Troubleshooting Linux Storage

A systems administrator guide

Erwin van Londen

ii

Table of Content

Introduction
How the book is written
Thank you e
Limits e e e e
Prerequisites

1 Linux Troubleshooting

1.1 TL:DR . . . e
1.2 Performance e
1.3 ThelIO stack
1.4 Applications
1.5 Filesystem Lo
1.6 Encryption e
1.7 Partitions and Volume Managers
1.8 RAID e
1.9 Block devices e e
1.10 MultiPath IO e
1.11 Schedulers e
1.12 Storage Protocols

1.12.1 Channel L

1.12.2 Transport o o e e
1.13 Storage

2 Applications
2.1 Type . . o e e e
2.2 Databases L
221 Oracle e
2.2.2 Sybase (SAPASE)
2.2.3 Microsoft SQL server. L
224 MySQL

iii

iv

2.3 Cluster systems
2.3.1 Operating System clusters
Filesystems
31 VFS
3.2 Disk capacity
33 Layout
3.4 Mount options L.
3.5 Selecting and creating a filesystem
35,1 EXT4
352 XFS
353 BTRFS
Encryption
4.1 Using dm-crypt, cryptsetup and LUKS
4.2 Backup and recovery
Partitioning
5.1 Partitions
511 MBR
512 GPT
5.1.3 Creating partitions
5.1.4 Investigating GPT partitions
5.2 Partition corruption
5.3 Recovering partition information

2.2.5 Reliability and Redundancy

5.3.1 Full example GPT restoration

Volume Managers

6.1
6.2
6.3
6.4
6.5
6.6

6.7

6.8

LVM
What can go wrong
PV - Physical Volumes
VG - Volume Groups
LV - Logical Volumes.
Thin Volumes
6.6.1 Pool threshold condition reached
6.6.2 Fileremoval.
Cache volumes
6.7.1 dm-writecache
6.7.2 dm-cache
6.7.3 Benefits of caching
6.7.4 Drawbacks of caching and caching errors

LVM corruption scenario

TABLE OF CONTENT

TABLE OF CONTENT

6.9

6.8.1 Damaged PV metadata
6.8.2 Recoverthe PV
6.8.3 Recover the VG
6.8.4 Reactivate the VG

Meta-data

6.10 Performance problems L

6.10.1 Monitoring p

7 RAID

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8

Terminology
MD
Consistency policy
Failures
Data validation . .
Recovery
7.6.1 Adjusting rai

erformance e

d synchronisation

Correcting failed raidsets

DMRAID

8 Block devices

8.1

Device naming . .

8.2 Identifying device characteristics

8.3

8.2.1 SCSI.. ..
Caching

9 Schedulers

9.1
9.2
9.3
9.4

Non-MQ
MQ

Selection
Tuning

10 Protocols
10.1 Channels
102 SCST

10.2.1 Logging . .
10.2.2 Tracing . .
10.2.3 DIF-DIX .

10.3 NVMe
10.4 Transport

10.4.1 iSCSI . . .
10.4.2 TCP/IP . .

10.5 Fibre Channel . . .

10.5.1 Flow Control

93
94
97
99
101
101
103

105
105
106
108
108
109
111
111
112
117

119
120
122
122
130

vi

10.5.2 Fabrics
10.5.3 HBAs
10.5.4 Port up sequence
10.5.5 Switches

11 MPIO - MultiPath 10

11.1 ALUA
11.2 NVMe
11.3 Multipath.conf overrides
11.4 IO errors e
11.5 Path failure
11.6 Path integrity
11.7 Error flow chart

12 Vendor support

12.1 Safeguarding system state
12.2 Opening tickets

12.2.1 Severity and Criticality

12.3 Cross Vendor support

To you the reader

References

TABLE OF CONTENT

List of Figures

1.1 Linux Storage Stack 7
3.1 VES 22
3.2 SUSE Filesystem Selection 42
4.1 Encrypted volume example Lo 48
6.1 Incorrect LVM layout 102
8.1 SCSI SPC-3 Inquiry response« .o v v v v v v i i i e 128
10.1 SCSI Architecture Model 138
10.2 bno plot output 145
10.3 DIF/DIX IO o o 149
10.4 DIF/DIX IO TyYPe . . .« v v v oo e e e e e e e e e 151
10.5 Sample iSCSI network 156
10.6 iSCSTiSNS Interaction 164
10.7 Fibre Channel layers 173
10.8 SCSI Read and Write Flow 174
10.9 FC Flow on SCSI e e e 174
10.10FC flow control 175
10.11Fabric Topology example L 177
10.12Port Up Sequenceo 186
10.13SFP Directional Errors 189
10.14CRC Errors o e e e e 192
11.1 NVMe kernel multipath support 199
11.2 MPIO error flow chart 205
12.1 SCA Reporting Tool 212
12.2 Redhat Portal System overview 213

vii

viii LIST OF FIGURES

List of Tables

2.1

3.1
3.2
3.3
3.4

10.1
10.2
10.3

11.1

Tools for writing the book. L 2
Oracle Database IO parameters 18
Size notation. 23
File System Sizes. L 23
File System Man Pages. 25
Stripe Unit and Stripe Width 33
T10 PI Protection Modes 150
T10 Block Guard ASC/ASCQ status codes. 152
Emulex logging configuration options 181
TPGS response field. 197

ix

LIST OF TABLES

Introduction

The can of worms, pandora’s box, hornets nest, snake in the grass, boil the ocean. Now
that we have the idioms out of the way here the first statement: “There are hundreds of
way to troubleshoot storage related issues and this book is not a silver bullet to solve all your
problems!”. This book is also not a deep-dive into the architecture or code of every kernel
piece you can find in relation to storage. That would really be like boiling the ocean.
Neither is this book a guide into designing end-to-end storage infrastructures. There is a
great deal of knowledge and experience required in order to get application IO behaviour
in line with storage capabilities. Every piece of hardware and software from application to
spindle is an important piece of the puzzle and having even one of them wrong may have a
very severe impact not only on the data-path itself but also on other shared parts of that
data-path.

What this book will do is provide you a methodology into troubleshooting scenario’s that as
a result of storage relate infrastructure problem either connected to local or SAN attached
storage. I will not touch on a few things like for example FCoE from a technology side, as
these may divert into a rabbit hole. I may give these technologies more attention in later
articles or updated versions of the book. I'm not saying these are bad technologies but I
have to make a start somewhere. Another topic that is not covered in-depth is performance.
There are tips and tricks throughout the book that will or may improve your overall storage
infrastructure and therefore also performance. Although I do understand that performance
is always a hot topic it would go too far to incorporate it in this book at this stage.

How the book is written

I tried to write the entire book in ascii text. Mainly because I don’t like word processors and
secondly I wanted to be able to use a version control system so corrections and adjustments
can be easily made without any hassle.

The below tools and methodologies were used:

2 LIST OF TABLES

Table 1: Tools for writing the book.

Tool Method

Main writing tool ~MS Visual Studio Code on Fedora
Format Pandoc MarkDown

Images PlantUML (as much as possible)
Build tool Pandoc

Text Compiler Latex

Revision Control GIT

References Zotero with BetterBibTex extension
Citations IEEE with URL

In certain system output sections you will see that a line sometimes ends with a “\”. This
means that the output on the following line is actually part of this one but due to exceeding
the page margins these are wrapped.

References are either internal or external to the book. Internal references are all numbered
and linked in the digital edition. External references are shown in the “References” chapter
at the end of the book. In the digital edition these are also hyperlinked. Short explanation
references are shown as a footnote.

Thank you

I would like to thank all the people who have helped me during my career of ~25 years in
the storage business. The list of names is too long to mention here but I think you know
who you are when you read this. There are a few I would like to mention though.

e Horst Truestedt - The godfather of Fibre Channel and my instructor and mentor for
many years.

e Declan O’Mahony and Bernd Falkenstein and all the people from Onsite Computing,
which unfortunately no longer exists, for providing excellent storage training courses
when I started back in the late 90-ties.

e Adrian DeLuca who gave me the opportunity to come and work for Hitachi Data
Systems in Australia

e Steve Lockrey as well as the colleagues of the HDS APAC support organisation.

e Steve Guendert who taught me more about Ficon than I actually wanted to know. :-)

e The awesome folk at Brocade who have supported me through thick and thin since I
installed my first FC switch in 1998.

e All customers and partners whom I've had interesting discussions with to solve prob-
lems and provide solutions

e Red Hat and SUSE support folk who are brilliant in diagnosing the most complex of
storage related, amongst others, Linux problems.

LIST OF TABLES 3

And last, but certainly not least, my wife Ingrid Simon who has stood by me in good and
bad times and has taken my peculiarities for granted (Mostly :-)) . Thank you very much
my dear. I love you to bits.

To my kids Aaron, Luna and Cleo, take every opportunity that enriches your lives and enjoy
the tasks that life brings you. You three certainly enriched my life, thank you for that.

Limits

When writing a book about technology where a large portion pertains the interaction be-
tween software and hardware you can imagine that when availability of equipment is either
restricted or non-existent it is hard to show or explain what you mean. It’s a bit like trying
to describe one of the artworks of the Dutch Master painters. You should really stand in
front of it to be able to understand and comprehend its beauty. In this book I will refer
to information that was at my disposal at the time of writing. I did rely on a fair bit of
virtualisation as well as information I was able to gather and compile over the years. The
book does not contain any information that linked to any customer information from any
of my previous or current employer(s). The book also does not contain any content that
could be perceived as proprietary, trademarked, copyrighted or any other sort that could
fall under a protected intellectual property. Images have either been created by myself with
PlantUML, have been provided with a CC BY /BY-SA license or are in the public domain.

The book itself is a living thing and I plan to update, expand, correct and enhance where
possible on a regular basis. If any vendor is willing to sponsor hardware and technical
information that could help system administrators, system designers, storage architects,
support people and anyone else interested in troubleshooting Linux storage technologies,
please contact me via my website https://erwinvanlonden.net.

Prerequisites

There is some knowledge required of storage and storage infrastructures so knowing what a
storage array, fibre-channel switch, lun and disks are is assumed. Also some familiarity of
the linux command-line interface is required as most tools for troubleshooting purposes are
cli based.

https://erwinvanlonden.net

LIST OF TABLES

Chapter 1

Linux Troubleshooting

Sorry what? This is like mentioning DNA profiling, researching particle physics or mapping
the universe. The Linux ecosystem is so diverse and there are so many brands, flavours,
colours etc. that it is impossible to touch on each and every single one. From an enterprise
perspective there are basically two major players Redhat and SUSE. Yes, yes, I know there
is also OEL, Ubuntu, Debian etc etc but I'll cut off at the first one Redhat or a derivative
Centos as well as SUSE. Reason is that the underlying technology is not that different
between each of them and the methodology remains the same. Thing that may differ are
naming conventions, file locations and some tools that may be present in one distro and not
the other. I'll leave it up the reader to determine which tools and methods are applicable
to his/her environment.

As the above already shows it would be impossible to write a book that covers everything
related to storage in a Linux environment. Mainly if that would be the goal you would have
to pick a point in time on a Linux kernel version related to one or two distributions and
go with that. The moment you've crossed the “T”’s and dotted the “i”’s not only would
you be 5 years down the track but the book would be obsolete from the moment you press
“Publish”. Therefore the goal of this book is to give you some tips, tricks and guidelines to
help you troubleshoot issues on a day-to-day basis. When things become really complex I
would advise to engage with your distribution vendor for further assistance.

1.1 TL:DR

Troubleshooting a storage environment is not something you’ll be able to take on lightly.
There are vast amounts of areas were issues may pop up. If you do not have a good knowledge
of what storing and retrieving data entails in various infrastructures you’ll soon experience
you've ended up in a maze. A solid knowledge of these environments and protocols will

6 CHAPTER 1. LINUX TROUBLESHOOTING

not only significantly reduce the chances of design and architecture issues but also expedite
resolution time in case things go wrong. The TL;DR part is basically saying there is no
shortcut in this. Storage systems can be very complex and 50 years of systems design and
protocol development means there is a large ecosystem of software, hardware, protocols and
procedures to acquire knowledge on and bring to the table. It is up to architects, designers,
operators and systems-administrators to ensure that they obtain that knowledge as much as
is required so solid environments will be implemented and operated for business purposes.

1.2 Performance

When it comes to performance I will only touch on a few things very lightly. If you want
a deep-dive into the art of performance analysis I can recommend the library of Brendan
Gregg over here http://www.brendangregg.com/linuxperf.html

He has a vast library of tools, articles, drawings etc. to guide you through the maze of
performance troubleshooting. Not only storage related I must warn you.

1.3 The IO stack

In this book I've use a top-down approach from application to hard-disk and the various
layers. In order to visualise the components of the storage 10 stack in Linux, Werner Fisher
from Thomas Krenn [1] consulting in Germany has created a nice overview. Even though
the image references a Linux 4.10 kernel the overall build-up does not change drastically.
Certain options and modules may be added or removed in later kernel versions.

http://www.brendangregg.com/linuxperf.html

1.4. APPLICATIONS 7

The Linux Storage Stack Diagram

version 4.10, 2017-03-10
outlines the Linux storage stack as of Kernel version 4.10

i

[PseudoFs

@ @& & | @®
‘ ‘Stackable FS —)
) o)) (U

L5 userspace (e.g. sshfs)
network

Virtual Host

mmay
mous

(Applications (processes)

maloc

is_witev, vfs_readv,

stat(2)
chmod(2),
<

purpose FS

Special ‘

BIOs (block 1/0s) BIOs (block 1/0s)

userspace

8105 ¢ lsxo;

Block Layer

BI0s

1/0 scheduler blkmq
Maps BIOS to requests

mult queve
hooked n device drvers
o e rhcrea
... | aveves deiées do)
(Hardware
dispatch
lavéves.

Request Bio
based drivers lbased drivers

Request
based drivers

Requestbased

device mniiev mie!s

SCSI mid layer l l {
Tansportdasses | | (el (ST G T T T T
o) G L
Wirio_scsi)

K

memory

SCST low level drivers

T T

[Fm—

LI T
CoR e

Physical devices

Figure 1.1: Linux Storage Stack

1.4 Applications

Executing 10 related commands are application driven. The application has certain char-
acteristics which will affect 10 behaviour. A database is most often very read intensive
with small request sizes whereas video editing and rendering applications deal with large 10
sizes in a relatively even read/write intensive ratio. Large scale IoT environments collect
massive amounts of data which get injected into large linear databases which may or may
not be time-series related. Example are Apache Spark and Kafka. On a smaller scale server
applications like email and file-servers may operate with protocols like SMB and NFS which

https://spark.apache.org/
https://kafka.apache.org/

8 CHAPTER 1. LINUX TROUBLESHOOTING

also have their own characteristics. Understanding these is imperative not only in designing
storage architectures but also the ability to effectively troubleshoot issues.

Info you need :

e 10 size usage - When the application executes a request what is the IO size in which
it does that.

e Read/Write ratio - This is imperative to know in troubleshooting as it will determine
SAN traffic directions and array behaviour massively.

e Data placement - basically meaning determining where certain sections of the appli-
cation will store its data and how is this retrieved again. Mechanisms like caching,
utilisation of temp-space, direct IO capabilities etc. can have a great influence on
performance and overall application behaviour.

1.5 Filesystem

Here is another can of worms on the Linux platform. There are over 20 filesystems currently
available in the linux kernel from adfs via ext and reiserfs to xfs. Each of them have special
characteristics and can impact 10 behaviour. Profiling these based on your application
and or business requirements is important as moving/migrating later on may be a hard
task. Filesystems also have a huge influence on arrays when it comes to provisioning. Some
filesystems are very friendly to thin provisioned volumes and others are not. Does that make
the first better than the second? Not necessarily, again it depends on you requirements.

From a performance perspective it all depends on how effective the filesystem algorithms
handle updates and requests. Some benchmarking on your application and infrastructure

may be required to find out what best suits your needs.

Info you need:

What filesystems are supported by my application

How is the filesystem layout (is important for index allocation and thin provisioning.)
This can be based on btree structures, head of disk indexes, sector based indexes and
a few more.

Journals being used or not.

Extended functions like snapshotting etc. required and used.

The most used filesystems for block devices are ext4 and xfs. From a network side you’ll
find NFS and SMB as well as object based systems like Ceph or cluster filesystems like
GlusterFS. Others like btrfs, zfs (for linux), vfat etc may sometimes be seen. For the sake
of brevity I’ll limit the troubleshooting to the block based systems.

1.6. ENCRYPTION 9

1.6 Encryption

Encryption may been seen on many levels from application to the hardware layer and even
special appliances integrated in secure PKI based infrastructures. You can get a PhD on
this alone so I'll only touch on this briefly.

Info you need:

e Is the disk encrypted or not?
e Is the encryption engine offloaded to a special hardware device?
e Which solutions are involved in the encryption and how do they interact on the 10-level

1.7 Partitions and Volume Managers

Partitioning and Volume managers do not directly interfere with the IO requests themselves.
There are merely there to provide a logical abstraction layer for addressable space. They
therefore do not have a direct impact on the individual requests however when designed or
configured incorrectly they can cause the 10 path to become a severe bottleneck.

When SAN infrastructures are used and large amounts of luns are presented it is fairly easy
to make a small mistake with large consequences. Improper configuration can at some stage
become a major burden and can take numerous sleepless nights to correct.

This chapter is fairly detailed with numerous examples as the vast number of functions and
features may have a significant impact on installation, operations and troubleshooting.

Info you need:

e Detailed mapping of physical disks to logical volumes and vice-versa.
e pvs, vgs, lvs and/or output of other lvm commands.
e 3rd party volume managers installed.

1.8 RAID

The Linux OS has a native software based raid functionality build into the kernel. The
md-raid module allows for mirroring or striping data across disks. This is one of the layers
that can have the most impact when designed incorrectly. In test and development environ-
ments, which have some sort of permanent nature, testing of primarily OS and application
functionality shouldn’t be much of a problem. When using this in a production environment
you need to be aware that a significant overhead will occur in splitting the IO’s (in case of
RAID 1 mirroring) or RAID 3/5 (with a heavy computational load of XOR calculations)
which require segments of the data to be striped over multiple physical disks. In almost
all cases it is better to have a hardware based array option or external arrays which have
purpose build ASICs and FPGAs for this.

10 CHAPTER 1. LINUX TROUBLESHOOTING
Info you need:

e mdadm output if software raid is used.
e RAID hardware configuration if applicable.
e External storage setup if applicable.

1.9 Block devices

The lowest addressable entity of a range of storage space is represented as a block or tape
device. These are shown in Linux under /dev/sdx, /dev/hdx, /dev/stx etc. The block device
is more or less a logical representation of a hardware device whether this is build into the
system or presented from an external storage array or tape device. This is also the level
were most 10 errors are reported on. Any hardware or performance issue will be presented
out of this layer. It depends on the configuration of the logging facility where this will then
end up but most often you’ll see this in "/var/log/messages" or dmesg output. The block
devices are instantiated upon discovery of devices via the respective device drivers. As soon
as an array has created a logical unit (LUN in case of SCSI) or NS (NameSpace in case of
NVMe) the device driver of that card will instruct the block layer to create an addressable
device after which a discovery/inquiry process takes place of what that device then is. Based
on that it is the udev process which will provide it an addressable name (/dev/xxxx). It is
then available for use. The design and architecture of the system will then determine how
it will be used with the aforementioned volume managers, file-systems etc...

The block devices in a Linux system do need to have the ability to interact with the operating
system, they obviously need to be able to store and retrieve data, respond to commands
like rewinding a tape or any other command applicable for that particular device. In order
to be able to do this we use communications protocols. You may have heard of ESCON,
HIPPI, IPI, SBCCS (yeah yea I know mainframers would be more across this....) but in
the Open Systems market we see primarily two, SCSI (Small Computer Systems Interface)
and SATA. “ Huhh, what about Fibre Channel? And NVMe?“. Well FC is not a device
communications protocol but more a transport protocol which has aligned characteristics
to channel protocols like SCSI and SBCCS.(We’ll get to transport layer later on) The bulk
of installations at the time of this writing is based on the SCSI (Small Computer Systems
Interface) protocol but NVMe is making great progress and is now seen in almost every
system whether it being your desktop or a large scale SAN infrastructure.

Info you need:

e In a troubleshooting scenario a list of affected devices.

1.10. MULTIPATH IO 11

1.10 MultiPath 10

In an environment where devices can be reached via multiple entry-points a layer of software
called multipathing is used. If the discovery and addressing of the individual devices has been
done the MPIO software can query the inventory parameters of the devices. If it determines
that two or more of the devices in the device-tree are actually one and the same (we’ll get to
that later) it can aggregate these in a virtual device and I0’s directed to this virtual device
can/will be dispersed over each of these paths. It depends on the capabilities of the attached
storage device what its capabilities are, how it is connected and how the MPIO software is
configured. The MPIO layer is the best layer suited for problem prevention but it has its
limitations. (See the article over at my site [2] why MPIO sometimes doesn’t seem to work.)

Info you need:

e Diagram of the infrastructure
e Overview of presented volumes over which paths.
e Capabilities of the external storage device

1.11 Schedulers

There are two types of schedulers in the Linux environment. Process and storage schedulers.
This book focusses on the storage side.

