slope.

YA

A 4

FIGURE 1.14

1
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YA

=V

FIGURE 1.15

EXAMPLE 1.8
Calculate the slope of the line in Figure 1.16.

SOLUTION
We use the points P = (—1,0) and Q = (1, 3) to calculate the slope of
this line:

3—-0 3

m= ———— —,
1—(-1) 2

YA

P=(—1,O)/7

i

FIGURE 1.16

=V
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We could just as easily have used the points P = (—1,0) and R = (3, 6)
to calculate the slope:

6—-0 6 3

m= ————=— = —.
3—(-1) 4 2

If a line has slope m, then, for each unit of motion from left to right, the
line rises m units. In the last example, the line rises 3/2 units for each unit of
motion to the right. Or one could say that the line rises 3 units for each 2 units

of motion to the right.

exampLE 1.9
Calculate the slope of the line in Figure 1.17.

SOLUTION
We use the points R = (—2,10) and T = (1, —5) to calculate the slope of
this line:
10— (-5
m—= 7( ) = —5.
(—=2) —1
YA
R=(-210)% 110
138
16
S=C194] ,
t 2
—
2 46 x
T=(1-5)

FIGURE 1.17

13
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We could just as easily have used the points S = (—1,5) and T = (1, —5):

5—(-5
m=>"15 _ g
—-1-1

In this example, the line falls 5 units for each 1 unit of left-to-right motion.
The negativity of the slope indicates that the line is falling.

The concept of slope is undefined for a vertical line. Such a line will have any
two points with the same x-coordinate, and calculation of slope would result
in division by 0.

YOU TRY IT Whatis the slope of the liney = 2x + 8?

YOU TRY IT Whatis the slope of the line y = 5? What is the slope of the line
x=3?

Two lines are perpendicular precisely when their slopes are negative recip-
rocals. This makes sense: If one line has slope 5 and the other has slope —1/5
then we see that the first line rises 5 units for each unit of left-to-right motion
while the second line falls 1 unit for each 5 units of left-to-right motion. So the
lines must be perpendicular. See Figure 1.18a.

FIGURE 1.18a
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YA

=V

FIGURE 1.18b

YOU TRY IT Sketch the line that is perpendicular to x + 2y = 7 and passes
through (1, 4).

Note also that two lines are parallel precisely when they have the same slope.
See Figure 1.18b.

1.5 The Equation of a Line
The equation of a line in the plane will describe—in compact form—all the
points that lie on that line. We determine the equation of a given line by writing
its slope in two different ways and then equating them. Some examples best
illustrate the idea.

exampLe 1.10
Determine the equation of the line with slope 3 that passes through the
point (2, 1).

SOLUTION
Let (x, y) be a variable point on the line. Then we can use that variable
point together with (2, 1) to calculate the slope:
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On the other hand, we are given that the slope is m = 3. We may equate
the two expressions for slope to obtain

()

This may be simplifiedto y = 3x — 5.

MATH NOTE Theformy = 3x — 5 for the equation of a line is called the slope-
intercept form. The slope is 3 and the line passes through (0, —5) (its y-intercept).

MATH NOTE Equation (*) may berewrittenasy — 1 = 3(x — 2).Ingeneral, the
line with slope m that passes through the point (xo, yo) can be writtenasy — y, =
m(x — Xp). This is called the point-slope form of the equation of a line. For the spe-
cificexample we are considering here, the line passes through (2, 1) and has slope 3.

YOU TRY IT Write the equation of the line that passes through the point
(—3, 2) and has slope 4.

exAmpLE 1.11
Write the equation of the line passing through the points (—4, 5) and
(6,2).

SOLUTION
Let (x, y) be a variable point on the line. Using the points (x, y) and
(—4, 5), we may calculate the slope to be

__y->s
m_x_(_4).

On the other hand, we may use the points (—4, 5) and (6, 2) to calculate
the slope:

2-5 —3
nN=— = ——,
6 —(—4) 10

Equating the two expressions for slope, we find that

y—5 -3
x+4 10
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Simplifying this identity, we find that the equation of our line is

5= 2 (x+4)
Y=>= 7o '

YOU TRY IT Find the equation of the line that passes through the points
(2, —5)and(—6,1).

In general, the line that passes through points (x, y9) and (x1, y;) has
equation
Y=Y Y1 =X
X=X X —xX

This is called the two-point form of the equation of a line.

exampLe 1.12
Find the line perpendicular to y = 3x — 6 that passes through the point
(5,4).

m’SOLUTION

We know from the Math Note after Example 1.10 that the given line has
slope 3. Thus the line we seek (the perpendicular line) has slope —1/3. Us-
ing the point-slope form of a line, we may immediately write the equation
of the line with slope —1/3 and passing through (5, 4) as

—1
y—4:T°(X—5).

In summary, we determine the equation of a line in the plane by finding two
expressions for the slope and equating them.
If a line has slope m and passes through the point (xq, yo) then it has equation

/2 0] :m(x—xo).

This is the point-slope form of a line.

17
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If a line passes through the points (xg, yo) and (x1, y1) then it has equation

y—% Y1 =Y
X =X xl—xo'

This is the two-point form of a line.

YOU TRY IT Findtheline perpendicularto2x + 5y = 10 that passes through
the point (1, 1). Now find the line that is parallel to the given line and passes
through (1, 1).

1.6 Loci in the Plane

The most interesting sets of points to graph are collections of points that are
defined by an equation. We call such a graph the locus of the equation. We
cannot give all the theory of loci here, but instead consider a few examples. See
[SCH2] for more on this matter.

exampLe 1.13
Sketch the graph of {(x, y) : y = x?}.

SOLUTION
It is convenient to make a table of values:

x y=x?
-3 9
A 4
-1 1

0 0

1 1

2 4

3 9

We plot these points on a single set of axes (Figure 1.19). Supposing that
the curve we seek to draw is a smooth interpolation of these points (calcu-
lus will later show us that this supposition is correct), we find that our curve
is as shown in Figure 1.20. This curve is called a parabola.
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YA

=V

FIGURE 1.19

Yy A

=V

FIGURE 1.20

examprLE 1.14
Sketch the graph of the curve {(x, y) : y = x3}.

SOLUTION
It is convenient to make a table of values:

x y=x3
-3 —27
-2 -8
-1 -1

0 0

1 1

2 8

3 27
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We plot these points on a single set of axes (Figure 1.21). Supposing that
the curve we seek to draw is a smooth interpolation of these points (calcu-
lus will later show us that this supposition is correct), we find that our curve
is as shown in Figure 1.22. This curve is called a cubic.

YOU TRY IT Sketch the graph of the locus |x| = |y]|.

exampLE 1.15
Sketch the graph of the curve y = x? 4+ x — 1.

SOLUTION
It is convenient to make a table of values:

x y=x*4+x-—-1
-4 11
-3 5
-2 1
—1 —1
0 -1
1 1
2 5
3 11

We plot these points on a single set of axes (Figure 1.23). Supposing that
the curve we seek to draw is a smooth interpolation of these points (calcu-
lus will later show us that this supposition is correct), we find that our curve
is as shown in Figure 1.24. This is another example of a parabola.

YOU TRY IT Sketchthelocus y> = x3 + x + 1 0n a set of axes.

The reader unfamiliar with cartesian geometry and the theory of loci would
do well to consult [SCH2].

1.7 Trigonometry

Here we give a whirlwind review of basic ideas of trigonometry. The reader
who needs a more extensive review should consult [SCH1].
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YA
67 [ ]
3”.
RN x
FIGURE 1.21
YA
-

FIGURE 1.22
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YA

=V

FIGURE 1.23

When we first learn trigonometry, we do so by studying right triangles and
measuring angles in degrees. Look at Figure 1.25. In calculus, however, it is
convenient to study trigonometry in a more general setting, and to measure
angles in radians.

YA

FIGURE 1.24
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o measured in degrees

FIGURE 1.25

Angles will be measured by rotation along the unit circle in the plane, begin-
ning at the positive x-axis. See Figure 1.26. Counterclockwise rotation corre-
sponds to positive angles, and clockwise rotation corresponds to negative angles.
Refer to Figure 1.27. The radian measure of an angle is defined as the length
of the arc of the unit circle that the angle subtends with the positive x-axis
(together with an appropriate + or — sign).

In degree measure, one full rotation about the unit circle is 360°; in ra-
dian measure, one full rotation about the circle is just the circumference of
the circle or 27. Let us use the symbol 6 to denote an angle. The principle of
proportionality now tells us that

degree measure of & radian measure of 6

360° B 2

positive angle

«V

FIGURE 1.26

23
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" 4

"/

negative angle

FIGURE 1.27
In other words
radian measure of 6 = lyjﬁ(degree measure of 6)
and
degree measure of # = —— (radian measure of 6).
T

exampLE 1.16
Sketch the angle with radian measure /6. Give its equivalent degree

measure.
SOLUTION
Since
w/6 1
2r 127

the angle subtends an arc of the unit circle corresponding to 1/12 of the
full circumference. Since /6 > 0, the angle represents a counterclock-
wise rotation. It is illustrated in Figure 1.28.

The degree measure of this angle is

180

™

= 30°.

ol
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76

o 4

FIGURE 1.28

= Still Struggling

In this book we always use radian measure for angles. (The reason is that it makes
the formulas of calculus turn out to be simpler.) Thus, for example, if we refer
to "the angle 277/3" then it should be understood that this is an angle in radian
measure. See Figure 1.29.

Likewise, if we refer to the angle 3 it is also understood to be radian measure.
We sketch this last angle by noting that 3 is approximately .477 of a full rotation
2 —refer to Figure 1.30.

YA

4——\277;/3

" 4

FIGURE 1.29

25
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/ 3

" 4

FIGURE 1.30

YOU TRY IT Sketchthe angles —2, 1, w, 37 /2, and 10—all on the same coor-
dinate figure. Of course use radian measure.

exampLE 1.17
Several angles are sketched in Figure 1.31, and both their radian and de-
gree measures given.

YA
,@
\ /3 = 60°
X
—m=—180°
=-135°

FIGURE 1.31
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unit circle P=(x,y)

sin 6
0 :
cos 6

=

FIGURE 1.32

If 0 is an angle, let (x, y) be the coordinates of the terminal point of the
corresponding radius (called the terminal radius) on the unit circle. We call P =
(x, y) the terminal point corresponding to 6. Look at Figure 1.32. The number
y is called the sine of 6 and is written sin 8. The number x is called the cosine of
6 and is written cos 6.

Since (cos 6, sin ) are coordinates of a point on the unit circle, the following
two fundamental properties are immediate:

(1) For any number 6,
(sin )% 4 (cos0)? = 1.
(2) For any number 6,

—1 <cosf <1 and —1<sinf < 1.

= Still Struggling

It is common to write

sin6 tomean (sinf)?  and cos’6 tomean (cosf)?.

exampLE 1.18
Compute the sine and cosine of 7/3.
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unit circle

o 4

FIGURE 1.33

SOLUTION
We sketch the terminal radius and associated triangle (see Figure 1.33).
This is a 30-60-90 triangle whose sides have ratios 1: /3 : 2. Thus

1
- =2 or X = .
X 2

Likewise,

Vi o y= =L

It follows that

3
sin Z — £
3 2
and
™ 1
cos — = —.
3 2

YOU TRY IT The cosine of a certain angle is 2 /3. The angle lies in the fourth
quadrant. What is the sine of the angle?
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cos @

unit circle

FIGURE 1.34

= Still Struggling

Notice that if 8 is an angle then 6 and 6 + 27 have the same terminal radius and

the same terminal point (for adding 27 just adds one more trip around the circle-
—look at Figure 1.34).
As aresult,

sinf = x = sin(6 + 2x)
and
cosf =y = cos(0 + 2m).

We say that the sine and cosine functions have period 27 : the functions repeat
themselves every 27 units.

In practice, when we calculate the trigonometric functions of an angle 8, we
reduce it by multiples of 27 so that we can consider an equivalent angle ¢,

29
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. unit circle
opposite

side
‘ NA—

adjacent side

()

" 4

FIGURE 1.35

called the associated principal angle, satisfying 0 < 6’ < 2. For instance,
157/2 has associated principal angle 37/2
(since 157/2 — 3w /2 =3 - 27)
and
—107/3 has associated principal angle 27/3
(since —107/3 —2n/3 = —12n/3 = -2 - 27).

YOU TRY IT What are the principal angles associated with 7, 117 /2, 87/3,
—14=w/5,and —167/7?

What does the concept of angle and sine and cosine that we have presented
here have to do with the classical notion using triangles? Notice that any angle 6
such that 0 < # < 7/2 has associated to it a right triangle in the first quadrant,
with vertex on the unit circle, such that the base is the segment connecting
(0,0) to (x,0) and the height is the segment connecting (x, 0) to (x, y). See

Figure 1.35.
Then
, y  opposite side of triangle
sinf =y==-=
1 hypotenuse
and
x  adjacent side of triangle
cosf =x=—-= .
1 hypotenuse

Thus, for angles 6 between 0 and /2, the new definition of sine and co-
sine using the unit circle is clearly equivalent to the classical definition using
adjacent and opposite sides and the hypotenuse. For other angles 6, the classical
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approach is to reduce to this special case by subtracting multiples of 7/2. Our
approach using the unit circle is considerably clearer because it makes the sig-

natures of sine and cosine obvious.

Besides sine and cosine, there are four other trigonometric functions:

tand = = =
C0t9=§=
y
1
sech = — =
x
1
csch = — =
y

sin 6

cosf’

cos 6

sing’
1

— and
cos 6

U

1

sinf’

Whereas sine and cosine have domain the entire real line, we notice that tan 6
and sec are undefined at odd multiples of /2 (because cosine will vanish

there) and cot and csc @ are undefined

at even multiples of 7/2 (because sine

will vanish there). The graphs of the six trigonometric functions are shown in

Figures 1.36 a, b, and c.

exampLe 1.19

Compute all the trigonometric functions for the angle 8 = 117 /4.

SOLUTION

We first notice that the principal associated angle is 37 /4, so we deal with
that angle. Figure 1.37 shows that the triangle associated to this angle is
an isosceles right triangle with hypetenuse 1.

0.5

14

0.5

FIGURE 1.36a -

Graphs of y = sinx and y = cos x.
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30 30

20 20

DESED I .

-6 —4 -2 2 4 6 -6 -4 -2 2 4 6
-10 =10

-20 -20

-30 -30

FIGURE 1.36b « Graphsof y = tanx and y = cot x.

15 15
10 10
5 5
-4 -2 2 4 -2 4 6
6 -6 -4

FIGURE 1.36¢ « Graphs of y = secx and y = csc x.

Therefore x = —1/,/2and y = 1/,/2. It follows that

1
sinf=y=—,
y ﬁ
1
cosf =x=——,
V2
tan9 = y = -1,
X
cotld = X = -1,
y
1
secl = - = —,/2, and
X
1
csch = — =\/;.
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YA

1174

a4

unit circle

FIGURE 1.37

Similar calculations allow us to complete the following table for the values
of the trigonometric functions at the principal angles which are multiples
of w/6 or /4.

Angle Sin Cos Tan Cot Sec Csc
0 0 1 0 undef 1 undef
/6 1/2 V3/2 1/y/3 V3 2/\/3 2
T/4 22 \/2)2 1 1 V2 V2
7/3 /32 1/2 V3 1/V3 2 2/\/3

/2 1 0 undef 0 undef 1
27/3  +/3/2 —1/2 -3  =1//3 —7 2/\/3
3n/4 \2/2 —\/2/2 -1 —1 —/2 V2
57/6 1/2 —V3/2 -1/\/3 =3 =2//3 2
b 0 -1 0 undef -1 undef
77/6 -1/2 =372 1//3 V3 =2/\/3 —7)
St/4  —\/2/2 —\/2/2 1 1 —/2 —/2
az/3  —/3/2 -1)2 V3 1//3 —7 -2/\/3
3r/2 -1 0 undef 0 undef -1

57/3 —+/3/2 1/2 /3 -1/\/3 2 -2/\/3
/4 —\/2/2  \/2/2 -1 —1 V2 -2
11z/6  —1/2 V3/2  =1//3 =3 2/\/3 -2
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Besides properties (1) and (2) stated previously, there are certain identities
which are fundamental to our study of the trigonometric functions. Here are
the principal ones:

3) tan’ 0 + 1 = sec’
“4) cot’0 +1 = csc’ 0
(5) sin(6 + ) = sin cos ¥ + cos @ sin
(6) cos(0 + ¥) = cosB cosyy — sinf sinyr
(7) sin(20) = 2sin6 cosO
(8) cos(20) = cos’ 0 — sin’ @
(9) sin(—0) = —sinb
(10) cos(—6) = cos@

1-— 20

(11 sin’f = — >0
2

1 + cos 26

12 2= 277
(12) cos >

exampLE 1.20
Prove identity number (3).

SOLUTION
We have
. 2
sin“ @
tan’60 +1 = —— 41
cos” 0

sin 0 cos? 0
cos’0  cos’ 0
sin 0 + cos’ 0
cos’ 0
1

cos’ 6

= sec” @ (where we have used Property (1)).
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YOU TRY IT Use identities (11) and (12) to calculate cos(w/12) and
sin(7/12).

1.8 Sets and Functions

We have seen sets and functions throughout this review chapter, but it is well
to bring out some of the ideas explicitly.

A set is a collection of objects. We denote a set with a capital roman letter,
such as Sor T or U. If S is a set and s is an object in that set then we write
s € S and we say that s is an element of S. If S and T are sets then the collection
of elements common to the two sets is called the intersection of S and T and is
written S N T. The set of elements that are in S or in T or in both is called the
union of S and T and is written SU T.

A function from a set S to a set T is a rule that assigns to each element of S
a unique element of T. We write f : S — T.

D exampLe 1.21

Let S be the set of all people who are alive on October 10, 2004 and T the
set of all real numbers. Let f be the rule that assigns to each person his
or her weight in pounds at precisely noon on October 10, 2004. Discuss
whether f : S — T is a function.

SOLUTION
Indeed f is a function since it assigns to each element of S a unique el-
ement of T. Notice that each person has just one weight at noon on Oc-
tober 10, 2004: that is a part of the definition of ““function.”" However two
different people may have the same weight—that is allowed.

EXAMPLE 1.22
Let S be the set of all people and T be the set of all people. Let f be the
rule that assigns to each person his or her brother. Is f a function?

SOLUTION

In this case f is not a function. For many people have no brother (so the
rule makes no sense for them) and many people have several brothers (so
the rule is ambiguous for them).
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D examprLE 1.23

Let S be the set of all people and T be the set of all strings of letters not
exceeding 1500 characters (including blank spaces). Let f be the rule that
assigns to each person his or her legal name. (Some people have rather
long names; according to the Guinness Book of World Records, the longest
has 1063 letters.) Determine whether f : S — T is a function.

SOLUTION
This f is afunction because every person has one and only one legal name.
Notice that several people may have the same name (such as Jack Arm-
strong), but that is allowed in the definition of function.

YOU TRY IT Let f be the rule that assigns to each real number its cube root. Is
this a function?

In calculus, the set S (called the domain of the function) and the set T (called
the range of the function) will usually be sets of numbers; in fact they will often
consist of one or more intervals in R. The rule f will usually be given by one or
more formulas. Many times the domain and range will not be given explicitly.
These ideas will be illustrated in the examples below.

YOU TRY IT Consider the rule that assigns to each real number its absolute
value. Is this a function? Why or why not? If it is a function, then what are its do-
main and range?

1.8.1 Examples of Functions of a Real Variable

exAmpLE 1.24
LetS = R, T = R, andlet f(x) = x2. This is mathematical shorthand for
the rule “assign to each x € S its square." Determine whether f : R — R
is a function.

SOLUTION
We see that f is a function since it assigns to each element of S a unique
element of T—namely its square.
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= Still Struggling

Notice that, in the definition of function, there is some imprecision in the def-
inition of T. For instance, in Example 1.24, we could have let T = [0, c0) or
T = (—6, 0o) with no significant change in the function. In the example of the
"name" function (Example 1.23), we could have let T be all strings of letters not
exceeding 5000 characters in length. Or we could have made it all strings with-
out regard to length. Likewise, in any of the examples we could make the set S
smaller and the function would still make sense.
It is frequently convenient not to describe S and T explicitly.

exampLe 1.25

Let f(x) = ++/1 — x2. Determine a domain and range for f which make
f a function.

SOLUTION
Notice that f makes sense for x € [—1, 1] (we cannot take the square
root of a negative number, so we cannot allow x > 1 or x < —1). If we
understand f to have domain[—1, 1]1andrange R, then f : [-1,1] — R
is a function.

= Still Struggling

When a function is given by a formula, as in Example 1.25, with no statement
about the domain, then the domain is understood to be the set of all x for which
the formula makes sense.

YOU TRY IT Letg(x) =

function?

b'¢
———— . What are the domain and range of this
x> +4x+3
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D ExampLE 1.26
Let

-3 if x<1

FX) =10 it x>1

Determine whether f is a function.

[ﬁ’sownon

Notice that f unambiguously assigns to each real number another real
number. The rule is given in two pieces, but it is still a valid rule. There-
fore it is a function with domain equal to R and range equal to R. Itis
also perfectly correct to take the range to be ( —4, oo), for example, since
f only takes values in this set.

= Still Struggling

One point that you should learn from this example is that a function may be spec-
ified by different formulas on different parts of the domain.

YOU TRY IT Does the expression

(x) — 4 ifx <3
I =27 ifx >2
define a function? Why or why not?

EXAMPLE 1.27
Let f(x) = £+/x. Discuss whether f is a function.

SOLUTION
This f can only make sense for x > 0. But even then f is not a function
since it is ambiguous. For instance, it assigns to x = 1 both the numbers 1

and —1.
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1.8.2 Graphs of Functions

It is useful to be able to draw pictures which represent functions. These pictures,
or graphs, are a device for helping us to think about functions. In this book we
will only graph functions whose domains and ranges are subsets of the real
numbers.

We graph functions in the x-y plane. The elements of the domain of a func-
tion are thought of as points of the x-axis. The values of a function are measured
on the y-axis. The graph of f associates to x the unique y value that the func-
tion f assigns to x. In other words, a point (x, y) lies on the graph of f if and

only if y = f(x).

exampLE 1.28
Let f(x) = (x? + 2) /(x — 1). Determine whether there are points of the
graph of f correspondingtox = 3,4, and 1.

Eg’someN

The y value corresponding to x = 3 is y = f(3) = 11/2. Therefore the
point (3, 11/2) lies on the graph of f. Similarly, f(4) = 6 so that (4, 6)
lies on the graph. However, f is undefined at x = 1, so there is no point
on the graph with x coordinate 1. The sketch in Figure 1.38 was obtained
by plotting several points.

= Still Struggling

Notice that, for each x in the domain of the function, there is one and only one
point on the graph—namely the unique point with y value equal to f(x). If x is
notin the domain of f, then thereis no point on the graph that corresponds to x.

exampLE 1.29
Is the curve in Figure 1.39 the graph of a function?

39
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v A
I (4,6)

(3,11/2)

=V

2

FIGURE 1.38

N

FIGURE 1.39

SOLUTION
Observe that, corresponding to x = 3, for instance, there are two y values
on the curve. Therefore the curve cannot be the graph of a function.

YOU TRY IT Graph thefunctiony = x + |x|.



Chapter1 BASICS

YA

1
=Y

FIGURE 1.40

exampLE 1.30
Is the curve in Figure 1.40 the graph of a function?

SOLUTION
Notice that each x in the domain has just one y value corresponding to it.
Thus, even though we cannot give a formula for the function, the curve is
the graph of a function. The domain of this function is (—oo, 3) U (5, 7).

MATH NOTE Anice, geometrical way to think about the condition that each x in
the domain has corresponding to it precisely one y value is this:

If every vertical line drawn through a curve intersects that curve just once, then
the curve is the graph of a function.

YOU TRY IT Use the vertical line test to determine whether the locus x> +
y? = 1is the graph of a function.

1.8.3 Plotting the Graph of a Function

Until we learn some more sophisticated techniques, the basic method that we
shall use for graphing functions is to plot points and then to connect them in a

plausible manner.

4]
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exampLe 1.31
Sketch the graph of f(x) = x> — x.

SOLUTION
We complete a table of values of the function f.

x y=x3—x
-3 —24
-2 —6
-1 0

0 0

1 0

2 6

3 24

We plot these points on a pair of axes and connect them in a reasonable
way (Figure 1.41). Notice that the domain of f is all of R, so we extend the
graph to the edges of the picture.

FIGURE 1.41
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exampLE 1.32
Sketch the graph of

—1 ifx<2
f(x) = e
X ifx > 2

SOLUTION
We again start with a table of values.

x | y= f(x)
-3 -1
-2 —1
—1 -1

0 -1

1 -1

2 1

3 3

4 4

5 5

We plot these on a pair of axes (Figure 1.42).

Since the definition of the function changes at x = 2, we would be
mistaken to connect these dots blindly. First notice that, for x < 2, the
function is identically constant. Its graph is a horizontal line. For x > 2,
the function is a line of slope 1. Now we can sketch the graph accurately
(Figure 1.43).

YOU TRY IT Sketchthe graph of h(x) = |x| - ¥/x.

YA

=V

FIGURE 1.42
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YA

o 4

FIGURE 1.43

exampLe 1.33
Sketch the graph of f(x) = /x + 1.

SOLUTION
We begin by noticing that the domain of f, that is the values of x for which
the function makes sense, is {x : x > —1}. The square root is understood
to be the positive square root. Now we compute a table of values and plot

some points.
X y=yx+1
—1 0
0 1
1 V2
2 V3
3 2
4 V5
5 Ve
6 V7

Connecting the points in a plausible way gives a sketch for the graph of
f (Figure 1.44).

exampLE 1.34
Sketch the graph of x = y2.
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YA

=Y

FIGURE 1.44

SOLUTION
The sketch in Figure 1.45 is obtained by plotting points. This curve is not
the graph of a function.

A curve that is the plot of an equation but which is not necessarily the
graph of a function is sometimes called the locus of the equation. When the
curve is the graph of a function we usually emphasize this fact by writing
the equation in the formy = f(x).

YA

A 4

FIGURE 1.45

45
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YOU TRY IT Sketchthelocusx = y* + y.

1.8.4 Composition of Functions

Suppose that f and g are functions and that the domain of g contains the range
of f. This means that if x is in the domain of f then not only f (x) makes sense
but also g may be applied to f(x) (Figure 1.46). The result of these two oper-
ations, one following the other, is called g composed with f or the composition

of g with f. We write
(go Hx) =g(f (=)

exAmpPLE 1.35
Let f(x) = x*> — 1and g(x) = 3x + 4. Calculatego f.

SOLUTION
We have

(go f)(x) =gl f(x)) = g(x* —1). (%)

Notice that we have started to work inside the parentheses: the first step
was to substitute the definition of f, namely x? — 1, into our equation.
Now the definition of g says that we take g of any argument by multi-
plying that argument by 3 and then adding 4. In the present case we are
applying g to x?> — 1. Therefore the right side of equation (*) equals

3-(x*—1) +4.
This easily simplifies to 3x2 + 1. In conclusion,

go f(x) =3x%+1.

exampLE 1.36
Let f(t) = (t* —2) /(t+ 1) andg(t) = 2t + 1.Calculatego fand f o g.

S

x f g(fx)

FIGURE 1.46
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SOLUTION
We calculate that

(go At =gl f(t) = g2 (%)
g =g =49 t+1 .

We compute g of any argument by doubling it and adding 1. Thus equation

(*x*) equals
) t? -2 41
t+1

_2t2—4+1
ot

22 4t-3
T t+1

One of the main points of this example is to see that f o g is different
fromgo f.We compute f o g:

(fog)(t) = f(g(t))

= f(2t+ 1)

_(2t412-2
2t +1
A 44t
o2t42

So f o gand g o f are different functions.

YOU TRY IT Let f(x) = |x| and g(x) = +/x/x. Calculate f o g(x) and g o
f(x).

We say a few words about recognizing compositions of functions.

exampLe 1.37
How can we write the function k(x) = (2x + 3)? as the composition of

two functions gand f?

47
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SOLUTION
Notice that the function k can be thought of as two operations applied in
sequence. First we double and add 3, then we square. Thus define f(x) =
2x 4+ 3and g(x) = x2. Thenk(x) = (go f)(x).

We can also compose three (or more) functions. Define
(hogo f)(x) = h(g(f(x)))

exampLe 1.38
Write the function k from the last example as the composition of three
functions (instead of just two).

SOLUTION
First we double, then we add 3, then we square. So let f(x) = 2x, g(x) =
x +3,h(x) = x2.Thenk(x) = (hogo f)(x).

exampLE 1.39
Write the function

r(t) =

t2+3

as the composition of two functions.

m’SOLUTION

First we square t and add 3, then we divide 2 by the quantity just obtained.
As aresult, we define f(t) = t> +3and g(t) = 2/t. It follows thatr(t) =
(go f)(t).

YOU TRY IT Expressthefunctiong(x) = xz% as the composition of two func-

tions. Can you express it as the composition of three functions?

1.8.5 The Inverse of a Function

Let f be the function which assigns to each working adult American his or
her Social Security number (a 9-digit string of integers). Let g be the function
which assigns to each working adult American his or her age in years (an integer
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between 0 and 150). Both functions have the same domain, and both take val-
ues in the non-negative integers. But there is a fundamental difference between
f and g. If you are given a Social Security number, then you can determine
the person to whom it belongs. There will be one and only one person with
that number. But if you are given a number between 0 and 150, then there will
probably be millions of people with that age. You cannot identify a person by
his/her age. In summary, if you know g(x) then you generally cannot determine
what x is. But if you know f(x) then you can determine what x is. This leads
to the main idea of this subsection.

Let f : S— T be a function. We say that f has an inverse (is invertible)
if there is a function f~!': T — S such that (f o f~1)(t) =t for all t € T and
(f'o f)(s) =s forall s € S. Notice that the symbol f~! denotes a new func-
tion which we call the inverse of f.

Basic Rule for Finding Inverses

To find the inverse of a function f, we solve the equation
(fef DW=t
for the function f~1(t).

exampLE 1.40
Find the inverse of the function f(s) = 3s.

SOLUTION
We solve the equation

(fo fFN)(t) =t

This is the same as

fF(F'(8) =t

We can rewrite the last line as

3-.F ()=t

4o
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or
t
F (1) = —.
3

Thus f~'(t) =t/3.

exampLE 1.41

Let f : R — R be defined by f(s) = 3s°.Find f~'.

SOLUTION
We solve
(fof ")(t)=t

or

f(f () =t
or

3[F (NP =t
or

L0 =5
or

([t 1/5
o= (1)

YOU TRY IT Find theinverse of the function g(x) = </x — 5.

It is important to understand that some functions do not have inverses.

exampLE 1.42

Let f: R — {t:t > 0} be defined by f(s) = s2. If possible, find f~.
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SOLUTION
Using the Basic Rule, we attempt to solve

(fo f')(t) =t
Writing this out, we have
[F () =t

But now there is a problem: we cannot solve this equation uniquely for
f~'(t). We do not know whether f~1(t) = ++/tor f~'(t) = —+/t.Thus
f~1 is not a well-defined function. Therefore f is not invertible and f~'
does not exist.

MATH NOTE There is a simple device which often enables us to obtain an
inverse—even in situations like Example 1.42. We change the domain of the function.
This idea is illustrated in the next example.

ExAmpLE 1.43
Define f: {s:s > 0} — {t:t > 0} by the formula f(s) = s2.Find f~.

SOLUTION
We attempt to solve

(fo f )=t
Writing this out, we have
flf' =t
or
[F ()=t

This looks like the same situation we had in Example 1.42. Butin fact things
have improved. Now we know that f—'(t) mustbe ++/t, because f ' must
haverangeS = {s:s > 0}.Thus f~': {t:t > 0} — {s:s > 0}isgiven
by f-1(f) = +/1.
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YOU TRY IT Theequationy = x? + 3x does not describe the graph of an in-
vertible function. Find a way to restrict the domain so that it is invertible.

Now we consider the graph of the inverse function. Suppose that f : S - T
is invertible and that (s, t) is a point on the graph of f. Thent = f(s) hences =
f~1(t) so that (¢, s) is on the graph of f ~!. The geometrical connection between
the points (s, t) and (t, s) is exhibited in Figure 1.47: they are reflections of each
other in the line y = x. We have discovered the following important principle:

The graph of f~! is the reflectionin the line y = x of the graph of f.
Refer to Figure 1.48.
exampLE 1.44

Sketch the graph of the inverse of the function f whose graph is shown in
Figure 1.49.

SOLUTION
By inspection of the graph we see that f is one-to-one (i.e., takes different
domain values to different range values) and onto (i.e., takes on all values
in the range) from S = [—2, 3] to T = [1, 5]. Therefore f has an inverse.
The graph of £~ is exhibited in Figure 1.50.

YA

" 4

FIGURE 1.47
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YA
X
P
FIGURE 1.48
>
FIGURE 1.49
YA
Ly =/)
P ﬁ)
— T / — 5
FIGURE 1.50

YOU TRY IT Sketch f(x) = x3 + xand its inverse.

Another useful fact is this: Since an invertible function must be one-to-one,
two different x values cannot correspond to (that is, be ““sent by the function
to”’) the same y value. Looking at Figures 1.51 and 1.52, we see that this means:

53
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YA

=Y

_/

FIGURE 1.51

In order for f to be invertible, no horizontal line can intersect the graph
of f more than once.

In Figure 1.51, the fact that the line y = 2 intersects the graph twice means
that the function f takes the value 2 at two different points of its domain
(namely at x = —2 and x = 6). Thus f is not one-to-one so it cannot be
invertible. Figure 1.52 shows what happens if we try to invert f: the result-
ing curve is not the graph of a function.

YA

Not the graph
of a function

=Y

FIGURE 1.52
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YA YA

=V
=V

<

(@) (b)

FIGURE 1.53

exAmpLE 1.45
Look at Figures 1.53 and 1.55. Are the functions whose graphs are shown
in parts (a) and (b) of each figure invertible?

B’sownom

Graphs (a) and (b) in Figure 1.53 are the graphs of invertible functions
since no horizontal line intersects each graph more than once. Of course
we must choose the domain and range appropriately. For (a) we take
S=[—4,4]land T =[—2, 3]; for (b) we take S = (—3,4) and T = (0, 5).
Graphs (a) and (b) in Figure 1.54 are the graphs of the inverse functions cor-
responding to (a) and (b) of Figure 1.53, respectively. They are obtained by
reflection in the line y = x.

In Figure 1.55, graphs (a) and (b) are not the graphs of invertible func-
tions. For each there is exhibited a horizontal line that intersects the graph
twice. However graphs (a) and (b) in Figure 1.56 exhibit a way to restrict

/ x \OE

(@) (b

FIGURE 1.54

55
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YA VA
X X
(@) (®)
FIGURE 1.55
YA VA
X x
(@) (®)
FIGURE 1.56
YA yn/
/s >
X X
(@) (®)
FIGURE 1.57

the domains of the functions in (a) and (b) of Figure 1.55 to make them
invertible. Graphs (a) and (b) in Figure 1.57 show their respective inverses.

YOU TRY IT Giveanexample of a function from R to R that is not invertible,
even when it is restricted to any interval of length 2.
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1.9 AFew Words about Logarithms and Exponentials
We will give a more thorough treatment of the logarithm and exponential func-
tions in Chapter 6. For the moment we record a few simple facts so that we
may use these functions in the sections that immediately follow.
The logarithm is a function that is characterized by the property that

log(x - y) = logx + log y.
It follows from this property that
log(x/y) = logx — logy
and
log(x™) = n - logx.

It is useful to think of log, b as the power to which we raise a to get b, for
any a, b > 0. For example, log, 8 = 3 and log;(1/27) = —3. This introduces the
idea of the logarithm to a base.

YOU TRY IT Calculatelog, 125,l0g,(1/81), andlog, 16.

The most important base for the logarithm is Euler's number e~
2.71828... . We write Inx = log, x. For the moment we take the logarithm
to the base e, or the natural logarithm, to be given. It is characterized among all
logarithm functions by the fact that its graph has tangent line with slope 1 at
x = 1. See Figure 1.58. Then we set

Inx
log, x = —.
Ina

Note that this formula gives immediately that log, x = In x, once we accept
thatlog,e = 1.
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B \

FIGURE 1.58

= Still Struggling

In mathematics, we commonly write log x to mean the natural logarithm. Thus
you will sometimes encounter In x and sometimes encounter log x (without any
subscript); they are both understood to mean log, x, the natural logarithm.

YA

y=expx

"

FIGURE 1.59
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The exponential function exp x is defined to be the inverse function to In x.
Figure 1.59 shows the graph of y = exp x = exp(x). In fact we will see later that
exp x = e*. More generally, the function a* is the inverse function to log, x. The
exponential has these properties:

(a) ab+c — ab af

(b) (a") =a"

b
a
CR
a
These are really just restatements of properties of the logarithm function that

we have already considered.

YOU TRY IT Simplify the expressions 3% - 5 /(15)3 and 2* - 63 - 1274,

59
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QuIZ

1. Each of the following is a rational number. Write it as the quotient of two

integers.

(a) 3/4—2/3

(b) 32.21734
-33 2

© 51373

(d)

3
45676767 ...

(e) —67.1456456. ..

®

WIN

ol
+ +
W= N —

N

(8) =
5 T3
(h) 5.81646464 ...

. Plot the numbers 2.3, —z/3, 7, /2 -1, /2 -3, and 5/2, —=9/10 on a real

number line. Label each plotted point.

. Sketch each of the following sets on a separate real number line.

(a) S={xeR:|x—-1] <2}
b)) T={teR:?+2=4)
) U={seR:2s-3 <5}
d) V={yeR:|3y+1>1}
() S={xeR:x*+1<2}
) T={seR:|s|=|s— 1]}

. Plot each of the points (1, —3), (-2, 1), (=2, —7), (=2, v/3), (/37, —1),

and (1/2, —7/4) on a pair of cartesian coordinate axes. Label each point.

. Plot each of these planar loci on a separate set of axes.

(@) {(x, )iy =x"+1)
(b) {Cx,y) : x> +y* =3}
() y=x*—x

() x=y"+y

(&) x=y"—2y°

) x*+y> =1
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Plot each of these regions in the plane.
(@) {(x,¥): %" +y* <2

(b) {(x,¥):y <3x%}

@ {(x, ) :y > —x"}

(d) {(x,y) :x<y-2}

(&) {(x,y):y=—2x+ 1}

() {(, y):x—2y <3}

Calculate the slope of each of the following lines:

(a) The line through the points (—4, 3) and (1, 4)

(b) The line perpendicular to the line through (1, 1) and (2, 5)
(¢) Theliney —2x =4

(d) The line ’;;3;’ =5

(e) The line through the points (1, —1) and (8, 3)

(f) The linex —2y =75

Write the equation of each of the following lines.

(a) The line parallel to x +2y = —1 and passing through the point
2, -3).

(b) The line perpendicular to x — y = 1 and passing through the point
(=1, -2).

(c) The line passing through the point (2, 3) and having slope —4

(d) The line passing through (-3, 4) and (2, 3)

(e) The line passing through the origin and having slope 4

(f) The line perpendicular to y = 3x — 2 and passing through (-2, 1)

Graph each of the lines in Exercise 8 on its own set of axes. Label your
graphs.

Which of the following is a function and which is not? Give a reason in
each case.

(a) f assigns to each person his biological mother

(b) g assigns to each man his sister

(c) h assigns to each real number its cube root

(d) f assigns to each positive integer its square

(e) g assigns to each car its passenger

(f) h assigns to each toe its foot

(g) f assigns to each rational number the least integer that exceeds it
(h) g assigns to each integer the previous integer

(i) h assigns to each real number its cube plus four

61
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11.

12.

13.

14.

15.

16.

Graph each of these functions on a separate set of axes. Label your graph.
(a) f(x)=x*>—-3x

(6) g6 =
(©) h(x)=x*—x
d) fx)=2x+1
(e) glx) =" +x
() h(x) =vx+5

Calculate each of the following trigonometric quantities.
(a) sin(27/3)

(b) tan(—m/6)

(c) sec(37/4)

(d) csc(5m/4)

(e) cot(—117/4)

(f) cos(—m/4)

Calculate the left and right sides of the twelve fundamental trigonomet-

ric identities for the values § = 7/6 and ¥ = —n/3, thus confirming the
identities for these particular values.

Sketch the graphs of each of the following trigonometric functions.
(a) f(x)=cos2x

(b) g(x) = sin(x — 7/2)

() h(x) = cot(x + )

(d) f(x)=tan(x+7)

(e) g(x) = cos(x/6)

() h(x) = cos(r + [x/2])

Convert each of the following angles from radian measure to degree

measure.
(a) 6 =m/12

(b) 6 =-n/2

(c) 6=27n/4

() 6 =37/16

(e) 6=4

0Ho=-7

Convert each of the following angles from degree measure to radian
measure.

(a) 6 =45°

(b) 0 = 20°
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18.

19.

20.
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(c) 6 =-55°
(d) 6 =-100°
(e) 6 =2xn°

() o =-3.14°

For each of the following pairs of functions, calculate f o g and g o f.
(@) f)=x"-2x  g(x)=(x+1)
(b) f(x)=vx—1 glx) = vx* +2

(©) f(x)=sin(x —x%) g(x) = cos(x* + x)

d) fx)=e? g(x) =In(x+3)
(e) f(x)=sin(x* —x) g(x) =In(x? + 2x)
(0 fe)=e g =e

(8) f()=x(x—-1(x+3) glx)=(2x-1)(x+2)

Consider each of the following as functions from R to R and say whether

the function is invertible. If it is, find the inverse with an explicit formula.

(@) fx)=x+1

(b) g(x) =x"+x

(©) h(x) = sgnx - /|x|, where sgnx is 4+1 if x is positive, —1 if x is nega-
tive, 0 if x is O.

(d) fl)=x"-8

(e) glx) =e™

(f) h(x) = cosx

(8) f(x) = cotx

(h) g(x) = sgnx - x?, where sgn x is +1 if x is positive, —1 if x is negative,

0ifxisO.
For each of the functions in Exercise 18, graph both the function and its
inverse in the same set of axes.

Determine whether each of the following functions, on the given domain
S, is invertible. If it is, then find the inverse explicitly.

(&) fl) ==, S=1[1,7]

(b) g(x) =Inx, S=[5,10]
(c) h(x) = cosx, S=10,r/2]
(d) f(x)=sinx, S=10,r]

(e) g(x) = cotx, S=[-n/2,0]
(0 h(x) =7, S=[-1,1]
(8 f)=x"+x S=[2,5]

63



This page intentionally left blank



chapter 2

Foundations
of Calculus

The big idea in this chapter is the concept of limit. The ancient Greeks wres-

tled with limits when they calculated areas and volumes of exotic figures. Isaac
Newton worked with limits (although he never really understood them) in the
development of calculus. It was not until the nineteenth century, and the ad-
vent of Augustin Cauchy and Karl Weierstrass, that limits were finally given a
rigorous and satisfactory definition.

From today’s point of view, limits are central to everything that we do. They
are used to understand continuity, and they are used to define the derivative
(one of the two key concepts of calculus).

This chapter lays the foundations for differential calculus. Later chapters in
the book will build on what we do here.

CHAPTER OBJECTIVES

In this chapter, you will learn

 Limits

» Continuity

» The derivative

» Rules for calculating derivatives
 The derivative of an inverse function

 The derivative as a rate of change 65
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2.1 Limits

The single most important idea in calculus is the idea of limit. More than 2000
years ago, the ancient Greeks wrestled with the limit concept, and they did not
succeed. It is only in the past 200 years that we have finally come up with a firm
understanding of limits. Here we give a brief sketch of the essential parts of the
limit notion.

