Upstart Intro, Cookbook and Best Practises

(@ upstart

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Contents

1 Meta 15
1.1 Document Version 15
1.2 Authors 15
1.3 Acknowledgements 15
1.4 Purpose 15
1.5 Suggestions and Errata 16
1.6 Coverage 16

1.6.1 Upstream Upstart 16
1.6.2 Debian and Ubuntu Version of Upstart 16
1.6.3 Availability 17
1.6.4 Releases 17
1.6.5 Debian-specific and Ubuntu-Specific Content (@,) 18
1.7 Audience 18
1.8 Document Preparation 18
1.9 Document Availability 18
1.10 Warning 18

2 Typographical Conventions 19
2.1 Commands and configuration stanzas 19
2.2 User Input and Command Output 19

2.2.1 Non-Privileged User 19
2.2.2 Super-User 19
2.3 Configuration Examples 19

3 Introduction 19

3.1 What is Upstart? 19
3.1.1 Reliability 20
3.1.2 Design History 20

3.1.2.1 Critique of the System V init System 20
3.1.2.1.1 SysV Benefits 20
3.1.2.1.1.1 Simplicity 20
3.1.2.1.1.2 Guaranteed Ordering of Services 20
3.1.2.1.2 SysV Limitations 20
3.1.2.1.2.1 Non-Optimal Performance 20
3.1.2.1.2.2 Server-Centric 21
3.1.2.1.2.3 Assumes Static Hardware at all Times 21
3.1.2.1.2.4 Every Service Does Heavy Lifting 21

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

3.1.2.2 Critique of Dependency-Based init Systems 21

3.1.2.2.1 Benefits of Dependency-based init 21

3.1.2.2.1.1 Recognises Services Require Other Services 21

3.1.2.2.2 Limitations of Dependency-based init 21

3.1.2.2.2.1 Does Not Recognise Dynamic Nature of Linux 21

3.1.2.3 Upstart's Design: Why It Is Revolutionary 22

3.1.3 Performance 23
3.1.4 Server 23
3.1.4.1 Boot Performance 23

3.1.4.2 Failure Modes 23

4 Concepts and Terminology 23
4.1 Job 23
4.1.1 Job Types 23
4.1.1.1 Task Job 23

4.1.1.2 Service Job 24

4.1.1.3 Abstract Job 24

4.1.2 Job States 24
4.1.2.1 Viewing State Transitions 26

4.1.3 Job Environment 26

4.2 Job Configuration File 27
4.2.1 System Job 27
4.2.2 User Job 27
4.2.2.1 Enabling 28

4.2.3 Session Job 28
4.2.4 0Odd Jobs 29
4.2.4.1 Jobwithstart on,butnostop on 29

4.2.4.2 Job with stop on,butnostart on 29

4.2.4.3 Jobwithnostop on orstart on 29

4.2.4.4 Minimal Job Configuration 29

4.3 Session Init 30
4.3.1 Non-graphical Sessions (,) 30
4.3.1.1 Joining a Session 32

4.4 Event 32
4.4.1 Event Types 33
4.4.1.1 Signals 33

4.4.1.2 Methods 34

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.4.1.3 Hooks 34

4.4.2 Events, not States 34
4.5 Job Lifecycle 34
4.5.1 Starting a Job 34
4.5.2 Stopping a Job 35

4.6 Ordering 36
4.6.1 Order in which Events are Emitted 36
4.6.2 Order in Which Jobs Which start on the Same Event are Run 37
4.6.3 Ordering of Stop/Start Operations 37
4.6.3.1 Single Job 37
4.6.3.1.1 If Job is Not Currently Running 38

4.6.3.1.2 If Job is Currently Running 38

4.6.3.2 Multiple Jobs 39

4.7 Runlevels 40
4.7.1 Display Runlevel 40
4.7.2 Change Runlevel Immediately 40
4.7.3 Changing the Default Runlevel 40
4.7.3.1 Permanently 40

4.7.3.2 Single Boot 41

5 System Phases 41
5.1 Startup 41
5.1.1 Startup Process 41

5.2 Shutdown 42
5.2.1 Observations 42
5.2.2 Shutdown Process 42

5.3 Reboot 43
5.4 Single-User Mode 43
5.5 Recovery Mode () 43
5.6 Failsafe Mode () 43
6 Configuration 44
6.1 Stanzas by Category 44
6.2 appar nor 45
6.2.1 apparnor | oad 45
6.2.2 apparnor switch 46

6.3 aut hor 46
6.4 cgroup 46

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.5 console 48

6.5.1 consol e | og 48
6.5.2 consol e none 48
6.5.3 consol e out put 48
6.5.3.1 Example of consol e out put 49

6.5.4 consol e owner 49

6.6 chdir 49
6.7 chroot 49
6.8 description 50
6.9 enits 50
6.10 end script 50
6.11 env 51
6.12 exec 51
6.13 expect 51
6.13.1 expect fork 52
6.13.2 expect daenon 52
6.13.3 expect stop 52
6.13.4 How to Establish Fork Count 52
6.13.5 Implications of Misspecifying expect 53
6.13.6 Recovery on Misspecification of expect 53
6.13.6.1 Whenstart hangs 53
6.13.6.2 When Wrong PID is Tracked 54

6.14 export 54
6.15 instance 54
6.15.1 A Simple Instance Example 54
6.15.2 Another Instance Example 56
6.15.3 Starting an Instance Job Without Specifying an Instance Value 59
6.16 kill signal 59
6.17 kill timeout 60
6.18 limt 60
6.19 manual 60
6.20 nice 60
6.21 nornal exit 60
6.22 oom score 61
6.23 post-start 61
6.24 post-stop 62

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.25 pre-start 63

6.25.1 pre-start example (@,) 63

6.26 pre-stop 64
6.27 rel oad signal 64
6.28 respawn 64
6.29 respawn limt 65
6.30 script 66
6.31 setgid 66
6.32 setuid 66
6.33 start on 67
6.33.1 Normal start 68

6.33.2 Start depends on another service 68

6.33.3 Start must precede another service 68

6.34 stop on 69
6.34.1 Normal shutdown 69

6.34.2 Stop before depended-upon service 69

6.34.3 Stop after dependent service 69

6.35 task 69
6.36 umask 71
6.37 usage 71
6.38 version 71

7 Command-Line Options 71
8 Explanations 73
8.1 Really understanding start on and stop on 73
8.1.1 Therc Job 74

8.2 Environment Variables 75
8.2.1 Restrictions 77

8.2.2 Standard Environment Variables 77

8.3 Job with Multiple Duplicate Stanzas 79
8.4 Job Specifying Same Conditioninstart on onstop on 80

9 Features 80
9.1 D-Bus Service Activation 80
10 Tools 80
10.1 Utilities 80
10.1.1 rel oad 80

10.1.2 restart 80

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.1.3 runl evel 80

10.1.4 start 80
10.1.4.1 Attempting to Start an Already Running Job 81
10.1.4.2 Attempting to Start a Job that requires an Instance Variable 81

10.1.5 stop 81
10.1.5.1 Attempting to Stop an Already Stopped Job 81
10.1.5.2 Attempting to Stop a Job that requires an Instance Variable 81

10.1.6 initctl 82
10.1.6.1 initctl Commands Summary 82
10.1.6.2 initctl check-config 83
10.1.6.3 initctl emt 83
10.1.6.4 initctl get-env 84
10.1.6.5 initctl help 84
10.1.6.6 initctl Iist 84
10.1.6.7 initctl list-env 84
10.1.6.8 initctl |ist-sessions 84
10.1.6.9 initctl log-priority 85
10.1.6.10 initctl notify-cgroup-nmanager-address 85
10.1.6.11 initctl notify-disk-witeable 85
10.1.6.12 initctl rel oad 86
10.1.6.13 initctl reload-configuration 86
10.1.6.14 initctl reset-env 86
10.1.6.15 initctl restart 86
10.1.6.16 initctl set-env 86
10.1.6.17 initctl showconfig 86
10.1.6.18 initctl start 87
10.1.6.19 initctl status 88

10.1.6.19.1 Single Job Instance Running without PID 88
10.1.6.19.2 Single Job Instance Running Job with PID 89
10.1.6.19.3 Single Job Instance Running with Multiple PIDs 89
10.1.6.19.4 Multiple Running Job Instances Without PID 90
10.1.6.19.5 Multiple Running Job Instances With PIDs 91
10.1.6.19.6 Multiple Running Job Instances With Multiple PIDs 91
10.1.6.19.7 Stopped Job 92
10.1.6.20 initctl stop 93
10.1.6.21 initctl unset-env 93

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.1.6.22 initctl usage 93

10.1.6.23 initctl version 93

10.1.7 init-checkconf 93
10.1.8 upstart-nonitor 93
10.1.9 nountall (@) 94
10.1.9.1 Mountall events 94
10.1.9.1.1 nounti ng 94

10.1.9.1.2 nount ed 94

10.1.9.1.3 al | - swaps 94

10.1.9.1.4 fil esystem 95

10.1.9.1.5 virtual -fil esystens 95

10.1.9.1.6 local -fil esystens 95

10.1.9.1.7 renote-fil esystens 95

10.1.9.2 Mountall Event Summary 95
10.1.9.3 nountal | Examples 96

10.2 Bridges 101
10.2.1 plynmout h-upstart-bridge () 101
10.2.2 upstart-socket-bridge 101
10.2.3 upstart-udev-bridge 101
10.2.3.1 Careful Use of udev Events 105

10.2.4 upstart-event-bridge 105
10.2.5 upstart-file-bridge 106
10.2.5.1 Examples 106

10.2.6 upstart-dbus-bridge 106
10.2.6.1 Example 107

10.2.7 upstart-dconf-bridge 107
10.2.8 upstart-1local -bridge 107

11 Cookbook and Best Practises 107
11.1 List All Jobs 107
11.2 List All Jobs With No st op on Condition 107
11.3 List All Events That Jobs Are Interested In On Your System 107
11.4 Create an Event 107
11.5 Create an Event Alias 108
11.5.1 Change the Type of an Event 108
11.6 Synchronisation 109
11.7 Determine if Job was Started by an Event or by "start " 111

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.8 Stop a Job from Running if A pre-start Condition Fails 111

11.9 Run a Job Only When an Event Variable Matches Some Value 111
11.10 Run a Job when an Event Variable Does Not Match Some Value 112
11.11 Run a Job as Soon as Possible After Boot 112
11.12 Run a Job When a User Logs in Graphically (;) 112
11.13 Run a Job When a User Logs in 113
11.13.1 Environment 113
11.14 Run a Job For All of a Number of Conditions 113
11.15 Run a Job Before Another Job 114
11.16 Run a Job After Another Job 114
11.17 Run a Job Once After Some Other Job Ends 114
11.18 Run a Job Before Another Job and Stop it After that Job Stops 115
11.19 Run a Job Only If Another Job Succeeds 115
11.20 Run a Job Only If Another Job Fails 115
11.21 Run a Job Only If One Job Succeeds and Another Fails 115
11.22 Run a Job If Another Job Exits with a particular Exit Code 116
11.23 Detect if Any Job Fails 116
11.24 Use Details of a Failed Job from Another Job 117
11.25 Stop a Job when Another Job Starts 117
11.25.1 Simple Mutual Exclusion 118
11.26 Run a Job Periodically 118
11.27 Restart a job on a Particular Event 119
11.28 Migration from System V initialization scripts 119
11.29 How to Establish a Jobs start on and st op on Conditions 120
11.29.1 Determining the start on Condition (@,) 120
11.29.1.1 Standard Idioms 120
11.29.1.2 More Exotic start on Conditions 121
11.29.1.2.1 udev conditions 122
11.29.2 Determining the st op on Condition (;) 123
11.29.3 Final Words of Advice 124
11.30 Guarantee that a job will only run once 124
11.30.1 Method 1 124
11.30.2 Method 2 124
11.31 Stop a Job That is About to Start 125
11.32 Stop a Job That is About to Start From Within That Job 125
11.33 Stop a Job from Running if its Configuration file has not been 125
Created/Modified

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.34 Stop a Job When Some Other Job is about to Start 125

11.35 Start a Job when a Particular Filesystem is About to be Mounted 126
11.36 Start a Job when a Device is Hot-Plugged 126
11.36.1 To start a job when eth0 is added to the system 126
11.36.2 To start a job when eth0 is available 127
11.37 Stopping a Job if it Runs for Too Long 127
11.38 Run a Job When a File or Directory is Created/Deleted 127
11.39 Run a Job Each Time a Condition is True 128
11.40 Run a Job When a Particular Runlevel is Entered and Left 129
11.41 Pass State Between Job Processes 129
11.42 Pass State From Job Configuration File to a Script Section 130
11.43 Run a Job as a Different User 130
11.43.1 Running a User Job 130
11.43.2 Changing User 131
11.44 Disabling a Job from Automatically Starting 132
11.44.1 Override Files 132
11.44.1.1 Change a Jobs Start/Stop Conditions 132
11.44.1.2 Adding Stanzas that are Not Present in the .conf File 132
11.44.1.3 Separating Variables from the Job 133
11.44.1.4 Ensuring Customized Packages Upgrade Smoothly 133
11.44.1.5 Caveat Emptor 133

11.45 Jobs that "Run Forever" 133
11.46 Run a Java Application 134
11.46.1 Alternative Method 134
11.47 Ensure a Directory Exists Before Starting a Job 134
11.48 Run a GUI Application 135
11.49 Run an Application through GNU Screen 135
11.50 Run Upstart in a chroot Environment 135
11.50.1 chroot Workaround for Older Versions of Upstart (@,) 135
11.50.2 chroots in Ubuntu Natty () 135
11.51 Record all Jobs and Events which Emit an Event 136
11.52 Integrating your New Application with Upstart 136
11.53 Block Another Job Until Yours has Started 137
11.54 Controlling Upstart using D-Bus 137
11.54.1 Query Version of Upstart 138
11.54.2 Query Log Priority 138

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.54.3 Set Log Priority 138

11.54.4 List all Jobs via D-Bus 138
11.54.5 Get Status of Job via D-Bus 138
11.54.6 Emit an Event 138
11.54.7 Get Jobs start on and stop on Conditions via D-Bus 138
11.54.8 To Start a Job via D-Bus 140
11.54.9 To Stop a Job via D-Bus 140
11.54.10 To Restart a Job via D-Bus 140
11.55 Establish Blocking Job 140
11.56 Determine if a Job is Disabled 141
11.57 Visualising Jobs and Events 141
11.58 Sourcing Files 141
11.58.1 Develop Scripts Using / bi n/ sh 141
11.58.2 ur eadahead 142
11.59 Determining How to Stop a Job with Multiple Running Instances 142
11.60 Logging Boot and Shutdown Times 143
11.61 Running an Alternative Job on a tty 144
11.62 Delay Respawn of a Job 145
11.63 Allow a job to detect if it was stopped manually 145
11.64 Detect if a job stopped before reaching its respawn limit 145
11.65 Detecting a job respawning 146
11.66 Detecting a job hitting its respawn limit 146
11.67 Identifying jobs that may need a respawn stanza 146
11.68 Creating a SystemV Service that Communicates with Upstart 147
11.69 Running a job in a cgroup 148
11.70 Making a job respawn indefinitely 149
12 Test Your Knowledge 149
12.1 Questions about start on 149
12.2 General Questions 150
13 Common Problems 150
13.1 Cannot Start a Job 150
13.2 Cannot stop a job 151
13.3 Strange Error When Running st art /st op/restart orinitctl emt 151
13.4 Theinitctl command shows "the wrong PID" 151
13.5 Symbolic Links don'twork in/etc/init 151
13.6 Sometimes st at us shows PID, but other times does not 151

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

14 Upstart in Debian and Ubuntu (@,) 152

14.1 Packaging 152
14.2 System V Compatibility Link (@, &) 152
14.3 Fun with Job Files (@, &) 152
14.3.1 ldentify Missing System Jobs (@,) 152
14.3.2 |dentify Modified System Jobs (@,) 153
14.3.3 ldentify Non-Packaged System Jobs (@, 4) 153
14.3.4 Re-install all Packages with Missing or Modified System Job Files (@, 4 153

)
15 Testing 154
16 Daemon Behaviour 154
17 Precepts for Creating a Job Configuration File 155
17.1 Determining the value of expect 155
17.2 start on andstop on condition 155
17.3 Services 156
17.4 Ubuntu Rules () 156
17.4.1 Console attributes 156
18 Debugging 156
18.1 Obtaining a List of Events 156
18.1.1 Add--verbose or--debug tothe kernel command-line 156
18.1.2 Change the log-priority 157
18.2 See the Environment a Job Runs In 157
18.3 Checking How a Service Might React When Run as a Job 158
18.3.1 Determining why your Service Fails to Start 158
18.4 Obtaining a log of a Script Section 159
18.4.1 Upstart 1.4 (and above) 159
18.4.2 Versions of Upstart older than 1.4 159
18.5 Log Script Section Output to Syslog 159
18.6 Checking a Job Configuration File for Syntax Errors 160
18.7 Check a Script Section for Errors 160
18.7.1 Older versions of Upstart 160
18.8 Debugging a Script Which Appears to be Behaving Oddly 160
19 Recovery 161
19.1 Boot into Recovery Mode 161
19.2 Boot to a shell directly 161
20 Advanced Topics 162
20.1 Changing the Default Shell 162

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

20.2 Running a script Section with Python 162

20.3 Running a script Section with Perl 163
21 Development and Testing 163
21.1 Warnings 163
21.2 Precautions and Practises 164
21.3 Code Style 164
21.4 Development Advice 164
21.5 Setting up an Upstart Development Environment 165
21.6 Setting up an Upstart+NIH Development Environment 165
21.7 Upstart Objects 166
21.8 Unit Tests 166
21.8.1 Building Within a Chroot 166
21.8.2 Statistics 166
21.8.3 Test Coverage 167
21.9 Enable Full Compiler Warnings 167
21.10 Running Upstart as a Non-Privileged User 167
21.11 Useful tools for Debugging with D-Bus 167
21.12 Debugging a Job 168
21.13 Debugging Another Instance of Upstart Running as root with PID 1 168
21.13.1 Method 1 (crazy) 168
21.13.2 Method 2 (saner) 168
21.14 NIH 169
21.14.1 Memory Handling 169
21.14.2 The NIH Parent Pointer 170
21.14.3 ni h_free() 171
21.14.4 NI H_MJUST() 171
21.14.5 Error Handling 172
21.14.5.1 Impact of Ignoring a Raised Error 173

21.14.6 Output 174
21.15 Creating a New Object 176
21.15.1 Template for a new "foo" 176
21.15.2 Basic Test Example for a New "foo" 178
21.16 Addinganewinitctl command 178
21.16.1 Adding a New non-Job Command 178
21.16.2 Adding a New Job Class Command 179
21.16.3 Adding a New Job Command 179

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.16.4 Generating the D-Bus Bindings 179

21.17 TEST_ALLOC FAIL 179
21.17.1 Improved Test Example for a New "foo" (with a bug) 180

21.18 TEST_ALLOC SAFE 180
21.18.1 Final Test Example for a New "foo" 181

21.19 Basic Debugging 181
21.20 Debugging Upstart as a Non-Privileged User 181
21.21 Debugging Upstart as r oot 182
21.22 Debug Tip Using Destructors 182
21.22.1 Lists 182
21.22.1.1 Removing Elements from a List 183

21.22.1.2 Moving an Element Between Lists 184

21.22.2 Hashes 184
21.22.2.1 Using Hashes 185

21.22.2.2 ni h_hash_string new) 186

21.22.3 Trees 186

21.22.4 Avoiding Problems 187

21.23 Debugger Magic 187
21.23.1 Ni hLi st 188

21.23.2 N hHash 188

21.23.3 nih_iterators 188

21.24 Development Utilities 190
21.24.1 upstart_nenu. sh 190
21.24.1.1 Enablingupstart_nenu. sh @, 4 190

21.25 Gotchas 190

22 Known Issues 191
22.1 Restarting Jobs with Complex Conditions 191
22.1.1 Advice 191

22.2 Using expect with scri pt sections 191
22.3 Bugs 192

23 Support 192
24 References 192
24.1 Manual Pages 192
24.2 Web Sites 192
24.3 Mailing List 193

25 Answers to Test 193

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

26 Footnotes
27 Colophon
28 Appendices
28.1 Ubuntu Well-Known Events (;)
29 Footer

1 Meta

1.1 Document Version
This is document edit 218.

See footer for further details.

1.2 Authors

Authors:))
« James Hunt <james.hunt@canonical.com>

¢ Clint Byrum (Canonical, HP)

1.3 Acknowledgements

193
193
193
193
199

The Authors are grateful to the following individuals who have provided valuable input to this document:

* Colin Watson (Canonical)

* Scott James Remnant (Canonical, Google), author of Upstart.
» James Page (Canonical)

« Joel Ebel (Google)

» Mark Russell (Canonical)

* Bradley Ayers

» Kenneth Porter

» Roberto Alsina (Canonical), reStructuredText Guru.

1.4 Purpose

The purpose of this document is multi-faceted. It is intended as:

* A gentle introduction to Upstart.
» A Cookbook of recipes and best-practises for solving common and not so common problems.

» An extended guide to the configuration syntax of Upstart.
It attempts to explain the intricacies of Upstart with worked examples and lots of details.

Note that the reference documentation for Upstart will always be the manual pages: this is merel
supplement to them.

y a

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar

branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

mailto:james.hunt@canonical.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

1.5 Suggestions and Errata

Bad documentation is often worse than no documentation. If you find a problem with this document,
however small...

« spelling error

» grammatical error

« factual error

* inconsistency

* lack of clarity

» ambiguous or misleading content
* missing information

* et cetera

. or if you'd like to see some particular feature covered please raise a bug report on the Upstart
Cookbook project website so that we can improve this work:

* https://bugs.launchpad.net/upstart-cookbook/+filebug
As an incentive you will be credited in the Acknowledgements section.

1.6 Coverage

There are essentially two major versions of Upstart covered by this document:

1.6.1 Upstream Upstart
This is the pure, or "vanilla" version which is designed to work on any Linux system:
* Homepage
http://launchpad.net/upstart
* Bug Reports
http://bugs.launchpad.net/upstart
* Questions
https://answers.launchpad.net/upstart/+addquestion
1.6.2 Debian and Ubuntu Version of Upstart
The Debian and Ubuntu-packaged version 17,

This is a "debianised" version of Upstart (in other words, a version packaged for Debian and derivatives).
It includes a few minor changes specifically for running Upstart on Debian and Ubuntu systems, namely:

» Change to the way the console is initialised, to work with Plymouth.
« Initramfs to root filesystem context hand-off changes.
Links:
* Homepage
http://launchpad.net/ubuntu/+source/upstart
» Bug Reports

http://bugs.launchpad.net/ubuntu/+source/upstart

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

https://launchpad.net/upstart-cookbook
https://bugs.launchpad.net/upstart-cookbook/+filebug
http://launchpad.net/upstart
http://bugs.launchpad.net/upstart
https://answers.launchpad.net/upstart/+addquestion
http://www.debian.org
http://www.ubuntu.com
http://www.debian.org
http://www.debian.org
http://www.ubuntu.com
http://www.freedesktop.org/wiki/Software/Plymouth
http://launchpad.net/ubuntu/+source/upstart
http://bugs.launchpad.net/ubuntu/+source/upstart
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

* Questions

https://answers.launchpad.net/ubuntu/+source/upstart/+addquestion

1.6.3 Availability

Upstart is relied upon by millions of systems across a number of different Operating Systems including:
» Google's Chrome OS
» Google's Chromium OS
« Red Hat's RHEL 6 *°

» Ubuntu
It is also available as an option for other systems such as:

* Debian

* Fedora

1.6.4 Releases

Table of official Upstart releases:

Upstart Releases.

Release Date Version

2009-07-21 0.6.2
2009-08-02 0.6.3
2010-02-04 0.6.5
2010-04-27 0.6.6
2010-12-14 0.6.7
2011-03-01 1.0
2011-03-16 1.1
2011-03-22 1.2
2011-06-14 1.3
2011-12-13 1.4
2012-03-22 1.5
2012-11-15 1.6
2012-12-07 1.6.1
2013-03-04 1.7
2013-03-22 1.8
2013-06-28 1.9
2013-07-04 191
2013-08-23 1.10
2013-11-14 1.11
2014-03-07 1.12

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

https://answers.launchpad.net/ubuntu/+source/upstart/+addquestion
http://www.redhat.com/rhel
http://www.ubuntu.com
http://www.debian.org
http://fedoraproject.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

2014-03-11 1121
2014-07-11 1.13

2014-07-16 1131
2014-09-04 1.13.2

1.6.5 Debian-specific and Ubuntu-Specific Content (@, ,)

This document is written with Debian and Ubuntu in mind, but will attempt to identify Debian-specific and
Ubuntu-specific behaviour where appropriate by showing one of these icons (or both if the content applies
to both Debian and Ubuntu):

 Debian-specific icon: @(displays as "D' on section headings).

» Ubuntu-specific icon: ,(displays as "U' on section headings).

1.7 Audience

This document is targeted at:

* Users interested in learning about Upstart.
» System Administrators looking to make the most of the capabilities of Upstart.

» Developers and Packagers who wish to package their application to work with Upstart.

1.8 Document Preparation

This document is written in reStructuredText, a textual markup language. The document was prepared
using the following tools:

* Vim editor.
» Emacs editor with Org-Mode for tables.

» Jave for ASCII graphics.

1.9 Document Availability
The source for this document is available here:

* https://code.launchpad.net/~upstart-documenters/upstart-cookbook/trunk
The latest version of this document should always be available from:

* http://upstart.ubuntu.com/cookbook/

* http://upstart.ubuntu.com/cookbook/upstart_cookbook.pdf

1.10 Warning

This document aims to aid understanding of Upstart and identify some hopefully useful "canned" solutions
and advice to common problems and questions.

The authors have taken as much care as possible in the preparation of this document. However, you are
advised strongly to exercise extreme caution when changing critical system facilities such as the i ni t
daemon. Most situations are recoverable and advice is provided in this document, but if your system
explodes in a ball of fire or becomes unusable as a result of a suggestion from this document, you alone
have the intellectual pleasure of fixing your systems.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.debian.org
http://www.ubuntu.com
http://www.debian.org
http://www.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://www.vim.org
http://www.gnu.org/software/emacs
http://www.orgmode.org/
http://www.jave.de/
https://code.launchpad.net/~upstart-documenters/upstart-cookbook/trunk
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/upstart_cookbook.pdf
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

2 Typographical Conventions

2.1 Commands and configuration stanzas

Throughout this document a fixed-width font such as thi s will be used to denote commands, brief
command output and configuration stanzas.

2.2 User Input and Command Output

An indented block will be used to denote user input and command output.

2.2.1 Non-Privileged User

Indented lines starting with a dollar character ('$") are used to denote the shell prompt (followed by
optional commands) for a non-privileged user. Command output is shown by indented lines not preceded
by the dollar character:

$ echo hello
hel | o

2.2.2 Super-User

Indented lines starting with a hash (or "pound") character (‘#') are used to denote the shell prompt
(followed by optional commandsz for the root user. Command output is shown by indented lines not
preceded by the hash character 14,

whoam
r oot

Note that some examples make use of sudo(8) to show the command should be run as root: the example
above could thus be written:

$ sudo whoani
r oot

This latter approach is clearer in the context where a comment is also specified using the hash character.

2.3 Configuration Examples

An indented block is also used to show examples of job configuration:

scri pt
a config file
end scri pt

3 Introduction

3.1 What is Upstart?

Quoting from http://upstart.ubuntu.com/,

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://upstart.ubuntu.com/
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Upstart is an event-based replacement for the / sbi n/i nit daemon which handles starting of tasks
and services during boot, stopping them during shutdown and supervising them while the system is
running.

The "i ni t " or "system initialisation” process on Unix and Linux systems has process ID (PID) "1". That is
to say, it is the first process to start when the system boots (ignoring the initrd/initramfs). As the quote
shows, Upstart is an "i ni t" replacement for the traditional Unix "System V" "i ni t" system. Upstart
provides the same facilities as the traditional "i ni t " system, but surpasses it in many ways.

3.1.1 Reliability

Upstart is written using the NIH Utility Library ("l i bni h"). This is a very small, efficient and safe library of
generic routines. It is designed for applications that run early in the boot sequence ("plumbing"). Reliability
and safety is critically important for ani ni t daemon since:

* it runs as the super-user.
* it is responsible for managing critical system services.

« if init exits for any reason, the kernel panics.

To help ensure reliability and avoid regressions, Upstart and the NIH Utility Library both come with
comprehensive test suites. See Unit Tests for further information.

3.1.2 Design History

Upstart was created due to fundamental limitations in existing systems. Those systems can be
categorized into two types:

» System V init system

» Dependency-based init systems

To understand why Upstart was written and why its revolutionary design was chosen, it is necessary to
consider these two classes of init system.

3.1.2.1 Critique of the System V init System
3.1.2.1.1 SysV Benefits

3.1.2.1.1.1 Simplicity

Creating service files is easy with SystemV init since they are simply shell scripts. To enable/disable a
service in a particular runlevel, you only need to create/remove a symbolic link in a particular directory or
set of directories.

3.1.2.1.1.2 Guaranteed Ordering of Services

This is achieved by init running the scripts pointed to by the symbolic links in sequence. The relative order
in which init invokes these scripts is determined by a numeric element in the name: lower numbered
services run before higher numbered services.

3.1.2.1.2 SysV Limitations

3.1.2.1.2.1 Non-Optimal Performance

The traditional sequential boot system was appropriate for the time it was invented, but by modern
standards it is "slow" in the sense that it makes no use of parallelism.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://launchpad.net/libnih
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

It was designed to be simple and efficient for Administrators to manage. However, this model does not
make full use of modern system resources, particularly once it is recognised that multiple services can
often be run simultaneously.

A common "hack" used by Administrators is to circumvent the serialisation by running their service in the
background, such that some degree of parallelism is possible. The fact that this hack is required and is
common on such systems demonstrates clearly the flaw in that system.

3.1.2.1.2.2 Server-Centric

In the days of colossal Unix systems with hundreds of concurrent users, where reboots were rare, the
traditional SysV approach was perfect. If hardware needed replacing, a system shutdown was scheduled,
the shutdown performed, the new hardware was installed and the system was brought back on-line.

However, the world has now moved on. From an Ubuntu perspective, a significant proportion of users run
the desktop edition on portable devices where they may reboot multiple times a day.
3.1.2.1.2.3 Assumes Static Hardware at all Times

Modern Linux systems can deal with new hardware devices being added and removed dynamically
("hot-plug™). The traditional SysV init system itself is incapable of handling such a dynamically changing
system.

3.1.2.1.2.4 Every Service Does Heavy Lifting

Most service files are fairly formulaic. For example, they might:
« perform initial checks, such as:

 ensuring no other instance of a daemon is running.
« checking the existence of a directory or file.

* removing old cache files.
* ensure dependent daemons are running.

 spawn the main service.

The most difficult and time costly operation these services perform is that of handling dependent
daemons. The LSB specifies helper utilities that these services can make use of, but arguably each
service shouldn't need to be handling this activity themselves: the init system itself should do it on behalf
of the services it manages.

3.1.2.2 Critique of Dependency-Based init Systems
3.1.2.2.1 Benefits of Dependency-based init

3.1.2.2.1.1 Recognises Services Require Other Services

The recognition that services often need to make use of other services is an important improvement over
SystemV init systems. It places a bigger responsibility on the init system itself and reduces the complexity
and work that needs to be performed by individual service files.

3.1.2.2.2 Limitations of Dependency-based init

3.1.2.2.2.1 Does Not Recognise Dynamic Nature of Linux

The main problem with dependency-based init systems is that they approach the problem from the "wrong
direction". Again, this is due to their not recognising the dynamic nature of modern Linux systems.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.linuxbase.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

For example, if a dependency-based init system wished to start say MySQL, it would first start all the
dependent services that MySQL needed. This sounds perfectly reasonable.

However, consider how such a system would approach the problem of dealing with a user who plugs in an
external monitor. Maybe we'd like our system to display some sort of configuration dialogue so the user
can choose how they want to use their new monitor in combination with their existing laptop display. This
can only be "hacked" with a dependency-based init system since you do not know when the new screen
will be plugged. So, your choices are either:

* Do nothing.
Corresponds to an inability to handle this scenario.
» Have a daemon that hangs around polling for new hardware being plugged.

Wasteful and inefficient.

What you really want is a system that detects such asynchronous events and when the conditions are
right for a service to run, the service is started.

This can be summarised as:

« Upstart starts a service when its required conditions are met.

The service (job configuration file) only needs to specify the conditions that allow the service to
run, and the executable to run the service itself.

» Dependency-based init systems meet a service's dependencies before starting them.

Each service generally does this using a brute-force approach of forcing all the dependencies to
start.

Note that the init system itself is not doing the heavy-lifting: that is left up to each service itself (!)

This summary is worth considering carefully as the distinction between the two types of system is subtle
but important.

The other problem with dependency-based init systems is that they require a dependency-solver which is
often complex and not always optimal.

3.1.2.3 Upstart's Design: Why It Is Revolutionary

It was necessary to outline the limitations of the SysV and dependency-based init systems to appreciate
why Upstart is special...

Upstart is revolutionary as it recognises and was designed specifically for a dynamic system. It handles
asynchronicity by emitting events. This too is revolutionary.

Upstart emits "events" which services can register an interest in. When an event -- or combination of
events -- is emitted that satisfies some service's requirements, Upstart will automatically start or stop that
service. If multiple jobs have the same "start on" condition, Upstart will start those jobs "in parallel". To be
manifest: Upstart handles starting the "dependent” services itself - this is not handled by the service file
itself as it is with dependency-based systems.

Further, Upstart is being guided by the ultimate arbiter of hardware devices: the kernel.

In essence, Upstart is an event engine: it creates events, handles the consequences of those events
being emitted and starts and stops processes as required. Like the best Unix software, it does this job
very well. It is efficient, fast, flexible and reliable. It makes use of "helper" daemons (such as the
upstart-udev-bridge and the upstart-socket-bridge) to inject new types of events into the system and react
to these events. This design is sensible and clean: the init system itself must not be compromised since if
it fails, the kernel panics. Therefore, any functionality which is not considered "core" functionality is farmed
out to other daemons.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.mysql.com/
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

See % for further details.

3.1.3 Performance

Upstart was designed with performance in mind. It makes heavy use of the NIH Utility Library which is
optimised for efficient early boot environments. Additionally, Upstart's design is lightweight, efficient and
elegant. At its heart it is an event-based messaging system that has the ability to control and monitor
processes. Upstart is designed to manage services running in parallel. It will only start services when the
conditions they have specified are met.

3.1.4 Server

Upstart is used by Ubuntu for the Ubuntu Desktop and for Ubuntu Server (and as a result of this, it is also
used in the Ubuntu Cloud). Why is Upstart also compelling in a server environment?

3.1.4.1 Boot Performance

Some say that boot performance is not important on servers, possibly since the time taken to bring RAID
arrays on-line is significantly longer than the time it takes to boot the operating system. However, nobody
seriously wants their system to take longer than necessary to boot.

Consider also the case for Cloud deployments, which of course run on servers. Here, boot speed is very
important as it affects the time taken to deploy a new server instance. The faster you can deploy new
services to handle an increasing workload the better the experience for your customers.

3.1.4.2 Failure Modes

It's a fact that systems and software are getting more complex. In the old days of Unix, runlevels
encompassed every major mode of operation you might want your system to handle. However,
expectations have changed. Nowadays, we expect systems to react to problems (and maybe even
"self-heal" the simple ones).

The landscape has changed and Upstart is fully able to accommodate such changes since its design is
clean, elegant and abstract. Crucially, Upstart is not tied to the rigid runlevel system. Indeed, Upstart has
no knowledge of runlevels internally, but it supports them trivially with events. And since events are so
abstract, they are highly flexible building blocks for higher-level constructs. Added to which, since
Upstart's events are dynamic, the system can be configured for a myriad of possible system behaviours
and failure modes and have it react accordingly.

4 Concepts and Terminology

The main concepts in Upstart are "events" and "jobs". Understanding the difference between the two is
crucial.

4.1 Job

A "unit of work" - generally either a "Task" or a "Service". Jobs are defined in a Job configuration file.

4.1.1 Job Types

4.1.1.1 Task Job

A Task Job is one which runs a short-running process, that is, a program which might still take a long time
to run, but which has a definite lifetime and end state.

For example, deleting a file could be a Task Job since the command starts, deletes the file in question
(which might take some time if the file is huge) and then the delete command ends.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://launchpad.net/libnih
http://www.ubuntu.com/business/desktop/overview
http://www.ubuntu.com/business/server/overview
http://www.ubuntu.com/business/cloud/overview
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

In this book Task Jobs are often referred to as tasks.

4.1.1.2 Service Job

A Service Job is a long-running (or daemon(3) process). It is the opposite of a Task Job since a Service
Job might never end of its own accord.

Examples of Service Jobs are entities such as databases, webservers or ftp servers.

4.1.1.3 Abstract Job

There is one other type of job which has no script sections or exec stanzas. Such abstract jobs can still
be started and stopped, but will have no corresponding child process (PID). In fact, starting such a job will
result in it "running” perpetually if not stopped by an Administrator. Abstract jobs exist only within Upstart
itself but can be very useful. See for example:

« Jobs that "Run Forever"

* Synchronisation

4.1.2 Job States

The table below shows all possible Job States and the legal transitions between them. States are exposed
to users via the st at us field in the output of the initctl status command.

Job State Transitions.

Current Goal
State start st op
wai ting starting n/a
starting security st oppi ng
security pre-start st oppi ng
pre-start spawned st oppi ng
spawned post-start st oppi ng
post -start runni ng st oppi ng
runni ng st oppi ng pre-stop orstopping 15
pre-stop runni ng st oppi ng
st oppi ng killed killed
killed post - st op post - st op
post - st op starting wai ti ng

For example, if the job is currently in state starti ng, and its goal is start, it will then move to the
pre-start state.

Note that jobs may change state so quickly that you may not be able to observe all the values above in
theinitctl output. However, you will see the transitions if you raise the log-priority to debug or i nf o.
See initctl log-priority for details.

Details of states:
*wai ting :initial state.

estarting :jobis about to start.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man3/daemon.3.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

esecurity :jobis having its AppArmor security policy loaded (see apparmor load).
e pre-start :running pre-start section.

» spawned : about to run script or exec section.

e post-start :running post-start section.

erunni ng : interim state set after post-start section processed denoting job is running (But it may
have no associated PID!)

* pre-stop :running pre-stop section.
» st oppi ng : interim state set after pre-stop section processed.
*killed :jobis aboutto be stopped.

* post - st op : running post-stop section.

State transitions diagram for versions of Upstart up to and including version 1.12.1 (green lines represent
goal =st art, red lines represent goal =st op):

State transitions (up to and including Upstart version 1.12.1).

State transitions diagram for Upstart version 1.13 and newer (green lines represent goal =start, red
lines represent goal =st op):

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

[
-

State transitions (Upstart version 1.13 and upwards).

S

4.1.2.1 Viewing State Transitions

To view state transitions:

1. Change the log-priority to debug
2."tail -f"yoursystem log file

3. start/stop/restart a job or emit an event.

4.1.3 Job Environment

When Upstart runs a job, it provides it with a very restrictive environment which contains just two system
variables:

* TERM

* PATH

Upstart itself will also potentially set some special variables the job can use. See Standard Environment
Variables for further details.

If your system job needs further variables to be set, you can use the env and export stanzas.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Session Jobs are different. They too can use env and export, but they already inherit the environment of
the Session Init that is supervising them. However, further to that, Session Jobs can also influence the
environment of the processes that comprise both a single job and all subsequent jobs. See the "env"
commands in the initctl Commands Summary for details.

4.2 Job Configuration File

A Job is defined in a Job Configuration File (or more simply a conf file) which is a plain text file containing
one or more stanzas. Job configuration files are named:

<nane>. conf

Where "<nane>" should reflect the application being run or the service being provided.

Job configuration files can exist in two types of location, depending on whether they are a System Job or a
User Job.

Note that it is common to refer to a Job configuration file as a "job", although technically a job is a running
instance of a Job configuration file.

4.2.1 System Job

All system jobs by default live in the following directory:
letcl/init/

This directory can be overridden by specifying the - - conf di r =<di r ect or y> option to the init daemon,
however this is a specialist option which users should not need to use.

4.2.2 User Job

Deprecated as of Upstart v1.7: see Session Job.

Upstart 1.3 introduced user jobs, allowing non-privileged users to create jobs by placing job configuration
files in the following directory:

$HOVE/ . i nit/

This feature is not currently enabled in Ubuntu (up to and including 11.10 ("Oneiric Ocelot")).

The syntax for such jobs is identical for "system jobs".

Note

Currently, a user job cannot be created with the same name as a system job: the system job will
take precedence.

Controlling user jobs is the same as for system jobs: use initctl, start, stop, et cetera.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Note

Stanzas which manipulate resources limits (such as limit, ni ce, and oon) may cause a job to fail
to start should the value provided to such a stanza attempt to exceed the maximum value the
users privilege level allows.

Note

User jobs cannot currently take advantage of job logging. If a user job does specify console log, it
is considered to have specified console none. Logging of user jobs is planned for the next release
of Upstart.

4.2.2.1 Enabling

To enable user jobs, the administrator must modify the D-Bus configuration file "Upstart.conf" to allow
non-root users access to all the Upstart D-Bus methods and properties. On an Ubuntu system the file to
modify is:

[et c/ dbus- 1/ system d/ Upst art . conf

The Upstream Upstart 1.3 distribution already includes a "Upstart.conf" file containing the required
changes.

4.2.3 Session Job
As of Upstart v1.7

Session Jobs are analogous to the old User Jobs. Unlike the old User Jobs, Session Jobs are not
managed by Upstart running as PID 1 - they are managed by the users own Session Init.

Unlike when Upstart runs as PID 1, a Session Init can read its Job Configuration files from multiple
directories. The list of directories jobs are read from is as follows (in order):

* $XDG_CONFI G HOVE/ upstart/ (or $HOVE/ . confi g/ upstart/ if $XDG CONFI G HOVE not
set).