The decision which 1O request gets handled by the protocol subsystem is determined by the
10 scheduler. In Linux there are a few available depending on which flavour distribution you
have or which ones are compiled into the kernel. The schedulers are split into two segments:
multi-queue and non-multi-queue. Especially in the NVMe (see below) arena a multi-queue
scheduler should be used. If the system has an older kernel it is advised to upgrade. In
the latest kernels (75.2 and up) the non-multi-queue schedulers are no longer supported or
advised. The schedulers themselves are not often the cause of storage issues where hard 10
errors are observed. They do sometimes come up in performance related problems where a
shift in 1O profiles from the applications may have an adverse effect in how the scheduler
in play at that moment may not be the most effective. Ongoing tests with 10 profiling and
replay of IO patterns/workloads in benchmark tools will show which scheduler may be best
suitable.

Info you need:

e Overview of schedulers used by affected devices.
e Can be obtained via “cat /sys/class/block/<block-dev>/queue/scheduler”. Output
will show something like :

[root@server queuel]# cat scheduler
[none] mg-deadline kyber bfqg

12 CHAPTER 1. LINUX TROUBLESHOOTING

1.12 Storage Protocols

Protocols in the storage world can be split basically in two parts, the channel protocol and
transport protocol. With channel protocols the command and control of peripherals are
known and directed by an initiator. It is the initiator that keeps track of everything that
happens to and from the devices that are under its control.

It is aware of the state of the device itself, can inquire on the state and can act on changes of
these devices as wel as the responsibility of providing an address schema how and where the
devices can be reached. The initiator is also responsible for storing and retrieving the data
as requested by the upper levels. View it as the central control room of storage operations.

The transport protocol is more responsible for getting the command and control instructions
as well as the data between the initiators and targets. It may not have any knowledge of
the upper layer protocol.

1.12.1 Channel
1.12.1.1 SCSI

SCSI is the most prevalent protocol as mentioned before. It has a huge ecosystem build up
over +- 40 years. Its wide range of equipment that uses it means that it is also relatively
complex and you may take a while to grasp the concepts. The protocol was not designed
with large scale storage infrastructure in mind. The acronym already shows that: “Small
Computer Systems Interface”. The architecture of the protocol allowed for huge flexibility.
When SCSI was designed it also was tightly coupled with the hardware. The entire hard-
ware signalling and data-transfer over many sequencing phases more or less hampered the
development somewhat. As soon the command set was uncoupled (disassociated) from the
hardware the true power of SCSI was unleashed. Large scale storage infrastructures as we
know them today are the result of that.

Info you need:

e A series of commands that outline the devices and connection tree

e Ispci - to see which adapters are installed.

e Isblk - overview of block devices and parameters

e or alternatively lsscsi

e Each command has a series of parameters to adjust the query and output

1.12.1.2 NVDMe

Over the last few years the NVMe protocol has gained a signification traction. The develop-
ment of NVMe grew out of the PCI-Express world which wanted to use the massive increase
in data-transfer and IO rate of flash drives. It has significant benefits when it comes to
addressing schema, queuing and performance over SCSI. Since around the middle of the

1.12. STORAGE PROTOCOLS 13

2010 decade, the NVMe over Fabrics allows the protocol part of NMVe to be transported
over Fibre-Channel, Ethernet, RoCE and other fabrics. In a Fibre-Channel environments
this was relatively easy to do on the FC4 layer where a extension of the protocol mapping
was added. Benefit is, the underlying FC infrastructure remains 100% the same. This is an
important part of the troubleshooting approach in case things do not work as expected.

Info you need:

e QOutput of various nvme or nvmetcli commands

1.12.2 Transport

The transport protocol is basically responsible for getting command/control information and
data from A to B and back. It does not interfere with data or device-handling. Transport
protocols can be somewhat split into two distinct categories

e Network oriented
o Channel oriented

Network oriented protocols do not have a distinct knowledge of the data that is being
transported. For example a network switch does not inherently take into account specific
http characteristics in order to make decisions on switching packets. The configuration
is mostly set on the datalink or network layer (L2 and L3 of the ISO model). Specific
instructions need to be set on these levels to influence data-transport behaviour.

Channel based protocols have inherent knowledge of the data that is being sent. The frame
headers contain specific information that allows data flows determine the data type (Control,
Data etc.) as well as align with communications characteristics. One example of this is that
FibreChannel is designed to be 100% full-duplex however it has provisions to adhere to the
asynchronous behaviour of SCSI for example.

One or the other may have inherent limitations. As mentioned a network oriented protocol
does not take into account a channel based requirement. Protocol dependant timers will
differ between each of them. Additional layers like for instance iSCSI need to overcome
that and allow the SCSI protocol to be transported over TCP/IP. Similarly some distance
limitations that may incur on the Fibre-Channel protocol may need to be overcome by using
FCIP '. Additional precautions need to be taken to prevent the storage protocol be a victim
of the characteristics of the lower layer TCP and IP ones. When Wide Area Networks
(WAN) are in play even more planning and configurations need to be implemented to allow
a reliable communication of the storage based protocol and therefore the data.

Whichever transport option is chosen it is of the utmost importance that a thorough under-
standing is obtained of the requirements and have this mapped onto the available infrastruc-
tures in line with the business targets that have been set. What I mean by this is that a

IFibre Channel over IP

14 CHAPTER 1. LINUX TROUBLESHOOTING

lot of thought needs to be put in designing the transport layer in order to prevent technical
limitations having a negative influence on business requirements.

Info you need:

e Up-to-date diagram outlining all characteristics of the transport layers between every
end-point.

e Workload profiling mechanisms to enable scale-up, scale-out or scale-down planning.

e Planning document of recovery in failure scenario’s.

1.13 Storage

The storage landscape diversity is enormous. Especially when it comes to media, vendors,
models, functions, features etc. Usage of technologies like snapshots, replication, long dis-
tance connections make this layer especially complex. There are numerous things that can go
wrong on the storage side especially from an operations side. Executing commands on stor-
age array that inadvertently remove volumes from being presented or replication direction
accidentally going the reverse way are classic examples.

Each of the above subjects will be touched upon in subsequent chapters.

Chapter 2

Applications

Troubleshooting storage issues on Linux from an application perspective is imperative to
start with together with the Operating Systems logging facilities. Issues seen related to
performance or erroneous IO behaviour can, and most often will, cause outages. Application
configuration and behaviour will have a significant impact on storage operations. A well
designed and configured application will not only benefit from functioning without issues
but will also prevent negative impact on other parts of the storage infrastructure.

Starting troubleshooting from an application viewpoint will most likely give you a feeling
what the issue may be and where it may originate from. This will however not always stand
true, especially when hosts are connected to a shared storage infrastructure. We dive further
into that in the chapters that follow.

2.1 Type

In this book I'll touch on a few applications types

1. Databases
2. Cluster systems
3. File servers

2.2 Databases

This book primarily focusses on the commercially available ones like Oracle and Sybase (now
part of SAP) and freely available ones like MySQL and Postgres.

The relational databases have a structured layout. That means the content of the databases
is predefined so the tables, column and records have a known content type and its relation

15

https://www.sap.com

16 CHAPTER 2. APPLICATIONS

to others is known. This allows for specific layout of the database itself and targeted storage
provisioning ensures that an optimal behaviour can be achieved.

General rules are:

1. Split transaction logs and databases

2. Store each on appropriate volumes.

3. Provision volumes in line with the IO behaviour of the specific database and transaction
logs. In general the transaction logs are primarily write intensive whereas the databases
themselves have often a 80/20 read/write ratio. (Depending on the applications that
use that database)

4. Determine if special storage management layers are in play. Examples are Oracle ASM
and Veritas Storage Foundation.

Especially the latter (#4) will significantly influence the behaviour of databases in relation
to storage operations. In many cases the storage infrastructure simply presents a large
amount of volumes with different performance and availability characteristics after which
the database administrators (DBA’s) configure the layout of the provisioned space to the
respective databases. From an operational perspective this may look very beneficial. The
administration on the storage infrastructure side is kept to a minimum and the administra-
tors can use the provided space to their liking. The major drawback is that the DBA’s in
general do not have an good overview of the storage infrastructure nor is there control on
the access characteristics imposed on, or requested from, the storage infrastructure. The
consequences of this is that in some cases an incorrect configuration on the DBA side can
have significant negative impact on that underlying infrastructure. Mistakes whereby trans-
action logs are put on striped RAID configurations or on storage pools where array cache
limitations are imposed can cause sever performance and even availability issues. In general
every configuration from a DBA perspective should be validated and approved by the stor-
age administrators. They need to ensure that appropriate processes are in place to monitor
the infrastructure and adjust parameters as appropriate.

Many databases have separate database structures in memory and on disk. Be aware that
these significantly influence database behaviour and thus IO activity. It is important to
pay special attention to these parameters in order to optimise the applications caching and
storage side.

2.2.1 Oracle

One of the most prevalent database systems deployed is Oracle. Oracle is able to utilize
its own storage management stack called ASM. The ASM suite contains in essence three
components. ASM (Automated Storage Management), ACFS (ASM Cluster File System)
and ADVM (ASM Dynamic Volume Manager). ASM can work with Linux native options
like MPIO but utilizing ASMLIB or it can replace them entirely such as in the case of the
ASM volume manager replacing the Linux LVM variant. It is up to the business to decide
whether any of these variants are used.

2.2. DATABASES 17

The ASM suite is optional. There is no technical requirement to use ASM on Linux as
the native tools work very well and can be optimized for database operations. The device
mapper, LVM , available file-systems etc provide ample options to configure a reliable system.

Most issues related to Oracle databases and ASM are caused by a design issue or miscon-
figuration. The error-messages that are logged from an Oracle database instance related
to Linux storage are not specifically identified as a separate problem category but will be
logged depending on which process and component is observing a problem. The ones that
do have their own category are the ASM error messages. Disk read write IO messages are
primarily logged under a few ORA-xxxx messages. These may differ on certain versions of
the database.

Examples are:

ORA-00200: control file could not be created

Cause: It was not possible to create the control file.

Action: Check that there is sufficient disk space and no conflicts in filenames
and try to create the control file again.

or more specific to read and write errors are

ORA-00204: error in reading (block string, # blocks string) of control file
Cause: A disk I/O failure was detected on reading the control file.

Action: Check 1if the disk is online, if it is not, bring it online and try a warm
start again.

If it is online, then you need to recover the disk.

and

ORA-00206: error in writing (block string, # blocks string) of control file
Cause: A disk I/O failure was detected on writing the control file.
Action: Check 1if the disk is online, if it is not, bring it online.

The two messages above will most likely also have a OS based counterpart error logged
in the /var/log/messages file that derives out of the protocol subsystem, volume manager
or filesystem. That message will also have more detailed info which underlying volume it
entails. When we come to the OS side we’ll have a more closer look into this.

Oracle database issues mainly touch on performance problems. Delay in read/write be-
haviour are most often due to poor design or selection of equipment not up for the task.
Oracle lists disk layout as #5 on their top 10 list of performance problems.

Parameters that should be evaluated per installation related to IO behaviour are
DB BLOCK _ SIZE and FAST START MTTR_ TARGET. The first one config-
ures the size of the data-segment stored in cache as well as the IO size sent to disk. In
general this is set to 8192 or smaller for mostly transaction based systems and higher
for data-warehousing environments. The FAST_START_MTTR_TARGET is a timer that triggers

18 CHAPTER 2. APPLICATIONS

redo-log checkpoint. This ensures the redo-log does not grow out of proportion and causes
disk space issue or excessive write delays or, in case of a very small value, an increase in the
number of database writes may incur additional delays. Many additional parameter have
an influence on overall performance for Oracle databases.

The Oracle performance tuning guide lists the configuration parameters which have an im-
pact on IO behaviour. The below are a few of them.

Table 2.1: Oracle Database 10 parameters

Parameter Description

DB BLOCK SIZE The size of single-block I1/0 requests. This
parameter is also used in combination with
multiblock parameters to determine
multiblock I/0 request size.

OS block size Determines I/0 size for redo log and
archive log operations.
Maximum OS I/0 size Places an upper bound on the size of a

single I/O request.

DB FILE MULTIBLOCK READ COUNTThe maximum I/O size for full table scans
is computed by multiplying this parameter
with DB BLOCK _SIZE. (the upper value
is subject to operating system limits). If
this value is not set explicitly (or is set to
0), the default value corresponds to the
maximum I/O size that can be efficiently
performed and is platform-dependent.

SORT AREA SIZE Determines I/O sizes and concurrency for
sort operations.
HASH AREA SIZE Determines the I/O size for hash operations.

Oracle has separate chapters on storage profiling and IO configuration in the performance
section of the documentation. [3]

2.2.2 Sybase (SAP ASE)

The SAP ASE database is the underlying databases for many of the SAP ERP solutions.
This is not the same as HANA. The configuration of the databases are similar as for ev-
ery database. IO issues are often more related to performance which leads back to de-
sign /architecture and the capabilities of the underlying hardware. Similar as with the Oracle
database placement of the transaction logs and tables on the proper volumes make a world
of difference. Unfortunately SAP did not provide me with access to their portals so I was

2.2. DATABASES 19

not able to extend the troubleshooting section with their information any further. I will
update the book if/when that changes|

2.2.3 Microsoft SQL server

SQL server from Microsoft is supported on Linux since version 2017. It runs on RedHat,
SUSE, Ubuntu and even deploying it on Docker is now a valid configuration. Extensive
documentation can be found on Microsoft’s SQL Linux pages. [4].

There are a few gotchas that are mentioned in the various release notes that may change over
time. The usual dependencies on CPU, memory and diskspace are followed by restrictions in
filesystem types. (Only ext4 and xfs are supported at this stage) That means that “exotic”
file-systems like btrfs and zfs are not an option (yet).

2.2.4 MySQL

A somewhat less “enterprisy” level database, albeit immensely popular, is MySQL. Originally
an open source project which got commercialised by SUN Microsystems and subsequently
became part of the Oracle portfolio. The open source variant is MariaDB which can be freely
used and deployed. From a storage configuration perspective it does not deviate much from
its enterprise siblings. MySQL knows a concept of “Storage Engines”. These engines provide
different database storage characteristics and can interface with external storage providers
like Casandra and S3. The different characteristics of these storage engines vary to different
functions like optimisation for certain workloads or storing data for space efficiency. It is
up to the DBA’s to select the correct engine. (See Choosing the right storage engine) [5]
or the MySQL storage engine page. [6]). Depending on the engine certain underlying disk
architectures may need adjustment. An example is if the Archive engine is chosen there
would not be a need for additional compression options to be enabled in SAN networks or
storage arrays. Severe performance problems may occur if a particular engine is chosen and
incorrect parameters in the infrastructure are configured.

2.2.5 Reliability and Redundancy

Build in reliability and redundancy features are available on multiple levels. Replay and
undo logs, log-shipping, cluster environments and replication options are well developed in
all databases. On the data level there are hashing functions and other integrity checks
that verify if the data that was entered is properly stored. Replication on the storage layer
requires active integration between the applications and arrays to ensure consistency between
the application and storage entities. Databases need to be “quiesced” and subsequently the
outstanding transaction been committed. This will result in a consistent state between the
primary and secondary volumes when snapshots or other sorts of point in time images are
generated.

Most backup and/or other business-continuity software have integrated options to care of

20 CHAPTER 2. APPLICATIONS

this. If manual commands or scripting tools are utilised be assured the proper database state
has been reached and no update sessions are still active before commencing with activities
on the underlying storage layer.

2.3 Cluster systems

Cluster computing comes in a wide variety of options. On an application level these are
most often managed by internal replication and locking scenarios between two or more
entities. The cluster functionality in applications take care of the distribution of data and
determines which instance has read and write or update permissions. These permissions
can be active/passive or active/active between the nodes where the application is running.
The granularity is depending on application capabilities and configuration. They can be as
granular a single records in a table although performance impact can be expected.

Other storage options like Apache Spark and Hadoop are also an option. That is beyond
the scope of this book.

2.3.1 Operating System clusters
2.3.1.1 BeoWulf

For storage troubleshooting purposes on a Linux system a BeoWulf cluster will not have
special operational procedures. A BeoWulf cluster is more used for parallel processing of
tasks feeding back the information to the requestor. It does not use a distributed storage
model with dispersed data-storage. It can utilise external storage facilities such as Hadoop.

2.3.1.2 Apache

Many software bundles that provide a large scale distributed storage environment are listed
and licensed under the Apache Software Foundation. A few of them are Spark, Hadoop Hive,
Kafka and more. Each of these have their own procedures and guideline for configuring and
troubleshooting storage related issues. These are not necessarily Linux related but more
from an application perspective. Refer to the Apache website for more information.

https://www.apache.org

Chapter 3

Filesystems

The filesystem layer is one of the most important and complex layers in the IO stack. Not
only are there a plethora to chose from but the internals can massively differ between each
of them.

The filesystem is the only layer in the 1O stack which has an active knowledge of the data that
is stored. It knows which files and directories reside on disk and how these are structured.
It performs allocation and de-allocation of space, calculates optimum caching algorithms,
provides permission options, snapshot capabilities, quota properties, journalling etc. Based
on the requirements of the application and/or business one filesystem may be more suited
than the other. If for example snapshot functions are required then btrfs or zfs may be
more suited than ext4. If high performance for large files are needed maybe have a look at
xfs.

3.1 VFS

The Linux filesystem architecture is build upon a layer called vFs [7]. The Virtual File System
provides an abstraction layer upon which userspace programs can interact and filesystems
like ExT4 and XFs plug into. The handling of read or write calls or allocation of inodes is
therefore transparent to any application that wants to execute I0’s and they do not need
to contain code specifically for each individual filesystem. It would be very cumbersome if
application would need to have different code to be able to read a file depending on which
underlying filesystem it would reside. From a userspace perspective you also don’t really
need to worry about it as it is just there and the tools that are out there to interact with
vfs all use those systemcalls.

As an example is the mount command. This command is transparent across every file sys-
tem that you may use and it is only the different attributes, functions and features of the

21

22 CHAPTER 8. FILESYSTEMS

underlying filesystem that adjust their behaviour.

When looking back to the diagram of Thomas Krenn we see the VFS filesystem layer is
roughly represented as follows

VES high level overview

VFS abstraction layer

Network FS Block FS

Filesystems Filesystems

Figure 3.1: VFS

*fig:vfs basically shows that the Virtual File System is providing the abstraction for the
filesystems that can be used.

3.2 Disk capacity

Disk capacity as per ISU standards is done on a per 10* basis. Basically meaning that it is

expressed as a decimal power. Operating systems however calculate in binary powers like
2%,

If you start discussing storage capacity but use the incorrect notation it means that a
“kilobyte” may accidentally mean “kibibyte” with the result of have a 24 byte discrepancy
per entity.

3.8. LAYOUT 23

Table 3.1: Size notation.

Notation Size in binary Size in decimal

Kilo 210 = 1024 10* = 1.000

Mega 10242 = 1048576 105 = 1.000.000

Giga 10243 = 1073741824 10° = 1.000.000.000
Terra 1024* = 1.099.511.627.776 102 = 1.000.000.000.000
etc etc...

That obviously will cause some discrepancy between the capacity you require to store “stuff”
in relation to what the disk has on a label. The decimal notation is expressed in KB,
MB,GB,TB etc whilst the binary notation shows KiB,MiB,GiB and TiB. For more informa-
tion see the definitions on Wikipedia. Byte [8] and International System Units [9].

When you buy a 2 terabyte disk you will basically get a set of platters or chips with a total
capacity of 1012 % 2 = 2000000000000 bytes. When presented to the operating system, who
needs to format it, you will see an addressable size of $(10'2)/(19214)*%2~1 818 terra-bytes.

Depending on your needs you may want to select a filesystem based on maximum file-system
or file size.

Table 3.2: File System Sizes.

FS FS Size File size

Btrfs 16 EiB 16 EiB
Ext3 16 TiB 2 TiB
Ext4 1 EiB 16TiB
XFS S8EiB 8 EiB

One little tip I need to mention is the -x parameter on the du command. You’ve most likely
seen that when trying to determine the usage of a filesystem with many volumes mounted
on various locations in that directory tree, it takes A: long time to parse them and B: it
accumulates everything under that directory tree. This is most often not what you want
as the space allocation is set on a volume basis and not a directory tree with different
mountpoints. The -x parameter will only show the disk usage for the volume where that
directory is located and will exclude all other mountpoints in that tree.

3.3 Layout

The filesystems in Linux, or filesystems in general, are a in essence a large reference index
to data stored on disk. This data is stored in blocks or series of contiguous blocks called

24 CHAPTER 8. FILESYSTEMS

extents. If a file gets split, for example it gets fragmented, it will be stored in other block-
groups/extents. The information of these files and directories are stored in so called inodes.
Layout of all these are then referenced in one or more allocation or block groups depending
on the terminology used for that respective filesystem. The way this is done differs per
filesystem.