Suppose that f is a function whose domain contains two neighboring in-
tervals: f : (a,c) U (c, b) > R. We wish to consider the behavior of f as the
variable x approaches c. If f(x) approaches a particular finite value ¢ as x ap-
proaches ¢, then we say that the function f has the limit € as x approaches c. We
write

lim f(x) = ¢.

X—>C

The rigorous mathematical definition of limit is this:

Definition 2.1

Leta < ¢ < bandlet f be a function whose domain contains (a, ¢) U (¢, b). We
say that f has limit ¢ at ¢, and we write lim,_, . f (x) = £ when this condition

holds: For each € > 0 there is a § > 0 such that

[flx) — €l <e

whenever 0 < |x — ¢| < 6.

It is important to know that there is a rigorous definition of the limit concept,
and any development of mathematical theory relies in an essential way on this
rigorous definition. However, in the present book we may make good use of
an intuitive understanding of limit. We now develop that understanding with
some carefully chosen examples.

EXAMPLE 2.1
Define

3—x ifx<1

f(x) =
x>+1 ifx>1

See Figure 2.1. Calculate lim f(x).

x—1
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FIGURE 2.1

SOLUTION
Observe that, when x is to the left of 1 and very near to 1 then f(x) =
3 — x is very near to 2. Likewise, when x is to the right of 1 and very near
to 1then f(x) = x? + 1is very near to 2. We conclude that

lim f(x) = 2.

x—1

We have successfully calculated our first limit. Figure 2.1 confirms the con-
clusion that our calculations gave.

EXAMPLE 2.2
Define

Calculate lim, _, g(x).

B’sownom

We observe that both the numerator and the denominator of the fraction
defining gtendtoO0asx — 2(i.e., as x tends to 2). Thus the question seems
to be indeterminate.

However, we may factor the numeratoras x> — 4 = (x — 2)(x + 2).As
long as x # 2 (and these are the only x that we examine when we calculate
lim,_,), we can then divide the denominator of the expression defining g
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FIGURE 2.2

into the numerator. Thus
g(x) =x+2 for x # 2.
Now

limg(x) = limx+2=4.

xX—2 xX—2

The graph of the function g is shown in Figure 2.2. We encourage the
reader to use a pocket calculator to calculate values of g for x near 2 but
unequal to 2 to check the validity of our answer. For example,

X g(x)=I[x*—4]/[x —2]

1.8 3.8

1.9 3.9

1.99 3.99

1.999 3.999

2.001 4.001

2.01 4.01

2.1 4.1

2.2 4.2

We see that, when x is close to 2, then g(x) is close (indeed, as close as
we please) to 4.

YOU TRY IT Calculate the limit, lim,_ (x> — 3x?> + x — 3) /(x — 3).
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= Still Struggling

It must be stressed that, when we calculate lim,_, . f(x), we do not evaluate
f at c. In the last example it would have been impossible to do so. We want
to determine what we anticipate f will do as x approaches ¢, not what value
(if any) f actually takes at c. The next example illustrates this point rather

dramatically.
EXAMPLE 2.3
Define
3 ifx#7
h(x) = 7
1 ifx=7

Calculate lim,_, h(x).

Eg’someN

Refer to Figure 2.3 for the graph of the function. It would be incorrect to
simply plug the value 7 into the function h and thereby to conclude that
the limitis 1. In fact when x is near to 7 but unequal to 7, we see that h takes
the value 3. This statement is true no matter how close x is to 7. We conclude

that lim h(x) = 3.

x—7

YOU TRY IT Calculatelim, _ ,[x* —x — 12]/[x — 4].

YA

=Y

FIGURE 2.3
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2.1.1 One-Sided Limits

There is also a concept of one-sided limit. We say that

lim f(x)=1¢
X—>Cc~
if the values of f become closer and closer to £ when x is near to ¢ but on the

left. In other words, in studying lim f(x), we only consider values of x that

X—>C
are less than c.

Likewise, we say that

lim f(x)=1¢

x—ct
if the values of f become closer and closer to £ when x is near to ¢ but on the
right. In other words, in studying lim,_, .+ f(x), we only consider values of x
that are greater than c.

EXAMPLE 2.4
Discuss the limits of the function

2x —4ifx < 2

f(x) =
x? if x> 2

atc = 2.

SOLUTION
As x approaches 2 from the left, f(x) = 2x — 4 approaches 0. As x ap-
proaches 2 from the right, f(x) = x? approaches 4. Thus we see that f
has left limit 0 at ¢ = 2, written

lim f(x) =0,

X—2~

and f has right limit 4 at ¢ = 2, written

lim f(x) =4.

x—2+

Note that the full limitlim
limits are unequal).

f(x) does not exist (because the left and right

xX—2
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YOU TRY IT Discuss one-sided limits at c = 3 for the function

x> —xifx<3
f(x) =124 ifx=3

4x +1ifx >3

All the properties of limits that will be developed in this chapter, as well as
the rest of the book, apply equally well to one-sided limits as to two-sided (or
standard) limits.

2.2 Properties of Limits

To increase our facility in manipulating limits, we have certain arithmetical and
functional rules about limits. Any of these may be verified using the rigorous
definition of limit that was provided at the beginning of the last section. We
shall state the rules and get right to the examples.

If f and g are two functions, ¢ is a real number, and lim,_ , f(x) and
lim, . g(x) exist, then

Theorem 2.1

(b) hmx—>c (f : g) (x) = (limx—>c f(x)) ' (hmx—>c g(x)) p

(c) lim (i> (x) = lim,; /() provided that lim,_ g(x) # 0;

X—>C g hmx—w g(x)
(d) lim,,, (a- f(x)) =« (lim,_,, f(x)) for any constant a.

Some theoretical results, which will prove useful throughout our study of
calculus, are these:

Theorem 2.2

Leta < ¢ < b. A function f cannot have two distinct limits at c.
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Theorem 2.3
If

limg(x)=0
and

lim f(x) either does not exist or exists and is not zero
X—C

then

. f()
im

does not exist.

Theorem 2.4 (The Pinching Theorem)
Suppose that f, g, and h are functions whose domains each contain S = (a, ¢) U
(c, b). Assume further that

g(x) = f(x) < h(x)
for all x € S. Refer to Figure 2.4.

If

limg(x)=¢
and

limh(x) = ¢
then

lim f(x) = ¢.

X—>C

FIGURE 2.4
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EXAMPLE 2.5
Calculate lim

4x3 — 7x% 4+ 5x — 9.

xX—3

SOLUTION
We may apply Theorem 2.1(a) repeatedly to see that

lim 4x® — 7x%> + 5x — 9 = lim 4x® — lim 7x%> + lim 5x — lim 9. (%)

x—3 x—3 x—3 x—3 x—3

We next observe thatlim,_ ; x = 3. This assertion is self-evident, for when
X is near to 3 then x is near to 3. Applying Theorem 2.1(d) and Theorem
2.1(b) repeatedly, we now see that

lima4x3 =4-[limx]-[limx]-[limx]=4-3-3-3=108.

x—3 x—3 x—3 x—3

Also

lim7x2=7-[limx]-[limx]=7-3-3 =63,

x—3 x—3 x—3
lim5x=5-[limx]=5-3 =15.
x—3 x—3

Of course lim, ;9 = 9.
Putting all this information into equation (x) gives

lim 4x3 — 7x> +5x — 9 = 108 — 63 + 15 — 9 = 51.

x—3

EXAMPLE 2.6
Use the Pinching Theorem to analyze the limit

lim | x| sin x.

x—0

SOLUTION
We observe that

—|x| = g(x) < f(x) = |x|sinx < h(x) = |x|.
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Thus we may apply the Pinching Theorem. Obviously

lim g(x) = lim h(x) = 0.

x—0 x—0

We conclude that lim,_, f(x) = 0.
EXAMPLE 2.7
Analyze the limit
. x*4+4
lim .
x——2 X + 2

SOLUTION
The denominator tends to 0 while the numerator does not. According to

Theorem 2.3, the limit cannot exist.

YOU TRY IT Use the Pinching Theorem to calculate lim,_, x* sin x.

YOU TRY IT Whatcanyousay aboutlim, ,_, x*/(x* —1)?

2.3 Continuity

Let f be a function whose domain contains the interval (a, b). Assume that ¢
is a point within (a, b). We say that the function f is continuous at c if

lim f(x) = f(c).

X—>C

Conceptually, f is continuous at ¢ if the expected value of f at ¢ equals the
actual value of f atc.

EXAMPLE 2.8
Is the function

2x2 —xifx < 2
f(x) = .
3x if x > 2

continuous at x = 2?
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YA

=V

FIGURE 2.5

SOLUTION
We easily check thatlim,_, f(x) = 6.Also the actual value of f at2, given
by the second part of the formula, is equal to 6. By the definition of conti-
nuity, we may conclude that f is continuous at x = 2. See Figure 2.5.

EXAMPLE 2.9
Where is the function

ifx <4

glx) = x—3
2x+3ifx>4

continuous?

[ﬁ’sownw

If x < 3 then the function is plainly continuous. The function is undefined
at x = 3 so we may not even speak of continuity at x = 3. The function is
also obviously continuous for 3 < x < 4. At x = 4 the limit of g does not
exist—it is 1 from the left and 11 from the right. So the function is not con-
tinuous (we sometimes say that it is discontinuous) at x = 4. By inspection,
the function is continuous for x > 4.
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YOU TRY IT Discuss continuity of the function

x—x2ifx < —2
g(x) =110 ifx=—2
—5x ifx> -2
We note that Theorem 2.1 guarantees that the collection of continuous func-

tions is closed under addition, subtraction, multiplication, division (as long as
we do not divide by 0), and scalar multiplication.

= Still Struggling

If f o gmakessense,iflim,_ . g(x) = ¢ andiflim,_, f(s) = m, then it does not
necessarily follow that lim, . f o g(x) = m. [We invite the reader to find an ex-
ample.] One must assume, in addition, that f is continuous at £. This point will
come up from time to time in our later studies.

We further record the important fact that differentiability is a stronger prop-
erty than continuity. If a function f is differentiable at ¢ then it is continuous at
c. This assertion really follows from Theorem 2.3: If lim;,_, o[ f (¢ + h) — f(c)]/h
exists then lim;,_ [ f(c + h) — f(c)] must be 0. We invite the reader to fill in
the details. In the next section, we discuss the concept of differentiability in
greater detail.

2.4 The Derivative

Suppose that f is a function whose domain contains the interval (a, b). Let ¢
be a point of (a, b). If the limit

lim w (%)

h—0

exists then we say that f is differentiable at c and we call the limit the derivative

of f atc.
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exampLe 2.10
Is the function f(x) = x? 4+ x differentiable at x = 2? If it is, calculate the
derivative.

SOLUTION
We calculate the limit (x), with the role of ¢ played by 2:

I f(2+h —f(2) . [(2+h*+(2+h]—-[2°42]
im = lim
h—o0 h h—0 h

— lim [(4 4+ 4h + h?) + (2 + h)] — [6]

h—0 h

. 5h+ h?
= lim
h—0

= Ilim5+h
h—0

= 5.
We see that the required limit ( x) exists, and that it equals 5. Thus the func-

tion f(x) = x? + x is differentiable at x = 2, and the value of the deriva-
tiveis 5.

= Still Struggling

When the derivative of a function f exists at a point ¢, we denote the deriva-

d df
tive either by f'(c) or by I f(c) = a(c). In some contexts (e.g., physics) the

notation f(c) is used. In the last example, we calcuated that f'(2) = 5.

The importance of the derivative is two-fold: it can be interpreted as rate of
change and it can be interpreted as the slope. Let us now consider both of these
ideas.
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Suppose that ¢(t) represents the position (in inches or feet or some other
standard unit) of a moving body at time . At time O the body is at ¢(0), at
time 3 the body is at ¢(3), and so forth. Imagine that we want to determine the
instantaneous velocity of the body at time t = ¢. What could this mean? One
reasonable interpretation is that we can calculate the average velocity over a
small interval at ¢, and let the length of that interval shrink to zero to determine
the instantaneous velocity. To carry out this program, imagine a short interval
[¢c, ¢ + h]. The average velocity of the moving body over that interval is

el )= ()
av. — h N

This is a familiar expression (see (x)). As we let h — 0, we know that this
expression tends to the derivative of ¢ at c. On the other hand, it is reasonable
to declare this limit to be the instantaneous velocity. We have discovered the
following important rule:

Let ¢ be a differentiable function on an interval (a, b). Suppose that ¢(t)
represents the position of a moving body. Let ¢ € (a, b). Then

¢'(c) = instantaneous velocity of the moving body at c.

Now let us consider slope. Look at the graph of the function y = f(x) in
Figure 2.6. We wish to determine the “‘slope” of the graph at the point x = c.
This is the same as determining the slope of the tangent line to the graph of f
at x = ¢, where the tangent line is the line that best approximates the graph at
that point. See Figure 2.7. What could this mean? After all, it takes two points
to determine the slope of a line, yet we are only given the point (¢, f(c)) on

/ (¢, f(¢)

FIGURE 2.6



Chapter2 FOUNDATIONS OF CALCULUS

/ (c.f(©)

FIGURE 2.7

the graph. One reasonable interpretation of the slope at (c, f(c)) is that it is
the limit of the slopes of secant lines determined by (¢, f(c)) and nearby points
(c + h, f(c + h)). See Figure 2.8. Let us calculate this limit:

o S+ = (@) | fle+h - f©)

h—0 (C*_h)_'c h—0 h

We know that this last limit (the same as (x)) is the derivative of f at c. We
have learned the following:

Let f be a differentiable function on an interval (a, b). Let ¢ € (a, b).
Then the slope of the tangent line to the graph of f atcis f/(c).

< (e.f(¢) (e f(ch)

-

x=c x=c+h

FIGURE 2.8
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exampLE 2.71
Calculate the instantaneous velocity at time t = 5 of an automobile whose

position at time t seconds is given by g(t) = 3 + 4t + 10 feet.

SOLUTION
We know that the required instantaneous velocity is g’(5) . We calculate

g(5+ h) — g(5)

g'(5) = lim

h—0 h

— lim [(5+h)3+4(5+ h)2 + 10] — [5° + 4 - 52 4 10]
h—0 h

— lim [(125 + 75h + 15h% + h®) + 4 - (25 + 10h + h?) + 10)
h—O0 h

_ (1254100 4 10)
h

. 115h 4+ 19h% + K3

= lim
h—0 h

= lim 115 + 19h + h?

h—0

= 115.

We conclude that the instantaneous velocity of the moving body at time
t=5isg'(5) = 115 ft./sec.

MATH NOTE Sinceposition (or distance) is measured in feet, and time in seconds,

then we measure velocity in feet per second.

EXAMPLE 2.12
Calculate the slope of the tangentline to the graphof y = f(x) = x> — 3x
atx = —2.Write the equation of the tangent line. Draw a figure illustrating

these ideas.



Chapter2 FOUNDATIONS OF CALCULUS

SOLUTION
We know that the desired slope is equal to f/(—2).We calculate

f(—2+4+h) — f(—-2)

f'(—2) = lim

h—0 h

— lim (—2+h)3—=3(—2+h)]—1[(—2)%—3(-2)]
h—0 h

— lim [(—8 4 12h — 6h* + h*) + (6 — 3h)]1 + [2]
h—0 h
. h®—6h*>+9h

= lim —
h—0 h

= limh®> —6h+9
h—0

=09.

We conclude that the slope of the tangent line to the graph of y = x3 — 3x
atx = —2is9.Thetangentline passesthrough(—2, f(—2)) = (—2, —2)
and has slope 9. Thus it has equation

y—(=2) =9(x —(-2)).

The graph of the function and the tangent line are exhibited in Figure 2.9.

YOU TRY IT Calculate the tangent line to the graph of f(x) = 4x?> — 5x + 2
at the point where x = 2.

EXAMPLE 2.13
A rubber balloon is losing air steadily. At time t minutes the balloon con-
tains 75 — 10t2 + t cubic inches of air. What is the rate of loss of air in the
balloon at time t = 1?
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y=x3-3x

y+2=9x+2)

FIGURE 2.9

SOLUTION
Let(t) = 75 — 10t + t. Of course the rate of loss of air is given by 1//( 1).
We therefore calculate

S — tim LR =)

h—0 h

— lim [75—10(1+h)2+(1+h1—1[75—10-12 + 1]
N h
h—0

—im 75— (10 + 20h + 10h?) + (1 + h)]1 — [66]
B h
h—0

. —19h — 10h2
= lim —

h—0 h

= lim —19 — 10h
h—0

= —19.
In conclusion, the rate of air loss in the balloon at time t = 1is ¥/(1) =

—19 cu. ft. /sec. Observe that the negative sign in this answer indicates
that the change is negative, i.e., that the quantity is decreasing.
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YOU TRY IT The amount of water in a leaky tank is given by W(t) = 50 —
5t%> 4 t gallons. What is the rate of leakage of the water at time t = 22

= Still Struggling

We have noted that the derivative may be used to describe a rate of change and
also to denote the slope of the tangent line to a graph. These are really two dif-
ferent manifestations of the same thing, for a slope is the rate of change of rise
with respect to run (see Section 1.4 on the slope of a line).

2.5 Rules for Calculating Derivatives

Calculus is a powerful tool, for much of the physical world that we wish to
analyze is best understood in terms of rates of change. It becomes even more
powerful when we can find some simple rules that enable us to calculate deriva-
tives quickly and easily. This section is devoted to that topic.

I. Derivative of a Sum [The Sum Rule]: We calculate the derivative of a sum

(or difference) by

() £e) = f'(x) £ &' ).

In our many examples, we have used this fact implicitly. We are now
just enunciating it formally.

II. Derivative of a Product [The Product Rule]: We calculate the derivative
of a product by

[f)-g()] = f'(x) - g() + f(x) - &'(x).

We urge the reader to test this formula on functions that we have
worked with before. It has a surprising form. Note in particular that it

is not the case that [ f(x) - g(x)] = f'(x) - g'(x).
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III. Derivative of a Quotient [The Quotient Rule]: We calculate the derivative
of a quotient by

[f(XJ]' _ g0 f1— f(x)-g'(x)

gx) ] g2(x)

In fact one can derive this new formula by applying the product formula

to g(x) - [ f(x)/g(x)]. We leave the details for the interested readers.

IV. Derivative of a Composition [The Chain Rule]: We calculate the deriva-
tive of a composition by

[fogl)] = f'(g(x)- &' ().

To make optimum use of these four new formulas, we need a library of
functions to which to apply them.

A. Derivatives of Powers of x: If f(x) = x* then f'(x) =k-x*"!, where
ke(0,1,2,...).

= Still Struggling

and is established in just the same way.

B. Derivatives of Trigonometric Functions: The rules for differentiating
sine and cosine are simple and elegant:

1. — sinx = cosx.

dx

2. — Ccosx = —sinx.

dx

We can find the derivatives of the other trigonometric functions by
using these two facts together with the quotient rule from above:

If you glance back at the examples we have done, you will notice that we have
already calculated that the derivative of x is 1, the derivative of x? is 2x, and the
derivative of x3 is 3x2. The rule just enunciated is a generalization of these facts,



Chapter2 FOUNDATIONS OF CALCULUS

3.
d . d sinx cosxd% sinx—sinxj—x cos x
— anx = — =
dx dx cosx (cosx)?
(cosx)? + (sin x)? 1 ( %
= = = (secx)”.
(cos x)? (cos x)?

Similarly we have

4. i cotx = —(cscx).

dx

5. —secx = secxtanx.
dx

6. — cscx = —cscx cot x.
dx

C. Derivatives of Inx and e*: We conclude our library of derivatives of
basic functions with

d X X
%e =e
and
Elnx = ;

We may apply the Chain Rule to obtain the following particularly useful gen-
eralization of this logarithmic derivative:

d _9'(x)
%lngo(x) = om

Now it is time to learn to differentiate the functions that we will commonly
encounter in our work. We do so by applying the rules for sums, products, quo-
tients, and compositions to the formulas for the derivatives of the elementary
functions. Practice is the essential tool in mastery of these ideas. Be sure to do
all the “You Try It” problems in this section.

examprLE 2.14
Calculate the derivative

dix[(sinx—l-x)(x3 —Inx)].
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SOLUTION

d iny d, _ d 3 _ 2,2 d _1
We know that Jsinx =cosx, Zx =1, ;x> =3x% and S Inx=.
Therefore, by the addition rule,

d d . d
—(sinx 4+ x) = —sinx+ —x=cosx+ 1
X dx dx

and

dix(x3 —Inx) = Jixx3 — dix Inx = 3x% — )1_(

Now we may conclude the calculation by applying the product rule:

(sinx + x) (x> — Inx)

= i(sinx—l—x) <(x3 = Inx) + (sinx + x) - i(x3 —1Inx)
dx dx

=(cosx+ 1) - (x> —Inx) + (sinx + x) - <3x2 — :-{)

1
=(4x>—1) + <x3cosx+3xzsinx— —sinx) — (Inxcosx + Inx).
X

ExampLE 2.15
Calculate the derivative

d (e + xsinx
dx tan x )

SOLUTION
d x _ dy 1 d cino d _ 2
We know that He" = ée*, X =1, 4, sinx = cosx, and ax tanx = sec” x.

By the product rule,

d . d . d . .
—xsinx=|—x)-sinx+x-—sinx=1-sinx + X - CcosXx.
dx X dx
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Therefore, by the quotient rule,

dx (tanx)?

d (e"—|—xsinx)_tanx- 4 (e + xsinx) — (e + xsinx) L tanx
tan x o

__tanx - (€ +sinx 4 xcosx) — (€ + xsinx) - (sec x)?2
o (tan x)2

e*tan x 4+ tan xsinx + xsinx — e sec® x — xsinxsec® x

tan2 X

This is the derivative that we wished to calculate.

YOU TRY IT Calculate the derivative L (sinx- (cosx — L))
dx e +Inx

EXAMPLE 2.16
Calculate the derivative

d . 3 2
a(sm(x — x)).

B’SOLUHON

This is the composition of functions, so we must apply the Chain Rule. It is
essential to recognize what function will play the role of f and what func-
tion will play the role of g.

Notice that, if x is the variable, then x> — x? is applied first and sin ap-
plied next. So it must be that g(x) = x> — x> and f(s) = sins. Notice that
4 f(s) = cossand i g(x) = 3x? — 2x. Then

sin(x> — x?) = fog(x)
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and

d . s 5, _d
a(sm(x —x7)) = dx( fog(x))

df d
= [E(g(x))} . Eg(x)

= cos(g(x)) - (3x* — 2x)

= [cos(x3 — xz)] - (3x* — 2x).

That is the derivative that we wish to calculate.

ExampLE 2.17

Calculate the derivative

[ﬁ'sownon

Let

Then

h= fog,
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where f(s) =Insand g(x) = x?/(x — 2).So % f(s) = % and %g(x) =

—72). w2,
()((2)){_# = (x? — 4x) /(x — 2)%. As aresult,

d d

df d
= [E(g(x))} . ag(x)

1 x? — 4x
T glx) (x—2)2
1 x? — 4x

x/(x—2) (x—2)2

x—4
x(x—2)°

YOU TRY IT Perform the differentiation in the last example by first applying a
rule of logarithms to simplify the function to be differentiated.

YOU TRY IT Calculate the derivative of tan(e* — x).

EXAMPLE2.18
Calculate the tangent line to the graph of f(x) = x - e atthe point (1, e).

SOLUTION
The slope of the tangent line will be the derivative. Now

flix) =[xI"-e +x-[e7 =€ +x-[2x-€°].

In the last derivative we have of course used the Chain Rule. Thus f/(1) =
e + 2e = 3e. Therefore the equation of the tangent line is

(y —e) =3e(x—1).

89
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YOU TRY IT Calculate the equation of the tangent line to the graph of g(x) =

2
cos (x x ) at the point (2, cos[2/In 2]).

MATH NOTE Calculate dix (x*/x) using the quotient rule. Of course x? /x = x,
and you may calculate the derivative directly. Observe that the two answers are the
same. The calculation confirms the validity of the quotient rule by way of an exam-
ple. Use a similar example to confirm the validity of the product rule.

2.5.1 The Derivative of an Inverse

An important formula in the calculus relates the derivative of the inverse of a
function to the derivative of the function itself. The formula is

[f_l]/(t) = (%%)

1
FU )

We encourage you to apply the Chain Rule to the formula f(f~'(x)) = x to
obtain a formal derivation of the formula (xx).

EXAMPLE 2.19
Calculate the derivative of g(t) = t'/3.

SOLUTION
Set f(s) = s> and apply formula (xx). Then f/(s) = 3s? and f~'(t) =
t'/3.Withs = f~"(t) we then have

-1y _;—L_;_l._zﬁ
[f'1(t) = f/(F(t)) 3s2 3-[t'/32 3 t .

Formula (x*) may be applied to obtain some interesting new derivatives to
add to our library. We record some of them here:

1
I. E arcsin x = \/1—_—962
1
II. — arccosx = —

dx /T — 2
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1
III. % arctan x = T2

YOU TRY IT Calculate the derivative of f(x) = +/x. Calculate the derivative
ofg(x) = ¥/xforanyk € {2,3,4,...}.

2.6 The Derivative as a Rate of Change

If f(t) represents the position of a moving body, or the amount of a changing
quantity, at time ¢, then the derivative f’(t) (equivalently, % f(t)) denotes the
rate of change of position (also called velocity) or the rate of change of the
quantity. When f’(t) represents velocity, then sometimes we calculate another
derivative—( f")'(t)—and this quantity denotes the rate of change of velocity, or
acceleration. In specialized applications, even more derivatives are sometimes
used. For example, sometimes the derivative of the acceleration is called jerk
and sometimes the derivative of jerk is called surge.

EXAMPLE 2.20
The position of a body moving along a linear track is given by p(t) =
3t> — 5t + 7 feet. Calculate the velocity and the acceleration at time t = 3
seconds.

SOLUTION
The velocity is given by

p'(t) =6t — 5.

At time t = 3 we therefore find that the velocity is p’(3) =18 — 5 =
13 ft./sec.
The acceleration is given by the second derivative:

p’(t) = (p)'(t) = (6t —5)" =6.

The acceleration at time t = 3 is therefore 6 ft./sec.2.
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= Still Struggling

As previously noted, velocity is measured in feet per second (or ft./sec.). Acceler-
ation is the rate of change of velocity with respect to time; therefore acceleration
is measured in ““feet per second per second" (or ft./sec.z).

EXAMPLE 2.21
A massive ball is dropped from a tower. It is known that a falling body
descends (near the surface of the earth) with an acceleration of about
32 ft./sec. From this information one can determine that the equation for
the position of the ball at time t is

p(t) = —16t> + vot + hy ft.

Here v is the initial velocity and hy is the initial height of the ball in feet.
Also tis time measured in seconds. If the ball hits the earth after 5 seconds,
determine the height from which the ball is dropped.

SOLUTION
Observe that the velocity is

v(t) = p'(t) = —32t + v,.
Obviously the initial velocity of a falling body is 0. Thus
0=v(0) = —32:0+ vp.

It follows that vy = 0, thus confirming our intuition that the initial velocity
is 0. Thus

p(t) = —16t> + ho.

1 'We shall say more about this equation, and this technique, in Section 3.4.
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Now we also know that p(5) = 0; that is, at time t = 5 the ball is at
height 0. Thus

0= p(5) = —16-5% + h,.

We may solve this equation for hy to determine that h, = 400.
We conclude that

p(t) = —16t* + 400.

Furthermore, p(0) = 400, so the initial height of the ball is 400 feet.

YOU TRY IT Suppose that a massive ball falls from a height of 600 feet. After
how many seconds will it strike the ground?
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QuIZ

1. Calculate, if possible, each of these limits. Give reasons for each step of

your solution.

(a) limx-e™

x—0

2 _
(b) lim *—2

x—2 X —

(c) lim(x —4) - cot(x — 4)

x—4

(d) lim v/x-Inx

x—0

(0) lim t>—5t+6
t—2 t—2

® hmsz—Zs—:’)

s—=3 s—3

x——4 x+4

2. Determine whether the given function f is continuous at the given point
c. Give careful justifications for your answers.

x—2
@ fW="0 =2
®) fe=273 o=

+3
(©) f(x) =x-cos(1/x) c=0

(d) f(x)=x* Inx c=0

© fw= |7 =
e x) =
x2if 1 <x
xifx<1
0 fx)= ,
3xif 1 <x
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sin x ifx <2x

®) /6= {(X—ZJT) if 2r < x

(h) fx)=er> =2

. Use the definition of derivative to calculate each of these derivatives.
(a) f'(2) when f(x) = x> — 3x

(b) f'(3) when f(x) = —3/x*

. Calculate each of these derivatives. Justify each step of your calculation.

© | 2]
(6) - cos(e?)

d
(9) R cot(t® — t%)

d x*+1
dx x? — 1

(d)
(e) [x - In(cosx)]

d
A ps66-3)
(B e

(6) e

cos(x?)

(h) [In(e* —x)]

. Imitate the example in the text to do each of these falling body problems.
(a) A ball is dropped from a height of 64 feet. How long will it take that

ball to hit the ground?

(b) Suppose that the ball from part (a) is thrown straight down with an
initial velocity of 5 feet per second. Then how long will it take the

ball to hit the ground?

(c) Suppose that the ball from part (a) is thrown straight up with an initial
velocity of 20 feet per second. Then how long will it take the ball to

hit the ground?

. Use té}ie Chain Rule to perform each of these differentiations:
(a) e cos(In(sin x))
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d -
cos(sin x)
®) &

X

(o) 4 In(e“** + x)
dx

(d) I arccos(x” + sec x)

dx
d .

(e) = arcsin(Inx + €*/2)
dx

(6 - arctanx - %)
7 arctan(x —e

7. If a car has position p(t) = 3t*> — 2t + 10 feet, where t is measured in sec-
onds, then what is the velocity of that car at time t = 4? What is the
average velocity of that car from t = 2 to t = 62 What is the greatest ve-
locity over the time interval [4, 10]?

8. In each of these problems, use the formula for the derivative of an inverse
function to find [ f~17(1).
() f(0)=1, f(0)=2
b) f@A=1 f(2)=6
(@ fB)=1 fB)=nr
d fM=1f01)=20



chapter 3

Applications of
the Derivative

One of the things that makes the derivative so important is its many applications
to the study of functions and the study of physical processes. [saac Newton was
motivated in his work by the applications of calculus, not by its theory. Leibniz,
on the other hand, cared mostly about the theory. In this chapter we get our
first exposure to some of these key ideas.

Each type of problem discussed in this chapter has its own special features.
Physics plays a significant role in most of them. Certainly, throughout history,

calculus and physics have been inextricably intertwined.

CHAPTER OBJECTIVES

In this chapter, you will learn

» Graphing of functions

* Maximum/minimum problems
» Related rate problems

« Falling body problems
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3.1 Graphing of Functions

We know that the value of the derivative of a function f at a point x represents
the slope of the tangent line to the graph of f at the point (x, f(x)). If that slope
is positive, then the tangent line rises as x increases from left to right, hence so
does the curve (we say that the function is increasing). If instead the slope of
the tangent line is negative, then the tangent line falls as x increases from left
to right, hence so does the curve (we say that the function is decreasing). We
summarize:

On an interval where f’ > 0 the graph of f goes uphill.
On an interval where f’ < 0 the graph of f goes downhill.

See Figure 3.1.

With some additional thought, we can also get useful information from the
second derivative. If f” = (f’) > 0 at a point, then f’ is increasing. Hence
the slope of the tangent line is getting ever greater (the graph is concave up).
The picture must be as in Figure 3.2(a) or 3.2(b). If instead f” = (f') <0 at
a point then f’ is decreasing. Hence the slope of the tangent line is getting
ever less (the graph is concave down). The picture must be as in Figure 3.3(a)
or 3.3(b).

Using information about the first and second derivatives, we can render
rather accurate graphs of functions. We now illustrate with some examples.

S'<0

770 e

FIGURE 3.1
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/ \

(@) (®)

FIGURE 3.2

EXAMPLE 3.1
Sketch the graph of f(x) = x2.

B’sownom

Of course this is a simple and familiar function, and you know that its graph
is a parabola. But it is satisfying to see calculus confirms the shape of the
graph. Let us see how this works.

Firstobserve that f’(x) = 2x.Weseethat f' < Owhenx < Oand f’ >
0 when x > 0. So the graph is decreasing on the negative real axis and the
graph is increasing on the positive real axis.

Next observe that f”/(x) = 2.Thus f”” > 0 atall points. Thus the graph
is concave up everywhere.

Finally note that the graph passes through the origin.

We summarize this information in the graph shown in Figure 3.4.

(@) (b)

FIGURE 3.3
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S'<0 T S'=0

f">0 everywhere

FIGURE 3.4

EXAMPLE 3.2
Sketch the graph of f(x) = x3.

SOLUTION
First observe that f’(x) = 3x2. Thus f’ > 0 everywhere. The function is
always increasing.

Second observe that f”’(x) = 6x. Thus f”(x) < 0 when x < 0 and
f’(x) > 0whenx > 0.So the graph is concave down on the negative real
axis and concave up on the positive real axis.

Finally note that the graph passes through the origin.

We summarize our findings in the graph shown in Figure 3.5.

£7>0

/<0

f'>0everywhere

FIGURE 3.5
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YOU TRY IT Usecalculus to aid you in sketching the graph of f(x) = x3 + x.

EXAMPLE 3.3
Sketch the graph of g(x) = x + sin x.

SOLUTION
We see that g’(x) = 1+ cosx. Since —1 < cosx < 1, it follows that
g’(x) > 0.Hence the graph of g is always increasing.

Now g”(x) = — sinx. This function is positive sometimes and negative
sometimes. In fact

— sin x is positive when knw < x < (k+ 1), kodd

and

— sin x is negative when k < x < (k+ 1) 7, keven.

So the graph alternates between being concave down and concave up. Of
course it also passes through the origin. We amalgamate all our informa-
tion in the graph shown in Figure 3.6.

FIGURE 3.6
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FIGURE 3.7

EXAMPLE 3.4
Sketch the graph of h(x) =

x+1

SOLUTION
First note that the function is undefined atx = —1.

We calculate that h’(x) = .Thus the graph is everywhere increas-
ing (exceptatx = —1).

We also calculate that h”’(x) = o +1)3 Hence h” > 0 and the graph is
concave upwhen x < —1.Likewise i/ < 0and the graph is concave down
whenx > —1.

Finally, as x tends to — 1 from the left we notice that h tends to +oo and
as x tends to — 1 from the right we see that h tends to —oo.

Putting all this information together, we obtain the graph shown in
Figure 3.7.

(x -|—1)2

YOU TRY IT Sketch the graph of the function k(x) = x - /x + 1.

EXAMPLE 3.5
Sketch the graph of k(x) = x3 4+ 3x?> — 9x + 6.
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%
FIGURE 3.8
SOLUTION
We notice that kK’(x) = 3x? 4+ 6x — 9 = 3(x — 1) (x + 3).So the sign of k'
changes at x = 1 and x = —3. We conclude that

k' is positive when x < —3;
k' is negative when —3 < x < 1;
k' is positive when x > 3.

Finally, k”(x) = 6x + 6. Thus the graph is concave down when x < —1
and the graph is concave up when x > —1.

Putting all this information together, and using the facts that k(x) —
—o0 when x — —oo and k(x) — +oo when x — 400, we obtain the
graph shown in Figure 3.8.

3.2 Maximum/Minimum Problems

One of the great classical applications of the calculus is to determine the max-
ima and minima of functions. Look at Figure 3.9. It shows some (local) maxima
and (local) minima of the function f.

Notice that a maximum has the characteristic property that it looks like a
hump: the function is increasing to the left of the hump and decreasing to the
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YA
y=fx)
local max
local max 1
| local max
N AN
local min
local min
FIGURE 3.9

right of the hump. The derivative at the hump is O: the function neither increases
nor decreases at a local maximum. This is sometimes called Fermat’s test. Also,
we see that the graph is concave down at a local maximum.

It is common to refer to the points where the derivative vanishes as critical
points. In some contexts, we will designate the endpoints of the domain of our
function to be critical points as well.

Now look at a local minimum. Notice that a minimum has the characteristic
property that it looks like a valley: the function is decreasing to the left of the
valley and increasing to the right of the valley. The derivative at the valley is O:
the function neither increases nor decreases at a local minimum. This is another
manifestation of Fermat's test. Also, we see that the graph is concave up at a
local minimum.

Let us now apply these mathematical ideas to some concrete examples.

EXAMPLE 3.6
Find all local maxima and minima of the function k(x) = x> — 3x2 —
24x + 5.

SOLUTION
We begin by calculating the first derivative:

K(x) =3x> —6x—24=3(x+2)(x—4).
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YA
local max +

=Y

local min
at (4,~75)
FIGURE 3.10
We notice that k’ vanishes only when x = —2 or x = 4. These are the only

candidates for local maxima or minima. The second derivative is k”(x) =
6x — 6.Now k" (4) = 18 > 0,50 x = 4 is the location of a local minimum.
Also k"(—2) = —18 < 0, so x = —2 is the location of a local maximum.
A glance at the graph of this function, as depicted in Figure 3.10, confirms
our calculations.

EXAMPLE 3.7
Find all local maxima and minima of the function g(x) = x + sinx.

SOLUTION
First we calculate that

g'(x) =1+ cosx.

Thus g’ vanishes at the points (2k + 1)w fork=..., —2,—1,0,1,2,....
Now g”(x) = sinx. And g”’((2k 4+ 1) w) = 0. Thus the second derivative
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FIGURE 3.11

test is inconclusive. Let us instead look at the first derivative. We notice
that it is always > 0. But, as we have already noticed, the first derivative
changes sign at a local maximum or minimum. We conclude that none of
the points (2k + 1) 7 is either a maximum nor a minimum. The graph in
Figure 3.11 confirms this calculation.

YOU TRY IT Find all local maxima and minima of the function g(x) = 2x3 —
15x2 4 24x + 6.

D EXAMPLE 3.8

A box is to be made from a sheet of cardboard that measures 12”7 x 12”.
The construction will be achieved by cutting a square from each corner of
the sheet and then folding up the sides (see Figure 3.12). What is the box
of greatest volume that can be constructed in this fashion?

Itisimportantin a problem of this kind to introduce a variable. Let x be the
side length of the squares that are to be cut from the sheet of cardboard.
Then the side length of the resulting box will be 12 — 2x (see Figure 3.13).
Also the height of the box will be x. As a result, the volume of the box
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FIGURE 3.12

will be
V(x) = x-(12 —2x) - (12 — 2x) = 144x — 48x> + 4x°.

Our job is to maximize this function V.
Now V’(x) = 144 — 96x + 12x2. We may solve the quadratic equation

144 — 96x + 12x*>* =0

to find the critical points for this problem. Using the quadratic formula,
we find that x = 2 and x = 6 are the critical points for the problem. Now
V" (x) = —96 + 24x.Since V(2) = —48 < 0, we conclude that x = 2is
a local maximum for the problem. In fact we can sketch a graph of V(x)
using ideas from calculus and see that x = 2 is a global maximum.

We conclude that if squares of side 2” are cut from the sheet of card-
board then a box of maximum volume will result.

Observe in passing that if squares of side 6" are cut from the sheet then
(there will be no cardboard left!) the resulting box will have zero volume.
This value for x gives a minimum for the problem.

}x

FIGURE 3.13
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FIGURE 3.14

EXAMPLE 3.9
A rectangular garden is to be constructed against the side of a garage. The
gardener has 100 feet of fencing, and will construct a three-sided fence;
the side of the garage will form the fourth side. What dimensions will give
the garden of greatest area?

Look at Figure 3.14. Let x denote the side of the garden that is perpendic-
ular to the side of the garage. Then the resulting garden has width x feet
and length 100 — 2x feet. The area of the garden is

A(x) = x - (100 — 2x) = 100x — 2x°.

We calculate A’(x) = 100 — 4x and find that the only critical point for
the problem is x = 25. Since A”(x) = —4 for all x, we determine that
x = 25 is a local maximum. By inspection, we see that the graph of A is
a downward-opening parabola. So x = 25 must also be the global maxi-
mum that we seek. The optimal dimensions for the garden are

width = 25 ft. length = 50 ft.

YOU TRY IT Findtherightcircular cylinder of greatest volume that can be con-
tained in a sphere of radius 1.
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exampLE 3.10
The sum of two positive numbers is 60. How can we choose them so as to
maximize their product?

SOLUTION
Let x be one of the two numbers. Then the other is 60 — x. Their product
is

P(x) = x-(60 — x) = 60x — x°.

Thus P is the quantity that we wish to maximize. Calculating the derivative,
we find that

P’(x) = 60 — 2x.

Thus the only critical point for the problem is x = 30. Since P"(x) =
—2, we find that x = 30 is a local maximum. Since the graph of P is a
downward-opening parabola, we can in fact be sure that x = 30is a global
maximum.

We conclude that the two numbers that add to 60 and maximize the
product are 30 and 30.

YOU TRY IT Arectangular box is to be placed in the first quadrant {(x, y) :
x > 0, y > 0} insuch a way that one side lies on the positive x-axis and one side
lies on the positive y-axis. The box is to lie below the line y = —2x + 5. Give the
dimensions of such a box having greatest possible area.

3.3 Related Rates

If a tree is growing in a forest, then both its height and its radius will be increas-
ing. These two growths will depend in turn on (i) the amount of sunlight that
hits the tree, (ii) the amount of nutrients in the soil, and (iii) the proximity of
other trees. We may wish to study the relationship among these various param-
eters. For example, if we know that the amount of sunlight and nutrients are
increasing at a certain rate then we may wish to know how that affects the rate
of change of the radius. This consideration gives rise to related rates problems.
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exampLE 3.11
A toy balloon is in the shape of a sphere. It is being inflated at the rate of
20 cu.in./min. At the moment that the sphere has volume 64 cubic inches,
what is the rate of change of the radius?

SOLUTION
We know that volume and radius of a sphere are related by the formula

47
V=—rd *
3 (*)
The free variable in this problem is time, so we differentiate equation ( *)
with respect to time t. It is important that we keep the Chain Rule in mind
as we do so." The result is

dr

dv _ Am
dt’

_.3r2

dt 3 (xx)

Now we are given that dV /dt = 20. Our question is posed at the moment
that V = 64. But, according to (*), this means thatr = ,/48/x. Substitut-
ing these values into equation (*x*) yields

4 S/ 2 dr
20—?'3[ 48/77] .E.

Solving for dr /dt yields

dr . 5
dt ~ 482/3.751/3°

Thus the radius is increasing at the specified rate.

EXAMPLE 3.12
A 13-foot ladder leans against a wall (Figure 3.15). The foot of the ladder
begins to slide away from the wall at the rate of 1 foot per minute. When
the foot is 5 feet from the wall, at what rate is the top of the ladder falling?

I'The point is that we are not differentiating with respect to 7.
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FIGURE 3.15

SOLUTION
Let h(t) be the height of the ladder at time t and b(t) be the distance of
the base of the ladder to the wall at time t. Then the Pythagorean theorem
tells us that

h(t)% + b(t)2 = 132.

We may differentiate both sides of this equation with respect to the vari-
able t (which is time in minutes) to obtain

2-h(t) -h'(t) +2-b(t) - b'(t) =0.

Solving for h’(t) yields

b(t) - b/'(t)

Wit = —=

At the instant the problem is posed, b(t) =5, h(t) =12 (by the
Pythagorean theorem), and b/(t) = 1. Substituting these values into the
equation yields

5-1 5

h(t) = ——— = —— ft./min.
12 12

Observe that the answer is negative, which is appropriate since the top of
the ladder is falling.
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A sponge is in the shape of a right circular cone (Figure 3.16). As it soaks
up water, it grows in size. At a certain moment, the height equals 6 inches,
andisincreasing at the rate of 0.3 inches per second. At that same moment,
the radius is 4 inches, and is increasing at the rate of 0.2 inches per second.