* $HOMVE/ . i ni t/ (deprecated - supported for legacy User Jobs).
* $XDG_CONFI G_DI RS

e/ usr/sharel/upstart/sessions/

The name of each job is taken to be the basename when any of the directory names above have been
removed. For example, if a job configuration file exists as
$HOVE/ . confi g/ upstart/ hell o/ worl d. conf, its name will be "hel | o/ wor | d" whereas if a job
configuration file exists as /usr/share/ upstart/sessions/foo/bar.conf, its name wil be
"f oo/ bar".

Upstart resolves any name collisions by simply accepting the first valid job (or override file) that it finds.
For example, if the following two file exist:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$HOVE/ . i ni t/f 0o. conf
$HOVE/ . confi g/ upst art/foo. conf

Only the first, $SHOVE/ . i ni t / f 0o. conf will be used. Whereas if the following files exist:

$HOME/ . i ni t/ f 0o. conf
$HOME/ . confi g/ upstart/foo. conf
$HOVE/ . confi g/ upstart/foo. override

Upstart will first read S$HOWVE/ .init/foo.conf, and then apply any changes in
$HOWE/ . confi g/ upstart/foo.override.

4.2.4 0Odd Jobs

4.2.4.1 Job with start on, butnostop on

A job does not necessarily need a stop on stanza. If it lacks one, any running instances can still be
stopped by an Administrator running either of:

einitctl stop <job>

*stop <job>
However, if such a job is not stopped, it may be stopped either by another job, or some other facility 32,
Worst case, if nothing else stops it, all processes will obviously be killed when the system is powered off.
4.2.4.2 Job with stop on,butnostart on

If a job has no start on stanza, it can only be started manually by an Administrator running either of:

einitctl start <job>

estart <job>
If any job instances are running at system shutdown time, Upstart will stop them.

4.2.4.3 Job withnostop on orstart on

Such a job can only be controlled by an Administrator. See Job with start on, but no stop on and Job with
stop on, but no start on.

4.2.4.4 Minimal Job Configuration

What is the minimum content of a job configuration file? Interestingly enough, to be valid a job
configuration file:

* must not be empty
» must be syntactically correct
» must contain at least one legal stanza
Therefore, some examples of minimal job configuration files are:

» Comments only:

this is an abstract job containing only a comrent

e aut hor stanza only:

aut hor "foo

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

edescri pti on stanza only:

description "this is an abstract job"

As shown, these are all example of Abstract Job configuration files.

4.3 Session Init

As of Upstart v1.7, Upstart has the ability to run as a non-PID 1 process (see upstart-user-sessions-spec
for full details).

But why would you want to run another instance of Upstart? Well, due to its elegant design which
assumes a dynamic system, it is perfectly suited to managing a users session. Traditionally, this job has
been handled by applications such as "gnone- sessi on", but by moving to an Upstart-based design a lot
of benefits come "for free":

» Event-based desktop.
« Start desktop elements as-and-when needed or appropriate.
« All the power of Upstarts process supervision.

» Automatic logging of every job that runs. See console log.

To run a Session Init, simply arrange for the first process that starts a session to be run as
"init --user". Aswhen running as PID 1, the Session Init will emit the "startup" event that jobs can use
to react to. All jobs that are managed by a Session Init have their parent set to the Session Init, not the
system init. This is because a Session Init process is a true "sub-init". Jobs are loaded from potentially
multiple directories. See Session Job for details.

The advent of Session Inits removes all need for User Jobs. These continue to be supported since the
Session Init still reads the job configuration files from the User Job directory, but that directory is
deprecated. See Session Job for further details.

4.3.1 Non-graphical Sessions ()

As of Ubuntu Saucy Salamander (13.10), a Session Init is used to manage the default graphical user
session.

However, what if you want to use a Session Init on a server? This is not fully supported right now, but can
be achieved as follows.

Create two System Job similar to the following...

esession-init-setup.conf:

start on runlevel [2345]
stop on runl evel [!2345]

t ask

XXX: configurabl e
env user =j anes

export user
scri pt

ui d=$(getent passwd "$user"|cut -d: -f3)
gi d=$(getent passwd "$user"|cut -d: -f4)

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Create directory that would normal ly be
created by PAM when a user |ogs in.
export XDG _RUNTI ME_DI R="/run/user/ $ui d"
nkdir -p "$XDG _RUNTI ME_DI R’

chrmod 0700 " $XDG_RUNTI ME_DI R

chown "$ui d: $gi d* " $XDG_RUNTI ME_DI R"

start session_init USER="S$user"
end scri pt

*esession-init.conf:

i nstance $USER
stop on runl evel [016]

scri pt
ui d=$(getent passwd "$USER'| cut -d: -f3)
HOVE=$(get ent passwd "$USER'|cut -d: -f6)

export XDG RUNTI ME DI R="/run/ user/ $ui d"
export HOMVE

exec su -s /bin/sh -c 'exec "$0" "$@' SUSER -- init --user
end scri pt

Notes:
» Two jobs are required since the setuid and setgid stanzas:

« Apply to all job processes. Hence, it is not possible for a single job running as a non-privileged
user to create the directory tree required by $XDG_RUNTI ME_DI R

» Do not currently expand variables.
* It is imperative to set $HOVE and $XDG_RUNTI ME_DI R in the Session Inits environment:

* $HOVE is needed by most user applications.

» $XDG_RUNTI ME_DI R is needed by the Session Init.
The sessi on-init-setup job will start when the system is in a suitable state (disks mounted writeable
and networking up). That job will start the sessi on-i ni t instance job which will start the actual Session
Init (which will read Job Configuration Files from the usual locations for a Session Init).

To start a Session Init manually:

$ start session-init-setup

session-init-setup stop/waiting

$ status session-init USER=j anes

session-init (james) start/running, process 2442
$

Note that it is possible to specify that only certain Job Configuration File directories are read for a Session
Init by specifying the - - conf di r option multiple times. For example:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

init --user --confdir /etc/janmes/ --confdir /etc/bob/

Now, the Session Init will only read Job Configuration Files from / et ¢/ j anes/ and/ et ¢/ bob/ .

Note that this behaviour is Session Init-specific: without - - user, the system Upstart would read Job
Configuration Files from the / et ¢/ bob/ directory only.

4.3.1.1 Joining a Session

If you have multiple sessions running for a user, or have started a Session Init from a System Job as
shown in the example above, it is possible to "join" the appropriate session by simply setting the
SUPSTART _SESSI ON environment variable.

For example:

$ echo $UPSTART_SESSI ON
$ echo $XDG RUNTI ME_DI R

$ export XDG _RUNTI ME DI R=/run/user/$(id -u)

$ initctl |ist-sessions

2983 uni x: abstract =/ com ubunt u/ upst art - sessi on/ 1000/ 2983

$ export UPSTART_SESSI ON=uni x: abst ract =/ conml ubunt u/ upst art - sessi on/ 1000/ 2983
$initctl Iist

dbus start/runni ng, process 3188

upstart-file-bridge start/running, process 3339

gnome- set ti ngs-daenon start/runni ng, process 3206

re-exec stop/waiting

upstart-event-bridge start/runni ng, process 3192

$

The initctl list command above will now list jobs in the users session specified by the
$UPSTART _SESSI ON environment variable.

4.4 Event

A notification is sent by Upstart to all interested parties %either jobs or other events). Events can generally
be thought of as "signals", "methods", or "hooks" 2 , depending on how they are emitted and/or
consumed.

Events are emitted (created and then broadcast) to the entire Upstart system. Note that it is not possible
to stop any other job or event from seeing an event when it is emitted.

If there are no jobs which have registered an interest in an event in either their start on or stop on
conditions, the event has no effect on the system.

Events can be created by an administrator at any time using:
initctl emt <event>

Note that some events are "special”. See the upstart-events(7) manual page for a list.

Note also that an event name with the same name as a job is allowed.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Jobs are often started or stopped as a result of other jobs starting or stopping. Upstart has a special set of
events that it emits to announce these job state transitions. You'll probably notice that these events have
the same names as some of the job states described in Job States, however it's important to appreciate
that these are not describing the same thing. Task states are not events, and events are not task states.
See Events, not States for details.

These events are as follows:

starting

This event is emitted by Upstart when a job has been scheduled to run and is about to start
executing.

started

This event is emitted by Upstart when a job is now running. Note that a job does not have to have an
associated program or script so "running" does not necessarily imply that any additional process is
executing.

st oppi ng
This event is emitted by Upstart when a job is about to be stopped.

st opped
This event is emitted by Upstart when a job has completed (successfully or otherwise).

See Job Lifecycle for further details.

To help reinforce the difference, consider how Upstart itself starts: See the Startup Process.

1. It performs its internal initialization.

2. Upstart itself emits a single event called startup(7). This event triggers the rest of the system to
initialize. Note that there is no "startup” job (and hence no/etc/init/startup. conf file).

3. init(8) runs the mountall job (as defined in/ et c/i ni t/ nount al | . conf) since the startup(7) event
satisfies mountall(8)'s requirement: "start on startup".

4. The mountall(8) job in turn emits a number of events (including local-filesystems(7) and
all-swaps(7)). See upstart-events(7) for further details.

Upstart provides three different types of Events.

4.4.1 Event Types

44.1.1 Signals

A Signal Event is a non-blocking (or asynchronous) event. Emitting an event of this type returns
immediately, allowing the caller to continue. Quoting from 26.

The announcer of a signal cares not whether anybody cared about it, and doesn't wait around to see
whether anything happened. As far as the announcer cares, it's informational only.

Signal Events are created using the - - no-wait optiontotheinitctl enit command like this:
initctl emt --no-wait mysignal

The non-blocking behaviour directly affects the emitter by allowing it to continue processing without having
to wait for any jobs which make use of the event. Jobs which make use of the event (via start on or stop
on) are also affected, as they're unable to stop, delay, or in any other way "hold up” the operation of the
emitter.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/startup.7.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man7/startup.7.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://manpages.ubuntu.com/manpages/man7/local-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/all-swaps.7.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.4.1.2 Methods

A Method Event is a blocking (or synchronous) event which is usually coupled with a task. It acts like a
method or function call in programming languages in that the caller is requesting that some work be done.
The caller waits for the work to be done, and if problems were encountered, it expects to be informed of
this fact.

Emitting a Method Event is simple:
initctl emt nmynethod

This is exactly like a Signal Event, except the event is being emitted synchronously such that the emitter
has to wait until the i ni t ct| command completes. Once the i nitct| command has completed, there
are two possible outcomes for the task that starts on Event nmynet hod:

* The task runs successfully.

* The task failed for some reason.
Assuming we have a job configuration file / et ¢/ i ni t/ myapp. conf like this:

start on nynet hod
t ask
exec /usr/bin/nyapp $ACTI ON

You could start the myapp job and check if the "method" worked as follows:

initctl enmt nynethod ACTI ON=do_sonet hi ng
[$? -ne 0] & & { echo "ERROR nyapp failed"; exit 1; }

4.4.1.3 Hooks
A Hook Event is a blocking (or synchronous) event. Quoting from 27,

"A hook is somewhere between a signal and a method. It's a notification that something changed on
the system, but unlike a signal, the emitter waits for it to complete before carrying on."

Hooks are therefore used to flag to all interested parties that something is about to happen.

The canonical examples of Hooks are the two job events starting(7) and stopping(7), emitted by Upstart to
indicate that a job is about to start and about to stop respectively.

4.4.2 Events, not States

Although Upstart does use states internally (and these are exposed via the list and status commands in
initctl(8)), events are the way that job configuration files specify the desired behaviour of jobs: starting(7),
started(7), stopping(7), stopped(7) are events, not states. These events are emitted "just prior" to the
particular transition occurring. For example, the starting(7) event is emitted just before the job associated
with this event is actually queued for start by Upstart.

4.5 Job Lifecycle
4.5.1 Starting aJob

1. Initially the job is "at rest" with a goal of st op and a state of wai ti ng (shown as st op/ wai ti ng
by the initctl list and initctl status commands).

2. The goal is changed from st op tostart indicating the job is attempting to start.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

3. The state is changed fromwai ti ng tostarti ng.

4. The starting(7) event is emitted denoting the job is "about to start".

(3]

. Any jobs whose start on (or stop on) condition would be satisfied by this job starting are started (or
stopped respectively).

. The starting(7) event completes.
. The state is changed from starting topre-start.

. If the pre-start stanza exists, the pre-start process is spawned.

© 00 N O

. If the pre-start process fails, the goal is changed from start to stop, and the stopping(7) and
stopped(7) events are emitted with appropriate variables set denoting the error.

10. Assuming the pre-start did not fail or did not call "st op", the main process is spawned.
11. The state is changed from pr e-start to spawned.

12. Upstart then ascertains the final PID for the job which may be a descendent of the immediate child
process if expect fork or expect daemon has been specified.

13. The state is changed from spawned to post-start.

14. If the post-start stanza exists, the post-start process is spawned.
15. The state is changed from post - st art torunni ng.

16. The started(7) event is emitted.

For services, when this event completes the main process will now be fully running. If the job refers
to a task, it will now have completed (successfully or othermwise).

17. Any jobs whose start on (or stop on) condition would be satisfied by this job being started are started
(or stopped respectively).

4.5.2 Stopping aJob

1. Assuming the job is fully running, it will have a goal of start and a state of r unni ng (shown as
start/runni ng by the initctl list and initctl status commands).

. The goal is changed from st art to st op indicating the job is attempting to stop.
. The state is changed from r unni ng to pr e- st op.
. If the pre-stop stanza exists, the pre-stop process is spawned.

. The state is changed from pr e- st op to st oppi ng.

o o1~ W N

. The stopping(7) event is emitted.

The st oppi ng event has a number of associated environment variables:

+JOB
The name of the job this event refers to.
| NSTANCE

The name of the instance of the job this event refers to. This will be empty for
single-instance jobs (those jobs that have not specified the instance stanza).

* RESULT

This variable will have the value "ok" if the job exited normally or "f ai | ed" if the job
exited due to failure. Note that Upstart's view of success and failure can be modified using
the normal exit stanza.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

* PROCESS

The name of the script section that resulted in the failure. This variable is not set if
RESULT=ok. If set, the variable will have one of the following values:

spre-start

s post-start

e mai n (denoting the scri pt orexec stanza)

s pre-stop

* post-stop

e respawn (denoting the job attempted to exceed its respawn limit)
* EXI T_STATUS or EXI T_SI GNAL

Either EXI T_STATUS or EXI T_SI GNAL will be set, depending on whether the job exited
itself (EXI T_STATUS) or was stopped as a result of a signal (EXI T_SI GNAL).

If neither variable is set, the process in question failed to spawn (for example, because the
specified command to run was not found).

7. Any jobs whose start on (or stop on) condition would be satisfied by this job stopping are started (or
stopped respectively).

8. The main process is stopped:

* The signal specified by the Kkill signal stanza is sent to the process group of the main process.
(such that all processes belonging to the jobs main process are killed). By default this signal is
S| GTERM

See signal(7) and init(5).
» Upstart waits for up to kill timeout seconds (default 5 seconds) for the process to end.

« If the process is still running after the timeout, a SI GKI LL signal is sent to the process which
cannot be ignored and will forcibly stop the processes in the process group.

9. The state is changed from ki | | ed to post - st op.
10. If the post-stop stanza exists, the post-stop process is spawned.
11. The state is changed from post - st op towai ti ng.
12. The stopped(7) event is emitted.
When this event completes, the job is fully stopped.

13. Any jobs whose start on (or stop on) condition would be satisfied by this job being stopped are
started (or stopped respectively).

Note: this information is also available in upstart-events(7).

4.6 Ordering

4.6.1 Order in which Events are Emitted

As a general rule, you cannot rely upon the the order in which events will be emitted. Your system is
dynamic and Upstart responds to changes as-and-when they occur (for example hot-plug events).

That said, most systems which use Upstart provide a number of "well-known" events which you can rely
upon.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/signal.7.html
http://manpages.ubuntu.com/manpages/man5/init.5.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

For example on Ubuntu, these are documented in the upstart-events(7) man page, which is included
within this document for convenience in appendix Ubuntu Well-Known Events (ubuntu-specific).

4.6.2 Order in Which Jobs Which start on the Same Event are Run

Assume you have three jobs like this:
«/etc/init/ X conf
start on event-A

e/etc/init/Y.conf

start on event-A

e/etc/init/Z. conf

start on event-A

Question: If event event - A is emitted, which job will run first?

Answer: It is not possible to say, and indeed you should not make any assumptions about the order in
which jobs with the same conditions run in.

4.6.3 Ordering of Stop/Start Operations

4.6.3.1 Single Job

Imagine a job configuration file / et ¢/ i ni t / odd. conf like this:

start on event-A
stop on event-A

scri pt
sl eep 999
end scri pt

Would Upstart be happy with this? Actually, yes it would! Upstart always handles stop on stanzas before
handling start on stanzas. This means that this strange job would first be stopped (if it's currently running),
then it would be started.

We can see what happens when we run this job more clearly when we increase the log priority to debug
(see Change the log-priority):

initctl log-priority debug

Now, we can watch the state transitions by viewing the system log.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.6.3.1.1 If Job is Not Currently Running

status odd

odd stop/waiting

initctl emt event-A

status odd

odd start/runni ng, process 9474

And here is an example from the system log (with annotations) showing what happened:

event _new. Pendi ng event-A event # Upstart enmtted the event.
Handl i ng event - A event

event pendi ng_handl e_j obs: New i nstance odd
odd goal changed fromstop to start

odd state changed fromwaiting to starting
event _new. Pending starting event

Handl i ng starting event

event finished: Finished starting event

odd state changed fromstarting to pre-start
odd state changed frompre-start to spawned
odd nmain process (9474) # Start script section.
odd state changed from spawned to post-start

odd state changed from post-start to running # Job now fully started.
event _new. Pending started event

Handl i ng started event

event finished: Finished started event

event finished: Finished event-A event

Job instance created.
Si nce job not running,
change goal to "start".

H H H*

4.6.3.1.2 If Job is Currently Running

status odd

odd stop/waiting

start odd

odd start/running, process 11416 # Note this PID

status odd

odd start/running, process 11416

initctl emt event-A

status odd

odd start/running, process 11428 # Look! 1t changed!

Here is an example from the system log showing what happened in more detail. First the entries relating
to starting the job:

odd goal changed fromstop to start

odd state changed fromwaiting to starting
event _new. Pending starting event

Handl i ng starting event

event finished: Finished starting event

odd state changed fromstarting to pre-start
odd state changed frompre-start to spawned
odd nmain process (11416)

odd state changed from spawned to post-start

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

odd state changed from post-start to running
event _new. Pending started event

Handl i ng started event

event finished: Finished started event

Now, the event is emitted:

event _new. Pendi ng event-A event

Handl i ng event - A event

odd goal changed fromstart to stop # Job already running, so stop it.
odd state changed fromrunning to pre-stop

odd state changed from pre-stop to stopping

event _new. Pendi ng stoppi ng event

event _pendi ng_handl e_j obs: New i nstance odd

odd goal changed fromstop to start

Handl i ng stoppi ng event

event _fi ni shed: Fini shed stopping event

odd state changed from stopping to killed

Sendi ng TERM signal to odd nmain process (11416) # Forcibly stop existing job process.
odd main process (11416) killed by TERM signal # Successfully stopped it.

odd state changed fromkilled to post-stop

odd state changed from post-stop to starting

event _new. Pendi ng starting event

Handl i ng starting event

event _fini shed: Finished starting event

odd state changed fromstarting to pre-start

odd state changed frompre-start to spawned

odd mai n process (11428) # New i nstance of job started with new F
odd state changed from spawned to post-start

odd state changed from post-start to running

event _new. Pendi ng started event

Handl i ng started event

event finished: Finished started event

event finished: Finished event-A event

4.6.3.2 Multiple Jobs

Upstart guarantees that jobs which stop on a particular event are processed before jobs that start on the
same event.

Consider two jobs like this:

* A conf:

start on startup
stop on foo

*B.conf:

start on foo

Assuming that job "A" is already running, if the "f 00" event is emitted, Upstart will always stop job "A"
before starting job "B".

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.7 Runlevels

A runlevel is a single-byte name for a particular system configuration. Runlevels for Debian and Ubuntu
systems are generally as follows 34,

* 0 : System halt.
» 1 : Single-User mode.
» 2 : Graphical multi-user plus networking (DEFAULT)
* 3 : Same as "2", but not used.
* 4 :Same as "2", but not used.
*5 : Same as "2", but not used.
* 6 : System reboot.
There are also a few pseudo-runlevels:
* N : The previous runlevel cannot be determined.

* S : Alias for Single-User mode.

4.7.1 Display Runlevel

To display your current and previous runlevels separated by a space character, run the
/ sbi n/runl evel command. Note that if this command is unable to determine the system runlevel, it
may display simply "unknown":

$ runl evel
N 2

The output above shows that:
« there was no previous runlevel (the system was booted and went straight to the current runlevel).

« the current runlevel is "2".

4.7.2 Change Runlevel Immediately

To change runlevel immediately, use one of the commands below:
* reboot(8)
* shutdown(8)
* telinit(8)

4.7.3 Changing the Default Runlevel

4.7.3.1 Permanently

To change the default runlevel the system will boot into, modify the variable DEFAULT _RUNLEVEL in file
/etcl/init/rc-sysinit.conf.For example, to make the system boot by default to single user mode,
set:

env DEFAULT_RUNLEVEL=1

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.debian.org
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/reboot.8.html
http://manpages.ubuntu.com/manpages/man8/shutdown.8.html
http://manpages.ubuntu.com/manpages/man8/telinit.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.7.3.2 Single Boot

If you want to change the default runlevel for a single boot, rather than making the change permanent by
modify the r c- sysi ni t. conf file, simply append the variable to the kernel command line:

DEFAULT_RUNLEVEL=1

Traditionally, the default runlevel was encoded in file / et ¢/ i ni tt ab. However, with Upstart, this file is
no longer used (it is supported by Upstart, but its use is deprecated).

5 System Phases

The information in this section relates to an Ubuntu system.

To obtain a better understanding of how jobs and events relate at startup and shutdown time, see
Visualising Jobs and Events.

5.1 Startup

At boot, after the initramfs system has been run (for setting up RAID, unlocking encrypted file system
volumes, et cetera), Upstart will be given control. The initramfs environment will exec(3) / shi n/init
(this is the main Upstart binary) and cause it to run as PID 1.

5.1.1 Startup Process

Note that in this section we assume the default runlevel is "2". See Changing the Default Runlevel for
further details.

1. Upstart performs its internal initialization.

2. Upstart itself emits a single event called startup(7).
This event triggers the rest of the system to initialize 3,

3. init(8) runs a small number of jobs which specify the startup(7) event in their start on condition.
The most notable of these is the mount al | job which mounts your disks and filesystems.

4. The mountall(8) job in turn emits a number of events.

These include local-filesystems(7), virtual-filesystems(7) and all-swaps(7). See upstart-events(7) for
further details.

5. The virtual-filesystems(7) event causes the udev job to start.
6. The udev job causes the upstart-udev-bridge job to start.

7. The upstart-udev-bridge job will at some point emit the "net - devi ce-up | FACE=l 0" event
signifying the local network (for example, 127. 0. 0. 0 for IPv4) is available.

8. After the last filesystem is mounted, mountall(8) will emit the fi | esyst em event.

9. Since the start on condition for the r c- sysi nit job is:
start on fil esystem and net-devi ce-up | FACE=l o
Upstart will then startthe rc- sysi nit job.

10. Therc-sysinit jobcallsthetelinit command, passing it the runlevel to move to:

telinit 2

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man3/exec.3.html
http://manpages.ubuntu.com/manpages/man7/startup.7.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man7/startup.7.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://manpages.ubuntu.com/manpages/man7/local-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/virtual-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/all-swaps.7.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://manpages.ubuntu.com/manpages/man7/virtual-filesystems.7.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11. Thetelinit command emits the runlevel(7) event as:

runl evel RUNLEVEL=2 PREVLEVEL=N

Note that this is all the t el i nit command does — it runs no commands itself to change runlevel!
See Runlevels for further information on runlevels.

12. The runlevel(7) event causes many other Upstart jobs to start, including /etc/init/rc. conf
which starts the legacy SystemV init system.

5.2 Shutdown

5.2.1 Observations

There are some important points related to system shutdown:

« Upstart never shuts down itself

Upstart will "die" when the system is powered off, but if it ever exits, that is a bug.
 Upstart never stops a job with no stop on condition.
« Ubuntu employs both Upstart and SysV jobs.

Ubuntu currently employs a hybrid system where core services are handled by Upstart, but additional
services can be run in the legacy SystemV mode. This may seem odd, but consider that there are
thousands of packages available in Ubuntu via the Universe and Multiverse repositories and
hundreds of services. To avoid having to change every package to work with Upstart, Upstart allows
packages to utilize their existing SystemV (and thus Debian-compatible) scripts.

5.2.2 Shutdown Process
To initiate a shutdown, perform one of the following actions:

* Click "Shut Down..." (or equivalent) in your graphical environment (for example Gnome)

* Run the shutdown(8) command, for example:

shutdown -h now
The following steps will now be taken:

1. Assuming the current runlevel is "2", either of the actions above will cause Upstart to emit the
runlevel(7) event like this:

runl evel RUNLEVEL=0 PREVLEVEL=2

2. Thejob/etc/init/rc.conf will be run.
Thisjob calls/ etc/init.d/rc passing it the new runlevel ("0").

3. The SystemV system will then invoke the necessary scripts in / etc/rc0.d/ to stop SystemV
services.

4. One of the scriptsrunis/etc/init.d/ sendsi gs.

This script will kill any remaining processes not already stopped (including Upstart processes).

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://manpages.ubuntu.com/manpages/man8/shutdown.8.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

5.3 Reboot
To initiate a reboot, perform one of the following actions:

* Click "Restart..." (or equivalent) in your graphical environment (for example Gnome)

* Run the shutdown(8) command specifying the "- r " option, for example:

shutdown -r now

* Run the reboot(8) command:

reboot
The following will steps will now be taken:

1. Assuming the current runlevel is "2", whichever command is run above will cause Upstart to emit the
runlevel(7) event like this:

runl evel RUNLEVEL=6 PREVLEVEL=2

2. Thejob/etc/init/rc.conf willberun.
Thisjob calls/ etc/init.d/rc passing it the new runlevel ("6").

3. The SystemV system will then invoke the necessary scripts in /etc/rc6.d/ to stop SystemV
services.

4. One of the scriptsrunis/etc/init. d/ sendsigs.

This script will kill any remaining processes not already stopped (including Upstart processes).

5.4 Single-User Mode

When booting direct into single-user mode, the r unl evel command will show:

runl evel
N S

See Runlevels.

5.5 Recovery Mode ()

Ubuntu provides a recovery mode in case your system experiences problems. This is handled by the
friendly-recovery package. If you select a "recovery mode" option on the Grub menu. This makes
the initramfs pass a flag to Upstart which ensures that the /etc/init/friendly-recovery.conf Upstart job is the
first job run after Upstart starts. As a result, this job has full control over the system and provides a friendly
menu that allows users to check disks with fsck(8), repair your package database and so on.

5.6 Failsafe Mode ()

This is a new phase introduced in Ubuntu 11.10 that borrows an idea from Google's Chrome OS. A new
job called failsafe has been introduced that checks to ensure the system has reached a particular state. If
the expected state is not attained, the job reboots the system automatically.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/shutdown.8.html
http://manpages.ubuntu.com/manpages/man8/reboot.8.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/fsck.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6 Configuration

This section lists a number of job configuration file stanzas, giving example usage for each. The reference
for your specific version of Upstart will be available in the init(5) man page.

6.1 Stanzas by Category

Configuration Stanzas by Category (detail in brackets show version of Upstart stanza added)

Category Stanzas Added in Version

Process Definition exec

pre-start

post-start

pre-stop

post-stop

script

Event Definition manual 0.6.7

start on

stop on

Job Environment env

export

Services, tasks and respawning normal exit

respawn

respawn limit

task

Instances instance

Documentation author

description

emits

version

usage 1.5

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man5/init.5.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Process environment apparmor load 1.9

apparmor switch 1.9

cgroup 1.13

console none

console log 1.4

console output

console owner
chdir

chroot

limit

nice

oom score
setgid 1.4
setuid 1.4

umask

Process Control expect fork

expect daemon

expect stop

kill signal 1.3
kill timeout
reload signal 1.10

6.2 appar nor

6.2.1 apparnor | oad

Load specified AppArmor Mandatory Access Control system profile into the kernel prior to starting the job.
The main job process (as specified by exec or script) will be confined to this profile.

Syntax:
appar nor | oad <profil e-pat h>

Notes:

e <profil e-pat h> must be an absolute path.

 The job will fail if the profile doesn't exist, or the profile fails to load.
Example:

appar nor | oad /et c/apparnor.d/usr.sbin.cupsd
exec /usr/sbin/cupsd -F

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://wiki.apparmor.net/index.php/Main_Page
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.2.2 apparnor switch
Run main job process with already-loaded AppArmor Mandatory Access Control system profile.

Syntax:
appar nor switch <profil e-nane>

Notes:

 The job will fail if the profile named does not exist, or is not already loaded.
Example:

appar nor switch /usr/bin/cupsd
exec /usr/sbin/cupsd -F

6.3 aut hor
Syntax:

aut hor <string>

Quoted name (and maybe contact details) of author of this Job Configuration File.

Example:

aut hor "Scott James Remmant <scott @etsplit.conp”

6.4 cgroup
Upstart 1.13 supports cgroups with the aid of cgmanager (see cgmanager(8)).
A new "cgr oup" stanza is introduced that allows job processes to be run within the specified cgroup.

Syntax:
cgroup CONTROLLER [NAME] [KEY VALUE]

This allows the job to specify the control group all job processes will run in and optionally specify a setting
for the particular cgroup.

Important:

* This stanza will be ignored if the version of Upstart is new enough to support cgroups but has been
built without cgroup support.

* This stanza will also be ignored if the init(8) daemon has had cgroup support disabled at boot time
(see init(8)).

A job which specifies this stanza will not be started until both its start on condition is met and the
address of the cgroup manager has been communicated to the init(8) daemon using the initctl(8)
command initctl notify-cgroup-manager-address.

If only the cgroup controller (such as menory, cpuset, bl ki 0) is specified, a job-specific cgroup will be
created and the job processes placed in it. The form of this cgroup is:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://wiki.apparmor.net/index.php/Main_Page
https://cgmanager.linuxcontainers.org/
http://manpages.ubuntu.com/manpages/man8/cgmanager.8.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

upst art/ $UPSTART_JOB
... or if the job specifies the instance stanza the group will be the expanded value of:
upst art/ $UPSTART_JOB- $UPSTART_| NSTANCE

Any forward slashes in $UPSTART_JOB and $UPSTART_I NSTANCE will be replaced with underscore
("_") characters.

This default cgroup for the job may be specified explicitly within a NAMVE using the special variable
"$UPSTART_CGROUP". This variable is not an environment variable and is only valid within the context of
the cgroup stanza.

If NAME is not specified or does not contain "$UPSTART_CGROUP", the job processes will not be placed in
an upstart-specific group.

Note that this special variable cannot be specified with enclosing braces around the name.
No validation is performed on the specified values until the job is due to be started.

If the CONTROLLER is invalid, or the NAME cannot be created or the KEY or VALUE are invalid, the job
will be failed.

The NAME argument may contain any valid variable and can also contain forward slashes to run the job
processes in a sub-cgroup.

If any argument contains space characters, it must be quoted.
If a KEY is specified, a VALUE must also be specified (even it is simply an empty string).

The stanza maybe specified multiple times. The last occurence will be used except in the scenario where
each occurence specifies a different KEY in which case all the keys and values will be applied.

It is not an error if NAME already exists.

Valid syntax examples:

« Implicit NAVE, no setting:
cgroup CONTROLLER
« Explicit NAVE, no setting:
cgroup CONTROLLER NAME
* Implicit NAME with setting:
cgroup CONTROLLER KEY VALUE
 Explicit NAME with setting:

cgroup CONTROLLER NAMVE KEY VALUE
Examples:

* Run all job processes in the default cpu cgroup controller group:

cgroup cpu

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

» As above:

cgroup cpu $UPSTART CGROUP
* As above:
cgroup cpu "$UPSTART_CGROUP"
« Attempt to place the job processes in a non-job-specific cgroup:
cgroup cpu "a-wel | - known- cgroup”

» The job will only start once the manager is up and running and will have a 50MB memory limit, be
restricted to CPU ids 0 and 1 and have a 1MB/s write limit to the block device 8:16. The job will fail to
start if the system has less than 50MB of RAM or less than 2 CPUs:

cgroup nenmory $UPSTART CGROUP limt _in_bytes 52428800
cgroup cpuset $UPSTART CGROUP cpus 0-1
cgroup blkio slowio throttle.wite bps device "8:16 1048576"

6.5 consol e

For all versions of Upstart prior to v1.4, the default value for consol e was consol e none. As of Upstart
1.4, the default value is consol e | og. If you are using Upstart 1.4 or later and wish to retain the old
default, boot specifying the --no-1o0g command-line option. An alternative is to boot using the
--defaul t-consol e <val ue> option which allows the default consol e value for jobs to be specified.
Using this option it is possible to set the default to none but still honour jobs that specify explicitly console
log.

6.5.1 consol e | og

Connects standard input to / dev/ nul | . Standard output and standard error are connected to one end of
a pseudo-terminal such that any job output is automatically logged to a file in directory
/var/log/upstart/ for System Jobs and $XDG_CACHE_HOVE/ upstart/ (or
$HOVE/ . cache/ upstart/ if $XDG_CACHE_HOME is not set) for Session Jobs.

The log directory can be changed by specifying the - - | ogdi r <di r ect or y> command-line option.

If a User Job running in a pre-Upstart 1.7 environment specifies this stanza, Upstart will treat the job as if
it had specified console none.

6.5.2 consol e none

Connects the job's standard input, standard output and standard error file descriptors to / dev/ nul | .

6.5.3 consol e out put

Connects the job's standard input, standard output and standard error file descriptors to the console
device.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.5.3.1 Example of consol e out put

consol e out put
pre-start script

Per f orm what ever checks you |i ke here (maybe checki ng
"/etc/default/foo" to see if the service is enabled # or not).

if there are no problens detected, sinply "exit 0", else do

#
#
#
#
sonething like this...

display an error nessage to stderr *on the console* and also wite
the sane nessage to the system | og.
| ogger -is -t "$UPSTART_JOB" "ERROR: foo!"

tell Upstart not to start the main process for the job.
exit 1
end scri pt

this service doesn't do ruch :-)
exec sl eep 999

See pre-start.

6.5.4 consol e owner

Identical to console output except that additionally it makes the job the owner of the console device. This
means it will receive certain signals from the kernel when special key combinations such as Control-C are
pressed.

6.6 chdir

Syntax:
chdir <directory>

Runs the job's processes with a working directory in the specified directory instead of the root of the
filesystem.

Example:

chdir /var/ nydaenon
6.7 chroot
Syntax:

chroot <directory>

Runs the job's processes in a chroot(8) environment underneath the specified directory.

Note that the specified directory must have all the necessary system libraries for the process to be run,
often including / bi n/ sh.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/chroot.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Example:

chroot /srv/chroots/oneiric

6.8 description
Syntax:

description <string>
One line quoted description of Job Configuration File. For example:

descri ption "QpenSSH server”

6.9 emts
Syntax:

emts <val ues>

Specifies the events the job configuration file generates (directly or indirectly via a child process). This
stanza can be specified multiple times for each event emitted. This stanza can also use the following shell
wildcard meta-characters to simplify the specification:

* asterisk ("*")
e question mark ("?"

« square brackets ("["and "] ")

For example, upstart-udev-bridge can emit a large number of events. Rather than having to specify every
possible event, since the form of the event names is consistent, a single eni t s stanza can be specified
to cover all possible events:

emts *-device-*
Further Examples:

emts foo-event bar-event w bbl e-event
emts hello

6.10 end scri pt

This pseudo-stanza acts as a terminator for script sections:

* script.

* pre-start script.
* post-start script.
* pre-stop script.

* post-start script.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.11 env

Syntax:
env KEY[=VALUE]

Allows an environment variable to be set which is accessible in all script sections.

Example:

env nyvar="hell o worl d"

scri pt
echo "nyvar="$nyvar'" > /run/script.|og
end scri pt

See Environment Variables.

6.12 exec
Syntax:

exec COMVAND [ARG]...

Stanza that allows the specification of a single-line command to run. Note that if this command-line
contains any shell meta-characters, it will be passed through a shell prior to being executed. This ensures
that shell redirection and variable expansion occur as expected.

Example:

exec /usr/bin/ ny-daenon --option foo -v

6.13 expect

Warning

This stanza is extremely important: read this section carefully!

Upstart will keep track of the process ID that it thinks belongs to a job. If a job has specified the instance
stanza, Upstart will track the PIDs for each unique instance of that job.

If you do not specify the expect stanza, Upstart will track the life cycle of the first PID that it executes in
the exec or script stanzas. However, most Unix services will "daemonize", meaning that they will create a
new process (using fork(2)) which is a child of the initial process. Often services will "double fork" to
ensure they have no association whatsoever with the initial process. (Note that no services will fork more
than twice initially since there is no additional benefit in doing so).

In this case, Upstart must have a way to track it, so you can use expect fork, or expect daemon which
allows Upstart to use ptrace(2) to "count forks".

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man2/ptrace.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

To allow Upstart to determine the final process ID for a job, it needs to know how many times that process
will call fork(2). Upstart itself cannot know the answer to this question since once a daemon is running, it
could then fork a number of "worker" processes which could themselves fork any number of times. Upstart
cannot be expected to know which PID is the "master" in this case, considering it does not know if worker
processes will be created at all, let alone how many times, or how many times the process will fork
initially. As such, it is necessary to tell Upstart which PID is the "master" or parent PID. This is achieved
using the expect stanza.

The syntax is simple, but you do need to know how many times your service forks.
Note that most daemons fork twice.

If your daemon has a "don't daemonize" or "run in the foreground” mode, then it's much simpler to use
that and not run with fork following. One issue with that though, is that Upstart will emit the st art ed
JOB=yourj ob event as soon as it has executed your daemon, which may be before it has had time to
listen for incoming connections or fully initialize.

A final point: the expect stanza only applies to exec and script stanzas: it has no effect on pre-start and
post-start.

It's important to note that the "expect " stanza is thus being used for two different but complementary
tasks:

« Identifying service readiness.

* PID tracking.

6.13.1 expect fork

Upstart will expect the process executed to call fork(2) exactly once.

Some daemons fork a new copy of themselves on SI GHUP, which means when the Upstart reload
command is used, Upstart will lose track of this daemon. In this case, expect fork cannot be used.
See Daemon Behaviour.

6.13.2 expect daenon

Upstart will expect the process executed to call fork(2) exactly twice.

6.13.3 expect stop

Specifies that the job's main process will raise the SI GSTOP signal to indicate that it is ready. init(8) will
wait for this signal and then:

1. Immediately send the process SI GCONT to allow it to continue.

2. Run the job's post-start script (if any).
Only then will Upstart consider the job to be running.

6.13.4 How to Establish Fork Count

If the application you are attempting to create a Job Configuration File does not document how many
times it forks, you can run it with a tool such as strace(1) which will allow you to count the number of forks.
For example:

Trace all children of /usr/bin/mapp
$ sudo strace -o /tnp/strace.log -fFv /usr/bin/nmyapp --arg foo --hello wi bble &

After allow ng sone "reasonable” tinme for the app to start, kill it and strace
$ sudo killall -9 strace

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man1/strace.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Di spl ay the nunber of forks

#

#

1 => specify "expect fork"
2 => specify "expect daenon”
#
$

sudo egrep "\<(fork|clone)\>\(" /tnp/strace.log | we | awk '{print $1}'

6.13.5 Implications of Misspecifying expect

The table below summarizes the behaviour resulting for every combination of expect stanza and number
of fork(2) calls:

Expect Stanza Behaviour

Specification of Expect Stanza
Forks no expect expect fork expect daenon
0 Correct start hangs start hangs
1 Wrong pid tracked Correct start hangs
2 Wrong pid tracked Wrong pid tracked T Correct
Key:

"t - No PID will be displayed.

6.13.6 Recovery on Misspecification of expect

6.13.6.1 When start hangs

The start command will "hang" if you have misspecified the expect stanza by telling Upstart to expect
more fork(2) calls than your application actually makes.

To resolve the situation:

1. Interrupt the start command by using "CONTROL+c" (or sending the process the SI G NT signal).

2. Run the initctl status command for your job. You will see something like:

myj ob start/spawned, process 1234
You'll notice that the PID shown is actually correct since Upstart has tracked the initial PID.

3. Kill(1) the PID of your application.

4. Re-run the initctl status command for your job. You will see something like:
myj ob stop/waiting

5. Correct the expect stanza specification in the job configuration file.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man1/kill.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.13.6.2 When Wrong PID is Tracked

If you have misspecified the expect stanza by telling Upstart to expect fewer fork(2) calls than your
application actually makes, Upstart will be unable to manage it since it will be looking at the wrong PID.
The start command will start your job, but it will show unexpected output (the goal and state will be shown
as st op/ wai ti ng).

To resolve the situation:

1. Run the initctl status command for your job. You will see something like:

myj ob stop/waiting

Notice that no PID is displayed.

2. Find your jobs PID using ps(1). (If you're struggling to find it, remember that the parent PID will
always be "1").

3. Kill(1) the PID of your application.

4. Correct the expect stanza specification in the job configuration file.

6.14 export

Export variables previously set with env to all events that result from this job. See for example Job
Lifecycle.

Note that no leading dollar sign ($) is specified.

Example:

env nyvar="hell o worl d"
export myvar

6.15 instance

Sometimes you want to run the same job, but with different arguments. The variable that defines the
unigue instance of this job is defined with i nst ance.