The size of the underlying disks (i.e. the number of physical blocks presented by the hard-
ware, volume or partition) as well as the architecture of the system (32 or 64 bit) determine
the layout of the filesystem which subsequently provides the storage space available to ap-
plications. Filesystems like btrfs, xfs and zfs use btree structures which allows advanced
functions like snapshotting and automatic corruption detection and recovery in the filesys-
tem itself. Other filesystems like ext2/ext3/ext4 user block groups and group descriptors.
Each of them use, so called, inodes to map metadata to the actual data. “Data” being a loose
description of a file, directory, or device. These inode entries are most often stored at the
beginning of a blockgroup although the actual data may be stored on a different block-group.
This may/will cause fragmentation over time, and may result in additional seek times on
rotational disks and additional requests on both rotational and ssd devices. Be aware that
most filesystems have many tricks up their sleeve to prevent these things from happening.

Example of a file-entry in filesystem technical detail:

[admin@server ~]$ stat testl.rnd

File: testl.rnd

Size: 409600 Blocks: 896 I0 Block: 4096 regular file
Device: fd02h/64770d Inode: 8329 Links: 1
Access: (0664/-rw-rw-r--) Uid: (1000/ admin) Gid: (1000/ admin)
Context: unconfined_u:object_r:user_home_t:s0
Access: 2020-05-21 15:34:00.256607506 +1000
Modify: 2020-05-21 15:34:00.259607506 +1000
Change: 2020-05-21 15:34:00.259607506 +1000

Birth: -

The above show the underlying filesystem information in relation to the file test1.rnd.

3.4 Mount options

The various filesystems have a generic part which is the same for all and has primarily options
on how the filesystems are presented to the host for use by the applications. This relates
mostly to the mount location, behaviour of handling the inodes, access/modification times
etc. The filesystem specific options do target the internal functionality of the filesystem in
play.

As these options can sometimes vary across distributions and how they are compiled it’s
advised to look at the man pages for them. These are very well documented and maintained.

3.5. SELECTING AND CREATING A FILESYSTEM 25

Table 3.3: File System Man Pages.

File System Man Page
btrfs btrfs(5)

cifs mount.cifs(8)
ext2, ext3, extd ext4(5)

fuse fuse(8)

nfs nfs(5)

tmpfs tmpfs(5)

xfs xfs(5)

3.5 Selecting and creating a filesystem

So which filesystem to choose. It is somewhat analogous to the question “How long is a
piece of string”. The criteria of which filesystem to use needs to be defined by the demands
of the application in both features, functions and performance as well as the operational
manageability of the IO stack of the system. Is your organisation using LVM as the foun-
dation of the volume management architecture there may not be much benefit of looking
into btrfs or zfs. When you’re looking for alternatives of LvM these obviously are serious
contenders. The majority of Linux distributions come with either the btrfs or ext4 as a
default. Both filesystems provide excellent performance, features, functions and reliability.
Ext4 is basically a fork of ext3 with enhanced functions and features. It has journalling
enabled by default but also allows this to be disabled via tunables. SUSE comes with btrfs
whilst RedHat ships with ext4 by default.

Depending on requirements of the applications and system resources a general rule-of-thumb
is that ext4 is a very good general purpose one, btrfs has many functions and features but
is somewhat more resource hungry and xfs is ideal for applications that store very large files
as well as performing better in large multithreaded application environments. You will see
the latter most often used in the media landscape where large video files are stored.

There is not really a silver bullet approach on which one to select and you would need to
benchmark the different filesystems against your application. Ensure that all other parame-
ters such as hardware and infrastructure are the same when you test this. If you change the
landscape you will get incomparable results which in essence are useless.

When using any file-system it is pretty important to have a good look at the mount-options
that are available as some options may work on one but not the other. Some options also
have different use cases or some do something different even whilst having the same name.
Study the mount 8 man page carefully as there are two sections which describe FS dependant
and in-dependant options.

The next sections describe processes and diagnostic procedures to create and fix filesystems

26 CHAPTER 3. FILESYSTEMS
in case something goes wrong.

3.5.1 EXT4

The ext4 filesystem is one of the most used. It’s flexibility, backwards compatibility with ext3,
stability and reliability have made it a preferred choice for many distributions to ship this as
the default filesystem. ext4 was basically a snapshot copy of ext3 where additional functions,
features were added as well as incorporating supported for larger systems, architectures etc.
Many of these have later been back-ported to ext3. A very informative video of how ext4
came about can be seen on youtube. See reference [10].

When creating the ext4 filesystem an underlying device is expected to be writeable. (duhhh)
The main reason I highlight this is that in a few cases I handled attempts were made to
create filesystems on a read-only device. This is not impossible or unthinkable to present
a read-only device out of an array. (Obviously this goes for all disks or volumes you want
to provision with a filesystem.) This can be a raw device (/dev/sdx), a logical volume or a
virtual device linked to physical devices such as in case of multipathing or even a combination
of those.

The below shows the creation of a ext4 filesystem with a blocksize of 2KB onto a multipath
device.

[admin@server ~]$ sudo mkfs -t ext4 -b 2048 /dev/mapper/mpathf

mke2fs 1.44.6 (5-Mar-2019)

Discarding device blocks: done

Creating filesystem with 5242880 2k blocks and 655360 -+inodes

Filesystem UUID: c73c6616-6ce3-4663-9cb0-de7596410de2

Superblock backups stored on blocks:
16384, 49152, 81920, 114688, 147456, 409600, 442368, 802816, 1327104,
2048000, 3981312

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

The same process on a logical device which is made out of two multipath devices (mpathg
and mpath) combined in a volumegroup 1st. A logical volume lvolo is carved out of this
and a ext4 filesystem is created.

On a volume group:

[admin@server ~]$ sudo pvcreate /dev/mapper/mpathg

Physical volume "/dev/mapper/mpathg" successfully created.
[admin@server ~]$ sudo pvcreate /dev/mapper/mpathh

Physical volume "/dev/mapper/mpathh" successfully created.

3.5. SELECTING AND CREATING A FILESYSTEM

[admin@server ~]$ sudo pvscan

<snip>.....
PV /dev/mapper/mpathg lvm2 [10.00 GiB]
PV /dev/mapper/mpathh lvm2 [10.00 GiB]

Total: 4 [575.67 GiB] / in use: 2 [555.67 GiB] / in no VG: 2 [20.00 GiB]
Creating the volumegroup

[admin@server ~]$ sudo vgcreate 1lst /dev/mapper/mpathg /dev/mapper/mpathh
Volume group "1lst" successfully created

[admin@server ~]$ sudo vgdisplay 1lst
--- Volume group ---

VG Name lst

System ID

Format Tvm2

Metadata Areas 2

Metadata Sequence No 4

VG Access read/write

VG Status resizable

MAX LV (]

Cur LV 1

Open LV [0]

Max PV [0]

Cur PV 2

Act PV 2

VG Size 19.99 GiB

PE Size 4.00 MiB

Total PE 5118

Alloc PE / Size 0 / 0.00 GiB
Free PE / Size 5118 / 19.99 GiB
VG UUID Z8NMyi-Kt1W-20h1l-cYk8-IXmK-MWOU-6egfGj

Carving a logical volume out of this

[admin@server ~]$ sudo lvcreate -L 5G 1lst
Logical volume "1lvol@" created.

Creating the filesystem:

[admin@server ~]% sudo mkfs -t ext4 -b 4096 /dev/lst/1lvol®
mke2fs 1.44.6 (5-Mar-2019)

Discarding device blocks: done

Creating filesystem with 1310720 4k blocks and 327680 inodes
Filesystem UUID: 4d93edea-054c-4d76-8bd3-5882bf7e0183

27

28 CHAPTER 8. FILESYSTEMS

Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

As you can see the process itself is fairly straightforward the volumes can now be mounted
and used for whatever purpose they need to serve.

3.5.1.1 ext4 data corruption

As ext4 is a journalled filesystem, unless disabled manually, any data that gets created
or updated is first written to a journal. The output of the mke2fs command shows that
the superblock is stored in block 0 and copied across other blocks in the filesystem as per
the output above. From there on other parts of the filesystem can be found and tracked.
Corruption of the superblock in block 0 will therefore be not of particular concern and can
be fairly easily repaired.

A normal superblock at block 0 of the filesystem looks like this:

Group 0: (Blocks 0-32767) csum 0x08ed [ITABLE_ZEROED]
Primary superblock at 0, Group descriptors at 1-1
Reserved GDT blocks at 2-640
Block bitmap at 641 (+641), csum Oxd6e970ca
Inode bitmap at 657 (+657), csum 0x785a30f5
Inode table at 673-1184 (+673)
23901 free blocks, 8182 free inodes, 1 directories, 8178 unused inodes
Free blocks: 8866-8869, 8871-32767
Free inodes: 11-8192

Artificially corrupting it via dd if=/dev/zero of=/dev/1st/1lvole bs=4096 count=1 will result
in the following'

[root@server ~]# dumpe2fs /dev/lst/lvol® | head -100

dumpe2fs 1.44.6 (5-Mar-2019)

dumpe2fs: Bad magic number in super-block while trying to open /dev/lst/lvol@
Couldn't find valid filesystem superblock.

By checking the filesystem, even while mounted, you can see that it is not “clean’

[root@server mnt]# dumpe2fs -o superblock=32768 /dev/lst/lvol® | head -100
dumpe2fs 1.44.6 (5-Mar-2019)

Filesystem volume name: <none>

Last mounted on: <not available>

3.5. SELECTING AND CREATING A FILESYSTEM

Filesystem UUID: 4d93edea-054c-4d76-8bd3-5882bf7e0183
Filesystem magic number: OxEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: has_journal ext_attr resize_inode dir_index \

filetype extent 64bit flex_bg sparse_super \

large_file huge_file dir_nlink extra_isize metadata_csum

Filesystem flags: signed_directory_hash
Default mount options: user_xattr acl
Filesystem state: not clean

Errors behavior: Continue

Filesystem 0S type: Linux

Inode count: 327680

When running fsck it knows the volume was not unmounted cleanly due to the corruption

of the superblock

[root@server mnt]# fsck.ext4 -y -b 32768 /dev/lst/lvole
e2fsck 1.44.6 (5-Mar-2019)

/dev/1lst/1lvole was not cleanly unmounted, check forced.
Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity
Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong for group #0 (23897, counted=23860).
Fix? yes

<snip>

Padding at end of dinode bitmap is not set. Fix? yes

Block bitmap differences: Group 0 block bitmap does not match checksum.

FIXED.
/dev/1lst/1lvolO: ___**x FILE SYSTEM WAS MODIFIED ___*x
/dev/1lst/1lvolo: 184/327680 files (25.0% non-contiguous), 447167/1310720 blocks

As the references in the backup blocks are still ok you will end up with a clean filesystem
again.

Be aware that files that may be corrupted do not have such a backup mechanism. You will
need to ensure that off-system backups are kept or techniques like snapshotting are in place.
Be aware that replication on the hardware or volume layer will NOT safeguard you against
file or filesystem corruption. If processes or commands result in filesystem corruption on the
hardware or volume layer these are just ones and zeros without any further meaning. This
means that all bytes, representing valid or corrupt data, will simply be replicated to the

30 CHAPTER 8. FILESYSTEMS

secondary volume.

3.5.1.2 Journal

A journal of a filesystem is basically a sequential log of all updates that have been executed
in memory but not yet physically applied to the filesystem. Without it, only a block by
block scan of the entire volume may be able to recover a dataset on a disk after a crash as
all knowledge o the in-memory changes are unknown after a reboot. If a systems crashes,
for whatever reason, the filesystem will be checked due to the fact the so called “dirty bit” is
checked. It that bit is set is means it was no cleanly unmounted and therefor needs to run
a check to see if there are outstanding actions in the journal that need to be applied before
it can provide a clean state to the operating system and applications.

The journal in an ext3 and ext4 filesystem is optional and can be disabled. this may
improve performance on write heavy applications but obviously this comes at the expense
of recoverability of that particular filesystem instance. The reason you still may want to
disable the journalling function is if you have a very distributed application environment
which already has build in data replication/distribution. As mentioned in the introduction
chapter systems like Hadoop, Spark and many others provide this and thus may obtain some
performance benefit when journalling is disabled.

EXT4 is a very reliable filesystem and, as mentioned before, is a very good choice for a
multitude of applications.

3.5.1.3 Behaviour on errors

The ExT3/4 filesystem has a, so called, on-error flag which allows you to set the behaviour
of the filesystem when it encounters errors. These errors can be anything from journal
discrepancies to IO errors to corruption. There are three action items that EXT has.

e continue
e remount-ro
e panic

The first option only logs errors in the kernel eventlog, the second option will remount
the file-system Read-Only basically disallowing all writes and the third will panic the kernel
forcing a panic-dump and restart of the system. The latter is mostly useful in a development
environment where firmware and drivers are being installed and tested.

Most distribution use the continue setting as default when creating the file-systems. You
can alter that with the -e parameter when creating the file-system or use tune2fs -e
<continue|remount-ro|panic> to dynamically change that. Be aware that applications such
as databases might also change this flag at the time they are instructed to use that volume.

All errors will result in the state of the file-system be marked as “dirty” which will cause
EXT to start an fsck again it and verify the integrity upon system restart or remount. The
invocation parameters determine how fsck will be executed.

3.5. SELECTING AND CREATING A FILESYSTEM 31

[server % ~] sudo tune2fs -1 /dev/mapper/vg_server-1lv_home
tune2fs 1.45.5 (07-Jan-2020)

Filesystem volume name: <none>

Last mounted on: /run/media/erwin/1701acf8-024b-4827-9bc1-68a71018451a
<snip>

Filesystem state: clean

Errors behavior: Continue

<snip>

There are a fair few options available. The invocation scripts and default settings may differ
per distribution so please check the documentation and man-pages.

3.5.2 XFS

First things first. The xFs filesystem does not originate out of the Linux ecosystem It was
designed by SGI [11] in 1993. A company who’s assets ultimately ended up with Hewlett
Packard in 2016. SGI built its systems for graphical processing and graphical printing
machines. One thing all data has in common when it comes to graphics is that their file-
sizes are huge. It is not uncommon that individual files run in the hundreds of gigabytes and
that massive back-end storage systems are responsible for serving huge IO requirements. It
is therefore that the XF'S filesystem has a background of performing very well under these
circumstances. Its codebase caters for massive size and scale of files and parallel execution
of threads against the same file(s).

3.5.2.1 Performance

As mentioned above XFS performs very well when it needs to cater for large files. What all
file-systems have in common is that a mix of workload characteristics is often detrimental
to the performance of the entire system. XFS provides a rtdev and logdev configuration
option which allows meta-data as well as its logfile to be stored on a different disk or volume
than the actual file-data. Devices, either HDD, SSD as well as external arrays can therefore
optimise their caching algorithms to cater for these specific workloads.

It is however important to design a proper backend system that allows speedy handling of
both workloads in parallel. If, for example, metadata update workloads are not able to keep
up there will be a delay on the handling of the file-data as well. Another problem that is
often seen is that in SAN environments these workloads are being traversed over the same
set of hostbus adapters therefore significantly impacting the traffic-flow and therefore overall
performance of the 10 stack.

3.5.2.2 mkfs.xfs

Creating the XFS filesystem on any disk or volume is similarly bound by restrictions on
the underlying architecture. Optimised alignment to disk-geometry is always recommended.
Options like delayed allocation and direct IO should be tested in conjunction with the

32 CHAPTER 8. FILESYSTEMS

applications. An incorrect setting here may not be adjustable after the filesystem is created.
Refer to the documentation which options are static or dynamic.

3.5.2.3 Reliability

As with EXT4, XFS is also a journaling filesystem and has similar recovery algorithms to its
arsenal. The naming convention is a bit different where “block groups” are called “allocation
groups”. Its design principles are more or less the same.

When it comes to adjusting parameters diverting from the defaults you better make sure
what you're doing. The XFS FAQ [12] basically indicates not to start turning knobs unless
you really know that the application workload is running into issues which are actually
caused by the filesystem. The same is true for other filesystems as well. Most of the time
the build-in code is able to figure out the best defaults. If you have certain hardware like
raid-controllers who mask the layout of the underlying disk configuration you may need
to adjust the stripe-width and stripe-size to align with the hardware capabilities but thats
about it.

A few options you may take into account. Most of them are optional but may improve
performance, reliability, or both. Some settings may, or will, also have some impact on
performance so taking this into account before releasing the volume for production is advised.

e Checksumming. CRC32 calculation will be done on all metadata. It is enabled by

default and is a prerequisite for some other functions below
— -m crc=1

e Free inode btree. This is a secondary btree that contains and tracks free inodes.
Instead of using the data allocation inodes this allows for faster lookup of free clusters
of required sizes. It has no effect on reliability. The crc checksumming will need to be
enabled.

— -m finobt=1

e Reverse mapping btree. Is used as some sort of secondary index of the primary space
usage data. It can be used as a cross reference to speed up the repair process and
it also provides the option to do this online as corrupted primary metadata can be
rebuild from this secondary btree.

— -m rmapbt=1

e Big Time. You need to have a recent (ie 5.10 or later) kernel for this. It allows for

timestamps beyond 2038 to solve the epoch+(2~32) problem.
— -m bigtime=1

e Access time. Really short: don’t touch this and leave this on. The way most filesystems
use this is by relatime anyway.

e The ftype (or d_type) parameter is a prerequisite for overlay filesystems like the
ones used by Docker and other container based abstraction layers. When the crc
checksumming is turned on the ftype is set to 1 automatically. Basically what it does
is that it stores the inode type in the directory structure so that a separate lookup on

3.5. SELECTING AND CREATING A FILESYSTEM 33

the inode of the file is not required.

The disk geometry of the filesystem should be aligned to the underlying raid setup. If your
raid controller has created a raid 6 842 setup with a stripe size of 256K your XFS filesystem
should be made aware of that. The mkfs.xfs command should be used with the -d su=256k
sw=8 parameters. Be aware that the su value should be a multiple of the blocksize value as
per the -b size=xxx parameter.

sserver:~ # mkfs.xfs -f -b size=4k -d agcount=6,su=256k,sw=8 /dev/nvmeOnl

meta-data=/dev/nvmednl isize=512 agcount=6, agsize=349568 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=0
= reflink=1 bigtime=1 inobtcount=1
data = bsize=4096 blocks=2097152, imaxpct=25
= sunit=64 swidth=512 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=16384, version=2
= sectsz=512 sunit=64 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

To clarify the differences between su and sunit as well as sw and swidth, potentially avoid
confusion, please take into account the following:

Table 3.4: Stripe Unit and Stripe Width

Unit Explanation

sunit This is used to specify the stripe unit for a
RAID device or a logical volume. The value
has to be specified in 512-byte block units.
Use the su parameter to specify the stripe
unit size in bytes. This parameter ensures
that data allocations will be stripe unit
aligned when the current end of file is being
extended and the file size is larger than
512KiB. Also inode allocations and the
internal log will be stripe unit aligned.

su The su parameter is used to specify the
stripe unit for a RAID device or a striped
logical volume. The value has to be
specified in bytes, (usually using the m or g
suffixes). This value must be a multiple of
the filesystem block size.

34

CHAPTER 8. FILESYSTEMS

Unit

Explanation

swidth

SwW

This is used to specify the stripe width for a
RAID device or a striped logical volume.
The value has to be specified in 512-byte
block units. Use the sw parameter to
specify the stripe width size in bytes. This
parameter is required if -d sunit has been
specified and it has to be a multiple of the
-d sunit parameter.

Is an alternative to using swidth. The sw
parameter is used to specify the stripe
width for a RAID device or striped logical
volume. The value is expressed as a
multiplier of the stripe unit, usually the
same as the number of stripe members in
the logical volume configuration, or data
disks in a RAID device.When a filesystem is
created on a logical volume device, mkfs.xfs
will automatically query the logical volume

for appropriate sunit and swidth values.

See the RAID chapter for more information on stripe units and stripe width.

The following shows the correlation between the block size, stripe unit and stripe width. The
block size is 4096 bytes which correlates to 8*512 stripe units where therefore a stripewidth
of also 1 as I put 8 in the swidth parameter. That means that it will exactly fit into 1 stripe

unit. Not very helpful.

sserver:~ # mkfs.xfs -f -b size=4096 -d agcount=6,sunit=8,swidth=8 /dev/nvmeOnl

meta-data=/dev/nvmeOnl isize=512
= sectsz=512
= crc=1
= reflink=1
data = bsize=4096
= sunit=1
naming =version 2 bsize=4096
log =internal log bsize=4096
= sectsz=512
realtime =none extsz=4096

agcount=6, agsize=349526 blks
attr=2, projid32bit=1
finobt=1, sparse=1, rmapbt=0
bigtime=1 dinobtcount=1
blocks=2097152, 1imaxpct=25
swidth=1 blks

ascii-ci=0, ftype=1
blocks=16384, version=2
sunit=1 blks, lazy-count=1
blocks=0, rtextents=0

In the next example I use the same parameters except the swidth parameter which is now
set at 64. This means it sets 8 blocks of 512 bytes * 8 apart for striping.