CALCULUS DeMYSTiFieD

YOU TRY IT Supposethatasquare sheet of aluminum is placed in the hot sun.

It begins to expand very slowly so that its diagonal is increasing at the rate of
1 millimeter per minute. At the moment that the diagonal is 100 millimeters, at
what rate is the area increasing?

How is the volume changing at that time?

SOLUTION

We know that the volume V of a right circular cone is related to the height

h and the radius r by the formula

V = —=r’h.
3

Differentiating both sides with respect to the variable t (for time in sec-

onds) yields

- _ 2 —_h -
1y +r p

v 1 Zrdr ,dh
dt 3 dt )

FIGURE 3.16
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Substituting the values for r, dr /dt, h, and dh/dt into the right-hand side

yields
dv 1 , 1 24
3" [2-4-(0.2) 6+4 -(0.3)] = 7196 +4.81 = .~

YOU TRY IT In the heat of the sun, a sheet of aluminum in the shape of an
equilateral triangle is expanding so that its side length increases by 1 millimeter
per hour. When the side length is 100 millimeters, how is the area increasing?

3.4 Falling Bodies

It is known that, near the surface of the earth, a body falls with acceleration
(due to gravity) of about 32 ft./sec.”. If we let h(t) be the height of the object
at time t (measured in seconds), then our information is that

h'(t) = —32.

Observe the minus sign to indicate that height is decreasing.

Now we will do some organized guessing. What could h’ be? It is some
function whose derivative is the constant —32. Our experience indicates that
polynomials decrease in degree when we differentiate them. That is, the de-
gree goes from 5 to 4, or from 3 to 2. Since, h” is a polynomial of degree 0,
we therefore determine that i’ will be a polynomial of degree 1. A moment’s
thought then suggests that h'(t) = —32t. This works! If h'(t) = —32t then
h'(t) = [W(t)] = —32. In fact we can do a bit better. Since constants differen-
tiate to zero, our best guess of what the velocity should be is /(1) = —32t + vy,
where v is an undetermined constant.

Now let us guess what form h(t) should have. We can learn from our ex-
perience in the last paragraph. The “antiderivative” of —32¢ (a polynomial of
degree 1) should be a polynomial of degree 2. After a little fiddling, we guess
—16¢?. And this works. The antiderivative of v (a polynomial of degree 0)
should be a polynomial of degree 1. After a little fiddling, we guess vyt. And
this works. Taking all this information together, we find that the “antideriva-
tive” of h'(t) = —32t + vy is

h(t) = =16t + vyt + hy. @
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FIGURE 3.17

Notice that we have once again thrown in an additive constant hy. This does
no harm:

() = [-167] + [vot]' + [ho]’ = =32t +w,
just as we wish. And, to repeat what we have already confirmed,
h'(t) = [W()] = [-32t] + [vo] = —32.

We now have a general formula (namely (7)) for the position of a falling body
at time ¢. (Recall that we were first introduced to this formula in Section 2.6.)
See Figure 3.17.

Before doing some examples, we observe that a falling body will have initial
velocity 0. Thus

0=Hh(0)=-32-0+u.

Hence, for a falling body, vy = 0. In some problems we may give the body an
initial push, and then v, will not be zero.

exampLE 3.14
Suppose that a falling body hits the ground with velocity —100 ft./sec.
What was the initial height of the body?
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SOLUTION
With notation as developed above, we know that velocity is given by

h'(t) = =32t 4 0.

We have taken v, to be 0 because the body is a falling body; it had no initial
push. If T is the time at which the body hits the ground, then we know that

—100 = h'(T) = —32.T.

Asaresult, T = 25/8sec.
When the body hits the ground, its height is 0. Thus we know that

0=nh(T) = h(25/8) = —16-(25/8) + hy.
We may solve for hy to obtain

625
ho = —.

Thus all the information about our falling body is given by

625

At time t = 0 we have
625

Thus the initial height of the falling body is 625 /4 ft. = 156.25 ft.

Notice that, in the process of solving the last example, and in the discussion
preceding it, we learned that hj represents the initial height of the falling body
and vy represents the initial velocity of the falling body. This information will
be useful in the other examples that we examine.

EXAMPLE 3.15
A body is thrown straight down with an initial velocity of 10 feet per sec-
ond. It strikes the ground in 12 seconds. What was the initial height?
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SOLUTION
We know that vo = —10 and that h(12) = 0. This is the information that

we must exploit in solving the problem. Now
h(t) = —16t*> — 10t + h,.
Thus
0="h(12) = —16-122 —10- 12 + ho.
We may solve for h, to obtain
ho = 2424 ft.

The initial height is 2424 feet.

YOU TRY IT Abody isthrown straight up with initial velocity 5 feet per second
from a height of 40 feet. After how many seconds will it hit the ground? What will
be its maximum height?

ExAMPLE 3.16
A body is launched straight up from height 100 feet with some initial ve-
locity. It hits the ground after 10 second. What was that initial velocity?

SOLUTION
We are given that hy = 100. Thus

h(t) = —16t> + vot + 100.
Our job is to find vy. We also know that
0=h(10) = —16- 10> 4+ v, - 10 + 100.

We solve this equation to find that vy = 150 ft./sec.

YOU TRY IT Onacertainplanet, bodies fall with an acceleration due to gravity

of 10ft./ sec.”. A certain body is thrown down with an initial velocity of 5 feet per
second, and hits the surface 12 seconds later. From what height was it launched?
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. Sketch the graph of f(x) = 2x/[x? + 1], indicating all local maxima and

minima together with concavity properties.

. What is the right circular cylinder of greatest volume that can be inscribed

upright in a sphere of radius 5?

. An air mattress (in the shape of a rectangular parallelepiped) is being in-

flated in such a way that, at a given moment, its length is increasing by
2 inches per minute, its width is decreasing by 1 inch per minute, and its
height is increasing by 0.5 inch per minute. At the moment its dimen-
sions are £ = 90", w = 50", and h = 10”. How is its volume changing at
that time?

A certain body is thrown straight down at an initial velocity of 10 ft./sec.
It strikes the ground in 3 seconds. What is its initial height?

. Because of viral infection, the shape of a certain cone-shaped cell is chang-

ing. The height is increasing at the rate of 2 microns per minute. For
metabolic reasons, the volume remains constantly equal to 107 cubic mi-
crons. At the moment that the radius is 3 microns, what is the rate of
change of the radius of the cell?

A silo is to hold 5,000 cubic feet of grain. The silo will be cylindrical in
shape and have a flat top. The floor of the silo will be the earth. What
dimensions of the silo will use the least material for construction?

Sketch the graph of the function g(x) = x-cosx. Show maxim and
minima.

A body is launched straight down at a velocity of 10 ft./sec. from height
500 feet. How long will it take this body to reach the ground?

Sketch the graph of the function h(x) = ad 7 Exhibit maxima, minima,

X2
and concavity.

A punctured balloon, in the shape of a sphere, is losing air at the rate
of 3 cu. in./sec. At the moment that the balloon has volume 257 cubic
inches, how is the radius changing?

A twenty-pound stone and a thirty-pound stone are each dropped from
height 100 feet at the same moment. Which will strike the ground first?

17
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12.

13.

14.

15.

16.

A man wants to determine how far below the surface of the earth is the
water in a well. How can he use the theory of falling bodies to do so?

A rectangle is to be placed in the first quadrant, with one side on the x-
axis and one side on the y-axis, so that the rectangle lies below the line
2x + 3y = 6. What dimensions of the rectangle will give greatest area?

A rectangular box with square base is to be constructed to hold 120 cubic
inches. The material for the base and the top costs 8 cents per square
inch and the material for the sides costs 16 cents per square inch. What
dimensions will give the most economical box?

Sketch the graph of the function f(x) = [x? — 4]/[x? + 4]. Exhibit max-
ima, minima, and concavity.

On the planet Glug, the acceleration due to gravity of a falling body near
the surface of the planet is 12 ft./sec. A body is dropped from height
50 feet. How long will it take that body to hit the surface of Glug?



The Integral

Besides the derivative, the other big idea in calculus is the integral. A way of
adding or amalgamating infinite quantities, integration is a powerful tool in
mathematical physics, engineering, and many other disciplines. Central to the
importance of the integral is the Fundamental Theorem of Calculus-——which links
differentiation and integration. The fact that we can use the derivative to com-

pute the integral changes the face of the subject.

CHAPTER OBJECTIVES

In this chapter, you will learn
» Antiderivatives

+ Indefinite integrals

* Area

» Signed area

» Area between two curves

» Rules of integration

119



120

CALCULUS DeMYSTiFieD

4.0 Introduction

Many processes, both in mathematics and in nature, involve addition. You are
familiar with the discrete process of addition, in which you add finitely many
numbers to obtain a sum or aggregate. But there are important instances in
which we wish to add infinitely many terms. One important example is in the
calculation of area—especially the area of an unusual (non-rectilinear) shape.
A standard strategy is to approximate the desired area by the sum of small,
thin rectangular regions (whose areas are easy to calculate). A second example
is the calculation of work, in which we think of the work performed over
an interval or curve as the aggregate of small increments of work performed
over very short intervals. We need a mathematical formalism for making
such summation processes natural and comfortable. Thus we will develop the
concept of the integral.

4.1 Antiderivatives and Indefinite Integrals

4.1.1 The Concept of Antiderivative

Let f be a given function. We have already seen in the theory of falling bodies
(Section 3.4) that it can be useful to find a function F such that F' = f. We
call such a function F an antiderivative of f.In fact we often want to find the
most general function F, or a family of functions, whose derivative equals f. We
can sometimes achieve this goal by a process of organized guessing.

Suppose that f(x) = cosx. If we want to guess an antiderivative, then we
are certainly not going to try a polynomial. For if we differentiate a polyno-
mial then we get another polynomial. So that will not do the job. For similar
reasons we are not going to guess a logarithm or an exponential. In fact, the
way that we get a trigonometric function through differentiation is by differ-
entiating another trigonometric function. What trigonometric function, when
differentiated, gives cos x? There are only six functions to try, and a moment’s
thought reveals that F(x) = sin x does the trick. In fact, an even better answer
is F(x) = sinx 4+ C. The constant differentiates to 0, so F'(x) = f(x) = cosx.
We have seen in our study of falling bodies that the additive constant gives us
a certain amount of flexibility in solving problems.

Now suppose that f(x) = x>. We have already noted that the way to get
a polynomial through differentiation is to differentiate another polynomial.
Since differentiation reduces the degree of the polynomial by 1, it is natural to
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guess that the F we seek is a polynomial of degree 3. What about F(x) = x3?
We calculate that F’(x) = 3x2. That does not quite work. We seek x? for our
derivative, but we get 3x2. This result suggests adjusting our guess. We instead
try F(x) = x3/3. Then, indeed, F’(x) = 3x?/3 = x?, as desired. We will write
F(x) = x3/3 + C for our antiderivative.

More generally, suppose that f(x) = ax® + bx? + cx +d. Using the rea-
soning in the last paragraph, we may find fairly easily that F(x) = ax*/4 +
bx3/3 + cx?/2 + dx + e. Notice that, once again, we have thrown in an additive
constant.

YOU TRY IT Find afamily of antiderivatives for the function f(x) = sin2x —
x* + e~

4.1.2 The Indefinite Integral

In practice, it is useful to have a compact notation for the antiderivative. What
we do, instead of saying that ‘‘the antiderivative of f(x)is F(x) + C,” is to write

/ f(x)dx = F(x)+ C.
So, for example,
/cosxdx =sinx + C

and

and
2x
2x _e
/e dx——z + C.

The symbol [ is called an integral sign (the symbol is in fact an elongated ““S”")
and the symbol “dx”’ plays a traditional role to remind us what the variable is.
We call an expression like

/ f(x)dx

121
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an indefinite integral. The name comes from the fact that later on we will have a
notion of ““definite integral” that specifies what value C will take—so it is more
definite in the answer that it gives.

exampLE 4.1
Calculate

[sin(3x + 1) dx.

B’SOLUHON

We know that we must guess a trigonometric function. Running through
the choices, cosine seems like the best candidate. The derivative of cos x is
— sin x. So we immediately see that — cos x is a better guess—its derivative
is sin x. But then we adjust our guessto F (x) = — cos(3x + 1) totakeinto
account the form of the argument. This almost works: we may calculate
that F/(x) = 3sin(3x + 1).We determine that we must adjust by a factor
of 1/3. Now we can record our final answer as

/sin(3x—|— 1) dx = —%cos(3x+ 1) +C.

We invite the reader to verify that the derivative of the answer on the right-
hand side gives sin(3x + 1).

EXAMPLE 4.2
Calculate

/%dx
x*+3

SOLUTION
We notice that the numerator of the fraction is nearly the derivative of the
denominator. Put in other words, if we were asked to integrate

2x
x2 43
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then we would see that we are integrating an expression of the form

¢'(x)
p(x)

(which we in fact encountered among our differentiation rules in Section
2.5). As we know, expressions like this arise from differentiating log o(x).

Returning to the original problem, we pose our initial guess as log[x? +
3]. Differentiation of this expression gives the answer 2x/[x? + 3]. This is
close to what we want, but we must adjust by a factor of 1/2. We write our
final answer as

/x2:_3dx:%log[x2+3]—1-c.

YOU TRY IT Calculate the indefinite integral

2
/ xe* 15 dx.

EXAMPLE 4.3
Calculate the indefinite integral

/(x3 + x% + 1)°°. (6x* + 4x) dx.

SOLUTION
We observe that the expression 6x? + 4x is nearly the derivative of x> +
x? + 1.Infactif we set o(x) = x> + x? + 1then the integrand (the quan-
tity that we are asked to integrate) is

[e(x)17° - 2¢0(x).

It is natural to guess as our antiderivative [¢(x)1*'. Checking our work,
we find that

([tp(X)]“) = 51[p(x)1*° - ¢'(x).
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We see that the answer obtained is quite close to the answer we seek; it is
off by a numerical factor of 2 /51. With this knowledge, we write our final
answer as

/(x3+x2+1)5°-(6x2+4x) dx = %-[x3+x2—|—1]51 +C.

YOU TRY IT Calculate the indefinite integral

4.2 Area

Consider the curve shown in Figure 4.1. The curve is the graph of y = f(x).
We set for ourselves the task of calculating the area Athat is (i) under the curve,
(ii) above the x-axis, and (iii) between x = a and x = b. Refer to Figure 4.2 to
see the geometric region we are considering.

We take it for granted that the area of a rectangle of length ¢ and width
w is £ x w. Now our strategy is to divide the base interval [a, b] into equal
subintervals. Fix an integer k > 0. We designate the points

P = {Xo, X1, X2, "-/xk}r
with xp = a and x; = b. We require that |x; — x;_1| = |b —al|/k = Ax for j =

1, ...k. In other words, the points xg, x1, . . ., x, are equally spaced. We call the

y=5x)

PN

FIGURE 4.1
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y=f(x)

(
X

Q
S

FIGURE 4.2

set P a partition. Sometimes, to be more specific, we call it a uniform partition
(to indicate that all the subintervals have the same length). Refer to Figure 4.3.

The idea is to build an approximation to the area A by erecting rectangles
over the segments determined by the partition. The first rectangle R; will have
as base the interval [xy, x; ] and height chosen so that the rectangle touches the
curve at its upper right hand corner; this means that the height of the rectangle
is f(x1). The second rectangle R, has base the interval [x, x; ] and height f (x;).
Refer to Figure 4.4.

Continuing in this manner, we construct precisely k rectangles, R,
Ry, ..., Ry, as shown in Figure 4.5. Now the sum of the areas of these rect-
angles is not exactly equal to the area A that we seek. But it is close. The error
is the sum of the little semi-triangular pieces that are shaded in Figure 4.6. We
can make that error as small as we please by making the partition finer . Figure 4.7
illustrates this idea.

Xg=a

FIGURE 4.3
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y=f(

Xg=a x; x, cexy=b

FIGURE 4.4

Let us denote by R(f, P) the sum of the areas of the rectangles that we
created from the partition P. This is called a Riemann sum. Thus

k
R(f, P) =Zf(x]-)-AxE f(x1) Ax+ f(x2)  Ax+ -+ f(x) - Ax.

i=1

Here the symbol Zl;:l denotes the sum of the expression to its right for each
of the instances j = 1 to j = k.
The reasoning just presented suggests that the true area Ais given by

lim R(f, P).
k— 00

y=f

Xp=a x; x, cexy=b

FIGURE 4.5
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y=f)

Xo=a x; x, s X =b

FIGURE 4.6

We call this limit the integral of f from x = a to x = b and we write it as

/: f(x)dx.

Thus we have learned that

b
the area of A= / f(x) dx.

It is well to take a moment and comment on the integral notation. First, the

/

is an elongated ‘S”’, coming from ‘‘summation.”” The dx is an historical artifact,

integral sign

coming partly from traditional methods of developing the integral, and partly

y=f®

FIGURE 4.7
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from a need to know explicitly what the variable is. The numbers a and b are

called the limits of integration—the number a is the lower limit and b is the upper
limit. The function f is called the integrand.

Before we can present a detailed example, we need to record some important

information about sums:

I. We need to calculate thesum S=1+4+2+---+ N= Ziil j. To achieve

II.

this goal, we write

S=1+ 2 +---+(N-1D+N
S=N+(N-D+--+ 2 41

Adding each column, we obtain

2S=(N+ 1)+ (N+ 1)+ +(N+ 1)+ (N+1).

N times
Thus
2S=N-(N+1)
or
S_ N- U;f+ 1)‘

This is a famous formula that was discovered by Carl Friedrich Gauss
(1777-1855) when he was a child. There is also evidence that the formula
was known to the ancients.

The sum S=124+2% 4+ -4+ N? = > j2 is given by

2NP +3N2 + N
S= S )

We shall not provide the details of the proof of this formula, but refer the
interested reader to [SCH2].
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For our first example, we calculate the area under a parabola:

EXAMPLE 4.4
Calculate the area under the curve y = x?, above the x-axis, and between
x=0and x = 2.

SOLUTION
Refer to Figure 4.8 as we reason along. Let f(x) = x2.

Consider the partition P of the interval [1, 2] consisting of k + 1 points
Xos X1, - - « s Xk. The corresponding Riemann sum is

k
R(f,P) =) f(x)) - Ax.

j=1
Of course
2—-0 2
AX= —— = —
k k
and
Xi=§ 2
I_I k'
YA
N
\\ A .
o] 2 X

FIGURE 4.8
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In addition,

. 2 2 4.2
o) = (i) =

As a result, the Riemann sum for the partition P is

Now formula Il above enables us to calculate the last sum explicitly. The
result is that

8 2k¥+3k*+k

f,P)=—-

R(f,P) & 6
_ 8.4 4
3k 3k

In sum,

2 8 4 4 8
2dx = li f, = i — — — | = —.
/o" x= lim RULP) kL"!o[3+k+3k2} 3

We conclude that the desired area is 8/3.

YOU TRY IT Use the method presented in the last example to calculate the
area under the graph of y = 2x and above the x-axis, between x = 1 and x =
2. You should obtain the answer 3, which of course can also be determined by
elementary considerations—without taking limits.

The most important idea in all of calculus is that it is possible to calculate an
integral without calculating Riemann sums and passing to the limit. This is the
Fundamental Theorem of Calculus, attributed to Leibniz and Newton. We now
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state the theorem, illustrate it with examples, and then briefly discuss why it is
true.

Theorem 4.1 (Fundamental Theorem of Calculus)
Let f be a continuous function on the interval [a, b]. If F is any antiderivative

of f then
b
/ fO)dx = F(b) — F(a).

EXAMPLE4.5
Calculate

2
/ x2 dx.
0
[ﬁ’sownom

We use the Fundamental Theorem. In this example, f(x) = x?. We need
to find an antiderivative F. From our experience in Section 4.1, we can de-
termine that F (x) = x3/3 will do. Then, by the Fundamental Theorem of
Calculus,

2 23 03 8
/ x’dx =F(2) — F(0) = =— — — = _.
o 3 3 3

Notice that this is the same answer that we obtained using Riemann sums
in Example 4.4.

EXAMPLE 4.6
Calculate
™
/ sin x dx.
0
SOLUTION
In this example, f(x) = sinx. An antiderivative for f is F(x) = — cos x.
Then

/ sinxdx = F(w) — F(0) =(—cosw) —(—cos0) =1+ 1=2.
0
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EXAMPLE4.7
Calculate

2
/ (e¥ — cos2x + x3 — 4x) dx.
1

SOLUTION
In this example, f(x) = e — cos 2x + x> — 4x. An antiderivative for f is
F(x) = e — (1/2) sin2x + x*/4 — 2x2. Therefore

2

/(e"—c052x+x3—4x)dx:F(2)—F(1)

1
Va2 L2 5.
_<e 2sm(2 2) + 2 2.2

— e1—1sin(2 1)+E—2 12
2 4

1 . . 9
=(e*—e) — 5[sm4—sm2]— 2

YOU TRY IT Calculate the integral

-1
/ (x3 — cos x + x) dx.

-3

= Still Struggling

Observe in this last example, in fact in all of our examples, you can use any an-
tiderivative of the integrand when you apply the Fundamental Theorem of Calcu-
lus. In the last example, we could have taken F (x) = ¥ — (1/2) sin2x + x*/4 —
2x?% + 5 and the same answer would have resulted. We invite you to provide the
details of this assertion.




Chapter4 THEINTEGRAL 133

Justification for the Fundamental Theorem
Let f be a continuous function on the interval [a, b]. Define the area function

F by
F(x) = area under f, above the x-axis, and between 0 and x.

Let us use a pictorial method to calculate the derivative of F. Refer to
Figure 4.9 as you read on. Now

F(x+h)— F(x) [area between x and x 4 h, below f]
h N h

fx)-h
h

= f().

"»-\\5

As h — 0, the approximation in the last display becomes nearer and nearer to
equality. So we find that

. F(x+h)—F(x)
lim
h—0 h

= f().

But this just says that F’(x) = f(x).
What is the practical significance of this calculation? Suppose that we wish

to calculate the area under the curve f, above the x-axis, and between x = a

and x = b. Obviously this area is F(b) — F(a). See Figure 4.10. But we also
know that that area is f: f(x) dx. We conclude therefore that

b
/ f(x)dx = F(b) — F(a).

YA

-

F(x)

FIGURE 4.9
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y=f(x)

(

<

F(b)—F(a)

FIGURE 4.10

Finally, if G is any other antiderivative for f then G(x) = F(x) + C. Hence
b
G(b) - G(a) = [F(b)+C] —[F(a) + C] = F(b) — F(a) = / f(x)dx.

That is the content of the Fundamental Theorem of Calculus.

YOU TRY IT Calculatetheareabelowthecurvey = —x? 4 2x + 4andabove
the x-axis.

4.3 Signed Area

Without saying so explicitly, we have implicitly assumed in our discussion of
area in the last section that our function f is positive, that is, its graph lies about
the x-axis. But of course many functions do not share that property. We never-
theless would like to be able to calculate areas determined by such functions,
and to calculate the corresponding integrals.

This turns out to be simple to do. Consider the function y = f(x) shown
in Figure 4.11. It is negative on the interval [a, b] and positive on the interval
[b, c]. Suppose that we wish to calculate the shaded area as in Figure 4.12. We
can do so by breaking the problem into pieces.

Of course, because f > 0, the area between x = b and x = ¢ is given by
the integral [, f(x)dx, just as we have discussed in the last section. But our
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y=/x)

=V

FIGURE 4.11

discussions do not apply directly to the area between x = a and x = b. What
we can do is instead consider the function g = —f. Its graph is shown in
Figure 4.13. Of course g is a positive function, except at the endpoints a and b;
and the area under g—between x = a and x = b—is just the same as the shaded
area between x = a and x = b in Figure 4.14 (refer also to Figure 4.12). That

area is

/abg(x)dxz —L:b f(x)dx.

YA

<\

FIGURE 4.12
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YA

y=gx)=-f(x)
/\b -/

FIGURE 4.13

In total, the aggregate shaded area exhibited in Figure 4.15, over the entire
interval [a, c], is

b c
—/ f(x)dx—{—/ f(x)dx.
a b
What we have learned is this: If f(x) < O on the interval under discussion,
then the integral of f will be a negative number. If we want to calculate positive

area then we must interject a minus sign.

YA

=V

FIGURE 4.14
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YA

[
Z ‘ ~
7

FIGURE 4.15

Let us nail down our understanding of these ideas by considering some

examples.
EXAMPLE4.8
Calculate the (positive) area, between the graph of f(x) = x3 — 2x? —
11x + 12 and the x-axis, between x = —3 and x = 4.
SOLUTION

Consider Figure 4.16. It was drawn using the technique of Section 3.1, and
it plainly shows that f is positive on [—3, 1] and negative on [1, 4]. From
the discussion preceding this example, we know then that

1 4
Area = / f(x) dx — / f(x) dx
-3 1

1 4
:f x3—2x2—11x—|—12dx—f x3 —2x? — 11x + 12dx
-3 1
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YA
217

w
F—
W

B 4

FIGURE 4.16

Here we are using the standard shorthand

b

F(x)
a
to stand for
F(b) — F(a).
Thus we have
(%) 160 I 297
*) = — —_—
3 12

Notice that, by design each component of the area has made a positive
contribution to the final answer. The total area is then

937
Area = —.
12

EXAMPLE 4.9
Calculate the (positive) area between f(x) = sinx and the x-axis for
=27 < x < 2.
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[ﬁ’someN

We observe that f(x) =sinx >0 for —27r < x< —mand 0 < x < m.
Likewise, f(x) =sinx<0 for —7<x<0 and = <x<2m.
As a result

- 0 T 27
Area :/ sinxdx—/ sinxdx+/ sinxdx—/ sin x dx.
—27 0 T

—T

This is easily calculated to equal

24+242+42=28.

YOU TRY IT Calculate the (positive) area betweeny = x> — 6x*> + 11x — 6
and the x-axis.

exampLe4.10
Calculate the signed area between the graph of y = cos x 4 1/2 and the
x-axis, —mw/2 < x < 7.

SOLUTION
This is easy, because the solution we seek is just the value of the integral:

4 1
Area = / (cosx + —) dx
—n/2 2

T

. X
=sinx+ —
—7/2
— 0_+_E — _-|_+___7T
o 2 4
37
= —41.

139
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= Still Struggling

In the last example, we have counted positive area as positive and negative area
as negative. Our calculation shows that the aggregate area is positive—but bear
in mind that the calculation entailed counting area above the x-axis as positive
and area below the x-axis as negative (so there was some cancellation). We en-
courage the reader to draw a graph to make this result plausible.

YOU TRY IT Calculatethe actual positive area between the graph of y = x* —
4, —5 < x < 5 and the x-axis.

YOU TRY IT Calculate the signed area between the graph of y = x> — 4 and
the x-axis, —4 < x < 5.

4.4 The Area Between Two Curves

Frequently it is useful to find the area between two curves. See Figure 4.17.
Following the model that we have set up earlier, we first note that the region
bounded by the two curves has left endpoint at x = a and right endpoint at

YA

FIGURE 4.17
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5 4

FIGURE 4.18

x = b. We partition the interval [a, b] as shown in Figure 4.18. Call the partition

P ={xo,x1, ..., Xk}

Then, as usual, we erect rectangles over the intervals determined by the parti-
tion (Figure 4.19).

Notice that the upper curve, over the interval [a, b], is y = f(x) and the
lower curve is y = g(x) (Figure 4.17). The sum of the areas of the rectangles is
therefore

k
Y () —g()] - ox.

j=1

YA

AT
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But of course this is a Riemann sum for the integral
b
[ 1769 - g1 ax.
a

We declare this integral to be the area determined by the two curves.

exampLe4.11
Find the area between the curvesy = x> —2andy = —(x — 1)2 + 3.

SOLUTION
We set the two equations equal and solve to find that the curves intersect
at x = —1 and x = 2. The situation is shown in Figure 4.20. Notice that
y = —(x — 1)2 + 3 is the upper curve and y = x?> — 2 is the lower curve.
Thus the desired area is

2
Area :/ [—(x —1)2 4+ 3] — [x® — 2]dx
-1

2
= / —2x% 4+ 2x + 4dx
-1

—2x3 2
= 3 + x% 4 4x

—1

— [ ats| (2114
L3 3
=09.

The area of the region enclosed by the two intersecting# parabolas is 9.

VA

7&

=V

FIGURE 4.20
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EXAMPLE4.12
Find the area between y = sinxand y = cosx for v/4 < x < 57 /4.

SOLUTION
On the giveninterval, sin x > cos x. See Figure 4.21. Thus the area we wish
to computeis

57/4
Area = / [sinx — cos x] dx
/4
r x=5m/4
= |—cosx — sinx}
L X=7T/4

a4

22

YA

y=sinx

o 4

y=cosX

FIGURE 4.21
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YOU TRY IT Calculate the area between y = sinx and y = cosx, —m <
x < 2.

YOU TRY IT Calculate the area between y = x?> and y = 3x + 4.

4.5 Rules of Integration

We have been using various rules of integration without enunciating them ex-
plicitly. It is well to have them recorded for future reference.

4.5.1 Linear Properties

L. If f, g are continuous functions on [a, b] then
b b b
| fe+gedr= [ feadu+ [ gL,
II. If f is a continuous function on [a, b] and ¢ is a constant then

/jcf(x)dx:c/ab f(x)dx.

45.2 Additivity

IIL If f is a continuous on [a, ¢] and a < b < ¢ then
b c c
/ f(x)dx—l—/b f(x)dx = / f(x)dx.
YOU TRY IT Calculate

3
/ (4x3 — 3x% + 7x — 12 cos x) dx.
1
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. Calculate each of the following antiderivatives:

(a) Antiderivative of x3 4 cos x
(b) Antiderivative of e* + x? — 1

2
(c) Antiderivative of 2 4+ 2t
(d) Antiderivative of tan x + sinx — cos 3x
(e) Antiderivative of sin 3x + cos4x + 1
(f) Antiderivative of (sinx) - e**

. Calculate each of the following indefinite integrals:

(a) [ x?sinx®dx

®) f % Inx3 dx

(© f sin® x - cos x dx

(d) [cotx-Insinxdx

(e) f sec’ x - et ¥ dx

0 [Bx*+2) (> +2x+3)*dx

. Use Riemann sums to calculate each of the following integrals:

(a) flz x> — xdx
() [, 5 dx

. Use the Fundamental Theorem of Calculus to evaluate each of the fol-

lowing integrals:
(a) % —x%+3dx
(b) f26 x sin(x?) + sin x cos x dx

(© f14 InTX + x cos x* dx

d Jf 12 cotx — x? sin x> dx

. Calculate the area under the given function and above the x-axis over the

indicated interval.

(@) f(x)=x*>—-2x+6 [4, 6]
(b) g(x) = siniccosx [0, /3]
(c) h(x) = xe* [2,3]
(d) k() =22 [e, ]
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6. Draw a careful sketch of each function on the given interval, indicating

10.

subintervals where the area between the graph and the x-axis is positive
and where the area is negative.

(@) f(x)=x>+x [—2,2]

(b) g(x) = sin 2x cos 2x [—27, 27]

() hx) =" [1,e]

(d) m(x) = x2e* [-3, 3]

For each function in Exercise 6, calculate the positive area between the
graph of the given function and the x-axis over the indicated interval.

In each part of Exercise 6, calculate the signed area between the graph of
the given function and the x-axis over the indicated interval.

Calculate the area between the two given curves over the indicated

interval.

() fx)=x*-2, g(x)=—x*+6 —l<x<l
b) flx)=x*, gx) =’ 0<x<1
(© flx)=2x, gx)=-2x*+1 —-3<x<1
d) fx)=lnx, gx)=2x l<x<e

Calculate the area enclosed by the two given curves.
(@ fl)=x, gx)=x

b) flx)=vx, glx) ="

@ fl)=x", gx)=2x

d) f(x)=x*, glx)=-2x*+1



chapter

Indeterminate
Forms

An indeterminate form is an expression that appears to be ambiguous or non-
sensical, but which after careful analysis can be given a concrete meaning. Many
of the most subtle and important ideas in mathematics arise in this fashion. Cer-
tainly calculus, because it involves tricky limits, has many indeterminate forms.
In this chapter we learn how to use ideas from calculus to master indeterminate
forms.

CHAPTER OBJECTIVES

In this chapter, you will learn

« I'Hopital's rule

+ Algebraic variants of I'HOpital's rule

» Improper integrals with infinite integrands

« Improper integrals on an infinite interval
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5.1 I'Hopital's Rule

5.1.1 Introduction

Consider the limit

lim @ (%)

x—c &(%)
If lim, . f(x) exists and lim, , g(x) exists and is not zero then the limit
(%) is straightforward to evaluate. However, as we saw in Theorem 2.3,
when lim,_,, g(x) = O then the situation is more complicated (especially when
lim, . f(x) =0 as well).

For example, if f(x) = sinx and g(x) = x then the limit of the quotient as
x — 0 exists and equals 1. However if f(x) = x and g(x) = x? then the limit
of the quotient as x — 0 does not exist.

In this section we learn a rule for evaluating indeterminate forms of
the type (x) when either lim,_, f(x) =lim,_  g(x) =0 or lim, , , f(x) =
lim, . g(x) = o0o. Such limits, or “forms,” are considered indeterminate be-
cause the limit of the quotient might actually exist and be finite or might not
exist; one cannot analyze such a form by elementary means.

5.1.2 I'Hopital's Rule

Theorem 5.1 (I'Hdpital's Rule)
Let f(x) and g(x) be differentiable functions on (a, ¢) U (¢, b). If

lim f(x) =limg(x) =0

X—>C X—>C

then

lim () = lim f')
X—>C g(x) X—C g/(x) '

provided this last limit exists.
Let us learn how to use this new result.
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EXAMPLE 5.1
Evaluate
. Inx
lim —.
x—1 x? +x—-2
SOLUTION

We first notice that both the numerator and denominator have limit zero
as x tends to 1. Thus the quotient is indeterminate at 1 and of the form
0/0. I'Hopital's Rule therefore applies and the limit equals

d
i (Inx)
im dio2 1 o ’
x—1 ﬁ(x +X— 2)

provided this last limit exists. The last limit is

1/x . 1

lim im 507 L o
xs12X+1  , ;2x2 4+ x

Therefore we see that

. Inx 1
lim — = —.
1 X2 +x—2 3

YOU TRY IT Apply I'Hépital's Rule onlim,_, sin(7x) /(x> — 4).

sinh

YOU TRY IT Use I'Hopital's Rule to evaluate lim, - and
. cosh—1 .. . .
lim,_, — These limits are important in the theory of calculus.
EXAMPLE 5.2

Evaluate the limit
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SOLUTION

As x — 0both numerator and denominator tend to zero, so the quotientis
indeterminate at 0 of the form 0/0. Thus I'Hopital's Rule applies. Our limit
equals

d,3

-—X
lim ddxi.'
x—0 gx(X —sinx)

provided that this last limit exists. It equals

. 3x?2
lim —.
x—0 1 — €COSX

This is another indeterminate form. So we must again apply I'Hopital's
Rule. The result is

This is again indeterminate; another application of 'HOpital's Rule gives us
finally

lim = 6.

x—0 COS X

We conclude that the original limit equals 6.

YOU TRY IT Apply I'Hépital's Rule to the limitlim,_,x/[1/In |x|].

Indeterminate Forms Involving oo
We handle indeterminate forms involving infinity as follows: Let f(x) and g(x)
be differentiable functions on (a, ¢) U (c, b). If

lim f(x) and lim g(x)

X—>C X—>C
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both exist and equal +00 or —oo (they may have the same sign or different
signs) then

lim f(x) = lim /')
xoc (%) xc g'(x)]

provided this last limit exists either as a finite or infinite limit.
Let us look at some examples.

EXAMPLE 5.3
Evaluate the limit

lim x? - In|x|.
x—0
SOLUTION
This may be rewritten as
I In |x|
im .
x—0 1/X2

Notice that the numerator tends to —oo and the denominator tends to
400 asx — 0.Thusthe quotientisindeterminate at 0 of the form —oco/ +
oo. So we may apply I'Hépital's Rule for infinite limits to see that the limit
equals
1/x
lim /X _ lim —x*/2 = 0.

_9x—3
x—0 —2X x—0

Yet another version of 'Hopital’s Rule, this time for unbounded intervals,
is this: Let f and g be differentiable functions on an interval of the form
[4, +00). Iflim, ,,  f(x) =1lim,,, g(x)=0oriflim _, f(x) = %00 and
lim,_, . g(x) = £o0, then

lim S0 _ lim f&)

x—+00 g(x) N X—>—+00 g/(x)

provided that this last limit exists either as a finite or infinite limit. The same
result holds for f and g defined on an interval of the form (—oco, B] and for the
limit as x — —oo0.
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EXAMPLE 5.4
Evaluate

lim —.

X——400

HSOLUTION

We first notice that both the numerator and the denominator tend to
+o00 as x — +oo. Thus the quotient is indeterminate at 4+ oo of the form
400/ + oo. Therefore the new version of I'Hopital applies and our limit
equals

. 4x3
lim —.
X——+o0

Again the numerator and denominator tend to +oco as x — 400, so we
once more apply I'Hopital. The limit equals

12x2

lim

X——+00

=0.

We must apply I'H6pital two more times. We first obtain

. 24x
lim —
X——+4o00
and then
. 24
lim —.
X——+o00
We conclude that
. oxt
lim — =0
xX— 400
. e
YOU TRY IT Evaluatethelimitlim,_  ——.
xInx

YOU TRY IT Evaluate the limitlim, ____ x*- e~

o0
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EXAMPLE 5.5
Evaluate the limit

sin(2/x)
X—s—o0 SIN(5/X)

SOLUTION
We note that both numerator and denominator tend to 0, so the quotient
isindeterminate at —oo of the form 0/0. We may therefore apply I'Hopital.
Our limit equals

lim (—2/x?) cos(2/x)
x——oo (—5/x2) cos(5/x)

This in turn simplifies to

im 2cos(2/x) 2
x——o0 5€OS(5/x) 5

I'Hopital’s Rule also applies to one-sided limits. Here is an example.

EXAMPLE 5.6
Evaluate the limit

sin /X
lim \/_

x—0t X

SOLUTION
Both numerator and denominator tend to zero so the quotient is indeter-
minate at 0 of the form 0/0. We may apply I'Hopital's Rule; differentiating
numerator and denominator, we find that the limit equals

(1/2)x1/2
lim [cos vx]- (1/2)x = lim cos/x
x—0+t ( 1 /Z)X_1/2 x—0t

=1.

YOU TRY IT How can we apply I'Hépital's Rule to evaluate lim, . x - In x?
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5.2 Other Indeterminate Forms

5.2.1 Introduction

By using some algebraic manipulations, we can reduce a variety of indetermi-
nate limits to expressions which can be treated by 'Hopital’s Rule. We explore
some of these techniques in this section.

5.2.2 Writing a Product as a Quotient

The technique of the first example is a simple one, but it is used frequently.

EXAMPLE 5.7
Evaluate the limit

lim x?.ée*.

X——00

SOLUTION
Notice that x2 — oo while ¥ — 0. So the limit is indeterminate of the
form 0 - co. We rewrite the limit as

lim ——.
X— — 00 e—3X
Now both numerator and denominator tend to infinity and we may apply
I'Hopital's Rule. The result is that the limit equals
. 2x
lim

X——00 _3e—3x

Again the numerator and denominator both tend to infinity so we apply
I'Hopital's Rule to obtain:

lim .
X——oo 9€73X

Itis clear that the limit of this last expression is zero. We conclude that

lim x-e* =0.

X——00

YOU TRY IT Evaluate the limit lim e VX.x.

X— 400
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5.2.3 The Use of the Logarithm

The natural logarithm can be used to reduce an expression involving exponen-
tials to one involving a product or a quotient.

EXAMPLE 5.8
Evaluate the limit

lim x*.
x—0t

SOLUTION
We study the limit of f(x) = x* by considering In f(x) = x - Inx. We
rewrite this as

lim In f(x) = lim —.
x—0t x—0t 1/X

Both numerator and denominator tend to =00, so the quotient is indeter-
minate of the form —oo /oo. Thus I'Hopital's Rule applies. The limit equals

1/x
lim Lz = lim —x=0.
x—0+ =1 /X x—0+t

Now the only way that In f(x) can tend to zero is if f(x) = x* tends to 1.
We conclude that

lim x* =1.
x—0t
EXAMPLE 5.9
Evaluate the limit
lim(1 4+ x?) "I,
x—0

SOLUTION
Let f(x) = (14 x?)" and consider In f(x) = In|x]| - In(1 4 x?). This
expression is indeterminate of the form —co - 0.
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We rewrite it as

. In(1+x?)
||m _—y
x—o 1/In|x|

so that both the numerator and denominator tend to 0. So I'HOpital's Rule
applies and we have

2 2 12
lim In fx) = lim 2>X/0 X0 2 In7(x])
Xx—0 x—0 —=1/IxIn’(|x)]  x—0 (1+x?)

The numerator tends to 0 (see Example 5.3) and the denominator tends to
1. Thus

limlIn f(x) = 0.

x—0

But the only way that In f(x) can tend to zero is if f(x) tends to 1. We
conclude that

lim(1 4+ x?)'nix =1,

x—0

YOU TRY IT Evaluate the limitlim,_ ;. (1/x)*.

YOU TRY IT Evaluate the limit lim, ;. (1 + x) 1/, In fact this limit gives an
important way to define Euler's constant e (see Sections 1.9 and 6.2.3).

5.2.4 Putting Terms over a Common Denominator

Many times a simple algebraic manipulation will put a limit into a form which
can be studied using I'Hopital’s Rule.
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EXAMPLE5.10
Evaluate the limit

. [ 1 1 }
lim | — ——.
x—oLsin3x  3x

SOLUTION
We put the fractions over a common denominator to rewrite our limit as

lim

x—0

3x — sin3x
3x-sin3x |’

Both numerator and denominator vanish as x — 0. Thus the quotient has
indeterminate form 0/0. By I'Hopital's rule, the limit is therefore equal to

im 3 —3cos3x
x—0 35iN3x + 9xcos3x’

This quotientis stillindeterminate; we apply I'H6pital's rule again to obtain

lim 9sin3x _
v0 18€0s3x — 27xsin3x

ExAMPLE5.11
Evaluate the limit

lim ! !
oo Ld4x e —1]°

SOLUTION
The expression is indeterminate of the form co — co. We put the two frac-
tions over a common denominator to obtain

. e —1—4x
lim ——M—.
x—0 4x(e*™ — 1)

Notice that the numerator and denominator both tend to zero as x — 0,
so this is indeterminate of the form 0/0. Therefore I'Hopital's Rule applies
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and our limit equals

. 4e™ — 4
lim .
w0 4€(1 +4x) — 4

Again the numerator and denominator tend to zero and we apply
I'Hopital's Rule; the limit equals

. 16e** 1
im ———— — .
o 166%(2 4 4x) 2

1 1

Jt2x 1+x

YOU TRY IT Evaluate the limitlim,
5.2.5 Other Algebraic Manipulations
Sometimes a factorization helps to clarify a subtle limit:

EXAMPLE 5.12
Evaluate the limit

lim [x2 —(x*+4x* + 5)1/2].

X——+00

SOLUTION
The limit as written is of the form co — co. We rewrite it as

lim x*[1—(1+4x2+ 5x_4)1/2]

X—4o0
. 1—(14+4x245x4)1/2
= lim .