6.15.1 A Simple Instance Example

Let us start with a simple example which we will call "f 0o. conf "

i nstance $BAR

scri pt
/ et c/ def aul t/ myapp- ${ BAR}

echo "hello frominstance $BAR
sl eep 999
end scri pt

The example above defines an instance job by specifying the i nst ance stanza followed by the name of
a variable (note that you MUST specify the dollar sign ('$").

Note that the entire job is the instance job: providing the i nst ance stanza allows Upstart to make each
running version of this job unique.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://manpages.ubuntu.com/manpages/man1/kill.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

The job first sources an instance-specific configuration file ("myapp- ${ BAR} ") then displays a message.
Note again that we're now using that instance variable $BAR.

So, let's start an instance of this job:

$ sudo start foo
start: Unknown paraneter: BAR

Oops! We forgot to specify the particular value for the BAR variable which makes each instance unique.
Lets try again;

$ sudo start foo BAR=bar
foo (bar) start/running, process 1234

So, we now have one instance running. Let's start another:

$ sudo start foo BAR=bar
start: Job is already running: foo (bar)

Oops! We tried to run another instance with the same instance name (well, the same value of the BAR
variable technically). Lets try again:

$ sudo start foo BAR=baz
foo (baz) start/running, process 1235

Okay. We should now have two instance running, but let us confirm that:

$initctl list | grep ~foo
foo (bar) start/running, process 1234
foo (baz) start/running, process 1235

Good - Upstart is running two instances as expected. Notice the instance name in brackets after the job
name in the initctl output above.

We will start one more instance:

$ sudo start foo BAR="hello world"

$ initctl list | grep ~foo

foo (bar) start/running, process 1234

foo (baz) start/running, process 1235

foo (hello world) start/running, process 1236

Let's try to stop the instances:

$ sudo stop foo
st op: Unknown paraneter: BAR

That fails as Upstart needs to know which instance to stop and we didn't specify an instance value for the
BAR instance variable. Rather than stopping each instance in turn, let's script it so that we can stop then
all in one go:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$initctl list | grep "Moo " | cut -d\(-f2 | cut -d\) -f1 | while read i
do
sudo stop foo BAR="Si"
done
foo stop/waiting
foo stop/waiting
foo stop/waiting
$

All unique instances of the f oo job are now stopped.

6.15.2 Another Instance Example

Lets say that once nentached is up and running, we want to start a queue worker for each directory in
/var/libl queues:

queue-wor kers
start on started nencached
t ask
scri pt
for dir in “Is /var/lib/queues ; do
start queue-worker QUEUE=$di r

done
end script

And now:

queue- wor ker

stop on stoppi ng nencached
respawn

i nstance $QUEUE

exec /usr/l ocal/bin/ queue-worker $QUEUE

In this way, Upstart will keep them all running with the specified arguments, and stop them if mencached
is ever stopped.

The i nst ance stanza is designed to make a running job unique.

Notes:

« the stanza isn't restricted to a single value. You can do silly things like the following if you wish:

i nstance ${nyvar 1} hel | o${ myvar 2}-f oo/ \ wi bbl e${var 3} { $JOB}

See Multiple Running Job Instances Without PID for another crazy real-life example.

* You must include at least one variable and it must have a leading dollar sign ($):

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

GOOD (val ue can be changed by specifying different val ues
for the variable called 'foo")
i nst ance $f oo

BAD (value will always be the string literal "foo")
i nstance foo

« If you attempt to start a job with the i nst ance stanza, but forget to provide the required variables,
you will get an error since Upstart cannot then guarantee uniqueness. For example, if you have a job
configuration file f oo. conf such as this:

i nst ance $bar

scri pt
sl eep 999
end scri pt

Attempting to start it without specifying a value for foo will fail:

start foo
start: Unknown paraneter: bar

Let's try again:

start foo bar=1
foo (1) start/running, process 30003

And now let's start another instance:

start foo bar="hello 1,2, 3"
foo (hello 1,2,3) start/running, process 30008

Finally, let's see the current state of our two job instances:

$ initctl list|grep ~foo
foo (1) start/running, process 30003
foo (hello 1,2,3) start/running, process 30008

Note that to obtain correct restart behaviour, you would need to do something like the following:

wor ker . conf
i nstance $id
exec nywor ker nane=$id

wor kers. conf
pre-start script
for inst inabc
do
start worker id=$inst

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

done
end scri pt

post-stop script
for inst in “initctl list|grep ""worker "|awk '{print $2}'|tr -d ")"|tr -d "('"
do
st op wor ker id=$i nst
done
end scri pt

Note that "wor ker s. conf " has no main exec or script section - this "master” job will run (without a pid)
for the duration that the slave or children (individual "wor ker ") job instances run:

$ initctl list]|grep “worker

wor ker stop/waiting

wor kers stop/ waiting

$ start workers

wor kers start/running

$ initctl list]|grep “worker

wor ker (c) start/running, process 12226
wor ker (b) start/running, process 12223
wor ker (a) start/running, process 12221
wor kers start/running

$ restart workers

wor kers start/running

$ initctl list]|grep “worker

wor ker (c) start/running, process 12246
wor ker (b) start/running, process 12244
wor ker (a) start/running, process 12242
wor kers start/running

$ stop workers

wor kers stop/ waiting

$ initctl list]|grep “worker

wor ker stop/waiting

wor kers stop/ waiting

Note further that if any worker fails to start or stop, this wil fail the overall "wor ker s" job. If you don't want
this behaviour, use the "| | true" trick:

wor ker s. conf
pre-start script
for inst inabc
do
start worker id=$inst ||
done
end scri pt

post -stop script

for inst in “initctl list|grep ""worker "|awk '{print $2}'|tr -d ")'|tr -d '"('°
do
stop worker id=$inst |
done
end scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.15.3 Starting an Instance Job Without Specifying an Instance Value

Note that if you have a job which makes use of i nst ance but which may need to be run manually by an
administrator, it is possible to "cheat" and allow them to start the job without specifying an explicit instance
value:

letc/init/trickery. conf
start on foo

i nst ance $UPSTART EVENTS
env UPSTART_EVENTS=

Now, an Administrator can start this job as follows:
start trickery

And this will work even if there is already a running instance of the t ri ckery job (assuming the existing
instance was started automatically).

This bit of trickery relies upon the fact that Upstart will set the $UPSTART_EVENTS environment variable
before starting this job as a result of its start on condition becoming true. In this case, Upstart would
therefore set UPSTART _EVENTS=' f 00’ .

However, since the job sets a null default value for this variable, when an Administrator starts the job,
UPSTART_EVENTS will be set to a null value. This empty value is enough to make that instance unique
(since there are no other instances with a null instance value!)

See Environment Variables for details of SUPSTART _EVENTS.

6.16 kill signal

Specifies the stopping signal, SI GTERM by default, a job's main process will receive when stopping the
running job.

The signal should be specified as a full name (for example SI GTERM or a partial name (for example
TERM. Note that it is possible to specify the signal as a number (for example 15) although this should be
avoided if at all possible since signal numbers may differ between systems.

Examples:

kill signal |INT
kill signal SI A NT

Note that if you are running an older version of Upstart without this feature, and you have an application
which breaks with the normal conventions for shutdown signal, you can simulate it to some degree by
using start-stop-daemon(8) with the - - si gnal option:

start on some-event
env cnd=/usr/ bin/foo
exec start-stop-daenmon --start --exec $cnd

pre-stop exec start-stop-daenon --signal QUT --stop --exec $cnmd

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.17 kill ti meout

The number of seconds Upstart will wait before killing a process. The default is 5 seconds.

Example:

kill timeout 20

6.18 limt

Provides the ability to specify resource limits for a job.

For example, to allow a job to open any number of files, specify:

limt nofile unlimted unlimted

Note

If a user job specifies this stanza, it may fail to start should it specify a value greater than the users
privilege level allows.

For further details on the available limits see init(5) and getrlimit(2).

6.19 nanual
Added in Upstart v0.6.7

This stanza will tell Upstart to ignore the start on / stop on stanzas. It is useful for keeping the logic and
capability of a job on the system while not having it automatically start at boot-up.

Example:

manual

6.20 nice

Change the jobs scheduling priority from the default. See nice(1).

Example:

run with lowest priority
nice 19

6.21 normal exit

Used to change Upstart's idea of what a "normal” exit status is. Conventionally, processes exit with status
0 (zero) to denote success and non-zero to denote failure. If your application can exit with exit status 13
and you want Upstart to consider this as an normal (successful) exit, then you can specify:

normal exit 0 13

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man5/init.5.html
http://manpages.ubuntu.com/manpages/man2/getrlimit.2.html
http://manpages.ubuntu.com/manpages/man1/nice.1.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

You can even specify signals. A signal can be specified either as a full name (for example SI GTERM) or a
partial name (for example TERM);

For example, to consider exit codes 0 and 13 as success and also to consider the program to have
completed successfully if it exits on signal SI GUSR1L and SI GAl NCH, specify:

normal exit 0 13 SI GUSRL SI GN NCH
Equivalently, you could specify:

normal exit 0 13 USRL W NCH

6.22 oom score

Linux has an "Out of Memory" killer facility. This is a feature of the kernel that will detect if a process is
consuming increasingly more memory. Once "triggered”, the kernel automatically takes action by killing
the rogue process to avoid it impacting the system adversely.

Normally the OOM killer regards all processes equally, this stanza advises the kernel to treat this job
differently.

The "adjustment” value provided to this stanza may be an integer value from - 999 (very unlikely to be
killed by the OOM Kkiller) up to 1000 (very likely to be killed by the OOM Kkiller). It may also be the special
value never to have the job ignored by the OOM Kkiller entirely (potentially dangerous unless you really
trust the application in all possible system scenarios).

Example:

this application is a "resource hog"
oom score 1000

expect daenon
respawn
exec /usr/bin/leaky-app

6.23 post-start
Syntax:

post-start exec|script

Script or process to run after the main process has been spawned, but before the started(7) event has
been emitted.

Use this stanza when a delay (or some arbitrary condition) must be satisfied before an executed job is
considered "started". An example is MySQL. After executing it, it may need to perform recovery
operations before accepting network traffic. Rather than start dependent services, you can have a
post-start like this:

post-start script
while ! nysqgladm n ping | ocal host ; do sleep 1 ; done
end scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/started.7.html
http://www.mysql.com/
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.24 post-stop

Syntax:
post - st op exec| scri pt

There are times where the cleanup done in pre-start is not enough. Ultimately, the cleanup should be
done both pre-start and post-stop, to ensure the service starts with a consistent environment, and does
not leave behind anything that it shouldn't.

exec /sone/directory/script

If it is possible, you'll want to run your daemon with a simple exec line. Something like this:
exec /usr/bin/nysqld

If you need to do some scripting before starting the daemon, script works fine here. Here is one example
of using a script stanza that may be non-obvious:

statd - NSM st atus nonitor

description "NSM st at us noni tor"
aut hor "Steve Langasek <steve.l|angasek@anoni cal . conms"

start on (started portmap or mounting TYPE=nfs)
stop on stopping portmap

expect fork
r espawn

env DEFAULTFI LE=/ et c/ def aul t/ nf s- conmon

pre-start script
if [-f "$DEFAULTFILE"]; then
" $DEFAULTFI LE"
fi

["X$NEED STATD" !'=xno] || { stop; exit 0O; }

start portmap || true
status portmap | grep -q start/running
exec smnotify

end scri pt

scri pt
if [-f "$DEFAULTFILE"]; then
" $DEFAULTFI LE"
fi

if ["X$NEED_STATD' != xno]; then
exec rpc.statd -L $STATDOPTS
fi
end scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Because this job is marked respawn, an exit of 0 is "ok" and will not force a respawn (only exiting with a
non-0 exit or being killed by an unexpected signal causes a respawn), this script stanza is used to start
the optional daemon rpc.statd based on the defaults file. If NEED STATD=no is in
/ et c/ def aul t / nf s- conmon, this job will run this snippet of script, and then the script will exit with 0 as
its return code. Upstart will not respawn it, but just gracefully see that it has stopped on its own, and return
to st opped status. If, however, r pc. st at d had been run, it would stay in the st art/runni ng state
and be tracked normally.

6.25 pre-start
Syntax:

pre-start exec|script

Use this stanza to prepare the environment for the job. Clearing out cache/tmp dirs is a good idea, but any
heavy logic is discouraged, as Upstart job files should read like configuration files, not so much like
complicated software.

pre-start script
[-d "/var/cache/squid"] || squid -k
end scri pt

Another possibility is to cancel the start of the job for some reason. One good reason is that it's clear from
the system configuration that a service is not needed:

pre-start script
if ! grep -q 'parent=foo’ /etc/bar.conf ; then
stop ; exit O
fi
end scri pt

Note that the "st op" command did not receive any arguments. This is a shortcut available to jobs where
the "st op" command will look at the current environment and determine that you mean to stop the current
job.

6.25.1 pre-start example (e,.)
On Ubuntu, the common pre-start idiom is to use / et c/ defaul t/ myapp, so the example would
become:

pre-start script

stop job fromcontinuing if no config file found for daenon
[! -f /etc/default/nyapp] && { stop; exit 0; }

source the config file
[etc/ defaul t/ nyapp

stop job fromcontinuing if adm n has not enabl ed service in
config file.
-z "$ENABLED'] && { stop; exit 0; }

—

end scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

This is safe since the job will not start (technically it won't progress beyond the pre- st art stage) if:

» the config file does not exist.

« the config file has not been modified to enable the service.

Note that the example above assumes your applications configuration file is shell-compatible (in other
words it contains nane="val ue" entries). If this is not the case, just use grep(1) or similar:

enabl ed=$(grep ENABLED=1 $CONFI G
[-z "$enabled"] & & exit O

Or something like this:

if ! grep -gq DI SABLED=f al se /etc/default/nyapp; then
stop ; exit O
fi

See Example of console output for another of example where you can display an error message if the job
detects it should not be started.

6.26 pre-stop

Syntax:
pre-stop exec|script
The pre-stop stanza will be executed before the job's stopping(7) event is emitted and before the

main process is killed.

Stopping a job involves sending SI GTERM to it. If there is anything that needs to be done before
SI GTERM do it here. Arguably, services should handle SI GTERM very gracefully, so this shouldn't be
necessary. However, if the service takes more than kill timeout seconds (default, 5 seconds) then it will be
sent SI &KI LL, so if there is anythinég critical, like a flush to disk, and raising kill timeout is not an option,
pre-stop is not a bad place to do it. 2

You can also use this stanza to cancel the stop, in a similar fashion to the way one can cancel the start in
the pre-start.

6.27 rel oad signal

Specifies the signal that Upstart will send to the jobs main process when the job needs to be reloaded (the
default is SI GHUP).

The signal should be specified as a full name (for example SI GHUP) or a partial name (for example HUP).
Note that it is possible to specify the signal as a number (for example 1) although this should be avoided if
at all possible since signal numbers may differ between systems.

Examples:

rel oad signal SI GUSRL
rel oad signal USRL

6.28 respawn

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/grep.1.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Note

If you are creating a new Job Configuration File, do not specify the r espawn stanza until you are
fully satisfied you have specified the expect stanza correctly. If you do, you will find the behaviour
potentially very confusing.

Without this stanza, a job that exits quietly transitions into the st op/ wai ti ng state, no matter how it
exited.

With this stanza, whenever the main script/exec exits, without the goal of the job having been changed to
st op, the job will be started again. This includes running pre-start, post-start and post-stop. Note that
pre-stop will not be run.

There are a number of reasons why you may or may not want to use this. For most traditional network
services this makes good sense. If the tracked process exits for some reason that wasn't the
administrator's intent, you probably want to start it back up again.

Likewise, for tasks, (see below), respawning means that you want that task to be retried until it exits with
zero (0) as its exit code.

One situation where it may seem like respawn should be avoided, is when a daemon does not respond
well to SI GTERM for stopping it. You may believe that you need to send the service its shutdown
command without Upstart being involved, and therefore, you don't want to use respawn because Upstart
will keep trying to start your service back up when you told it to shutdown.

However, the appropriate way to handle that situation is a pre-stop which runs this shutdown command.
Since the job's goal will already be 'stop’ when a pre-stop is run, you can shutdown the process through
any means, and the process won't be re-spawned (even with the respawn stanza).

Note that if a job is respawned, the variable "$PROCESS" will be set to the name of the job process that
failed (for example "pre- start " or "mai n"). See stopped(7) for further details.

Further note that if the job does not specify the respawn limit stanza as well as the r espawn stanza, the
job will have the default respawn limit applied (see respawn limit).

6.29 respawn |imt

Yes, this is different to a plain respawn: specifying r espawn | i m t does notimply r espawn.

Syntax:
respawn |imt COUNT |INTERVAL | unlimted
Example:

respawn the job up to 10 tines within a 5 second peri od.
|If the job exceeds these values, it will be stopped and
marked as fail ed.

r espawn

respawn linmt 10 5

respawn the job indefinitely
respawn linmit unlinited

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Respawning is subject to a limit. If the job is respawned more than COUNT times in | NTERVAL seconds,
it will be considered to be having deeper problems and will be stopped. Default COUNT is 10. Default
| NTERVAL is5 seconds.

To have the job respawn indefinitely, specify an argument of "unl i m t ed". However, care should be
taken using this option: does your service really stop that frequently? Should it?

Specifying either COUNT or | NTERVAL as 0 (zero) implies unl i mt ed.
Note that r espawn only applies to automatic respawns and not the restart(8) command.

If the job has been respawned up to its respawn limit, the variable "$PROCESS" will be set to "r espawn" to
denote that the respawn limit was reached. See stopped(7) for further details.

6.30 script

Allows the specification of a multi-line block of shell code to be executed. Block is terminated by end
script.

6.31 setgid
Added in Upstart v1.4
Syntax:

setgi d <groupname>

Changes to the group <gr oupnane> before running the job's process.

Warning

Note that all processes (pre-start, post-stop, et cetera) will be run with the group specified.

If this stanza is unspecified, the primary group of the user specified in the setuid block is used. If both
stanzas are unspecified, the job will run with its group ID set to 0 in the case of system jobs, and as the
primary group of the user in the case of User Jobs.

Example:
set gi d apache
6.32 setuid

Added in Upstart v1.4
Syntax:

setui d <user nane>

Changes to the user <user nane> before running the job's process.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/restart.8.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Warning

Note that all processes (pre-start, post-stop, et cetera) will be run as the user specified.

If this stanza is unspecified, the job will run as root in the case of system jobs, and as the user in the case
of User Jobs.

Note that System jobs using the set ui d stanza are still system jobs, and can not be controlled by an
unprivileged user, even if the set ui d stanza specifies that user.

Note that if you specify an invalid username in the set ui d stanza, Upstart will log an error if it is in
Debug Mode.

For example, if job f 00 specifies an invalid set ui d username:

$ sudo initctl log-priority debug

$ sudo start foo

start: Job failed to start

$ sudo dnesg | grep setuid

[4942.908486] init: Failed to spawn foo main process: unable to find setuid user

Although the username is not logged, it is clear there is a problem with the setui d stanza for the
specified f oo job.

6.33 start on

This stanza defines the set of Events that will cause the Job to be automatically started.

Syntax:
start on EVENT [[KEY=] VALUE]... [and|or...]

Each event EVENT is given by its name. Multiple events are permitted using the operators "and" and "or "
and complex expressions may be performed with parentheses (within which line breaks are permitted).

You may also match on the environment variables contained within the event by specifying the KEY and
expected VALUE. If you know the order in which the variables are given to the event you may omit the
KEY.

VALUE may contain wildcard matches and globs as permitted by fnmatch(3) and may expand the value of
any variable defined with the env stanza.

Negation is permitted by using "! =" between the KEY and VALUE.

Note that if the job is already running and is not an instance job, if the st art on condition becomes true
(again), no further action will be taken.

Note thatthe st art on stanza expects a token to follow on the same line. Thus:
ERROR invalid

start on
foo or bar

OK
start on foo or bar

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man3/fnmatch.3.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

If no environment variables are specified via KEY to restrict the match, the condition will match all
instances of the specified event.

See Really understanding start on and stop on for further details.

6.33.1 Normal start

If you are just writing an upstart job that needs to start the service after the basic facilities are up, either of
these will work:

start on (local-filesystens and net-devi ce-up | FACE! =| 0)
or:
start on runl evel [2345]

The difference in whether to use the more generic 'runlevel' or the more explicit local-filesystems(7) and
net - devi ce- up events should be guided by your job's behaviour. If your service will come up without a
valid network interface (for instance, it binds to 0. 0. 0. 0, or uses setsockopt(2) SO_FREEBI ND), then the
runl evel event is preferable, as your service will start a bit earlier and start in parallel with other
services.

However if your service requires that a non-loopback interface is configured for some reason (i.e., it will
not start without broadcasting capabilities), then explicitly saying "once a non loopback device has come
up" can help.

In addition, services may be aggregated around an abstract job, such as net wor k- ser vi ces:
start on started network-services

The network-services job is a generic job that most network services should follow in releases where it is
available. *° This allows the system administrator and/or the distribution maintainers to change the
general startup of services that don't need any special case start on criteria.

We use the started(7) event so that anything that must be started before all network services can do
"start on starting network-services".

6.33.2 Start depends on another service

start on started other-service

6.33.3 Start must precede another service
start on starting other-service
Example: your web app needs nentached to be started before apache:

start on starting apache2
stop on stopped apache2
r espawn

exec /usr/sbin/ mencached

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/local-filesystems.7.html
http://manpages.ubuntu.com/manpages/man2/setsockopt.2.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.34 stop on

This stanza defines the set of Events that will cause the Job to be automatically stopped if it is already
running.

Syntax:
stop on EVENT [[KEY=] VALUE]... [and|or...]
Like the stop on stanza, st art on expects a token to follow on the same line:

ERROR invalid

stop on
f oo or bar
K

stop on foo or bar

See start on for further syntax details.

6.34.1 Normal shutdown

stop on runl evel [016]

19

Or if a generic job is available such as net wor k- servi ces

stop on stoppi ng network-services

6.34.2 Stop before depended-upon service
stop on stopping ot her-service

Note that this also will stop when ot her - servi ce is restarted, so you will generally want to couple this
with the start on condition:

start on started other-service

6.34.3 Stop after dependent service

stop on stopped ot her-service

6.35 task

In concept, a task is just a short lived job. In practice, this is accomplished by changing how the transition
from a goal of "stop" to "start" is handled.

Without the 'task’ keyword, the events that cause the job to start will be unblocked as soon as the job is
started. This means the job has emitted a starting(7) event, run its pre-start, begun its script/exec, and
post-start, and emitted its started(7) event.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

With task, the events that lead to this job starting will be blocked until the job has completely transitioned
back to stopped. This means that the job has run up to the previously mentioned started(7) event, and has
also completed its post-stop, and emitted its stopped(7) event.

Typically, t ask is for something that you just want to run and finish completely when a certain event
happens.

pre-warm nmencache
start on started nentached
t ask

exec /path/to/pre-warm nencached

So you can have another job that starts your background queue worker once the local memcached is
pre-warmed:

queue-wor ker

start on stopped pre-warm nencache
stop on stoppi ng nencached

respawn

exec /usr/l ocal/bin/queue-worker

The key concept demonstrated above is that we "start on stopped pre-warm nencache". This
means that we don't start until the task has completed. If we were to use st art ed instead of st opped,
we would start our queue worker as soon as / pat h/to/ pre-warm nmencached had been started
running.

We could also accomplish this without mentioning the pre-warm in the queue-worker job by doing this:

queue- wor ker

start on started nencached
stop on stoppi ng nencached

respawn

exec /usr/l ocal/bin/queue-worker
pre-warm nmencache

start on starting queue-worker

t ask
exec /path/to/pre-warm mencache

If we did not use "t ask" in the above example, queue-worker would be allowed to start as soon as we
executed / pat h/ t o/ pr e- war m nencache, which means it might potentially start before the cache was
warmed.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.36 unask

Syntax:
umask <val ue>

Set the file mode creation mask for the process. <val ue> should be an octal value for the mask. See
umask(2) for more details.

Example:

unmask 0002

6.37 usage

Brief message explaining how to start the job in question. Most useful for instance jobs which require
environment variable parameters to be specified before they can be started.

Syntax:
usage <string>
Example:

i nstance $DB
usage "DB - nane of database instance"

If a job specifies the usage stanza, attempting to start the job without specifying the correct variables will
display the usage statement. Additionally, the usage can be queried using initctl usage.

6.38 version
Syntax:

version <string>

This stanza may contain version information about the job, such as revision control or package version
number. It is not used or interpreted by init(8) in any way.

Example:

version "1.0. 2a- bet a4"

7 Command-Line Options

The table below lists the command-line options accepted by the Upstart init daemon.

Warning

Under normal conditions, you should not need to specify any command-line options to Upstart. A
number of these options were added specifically for testing Upstart itself and if used without due

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/umask.2.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

care can stop your system from booting (for example specifying --no-start up-event).
Therefore you should be extremely careful specifying any command-line options to Upstart unless
you understand the implications of doing so.

Command-line Options

Added in
Option Name Description Version
- - append- conf di r =Dl | Specify directory to read job configuration files from after | 1.13
R the default(s).
--chroot - sessi ons Enable chroot sessions. 1.13
--confdir=DI R Specify alternate job configuration file directory (System 1.3
Job default: /etc/init/)
- -debug Enable Informational and debug messages 0.1.0
--def aul t-consol e=V | Specify default value for jobs not specifying console 1.4
ALUE (default: none (Upstart < 1.4), else | og)
--help Show usage statement for init 0.1.0
--logdir=DI R Specify alternate log directory (System Job default: 1.4
/var/log/upstart/)
--Nno-cgroups Make the cgroup stanza a NOP. 1.13
- -no- dbus Stop PID 1 connecting to D-Bus system bus 1.11
--no-inherit-env Stop Session Jobs using the Session Init environment 1.7
--no-1| og Disable job logging (all job output is discarded) 1.4
--Nno- sessi ons Disable chroot sessions (name is historical). Removed in | 1.3
Upstart 1.13 (since the default is to disable).
--no-startup- event Disable emitting an event at startup 1.3
- - prepend- conf di r =D | Specify directory to read job configuration files from 1.13
IR before the default(s).
-q ,--quiet Reduce output to errors only 0.1.0
--session Use D-Bus session bus rather than D-Bus system bus 1.3
--startup-event =NAM | Specify an alternative initial event (default: st art up 1.3
E event)
- -user Run a Session Init 1.7
-V ,--verbose Increase output to include informational messages 0.1.0
--version Display version information 0.1.0
Notes:

* An alternative to - - debug and - -verbose is to modify the message level at runtime by using

initctl log-priority.

e - -no-dbus

propagated to the Session Init.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar

effectively makes upstart-event-bridge impotent: no system-level events will be

branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

8 Explanations

8.1 Really understanding start on and stop on

(Note: This section focuses on start on, but the information also applies to stop on unless explicitly
specified).

The start on stanza needs careful contemplation. Consider this example:
start on started nysql

The syntax above is actually a short-hand way of writing:
start on started JOB=nysql

Remember that started(7) is an event which Upstart emits automatically when the nmysql job has started
to run. The whole start on stanza can be summarized as:

start on <event> [<vars_to _match_event on>]

Where <vars_t o_nmat ch_event _on> is optional, but if specified comprises one or more variables.

A slight variation of the above:
start on started JOB=nydb DBNANME=f oobar

This example shows that the fictitious job above would only be started when the mydb database server
brings the f oobar database on-line. Correspondingly, file /etc/init/nydb. conf would need to
specify "export DBNAME" and be started like this:

start nydb DBNAME=f oobar
Looking at a slightly more complex real-life example:

/etc/init/al sa-m xer-save. conf
start on starting rc RUNLEVEL=[06]

This job says,
"Run when ther ¢ job emits the starting(7) event, but only if the
environment variable RUNLEVEL equals either 0 (halt) or 6 (reboot)".

If we again add in the implicit variable it becomes clearer:

/etc/init/al sa-m xer-save. conf
start on starting JOB=rc RUNLEVEL=[06]

But where does the RUNLEVEL environment variable come from? Well, variables are exported in a job
configuration file to related jobs. Thus, the answer is The rc Job.

If you look at this job configuration file, you will see, as deduced:

export RUNLEVEL

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/started.7.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

8.1.1 Therc Job

The r ¢ job configuration file is well worth considering:

letc/init/rc. conf
start on runl evel [0123456]
stop on runl evel [!$RUNLEVEL]

export RUNLEVEL
export PREVLEVEL

consol e out put
env | NI T_VERBOSE

t ask

exec /etc/init.d/rc $RUNLEVEL

It says in essence,

"Run the SysV init script as /etc/init.d/rc $RUNLEVEL when telinit(8) emits the runlevel(7)
event for any runlevel”.

However, note the stop on condition:
stop on runlevel [!$RUNLEVEL]

This requires some explanation. The manual page for runlevel(7) explains that the runl evel event
specifies two variables in the following order:

* RUNLEVEL
The new "goal" runlevel the system is changing to.
* PREVLEVEL

The previous system runlevel (which may be set to an empty value).
Thus, the stop on condition is saying:

"Stop the rc job when the runl evel event is emitted and the RUNLEVEL variable matches
[V $RUNLEVEL] ".

This admittedly does initially appear nonsensical. The way to read the statement above though is:

"Stop the rc job when the runl evel event is emitted and the RUNLEVEL variable is not set to the
current value of the RUNLEVEL variable."

So, if the runlevel is currently "2" (full graphical multi-user under Ubuntu), the RUNLEVEL variable will be
set to RUNLEVEL=2. The condition will thus evaluate to:

stop on runlevel [!2]

This is just a safety measure. What it is saying is:

« if the rc job (which is a short-running Task) is still running when the system changes to a different
runlevel (a runlevel other than "2" here), Upstart will stop it.

« If it is not running when the system changes to a different runlevel, no action will be taken to stop the
job (since it has already stopped).

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/telinit.8.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://www.ubuntu.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

However, note that when the system moves to a new runlevel, Upstart will then immediately re-run the job
at the new runlevel since the start on condition specifies that this job should be started in every runlevel.

Since this job has specified the r unl evel event, it automatically gets access to the variables set by this
event (RUNLEVEL and PREVLEVEL). However, note that these two variables are also exported. The
reason for this is to allow other jobs which start on or stop on the r ¢ job to make use of these variables
(which were set by the r unl evel event).

See runlevel(7) for further details.

8.2 Environment Variables

Upstart allows you to set environment variables which will be accessible to the jobs whose job
configuration files they are defined in. Environment variables are set using the env keyword.

For example:

/etc/init/env.conf
env TESTI NG=123

scri pt
prints "TESTING=' 123'" to system | og
| ogger -t $0 "TESTI NG=' $TESTI NG "

end scri pt

Further, we can pass environment variables defined in events to jobs using the env stanza and the export
stanza. Assume we have two job configuration files, A. conf and B. conf:

/etc/init/A conf
start on wi bble
export foo

/etc/init/B.conf
start on started A
scri pt
| ogger "value of foo is '$foo'"
end scri pt

If we now run the following command, both jobs A and B will run, causing B to write
"val ue of foo is 'bar'"tothe system log:

initctl emt w bble foo=bar

Note that a variables value can always be overridden by specifying a new value on the command-line. For
example:

start on w bble
env var=hello

scri pt

| ogger "value of var is '$var'"
end scri pt

When we emit the required event...:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

initctl emt w bble var=world
... the system log will have recorded:
value of var is "world'

Note that a Job Configuration File does not have access to a user's environment variables, not even the
superuser. This is not possible since all job processes created are children of i nit which does not have
a user's environment.

However, using the technique above, it is possible to inject a variable from a user's environment into a job
indirectly:
initctl emt w bble foo=bar USER=$USER

As another example of environment variables, consider this job configuration file 20,

env var =bar
export var

pre-start script
| ogger "pre-start: before: var=$var"

var=pre-start
export var

| ogger "pre-start: after: var=$var"
end script

post-start script
| ogger "post-start: before: var=$var"

var =post -start

export var

| ogger "post-start: after: var=$var"
end script

scri pt
| ogger "script: before: var=$var"

var =mai n
export var

| ogger "script: after: var=$var"
end script

post-stop script

| ogger "post-stop: before: var=$var"
var =post - st op
export var

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

| ogger "post-stop: after: var=$var"
end scri pt

This will generate output in your system log as follows (the timestamp and hostname have been removed,
and the output formatted to make it clearer):

| ogger: pre-start: before: var=bar
| ogger: pre-start: after: var=pre-start

| ogger: post-start: before: var=bar
| ogger: post-start: after: var=post-start

| ogger: script: bef ore: var=bar
| ogger: script: after: var=main

| ogger: post-stop: Dbefore: var=bar
| ogger: post-stop: after: var=post-stop

As shown, every script section receives the value of $var as bar, but if any script section changes the
value, it only affects that particular script sections copy of the variable. To summarize:

A script section cannot modify the value of a variable defined in a job configuration file for other script
sections.

8.2.1 Restrictions

Environment variables do not expand in start on or stop on conditions:

env FOO=bar
start on $FQO

This will start the job in question when the "$FQO' event is emitted, not when the event "bar" is emitted:

job above *NOT* started
initctl emt bar

job above started!
initctl emt '$FOO

Similarly, the following will not work:

start on starting $FQO
start on starting JOB=$FCO

8.2.2 Standard Environment Variables

The table below shows all variables set by Upstart itself. Note that variables prefixed by "UPSTART " are
variables set within a jobs environment, whereas the remainder are set within an events environment (see
the following table).

Upstart Environment Variables.

Variable Brief Description Details

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

EXI T_SI GNA | Signal causing job to | String such as "HUP" or "TERM', or numeric for unknown

L exit signals

EXI T_STATU | Exit code of job

S

I NSTANCE Instance name of Variable set but with no value if instance stanza not specified
$JOB

JOB Name of job

PROCESS Name of Job "mai n", "pre-start", "post-start", "pre-stop",
process type "post - st op" or "r espawn”

RESULT Whether job was "ok" or "f ai | ed"
successful

UPSTART_EV | Events that caused Space-separated. Event environment not provided

ENTS job to start

UPSTART_FD | File descriptor Number of the file descriptor corresponding to the listening

S socket-event(7) socket

UPSTART_I N | Instance name of

STANCE $UPSTART_JOB

UPSTART_JO | Name of current job

B

UPSTART_SE | Session Init D-Bus Allows initctl command to communicate with the appropriate

SSI ON socket Session Init

UPSTART_ST | Events that caused Space-separated. Event environment not provided

OP_EVENTS job to stop

The following table lists the variables from the table above which are set when job events are emitted, and

which are thus available from within a jobs environment.

Environment Variables by Event.

Event

Variables Set in Event Environment

starting(7)

* | NSTANCE
+JOB

started(7)

* | NSTANCE
+JOB

stopping(7)

* | NSTANCE
*+JOB

* RESULT

* PROCESS *

o EXI T_STATUS t
*EXIT_SIGNAL T

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar

branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/socket-event.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

stopped(7) « | NSTANCE

+JOB

* RESULT

* PROCESS *

o EXI T_STATUS t
* EXIT_SIGNAL T

Notes that some variables (those marked with *' and 't") are only set when the job fails:

» PROCESS will always be set.

* Either EXI T_STATUS or EXI T_SI GNAL will be set.
Note carefully the distinction between JOB and UPSTART_JOB. If a job "bar . conf " specifies a start on

condition of:

start on starting foo

and does not specify the instance stanza, when job "f 00" starts, the environment of the "bar " job will
contain:

JOB=f 00
UPSTART _JOB=bar

UPSTART EVENTS=starting
| NSTANCE=

8.3 Job with Multiple Duplicate Stanzas

The way in which Upstart parses the job configuration files means that "the last entry wins". That is to say,
every job configuration file must be syntactically correct, but if you had a file such as:

start on event-A
start on starting job-B
start on event-C or starting job-D

This job will have a start on condition of:
start on event-C or starting job-D

...since that is the last start on condition specified.

For start on, stop on and emts stanzas, you can confirm Upstart's decision, you can use the
initctl show config command like this:

initctl show config nyjob
For the example above, the output would be:

start on event-C or starting job-D

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

8.4 Job Specifying Same Condition in start on on stop on
See Ordering of Stop/Start Operations.

9 Features

9.1 D-Bus Service Activation

As of D-Bus version 1.4.1-Oubuntu2 (in Ubuntu), you can have Upstart start a D-Bus service rather than
D-Bus. This is useful because it is then possible to create Upstart jobs that start or stop when D-Bus
services start.

See Run a Job When a User Logs in for an example.

10 Tools

Upstart provides a number of additional tools to:

* help manage your system

« create Upstart events from other sources

10.1 Utilities

10.1.1 rel oad

Symbolically linked to initctl, causing the following to be run:
initctl reload <job>

This will send a running job the SI GHUP signal. By convention, daemons receiving this signal reload their
configuration or in some way re-initialize themselves (keeping the same PID).

10.1.2 restart

Symbolically linked to initctl, causing the following to be run:
initctl restart <job>

Stops and then starts a job.

Note that rest art is not the same as running stop followed by start since the restart command will
retain the original job configuration whereas stopping the job and restarting it will load the latest job
configuration from disk.

Further note that if the job contains post-stop, pre-start or post-start stanzas, these will NOT be run for a
restart. However, a pre-stop stanza will be run.

10.1.3 runl evel

See Runlevels.

10.1.4 start

Symbolically linked to initctl, causing the following to be run:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://dbus.freedesktop.org
http://upstart.ubuntu.com
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://upstart.ubuntu.com
http://dbus.freedesktop.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

initctl start <job>

Starts a job.

10.1.4.1 Attempting to Start an Already Running Job

If you try to start a job that is already running and which does not specify the instance stanza, you will get
the following error:

start nyjob
start: Job is already running: mnyjob

10.1.4.2 Attempting to Start a Job that requires an Instance Variable

If you try to start a job that specifies the instance stanza, you will need to specify the appropriate variable.
If you do not, you will get an error. For example, assuming nyj ob. conf specified i nst ance $f oo:

start nyjob
start: Unknown paraneter: foo

To resolve this, specify some value for the variable in question:
start nyjob foo="hello, world"

10.1.5 stop

Symbolically linked to initctl, causing the following to be run:
initctl stop <job>

Stops a job.

10.1.5.1 Attempting to Stop an Already Stopped Job

If you try to stop a job that is not running, you will get the following error:

stop nyjob
stop: unknown i nstance

10.1.5.2 Attempting to Stop a Job that requires an Instance Variable

If you try to stop a job that specifies the instance stanza without specifying the particular instance you wish
to stop, you will get an error:

stop nyjob
stop: Unknown paramneter: foo

To resolve this, specify the value for the variable in question:

stop nyjob foo=...

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Where ". . . " must be replaced by a legitimate value for one of the instances as specified in the output of
"initctl status nyjob".

10.1.6 initctl

This is the primary command used by users and Administrators to interact with Upstart.

*Runinitctl hel p tosee the available commands.

*Runinitctl --help tosee the overall options available.

*Runinitctl <conmand> --hel p to see options for the specified command.
Commands to manipulate jobs:

* reload

* restart

* start

* stop

10.1.6.1 initctl Commands Summary

Summary of initctl commands

Added in
Command Description Version
initctl check-config Check for unreachable jobs/event conditions 1.3
initctl emit Emit an event 0.3.0
initctl get-env Retrieve a variable from the job environment table 1.7
initctl help Display list of commands 0.3.0
initctl list List known jobs 0.2.0
initctl list-env List job environment table 1.7
initctl list-sessions List running User Sessions 1.7
initctl log-priority Change the minimum priority of log messages 0.3.8
displayed by the init daemon

initctl Inform Upstart of address of cgroup manager 1.13
notify-cgroup-manager-address

initctl notify-disk-writeable Inform Upstart that disk is now writeable 15
initctl reload Send HUP signal to job 0.6.5
initctl reload-configuration Reload the configuration 0.6.0
initctl restart Restart job 0.6.0
initctl reset-env Revert the the job environment table to its default 1.7

values

initctl set-env Store a variable from the job environment table 1.7
initctl show-config Show emits, start on and stop on details for job(s) 1.3
initctl start Start job 0.1.0

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

initctl status Query status of job 0.1.0
initctl stop Stop job 0.1.0
initctl unset-env Remove a variable from the job environment table 1.7
initctl usage Show job usage message if available 15
initctl version Request the version of the init daemon 0.3.8

10.1.6.2 initctl check-config

The initctl check-config command can be used to check that the events and jobs a job
configuration file references are "known" to the system. This is important, since if a System Administrator
were to inadvertently force the removal of a package, or inadvertently delete a critical job configuration
file, the system may no longer boot. Usage is simple:

$ # search all job configuration files for "unreachabl e" conditions
$ initctl check-config

$ # search specified job configuration file for unreachable conditions
$ initctl check-config <job>

Some job configuration files -- such as pl ynout h. conf -- have complex start on conditions which look
for any of a number of jobs. As long as one valid set of events can be satisfied, check- confi g will be
happy. However, to see if it found any missing jobs or events, specify the - - war n option. Note that the
first invocation returns no output, denoting that no problems have been found:

$ initctl check-config plynouth
$ initctl check-config --warn plynouth
pl ynout h
start on: unknown job uxl aunch
start on: unknown job |ightdm
start on: unknown job | xdm
start on: unknown job xdm
start on: unknown job kdm
$

Note that this is not an error condition since although check- confi g cannot satisfy any of these jobs, it
can satisfy the overall configuration for pl ynmout h (by the gdm job - see pl ynout h. conf on Ubuntu).
Note that the check- confi g command relies on the emits stanza to be correctly specified for each job
configuration file that emits an event (see init(5)). See also 30,

10.1.6.3 initctl emt

Generates an arbitrary event.

Example:

initctl emt hello-world

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man5/init.5.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Important

If you attempt to emit an event and it blocks (appears to hang), this is because there are other jobs
which have a start on or stop on condition which contains this event. See Event Types for further
details.

10.1.6.4 initctl get-env
Retrieve value of a job environment variable. See Job Environment.
Example:

$ initctl get-env foo

bar
$

10.1.6.5 initctl help

Displays a listof i ni tct| commands.