3.5. SELECTING AND CREATING A FILESYSTEM 35

sserver:~ # mkfs.xfs -f -b size=4096 -d agcount=6,sunit=8,swidth=64 /dev/nvmeOdnl

meta-data=/dev/nvmednl isize=512 agcount=6, agsize=349526 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=0
= reflink=1 bigtime=1 inobtcount=1

data = bsize=4096 blocks=2097152, imaxpct=25
= sunit=1 swidth=8 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1

log =internal log bsize=4096 blocks=16384, version=2

= sectsz=512 sunit=1 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

If the hardware provides you with a configuration where the chucksize is 256k and a raid6
setup of 842 you would set the su as 256k and the sw to 8 as shown below.

sserver:~ # mkfs.xfs -f -b size=4k -d agcount=6,su=256k,sw=8 /dev/nvmeOnl

meta-data=/dev/nvmednl isize=512 agcount=6, agsize=349568 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=0
= reflink=1 bigtime=1 inobtcount=1
data = bsize=4096 blocks=2097152, imaxpct=25
= sunit=64 swidth=512 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=16384, version=2
= sectsz=512 sunit=64 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

Be aware of the above. This is not only valid for XFS but applies to all filesystem that are
created on top of raid configuration. If the raid setup is configured in software via LVM or
MD, most filesystems have fucntionality build in where it can detect the setup and create the
alignment dynamically. Some hardware drivers may also provide the same functionality but
you would have to consult the manuals of the respective vendor.

3.5.2.4 CoW

XFS supports some sort of Copy on Write mechanism called reference links. The mkfs.xfs,
by default, enables this upon creation. You can see this with the xfs_info (or xfs_db info
interactive) command output. The reflink tag should show 1. The reflink option does
require crc’s to be enabled which subsequently requires a block size of at least 512 bytes.

What is does under the hood is it creates a copy of the btree where the reference counts are
kept. As this is very dynamic and can be arranged inside the volume itself without the need
for a separate provided volume like overlayfs needs.

The section below shows 3 files where one is the original file, one is a copy of a reference

36 CHAPTER 8. FILESYSTEMS

linked file and one is a regular copy.

sserver:~/nvme®nl # 11

total 6291444

-rw-r--r-- 1 root root 2147479552 Jul 19 14:41 2G-orig-file.bin
-rw-r--r-- 1 root root 2147479552 Jul 19 14:47 2G-reflink.bin
-rw-r--r-- 1 root root 2147479552 Jul 19 14:47 2G-regular-cp.bin

You can see that all three files occupy exactly the same amount of bytes. Or so it seems as
the 2G-reflink.bin is actually only a copy of the extents pointers in the seperate btree the
filesystem created.

We can see this with the xfs_bmap tool

sserver:~/nvmednl # xfs_bmap -v 2G-x

2G-orig-file.bin:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..3999999]: 131264..4131263 0 (131264..4131263) 4000000 100000

2G-reflink.bin:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..3999999]: 131264..4131263 0 (131264..4131263) 4000000 100000

2G-regular-cp.bin:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..3999999]: 4131264..8131263 0 (4131264..8131263) 4000000

As shown the occupied space from both the original and the reflinked file point to the same
block range whereas the regular copied file is located on different block ranges.

The problem is that we cannot see with a regular 1s -1 output which file is the original and
which is the linked one. It also skews the output of df and du

sserver:~/nvme®nl # df .
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/nvmeOnl 8323072 4285384 4037688 52% /root/nvmeOnl

sserver:~/nvmednl # time cp --reflink 2G-orig-file.bin 2G-reflink.bin

sserver:~/nvme®Onl # df .
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/nvmeOnl 8323072 4285384 4037688 52% /root/nvmeOnl

In both cases the amount of free blocks remains the same in the df output whereas in the
du output the additional 2G is shown.

3.5. SELECTING AND CREATING A FILESYSTEM 37

sserver:~/nvmeOnl # du -a
2097148 ./2G-orig-file.bin
2097148 ./2G-regularcp.bin
4194296

sserver:~/nvmednl # cp --reflink 2G-orig-file.bin 2G-reflink.bin

sserver:~/nvmeOnl # du -a
2097148 ./2G-orig-file.bin
2097148 ./2G-regularcp.bin
2097148 ./2G-reflink.bin
6291444 .

This is not a bad thing as it will prevent most tools from reporting values that at some stage
may result in an ENOSP [~End of Space| message.

Any action now done on either the reflinked file or the orginal file will result in a CoW
action.

sserver:~/nvme@Onl # printf "hello" | dd of=./2G-reflink.bin bs=1M count=1 \
seek=1024 conv=notrunc

0+1 records 1in

0+1 records out

5 bytes copied, 0.00719305 s, 0.7 kB/s

sserver:~/nvmeOnl # xfs_bmap -v 2G-*
2G-orig-file.bin:

EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..3999999]: 131264..4131263 0 (131264..4131263) 4000000 100000
2G-reflink.bin:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..2097151]: 131264..2228415 0 (131264..2228415) 2097152 100000
1: [2097152..2097159]: 8131264..8131271 0O (8131264..8131271) 8

2: [2097160..3999999]: 2228424..4131263 0O (2228424..4131263) 1902840 100000
2G-regular-cp.bin:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..3999999]: 4131264..8131263 0 (4131264..8131263) 4000000

As the change happened in the middle of a 2G file so 2 new extents had to be created.

3.5.2.5 Caution with reflinks

The sheer amount of administrative work that needs to be done when files have a large
number of reflinks and therefore extents can cause a huge backlog in I0’s when the backend

38 CHAPTER 8. FILESYSTEMS

system is not able to cater for this. A very detailed explanation can be followed in this email
thread [13]

An example is when changes happen in database files where continuous updates are made
on tables, indices, views, stored procedures etc. The following output shows what happens
if just a relatively small change sequence happens on the same two files. 50 writes in the
original file at different offsets did not only create new extents in the orginal file but also
over 90 new extends for the reflinked file. This is only a small file with a limited range of
blocks, but you can imagine that having terabytes of data sitting on very large disks, the
amount of administration that is kept in the btrees is very significant.

sserver:~/nvmednl # for i in {1..50} ; do printf "hello" | dd of=./2G-reflink.bin \
bs=1M count=1 seek=${RANDOM:0:3} conv=notrunc; done

0+1 records 1in

0+1 records out

sserver:~/nvmednl # xfs_bmap -v 2G-x
2G-orig-file.bin:

EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..215039]: 131264..346303 0 (131264..346303) 215040 100000
1: [215040..215047]: 346304..346311 0 (346304..346311) 8
2: [215048..217087]: 346312..348351 0 (346312..348351) 2040 100000
3: [217088..217095]: 348352..348359 0 (348352..348359) 8
<snip>
29: [346112..346119]: 477376..477383 0 (477376..477383) 8

30: [346120..364543]: 477384..495807 0 (477384..495807) 18424 100000

2G-reflink.bin:

EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..215039]: 131264..346303 0 (131264..346303) 215040 100000
1: [215040..215047]: 8131272..8131279 0 (8131272..8131279) 8
2: [215048..217087]: 346312..348351 0 (346312..348351) 2040 100000
3: [217088..217095]: 8131528..8131535 0 (8131528..8131535) 8
<snip>
92: [1820680..2097151]: 1951944..2228415 0 (1951944..2228415) 276472 100000
93: [2097152..2097159]: 8131264..8131271 0 (8131264..8131271) 8

94: [2097160..3999999]: 2228424..4131263 0 (2228424..4131263) 1902840 100000

3.5.2.6 Reflinks turned off

If the filesystem is not created with the reference option enabled you will get the error that
the operation is not supported.

3.5. SELECTING AND CREATING A FILESYSTEM 39

sserver:~/nvmednl # dd if=/dev/urandom of=./2G-orig-file.bin bs=2G count=1
0+1 records 1in

0+1 records out

2147479552 bytes (2.1 GB, 2.0 GiB) copied, 6.45114 s, 333 MB/s

sserver:~/nvmednl # cp --reflink 2G-orig-file.bin 2G-reflink.bin
cp: failed to clone '2G-reflink.bin' from '2G-orig-file.bin': Operation not supported

sserver:~/nvmedOnl # xfs_info .

meta-data=/dev/nvmednl isize=256 agcount=4, agsize=4194304 blks
= sectsz=512 attr=2, projid32bit=1
= crc=0 finobt=0, sparse=0, rmapbt=0
= reflink=0 bigtime=0 inobtcount=0
data = bsize=512 blocks=16777216, imaxpct=25
= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=512 blocks=131072, version=2

= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
3.5.2.7 Information collection
XFS comes with an interactive tool out of the xfstools package called xfs_db .

xfs_db> dinfo

meta-data=/dev/mapper/mpathd isize=512 agcount=4, agsize=655360 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=0
= reflink=1
data = bsize=4096 blocks=2621440, imaxpct=25
= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=2560, version=2
= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
xfs_db>

Now, don’t knock yourself out on a live filesystem if you don’t know 110% what you’re doing.
The xfs_db tool hacks right into the heart of xfs and can.... ;,no no WILL, do much harm
without questioning if you type in the wrong commands and press enter. There is no “Are
you really sure?” confirmation question presented to you. A more admin friendly tool
is xfs_admin, which under the hood uses xfs _db, and provides a limited set of options to
adjust certain parameters in the filesystem. Still don’t do anything on a live filesystem with
production data resting on it.

40 CHAPTER 8. FILESYSTEMS

On large diskdrives (> 1TB) you may encounter an issue where the filesystem indicates
it is full but a df shows there is still a fair amount of space available. How is that possible

and many applications cannot handle the high order 32bits and therefore cannot address
inode numbers in that 32 bit high-order space. If the inodes in the lower addressable space
are all allocated no new inodes can be created and you’ll get the disk full scenario. There
are basically two ways to prevent that from happening.

e Don’t use such large drives (:-))
e Create or mount the filesystem with 64bit inode support.

As many experienced system administrators will tell you it is often better to start with the
defaults and adjust where and when required. Trying to tune upfront without knowing what
knobs to turn for which occasion will most often have very negative results. That being said
if you already know or can safely anticipate the usage and capacity requirements, the file
system should already be created with these parameters in mind, An example is the amount
of allocation groups you would create.

3.5.2.8 Backup & Recovery

XFS provides a recovery utility called xfs_repair. It can be used in some sort of query mode
with the -n parameter basically indicating to not actually change anything on the filesystem.
If you suspect corruption this output will tell you in a similar fashion as EXT4 does. As XFs
repair action will consume a fair amount of memory, depending on the filesystem size, you
will need to restrict the use of that especially when the system itself has active applications
and tasks doing work on other disks/volumes. The -m parameter will allow you to do just
that.

xfs_check is a second tool that can be used to verify filesystem integrity. This is basically a
script that under the hood uses xfs_db to scan and verify its structures. It uses a different
methodology than xfs_repair so both xfs_repair and xfs_check can be used to cross-check
each other. zfs_repair runs through 7 stages of different checks each depending on the
previous one to complete successfully.

Another utility called xfsdump can create a filesystem image or subsets of it and write this
to a file or another device such as a tape. It can be used as a “quick&dirty” backup utility.
The xfsrestore counterpart does obviously the restore of it. Both utilities can be used for
incremental backup and restore operations. Be aware that all housekeeping like tape-labeling
etc is a manual tasks and your spreadsheet tool will get a good workout if you decide to use
this. A nice option on the xfsrestore side it the ability to peruse the backup if a xfsdump
was sent to a file. The -1 parameter will set the tool into interactive mode where commands
like 1s and cd simply work and the add and delete commands can, indeed, add or remove
files and directories from the restore stack. As mentioned this is no alternative for a proper
backup mechanism but ideal in test/dev environments where some disk/volume states may
need to be stored and recovered relatively frequently.

3.5. SELECTING AND CREATING A FILESYSTEM 41

The recoverability of the filesystem obviously depends on the state of the indexes and journal.
If the journal itself is corrupt a replay of that would be of no use and xfs_repair or xfs_check
will show that. The only option is then to clear the journal with xfs_repair -L and run a
complete check again. There most likely, will be data in the lostéSfound folder when inodes
are found that do not have a reference in directory tables in the respective allocation groups.
The usefulness of that data cannot be determined. Sometimes when a file is smaller than
the block-size and is able to be stored with the inode itself you might be able to recover it
again. If however the file crosses one or blocks and thus extents the chances are fairly large
the content is no longer usable.

3.5.3 BTRFS

All in one filesystem btrfs (or butter fs or beetree fs or b t r f s) is a multifunctional
filesystem. From a functionality perspective it has much similarities with zFs in the sense
it’s a volume manager and filesystem in one go. It is very feature rich but the main problem
is its “production readiness”. The developers have the btrfs filesystem in a almost ready
state for over a decade which basically means there are still significant hurdles for it to be
considered stable. The project has a dedicated status webpage[14] that outlines the functions
and features that are OK or still need work. That is also the likely reason Redhat decided
to depreciate the filesystem from its RHEL 6.6, 7.4 and 8 versions. If you still want to use it
you will need to collect separate btrfs rpm packages from the web and install them manually.
On the flip-side SUSE made btrfs its default filesystem at the time of this writing. Other
distribution may follow suit.

42 CHAPTER 8. FILESYSTEMS

Formatting Options

O Fol Ext2
Ext3 Mounting Options
Extd © Mount device
FAT ! =
Do
FS Fstab Options...
Partit| Swa
P Do not mount device
Lini YDF

Encrypt Device

Figure 3.2: SUSE Filesystem Selection

Obviously the choice is yours.

The design thoughts around btrfs are fairly much aligned with the ones the Solaris team
from SUN had back in the days when they were developing ZFS. Have a single storage
management facility taking care of storing and retrieving data with all functionality required
to ensure reliability and integrity.

3.5.3.1 Operations

btrfs abstracts complexities around physical disks, volume groups and individual volumes
and treats underlying disks as a global pool of storage. Based on mkfs.btrfs command line
parameters it creates an addressable volume and subvolumes out of these. The redundancy
and resiliency comes mainly out of the CoW (Copy on Write) as well as snapshot functionality.
Data-blocks can be striped across chunks and are checksummed upon write. This provides
self-healing capabilities as when a corrupted blocks fail a checksum its redundant block will
be copied to a new/different chunk, its inode updated as well as its index. A physically bad
sector can be marked as bad not to be used again. In case of an externally provisioned disk
out of an array you will not see this as this is simply resolved on that side.

3.5. SELECTING AND CREATING A FILESYSTEM 43

Depending on your distro you may need to install btrfs and the btrfs tools. If you manually
compile a kernel be sure to flag the btrfs kernel either as a module or statically linked. If
the boot-device runs btrfs be sure to update the initrd with mkinitrd or dracut.
Unequal usage of the filesystem amongst drives will happen when there are drives added.
There is no dynamic re-balancing when drives are added to the btrfs diskpool. This is
mainly because it requires a fair amount of work which may impact other production load.
The usage dispersion among the drives may be view by executing the btrfs filesystem
usage <mountpoint> command.

opensuse:~ # btrfs filesystem usage /mnt/lst

Overall:
Device size: 32.00GiB
Device allocated: 3.56GiB
Device unallocated: 28.44G1iB
Device missing: 0.00B
Used: 456.92M1B
Free (estimated): 10.33GiB (min: 10.33GiB)
Data ratio: 3.00
Metadata ratio: 2.00
Global reserve: 3.25MiB (used: 0.00B)
Multiple profiles: no

Data,RAID1C3: Size:1.00GiB, Used:152.11MiB (14.85%)
/dev/sdb 1.00G1iB
/dev/sdc 1.00G1iB
/dev/sdd 1.00G1iB

Metadata,RAID1: Size:256.00MiB, Used:288.00KiB (0.11%)
/dev/sdb 256.00M7iB

/dev/sde 256.00M7iB

System,RAID1: Size:32.00MiB, Used:16.00KiB (0.05%)

/dev/sdc 32.00M1iB

/dev/sde 32.00M1iB
Unallocated:

/dev/sdb 6.75GiB

/dev/sdc 6.97GiB

/dev/sdd 7.00GiB

/dev/sde 7.72GiB

As the layout of the aforementioned filesystem is in a RAID1C3 configuration you would
normally expect an even distribution but as you can see the data, meta-data and system

44 CHAPTER 8. FILESYSTEMS

information is not equally balanced in this instance. If you have a mix of very large files
and a few small ones may cause this.

Example:

opensuse:/mnt/lst # 1ls -ilh
total 152M

258 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_l.rnd
259 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_2.rnd
260 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_3.rnd
261 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_4.rnd
262 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_5.rnd
263 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_6.rnd
264 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_7.rnd
265 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_8.rnd
266 -rw-r--r-- 1 root root 4.0M May 30 22:59 file_9.rnd
257 -rw-r--r-- 1 root root 117M May 29 23:12 test.rnd

The more files you have stored with a different size the more equally the spread of files
will be over the filesystem over time. btrfs does provide a re-balancing process but it is
advised to only execute this during low application utilisation times as it will cause a lot of
IO to and from the disks. This can be limited by using filter parameters that allow to select
various types like only certain devices, block-ranges, usage-percentages etc. Be aware that
the rebalancing operation requires “work space’ in order to shuffle blocks around. This
space is depending on the number of block-groups and extents in those block-groups and
not the effective usage rate by the data itself.

The man 8 btrfs-balance man page has good and updated information around this topic
as well as explanatory examples. It is most often not a real issue as adding devices is fairly
straight forward so rebalancing can be executed transparently. Once more it is advised to
execute this during maintenance windows or non-business hours. (do these still exist ?77)

3.5.3.2 Verifying the filesystem

The btrfs check command verifies the integrity of the filesystem. As all data is checksummed
the validity of the data itself is continuously checked and therefore the btrfs check is mainly
checking the structure of the filesystem itself. Be aware that this required the filesystem to
be unmounted.

3.5.3.3 Growing the filesystem

When running low on space a btrfs filesystem can be dynamically extended. The process
itself is not much different when using a single device.

localhost:~ # btrfs filesystem df /
Data, single: total=7.48GiB, used=7.48GiB

3.5. SELECTING AND CREATING A FILESYSTEM 45

System, DUP: total=6.00MiB, used=16.00KiB
Metadata, DUP: total=256.00MiB, used=144.33MiB
GlobalReserve, single: total=15.73MiB, used=0.00B

The underlying partition representation looks like this.

localhost:~ # parted /dev/sda

GNU Parted 3.4

Using /dev/sda

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) p

Warning: Not all of the space available to /dev/sda appears to be used, you \
can fix the GPT to use all of the space (an extra 16777216 blocks) or \
continue with the current setting?

Fix/Ignore? fix

Model: VBOX HARDDISK (scsi)

Disk /dev/sda: 17.2GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags: pmbr_boot

Number Start End Size File system Name Flags
1 1049kB 9437kB 8389kB bios_grub
2 9437kB 8590MB 8580MB btrfs legacy_boot

First the partition itself needs to be resized (See the partitions chapter) after which the
filesystem can be dynamically be resized. This also works for boot and already mounted
filesystems.

localhost:~ # btrfs filesystem resize max /
Resize device id 1 (/dev/sda2) from 7.99GiB to max

And we’re back in business

localhost:~ # df /
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15615784 8153772 7236100 53% /

3.5.3.4 Failed devices

The dynamics of btrfs result in the fact that the inbuilt redundancy takes care of relocat-
ing and rebalancing the data over the remaining disks in the filesystem. Prerequisite are
obviously the availability of enough space and the redundancy algorithm assigned to the
volume. The redundancy algorithm is assigned during the creation of the filesystem with
the -d parameter. At the time of this writing one of the limitations is the unsupported use

46 CHAPTER 8. FILESYSTEMS

of RAID5 and RAID6 profiles. There are known issues with the write hole which can result
in data loss.

There is not really a reason to use R5/6 as the underlying operations with btrfs is done on
a block level where data blocks are distributed over the disks in that volume irrespective of
the number of disks. So a R1C3 profile will copy a block to 3 independent disks.

Chapter 4

Encryption

One of the most used encryption systems on Linux is done via dm-crypt[15] and LUKS|16]
. The dm-crypt part is basically the encryption engine, cryptsetup [17] the configuration
side and LUKS the key management portion.

From a storage troubleshooting perspective there isn’t much you can do, it either works or
it doesn’t. If you forget the passwords or lose the LUKS keys your pretty much out a LUKS
(:-)). From a performance side it may observe some impact but these are often primarily
seen on the CPU side propagating in 10 reduction. The dm-crypt abstraction lies entirely
in kernel space and is only implementing a very thin layer on the block level. It does not
handle individual files or directories. Since it is part of the device-mapper parts in the kernel
that layer can be put on any block-device that you can normally directly address. Whether
this is sda, hda, USB, software raid, virtual disk doesn’t matter.

There are of course numerous other options whether open source, like TrueCrypt, or com-
mercial solutions, like BitLocker I’ll leave you with our friends from Google to find these
and obtain more information around it.

Example of an encrypted volume:

Linux Unified Key Setup

47

https://truecrypt.ch/
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview

48 CHAPTER 4. ENCRYPTION

tup LuksDump /

Figure 4.1: Encrypted volume example

4.1 Using dm-crypt, cryptsetup and LUKS

The encryption layer sits right under the file-system layer. It is therefore transparent to any
filesystem and has no effect on the underlying addressing schema whether this is a partition,
physical disk, multi-path device or logical volume. As seen in the image above the encryption
layer sits on the first partition of a raid device. (We’ll touch on raid later on).

As with all storage related action be ensured that proper backups are in place and that
restores have actually been tested and their result is 100% successful.

Creating a encryption layer on a partition is fairly straightforward:

opensuse:~ # cryptsetup luksFormat /dev/sdbl

WARNING!

This will overwrite data on /dev/sdbl [dirrevocably.

Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /dev/sdbl:
Verify passphrase:

As the message indicates be aware that everything on that partition is wiped as the entire

4.1. USING DM-CRYPT, CRYPTSETUP AND LUKS 49

space is overwritten. The passphrase is checked against a standard dictionary and some
checks are done on entropy but not overly complex. Ensure that you create a password or
passphrase that is secure enough to keep a decent size computer system busy for a few years.

(=)
The outcome of the configuration can be viewed like this:

opensuse:~ # cryptsetup luksDump /dev/sdbl
LUKS header information for /dev/sdbil

Version: 1

Cipher name: aes

Cipher mode: xts-plain64

Hash spec: sha256

Payload offset: 4096

MK bits: 512

MK digest: 77 bc a2 cd 88 94 38 c7 80 76 30 a3 e4 03 cO 3e 87 a8 39 41

MK salt: b2 36 78 61 68 aa 00 fc e4 al 0c 21 4f 2a eb 40
37 89 07 91 99 b2 16 ce 39 al 45 76 Oc el 28 c6

MK iterations: 136391

UUID: 19e50d16-7dd5-46c4-b5e4-977c3d044193

Key Slot 0: ENABLED

Iterations: 2179990
Salt: e0 bd 7c 4d 8d 34 99 7f 33 3d 43 a3 8c 27 71 44
Oc 22 7d e3 24 4a da f4 cl 69 7f 31 93 13 48 68
Key material offset: 8
AF stripes: 4000
Key Slot 1: DISABLED
Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED

Depending on the options you use when creating the dm-crypt device one or more values may
differ. As soon as the above configuration is created it is not directly usable. What happened
is that a “container” is created which needs to be opened first. By using the “crypsetup
luksOpen /dev/zxx <name>" command, a logical device is created via the device-mapper
in a similar fashion as logical volumes by LVM. That device represents the addressable
diskspace of that container.

In this case by opening the container you can see the following.

50 CHAPTER 4. ENCRYPTION

opensuse:~ # cryptsetup luksOpen /dev/sdbl home
Enter passphrase for /dev/sdbl:

opensuse:~ # ls /dev/mapper/
control home

Now just create a filesystem, mount the device as per normal (see filesystem chapter).

opensuse:~ # mkfs.ext4 /dev/mapper/home

mke2fs 1.45.6 (20-Mar-2020)

Creating filesystem with 523776 4k blocks and 131072 inodes
Filesystem UUID: c9ede@cl-3d53-4729-af78-d17126ebc32f
Superblock backups stored on blocks:

..... 32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information: done

opensuse:~ # mount /dev/mapper/home /encvol/
opensuse:~ # 1ls /encvol/

lost+found

opensuse:~ #

The challenge comes when a container closes. It basically is analogues to locking the door
and keep the key in a safe place.

First we unmount the volume after which we manually close the container. You’ll find the
device-mapper entry is now removed and the only thing that remains is the raw /dev/sdb
device with the partition layout.

opensuse:/encvol # cd /
opensuse:/ # umount /encvol

opensuse:/ # 1s /dev/mapper/
control home

opensuse:/ # cryptsetup luksClose home

opensuse:/ # ls /dev/mapper/
control

opensuse:/ #

4.1. USING DM-CRYPT, CRYPTSETUP AND LUKS 51

The underlying disk and partition tables do not have any reference to the dm-crypt container
or filesystem that resides on them.

opensuse:/ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help): p

Disk /dev/sdb: 16777216 sectors, 8.0 GiB

Model: HARDDISK

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 85A99410-1BF8-4E2C-A1F9-B2B5A6121373
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector 1is 34, last usable sector is 16777182
Partitions will be aligned on 2048-sector boundaries

Total free space is 8388541 sectors (4.0 GiB)

Number Start (sector) End (sector) Size Code Name
1 2048 4196351 2.0 GiB 8300 Linux filesystem
2 4196352 8390655 2.0 GiB 8302 Linux /home

Command (? for help):

A way to make this a bit more intelligent and easier for administration purposes we can
change the partition type to “8308” which then refers to a dm-crypt volume. See lines 5 and
19 below.

Command (? for help): t

Partition number (1-2): 1

Current type is 8300 (Linux filesystem)

Hex code or GUID (L to show codes, Enter = 8300): 8308
Changed type of partition to 'Linux dm-crypt'

Command (? for help): p
Disk /dev/sdb: 16777216 sectors, 8.0 GiB
Model: HARDDISK

52 CHAPTER 4. ENCRYPTION

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 85A99410-1BF8-4E2C-A1F9-B2B5A6121373
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 16777182
Partitions will be aligned on 2048-sector boundaries

Total free space is 8388541 sectors (4.0 GiB)

Number Start (sector) End (sector) Size Code Name
1 2048 4196351 2.0 GiB 8308 Linux dm-crypt
2 4196352 8390655 2.0 GiB 8302 Linux /home

Command (? for help):

4.2 Backup and recovery

The main difference between filesystem, partion managers, logical volumes and encryption
is that the encryption layer directly changes the data how it is stored on disk. That is
the intention of encryption. No higher or lower level interfaces, tools or methodologies
shall be able to make any use of the content without having the proper authorisation and
authentication therefore enabling to read and modify that data in a meaningful way.
When volume or partition managers and even filesystems get into a corrupted state the tools
provided may be able (in a fair few occasions that is) to recover and move on providing the
higher layer applications the data and storage space they need. Things are much different
with encryption. If keys are lost or encryption headers are corrupted all data in that container
is permanently lost. The only way to recover the data is from a recent and valid backup.

Fortunately dm-crypt provide a way to backup the LUKS header to a file.

opensuse:~ # cryptsetup luksHeaderBackup --header-backup-file=1luksbackup.hdr /dev/sdbl

opensuse:~ # ls -1 luksbackup.hdr
e 1 root root 2068480 Aug 7 16:24 luksbackup.hdr

As shown the file has very limited permissions by default. Ensure this file is copied and
stored at least twice in separate vaults somewhere far away so that other problems like
media defects, fires, flooding or even malicious actions have a lesser effect in case you’'d need
it again.

The first 256 bytes of the header provide some readable data when shown in a hex reader:

00000000 4c 55 4b 53 ba be 00 01 61 65 73 00 00 00 00 00 |LUKS....aes..... |
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...vveeviinrenn. |
00000020 00 00 00 00 OO0 00 00 00 78 74 73 2d 70 6¢C 61 69 |........ xts-plai|
00000030 6e 36 34 00 00 00 00 00 00 00 00 00 0O 00 00 00 |N64......ccvvun. |

4.2. BACKUP AND RECOVERY 53

00000040 00 00 00 0O 00 00 00 00 73 68 61 32 35 36 00 00 |........ sha256..
00000050 00 00 00 00 00 00 0O GO 00 00 00 00 00 00 00 00 |...veiivreeneenns |
00000060 00 00 00 00 00 00 0O GO 00 00 10 00 00 00 00 40 |...vvevreeneen. el
00000070 17 1c 82 19 bd 0c 6¢c 0d 22 05 1f 56 72 dO 34 3e |...... 1."..Vr.4>|
00000080 1b be 66 2e 62 7f 67 d8 b8 1f ef 19 79 5f 0a 76 |..f.b.g..... y_.v]|
00000090 c4 2c c9 9f 03 cl b2 53 a3 ca 3a b9 88 61 31 82 |.,..... S..:..al.
00000020 4a 8f e9 a6 00 01 ff 7d 65 65 65 35 64 65 30 64 [J...... }eee5de0nd |

000000b® 2d 31 65 38 39 2d 34 30 38 35 2d 39 61 62 34 2d |-1e89-4085-9ab4-|
000000cO® 37 39 31 62 61 33 31 39 63 33 32 62 00 00 00 00 |791ba319c32b....|
000000d0® 00 ac 71 f3 00 21 5e 3a 63 dO 5a 57 38 bc 16 e5 |..q..!":c.ZW8...|
000000e® bc df 2b b5 4c b6 2a 94 aa d2 eb 8b 31 4f ba 19 |..+.L.*x..... 10.. |
000000f0 99 68 97 ae 15 12 ef 03 00 00 00 08 00 00 0f a®@ |.h.ov..ovvinno.n.

This is also the part that is used by dm-crypt to be able to identify what parameters is
should use in order to be able to decrypt the data. The remainder of the header contains
the rest of the parameters such as keys etc. (For more information check the dm-crypt[15]
website).

Whatever you do, do NOT save this file inside the encrypted container. If you ever
shut the door of your car with the keys still inside you more or less can guess what the result
is. The only difference is that there is NO WAY to get that file back in case the header gets
corrupted.

Compare it to the car with the keys inside but instead of calling road-side assistance you
need to call a tow-truck and have it delivered to a wrecking yard. You will have created your
own ransomware attack without any possibility to get things back without a recent backup.

Below the disaster:

opensuse:~ # dd if=/dev/zero of=/dev/sdbl count=256 bs=512
256+0 records 1in

256+0 records out

131072 bytes (131 kB, 128 KiB) copied, 0.00955386 s, 13.7 MB/s

opensuse:~ # cryptsetup luksOpen /dev/sdbl home
Device /dev/sdbl is not a valid LUKS device.

opensuse:~ # mount /dev/sdbl /encvol/
mount: /encvol: wrong fs type, bad option, bad superblock on /dev/sdbl, missing codepage \
or helper program, or other error.

opensuse:~ #
As of this stage the data that resided on that partition is lost if no valid backup was available.

Restoring the header will save your day:

54 CHAPTER 4. ENCRYPTION

opensuse:~ # cryptsetup luksHeaderRestore --header-backup-file=luksbackup.hdr /dev/sdbl

WARNING!

Device /dev/sdbl does not contain LUKS header. Replacing header can destroy \
data on that device.

Are you sure? (Type 'yes' in capital letters): YES

opensuse:~ # cryptsetup luksOpen /dev/sdbl home
Enter passphrase for /dev/sdbl:

opensuse:~ # mount /dev/mapper/home /encvol/

opensuse:~ # 1ls /encvol/
lost+found thisisatstfile.tst

opensuse:~ # cat /encvol/thisisatstfile.tst
Hello,

This file resides on an encrypted filesystem

opensuse:~ #

As mentioned before, if the problem is more widespread and large parts of the disk itself
are corrupted you will inevitably lose data. The only way to recover from that is to restore
from a full backup.

Chapter 5

Partitioning

As highlighted in the introductions chapter using partitions and volume managers can pro-
vide a vast amount of flexibility in storing data and moving it around. By using this abstrac-
tion layer a very strict regime of administration between the storage and OS teams need
to be adhered to. Mistakes in disk-provisioning out of arrays and having these incorrectly
mapped can have significant implications on performance.

The mistake that is most often made is that partitions or luns presented out of a single disk
or array pool respectively are aggregated again in virtual volumes.

From a functionality perspective this may make very good sense as it can provide a lot
of flexibility in moving data around for what purpose you can think of. It can however
at some stage cause a divide & conquer behaviour where parallel 1O requests towards the
volume get split across the partitions subsequently ending up on the same underlying disk
or pool. Depending on the capabilities of the that disk you may observe an increase in
queuing behaviour resulting in bottlenecks and delays. It is therefore imperative that design,
configuration and ongoing operations are planned meticulously to avoid these kind of things
to happen.

5.1 Partitions

Partitions are a method of dividing a single disk into multiple logical disks. This only has
an administrative benefit to be able to segregate data on different logical places on the
same disk. On workstation and server environments you’ll often seen that the OS, swap
and temp-spaces are stored on different partitions. The underlying thought being that one
process would not be able to go “rogue” and completely fill a partition causing panics due
to disk space issues.

55

56 CHAPTER 5. PARTITIONING

Partitions come in various flavours in the sense that the layout of the partition table can be
used for specific purposes. When issuing the fdisk command and enter the 1 (Lower case L)
you’ll see the list of partitions that the fdisk tool supports:

Command (m for help): 1

0 Empty 24 NEC DOS 81 Minix / old Lin bf Solaris

1 FAT12 27 Hidden NTFS Win 82 Linux swap / So cl DRDOS/sec (FAT-
2 XENIX root 39 Plan 9 83 Linux c4 DRDOS/sec (FAT-
3 XENIX usr 3c PartitionMagic 84 0S/2 hidden or <c6 DRDOS/sec (FAT-
4 FAT16 <32M 40 Venix 80286 85 Linux extended c7 Syrinx

5 Extended 41 PPC PReP Boot 86 NTFS volume set da Non-FS data

6 FAT1le 42 SFS 87 NTFS volume set db CP/M / CTOS /

7 HPFS/NTFS/exFAT 4d QNX4.x 88 Linux plaintext de Dell Utility

8 AIX 4e QNX4.x 2nd part 8e Linux LVM df BootIt

9 AIX bootable 4f QNX4.x 3rd part 93 Amoeba el DOS access

a 0S/2 Boot Manag 50 OnTrack DM 94 Amoeba BBT e3 DOS R/O

b W95 FAT32 51 OnTrack DM6 Aux 9f BSD/0S e4 SpeedStor

c W95 FAT32 (LBA) 52 CP/M a@ IBM Thinkpad hi ea Linux extended
e W95 FAT16 (LBA) 53 OnTrack DM6 Aux a5 FreeBSD eb BeOS fs

f W95 Ext-d (LBA) 54 OnTrackDMé6 a6 OpenBSD ee GPT

10 OPUS 55 EZ-Drive a7 NeXTSTEP ef EFI (FAT-12/16/
11 Hidden FAT12 56 Golden Bow a8 Darwin UFS f® Linux/PA-RISC b
12 Compaq diagnost 5c Priam Edisk a9 NetBSD fl SpeedStor

14 Hidden FAT16 <3 61 SpeedStor ab Darwin boot f4 SpeedStor

16 Hidden FAT16 63 GNU HURD or Sys af HFS / HFS+ f2 DOS secondary
17 Hidden HPFS/NTF 64 Novell Netware b7 BSDI fs fb VMware VMFS

18 AST SmartSleep 65 Novell Netware b8 BSDI swap fc VMware VMKCORE
1b Hidden W95 FAT3 70 DiskSecure Mult bb Boot Wizard hid fd Linux raid auto
1c Hidden W95 FAT3 75 PC/IX bc Acronis FAT32 L fe LANstep

le Hidden W95 FAT1 80 Old Minix be Solaris boot ff BBT

This may seem overwhelming but in 99.999% of all cases you’de would only need the GPT
table which stands for GUID Partition Table. The layout of the partition table needs to be
aligned with the sector size of the physical disk. What this means is that a disk is itself
formatted in so called sectors. The old rotational disks had a sector size of 512 bytes and
newer disks have 4096 byte sector sizes. A partition that is not aligned properly to these,
on disk, sector sizes require additional handling of either the spindle actuator or processing
time in the disks’ processor/fpga to request the data from the correct blocks.

As an example if a spindle (ie non-flash drive) is showing a block layout of 4096 bytes starting
at offset 1 where the partitioning software if using 4096 bytes starting at offset 0, a read IO
to the sector starting at 0 will also require the entire second sector to be read as the last
byte of sector 0 is not read from the physical disk. That means that not only two reads from

5.1. PARTITIONS o7

disk are needed but almost the entire block from sector 1 can be disregarded.

If you're running a recent version of Linux than don’t worry, this has all been fleshed out
and the tools themselves have a fair amount of intelligence in them to handle this. The
parted tool for example allows for the following:

-a alignment-type, --align alignment-type
Set alignment for newly created partitions, valid alignment types are:

none Use the minimum alignment allowed by the disk type.

cylinder
Align partitions to cylinders.

minimal
Use minimum alignment as given by the disk topology information.

This and the opt value will use layout information provided by the disk
to align the logical partition table addresses to actual physical blocks

on the disks. The "min" value 41s the minimum alignment needed to align

the partition properly to physical blocks, which avoids performance
degradation.

optimal
Use optimum alignment as given by the disk topology information.
This aligns to a multiple of the physical block size in a way
that guarantees optimal performance.

Many references in storage documentation show cHs (Cylinder - Head - Sector) addresses.
In the “good-ol’e-days” the disk actuator was directly addressed by the operating system to
steer the head in a certain cylinder above a specific sector and either read from or write
to that sector. This has been abandoned in the open-systems world for a long time as the
disk firmware takes care of all that and the addressing is now done on a LBA (Logical Block
Address) level . Modern (Being a flexible term, as in the ones from 2000 and newer :-) .)
disks primarily provide a range of space with an array of other capabilities they might have.
The handling of the hardware is all done in firmware on that disk.

So unless you manually start adjusting the layout of the partition and configure different
off-sets and sector sizes the tools these days do not have much of an issue getting the right
information from the disk and create the one that is needed.

5.1.1 MBR
I heard about MBR. What is that ?

The MBR or “Master Boot Record” used the first sector of a disk and outlines the partition

58 CHAPTER 5. PARTITIONING

table of how that disk is carved up. The MBR was developed and heavily used in the 80-ties
mainly by Microsoft DOS and Windows systems up to NT.

The limitation in this was that disks in those days used a 512 byte sector size and the MBR
record was only 32 bits long. That meant the maximum drive capacity was 2 TB (2732 *
512 bytes). When disk drive capacities were in the MB and GB ranges that did not really
matter but during the early 90-ies the drives were scratching that 2TB mark and so Intel
developed a new concept called UEFI. (Unified Extensible Firmware Interface) of which the
GPT was one part.

UEFI was a replacement of the BIOS (Basic Input/Output System) that allowed firmware
extensions to be written by 3rd parties to interface the hardware and the Operating System.

For backward compatibility with MBR the GPT layout does not start at sector 0 but at sector 1.
This prevented tools that were not GPT compatible/aware from overwriting a GPT partition
table. The MBR record in sector 0 only contains a table entry with the OxEE partition type
which basically indicates to operating systems that are not GPT aware that the entire disk
is filled up with one single partition of an unknown type. This should, with the emphasis
on “should”, give partitioning tools that were/are not GPT aware enough information to at
least indicate that a partition has used the entire drive and therefore will not overwrite it
entirely or partially.

The below snippet shows the MBR information when a disk has a protective MBR indicating
the remainder is a partition occupying the entire disk.

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.
Command (? for help): r

Recovery/transformation command (? for help): o
Disk size is 16777216 sectors (8.0 GiB)

MBR disk identifier: 0x00000000

MBR partitions:

Number Boot Start Sector End Sector Status Code
1 1 16777215 primary OXEE <<LLLLLLLLKLK

5.1. PARTITIONS 59

Recovery/transformation command (? for help):

The second version of MBR is a hybrid form of MBR and GPT where the systems’ BIOS still
boots from the MBR but the operating system takes over from GPT. This is often seen on
systems where UEFI is not used. Being realistic this is in current days only seen on PC level
systems and not on any PRO level workstation or server.

5.1.2 GPT

As mentioned above the GUID Partition Table is the most used partitioning system on
x86/x86 64 platforms. The GUID part of “GPT” is a vast improvement over MBR as this
can be used by a vast array of utilities to uniquely identify a partition.

The GPT partitions have different type GUID’s. These are fixed GUID’s providing operating
systems the ability to identify the exact type of partition this is so that the OS itself does
not have to spawn discovery processes. It also provides the ability for multi-OS systems
to identify the partition belonging to a different OS type. For example a Linux OS may
see a GPT partition with GUID type [18] 6A87C46F-1DD2-11B2-99A6-080020736631 and it
immediately knows that it is a Solaris/Illumos swap partition.

The above shows a very flexible and extensible way of addressing and identifying the parti-
tions but it does not inherently have safeguards in place that prevent redundancy in case a
partition table goes corrupt or is accidentally overwritten by low-level tools (like for example
“dd”). Tt is therefore imperative that partition tables get backed-up and safeguarded.

The type of system in use for booting (BIOS or EFI) is very important. EFI requires a so
called ESP which stands for EFI System partition. This is a small FAT32 partition which
houses the information UEFI needs to further boot the system. That boot-loader may well
be on a USB drive or another block storage facility.

5.1.3 Creating partitions

There are mainly two tools (outside of the GUI ones) that handle the creation of the parti-
tions. Parted and fdisk are the ones that are mostly used. Ileave it up to the documentation
of each tool to provide more information. The gdisk, sgdisk and cgdisk tools which I use
below were written by Rod Smith [19]. These are more flexible and have some very useful
options that the standard tools do not have.

5.1.4 Investigating GPT partitions

The way to view, manipulate, backup and recover a GPT partition is called gdisk which,
according to Rod is the GPT fdisk tool. As always be extremely careful with such low-level
tools as they can do as much harm as they can do good in case they are incorrectly used.