X——400 X_Z

Notice that both the numerator and denominator tend to zero, so it is
now indeterminate of the form 0/0. We may thus apply I'Hopital's Rule.
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The result is that the limit equals

lim (—1/2)(14+4x245x4) /2. (—8x~3 — 20x75)

X——+00 —2x3

= lim —(1+4x2+5x %" "2.(24+5x7?).

X——+o0

Since this last limit is —2, we conclude that

lim [x* —(x*+4x* + 5)1/2] = -2,

X—400
EXAmMPLE5.13
Evaluate
lim [e* — (e — x4)1/3].
X——00
SOLUTION

First rewrite the limit as

1—(1— x%e3 1/3
lim e"‘[1—(1—x4e3")1/3]: lim ( e .

X——00 X——00 ex

Notice that both the numerator and denominator tend to zero (here we
use the result analogous to Example 5.7 that x*e3* — 0). So our new ex-
pression is indeterminate of the form 0/0. I'Hopital's Rule applies and our

limit equals
im —(1/3)(1 — x*e¥) 723 . (—ax® . & — x* . 3e¥)
X— —00 ex
= lim (1/3)(1 — x*¢**) ~2/3(4x® . & 4 3x* . &¥).

Just as in Example 5.7, x* - &¥* and x3e3* both tend to zero. We conclude
that our limit equals 0.

YOU TRY IT Evaluatelim,_, [Vx+1—vx].
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5.3 Improper Integrals: A First Look

5.3.1 Introduction

The theory of the integral that we learned earlier enables us to integrate a
continuous function f(x) on a closed, bounded interval [a, b]. See Figure 5.1.
However it is frequently convenient to be able to integrate an unbounded func-
tion, or a function defined on an unbounded interval. In this section and the
next we learn to do so, and we see some applications of this new technique.
The basic idea is that the integral of an unbounded function is the limit of inte-
grals of bounded functions; likewise, the integral of a function on an unbounded
interval is the limit of the integral on bounded intervals.

5.3.2 Integrals with Infinite Integrands

Let f be a continuous function on the interval [a, b) which is unbounded as
x — b~. See Figure 5.2. The integral

/: f(x)dx

is then called an improper integral with infinite integrand at b. We often just say
“improper integral”’ because the source of the improperness will usually be clear
from context. The next definition tells us how such an integral is evaluated.

If
b
/ f(x)dx

YA

B e

a | b

=Y

FIGURE 5.1
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YA

=V

FIGURE 5.2

is an improper integral with infinite integrand at b then the value of the integral
is defined to be

b—e
lim f(x)dx,

e—>0tJa

provided that this limit exists. See Figure 5.3.

YA

FIGURE 5.3
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EXAMPLE 5.14
Evaluate the integral

8
/ 4(8 —x)_1/3 dx.
2

SOLUTION
The integral

8
/ 4(8 — x) " 3dx

2
is an improper integral with infinite integrand at 8. According to the defi-

nition, the value of this integral is

8—e¢
lim / 4(8 — x) ~V3dx,
2

e—0t

provided the limit exists. Since the integrand is continuous on the interval
[2, 8 — €], we may calculate this last integral directly. We have

lim [ —6(8 —x)¥3]|5 “ = lim —6[¢*/* — 6%/3].

e—0t e—0t

This limit is easy to evaluate: it equals 6°/3. We conclude that the integral
is convergent and

8
/ 4(8—x)_1/3dx: 6°/3,
2

We see that, even though the integrand function is evidently unbounded
(thus we seem to be calculating the area of an unbounded region), the ac-
tual value of the area is finite.

eExampLE 5.15
Analyze the integral

3
/ (x — 3) 2dx.
2
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SOLUTION
This is an improper integral with infinite integrand at 3. We evaluate this
integral by considering

3—e
Iim/ (x —3)2dx = lim —(x—3)7"[>"°
2

e—0t e—0t+
— lim [ —17].

e—0t

This last limit is +o0c. We therefore conclude that the improper integral
diverges.

_ d
YOU TRY IT Evaluate theimproper integral fﬁ; ﬁ dx.

Improper integrals with integrand which is infinite at the left endpoint of
integration are handled in a manner similar to the right endpoint case:

EXAMPLE5.16
Evaluate the integral

1/2 1
/ 3 dx.
o x-In“x

SOLUTION
This integral is improper with infinite integrand at 0. The value of the inte-
gral is defined to be

1/2 1
Iim/ 3 dx,
e—0tJe X-In“x

provided that this limit exists.

Since 1/(xIn*x) is continuous on the interval [¢, 1/2] for € > 0, this
last integral can be evaluated directly and will have a finite real value.
For clarity, write ¢(x) = Inx, ¢’(x) = 1/x. Then the (indefinite) integral
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becomes

’
/ ¢'(x) dx
@%(x)
Clearly the antiderivative is —1/¢(x). Thus we see that
1/2 1 1
=lim({|[—|—|——1]-
€ e—0+ <|: In(1/2)j| |: In€i|)

Now as e — 0" we havelne — —oo hence 1/Ine — 0. We conclude that
the improper integral converges to 1/ In 2.

1/2 1 1
lim 3 dx = lim ——
e—o+tJe Xx-In“x e—ot+ INX

YOU TRY IT Evaluate theimproperintegralff2 1/(x+2)"/2dx.

Many times the integrand has a singularity in the middle of the interval of
integration. In these circumstances we divide the integral into two pieces for
each of which the integrand is infinite at one endpoint, and evaluate each piece

separately.

EXAMPLES.17
Evaluate the improper integral

4
/ 4(x + 1)~ "V5 dx.
4

SOLUTION
The integrand is unbounded as x tends to —1. Therefore we evaluate sep-

arately the two improper integrals

-1 4
/ 4(x+1)—1/5dxandf 4(x + 1) "/5 dx.

—4 —1
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The first of these has the value

—1—€
lim 4(x +1)"Sdx = lim 5(x+1)¥5| "

e—0t J—4 e—0+

= lim 5{(—e)**® — (—3)*/%}

e—0t

=5.3%5

The second integral has the value

|4
—1+e€

4
Iim/ 4x+1)""5dx = lim 5(x + 1)*/5

e—0t J—1+€ e—0t

— lim 5{5%5 — ¢¥5)
e—0t

= 59/5,

We conclude that the original integral converges and

4
/ 4(x +1)""5dx

—4
-1 4

=/ 4(x—|—1)_1/5dx—|—/ 4(x—|—1)_1/5dx
—4 —1

—5.3%5 1 59/5,

YOU TRY IT Evaluate theimproper integral fj X ldx.

It is dangerous to try to save work by not dividing the integral at the singu-
larity. The next example illustrates what can go wrong.

EXAMPLE 5.18
Evaluate the improper integral

2
/ x4 dx.
—2
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SOLUTION
What we should do is divide this problem into the two integrals

0 2
/ x*dx and / x4 dx. (%)
-2 0

Suppose that instead we try to save work and just antidifferentiate:

2 1
/ x 4dx = — —x3
3

-2

2 1

5 12°

A glance at Figure 5.4 shows that something is wrong. The function x—* is
positive, hence its integral should be positive too. However, since we used
an incorrect method, we got a negative answer.

In fact each of the integrals in line (x) diverges, so by definition the im-

proper integral
2
/ x*dx
-2

diverges.

=y

FIGURE 5.4
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EXAMPLES5.19
Analyze the integral

! 1
—d.
/0 x(1 — x)1/2 X

B’SOLUHON

The key idea is that we can only handle one singularity at a time. This in-
tegrand is singular at both endpoints 0 and 1. Therefore we divide the do-
main of integration somewhere in the middle—at 1/2 say (it does notreally
matter where we divide)—and treat the two singularities separately.

First we treat the integral

1/2 1
- _dx.
/0 x(1—x)1/2 X

Since the integrand has a singularity at 0, we consider

1/2 1
lim / ——dx.
e—0t Je X(1 _X)1/2

This is a tricky integral to evaluate directly. But notice that

1 1
>
x(1=x)12 = x-(1)1/2

when0 < € < x < 1/2.Thus

1/2 1 1/2 1 1/21
1 dx> ' dx= L dx.
/e x(1—x)1/2 X—/E x- ()2 / x X

We evaluate the integral: it equals — In . Finally,

lim —Ilne = 4+o0.
e—0t

The first of our integrals therefore diverges.

But the full integral
1
1
——d
/0 x(1 — x)1/2 X

167
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converges if and only if each of the component integrals

1/2 1
—d
/0 x(1—x)1/2 X

and

! 1
———d
./1/2 x(1—x)'/2 X

converges. Since the first integral diverges, we conclude that the original
integral diverges as well.

YOU TRY IT Calculate f32(2x)_1/ 3 dx as an improper integral.

5.3.3 AnApplication to Area

Suppose that f is a non-negative, continuous function on the interval (a, b]
which is unbounded as x — a*. Look at Figure 5.5. Let us consider the area
under the graph of f and above the x-axis over the interval (a, b]. The area of

YA

=Y

FIGURE 5.5
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the part of the region over the interval [a + ¢, b], € > O, is

/:FE f(x)dx.

Therefore it is natural to consider the area of the entire region, over the
interval (a, b], to be

b
lim f(x)dx.

e—>0t Jate

This is just the improper integral
b
Area = / f(x) dx.
a

ExampLE 5.20
Calculate the area above the x-axis and under the curve

1
y=———7 0<X§1/2.
x-In*3x

SOLUTION
According to the preceding discussion, this area is equal to the value of the
improper integral

1/2 1 1/2 1
——dx = Iim/ —dx.
./(; x-In*3x e—0+ Je x-In*3x

For clarity we let o(x) = Inx, ¢’(x) = 1/x. Then the (indefinite) integral
becomes

/ ola 3
‘P4/3(X) - <p1/3(x)'
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Thus

1/2
1/2 1 3
lim / ——dx = lim — ———

4/3 1/3
e—0+ x-In*3x e—0+ In'/3 x

€

= lim |- __—3
o+ LIN21'/3  [Inel/3 |’

Now as € — 0 then Ine — —oo hence 1/[In€]'/> — 0. We conclude that
our improper integral converges and the area under the curve and above
the x-axis equals —3/[In 2]"/3.

5.4 More on Improper Integrals

5.4.1 Introduction

Suppose that we want to calculate the integral of a continuous function f(x)
over an unbounded interval of the form [A, +00) or (=00, B]. The theory of
the integral that we learned earlier does not cover this situation, and some new
concepts are needed. We treat improper integrals on infinite intervals in this
section, and give some applications at the end.

5.4.2 The Integral on an Infinite Interval

Let f be a continuous function whose domain contains an interval of the form
[ A, +00). The value of the improper integral

+00

f(x)dx
is defined to be

N
lim f(x) dx.

N—+o00J A
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Similarly, let g be a continuous function whose domain contains an interval
of the form (—oo, B]. The value of the improper integral

B
/ g2(x)dx
is defined to be

B
lim f(x) dx.
M

M——o00

EXAMPLE 5.2
Calculate the improper integral

—+o0
/ x3dx.
1

SOLUTION
We do this problem by evaluating the limit

N
lim [ xdx= lim [—(1/2)x 2]
N—+oo J1 N —+4o0

= lim —(1/2)[N2—177]
N——+o00

We conclude that the integral converges and has value 1/2.

EXAMPLE 5.22
Evaluate the improper integral

—32
/ x5 dx.
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SOLUTION
We do this problem by evaluating the limit

—32 5 —32
lim x V3dx = lim Zx*°
M——c0cJM M——oc0 M

= lim E[(—32)4/5—M4/5]

M— —o0

= lim 5[16 — M*3].

M— —oo

This limit equals —oo. Therefore the integral diverges.

YOU TRY IT Evaluate [7°(1+ x) —*dx.

Sometimes we have occasion to evaluate a doubly infinite integral. We do so
by breaking the integral up into two separate improper integrals, each of which
can be evaluated with just one limit.

EXAMPLE 5.23
Evaluate the improper integral

/ .
—oo 1+ x2

SOLUTION
The interval of integration is (—oo, +00). To evaluate this integral, we
break the interval up into two pieces:

(—o0, +00) = (—o0,0] U [0, +00).
(The choice of zero as a place to break the interval is not important; any

other point would do in this example.) Thus we will evaluate separately
the integrals

—+o0 1 0 1
/ ———dx and f ——dx.
0 14 x2 oo 1+ x2
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For the first one we consider the limit

N
dx = lim Tan™'

N
lim f 3
N—+o0 JO 1+ x N—+oo

d
0

= lim [Tan_1 N —Tan™’ 0]
N —+o00

™
2 .

The second integral is evaluated similarly:

0 1 . 0
lim / dx = lim Tan x)
M 1+ x2 M——o00 m

M——oc0

= lim [Tan_1 0—Tan™' M]

M——o0

™
=3
Since each of the integrals on the half line is convergent, we conclude that

the original improper integral over the entire real line is convergent and
that its value is

YOU TRY IT Discuss [;°(1+ x) " dx.

5.4.3 Some Applications

Now we may use improper integrals over infinite intervals to calculate area.

EXAMPLE 5.24
Calculate the area underthe curve y = 1/[x - (In x)*] and above the x-axis,
2<x<oo.
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SOLUTION
The area is given by the improper integral

+oo 1 N 1
/ ————dx = lim / ———dx.
2 x-(Inx)* N—tooJ2 X-(Inx)*

For clarity, we let o(x) = Inx, ¢’(x) = 1/x. Thus the (indefinite) integral
becomes

/go(x)d _ /3

X)) PN

Thus

N 1 1/3 !
lim / ———dx= lim |——%
N—+ooJ2 X+ (Inx) N—+oo | Inx |,

1/3 1/3
[
N—+oo In" N In” 2

_1/3
In32'

Thus the area under the curve and above the x-axis is 1/(3In>2).

D EXAMPLE 5.25

Because of inflation, the value of a dollar decreases as time goes on. In-
deed, this decrease in the value of money is directly related to the contin-
uous compounding of interest. For if one dollar today is invested at 6%
continuously compounded interest for ten years then that dollar will have
grown to e%%10 — $1.82 (see Section 6.5 for more detail on this matter).
This means that a dollar in the currency of ten years from now corresponds
to only e7%-96"19 — $0.55 in today's currency.

Now suppose that a trust is established in your name which pays 2t 4 50
dollars per year for every year in perpetuity, where t is time measured in
years (here the present corresponds to time t = 0). Assume a constant in-
terest rate of 6%, and that all interest is reinvested. What is the total value,
in today's dollars, of all the money that will ever be earned by your trust
account?
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SOLUTION
Over a short time increment [t;_,, t;], the value in today's currency of the
money earned is about

(2t; + 50) - (e7%%4) . At;.
The corresponding sum over time increments is

> (2t 4 50) - e % A;.
)
This in turn is a Riemann sum for the integral

f (2t + 50) e~ %% g¢.

If we want to calculate the value in today's dollars of all the money earned
from now on, in perpetuity, this would be the value of the improper
integral

o0
/ (2t + 50) e~ 206 g¢.
0

This value is easily calculated to be $1388.89, rounded to the nearest cent.

YOU TRY IT A trustis established in your name which pays t + 10 dollars
per year for every year in perpetuity, where t is time measured in years (here the
present corresponds to time t = 0). Assume a constant interest rate of 4%. What
is the total value, in today's dollars, of all the money that will ever be earned by
your trust account?
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QuIZ

1. If possible, use I'Hopital’s Rule to evaluate each of the following limits. In
each case, check carefully that the hypotheses of I'Hopital’s Rule apply.

. cosx —1
a. llm ﬁ
x>0 X'+ X

e 1 —2x
x—0 x-+x
cosx

c. lim 2
x—0 X

. [Inx]?
t M@

e. lim (—2)°
T oo sin(x —2)— (x—2)

x_ ]
£ lim &
x—>1x2_1

2. If possible, use 'Hopital’s Rule to evaluate each of the following limits. In
each case, check carefully that the hypotheses of I'Hopital’s Rule apply.

. x3
a. lim 5
x~>+oo€x—].—x—x /2
lnx
x—>+o00 X
' e—Zx
c. lim

x—+oo In[x/(x + 1]]

sinx
—2x

d. lim

x—+o0 €

ex

i
¢ x—1>r—noo l/xz

In |x|
—2x

f lim

x——00 €



Chapter5 INDETERMINATE FORMS 177

3. If possible, use some algebraic manipulations, plus 'Hopital’s Rule, to
evaluate each of the following limits. In each case, check carefully that
the hypotheses of I'Hopital’s Rule apply.

2 —x

a. lim x“e”
x—+00

b. lim x?-sin[1/x?]

xX—>+00
c¢. lim In[x/(x+1)] b
’ x—+00 xz + 1

d. lim Inx-e™*

xX—>—+00

2% 4

e. lim e™*.«x

X— —00

£ lim x - e!/*

x—0

4. Evaluate each of the following improper integrals. In each case, be sure to
write the integral as an appropriate limit.

1
/ x4 dx
0

3
b, / (x — 3)°55 d
1

i

2 1
© ./_2 (x+ 1)/ dx
6
X
. ——d
/4 G-+
8 x+5
e.[‘ G5 dx

3 .
¢ / sin x dx
0 X

5. Evaluate each of the following improper integrals. In each case, be sure to

o,

write the integral as an appropriate limit.

o0
a. / e % dx
1
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b./ x?e % dx

2

C.f x? Inx dx
0

d /wi
1 1+x2

[

A

f/ gy dx
o —X2+x



chapter

Transcendental
Functions

Polynomials are the simplest functions that we know, and they are easy to un-
derstand. It only requires the most rudimentary understanding of multiplication
and addition to calculate the values of a polynomials.

But many of the most important functions that arise in serious scientific work
are transcendental functions. A transcendental function is one that cannot be ex-

pressed as a polynomial, a root of a polynomial, or the quotient of polynomials.
Examples of transcendental functions are sin x, tan x, log x, and e". There are

a great many more. In this chapter we study properties of some of the most
fundamental transcendental functions.

CHAPTER OBJECTIVES

In this chapter, you will learn

» Logarithms

» Logarithms to different bases

« Exponential functions

« Exponential functions with different bases

« Calculus with logarithmic and exponential functions
» Exponential growth and decay

« Inverse trigonometric functions 179
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6.0 Introductory Remarks

There are two types of functions: polynomial (and functions manufactured
from polynomials) and transcendental. A polynomial of degree k is a function
of the form p(x) = ay + a;x + ayx? + - - - + apx*. Such a polynomial has pre-
cisely k roots, and there are algorithms that enable us to solve for those roots.
For most purposes, polynomials are the most accessible and easy-to-understand
functions. But there are other functions that are important in mathematics and
physics. These are the transcendental functions. Among these more sophisti-
cated types of functions are sine, cosine, the other trigonometric functions, and
also the logarithm and the exponential. The present chapter is devoted to the
study of transcendental functions.

6.1 Logarithm Basics

A convenient way to think about the logarithm function is as the inverse to the
exponential function. Proceeding intuitively, let us consider the function

f(x) =3
To operate with this f, we choose an x and take 3 to the power x. For example,
f4)=3*=3.3.3.3=81
1
N =32=1_=
f(-2) 5
f(0)=3%=1.

The inverse of the function f is the function g which assigns to x the power to
which you need to raise 3 to obtain x. For instance,

2(9) = 2 because f(2) =9
2(1/27) = —3 because f(-3) =1/27

2(1) = 0 because f(0) = 1.

We usually call the function g the “logarithm to the base 3” and we write
2(x) = logz x. Logarithms to other bases are defined similarly.
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While this approach to logarithms has intuitive appeal, it has many draw-
backs: we do not really know what 3* means when x is not a rational number;
we have no way to determine the derivative of f or of g; we have no way to
determine the integral of f or of g. Because of these difficulties, we are going
to use an entirely new method for studying logarithms. It turns out to be equiv-
alent to the intuitive method described above, and leads rapidly to the calculus
results that we need.

6.1.1 A New Approach to Logarithms

When you studied logarithms in the past you learned the formula
log(x - y) = logx + log y;

this says that logs convert multiplication to addition. It turns out that this prop-
erty alone uniquely determines the logarithm function.

Let £(x) be a differentiable function with domain the positive real numbers
and whose derivative function ¢'(x) is continuous. Assume that ¢ satisfies the
multiplicative law

flx-y) = £0x) + £(y) (+)

for all positive x and y. Then it must be that £(1) = 0 and there is a constant C
such that

C
U(x)=—.
X
In other words

(x) = /j%dt.

A function £(x) that satisfies these properties is called a logarithm function.
The particular logarithm function which satisfies £/(1) = 1 is called the natural
logarithm. In other words,

*1
natural logarithm = Inx = / " dt.
1
For 0 < x < 1, the value of Inx is the negative of the actual area between
the graph and the x-axis. This is so because the limits of integration, x and 1,
occur in reverse order: Inx = [["(1/t) dt with x < 1.
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=V

FIGURE 6.1

Notice the following simple properties of In x which can be determined from
looking at Figure 6.1:

(i) When x > 1, Inx > O (after all, In x is an area).
(i) Whenx=1,lnx =0.
(iii) When0 <x < 1,Inx <0

X 1
(since / ldt:—/ ldt<0).
1t x U

(iv) If 0 < x; < x; thenlnx; < Inx;.

We already know that the logarithm satisfies the multiplicative property. By
applying this property repeatedly, we obtain that: If x > 0 and n is any integer
then

In(x") =n-Inx.
A companion result is the division rule: If a and b are positive numbers then

In (g) =Ina—1Inb.

EXAMPLE 6.1
Simplify the expression
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m’SOLUTION

We can write A in simpler terms by using the multiplicative and quotient
properties:

A=In(a®-b*) —In(c*-d)
= [Ina3 +In(b2)] —[In(c™®) + Ind]
=[3Ina+2-Inb]—[(—4) - Inc+Ind]

=3lna+2-Inb+4-Inc —Ind.

The last basic property of the logarithm is the reciprocal law: For any x > 0

we have

In(1/x) = —Inx.

EXAMPLE 6.2
Express In(1/7) in terms of In 7. Express In(9/5) in terms of In3 and In 5.

SOLUTION
We calculate that

In(1/7) = —In7,

In(9/5) =IN9—In5=1In32 —In5=2In3 —In5.

YOU TRY IT SimplifyIn(a?b=3/c%).

6.1.2 The Logarithm Function and the Derivative

Now you will see why our new definition of logarithm is so convenient. If we
want to differentiate the logarithm function, we can apply the Fundamental

Theorem of Calculus:

d d [*1 1
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More generally,

d, _1ldu
dx u_udx'

EXAMPLE 6.3
Calculate

d d 3 d
aln(4—|—x), aln(x — X), aln(cosx),

d o d
a[(lnx) ]s 2 [(InX) - (cotx)].

SOLUTION
For the first problem, weletu = 4 + xand du/dx = 1. Therefore, we have

iIn(4—i—x) = L-1(4—|—x) =
dx

dx 4+ x 44+ x
Similarly,

d 1 d 3x2 — 1
Iy | 3 _ — e (w3 —
dx n(x™ —x) x3 —x dx(x x) x3 —x

d 1 d —sinx

— In(cosx) = —— - —(cosx) =

dx cosx dx Ccos X

1 5(Inx)*

d 51 _ 4.1 — 4, _
a[(lnx) ] =5(Inx) dx(lnx) = 5(Inx) ~ "

d d d
a[(lnx) - (cotx) | = [a Inx:| - (cotx) + (Inx) - [a cotx:|

= )1—( .cotx + (Inx) - (—csc® x).

YOU TRY IT Whatis the derivative of the function In(x3 + x2) ?
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YA
1 y=Inx

=

FIGURE 6.2

Now we examine the graph of y = In x. Since

() L£(nx)=1>0,
() £nx)=£(G)=-% <0,

(iii) In(1) = O,

we know that In x is an increasing, concave down function whose graph passes
through (1, 0). There are no relative maxima or minima (since the derivative is
never 0). Certainly In0.9 < 0; the formula In(0.9") = n1n 0.9 therefore tells us
that In x is negative without bound as x — 0%. Since Inx = —In(1/x), we may
also conclude that In x is positive without bound as x — +o00. A sketch of the
graph of y = Inx appears in Figure 6.2.

We learned in the last paragraph that the function In x takes negative values,
which are arbitrarily large in absolute value when x is small and positive. In
particular, the negative y axis is a vertical asymptote. Since In(1/x) = —Inx,
we then find that In x takes arbitrarily large positive values when x is large and
positive.

Since we have only defined the function In x when x > 0, the graph is only
sketched in Figure 6.2 to the right of the y-axis. However it certainly makes
sense to discuss the function In |x| when x # 0 (Figure 6.3):

If x # 0 then

1
<

d
%(lme =

In other words,

/ldlenlxl%—c.
x

185
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YA y=In|x|

N e

=}

FIGURE 6.3

More generally, we have

Ay Ldu
dx nful = u dx
and
/l@dlenlul—kc.
u dx
EXAMPLE 6.4
Calculate

/ _dx, /de.
x+1 —2+4 3x

[ﬁ’someN

4 1
/x+1dx_4/x+1dx_4ln|x+1|-|—c

1 1
. dx=—In|—2+3x|.
/—2+3x x=g3ln|—2+3x

YOU TRY IT Calculate the integral

cos X
/ — dx
2 +sinx
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YOU TRY IT Calculate the integral

e 1
/ dx
1 X-Inx

EXAMPLE 6.5
Evaluate the integral

Ccos X
/ _COSX .
3sinx —4

SOLUTION
For clarity we set o(x) = 3sinx — 4, ©'(x) = 3(cos x). The integral then
has the form

1T 1
5/ o) dx = 3In|cp(x)|+C.

Resubstituting the expression for (o( x) yields that

1
/ﬂdx:—ln|3sinx—4|+c.
3sinx — 4 3

2

dx.
— x3

YOU TRY IT Evaluate/ ] l

EXAMPLE 6.6
Calculate

/ cot x dx.

m’SOLUTION

We rewrite the integral as

cos x
—— dx
sinx

187
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For clarity we take o(x) = sin x, ¢’(x) = cos x.Thentheintegral becomes

o'x)
/ 20 dx =In|p(x)| + C.

Resubstituting the expression for ¢ yields the solution:

/cotxdx =In|sinx| 4+ C.

6.2 Exponential Basics

Examine Figure 6.4, which shows the graph of the function
f(x)=Inx, x>0.

Aswe observed in Section 6.1, the function f takes on all real values. We already
have noticed that, since

Inx =—- >0,
x

dx

y=Inx

=

FIGURE 6.4
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the function In x is increasing. As a result,
In:{x:x>0}—- R

is one-to-one and onto. Hence the natural logarithm function has an inverse.
The inverse function to the natural logarithm function is called the exponen-
tial function and is written exp(x). The domain of exp is the entire real line. The

range is the set of positive real numbers.

EXAMPLE 6.7
Using the definition of the exponential function, simplify the expressions

exp(Ina+ Inb) and In(7 - [exp(c)]).

SOLUTION
We use the key property that the exponential function is the inverse of the
logarithm function. We have

exp(lna+ Inb) = exp(In(a-b)) =a- b,

In(7 - [exp(c)]) =In7 4 In(exp(c)) =In7 + c.

YOU TRY IT Simplify the expressionIn(a® - 3° - 574).

6.2.1 Facts about the Exponential Function

First review the properties of inverse functions that we learned in Subsection
1.8.5. The graph of exp(x) is obtained by reflecting the graph of In x in the line
y = x. We exhibit the graph of y = exp(x) in Figure 6.5.

We see, from inspection of this figure, that exp(x) is increasing and is concave
up. Since In(1) = 0 we may conclude that exp(0) = 1. Next we turn to some
of the algebraic properties of the exponential function.

For all real numbers a and b we have

(a) exp(a+ b) = [exp(a)] - [exp(b)].

(b) For any a and b we have exp(a — b) = exp(a)

exp(b)’

189
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YA

y=expx

"

FIGURE 6.5

These properties are verified just by exploiting the fact that the exponential
is the inverse of the logarithm, as we saw in Example 6.7.

EXAMPLE 6.8
Use the basic properties to simplify the expression

[exp(a)]? - [exp(b) I?
[exp(c)]* '

SOLUTION
We calculate that

[exp(a)]? - [exp(b) |? _ [exp(a)] - [exp(a)] - [exp(b)] - [exp(b)] - [exp(b)]

[exp( c) ]4 [exp( al- [exp( al. [eXp( ol- [exp( al
__expla+a+b+b+b) o
= Texplctctcrq < oPlatatbibib-oc—c—c—q

= exp(2a + 3b — 4c).

YOU TRY IT Simplify the expression (exp a) ~3 - (exp b)?/(exp c) 5.
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6.2.2 Calculus Properties of the Exponential

Now we want to learn some “‘calculus properties” of our new function exp(x).
These are derived from the standard formula for the derivative of an inverse, as
in Section 2.5.1.

For all x we have

d
© fexp(x)) = expl).
x
In other words,
/ exp(x) dx = exp(x).
More generally,
d du
I exp(u) = exp(u) o
and
du
/ exp(u) T dx = exp(u) + C.

We note for the record that the exponential function is the only function (up
to constant multiples) that is its own derivative. This fact will come up later in

our applications of the exponential

EXAMPLE 6.9
Compute the derivatives:

d d d
dx exp(4x), a(exp(cosx)), a([exp(x)] - [cot x]).

SOLUTION
For the first problem, notice that u = 4x hence du/dx = 4. Therefore we
have

i exp(4x) = [exp(4x)] - i(4x) =4 . exp(4x).
dx dx
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Similarly,

i(exp(cosx)) = [exp(cos x)] - (i cosx) = [exp(cos x)] - (—sinx),
dx dx

i([exp(x)] - [cotx]) = [i exp(x)} - (cotx) + [exp(x)] - (i cotx)
dx dx dx

= [exp(x)]- (cotx) + [exp(x)]-(— csc’ x).

YOU TRY IT Calculate (d/dx) (exp(x - sinx)).

ExaMPLE6.10

Calculate the integrals:

/exp( 5x) dx, /[exp(x)]3 dx, /exp(Zx + 7) dx.

SOLUTION

We have
/exp( 5x) dx = %exp(Sx) +C
f [exp(x) ] dx = / [exp(x)] - [exp(x)] - [exp(x)]dx
= /exp(3x) dx = %exp( 3x) + C

/exp(2x+7) dx = %/exp(2x+7) -2dx = %exp(2x+7) + C.

ExaMPLE6.11

Evaluate the integral

/[exp(cos3 x)]1- sinx - cos x dx.
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SOLUTION
For clarity, we let (x) = exp(cos® x), ¢’'(x) = 3cos’ x - (— sinx). Then
the integral becomes

1 1
—gfexP(cp(X)) -’ (x) dx = 3 exp(p(x)) + C.
Resubstituting the expression for o( x) gives

1
/[exp(cos3 x)1-sinx - cos> xdx = —3 exp(cos®x) + C.

EXAMPLE6.12
Evaluate the integral

/ exp(x) + exp(—x) d
X.
exp(x) — exp(—x)

SOLUTION
For clarity, we set (x) = exp(x) —exp(—x), ¢’(x) = exp(x) +
exp(—x). Then our integral becomes

P(x)dx

Resubstituting the expression for ¢(x) gives

/ exp(x) + exp(—x) dx = In|exp(x) — exp(—x) | + C.

exp(x) — exp(—x)

YOU TRY IT Calculate [ x - exp(x* — 3) dx.

6.2.3 The Numbere

The number exp(1) is a special constant which arises in many mathematical and
physical contexts. It is denoted by the symbol e in honor of the Swiss mathe-
matician Leonhard Euler (1707-1783) who first studied this constant. We next
see how to calculate the decimal expansion for the number e.
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In fact, as can be proved in a more advanced course, Euler’s constant e satis-
fies the identity

1 n
lim (1 + —) =e.
n— 400 n

[Refer to the “You Try It” following Example 5.9 in Subsection 5.2.3 for a
consideration of this limit. ]
This formula tells us that, for large values of n, the expression

(1+3)

gives a good approximation to the value of e. Use your calculator or computer
to check that the following calculations are correct:

n=10 (1+1)" =2.5937424601

n =50 (1+1)" = 269158802907
n =100 (1+1)" = 270481382942
n = 1000 (1+1)" = 271692393224

n=10000000 (1+1)"=2.71828169254.

With the use of a sufficiently large value of n, together with estimates for the
error term

it can be determined that
e =2.71828182846

to eleven place decimal accuracy. Like the number 7, the number e is an irra-
tional number. Notice that, since exp(1) = e, we also know thatlne = 1.
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EXAMPLE6.13
Simplify the expression

In(e’ - 873).

SOLUTION
We calculate that

In(e’ - 873) = In(€’) + In(873)
=5In(e) —3In8
=5—-3In8.

YOU TRY IT Use your calculator to compute log,, e and log, 10. Confirm
that these numbers are reciprocals of each other.

6.3 Exponentials with Arbitrary Bases

6.3.1 Arbitrary Powers

We know how to define integer powers of real numbers. For instance

1 1

6*=6.6-6-6=1296 and 973 = =
an 9.9.9 729

But what does it mean to calculate
4% or m?

You can calculate values for these numbers by punching suitable buttons on
your calculator, but that does not explain what the numbers mean or how the
calculator was programmed to calculate them. We will use our understanding
of the exponential and logarithm functions to now define these exponential
expressions.

If a > 0 and b is any real number then we define

ab = exp(b - Ina). (%)
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To come to grips with this rather abstract formulation, we begin to examine
some properties of this new notion of exponentiation:
If a is a positive number and b is any real number then

In@) =b-Ina.
In fact
In(a®) = In(exp(b - In a)).
But In and exp are inverse, so that the last expression simplifies to b - In a.

EXAMPLE 6.14
Let a > 0. Compare the new definition of a* with the more elementary
definition of a* in terms of multiplying a by itself four times.

SOLUTION
We ordinarily think of a* as meaning

a-a-a-a.
According to our new definition of a® we have

a’ =exp(4-Ina) = exp(lna+Ina—+Ina+Ina)

=exp(lnla-a-a-a]) =a-a-a-a.

It is reassuring to see that our new definition of exponentiation is consis-
tent with the familiar notion for integer exponents.

EXAMPLE6.15
Express exp(x) as a power of e.

SOLUTION
According to our definition,

e =exp(x-In(e)).
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But we learned in the last section that In(e) = 1. As a result,

e = exp(x).

YOU TRY IT Simplify the expression In[e* - x*].

Because of this last example we will not in the future write the exponential
function as exp(x) but will use the more common notation ¢*. Thus

Inx —

exp(Inx) = x becomes e X

In(exp(x)) = x becomes In(e*) = x

exp(a + b) = [exp(a)] - [exp(b)] becomes e*t? = e%e?
3 exp(a) ab _ €
exp(a —b) O becomes ¢’ = :

a® = exp(b - Ina) becomes a’ = e?!"e,

EXAMPLE6.16
Use our new definitions to simplify the expression

A= e[S-In 2—3:In4]

SOLUTION
We write

In(32)
A — elIn2)—In(#)] _ gin32—ine4 _ € 32 _1

Coened 64 27

We next see that our new notion of exponentiation satisfies certain familiar
rules.

Ifa,d> 0and b, c € R then
(1) ab+c — b . af
a

c

Sl

(i) a’ ¢ =

Q
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(i) (ab)* = ab<

(iv) a® =d if and only if d'/? = a (provided b # 0)
V) a®=1

(vi) a' =a

(vii) (a-d)° =a°-d°.

EXAMPLE6.17

Simplify each of the expressions

57 .74
. (32 'X3)4.

4yIn3
e y —=——
(e’) P

SOLUTION

We calculate:
(e4)ln3 — e4‘ln3 — (eln3)4 — 34 — 81;

45_7 i 7T4 = —7—(=3) 7r4_2 = 5_4 . 71'2 — L . 71-2
5-3 .72 625

(32 'X3)4 — (32)4 . (x3)4 — 38 'X12 — 6561 'X12.

YOU TRY IT Simplify the expression In[e3* - e=¥—> . 24].

EXAMPLE6.18

Solve the equation
(x*-5)8=0.

for x.

SOLUTION

We have

(x3.5)8=9 = x3.5=9/8
91/24

3 _qg1/8, -1 __(91/8 .5—1y1/3 _
= x3=9"8.5"1 = x=(9"/8.5-)V = x=T5




Chapter6 TRANSCENDENTALFUNCTIONS

YOU TRY IT Solvetheequation4* - 3% = 7. [Hint: Take the logarithm of both
sides.]

6.3.2 Logarithms with Arbitrary Bases

If you review the first few paragraphs of Section 1, you will find an intuitively
appealing definition of the logarithm to the base 2:

log, x is the power to which you need
to raise 2 to obtain x.

With this intuitive notion we readily see that
log, 16 = “‘the power to which we raise 2 to obtain 16’ =4
and
log,(1/4) = “the power to which we raise 2 to obtain 1/4” = —2.

However, this intuitive approach does not work so well if we want to take log_ 5
or log, v/7. Therefore we will give a new definition of the logarithm to any base
a > 0 which in simple cases coincides with the intuitive notion of logarithm.

Ifa>0andb > 0 then

Inb

log,b=—.
Ina

EXAMPLE6.19
Calculate log, 32.

SOLUTION
We see that

In32 In2° 5:.In2
= = =5
In2 In2 In2

log,32 =

Notice that, in this example, the new definition of log, 32 agrees with the
intuitive notion just discussed.
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EXAMPLE 6.20
Express In x as the logarithm to some base.

SOLUTION
If x > 0then

Inx Inx
log x=—=—=1Inx.
Ine 1

Thus we see that the natural logarithm In x is precisely the same as log, x.

MATH NOTE Inmathematics, itis common to write In x rather than log, x.
YOU TRY IT Calculatelog, 27 + logs(1/25) — log, 8.

We will be able to do calculations much more easily if we learn some simple
properties of logarithms and exponentials.

Ifa> 0andb > 0 then
alos.b) —
If a > 0 and b € R is arbitrary then
log,(a®) = b.
Ifa>0,b>0, and ¢ > O then

(i) log,(b-c) =log,b+log,c
(ii) log,(b/c) =1log,b —log,c

(i) log, b — &Y
log, a
] 1
(iv) log, b =
log, a
(v) log,1=0

(vi) log,a =1
(vii) For any exponent «, log,(b*) = « - (log, b)
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We next give several examples to familiarize you with logarithmic and ex-
ponential operations.

EXAMPLE6.21
Simplify the expression

log; 81 —5-log,8 — 3 -In(e*).

SOLUTION
The expression equals

log;(3*) —5-10g,(2°) —3-Ine*=4-log;3 —5-[3-log,2] —3-[4-Ine]

=4.1-5.3.1—3-4.1=—23.

YOU TRY IT What doeslog, 5 mean in terms of natural logarithms?

EXAMPLE 6.22
Solve the equation

5x . 23x —
for the unknown x.

SOLUTION
We take the natural logarithm of both sides:

X, 93xy i
In(5* -2 )_In<7x).

Applying the rules for logarithms we obtain
In(5%) +In(2**) =In4 — In(7)
or

X:-In5+3x:-In2=In4—x-In7.
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Gathering together all the terms involving x yields
x-[In54+3-In2+In71=1In4
or
x-[n(5-2°-7)]=In4.

Solving for x gives

In4

x=——=1Ilo 4.
In 280 920

EXAMPLE 6.23

Simplify the expression

5-log,3 —(1/4) - log, 16
"~ 3-.log,5+(1/5) -log, 32"

SOLUTION

The numerator of B equals
log,(3°) — log,(16'/%) = log, 243 — log, 2 = log,(243/2).

Similarly, the denominator can be rewritten as
log, 5% + log,(32'/%) = log, 125 + log, 2 = log, (125 - 2) = log, 250.

Putting these two results together, we find that

log, 243 /2

=1 243/2).
log, 250 ©9250(243/2)

YOU TRY IT What does 3V2 mean (in terms of the natural logarithm func-
tion)?

EXAMPLE 6.24

Simplify the expression (log, 9) - (log, 16).
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SOLUTION
We have

1
(log, 9) - (logy 15) = <|ogg4) -log, 16

=log, 16 = 2.

6.4 Calculus with Logs and Exponentials to Arbitrary Bases

6.4.1 Differentiation and Integration of log, x and a”

We begin by noting these facts:
If a > 0 then

1) j—xax = a* -Ina; equivalently, [a*dx = ﬁ iC

(i) £(log,x) = =1

= Still Struggling

As always, we can state these last formulas more generally as

d a' =a" du Ina
dx = dx
and
d o 1 du 1
dx Y% u dx Ina
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EXAMPLE 6.25
Calculate

d ., d .. d d
5(5 ), 5(3cos ), a(logsx), a(log‘,(x-cosx)).

SOLUTION
We see that

d
—(5*) =5*.In5.
dx( ) n

For the second problem, we apply our general formulation with a = 3,
u = cos x to obtain

d d
—(3€0sX) — 3cosx, (d_ COSX) -In3 =3X.(—sinx) -In3.
X

dx
Similarly,
d
(I =
dx( 095 X) x-In8
d 1 d
dx (Iog4(x . cosx)) = (X cosx) nd a(x - COS X)
__cosx + (x-(—sinx))
~ (x-cosx)-In4
EXAMPLE 6.26
Integrate
/3‘“" - (— csc® x) dx.
SOLUTION
For clarity we set (x) = cotx, ¢/(x) = — csc® x. Then our integral be-
comes

1 1
el | =(—1. P L (x) - — . 3#(x) .
/3 @' (x) dx <In3> /3 @' (x) -In3dx (In3> 3 +C
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Resubstituting the expression for o(x) now gives

1
/3‘“" (—csc® x) dx = 03 -3t 4 C.

In

YOU TRY IT Evaluate [ log,(x®) dx.

YOU TRY IT Calculate the integral

/x-3"2 dx.

Our new ideas about arbitrary exponents and bases now allow us to formu-
late a general result about derivatives of powers:

For any real exponent a we have

D EXAMPLE 6.27

Calculate the derivative of x~ 7, x\/g, Xxe.

SOLUTION
We have
dixx_ﬂ —m.x"0,
dixx 3 _ \/; L x V3T ,
d% X — e x]

d . Py d
YOU TRY IT Calculate —5°"*—*", Calculate — x*™.
dx dx
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YA
y=log,x,a>1

=V

FIGURE 6.6

6.4.2 Graphing of Logarithmic and Exponential Functions
Ifa> 0and f(x) =log,x, x > 0, then

16 = x}na
7" _ —1
6 = x2-Ilna

f(1)=0.

Using this information, we can sketch the graph of f(x) = log, x.

If a> 1 then Ina > 0 so that f/(x) > 0 and f”(x) < 0. The graph of f is
exhibited in Figure 6.6.

IfO<a < 1thenlna= —In(1/a) < Oso that f'(x) < 0and f”(x) > 0. The
graph of f is sketched in Figure 6.7.

YA

T\ y=log,x,a<1

I [
— >

FIGURE 6.7
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y=ala>1

B 4

FIGURE 6.8

Since g(x) = a* is the inverse function to f(x) =log, x, the graph of g is
the reflection in the line y = x of the graph of f (Figures 6.6 and 6.7). See
Figures 6.8 and 6.9.

Figure 6.10 shows the graphs of log, x for several different values of a > 1.

Figure 6.11 shows the graphs of a* for several different values of a > 1.

YOU TRY IT Sketch the graph of y = 4 and y = log, x on the same set of
axes.

L y=a%a<l1

=V

FIGURE 6.9
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208
YA

log,, x, various values of @ > 1

FIGURE 6.10

6.4.3 Logarithmic Differentiation

We next show how to use the logarithm as an aid to differentiation. The key
idea is that if F is a function taking positive values, we can exploit the formula

(+)

/

InF] = —.
[InFY =
YA |
."

!