10.1.6.6 initctl I|ist

The | i st command simply aggregates the status of all job instances. See initctl status.

Examples:
show all Session Jobs
$ initctl |ist

show al |l System Jobs
initctl --systemli st

&+ H*

10.1.6.7 initctl list-env

Show all variables in the job environment table. See Job Environment.
Note that all Session Jobs inherit the environment of the Session Init.
Note:

* In Upstart 1.7 and 1.8 the job environment table only contained variables explicitly set by initctl
set-env.

* In Upstart 1.9 and above, the job environment table contains all variables inherited by the Session
Init.

10.1.6.8 initctl |ist-sessions

List all running sessions being managed by a Session Init. The format of this command is:
<pi d> <socket >

Where <pi d> is the process ID of the running Session Init instance and <socket > is the private D-Bus
socket address the Session Init listens on.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.1.6.9 initctl log-priority

To change the priority with which Upstart logs messages to the system log, you can change the log
priority at any time using | og- pri ority command as follows:

initctl log-priority <priority>

Where <pri ority> may be one of:

» debug
*info

* nessage
swarn
eerror

« fatal
For example:

same as "--verbose"
$ sudo initctl log-priority info

same as "--debug"
$ sudo initctl log-priority debug

The default priority is message:

$ initctl log-priority
message

If the log-priority is changed, it can be reverted to the default like this:

return to default val ue
$ sudo initctl log-priority message

Note that you will need to check the configuration for your system logging daemon (generally syslog(3) or
rsyslogd(8)) to establish where it logs the output.

the output of these options is handled by your systems look at the particular daemons configuration to
know where to find the output.

For a standard Ubuntu Maverick (10.10) system, the output will be sent to file / var/ | og/ daenon. | og,
whilst on newer Ubuntu systems such as Ubuntu Natty (11.04), the output will be directed to file
/var/| og/ sysl og.

10.1.6.10 initctl notify-cgroup-manager-address

Command to inform Upstart of the address the cgroup manager is listening on. See cgmanager(8).

10.1.6.11 initctl notify-disk-witeable
Command that is used to notify Upstart that the log disk is writeable 1

This is an indication to Upstart that it can flush the log of job output for jobs that ended before the log disk
became writeable. If logging is enabled, this command must be called once the disks become writeable.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man3/syslog.3.html
http://manpages.ubuntu.com/manpages/man8/rsyslogd.8.html
http://manpages.ubuntu.com/manpages/man8/cgmanager.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.1.6.12 initctl rel oad

Causes the SI GHUP signal to be sent to the main job process since this signal is commonly used to
inform an application to re-initialize itself. Note that the jobs associated Job Configuration File is not
re-read.

10.1.6.13 initctl rel oad-configuration

Force the init daemon to reload its configuration files.

It is generally not necessary to call this command since the init daemon watches its configuration
directories with inotify(7) and automatically reloads in cases of changes.

Note that no jobs will be started by this command.

10.1.6.14 initctl reset-env
Applies to Session Jobs only.

Return the job environment table to its default values. See Job Environment.

10.1.6.15 initctl restart

Cause the associated job to be killed and respawned. Note that this does not cause the job to re-read its
Job Configuration File: to force this, stop the job and then start it.

10.1.6.16 initctl set-env

Applies to Session Jobs only.

Adds or updates a variable in the job environment table. See Job Environment.

Note that as of upstart 1.13, multiple name/value pairs may be specified.

Example:

$ initctl set-env foo='hello world

10.1.6.17 initctl showconfig

Theinitctl show config command can be used to display details of how Upstart has parsed one or
more job configuration files. The command displays the start on, stop on and emits stanzas. This might
seem rather pointless, but it is extremely useful since:

» The command will fully-bracket all start on and stop on conditions.

This shows how Upstart has parsed complex conditions. For example, if job myj ob specified a start
on condition:

start on starting a or b and stopping c or d

The command would return:

nyj ob:
start on (((starting a or b) and stopping c) or d)

» The command can produce machine parseable output showing the types of entities by specifying the
"- - enuner at e" option.

For example, the job above would be displayed as:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/inotify.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

nyj ob
start on starting (job: a, env:)
start on b (job:, env:)
start on stopping (job: c, env:)
start on d (job:, env:)

Thus,

* a is ajob (with triggering event starting(7)).
*b is an event.
e ¢ is ajob (with triggering event stopping(7)).

«d is an event.
* The command shows the environment for the events.

Assuming a (ridiculous) start on condition of:

start on event-a foo=bar a=b ¢=22 d="hell o worl d" or stopped job-a e=123 f=blah or h

Then:

$ initctl showconfig --enunerate nyjob
myj ob
start on event-a (job:, env: foo=bar a=b c=22 d=hell o world)
start on stopped (job: job-a, env: e=123 f=Dbl ah)
start on hello (job:, env: world=2a)
start on starting (job: foo, env: foo=fo00)

As shown, this makes the condition (slightly!) easier to understand:

e event - a is an event with 4 environment variables:
 f oo=bar
*a=b
e Cc=22
ed=hello world

*j ob- a is ajob with triggering event stopped(7) and 2 environment variables:
«e=123
 f=bl ah

* hel | o is an event with 1 environment variable:

«wor | d=2a
« f 00 is ajob with triggering event starting(7) and 1 environment variable:

29 * f oo=f 00
See also “°.

10.1.6.18 initctl start

Start the specified job or job instance.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.1.6.19 initctl status
The status(8) command shows the status of all running instances of a particular job.

Prior to Upstart 1.7, running this command as a non-privileged user would list both System Jobs and User
Jobs (see System Job and User Job). However, as of Upstart 1.7, if this command (or initctl list) is run
from within a session, it will only list Session Jobs.

To see system jobs from within a session, specify the "- - syst enf command-line option like this:

show Sessi on Jobs
$ initctl status myjob

show System Jobs
$ initctl --system sonejob

The format of the output can be summarized as follows:

<job> [(<instance>)]<goal >/ <status>[, process <Pl D>]
[<secti on> process <Pl D>]

Considering each field:

* <j ob> is the name of the job

Essentially, this is the name of the job configuration file, less the path and without the ". conf ™"
extension. Thus, /et c/init/ myjob. conf would display as "nyj ob".

» <i nst ance> is the job instance.
See instance and Determining How to Stop a Job with Multiple Running Instances.
» <goal >

Every job has a goal of either st art or st op where the goal is the target the job is aiming for. It
may not achieve this target, but the goal shows the "direction” the job is heading in: it is either trying
to be started, or be stopped.

« When a Task Job starts, its goal will be st art and once the task in question has completed,
Upstart will change its goal to st op.

« When a Service Job starts, its goal will be st art and will remain so until either the jobs stop
on condition becomes true, or an Administrator manually stops the job using stop.

e <st at us>
The job instances status. See Job States.
» <PI D> is the process ID of the running process corresponding to <j ob>.
See ps(1).
e<section> isascript orexec section (such as pre- stop).
Lets look at some examples...

10.1.6.19.1 Single Job Instance Running without PID

Here is the summarised syntax:
<j ob> <goal >/ <st at us>

Example:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/status.8.html
http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

ufw start/runni ng

You may be forgiven for thinking this rather curious specimen is an Abstract Job. Although you cannot
determine the fact from the output above, this job is not an abstract job. If you look at its job configuration
file /et c/init/ ufw conf, you'll see the following:

description "Unconplicated firewal | "

Make sure we start before an interface receives traffic
start on (starting network-interface

or starting network-manager

or starting networking)

stop on runl evel [!023456]
consol e out put

pre-start exec /lib/ufwufwinit start quiet
post-stop exec /lib/ufwufwinit stop

Notice the last two lines above. The firewall job configuration file has a pre-start section and a post-stop
section, but no scri pt or exec section. So, once Upstart has run the pre-start command and the job is
"running”, it won't actually have a PID (since the pre-start command will have finished and there is no
further command to run until the job stops).

10.1.6.19.2 Single Job Instance Running Job with PID

A single instance of a running job can be summarized like this:
<j ob> <goal >/ <st at us>, process <Pl D>

This is possibly the "most common case" of jobs you will see. For example:
cups start/runni ng, process 1733

Where:
*<job> is"cups" (/etc/init/cups.conf).
e<goal > is"start"
e <status> is"runni ng"
e <process> is"1733" (as shown by ps(1)).
10.1.6.19.3 Single Job Instance Running with Multiple PIDs

This can be summarized as:

<j ob> <goal >/ <st at us>, process <Pl D>
<secti on> process <Pl D>

For example:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

ur eadahead stop/ pre-stop, process 227
pre-stop process 5579

What is going on here? Picking this apart we have:

e ur eadahead isthejob (/ et c/i ni t/ ureadahead. conf).
» st op is the goal (job is trying to stop).
* pre-st op is the job status (it is running the pre-stop section as PID 5579).

ethe scri pt orexec stanzais also running under PID 227. See pre-stop for further details.

10.1.6.19.4 Multiple Running Job Instances Without PID

Summary:

<j ob> (<instance>) <goal >/ <status> (<instance>)
<j ob> (<instance>) <goal >/ <status> (<instance>)

A job with multiple instances might look a little strange initially. Here is an example:

network-interface (1 o) start/running
network-interface (ethQ) start/running

Where:

*network-interface isthejob (/etc/init/network-interface.conf).

* job instances are:

elo

e ethO
estart isthe goal (job instances are currently running).

e runni ng is the job status (it is running).
A slightly more complex example:

net wor k-i nt erface-security (network-nanager) start/running

net wor k-i nterface-security (network-interface/ethQ) start/running
net wor k-i nterface-security (network-interface/lo) start/running
net wor k-i nterface-security (networking) start/running

Where:

enetwork-interface-security is the job
(/etc/init/network-interface-security.conf).

* job instances are:

e net wor k- manager
enetwork-interface/ethO
enetwork-interface/lo

e net wor ki ng
estart isthe goal (job instances are currently running).

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

e runni ng is the job status (it is running).
Let's look at the main elements of the corresponding job configuration file:

start on (starting network-interface
or starting network-nanager
or starting networking)

i nstance JOB{| NTERFACE: +/ } ${ | NTERFACE: - }

pre-start script
...
end scri pt

Again, this job has no scri pt or exec section, but it does have a pre-start script section. Also, note the
interesting instance stanza. This explains the rather odd-looking instance names listed above.
10.1.6.19.5 Multiple Running Job Instances With PIDs

Summary:
<j ob> (<i nstance>) <goal >/ <status> (<instance>), process <Pl D>
For example:

foo (1) start/running, process 30003
foo (hello 1,2,3) start/running, process 30008

Where:

«foo isthejob (/etc/init/foo.conf).
estart isthe goal (it is not trying to stop).
e runni ng is the job status (it is running).

* instances are:

1 (PID 30003)
*hello 1,2,3 (PID30008)
10.1.6.19.6 Multiple Running Job Instances With Multiple PIDs

Summary:

<j ob> (<instance>) <goal >/ <status> (<instance>), process <Pl D>
<section> process <Pl D>

For example:

nmyj ob (foo) stop/pre-stop, process 31677
pre-stop process 31684

nmyj ob (bar) stop/pre-stop, process 31679
pre-stop process 31687

nmyj ob (bzr) stop/pre-stop, process 31681
pre-stop process 31690

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Where:

*nyjob isthejob (/ etc/init/nmyjob. conf).
» st op is the goal (job is trying to stop).
* pre-stop isthe job status (it is running the pre-stop section for each instance).

* instances are:

«foo (PID 31677, with pre-stop PID 31684)
«bar (PID 31679, with pre-stop PID 31687)

*baz (PID 31681, with pre-stop PID 31690)
It is instructive to see how we got to the output above. Here is the job configuration file:

i nstance $f oo
exec sl eep 999

pre-stop script
sl eep 999
end scri pt

We then started three instances like this:
for i in foo bar baz; do start -n nyjob foo=%$i; done
Note we used the "- n" option to start to ensure we didn't have to wait for each instance to complete
before starting the next.
Now all three instances are running:
initctl list|grep -A 1 "inst
nyjob start/running (foo), process 31677

nyjob start/running (bar), process 31679
nyjob start/running (baz), process 31681

To trigger the pre-stop, we need to stop the instances:

for i in foo bar baz; do stop -n nyjob foo=$i; done
myj ob (foo) stop/pre-stop, process 31677
pre-stop process 31684
myj ob (bar) stop/pre-stop, process 31679
pre-stop process 31687
myj ob (baz) stop/pre-stop, process 31681
pre-stop process 31690

Now, running initctl will show the output at the start of this section.

10.1.6.19.7 Stopped Job

Summary:

<j ob> <goal >/ <st at us>

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

A job that is not running (has no instances):
rc stop/waiting

Where:
erc isthejob (/etc/init/rc.conf).
* st op is the goal (it is not trying to start).
*wai ti ng is the job status (it is not running).
10.1.6.20 initctl stop

Stop the specified job or job instance.

10.1.6.21 initctl unset-env

Applies to Session Jobs only.

Discards the specified variable from the job environment table. See Job Environment.

Note that as of Upstart 1.9, any variable inherited from when the Session Init starts can be unset.

Note that as of Upstart 1.13, multiple name/value pairs may be specified.
10.1.6.22 initctl usage
This command allows the usage for a job to be queried:

$ initctl usage <job>

Note that if a job is specified which does not use the usage stanza, no usage will be displayed.

10.1.6.23 initctl version

Display the version of the init daemon. To display the version of i ni t ct| itself, run:

initctl --version

10.1.7 init-checkconf

The init-checkconf script performs checks on a job configuration file prior to installing it in
/etclinit/.The script must be run as a non-r oot user for all versions prior to that provided by Upstart
1.12.

To ensure that you haven't misused the Upstart syntax, use the i ni t - checkconf command:
$ init-checkconf nyjob. conf
See init-checkconf(8) for further details.

10.1.8 upstart-nonitor
Added in Upstart v1.8 (requires at least Upstart v1.7).
The upst art - noni t or is a utility that is used to display Upstart events as they are emitted.

It is useful to:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/init-checkconf.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

» Understand how Upstart is managing your system jobs.
» Understand how a Session Init is managing your session jobs.

 Determine the start on and stop on conditions for jobs you are creating.
The utility can run either as a command-line (CLI) application:

It can also run as as a GUI:

If the required GUI libraries are not available, it will automatically run in CLI mode.

10.1.9 rmountall (e,.)
NOTE: mountall(8) is a Debian and Ubuntu specific extension.

The nount al | daemon is the program that mounts your filesystems during boot on an Ubuntu system. It
does this by parsing both / et c/fstab and its own fstab file /1i b/init/fstab, and mounting the
filesystems it finds listed. Additionally, it handles running fsck(8).

See fstab(5).

10.1.9.1 Mountall events

Mountall also emits a number of useful events. For every filesystem it determines needs to be mounted, it
will emit up to 2 events:

e nmounti ng

* nount ed

Additional to the couplet above, nount al I also emits the following "well-known" events. The sections
below provide details.

The mount al I daemon is unusual in emitting such a number of events. However, it does this to provide
as much flexibility as possible since making disks and filesystem available is such an important part of the
boot process (and a lot of other jobs need to be notified when certain mounts become available).
10.1.9.1.1 nounti ng

Emitted when a particular filesystem is about to be mounted.

See mounting(7).

10.1.9.1.2 nount ed
Emitted by when a particular filesystem has been mounted successfully.
Note that if a filesystem failed to mount, no corresponding nount ed event will be emitted.

See mounted(7).

10.1.9.12.3 al | - swaps

Emitted when all swap devices are mounted.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://www.debian.org
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/fsck.8.html
http://manpages.ubuntu.com/manpages/man5/fstab.html
http://manpages.ubuntu.com/manpages/man7/mounting.7.html
http://manpages.ubuntu.com/manpages/man7/mounted.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

See all-swaps(7).

10.1.9.1.4 filesystem

Emitted after mountall (debian-and-ubuntu-specific) has mounted (or at least attempted to mount) all

filesystems.

See filesystem(7).

10.1.9.1.5 virtual -fil esystens
Emitted after the last virtual filesystem has been mounted.

See virtual-filesystems(7).

10.1.9.1.6 local -fil esystens
Emitted after the last local filesystem has been mounted.

See local-filesystems(7).

10.1.9.1.7 renote-fil esystens

Emitted after the last remote filesystem has been mounted.

See remote-filesystems(7).

10.1.9.2 Mountall Event Summary

| mounti ng MOUNTPO NT=/virtual -1
| mounted MOUNTPO NT=/virtual -1
| :

| mounti ng MOUNTPO NT=/vi rtual -n
| mounted MOUNTPO NT=/virtual -n
| virtual -fil esystens

mount i ng TYPE=swap |
mounted TYPE=swap |
al | - swaps |

| mounti ng MOUNTPO NT=/1ocal -1 | nounti ng MOUNTPO NT=/renote-1 |

| mounti ng MOUNTPO NT=/1ocal -n | nounti ng MOUNTPO NT=/renote-n |
| mounted MOUNTPO NT=/1ocal -n | nounted MOUNTPO NT=/renote-n |

|
|
|
|
|
| mounted MOUNTPO NT=/1ocal -1 | nounted MOUNTPO NT=/renote-1 | |
|
|
|
|

| I ocal -fil esystens | remote-fil esystens

The diagram above shows the different event flows when mount al |

runs. Note in particular that columns

should be considered as independent "threads" of execution (can happen at any time and independently),
and rows are sequential: rows lower down the chart occur at at later time than those higher up the chart.

Notes on nount al | event emission:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/all-swaps.7.html
http://manpages.ubuntu.com/manpages/man7/filesystem.html
http://manpages.ubuntu.com/manpages/man7/virtual-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/local-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/remote-filesystems.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 swap partitions are processed at any time.
« virtual filesystems are processed at any time.

« virtual filesystems are processed before local or remote filesystems (regardless of their ordering
in/etc/fstab).

« local and remote filesystems are mounted at any time after the last virtual filesystem has been
mounted.

See mounting(7) and mounted(7). For a concise summary of all available events generated by nount al | ,
see upstart-events(7).

10.1.9.3 nountal | Examples

The examples which follow were generated using the following job configuration file
/etc/init/get_mountall.conf:

start on (local-fil esystens
or (rmounting
or (nmounted
or (virtual-fil esystens
or (renote-fil esystens
or (all-swaps or filesystem)))))

scri pt
echo "\n'env'" >> /dev/.initranfs/nmountall.l og
end scri pt

Script output:

MOUNTPQO NT=/ pr oc

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=nodev, noexec, nosui d

TYPE=pr oc

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=pr oc

MOUNTPQO NT=/ sys/ f s/ fuse/ connecti ons

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=opt i onal

TYPE=f usect |

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=f usect |

MOUNTPQO NT=/ dev/ pt s
UPSTART _| NSTANCE=
UPSTART _JOB=get nount al |

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/mounting.7.html
http://manpages.ubuntu.com/manpages/man7/mounted.7.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=noexec, nosui d, gi d=tty, nnde=0620

TYPE=devpt s

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=none

MOUNTPO NT=/ sys/ ker nel / debug

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=opt i onal

TYPE=debugf s

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=none

MOUNTPO NT=/ sys/ kernel / security

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=opt i onal

TYPE=securityfs

UPSTART EVENTS=npunt i ng

PWD=/

DEVI CE=none

MOUNTPO NT=/ sys/ kernel / security

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIl ONS=opt i onal

TYPE=securityfs

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=none

MOUNTPO NT=/ dev/ shm

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=nosui d, nodev

TYPE=t npf s

UPSTART EVENTS=npunt i ng

PWD=/

DEVI CE=none

MOUNTPO NT=/ dev/ shm
UPSTART | NSTANCE=

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=nosui d, nodev

TYPE=t npf s

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=none

MOUNTPO NT=/ var/ run

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=npde=0755, nosui d, showt hr ough

TYPE=t npf s

UPSTART EVENTS=npunt i ng

PWD=/

DEVI CE=none

MOUNTPO NT=/ var/ run

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=npde=0755, nosui d, showt hr ough

TYPE=t npf s

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=none

MOUNTPO NT=/ var /| ock

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=nodev, noexec, nosui d, showt hr ough

TYPE=t npf s

UPSTART EVENTS=npunt i ng

PWD=/

DEVI CE=none

MOUNTPO NT=/ var /| ock

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=nodev, noexec, nosui d, showt hr ough

TYPE=t npf s

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=none

MOUNTPOI NT=/l i b/init/rw

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=npde=0755, nosui d, opt i onal

TYPE=t npf s

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=none

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART EVENTS=virtual -fil esystens

PWD=/

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART EVENTS=renote-fil esystens

PWD=/

MOUNTPO NT=none

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIl ONS=sw

TYPE=swap

UPSTART EVENTS=npunt i ng

PWD=/

DEVI CE=/ dev/ di sk/ by- uui d/ b67802dc- 35f 9- 4153- 9957- ef 04c7af 6alf

MOUNTPO NT=none

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIl ONS=sw

TYPE=swap

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=/ dev/ di sk/ by- uui d/ b67802dc- 35f 9- 4153- 9957- ef 04c7af 6alf

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART _EVENTS=al | - swaps

PWD=/

MOUNTPQO NT=/

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=errors=renount-ro

TYPE=ext 4

UPSTART EVENTS=npunt i ng

PWD=/

DEVI CE=/ dev/ di sk/ by- uui d/ b68c4bc0- 6342-411c- 878a- a576b3a255b3

MOUNTPO NT=/

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=errors=renount-ro

TYPE=ext 4

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=/ dev/ di sk/ by- uui d/ b68c4bc0- 6342-411c- 878a- a576b3a255b3

MOUNTPQO NT=/t np

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=def aul t s

TYPE=none

UPSTART EVENTS=npunt i ng

PWD=/

DEVI CE=none

MOUNTPO NT=/t np

UPSTART | NSTANCE=

UPSTART _JOB=get _nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTI ONS=def aul t s

TYPE=none

UPSTART _EVENTS=npunt ed

PWD=/

DEVI CE=none

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART EVENTS=l ocal -fil esystens

PWD=/

UPSTART | NSTANCE=

UPSTART _JOB=get nount al |

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

UPSTART _EVENTS=fi | esystem
PWD=/

10.2 Bridges

Bridges react to events from some other (non-Upstart) source and create corresponding Upstart events.

Summary of available bridges.

Bridge Added in Version

upstart-dbus-bridge 1.9

upstart-dconf-bridge 1.10

upstart-event-bridge 1.7

upstart-file-bridge 1.8

upstart-local-bridge 1.10

upstart-socket-bridge 1.3 (bundled for first time)
upstart-udev-bridge 1.3 (bundled for first time)

10.2.1 pl ynmout h-upstart-bridge (.)

The pl ynout h-upstart-bridge is an Ubuntu-specific facility to allow Plymouth to display Upstart
state changes on the boot splash screen.

See the Plymouth Ubuntu wiki page for more information on Plymouth.

10.2.2 upstart-socket-bridge

The Upstart socket bridge is an out-of-process application that "listens” for jobs that announce they
"start on socket". The bridge arranges for the jobs in question to be started automatically at the point
the first client connection is made on the socket specified in their start on condition. See socket-event(7).

This is a useful "lazy" facility in that it allows for applications which are expensive to load to be started "on
demand" rather than simply at some point on every boot: if you have no customers to your web site one
day, there is probably no point in starting your database server. The downside to using the bridge being
that the first client connection will probably be slower than subsequent connections to allow the application
time to start.

Supported socket types:
* Unix sockets.
* Abstract sockets.
* IPv4 sockets.

* IPv6 sockets (requires version provided with Upstart 1.12, or above).

10.2.3 upstart-udev-bridge

The Upstart udev(7) bridge creates Upstart events from udev events. As documented in
upstart-udev-bridge(8), Upstart will create events named:

<subsyst enr- devi ce- <acti on>

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.ubuntu.com
http://www.freedesktop.org/wiki/Software/Plymouth
http://upstart.ubuntu.com
https://wiki.ubuntu.com/Plymouth
http://manpages.ubuntu.com/manpages/man7/socket-event.7.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/udev.7.html
http://manpages.ubuntu.com/manpages/man8/upstart-udev-bridge.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Where:

e <subsyst en® is the udev subsystem.
e <acti on> is the udev action.
Upstart maps the three actions below to new names, but any other actions are left unmolested:
» add becomes added
» change becomes changed

» del et ed becomesrenoved
To see a list of possible Upstart events for your system:

for subsystemin /sys/class/*

do
for action in added changed renoved
do
echo "${subsystent-device-${action}"
done
done

Alternatively, you could parse the following:
udevadm info --export-db

To monitor udev events:
$ udevadm nonitor --environnent

And now for some examples...

If ajobj ob- A specified astart on condition of:
start on (graphics-devi ce-added or drm devi ce-added)
To see what sort of information is available to this job, we can add the usual debugging information:

start on (graphi cs-devi ce-added or drm devi ce-added)

scri pt
echo "“env'" > /dev/.initranfs/job-A I|og
end script

Here is an example of the log:

DEV_LOG=3

DEVNAME=/ dev/ f b0

UPSTART _| NSTANCE=

ACTI ON=add

SEQNUME1176

MAJOR=29

KERNEL=f b0

DEVPATH=/ devi ces/ pl at f ormf ef i f b. O/ gr aphi cs/ f b0
UPSTART _JOB=j ob- A

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

TERMEI i nux

SUBSYSTEM=gr aphi cs

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
M NOR=0

UPSTART _EVENTS=gr aphi cs- devi ce- added

PWD=/

PRI MARY_DEVI CE_FOR DI SPLAY=1

Another example specifyinga start on containing net - devi ce- added:

| D_BUS=pci

UDEV_LOG=3

UPSTART | NSTANCE=

| D VENDOR FROM DATABASE=Real t ek Sem conductor Co., Ltd.
ACTI ON=add

SEQNUM=1171

MATCHADDR=52: 54: 00: 12: 34: 56

| FI NDEX=2

KERNEL=et h0

DEVPATH=/ devi ces/ pci 0000: 00/ 0000: 00: 03. 0/ net / et hO
UPSTART _JOB=j ob- A

TERMEL i nux

SUBSYSTEM=net

| D MODEL_| D=0x8139

PATH=/ usr /| ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
| D_ MM CANDI DATE=1

| D MODEL _FROM DATABASE=RTL- 8139/ 8139C/ 8139C+
UPSTART EVENTS=net - devi ce- added

| NTERFACE=et h0

PWD=/

MATCHI FTYPE=1

| D VENDOR | D=0x10ec

Plugging in a USB webcam will generate an i nput - devi ce- added event:

DEV_LOG=3

DEVNAME=/ dev/ i nput / event 12

UPSTART_| NSTANCE=

ACTI ON=add

SEQNUM=2689

XKBLAYOUT=ghb

MAJOR=13

| D_I NPUT=1

KERNEL=event 12

DEVPATH=/ devi ces/ pci 0000: 00/ 0000: 00: 1d. 0/ usbh2/2-1/2-1. 2/ i nput /i nput 33/ event 12
UPSTART_JOB=t est _caner a

TERMEI i nux

DEVLI NKS=/ dev/ char/ 13: 76 /dev/i nput/by-pat h/ pci - 0000: 00: 1d. 0- event
SUBSYSTEM=I nput

PATH=/ usr /1 ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
M NOR=76

DI SPLAY=: 0.0

| D_I NPUT_KEY=1

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

| D PATH=pci - 0000: 00: 1d. 0
UPSTART _EVENTS=i nput - devi ce- added
PWD=/

Note: you may get additional events if it also includes a microphone or other sensors.

Plugging in a USB headset (headphones plus a microphone) will probably generate three events:

e sound- devi ce- added (for the headphones):

UPSTART_| NSTANCE=

ACTI ON=add

SEQNUM=2637

KERNEL=car d2

DEVPATH=/ devi ces/ pci 0000: 00/ 0000: 00: 1d. 0/ usb2/2-1/2-1.2/2-1. 2: 1. 0/ sound/ car d2
UPSTART _JOB=t est _sound

TERMEl i nux

SUBSYSTEM=sound

PATH=/ usr /1 ocal / sbin:/usr/local /bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART _EVENTS=sound- devi ce- added

PWD=/

e ush-devi ce- added (also for the headphones):

UDEV_LOG=3

DEVNAME=/ dev/ bus/ usb/ 002/ 027

UPSTART_| NSTANCE=

ACTI ON=add

SEQNUM=2635

BUSNUM=002

MAJOR=189

KERNEL=2- 1. 2

DEVPATH=/ devi ces/ pci 0000: 00/ 0000: 00: 1d. O/ usb2/2-1/2-1.2
UPSTART_JOB=t est _ush

| D_MODEL_ENC=Logi t ech\ x20USB\ x20Headset

| D_USB_| NTERFACES=: 010100: 010200: 030000:
| D_MODEL=Logi t ech_USB_Headset

TERMEI i nux

DEVLI NKS=/ dev/ char/ 189: 154

| D_SERI AL=Logi t ech_Logi t ech_USB_Headset
SUBSYSTEM=ush

UPONER_VENDOR=Logi t ech, Inc.

| D MODEL_| D=0a0b

PATH=/ usr/ 1 ocal / sbi n:/usr/| ocal /bin:/usr/bin:/usr/sbhin:/sbin:/bin
M NOR=154

TYPE=0/0/0

UPSTART_EVENTS=usb- devi ce- added

| D_VENDOR_ENC=Logi t ech

DEVNUM=027

PRODUCT=46d/ aOb/ 1013

PWD=/

| D VENDOR=Logi t ech

DEVTYPE=usb_devi ce

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

| D_VENDOR_| D=046d
| D_REVI SI ON=1013

i nput - devi ce- added (for the microphone):

UDEV_LOG=3
UPSTART_| NSTANCE=
ACTI ON=add
PHYS="usb- 0000: 00: 1d. 0- 1. 2/ i nput 3"
SEQNUM=2645
==13
KERNEL=i nput 31
DEVPATH=/ devi ces/ pci 0000: 00/ 0000: 00: 1d. 0/ usb2/2-1/2-1.2/2-1.2: 1. 3/input/input 31
UPSTART JOB=t est _i nput

M5C==10
NAME="Logi t ech Logitech USB Headset"
TERMEI i nux

SUBSYSTEM=i nput

PATH=/ usr/ | ocal / sbi n: /usr/1ocal /bin:/usr/bin:/usr/sbin:/sbin:/bin
MODALI AS=i nput : bO003v046Dp0A0Be0100- €0, 1, 4, k72, 73, ran¥, | sfw
KEY==c0000 0 0 O

UPSTART _EVENTS=i nput - devi ce- added

PRODUCT=3/ 46d/ aOb/ 100

PWD=/

10.2.3.1 Careful Use of udev Events

You need to be careful when using the upst art - udev- bri dge since certain devices are NOT ready at
the point the kernel generates the original udev event: in these circumstances, all the kernel is saying is "I
have this device", not "I have this device and it is ready to use".

The problem is that the kernel does not know when the device is ready and neither can Upstart know this.
The kernel is simply signalling that the device has either:

» become available (once the upst art - udev- bri dge emits the "*- devi ce- added" event).
e changed state somehow (once the upstart-udev-bridge emits the one or more
"*- devi ce- changed" events).
So, for example, just because you have received a "usb- devi ce- added" event for your USB modem
does not guarantee that the modem is operational.

Unfortunately, every device acts differently, so you really do need specialist knowledge of the device in
question.

However, a general rule of thumb is that a device is ready once Upstart has emitted a "changed" event
for the device which also includes a "I D_" variable in that events environment. This is of particular
importance for "bl ock" devices and "sound" devices.

10.2.4 upstart-event-bridge
Added in Upstart v1.7

An instance of the upstart-event-bridge runs for each logged in user and proxies system-level
events down to the users session. In plain English, this means all events emitted by a system job become
visible to jobs running as the user.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

To allow Session Jobs to distinguish between User Events and System Events, the
upstart-event-bridge prefixes all system events with ": sys:". So for example, when the "f oo
system job starts, at the system level the following event will be emitted:

started JOB=f oo

That event is visible to all System Jobs, but is invisible to Session Jobs. However, the following event will
be emitted by the upstart-event-bridge to allow Session Jobs to react to the "f 00" system job
starting:

:sys:started JOB=foo
10.2.5 upstart-file-bridge

Added in Upstart v1.8

The upstart-file-bridge allows jobs to react to file events. It currently uses inotify(7) and is
available both for System Jobs and Session Jobs.

Syntax:

start on file FILE=PATH EVENT=TYPE [MATCH=PATH]|

10.2.5.1 Examples

Start a job when file is created, modified or deleted:
start on file FILE=/run/app.pid
Start job when file is created (only):
start on file FILE=/run/app.pid EVENT=create
Start job when any files within a directory are created, modified or deleted:
start on file FILE=/var/l og/
Start job when files that match a glob pattern are created in the indicated directory:
start on file FILE=/var/crash/*.crash EVENT=create

For more details, see upstart-file-bridge(8) and file-event(7).

10.2.6 upstart-dbus-bridge
Added in Upstart v1.9
The upst art - dbus- bri dge allows jobs to react to D-Bus signals.

Syntax:

dbus SI GNAL=SI GNAL | NTERFACE=I NTERFACE PATH=PATH SENDER=SENDER DESTI NATI ON=DESTI NATI ON

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/inotify.7.html
http://manpages.ubuntu.com/manpages/man8/upstart-file-bridge.8.html
http://manpages.ubuntu.com/manpages/man7/file-event.7.html
http://dbus.freedesktop.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.2.6.1 Example

Start a job when D-Bus signal NameAcqui r ed is received:
start on dbus SI GNAL=NanmeAcqui red | NTERFACE=or g. fr eedeskt op. DBus PATH=/ or g/ f r eedeskt op/ L
See upstart-dbus-bridge(8) and dbus-event(7) for further details.

10.2.7 upstart-dconf-bridge
Added in Upstart v1.10

The upst art - dconf - bri dge is a Session Init only bridge that allows Session Jobs to react to DConf
database changes.

10.2.8 wupstart-1| ocal -bridge
Added in Upstart v1.10

The upstart-1ocal -bri dge is a specialist bridge that allows jobs to react to name/value pairs sent to
a local socket created by the bridge.

11 Cookbook and Best Practises

11.1 List All Jobs

To list all jobs on the system along with their states, run:
$initctl list

See initctl.

11.2 List All Jobs With No st op on Condition

list all jobs (stopped and running instances), and conpact down
to actual job nanes.
initctl list | awk '{print $1}' | sort -u | while read job
do

identify jobs with no "stop on"

initctl showconfig -e $job | grep -g " stop on" || echo "$job"
done

11.3 List All Events That Jobs Are Interested In On Your System

Here is another example of howi ni tct| show confi g can be useful:
initctl showconfig -e | egrep -i "(start|stop) on" | awk '{print $3}' | sort -u

11.4 Create an Event

To create, or "emit" an event, use initctl(8) specifying the emit command.

For example, to emit the hello event, you would run:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/upstart-dbus-bridge.8.html
http://manpages.ubuntu.com/manpages/man7/dbus-event.7.html
https://wiki.gnome.org/dconf
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

initctl emt hello

This event will be "broadcast” to all Upstart jobs.

If you are creating a job configuration file for a new application, you probably do not need to do this
though, since Upstart emits events on behalf of a job whenever the job changes state.

A simple configuration file like that shown below may suffice for your application:

[etc/init/myapp. conf

description "run ny app under Upstart"
t ask

exec /path/to/ nyapp

11.5 Create an Event Alias

Say you have an event, but want to create a different name for it, you can simulate a new name by
creating a new job which:

* has a start on that matches the event you want to "rename"
* is atask

» emits the new name for the event

For example, if you wanted to create an alias for a particular flavour of the runl evel event called
"shut down" which would be emitted when the system was shutdown, you could create a job configuration
file called / et c/ i ni t / shut down. conf containing:

start on runl evel RUNLEVEL=0
t ask
exec initctl emt shutdown

Note that this isn't a true alias since:
« there are now two events which will be generated when the system is shutting down:

erunl evel RUNLEVEL=0

¢ shut down

* the two events will be delivered by Upstart at slightly different times (shut down will be emitted just
fractionally before r unl evel RUNLEVEL=0).

However, the overall result might suffice for your purposes such that you could create a job configuration
file like the following which will run (and complete) just before your system changes to runlevel O (in other
words halts):

start on shut down
task
exec backup_ny_machi ne. sh

11.5.1 Change the Type of an Event

Note that along with creating a new name for an event, you could make your alias be a different type of
event. See Event Types for further details.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.6 Synchronisation

Upstart is very careful to ensure when a condition becomes true that it starts all relevant jobs in sequence
(see Order in Which Jobs Which start on the Same Event are Run). However, although Upstart has
started them one after another they might still be running at the same time. For example, assume the
following:

e/etc/init/ X conf

start on event-A

scri pt
echo "“date’ : $UPSTART JOB started" >> /tnp/test.|og
sleep 2
echo "“date’ : $UPSTART JOB stopped" >> /tnp/test.|og
end scri pt

e/etc/init/Y.conf

start on event-A

scri pt
echo ""date’ : $UPSTART_JOB started" >> /tnp/test.|og
sl eep 2
echo ""date’ : $UPSTART_JOB stopped" >> /tnp/test.|og
end scri pt

e/etc/init/Z. conf

start on event-A

scri pt
echo ""date’: $UPSTART JOB started" >> /tnp/test.|og
sl eep 2
echo " date’: $UPSTART_JOB stopped" >> /tnp/test.|og
end scri pt

Running the following will cause all the jobs above to run in some order:
initctl emt event-A

Here is sample output of / t np/ t est . | og:

Thu Mar 31 10:20: 44 BST 2011: Y started
Thu Mar 31 10:20: 44 BST 2011: X started
Thu Mar 31 10:20: 44 BST 2011: Z started
Thu Mar 31 10:20: 46 BST 2011: Y stopped
Thu Mar 31 10:20: 46 BST 2011: Z stopped
Thu Mar 31 10:20: 46 BST 2011: X stopped

There are a few points to note about this output:

« All jobs start "around the same time" but are started sequentially.

» The order the jobs are initiated by Upstart cannot be predicted.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

« All three jobs are running concurrently.

It is possible with a bit of thought to create a simple framework for synchronisation. Take the following job
configuration file / et ¢/ i ni t/ synchr oni se. conf:

manual

This one-line Abstract Job configuration file is extremely interesting in that:

* Since it includes the manual keyword, a job created from it can only be started manually.

* Only a single instance of a job created from this configuration can exist (since no instance stanza
has been specified).

What this means is that we can use a job based on this configuration as a simple synchronisation device.

The astute reader may observe that synchr oni se has similar semantics to a POSIX pthread condition
variable.

Now we have our synchronisation primitive, how do we use it? Here is an example which we'll call
/etcl/init/test _synchronise.conf:

start on stopped synchronise

allow nmultiple instances
i nstance $N

this is not a service
t ask

pre-start script

"l ock"

start synchronise || true
end script

scri pt
do sonething here, knowi ng that you have exclusive access
to some resource that you are using the "synchroni se"
job to protect.

echo " date : $UPSTART_JOB ($N) started" >> /tnp/test.|og

sl eep 2

echo " date : $UPSTART_JOB ($N) stopped" >> /tnp/test.|og
end script

post-stop script

"unl ock"

stop synchronise || true
end script

For example, to run 3 instances of this job, run:

for nin $(seq 3)
do

start test_synchroni se N=%n
done

Here is sample output of / t np/ t est . | 0og:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Thu Mar 31 10: 32: 20 BST 2011: test_synchronise (1) started
Thu Mar 31 10: 32: 22 BST 2011: test_synchronise (1) stopped
Thu Mar 31 10: 32: 22 BST 2011: test_synchronise (2) started
Thu Mar 31 10: 32: 24 BST 2011: test_synchronise (2) stopped
Thu Mar 31 10: 32: 25 BST 2011: test_synchronise (3) started
Thu Mar 31 10: 32: 27 BST 2011: test_synchronise (3) stopped

The main observation here:

» Each instance of the job started and stopped before any other instance ran.

Like condition variables, this technique require collaboration from all parties. Note that you cannot know
the order in which each instance of the t est _synchr oni se job will run.

Note too that it is not necessary to use instances here. All that is required is that your chosen set of jobs
all collaborate in their handling of the "lock". Instances make this simple since you can spawn any number
of jobs from a single "template" job configuration file.

11.7 Determine if Job was Started by an Event or by "start"

A job that specifies a start on condition can be started in two ways:

* by Upstart itself when the start on condition becomes true.

e by running, "start <j ob>".
Interestingly, it is possible for a job to establish how it was started by considering the UPSTART _EVENTS
variable:

« If the UPSTART_EVENTS variable is set in the job environment, the job was started by an event.

« If the UPSTART_EVENTS variable is not set in the job environment, the job was started by the
start command.

Note that this technique does not allow you to determine definitively if the job was started manually by an
Administrator since it is possible that if the UPSTART_EVENTS variable is not set that the job was started
by another job calling st art inside a scri pt section.

11.8 Stop a Job from Running if A pre-start Condition Fails

If you wish a job to not be run if a pr e- st art condition fails:

pre-start script

main process will not be run if /sone/file does not exi st
test -f /sone/file || { stop ; exit O; }

end scri pt

scri pt
main process is run here

end scri pt

11.9 Run a Job Only When an Event Variable Matches Some
Value

By default, Upstart will run your job if the start on condition matches the events listed:

start on event-A

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

But if event - A provides a number of environment variables, you can restrict your job to starting only
when one or more of these variables matches some value. For example:

start on event-A FOO=hel | o BAR=wi bbl e

Now, Upstart will only run your job if all of the following are true:

» the event - A is emitted
« the value of the $FQO variable in event - A's environment is "hel | 0".

« the value of the $BAR variable in event - A's environment is "wi bbl e".

11.10 Run a Job when an Event Variable Does Not Match Some
Value

Upstart supports negation of environment variable values such that you can say:
start on event-A FOO=hel | 0 BAR =wi bbl e

Now, Upstart will only run your job if all of the following are true:
 the event - A is emitted

« the value of the $FQO variable in event - A's environment is "hel | o".