60 CHAPTER 5. PARTITIONING

A GPT record only shows the standard disk information and the GPT identifiers without any
partition information if no partition was created. An example:

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help): p

Disk /dev/sdb: 16777216 sectors, 8.0 GiB

Model: HARDDISK

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 8315DBOB-3BA1-7446-ABB9-CE7TE632AA6AE
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector 1is 2048, last usable sector 1is 16777182
Partitions will be aligned on 2048-sector boundaries

Total free space is 16775135 sectors (8.0 GiB)

Number Start (sector) End (sector) Size Code Name

Command (? for help):

When a backup is created with the b option of gdisk (see below) the hex-output looks a bit
like this:

opensuse:~ # hexdump -C gpt-backup.gpt

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |....evvveuieeenn. |
*

000001cO® 02 00 ee ff ff ff 01 00 00 00 ff ff ff 00 60 GO0 |.......ccvvvenn. |
000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...vviereeneenns |
*

000001f0 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 55 @@ |...veeevinae.n u.|
00000200 45 46 49 20 50 41 52 54 00 00 01 00 5c 00 00 00 |EFI PART....\...|
00000210 39 ef d9 25 00 00 00 00 01 00 00 00 00 00 00 00 |9..%...cvuvueenn. |
00000220 ff ff ff 00 00 00 00 00 00 08 00 00 00 00 00 00 |..vvveevinnrennn
00000230 de ff ff 00 00 00 00 00 Ob db 15 83 al 3b 46 74 |.....cvuvvun. Had
00000240 ab b9 ce Te 63 2a a6 ae 02 00 00 00 00 00 00 OO0 |...~C*x.......... |

5.1. PARTITIONS 61

00000250 80 00 00 00 80 00 00 00 86 d2 54 ab 00 00 00 00 |.......... T.....
00000260 00 00 0O 00 00 00 0O GO 00 00 00 00 00 00 00 00 |...vvivreeneenns |
*

00000400 45 46 49 20 50 41 52 54 00 00 01 00 5c 00 00 00 |EFI PART....\...]|
00000410 f5 02 df 16 00 00 00 00 ff ff ff 00 00 00 00 00 |......cvvvuve.n.
00000420 01 00 GO 0O OO0 0O GO 0O 00 08 00 00 00 00 00 00 |..vvveeviiunenn. |

00000430 de ff ff 00 00 00 00 00 Ob db 15 83 al 3b 46 74 |....cvvvnnnn. Had!
00000440 ab b9 ce 7e 63 2a a6 ae df ff ff 00 00 00 00 00 |...~Cx.......... |
00000450 80 00 00 00 80 00 00 00 86 d2 54 ab 00 00 00 00 |.......... T.....

00000460 00 00 OO 0O OO 0O GO OO 00 00 00 00 00 00 00 00 |...vveevviuee.n. |
*

00004600

opensuse:~ #

The same backup file can be generated with the sgdisk utility in a single command:

opensuse:~ # sgdisk -b gpt-backup.bck /dev/sdb
The operation has completed successfully.

After creating a new 2 gig partition with a 8300 (Linux F'S partition) type the output shows:

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help): p

Disk /dev/sdb: 16777216 sectors, 8.0 GiB

Model: HARDDISK

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 8315DBOB-3BA1-7446-ABB9-CETE632AA6AE
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 2048, last usable sector is 16777182
Partitions will be aligned on 2048-sector boundaries

Total free space is 12580831 sectors (6.0 GiB)

Number Start (sector) End (sector) Size Code Name

62 CHAPTER 5. PARTITIONING

1 2048 4196351 2.0 GiB 8300 Linux filesystem

Command (? for help): b
Enter backup filename to save: gpt-backup-gpt
The operation has completed successfully.

The backup file shows that :

opensuse:~ # hexdump -C gpt-backup-gpt

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...vveeviineenn. |
*

000001cO® 02 00 ee ff ff ff 01 00 00 00 ff ff ff 60 00 00 |......cccvuvnn. |
000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...vevvviuiueenn. |
*

000001f0 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 55 @@ |...vveevinnnnn u.|
00000200 45 46 49 20 50 41 52 54 00 00 01 00 5c 00 00 00 |EFI PART....\...|
00000210 4e 98 c4 la 00 00 00 00 Ol 00 00 00 00 00 00 00 |N....evvevuenvnn. |
00000220 ff ff ff 00 0O 00 0O GO 00 08 00 00 00 00 00 00 |...vvvvweenevnnn |
00000230 de ff ff 00 00 00 00 00 Ob db 15 83 al 3b 46 74 |....cevvvnunnn Had!
00000240 ab b9 ce Te 63 2a a6 ae 02 00 00 00 00 00 00 OO0 |...~C*x.......... |
00000250 80 00 00 00 80 00 00 00 10 7c 8a fb 00 00 60 00 |......... [eeennn |
00000260 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 |...vviereeneenns |
*

00000400 45 46 49 20 50 41 52 54 00 00 01 00 5c 00 00 00 |EFI PART....\...|
00000410 82 75 c2 29 00 00 00 00 ff ff ff 00 00 00 00 G0 |.U.).e.cveuee.n.. |
00000420 01 00 00 00 00 00 00 00 00 08 00 00 00 00 00 00 |...vveeiinneenn. |
00000430 de ff ff 00 00 00 00 00 Ob db 15 83 al 3b 46 74 |.....ccvuvvnnn Had
00000440 ab b9 ce 7e 63 2a a6 ae df ff ff 00 00 00 00 00 |...~Cx.......... |
00000450 80 00 00 00 80 00 00 00 10 7c 8a fb 00 00 00 00 |......... [oeennn |
00000460 00 00 00 0O 00 0O 00 OO 00 00 00 00 00 00 00 00 |....eevveuueenn. |
*

00000600 af 3d c6 O0f 83 84 72 47 8e 79 3d 69 d8 47 7d e4 |.=....rG.y=1.G}.|
00000610 2c 9c 58 56 91 74 58 4b b0 3a 03 59 df 31 7e 2b |, .XV.tXK.:.Y.1~+]|
00000620 00 08 00 00 00 00 00 00 ff 07 40 00 00 00 00 00 |.......... @.....
00000630 00 00 00 0O 00 00 00 0O 4c 00 69 00 6e 00 75 00 |........ L.i.n.u.|

00000640 78 00 20 00 66 00 69 OO 6C 00 65 00 73 00 79 00 |x. .f.i.l.e.s.y.|
00000650 73 00 74 00 65 00 6d 00 00 00 OO0 0O 00 00 00 00 |s.t.e.m......... |
00000660 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 |...vviereeueenns |

*

00004600

As you can see from byte offset 0x600 to 0x660 the additional partition is added to the
table and the pointers where the GPT partition type is 8300 (ie standard Linux filesystem
partition)

5.2. PARTITION CORRUPTION 63

The GUID type is shown in the fist line of the partition header. It may seem somewhat
confusing but that is because the GPT UID type is stored in mixed endian [20] format (bytes
3-0, 54,76 ,815)

00000600 af 3d c6 Of 83 84 72 47 8e 79 3d 69 d8 47 7d e4 |.=....rG.y=1.G}.|
GUID code: OF C6 3D AF 84 83 47 72 8E 79 3D 69 D8 47 7D E4 (Linux filesystem)

As mentioned before the GPT partitioning schema is part of the UEFI specification. [21]

5.2 Partition corruption

In case a corruption of the partition table is observed there is an option to recover from a
secondary location on the disk if that location is not corrupted as well. The below shows a
corrupted primary partition table whereby a recover option is provided.

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Caution: 1invalid main GPT header, but valid backup; regenerating main header
from backup!

Warning: Invalid CRC on main header data; loaded backup partition table.
Warning! One or more CRCs don't match. You should repair the disk!

Main header: ERROR

Backup header: OK

Main partition table: OK

Backup partition table: OK

Partition table scan:
MBR: not present
BSD: not present
APM: not present
GPT: damaged

Found 1dinvalid MBR and corrupt GPT. What do you want to do? (Using the
GPT MAY permit recovery of GPT data.)

1 - Use current GPT

2 - Create blank GPT

Your answer: 1

Command (? for help): p
Disk /dev/sdb: 16777216 sectors, 8.0 GiB

64 CHAPTER 5. PARTITIONING

Model: HARDDISK

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 8315DBOB-3BA1-7446-ABB9-CETE632AA6AE
Partition table holds up to 128 entries

Main partition table begins at sector 2016 and ends at sector 2047
First usable sector is 2048, last usable sector is 16777182
Partitions will be aligned on 2048-sector boundaries

Total free space is 12171231 sectors (5.8 GiB)

Number Start (sector) End (sector) Size Code Name
1 2048 4196351 2.0 GiB 8300 Linux filesystem
2 4196352 4605951 200.0 MiB 8302 Linux /home

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
PARTITIONS!!

Do you want to proceed? (Y/N): y
OK; writing new GUID partition table (GPT) to /dev/sdb.
The operation has completed successfully.

5.3 Recovering partition information

The best way to recover is if a recent backup is available, and it is certain the partition
table has not been modified since that backup, a blank GPT can be created followed by a
recover->load from file sequence. As shown above the gdisk tool verifies the integrity of the
backup table via a crc.

The below example shows a similar issue where just the MBR is corrupt. The gdisk tool
can dynamically write a new MBR.

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: not present
BSD: not present
APM: not present
GPT: present

Found valid GPT with corrupt MBR; using GPT and will write new
protective MBR on save.

5.3, RECOVERING PARTITION INFORMATION 65

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
PARTITIONS!!

Do you want to proceed? (Y/N): vy
OK; writing new GUID partition table (GPT) to /dev/sdb.
The operation has completed successfully.

The result is that the MBR is back in place again.

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help):

5.3.1 Full example GPT restoration

The below shows and entire sequence of creating two partitions on an empty disk, making
a backup of the partition information subsequently followed by deliberately corrupting the
partition table (both primary and backup). This then leaves an un-addressable partition
layout. After that we restore the partition layout from file as previously mentioned.

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: not present
BSD: not present
APM: not present
GPT: not present

Creating new GPT entries 1in memory.

Command (? for help): n

66 CHAPTER 5. PARTITIONING

Partition number (1-128, default 1):

First sector (34-16777182, default = 2048) or {+-}size{KMGTP}:

Last sector (2048-16777182, default = 16777182) or {+-}size{KMGTP}: +2G
Current type is 8300 (Linux filesystem)

Hex code or GUID (L to show codes, Enter = 8300):

Changed type of partition to 'Linux filesystem'

Command (? for help): n

Partition number (2-128, default 2):

First sector (34-16777182, default = 4196352) or {+-}size{KMGTP}:

Last sector (4196352-16777182, default = 16777182) or {+-}size{KMGTP}: +2G
Current type is 8300 (Linux filesystem)

Hex code or GUID (L to show codes, Enter = 8300): 8302

Changed type of partition to 'Linux /home'

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
PARTITIONS!!

Do you want to proceed? (Y/N): y
OK; writing new GUID partition table (GPT) to /dev/sdb.
The operation has completed successfully.

Validation of the partitions correctly written to disk.

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help): p

Disk /dev/sdb: 16777216 sectors, 8.0 GiB

Model: HARDDISK

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): EC779E82-6FA3-445B-9634-C266739F38C4
Partition table holds up to 128 entries

5.3, RECOVERING PARTITION INFORMATION 67

Main partition table begins at sector 2 and ends at sector 33
First usable sector 1is 34, last usable sector is 16777182
Partitions will be aligned on 2048-sector boundaries

Total free space is 8388541 sectors (4.0 GiB)

Number Start (sector) End (sector) Size Code Name
1 2048 4196351 2.0 GiB 8300 Linux filesystem
2 4196352 8390655 2.0 GiB 8302 Linux /home

Command (? for help): q

Now we’re creating the backup. In the same way an encryption header should be saved
elsewhere, also ensure that the backup file of a partition is safeguarded on multiple locations
and never on the partition that is reflected in the backup. This may seem obvious but I
would’ve been fairly rich if I received a dollar for each of these cases I encountered.

opensuse:~ # sgdisk -b gpt-backup.bck /dev/sdb
The operation has completed successfully.

Wiping the partition information by using dd and zeroing the first and last sectors
(MBR/GPT main and backup tables).

opensuse:~ # dd if=/dev/zero of=/dev/sdb count=128 bs=512 seek=0

128+0 records 1in

128+0 records out

65536 bytes (66 kB, 64 KiB) copied, 0.00702359 s, 9.3 MB/s

opensuse:~ # dd if=/dev/zero of=/dev/sdb count=128 bs=512 seek=16777088
128+0 records 1in

128+0 records out

65536 bytes (66 kB, 64 KiB) copied, 0.00416024 s, 15.8 MB/s

As shown below the information is deleted.

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: not present
BSD: not present
APM: not present
GPT: not present

Creating new GPT entries 1in memory.

Command (? for help): p

68 CHAPTER 5. PARTITIONING

Disk /dev/sdb: 16777216 sectors, 8.0 GiB

Model: HARDDISK

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 5BFOOCBC-C059-4728-8D43-442468CF67A8
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector 1is 34, last usable sector is 16777182
Partitions will be aligned on 2048-sector boundaries

Total free space is 16777149 sectors (8.0 GiB)

Number Start (sector) End (sector) Size Code Name
Command (? for help):
Restoring the partition table from backup

opensuse:~ # sgdisk -1 gpt-backup.bck /dev/sdb
Creating new GPT entries in memory.
The operation has completed successfully.

opensuse:~ # gdisk /dev/sdb
GPT fdisk (gdisk) version 1.0.5

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help): p

Disk /dev/sdb: 16777216 sectors, 8.0 GiB

Model: HARDDISK

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 85A99410-1BF8-4E2C-A1F9-B2B5A6121373
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 16777182
Partitions will be aligned on 2048-sector boundaries

Total free space is 8388541 sectors (4.0 GiB)

5.3, RECOVERING PARTITION INFORMATION 69

Number Start (sector) End (sector) Size Code Name
1 2048 4196351 2.0 GiB 8300 Linux filesystem
2 4196352 8390655 2.0 GiB 8302 Linux /home

Command (? for help):
And we’re back in business.

Be aware that the validity of the partition information itself is only as good as the time and
accuracy of the backup. If adjustments are made after a backup is made obviously a restore
may fail or will not result in the outcome that was expected.

Another common problem is that disks presented out of storage arrays can be dynamically
re-sized. This therefore results in the fact that the backup partition information is no longer
located at the end of the address space as required by GPT. This can also be adjusted by
rebuilding the GPT tables by using the gdisk recovery/transformation “e” option. This will
recreate the backup from main and put it at the end of the disk again.

70

CHAPTER 5. PARTITIONING

Chapter 6

Volume Managers

Volume managers are most often used to be able to create flexibility on a host system to
create logical volumes and be able to resize, move, remap and other useful things. The LVM
stack has been a part of the Linux storage subsystem for a long time and has been well
maintained and it’s function and features are vast. In the next chapter we’re going to speak
about RAID in the form of the dedicated raid device driver however LVM itself as a volume
manager also has some RAID functionality build in. LVM uses some functionality from the
md driver when it comes to that. I'll highlight this a bit more in that chapter.

As T mentioned Linux LVM(2) is a beast of a tool. I'm not going into the operational side
as the online help of many userspace tools is very clear. The below is just for showing the
basics and show issues that are fairly common.

6.1 LVM

LVM is part of the Device Mapper stack. The device mapper is a modular group of “tools”
which can be used to do many different functions in the 10 stack. Managing logical volumes
is just one part of it. Features like caching, thin-provisioning, multipathing, raid etc are all
part of the device mapper layer. I’ll touch on them in subsequent chapters.

opensuse:~ # lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 8G 0 disk

| -sda1 8:1 0 8M 0 part

| -sda2 8:2 ® 6.56 0 part /

| -sda3 8:3 ® 1.5G 0 part [SWAP]

sdb 8:16 0 8G 0 disk

71

72

sdc 8:32
sdd 8:48
sde 8:64
sro 11:0

pktcdvd® 253:0

0
0
0

8G
8G
8G

1 57.8M
1 57.8M

© © © © ©

disk
disk
disk
rom

disk

CHAPTER 6. VOLUME MANAGERS

The above shows 4 disks (sdb, sdc, sdd and sde) which I'll use for creating logical volumes.
Again, be aware that using any form of abstraction layer does not alter the behaviour of the
hardware. Incorrect configuration or design will, not may, seriously hamper functionality
and performance. It is of the utmost importance that a layout defined in software matches
the capabilities of the hardware.

opensuse:~ # pvscan

No matching physical volumes found

opensuse:~ # pvcreate /dev/sdb

Physical volume "/dev/sdb" successfully created.

opensuse:~ # pvcreate /dev/sdc

Physical volume "/dev/sdc" successfully created.

opensuse:~ # pvcreate /dev/sdd

Physical volume "/dev/sdd" successfully created.

opensuse:~ # pvcreate /dev/sde

Physical volume "/dev/sde" successfully created.

opensuse:~ # pvscan

PV /dev/sdb
PV /dev/sdc
PV /dev/sdd
PV /dev/sde

lvm2 [8.00 GiB]
lvm2 [8.00 GiB]
lvm2 [8.00 GiB]
lvm2 [8.00 GiB]

Total: 4 [32.00 GiB] / in use: 0 [0 1 / in no VG: 4 [32.00 GiB]

opensuse:~ #

LVM uses a layered representation of devices. At the lowest level it’s the physical device
which it will label as a physical volume. The disk itself is not altered except a small lvm2
disk-label is written to the device.

created.

opensuse:~ # vgcreate

Volume group

opensuse:~ # vgcreate

Volume group

"LSTO"

"LST1"

opensuse:~ # pvscan
VG LST1

PV /dev/sdd

Of these PV’s, so called, Volume Groups (VG) are

LSTO /dev/sdb /dev/sdc
successfully created
LST1 /dev/sdd /dev/sde
successfully created

lvm2 [8.00 GiB / 8.00 GiB free]

6.1. LVM 73

PV /dev/sde VG LST1 lvm2 [8.00 GiB / 8.00 GiB free]
PV /dev/sdb VG LSTO lvm2 [8.00 GiB / 8.00 GiB free]
PV /dev/sdc VG LSTO lvm2 [8.00 GiB / 8.00 GiB free]

Total: 4 [31.98 GiB] / 1in use: 4 [31.98 GiB] / 1in no VG: 0 [0 1
As shown we now have two VG’s (LSTO0 and LST1) of which we can carve volumes.

opensuse:~ # lvcreate LSTO -L 5G
Logical volume "1lvol@" created.
opensuse:~ # lvcreate LSTO -L 1G
Logical volume "1lvoll" created.

opensuse:~ # ls /dev/LSTQ/
lvolo 1lvoll

The volumes shown on /dev/LST0/ can now be formatted with the filesystem required and
used as such.

opensuse:~ # mkfs.xfs /dev/LSTO/1lvolo

meta-data=/dev/LSTO/1lvol0O isize=512 agcount=4, agsize=327680 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=0
= reflink=1

data = bsize=4096 blocks=1310720, imaxpct=25
= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1

log =internal log bsize=4096 blocks=2560, version=2

= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

opensuse:~ # mount /dev/LSTO/lvol® /mnt/lvole/

opensuse:~ # mount

<snip>

/dev/mapper/LSTO-1volO on /mnt/lvole® type xfs (rw,relatime,attr2,inode64,loghufs=8 \
, Logbsize=32k,noquota)

The above volume (Ivol0) has a 5GB size and the LVM handler can very easily assign
additional space.

opensuse:~ # lvresize -L +1G /dev/LST0/1lvol0o
Size of logical volume LSTO/1lvol@ changed from 5.00 GiB (1280 extents) \
to 6.00 GiB (1536 extents).
Logical volume LSTO/1lvol0® successfully resized.

74 CHAPTER 6. VOLUME MANAGERS

6.2 What can go wrong

Lots. :-)

Kidding aside. As you can see the flexibility of LVM in addition to the simplicity makes it
very easy to make mistakes. The majority of issues are related to two things, missing disks
or performance problems. From a configuration perspective LVM is fairly picky in what it
accepts as physical volumes. That being said, it will check if a volume does not have pre-
existing partitions and filesystems already sitting on it. The lazy (or over-confident) admin
is very quick in finding the -ff parameter which will force the action irrespective of what
pvcreate Or vgcreate finds.

6.3 PV - Physical Volumes

The physical volume is basically the building block of the LVM. It can be seen as the brick.
That brick is divided up in PE’s (or physical extents). These PE’s play a major role in data
allocation when functionality like striping, mirroring, clustering etc are involved. The PE
administration is located in the metadata of the PV. (I know, you need to brush up on the
acronyms here). That metadata is kept in an area right after the PV label as well as at the
end of the physical volume by default. You can have more, up to 3, copies of the metadata.
I would seriously advise you to create at least 2 copies.

opensuse:~ # pvdisplay /dev/sdb
--- Physical volume ---

PV Name /dev/sdb

VG Name LSTO

PV Size 8.00 GiB / not usable 4.00 MiB
Allocatable yes

PE Size 4.00 MiB

Total PE 2047

Free PE 255

Allocated PE 1792

PV UUID 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JITc8CW

In this case the PV has 2047 Physical extents of which 255 are free and 1792 are allocated
already. The size of each PE is 4 MB which is the atomic entity for data storage.

Depending on the type of logical volume you create these PE’s will then be addressed
accordingly.

Damaging the label and metadata on a PV is quite annoying but not 100% destructive.
LVM keeps it’s configuration data in /etc/lvm/archive and /etc/lvm/backup. Whenever a
change is made the previous configuration is kept in the /etc/lvm/backup directory which
you can use to recover the PV and VG.

6.4. VG- VOLUME GROUPS 75

Both the backup and archive files are ASCII so can be easily checked.