1

1

1

1

1

1

!

. 7’

//
- »
Ll
x

a”, various values of a > 1

FIGURE 6.11
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EXAMPLE6.28
Calculate the derivative of the function

F(x) = (cosx)5" 0 < x < .

SOLUTION
We take the natural logarithm of both sides:

In F(x) = In((cosx)*"*¥) = (sinx) - (In(cosx)). (1)

Now we calculate the derivative using the formula (*) preceding this ex-
ample: The derivative of the left side of () is

F'(x)
F(x) '

Using the product rule, we see that the derivative of the far right side of

(1) is

(cosx) - (In(cosx)) + (sinx) - (—sinx) .
cos X

We conclude that

Fix) = (cosx) - (In(cosx)) + (sinx) - (—sinx) .
F(x) cos x
Thus
[ sinzx}
F'(x) = |(cosx) - (In(cosx)) — - F(x)
cosx

e 2

sin” x .
= | (cosx) - In(cosx) — —} - (cos x) (5inx)

cos X

YOU TRY IT Differentiatelog, | cos x|.

YOU TRY IT Differentiate 35™3¥ , Differentiate x*"3*.
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EXAMPLE 6.29
Calculate the derivative of F(x) = x? - (sin x) - 5%.

SOLUTION
We have

[In F(x)]’ = [In(x? - (sinx) - 5¥)7

=[(2-Inx) +In(sinx) + (x-In5)7

2 cos X
= — 4+ — +In5.
X sinx

Using formula ( *), we conclude that

F'(x) 2 cosx

F (x) :)_( sinx—i_lrI5
hence
F'(x) = |:E + c?sx + InS] - [x? - (sinx) - 5*].
X sinx

YOU TRY IT Calculate dix[(lnx)'""].

6.5 Exponential Growth and Decay

Many processes of nature and many mathematical applications involve loga-
rithmic and exponential functions. For example, if we examine a population of
bacteria, we notice that the rate at which the population grows is proportional
to the number of bacteria present. To see that this makes good sense, suppose

that a bacterium reproduces itself every 4 hours. If we begin with 5 thousand
bacteria then

after 4 hours there are 10 thousand bacteria

after 8 hours there are 20 thousand bacteria
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=V

FIGURE 6.12

after 12 hours there are 40 thousand bacteria
after 16 hours there are 80 thousand bacteria . . .

etc.

The point is that each new generation of bacteria also reproduces, and the older
generations reproduce as well. A sketch (Figure 6.12) of the bacteria population
against time shows that the growth is certainly not linear—indeed the shape of
the curve appears to be of exponential form.

Notice that, when the number of bacteria is large, then different generations
of bacteria will be reproducing at different times. So, averaging out, it makes
sense to hypothesize that the growth of the bacteria population varies contin-
uously as in Figure 6.13. Here we are using a standard device of mathematical
analysis: even though the number of bacteria is always an integer, we represent
the graph of the population of bacteria by a smooth curve. This enables us to
apply the tools of calculus to the problem.

6.5.1 A Differential Equation

If B(t) represents the number of bacteria present in a given population at time
t, then the preceding discussion suggests that
dB

o =K- B,
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L

by

[ ]
[ ]
=V

=V

FIGURE 6.13

where K is a constant of proportionality. This equation expresses quantitatively
the assertion that the rate of change of B(t) (that is to say, the quantity dB/dr)

is proportional to B(t). To solve this equation, we rewrite it as

s
B(t) dr

We integrate both sides with respect to the variable t:
1 dB
—— . —dt= [ Kdt.
me ar / t

The left side is
In|B(®)| + C

and the right side is
Kt +C,
where C and C are constants of integration. We thus obtain
In|B(5)| = Kt + D,
where we have amalgamated the two constants into a single constant D. Expo-

nentiating both sides gives

|B(t)| — eKI-‘rD
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or
B(t) =eP . ekt = P .okt (*)

Notice that we have omitted the absolute value signs since the number of bac-
teria is always positive. Also we have renamed the constant e” with the simpler
symbol P.

Equation (x) will be our key to solving exponential growth and decay prob-
lems.

We motivated our calculation by discussing bacteria, but in fact the calcula-
tion applies to any function that grows at a rate proportional to the size of the
function.

Next we turn to some examples.

6.5.2 Bacterial Growth

EXAMPLE 6.30
A population of bacteria tends to double every four hours. If there are 5000
bacteria at 9:00 a.m., then how many will there be at noon?

SOLUTION
To answer this question, let B(t) be the number of bacteria at time t. For
convenience, let t = 0 correspond to 9:00 a.m. and suppose that time is
measured in hours. Thus noon corresponds to t = 3.

Equation (x) guarantees that

B(t) = P - !
for some undetermined constants P and K. We also know that
5000 = B(0) = P - X% = p.

We see that P = 5000 and B(t) = 5000 - eXt. We still need to solve for K .
Since the population tends to double in four hours, there will be 10, 000
bacteria at time t = 4; hence

10000 = B(4) = 5000 - eX 4.
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We divide by 5000 to obtain
2 = e,
Taking the natural logarithm of both sides yields
In2 =In(e*) = 4K.
We conclude that K = [In 2] /4. As a result,
B(t) = 5000 - (e([ln21/4)t)_

We simplify this equation by noting that

gln2/at _ (gn2)t/4 _ t/4,
In conclusion,

B(t) = 5000 - 2'/%.

The number of bacteria at noon (time t = 3) is then given by

B(3) = 5000 - 23/* ~ 8409.

It is important to realize that population growth problems cannot be de-
scribed using just arithmetic. Exponential growth is nonlinear, and advanced
analytical ideas (such as calculus) must be used to understand it.

EXAMPLE 6.3 1
Suppose that a certain petri dish contains 6000 bacteria at 9:00 p.m. and
10,000 bacteria at 11:00 p.m. How many of the bacteria were there at 7:00
p.m?

SOLUTION
We know that

B(t) = P - X',
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The algebra is always simpler if we take one of the times in the initial data
to correspondtot = 0. Solet us say that 9:00 p.m.ist = 0. Then 11:00 p.m.
ist = 2and 7:00 p.m. is t = —2. The initial data then tell us that

6000 = P - eX° (%)

10000 = P - X2, ()

From equation () we may immediately conclude that P = 6000. Substi-
tuting this into (xx) gives

10000 = 6000 - (eX)2.

We conclude that

As aresult,
J5\'
B(t) = 6000 — ] .
V3
Attime t = —2(7:00 p.m.) the number of bacteria was therefore

—2
5 3
B(—2) = 6000 - (£> = — . 6000 = 3600.

/3 5

YOU TRY IT A petridish has 5000 bacteria at 1:00 p.m. on a certain day and
8000 bacteria at 5:00 p.m. that same day. How many bacteria were there at noon?

6.5.3 Radioactive Decay

Another natural phenomenon which fits into our theoretical framework is ra-
dioactive decay. Radioactive material, such as C'* (radioactive carbon), has a
half life. Saying that the half life of a material is & years means that if A grams
of material is present at time t then A/2 grams will be present at time t + h.
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In other words, half of the material decays every h years. But this is another
way of saying that the rate at which the radioactive material vanishes is pro-
portional to the amount present. So equation () will apply to problems about
radioactive decay.

EXAMPLE 6.32
Five grams of a certain radioactive isotope decay to three grams in 100
years. After how many more years will there be just one gram?

SOLUTION
First note that the answer is not “we lose two grams every hundred years
so...." Therate of decay depends on the amount of material present. That
is the key.

Instead, we let R(t) denote the amount of radioactive material at time
t. Equation (%) guarantees that R has the form

R(t) = P - €X',

Letting t = 0 denote the time at which there are 5 grams of isotope, and
measuring time in years, we have

R(0) =5 and R(100) = 3.

From the first piece of information we learn that

Hence P = 5 and

R(t) =5-€ef' =5. ()"
The second piece of information yields

3 =R(100) = 5- (&),
We conclude that

3
(eK)100: -
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or

3\ 1/100
e = (—) .
5

Thus the formula for the amount of isotope present at time t is

3\ /100
o= (2)"

Thus we have complete information about the function R, and we can an-
swer the original question.
There will be 1 gram of material present when

3 t/100

or

1 3\ 1/100
s=(3)

We solve for t by taking the natural logarithm of both sides:

3 t/100 t

We conclude that there is 1 gram of radioactive material remaining when

In(1/5)
In(3/5)

t=100- ~ 315.066.

So at time t = 315.066, or after 215.066 more years, there will be 1 gram
of the isotope remaining.

YOU TRY IT Our analysis of exponential growth and decay is derived from
the hypothesis that the rate of growth is proportional to the amount of matter
present. Suppose instead that we are studying a system in which the rate of de-
cay is proportional to the square of the amount of matter. Let M(t) denote the
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amount of matter at time t. Then our physical law is expressed as

Here C is a (negative) constant of proportionality. We apply the method of " “sep-
aration of variables" described earlier in the section. Thus

dm
/dt _ .
MZ

so that

[FE a= [ cat.
M2

Evaluating the integrals, we find that
! _ Ct+ D
i .
We have combined the constants from the two integrations. In summary,

M(t) = —

Ct+D’

For the problem to be realistic, we will require that C < 0 (so that M > 0
for large values of t) and we see that the population decays like the reciprocal
of a linear function when t becomes large.

YOU TRY IT Re-calculate Example 6.32 using this new law of exponential
decay.

6.5.4 Compound Interest

Yet a third illustration of exponential growth is in the compounding of interest.
If principal P dollars is put in the bank at p percent simple interest per year
then after one year the account has

p
pe(1+55)

dollars. [Here we assume, of course, that all interest is re-invested in the ac-
count.] But if the interest is compounded n times during the year then the year
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is divided into n equal pieces and at each time interval of length 1/# an interest
payment of percent p/n is added to the account. Each time this fraction of the
interest is added to the account, the money in the account is multiplied by
n
14 2
100

Since this is done n times during the year, the result at the end of the year is
that the account holds

P. <1 + lofgn)n )

dollars at the end of the year. Similarly, at the end of ¢ years, the money accu-

» nt
P14 3

_n-100
P

mulated will be

Let us set

k

and rewrite () as

1 Tke/100 1\ kP10
Poig] =p{<1+g)} .

It is useful to know the behavior of the account if the number of times the inter-
est is compounded per year becomes arbitrarily large (this is called continuous
compounding of interest). Continuous compounding corresponds to calculating
the limit of the last formula as k (or, equivalently, ), tends to infinity.

We know from the discussion in Subsection 6.2.3 that the expression (1 +
1/k)* tends to e. Therefore, the size of the account after one year of continuous
compounding of interest is

P. ep/]OO‘

After t years of continuous compounding of interest the total money is

P . pbt/100 (%)
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EXAMPLE 6.33
If $6000 is placed in a savings account with 5% annual interest com-
pounded continuously, then how large is the account after four and one
half years?

SOLUTION
If M(t) isthe amount of money in the account attimet, then the preceding
discussion guarantees that

M(t) = 6000 - /1%,
After four and one half years the size of the account is therefore

M(9/2) = 6000 - &(%/2/1%0 ~ §7513.94,

A wealthy woman wishes to set up an endowment for her nephew. She
wants the endowment to pay the young man $100,000 in cash on the day
of his twenty-first birthday. The endowment is set up on the day of the
nephew's birth and is locked in at 11% interest compounded continuously.
How much principal should be put into the account to yield the desired
payoff?

SOLUTION
Let P be the initial principal deposited in the account on the day of the
nephew's birth. Using our compound interest equation (xx), we have

100000 = P - e''21/1%,
expressing the fact that after 21 years at 11% interest compounded con-
tinuously we want the value of the account to be $100,000.
Solving for P gives

P = 100000 - e %""2" = 100000 - e~ 23" = 9926.13.

The aunt needs to endow the fund with an initial $9926.13.
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YOU TRY IT Suppose that we want a certain endowment to pay $50,000 in
cash ten years from now. The endowment will be set up today with $5,000 princi-
pal and locked in at a fixed interest rate. What interest rate (compounded contin-
uously) is needed to guarantee the desired payoff?

6.6 Inverse Trigonometric Functions

6.6.1 Introductory Remarks

Figure 6.14 shows the graphs of each of the six trigonometric functions. Notice
that each graph has the property that some horizontal line intersects the graph
at least twice. Therefore none of these functions is invertible. Another way of
seeing this point is that each of the trigonometric functions is 27 -periodic (that
is, the function repeats itself every 27 units: f(x + 27) = f(x)), hence each of
these functions is not one-to-one.

If we want to discuss inverses for the trigonometric functions, then we must
restrict their domains (this concept was introduced in Subsection 1.8.5). In this

/
\/ N Y e
N ST AT
< /< | N
/ \ 7 COS X e N smx -~
s VA N I .
d N v ‘ by
—3\ —2// N // 1 '\2 ) 3
\)/\/ N \\\(
<7 \‘>—|»~’/ -1 | )\/\\
>( csc x \/ \ | / \
/ \ ; //
|

FIGURE 6.14
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section we learn the standard methods for performing this restriction operation
with the trigonometric functions.

6.6.2 Inverse Sine and Cosine

Consider the sine function with domain restricted to the interval [—m/2, /2]
(Figure 6.15). We use the notation Sinx to denote this restricted function.
Observe that

——Sinx =cos x > 0
dx
on the interval (—7/2, 7/2). At the endpoints of the interval, and only there,
the function Sin x takes the values —1 and +1. Therefore Sin x is increasing on
its entire domain. So it is one-to-one. Furthermore the Sine function assumes
every value in the interval [—1, 1]. Thus Sin : [-7/2, /2] — [—1, 1] is one-
to-one and onto; therefore f(x) = Sin x is an invertible function.
We can obtain the graph of Sin~'x by the principle of reflection in the line
y = x (Figure 6.16). The function Sin~' : [—1, 1] — [—7/2, /2] is increasing,
one-to-one, and onto.
The study of the inverse of cosine involves similar considerations, but we
must select a different domain for our function. We define Cosx to be the
cosine function restricted to the interval [0, w]. Then, as Figure 6.17 shows,

YA

y=Sinx

«V

an

FIGURE 6.15
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YA
72 t
y=Sin"! x
1 >
1 X
-n/2 1

FIGURE 6.16

2(x) = Cosx is a one-to-one function. It takes on all the values in the inter-
val [-1, 1]. Thus Cos: [0, 7] — [—1, 1] is one-to-one and onto; therefore it
possesses an inverse.

We reflect the graph of Cosx in the line y = x to obtain the graph of the
function Cos™'. The result is shown in Figure 6.18.

YA

1 4 y=Cos x

FIGURE 6.17
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YA

a4

/2

=V

FIGURE 6.18

EXAMPLE 6.35

Calculate

3 2 3
Sin™" (i), Sin™" 0, Sin™" (——), Cos™' (—i),
2 2 2
2
Cos™" 0, Cos™" (T) .

SOLUTION

We have
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Notice that, even though the sine function takes the value \/§/2 at many
different values of the variable x, the function Sine takes this value only at
x = 7 /3. Similar comments apply to the other two examples.

We also have

6
Cos™'0= f,
2
Cos™! é :E.
2 4

We calculate the derivative of f(x) = Sin~' x by using the usual trick for

inverse functions. The result is

1 1 -
cos(Sin~'x) \/1 — sin’(Sin~'x) VI-x

d ..
%(Sm (x)) =

The derivative of the function Cos™ " x is calculated much like that of Sin~" x.

We find that

1

V1 =2

d _
%(Cos 1(x)) =—

EXAMPLE 6.36
Calculate the following derivatives:

d d 1
, — Sin" (%% + x) , —Sin™" (;)

x:\/E/Z dx x=1/3 dx x:—\/g.
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SOLUTION
We have
d . _, 1
—Sin™ ' x = T =2,
dx x=y2/2 J1—x2 x=1/2/2
1 1
iSin"(x2+x) = (2x+1) :—5'
dx x=1/3 m x=1/3 \/E
d _ _, 1 ( 1) !
— Sin™ '(1/x) = TS\ T2 -
" T e R T TR

d d
YOU TRY IT Calculate dx Cos™ '[x? + x]. Also calculate ax Sin " '[Inx — x3].

EXAMPLE 6.37

Calculate each of the following derivatives:

d d d
— Cos 'x , — Cos '(Inx) , — Cos '(v/X)
dx x=1/2 x=+/e dx x=1/2
SOLUTION
We have
d Cos ' x = ! __2
dx x=1/2 V1 —x2 x=1/2 V3
d 1 1 2
— Cos™ '(Inx) :_7.(_) =-__°,
dx x=+/e J1—=(Inx)2 \x e J3e

d _1 1 L
— Cos™ '(v/x) = — —-(—x 1/2>
x=1/2 V1—=(v/x)2 \2

dx

x=1/2

YOU TRY IT Calculate d In[Cos™' x] and d exp[Sin~" x].
dx dx
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YA

y="Tanx

=V

FIGURE 6.19

6.6.3 The Inverse Tangent Function

Define the function Tan x to be the restriction of tanx to the interval
(—m/2, w/2). Observe that the tangent function is undefined at the endpoints
of this interval. Since

Tx Tan x = sec’x
we see that Tan x is increasing, hence it is one-to-one (Figure 6.19). Also Tan
takes arbitrarily large positive values when x is near to, but less than, 7/2. And
Tan takes negative values that are arbitrarily large in absolute value when x is
near to, but greater than, —m /2. Therefore, Tan takes all real values. Since Tan :
(—m/2,7/2) — (—00, 00) is one-to-one and onto, the inverse function Tan"" :
(=00, 00) = (—m/2, w/2) exists. The graph of this inverse function is shown
in Figure 6.20. It is obtained by the usual procedure of reflecting in the line

y=x.

EXAMPLE 6.38
Calculate

Tan™'1, Tan"'1/,/3, Tan_1(—\/;).
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FIGURE 6.20

SOLUTION
We have

-1 s
Tan 1= —,
4

™

Tan"'1/,/3 = o
Tan™'(—/3) = —g.

As with the first two trigonometric functions, we note that the tangent
function takes each of the values 1, 1/,/3, —,/3 at many different points
of its domain. But Tan x takes each of these values at just one point of its
domain.

The derivative of our new function may be calculated in the usual way. The
result is
1 1

— Tan x = .
Ix an  x 5

Next we calculate some derivatives:
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EXAMPLE 6.39
Calculate the following derivatives:

d d
— Tan 'x , —Tan '(x3) , — Tan" (&)
dx x=1 dx x:\/i d x=0
SOLUTION
We have
Tan" ' x = ! _ !
dx 1 14x2|_, 27
d 1 2
— Tan"'(x®) = _—.3x% ==,
dx x=1/2 14 (x3)2 x=1/2 3
d 1 1
— Tan"'(€¥) = ——- = _.
dx x—o 1+(&9) —o 2

YOU TRY IT Calculate - Tan—"[Inx + x*1and - In[Tan—" xI.
dx dx

6.6.4 Integrals in Which Inverse Trigonometric Functions Arise

Our differentiation formulas for inverse trigonometric functions can be written

in reverse, as antidifferentiation formulas. We have

/ du = Sin"'u+ C;

v1-—u?

/ du = —Cos_lu—i—C;

V1I—u?

d _
/ “ du=Tan 'u+C
1+ u?

The important lesson here is that, while the integrands involve only polynomi-
als and roots, the antiderivatives involve inverse trigonometric functions.
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EXAMPLE 6.40

Evaluate the integral

sinx
[
14 cos™ x

SOLUTION
For clarity we set ¢(x) = cos x, ¢’(x) = — sin x. The integral becomes
/ @' (x) dx
1T+ @2(x)’

By what we have just learned about Tan™ ', this last integral is equal to
—Tan"" o(x) +C.

Resubstituting o(x) = cos x yields that

sinx 1
72dx:—Tan (cos x) + C.
1+ cos” x

YOU TRY IT Calculate [ x/(1 + x*) dx.

EXAMPLE 6.4 1

Calculate the integral

J1T—x5

SOLUTION

For clarity we set ¢(x) = x3, ¢’(x) = 3x2. The integral then becomes

@' (x) dx
VT—@2(x)

We know that this last integral equals

Sin~' p(x) + C.
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Resubstituting the formula for ¢ gives a final answer of

dx = Sin~'(x%) + C.

/ 3x?
1 — x5

YOU TRY IT Evaluate the integral

xdx

V1 x4

6.6.5 Other Inverse Trigonometric Functions

The most important inverse trigonometric functions are Sinfl, Cos
Tan"' . We say just a few words about the other three.

Define Cotx to be the restriction of the cotangent function to the interval
(0, ) (Figure 6.21). Then Cot is decreasing on that interval and takes on all
real values. Therefore the inverse

-1
, and

Cot ' : (=00, 00) — (0, 7)

YA

" 4

FIGURE 6.21
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FIGURE 6.22

is well defined. Look at Figure 6.22 for the graph. It can be shown that

1 1
dx 14 x2°

Define Sec x to be the function sec x restricted to the set [0, 7/2) U (7 /2, ]
(Figure 6.23). Then Sec x is one-to-one. For these values of the variable x, the
cosine function takes all values in the interval [—1, 1] except for 0. Passing to

YA
y=Sec x

=V

FIGURE 6.23
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FIGURE 6.24

the reciprocal, we see that secant takes all values greater than or equal to 1 and
all values less than or equal to —1. The inverse function is

Sec™! : (=00, —1]U[1, 00) = [0, 7/2) U (/2, 7]
(Figure 6.24). It can be shown that

-1

Sec” x = L x| > 1.

1
x| - /22— 1

The function Csc x is defined to be the restriction of Csc x to the set
[—7/2,0) U (0, w/2]. The graph is exhibited in Figure 6.25. Then Csc x is one-
to-one. For these values of the x variable, the sine function takes on all values

dx

in the interval [—1, 1] except for 0. Therefore Csc takes on all values greater
than or equal to 1 and all values less than or equal to —1; Csc™" therefore has

domain (—oo, —1]U[1, 00) and takes values in [—1, 0) U (0, 1] (Figure 6.26).
It is possible to show that

, x| > 1.

1
- x| - v/x2 =1
YOU TRY IT WhatisSec™'(—2/,/3)? WhatisCsc™'(—,/2)?
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YA

_an

FIGURE 6.25

oy

/2 T

4

EZR

\ n

FIGURE 6.26

x‘/
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Summary of Key Facts About the Inverse Trigonometric Functions

T T

Sinx:sinx,—ifx i Cosx=cosx,0<x<m;

S_;

2
T T
Tanx:tanx,—i <X <o Cotx = cotx, 0 < x < m;

Sec x =secx,x € [0,7/2)U(7n/2, 7]; Csc x =cscx,x € [—n/2,0)U (0, =/2].

_ 1 _ 1
—Sinlxzi,—1<x<l;iCoslx:——,—l<x<l;
dx 1 —x2 dx 1 —x2
d _ 1 _ 1
—Tan1x=—,—oo<x<oo; ~ Cot 'x=— , —00 < X < 00
dx 1+ x2 dx 1+ x2

_ 1 d _1 1
—Sec1x=7,|x|>l; —Cs¢c x=—— |x| > 1;
dx |x] - /22 =1 dx |x] - /22 — 1

d _ d _
/ lu ZZSjnlu—l-C;/ lu Z:—Coslu+C;
V1—u —u

/ du du=Tan ' u+C /iduz—Cot_lu—FC;
1+u? 1+ u?

du

_ du _
J— 1 . —_ 1
/M.\/m_sec utG /|u|.\/m_ Cse ut G

YOU TRY IT Whatis the derivative of Sec™ " x2?

6.6.6 An Example Involving Inverse Trigonometric Functions

D EXAMPLE 6.42

Hypatia is viewing a ten-foot-long tapestry that is hung lengthwise on a
wall. The bottom end of the tapestry is two feet above her eye level. At
what distance should she stand from the tapestry in order to obtain the
most favorable view?

B’SOLUHON

For the purposes of this problem, view A is considered more favorable than
view B if it provides a greater sweep for the eyes. In other words, form the
triangle with vertices (i) the eye of the viewer, (ii) the top of the tapestry,
and (iii) the bottom of the tapestry (Figure 6.27). Angle « is the angle at
the eye of the viewer. We want the viewer to choose her position so that
the angle « at the eye of the viewer is maximized.
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10 ft

FIGURE 6.27

The figure shows a mathematical model for the problem. The angle «v is
the angle 0 less the angle 1. Thus we have

a=6—1 =Cot '(x/12) — Cot '(x/2).

Notice that when the viewer is standing with her face against the wall then
0 = ¢ = w/2sothat o = 0. Also, when the viewer is far from the tapestry
then 8 — « is quite small. So the maximum value for a will occur for some
finite, positive value of x. That value can be found by differentiating a with
respect to x, setting the derivative equal to zero, and solving for x.

We leave it to you to perform the calculation and discover that /24 ft.
is the optimal distance at which the viewer should stand.

YOU TRY IT Redo the last example if the tapestry is 20 feet high and the bot-
tom of the tapestry is 6 inches above eye level.
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. Simplify these logarithmic expressions.

a’-b?

(a) In e '3d
log,(a’b)

(b) log;(ab?)

(©) In[e* 2% w™?]

(d) log,o[1000* - \/W]

. Solve each of these equations for x.

(a) 2%.37% =2%.¢?
2% .

(C) 22x . 33x . 44x -6
5 2

(d) 32x . e3x = 3x.Q—x

. Calculate each of these derivatives.

(a) % In[cos(x?)]
d x3

(b) dx In |:x — 1:|

(C) %ecos(e")

(d % cos(Inx)

. Calculate each of these integrals.

(@) f e=x? dx
(b) / x-In’ xdx
© /1 elz—zxdx
) /1 RN

e* —1

. Use the technique of logarithmic differentiation to calculate the derivative

of each of the following functions.

2
;3 xf—x
a) x° -
(a) 3 +1
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10.

sinx - (x3 — x)

() =2

() (x*+ x3)4 C(x?—x)73
(d) X -sinx

Inx

. There are 7 grams of a certain radioactive substance present at noon on

January 10 and 5 grams present at noon on January 15. How much will
be present on January 20?

. A petri dish has 10,000 bacteria present at 10:00 a.m. and 17,000 present

at 2:00 p.m. How many bacteria will there be at 3:00 p.m.?

A sum of $5000 is deposited on January 1, 2005 at 4% interest, com-
pounded continuously. All interest is reinvested. How much money will
be in the account on January 1, 2009?

Calculate these derivatives.

(a) %Cos_1 (x-e¥)

(b) %CO{I <x-T—1>

(©) diiTanl [In(>2 + x)]

(d) diiSec1 tan x

Calculate each of these integrals.

(a) / X xdx

14+ x4

() /ﬂ"j_dex

7/2 2 cosx sin x
© [

V1 —cos4xdx

@ / 3 j—xxz




chapter ;

Methods
of Integration

Whereas (as we have learned) differentiation is a straightforward process, inte-
gration is not. The Fundamental Theorem of Calculus tells us that integration

is “reverse differentiation,”” and that reverse process can be quite tricky.

Thus there are various techniques of integration that one must master. That
is the subject of this chapter. The aggregate of these techniques will give us a
potent collection of tools for performing applications of the integral.

CHAPTER OBJECTIVES

In this chapter, you will learn
« Integration by parts

« Partial fractions
 Substitutions

« Integration of trigonometric functions

239
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7.1 Integration by Parts

We learned in Section 4.5 that the integral of the sum of two functions is the
sum of the respective integrals. But what of the integral of a product? The
following reasoning is incorrect:

/xzdxz/‘x.xdxz/xdx./xdx

because the left-hand side is x3 /3 while the right-hand side is (x?/2) - (x?/2) =
x*/4.

The correct technique for handling the integral of a product is a bit more
subtle, and is called integration by parts. It is based on the product rule

(w-v) =v-v+u-v.

Integrating both sides of this equation, we have

/(u-v)/dx=/u’-vdx—k/u-z/dx.

The Fundamental Theorem of Calculus tells us that the left-hand side is u - v.

Thus
u~vz/u’-vdx+/u-v’dx

/u~v/dx=u-v—/v-u/dx.

It is traditional to abbreviate /(x) dx = du and v/(x) dx = dv. Thus the in-
tegration by parts formula becomes

/udv:m/—/vdu.

Let us now learn how to use this simple new formula.

or

EXAMPLE 7.1
Calculate

/x . cos x dx.
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SOLUTION
We observe that the integrand is a product. Let us use the integration by
parts formula by setting u(x) = x and dv = cos x dx. Then

u(x) =x du = u’(x) dx = 1dx = dx
v(x) =sinx dv =v/'(x)dx = cosxdx

Of course we calculate v by anti-differentiation.
According to the integration by parts formula,

/x-cosxdx:/udv
:u-v—/vdu

=X-sinx — /sinxdx
=x-sinx—(—cosx) +C

=x-sinx+cosx -+ C.

MATH NOTE Observe that we can check the answer in the last example just by
differentiation:

d . . .
—[x-sinx+ cosx+ C] =1-sinx+ x-cosx —sinx = x - cos x.

The choice of  and v in the integration by parts technique is significant. We
selected u to be x because then du will be 1 dx, thereby simplifying the integral.
If we had instead selected u = cosx and dv = x dx then we would have found
that v = x?/2 and du = — sin x dx and the new integral

X2
/Uduz/?(—sinx)dx

is more complicated.

EXAMPLE 7.2
Calculate the integral

/xz-e"dx.
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B’SOLUHON

Keeping in mind that we want to choose u and v so as to simplify the inte-
gral, we take u = x? and dv = e* dx. Then

u(x) = x? du=u'(x)dx =2xdx
vix) =& dv=Vv(x)dx =e*dx

Then the integration by parts formula tells us that
/xze"dx:/udv:uv—/vdu:xz-e"—/e"-Zde. (%)

We see that we have transformed the integral into a simpler one (in-
volving x - ¥ instead of x? - €¥), but another integration by parts will be
required. Now we take u = 2x and dv = e* dx. Then

u(x) =2x du=u'(x)dx =2dx
v(ix) =& dv =V (x)dx =edx

So equation () equals
x2-e"—/udv:x2-e"—[u-v—/vdu]
:xz-e"—|:2x-e"—/e"-2dx:|

=x?.&—2x-e+2e+C.

We leave it to the reader to check this last answer by differentiation.

YOU TRY IT Calculate the integral
/xz log x dx.

EXAMPLE 7.3
Calculate

2
/ log x dx.
1
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B’SOLUHON

This example differs from the previous ones because now we are evalu-
ating a definiteintegral (i.e., an integral with numerical limits). We still use
the integration by parts formula, keeping track of the numerical limits of
integration.

We first notice that, on the one hand, the integrand is not a product. On
the other hand, we certainly do not know an antiderivative for log x. We
remedy the situation by writinglog x = 1 - log x. Now the only reasonable
choice is to take u = log x and dv = 1 dx. Therefore

u(x) =logx du=u'(x)dx = (1/x)dx

v(x) =x dv =Vv/(x) dx = 1dx

2 2

/1-Iogxdx:/ udv

1 1
2 2

—/ vdu
1 1
2 2

1

—/ x . —dx

1 1 X

2
=2-IogZ—1-Iog1—/ 1dx
1

and

= uv

= (logx) - x

2
=2-log2 —x

1

=2-log2—(2—-1)

=2-log2—1.

YOU TRY IT Evaluate

4
/ x2 - sinxdx.
0

We conclude this section by doing another definite integral, but we use a
slightly different approach from that in Example 7.3.
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EXAMPLE 7.4
Calculate the integral

2T
/ sin x cos x dx.
™

B’sownon

We use integration by parts, but we apply the technique to the correspond-
ing indefinite integral. We let u = sin x and dv = cos x dx. Then

u(x) =sinx du = u'(x)dx = cosxdx

v(x) =sinx dv = Vv/(x) dx = cos xdx

So

/sinxcosxdx:/udv
:uv—/vdu

= (sinx) - (sinx) —/sinxcosxdx.

At first blush, it appears that we have accomplished nothing. The new
integral is just the same as the old integral. But, in fact, we can move the
new integral (on the right) to the left-hand side to obtain

Z/Sinxcosxdx = sin’ x.
Throwing in the usual constant of integration, we obtain

. 1.5

sinxcosxdx = 3 sin“x + C.

Now we complete our work by evaluating the definite integral:

2w

o 1 . 5 1 .5 .2 1
/ sin x cos xdx = —sin“ x = —[sin“ 27 — sin“(7w/2)] = ——.
,, 2 2 2

/2
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We see that there are two ways to treat a definite integral using integration by
parts. One is to carry the limits of integration along with the parts calculation.
The other is to do the parts calculation first (with an indefinite integral) and
then plug in the limits of integration at the end. Either method will lead to the
same solution.

YOU TRY IT Calculate the integral

2
/ e * cos 2x dx.
0

7.2 Partial Fractions

7.2.1 Introductory Remarks

The method of partial fractions is used to integrate rational functions, or quo-
tients of polynomials. We shall treat here some of the basic aspects of the
technique.

The first fundamental observation is that there are some elementary rational
functions whose integrals we already know.

I. Integrals of Reciprocals of Linear Functions

An integral
1
/ ax+b dx

with a # 0 is always a logarithmic function. In fact we can calculate

1 1 1 1

II. Integrals of Reciprocals of Quadratic Expressions

An integral
1
/ dx,
¢ + ax?




2u6 CALCULUS DeMYSTiFieD

when a and ¢ are positive, is an inverse trigonometric function. In fact we can
use what we learned in Section 6.6.3 to write

f ! dx = lf;dx
¢ + ax? cJ 1+ (a/c)x?

1 1
?/1+(Wx)2 dx

1 va L
= Vac e | 1+ (Jagexp

= \/La_c arctan(y/a/cx) + C.

Ill. More Integrals of Reciprocals of Quadratic Expressions
An integral

1
. — )
/ax2+bx+c x

with a > 0, and discriminant b?> — 4ac negative, will also be an inverse trigono-
metric function. To see this, we notice that we can write

axz—l—bx—i-c:a(xz—i—gx—{— )+c
Y DS W
I ax 442 ¢ 4q
b\? b?
=a-<x+z> + C—E .

Since b> — 4ac < 0, the final expression in parentheses is positive. For simplic-
ity, let A = b/2a and let y = ¢ — b?/(4a). Then our integral is

/;dx
y+a-(x+1)2?
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Of course we can handle this using II above. We find that

1 1
[ax2+bx+cdx=/y+a-(x+k)2dx

_ L rean (Y2
= Ja arcta (ﬁ (x+)»)>+C.

IV. Even More on Integrals of Reciprocals of Quadratic Expressions
Evaluation of the integral

1
- d
/axz-i-bx—i-c x

when the discriminant b — 4ac is > 0 will be a consequence of the work we
do below with partial fractions. We will say no more about it here.

7.2.2 Products of Linear Factors

We illustrate the technique of partial fractions by way of examples.

EXAMPLE 7.5
Here we treat the case of distinct linear factors.
Let us calculate

1
/—dx.
x2 —3x+2

SOLUTION
We notice that the integrand factors as

1 1

X2—3x+2 (x—1)(x-2)" (%)

[Notice that the quadratic polynomial in the denominator will factor pre-
cisely when the discriminant is > 0, which is case IV from Subsection 7.2.1.]
Our goal is to write the fraction on the right-hand side of (*x) as a sum of
simpler fractions. With this thought in mind, we write

1 A B

(x—1)(x —2) :x—1 +x—2'
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where A and B are constants to be determined. Let us put together the
two fractions on the right by placing them over the common denominator
(x — 1)(x — 2).Thus

1 . A " B _A(x—2)+B(x—1)
(x—M(x—2 x—1 x—2  (x—1)(x—2)

The only way that the fraction on the far left can equal the fraction on
the far right is if their numerators are equal. This observation leads to the
equation

1=A(x—2)+B(x—1)
or
0=(A+B)x+(—2A—B —1).

Now this equation is to be identically true in x; in other words, it must hold
for every value of x. So the coefficients must be 0.
At long last, then, we have a system of two equations in two unknowns:

A+ B =0
—2A—-B-1=0

Of course this system is easily solved and the solutions found to be
A=-1,B=1.
We conclude that
1 —1 1

(x—1)(x—2) :x—1 +x—2'

What we have learned, then, is that

1 —1 1
—  _dx= d dx.
/x2—3x+2 X /x—1 X+/x—2 X

Each of the individual integrals on the right may be evaluated using the
information in | of Subsection 7.2.1. As a result,

1
—dx = —1 —1 I — 2|+ C.
[ i3 @x = —loglx 1|+ log|x — 2| +
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YOU TRY IT Calculate the integral
/4 dx
1 X24+5x+4
Now we consider repeated linear factors.

EXAMPLE 7.6
Let us evaluate the integral

/ dx
x3 —4x2 —3x+18°

B’sownow

In order to apply the method of partial fractions, we first must factor the
denominator of the integrand. It is known that every polynomial with real
coefficients will factor into linear and quadratic factors. How do we find
this factorization? Of course we must find a root. For a polynomial of the
form

X+ a X+ @ x4+ ax +ag,
any integer root will be a factor of ay. This leads us to try -1, -2, 4-3, £6,
49 and 1-18. We find that —2 and 3 are roots of x> — 4x> — 3x 4 18. In
point of fact,
x3 — 4x? —3x+18=(x+2) < (x — 3)2.
An attempt to write

1 A N B
x3—4x2 —3x+18 x+2 x-—3

will not work. We encourage the reader to try this for himself so that he will
understand why an extra idea is needed.
In fact we will use the paradigm

1 A N B N o
x3—4x2 —3x+18 x+2 x—3 (x—3)2°

249



250 CALCULUS DeMYSTiFieD

Putting the right-hand side over a common denominator yields

1 A(X—3)2+B(X+2)(X—3)+C(X+2)
x3 —4x2 —3x+18 x3 —4x2 —3x+ 18

Of course the numerators must be equal, so
1=A(x—3)>+B(x+2)(x—3) +C(x+2).
We rearrange the equation as
(A+B)x*+(—6A— B +C)x+(9A—6B +2C —1) =0.
Since this must be an identity in x, we arrive at the system of equations

A + B =0
—6A—B +C =0
9A —6B+4+2C —-1=0

This system is easily solved to yield A = 1/25,B = —1/25,C = 1/5.
As a result of these calculations, our integral can be transformed as
follows:

1 [ 1/25 1/25 1/5
/ —4X2—3x—|-18 _/ X+/ /( _3)2

The first integral equals (1/25) log |x + 2|, the second integral equals
—(1/25) log |x — 3|, and the third integral equals —(1/5) /(x — 3).
In summary, we have found that

+C.

/ 1 dx_log|x—|—2| log |x — 3| 1
x3—4x2—3x+18 25 25 5(x — 3)

We see that our integral of the reciprocal of a cubic polynomial leads to the
sum of three factors; two of these are logarithmic, but one is not.
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YOU TRY IT Evaluate the integral

4 xdx
/2 X3 4+5x2+7x+3"
7.2.3 Quadratic Factors

EXAMPLE 7.7
Evaluate the integral

/ xdx
xX34+2x2+x+2°

SOLUTION
Since the denominator is a cubic polynomial, it must factor. The factors of
the constant term are =1 and 3-2. After some experimentation, we find
that x = —2is aroot and in fact the polynomial factors as

X4+ 22+ x+2=(x+2)(x*+1).

Thus we wish to write the integrand as the sum of a factor with denomi-
nator (x + 2) and another factor with denominator (x> 4 1). The correct
way to do this is

X . X . A Bx + C
X3+2x24+x+2 (x+2)(x2+1) x+2 x24+1°

We put the right-hand side over a common denominator to obtain

x _ A*+1) +(Bx+C)(x+2)
X3 +2x24+x+2 X3+ 2x2 4+ x+2 )

Identifying numerators leads to

x=(A+B)x>*+ (2B +C)x+ (A+2C).
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This equation must be identically true, so we find (identifying powers of x)
that

A+ B =0
2B+ C =1
A + 2C =0

Solving this system, we find that A= —2/5,B =2/5,C = 1/5.S0

/ x dx _ —2/5dx+ (2/5)x +(1/5) dx
x342x2 4+ x4 2 x+2 x2 41
—2 1 2x 1 1

-2 1 1
:Tlog|x+2|+§Iog|x2+1|+§arctanx+c.

YOU TRY IT Calculate the integral

/1 dx
o X3+ 6x2+9x

YOU TRY IT Calculate the integral

/ dx
X3+ x
7.3 Substitution

Sometimes it is convenient to transform a given integral into another one by
means of a change of variable. This method is often called ‘‘the method of
change of variable”” or “‘u-substitution.”

To see a model situation, imagine an integral

/ab f(x)dx.

If the techniques that we know will not suffice to evaluate the integral, then
we might attempt to transform this to another integral by a change of variable
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x = ¢(t). This entails dx = ¢'(t)dt. Also
x=a<«—t=¢ (a) and  x=b<«—t=¢(b).

Thus the original integral is transformed to

¢~ (b)
[NICORIGE?
¢~ '(a)
It turns out that, with a little notation, we can make this process both conve-
nient and straightforward.

We now illustrate this new paradigm with some examples. We begin with an
indefinite integral.

EXAMPLE 7.8
Evaluate

/[sin x]° - cos x dx.

B’sownom

On looking at the integral, we see that the expression cos x is the deriva-
tive of sin x. This observation suggests the substitution sinx = u. Thus
cos x dx = du.We must now substitute these expressions into the integral,
replacing all x-expressions with u-expressions. When we are through with
this process, no x expressions can remain. The result is

/us du.
This is of course an easy integral for us. So we have
ub
/[sinx]5 .cosxdx = /usdu i +C.

Now the important final step is to resubstitute the x-expressions in
place of the u-expressions. The result is then

sin® x

/[sinx]s-cosxdx: +C.
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MATH NOTE Always be sure to check your work. You can differentiate the an-
swer in the last example to recover the integrand, confirming that the integration
has been performed correctly.

EXAMPLE 7.9
Evaluate the integral

3
f 2x,/x2 4 1dx.
0

SOLUTION
We recognize that the expression 2x is the derivative of x> + 1. This sug-
gests the substitution u = x> + 1. Thus du = 2xdx.Alsox = 0 «—— u =
1and x = 3 «<—— u = 10. The integral is thus transformed to

10
Vudu.

1

This new integral is a bit easier to understand if we write the square root
as a fractional power:

10 3/2
/ w2 du ="
1 3/2

1032 132 2.10%2
., 3/2 3/2 3

2
3"

YOU TRY IT Evaluate the integral

/‘5 dx
5 x-log|x|

= Still Struggling

Just as with integration by parts, we always have the option of first evaluating
the indefinite integral and then evaluating the limits at the very end. The next
example illustrates this idea.
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exAmpLE 7.10
Evaluate

/2
Cos X

/ — dx.
n/3 Sin X

MSOLUTION

Since cos x is the derivative of sin x, it is natural to attempt the substitution
u = sin x. Then du = cos x dx. [Explain why it would be a bad idea to let
u = cos x.] We first treat the improper integral. We find that

d
/c?sxdx:/—uzlog|u|+c.
sinx u

Now we resubstitute the x-expressions to obtain

/ c(,)Sxdx = log |sinx| + C.
sin x

Finally we can evaluate the original definite integral:

™/2 cos x |2
—— dx = log | sin x|
/3 sin X /3

= log |sin7/2| — log | sin /3|

NE

=log1 —IogT

1
= —Elog3+ log 2.

YOU TRY IT Calculate the integral

/3 tdt
2 (2 4+ 1) log(t2 +1)°
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7.4 Integrals of Trigonometric Expressions

Trigonometric expressions arise frequently in our work, especially as a result
of substitutions. In this section we develop a few examples of trigonometric
integrals.

The following trigonometric identities will be particularly useful for us.