« the value of the $BAR variable in event - A's environment is not "wi bbl e".

11.11 Run a Job as Soon as Possible After Boot

(Note: we ignore the initramfs in this section).

To start a job as early as possible, simply "start on"the st artup event. This is the first event Upstart
emits and all other events and jobs follow from this:

start on startup

11.12 Run a Job When a User Logs in Graphically ()

Assuming a graphical login, this can be achieved using a st art on condition of:
start on desktop-session-start

This requires the display manager emit the event in question. See the upstart-events(7) man page on an
Ubuntu system for the 2 events a Display Manager is expected to emit. If your Display Manager does not
emit these event, check its documentation to see if it allows scripts to be called at appropriate points and
then you can easily conform to the reference implementations behaviour:

A user has logged in
/sbin/initctl -g enmt desktop-session-start \
DI SPLAY MANAGER=sone_nanme USER=$USER

Di spl ay Manager has initialized and displayed a | ogin screen
(if appropriate)

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

/sbin/initctl -q emt |ogin-session-start \
DI SPLAY_MANAGER=sone_nane

11.13 Run aJob When a User Logs in

This makes use of D-Bus Service Activation.

1. Add "Upst art Job=t rue" to file
"I'usr/ shar e/ dbus- 1/ syst em servi ces/ org. freedeskt op. Consol eKi t. service".

2.Create a job configuration file corresponding to the D-Bus service, say
/etclinit/user-I|ogin.conf 18,

start on dbus-activation org.freedesktop. Consol eKi t
exec /usr/sbin/consol e-kit-daenon --no-daenon

3. Ensure that the D-Bus daemon ("dbus- daenon”) is started with the --acti vati on=upstart
option (see / et ¢/ i ni t/ dbus. conf).

Now, when a user logs in, D-Bus will emit the dbus- acti vati on event, specifying the D-Bus service
started. You can now create other jobs that st art on user-1 ogi n.

11.13.1 Environment

Below is an example of the environment such an Upstart D-Bus job runs in:

UPSTART _| NSTANCE=

DBUS_STARTER BUS TYPE=syst em

UPSTART _JOB=user-1ogin

TERMEI i nux

PATH=/ usr/ | ocal / sbi n:/usr/ | ocal /bin:/usr/bin:/usr/sbin:/sbin:/bin

SERVI CE=or g. f r eedeskt op. Consol eKi t

DBUS SYSTEM BUS ADDRESS=uni x: pat h=/ var/run/ dbus/ syst em bus_socket, gui d=e86f 5a01f bb7f 5f 1c
UPSTART EVENTS=dbus- acti vati on

PWD=/

DBUS STARTER ADDRESS=uni x: pat h=/ var/run/ dbus/ syst em bus_socket, gui d=e86f 5a01f bb7f 5f 1c221]

11.14 Run a Job For All of a Number of Conditions

If you have a job configuration file like this:

start on (event-A or (event-B or event-QC))

scri pt
echo "“date’ : ran in environment: “env " >> /tnp/nyjob.|og
end scri pt

Upstart will run this job when any of the following events is emitted:
sevent-A
sevent-B

eevent-C

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

You cannot know the order in which the events will arrive in, but the specified start on condition has told
Upstart that any of them will suffice for your purposes. So, if event - B is emitted first, Upstart will run the
job and only consider re-running the job if and when the job has finished running. If event - B is emitted
and the job is running and then (before the job finishes running) event - A is emitted, the job will not be
re-run.

However, what if you wanted to run the script for all the events? If you know that all of these events will be
emitted at some point, you could change the start on to be:

start on (event-A and (event-B and event-C))

Here, the job will only run at the time when the last of the three events is received.

Is it possible to run this job for each event as soon as each event arrives? Yes it is:

start on (event-A or (event-B or event-Q))
i nst ance $UPSTART_EVENTS

scri pt
echo "“date’: ran in environnment: “env " >> /tnp/nyjob.log
end scri pt

By adding the instance keyword, you ensure that whenever any of the events listed in your start on
condition is emitted, an instance of the job will be run. Therefore, if all three events are emitted very close
together in time, three jobs instances will now be run.

See the Instance section for further details.

11.15 Run a Job Before Another Job

If you wish to run a particular job before some other job, simply make your jobs start on condition
specify the starting(7) event. Since the starting(7) event is emitted just before the job in question starts,
this provides the behaviour you want since your job will be run first.

For example, assuming your job is called job-B and you want it to start before job-A in
/etc/init/job-B.conf youwould specify:

start on starting job-A

11.16 Run a Job After Another Job

If you have a job you wish to run after job "j ob- A", your st art on condition would need to make use of
the stopped(7) event like this:

start on stopped job-A

11.17 Run a Job Once After Some Other Job Ends

Imagine a job configuration file myj ob. conf such as the following which might result in a job which is
restarted a number of times:

start on event-A

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

scri pt
do sonet hi ng
end scri pt

Is it possible to run a job only once after job nyj ob ends? Yes if you create a job configuration file
nyj ob-sync. conf such as:

start on stopped nyjob and event-B

scri pt
do sonet hi ng
end scri pt

Now, when event - A is emitted, job myj ob will start and if and when job nmyj ob finishes and event
event - B is emitted, job nyj ob- sync will be run.

However, crucially, even if job myj ob is restarted, the nyj ob- sync job will not be restarted.

11.18 Run a Job Before Another Job and Stop it After that Job
Stops

If you have a job you wish to be running before job "j ob- A" starts, but which you want to stop as soon as
j ob- A stops:

start on starting job-A
stop on stopped job-A

11.19 Run a Job Only If Another Job Succeeds

To have a job start only when j ob- A succeeds, use the $RESULT variable from the stopped(7) event
like this:

start on stopped job-A RESULT=0k

11.20 Run a Job Only If Another Job Fails

To have a job start only when j ob- A fails, use the $RESULT variable from the stopped(7) event like this:
start on stopped job-A RESULT=fail ed

Note that you could also specify this condition as:
start on stopped job-A RESULT! =ok

11.21 Run aJob Only If One Job Succeeds and Another Fails

This would be a strange scenario to want, but it is quite easy to specify. Assuming we want a job to start
only if j ob- A succeeds and if j ob- B falils:

start on stopped job-A RESULT=o0k and stopped job-B RESULT=fail ed

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.22 Run a Job If Another Job Exits with a particular Exit Code

Imagine you have a database server process that exits with a particular exit code (say 7) to denote that it
needs some sort of cleanup process to be run before it can be re-started. To handle this you could create
/etc/init/nydb-cleanup. conf withastart on condition like this:

start on stopped nydb EXI T_STATUS=7

scri pt
handl e cl eanup. ..

assumi ng the cl eanup was successful, restart the server
start nydb
end scri pt

11.23 Detect if Any Job Fails

To "monitor" all jobs for failures, you could either create a job that checks specifically for a single job
failure (see Run a Job If Another Job Exits with a particular Exit Code), but you could just as easily detect
if any job has failed as follows:

start on stopped RESULT=fail ed

Since this start on condition does not specify the Job to match against, it will match all jobs. You can then
perform condition processing:

scri pt
if [-n "$EXI T_STATUS"];
t hen
str="with exit status $EXI T_STATUS"
el se

str="due to signal $EXI T_SI GNAL"
fi

| ogger "Upstart Job $JOB (instance ' $I NSTANCE , process $PROCESS) failed $str"
case "$JOB" in
myj ob1l)

myj ob2)
etc)

esac

end scri pt

Note that $PROCESS above is not the PID, it is the name of the job process type (such as mai n or
pre-start). See stopped(7) for further details.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.24 Use Details of a Failed Job from Another Job

Although you cannot see the exact environment another job ran in, you can access some details. For
example, if your job specified / et c/i ni t/j ob- B. conf as:

start on stopped job-A RESULT=fai l

scri pt
exec 1>>/tnp/log.file
echo "Environnment of job $JOB was:"
env
echo
end scri pt

The file/ t mp/ 1 og. fi | e might contain something like this:

UPSTART | NSTANCE=

EXI T_STATUS=7

| NSTANCE=
UPSTART_JOB=B

TERMEI i nux

PATH=/ usr /| ocal / sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
PROCESS=nmi n

UPSTART _EVENTS=st opped
PWD=/

RESULT=f ai | ed

JOB=A

Here, j ob- B can see that:

*j ob- A exited in its "main” process. This is a special name for the scri pt section. All other script
sections are named as expected. For example, if the pre-start section had failed, the PROCESS
variable would be set to pre-start, and if in post - st op, the variable would have been set to
post - st op.

*j ob- A exited with exit code 7.

*j ob- A only had 1 instance (since the | NSTANCE variable is set to the null value.
*j ob- A raninthe root ("/) directory.

* UPSTART_JOB is the name of the job running the script (ie j ob- B).

» JOB is the name of the job that we are starting on (here j ob- A).

* UPSTART_EVENTS s a list of the events that caused UPSTART_JOB (ie j ob- B) to start. Here, the
event is starting(7) showing that j ob- B started as a result of j ob- A being sent the stopped(7)
event.

11.25 Stop a Job when Another Job Starts

If we wish j ob- A to stop when j ob- B starts, specify the following in/ etc/init/job-A conf:

stop on starting job-B

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.25.1 Simple Mutual Exclusion

It is possible to create two jobs which will be "toggled" such that when j ob- A is running, j ob- B will be
stopped and vice versa. This provides a simple mutually exclusive environment. Here is the job
configuration file for j ob- A:

/etc/init/job-A conf
start on stopped job-B

scri pt

do somet hing when job-B is stopped
end script

And j ob- B:

/etc/init/job-B. conf
start on stopped job-A

scri pt
do somet hing when job-A is stopped
end scri pt

Finally, start one of the jobs:
start job-A

Now:

* when j ob- A is running, j ob- B will be stopped.

* when j ob- B is running, j ob- A will be stopped.

Note though that attempting to have more than two jobs using such a scheme will not work. However, you
can use the technique described in the Synchronisation section to achieve the same goal.

11.26 Run a Job Periodically

This cannot currently be handled by Upstart directly. However, the "Temporal Events" feature is being
worked on now will address this.

Until Temporal Events are available you should either use cron(8), or something like:

/etc/init/tiner.conf
i nstance $J0OB_TO RUN

scri pt
for var in SLEEP JOB TO RUN
do
eval val =\ ${$var}
if [-z "$val"]
t hen
| ogger -t $0 "ERROR: variabl e $var not specified"
exit 1
fi

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/cron.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

done

eval _sl eep=\ ${ SLEEP}
eval _job=\${JOB_TO RUN}

while [1]
do
stop $_job || true
sl eep $_sl eep
start $ job || true
done
end scri pt

Note well the contents of the whi | e loop. We ensure that the commands that might fail are converted
into expressions guaranteed to pass. If we did not do this, ti ner. conf would fail, which would be
undesirable. Note too the use of i nst ance to allow more than one instance of the ti mer job to be
running at any one time.

11.27 Restart ajob on a Particular Event

To restart a job when a particular event is emitted requires two jobs. First the main job:

start on somet hi ng

exec /sbin/sone-conmmand
Then a helper job to perform the restart:

start on mny-speci al - event

exec restart main-job

Now, when the nmy- speci al - event eventis emitted, the main job will be restarted.

11.28 Migration from System V initialization scripts

With SysV init scripts, the Administrator decides the order that jobs are started in by assigning numeric
values to each service. Such a system is simple, but non-optimal since:

» The SysV init system runs each job sequentially.

This disallows running jobs in parallel, to make full use of system resources. Due to the limited
nature of the SysV system, many SysV services put services that take a long time to start into the
background to give the illusion that the boot is progressing quickly. However, this makes it difficult for
Administrators to know if a required service is running by the time their later service starts.

» The Administrator cannot know the best order to run jobs in.

Since the only meta information encoded for services is a numeric value used purely for ordering
jobs, the system cannot optimize the services since it knows nothing about the requirements for each
job.
In summary, the SysV init system is designed to be easy for the Administrator to use, not easy for the
system to optimize.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

In order to migrate a service from SysV to Upstart, it is necessary to change your mindset somewhat.
Rather than trying to decide which two services to "slot" your service between, you need to consider the
conditions that your service needs before it can legitimately be started.

So, if you wished to add a new service that traditionally started before cron(8) or atd(8) you do not need to
change the configuration files cr on. conf or at d. conf. You can "insert" your new service by specifying
a simple:

letc/linit/m-service.conf
start on (starting cron or starting atd)

In English, this says,
"start the "my- ser vi ce" service just before either the cron or the at d services start".

Whether crond or atd actually start first is not a concern for my-service: Upstart ensures that the
my-servi ce service will be started before either of them. Even if cr on normally starts before at d but
for some reason one day atd starts first, Upstart will ensure that ny- ser vi ce will be started before at d.

Note therefore that introducing a new service should not generally require existing job configuration files to
be updated.

11.29 How to Establish a Jobs start on and stop on
Conditions

How do you establish what values you should specify for a jobs st art on and st op on conditions?

11.29.1 Determining the start on Condition (e, .)

So you have created a Job Configuration File for your Service Job. You have checked the expect stanza
is correct and you've even enabled respawn.

But how do you determine the correct "start on" condition? Actually, this is almost a trick question since
there are potentially many "correct" answers; it depends on the application and how sensitive it is to the
environment it runs in. There are many potential start on conditions - it is your job to determine the
most efficient and effective one. This section attempts to give some advice and guidelines on choosing a
suitable condition, and explaining how to test your choice for correctness. However, note that each job
requires a specific and possibly unique set of conditions to run.

11.29.1.1 Standard Idioms

If your application isn't particularly needy, you may be able to use one of the standard idioms below:

« To start your job as soon as possible:
See Run a Job as Soon as Possible After Boot.

* To start your job "as late as possible":
See Run a Job When a User Logs in Graphically (ubuntu-specific).

« If you want the job to start "around the time" (actually just after) the equivalent System-V job would
run, specify:

start on stopped rc

« If you want your job to start after all filesystems are mounted, specify:

start on fil esystem

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/cron.8.html
http://manpages.ubuntu.com/manpages/man8/atd.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

« If you want your job to start when all network devices are active, specify:

start on stopped networ ki ng

Note that as of Ubuntu Oneiric, you could also say:

start on static-network-up

« If you want your job to start when a runlevel begins, specify:

start on runlevel [2345]

This is used by a lot of standard jobs and is a good starting place.

11.29.1.2 More Exotic start on Conditions

If your job more precise control over when your job starts, read carefully the upstart-events(7) manual
page which summarizes all the "well-known" events you can rely upon on an Ubuntu system. These
events provide a set of "hook points" which your job can make use of to simplify the job of specifying the
start on condition.

The main question to ask yourself is, "what are the exact requirements for the job?". To help answer that
guestion consider the following questions:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://www.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 Does your application live in a standard local directory?

« Does the application write any files to disk? (data files, log files, lock files, named sockets?) If so,
which partition(s) does it need to write to?

» Does the application read any files from disk? If so, which partitions do they live in? /etc?
/var?

» Do you want the application to start as early as possible, or as late as possible?
« Does the application need to start before or after a service which might not be installed?

« If the application needs access to a disk (it probably will), which partitions or mounts does it
need? /etc?/var?/ mt/renote-systen? Can it wait until all local partitions are mounted?
Or does it need to wait for a particular remote filesystem to be mounted?

« Should a particular set of services already be running when your job starts?
« Should a particular set of services not be running when your job starts?
« What runlevel (or runlevels) should your job run in?

« Does your application require a network?

* Does it need a local network (127.0.0.17?)
* Does it need IPv6?

* Does it require a bridge network interface?

« Should your service only start when a client network connection is initiated? If so, use the
socket event (emitted by the upstart-socket-bridge). See the socket-event(7) man page for
details.

« Does your job require the services of some other system server?
« Does your job access files over the network?

 Does your application provide a D-Bus service which you want to start when some sequence of
Upstart events are emitted?

If so, use the D-Bus service activation facility.
This list can be summarized as:

What are the precise conditions your job needs before it can be started successfully?

And yes, you really do need to be able to answer all the questions above before you can know that you
have chosen the correct start on condition. This might sound daunting, but consider:

« Upstart needs to know this information to allow your application to run at the correct point.

« By devoting some time to understanding your applications requirements, you will allow the
system to run as efficiently as possible.

11.29.1.2.1 udev conditions

To identify a start on condition making use of udev events, first you need to know which udev subsystem
is appropriate. See upstart-udev-bridge for details.

Having identified the subsystem, follow the steps below:

1. Create a job that displays all udev variables set for a particular udev subsystem.

In the example below, we're consider atthe t ty subsystem, so modify to taste:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/socket-event.7.html
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start on tty-devi ce-added
exec env
2. Boot your system and look at the relevant log file for the job.

For example look at / var /| og/ upstart/ nyj ob. | og to see which udev variables are set for your
chosen udev subsystem.

If your version of Upstart does not have job logging, you'll need to redirect the output of env
somewhere - refer to section See the Environment a Job Runs In.

3. Refine your start on condition accordingly.

For example, you might change it to be something like:

start on tty-devi ce-added DEVNAME=*ttySl

to start the job when the / dev/ tt S1 serial device becomes available.

11.29.2 Determining the st op on Condition ()

Recall from the Shutdown section that if no st op on condition is stopped, your job will be killed at some
(random) point at system shutdown. If you need your job to stop at a particular point in the shutdown
sequence, you must specify a suitable st op on condition.

Shut down is not as event rich as startup. A common idiom is to specify your st op on as:
stop on runl evel [016]

This ensures the job will be stopped on shutdown, when switching to single-user mode and on reboot.

The next most common is to stop your job either before or after some other job stops:

* To stop a job just before a particular job has started to stop:

stop your job "just before" job 'sone-job' ends
stop on stoppinhg sone-job

See also Run a Job Before Another Job.

* To stop a job immediately after a particular job has stopped:

stop your job "just after” job 'some-job' has ended
stop on stopped sone-job

See also Run a Job After Another Job.
Other questions relating to other stanzas:
» What should happen if your job fails to start?
» What should happen if your job fails after some period of time?
» Do you want Upstart to restart the job if it exits? If so, use the r espawn stanza.

 Does your job use non-standard exit codes to denote success and failure? If so, use the normal exit
stanza.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

* Is your job a daemon? If so, how many times does it call fork(2)?

11.29.3 Final Words of Advice

If your start on or stop on conditions are becoming complex (referencing more than 2 or maybe 3 events),
you should consider your strategy carefully since there is probably an easier way to achieve your goal by
specifying some more appropriate event. See the upstart-events(7) manual page for ideas.

Also, review the conditions from standard job configuration files on your system. However, it is inadvisable
to make use of conditions you do not fully understand.

11.30 Guarantee that a job will only run once

If you have a job which must only be run once, but which depends on multiple conditions, the naive
approach won't necessarily work:

t ask
start on (A or B)

If event ‘A" is emitted, the task will run. But assuming the task has completed and event 'B' is then emitted,
the task will run again.

11.30.1 Method 1

A better approach is as follows:

1. Create separate job configuration files for each condition you want your job to start on:

/etc/init/got-A conf
job that will "run forever"” when event Ais emtted
start on A

/etc/init/got-B. conf
job that will "run forever"” when event B is emtted
start on B

2. Create a job which starts on either of the got - A or got - B jobs starting:

/etc/init/only-run-once. conf
start on (starting got-A or starting got-B)

Now, job "onl y- r un- once" will start only once since jobs "got - A" and "got - B" can only be started once
themselves since:

« they do not specify the instance stanza to allow multiple instances of the jobs.
« if either job starts, that job will run forever.

« none of the jobs have a stop on stanza.
11.30.2 Method 2

Change your st art on condition to include the st art up event:

t ask
start on startup and (A or B)

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.31 Stop a Job That is About to Start

Upstart will start a job when its "st art on" condition becomes true.

Although somewhat unusual, it is quite possible to stop a job from starting when Upstart tries to start it:

start on starting job-A

scri pt
stop $JOB
end scri pt

11.32 Stop a Job That is About to Start From Within That Job

You can in fact stop a job that Upstart has decided it needs to start from within that job:

pre-start script
stop
end scri pt

This is actually just an alias for:

pre-start script
st op $UPSTART_JOB
end scri pt

Of course, you could set the pre-start using the Override Files facility.

11.33 Stop a Job from Running if its Configuration file has not
been Created/Modified

Use a pre-start stanza to check for required application conditions. If these are not met, call:

st op
exit O

This will cause the job to stop successfully before the main script or exec stanza (which would run your
application/daemon) is started.

In particular, see the Ubuntu-specific example

11.34 Stop a Job When Some Other Job is about to Start

Here, we create / et c/ i ni t/j ob- C. conf which will stop j ob- B whenj ob- A is about to start:

start on starting job-A

scri pt
stop job-B
end scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.35 Start a Job when a Particular Filesystem is About to be
Mounted

Here, we start a job when the / apps mountpoint is mounted read-only as an NFS-v4 filesystem:
start on mounting TYPE=nfs4 MOUNTPO NT=/apps OPTI ON=ro

Here's another example:
start on nounted MOUNTPO NT=/var/run TYPE=t npfs

Another example where a job would be started when any non-virtual filesystem is mounted:
start on mounted DEVI CE=[/UL]*

The use of the $DEVI CE variable is interesting. It is used here to specify succinctly any device that:

* is a real device (starts with "/ " (to denote a normal "/ dev/ . . . " mount)).

* is a device specified by its filesystem:

« label (starts with "L" (to denote a "LABEL=" mount)).

« UUID (starts with "U" (to denote a "UUl D=" mount)).
Another example where a job is started when a non-root filesystem is mounted:

start on mounting MOUNTPO NT! =/ TYPE! =swap

11.36 Start a Job when a Device is Hot-Plugged

Hot-plug kernel events create udev(7) events under Linux and Upstart events are created from udev
events by the upstart-udev-bridge(8).

Added to this the i fup and i f down commands are run at boot when network devices are available for
use.

11.36.1 To start ajob when ethO is added to the system

Note that the device is not yet be available for use):
start on net-devi ce-added | NTERFACE=et h0

See upstart-udev-bridge for more examples.

On an Ubuntu system, you can see which devices have been added by udev (which the
upstart-udev- bri dge is using) with this snippet:

$ ank 'BEGA N {RS=""; ORS="\n\n"}; /ACTI ON=add/ && /SUBSYSTEM=net/ { print; }'
[var/log/udev | grep "I NTERFACE= | cut -d= -f2 | sort -u

et hO

l o

w an0

$

\

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar

branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/udev.7.html
http://manpages.ubuntu.com/manpages/man8/upstart-udev-bridge.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.36.2 To start a job when ethO is available

Here, the device is available for use:
start on net-device-up | FACE=et hO

Notes:

« It does not matter whether the et hO interface has been configured statically, or if it is handled via
DHCP, this event will always be emitted.

See upstart-events(7) and file / var / | og/ udev for further details.

» The "net - devi ce- up" event sets the "I FACE" variable whereas the net-device-added event sets
the "I NTERFACE" variable!

11.37 Stopping a Job if it Runs for Too Long

To stop a running job after a certain period of time, create a generic job configuration file like this:

/etc/init/timeout.conf

stop on stopping JOB=$JOB_TO WAI T_FOR
kill timeout 1

manual

export JOB TO WAI T_FOR
export TI MEQUT

scri pt

sl eep $TI MEQUT

initctl stop $J0B_TO WAI T_FOR
end scri pt

Now, you can control a job using a timeout:

start nyjob
start timeout JOB TO WAI T_FOR=nyj ob TI MEQUT=5

This will start job myj ob running and then wait for 5 seconds. If job "nyj ob" is still running after this
period of time, the job will be stopped using the initctl(8) command. Note the st op on stanza which will
cause the ti meout job not to run if the job being waited for has already started to stop.

11.38 Run a Job When a File or Directory is Created/Deleted

As of Upstart 1.8, you can use the upstart-file-bridge.
If you are using an older version of Upstart, read on...

If you need to start a Job only when a certain file is created, you could create a generic job configuration
file such as the following:

letc/init/wait_for_file.conf
i nstance $FI LE_PATH
export FILE_PATH

scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

while [! -e "$FI LE PATH"]
do

sleep 1
done

initctl emt file FILE_PATH="$FI LE_PATH"
end scri pt

Having done this, you can now make use of it. To have another job start if say file / var/ run/ f oo. dat
gets created, you first need to create a job configuration file stating this:

[etc/init/myapp. conf
start on file FILE PATH=/var/run/foo. dat

scri pt
...
end scri pt

Lastly, kick of the process by starting an instance of wait _for _fil e:
start wait_for _file FILE PATH=/var/run/foo. dat

Now, when file / var / run/ f 0o. dat is created, the following will happen:

1. The nyapp job will emit the fi | e event, passing the path of the file which you just specified in that
events environment.

2. Upstart will see that the start on condition for the nyapp job configuration file is satisfied.
3. Upstart will create a myapp job, and start it.
You can modify this strategy slightly to run a job when a file is:
» modified
* deleted
* contains certain content

* et cetera
See test(1), or your shells documentation for available file tests.

Note that this is very simplistic. A better approach would be to use inotify(7).

11.39 Run a Job Each Time a Condition is True

This is the default way Upstart works when you have defined a task:

/etc/init/myjob. conf
t ask

exec /somne/ program
start on (A or B)

Job "myjob" will run every time either event 'A' or event 'B' are emitted. However, there is a corner
condition: if event 'A' has been emitted and the task is currently running when event 'B' is emitted, job
"myjob" will not be run. To avoid this situation, use instances:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man1/test.1.html
http://manpages.ubuntu.com/manpages/man7/inotify.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

/etc/init/nmyjob2. conf
t ask

i nstance $SOVE_VARI ABLE
exec /somne/ program
start on (A or B)

Now, as long variable $SOVE_VARI ABLE is defined with a unique value each time either event ‘A’ or 'B' is
emitted, Upstart will run job "myj ob2" multiple times.

11.40 Run a Job When a Particular Runlevel is Entered and Left

To run a job when a particular runlevel is entered and also run it when that same runlevel is left, you could
specify:

start on runlevel RUNLEVEL=5 or runl evel PREVLEVEL=5

See runlevel(7) and the Runlevels section for more details.

11.41 Pass State Between Job Processes

Assume you have a job configuration file like this:

pre-start script
...
end scri pt

exec / bi n/ sone- program $ARG

How can you get the pre-start script section to set $ARG and have the "main" section use that value in the
"exec" stanza? This isn't as easy as you might imagine for the simple reason that Upstart runs each
script and exec section in a new process. As such, by the time Upstart gets to the exec stanza the
process spawned to handle the pre-start script section has now ended. This implies they cannot
communicate directly. However, there are ways to send information from one section to another...

One method to achieve the required goal is as follows:

set a variable which is the nane of a file this job will use
to pass information between script sections.
env ARG FI LE="/var/ nyapp/ nyapp. dat"

make the variabl e accessible to all script sections (ie sub-shells)
export ARG FI LE

pre-start script

deci de upon argunents and wite themto

$ARG FILE, which is available in this sub-shell.
end script

scri pt
read back the contents of the argunents file
and pass the values to the programto run.
ARGS="$(cat $ARG FI LE)"

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

clean up
rm-f $ARG FILE || true

exec / bi n/ sone- program $ARGS
end scri pt

However, as of Upstart 1.7, this is now possible (for Session Jobs only!) by using the initctl set-env
command. For example:

pre-start script
modi fy the running jobs job environnent table
such that when the 'exec' stanza is executed, Upstart will apply
all variables in this table to that job process.
initctl set-env ARG=foo0
end scri pt

exec / bi n/ sone- program $ARG

11.42 Pass State From Job Configuration File to a Script Section

To pass a value from a job configuration file to one of its script sections, simply use the env stanza:

env CONF_FI LE=/ et c/ nyapp/ myapp. cf g

scri pt
exec /bin/nyapp -c $CONF_FI LE
end scri pt

This example is a little pointless, but the following slightly modified example is much more useful:

start on an-event
export CONF_FI LE

scri pt
exec /bin/myapp -c $CONF_FI LE
end scri pt

By dropping the use of the env stanza we can now pass the value in via an event:
initctl emt an-event CONF_FILE=/etc/ myapp/ nyapp. cfg

This is potentially much more useful since the value passed into nyapp. conf can be varied without
having to modify the job configuration file.

11.43 Run a Job as a Different User

11.43.1 Running a User Job
See User Job.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.43.2 Changing User

Some daemons start running as the super-user and then internally arrange to drop their privilege level to
some other (less privileged) user. However, some daemons do not need to do this: they never need root
privileges so can be invoked as a hon-root user.

How do you run a "system job" but have it run as a non-root user then? As of Upstart 1.4, Upstart has the
ability to run a System Job as a specified user using the setuid and setgid stanzas.

However, if you are not using Upstart 1.4, it is easy to accomplish the required goal. There are a couple of
methods you can use. The recommended method for Debian and Ubuntu systems is to use the helper
utility start-stop-daemon(8) like this:

exec start-stop-daenon --start -c myuser --exec comrand

The advantage of using start-stop-daemon(8) is that it simply changes the user and group the command is
run as. This also has an advantage over su(1) in that su(1) must fork to be able to hold its PAM session
open, and so is harder for upstart to track, whereas start-stop-daemon(8) will simply exec the given
command after changing the uid/gid.

Another potential issue to be aware of is that st art - st op- daenon does not impose PAM ("Pluggable
Authentication Module") limits to the process it starts. Such limits can be set using the appropriate Upstart
stanzas, you just cannot specify the limits via PAMs limits.conf(5).

Of course, you may want PAM restrictions in place, in which case you should either use su(1) or sudo(8),
both of which are linked to the PAM libraries.

The general advice is NOT to use su(1) or sudo(8) though since PAM restrictions really not appropriate for
system services. For example, PAM will make a wtmp(5) entry every time su(1) or sudo(8) are called and
those records are not appropriate for system services.

If you want to use su(1) or sudo(8), the examples below show you how.

Using su(1):
exec su -s /bin/sh -c command $user

Note that although you could simplify the above to the following, it is not recommended since if user
"$user" is a system account with a shell specified as / bi n/ f al se, the job will not run the specified
command: it will fail due to / bi n/ f al se returning "1":

exec su -c comand $user

The job will silently fail if user "$user " is a system account with a shell specified as / bi n/ f al se.

To avoid the fork(2) caused by the shell being spawned, you could instead specify:
exec su -s /bin/sh -c 'exec "$0" "$@' S$user -- /path/to/conmmand --argl=foo -b wi bble

This technique is particularly useful if your job is a Service Job that makes use of expect.

A basic example using sudo(8):

exec sudo -u $user conmmand

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://www.kernel.org/pub/linux/libs/pam/
http://manpages.ubuntu.com/manpages/man5/limits.conf.5.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man5/wtmp.5.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.44 Disabling a Job from Automatically Starting

With Upstart 0.6.7, to stop Upstart automatically starting a job, you can either:

* Rename the job configuration file such that it does not end with ". conf ".

« Edit the job configuration file and comment out the "st art on" stanza using a leading '#'.
To re-enable the job, just undo the change.

11.44.1 Override Files

With Upstart 1.3, you can make use of an "override file" and the nanual stanza to achieve the same
result in a simpler manner 81,

echo "manual " >> /etc/init/nyjob.override
Note that you could achieve the same effect by doing this:
echo "manual " >> /etc/init/nyjob. conf

However, using the override facility means you can leave the original job configuration file untouched.

To revert to the original behaviour, either delete or rename the override file (or remove the nanual
stanza from your ". conf " file).

For Session Jobs, note that if an override already exists "higher" up the search path, only that override file
will apply: you cannot override an override file.
11.44.1.1 Change a Jobs Start/Stop Conditions

Override files allow you to modify the way in which a job starts and stop by modifying the start on and stop
on conditions.

Maybe you are writing an application packaged for Upstart and you need to work around some known
bugs, or maybe the system you are installing the package on is somehow non-standard and needs a
special configuration. Again, override files can help. If your package has a job configuration file with a start
on condition such as:

start on event-A
You can change that trivially with an override:
echo "start on (event-A and event-B)" >> /etc/init/nyjob.override

Now the job will only start when both the event - A and event - B events are emitted. Again, to revert the
behaviour back to starting when only event - A is emitted, just delete the override file.

11.44.1.2 Adding Stanzas that are Not Present in the .conf File

You can specify stanzas in the override file that are not in the original job configuration file and have
Upstart use these values too. For example, imagine you have a daemon process that opens and writes to
stderr with debug information if it sees a special "magic file":

$ cat >> /etc/init/ny-daenon.override << EOT
consol e out put

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

pre-start exec touch /var/run/ny-daenon. magic
EOCT

Note: We assume here that the corresponding / et c/i ni t/ ny-daenon. conf file does not already
specify a pre-start since if it did, our override file would replace it.

11.44.1.3 Separating Variables from the Job

Imagine you have a service which requires a number of variables to be defined. However, those variables
vary depending on the system you intend to deploy the job to.

A way to resolve this problem is to use a static job coupled with an override file which you can generate
for each host.

For example, your static job (say f 0o. conf) could look like this:

start on ...

exec nyapp --log-directory $LOGDI R --port $PORT --foo $FOO VALUE
Then, you can create a f 00. overri de for one particular system containing for example:

env LOGDI R=/var/| og/ nyapp
env PORT=12345
env FOO_VALUE="bar"

11.44.1.4 Ensuring Customized Packages Upgrade Smoothly

If you make changes to a packages configuration files, the chances are that you have a Package Manager
which will notice this fact when it needs to upgrade the package. It may then prompt you to establish
whether you want to keep your customized configuration file, overwrite it with the new package versions
configuration file, or some other possibilities.

If you use override files to encode any modifications you make to a packages job configuration, you can
avoid this issue (at least for job configuration) and ensure your configuration is always used (since the job
configuration files itself never needs to be changed).

11.44.1.5 Caveat Emptor

If override files are used, you should employ other facilities to detect when an underlying job configuration
file has actually changed.

This would be necessary for example should a new job configuration file be installed that fixed an
important bug: if your override file overrides the particular configuration option that the new version
resolved a issue with, your system may still exhibit the bug since you have overridden the (fixed)
configuration option and thus may have unwittingly "undone" the fix. This problem is certainly not unique
to Upstart override files, but it is worth considering.

11.45 Jobs that "Run Forever"

To create a job that runs continuously from the time it is manually started(7) until the time it is manually
stopped(7), create a job configuration file without any process definition (exec and scri pt) or event
definition (st art on for example) stanzas:

/etc/init/runforever. conf

description "job that runs until stopped nanual ly"

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

This job can only be started by the administrator running:
start runforever

The status of this job will now be "st art/ r unni ng" until the administrator subsequently runs:
stop runforever

These "Abstract Job" types have other uses as covered in other parts of this document. See for example
Synchronisation.

11.46 Run a Java Application

Running a Java application is no different to any other, but Java suffers from the inability to switch users
without extra helper classes.

If your Java daemon needs to run as a different user and you are running Upstart 1.4, you can use the
setuid and setgid stanzas.

However, if you are using an older version, you will have to use a facility such as su(l1). Also, you may
wish to define some variables to simplify the invocation:

env ROOT_DI R=/ apps/ nyapp

env HTTP_PORT=8080

env USER=j ava_user

env JAVA HOVE=/usr/lib/jvm java- 6-openj dk
env JVM OPTI ONS=" - Xms64m - Xmx256n'

env APP_OPTI ONS="- - ht t pPor t =$HTTP_PORT"
env LOGFI LE=/var/| og/ nyapp. | og

scri pt
exec su -c "$JAVA HOVE bin/java $IJVM OPTI ONS \
-jar $ROOT_DI R/ nyjar.jar $APP_OPTI ONS > $LOGFI LE 2>&1" $USER
end scri pt

You should read the Changing User section section before using this technique though.

11.46.1 Alternative Method

Here is how you might run a Java application which calls fork(2) some number of times:

exec start-stop-daenmon --start --exec $JAVA HOVE/ bin/java \
-- $JAVA OPTS -jar $SOVEVHERE/ fil e. war

Again, you should read the Changing User section section before using this technique.

11.47 Ensure a Directory Exists Before Starting a Job

This is a good use of the pre-start stanza:

env DI R=/var/run/ nyapp
env USER=nyuser

env GROUP=nygr oup

env PERM5=0755

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

pre-start script

nkdi r $DI R || true

chnod $PERMS $DI R || true

chown $USER $CGROUP $DIR || true
end scri pt

11.48 Run a GUI Application

To have Upstart start a GUI application, you first need to ensure that the user who will be running it has
access to the X display. This is achieved using the xhost command.

Once the user has access, the method is the same as usual:

env DI SPLAY=: 0.0
exec xclock -update 1

11.49 Run an Application through GNU Screen

If you want Upstart to create a GNU Screen (or Byobu) session to run your application in, this is equally
simple:

exec su myuser -c "screen -D -m-S MYAPP java -jar M/App.jar"

11.50 Run Upstart in a chroot Environment

11.50.1 chroot Workaround for Older Versions of Upstart (e, .)

Older versions of Upstart jobs cannot be started in a chroot(2) environment 21 pecause Upstart acts as a
service supervisor, and processes within the chroot are unable to communicate with the Upstart running
outside of the chroot. This will cause some packages that have been converted to use Upstart jobs
instead of init scripts to fail to upgrade within a chroot.

Users are advised to configure their chroots with / sbin/initctl pointing to / bin/true, with the
following commands run within the chroot:

dpkg-divert --local --rename --add /sbhin/initctl
In -s /bin/true /sbin/initctl

11.50.2 chroots in Ubuntu Natty (.)

The version of Upstart in Ubuntu Natty now has full chroot(2) support. This means that if initctl is run as
user r oot from within a chroot the Upstart init daemon (outside the chroot) will honour requests from
within the chroot to manipulate jobs within the chroot.

What all this means is that you no longer need to use dpkg- di vert and can control chroot jobs from
within the chroot environment exactly as you would control jobs outside a chroot environment. There are a
number of caveats and notes to consider though:

 Within the chroot, only jobs within the chroot are visible
 Within the chroot, only jobs within the chroot can be manipulated.

« It is only possible to view and control such chroot jobs from within the chroot.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/chroot.2.html
http://manpages.ubuntu.com/manpages/man2/chroot.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

That is to say, the "outer" system cannot manipulate jobs within the chroot.

 Due to the design of this feature, Upstart will not be able to detect changes to job configuration files
within the chroot until a process within the chroot has either manipulated a job, or listed one or more
jobs.

 Chroot support can be disabled at boot by passing the "- - no- sessi ons" option on the Grub kernel
command-line.

See Add --verbose or --debug to the kernel command-line for details of how to add values to the grub
kernel command-line.

If chroots are disabled, running Upstart commands within a chroot will affect jobs outside the chroot
only.

Note that "- - no- sessi ons" was removed in Upstart 1.13 since the default in newer versions of
Upstart is to run with chroot sessions diabled. To enable chroot support, it is how necessary to
specify "- - chr oot - sessi ons".

e If a job is run in a chroot environment (such as provided by schroot(1)), exiting the chroot will kill the
job.

11.51 Record all Jobs and Events which Emit an Event

For example, if you want to record all jobs which emit a started event:

[etc/init/debug. conf
start on started
scri pt
exec 1>>/tnp/log.file
echo "$0: $$: "date': got called. Environment of job $JOB was:"
env
echo
end scri pt

You could also log details of all jobs (except the debug job itself) which are affected by the main events:

/etc/init/debug. conf
start on (starting JOB!=debug \
or started JOB! =debug \
or stopping JOB! =debug \
or stopped JOB! =debug)
scri pt
exec 1>>/tnp/log.file
echo -n "$UPSTART_JOB/ $UPSTART_| NSTANCE ($0): $$: "date : "
echo "Job $JOB/ $I NSTANCE $UPSTART_EVENTS. Environment was:"
env
echo
end script

Note that the $UPSTART _JOB and $UPSTART | NSTANCE environment variables refer to the debug job
itself, whereas $JOB and $1 NSTANCE refer to the job which the debug job is triggered by.
11.52 Integrating your New Application with Upstart

Integrating your application into Upstart is actually very simple. However, you need to remember that
Upstart is NOT "System V" (aka "SysV"), so you need to think in a different way.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/schroot.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

With SysV you slot your service script between other service scripts by specifying a startup number. The
SysV init system then runs each script in numerical order. This is very simple to understand and use, but
highly inefficient in practical terms since it means the boot cannot be parallelised and thus cannot be
optimized.

11.53 Block Another Job Until Yours has Started

It is common that a particular piece of software, when installed, will need to be started before another. The
logical conclusion is to use the 'starting’ event of the other job:

start on starting foo

This will indeed, block foo from starting until our job has started.

But what if we have multiple events that we need to delay:
start on starting foo or starting network-services
This would seem to make sense. However, if we have a time-line like this:

starting foo

starting our job

starting network-services
started network-services

Network-services will actually NOT be blocked. This is because upstart only blocks an event if that event
causes change in the goal of the service. So, we need to make sure upstart waits every time. This can be
done by using a "wait job™:

nyj ob- wai t
start on starting foo or starting network-services
stop on started nyjob or stopped nyjob
i nstance $JOB
normal exit 2
task
scri pt
status nmyjob | grep -q 'start/running’ && exit O
start nyjob ||
sl eep 3600
end scri pt

This is a bit of a hack to get around the lack of state awareness in Upstart. Eventually this should be built
in to upstart. The job above will create an instance for each JOB that causes it to start. It will try and check
to see if it's already running, and if so, let the blocked job go with exit 0. If it's not running, it will set the ball
in motion for it to start. By doing this, we make it very likely that the stopped or started event for myjob will
be emitted (the only thing that will prevent this, is a script line in ‘'myjob’ that runs 'stop'). Because we know
we will get one of those start or stopped events, we can just sleep for an hour waiting for upstart to kill us
when the event happens.

11.54 Controlling Upstart using D-Bus

Upstart contains its own D-Bus server which means that initctl and any other D-Bus application can
control Upstart. The examples below use dbus- send, but any of the D-Bus bindings could be used.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
http://dbus.freedesktop.org
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.54.1 Query Version of Upstart

To emulate initctl version, run:
$ dbus-send --system--print-reply --dest=com ubuntu.Upstart /com ubuntu/Upstart org.fre

Note: this is querying the version of / sbi n/i ni t, not the version of i nit ct|. For the latter, see initctl
version.