6.4 VG - Volume Groups

The volume groups are the pools of capacity derived from the capacity of the PV’s in those
groups. The VG provides a representation of the PE’s that are provided by the PV’s and
will be provisioned to the LV’s as Logical Extents (LE).

opensuse:~ # vgdisplay LSTO -v

--- Volume group ---

VG

Name

System ID
Format

Metadata Areas

Metadata Sequence No

VG
VG

Access
Status

MAX LV
Cur LV
Open LV
Max PV
Cur PV
Act PV

VG
PE

Size
Size

Total PE
Alloc PE / Size
Free PE / Size

VG

UUID

--- Logical volume ---

LV
LV
VG
LV
LV
LV
LV

Path

Name

Name

UUID

Write Access
Creation host, time
Status

open

LV

Size

Current LE
Mirrored volumes

LSTO

Tvm2

2

12
read/write
resizable

N N O © KB O

15.99 GiB

4,00 MiB

4094

514 / 2.01 GiB

3580 / 13.98 GiB
YwWkOA-olba-mHSs-od7G-Mir2-YPWP-axHIPa

/dev/LSTO/1lvol0O

lvoloe

LSTO
132jbo-csDk-brKk-Nx9c-1NHG-7h6z-HRWYT6
read/write

opensuse, 2020-10-28 17:14:36 +1000
available

[0]

1.00 GiB

256

2

76 CHAPTER 6. VOLUME MANAGERS

Segments 1
Allocation inherit
Read ahead sectors auto

- currently set to 1024
Block device 254:7

--- Physical volumes ---

PV Name /dev/sdb
PV UUID 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW
PV Status allocatable

Total PE / Free PE 2047 / 1790

PV Name /dev/sdc
PV UUID TelV4F-geOv-viVQ-6owe-0FrT-0hbJ-f5YFmO
PV Status allocatable

Total PE / Free PE 2047 / 1790

6.5 LV - Logical Volumes

The LV is the highest level of the LVM stack. This layer will be representing the collection
of Physical Extents as Logical Extents to the operating system and can be used by the layers
we’ve discussed before.

A few things to take into account.

Do not further partition a logical volume.

Allocate what you need now, not next year.

Ensure the correct volume type is selected. (Raid, Striped, Linear)

Check if thin provisioning really needed. A thin provisioned volume may be useful in
some circumstances but requires a rigorous monitoring regime.

Thin provisioned volumes are pulled out of a special pool called — tadaaa — thin-pool. The
thin-pool keeps track of allocation and mapping of PE to LE and can also de-allocate a LE
when it is no longer being used therefore freeing up space in the thin-pool.

6.6 Thin Volumes

The example below shows what you need to take into account. A thin-pool is created and
takes the default name of a logical volume. This is however not created via the device-mapper
as it is some sort of pseudo device.

opensuse:~ # lvcreate --type thin-pool -L 8G LSTO
Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.

6.6. THIN VOLUMES 7

Logical volume "1lvoll" created.
opensuse:~ # lvdisplay
--- Logical volume ---

LV Name lvoll

VG Name LSTO

LV UUID y00022-xGpd-Nzhf-MONe-eEia-jx9T-FuxvF0O
LV Write Access read/write

LV Creation host, time opensuse, 2020-10-29 16:04:02 +1000
LV Pool metadata Tvoll_tmeta

LV Pool data lvoll_tdata

LV Status available

open 0]

LV Size 8.00 GiB

Allocated pool data 0.00%

Allocated metadata 10.79%

Current LE 2048

Segments 1

Allocation inherit

Read ahead sectors auto

- currently set to 1024

Block device 254:2

As you can see in the LV Name parameter there is no reference to a /dev/xxxxx/xxx. From
there we can now create a thin provisioned logical volume.

opensuse:~ # lvcreate -T -V 15G --thinpool 1lvoll LSTO
WARNING: Sum of all thin volume sizes (15.00 GiB) exceeds the size of thin pool LSTO/lvoll
and the amount of free space in volume group (7.98 GiB).
WARNING: You have not turned on protection against thin pools running out of space.
WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger automatic
extension of thin pools before they get full.
Logical volume "1lvol2" created.

Whoaaaa, whats this warning?? As you can see the thin-pool size was configured with a
size of 8GB whilst now we’re creating a logical volume of 15GB. As the allocation of PE’s is
done dynamically upon use there is no problem during creation but it may impose a capacity
shortage when the volume gets used. There is a provision in LVM that can keep track of
the allocation of extents out of the thin-pool and automatically grow that thin-pool if the
utilisation sits above a certain percentage. As a best practise ensure that there is enough
free space in the VG’s and configure the LVM global configuration to automatically extend
the space of the thin-pool by 20% when 80% utilisation has been reached. This can be done
by adjusting two values in the /etc/lvm/lvm.conf.

® thin_pool_autoextend_threshold = 80

78 CHAPTER 6. VOLUME MANAGERS

® thin_pool_autoextend_percent = 20

When you'’ve set these restart the lvin-monitor service (or restart the host). Check with the
lvmconfig command if the settings are active.

opensuse:~ # lvmconfig
config {

checks=1

abort_on_errors=0
profile_dir="/etc/lvm/profile"

}

<snip>
activation {

raid_fault_policy="warn"
mirror_image_fault_policy="remove"
mirror_log_fault_policy="allocate"
snapshot_autoextend_threshold=80
snapshot_autoextend_percent=20
thin_pool_autoextend_threshold=80 # <<<<<
thin_pool_autoextend_percent=20 # <<<<<
monitoring=1

polling_interval=15
activation_mode="degraded"

}
You can see the association of the two volumes with the lvdisplay command.

opensuse:~ # lvdisplay
--- Logical volume ---

LV Name lvoll

VG Name LSTO

LV UUID y00022-xGpd-Nzhf-MONe-eEia-jx9T-FuxvFo
LV Write Access read/write (activated read only)

LV Creation host, time opensuse, 2020-10-29 16:04:02 +1000
LV Pool metadata lvoll_tmeta

LV Pool data lvoll_tdata

LV Status available

open 2

LV Size 8.00 GiB

Allocated pool data 0.00%

Allocated metadata 10.84%

Current LE 2048

Segments 1

Allocation inherit

6.6. THIN VOLUMES

Read ahead sectors auto
- currently set to 1024
Block device 254:2

--- Logical volume ---

LV Path /dev/LSTO/lvol2

LV Name lvol2

VG Name LSTO

LV UUID kF3hVC-AKc6-fZmC-88FN-HnyN-Ok3D-EC1hf3
LV Write Access read/write

LV Creation host, time opensuse, 2020-10-29 16:10:41 +1000
LV Pool name lvoll

LV Status available
open 0]

LV Size 15.00 GiB
Mapped size 0.00%
Current LE 3840
Segments 1
Allocation inherit
Read ahead sectors auto

- currently set to 1024
Block device 254:4

79

As shown above the pool volume is 8GB and the logical volume 1vol2 is virtually assigned

15GB (or 3840 LE’s). The 1voll volume is set as read/write with read-only activated. This

basically means that only the logical volumes created from this thin-pool can actually read
and write and there is no further reference in the OS for use by other tools or applications.

As 1vol2 is currently does not have any data yet, the Mapped size value is still 0%.

Obviously when we want to use lvol2 we need to format it with a filesystem and mount it.

opensuse:~ # mkfs.ext4 /dev/LSTO/lvol2

mke2fs 1.45.6 (20-Mar-2020)

Discarding device blocks: done

Creating filesystem with 3932160 4k blocks and 983040 -inodes
Filesystem UUID: 375b814a-714f-4ff3-adc2-4b068b063e3c
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

80

opensuse:~ # mkdir /mnt/thinvol

CHAPTER 6. VOLUME MANAGERS

opensuse:~ # mount /dev/LSTO/lvol2 /mnt/thinvol/

opensuse:~ # cd /mnt/thinvol/

opensuse:/mnt/thinvol # dd if=/dev/urandom of=example.rnd bs=1024 count=320

320+0 records 1in

320+0 records out

327680 bytes (328 kB, 320 KiB) copied, 0.0495701 s, 6.6 MB/s

opensuse:/mnt/thinvol # 11 -h

total 336K

-rw-r--r-- 1 root root 320K Oct 29 16:17 example.rnd

drwx——----- 2 root root

16K Oct 29 16:15 lost+found

Having formatted the volume with a ext4 filesystem and putting a 320KB file on it should
show some change in utilisation rate.

opensuse:/mnt/thinvol # lvdisplay

--- Logical volume ---

LV Name
VG Name
LV UUID

LV Write Access
LV Creation host, time
LV Pool metadata

LV Pool data
LV Status

open

LV Size

Allocated pool data
Allocated metadata

Current LE
Segments
Allocation

Read ahead sectors
- currently set to

Block device

--- Logical volume ---

LV Path
LV Name

lvoll
LSTO

y00022-xGpd-Nzhf-MONe-eEia-jx9T-FuxvFoO
read/write (activated read only)
opensuse, 2020-10-29 16:04:02 +1000

lvoll_tmeta
lvoll_tdata
available

2

8.00 GiB
3.78%
12.70%

2048

1

inherit
auto

1024

254:2

/dev/LSTO/lvol2
lvol2

6.6. THIN VOLUMES 81

VG Name LSTO

LV UUID kF3hVC-AKc6-fZmC-88FN-HnyN-Ok3D-EC1hf3
LV Write Access read/write

LV Creation host, time opensuse, 2020-10-29 16:10:41 +1000
LV Pool name lvoll

LV Status available

open 1

LV Size 15.00 GiB

Mapped size 2.02%

Current LE 3840

Segments 1

Allocation inherit

Read ahead sectors auto

- currently set to 1024

Block device 254:4

As you can see both the pool and lvol utilisation rates have changed.

6.6.1 Pool threshold condition reached
So what happens if that pool threshold condition of 80% we configured earlier is reached?
I created a couple of dummy files to reach that 80% threshold.

opensuse:/mnt/thinvol # 11
total 5632360

-rw-r--r-- 1 root root 327680 Oct 29 16:17 example.rnd
drwx------ 2 root root 16384 Oct 29 16:15 lost+found

-rw-r--r-- 1 root root 1048576000 Oct 29 17:33 random.rnd

-rw-r--r-- 1 root root 1048576000 Oct 29 17:34 random.rndl
-rw-r--r-- 1 root root 1048576000 Oct 29 17:35 random.rnd2
-rw-r--r-— 1 root root 1048576000 Oct 29 17:37 random.rnd4
-rw-r--r-— 1 root root 1048576000 Oct 29 17:38 random.rnd5
-rw-r--r-- 1 root root 524288000 Oct 29 17:39 random.rndé6

Before the threshold was reached we could see that the size of the this-pool was 8G but
doing the maths on the above we only come to +- 5.4GB. Easily checked with du.

opensuse:/mnt/thinvol # du -h
16K ./lost+found
5.4G .

And yet the thin-pool still expanded with 1.6GB from 8GB to 9.6GB (20% of 8GB)

opensuse:/mnt/thinvol # lvdisplay
--- Logical volume ---

82

LV
VG
Lv
LV
Lv
LV
LV
LV

Name

Name

UuID

Write Access
Creation host, time
Pool metadata

Pool data

Status

open

Lv

Size

Allocated pool data
Allocated metadata
Current LE

Segments

Allocation

Read ahead sectors

- currently set to

Block device

--- Logical volume ---

Lv
LV
VG
LV
LV
Lv
LV
LV

Path

Name

Name

UuID

Write Access
Creation host, time
Pool name

Status

open

LV

Size

Mapped size
Current LE
Segments
Allocation

Read ahead sectors

- currently set to
Block device

CHAPTER 6. VOLUME MANAGERS

lvoll

LSTO
y00022-xGpd-Nzhf-MONe-eEia-jx9T-FuxvFO
read/write (activated read only)
opensuse, 2020-10-29 16:04:02 +1000
lvoll_tmeta

lvoll_tdata

available

2

9.60 GiB

69.26%

37.73%

2458

1

inherit

auto

1024

254:2

/dev/LSTO/1lvol2

lvol2

LSTO
kF3hVC-AKc6-fZmC-88FN-HnyN-0Ok3D-EClhf3
read/write

opensuse, 2020-10-29 16:10:41 +1000
lvoll

available

1

15.00 GiB

44 ,33%

3840

1

inherit

auto

1024

254:4

So how is that possible? Remember that the atomic entity of a logical volume is the Logical
Extend which is then mapped to a Physical Extent on a PV. The way I created the ran-
dom.xxxx files was with dd using 1 MB block sizes times the count required to reach that
1GB and 500MB file. Now be aware that using the 1M parameter with dd is not 2710 but
more 1000*1000 in bytes. These do not align nicely with the 4MB PE size and as such the

6.6. THIN VOLUMES 83

usage of the LE’s and PE’s are somewhat different that you expect.

This also a much misunderstood concept when it comes to thin provisioning on storage
arrays. The underlying allocation unit is paramount to the concepts of the thin provisioning
algorithms.

6.6.2 File removal

What happens when one or more of these large files are deleted? That depends a bit on the
filesystem that resides on it and how it will inform the LVM layer of the deletion.

The mount options of most filesystems have a -o discard option. This tells the filesystem to
notify the underlying layers that certain blocks are no longer in use and can be replenished
into the thin provisioned pool (if any). It is not always a good idea to have this mount
option specified as it may incur some performance problems if many write-commands are
used who both create new files as well as delete old files. The file-deletion will not only
remove the file-system entries but also needs to wait for the underlying layer to complete
these discards.

The other option is to schedule a fstrim command to the file-system on a controlled time.
This can be easily achieved by tailing any other job that may have completed or just on a
fixed time by using cron or via the maintenance scheduling facility from Ansible, Puppet
etc....

Below is a comparison of what happens when files are deleted on volumes mounted with the
-o discard option set or not. The layout is there are two VG’s with each having a single
thin-pool configured out of which two identical logical volumes are carved. LV veL2 and
voL3 have an XFs filesystem of which one is mount with the -o discard option. The same
on the other VG but the only difference is that these two LV’s have ExT4 formatted. Each
of these are mounted under /mnt and they have 6 * 1GB (1000*1000) files created.

opensuse:~ # 1lvs

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
VOL2 LSTO Vwi-aotz-- 16.00g tp0® 34.99

VOL3 LSTO Vwi-aotz-- 16.00g tp0 34.99

tp® LSTO twi-aotz-- 13.83g 80.98 38.12

V1L2 LST1 Vwi-aotz-- 16.00g tpl 37.30

V1L3 LST1 Vwi-aotz-- 16.00g tpl 37.30

tpl LST1 twi-aotz-- 13.83g 86.32 40.57

opensuse:~ # mount

<snip>

/dev/mapper/LSTO-VOL2 on /mnt/VOL2 type xfs (rw,relatime,attr2,inode64,logbufs=8, \
logbsize=64k, sunit=128,swidth=128,noquota)

/dev/mapper /LSTO-VOL3 on /mnt/VOL3 type xfs (rw,relatime,attr2,discard,inode64, \

84 CHAPTER 6. VOLUME MANAGERS

logbufs=8, logbsize=64k,sunit=128,swidth=128,noquota)
/dev/mapper/LST1-V1L2 on /mnt/V1L2 type ext4 (rw,relatime,stripe=16)
/dev/mapper/LST1-V1L3 on /mnt/V1L3 type ext4 (rw,relatime,discard,stripe=16)

opensuse:~ # 1ls /mnt/x
/mnt/VeL2:
random.rndl random.rnd2 random.rnd3 random.rnd4 random.rnd5 random.rndé

/mnt/VOL3:
random.rndl random.rnd2 random.rnd3 random.rnd4 random.rnd5 random.rndé6

/mnt/V1L2:
lost+found random.rndl random.rnd2 random.rnd3 random.rnd4 random.rnd5 random.rnd6

/mnt/V1L3:
lost+found random.rndl random.rnd2 random.rnd3 random.rnd4 random.rnd5 random.rnd6

The utilisation of the volumes as shown above may suprise you somewhat. As I mentioned
the volumes have been formated with a different filesystem but for the purpose of the file
removal example this doesn’t really matter.

When one file of each volume is removed you will see a difference immediatly

opensuse:~ # rm /mnt/*/random.rnd6

opensuse:~ # 1ls /mnt/*

/mnt/VoL2:

random.rndl random.rnd2 random.rnd3 random.rnd4 random.rnd5

/mnt/VOL3:
random.rndl random.rnd2 random.rnd3 random.rnd4 random.rnd5

/mnt/V1L2:
lost+found random.rndl random.rnd2 random.rnd3 random.rnd4 random.rnd5

/mnt/V1L3:
lost+found random.rndl random.rnd2 random.rnd3 random.rnd4 random.rnd5
opensuse:~ # lvs

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
VOL2 LSTO Vwi-aotz-- 16.00g tp0® 34.99

VOL3 LSTO Vwi-aotz-- 16.00g tp0O 29.17

tp® LSTO twi-aotz-- 13.83g 74.24 35.84

V1L2 LST1 Vwi-aotz-- 16.00g tpl 37.30

V1L3 LST1 Vwi-aotz-- 16.00g tpl 31.48

tpl LST1 twi-aotz-- 13.83g 79.59 38.24

6.6. THIN VOLUMES 85

As you can see the two volumes that had the -o discard flag set have immediately returned
the LE’s to their respective pools. As mentioned the two volumes, VOL2 and V1L2 have
not returned their LE’s and still hold on to them. When the fstrim command is executed
against them you will see that the filesystem will inform the logical volume that these blocks
are now no longer used and they can be replenished back into the pool.

opensuse:~ # fstrim /mnt/vVoL2
opensuse:~ # lvs

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
VOL2 LSTO Vwi-aotz-- 16.00g tp0 29.17

VOL3 LSTO Vwi-aotz-- 16.00g tp0 29.17

tp® LSTO twi-aotz-- 13.83g 67.51 33.57

V1L2 LST1 Vwi-aotz-- 16.00g tpl 37.30

V1L3 LST1 Vwi-aotz-- 16.00g tpl 31.48

tpl LST1 twi-aotz-- 13.83g 79.59 38.24

The above output is as expected. LovV2 is now equally using the allocated LE’s as voL3. It
requires a rigorous administrative regime to keep on top of file-system allocation, logical
volume usage and pool space.

If the errorwhenfull option is disabled (default) the write IO’s will be queued for the amount
of seconds set by the no_space_timeout parameter of the dm_thin_pool kernel module, this
is 60 seconds by default. This may be an option if you have spare PV’s available on the
system and a monitoring methodology to keep track of the use of the thin _pool LE’s. As
soon as these are exhausted that monitoring tool may kick of an action to automatically add
one or more PV’s in that VG.

If you do not have such an option, i.e. no spare PV’s or no monitoring option, to some extend
the write IO’s may be journalled to via the filesystem but in most cases this will result in
data corruption.

To prevent such a scenario to occur ensure that

e A PV is added immediatly into the VG, therefore increasing the number of PE’s, these
can then be used right away or

e Change the errorwhenfull parameter so that errors are reported immediately to the
file-system and/or application layer.

The latter may result in a crash of the application but datacorruption itself is less likely to
occur on a journalled filesystem. The application would still be doing it’s internal checks to
see what happend and if it needs to correct anything.

In the example below the tpo thin-pool has exhausted its space.

opensuse:~ # 1lvs
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
VOL2 LSTO Vwi-aotz-- 16.00g tp0® 53.89

86 CHAPTER 6. VOLUME MANAGERS

VOL3 LSTO Vwi-aotz-- 16.00g tp0O 29.17
tp0® LSTO twi-aotz-- 13.83g 98.79 43.57
V1L2 LST1 Vwi-aotz-- 16.00g tpl 37.30
V1L3 LST1 Vwi-aotz-- 16.00g tpl 31.48
tpl LST1 twi-aotz-- 13.83g 79.59 38.24

opensuse:~ # lvs

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
VOL2 LSTO Vwi-aotz-- 16.00g tp0® 56.54

VOL3 LSTO Vwi-aotz-- 16.00g tp0O 29.17

tp® LSTO twi-aotzD- 13.83g 100.00 44.55

V1L2 LST1 Vwi-aotz-- 16.00g tpl 37.30

V1L3 LST1 Vwi-aotz-- 16.00g tpl 31.48

tpl LST1 twi-aotz-- 13.83g 79.59 38.24

The writes to the file-system on veL2 and veL3 are still possible as LVM is not directly
returning the error. This happens later. As you can see from the configuration below the
errorwhenfull parameter is disabled.

opensuse:~ # lvs -o lv_full_name,lv_health_status,lv_when_full

Lv Health WhenFull

LSTO/VOL2

LSTO/VOL3

LSTO/tp® out_of_data queue

LST1/V1iL2

LST1/V1iL3

LST1/tpl queue

After the 60 seconds queue-time LVM will log the error via the device-mapper kernel module.

Nov 03 10:03:35 opensuse kernel: device-mapper: thin: 254:6: reached low
water mark for data device: sending event.
Nov 03 10:03:35 opensuse systemd[1]: Starting Cleanup of Temporary Directories...
Nov 03 10:03:39 opensuse lvm[922]: Insufficient free space: 708 extents
needed, but only 544 available
Nov 03 10:03:39 opensuse lvm[922]: Failed command for LSTO-tpO-tpool.
Nov 03 10:03:39 opensuse 1lvm[922]: WARNING: Thin pool LSTO-tpO-tpool data
is now 95.68% full.
Nov 03 10:03:48 opensuse systemd[1]: systemd-tmpfiles-clean.service: Succeeded.
Nov 03 10:03:48 opensuse systemd[1]: Finished Cleanup of Temporary Directories.
Nov 03 10:04:29 opensuse kernel: device-mapper: thin: 254:6: switching pool to
out-of-data-space (queue I0) mode
Nov 03 10:04:29 opensuse lvm[922]: WARNING: Thin pool LSTO-tpO-tpool data is now
100.00% full.