I. We have

2 1 — cos2x
sin“x = ———

The reason is that
cos 2x = cos’ x — sin” x = [1- sin’ x] — sinx = 1 — 2sin” x.
II. We have

2 1 + cos2x
cos’x = ———.

The reason is that
2 .2 2 2 2
cos2x = cos” x —sin“x =cos"x —[1 — cos”" x] = 2cos” x — 1.
Now we can turn to some examples.

exampLe 7.11
Calculate the integral

f cos’ x dx.
SOLUTION

Of course we will use formula Il. We write

1 2
/coszxdx=/¥dx
—/1dx+/1c052xdx
) 2 2

—x—|—1sin2x+C
=5+2 .
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ExAmpPLE 7.12
Calculate the integral

/ sin’ x cos® x dx.

SOLUTION
When sines and cosines occur together, we always focus on the odd power
(when one occurs). We write

sin® x cos? x = sin x sin® x cos® x = sin x(1 — cos® x) cos> x

= [cos® x — cos” x] sin x.

Then
.3 2 2 4 .
/sm xcos” dx = /[cos Xx — cos” x]sin x dx.

A u-substitution is suggested: We let u = cos x, du = — sinx dx. Then
the integral becomes

3 5
i — ¥ ldy =
f[u u’ldu 3-|—s—i—C.

Resubstiting for the u variable, we obtain the final solution of

cos® x n cos® x
3 5

/sinz‘xcos2 dx = — +C.

YOU TRY IT Calculate the integral

/ sin® 3x cos’ 3x dx.

EXAmMPLE 7.13
Calculate

/2
/ sin® x cos” x dx.
0

257
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SOLUTION
Substituting

. 2 1 — cos2x 2 14 cos2x
sin“x = —— and Cos" X = ———

2 2

into the integrand yields

/2 /1 — cos2x\2 (1 + cos2x? 1 [7™/2
/ . t dx = —/ 1 — 2cos? 2x+cos4 2x dx.
o 2 2 16 J,

Again using formula Il, we find that our integral becomes

1 [7/2 1 4x7?
— 1 —[1+ cos4x] + ﬂ dx
16 Jo 2
1 [7/? 1 5
= 16 1 —[1+ cosdx] + 2[1 + 2cos4x + cos” 4x] dx.
0

Applying formula Il one last time yields

/2
11_6/ 1—[1+cos4x]+%|:1+2cos4x+mi| dx
0

2

T naxs Mt Deinax g X 4 Sin8X /2
T 16| 4° 4 2° 2 16 ),
= =0+ (T+0+ " 40 04+ 1(040+40+0)
16 4\ 2 4 4
gL
256

We see that it is often useful to apply | and Il several times.

YOU TRY IT Calculate the integral

/3
/ sin> s cos® s ds.
/4
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YOU TRY IT Calculate the integral

/3
f sin’s cos’ s ds.
/4

Integrals involving the other trigonometric functions can also be handled
with suitable trigonometric identities. We illustrate the idea with some exam-
ples that are handled with the identity

.2 .2 2
2 sin” x sin” x 4 cos” x 1 2
tan"x + 1 = 5 +1= 5 = = sec” x.
cos” x cos” x cos” x
examprLE 7.14
Calculate
/tan3xsec3xdx.
SOLUTION

Using the same philosophy about odd exponents as we did with sines and
cosines, we substitute sec> x — 1 for tan” x. The result is

/ tan x(sec® x — 1) sec® x dx.
We may regroup the terms in the integrand to obtain
/ [sec* x — sec’® x] sec x tan x dx.

A u-substitution suggests itself: We let u = secx and therefore
du = sec x tan x dx. Thus our integral becomes

5 3
4_ 2 u-_u
u —u'du=—— — +C.
/ 5 3 +
Resubstituting the value of u gives

SEC5 X sec3 X

5 3

/tan3xsec3xdx= + C.
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EXAMPLE 7.15
Calculate

/4 4
f sec” xdx.
0

SOLUTION
We write

/4 4 /4 , 5
/ sec xdx:/ sec” x - sec” xdx
0 0

/4
:/ (tan2x+1)sec2xdx.
0

Letting u = tan x and du = sec” x dx then gives the integral

3 1

1
/u2+1du= +u

0

W.|-b w|=

YOU TRY IT Calculate the integral
27
/ sin® x cos” x dx.

Further techniques in the evaluation of trigonometric integrals will be ex-
plored in the exercises.



Chapter7 METHODS OF INTEGRATION 261

QuIZ

1. Use integration by parts to evaluate each of the following indefinite
integrals.

(a) / log” x dx
(b) f x - 2 dx
(© / x? sinx dx
(d) /tsinZtcostht
(@) / siny In cos y dy

® /xlnxdx

2. Use partial fractions to evaluate each of the following indefinite
integrals.

dx

(2) /(x+l)(x—3)
dx

®) / x—1D%2+1)

X

d
(C)/x3+2x2—5x—6
dx
@ [ 57
dx
(e)[x3—3x+2

O e
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3. Use the method of u-substitution to evaluate each of the following indef-

inite integrals.

(a) /(l + cos” x)?2 sin x cos x dx

) /‘cosfd

© /‘ sin(In x) xcos(lnx) o

(d) f e*"¥ cos x dx
cos x
(@ [ 25
1 +sin’ x

sec’ x
® [
1 —tan®x

4. Evaluate each of the following indefinite trigonometric integrals.

(a) f cosxsin” x dx
(b) / cos’ xsin” x dx
© / tan” x sec” x dx
) / tan x sec® x dx
(e) / sin’ x cos” x dx

® / cosxsin? x dx
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5. Calculate each of the following definite integrals.
1
(a) / e* cosx dx
0

(b) /exlnxdx
1

© / (2x —1)dx

X3 —x2

(d) / sin” x cos” x dx
0

(e) / cotx cscx dx

) /”/4 tanx

COs x
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chapter 8

Applications
of the Integral

As the pinnacle of our work in this book, we now present a number of substan-

tial applications of the technique of integration. Most of these are physical in
nature, and that is the way that Isaac Newton would have liked it. Many of the
laws of physics are expressed in the language of integrals.

This chapter involves a good deal of technique. In order to use the integral
to study an application, one must understand how to transform the physical
problem into a mathematical one. This requires a notable understanding of how
the integral is constructed, and what is the concept behind the integral. You may
find yourself flipping back to Chapter 4 to review key ideas.

CHAPTER OBJECTIVES

In this chapter, you will learn

» Volumes by slicing

» Volumes of solids of revolution

« Calculation of work

« Calculation of averages

« Calculation of arc length and surface area
+ Hydrostatic pressure

» Numerical techniques of integration 265
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8.1 Volumes by Slicing

8.1.0 Introduction

When we learned the theory of the integral, we found that the basic idea was
that one can calculate the area of an irregularly shaped region by subdividing
the region into “‘rectangles.” We put the word “‘rectangle”” here in quotation
marks because the region is not literally broken up into rectangles; the union of
the rectangles differs from the actual region under consideration by some small
errors (see Figure 8.1). But the contribution made by these errors vanishes as
the mesh of the rectangles become finer and finer.

We will now implement this same philosophy to calculate certain volumes.
Some of these will be volumes that you have heard about (e.g., the sphere or
cone), but have never known why the volume had the value that it had. Others
will be entirely new (e.g., the paraboloid of revolution). We will again use the
method of slicing.

8.1.1 The Basic Strategy

Imagine a solid object situated as in Figure 8.2. Observe the axes in the diagram,
and imagine that we slice the figure with slices that are vertical (i.e., that rise
out of the x-y plane) and that are perpendicular to the x-axis (and parallel to
the y-axis). Look at Figure 8.3. Notice, in the figure, that the figure extends
fromx =atox=0>.

If we can express the area of the slice at position x as a function A(x) of x,
then (see Figure 8.4) the volume of a slice of thickness Ax at position x will be

y=fx

FIGURE 8.1
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FIGURE 8.2

FIGURE 8.3

FIGURE 8.4

about A(x) - Ax. If P = {x9, x1, ..., %} is a partition of the interval [a, b] then
the volume of the original solid object will be about

V=> Ak Ax.
j

As the mesh of the partition becomes finer and finer, this (Riemann) sum will
tend to the integral

/ab A(x) dx.

We declare the value of this integral to be the volume V of the solid object.
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8.1.2 Examples

ExAMPLE 8.1
Calculate the volume of the right circular cone with base a disc of radius 3
and height 6.

SOLUTION
Examine Figure 8.5. We have laid the cone on its side, so that it extends
from x = 0to x = 6. The upper edge of the figureis theliney = 3 — x/2.
At position x, the height of the upper edge is 3 — x/2, and that number is
also the radius of the circular slice at position x (Figure 8.6). Thus the area

of that slice is
2
X
A = 3——) .
(x) == ( 2)

We find then that the volume we seek is

6 6 5 B 5
V=/ A(X)dX=/7r<3—£> dx:—nM
0 0 2 3

6
= 18mr.
0

=)
=

FIGURE 8.5
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thickness Ax

FIGURE 8.6

YOU TRY IT Any book of tables (see [CRC]) will tell you that the volume of a
right circular cone of base radius r and height h is %wrzh. This formula is consis-
tent with the result that we obtained in the last example forr = 3andh = 6. Use
the technique of Example 8.1 to verify this formula.

EXAMPLE 8.2
The base of a solid is a unit disc in the x-y plane. The vertical cross section
at position x is an equilateral triangle. Calculate the volume.

SOLUTION
Examine Figure 8.7. The unit circle has equation x?> 4+ y? = 1. For our pur-
poses, this is more conveniently written as

y=+/1-x. (%)

FIGURE 8.7
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N

FIGURE 8.8

Thus the endpoints of the base of the equilateral triangle at position x are
the points (x, /1 — x?). In other words, the base of this triangle is

b=2,/1—x2.

Examine Figure 8.8. We see that an equilateral triangle of side b has height
V/3b/2.Thus the area of the triangle is ,/3b? /4. In our case then, the equi-
lateral triangular slice at position x has area

\/§ 2
A(x) = i [2,/1 —x2] :ﬁu —x?).

Finally, we may conclude that the volume we seek is

1
"4 :/ A(x) dx
-1

:/1 \/;(1—x2)dx
-1

o]
- 5|

-9

a3
)




Chapter8 APPLICATIONS OF THEINTEGRAL 271

FIGURE 8.9

EXAMPLE 8.3
A solid has base in the x-y plane consisting of a unit square with center at
the origin and vertices on the axes. The vertical cross section at position x
is itself a square. Refer to Figure 8.9. What is the volume of this solid?

B’SOLUHON

It is sufficient to calculate the volume of the right half of this solid, and
to double the answer. Of course the extent of x is then 0 < x < 1/,/2. At
position x, the height of the upper edge of the square base is 1/ﬁ — X.
So the base of the vertical square slice is 2(1/,/2 — x) (Figure 8.10). The
area of the slice is then

A(x) = [2(1/\/£—x)]2 = (ﬁ— 2x)2.

2(1N2 - x)

2(1N2 - x)

FIGURE 8.10
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It follows that

YOU TRY IT Calculate the volume of the solid with base in the plane an equi-
lateral triangle of side 1, with base on the x axis, and with vertical cross section

parallel to the y-axis consisting of an equilateral triangle.

EXAMPLE 8.4

Calculate the volume inside a sphere of radius 1.

SOLUTION

Itis convenient for us to think of the sphere as centered at the origin in the
x-y plane. Thus (Figure 8.11) the slice at position x, —1 < x < 1, is a disc.
Since we are working with base the unit circle, we may calculate (just as in
Example 8.2) that the diameter of this disc is 2,/1 — x2. Thus the radius is

>
g

FIGURE 8.11



Chapter8 APPLICATIONS OF THEINTEGRAL 273

v/1 — x2and the area is
Ax) =7 (/1 =x2)2=7-(1—x7).
In conclusion, the volume we seek is
1
v :/ (1 — x?) dx.
—1

We easily evaluate this integral as follows:

V=m-|x——
3 1

YOU TRY IT Anybook of tables (see [CRC]) will tell you that the volume inside
a sphere of radius r is 4rr3 /3. This formula is consistent with the answer we ob-
tained in the last example forr = 1. Use the method of this section to derive this
more general formula for arbitrary r.

8.2 Volumes of Solids of Revolution

8.2.0 Introduction

A useful way—and one that we encounter frequently in everyday life—for gen-
erating solids is by revolving a planar region about an axis. For example, we can
think of a ball (the interior of a sphere) as the solid obtained by rotating a disc
about an axis (Figure 8.12). We can think of a cylinder as the solid obtained by
rotating a rectangle about an axis (Figure 8.13). We can think of a tubular solid
as obtained by rotating a rectangle around a non-adjacent axis (Figure 8.14).
There are two main methods for calculating volumes of solids of revolution:
the method of washers and the method of cylinders. The first of these is really
an instance of volume by slicing, just as we saw in the last section. The second
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FIGURE 8.12

=

FIGURE 8.13

(=

FIGURE 8.14

uses a different geometry; instead of slices one uses cylindrical shells. We shall
develop both techniques by way of some examples.

8.2.1 The Method of Washers

EXAMPLE 8.5
A solid is formed by rotating the triangle with vertices (0, 0), (2, 0), and
(1, 1) about the x-axis. See Figure 8.15. What is the resulting volume?

SOLUTION
For0 < x < 1,theupper edge of the triangle has equation y = x.Thus the
segment being rotated extends from ( x, 0) to (x, x). Under rotation, it will
generate a disc of radius x, and hence area A(x) = 7x?2. Thus the volume
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N

(0,0) (2,0)

FIGURE 8.15

generated over the segment0 < x < 1is
1
vV, = / 72 dx.
0

Similarly, for 1 < x < 2, the upper edge of the triangle has equation
y = 2 — x.Thus the segment being rotated extends from (x, 0) to (x, 2 —
x). Under rotation, it will generate a disc of radius 2 — x, and hence area
A(x) = w(2 — x)2. Thus the volume generated over the segment 1 <
x<2is

2
7A :/ (2 — x)2dx.
1

In summary, the total volume of our solid of revolution is
V=VvV+V

=[5l
-0+ (-]

27

3

'o—(2—-x)3
0 3

275
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FIGURE 8.16

EXAMPLE 8.6
The portion of the curve y = x? between x = 1and x = 4is rotated about
the x-axis (Figure 8.16). What volume does the resulting surface enclose?

SOLUTION
At position x, the curve is x? units above the x-axis. The point ( x, x?), under
rotation, therefore generates a circle of radius x2. The disc that the circle
bounds has area A(x) = 7 - (x?)2. Thus the described volume is

4 x> 10237
V:/W-X4dX:7T-— = .
] 5| 5

= Still Struggling

The reasoning we have used in the last two examples shows this: If the curve
y = f(x),a < x < b, is rotated about the x-axis then the volume enclosed by
the resulting surface is

b
v =/ 7 - [FOOP dx.
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YOU TRY IT Calculate the volume enclosed by the surface obtained by rotat-
ing thecurvey = \/x + 1,4 < x < 9, about the x-axis.

EXAMPLE 8.7
The curve y = x3, 0 < x < 3, is rotated about the y-axis. What volume
does the resulting surface enclose?

B’SOLUHON

Itis convenient in this problem to treat y as the independent variable and x
as the dependent variable. So we write the curve as x = y'/3. Then, at posi-
tion y, the curve is distanced y'/3 from the axis so the disc generated under
rotation will have radius y'/3 (Figure 8.17). Thus, the disc will have area
A(y) = = - [y'/312. Also, since x ranges from 0 to 3 we see that y ranges
from 0 to 27. As a result, the volume enclosed is

y*2 17 7297
5/3), 5

27
v:/ m-yPdy=m-
0

FIGURE 8.17
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= Still Struggling

The reasoning we have used in the last example shows this: If the curve x = g(y),
¢ <y <d, isrotated about the y-axis then the volume enclosed by the resulting
surface is

d
% =f m - [g(y))* dy.

YOU TRY IT Calculate the volume enclosed when the curve y = x"/3,32 <
x < 243, js rotated about the y-axis.

EXAMPLE 8.8

Set up, but do not evaluate, the integral that represents the volume gen-
erated when the planar region between y = x> +1 and y = 2x + 4 is

rotated about the x-axis.

B’SOLUHON

When the planaris rotated about the x axis, it will generate a donut-shaped
solid. Notice that the curves intersect at x = —1 and x = 3; hence the in-
tersection lies over the interval [—1, 3]. For each x in that interval, the
segment connecting (x, x? + 1) to (x, 2x + 4) will be rotated about the
x-axis. It will generate a washer. See Figure 8.18. The area of that washer is

Ax) =7 -[2x + 4% — - [x> + 11.

[Notice that we calculate the area of a washer by subtracting the areas of

two circles—not by subtracting the radii and then squaring.]
It follows that the volume of the solid generated is

3
v:/ - [2x + 41> — & - [x* + 1]dx.
-1
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=V

e

FIGURE 8.18

8.2.2 The Method of Cylindrical Shells

Our philosophy will now change. After we divide our region up into vertical
strips, we will now rotate each strip about the y-axis instead of the x-axis. Thus,
instead of generating a disc with each strip, we will now generate a cylinder.

Look at Figure 8.19. When a strip of height & and thickness Ax, with distance
r from the y-axis, is rotated about the y-axis, the resulting cylinder has surface
area 277 - h and volume about 277 - h - Ax. This is the expression that we will
treat in order to sum up the volumes of the cylinders.

[ 4

FIGURE 8.19
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EXAMPLE 8.9
Use the method of cylindrical shells to calculate the volume of the solid
enclosed when the curve y = x2, 1 < x < 3, is rotated about the y-axis.

@’sownom

As usual, we think of the region under y = x? and above the x-axis as com-
posed of vertical segments or strips. The segment at position x has height
x2. Thus, in this instance, h = x?, r = x, and the volume of the cylinder is
27x - x? - Ax. As a result, the requested volume is

3
v :/ 27x - x> dx.
1
We easily calculate this to equal

3 X4
v:zn-/ x’dx =2m—
. 4

3 34 14
=27 | — — — | = 40m.
: 4 4

ExAmpLE 8.10
Use the method of cylindrical shells to calculate the volume enclosed when
the curve y = x2,0 < x < 3, is rotated about the x-axis (Figure 8.20).

YA

|
" 4

FIGURE 8.20
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B’SOLUHON

We reverse, in our analysis, the roles of the x- and y-axes. Of course y
ranges from 0 to 9. For each position y in that range, there is a segment
stretching from x = ,/y to x = 3. Thus it has length 3 — ,/y. Then the
cylinder generated when this segment (thickened to a strip of width Ay)
is rotated about the x-axis has volume

V(y) =2ny-[3—ylAy.

The aggregate volume is then

9
v :/ 2my - 13— /7ldy
0

9
:27r-/ 3y — y*/2dy
0

9
3y2 5/2
:zﬂ.[i_y_] dy

2 52
243 2-243 0 0
=2 | (2 - — (===
2 5 2 5
243
=27 . —
10
2437
=—

YOU TRY IT Use the method of cylindrical shells to calculate the volume en-
closedwhentheregion0 < y < sinx,0 < x < /2, isrotated about the y-axis.

8.2.3 Different Axes

Sometimes it is convenient to rotate a curve about some line other than the
coordinate axes. We now provide a couple of examples of that type of problem.
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YA

FIGURE 8.21

exAMPLE8.11
Use the method of washers to calculate the volume of the solid enclosed
when the curve y = /x, 1 < x < 4, is rotated about the liney = —1. See
Figure 8.21.

Eﬂ’sownom

The key is to notice that, at position x, the segment to be rotated has
height /x — (—1)—the distance from the point (x, /x) on the curve to
the line y = —1. Thus the disc generated has area A(x) = 7 - (/x + 1) 2.
The resulting aggregate volume is

4
V:/ - (vx+ 1)%dx
1

4
:71-/ X+ 2v/x + 1dx
1
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YOU TRY IT Calculate the volume inside the surface generated when y =
¥/x + x is rotated about the liney = —1,1 < x < 4.

EXAMPLE 8.12

Calculate the volume of the solid enclosed when the area between the
curvesx = (y — 2)2 + 1Tand x = —(y — 2)2 + 9isrotated about the line
y=—2.

B’SOLUHON

Solving the equations simultaneously, we find that the points of intersec-
tion are (5, 0) and (5, 4). The region between the two curves is illustrated
in Figure 8.22.

At height y, the horizontal segment that is to be rotated stretches from
((y—2)2+1,y) to(—(y —2)2+9, y). Thus the cylindrical shell that is
generated has radius y — 2, height 8 — 2(y — 2)2, and thickness Ay. It
therefore generates the element of volume given by

27 -(y—2) -[8—2(y —2)2- Ay.

The aggregate volume that we seek is therefore

4
v:/ 2w -(y—2) - [8 — 2(y — 2)?1dy
0

4
:/ 167(y — 2) — 4n(y — 2)3dy
0

4
=8n(y—2)2—n(y—4)*

0
= 2567.

YA

FIGURE 8.22
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YOU TRY IT Calculate the volume enclosed when the curve y = cos x is ro-
tated about theliney = 4, m < x < 3.

8.3 Work

One of the basic principles of physics is that work performed is force times
distance: If you apply force F pounds in moving an object d feet, then the
work is

W=F -d foot-pounds.

The problem becomes more interesting (than simple arithmetic) if the force is
varying from point to point. We now consider some problems of that type.

EXAMPLE8.13
A weightis pushed in the plane from x = 0to x = 10. Because of a prevail-
ing wind, the force that must be applied at point xis F(x) = 3x?> — x + 10
foot-pounds. What is the total work performed?

SOLUTION
Following the way that we usually do things in calculus, we break the
problem up into pieces. In moving the object from position x to position
x + Ax, the distance moved is Ax feet and the force applied is about
F(x) = 3x? — x + 10. See Figure 8.23. Thus work performed in that little
bit of the moveisw(x) = (3x?> — x + 10) - Ax.The aggregate of the work
is obtained by summation. In this instance, the integral is the appropriate
device:

10

= 1050 foot-pounds.
0

10 X2
w = (3x2—x+10)dx:x3—7+10x
0

A \pe—

Se
[=]

FIGURE 8.23
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D exAmMPLE 8.14
A man is carrying a 100 Ib. sack of sand up a 20-foot ladder at the rate of
5 feet per minute. The sack has a hole in it and sand leaks out continuously
at a rate of 4 Ibs. per minute. How much work does the man do in carrying
the sack?

B’SOLUHON

It takes four minutes for the man to climb the ladder. At time t, the sack
has 100 — 4t pounds of sand in it. From time t to time t + At, the man
moves 5 - At feet up the ladder. He therefore performs about w(t) =
(100 — 4t) - 5 A t foot-pounds of work. See Figure 8.24. The total work is
then the integral

4

= 1840 foot-pounds.

4
w :/ (100 — 4¢t) 5dt = 500t — 10¢t>
0 0

FIGURE 8.24
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YOU TRY IT Amandragsa 100 pound weight from x = 0 to x = 300. He re-
sists a wind which at position x applies a force of magnitude F (x) = x> 4+ x +
40. How much work does he perform?

D ExamPLE 8.15

According to Hooke's Law, the amount of force exerted by a spring is pro-
portional to the distance of its displacement from the rest position. The
constant of proportionality is called the Hooke's constant. A certain spring
exerts a force of 10 pounds when stretched 1/2 foot beyond its rest state.
What is the work performed in stretching the spring from rest to 1/3 foot
beyond its rest length?

SOLUTION

Let the x-variable denote the position of the right end of the spring
(Figure 8.25), with x = 0 the rest position. The left end of the spring is
pinned down. Imagine that the spring is being stretched to the right. We
know that the force exerted by the spring has the form

F(x) = kx,

with k a negative constant (since the spring will pull to the left). Also
F(0.5) = —10. It follows that k = —20, so that

F (x) = —20x.
Now the work done in moving the spring from position x to position x +

Ax will be about (20x) - Ax (the sign is 4+ since we will pull the spring
to the right—against the pull of the spring). Thus the total work done in

FIGURE 8.25
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Radius at depth x

equals V100 — x2

Lz

FIGURE 8.26

stretching the right end of the spring fromx = 0tox = 1/3is

1/3 1/3 10
w= / (20x)dx = 10x?| = > foot-pounds.
0 0

exAMPLE8.16
Imagine that a water tank in the shape of a hemisphere of radius 10 feet is
being pumped out (Figure 8.26). Find the work done in lowering the water
level from 1 foot from the top of the tank to 3 feet from the top of the tank.

SOLUTION
A glance at Figure 8.27 shows that the horizontal planar slice of the tank, at
the level x feet below the top, is a disc of radius ,/100 — x2. This disc there-
fore has area A(x) = 7 - (100 — x2). Thus a slice at that level of thickness

FIGURE 8.27
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Ax will have volume
V(x) = 7 - (100 — x?) - Ax

and (assuming that water weights 62.4 pounds per cubic foot) weight
equal to

w(x) = 62.47 - (100 — x?) - Ax.

Thus the work in raising this slice to the top of the tank (where it can
then be dumped) is

W(x) = [62.47 - (100 — x) - Ax] - x foot-pounds.

We calculate the total work by adding all these elements together using an
integral. The result is

3
w :/ [62.47 - (100 — x?) - x] dx
1

3
:62.471'-/ 100x — x> dx
1

r 3
= 62.47 | 50x% — X—}
4

2| (s50- %) - (30 })]

= 23, 7127 foot-pounds.

YOU TRY IT Aspring has Hooke's constant 5. How much work is performed in
stretching the spring half a foot from its rest position?
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B A TGOS e

In ordinary conversation, when we average a collection p, ..., p, of knumbers,
we add them together and divide by the number of items:

pr+-+ Dr
5

o = Average =

The significance of the number o is that if we wanted all the k& numbers to be
equal, but for the total to be the same, then that common value would have to
beo.

Now suppose that we want to average a continuous function f over an in-
terval [a, b] of its domain. We can partition the interval,

P = {szxlf "';xk}:
with xg = a and x;, = b as usual. We assume that this is a uniform partition, with

xj —xj_1 = Ax = (b —a)/k for all j. Then an “approximate average” of f
would be given by

_ f(x1)+f(xz)+"'+f(xk)'

Oapp k
It is convenient to write this expression as

1 & b—a 1 &
Gappzb_a;f(xj)' A :b—a;f(x])Ax

This last is a Riemann sum for the integral (1/[b — a]) - fab f(x) dx. Thus, letting
the mesh of the partition go to zero, we declare

b
average 0ff:a=;/‘ f(x)dx.
b—al,

EXAMPLE 8.17
In a tropical rain forest, the rainfall at time t is given by ¢(t) = 0.1 —
0.1t + 0.05t2 inches per hour, 0 < t < 10. What is the average rainfall for
times0 <t < 6?7




290 CALCULUS DeMYSTiFieD

SOLUTION
We need to only average the function ¢:

6

averagerainfall = o0 = —— p(t) dt
6—0 /o

1 6
— _/ 0.1 — 0.1t + 0.05¢t> dt
6 /o

_ ] 0.1t 05t2+°‘5t36
6| ) 3

0

=0.1—-0.340.6

= 0.4 inches per hour.

ExampLE 8.18
Let f(x) = x/2 — sin xontheinterval[—2, 5]. Compare the average value
of this function on the interval with its minimum and maximum.

SOLUTION
Observe that

1
f(x) = 3~ cos X.

Thus the critical points occur when cos x = 1/2, orat —x/3, 7 /3. We also
must consider the endpoints —2, 5. The values at these points are

f(—2) = —1+sin2~ —0.0907
Ly 1
f(—m/3) = — % 4 - = 0.3424262
6 ' 2
1
f(r/3) = = — - ~ —0.3424262
6 2
5 .
f(5) = 2 —sin5 ~ 3.458924.
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Plainly, the maximum valueis f(5) = 5/2 — sin5 = 3.458924. The mini-
mum valueis f(7/3) =~ —0.3424262.
The average value of our function is

1 /Sx .
o= —— ——smxdx
5—(-2) /) ,2

1[x? °
=—-|=— 4 cosx
4 + _2

—1_ 2—5—|—c055 — ﬂ—|—cosZ
71\ 4 4

21
= — Y —|-cosS—cosZ]

=~ 0.84997.

You can see that the average value lies between the maximum and the
minimum, as it should. This is an instance of a general phenomenon.

YOU TRY IT On a certain tree line, the height of trees at position x is about
100 — 3x + sin 5x. What is the average height of trees from x = 2 to x = 200?

EXAMPLE8.19
What is the average value of the function g(x) = sin x over the interval
[0, 27]?

SOLUTION
We calculate that

1 2T

2 1 1
o= f sinxdx = —[—cosx]] = —[-1—(—1)]=0.
2w —0 Jo 27 0 27

We see that this answer is consistent with our intuition: the function
g(x) = sin x takes positive values and negative values with equal weight
over the interval [0, 27]. The average is intuitively equal to zero. And that
is the actual computed value.
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YOU TRY IT Giveanexample ofafunction on the real line whose average over
every interval of length 4 is 0.

8.5 ArcLength and Surface Area

Just as the integral may be used to calculate planar area and spatial volume,
so this tool may also be used to calculate the arc length of a curve and surface
area. The basic idea is to approximate the length of a curve by the length of its
piecewise linear approximation. A similar comment applies to the surface area.
We begin by describing the basic rubric.

8.5.1 Arclength

Suppose that f(x) is a function on the interval [a, b]. Let us see how to cal-
culate the length of the curve consisting of the graph of f over this interval
(Figure 8.28). We partition the interval:

Look at Figure 8.29. Corresponding to each pair of points x;_;, x; in the par-
tition is a segment connecting two points on the curve; the segment has end-
points (x;_1, f(x;_1)) and (x;, f(x;)). The length ¢; of this segment is given by
the usual planar distance formula:

e = ([x; — % P+ [f () = Flx)1?) 2

y=/®

FIGURE 8.28
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y=f(x)

(- pf(xj— )

p
[ ]

FIGURE 8.29

We denote the quantity x; — x;_; by Ax and apply the definition of the deriva-
tive to obtain

f) = flxj1)
Ax

~ f'(x;).
Now we may rewrite the formula for ¢; as
t; = ([Ax]? + [ f'(x)ax]?) 2
= (1+[fG)1) P ax

Summing up the lengths ¢; (Figure 8.30) gives an approximate length for the
curve:

k
Zl+ f'(x)] )1/2

j=1

length of curve ~

me

FIGURE 8.30
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But this last is a Riemann sum for the integral

b
= [ A+ [P da. ®)

As the mesh of the partition becomes finer, the approximating sum is ever
closer to what we think of as the length of the curve, and it also converges to
this integral. Thus the integral represents the length of the curve.

ExAMPLE 8.20
Let us calculate the arc length of the graph of f(x) = 4x
interval [0, 3].

3/2 over the

SOLUTION
The length is

3 3
/ (1+ [f'(x)]2)1/2 dx = / (1+ [6x1/2]2)‘/2 dx
0 0

3
:/ (14 36x)"2dx
0

1 5|’
= — (14 36x)32
52" X)

0

= l[1093/2 —13/7]
54
_ (109)3/2 —1

54

EXAMPLE 8.2
Let us calculate the length of the graph of the function f(x) = (1/2)(e* +
e *) over the interval [1, In 8].

SOLUTION
We calculate that

f(x) =(1/2)(e —e™).
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Therefore the length of the curve is

In8
/ (1+1(1/2) (e — e ™P) ' dx
1

In8 e2x 1 e—2x 1/2
= 4= d
/1 atat3 X

1 In8

= - e + e *dx

2/

1 _x1In8
:E[e"—e x]1
_63 e 1
16 2 2e’

YOU TRY IT Setup, but do not evaluate, the integral for the arc length of the
graph of y = \/sinxon theinterval 7 /4 < x < 3w /4.

Sometimes an arc length problem is more conveniently solved if we think of
the curve as being the graph of x = g(y). Here is an example.

EXAMPLE 8.22
Calculate the length of that portion of the graph of the curve 16x? = 9y3
between the points (0, 0) and (6, 4).

SOLUTION
We express the curve as

3
_3pn,
x=2y

Then dx/dy = §y1/2_ Now, reversing the roles of x and y in (%), we find
that the requested length is

4 4
| Vi+usmyrrdy = [+ 817601 yay.
0 0
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This integral is easily evaluated and we see that it has value [2 - (97)3/2 —
128]/243.

Notice that the last example would have been considerably more difficult
(the integral would have been harder to evaluate) had we expressed the curve
in the form y = f(x).

YOU TRY IT Write the integral that represents the length of a semi-circle and
evaluate it.

8.5.2 Surface Area

Let f(x) be a non-negative function on the interval [a, b]. Imagine rotating the
graph of f about the x—axis. This procedure will generate a surface of revolu-
tion, as shown in Figure 8.31. We will develop a procedure for determining the
area of such a surface.

We partition the interval [a, b] :

a=x0<x <% <---<x_ <x,=b.

Corresponding to each pair of elements x;_;, x; in the partition is a portion of
curve, as shown in Figure 8.32. When that piece of curve is rotated about the
x—axis, we obtain a cylindrical surface. Now the area of a true right circular
cylinder is 27 - - h. We do not have a true cylinder, so we proceed as follows.
We may approximate the radius by f(x;). And the height of the cylinder can be

y=f(x

FIGURE 8.31
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y=fx

FIGURE 8.32

approximated by the length of the curve spanning the pair x;_;, x;. This length
was determined above to be about

(L+ [ G)P) Ax
Thus the area contribution of this cylindrical increment of our surface is about
27 - ) (1+ [ ()) " A

See Figure 8.33. If we sum up the area contribution from each subinterval of
the partition we obtain that the area of our surface of revolution is about

=

Z )1+ [ x)1P) P ax ()

FIGURE8.33
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But this sum is also a Riemann sum for the integral

b
27'[/ fe)(1+ [f’(x)]z)l/Z dx.

As the mesh of the partition gets finer, the sum () more closely approximates
what we think of as the area of the surface, but it also converges to the integral.
We conclude that the integral

b
Zn/ f(x)(l + [f’(x)]z)l/2 dx
represents the area of the surface of revolution.

EXAMPLE 8.23
Let f(x) = 2x3.For1 < x < 2 we rotate the graph of f about the x—axis.
Calculate the resulting surface area.

SOLUTION
According to our definition, the area is

2
271'/ F) (1+F0012)" % dx
1

2
= 271-/ 2x3(1 + [6x2]2)1/2 dx
1

_r [ 31 1 36x%) /2(144x%) dx.
54 J, 2

This integral is easily calculated using the u-substitution u = 36x*, du =
144x3 dx. With this substitution the limits of integration become 36 and
576; the area is thus equal to

576 576

™

3 T
— —(1 1/2 = —(1 3/2
54 J34 2 ( u) = du 54 ( u)

36

- 5”-4[(577)3/2 —(37)%7]

=~ 793.24866.
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YA

"

FIGURE 8.34

EXAMPLE 8.24
Find the surface area of a right circular cone with base of radius 4 and
height 8.

SOLUTION
It is convenient to think of such a cone as the surface obtained by rotat-
ing the graph of f(x) = x/2,0 < x < 8, about the x-axis (Figure 8.34).
According to our definition, the surface area of the cone is

8 8
27r/ )—([1+(1/2)2]1/2dx:27r£/ x dx
0o 2 4 Jo

= 16\/;77.

YOU TRY IT The standard formula for the surface area of a cone is
S=mnrvh? +r2.

Derive this formula by the method of Example 8.24.
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We may also consider the area of a surface obtained by rotating the graph of
a function about the y-axis. We do so by using y as the independent variable.
Here is an example:

EXAMPLE 8.25
Set up, but do not evaluate, the integral for finding the area of the surface
obtained when the graph of f(x) = x%, 1 < x < 4, is rotated about the
y-axis.

SOLUTION
We think of the curve as the graph of ¢(y) = y'/%,1 < y < 4096. Then
the formula for surface area is

12

27 d(y) (14 (9" (NT?) " dy.

Calculating ¢'( y) and substituting, we find that the desired surface area is
the value of the integral

4096 1/2
2«/ y'/5(1+11/6)y=>/51)" dy.
1

YOU TRY IT Write the integral that represents the surface area of a hemi-
sphere of radius one and evaluate it.

8.6 Hydrostatic Pressure

If a liquid sits in a tank, then it exerts force on the side of the tank. This force
is caused by gravity, and the greater the depth of the liquid then the greater the
force. Pascal’s principle asserts that the force exerted by a body of water depends
on depth alone, and is the same in all directions. Thus the force on a point in
the side of the tank is defined to be the depth of the liquid at that point times
the density of the liquid. Naturally, if we want to design tanks which will not
burst their seams, it is important to be able to calculate this force precisely.
Imagine a tank of liquid having density p pounds per cubic foot as shown in
Figure 8.35. We want to calculate the force on one flat side wall of the tank.
Thus we will use the independent variable & to denote depth, measured down
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NS
FIGURE 8.35

from the surface of the water, and calculate the force on the wall of the tank
between depths h = a and h = b (Figure 8.36). We partition the interval [a, b]:

a=hy<h <hy<---<h,,<h,=b.

Assume that the width of the tank at depth h is w(h). The portion of the wall
between h = h;_; and h = h; is then approximated by a rectangle R; of length
w(h;) and width Ah = h; — h;_, (Figure 8.37).

h=a __-’;
Y AN

AN

FIGURE 8.36

FIGURE 8.37
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Now we have the following data:

Area of Rectangle = w(h;) - Ah square feet
Depth of Water ~ h; feet

Density of Liquid = p pounds per cubic foot.
It follows that the force exerted on this thin portion of the wall is about

Adding up the force on each R; gives a total force of

Pj = Zhj,ow(hj)Ah.

j=1 j=1

But this last expression is a Riemann sum for the integral

b
/ how(h)dh. (+)

D EXAMPLE 8.26

A swimming pool is rectangular in shape, with vertical sides. The bottom
of the pool has dimensions 10 feet by 20 feet and the depth of the water is
8 feet. Refer to Figure 8.38. The pool is full. Calculate the total force on one
of the long sides of the pool.

20

10

FIGURE 8.38
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B’SOLUHON

We let the independent variable h denote depth, measured vertically
down from the surface of the water. Since the pool is rectangular with ver-
tical sides, w( h) is constantly equal to 20 (because we are interested in the
long side). We use 62.4 pounds per cubic foot for the density of water. Ac-
cording to (), the total force on the long side is

8 8
/ h-62.4-w(h)dh = / h-62.4-20dh = 39936 Ibs.
0 0

YOU TRY IT A tank full of water is in the shape of a cube of side 10 feet. How
much force is exerted against the wall of the tank between the depths of 3 feet
and 6 feet?

D EXAMPLE 8.27

A tank has vertical cross section in the shape of an inverted isosceles trian-
gle with horizontal base, as shown in Figure 8.39. Notice that the base of
the tank has length 4 feet and the height is 9 feet. The tank is filled with
water to a depth of 5 feet. Water has density 62.4 pounds per cubic foot.
Calculate the total force on one end of the tank.

SOLUTION
As shown in Figure 8.40, at depth h (measured down from the surface of
the water), the tank has width corresponding to the base of an isosceles
triangle similar to the triangle describing the end of the tank. The height

\ 4 ft

5ft

FIGURE 8.39
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IR
S5—h
FIGURE 8.40

of this triangle is 5 — h. Thus we can solve

w(h) _ 4

5—-h 9
We find that

4
w(h) = 5(5 —h).

According to (), the total force on the side is then

5
4
/ h-62.4. 6(5 — h) dh =~ 577.778 lbs.
0

An aquarium tank is filled with a mixture of water and algicide to keep the
liquid clear for viewing. The liquid has a density of 50 pounds per cubic
foot. For viewing purposes, a window is located in the side of the tank, with
center 20 feet below the surface. The window is in the shape of a square of
side 4,/2 feet with vertical and horizontal diagonals (see Figure 8.41). What
is the total force on this window?

SOLUTION
As usual, we measure depth downward from the surface with independent
variable h. Then the range of integration willbe h =20 —4 =16toh =
20 + 4 = 24. Refer to Figure 8.42. For h between 16 and 20, we notice that
the right triangle in Figure 8.42 is isosceles and hence has base of length




Chapter8 APPLICATIONS OF THEINTEGRAL

M2

FIGURE 8.41

h — 16. Therefore

w(h) = 2(h — 16) = 2h — 32.

According to our analysis, the total force on the upper half of the window
is thus

20 44880
/ h-50-(2h — 32) dh = 3 Ibs.
16

For the lower half of the window, we examine the isosceles right triangle
in Figure 8.43. It has base 24 — h. Therefore, for h ranging from 20 to 24,
we have

w(h) = 2(24 — h) = 48 — 2h.

h=16 ——m
‘ e

FIGURE 8.42
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FIGURE 8.43

According to our analysis, the total force on the lower half of the window is

24 51200
/ h-50-(48 — 2h) dh = Ibs.
20 3

The total force on the entire window is thus

44880 =~ 51200 _ 96080

— Ibs.
E 3PS

YOU TRY IT Atankofwater has flat sides. On one side, with center 4 feet below
the surface of the water, is a circular window of radius 1 foot. What is the total
force on the window?

8.7 Numerical Methods of Integration

While there are many integrals that we can calculate explicitly, there are many
others that we cannot. For example, it is impossible to evaluate

/ e dx. (%)
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That is to say, it can be proved mathematically that no closed-form antideriva-
tive can be written down for the function e . Nevertheless, (x) is one of the
most important integrals in all of mathematics, for it is the Gaussian probability
distribution integral that plays such an important role in statistics and proba-
bility.

Thus we need other methods for getting our hands on the value of an integral.
One method would be to return to the original definition, that is to the Riemann
sums. If we need to know the value of

1
2
f e ™ dx
0

then we can approximate this value by a Riemann sum
1
/ e dx~ e 02025 470 . 0.25 4707 . 025 4717 0.25.
0

A more accurate approximation could be attained with a finer approximation:

1 10
/ e dxn Y e U0 0] (%)
0

j=1
or

100

1
[ e dx ~ Z e~(0017 0,01 ()
0

j=1

The trouble with these ‘“‘numerical approximations’ is that they are calcu-
lationally expensive: the degree of accuracy achieved compared to the number
of calculations required is not attractive.

Fortunately, there are more accurate and more rapidly converging methods
for calculating integrals with numerical techniques. We shall explore some of
these in the present section.

It should be noted, and it is nearly obvious to say so, that the techniques of
this section require the use of a computer. While the Riemann sum (**) could
be computed by hand with some considerable effort, the Riemann sum () is all
but infeasible to do by hand. Many times one wishes to approximate an integral
by the sum of a thousand terms (if, perhaps, five decimal places of accuracy are
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needed). In such an instance, use of a high-speed digital computer is virtually
mandatory.

8.7.1 The Trapezoid Rule

The method of using Riemann sums to approximate an integral is sometimes
called “the method of rectangles.”” It is adequate, but it does not converge very
quickly and it begs more efficient methods. In this subsection we consider the
method of approximating by trapezoids.

Let f be a continuous function on an interval [a, b] and consider a partition
P = {x9, x1, ..., x} of the interval. As usual, we take xy = a and x, = b. We
also assume that the partition is uniform.

In the method of rectangles we consider a sum of the areas of rectangles.
Figure 8.44 shows one rectangle, how it approximates the curve, and what error
is made in this particular approximation. The rectangle gives rise to a “‘triangu-
lar” error region (the difference between the true area under the curve and the
area of the rectangle). We put quotation marks around the word ““triangular”
since the region in question is not a true triangle but instead is a sort of curvilin-
ear triangle. If we instead approximate by trapezoids, as in Figure 8.45 (which,
again, shows just one region), then at least visually the errors seem to be much
smaller.