11.54.2 Query Log Priority

To emulate initctl log-priority and show the current log priority, run:

$ dbus-send --system--print-reply --dest=com ubuntu. Upstart /com ubuntu/Upstart org.fre

11.54.3 Set Log Priority

To emulate initctl log-priority and set a new log priority, run:

$ priority=debug
$ sudo dbus-send --system--print-reply --dest=com ubuntu. Upstart /com ubuntu/Upstart or

11.54.4 List all Jobs via D-Bus

To emulate initctl list, run:

$ dbus-send --system--print-reply --dest=com ubuntu. Upstart /com ubuntu/Upstart com ubt

11.54.5 Get Status of Job via D-Bus

To emulate initctl status, run:

$ j ob=nyj ob
$ dbus-send --system--print-reply --dest=com ubuntu. Upstart /com ubuntu/Upstart/jobs/ ${

Note that this will return information on all running job instances of nyj ob.

11.54.6 Emit an Event

To emulate initctl emit, run:

$ event =f oo
$ sudo dbus-send --system--print-reply --dest=com ubuntu. Upstart /com ubuntu/Upstart cc

Toemulatei nitctl emt --no-wait <event> A=B c='hello world" D=123. 456, run:

$ event =f oo
$ sudo dbus-send --system--print-reply --dest=com ubuntu. Upstart /com ubuntu/Upstart cc

11.54.7 Get Jobs start on and stop on Conditions via D-Bus

To show a jobs start on and stop on conditions:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$ j ob=cron

$ for condition in start_on stop_on

> do

> dbus-send --system--print-reply --dest=com ubuntu. Upstart /conf ubuntu/Upstart/j ok
> done

If you have a job with a start on condition like this:
start on (starting foo A=B or (stopping bar C=D and (stopped baz E=F G=H | =J or fo00)))

... a dbus-send(1) query like the one above for start on will return an "array of arrays of strings":

met hod return sender=:1.629 -> dest=:1.630 reply_serial =2

vari ant array |

array |
string "starting"
string "foo"
string "A=B"

]

array [
string "stopping”
string "bar"
string "C=D'

]

array |
string "stopped”
string "baz"
string "E=F"
string "G=H'
string "I1=J"

]

array [
string "foo"

]

array |
string "/ OR'

]

array [
string "/ AND'

]

array [
string "/ OR'

]
]

This will require a little massaging. Every inner array entry represents one of the following:

* an Event

* an operator ("and" or "or ")

For event arrays, the first element is the event name and subsequent elements represent the events
environment variables.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/dbus-send.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Note too that the entire start on expression has been encoded using Reverse Polish Notation (RPN) since
this is a convenient format to represent the condition (particularly when you consider that they are
represented internally as trees).

Normally, you don't need to get involved with RPN since initctl show-config converts the RPN back into
the original form as specified in the Job Configuration file.

11.54.8 To Start a Job via D-Bus

To emulate initctl start, run:

j ob=nyj ob
dbus-send --system--print-reply --dest=com ubuntu. Upstart /com ubuntu/Upstart/jobs/${

Note that you must be r oot to manipulate system jobs.

11.54.9 To Stop a Job via D-Bus

To emulate initctl stop, run:

j ob=nyj ob
dbus-send --system--print-reply --dest=com ubuntu. Upstart /con ubuntu/Upstart/jobs/${

Note that you must be r oot to manipulate system jobs.

11.54.10 To Restart a Job via D-Bus

To emulate initctl restart, run:

j ob=nyj ob
dbus-send --system--print-reply --dest=com ubuntu. Upstart /conm ubuntu/Upstart/jobs/${

Note that you must be r oot to manipulate system jobs.

11.55 Establish Blocking Job

Image you have just run the following command and it has "blocked" (appeared to hang):
initctl enmt event-A

The reason for the block is that the event - A event changes the goal of "some job", and until the goal
has changed, thei ni tct| command will block.

But which job is being slow to change goal? It is now possible to hone in on the problem using
initctl show config ina scriptsuch as this:

#! / bi n/ sh
find_bl ocked_j ob. sh

[$# -ne 1] & & { echo "ERROR usage: $0 <event>"; exit 1; }
event =" $1"

obtain a list of jobs (renmpving instances)
initctl list | awk '{print $1}' | sort -u | while read job

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

do
initctl showconfig -e "$job" |\
egrep "(start|stop) on \<event\>" >/dev/null 2>&l1
[$?2 -eq 0] && echo $job
done

This will return a list of jobs, one per line. One of these will be the culprit. Having identified the problematic
job, you can debug using techniques from the Debugging section.

11.56 Determine if aJob is Disabled

To determine if a job has been disabled from starting automatically:

$ j ob=f o0
$ initctl showconfig $job | grep -q " start on" &% echo enabled || echo disabled

11.57 Visualising Jobs and Events

Use the initctl2dot(8) facility. See 29 for further details and examples.

11.58 Sourcing Files

You need to take care when "sourcing" a script or configuration file into a script section for a number of
reasons. Suppose we have the following:

scri pt

[etc/ defaul t/ nyapp. cfg

[et c/ nyapp/ nyapp. cfg
echo hello > /tnp/ nyapp. | og
end scri pt

Assume that file / et ¢/ myapp/ myapp. cf g does NOT exist.

11.58.1 Develop Scripts Using / bi n/ sh

Firstly, if you developed this script using the bash(1) shell, before you put it into a job configuration file), all
would be well. However, as noted, Upstart runs all jobs with / bi n/ sh - e. What you will find is that if you
run the script above under / bi n/ sh, in all likelihood the file will never be created since regardless of
whether you specify "- e" or not, the dash(1) shell (which / bi n/ sh is linked to on Ubuntu systems) has
different semantics when it comes to sourcing compared with / bi n/ bash.

Therefore, to avoid surprises later on:

» Always develop your scripts using "/ bi n/ sh -e".
» Always code defensively.

For example, it would be better to write the script above as:

scri pt
[-f /etc/default/nyapp.cfg] & & . /etc/default/nyapp.cfg
[-f /etc/nmyapp/ nyapp.cfg | && . [etc/myapp/ nyapp. cfg
echo hello > /tnp/ nyapp. | og

end scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/initctl2dot.8.html
http://manpages.ubuntu.com/manpages/man1/bash.1.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man1/dash.1.html
http://www.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Or maybe even like this to minimise mistakes:

scri pt
files="\
[etc/defaul t/nyapp.cfg
[et c/ nyapp/ nyapp. cfg

for file in $files

do
[-f "$file"] & . "$file"
done
echo hello > /tnp/ nyapp. | og
end scri pt

11.58.2 ur eadahead

Most modern Linux systems attempt to optimise the boot experience by pre-loading files early on in the
boot sequence. This allows hard disks can minimise expensive (slow) seek operations.

On Ubuntu, this job is accomplished using ureadahead(8), which was designed with both spinning hard
disk and SSD drives in mind. However, if your job configuration files start reading files from all over the
disk, you will be potentially slowing down the boot as the disk is then forced to seek across the filesystem,
looking for your files.

The general advice is therefore to put your configuration variables inside the job configuration file itself
where possible.

11.59 Determining How to Stop a Job with Multiple Running
Instances

As explained in the initctl status section, a job that has multiple running instances will show the specific
(unigue) instance value within brackets:

$initctl list | grep “network-interface-security

net wor k-i nterface-security (network-nanager) start/running

net wor k-i nterface-security (network-interface/ethQ) start/running
net wor k-i nterface-security (network-interface/lo) start/running
net wor k-i nterface-security (networking) start/running

In the example output above there are four instances of the network-interface-security job
running with the unique instances values of:

* "net wor k- manager "
*"net wor k-i nterface/ et hO"
*"network-interface/l o"

* "net wor ki ng"
So how do we stop one of these jobs? Lets try to work this out without looking at initctl(8) manual page:

stop network-interface-security network-interface/ethO
stop: Env nust be KEY=VALUE pairs

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/ureadahead.8.html
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

That clearly doesn't work. The problem is that we have provided the value to the instance variable, but we
haven't named the instance variable that the given value corresponds to. But how do we establish the
instance variable name?

There are 2 options:

« look at the corresponding Job Configuration File.
letc/init/network-interface-security.conf inthisexample.

» Use a trick to get Upstart to tell you the name:

$ status network-interface-security
status: Unknown paraneter: JOB

This shows us the name of the instance variable is "JOB".
We are now in a position to stop a particular instance of this job:

stop network-interface-security JOB=network-interface/ethO
net wor k-i nterface-security stop/waiting

The job instance has now been stopped. To prove it:

status network-interface-security JOB=network-interface/ethO

status: Unknown instance: network-interface/ethO

initctl list | grep “network-interface-security | grep network-interface/ethO
#

11.60 Logging Boot and Shutdown Times

If you want to create a log of when your system starts and stops, you could do something like this:

start on filesystemor runlevel [06]
env | og=/var/l og/ boot-tines.|og

scri pt
action=$(echo "$UPSTART_EVENTS"' | grep -q fil esystem & echo boot || echo shut down)
echo " date : $action" >> $l og

end scri pt

Note that you do not need to specify a stop on condition: you want this job to start both "around" the time
of system startup (when the disks are writeable, hence the use of the fi | esyst em event) and shutdown.

If you want a more accurate method, you would need to have a job start on startup. The slight issue here
is that when Upstart emits that first event, there is no guarantee of writeable disks. However, this can be
overcome using a bit of thought...

First, create a "recor d- boot - ti me. conf" job configuration file to record the time of the "boot" (initial
Upstart event):

start on startup

exec initctl emt boot-tinme TIME=$(date ' +%s')

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

This job emits an event containing a variable specifying the time in seconds since the Epoch.

Now, create a second "l og- boot -t i me. conf " job configuration file to actually log the boot time:

start on boot-tine and fil esystem

| og=/var/| og/ boot -ti nes. | og

scri pt
echo "system booted at $TIME" >>$l og
end scri pt

Since the "l og- boot -ti ne" job specifies the "boot ed" event emitted by the "r ecor d- boot - ti ne" job,
Upstart will retain knowledge of this event until it is able to run the second job. The "r ecor d- boot - ti ne"
job can then simply make use of the "TI ME" variable set by the first job.

11.61 Running an Alternative Job on atty

Here's a silly example of how to run a custom job on a particular tty. It asks the user to guess a random
number. If after 3 attempts they fail to guess the correct number, the job ends. However, if they guess
successfully, the are allowed to login. This won't win any scripting competitions, but you get the idea.

WARNING - DO NOT USE THIS ON A REAL SYSTEM unless you want to get hacked, or fired or both!:

CGet the user to guess the nunmber. |If they get it right, let them
| ogi n.

start on runl evel [23]
stop on runlevel [!23]

env tty=tty9

XXX: Ensure job is connected to the term nal device
consol e out put

scri pt
XXX: Ensure all standard streans are connected to the consol e
exec O</dev/$tty >/dev/$tty 2>&1
cl ear
trap "' I NT TERM HUP
RANDOME$(dd i f =/ dev/ urandom count =1 2>/dev/null|cksumcut -f1 -d ")
answer =$(((RANDOM % 100) + 1))
at t enpt =0
max=3
got =0

while [$attenpt -1t $max]
do
attenpt =$((attenpt +1))
echo -n "Quess the nunber (1-100, attenpt $attempt of $max): "
read guess
if ["$guess" -eq "$answer"]
t hen
got =1
br eak

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

el se
echo "Wong"
fi
done

["$got" = 0] && stop

exec /sbin/getty -8 38400 $tty
end scri pt

The important lines are:
consol e out put
.. and:

exec O</dev/$tty >/dev/$tty 2>&1

11.62 Delay Respawn of a Job

If a job specifies respawn, but you want to delay the respawn for some reason, simply use a post-stop
stanza:

respawn
exec mydaenon
post -stop exec sleep 10

Now, every time nmydaenon exits with a non-zero return code, the job will sleep for 10 seconds before
Upstart restarts it.

For a real service, you would probably use a post-stop script stanza to perform a check rather than simply
sleeping.

11.63 Allow ajob to detect if it was stopped manually

A job can detect if it itself was stopped manually by an administrator job using the stop command, by
virtue of the fact that the $UPSTART_EVENTS environment variable will not be set in the jobs environment
(since no event caused the job to stop - an administrator intervened).

See Standard Environment Variables for details of environment variables Upstart sets.

11.64 Detect if ajob stopped before reaching its respawn limit

In this scenario, assuming the job actually specifies the respawn stanza, the $PROCESS variable of the
stopping” event (see Event) will be set to a value other than r espawn - it will be set to the name of the
particular job process type (pr e- st art, mai n, post - st op, et cetera) that failed.

Upstart will then automatically restart the job.

To create a job that reacts to a job stopping before it reaches its respawn limit:

start on stopped PROCESS! =r espawn

scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Exit if $IJOB has not specified the respawn stanza.

Unfortunately, Upstart does not provide a good way to do this
aside fromusing grep on the job file to | ook for the stanza.

#

egrep "N *\<respawn\> *$" /etc/init/${IJOB}.conf && exit 0 || true

echo "respawn job '$JOB' (instance '$INSTANCE') will be restarted"

end scri pt

See:
 Standard Environment Variables for details of environment variables Upstart sets.

* Stopping a Job.

11.65 Detecting a job respawning

See Detect if a job stopped before reaching its respawn limit.

11.66 Detecting a job hitting its respawn limit

To create a watchdog job that can react to jobs which hit their respawn limit:

start on stopped RESULT="fail ed" PROCESS="respawn"

exec echo "ERROR “date : job '$JOB (instance '$INSTANCE) hit respawn |imt"

Note that unlike the job in Detect if a job stopped before reaching its respawn limit, we don't need to check
for the respawn stanza since Upstart only sets PROCESS="r espawn” value for a job that has specified
the r espawn.

Rather than just logging an error, the job could take any number of actions. For example, it could log a
error, then manually restart the job, setting an extra variable so that the job itself could detect that it had
failed and possibly fall back to some other configuration:

scri pt

exec echo "ERROR “date’: job '$JOB (instance '$INSTANCE) hit respawn |imt

start "$JOB" RESTARTED BY _WATCHDOG=1 || true

end scri pt

11.67 Identifying jobs that may need a respawn stanza
By default, Upstart will not respawn a job - you need to specify the respawn stanza.
But, is there a way to determine whether you should add the respawn stanza to a job?

There are 2 main reasons for using the respawn stanza:

» To handle jobs that legitimately exit and need to be restared.
A good example of this category of jobs is getty. See /etc/init/ttyl. conf on an Ubuntu
system for an example.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

restar

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

» To handle buggy applications / daemons

Using respawn for this class of jobs may be a practical solution but must be seen as a temporary
plaster / bandaid over a gaping wound - the cause of the crashes should be identified and the code
fixed.

That said, to highlight jobs that could benefit from the addition of the respawn stanza, you could create a
watcher job that specifies:

start on stopped RESULT=fail ed PROCESS! =r espawn

scri pt
ignore jobs that already specify respawn
egrep "™ *\<respawn\> *$" /etc/init/${IJOB}.conf && exit O || true

echo "job '$JOB' nmmy benefit from adding 'respawn'"

end scri pt

Then, review the results and determine if it is appropriate to either fix the code or add respawn (possibly
temorarily).

11.68 Creating a SystemV Service that Communicates with
Upstart ,

There are occasions when you want to have a SystemV service start an Upstart job. However, you must
take care as shown in the example below...

Image we create a SysV service as /etc/init.d/ nmyservice. This service needs another service to
be running but that other service is actually an Upstart job (/ et ¢/ i ni t / nyj ob. conf).

The Upstart job specifies a start on condition of:
start on filesystem and static-network-up and myservi ce-server-runni ng

So, job myjob wil only start once all three of the events specified are emitted and the
myservi ce-server-runni ng eventis being emitted by / etc/init.d/ nyservice like this:

initctl enmit mnyservice-server-running

This all looks perfectly reasonable and in fact it is... generally.

However, consider what would happen if the package containing / et c/i nit. d/ myservi ce happened
to attempt to restart that service having installed it (to make sure it is running immediately after
installation)...

1./etc/init.d/ nyservice isrun.
2./etc/init.d/ nyservice calls"initctl emt nyservice-server-running".

3. Upstart emits the nyser vi ce- server-runni ng event.

Nothing magical here yet. Or is there? Since job myj ob will only be started when all three of the events
specified in its start on condition are true, this job cannot yet be started. Why? Because the fi | esyst em
and st ati c- net wor k- up events have already been emitted early in the boot (see Ubuntu Well-Known
Events (ubuntu-specific)).

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

What this means is that the job nmyj ob will never start post boot if those two events it cares about have
already been emitted. Any yet, the SysV job and the Upstart event combinations are perfectly valid on
boot. Note too that because those two events will not be re-emitted, the initctl emit will block (appear to
hang) since Upstart is waiting for those two events to be emitted.

The solution to this is very simple: make the SysV job only emit the event in question on boot:

Only emt the event 'on boot' to ensure the SysV service

does not "hang" (block) due to events the ““nyjob "~ job requires

never being re-emtted post-boot. W do this by checking for one of
Upstarts standard environnment variables which will only be run when
the Upstart SysV conpatibility systemis running the SysV service in
question.
[-n "SUPSTART JOB"] && initctl emt myservice-server-running

A slightly different method is to emit a signal by running initctl with the - - no- wai t option like this:
[-n "SUPSTART JOB"] & initctl enmt --no-wait myservice-server-runni ng

See Signals and Standard Environment Variables.

11.69 Running ajob in acgroup,
As of Upstart 1.13, cgroups are supported. See cgroup.

For older versions of Upstart in versions of Ubuntu from Trusty onwards, you can make use of the
provided Cgroup management daemon called cgnanager (available in a package of the same name).
Upstart job processes can be cgroup-contained by making use of the cgn{1) utility available in the
cgmanager - uti |l s package. Note that each job process that needs to be cgroup-contained need to call
“cgm’ appropriately.

Examples:

* To run just the nai n (exec or script) job process in an existing cgroup:

start on ...

scri pt
cgm novepi d cpu an-exi sting-group $$
exec nmyprog --argl "foo"

end scri pt

» To run the pre-start, mai n and pre-stop job processes in a nhew memory cgroup with a modified
memory limit:

start on ...

env cgroup_nanme="f oo"
env cgroup_control | er="menory"

pre-start script
cgm create "$cgroup_controller" "$cgroup_nane"
cgm setval ue "$cgroup_controller" "$cgroup_name" limt_in_bytes 52428800
cgm nmovepi d "$cgroup_control ler" "$cgroup_nane" $$

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

#o.o..
end scri pt

scri pt
cgm nmovepi d "$cgroup_control ler" "$cgroup_nane" $$

exec nmyprog --argl "foo

end scri pt

pre-stop script
cgm novepi d "$cgroup_control ler" "$cgroup_nane" $$

#o.o..
end scri pt
See the cgm(1) manual page for further details.

11.70 Making a job respawn indefinitely

See respawn limit.

12 Test Your Knowledge

12.1 Questions about start on

Consider the following start on condition:
start on startup or starting stopped or stopping started
Questions (answers provided in footnote links):

Question: s this a legal condition?
1

Answer:

Question: What standard Upstart tool could you use to help explain the expression?
Answer: 2

Question: Explain the condition.
Answer: 3

Question: How many times could this job be run assuming all other jobs on the system run

exactly once?
4

Answer:
Consider this start on condition:

start on not foo

Question: Is this a legal condition?

Answer: 5
Question: What event will cause the job to start?
Answer: 6

Question: Whatis f oo in this context?

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/trusty/en/man1/cgm.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Answer:

Question: How could you trigger this job to run using initctl emit?

Answer: 8

12.2 General Questions

What is wrong with the following job configuration file?:

start on startup

scri pt
echo hello > /tnp/foo.log
end script
Answer: °

What is wrong with the following job configuration file?:

start on runl evel [2345]
env CONFI G=/ et c/ def aul t / nyapp

expect fork
respawn

scri pt
enabl ed=$(grep ENABLED=1 $CONFI G
[-z "$enabled"] & exit O
[usr/ bi n/ myapp

end scri pt

Answer: 10

13 Common Problems

13.1 Cannot Start a Job

If you have just created or modified a job configuration file such as /etc/init/nyjob.conf, but
start gives the following error when you attempt to start it:

start: Unknown job: nyjob

The likelihood is that the file contains a syntax error. The easiest way to establish if this is true is by
running the init-checkconf command.

If you are wondering why the original error couldn't be more helpful, it is important to remember that the
job control commands (start, stop and restart) and i nitctl communicate with Upstart over
D-Bus. The problem here is that Upstart rejected the invalid myj ob. conf, so attempting to control that
job over D-Bus is nonsensical - the job does not exist.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

13.2 Cannot stop ajob

If start is hanging or seems to be behaving oddly, the chances are you have misspecified the expect
stanza. See expect and How to Establish Fork Count.

13.3 Strange Error When Running st art /stop/restart or
initctl emt

If you attempt to run a job command, or emit an event and you get a D-Bus error like this:

$ start myjob

start: Rejected send nmessage, 1 matched rules; type="method call", sender=":1.58"

The problem is caused by not running the command as r oot . To resolve it, either "su -"toroot or use
a facility such as sudo(8):

start nyjob
myjob start/runni ng, process 1234

The reason for the very cryptic error is that the job control commands (start, stop andrestart) and
i nitctl communicate with Upstart over D-Bus.

13.4 Theinitctl command shows "the wrong PID"

The likelihood is that you have mis-specified the type of application you are running in the job
configuration file. Since Upstart traces or follows fork(2) calls, it needs to know how many forks to expect.
If your application forks once, specify the following in the job configuration file:

expect fork
However, if your application forks twice (which all daemon processes should do), specify:
expect daenon

See also Alternative Method.

13.5 Symbolic Links don't work in/etc/init

Upstart does not monitor files which are symbolic links since it needs to be able to guarantee behaviour
and if a link is broken or cannot be followed (it might refer to a filesystem that hasn't yet been mounted for
example), behaviour would be unexpected, and thus undesirable. As such, all system job configuration
files must live in or below / et ¢/ i nit (although user jobs can live in other locations).

13.6 Sometimes st at us shows PID, but other times does not

You may have noticed that when you start certain jobs manually using start, sometimes the output will
show the PID of the process associated with that job. However, other times, no PID is shown. Why?

This behaviour is observed when the job runs to completion very quickly. If your system has minimal load
the job will start and finish before the initctl status command has a chance to query its PID from Upstart.
Whereas if your system is busy you may well see a PID displayed since Upstart was able to return the
PID details to st at us before the job finished.

The behaviour is similar to the following shell code:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar

branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

(ui d=1

http://dbus.freedesktop.org
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://dbus.freedesktop.org
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

(sleep 0.01 & ; ps -fU SUSER | grep sleep | grep -v grep

It is unlikely that you will get any output from this command (since the sl eep 0. 01 command will run to
completion before the grep(1) calls get a chance filter the ps(1) output. However, change the time for that
subshell to run, and you will see the PID:

(sleep 5 & ; ps -fU SUSER | grep sleep | grep -v grep

See initctl status.

14 Upstart in Debian and Ubuntu (o,)
14.1 Packaging

Simply create you Job Configuration File in the package but rather than having the file end with . conf,
ensure the suffix is . upstart such as:

debi an/ $package. upst art

debhelper(7) will then automatically install this job as / et ¢/ i ni t/ ${ package}. conf.

As long as you do not override dh_install (override_dh_install or
override_dh_auto_install in debian/rules), this wil "just work® as debhelper(7) will
automatically invoke dh_installinit(1) for you.

If you do override dh_i nst al | , ensure you invoke dh_i nstal I i nit indebi an/rul es.

« service(8) just "does the right thing".
« update-rc.d(8) just "does the right thing".
* invoke-rc.d(8) just "does the right thing".

« Do not have your package call / et c/ i ni t. d/ ${ package} directly since:

« it is not necessary.

* it assumes a particular init system.

14.2 System V Compatibility Link (o, .)

Upstart in Debian and Ubuntu ships with a /i b/init/upstart-job helper script which allows an
existing Upstart job to be controlled by the legacy SystemV commands (such as service(8)).

In Debian Jessie and Ubuntu Saucy (13.10), symlinks to upst art - j ob are no longer required. Instead
update-rc.d and friends were updated to cope with upstart jobs (See Upstart Compatible Init Scripts).

14.3 Fun with Job Files (o, .)

14.3.1 Identify Missing System Jobs (e, .)
If somebody inadvertently deleted a job file, here's one way to establish which ones:
dpkg -1 | grep ~ii | awk '{print $2}' | xargs dpkg -s | grep '~ /' |\

awk '{print $1}' | grep "etc/init/" | while read file
do

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/grep.1.html
http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://manpages.ubuntu.com/manpages/man7/debhelper.html
http://manpages.ubuntu.com/manpages/man7/debhelper.html
http://manpages.ubuntu.com/manpages/man1/dh_installinit.html
http://manpages.ubuntu.com/manpages/man8/service.html
http://manpages.ubuntu.com/manpages/man8/update-rc.d.html
http://manpages.ubuntu.com/manpages/man8/invoke-rc.d.html
http://www.debian.org
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/service.html
http://www.debian.org
http://www.ubuntu.com
https://wiki.ubuntu.com/UpstartCompatibleInitScripts
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

[! -f "$file"] & echo "job '$file'" m ssing"
done

It prints a list of missing job files, one per line.

14.3.2 Identify Modified System Jobs (e, ,)

To find out if any job files have been modified from their "pristine" installed state, run this:

dpkg-query -W-f="${Conffiles}\n" '*' | grep "~ /etc/init/" |\
awk ' OFS=" "{print $2,%$1}' | nd5sum-c 2>/dev/null |\
ank -F: ' "$2 I~ /OK/ {print $1}'

The script above prints the full path to all modified job files, one per line. In fact, it will print missing files as
well as modified files.

14.3.3 Identify Non-Packaged System Jobs (e,)

To get a list of jobs that were created manually (in other words are not part of official packages), run:

First, get a list of all Upstart jobs in all packages installed on
your system and wite it to a data file.
dpkg-query -W-f="${Conffiles}\n" "'*' | grep "" /etc/init/" |\

awk '{print $1}' | sed 's!/etc/init/!!lg" > /tnp/upstart.dat

Now list all jobs *NOT* in the data file from above
I's /fetc/init/*.conf | sed "s!~etc/init/!!lg |\
while read file
do
grep -q ""${file}$" /tnp/upstart.dat || echo "/etc/init/$file"
done

14.3.4 Re-install all Packages with Missing or Modified System Job Files (e, ,
)

Warning

Before trying this, make sure you understand the implications and that you have a full system
backup!!

To forcibly re-install all packages which have either had their job files deleted or modified in some way,
run the following to get back to a "pristine" state:

Install required hel per application
$ sudo apt-get install -y apt-file

Cet a list of nodified or missing files
$ dpkg-query -W-f="${Conffiles}\n" "*' | grep /etc/init/ |\
awk ' OFS=" "{print $2,%$1}' | nd5sum-c 2>/dev/null |\

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

awk -F': ' "$2 I~ /OK/{print $1}' > /tnp/upstart.dat

$ cat /tnp/upstart.dat | while read file
do
pkg=$(apt-file search -x "~${file}$" | cut -d: -f1l)
[-n "$pkg"] && echo "$pkg" >> /tnp/packages. dat
done

Renpbve any duplicates
$ sort -u /tnp/packages.dat > /tnp/packages. sorted

Re-install
$ sudo apt-get -o Dpkg::Options::="--force-confniss" install \
--reinstall $(cat /tnp/packages. sorted)

15 Testing

Before embarking on rewriting your systems job configuration files, think very, very carefully.

We would advise strongly that before you make your production server unbootable that you consider the
following advice:

1. Version control any job configuration files you intend to change.
You could employ the version stanza to help in this regard.

2. Test your changes in a Virtual Machine.

3. Test your changes on a number of non-critical systems.

4. Backup all your job configuration files to both:

< An alternate location on the local system
(Allowing them to be recovered quickly if required).

« At least one other suitable alternate backup location.

16 Daemon Behaviour

Upstart manages the running of jobs. Most of these jobs are so-called "daemons", or programs that:

* run detached from a terminal device.
* require no user input.
* generate no output to the standard output streams "st dout " and "st derr".
To manage such daemons, Upstart expects a daemon to adhere to the following rules:
» The daemon should advertise if it forks once, or if it double-forks.
This allows the Administrator to establish the correct value for the important expect stanza.
» The daemon should not install a SI GCHLD handler of its own.

This is a problem when the job incorrectly specifies expect fork for a daemon (that should have been
specified as expect daemon) since Upstart waits for a single fork but the daemon double forks
however Upstart never gets notification of the first process exiting since a SI GCHLD signal is never
generated for that process.

This leads to a "stuck job (see Implications of Misspecifying expect).

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

this could stop Upstart from determining when the process has finished if the expect stanza is
mis-specified as expect fork.

» The daemon should ensure that when it completes the second fork that it is fully initialized, since
Upstart uses the fork count to determine service readiness (see expect).

» When sent a SI GHUP signal, Upstart will expect the daemon to:

« do whatever is necessary to re-initialize itself, for example by re-reading its configuration file.
This behaviour ensures that "i ni t ct| rel oad <j ob>" will work as expected.
« retain its current PID: if the daemon calls fork(2) on receiving this signal. See expect.

This behaviour ensures that Upstart can continue to manage the PID.
» When sent a S| GTERM signal, Upstart expects the daemon to shut down cleanly.

If a daemon does not shut down on receipt of this signal in a timely fashion, Upstart will send it the
unblockable SI GKI LL signal.

» Signalling "readiness": Since Upstart tracks forks, it can only assume that once the final fork(2) call
has been made (as indicated by the expect stanza specification), that the job is "ready" to accept
work from other parts of the system.

This generally works very well, but can be an issue for daemons which start relatively quickly, but
which are not considered "ready" to service requests until some arbitrary future time.

A good example of this scenario would be a database server which starts but which can only be
considered "ready" or "online" once it has finished replaying some transaction logs (which take some
time to process). In this scenario, there are two approaches:

1. Create a post-start section that performs some check and only returns once the service is
"ready".

2.If the service accepts incoming network connections, modify it to make use of the
upstart-socket-bridge.

» The daemon should not make use of the ptrace(2) system call (at least not until it has initialized itself
fully).

This ensures that Upstart is able to track the daemons pid. See expect.
The following are recommendations if you are writing a new daemon:

« If the daemon does not need to run as root, it should drop its privilege level (using setuid(2) and
setgid(2)).

« If a daemon is able to drop its privilege level to any non-root user, it should provide a documented
way (such as command-line options) for the invoker to specify the user and group to have the
daemon eventually run as.

17 Precepts for Creating a Job Configuration File

17.1 Determining the value of expect

The Expect section explains how to determine the value of the expect stanza. Note that you should not
introduce the respawn stanza until you are fully satisfied you have specified the expect stanza correctly.

17.2 start on and stop on condition

See How to Establish a Jobs start on and stop on Conditions.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man2/ptrace.2.html
http://manpages.ubuntu.com/manpages/man2/setuid.2.html
http://manpages.ubuntu.com/manpages/man2/setgid.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

17.3 Services

« If your job is a service, identify the correct value for the expect stanza.

Once you have decided on the correct value:

1. start the job:

$ sudo start nyjob

2. Check the PID of the job matches the expected PID:

$ actual _pi d=$(pi dof myapp)
$ upstart_pid=$(status myjob | awk '{print $NF}')
$ ["$actual _pid" = "$upstart_pid"] || echo "ERROR pid "

3. Stop the job:

$ sudo stop nyjob

4. Ensure the PID no longer exists:

$[-z "$(pidof nmyapp)"] || echo "ERROR nyapp still running"

» Only once you have specified the correct expect stanza should you introduce the respawn stanza
since if you introduce it at the outset, this will just confuse your understanding, particularly if the
expect stanza has been misspecified.

17.4 Ubuntu Rules ()

On Ubuntu, the following rules should be adhered to:

17.4.1 Console attributes

Jobs that specify console output or console owner should NOT modify the attributes of the console
(/ dev/ consol e), for example by using tcsetattr(3).

The reason for this being that Plymouth, the graphical boot splash application, needs full control over the
console on boot and shutdown.

18 Debugging
18.1 Obtaining a List of Events

To obtain a list of events that have been generated by your system, do one of the following:

18.1.1 Add --verbose or --debug to the kernel command-line

By adding --verbose or --debug to the kernel command-line, you inform Upstart to enter either
verbose or debug mode. In these modes, Upstart generates extra messages which can be viewed in the
system log. See initctl log-priority.

Assuming an standard Ubuntu Natty system, you could view the output like this:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man3/tcsetattr.3.html
http://www.freedesktop.org/wiki/Software/Plymouth
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

grep init: /var/log/syslog

Note that until Upstart 1.3 it was difficult to get a complete log of events for the simple reason that when
Upstart starts, there is no system logger running to record messages from Upstart (since Upstart hasn't
started it yet!) However, Upstart 1.3 writes these "early messages" to the kernel ring buffer (see dmesg(1))
such that by considering the kernel log and the system log, you can obtain a complete list of events from
the initial "st ar t up". So, for a standard Ubuntu Oneiric system, you would do:

grep init: /var/log/kern.log /var/log/syslog

The mechanism for adding say the - - debug option to the kernel command-line is as follows:

1. Hold down SHIFT key before the splash screen appears (this will then display the grub menu).
2. Type, "e" to edit the default kernel command-line.

3. Use the arrow keys to go to the end of the line which starts "l i nux /boot/vminuz ..."
4. Press the END key (or use arrows) to go to end of the line.

5. Add a space followed by "- - debug" (note the two dashes).

6. Press CONTROL+x to boot with this modified kernel command line.

18.1.2 Change the log-priority

If you want to see event messages or debug messages "post boot", change the log priority to debug or
ver bose. See initctl log-priority.

18.2 See the Environment a Job Runs In

To get a log of the environment variables set when Upstart ran a job you can add simple debug to the
appropriate scri pt section. For example:

scri pt
echo "DEBUG “set " >> /tnp/nyjob.log

rest of script follows...
end scri pt

Alternatively you could always have the script log to the system log:

scri pt
| ogger -t "$0" "DEBUG " set "

rest of script follows...
end scri pt

Or, have it pop up a GUI window for you:

env DI SPLAY=:0.0

scri pt
env | zenity --title="got event $UPSTART_EVENTS"' --text-info &
end script

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/dmesg.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

For the full details, install the procenv(1) utility and run this as a job. On a Debian Sid or Ubuntu Raring (or
newer) system:

$ sudo apt-get -y install procenv

$ cat <<EOT | sudo tee /etc/init/procenv. conf
exec /usr/bin/procenv

EOCT

$ sudo start procenv

$ sudo cat /var/log/upstart/procenv. | og

18.3 Checking How a Service Might React When Run as a Job

Before you even put your service into a Job Configuration File, try the following test which simulates an
Upstart-like environment.

Assuming your service is / usr/ bi n/ nydaenon and you want to run it as user r oot :

$ user=r oot
$ cnd=/ usr/ bi n/ mydaenon
$ su -c 'nohup env -i $cnd </dev/null >/dev/null 2>&1 & $user

That command will run / usr/ bi n/ nydaenon:

* as user $user (root here, but maybe not for you if you've used setuid)
* with no associated terminal
* parented to init

* with no environment
Or, if you want to set a user and a group, use sudo(8) (or maybe su(1) and newgrp(1)):

$ user=userl

$ group=group2

$ cnd=/ usr/ bi n/ mydaenon

$ (sudo -u $user -g $group nohup env -i $cnd < /dev/null > /dev/null 2>&1) &

For the sudo example, you should first check that $user is able to run $cnd.

If your service is unable to run in one of these environments, it is also likely to fail when run as a Job.

18.3.1 Determining why your Service Fails to Start

You may find that your service runs fine when executed from the command-line, but does not work initially
when you start testing it with Upstart. This is because the environment the service is run in when started
by Upstart is potentially radically different to your interactive user (or even r oot user) environment.

To discover exactly what sort of environment Upstart provides, see the procenv example in See the
Environment a Job Runs In.

You can also use procenv and diff(1) to determine relatively quickly how the two environments differ:

1. Run your application or daemon (let's call it "mycnd") from the command-line (where it is expected to
work) using procenv to log the environment:

$ procenv --file=/tnp/procenv-cndline.log --exec -- nycnd --argl --foo=bar

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

https://launchpad.net/procenv
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man1/newgrp.1.html
http://manpages.ubuntu.com/manpages/man1/diff.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

2. Run your application from within an Upstart Job, again using procenv to log the environment:

exec procenv --file=/tnp/procenv-job.log --exec -- nycnmd --argl --foo=bar

Or from a script section:

scri pt
exec procenv --file=/tnp/procenv-job.log --exec -- nycnd --argl --foo=bar
end scri pt

3. Compare the two environments:

$ diff /tnp/procenv-cndline.log /tnp/procenv-jaob.|og

18.4 Obtaining alog of a Script Section

18.4.1 Upstart 1.4 (and above)
Upstart 1.4 provides automatic logging of all job output.

See console log for further details.

18.4.2 Versions of Upstart older than 1.4

This technique relies on a trick relating to the early boot process on an Ubuntu system. On the first line
below scri pt stanza, add:

exec >>/dev/.initranfs/nyjob.log 2>&1
set -X

This will ensure that / bi n/ sh will log its progress to the file named / dev/ . i ni tranf s/ myj ob. | og.

The location of this file is special in that / dev/.initranfs/ wil be available early on in the boot
sequence (before the root filesystem has been mounted read-write).

Note that newer releases of Ubuntu mount / r un/ read-writeable very early on in the boot process too.

18.5 Log Script Section Output to Syslog

There are two techniques you can use to do this:

Use the same technique as shown in Obtaining a log of a Script Section, but change the file to /dev/kmsg.
This will send the data to the kernels ring buffer. Once the syslog(3) daemon starts, this data will be
redirected to the system log file:

scri pt

exec >/dev/knsg 2>&1

echo "this data will be sent to the system | og”
end scri pt

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man3/syslog.3.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

18.6 Checking a Job Configuration File for Syntax Errors

See init-checkconf.

18.7 Check a Script Section for Errors

Upstart runs your job using / bi n/ sh -e for safety reasons: scripts running as the r oot user need to
be well-written! But how can you check to ensure that your script sections contain valid (syntactically
correct at least) shell fragments? Simply run the init-checkconf script, which performs these checks
automatically.

18.7.1 Older versions of Upstart

To check that you haven't made a (shell) syntax error in your scri pt section, you can use sed like this:
$ /bin/sh -n <(sed -n '/~script/,/”end script/p" nyjob.conf)

Orforapre-start script section:
$ /bin/sh -n <(sed -n '/~pre-start script/,/”end script/p" nyjob.conf)

No output indicates no syntax errors.

Alternatively, you could wrap this into a script like this:

#!/ bi n/ sh
check-upstart-script-sections.sh

[$# -ne 1] & & { echo "ERROR usage: $0 <conf file>"; exit 1; }
file="%1"

[' -f "$file"] & { echo "ERROR file $file does not exist" >&; exit 1; }

for v in pre-start post-start script pre-stop post-stop

do
if egrep -g "\<${v}\>" $file
t hen
sed -n "/~ *${v}/,/™ *end script/p" $file | \
sh -n || echo "ERROR in $v section”
fi
done

And run it like this to check all possible script sections for errors:

$ check-upstart-script-sections.sh nyjob. conf

18.8 Debugging a Script Which Appears to be Behaving Oddly

If a script section appears to be behaving in an odd fashion, the chances are that one of the
commands is failing. Remember that Upstart runs every scri pt section using / bi n/sh -e. This
means that if any simple command fails, the shell will exit. For example, if file /etc/does-not-exist.cfg does
not exist in the example below the script will exit before the shell runs thei f test:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

scri pt
grep foo /etc/does-not-exist.cfg >/ dev/null 2>&1
if [$? -eq 0]
t hen
echo ok
el se
echo bad
fi
end scri pt

In other words, you will get no output from this script if the file grep is attempting to operate on does not
exist.

The common idiom to handle possible errors of this type is to convert the simple expression into an
expression guaranteed to return true:

scri pt
ensure this statenent always evaluates to true
conmmand-that-m ght-fail || true
ditto
anot her - command | |
end scri pt

See man sh for further details.

19 Recovery

If you do something really bad or if for some reason Upstart fails, you might need to boot to recovery
mode and revert your job configuration file changes. In Ubuntu, you can therefore either:

19.1 Boot into Recovery Mode
Select the "recovery" option in the Grub boot menu
This assumes that Upstart (init(8) itself) is usable.

Note that you need to hold down the SHI FT key to see the Grub boot menu.

19.2 Boot to a shell directly

If Upstart (init(8)) itself has broken, you'll need to follow the steps below. By specifying an alternate "initial
process" (here a shell) it is possible to repair the system.

. Hold down SHIFT key before the splash screen appears (this will then display the grub menu).
. Type, "e" to edit the default kernel command-line.

. Use the arrow keys to go to the end of the line which starts "l i nux /boot/vm inuz ..."
. Press the END key (or use arrows) to go to end of the line.

. Add a space followed by "i ni t =/ bi n/ sh".

. If the line you are editing contains "quiet" and/or "splash”, remove them.

N O 0o~ WDN P

. Press CONTROL+x to boot with this modified kernel command line.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

8. When the shell appears you will need to remount the root filesystem read-write like this:

nmount -orenount,rw /

You can now make changes to your system as necessary.
20 Advanced Topics
20.1 Changing the Default Shell

By default, Upstart uses "/ bi n/ sh" to execute script sections. If you wish to change this behaviour, you
have the following options:

e Link / bi n/ sh to your chosen shell 13
» Copy your chosen shell to / bi n/ sh.