In fact, letting Ax = x; — x;_; as usual, we see that the first trapezoid in the
figure has area [ f(xg) + f(x1)] - Ax/2. The second has area [ f(x;) + f(x2)] -

77

FIGURE 8.44
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=

~

FIGURE 8.45

Ax/2, and so forth. In sum, the aggregate of the areas of all the trapezoids is

{F )+ FEa)} - Ax+ 3 - {fGa) + )] - bt -

N[ —

by (G + fOa) - o

A

- TX Af0) +2f(a) +2f () + - +2f Ga1) + f (). M

It is known that, if the second derivative of f on the interval [a, b] does not
exceed M then the approximation given by the sum () is accurate to within

M- (b-a)?
12k2

[By contrast, the accuracy of the method of rectangles is generally not better
than

N (b—a)
2k ’

where N is an upper bound for the first derivative of f. We see that the
method of trapezoids introduces an extra power of (b — a) in the numerator
of the error estimate and, perhaps more importantly, an extra factor of k in the
denominator. ]
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EXAMPLE 8.29
Calculate the integral

1
2
/ e X dx
0

to two decimal places of accuracy.

SOLUTION
We first calculate that if f(x) = e then f”(x) = (4x> —2)e™* and
therefore | f”(x)| < 2 = M for 0 < x < 1. In order to control the error,
and to have two decimal places of accuracy, we need to have

M-(b—a)3

12K2 < 0.005

or

2.13
W < 0.005.

Rearranging this inequality gives

100

3 < k.

Obviously k = 6 will do.
So we will use the partition P = {0,1/6,1/3,1/2,2/3,5/6,1}. The
corresponding trapezoidal sum is

_1/6
T2

S {e—02 +Ze—(1/6)2 +2e—(1/3)2 +2e—(1/z)2

42e7(2/3)7 4 2e=(5/6)% 4 e“z} .

Some tedious but feasible calculation yields then that

1

S =
12

-{1+2-.9726 +2-.8948 + 2-.7880 + 2 - .6412

+2-.4994 + .3679}

_ 8.9599
12

= .7451.
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We may use a computer algebra utility like Mathematica or Maple to
calculate the integral exactly (to six decimal places) to equal 0.746824.
We thus see that the answer we obtained with the Trapezoid Rule is cer-
tainly accurate to two decimal places. It is not accurate to three decimal
places.

It should be noted that Maple and Mathematica both use numerical tech-
niques, like the ones being developed in this section, to calculate integrals.
So our calculations merely emulate what these computer algebra utilities do
so swiftly and so well.

YOU TRY IT How fine a partition would we have needed to use if we wanted
four decimal places of accuracy in the last example? If you have some facility with
a computer, use the Trapezoid Rule with that partition and confirm that your an-
swer agrees with Mathematica's answer to four decimal places.

exampLE 8.30
Use the Trapezoid Rule with k = 4 to estimate

T
/ .
0 1+X2

SOLUTION
Of course we could calculate this integral precisely by hand, but the point
here is to get some practice with the Trapezoid Rule. We calculate

1/4 1 1 1 1 1
SZL-

- 42— 42.— 42. +
2 |1+0 14 ()2 1+(3)? 1+(3)2 1+

A bit of calculation reveals that

1 5323
=—-.——=0.7827%....
8 850

Now if we take f(x) = 1/(1 + x?) then f”(x) = (6x? —2) /(1 + x?)3.
Thus, on the interval [0, 1], we have that | f”(x) | < 4 = M. Thus the error
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estimate for the Trapezoid Rule predicts accuracy of

M-(b—aP 4.7 020833
12k2 T 12.42 7

This suggests accuracy of one decimal place.

Now we know that the true and exact value of the integral is arctan 1 ~
0.78539816. .. . Thus our Trapezoid Rule approximation is good to two,
and nearly to three, decimal places—better than predicted.

8.7.2 Simpson's Rule

Simpson’s Rule takes our philosophy another step: If rectangles are good, and
trapezoids better, then why not approximate by curves? In Simpson’s Rule, we
approximate by parabolas.

We have a continuous function f on the interval [a, b] and we have a
partition P = {xg, x1, ..., x¢} of our partition as usual. It is convenient in this
technique to assume that we have an even number of intervals in the partition.

Now each rectangle, over each segment of the partition, is capped off by an
arc of a parabola. Figure 8.46 shows just one such rectangle. In fact, for each
pair of intervals [x;;_2, x2;_1], [x2j_1, %2;], we consider the unique parabola
passing through the endpoints

(X2j-2, f(x2j-2)), (2j1, f(x2j-1)), (2, f(x2;))- (%)

p

—T [

FIGURE 8.46
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Note that a parabola y = Ax? 4+ Bx + C has three undetermined coefficients,
so three points as in (x) will determine A, B, C and pin down the parabola.

In fact (pictorially) the difference between the parabola and the graph of f
is so small that the error is almost indiscernible. This should therefore give rise
to a startling accurate approximation, and it does.

Summing up the areas under all the approximating parabolas (we shall not
perform the calculations) gives the following approximation to the integral:

b Ax
[ feodx~ S {FE0) + 456 + 2 () + 4£ ()

+2f () + -+ 2f(a-2) +4f (a-1) + f(x)} -

If it is known that the fourth derivative f)(x) satisfies | f)(x)| < Mon [a, b],
then the error resulting from Simpson’s method does not exceed

M- (b—a)
180 - k*
D EXAMPLE 8.3 1
Use Simpson's Rule to calculate f01 e dx to two decimal places of
accuracy.
SOLUTION

If we set f(x) = e *" then itis easy to calculate that
fV(x) = e . [12 — 72x% + 32x*1.

Thus | f(x)| <12 =M.
In order to achieve the desired degree of accuracy, we require that

M. (b—a)’

0.005
180 - k* <

or

12.1°

—— < 0.005.
180 - k* <
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Simple manipulation yields

200
<K
15 <
This condition is satisfied when k = 2.
Thus our job is easy. We take the partition P = {0, 1/2, 1}. The sum
arising from Simpson's Rule is then

1/2
3
1

= g{e“’2 +4.e /2 Ly

1
= ¢ {1+3.1152+0.3679}

S=-L2{F(0) +4f(1/2) + f(1)}

1
~ — -4.4831
6

~ 0.7472

Comparing with the “exact value" 0.746824 for the integral that we noted
in Example 8.29, we find that we have achieved two decimal places of
accuracy.

It is interesting to note that if we had chosen a partition with k = 6, as
we did in Example 8.29, then Simpson's Rule would have guaranteed an
accuracy of

M-(b—a)?® 12.1°
180-k*  180.64

=~ 0.00005144,

or nearly four decimal places of accuracy.

EXAMPLE 8.32
Estimate the integral

T
/ dx
0 1+X2

using Simpson's Rule with a partition having four intervals. What degree
of accuracy does this represent?
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SOLUTION

Of course this example is parallel to Example 8.30, and you should compare
the two examples. Our function is f(x) = 1/(1 + x?) and our partition is
P =4{0,1/4,2/4,3/4,1}.The sum from Simpson's Rule is

1/4
s = L.{f(O) +4f(1/4) +2F(1/2) +4f(3/4) + f(1)}

3
1, 1
S22 140 1+(1/4)2
+2 44 o+
1+(1/22 7 14 (3/42 T 1412

Q

11—2 -{1+4+3.7647 + 1.6 4+ 2.56 + 0.5}

~ 0.785392.

Comparing with Example 8.30, we see that this answer is accurate to four
decimal places. We invite the reader to do the necessary calculation with
the Simpson's Rule error term to confirm that we could have predicted this
degree of accuracy.

YOU TRY IT Estimate the integral

e
1
/ —dx
e Inx
using both the Trapezoid Rule and Simpson's Rule with a partition having six
points. Use the error term estimate to state what the accuracy prediction of each
of your calculations is. If the software Mathematica or Maple is available to

you, check the answers you have obtained against those provided by these com-
puter algebra systems.
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QuIZ

1. A solid has base the unit circle in the x-y plane and vertical slices, parallel
to the y-axis, which are discs with centers in the x-y plane and diameters
extending across the base circle. Calculate the volume of this solid.

2. A solid has base a unit square with center at the origin and vertices on the
x- and y- axes at the points (£1, 0) and (0, +1). The vertical cross section
of this solid, parallel to the y-axis, is an equilateral triangle. What is the
volume of this solid?

3. Set up the integral to calculate the volume enclosed when the indicated
curve over the indicated interval is rotated about the indicated line. Do
not evaluate the integral.

(a) y=x3 2<x<4 X-axis
(b) y=Jx l<x<8 y-axis
(C)yle/z 0<x<?2 y=-1
d y=x+3 -1<x<2 y=4
(e)y:xl/z 4<x<6 x=—1

() y=cosx 0<x<m/2 y=0

4. Set up the integral to evaluate the indicated surface area. Do not

evaluate.

(a) The area of the surface obtained when y = x'/3, 0 < x < 4, is rotated
about the x-axis.

(b) The area of the surface obtained when y = x~1/°, 1 < x < 3, is rotated
about the y-axis.

(c) The area of the surface obtained when y = x3, 0 < x < 3, is rotated
about the line y = —2.

(d) The area of the surface obtained when y = cosx, 0 < x < 7/2, is ro-
tated about the x-axis.

(e) The area of the surface obtained when y = x'/3, 1 < x < 4, is rotated
about the line x = —2.

(f) The area of the surface obtained when y = x*, 0 < x < 1, is rotated
about the x-axis.

5. A water tank has a submerged window that is in the shape of a circle
of radius 3 feet. The center of this circular window is 10 feet below the
surface. Set up, but do not calculate, the integral for the pressure on the
lower half of this window—assuming that water weighs 62.4 pounds per
cubic foot.
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A swimming pool is V-shaped. Each end of the pool is an inverted equi-
lateral triangle of side 8 feet. The pool is 20 feet long. The pool is full.
Set up, but do not calculate, the integral for the pressure on one end of
the pool.

A man climbs a ladder with a 80-pound sack of sand that is leaking one
pound per minute. If he climbs steadily at the rate of 4 feet per minute,
and if the ladder is 20 feet high, then how much work does he do in
climbing the ladder?

Because of a prevailing wind, the force that opposes a certain runner is
2x? + 3x + 4 pounds at position x. How much work does this runner per-
form as he runs from x = 2 to x = 10 (with distance measured in feet)?

Set up, but do not evaluate, the integrals for each of the following arc
length problems.

(a) The length of the curve y = cosx, 0 < x < /2

(b) The length of the curve x> = y3, 1 < x < 4

(c) The length of the curve siny =x,0 <y <n/2

(d) The length of the curve y =%, 1 < x <3

Set up the integral for, but do not calculate, the average value of the given
function on the given interval.

(a) f(x):sinzx [1,4]

(b) g(x):ta;x [0, /3]
(c) h(x) = m; [-2,2]
(d) f(x)=m [—7/2, 7]

Write down the sum that will estimate the given integral using the method
of rectangles with mesh of size k. You need not actually evaluate the sum.

4
(a) / e ™ dx k=4
0

2

_4 e*

Do each of the problems in Exercise 11 with “method of rectangles” re-
placed by “trapezoid rule.”
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Final Exam

. The number 3.96545454 written as a rational fraction is
(a) 3894/999

(b) 3152/1000

(©) 39258/9900

(d) 41445/9999

(e) 5312/2122

. The intersection of the sets [2, 4] and (3, 6) is
(a) (3,4]

(b) [2,6)

(c) (3,5)

(d (2 6]

(e) [3,4]

. The intersection of the sets {(x, ) : x* + ¥* < 1} and {(x, y) : y > O} is
(a) a half-disc with boundary

(b) a quarter-disc

(¢) adisc without boundary

(d) a disc with boundary

(e) a half-disc without boundary

. The line through the points (2, —4) and (1, 6) has slope
(a) 10

(b) ~10

() 5

(d 3

(e) =2
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10.

. The equation of the line through (1,2) that is perpendicular to

y=3x+6is
(a) y—1=[1/3](x—-2)
(b) y—2=3(x-1)

(@ y=[1/3](x+1)
(d) y-2=[-1/3](x-1)
() y—2=[1/3](x—-1)

The equation of the line through (—2,5) that is parallel to
y=—-4x+2is

(@) y—5=—-4(x+2)

(b) y—2=—-4(x+5)

() y+5=4(x-2)

(d) y-5=4kx-2)

(e) y+2=4(x-5)

The line passing through the points (2, 1) and (5, 3) has equation
(&) y+2=[3/2](x+1)

b)) y-=2=[2/3](x-1)

(0 y-1=[-2/3](x-2)

(d y-1=[2/3](x-2)

() y+1=1[2/3](x+2)

The equation y + y* — 3x 4+ 2 = 0 describes
(a) acircle

(b) a parabola

(c) aline

(d) a cardioid

(e) an ellipse

The curve y = x3 intersects the line y = x
(a) in a segment

(b) in a circle

(c) in an arc

(d) in two points

(e) in one point

The sine of an angle is always
(a) between 1 and 2 inclusive
(b) between —1 and 0 exclusive
(c) between —1 and 1 inclusive
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(d) between 0 and 1 inclusive
(e) between 5 and 10 exclusive

The sine and cosine of /3 are

(a) 1/2 and /3/2

(b) V/3/2and 1,2

(€) v2/2and /272

(d) —/3/2and 1,2

(e) —1/2 and /3/2

Let S be the set of all people and let T be the set of all people. Let f be
the rule that assigns to each person his guru. Is f a function?

(a) no

(b) yes

(c) sometimes
(d) maybe
(e) definitely

If f(x) =x*+1and g(x) = 3x — 5 then g o f(x) equals

(a) x> —x
(b) x5
() 9x*+x+4
(d) x* -2
(e) 3x*> -2
If f(x) =3+ 1 then f~!(x) equals
(a) vx—1
b) VT
(c) x—1
(d) (x-1)
() x3
x? —
The limit lim,,_, , o equals
(a) -2
(b) 1
(c) 4
@ 3

(e) 2
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16. The limit of a function f at a point ¢, if it exists, is
(a) asymptotic
(b) mellifluous
(c) ambiguous
(d) unique
(e) well-defined

—2ifx <3
17. Let f(x) = {xz fx=3 Then
(a) lim, 3 f(x) =1
(b) lim, 5. f(x) =12
(c) lim, 3 f(x) =1
(d) lim, 5 f(x)=-2
(e) lim, 3. f(x) =2
18. The value of lim_; (x — 1)?sin(1/(x — 1)) is
(a) -2
(b) 2
(0) -1
(d 1
(e) O
2 :
19. The function f(x) = _; 18 ii ; g is
(a) continuous at x = 3
(b) discontinuous at x = 3
(¢) limited at x =3
(d) attenuated at x =3
(e) undefined at x =3

20. The derivative of the function f(x) = x> — x? at x = 3 is
(a) 20
(b) 21
(o) 19
(d) 18
(e) 17

21. The function f(x) = +/|x — 1] is
(a) ambiguous at 1
(b) precisely at 1
(c) undefined at 1
(d) differentiable at 1
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(e) not differentiable at 1

The instantaneous velocity of a car whose motion is given by p(t) = t/(t +
1) at time t = 2 is

(a) 1/6

(b) 1/9

(c) 1/8

(d) 1/7

(€) 1/10

If f is differentiable at the point ¢ then f is
(a) approachable at the point ¢

(b) attenuated at the point ¢

(c) continuous at the point ¢

(d) indivisible at the point ¢

(e) ambiguous at the point ¢

The tangent line to the curve y = x> 4 x at the point (1, 2) has equation
(a) y+2=4(x+1)
b) y+2=3(x-4)
(€ y—1=4kx-2)
(d y—4=2(x-1)
() y—2=4kx-1)

The derivative of the function f(x) = Inx/e* is
1/x —Inx
() 0
) 1/x ;—Clnx
(©) lnx#
e f—
@ Inx+1
ex
©)
If f is an invertible, differentiable function and f(0) =1 and f'(0) =2
then the derivative of f~! at the point 1 is
(a) 2
(b) 3
(c) 4

) 1/3
(e) 1/2
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27. The function f(x) = x> + x has a graph which is
(a) concave up at all points
(b) concave down when x < 0 and concave up when x > 0
(c) concave up when x < 0 and concave down when x > 0
(d) concave down at all points
(e) decreasing at all point

xZ

28. The function g(x) = has a graph which is

x+1
(a) increasing on (—oo,+—2) and (0, 00), decreasing on (-2, 0)

(b) decreasing on (—o0, —2) and (0, 00), increasing on (—2, 0)

(c) increasing on (—oo, —2), decreasing on (0, 00), decreasing on (-2, 0)
(d) decreasing on (—o0, —2), increasing on (0, 00), decreasing on (-2, 0)
(e) increasing everywhere

x

x2+1
(a) alocal minimum at x = 2

has

29. The function h(x) =

(b) alocal maximum at x = —1 and a local maximum at x = 1
(c) alocal minimum at x = —1 and a local maximum at x = 1
(d) alocal maximum at x = —1 and a local minimum at x = 1
(e) alocal minimum at x = —1 and a local minimum at x = 1

30. A cylindrical can is to hold 20 cubic inches. What dimensions for the can
will use the least material?
(a) r =20/, h=220/n
(b) r =2y10/7, h = /10/7
(©) r =107, h =210
(d) r =V10/7, h =210/
(e) r =/10/x, h = 2J10/x

31. The function f(x) = x?sinx, 0 < x < oo has
(a) no local maxima
(b) no local minima
(¢) finitely many local minima
(d) infinitely many local maxima
(e) finitely many local maxima

32. A cubic polynomial function will
(a) always have a local maximum
(b) always have a local minimum
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(c) never have a local maximum
(d) sometimes have a local maximum
(e) never have a local minimum

A basketball is losing air at the rate of 3 cubic inches per minute. At
the moment that the radius equals 5 inches, at what rate is the radius
changing?

(a) —3/(507) inches per minute

(b) —3/(1007) inches per minute

(c) —6/(100x) inches per minute

(d) —3/(10x) inches per minute

(e) —3/(77) inches per minute

A ball is dropped from a height of 100 feet from the surface of the Earth.
After how many seconds does it hit the ground?

(a) 5/2 seconds

(b) 2 seconds

(c) 3 seconds

(d) 7/2 seconds

(e) 1 second

The graph of the function f(x) = x* + 10x is
(a) always concave down

(b) concave up only when x < 0

(c) always concave up

(d) never concave up

(e) concave up only when x > 0

A ball is thrown straight down toward the earth with a velocity of 10 feet
per second. It hits the ground after 3 seconds. From what height was the
ball launched?

(a) 194 feet

(b) 150 feet

(c) 174 feet

(d) 200 feet

(e) 19 feet

An antiderivative of the function f(x) = x? + x is
(a) F(x)=x3/3+x%/2
(b) F(x)=x°/3 —x%/2
() F(x)=x3/24+%%/3
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38.

39.

40.

41.

42.

(d) F(x) =3 +«?
() F(x) =x3/4 +x%/5

An antiderivative for the function g(x) = x sin(x?) is
(a) G(x) = % -sin(x?)

(b) G(x) = cos(x?)

() Gx) = —% - cos(x?)

(d) Gx)= —% - cos(x?)

(&) G(x) = % - cos(x?)

The indefinite integral / X ix equals
x>+ 1

(a) [1/x%]In(x?*+ 1)
(b) [1/x]In(x* +1)
() [1/2]In(x* = 1)
(d) [1/3]In(x?* + 1)
(e [1/2]In(x* + 1)

The area under the curve f(x) = x? + x, above the x-axis, and between

x = 2 and x = 4 equals
(a) 74/3

(b) 72/5

(c) 65/7

(d) 33/10

(&) 77,2

The area between the curve y = sinx and the x-axis over the interval

[7/2,5m/2] is
(a) 4
(b) 3
()5
(d) 2
(e) 1

27
The value of the integral / 2x cos(x?) dx is
/2

(a) =
(b) 2
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(c) O

(d -1

(e) 1

The area between the curves y =sinx and y = cosx over the interval
[7/2,97/4] is

(a) 5y/2 -1

®) 42— 1

(€ v2-5

(d) 5/2+1

(&) V2+1

If f35 f(x)dx =2 and f34 f(x)dx = 7 then f45 f (x) dx equals
(a) —4

(b) -5

(c) 5

(d) 4

(e) 2

If f: f(x)dx =7 and f:g(x) dx = —3 then fab 5f(x) — 4g(x) dx equals
(a) 50

(b) 40

(c) 48

(d) 46

(e) 47

The area between the parabolasy = x? + 1 and y = —x? + 4x + 7 equals
(a) 64/3
(b) 61/3
(Q) 64/5
(d) 59/2
(e) 63/7

The area between the parabola y = x> — 8 — 2x and the x-axis is
(a) 52
(b) 40
() 12
(d) 36
(e) 24

327



328 CALCULUS DeMYSTiFieD

48. If fab f(x)dx =1 and fabg(x) dx =1 then ff f(x) - g(x) dx equals

(a) 1
(b) O

(c) cannot be determined
(d) -1
(e) too large to measure

49. The limit lim_ cosx — |

(a) 1/2
(b) -1/2
() 1/3
(d) —-1/3
(e) 1

50. The limit lim
(a) =2
(b) 2
() -1
(d1
(e) O

51. The limit lim
(@) 1
(b) O
(c) 2
(d) e
(e) -1

52. The limit lim

(a) 3
(b) 2
() 0
(d)1
(e) —1
53. The limit lim,_,, xIn” |x| equals
(a) 3
(b) 2
(c) 0

equals
sin” x

—X
s 400 X€ ¥ equals

o+ | Inx|* equals

Vx—x/2

Xt~ 3 equals



54.

55.

56.

57.

58.

59.

(d) 1
(e) =2

The limit lim,_, <

(a) —1/3
(b) —1/2
(c) 1/4
(d) 1/3
(e) 1/2

The limit lim_, <\3/x +1-— W) equals
(a) O

(b) 1

(c) 2

(d) -1

(e) -2

The integral flz (x — 1)7Y2 dx equals
(a) 1

(b) 2

(c) 3

(d) -2

(e) -1

The integral f_ll x 2 dx is
(a) divergent

11 |
e ) o

(b) convergent and equal to 1
(c) convergent and equal to 2
(d) conditionally convergent
(e) conditionally divergent

The integral [, x~2 dx

(a) diverges

(b) converges and equals 1/2
(c) converges and equals 1/3
(d) converges and equals 1
(e) is indeterminate

1

xlnx
(a) converges and equals 1

dx

o0
The integral /
5

Final Exam
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(b) converges and equals 2
(c) diverges

(d) oscillates

(e) permutates

60. The area under the curve f(x) = x3/?, above the x-axis, and over the
interval [2, 00), is equal to

(a) 4
(b) 1/2
(c) 2
d V2
(&) V2
61. Simplify the expression log;, [%\/?1_0)4]

(a) x+xlog,p2—3y—6
(b) 2x —xlog;;3 —y—2
(c) xlog;p2—3y+5

(d) x —3logjgy +logjox
(e) xlogygy

62. Express In(16/125) in terms of In2 and In 5.
(a) 3In2+4In5
(b) 4In2 —31In5
(¢) 5In2 —2In5
(d) In5—-1In2
() (In5)-(In2)
63. The derivative of f(x) = In(x? + x) is
(a) (2x+ 1)/(x* +x)
(b) (x+1)/(x* +x)
(@) x/(x* +x)
(d) x/(x+1)
() x*/(x—1)
64. The derivative of h(x) = (Inx)° is
(a) 4(nx)*- (1/x%)
(b) (Inx)?-x

(©) 5(nx)* - (1/x)
(d) x-Inx

() x/(Inx)



65.

66.

67.

68.

69.

70.

2x
The integral / T
(a) In(x —x?)+C
(b) In(x+1)+C
() Inx+C
() In(1 —x2)+C
() In(1+x?)+C

dx evaluates to

Evaluate the integral / ,Coi
3sinx — 5

(@) [1/3]In(@sinx —5)+C
(b) [1/5]In(Bsinx +5)+ C
(©) [1/2]In(3sinx —3)+ C
(d) [1/3]In(Bsinx +5)+C
(e) [1/9]In(2sinx —5)+ C

Simplify the expressions exp(Ina — Inb) and In(5 exp b).

(a) b/aand Inb +5
(b) a/bandIn5+b
(c) ab and In(5b)
(d) a/band bIn5
(¢) b/aand 5Inb

dx.

[exp(a)]® - [exp(B)]?

Simplify the expression

(a) exp(a—b+c)
(b) exp(3a — 4b + 5¢)
(c) expla+b+c)
(d) exp(3a+ 2b — 5c¢)
(e) exp(2a — 3b + 5¢)

The derivative of the function f(x) = exp(sin” x) is

(a) exp(cos2 x) - (2sinx - cosx)

(b) exp(sinx) - (2sinx - cosx)

(9) exp(sin2 x) - (2sinx)

(d) exp(sinxcosx) - (2sinx - cosx)
(e) exp(sin2 x) - (2sinx - cos x)

Calculate the integral [ exp[sinx] - cos x dx.

(a) exp[tanx]+ C
(b) exp[cosx]+ C
(c) exp[sinx]+ C

[exp(c)]®

Final Exam
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71.

72.

73.

74.

75.

76.

(d) exp[sinx]+ cosx + C
(e) exp[cosx]+sinx + C
Calculate f[exp(Zx)]3 dx.
(a) [eXP(3x)]Z

(b)
(c)

exp(2x)]3

exp(2x)]* /4 +C
(d) [1/6][exp(2x)]* +C
(e) [1/5][exp(2x)]* +C

Simplify In(e3 - 54).
(a) 3+4In5
(b) 3—4In5
() 5+3In4
() 4+5In3
(d 5-5In5

[
[
[
[

Simplify the expression In[e3* - 5¢].
(a) x+eln5

(b) 3x+3In5

(c) 3x+eln5

(d) x—eln5

(e) 3x+5lne

Simplify the expression e#n7-21n3,

() 74/3
(b) 72/3*
(© 77/3°
(d) 4%/3°
(e) 47/2°

Calculate log, 8 — log; 81 + logs 125.
(a) 1

(b) 2

(c) 3

(d) -2

(e) -1

Solve the equation 3* - 5%* = 3/7* for x.
(a) x =1logs323

(b) x =logs 525



77.

78.

79.

80.

81.

(c) x=logys, 3
(d) x=logs;3

(e) x= 1Ogszs 3

Calculate 4 log; (sin x).

dx
(a) cosx/[In3 -sinx]
(b) sinx/[In3 - cosx]
(c) sinx/cosx
(d) cosx/[lnsinx]

(e) cosx/[In3Insinx]

Calculate iSCOS".

dx
(a) 5*"*.In5 - cosx
(b) 5%*.In5 - (—sinx)
(c) 5%"*.In5
(d) 5% .In5

(e) 5cosxsinx . In 5. cosx

Calculate [ 3%"* . cosx dx.

(a) 3sinxcosx '1n3
(b) 3% .1n3
(c) 3n*.1n3
(d) 3"*/In3
(e) 3%%/In3

The derivative of g(x) = x¥"* is

(a) (sinx)(cos x)xsin*
(b) (sinx)- xc"’”
(c) (cosx) - xsnx

(d) (sinx) - x*n*"1
(e) |:cosx ‘Inx +

sin x} sinx

Final Exam

A population of bacteria tends to double every three hours. If there are
10,000 bacteria at 10:00 a.m., then how many will there be at noon?

(a) 14,444
(b) 16,355
(c) 12,991
(d) 15,874
(e) 13,565
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82. Calculate iSin_l(xz + x).
dx

(a) (x2+x)-Sin"' (x)

(b) Cos*][x2 + x)

(@) 2x+1)/y/1 —x4 —2x3 = «2

(d) (x+1)/y1 —x*—x2

() (*+x)/y/1—x2—x

83. Calculate [ x? cosx dx.

(a) x?sinx + 2xsinx + sinx 4+ C

(b) x?cosx + xsinx + x

(c) x?sinx + 2 cosx —sinx + C
2
2

(d) x*cosx — 2xsinx + 2cosx + C
(e) xsinx + 2xcosx — 2sinx + C

84. Evaluate [Inxdx.
() xInx —x+C
(b) xInx+x+C
() Inx—x+C
(d) xInx —Inx+ C
() Inx —x’Inx+C .
x
85. Calculate the integral / mdx.
(@) [2/3]ln|x—1]4+[1/3]In|x+2|+C
() [1/3]ln|x—1]—[1/3]In|x+ 2|+ C
(© [-1/3]ln|x+ 1| —[2/3]In|x — 2|+ C
(d) Injx—1|=In|x+2/+C
() Injx =3 —In|x+3|+C
86. Calculate the integral / $dx.
(x+ D2+ 1)
(a) In[x(x*+1)] =In|+1]+C
(b) Injx — 1| = In(x* = 1) —tanx + C
() Injx+1]+In(x*+1)+x*+1+C
(d) [=1/2]1n]x+ 1|+ [1/4]In(x* + 1) + [1/2]Tan 'x + C
(&) Injx+ 1] —In(x?+ 1)+ Tan 'x + C
2xdx
87. Evaluate the integral / ESEm iR
(@) [-1/2](x*+1)72+C
(b) [1/2](x* +1)*+C



88.

89.

90.

91.

92.

Final Exam

@ (®+1)*+C
(d) *+1)3+C
(&) (x*+x)7°

Evaluate the integral [ sin® x cos® x dx.
(a) cos’x —sin*x + C

(b) cos’ xsin*x + C

(9) sin’ x cos’ x + C

(d) sin® x/3 —sin’ x/5 + C

(e) sin’ x/3 + sin’ x/5+C

Calculate [ sin” x cos” x dx.
(a) x/8 +sin4x + C

(b) x/8 — (sin4x)/32+ C
(c) 1/4 — (sin4x)/4 + C
(d) x/4 + (cos4x)/32+ C
(e) x/8+ (sin4x)/4+ C

A solid region has base a square in the plane with vertices (1, 0) and
(0, +1). The vertical slices parallel to the y-axis are squares with base in
the x-y plane. What is the volume of the solid?

(a) 8/3

(b) 10/3

() 7/3

(d) 5/2

(e) 6/5

A solid is obtained by rotating the region below y = ,/x, above the
x-axis, and between x = 2 and x = 4 about the x-axis. What is the re-
sulting volume?

(a) 27

(b) 3

(c) b7

(d) 57

(e) 4m

A body is moved along the real line from x = 1 to x = 4 while resist-
ing a force of x> 4+ 2x 4+ 4 pounds. How much work is performed in the
process?

(a) 500/6 ft. Ibs.

(b) 125/2 ft. Ibs.
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93.

94.

95.

96.

(c) 255/3 ft. Ibs.
(d) 363/4 ft. Ibs.
(e) 325/4 ft. Ibs.

Calculate the average of the function g(x) = sin3x over the interval
[7/2, 7].

(a) —2/[37]

(b) 5/

(c) 3/[2r]

(d) 2/x

(e) 2/[37]

Set up (but do not calculate) the integral that represents the length of that
portion of the graph of f(x) = x? + x over the interval [2, 5].

(a) fzs V252 4+ 2x + 2dx
(b) fzs J4x? 4+ 4x + 2 dx
(© fZS VAx? + 4x + 2 dx
(d) [ vVAx? + dx + 4dx
(€ f5 vx? +2x+ 2dx

Set up, but do not calculate, the integral that represents the surface area of
the surface obtained when the curve y = \/x, 1 < x < 4, is rotated about
the x-axis.

(a) f14 2my/1/sqrtx - /1 4+ x2 dx
) i 22x - VT +[1/(@0)] dx
(9 f14 27./x - /14 4xdx
d) [fi2mvx - V1 + 422 dx
(@) Sy 2mv/x V1 +[1/(4x)] dx

A swimming pool is rectangular in shape with vertical sides. The bottom
of the pool has dimensions 20 feet by 40 feet, and the pool is 10 feet deep.
The pool is full. Calculate the total hydrostatic pressure on that portion
of the short side of the pool between depths 2 feet and 5 feet.

(a) 1210.4

(b) 1310.4

(c) 1110.4

(d) 1001.4

(e) 1020.4




97.

98.

99.

100.

Final Exam

Give the trapezoidal rule approximation to the integral foz e dx with a

uniform partition having four intervals.
() [1/4]- | + 2= (/2" 4 4o=(1° 4 2o-0/27 4 8722]

(b) [e*OZ +2e7 (/27 42000 206/ 1 e*zz]

(Q) [1/4] [0 4 e~ (/2F 4 o= (F 4 o=C/2F 4 esz]

(d) [1/4] e + 20/ 4 2-(0" 4 2-6/2° 4 8722]

(&) [1/2]-[267% + 2e=(/2 1 20-00 4 20-G/27 4 zefzz]

The advantage of Simpson’s rule over the trapezoid rule (for approxima-
tion of integrals) is that

(a) itis more accurate

(b) it is more complicated

(c) itis more confusing

(d) it involves double precision arithmetic

(e) it uses fractions

The reason that we use numerical methods to approximate integrals
is that

(a) it is fun to program the computer

(b) we are lazy

(c) many integrals cannot be calculated explicitly

(d) the textbook demands it

(e) we have no choice

Integration by parts is a technique for calculating
(a) the integral of many different functions

(b) the integral of a difference of functions

(c) the integral of a quotient of functions

(d) the integral of a product of functions

(e) the integral of a sum of functions
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Answers to Quizzes
and Final Exam

This book has a great many exercises. For some we provide sketches of solutions
and for others we provide just the answers. For some, where there is repetition,
we provide no answer. For the sake of mastery, we encourage the reader to write
out complete solutions to all the problems.

Chapter 1

o 5_321734
(b) l%%OOO
© ;3?
G
© —670785

_?990
0 =
(@) 1=
(h) 5979508(;3
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2. In Figure S1.2,set A=23,B=—-7/3,C=n, D= \/Z— 1, E= ﬁ-3,
F=5/2, G=-9/10.

G B D A F CE
—to o+ totot too—+—— P
0 X
FIGURE $1.2
3.
(l) T T
FIGURE $1.3a

0
FIGURE 51.3b
(‘) o e
FIGURE $1.3c
o—+ (;) I O
FIGURE 51.3d
+ t t t (‘) t t —t—+—
FIGURE $1.3e

FIGURE 51.3f
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4. Let A=(1,-3), B=(-2,1), C=(n% —-n), D=(—/2,/3), E=
(3w, —1), F = (172, -7/4).

YA
.C
B oD
i
o E
o I *A
FIGURE 51.4
5.
YA

ol
Ny

FIGURE S1.5a
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YA

-
Ng

N

FIGURE $1.5b

VA

=V

FIGURE $1.5¢

=V
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FIGURE $1.5d

by

=V

FIGURE 51.5e

/w
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YA

\J/

N

FIGURE 51.5f

FIGURE S1.6a

=V
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\\

»
>
X

FIGURE $1.6b

YA

N

FIGURE S$1.6¢
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YA

-
[

_—

4 /
| /

FIGURE S1.6f

7. (a) The given line has slope 1/5.
(b) Given line has slope 4, hence the requested line has slope —1/4.
(c) Write y = 2x + 4 hence slope is 2.
(d) Write y = (—1/2)x hence slope is —1/2.
(e) Slope =4/7.
(f) Write y = x/2 — 5/2 hence slope is 1/2.

8. (a) y+x/2=-2
(b) y+x+3=0

(€) y+4x =11
(d) y+x/5=17/5
(&) y=4x

0 y+x/3=1/3

y? A S

(@ (b)

=V
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10. (a)

(<)
(d)
(e)

®
(g)

(h)
()

YA
YA
—
| —
' \ x x
©) (d)
YA
YA
e x

(e) )

Each person has one and only one mother. This is a function.

Some men have more than one sister, others have none. This is not a
function.

Each real numbers has exactly one cube root. This is a function.
Each positive integer has just one square. This is a function.

Some cars have several passengers. Some have none. So this is not a
function.

Each toe is attached to one and only one foot. This is a function.
Each rational number has precisely one integer which just follows it.
This is a function.

Each integer has one and only one predecessor. This is a function.
Each real number has a well-defined cube, and adding four is a well-
defined operation. This is a function.
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11.

S —
B 4

=Y
B 4

© (d

YA

=Y

[E——
=Y

(e) ®

12. (a) /3/2
(b) —1/V3
© —v2
d) —v2
(e) -1
0 v2/2
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13. We check the first six identities.
(a) sinm/6 =1/2,sin7/6 = /3/2, sin’ 7/6+ cos” /6 =[1/2)% +
[V3/2P=1/4+3/4=1.
(b) cosn/6=+/3/2,sinn/6=1/2,-1<,/3/2<1,-1<1/2<1.
(c) tanm/6 = l/\/g, secw/6 = 2/\/§, tan’ 7/6+1= [1/\/§]2 +1=
4/3 = seczn/6.
(d) cotn/6=+/3, cscn/6=2, cot’m/6+1=[/3]*+1=4=22=
csc? /6.
(e) sin(mw/6+ (—7/3)) =sin(—x/6) = —1/2, sinnw /6 cos(—m/3) +
cosr/6sin(—m/3) = [1/2][1/2] + [/3/2][-V/3/2] = —1/2.
() cos(n/6 + (—n/3)) = cos(—n/6) = ﬁ/Z, cosm /6 cos(—m/3) —
sin /6 sin(—7/3) = [/3/2][1/2] - [1/2][-/3/2] = v/3/2.
14. We shall do (a), (¢), (e).

YA

FIGURE $1.14a

YA

<Y

FIGURE S1.14¢



15.

16.

17.

18.
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VAN 1%

Jr 37

B2 4

FIGURE $1.14e

(a) 6 =15°
(b) 0 = —90°
(©) 6 =1215°

(d) 0 =(135/4)°
(e) 6 =(720/7)°
(0 6 =(-1260/x)°

(a) 6 = /4 radians

(b) 6 = /9 radians

(c) & = —117/36 radians
(d) & = —57/9 radians
(e) 6 = 72/90 radians

() & =1.577/90 radians

We do (a), (), (e), and (g).
(@) fog() =[0c+ 1)) —2(x+ 1%
go f(x) = ([x* — 2x] + 12
(©) f og(x) = sin(cos(x® + x) — cos’ (x* 4+ x))
go f(x)= cos(sin2 (x — x%) + sin(x — x%))
(e) fog(x)= sin(‘ln2 (x> 4 2x) — In(x? + 2x))
gof(x)= ln(sin2 (x* — x) + 2sin(x? — x))
(8) fogl)=[2x—Dx+2)] [(2x—Dx+2)—1]-[(2x — D(x+
2) + 3]
go f(x)=[2x(x— 1D)(x+3)— 1] [x(x — 1)(x+ 3) + 2]

We do (a), (c), (e), (g)-

(a) f isinvertible, with f=1(t) = (t — 1)!/3.

(c) his invertible, with h=1(t) = (sgn x) - 2.

(e) hisinvertible as long as we restrict the range to the positive real num-
bers. Then the inverse is f~!(¢) = (1/3) Int.

(g) f is not invertible because cot(r/2) = cot(57/2) = 0.
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19. We will do (a), (c), (e), and (g).

YA

=V \\.\

FIGURE $1.19a

by

. S ' »
RVV\

FIGURE $1.19¢
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FIGURE $1.19%

(g) Not invertible.

20. We will do (a), (¢), (e), and (g).
(a) Invertible, f~1(t) = vt.
(c) Invertible, A~1(t) = Cos_l(f)-
(e) Invertible, g~!(t) = COt_l(t).

(g) Invertible, f~'(t) = _l%m |

Chapter 2

1. (a) limx-e™™

= 0 because x tends to 0 and e~ x tends to 1.

x—0
x? —
(b) lim =limx+2=4.
x—2 - x—2
(c) lim(x —4) - cot(x — 4) = lim[(x — 4)/sin(x — 4)] - cos(x — 4) =
x—4 x—4

1-1=1. [Here we use the non-trivial fact, explored in Chapter 5,
that limy,_ ((sinh/h) = 1.]
(d) lim +/x-Inx = limInx¥* < lim In \/}‘/’? =In1=0. [Here we use

x—0 x—0 x—0
the non-trivial fact, explored in Chapter 5, that lim,_ ,x* = 1.]
2_5t4+6
(@) lim ——2F° i —3) = —1.
t—2 t—2 t—2
2_2s-3
) lim——=""> —lim(s + 1) = 4.
s—3 s—3 s—3
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. In(x/2)
(8) ,161?2 —
lim In[(1 + h/2)¥"1"?Ine'/? = 1/2. [Here we use the non-trivial
h—0
fact, explored in Chapters 5 and 6, that lim, (1 4+ )"/ = e, where
e is Euler’s number.]

. x2-16
() lim ==

= lim In[(x/2)"/¢=2] = lim In(1 + h/z)l/h —
h

x—2 -0

= lim x—4=-8.
x——4

. (a) The function is undefined at ¢ = —2.

(b) lim f(x)=—1/2and f(1) = —1/2 so f is continuous at ¢ = 1.

x—1

(c) lim f(x) =0. If we define f(0)=0, which is plausible from the

x—0
graph, then f is continuous at 0.
(d) lim f(x) =0. If we define f(0)= 0, which is plausible from the
x—0
graph, then f is continuous at 0.
(e) lim f(x) =1and f(1) =1so f is continuous at ¢ = 1.

x—1

() lim f(x) does not exist so f is not continuous at ¢ = 1.
x—1

(g) lim f(x)=0and f(27) =0so f is continuous at ¢ = 2.
x—21

(h) lim f(x) =e™?> 2 and f(2) = ¢"% 250 f is continuous at ¢ = 2.

x—2

3. (a) We calculate

f2+h-f2

"2) =1
') jim 2
2 _ —[22_3.
i [+ R =324+ R)] - [22-3.2]
h—0 h
2 _6_ _ _

oo (4 4R+ 12— 6—3h] — [4— 6]
h—0 h
_hmh2+h
h—0 h
=limh+1
h—0
=1.

The derivative is therefore equal to 1.
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(b) We calculate
fB+h)—£B3)

'3) =1l
f'3) Jim 2
_ 21 _ [ 2
— fim | 3/B +h)*] - [-3/3%]
h—0 h
=9+ (B3 +h)?
= lim —
~ i 6h + h?
B h—0 3h(3 + h)Z
i B
_h—>03(3+h)2
2
§.

The derivative is therefore equal to 2/9.
d «x x2—2)-1—-x-2x —x*>-2
4. (a) % 2 = ( )

-2 (x2 — 2)2 (2 -2)%
d d d
) 4 cos?) = | o cos] ) () = [ - 2,

() %[cot(z‘3 — )] = [d% Cot:| GEIIE %(P —t9) =
[— s (3 — tZ)] (32 = 20).

J d (x>+1) (*—-1)-2x)—(x*+1)-(2x)  —4x
(d) de\x2 -1~ (x2 —1)2 _(xz_l)Z'
d — sin
(e) e [x-In(cosx)] =1 - In(cosx) + x - os xx = In(cosx) — x - tan x.

) %65(53) =t 1.5 =3)+s-1] =€t [25 = 3].

(g) %ecos(xz) — ecos(xz) . %[COS(XZ)] — ecos(xz) . [_ sin(xz) . ZX]
x ] 1 e*—1
() [In(e" — )] = ——— (" 1) = S —.

5. (a) Since the ball is dropped, vy = 0. The initial height is hy = 64. There-
fore the position of the body at time t is given by

p(t)=—16t>+0-t +64.
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The body hits the ground when
0= p(t) = —16t* + 64

or t = 2 seconds.

(b) Since the ball has initial velocity 5 feet/second straight down, we
know that vy = —5. The initial height is hg = 64. Therefore the posi-
tion of the body at time ¢ is given by

p(t) =—16t> —5 -1+ 64.
The body hits the ground when

0= p(t) = 1612 — 5t + 64
or t ~ 1.8498 seconds.