» Recompile Upstart specifying an alternative shell as follows:

XXX: Note the careful quoting to retain doubl e-quotes around the shell!
export CFLAGS=-DSHELL='\"/bi n/bash\"'
./ configure & make && sudo make install

Note that you should consider such a change carefully since Upstart has to rely upon the shell.
Remember too that Upstart runs all script sections as the root user.

» Use a "here document" (assuming your chosen shell supports them) within the Job Configuration
Files you wish to run with a different shell:

script
/ bi n/ bash <<EOT

echo "H - | amrunning under the bash shell”
dat e
echo "and so am| :)"

ECT
end scri pt

Note that currently, this technique is the only way (without modifying the Upstart source code) to run
a shell without specifying the "- e" option (see dash(1) or bash(1) for details).

20.2 Running a script Section with Python

To run a script section with Python:

scri pt
pyt hon - <<END

fromdatetine inport datetine

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/dash.1.html
http://manpages.ubuntu.com/manpages/man1/bash.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

today = datetinme.now().strftine("%A")
fh = open("/tnp/file.txt", "w")

print >>fh, "Today is %" %t oday
fh.close()

END

end scri pt

20.3 Running a script Section with Perl
To run a script section with Perl:

scri pt

perl - <<END

use strict;

use warni ngs;

use POSI X;

my $fh;
ny $today = POSI X::strftinme("%A", localtine);

open($fh, ">/tnp/file.txt");

printf $fh "Today is %\n", $today;
cl ose($fh);

END

end scri pt

21 Development and Testing

21.1 Warnings

 Upstart runs as r oot so has full system privileges.

« If Upstart crashes...:

Kernel panic - not syncing: Attenpted to kill init! exitcode=0x00000100
[2.745566]

[2.751931] Pid: 1, comm false Not tainted 3.5.0-15-generic #22-Ubuntu
[2.755489] Call Trace:

[2.757068] [<cl5beB842>] pani c+0x81/0x17b

[2.759206] [<cl04a6a5>] do_exit+0x745/0x7a0

[2.761602] [<cl04a9a4>] do_group_exit+0x34/0xa0

[2.764162] [<cl04aa28>] sys_exit_group+0x18/ 0x20

[2.765231] [<cl1l5c8a94>] syscall _cal |l +0x7/0xb

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

... your kernel panics!

« Unlike the kernel, if a new version of Upstart fails to work at all, there is no easy fix.

21.2 Precautions and Practises

Precautions and Practises:

« Every function asserts its arguments. This allows simple programming bugs to be found very quickly
("fail fast").

 Every function that returns a value must be checked and exceptions handled. GCC helps in this
respect withthe _attribute ((warn_unused_result)) function attribute.

* Every function that returns newly-allocated memory has its prototype decorated using
__attribute_ ((malloc)).

» No compiler warnings are allowed (- WAl | - \Werr or).

« Every function or logical unit of functionality must have an associated set of tests.

« Every build of Upstart must pass all NIH and Upstart tests before being made available to users.

» The code is very well tested(using physical and virtual hardware, all architectures and containers).
« All code is peer-reviewed.

« All changes to the main | p: upst art code branch in Launchpad now automatically generate a mail
to the Upstart mailing list.

« All bzr merge proposals raised on Upstart also result in a mail to the Upstart mailing list.

» Where possible, all new features add a - - no- - <f eat ur e> command-line option (allowing the
feature to be disabled to provide a fall-back mechanism).

21.3 Code Style

* Use tabs.
« Every function, macro, structure, typedef and variable must be documented.
« Every function must specify what is returned on success and failure.

« Every function must check all possible parameters using .
See file: upst art : HACKI NG

21.4 Development Advice

« KISS and KIRS ("keep it readable silly")
"Clever" code often outwits the author.

Prefer to keep it simple, elegant and most of all readable. Bit-twiddlers and IOCCC champions need
not apply.

» Do not use system calls or library calls if NIH already provides an alternative. That means:

*Nomalloc(),calloc(),strtok(),sprintf(), etcetera.

* You really need to familiarise yourself with NIH by reading the NIH source and the Upstart
source.

» Don't just read the NIH and Upstart source, read the test code - it has comments too! ;-)

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

» Write code to be testable.

» Always consider security and performance.

* DoS possibility?
¢ Get the code security-reviewed.

« If you plan to work on some huge feature that will take you 6 months of effort, PLEASE alert the
developers via the mailing list BEFORE you start since:

* We may already be working on such a feature.

« If your design doesn't fit in with the project, you're potentially facing a lot of avoidable rework.
* Always test on a range of hardware:

 Physical and virtual.

* 32-bit and 64-bit.

* Intel/ARM/etc.

21.5 Setting up an Upstart Development Environment

$ sudo apt-get install build-dep upstart # cheat :)
$ bzr branch | p:upstart
$ cd upstart
$./configure --disable-silent-rules --enabl e-comnpiler-warnings \
--di sabl e-conpi | er-optim sations --disabl e-linker-optinisations \
--enabl e- conpi | er - cover age
$ export CFLAGS="-fstack-protector --paranmessp-buffer-size=4 -Wormat -Werror=format-sec
$ make
$ cscope -Rbg && ctags

* You need to build the code before indexing since D-Bus bindings are auto-generated (using
ni h- dbus-t ool).

* You need to use all those flags to enable all the compiler checks.

21.6 Setting up an Upstart+NIH Development Environment

Since Upstart makes such heavy use of NIH, it is often useful to build both Upstart and link it to a debug
symbols build of NIH:

$ sudo apt-get install build-dep upstart |ibnihl # cheat :)

$ prefix=/testing

$ nkdir S$prefix

$ export PKG _CONFI G PATH=${prefix}/|ib/ pkgconfi g: $PKG_CONFI G_PATH

$ export ACDI R=%{prefix}/share/acl ocal : $ACDI R

$ export CFLAGS="-fstack-protector --parankssp-buffer-size=4 -Wormat \

-Werror=format-security -ggdb3 -fno-inline"

$ bzr branch Ip:libnih

$ cd libnih

$./configure --disable-silent-rules --enable-conpiler-warnings \
--di sabl e-conpi |l er-optim sations --disabl e-1inker-optimsations \
--enabl e-conpi | er-coverage &% nake && meke i nstal

$ cd -

$ bzr branch | p:upstart

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$ cd upstart

$./configure --disable-silent-rules --enable-comnpiler-warnings \
--di sabl e-conpi | er-optim sations --disabl e-linker-optinisations \
--enabl e-conpi | er-coverage &% make && nmake install

21.7 Upstart Objects

* Event represents an event.

» Conf Sour ce represents atype of configuration source (file or directory) and
includes i noti fy watches.

* Conf Fi | e represents the jobs ". conf " file name, but also
has a pointer to its contents (see below).

» Jobd ass represents the jobs ". conf " file contents.
» Job represents a running instance of job.
» Sessi on represents a user session for user jobs, or a chroot.

» Log represents job log data (data that a single job process has produced on its standard output and
standard error).

* Bl ocked is used to handle hook and net hod events types.
(See hooks and methods).
See upstart-objects-diagram.

21.8 Unit Tests

Every major feature in Upstart needs to be accompanied with comprehensive unit tests. To run the tests:

$ autoreconf -fi
$./configure --enabl e-conpiler-coverage ...
$ make check 2>&1|tee nmke-check. | og

Note that as of Upstart 1.3, some of these tests cannot be run from within a chroot(2) environment unless
D-Bus is installed and configured within the chroot. This scenario is detected, a warning about bug
728988 is logged and those tests are automatically skipped. Hence, to run all the tests, please ensure you
run "make check" outside of a chroot(2) environment.

21.8.1 Building Within a Chroot

Some of the unit tests assume a full environment, including a controlling terminal. If you wish to build an
Upstart package on a Debian or Ubuntu system, note that although the pbuilder(8) tool will work as
2e‘>1<pected, currently sbuild(1) does not provide a controlling terminal which causes tests to fail. See 23 and

21.8.2 Statistics
At the time of writing, the number of Upstart tests, and tests for the NIH Utility Library used by Upstart are:

Unit Test Statistics.

Application Test Count

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/chroot.2.html
https://bugs.launchpad.net/upstart/+bug/728988
https://bugs.launchpad.net/upstart/+bug/728988
http://manpages.ubuntu.com/manpages/man2/chroot.2.html
http://www.debian.org
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/pbuilder.html
http://manpages.ubuntu.com/manpages/man1/sbuild.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Upstart unit tests 1368
NIH Utility Library 2863
Total 4231

importance of the test-suite cannot be overstated: it's one of the main "safety-nets" to ensure the
behaviour of NIH and Upstart is assured.

To run the test suite for NIH or Upstart, simply run the following as a non-privileged user:

make check

21.8.3 Test Coverage

To check the test coverage after running the tests, look at each file using gcov(1):

$ cdinit
$ gcov -bf event.c

21.9 Enable Full Compiler Warnings
If you want to start submitting changes to Upstart, you need to ensure you build it as follows to catch any
warnings and errors the compiler can flag:

./configure --disable-silent-rules --enabl e-conpil er-warnings --disable-conpiler-optim s

21.10 Running Upstart as a Non-Privileged User

Upstart 1.3 introduced a number of options to help with testing. The "- - sessi on" command-line option
allows you to run Upstart as a non-privileged user since it makes Upstart connect to the D-Bus session
bus for which each user has their own:

$ /sbin/init --session --debug --confdir $HOVE/ conf/ --no-sessions

This is useful since you can now try out new features, debug with GDB, et cetera without having to installl
Upstart and run it as r oot . Once you've got your second instance of Upstart running, you can then use
the same option on initctl to manipulate jobs:

$ initctl --session emt foo

The caveat here is that running Upstart as a non-privileged user with a PID other than 1 changes its
behaviour slightly. So, only use this technique for unit/functional testing and remember that any changes
you post for inclusion should have been tested in a real scenario where Upstart is run as r oot and used
to boot a system.

21.11 Useful tools for Debugging with D-Bus

If you are debugging initctl(8), you'll need to understand D-Bus. These tools are invaluable:

* dbus-send(1)
* D-Feet

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man1/gcov.1.html
http://www.gnu.org/software/gdb/
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://manpages.ubuntu.com/manpages/man1/dbus-send.1.html
https://live.gnome.org/DFeet/
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.12 Debugging a Job

There is a magic stanza called debug which will start the job via fork(2) and then pause it. This can be
useful. Assuming you have a job "debug. conf " such as:

XXX: magi ¢ stanzal
debug

scri pt
[bin/true
end scri pt

You could now trace the job process like this:

start debug

debug start/runni ng, process 12345

strace -p 12345 -o /tnp/debug.log -Ff -s 1024 -v
st atus debug debug stop/waiting

After the call to start, the job process will be "running", but paused. The strace(1) will resume the job and
you will then have a log of what happened in file "/ t np/ debug. | og".

21.13 Debugging Another Instance of Upstart Running as root
with PID 1

21.13.1 Method 1 (crazy)

Caveat Emptor: this is somewhat crazy, but if you really want to do this:

$ sudo \
gdb --args \
cl one -e DBUS_SYSTEM BUS ADDRESS=$DBUS_SESSI ON_BUS_ADDRESS \
-f CLONE_NEWPI D, Sl GCHLD, CLONE_PTRACE -- \
init/init --debug --confdir /my/conf/dir --no-startup-event
- - no- sessi ons

This uses the Clone tool, which is very similar to unshare(1) but allows you to put a process into a new
PID namespace.

21.13.2 Method 2 (saner)

Use a container technology such as LXC, that simplifies the access to namespaces. For example =

$ sudo | xc-start -n natty
$ upstart_pid=$(pgrep -f /sbin/init|grep -v '*1%")
$ sudo gdb /sbin/init $upstart pid

Like the example above, here we use gdb to debug Upstart running as root with PID 1, but with thanks to
LXC, the container is fully isolated from the host system using namespaces. See Ixc(7) for details of LXC
on Ubuntu.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
https://code.launchpad.net/~jamesodhunt/+junk/clone
http://manpages.ubuntu.com/manpages/man1/unshare.1.html
http://lxc.sourceforge.net/
http://www.gnu.org/software/gdb/
http://lxc.sourceforge.net/
http://manpages.ubuntu.com/manpages/man7/lxc.7.html
http://lxc.sourceforge.net/
http://www.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.14 NIH

Grab the code from the NIH Utility Library page.

The NIH documentation is with the code:

» Header files provide introductory details.

» Every function, macro and variable is documented immediately above it.
References in the sections below give locations of file in the NIH source.

21.14.1 Memory Handling

Do notuse nal l oc(),calloc(),realloc() orfree() when working with Upstart. Rely instead on
the NIH memory routines:

» Low-level memory allocation is handled using ni h_al | oc() andni h_real | oc().
* It is more normal to use ni h_new(parent, type) though.
» To free memory, use ni h_free():

typedef struct foo {

int i;

} Foo;

Foo *foo = ni h_new (NULL, Foo0);

foo->i = 123;

[* time passes... */
nih _free (foo);

Warning

NEVER free memory using ni h_free() that NIH did not allocate!

See:ni h/all oc.[ch]

Like C++, NIH can perform automatic cleanup when objects go out of scope. The most magical part of
NIH is ni h_I ocal .

Question: is the following code leaking memory?

void foo (void)

{
nih_local char *string = nih_strdup (NULL, "hello, world");
ni h_nessage ("%", string);
}
Answer: No!

*ni h_l ocal is syntactic sugar to tell the compiler that the memory that the variable it applies to
("st ri ng") should be freed when the last reference to it is dropped. This happens when the variable
goes out of scope at the end of f 0o() .

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://launchpad.net/libnih
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Warning

ALWAYS assign ni h_| ocal variables to NULL to avoid memory corruption issues if the variable
is not assigned for some code path!

21.14.2 The NIH Parent Pointer
Most NIH routines take a voi d *par ent as their first parameter.

This parent pointer can be NULL as shown below:
ni h_strdup (NULL, "hello, world");

If the parent is not NULL, NIH will automatically add an appropriate reference such that when the parent is
freed, so are its child objects.

Consider this example:

voi d bar (void)

{
typedef struct thing {

char *str;
} Thi ng;

ni h_|ocal Thing *thing = nih_new (NULL, Thing);

[* XXX: note that we specify the parent as 'thing */
thing->str = nih_strdup (thing, "first string");
}

Two memory allocations have been performed:
*thing

et hing->str

And yet when bar () exits, there is no leak because NIH knows that t hi ng- >str is a "child" of t hi ng
and will do-the-right-thing (TM) and free both chunks of memory!

Here is another subtle example:

voi d bar (void)

{
typedef struct thing {
char *str;
} Thi ng;

nih _local Thing *thing = nih_new (NULL, Thing);

[* XXX: note that we specify the parent as 'thing */
thing->str = nih_strdup (thing, "a string val ue");

/* now, let's reassign the pointer */

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

thing->str = nih_strdup (thing, "another string value");
}
Surely, there must be a leak now since we've re-assigned t hi ng- >str ?

In fact, there is no leak because both the strings that we've assigned to t hi ng- >str have specified the
same parent: t hi ng. So, the reference to a string val ue has not been lost and both string values
will be freed correctly when t hi ng goes out of scope!

21.14.3 ni h_free()

However, sometimes using ni h_| ocal is not appropriate. In the example below, we manually free the
memory using ni h_free():

voi d bar (void)

{
typedef struct thing {
char *str;
} Thi ng;
Thing *thing = ni h_new (NULL, Thing);
[* XXX: note that we specify the parent as 'foo' */
thing->str = nih_strdup (thing, "first string");
[* "manual | y" free thing _and_ thing->str */
nih free (thing);
}

Here we use ni h_free() toforce NIH to free up memory.

Warning

NEVER callni h_free() onanni h_| ocal variable!

21.14.4 N H_MJST()

The example so far have not checked for error conditions. Here's how we could handle an out-of-memory
scenario:

ni h_|ocal char *string = NULL;
string = nih_strdup (thing, "first string");

if (! string) {
/* handl e the error */
}

However, this tends to lead to code littered with error checking. There is a common NIH idiom that avoids
such problems:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

ni h_local char *string = NULL;
string = NNH MJUST (ni h_strdup (thing, "first string"));

/* string is now guaranteed to have the expected error */

}

See file: ni h/ macros. h

NI H MUST() will evaluate its argument until it returns a value.

Warning

Nl H MJUST() will try forever to grab the memory required.

That could lead to Upstart going into a tight loop and effectively killing your machine.

However, realistically, Upstart only ever allocates small chunks of memory and if / sbi n/ i ni t, running
as root is unable to allocate a few bytes of memory, you machine has big problems.

21.14.5 Error Handling

If a function detects a failure, it must return a suitable error value. However, it may be appropriate to raise
an exception. You'll know if a function raises an exception since it will be documented like this:

Returns: zero on success, nhegative value on raised error.

A "raised error" refers to an N hEr r or object being raised when the function detects an error.

Therefore, it is the callers responsibility to:

» Check the return code of every function that returns a value.

» Handle raised errors appropriately (and immediately!)
See:ni h/error.[ch]

Let's look at an example:

char *
numto_str (int i)
{

if (i %2)

return NLH_MUST (ni h_sprintf (NULL, "%l", i));

nih_error_raise _no _nenory ();
return NULL;
}

i nt
main (int argc, char *argv[])

{

nih | ocal char *s = NULL;

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

s = numto_str (1);
ni h_nmessage ("got: '%'", S);

[* force error scenario */
s = numto_str (2);
if (! s) {
/* retrieve the error */
err = nih_error_get ();

[* display it */

ni h_nmessage ("%: %: %: %: %",
err->fil enane,
err->line,
err->function,
err->nunber,
err->nmessage) ;

/* clear the error */

nih free (err);

}

exit (EXIT_SUCCESS);

21.14.5.1 Impact of Ignoring a Raised Error

An example of code that ignores a raised error:

char *
numto_str (int i)
{

if (i %2)

return NLH MJUST (ni h_sprintf (NULL, "%", i));

nih_error_raise_no_nenory ();
return NULL;

}
i nt
main (int argc, char *argv[])
{
ni h_local char *s = NULL;
/[* ok */
S = numto_str (1);
ni h_message ("got: '%'", s);

/* force error scenario */
S = numto_str (2);

[* Qops - forgot to check return! */
ni h_message ("got: '9%'", s);

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

exit (EXIT_SUCCESS);
}

Output:

got: '1'

got: '(null)’

(null):test_nih_error.c:38: Unhandl ed error fromnumto_str: Cannot
al | ocate nenory

[1] 20476 abort (core dunped) bin/test _nih_error

The reason this crashes is that NIH installs an atexit(3) handler which checks for any N hErr or errors
that have not been handled on exit.

Of course, in the case of Upstart, it never exits so failing to handle an error will result in an assertion
failure the next time an error object is raised.

* To raise an exception when ERRNO gets set, use:
enih_error_raise_system)
eni h_return_systemerror()

« To raise an arbitrary exception, use:
eni h_error_rai se(nunber, message)
enih_error_raise_printf(nunber, formt, ...)

enih_return_error(retval)
Seefile:ni h/error.h

21.14.6 Output

NIH has a rich set of output routines:

e ni h_debug()
*ni h_info()
*ni h_nmessage()
*ni h_warn()
ni h_fatal ()

ni h_fatal ()
All routines take a format string and arguments like printf(3):

i nt i = 123;
char *s = "hello, world";
ni h_debug ("s="9%"', i=%", s, i);

Like syslog(3), NIH will only display message made with the above calls if the log priority is appropriate.
To change the priority, use - - ver bose, - - debug, or programatically callni h_set _priority().

By default, output goes to standard output, but early in its initialisation, it redirects output to the kernel ring
buffer using:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man3/atexit.3.html
http://manpages.ubuntu.com/manpages/man3/printf.3.html
http://manpages.ubuntu.com/manpages/man3/syslog.3.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

ni h_ | og_set | ogger (l|ogger knsg);

See file: ni h/ | oggi ng. [ch]

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.15 Creating a New Object

21.15.1 Template for a new "foo"

/**

* foo:

* @ntry: list header,
@ane: nane of foo,
@al ue: val ue of foo.

* X X

Structure to hold a foo.

* << XXX: nore details here >>.
**/

typedef struct foo {

Ni hLi st entry,;

char * narme;
int val ue;
} Foo;
/**
* foos:
* List of all foos. << XXX: nore details here >>
**/

Ni hLi st *f oos;

/**

* |nitilise the foos |ist.

*/
void foo_init (void)
{
if (! foos)
foos = NNH MUST (nih_list_new (NULL));
}

Foo * foo_new (void *parent, const char *nanme, int val ue)
__attribute__ ((warn_unused result, nmalloc));

f oo_new:

@arent: parent of new foo,
@ane: nane of foo,

@al ue: val ue of foo.

* % F X x X

* Returns: Newly allocated foo, or NULL on insufficient nmenory.
**/

Foo *

foo_new (void *parent, const char *nane, int val ue)

{

Foo *foo;

assert (nane); /* check all args possible */
foo_init (); /* initialise the subsystem */

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar

branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

/* create the object */
foo = NNH MJUST (ni h_new (parent, Foo0));

[* initialise the enbedded |ist */
nih list init (& oo->entry);

/* save val ues */
foo->name = NNH MUST (ni h_strdup (foo, nane));
f oo- >val ue = val ue;

/* Add object to list of known foos */
nih |ist _add (foos, &source->entry);

/* expl ain how objects should be di sposed of */
nih _alloc_set destructor (foo, nih _|ist _destroy);

return foo;
error:

nih free (foo);
return NULL;

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.15.2 Basic Test Example for a New "foo"

Foo *foo;
char *str;

TEST_FEATURE ("with parent");
foo_init ();
TEST_LI ST_EMPTY (foo0s);

str = ni h_strdup (NULL, "hello");
TEST _NE P (str, NULL);

foo = foo_new (str, "foo", 123);
TEST_NE P (foo, NULL);

TEST_ALLOC PARENT (foo, str);
TEST_ALLCC Sl ZE (foo, sizeof (Foo));

TEST_FREE_TAG (f 0o->nan®) ;
TEST_LI ST_NOT_EMPTY (f o0o0s);

TEST_EQ (foo->val ue, 123);
TEST_EQ STR (foo->nane, "foo");
TEST_ALLOCC_PARENT (foo->nane, foo);

ni h_free (foo);
TEST_LI ST_EMPTY (foo0s);
TEST_FREE (foo0->nane);

nih free (str);

21.16 Addinganewinitctl command

21.16.1 Adding a New non-Job Command

1. Add a new function called "<name>_action()"toutil/initctl.c where "<nane>"is the name
of the new command the user will type on the command-line ("i ni tct1 <name>") with all hyphens
("- ") converted to underscores ("_").

Example: "rel oad_configuration_action()" for the "rel oad- confi guration”
command-line command.

2. Make "<nane>_action()" call "upstart_<nane>_sync()", which will be an auto-generated
function (see below).

Example: "rel oad_configuration_action()" calls
"upstart_rel oad_configuration_sync()".

3. Add a new D-Bus method corresponding to "<nane>" in "camel-case" to:

dbus/ com ubunt u. Upstart. xmn

Example: Add the following for the "r el oad- confi gur ati on" command:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

<met hod nanme="Rel oadConfi gurati on">
</ met hod>

4. Add implementation to "i ni t/ control . ¢c"as "control _<name>()".

Example: add "cont rol _rel oad_confi guration()".

21.16.2 Adding a New Job Class Command

Process is as per Adding a new non-Job Command, but rather than modifying file
"dbus/ com ubunt u. Upstart . xm ", you must modify file:

dbus/ com ubunt u. Upst art. Job. xm

... and then add a function to "i ni t /j ob_cl ass. c".

21.16.3 Adding a New Job Command

Process is as per Adding a new non-Job Command, but rather than modifying file
"dbus/ com ubunt u. Upstart . xm ", you must modify file:

dbus/ com ubunt u. Upstart. | nst ance. xm
... and then add a function to "i ni t/j ob. c".

21.16.4 Generating the D-Bus Bindings

After following the steps above to add a new i nitctl command, run "make" and observe the the
ni h- dbus-t ool utility gets calls to convert your XML definitions into auto-generated code:

[usr/ bi n/ ni h-dbus-tool \
- - package=upstart \
- -node=obj ect --prefix=control \
--default-interface=com ubuntu. Upstart0_6 \
- -out put =com ubunt u. Upstart.c

../ dbus/ com ubunt u. Upstart . xm

[usr/ bi n/ ni h-dbus-tool \
- - package=upstart \
- -node=obj ect --prefix=job_class \
--default-interface=com ubuntu. UpstartO_6. Job \
- -out put =com ubunt u. Upstart. Job. c

../ dbus/ com ubunt u. Upstart. Job. xn

[usr/ bi n/ ni h-dbus-tool \
- - package=upstart \
--node=obj ect --prefix=job \
--default-interface=com ubuntu. UpstartQO_6. | nstance \
- -out put =com ubunt u. Upstart. | nstance. c

../ dbus/ com ubunt u. Upstart. | nstance. xn

21.17 TEST_ALLOC FAI L

NIH provides a rather clever macro called TEST_ALLOC_FAI LED,; it accepts a code block and will execute
that block 1 + N times where N is the number of NIH memory allocation calls made within the block.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

* The first time through, the macro counts the number of NIH allocation calls.

» Each subsequent time through, it causes the Nth call to an NIH memory allocation routine to fail.

This exercises fully for example a function which returns a newly-allocated object (and which may make
any number of calls to the NIH memory allocation routines).

Essentially, it ensures your handling of memory allocation failures are correct.

21.17.1 Improved Test Example for a New "foo" (with a bug)
We can now modify our previous example to also use TEST_ALLOC FAI L. Note that this version contains
a bug! Can you spot it?:

Foo *foo;
char *str;

TEST_FEATURE ("put text here");
foo_init ();

TEST ALLOC FAI L {
TEST_LI ST_EMPTY (foo0s);

str = ni h_strdup (NULL, "hello");
TEST _NE P (str, NULL);

foo = foo_new (str, "foo", 123);
if (test_alloc_failed) {
TEST EQ P (foo, NULL);
conti nue;

}

TEST_LI ST_NOT_EMPTY (f o0o0s);
TEST_ALLCC Sl ZE (foo, sizeof (Foo));
TEST_EQ (foo->val ue, 123);

TEST_EQ STR (foo->nane, "foo");

nih free (str);

21.18 TEST_ALLOC SAFE

If you need to guarantee that particular memory allocations within the do not fail, wrap those in a call to
TEST_ALLOC_SAFE:

TEST_ALLOC FAI L {
TEST_ALLOC_SAFE {
/* Menory allocations will work here */
}

/* Menory allocations will be sequentially FAILED here */

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.18.1 Final Test Example for a New "foo"
Using TEST_ALLOC FAI L, we can now fix the example to be:

Foo *foo;
char *str;

TEST_FEATURE ("put text here");
foo_init ();

TEST ALLOC FAI L {
TEST_ALLOC_SAFE {
TEST_LI ST_EMPTY (foo0s);

str = ni h_strdup (NULL, "hello");
TEST _NE P (str, NULL);
}

foo = foo_new (str, "foo", 123);
if (test_alloc_failed) {
TEST EQ P (foo, NULL);
conti nue;

}

TEST_LI ST_NOT_EMPTY (f o0o0s);

TEST_ALLCC Sl ZE (foo, sizeof (Foo));
TEST_EQ (foo->val ue, 123);
TEST_EQ STR (foo->nane, "foo");

nih free (str);

21.19 Basic Debugging
Don't underestimate the usefulness of two very simple techniques:

esudo strace -p 1 -fFv -s 1024
enih_fatal ("\%:\%", _ func__, _ LINE);

21.20 Debugging Upstart as a Non-Privileged User

With the right command-line options, it's possible to run Upstart as a normal non-privileged user:

$ make

$ nkdir /tnp/conf /tnp/log

$ cp *.conf /tnp/conf

$ gdb init/init --confdir /tnp/conf --logdir /tnp/log --no-sessions --session --debug

This is a useful technique but be aware that the behaviour of Upstart running as a non-privileged user is
slightly different to running it as r oot with PID 1.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.21 Debugging Upstart as r oot

Itis in fact possible to debug / shi n/i nit using gdb as userr oot on arunning system!

* Build upstart with - ggdb3 and installto/ sbi n/init.foo for example.

esudo gdb /shin/init.foo 1

21.22 Debug Tip Using Destructors

If can be useful to register a custom destructor for your object as a debug aid:

int foo_destructor(void *ignored)

{
/* Do sonething */
return 1,
}
Foo *
foo_new (void *parent)
{
Foo *foo = NTH_ MJUST (ni h_new (parent, Foo0));
[* ... %
[* Call foo_destructor when object is destroyed */
ni h_alloc_set _destructor (foo, foo_destructor);
return foo;
}

Now, whenever a Foo is freed, f oo_dest ruct or () will be called.

Note that child objects of the Foo object that f oo_destructor () is being called for and the parent
references and the object itself will be freed - the destructor is for very specialist operations, such as
debugging.

21.22.1 Lists

Here's an example of using NIH lists:

typedef struct bar {
Ni hLi st entry;

char *str;
} Bar;
i nt
main (int argc, char *argv[])
{ . .
int i;

ni h_l ocal NihList *args = NULL;
args = NIH MUST (nih_list_new (NULL));

[* store all arguments in a list */

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

for (i =1; i < argc; ++i) {
Bar *bar = NIH MUST (ni h_new (args, Bar));
nih list init (&ar->entry);
bar->str = NIH MJUST (ni h_strdup (bar, argv[i]));
nih |ist add (args, &bar->entry);

/* display all argunents by iterating over list */
NlH LI ST FOREACH (args, iter) {
Bar *bar = (Bar *)iter;

ni h_nessage ("argunent %="9%'", i, bar->str);
+4i ;

}

return (0);

* NIH lists are designed to be embedded within some other structure.
* Create a list dynamically using ni h_Ii st _new().

* Initialize a static list using ni h_list_init().

» Add one list to another using ni h_li st _add().

* lterate a list using Nl H_L1 ST_FOREACH() .
Seefile: ni h/ i st.[ch]

21.22.1.1 Removing Elements from a List
An example showing how to remove an element from a list:

Ni hLi st *entry |ist;
Ni hLi stEntry *entry;

entry_list = NFH_MJST (nih_list_new (NULL));

entry = NNH_MJUST (ni h_list_entry_new (entry_list));
entry->str = NLH_MJST (ni h_strdup (entry, "hello"));
nih_list_add (entry_list, &entry->entry);

entry = NNH_MJUST (ni h_list_entry_new (entry_list));
entry->str = NLH_MJST (ni h_strdup (entry, "world"));
nih_list_add (entry_list, &entry->entry);

entry = (NihListEntry *)nih_list_renmove (entry_list);
nih_free (entry_list);

Freeing entry_list frees the "hello™" *and* t he "“world " entries
since although the " “worl d" entry was removed from its containing list, we did NOT break the
reference between that entry and its parent (entry_1|i st).

If we had wanted to break the reference, we could have used ni h_ref () andni h_unref () to:

» Add a reference for this entry to a new parent.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

* Remove the existing reference between entry | i st and the entry.
Another method for removing an entry from a list is whilst iterating it:

NI H LI ST_FOREACH_SAFE (entry_list, iter) {
Ni hLi stEntry *entry = (Ni hListEntry *)iter;
nih free (entry);

* Note that we are now using . Do NOT attempt to remove a list entry whilst iterating a list using .

It is NOT allowed to iterate a list whilst it is already being iterated. Therefore, you need to be very
careful that your function is not being called from within a foreach-loop.

21.22.1.2 Moving an Element Between Lists
An example showing moving an element from one list to another:
Ni hLi st *|istl;

Ni hLi st *|ist2;
Ni hLi stEntry *entry;

listl
list2

NlH MUST (nih_list _new (NULL));
NlH MUST (nih_list _new (NULL));

/* Create entry and add to listl */
entry = NNH MUST (nih_list _entry new (listl));
nih list add (listl, &entry->entry);

/[* Fully nmove entry to list2 */

nih list add (list2, &entry->entry);
nih ref (entry, list2);

nih unref (entry, listl);

/* Frees listl, but not entry */
nih free (listl);

/[* Frees list2 AND entry */
nih free (list2);

21.22.2 Hashes

NIH Hashes are actually "hashed lists" (essentially arrays of lists):

N hHash *

ni h_hash_new (const void *par ent
size_t entries,
Ni hKeyFuncti on key function,
Ni hHashFunction hash_functi on,
Ni hCpFuncti on cnp_function);

However, the more common way to create a hash is via:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

typedef struct foo {
Ni hLi st entry;

char *nane;
} Foo;
/**
* foos:
* List of all foos. << XXX: nore details here >>
**/

Ni hHash *f oos;

/**

* Initilise the foos hash.

*/
void foo_ init (void)
{
if (! foos)
foos = NNH MUST (ni h_hash_string_new (NULL, 0));
}
Foo *
foo_new (void *parent, const char *nane)
{
Foo *foo;
assert (name);
foo_init (); /* initialise the subsystem */
/* create the object */
foo = NNH MJUST (ni h_new (parent, Foo0));
[* initialise the enbedded list_*/
nih list init (& oo->entry);
ni h_hash_add (foos, &foo->entry);
return foo;
}

21.22.2.1 Using Hashes
To iterate a hash, use Nl H HASH FOREACH() :

Nl H HASH FOREACH (foos, iter) {
Foo *foo = (Foo *)iter;

/[* do sonething with foo */

}
To find an entry in a hash, use ni h_hash_I ookup():

Foo *foo;

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

foo = (Foo *)ni h_hash_| ookup (foos, "hello");
if (foo) {

[* ... 0%
}

Alternatively, if there are multiple entries for a particular "hash bucket", use ni h_hash_sear ch().
See: ni h/ hash. [ch]

21.22.2.2 ni h_hash_string new()

ni h_hash_string_new() "is "magic" *BUM* to wuse it *the first structure
el ement **after** the elenent **nust** be a " ~char *"that will uniquely represent that
hash entry*.

If a simple string is not sufficient for your purposes, you will need to use ni h_hash_new() and will also
have to specify the Ni hKeyFunct i on, Ni hHashFuncti on and Ni hCnpFunct i on.

Analogous to NI H_LI ST_FOREACH_SAFE, there is also a NI H HASH FOREACH SAFE facility for
removing hash entries whilst iterating the hash.

21.22.3 Trees

A basic example of NIH trees:

typedef struct foo {
Ni hTree node;
i nt val ue;

} Foo;

Ni hTree *tree;
Foo *f 00;

tree = NNH MUST (nih_tree_new (NULL));
foo = NNH MUST (ni h_new (tree, Fo0));
nih tree_init (& oo->node);

f oo->val ue = 123;

nih tree_add (tree, & oo->entry, N H TREE LEFT);

To iterate a tree:

* Nl H TREE_FOREACH() (in-order traversal)
* Nl H TREE_FOREACH PRE() (pre-order traversal)

* Nl H TREE_FOREACH POST() (post-order traversal)
See:ni h/tree.[ch]

Example of iterating a tree using in-order traversal:
NlH TREE FOREACH (tree, iter) {

Foo *foo = (Foo *)iter;
[* ... %

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.22.4 Avoiding Problems

What's wrong with this code?:

[* XXX: this code is incorrect! */
void foo (const char *string)

{
ni h_l ocal char *str;
ni h_assert (string);
if (! strenp ("foo", string)) {
str = NIH_MJST (nih_strdup (NULL, "bar"));
bar (str);
}
}

The problem here is that st r is not always assigned a value, so if stri ng is not f 00, the results of this
function are undefined - it could result in a crash!!

The example below contains two memory leaks:

Ni hLi st *entry list;
Ni hLi stEntry *entry;

entry list = NNH MJUST (nih_list_new (NULL));

entry = NIH MJUST (nih_list_entry new (NULL));
entry->str = NIH MJUST (ni h_strdup (NULL, "hello"));
nih list _add (entry list, &entry->entry);

nih free (entry_list);

e entry is not freed. To resolve, either:

¢ Make its parent pointer non-NULL (recommended).
e« Callni h_free().

eentry->str isnotfreed. To resolve, either:
« Set its parent pointer to ent ry (recommended).

eCallnih_free (entry->str).

21.23 Debugger Magic

Debugging in gdb initially seems rather difficult, but you just need to know the right tricks. The
complication comes from the fact that Upstart uses the NIH Utility Library, which uses macros (such as
NI H LI ST_FOREACH and NIl H_ HASH FOREACH) for performance.

However, how do you access a data structure such as an NihList whose only method of iteration is a
macro? Like this:

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://www.gnu.org/software/gdb/
http://launchpad.net/libnih
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.23.1 Ni hLi st

first entry
(gdb) print *(Jobd ass *)job_cl asses- >next

2nd entry
(gdb) print *(Jobd ass *)job_cl asses- >next - >next

3rd entry
(gdb) print *(Jobd ass *)job_cl asses- >next - >next - >next

Conf Source N hWatch for 1st entry in conf_sources |i st
(gdb) print *((ConfSource *)conf_sources->next)->watch

21.23.2 N hHash

size of Jobd ass->i nstances hash |i st
XXX: this is the capacity, *NOT* the nunber of entries!
print class->instances->size

first entry in job_classes global hash
print *(Jobd ass *)job_cl asses->bi ns- >next

21.23.3 nih_iterators

Alternatively, you can make use of the "unofficial" NIH Iterators which provide functional versions of the
standard NIH macros and a few extras. Note that these are ONLY for testing and debugging!

enih list foreach():
/**

* nih_list foreach:

*

* @ist: list,
* @en: optional output paraneter that will contain length of Iist,
* @andler: optional function called for each list entry,
* @lata: optional data to pass to handler along with list entry.
*
* |terate over specified |list.
*
* One of @en or @uandler may be NULL.
* | f @andler is NULL, list length will still be returned in @ en.
* |f @andler returns 1, @en will be set to the nunber of list entries
* processed successfully up to that point.
*
* Returns: 0 on success, or -1 if handler returns an error.
**/
i nt

nih list foreach (const N hList *list, size t *len, N hListHandl er handl er, void *da

*ni h_hash_foreach():

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://people.canonical.com/~jhunt/nih/nih_iterators.c
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

*

ni h_hash_f oreach:

@ash: hash,

@en: optional output paraneter that will contain count of hash entries,
@andl er: optional function called for each hash entry,

@lat a: optional data to pass to handl er along with hash entry.

Iterate over specified hash.

One of @en or @andler may be NULL.

If @andler is NULL, count of hash entries will still be returned in @ en.
If @andler returns 1, @en will be set to the nunber of hash entries
processed successfully up to that point.

EE S T S T B I I R I T

Returns: O on success, or -1 if handler returns an error.
**/

i nt

ni h_hash_foreach (const N hHash *hash, size t *Ien,

Ni hLi st Handl er handl er, void *data);

ni h tree_foreach():

/**

* nih_tree foreach:

*

* @ree: tree,

* @en: optional output paranmeter that will contain count of tree nodes,
* @andler: optional function called for each tree node,

* @ata: optional data to pass to handler along with tree node.

*

* |terate over specified tree.

*

* One of @en or @andler may be NULL.

* | f @andler is NULL and @en is non-NULL, count of tree nodes wll
* still be returned in @en.

* | f @andler returns 1, @en will be set to the nunber of tree nodes
* processed successfully up to that point.

*

* Returns: 0 on success, or -1 if handler returns an error.

**/

i nt

nih_tree_foreach (NihTree *tree, size_t *len,
Ni hTreeFilter handl er, void *data);

These routines allow us to also provide trivial implementations of the following convenience functions:

enih_list_count()
e ni h_hash_count ()

enih_tree_count()

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

21.24 Development Utilities

21.24.1 upstart_nenu. sh

The upstart-menu utility allows / sbin/init versions you wish to boot with to be selected using a
friendly menu. You can also select a shell. upstart _nenu. sh scans /shin/ forinit version and
presents a list, most recently modified version first:

Main screen of upst art _nenu. sh.

The utility also allows you to specify options (it automatically shows you a list of available options for the
version of the program you have selected):

upst art _menu. sh showing the options screen.

21.24.1.1 Enabling upstart _nenu. sh @, ,

To enable upst art _nenu. sh:

1. Copy file to / sbi n/ upst art _nenu. sh.
2. Make the file executable.
3. Update / et c/ def aul t/ grub such that GRUB_CMDLI NE_LI NUX is modified to:

« Remove "qui et " and "spl ash".

e Add "i ni t =/ sbi n/upstart_nenu. sh".
4. Update grub: "sudo updat e- gr ub".

5. Reboot!

21.25 Gotchas

» Passing NULL toni h_free():unlikefree(3),ni h_free() does not allow a NULL parameter.
* Running make check asroot (tests will fail).

» Debugging a failing memory-checking test by littering test code with calls to ni h_debug() ... which
calls ni h_al | oc().

* Forgetting to install either / sbin/init or/sbin/initctl when you modify the D-Bus interface
to Upstart (if you're lucky, you'll get a crash, else very odd behaviour! :-)

» Not checking for existing i nit and test_* processes still running from a previous failed test run
when you run make check.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

22 Known Issues

22.1 Restarting Jobs with Complex Conditions

The and and or operators allowed with start on and stop on do not work intuitively: operands to
the right of either operator are only evaluated when the specified event is emitted. This can lead to jobs
with complex st art on or st op on conditions not behaving as expected when restarted. For example,
if a job specifies the following condition:

start on A and (B or Q)

When the events "A" and "B" are emitted, the condition is satisfied so the job will be run. If the job fails to
start, or is stopped later, there is no guarantee that "A" will be emitted again, and the fact that it happened
before is no longer known to Upstart. Meanwhile, events "C' or "B" may occur, but the job will not be
transitioned back to a start goal, until event "A" is emitted again.

22.1.1 Advice

To minimise the risk of being affected by this issue, avoid using complex conditions with jobs which need
to be restarted.