(c) Since the ball has initial velocity 20 feet/second straight up, we know
that vy = 20. The initial height is hy = 64. Therefore the position of
the body at time t is given by

p(t) = —16t> +20 -t +64.
The body hits the ground when

0 = p(t) = —16t% + 20t + 64
or t &~ 2.7204 seconds.

6. (a) 4 cos(In(sin x)) = — sin(In(sin x)) - $ - (cosx).

dx

(b) diecos(sinx) — ecos(sinx) . (_ sin(sin X)) . (COS ,’)C)
X

d Cosx — 1 COosx :
(©) e In(e“** + x) = . (e“**(—sinx) + 1).
(d) I arccos(x? + secx) = M= [x;:— el - [2x + sec x tan x].
(e) d arcsin(lnx + ¢*/2) ! |:1 + ex:|

2 arcsi — N I

dx V1—[lnx+e/2]2 Lx 2

1

T 14 (- ey =l

O 4 arctan(x — e¥)
dx
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7. Of course v(t) = p'(t) = 6t — 2 so v(4) = 22 feet per second. The average
velocity fromt =2tot =6 is

_p(6)—p(2) _ 10616 _ 45

Vav 4 4 2

The derivative of the velocity function is (v')'(t) = 6. This derivative never
vanishes, so the extrema of the velocity function on the interval [4, 10]
occur at t =4 and t = 10. Since v(4) = 22 and v(10) = 58, we see that
the maximum velocity on this time interval is 58 feet per second at t = 10.

8. (a) We know that

-1 _ 1 _ l
10 = 5= 5
(b) We know that
Ty L1
10 = 5 = 5-
(¢) We know that
=L 1
10 = 5 =
(d) We know that
1) = s = 55

f/ay 20
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Chapter 3

YA
conc. up 1 nax

»

»

X

A f—_

conc.down min | conc. conc. up

| down

FIGURE S3.1

2. The figure shows a schematic of the imbedded cylinder. We see that the
volume of the imbedded cylinder, as a function of height h, is

V(h) =m-h-(25—h?/4).
Then we solve
0=V'(h) = - [25—3h%/4].

The roots of this equation are h = £10/,/3. We find that the solution of
our problem is height 10/,/3, radius 1/50/3.

FIGURE S3.2
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3. We know that

V=¢-w-h
hence
v _d h+¢ dw h+¢ dh
e~ d " dt Wt
=2-50-104+90-(-1)-10+90-50-0.5
= 100 + 2250
= 2350 in./min.

4. We know that vy = —10. Therefore the position of the body is given by
p(t) = —16t> — 10t + hy .
Since
0=p(B)=-16-32-10-3+ ko,

we find that hy = 174. The body has initial height 174 feet.
5. We know that

V=%-7rr2-h
Therefore
d 1 , dh 1 dr
0—$V—§ -r E+§n2r d h

At the moment of the problem, dh/dt = 2,r =3, h = 10/3. Hence

dr 10

or

0=6n+(20n/3)-%.

We conclude that dr/dt = —9/10 microns per minute.
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6. Of course

5000=V=mx-r>-h.

We conclude that

5000
h=

We wish to minimize

A = (area of top) + (area of sides) =7 - #2 + 27 -7 - h
5000

=712+ 2 -r- >
Tr

Thus the function to minimize is

10000
Ar)=m-r* + 00 .
r

Thus
10000
0=A(r)=2nr — ——.
-
We find therefore that
50
5 5000
T

or r = y/5000/x. Since the problem makes sense for 0 <7 < oo, and
since it clearly has no maximum, we conclude that r = /5000/7, h =

J/5000/7.

7. We calculate that g’(x) = sin x + x cosx and g”(x) = 2 cos x — x sin x. The
roots of these transcendental functions are best estimated with a calculator
or computer. The provided sketch gives an idea of where the extrema and
inflection points are located.
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YA

=V

B
v

FIGURE $3.7

8. We know that vy = —10 and hy = 500. Hence
p(t) = —16t> — 10t + 500.
The body hits the ground when
0 = p(t) = —16t> — 10t + 500.

Solving, we find that t &~ 5.286 seconds.
9. We see that

M@=#i4

, x? + 4

ven . 2x(x*412)
h'(x) = m

We see that the function is undefined at 42, decreasing everywhere, and
has an inflection point only at 0. The sketch is shown.
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by \

=V

FIGURE $3.9

10. We know that

Therefore

Using the values V = 257, r = /75/4, dV/dt = —3, we find that

—3 =47 -(75/4)*- %

hence

dr 3 )
= ———— in. per sec.

dr 47 (75/4)23

11. The acceleration due to gravity, near the surface of the earth, is about
—32 ft./sec.” regardless of the mass of the object being dropped. The two
stones will strike the ground at the same time.
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12. He can drop a rock into the well and time how long it takes the rock to
strike the water. Then he can use the equation

p(t) = —16t> + 0t + hy

to solve for the depth. If the well is very deep, then he will have to know
the speed of sound and compensate for how long it takes the splash to
reach his ears.

13. Let (x, y) be the point where the rectangle touches the line. Then the area
of the rectangle is

A=x-y.
But of course 2x + 3y =6 or y = 2 — (2/3)x. Hence
A=x-[2—-(2/3)x].

We may differentiate and set equal to zero to find thatx =3/2and y = 1
is the solution to our problem.

14. Let s be a side of the base and let h be the height. The area of the base is
s? and the same for the top. The area of each side is s - h. Thus the cost of
the base and top is

C, = [s* 4 5] - 8 cents
while the cost of the sides is

G =4(s-h)- 16 cents.
We find that the total cost is

C=C + G = 165 + 64sh. (%)

But

120 = volume = s2 - h
hence

h=120/s>.
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Substituting this last formula into (x) gives

7
C(s) = 1652 + 64s - [120/s%] = 165> +—%§

We may calculate that

7680
0=C(s) =325 — o .
)

Solving for s gives the solution s = /240 and then h = 120/(/240)>.
15. We see that

x> —4
=273
eon . 16x
F'0 =y
L. —48x? + 64
P =Ty

Thus there are a critical point at x = 0 and inflection points at x = £2/,/3.
The figure exhibits the complete graph.

YA

1 conc. down
-
| 1 ' A -

conc. up Pl conc. up

=\

FIGURE $3.15
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16. We see that the equation for the position of a falling body will now be

12
(1) = —71:2 +vot + ho .

It is given that vy = 0 and hg = 50. Hence

p(t) = —6t* + 0t 4 50.
The body hits the surface when

0= p(t) = —6:> +50.

This occurs at time t = /25/3.

Chapter 4

1. (a) F(x) =x*/4 +sinx+C
b) Fx)=e*+x°/3—x+C
(© F()=t3/3+[Int]*/3+C
(d) F(x) = —In(cosx) — cosx — [sin3x]/3 + C
(e) F(x)=[sin4x]/4 — [cos3x]/3+x+ C
(f) Fx) = —e*+C

— COS x3

2. (a) /xzsinx3dx=T+C
(b) /%lnx3dx=3ln2x+c
(©) /sinzx-cosxdxz %Sin3x—|—C
(d) /cotx«lnsinxdxz %lnzsinx—l—C
(e) /seczx-etanxdxzetanx—l-C

6 /(3x2 +2)- (* 4+ 2x+3)Pdx = %(f +2x4+3)"+C
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3. (a) We have

2 SITSEAY i1
/;x—xdx:ljino]o; (1+E> —(1+E>:|'E
E [ . .2 .
_ LN N
“im 2 [Tt E T TR
k .2
. ] J
= Jim 2 1?2*1?3}
oo]-zl_

_ g k> + k l+2k3+3k2+k 1
Tl T2 R 6 3
TR R U S U
T 12T 2 T3 T 2 T2
_1. 1
—273
_2
=z
(b) We have
2j
boy? e <_1+?> 2
[y pmy ot
Cimy (1o
T2 ER
k . .2
_ g LS S
ﬁf&;( %R k3)
b b i+k2+k 1 2 +3+k 2
T TR T T R 6 k3
_ 1,14
~ 27276
2
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3 3 4 3 3 4
2_ 3 _|x_x (X3 . 55)_
.(a)/lx x+3dx—|:3 4+3x:|1—<3 4+3 3)
1314 81 1 1 16
<?—Z+3-1>=(9—T+9)—<§—Z+3)=—?.
_ cos (x?) sin” x :| " _
/2

(b) / x sin(x?) — sin x cos x dx = |: +
/2 2 2

<_cos(n2) +0> B (_cos(n2/4) n l) _ — cos(7?) n

2 2 2 2
Cos(n2/4)_l
2 2
4
© /’41n_x+ cosa? da — lnzx_{_sinx2 _ 1n24_|_sin42 B
A ) 2 | T\ 2 2
lnzl+sinl2 _ln24+sin16 sin 1
2 2 2 2 2
2 cos x> ?
(d) / cotx — x> sinx> dx = | In | sin x| + 3 =
1
1
23 13 8
1r1|sin2|—|—COS - lnlsinll—i-COS =1r1|sir12|—|—COS —
3 3 3
cos1
In|sin1] —
n|sin 1| 3

6 x3 6
. (a) Area:/xz—Zx—l—de: g—xz—l—Gx =
4

6, 43 128
<?—6 +36)—(?—16+24-2>_T.

.2 73 .2 2
sin xj| sin“7/3  sin"0

/3
(b) Area:/0 sinx cosx dx = |: 5 5 5

(32" ,_3
2 -8

3 2P 2 2 9 4
Area — 2= || 2 ¢ ¢ _¢
(c) Area /2 xe* dx |: 5 :| 5 5 5>

e? 2 e? 2 5 5
(d) Area:/ h17xdx=|:1n x:| zlne In“e

e
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YA

negative |
T

=V

positive

FIGURE S4.6a

YA

ANAAANRAANAD
VAVAVATAVAY RVATAVZYAIRVE I

positive for x (kn/6, (k + 1) w/6), k even
negative for x €(kn/6, (k + 1) 7/6), k odd

FIGURE $4.6b



Answersto Quizzesand Final Exam 369

negative/—/

»

T L

—_—
positive

FIGURE S4.6¢
YA
negative
= >
positive
FIGURE S4.6d
-1 0 2
7. (a) Area:/ xz—{—xdx—/ xz—l—xdx—l—f x> + x dx
-2 -1 0
-1 0 2
_ x3+x2 x3+x2 n x3+x2
13 2 3 2 3 2
-2 -1 0

19

3
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/4
(b) Area:Z-S-/ sin 4x dx
0
B /4
_16. cos4xi|
4 0
1 1
(1))
= 8.
© A _/elnxd _lnzxe_l O—l
I rea_1 o dr=— =3 =5
0 3 o ;
(d) Area= —/3 xe"dx—i—/o xe* dx = — [xe* — e*] 5 + [xe* — "] =
2 —4e73 4+ 263,

-1 0 2
8. (a) Area:/ x2+xdx+/ x2+xdx+/ x? + xdx
_ 0

2 -1

x3 xz ! x3 xZO x3 xzz
BERE R ERE R

=6.

(b) Area=0.
(© Area:ff%dx:%}l =%—O: %
0 3 . ;
(d) Area= /;3 xe* dx —|—/(; xe* dx = [xe* —e*]_; + [xe* — ] =
(1433 +e )+ B - +1)=4e3 +2°.

9. (a) Area= /1

-1

1
—2x3 -2 2 44
1
1 3 4
Y R S IR U2 I A 9_9)
(b) Area_/ox xdx_|:3 4j|0_<3 4) <3 y

1
[—x? + 6] — [xZ—Z]dx:/ ~2x* +8dx =

-1
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1/4

-1 3

B G N SO S S S N W )
N 3 64 4 16 3 96
(d) Area:/ Zx—lnxdx—[x —xlnx+x] (ez—elne+e>—
1 1

(l—O—i-l)—e - 2.

3 1/4
(9) Area:/ [-2x? + 1] — 2xdx = |:—2i +x—x2:|

1
10. (a) Area:Z/ x—x3dx=2|:
0
0 O 1
*(3-3)-2
1
3/2 5 2 1
SV P AT I (R
)Area—/ﬁ x"dx = |:3/2 5:|0 (3 5)

7
<3/2 §)“T§'

N R
|
INES
1
o —
[l
N
N
N —
|
A=
S~
|

NG
2 3 5
(c) Area= / 252 — xtdx = 26 x
-2 3 5 Y
2.723/2 25/2 2.23/2 25/2 16
- < i T) - <— 3 ) =2

12 o3 JENETN;
(d) Area :/ [—2x2+1]—x4dx:|: +x__j|

RS S War:

8 B e e i
- ()

Chapter 5

1. (a) lim,_ o(cosx —1)=0 and lim__ ,x*+x?> =0 so I'Hopital’s Rule
applies. Thus

cosx — 1 . —sinx
x>0 X' +X x—0 4x3 + 2x
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Now I’'Hépital’s Rule applies again to yield

. —Ccosx —1
=lim-———=—.
w0 1262 + 2 2

(b) lim, ye** —1—2x =0 and lim,_ ,x* + x° = 0 so I'Hépital’s Rule
applies. Thus
e —1—-2x 2% -2

lim —— =lim ———.
x—0 x2 + x6 x—0 2x + 6x5

I'Hépital’s Rule applies again to yield

: 4e%%
=lim — =
02 + 30x4
() lim,_ cosx # 0, so 'Hopital’s Rule does not apply. In fact the limit

does not exist.
(d) lim,_[Inx]?> = 0andlim,_ ,(x* — 1) = 0 so 'Hépital’s Rule applies.
Thus

. [Inx]? lim [2Inx]/x _0.

1 =
x—1 (xZ - 1) x—1 2x

(e) lim,_,(x—2)*=0 and lim,_,,sin(x—-2)—(x—2)=0 so
I'Hépital’s Rule applies. Thus

lim (x—-2)° — lim M
coasin(x—2)—(x—2) ,.,cos(x—2)—1"

Now I'Hépital’s Rule applies again to yield

o 12(x—2)?
- ,161_{2 —sin(x —2)

We apply I'Hépital’s Rule one last time to obtain

L 24(x-2)
Qo)
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(0 lim, ,,(e*—1)#0 and lim,_,(x — 1) = 0 so I'Hopital’s Rule does
not apply. In fact the limit does not exist.

2. (a) lim 2400
Rule applies. Thus

x3 = lim (*—1—x—x%/2) =400 so [I'Hépital’s

X—> +00

. x3 ) 3x?
lim = lim ———.
x—>+oo€x—l—x—x2/2 x_>+ooe"—l—x

I"'Hoépital’s Rule applies again to yield

) 6x
= lim .
x—to0 € — 1

I'Hopital’s Rule applies one more time to finally yield

(b) lim,_ o Inx =lim, . x* = +oo so I'Hopital’s Rule applies. Thus

~ Inx ) 1/x
lim — = lim 2= =
x—+o00 X x— 400 2x

0.

(¢) lim e > =lim,  ,  In[x/(x+ 1)] = 0 so I'Hopital’s Rule ap-
plies. Thus

X—> 400

" e—Zx _ _Ze—Zx
oo I/ x + )] s 1/x— 1/[x+ 17

It is convenient to rewrite this expression as

2(x% +x)
—e2x

lim

X—>+00
Now I"'Hépital’s Rule applies once more to yield

4x +2

lim

x—>+00 —2e2x
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(d)
(e)

(0

3. (a)

We apply I'Hoépital’s Rule a last time to obtain

= lim == O
x—+00 —2e2x

Since lim sin x does not exist, 'Hopital’s Rule does not apply. In

X—>+00
fact the requested limit does not exist.

It is convenient to rewrite this limit as

Since lim,, . x*=1lim , __ e = 400, I'Hopital’s Rule applies.

o0
Thus
) x? . 2x
lim — = lim
x—>—00 €%  x>_co —€~

A final application of I'Hépital’s Ruleshows that this last limit is

x
x——00 €

Sincelim, . In|x| =lim,, _ e ?* = 400, 'Hopital’s Rule applies.

Thus

oo

lim 1n|2x| = lim 1/x =0

x——00 €7 %% X—>—00 —2e~2x

We write the limit as lim,, . x?/e*. Since lim, x*=
lim,_, ,, e* = +oo, I'Hopital’s Rule applies. Thus
2
. - X . 2x
lim x’¢*= lim = = lim =.
X— 400 x——+o0 €% x—4o0 €%

Of course this limit is O.
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: 2
(b) We write the limit as lim,_, , S‘“l(/li 2) Since lim, _, oo sin(1/x%) =

lim,_, . 1/x* = 0, 'Hépital’s Rule applies. Hence

. 1 2
lim x?-sin[1/x?] = lim 7s1n( /*)
X—>+00 X—>+00 l/xZ

lim [cos(1/x*)] - [-2/x°]

x— 400 —2/963

— lim cos(1/x%) _

x—+00 1

1.

ln[’;/z(—flrm. Since lim,_, | In[x/(x +

x> 4+ 1 = 400, 'Hopital’s Rule does not apply.

(c) We rewrite the limit as lim

1)] = 0 and lim
In fact the limit is O by inspection.

X—> 400

X—> +00

(d) We rewrite the limit as lim__, +Oo[ln2 x]/e*. Since lim_, In®x =
lim,_, |, e* = +o0, I'Hopital’s Rule applies. Thus
In’ 2lnx-1
lim In’x-e* = lim — = lim M:O.
X—~400 x—+oo € X—> 400 ex

. L. . 4, -2 . . . 4
(e) We write the limit as lim x*/e~**. Since lim, , _ limx* =

lim e~2* = 400, 'Hopital’s Rule applies. Thus

X—>—00

X—>—0Q

I'Hépital’s Rule applies one more time to yield

) 12x2
= lim

X—> —00 4672%

Two more applications of I'Hépital’s Rule show that the limit is O.
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(f) We rewrite the limit as lim, el/x ) [1/x]. Since lim,_,, el/¥ =
lim, ,,1/x = 400, I'Hopital’s Rule applies. Thus

1/x? 1/x% . —2/43 2. 1/x?
lim x - e!/%* = lim ¢ = lim % = lim ¢ = 400
x—0 x—0 /X x—0 _l/x x—0 x
4. We do (a), (b), (¢), (d).
1 1 x1/5 1
(a) / xdx = lim | x*dx=lim || =
0 e—0t Je e—0+ 1/5 e
115 (s
li — —— ] =5
€f§F<1/s 1/5)
3 3—€
(b) / (x —3) % dx = lim (x —3)%dx =
1 e—0tJ1
3—¢
_ 315 _.-1/5 _~-1/5
lim & = lim € — 2 . But the limit
e—0t _1/5 1 e—0t _1/5 _1/5

does not exist; so the integral does not converge.

2 1 —1—€ 1
. dx=1 -
(©) /2 G dx eirgl+ e S e dx +
—1—¢
2 1 (x + 1)*3

li . dx=lim [T +

o Jrse G IE T LG [ a5

I NCE Vil Y (5 LA e VIGA T

m —_— = l1m —

e—0t 4/5 “1te e—0t 4/5 4/5

. 34/5 (6)4/5 5 45
}fgi(m‘ i) =1 (71
—1—¢ X

6 X .
@ [ amemn®=in [, eaein®

+
0 X 2—¢ X
lim —— —dx+ lim ——dx +
e—0+tJ—1+€ (x - 1)(96 + 2) e—0+J0 (x - 1)(96 + 2)
6
X
lim ——dx. Now
e—0t J2+€ (x - 1)(36 + 2)
X 23 173

GG+ x—2 Txg1
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Therefore
6 x —1=¢ 2/3 1/3
" dx=l d
/4(x—2)(x+1) Sl PR R
0
+ lim 2/3 1/3 dx
e—0+ ,]+€x—2 x—|—1
2—¢
+ lim 2/3 1/3 dx
e—0+JO x—Z x+l
6 2/3 1/3
4 lim/ SRR TERN
e—0+ 2+€x_2 x+1
2 1 —1—¢
zslirg|:§ln|x—2|+§ln|x+l|]_4
CI2 1 1°
+lim |=Injx—=2|+ =In|x + 1]
e—0F _3 3 d—1+e€
C[2 1 1
+ lim |=Injx = 2|+ = In|x + 1]
e—0t _3 3 40
o I2 1 1°
+ lim |=In|x— 2|+ = In|x + 1]
e—0t _3 3 A2+€

Now this equals

lim
e—0t

3

2 1 2 1
<§~ln|—3—e|+§lne)—(—~ln6+§1n3>+ etc.

The second limit does not exist, so the original integral does not

converge.
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5. We do (a), (b), (c), (d).
> —3x . N —3x . 9_3x
(a) /1 e *dx = lim e *dx = lim = =

N—+o00 J1 N—+o0

8_3N 6_3 e—3
I A,
o\ =3 T 3] 773

0 N
(b) / x’e P dx = lim xle P dx =
2

N—+o00 J2

N
lim [—xze_zx/Z —xe )2 — e_zx/4] =
N—+oc0 2
lim [(—Nze_ZN/Z ~ Ne=2Nj2 - e-ZN/4) -
N—+o0
(—Zze_4/2 —2.e72 - e—4/4)] —2etfet fet/4 = 13e74/4.
00 1 N
(© / xlnxdx = lim | xInxdx+ lim xlnxdx =
0 e—0t Je N—+o00 J1
lim [xInx —x]} + lim [xInx—x]) =
e—>*+ N—+o0
lim [(1-In1—1)—(e-Ine —¢€)] +
e—>0+
lim [(N-InN=N)-(1ln1-1)] = lim [-1 +€]+
N—+o0 e—0t
lim [NmN—-—N+1]= lim [NInN—N]. This last limit
N—+o0 N—+o0

diverges, so the integral diverges.

* d N d
(d) / ad > = lim * > = lim [arctanx]} =
1 14x No4ood1 14+x N—+00
S N

li tan N—arctanl) = - — — = —.
I\]_l)l’-li’_lOQ (arc an arctan ) > 4 4

Chapter 6
1. (a) 3lna—2Inb—5Inc —Ind
(b) 3log,a+log, b —logza — 2logy b
() 2x+3lnz—2lnw

(d) 3w+1
2. We do (a) and (b).
(a) 2%.37% = 2% . ¢?
xIn2 —xIn3 =xIn2+2
—x-In3 =2
2
Xx= -
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ZX
(b) —— =10"-10
3—x.52x
xlog)n2 + xlog;y 3 — 2xlog;p 5 = x + 1
x[log,o2 4+ log;y3 — 2log;p 5 — 1] =1

1

*= log,p2 +log;y3 — 2log;p 5 —1°

—2x - sin(x?)
cos(x2)
3 1
X x—
(©) —e<€) sin(e¥) - ¢

(d) —sin(lnx)- %

. (2)

. (@) —xPe ¥ —2xe ¥ —2e*+C

2

xSl x4 Sl — ox?
(b) 2lnx 7x In X+ x Inx ¥ +C

(©) [—llnx—l] =—%+l
x x|

(d) [In(e* — ]2 =In(e + 1)
. We do (a) and (b).

2
_ 3 X~ —X
(a) Let A=« -x3+1.Then
InA=3Inx+In(x* —x) —In(>x> + 1)
hence

dA/dx  d 1nA—3+2x_1 3x?
A dx Tx x2—x x341°

Multiplying through by A gives

d_A_ 3 x2—x E_}_Zx—l_ 3x2
dx x3+1 x x2—x 3411
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sinx - (x3 — x)

.Th
2 en

(b) Let A=

In A= Insinx + In(x® — x) — Inx?

hence

dA/dx d cosx 3x2 -1 2x
A dx sinx  x3—x @ x?

Multiplying through by A gives
dA sinx - (x* — x) cosx 3x>—-1 2
- = = + I
dx x2 sinx  x3—x X

6. Let R(t) denote the amount of substance present at time ¢. Let noon on

January 10 correspond to t = 0 and noon on January 15 correspond to

t = 1. Then R(0) = 7 and R(1) = 5. We know that
R(t) =P -kt
Since
7=R(0) =P ek,
we see that P = 7. Since
5=R(1)=7eK1,

we find that K = In5/7. Thus
5 t
R —7. tIn(5/7) —7.(= )
()=7¢ >

Taking January 20 to be t = 2, we find that the amount of radioactive
material present on January 20 is

R(Z):7-<;>2=2—5.
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7. Let the amount of bacteria present at time t be
B(t)= P -k,

Let t = 0 be 10:00 a.m. We know that B(0) = 10000 and B(4) = 17000.
Thus

10000 = B(0) = P - K9
so P = 10000. Also

17000 = B(4) = 10000 - X+

hence
1
K = 7-In(17/10).
As a result,
B(t) = 10000 - et'[1/41In(17/10)
or

17 t/4
B(t)=1 N .
(t) = 10000 (1 0)

We find that, at 3:00 p.m., the number of bacteria is

17 5/4
B(5) = 10000 | — .
5) (10)

8. If M(t) is the amount of money in the account at time ¢ then we know
that

M(t) = 5000 - ¢*/100

Here t = O corresponds to January 1, 2005. Then, on January 1, 2009, the
amount of money present is

M(4) = 5000 - ¢*4/190 ~ 5867.46 .
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1 x x
9. (a) —m[e +xe]
-1
(b) 2x%2 4+ 2x + 1
1 2x+1
(c)

1+ [I°(2 +x)] X+

1 2
d -sec” x
@ |tanx|y/[tanx]2 — 1

10. (a) %Talflx2 +C

1. _
(b) 3Sin '¥+C
1 2 AT el .1, T
© [Sm (cos x)]o =Sin 0 — Sin 1_—5.

! dc  _ 1 p (X
@ 5| s A" (ﬁ)m

Chapter7

1. We do (a), (b), (c), (d).
(a) Let u = log” x and dv = 1 dx. Then

/logzxdx=10g2x-x—/x-Zlogx- ldlx
x
=x10g2x—2/10gxdx.

Now let u = logx and dv = 1 dx. Then

/logzxdxzxlogzx—Z[logx-x—/x-%dxi|

= xlog’ x — 2xlogx + 2x + C.

(b) Let u = x and dv = e** dx. Then

2x 2x
2x e e
) —x.— — | Z—— 1

er er
—x. -2 4cC.
X > 4+
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(c) Let u = x? and dv = sinx dx. Then
/xzsinxdxz—xz-cosx—/—cosx~2xdx.
Now let u = 2x and dv = cosx dx. Then

/xzsinxdx= —x% . cosx + |:2x~(sinx)—/sinx-2dxj|
= —x? cosx + 2xsinx + 2 cosx + C.

(d) Notice that [#sin2tcos2tdt = %ftsin4tdt. Now let u =1t and
dv = sin4t dt. Then

L 1 1
z/tsm4tdt =5 |:t- <_Z COS4l’> — / (_Z COS4t> . ldt}

t 1
= —— 4t + —sin4 .
8cos t+3zs1n t+ C

2. We do (a), (b), (¢), (d).
1 “1/4

) 1/4

(x+l)(x—3)=x+l +x—3

dx [ —1/4dx 1/4dx
[(x+1)(x—3)‘/ 11 */ X3

—1 1
:TIn|x+l|+Zln|x—3|+C.

hence

1 12 —x2-1p2
x—1Dx2+1) x-1 x?+1

dx R —x/2 —1,2
/(x—l)(xz—i—l)_/x—ldx+/x2+ldx+/x2+ldx

1 1 1 _
:zln|x—1|—Zln|x2+l|—§Tan 'x+C.

hence

(b)

(c) Now x® +2x? — 5x — 6 = (x + 3)(x — 2)(x + 1). Then

] _ Y10 115 16
X3+2x2-5x—-6 x4+3 x—-2 x+1°
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As a result,

dx 1/10 1/15 ~1/6
fx3+2x2—5x—6_/x+3dx+/x—2 x+/x+ldx

1 1 1
=1 —1 —2|—=1 1 .
0 n|x—|—3|—|—15 nlx | 6n|x+ |+ C

(d) Now x> — 1 = (x — 1)(x + 1). Hence

112 12
x2—-1 x—-1 x+1°

We conclude that

dx 1 1
,/xz—l =§ln|x—l|—§ln|x+1|.

3. We do (a), (b), (c), (d).

a) Let u = cosx, du = —sin x dx. Then the integral becomes
(a) g
1 233
—/(l +u?)?2udu = —% +C.

Resubstituting x, we obtain the final answer

(1+ cos” x)3

C.
3 +

/(1 + cos” x)22 sin x cos x dx =
(b) Letu = «/x, du = 1/[2+/x] dx. Then the integral becomes
/Zcosudu = 2sinu+ C.

Resubstituting x, we obtain the final answer

fcoj/gxdx=251nﬁ+C.

(¢) Letu =1Inx, du = [1/x] dx. Then the integral becomes

1 1
/sinucosudu: z/sinZudu:—ZCOSZM—l—C.
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Resubstituting x, we obtain the final answer

/‘ sin(ln x) cos(ln x) dx = _l cos(2lnx)+ C

(d) Letu = sinx, du = cos x dx. Then the integral becomes
/ etdu=e"+C.
Resubstituting x, we obtain the final answer
/esm" cosxdx = e + C.

4. We do (a), (b), (¢), (d).

(a) Let u = sinx, du = cosx dx. Then the integral becomes
3
u
/ wdu=— +C.
3
Resubsituting x, we obtain the final answer

.3
Sin X

3

/cosxsinzxdx= +C.

(b) Write
/ cos® xsin” x dx = / cosx(1 — sin” x) sin” x dx .

Let u = sin x, du = cos x dx. Then the integral becomes

3 5

1l —)ldu="2 % 4 C.
/( u”)u” du 3 S-i-

Resubstituting x, we obtain the final answer

.. 3 .5
sSin X Sin X

C.
3 5 1

3.2
cos” xsin” xdx =
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(c) Let u = tanx, du = sec” x dx. Then the integral becomes
3
u
/ wdu=—+C.
3
Resubstituting x, we obtain the final answer

3
tan™ x

3 +C.

/ tan” x sec” x dx =
(d) Let u = secx, du = secx tan x. Then the integral becomes
3
u
/ wdu=—+C.
3
Resubstituting x, we obtain the final answer

3
sec X

3 +C.

3
/tanxsec xdx =

5. We do (a), (b), (c), (d).
(a) Use integration by parts twice:

1 1
X X
/ e*cosxdx = cosx-e
0

1
—/ e*(—sinx) dx
0

0
1

1
—/ e cosxdx
o Jo

1
=e-cosl+e-sinl—l—/ e*cosxdx.
0

=[e-cosl —1]+ |:sinxex

We may now solve for the desired integral:

1
1
/ e"cosxdx:Z[e-cosl+e~sinl—l].
0
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(b) Integrate by parts with u = Inx, dv = x dx. Thus

e 2 e e A2
/ xlnxdx:lnx‘x— —f x—ldx
1 1 1 2 X

2

o2 12 A2
—1.5_0.—— _~
2 0 2 4

e e 12

T2 474

(c) We write
2x — 1 1 1 1

Thus

4 _ 4 4 4
(@x—1)dx =/ ! dx—/ ialx—/ ldx
5 X3 —x? > x—1 5 x? 5 X

=[In3-In1]+ [% — %i| —[In4 —In2].

(d) We write

T
.2 2 .2
/ sin” x cos” x dx = sin” 2x dx
0

S

1 — cos4x
2

sin4x 7"

4 0

N— N =

S

dx

| —

—
X
|

[(= —0) - (0-0)]

oy 0ol —

Chapter 8

1. At position x in the base circle, the y-coordinate is /1 — x2. Therefore
the disc slice has radius /1 — x2 and area 7(1 — x?). The volume of the

387
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solid is then

2. We calculate the volume of half the solid and then double the answer.
For 0 < x < 1, at position x in the base square, the y extentis —(1 — x) <
y < 1 — x. Thus the equilateral triangular slice has side 2(1 — x) and area

V3(1 — x)2. Thus the volume of the solid is

V=2/(;1\/g(1 —x)?dx
1-x°7
=285

Bl

3. We do (a), (b), (¢), (d).
4
(a) / m[x3]? dx
2

2
) [ =Py
@) /Ozn[xl/z +1)%dx
2
) /_1;1[8 (4 3)Pdx

4. We do4(a), (b), (c), (d).
@) / 27 -2\ 1 4 [(1/3)x2AT dx
0
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(b) /13 2 - x13 \/1 +[(=1/5)x"6/5]2 dy

© /ﬁZn = (=2)] -1 + [3x2]2 dx
071'/2

(d) [ 27 - cosx -4/ 1+ [—sinx]?dx
0

5. The depth of points in the window ranges from 7 to 13 feet. At depth h
in this range, the window has chord of length 2,/9 — (h — 10)2. Thus the

total pressure on the lower half of the window is

13
P=|[ 624-h-2,/9—(h—10)dh.

7

6. At depth h, the corresponding subtriangle has side-length 2(4 — h/,/3).

Therefore the total pressure on one end of the pool is

4/3 f
P:/ 62.4-h-2(4 — hy\[3)dh.
; (4—"h/y3)

7. Lett = 0 be the moment when the climb begins. The weight of the sack at
time t is then 80 — ¢ pounds. Then the work performed during the climb
is

5
W:/ (80 —1)-4dt.
0

Thus

5
W= [3201: — 2t2]0 — 1550 ft. Ibs.

8. The work performed is

100
W= / [2x? + 3x + 4] dx
2

2, 3, 100
== — 4
[Bx —i—zx + x]z

2000 300 16 12
:< 3_+T+40>—<?+?+8>ft.lbs.
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9. (a) /On/z,/l + [—sinx]?dx

) f14 J1+12/3) 3P dx
(©) /Oﬂ/z 1+ [cosy]?dy
(d /13,/1 + [2x]%dx

1+
10. (a) gv/l sin” x dx

/3

1
(b) 73 ), tan x dx

1 (> 2x
(@) Z/z —— dx
1 T sin x
(d) 37/2 /ﬂ/z 2+ cosx x
4 B}
11. () Y e/ -1
=1

8
_+‘ ]
(b) ;cos[e 2 ]/2)-5

5
. . 2
© ,221: sin(—2 +2j/5)* - E
10 24i/10 4
(d) ]2::' 2+ cos(47/10) 10
12. We do (a) and (b).

1
(@ 5 {e_OZ +2 e 2. e 420 e_4z}

(b) % {cos(e_z) +2.cos(e™¥?)+ ... +2-cos(e®?) + Cos(ez)}



Final Exam

1. (o)
2. (a)
3. (e)
4. (b)
5.(d)
6. (a)
7. (d)
8. (b)
9. (e)
10. ()
11. (b)
12. (a)
13. (e)
14. (a)
15. (¢)
16. (d)
17. (d)
18. (e)
19. (a)
20. (b)
21. (e)
22.(b)
23. (¢)
24. (e)
25. (a)

26. (e)
27.(b)
28. (a)
29. (o)
30. (e)
31. (d)
32. (d)
33. (b)
34. (a)
35. ()
36. (c)
37. (a)
38. (d)
39. (e)
40. (2)
41. (o)
42. (d)
43. (a)
44. (b)
45. (e)
46. ()
47.(d)
48. (¢)
49. (b)
50. (e)
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51. (a)
52. (¢)
53. (¢)
54. (e)
55. (a)
56. (b)
57. (a)
58. (b)
59. (¢)
60. (d)
61. (b)
62. (b)
63. (a)
64. (¢)
65. (e)
66. (a)
67. (b)
68. (d)
69. (e)
70. (¢)
71. (d)
72. (a)
73. ()
74. (a)
75. (b)

76. (e)
77. (2)
78. (b)
79. (d)
80. (e)
81. (d)
82. (¢)
83. (e)
84. (a)
85. (b)
86. (d)
87. (2)
88. (d)
89. (b)
90. (a)
91. (o)
92. (d)
93. (e)
94. (o)
95. (b)
96. (b)
97. (d)
98. (a)
99. (¢)
100. (d)
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Index

A

acceleration as a second derivative, 91

adjacent side of a triangle, 30

angle, sketching, 24

angles, in degree measure, 24

angles, in radian measure 24, 25, 26

antiderivative, concept of, 120

antiderivatives as organized guessing, 113

antiderivatives, 113

arc length, 292

arc length, calculation of, 294

area and volume, analysis of with improper
integrals, 168, 173

area function, 133

area of a rectangle, 124

area, calculation of, 124

area, examples of, 129

area, signed, 134

average value of a function, 289

average value, comparison with minimum
and maximum, 290

average velocity, 78

bacterial growth, 213

C

cartesian coordinates, 2

closed interval, 4

composed function, 46
composition not commutative, 47
composition of functions, 46

compositions, recognizing, 47, 48
compound interest, 218

concave down, 98

concave up, 98

cone, surface area of, 299
constant of integration, 121
continuity, 74

continuity measuring expected value, 74
coordinates in one dimension, 4
coordinates in two dimensions, 6
cosecant function, 31

cosine function, 232

cosine function, principal, 222
cosine of an angle, 27

cotangent function, 31

critical point, 104

cubic, 20

cylindrical shells, method of, 279

D

decreasing function, 98
derivative, 76
derivative of a logarithm, 85
derivative of a power, 84
derivative of a trigonometric function, 84
derivative of an exponential, 109
derivative, application of, 91
derivative, chain rule for, 84
derivative, importance of, 77
derivative, product rule for, 83
derivative, quotient rule for, 84
derivative, sum rule for, 83
derivatives, rules for calculating, 83
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differentiable, 76

differential equation for exponential decay,
211

differential equation for exponential growth,
211

domain of a function, 36

element of a set, 35

endowment, growth of, 220

Euler, Leonhard, 194

Euler’s constant, value of 194

Euler’s number e, 194

exponential decay, 215

exponential function, 188, 189

exponential function, as inverse of the
logarithm, 189

exponential function, calculus properties of,
191

exponential function, graph of, 190

exponential function, properties of, 188

exponential function, uniqueness of, 191

exponential functions, graph of, 211

exponential growth, 213

exponentials with arbitrary bases, 195

exponentials, calculus with, 191

exponentials, properties of, 189

exponentials, rules for, 189

F

falling bodies, 92, 95

falling body, examples of, 95

Fermat’s test, 104

function, 35

function specified by more than one formula,
38

functions with domain and range understood,
36

functions, examples of, 35, 36

Fundamental Theorem of Calculus,
justification for, 133

G

Gauss, Carl Friedrich, 128

graph functions, using calculus to, 98

graph of a function, 39

graph of a function, plotting, 41

graph of a function, point on, 39

graphs of trigonometric functions, 32
growth and decay, alternative model for, 217

half-open interval, 4

Hooke’s Law, 286

hydrostatic pressure, 300

hydrostatic pressure, calculation of, 302

improper integrals, 160

improper integrals, applications of, 173

improper integral, convergence of, 161

improper integral, divergence of, 163

improper integrals, doubly infinite, 172

improper integral, incorrect analysis of, 165

improper integrals over unbounded intervals,
170

improper integral with infinite integrand, 160

improper integrals with infinite integrand, 160

improper integral with interior singularity, 164

increasing function, 98

indefinite integral, 120, 121

indefinite integral, calculation of, 122

indeterminate forms, 148

indeterminate forms involving algebraic
manipulation, 154

indeterminate forms, using algebraic
manipulations to evaluate, 154

indeterminate forms, using common
denominator to evaluate, 156

indeterminate forms, using logarithm to
evaluate, 155

initial height, 114

initial velocity, 114

inside the parentheses, working, 46

instantaneous velocity as derivative, 78

instantaneous velocity, 78

integral sign, 121, 127

integrals involving inverse trigonometric
functions, 229

integrals involving tangent, secant, etc., 259

integrals, numerical methods for, 306

integrand, 123

integration by parts, 240

integration by parts, choice of u and v, 241

integration by parts, definite integrals, 242

integration by parts, limits of integration, 244

interest, continuous compounding of, 219

intersection of sets, 35

inverse cosecant, 233

inverse cosine function, derivative of 225

inverse cosine, graph of, 224

inverse cotangent, 231, 232



inverse, derivative of, 90

inverse secant, 233

inverse sine function, derivative of, 225

inverse sine, graph of, 223

inverse tangent function, 227

inverse tangent function, derivative
of 228

inverse trigonometric functions, application
of. 235

inverse trigonometric functions, graphs of,
223, 224, 228, 232, 233, 234

inverse trigonometric functions, key

facts, 235

L

Leibniz, Gottfried, 130

I'Hépital’s Rule, 148, 149, 152, 153, 154

limit as anticipated value rather than actual
value, 69

limit, €-8 definition of, 66

limit, informal definition of, 66

limit, non-existence of, 70

limit, rigorous definition of, 66

limit, uniqueness of, 71

limits, 66

limits of integration, 128

limits, one-sided, 70

limits, properties of, 71

line, equation of, 15

line, key idea for finding the equation
of, 15

line, point-slope form for, 16

line, two-point form for, 17

loci in the plane, 18

locus of points, 45

locus, plotting of, 8

logarithm, formal definition of, 181

logarithm function as inverse to exponential,
189

logarithm function, derivative of, 183

logarithm functions, graph of, 185, 186

logarithm, graph of, 185

logarithm, natural 181

logarithm of the absolute value, 185

logarithm, properties of, 182

logarithm, reciprocal law for, 183

logarithm to a base, 199

logarithmic derivative, 85, 109

logarithmic differentiation, 208

logarithms, calculus with, 203

logarithms, properties of, 182

logarithms with arbitrary bases, 199

Index

M

Maple, 311

Mathematica, 311

maxima and minima, applied, 103
maximum, derivative vanishing at, 104
maximum/minimum problems, 103
minimum, derivative vanishing at, 104
money, depreciation of, 174

natural logarithm as log to the base e, 200
Newton, Isaac, 130

non-repeating decimal expansion, 3
numerical approximation, 306

0

open interval, 4
opposite side of a triangle, 30

P

parabola, 20

parallel lines have equal slopes, 15

partial fractions, products of linear factors, 247

partial fractions, quadratic factors, 251

partial fractions, repeated linear factors, 249

period of a trigonometric function, 29

perpendicular lines have negative reciprocal
slopes, 14

pinching theorem, 72

points in the plane, plotting, 6

points in the reals, plotting, 4

power, derivatives of, 205

principal angle, associated, 30

Q

quotient, writing a product as, 154

radioactive decay, 215

range of a function, 36

rate of change and slope of tangent line, 78

rational numbers, 2

real numbers, 2

reciprocals of linear functions, integrals of, 245

reciprocals of quadratic expressions, integrals
of, 245, 246

rectangles, method of, 308

related rates, 109
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repeating decimal expansion, 3
Riemann sum, 129
rise over run, 10

S

secant function, 31

set builder notation, 4

sets, 35

Simpson’s rule, 312, 314

Simpson’s rule, error in, 313

sine and cosine, fundamental properties
of, 27

Sine function, 222

sine function, principal, 222

sine of an angle, 27

sines and cosines, odd powers of, 257

slope of a line, 10

slope, undefined for vertical line, 14

springs, 286, 287, 288,

substitution, method of, 252

surface area, 296

surface area, calculation of 298

T

tangent function, 31, 227
tangent line, calculation of, 78
tangent line, slope of, 78
terminal point for an angle, 27
trapezoid rule, 308, 309

trapezoid rule, error in, 309

trigonometric expressions, integrals of, 256

trigonometric functions, additional, 41

trigonometric functions, fundamental
identities, 33

trigonometric functions, inverse, 221

trigonometric functions, table of values, 34

trigonometric identities, useful, 256

trigonometry, 20

trigonometry, classical formulation of, 30

U

u-substitution, 252
union of sets, 35
unit circle, 23

v

vertical line test for a function, 41
volume by slicing, 266

volume of solids of revolution, 273, 274
volume, calculation of, 266

w

washers, method of, 274
water, pumping, 287

water, weight of, 288

work, 284

work, calculation of 284, 285
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