22.2 Using expect with scri pt sections

Using the expect stanza with a job that uses a scri pt section will lead to trouble if your script spawns
any processes (likely!). Consider:

expect fork
r espawn
scri pt
ARGS=$(cat /etc/default/grub)
exec echo "ARGS=$ARGS" > /tnp/nyjob.|og
end script

This job configuration file is somewhat nonsensical, but it does demonstrate the problem. The main issue
here is that by specifying expect fork, Upstart will attempt to follow only the first fork(2) call. The first
process that this job will spawn is... cat(1), NOT echo. As such, starting the job will show something like
this:

start nyjob

nyj ob start/runni ng, process 12345
status nyjob

nyj ob start/runni ng, process 12345
ps --no-headers -p 12345

kill 12345

-su: kill: (12345) - No such process

As the ps(1) call shows, the (cat) process is no longer running, but Upstart thinks it is.

Unfortunately, since Upstart will wait forever until it is able to stop the pid (which no longer exits). A
manual attempt to either "st op mnyj ob" or "st art mnyj ob" will also hang.

The only solution to clear this "stuck job" is to reboot. See 22 and Recovery on Misspecification of expect.
Note that this "zombie job" isn't actually causing any problems for Upstart, but it is annoying and

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man1/cat.1.html
http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

potentially confusing seeing it listed in initctl output. It will of course also be consuming a very small
amount of memory.

Note however, that if you are working on a development system (hopefully you are whilst developing your
job configuration file!), what you can do to keep working is to copy the problematic job configuration file to
a new name, ignore the old job entirely and keep working using the new job!

22.3 Bugs

Upstart bugs
https://bugs.launchpad.net/upstart
Ubuntu-specific Upstart bugs
https://launchpad.net/ubuntu/+source/upstart/+bugs

23 Support
The primary sources of support are:

e The IRC Channel #upst art on IRC server f r eenode. net .
If you don't get a response, consider posting to the Mailing List.
e The Mailing List

If you don't get a response, consider raising a bug. See Coverage to determine how to report bugs
and ask questions.

24 References

24.1 Manual Pages

man 5 init
Configuration syntax reference.
man 8 init
Options for running the Upstart init daemon.
man 8 initctl
Explanation of the Upstart control command.
man 7 upstart-events
Comprehensive summary of all "well-known" Upstart system events on Ubuntu.

24.2 Web Sites

http://lupstart.ubuntu.com/

Main Ubuntu page for Upstart.
http://launchpad.net/upstart

The main Upstart Bazaar project page.
http://netsplit.com/category/tech/upstart/

Scotts Original Upstart blog with useful overviews of features and Concepts.
https://wiki.ubuntu.com/Replacementinit

Original Specification.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://upstart.ubuntu.com
https://bugs.launchpad.net/upstart
http://upstart.ubuntu.com
https://launchpad.net/ubuntu/+source/upstart/+bugs
http://manpages.ubuntu.com/manpages/man5/init.5.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://upstart.ubuntu.com/
http://www.ubuntu.com
http://upstart.ubuntu.com
http://launchpad.net/upstart
http://upstart.ubuntu.com
http://bzr.launchpad.net
http://netsplit.com/category/tech/upstart/
https://wiki.ubuntu.com/ReplacementInit
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

24.3 Mailing List
* https://lists.ubuntu.com/mailman/listinfo/upstart-devel

25 Answers to Test
26 Footnotes

27 Colophon

Copyright: Copyright © 2011-2014, Canonical Ltd. All Rights Reserved. This work is licensed
under the Creative Commons Attribution-Share Alike 3.0 Unported License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.V

Organization: Canonical Ltd.
Status: Drafting

28 Appendices
28.1 Ubuntu Well-Known Events ()

The information in this section is taken from the upstart-events(7) manual page.

Name
upstart-events —Wel | -known Upstart events sumary
Event Sunmmary

Thi s manual page summari ses wel | - known events generated by Upstart running both as tft
daenmon (process ID 1) and a Session Init (process that supervises a user session).

It is not an exhaustive list of all possible events, but rather details a standard se
events expected to be generated on any Ubuntu system running Upstart.

The primary tables, Table 1 and Table 2, encode the well-known system and sessi on eve
respectively, along with the type of each event (listed in Table 3), the emtter of t
(see Table 4) and the approximate tine at which the event could be generated. Additic
the Note colum indexes into Table 5 for further details on a particular event.

See init(8) for a table summarising job goals and possible state transitions.
Note that sone events listed in Table 1 nay be avail able to session jobs (depending c
the Session Init starts). Those events that are available will be prefixed with :sys:

upstart-event-bridge(8) for further details.

The Ref (Reference) colum is used to refer to individual events succinctly in the Ti
col um.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

https://lists.ubuntu.com/mailman/listinfo/upstart-devel
http://creativecommons.org/licenses/by-sa/3.0/
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Note that the ''<'' and ''>'' characters in the Time colum denote that the event in
columm occurs respectively before or after the event specified in the Tine colum (fc
exanpl e, the nmounting(7) event occurs "at sone tinme" after the startup(7) event, and
virtual -fil esystens(7) event occurs after the |last nounted(7) event relating to a vir
filesystem has been enmitted).

For further details on events, consult the manual pages and the system job confi gurat
files, usually located in /etc/init.

Table 1. Table 1: Well-Known System Events Summary.

e o o e m e e m e e m = =
| Ref | Event | Type | Emt | Ti me | Not
| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | all-swaps | S | M | > (5 |

| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | control-alt-delete(7) | S | A | > (5 | A
| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | contai ner | S | C | > /run nounted | Q
| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | dbus-activation | S | B | > DBus client request |

| ----- L +o- - - - +o- - - - R L +----
| | deconfi guring-networ ki ng | H | V | < non-local |Fs down | P
| ----- L +o- - - - +o- - - - R L +----
| | deskt op-session-start | H | D | > X(7) session created | B
| ----- L +o- - - - +o- - - - R L +----
| | deskt op- shut down | H | D | > X(7) session ended | O
| ----- L +o- - - - +o- - - - R L +----
| | device-not-ready | H | M | >(2) | N
| ----- L +o- - - - +o- - - - R L +----
| | drmdevi ce-added | S | U | > (5 | C
| ----- L +o- - - - +o- - - - R L +----
| | fail safe-boot | S | X | >(7) and local IF | S
| ----- L +o- - - - +o- - - - R L +----
| | file | S | K | > (1) | U
| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| 7 | filesystem | S | M | After last (1) | D
| ----- L +o- - - - +o- - - - R L +----
| | graphics-devi ce-added | S | U | > (5 | C
| ----- L +o- - - - +o- - - - R L +----
| | keyboard-request(7) | S | A | > (5 | E
| ----- L +o- - - - +o- - - - R L +----
| | local-filesystens(7) | S | M | >(6) |

| ----- L +o- - - - +o- - - - R L +----
| | login-session-start | H | D | < DMrunning | F
| ----- L +o- - - - +o- - - - R L +----
| 1 | mounted(7) | H | M | > associated (2) | G
| ----- L +o- - - - +o- - - - R L +----
| 2 | nounting(7) | H | M | > (5) | H
| ----- L +o- - - - +o- - - - R L +----
| 3 | net-device-added | S | U | > (5 | C
| ----- L +o- - - - +o- - - - R L +----
| | net-devi ce-changed | S | U | > (5 | C
| ----- L +o- - - - +o- - - - R L +----

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

| | net-device-down | s | F | <(4 | C

| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| 4 | net-device-renoved | S | U | > (5 | C
| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | net-device-up | S | FEN | > (3) | C
| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | not-container | S | C | > /run nounted | Q
| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | power - status-changed(7) | s | | | > (5) | 1

| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | recovery | S | G | Boot (<5) | R
| ----- L +o- - - - +o- - - - R L +----
| | renmote-fil esystens(7) | S | M | >(6) |

| ----- L +o- - - - +o- - - - R L +----
| | rotate-Iogs | H | R | daily | Y
| ----- L +o- - - - +o- - - - R L +----
| | runlevel (7) | M | T | > (7) + (8) |

| ----- e P +-- - oo +-- - oo b o o ool o oo oo oo oo oo oo oo +-- - -
| | socket (7) | S | S | > socket connection | X
| ----- L +o- - - - +o- - - - R L +----
| 5 | startup(7) | s | | | Boot | J
| ----- L +o- - - - +o- - - - R L +----
| | started(7) | s | | | > job started | K
| ----- L +o- - - - +o- - - - R L +----
| | starting(7) | H | | | < job starts | K
| ----- L +o- - - - +o- - - - R L +----
| 8 | static-network-up | S | N | >last static |IF up |

| ----- L +o- - - - +o- - - - R L +----
| | stopped(7) | s | | | > job stopped | K
| ----- L +o- - - - +o- - - - R L +----
| | stopping(7) | H | | | < job stops | K
| ----- L +o- - - - +o- - - - R L +----
| | unnmounted-renote-filesystens | H | V | > last renote FS unnmounted | L
| ----- L +o- - - - +o- - - - R L +----
| 6 | virtual-filesystens(7) | S | M | >last virtual FS (1) | M
e o o e m e e m e e m = =
Key: '"DM"' is an abbreviation for Display Manager. ''FS' ' is an abbreviation for fi

"'"IF" is an abbreviation for Network Interface.

Table 2. Table 2: Wll-Known User Events Sunmary.

s C B S E N ECOCNCNCCCOCNCNCNo0C0NOC NSNS0 CONC0C0CNC0C0o0000c0s0C0CC0C000C0C0000000a0aS S +
| Ref | Event | Type | Emt | Ti me | Note

| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| | dbus | S | L | > (1) | W |
| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| | dconf | S | O | > (1) | |
| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| | deskt op-end(7) | s | J | < (2) | |
| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| | desktop-start(7) | H | J | > (3) | |
| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| | file | S | K | > (1) | U |

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

| 2 | session-end(7) | M | | < Session Init end | |
| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| 1 | startup(7) | s | | | > Session Init start | J |
| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| | :sys:* | S | E | > upstart-event-bridge(8) start | |
| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| | :sys:restarted | S | E | > upstart-event-bridge(8) start | V |
| ----- O P S +-- - oo +-- - oo e P P S +-- - oo |
| 3 | xsession | M | H | > (1) | T |
fhococooococooooCOCooOSCOCOSOSCOCOSOSOCOCOSOS0COCOSOS0COCCSOSCOCCSOOCOCCSoOSCOSooSoooo +

e o o e m e e m e e m = =
| Ref | Event Type | Notes

| ----- S P P P S e
| H | Hook | Blocking. Waits for events that start on or stop on this event.
| ----- S P P P S e
| ™M | Method | Bl ocking task.

| ----- S P P P S e
| S | Signal | Non- bl ocki ng.

e o o e m e e m e e m = =

o ocooooCoCooo0S0COCooO0S0COCooOO00COCoOO0SCOCOOOSCOCOSOSCOCOSOSCOCOSOSCOCoSoSoOoo +
| Ref | Emitter | Notes |
| ----- e s P s e P P S |
| A | System Administrator (initiator) | Technically enmitted by init(8). |
| ----- e s P s e P P S |
| B | dbus-daenon(1) | Run with "--activation=upstart" |
| ----- e s P s e P P S |
| C | container-detect job | |
| ----- e s P s e P P S |
| D | Display Manager | e.g. lightdn gdm kdm xdm |
| ----- e s P s e P P S |
| E | upstart-event-bridge(8) | |
| ----- e s P s e P P S |
| F | ifup(8) or ifdown(8) | See /etc/network/ |
| ----- oo e |
| G | bootloader or initranfs | |
| ----- oo e |
| H | xsession-init session job | |
| ----- oo e |
| I] init(8) | Either PID 1 or a Session Init. |
| ----- oo e |
| J | job that starts desktop | gnone-session job for Ubuntu. |
| ----- oo e |
| K | upstart-file-bridge(8) | See file-event(7). |
| ----- oo e |
| L | upstart-dbus-bridge(8) | See dbus-event (7). |
| ----- oo e |

| M | nountall (8) | |

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

| N | network-interface job | |
| ----- oo e |
| O | upstart-dconf-bridge(8) | See dconf-event (7). |
| ----- e s P s e P P S |
| R | /etc/cron.daily/upstart | See cron(8). |
| ----- oo e |
| S | upstart-socket-bridge(8) | See socket-event(7) |
| ----- e s P s e P P S |
| T | telinit(8), shutdown(8) | |
| ----- e s P s e P P S |
| U | upstart-udev-bridge(8) | |
| ----- e s P s e P P S |
| V | SystemV init system | |
| ----- e s P s e P P S |
| X | failsafe job | |
o ocooooCoCooo0S0COCooO0S0COCooOO00COCoOO0SCOCOOOSCOCOSOSCOCOSOSCOCOSOSCOCoSoSoOoo +

e o o e m e e m e e m = =
| Note | Detail

|------ P
| A | Requires administrator to press Control-Alt-Del ete key conbination on the cc
|------ P
| B | Event generated when user perforns graphical |ogin.

|------ P

These are specific exanples. upstart-udev-bridge(8) will emt events which r

I I

| C | the pattern, "S-device-A" where ''S"' is the udev subsystemand ''A"' is the
| | action. See udev(7) and for further details. If you have sysfs nounted, you
| | lTook in /sys/class/ for possible values for subsystem

|------ P
| D | Note this is inthe singular - there is no ''filesystens'' event.

|------ P
| E | Emtted when admi nistrator presses Alt-UpArrow key conbi nati on on the consol
|------ P
| F | Denotes Display Manager running (about to be displayed), but no users | oggec
I | yet.

|------ P
| G | CGenerated for each nount that conpletes successfully.

|------ P
| H | Emtted when nount attenpt for single entry fromfstab(5) for any fil esyster
| | is about to begin.

|------ P
| 1 | Emitted when Upstart receives the SI GPWR signal.

|------ P
| J | Initial event (systemor Session Init).

|------ P
| K | Although the events are enitted by init(8), the instigator may be initctl (8)
| | System Administrator has nmanually started or stopped a job.

|------ P
| L | /etc/init/unountnfs. sh.

|------ P
| M | Emtted when all virtual filesystens (such as /proc) nounted.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

| N | Emtted when the --dev-wait-tine tineout is exceeded for nountall (8). This c
| | to 30 seconds.

|------ P
| O | Emitted when the X(7) display nanager exits at shutdown or reboot, to hand c
| | the shutdown spl ash manager

|------ P
| P | Emitted by /etc/init.d/ networking just prior to stopping all non-local netw
| | interfaces.

|------ P
| Q@ | Either ''container'' or ''not-container'' is emtted (depending on the

| | environnent), but not both.

|------ P

Emitted by either the initranfs or bootl oader (for exanple grub) as the init

I I

| R | event (rather than startup(7)) to denote the system has booted into recovery

| | I'f recovery was successful, the standard startup(7) event is then enmtted, ¢

| | the systemto boot as nornal.

|------ P

| | EmMtted to indicate the systemhas failed to boot within the expected tine.

| S | event will trigger other jobs to forcibly attenpt to bring the systeminto ¢

| | state.

|------ P

| T | Only enmitted for a graphical session.

|------ P

| U | See file-event(7).

|------ P

| V | This is a pseudo-systemevent enitted directly by the upstart-event-bridge(é€

|------ P

| W | Emitted by Session Init only since bridge not run as systemjob by default.

|------ P

| X | See socket-event(7).

|------ P

| Y | Used primary by Session Job /usr/share/upstart/sessions/|ogrotate.conf.

e o o e m e e m e e m = =
AUTHOR

Manual page witten by James Hunt <<[1]j anes. hunt @bunt u. conr>
REPORTI NG BUGS

Report bugs at <https://|aunchpad. net/ubuntu/ +source/ upstart/ +bugs>
COPYRI GHT

Copyri ght © 2011-2013 Canoni cal Ltd.

This is free software; see the source for copying conditions. There is NOwarranty; r
for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE

SEE ALSO

all -swaps(7), control-alt-delete(7), dbus-daenon(1l), dbus-event(7), dconf-event(7),
file-event(7), filesysten(7), ifdown(8) ifup(8) init(5), init(8), initctl(8),

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

keyboard-request (7), |ocal-filesystens(7), mountall (8), mounted(7), mounting(7),

power - st at us- changed(7), renote-fil esystens(7), runlevel (7), shutdown(8), socket-ever
started(7), starting(7), startup(7), stopped(7), stopping(7), telinit(8),
upstart-dbus-bridge(8), upstart-dconf-bridge(8), upstart-event-bridge(8),
upstart-file-bridge(8), upstart-local-bridge(8), upstart-socket-bridge(8),
upstart-udev-bridge(8), virtual-filesystens(7).

Ref er ences

Visible |inks
1. mailto:janmes. hunt @bunt u. com

29 Footer

1 Yes.

2 initctl show config -e. See initctl show-config.

3 Job would start "as early as possible”: when the startup event is emitted (see
Startup Process). It would also be run if the confusingly-named job called "st opped”
begun to start (see Starting a Job). It would also be run again if the also
confusingly-named job "st art ed” begun to stop (see Stopping a Job). The example
chose names that were designed to be confusing. Clearly, in reality you should only
create jobs with sensible names that refer to the application they run.

4 Three times.

5 Yes. However, it appears that the person who specified this condition failed to read
init(5) since it probably won't do what they expect!

6 The not event.

7 Here, f oo is the value of the first positional environment variable specified by the
not event. Upstart treats it as a value since no equals sign is present. This is a
convenience since it allows for a more compact (and at times) natural way to specify
the start on condition. For example, rather than having to specify
"start on started JOB=foo" you can specify the more natural
start on started foo. For full details see init(5).

8 You could trigger the job to start by calling
"initctl emt not BLAH BO NG WOBBLE=f 00", but you could equally start the
job by calling“initctl emt not FIRST_PARAM=f 00"

9 [t np is not mounted.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://manpages.ubuntu.com/manpages/man5/init.5.html
http://manpages.ubuntu.com/manpages/man5/init.5.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10 Short answer: "/ usr/ bi n/ myapp" will never run. Long answer: This job attempts to
only start nyapp if it is not disabled by checking its configuration file. However, there
are two fatal flaws here:

* The script section does not handle the scenario where / et ¢/ def aul t/ nmyapp
does not exist. If it doesn't exist, the script will immediately exit causing the job
to fail to start. See Debugging a Script Which Appears to be Behaving Oddly to
understand why.

« Even ifthe / et c/ def aul t/ myapp configuration file exists, the job will fail due
to the use of expect fork and respawn with a script section.

A corrected version of the Job Configuration File is:

start on runlevel [2345]
env CONFI G=/ et ¢/ def aul t / nyapp

expect fork

respawn

pre-start
[-f "SCONFIG'] || stop & exit O
enabl ed=$(grep ENABLED=1 $CONFIG || :)
[-z "$enabled"] && exit 0O

end script

exec /usr/ bin/ nyapp

Or, if you need to pass options from the config file to the daemon, you could say:

start on runl evel [2345]
env CONFI G=/ et c/ def aul t/ nyapp

expect fork
r espawn

pre-start
[-f "SCONFIG'] || stop & exit O
enabl ed=$(grep ENABLED=1 $CONFIG || :)
[-z "$enabled"] && exit O

end scri pt

scri pt
$CONFI G
exec nmyapp $MYAPP_OPTI ONS
end scri pt

Note how the config file is sourced in the script section and how we specify the shell
keyword exec to ensure no sub-shell is created (thus allowing Upstart to track the
correct PID).

11 Recall that Upstart has no knowledge of disks whatsoever. In Ubuntu, it relies upon
mountall (debian-and-ubuntu-specific) to handle mounting of disks.

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

12 Note the method for obtaining the PID of the instance of Upstart running in the LXC
container assumes only one other container is running.

13 Note that some shells (including Bash) change their behaviour if invoked as
/ bi n/ sh. Consult your shells documentation for specifics.
14 Commands to be run as root directly for clarity. However, you should consider using

sudo(8) rather than running a root shell. Due to the way sudo works, you have to
modify your behaviour slightly. For example, rather than running the following in a
root shell:

echo hello > /tnp/root.txt

You would instead run the command below in a non-root shell:

$ echo hello | sudo tee /tnp/root.txt

Note that you should not use sudo within a job. See Changing User.

15 If there is a script or exec section and this process is running, state will be
pr e- st op, else it will be st oppi ng.

16 Note that the exec line is taken directly from the
org. f reedeskt op. Consol eKi t. servi ce file.

17 Upstart was written specifically for Ubuntu, although this does not mean that it cannot

run on any other Linux-based system. Upstart was first introduced into Ubuntu in
release 6.10 ("Edgy Eft"). See http://www.ubuntu.com/news/610released

18 This section of the document contains Ubuntu-specific examples of events. Other
operating systems which use Upstart may not implement the same behaviour.

19(1, 2) This job is not actually available in Ubuntu yet, but is expected to be added early in
the 11.10 development cycle.

20(1, 2) Note that pre-stop does not behave in the same manner as other script sections. See
bug 703800 (https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/703800)

21 For status on chroot support, see bugs 430224 and 728531: -

https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/430224 -
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/728531

22 https://bugs.launchpad.net/upstart/+bug/406397

23 https://bugs.launchpad.net/upstart/+bug/888910

24 http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=607844

25 A series of blog posts b%’ Scott James Remnant gives further details on events and
how they are used. See 6, 27, and %8,

26(1, 2) http://upstart.at/2010/12/08/events-are-like-signals/

27(1, 2) http://upstart.at/2011/01/06/events-are-like-hooks/

28 http://upstart.at/2010/12/16/events-are-like-methods/

29(1, 2) http://upstart.at/2011/03/25/visualisation-of-jobs-and-events-in-ubuntu-natty/

30 http://upstart.at/2011/03/16/checking-jobs-and-events-in-ubuntu-natty/

31 http://upstart.at/2011/03/11/override-files-in-ubuntu-natty/

32 Ubuntu will kil any jobs still running at system shutdown using
letc/init.d/ sendsigs.

33 Note that there is no "start up" job (and hence no /etc/init/startup.conf
file).

34 It is worth noting that Unix and Linux systems are confined by standards to the

runlevels specified in the Runlevels section. However, in principle Upstart allows any
number of runlevels.

35 https://wiki.ubuntu.com/Replacementinit
36 http://people.canonical.com/~jhunt/upstart/devel/upstart_objects.png
37 http://people.canonical.com/~jhunt/upstart/utils/upstart_menu.sh

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://lxc.sourceforge.net/
http://www.gnu.org/software/bash/
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://upstart.ubuntu.com
http://www.ubuntu.com
http://upstart.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com/news/610released
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/703800
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/430224
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/728531
https://bugs.launchpad.net/upstart/+bug/406397
https://bugs.launchpad.net/upstart/+bug/888910
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=607844
http://upstart.at/2010/12/08/events-are-like-signals/
http://upstart.at/2011/01/06/events-are-like-hooks/
http://upstart.at/2010/12/16/events-are-like-methods/
http://upstart.at/2011/03/25/visualisation-of-jobs-and-events-in-ubuntu-natty/
http://upstart.at/2011/03/16/checking-jobs-and-events-in-ubuntu-natty/
http://upstart.at/2011/03/11/override-files-in-ubuntu-natty/
http://www.ubuntu.com
https://wiki.ubuntu.com/ReplacementInit
http://people.canonical.com/~jhunt/upstart/devel/upstart_objects.png
http://people.canonical.com/~jhunt/upstart/utils/upstart_menu.sh
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

38

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Technical_Notes/deployment.html
39 https://wiki.ubuntu.com/FoundationsTeam/Specs/RaringUpstartUserSessions

Document generated from reStructuredText plaintext markup source on 2014-11-05 at 09:03:40 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-1d$).

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Technical_Notes/deployment.html
https://wiki.ubuntu.com/FoundationsTeam/Specs/RaringUpstartUserSessions
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

	1 Meta
	1.1 Document Version
	1.2 Authors
	1.3 Acknowledgements
	1.4 Purpose
	1.5 Suggestions and Errata
	1.6 Coverage
	1.6.1 Upstream Upstart
	1.6.2 Debian and Ubuntu Version of Upstart
	1.6.3 Availability
	1.6.4 Releases
	1.6.5 Debian-specific and Ubuntu-Specific Content (,)

	1.7 Audience
	1.8 Document Preparation
	1.9 Document Availability
	1.10 Warning

	2 Typographical Conventions
	2.1 Commands and configuration stanzas
	2.2 User Input and Command Output
	2.2.1 Non-Privileged User
	2.2.2 Super-User

	2.3 Configuration Examples

	3 Introduction
	3.1 What is Upstart?
	3.1.1 Reliability
	3.1.2 Design History
	3.1.2.1 Critique of the System V init System
	3.1.2.1.1 SysV Benefits
	3.1.2.1.1.1 Simplicity
	3.1.2.1.1.2 Guaranteed Ordering of Services

	3.1.2.1.2 SysV Limitations
	3.1.2.1.2.1 Non-Optimal Performance
	3.1.2.1.2.2 Server-Centric
	3.1.2.1.2.3 Assumes Static Hardware at all Times
	3.1.2.1.2.4 Every Service Does Heavy Lifting

	3.1.2.2 Critique of Dependency-Based init Systems
	3.1.2.2.1 Benefits of Dependency-based init
	3.1.2.2.1.1 Recognises Services Require Other Services

	3.1.2.2.2 Limitations of Dependency-based init
	3.1.2.2.2.1 Does Not Recognise Dynamic Nature of Linux

	3.1.2.3 Upstart's Design: Why It Is Revolutionary

	3.1.3 Performance
	3.1.4 Server
	3.1.4.1 Boot Performance
	3.1.4.2 Failure Modes

	4 Concepts and Terminology
	4.1 Job
	4.1.1 Job Types
	4.1.1.1 Task Job
	4.1.1.2 Service Job
	4.1.1.3 Abstract Job

	4.1.2 Job States
	4.1.2.1 Viewing State Transitions

	4.1.3 Job Environment

	4.2 Job Configuration File
	4.2.1 System Job
	4.2.2 User Job
	4.2.2.1 Enabling

	4.2.3 Session Job
	4.2.4 Odd Jobs
	4.2.4.1 Job with start on, but no stop on
	4.2.4.2 Job with stop on, but no start on
	4.2.4.3 Job with no stop on or start on
	4.2.4.4 Minimal Job Configuration

	4.3 Session Init
	4.3.1 Non-graphical Sessions ()
	4.3.1.1 Joining a Session

	4.4 Event
	4.4.1 Event Types
	4.4.1.1 Signals
	4.4.1.2 Methods
	4.4.1.3 Hooks

	4.4.2 Events, not States

	4.5 Job Lifecycle
	4.5.1 Starting a Job
	4.5.2 Stopping a Job

	4.6 Ordering
	4.6.1 Order in which Events are Emitted
	4.6.2 Order in Which Jobs Which start on the Same Event are Run
	4.6.3 Ordering of Stop/Start Operations
	4.6.3.1 Single Job
	4.6.3.1.1 If Job is Not Currently Running
	4.6.3.1.2 If Job is Currently Running

	4.6.3.2 Multiple Jobs

	4.7 Runlevels
	4.7.1 Display Runlevel
	4.7.2 Change Runlevel Immediately
	4.7.3 Changing the Default Runlevel
	4.7.3.1 Permanently
	4.7.3.2 Single Boot

	5 System Phases
	5.1 Startup
	5.1.1 Startup Process

	5.2 Shutdown
	5.2.1 Observations
	5.2.2 Shutdown Process

	5.3 Reboot
	5.4 Single-User Mode
	5.5 Recovery Mode ()
	5.6 Failsafe Mode ()

	6 Configuration
	6.1 Stanzas by Category
	6.2 apparmor
	6.2.1 apparmor load
	6.2.2 apparmor switch

	6.3 author
	6.4 cgroup
	6.5 console
	6.5.1 console log
	6.5.2 console none
	6.5.3 console output
	6.5.3.1 Example of console output

	6.5.4 console owner

	6.6 chdir
	6.7 chroot
	6.8 description
	6.9 emits
	6.10 end script
	6.11 env
	6.12 exec
	6.13 expect
	6.13.1 expect fork
	6.13.2 expect daemon
	6.13.3 expect stop
	6.13.4 How to Establish Fork Count
	6.13.5 Implications of Misspecifying expect
	6.13.6 Recovery on Misspecification of expect
	6.13.6.1 When start hangs
	6.13.6.2 When Wrong PID is Tracked

	6.14 export
	6.15 instance
	6.15.1 A Simple Instance Example
	6.15.2 Another Instance Example
	6.15.3 Starting an Instance Job Without Specifying an Instance Value

	6.16 kill signal
	6.17 kill timeout
	6.18 limit
	6.19 manual
	6.20 nice
	6.21 normal exit
	6.22 oom score
	6.23 post-start
	6.24 post-stop
	6.25 pre-start
	6.25.1 pre-start example (,)

	6.26 pre-stop
	6.27 reload signal
	6.28 respawn
	6.29 respawn limit
	6.30 script
	6.31 setgid
	6.32 setuid
	6.33 start on
	6.33.1 Normal start
	6.33.2 Start depends on another service
	6.33.3 Start must precede another service

	6.34 stop on
	6.34.1 Normal shutdown
	6.34.2 Stop before depended-upon service
	6.34.3 Stop after dependent service

	6.35 task
	6.36 umask
	6.37 usage
	6.38 version

	7 Command-Line Options
	8 Explanations
	8.1 Really understanding start on and stop on
	8.1.1 The rc Job

	8.2 Environment Variables
	8.2.1 Restrictions
	8.2.2 Standard Environment Variables

	8.3 Job with Multiple Duplicate Stanzas
	8.4 Job Specifying Same Condition in start on on stop on

	9 Features
	9.1 D-Bus Service Activation

	10 Tools
	10.1 Utilities
	10.1.1 reload
	10.1.2 restart
	10.1.3 runlevel
	10.1.4 start
	10.1.4.1 Attempting to Start an Already Running Job
	10.1.4.2 Attempting to Start a Job that requires an Instance Variable

	10.1.5 stop
	10.1.5.1 Attempting to Stop an Already Stopped Job
	10.1.5.2 Attempting to Stop a Job that requires an Instance Variable

	10.1.6 initctl
	10.1.6.1 initctl Commands Summary
	10.1.6.2 initctl check-config
	10.1.6.3 initctl emit
	10.1.6.4 initctl get-env
	10.1.6.5 initctl help
	10.1.6.6 initctl list
	10.1.6.7 initctl list-env
	10.1.6.8 initctl list-sessions
	10.1.6.9 initctl log-priority
	10.1.6.10 initctl notify-cgroup-manager-address
	10.1.6.11 initctl notify-disk-writeable
	10.1.6.12 initctl reload
	10.1.6.13 initctl reload-configuration
	10.1.6.14 initctl reset-env
	10.1.6.15 initctl restart
	10.1.6.16 initctl set-env
	10.1.6.17 initctl show-config
	10.1.6.18 initctl start
	10.1.6.19 initctl status
	10.1.6.19.1 Single Job Instance Running without PID
	10.1.6.19.2 Single Job Instance Running Job with PID
	10.1.6.19.3 Single Job Instance Running with Multiple PIDs
	10.1.6.19.4 Multiple Running Job Instances Without PID
	10.1.6.19.5 Multiple Running Job Instances With PIDs
	10.1.6.19.6 Multiple Running Job Instances With Multiple PIDs
	10.1.6.19.7 Stopped Job

	10.1.6.20 initctl stop
	10.1.6.21 initctl unset-env
	10.1.6.22 initctl usage
	10.1.6.23 initctl version

	10.1.7 init-checkconf
	10.1.8 upstart-monitor
	10.1.9 mountall (,)
	10.1.9.1 Mountall events
	10.1.9.1.1 mounting
	10.1.9.1.2 mounted
	10.1.9.1.3 all-swaps
	10.1.9.1.4 filesystem
	10.1.9.1.5 virtual-filesystems
	10.1.9.1.6 local-filesystems
	10.1.9.1.7 remote-filesystems

	10.1.9.2 Mountall Event Summary
	10.1.9.3 mountall Examples

	10.2 Bridges
	10.2.1 plymouth-upstart-bridge ()
	10.2.2 upstart-socket-bridge
	10.2.3 upstart-udev-bridge
	10.2.3.1 Careful Use of udev Events

	10.2.4 upstart-event-bridge
	10.2.5 upstart-file-bridge
	10.2.5.1 Examples

	10.2.6 upstart-dbus-bridge
	10.2.6.1 Example

	10.2.7 upstart-dconf-bridge
	10.2.8 upstart-local-bridge

	11 Cookbook and Best Practises
	11.1 List All Jobs
	11.2 List All Jobs With No stop on Condition
	11.3 List All Events That Jobs Are Interested In On Your System
	11.4 Create an Event
	11.5 Create an Event Alias
	11.5.1 Change the Type of an Event

	11.6 Synchronisation
	11.7 Determine if Job was Started by an Event or by "start"
	11.8 Stop a Job from Running if A pre-start Condition Fails
	11.9 Run a Job Only When an Event Variable Matches Some Value
	11.10 Run a Job when an Event Variable Does Not Match Some Value
	11.11 Run a Job as Soon as Possible After Boot
	11.12 Run a Job When a User Logs in Graphically ()
	11.13 Run a Job When a User Logs in
	11.13.1 Environment

	11.14 Run a Job For All of a Number of Conditions
	11.15 Run a Job Before Another Job
	11.16 Run a Job After Another Job
	11.17 Run a Job Once After Some Other Job Ends
	11.18 Run a Job Before Another Job and Stop it After that Job Stops
	11.19 Run a Job Only If Another Job Succeeds
	11.20 Run a Job Only If Another Job Fails
	11.21 Run a Job Only If One Job Succeeds and Another Fails
	11.22 Run a Job If Another Job Exits with a particular Exit Code
	11.23 Detect if Any Job Fails
	11.24 Use Details of a Failed Job from Another Job
	11.25 Stop a Job when Another Job Starts
	11.25.1 Simple Mutual Exclusion

	11.26 Run a Job Periodically
	11.27 Restart a job on a Particular Event
	11.28 Migration from System V initialization scripts
	11.29 How to Establish a Jobs start on and stop on Conditions
	11.29.1 Determining the start on Condition (,)
	11.29.1.1 Standard Idioms
	11.29.1.2 More Exotic start on Conditions
	11.29.1.2.1 udev conditions

	11.29.2 Determining the stop on Condition ()
	11.29.3 Final Words of Advice

	11.30 Guarantee that a job will only run once
	11.30.1 Method 1
	11.30.2 Method 2

	11.31 Stop a Job That is About to Start
	11.32 Stop a Job That is About to Start From Within That Job
	11.33 Stop a Job from Running if its Configuration file has not been Created/Modified
	11.34 Stop a Job When Some Other Job is about to Start
	11.35 Start a Job when a Particular Filesystem is About to be Mounted
	11.36 Start a Job when a Device is Hot-Plugged
	11.36.1 To start a job when eth0 is added to the system
	11.36.2 To start a job when eth0 is available

	11.37 Stopping a Job if it Runs for Too Long
	11.38 Run a Job When a File or Directory is Created/Deleted
	11.39 Run a Job Each Time a Condition is True
	11.40 Run a Job When a Particular Runlevel is Entered and Left
	11.41 Pass State Between Job Processes
	11.42 Pass State From Job Configuration File to a Script Section
	11.43 Run a Job as a Different User
	11.43.1 Running a User Job
	11.43.2 Changing User

	11.44 Disabling a Job from Automatically Starting
	11.44.1 Override Files
	11.44.1.1 Change a Jobs Start/Stop Conditions
	11.44.1.2 Adding Stanzas that are Not Present in the .conf File
	11.44.1.3 Separating Variables from the Job
	11.44.1.4 Ensuring Customized Packages Upgrade Smoothly
	11.44.1.5 Caveat Emptor

	11.45 Jobs that "Run Forever"
	11.46 Run a Java Application
	11.46.1 Alternative Method

	11.47 Ensure a Directory Exists Before Starting a Job
	11.48 Run a GUI Application
	11.49 Run an Application through GNU Screen
	11.50 Run Upstart in a chroot Environment
	11.50.1 chroot Workaround for Older Versions of Upstart (,)
	11.50.2 chroots in Ubuntu Natty ()

	11.51 Record all Jobs and Events which Emit an Event
	11.52 Integrating your New Application with Upstart
	11.53 Block Another Job Until Yours has Started
	11.54 Controlling Upstart using D-Bus
	11.54.1 Query Version of Upstart
	11.54.2 Query Log Priority
	11.54.3 Set Log Priority
	11.54.4 List all Jobs via D-Bus
	11.54.5 Get Status of Job via D-Bus
	11.54.6 Emit an Event
	11.54.7 Get Jobs start on and stop on Conditions via D-Bus
	11.54.8 To Start a Job via D-Bus
	11.54.9 To Stop a Job via D-Bus
	11.54.10 To Restart a Job via D-Bus

	11.55 Establish Blocking Job
	11.56 Determine if a Job is Disabled
	11.57 Visualising Jobs and Events
	11.58 Sourcing Files
	11.58.1 Develop Scripts Using /bin/sh
	11.58.2 ureadahead

	11.59 Determining How to Stop a Job with Multiple Running Instances
	11.60 Logging Boot and Shutdown Times
	11.61 Running an Alternative Job on a tty
	11.62 Delay Respawn of a Job
	11.63 Allow a job to detect if it was stopped manually
	11.64 Detect if a job stopped before reaching its respawn limit
	11.65 Detecting a job respawning
	11.66 Detecting a job hitting its respawn limit
	11.67 Identifying jobs that may need a respawn stanza
	11.68 Creating a SystemV Service that Communicates with Upstart
	11.69 Running a job in a cgroup
	11.70 Making a job respawn indefinitely

	12 Test Your Knowledge
	12.1 Questions about start on
	12.2 General Questions

	13 Common Problems
	13.1 Cannot Start a Job
	13.2 Cannot stop a job
	13.3 Strange Error When Running start/stop/restart or initctl emit
	13.4 The initctl command shows "the wrong PID"
	13.5 Symbolic Links don't work in /etc/init
	13.6 Sometimes status shows PID, but other times does not

	14 Upstart in Debian and Ubuntu (,)
	14.1 Packaging
	14.2 System V Compatibility Link (,)
	14.3 Fun with Job Files (,)
	14.3.1 Identify Missing System Jobs (,)
	14.3.2 Identify Modified System Jobs (,)
	14.3.3 Identify Non-Packaged System Jobs (,)
	14.3.4 Re-install all Packages with Missing or Modified System Job Files (,)

	15 Testing
	16 Daemon Behaviour
	17 Precepts for Creating a Job Configuration File
	17.1 Determining the value of expect
	17.2 start on and stop on condition
	17.3 Services
	17.4 Ubuntu Rules ()
	17.4.1 Console attributes

	18 Debugging
	18.1 Obtaining a List of Events
	18.1.1 Add --verbose or --debug to the kernel command-line
	18.1.2 Change the log-priority

	18.2 See the Environment a Job Runs In
	18.3 Checking How a Service Might React When Run as a Job
	18.3.1 Determining why your Service Fails to Start

	18.4 Obtaining a log of a Script Section
	18.4.1 Upstart 1.4 (and above)
	18.4.2 Versions of Upstart older than 1.4

	18.5 Log Script Section Output to Syslog
	18.6 Checking a Job Configuration File for Syntax Errors
	18.7 Check a Script Section for Errors
	18.7.1 Older versions of Upstart

	18.8 Debugging a Script Which Appears to be Behaving Oddly

	19 Recovery
	19.1 Boot into Recovery Mode
	19.2 Boot to a shell directly

	20 Advanced Topics
	20.1 Changing the Default Shell
	20.2 Running a script Section with Python
	20.3 Running a script Section with Perl

	21 Development and Testing
	21.1 Warnings
	21.2 Precautions and Practises
	21.3 Code Style
	21.4 Development Advice
	21.5 Setting up an Upstart Development Environment
	21.6 Setting up an Upstart+NIH Development Environment
	21.7 Upstart Objects
	21.8 Unit Tests
	21.8.1 Building Within a Chroot
	21.8.2 Statistics
	21.8.3 Test Coverage

	21.9 Enable Full Compiler Warnings
	21.10 Running Upstart as a Non-Privileged User
	21.11 Useful tools for Debugging with D-Bus
	21.12 Debugging a Job
	21.13 Debugging Another Instance of Upstart Running as root with PID 1
	21.13.1 Method 1 (crazy)
	21.13.2 Method 2 (saner)

	21.14 NIH
	21.14.1 Memory Handling
	21.14.2 The NIH Parent Pointer
	21.14.3 nih_free()
	21.14.4 NIH_MUST()
	21.14.5 Error Handling
	21.14.5.1 Impact of Ignoring a Raised Error

	21.14.6 Output

	21.15 Creating a New Object
	21.15.1 Template for a new "foo"
	21.15.2 Basic Test Example for a New "foo"

	21.16 Adding a new initctl command
	21.16.1 Adding a New non-Job Command
	21.16.2 Adding a New Job Class Command
	21.16.3 Adding a New Job Command
	21.16.4 Generating the D-Bus Bindings

	21.17 TEST_ALLOC_FAIL
	21.17.1 Improved Test Example for a New "foo" (with a bug)

	21.18 TEST_ALLOC_SAFE
	21.18.1 Final Test Example for a New "foo"

	21.19 Basic Debugging
	21.20 Debugging Upstart as a Non-Privileged User
	21.21 Debugging Upstart as root
	21.22 Debug Tip Using Destructors
	21.22.1 Lists
	21.22.1.1 Removing Elements from a List
	21.22.1.2 Moving an Element Between Lists

	21.22.2 Hashes
	21.22.2.1 Using Hashes
	21.22.2.2 nih_hash_string_new()

	21.22.3 Trees
	21.22.4 Avoiding Problems

	21.23 Debugger Magic
	21.23.1 NihList
	21.23.2 NihHash
	21.23.3 nih_iterators

	21.24 Development Utilities
	21.24.1 upstart_menu.sh
	21.24.1.1 Enabling upstart_menu.sh ,

	21.25 Gotchas

	22 Known Issues
	22.1 Restarting Jobs with Complex Conditions
	22.1.1 Advice

	22.2 Using expect with script sections
	22.3 Bugs

	23 Support
	24 References
	24.1 Manual Pages
	24.2 Web Sites
	24.3 Mailing List

	25 Answers to Test
	26 Footnotes
	27 Colophon
	28 Appendices
	28.1 Ubuntu Well-Known Events ()

	29 Footer