6.6. THIN VOLUMES

87

Nov 03 10:04:29 opensuse lvm[922]: Insufficient free space: 885 extents needed,
but only 544 available

Nov 03 10:04:29 opensuse lvm[922]:

Failed command for LSTO-tpO-tpool.

Nov 03 10:05:30 opensuse kernel: device-mapper: thin: 254:6: switching pool

out-of-data-space (error IO) mode

Nov 03 10:05:30 opensuse kernel: dm-9:

sector 21143680

Nov 03 10:05:30 opensuse
sector 21151872

Nov 03 10:05:30 opensuse
sector 21160064

Nov 03 10:05:30 opensuse
sector 21168256

Nov 03 10:05:30 opensuse
sector 21176448

Nov 03 10:05:30 opensuse
sector 21184640

————— etc etc etc

kernel:

kernel:

kernel:

kernel:

kernel:

dm-9:

dm-9:

dm-9:

dm-9:

dm-9:

writeback error

writeback

writeback

writeback

writeback

writeback

error

error

error

error

error

on

on

on

on

on

on

inode

inode

inode

inode

inode

inode

140,

140,

140,

140,

140,

140,

offset

offset

offset

offset

offset

offset

to

620756992,

624951296,

629145600,

633339904,

637534208,

641728512,

Obviously this is not what you want. The behaviour when the errorwhenfull parameter is
set on the thin-pool is much different. First thing to do is to ensure operations can resume
on the LV’s. As mentioned, removing files from a filesystem that has the -o discard option
mount or by using the fstrim command will help you get back on track. If you cannot delete
data you may be able to move it to a different location or add PV’s

After removing some files and using fstrim on veL2 the state of the thin-pool tpe looks good

again.

opensuse:/mnt/VOL3 # lvs

LV VG
VOL2 LSTO
VOL3 LSTO
tpd LSTO
V1L2 LST1
V1L3 LST1
tpl LST1

Attr LS

Vwi-aotz-- 16.

Vwi-aotz-- 16.

twi-aotz-- 13

Vwi-aotz-- 16.
Vwi-aotz-- 16.

twi-aotz-- 13

ize Pool Origin Data%
33.
29.
73.
37.
31.
79.

00g tpO
00g tpO
.83g
00g tpl
00g tpl
.83g

97
17
88
30
48
59

Meta%

35.47

38.24

Move Log Cpy%Sync Convert

By now changing the error parameter the result of a full pool will be different

opensuse:/mnt/VOL2 # opensuse:/mnt/VOL2 # lvchange --errorwhenfull y /dev/LST1/tpl
Logical volume LST1/tpl changed.

opensuse:/mnt/VOL2 # lvs -o lv_full_name,lv_health_status,lv_when_full

LV

Health

WhenF

ull

88 CHAPTER 6. VOLUME MANAGERS

LSTO/VOL2
LSTO/VOL3
LSTO/tp® out_of_data error
LST1/V1iL2
LST1/V1L3
LST1/tpl error

Filling up the volume viL2 shows the tp1l pool becoming exhausted. The EXT4 filesystem
on ViL2 was mounted with the -o errors=remount-ro and given that the underlying LVM
reported errors back to the file-system the response was as expected.

opensuse:~ # lvs

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
VOL2 LSTO Vwi-aotz-- 16.00g tp0® 0.07

VOL3 LSTO Vwi-aotz-- 16.00g tp0O 0.07

tp® LSTO twi-aotz-- 8.00g 0.27 10.89

V1L2 LST1 Vwi-aotz-- 16.00g tpl 2.38

V1L3 LST1 Vwi-aotz-- 16.00g tpl 84.05

tpl LST1 twi-aotzD- 13.83g 100.00 43.44

opensuse:/mnt/V1L3 # dd if=/dev/urandom of=disk-full.rnd${i} count=1000000 bs=1024
<snip>

1024000000 bytes (1.0 GB, 977 MiB) copied, 29.4122 s, 34.8 MB/s
1000000+0 records 1in

1000000+0 records out

1024000000 bytes (1.0 GB, 977 MiB) copied, 22.0816 s, 46.4 MB/s
dd: error writing 'disk-full.rndl5': Read-only file system
285591+0 records 1in

285590+0 records out

292444160 bytes (292 MB, 279 MiB) copied, 65.4181 s, 4.5 MB/s
dd: failed to open 'disk-full.rndl6': Read-only file system

dd: failed to open 'disk-full.rndl7': Read-only file system

dd: failed to open 'disk-full.rnd18': Read-only file system

And obviously this will also be reflected by the mount output where you will see the ro flag
active.

"/dev/mapper/LST1-V1L3 on /mnt/V1L3 type ext4 (ro,relatime,discard,errors=remount-
ro,stripe=16)"

Different file-systems have different mount options and therefore different possibilities. Fa-
miliarise yourself with them so you can make an informed decision.

6.7 CACHE VOLUMES 89

6.7 Cache volumes

I know, I know. I should not touch on performance but this is a feature which may result
in grievous bodily harm if done incorrect. :-)

The first thing you need to decide on in the decision of the device mapper caching module.
There are two dm-cache and dm-writecache.

6.7.1 dm-writecache

The dm-writecache module is a somewhat simplified caching module which only catches
writes to a LV and writes it to the faster device. This is then subsequently being moved
from that faster device to the slower-device. There is no movements afterwards from the
slower to faster device. All data that is read will be done from the slower device and the
data will be stored in the systems page-cache. The most useful target for this behaviour is
bursty write intensive applications. The size of the fast-device needs to be large enough to
hold these write-burst and not being hampered by the offload to the slower device. You can
imaging that if you have a “small” fast device (lets say 500G) but you application is starting to
burst 1TB of data that fast device will at some point need to destage the data to that slower
volume. This inevitably will therefore impose a contention between the active application
writes and the destage data movement and thus can cause application performance come to
a grinding halt.

There are a few parameters that you can use to optimise the behaviour. If you have appli-
cations that can utilise the flush IO command the dm-writecache module can immediately
flush the configured number of blocks out of the fast to the slow device. This allows a
better alignment between the applications behaviour with the dm-cache possibilities. If an
application has written 200MB but the dm-writecache module is configured to de-stage only
after having received 300MB you then rely on the default or configured autocommit_time for
that destage to kick in. That may therefore incur a delay from the default 1 second to 100s
of milliseconds or more. If the application had been able to issue the flush after the 200MB
was written that time, and therefore valuable space on the cache device, could’ve been saved.
It make therefore sense to find out what your applications’ options are and how it behaves
in such an environment.

When creating a write-cache enabled logical volume some sort of ‘ghost’ volume is created
that takes on the characteristics from the original “slow” volume but is in fact representing
the combined “fast” AND “slow” volume. That logic is inserted into the IO path and the
dm-writecache module does it’s magic.

An example of creating such an instance is shown below”

vgcreate LSTO /dev/sdb /dev/sdc /dev/sdd /dev/sde
Volume group "LSTO" successfully created

90 CHAPTER 6. VOLUME MANAGERS

lvcreate -n fast -L 500M LSTO /dev/sdb
Logical volume "fast" created.

lvcreate -n slowl -L 1G LSTO
Logical volume "slowl" created.

lvchange -a n LSTO/fast
lvconvert --type writecache --cachevol fast LSTO
Logical volume LSTO/slowl now has writecache.

You now have a “slowl” volume which you can put a filesystem on and mount it

opensuse:~ # lvs
Lv VG Attr LSize Pool Origin Data% Meta%....
slowl LSTO® Cwi-a-C--- 1.00g [fast_cvol] [slowl_wcorig] 0.00

opensuse:~ # mkfs.xfs /dev/mapper/LSTO-slowl

<snip>
log =internal log bsize=4096 blocks=2560, version=2

= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

opensuse:~ # mount /dev/mapper/LSTO-slowl /mnt/dmw/

opensuse:~ # mount

<snip>

/dev/mapper/LSTO-slowl on /mnt/dmw type xfs (rw,relatime,attr2,inode64 \
, logbufs=8,logbsize=32k,noquota)

opensuse:~ # lvs
Lv VG Attr LSize Pool Origin Data% Meta%....
slowl LSTO Cwi-aoC--- 1.00g [fast_cvol] [slowl_wcorig] 2.13

The LV attributes already show you there is something special about this device and by
adding the -a parameter it shows what

opensuse:/mnt/dmw # lvs -a -o lv_name,vg_name,pool_1lv,origin,lv_attr,lv_role
Lv VG Pool Origin Attr Role
[fast_cvol] LSTO Cwi-aoC--- private
slowl LSTO [fast_cvol] [slowl_wcorig] Cwi-aoC--- public

6.7 CACHE VOLUMES 91

[slowl_wcorig] LSTO owi-aoC--- private,writecache\
,origin,writecacheorigin

As you can see the “slowl” device is basically a mapping device pointing the to “hidden”
devices [fast_cvol]l and [slowl_wcorig]. These are now statically linked. You cannot
create a new LV and also link this to the same ‘fast’ cache device. You would need to create
a separate LV cache volume and attach this to a new LV “slow” volume.

A Be aware that if you add internal caching volumes to a disk or set of disks provisioned
out of a SAN environment, where errors are seen in that SAN environment, some very
unpredictable results may occur.

6.7.2 dm-cache

The more elaborate, or should I say targeted a bit differently, dm-cache module has added
functionality where it keeps track of which parts of the volume are most accessed and
therefore are most likely to benefit from residing on faster storage. The dm-cache module
also allows to create a cache-pool which splits the data from the meta-data. This may in
various circumstances be beneficial for performance reasons large and small IO’s are less
likely to interfere with each other.

dm-cache can operate in three modes ‘pass-trough’, ‘write-back’ and ‘write-through’. Each
mode has it’s particular use but it is very depending on application behaviour.

dm-cache provides the option of using policies via plug-ins which can adjust the operations
of I0’s and promotion/demotion of data. The two standard policies that are now delivered
are mq and smq [22]. At the time of this writing mq is aliased to smqmainly for the reason
that smqg is much more memory optimised in addition of being handling changing sectors. It
does not use a change sector counter but utilises a hotspot-queue.

6.7.3 Benefits of caching

This may seem like an kicking in an open door as keeping most often used data close to
the application will result in better performance. A second, and often overlooked, scenario
is that by using local persistent-memory or SSD’s drives as transparent caching modules,
the impact on SAN environments can be drastically reduced. By using fast local SSD’s
in an LVM cached setup in conjunction with SAN provisioned volumes causes the effect
that a write intensive, bursty IO-pattern will be “smoothed” by the local cache. Adjusting
cache-settings like high and low watermark parameters as well as block-sizes can significantly
improve IO and application behaviour in SAN’s.

Furthermore, be aware that the file-system and application layers have no knowledge of
the underlying LVM setup and cache behaviour. If you need to move applications between
storage arrays or the LVM setup is changing be aware that the IO profile that was optimised

92 CHAPTER 6. VOLUME MANAGERS

as a result of this caching methodology is changing significantly and traffic patterns in SAN’s
will therefore also change. This may cause a severe impact resulting in a behaviour that
requires some significant expertise of SAN and array capabilities to troubleshoot and resolve
it.

You will need to do some testing before taking this into production. There is no silver bullet
or getting a one-size-fits-all performance optimised caching setup.

6.7.4 Drawbacks of caching and caching errors

There are a lot of knobs and switches that adjust how movement of data between cache
and persistent volumes is handled. Movement of data between volumes incurs the use of
bandwidth which may have a negative impact on other data transfer operations.

As an example when an application is issuing a lot of reads to certain sectors of a volume the
caching algorithm may decide to promote these sectors to the cache volume. If subsequent
random read IO’s on different sectors on that volume is submitted there will be some sort of
contention between the cache movement and application I0. To what extent this will happen
is extremely difficult, if not impossible, to predict. It is therefore of the utmost importance
to know the application behaviour and any given moment in time and adjust the caching
profiles accordingly. Especially in large SAN environments the behaviour of cache volumes
in hosts may lead to strange phenomenons. The art of systems-administration comes into
play here.

Cache Coherency' is another focus point when using caching volumes. Discrepancy of the
location of data is one of the primary concerns for developers when write code for any
caching system. Irrespective whether this is for cpu, memory, arrays or anything else you
can think of if a certain chunk of data is requested by the application it needs to come from
the location which has the most recent version of that data.

So what can go wrong here? The main danger is meta-data corruption. If sectors that
contain meta-data are corrupted there is a real danger that data corruption is perceived
by the operating system or application. Best medicine for that is data-loss prevention and
ensure that backups and tested restores are at hand in case things go wrong. Consistency
is still a primary concern of the file-system and mirror/raid layers. The dm-writecache and
dm-cache can co-exist with other layers of the device mapper ecosystem.

So much on LVM performance and caching. I know there is a lot more to write on this topic
but that will have to wait for a later release.

Thttps://en.wikipedia.org/wiki/Cache _coherence

6.8. LVM CORRUPTION SCENARIO 93

6.8 LVM corruption scenario

In the below case the label and metadata of the PV information on /dev/sdb became corrupt.
(what dd can do for ya... :-))

opensuse:~ # dd if=/dev/urandom of=/dev/sdb obs=512 seek=1 count=2
2+0 records 1in

2+0 records out

1024 bytes (1.0 kB, 1.0 KiB) copied, 0.00156159 s, 656 kB/s

6.8.1 Damaged PV metadata

opensuse:~ # pvdisplay /dev/sdb
WARNING: Couldn't find device with uuid 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW.
WARNING: VG LSTO is missing PV 2Z1lix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW.
WARNING: Couldn't find all devices for LV LSTO/lvole® while checking used and \
assumed devices.
WARNING: Couldn't find all devices for LV LSTO/lvoll while checking used and \
assumed devices.
Failed to find physical volume "/dev/sdb".

The UUID is the one thing that is interesting here as that will be needed to correlate the
entry in the archive or backup file and be able to restore the label and metadata.

As we did not make an error with the LVM configuration itself but merely shovelled its
information from under his its feet we can use the backup file to recover from this.

The backup file in /etc/lvm/backup/LSTO contains the following information:

Generated by LVM2 version 2.03.05(2) (2019-06-15): Wed Oct 28 14:24:22 2020

contents = "Text Format Volume Group"
version = 1

description = "Created *after* executing 'pvchange --addtag=DEV_B /dev/sdb'"

creation_host = "opensuse" # Linux opensuse 5.7.11-1-default #1 \
SMP Wed Jul 29 09:32:21 UTC 2020 (5015994) x86_64
creation_time = 1603859062 # Wed Oct 28 14:24:22 2020

LSTO {
id = "YwWkOA-olba-mHSs-0d7G-Mir2-YPWP-axHIPa"
seqno = 7
format = "lvm2" # informational
status = ["RESIZEABLE", "READ", "WRITE"]

94 CHAPTER 6. VOLUME MANAGERS

flags = []

extent_size = 8192 # 4 Megabytes
max_1lv = 0

max_pv = 0

metadata_copies = 0

physical_volumes {

pvo {
id = "2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW"
device = "/dev/sdb" # Hint only
status = ["ALLOCATABLE"]
flags = []
tags = ["DEV_B"]
dev_size = 16777216 # 8 Gigabytes
pe_start = 2048
pe_count = 2047 # 7.99609 Gigabytes
}

<snip>

As you can see the UUID of PV0 (2Zlix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW) is the
one were looking for so this is indeed the file we can use to recover the PV and therefore
the volumegroup. A very handy piece of information is the description. It shows the last
command being used when this backup was created. The files in the archive directory also
contain this (it is basically copied and timestamped out of backup) so there is somewhat of
a history trail which is very useful for trying to piece together if/when/why something went
wrong.

6.8.2 Recover the PV

The way to do this is to recreate the VG with the backup file. The catch is you cannot do
this online as LVM will need to recreate the state of the VG.

vgchange --activate n --partial LSTO

opensuse:/etc/lvm/backup # vgchange --activate n --partial LSTO
PARTIAL MODE. Incomplete logical volumes will be processed.
WARNING: Couldn't find device with uuid 2Z1lix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW.
WARNING: VG LSTO is missing PV 2Z1lix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW.
WARNING: Couldn't find all devices for LV LSTO/1lvole@ while checking used and \
assumed devices.
WARNING: Couldn't find all devices for LV LSTO/lvoll while checking used and \
assumed devices.

6.8. LVM CORRUPTION SCENARIO 95

0 logical volume(s) in volume group "LSTO" now active

The last line now show that the volume group VGO has no active volumes anymore. Now
for the recovery. It basically is a restore of the entire VG where the selection is limited to
the UUID and device you specify.

pvcreate ——uuid="2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW" --restorefile /etc/lvm/backup/LSTO

opensuse: /etc/lvm/backup # pvcreate --uuid "2Z1lix1-VkoX-HhWx-dELn-bC1X-u6MQ-JITc8CW" \
--restorefile /etc/lvm/backup/LSTO /dev/sdb

WARNING: Couldn't find device with uuid 2Z1lix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW.
WARNING: Couldn't find device with uuid TelV4F-geOv-viVQ-6owe-OFrT-0hbJ-f5YFmO.
WARNING: Couldn't find device with uuid 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW.
WARNING: VG LSTO is missing PV 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW.

Physical volume "/dev/sdb" successfully created.

Checking the result shows:

opensuse: /etc/lvm/backup # pvdisplay /dev/sdb
WARNING: PV /dev/sdb in VG LSTO is missing the used flag in PV header.
--- Physical volume ---

PV Name /dev/sdb

VG Name LSTO

PV Size 8.00 GiB / not usable 4.00 MiB
Allocatable yes

PE Size 4,00 MiB

Total PE 2047

Free PE 255

Allocated PE 1792

PV UUID 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW

And a somewhat verbosed output of vgdisplay shows we’re almost back in business.

opensuse:/etc/lvm/backup # vgdisplay LSTO -v
WARNING: PV /dev/sdb in VG LSTO is missing the used flag in PV header.
--- Volume group ---

VG Name LSTO
System ID

Format Tvm2
Metadata Areas 1

Metadata Sequence No 7

VG Access read/write
VG Status resizable
MAX LV (0]

Cur LV 2

Open LV

Max PV

Cur PV

Act PV

VG Size

PE Size

Total PE

Alloc PE / Size
Free PE / Size
VG UUID

--- Logical volume ---

LV Path
LV Name
VG Name
LV UUID
LV Write Access

LV Creation host, time

LV Status
LV Size
Current LE
Segments
Allocation

Read ahead sectors

--- Logical volume ---

LV Path
LV Name
VG Name
LV UUID
LV Write Access

LV Creation host, time

LV Status
LV Size
Current LE
Segments
Allocation

Read ahead sectors

CHAPTER 6. VOLUME MANAGERS

0

(0]

2

2

15.99 GiB
4.00 MiB
4094

1792 / 7.00 GiB
2302 / 8.99 GiB
YwWkOA-o0lba-mHSs-0d7G-Mir2-YPWP-axHIPa

/dev/LSTO/lvolo

lvolo

LSTO
9BOZVH-aAic-FzvR-mZjL-tS55-Sk5n-13M6F4
read/write

opensuse, 2020-10-27 18:14:19 +1000
NOT available

6.00 GiB

1536

2

inherit

auto

/dev/LSTO/1lvoll

lvoll

LSTO
VCNWgW-z9mn-Ui00-H190-6nXj-i32t-CITWIg
read/write

opensuse, 2020-10-27 18:15:30 +1000
NOT available

1.00 GiB

256

1

inherit

auto

--- Physical volumes ---

PV Name
PV UUID

/dev/sdb
2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW

6.8. LVM CORRUPTION SCENARIO 97

PV Status allocatable
Total PE / Free PE 2047 / 255

PV Name /dev/sdc
PV UUID TelV4F-geOv-viVQ-6owe-0FrT-0hbJ-f5YFmO
PV Status allocatable

Total PE / Free PE 2047 / 2047

The volumegroup information was actually not read from the PV located on /dev/sdb It
was still available on other metadata blocks. Only the actual PV data was read from the
device /dev/sdb. Before the restore it would simply show the same information except the
PV name (which defaults to the devicename)

<snip>
--- Physical volumes ---
PV Name [unknown] <<KLLKLLLLLLLLKLKKL
PV UUID 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JITc8CW
PV Status allocatable

Total PE / Free PE 2047 / 255

PV Name /dev/sdc
PV UUID TelV4F-geOv-viVQ-6owe-0FrT-0hbJ-f5YFmO
PV Status allocatable

Total PE / Free PE 2047 / 2047

6.8.3 Recover the VG

As mentioned the VG still is not really usable. To complete the restore the VG needs to be
recovered as well. In order to do that the vgcfgrestore LSTO command is used.

opensuse: /etc/lvm/backup # vgcfgrestore LSTO

Restored volume group LSTO.
opensuse: /etc/lvm/backup # vgdisplay LSTO -v
--- Volume group ---

VG Name LSTO
System ID

Format Tvm2
Metadata Areas 2

Metadata Sequence No 8

VG Access read/write
VG Status resizable

MAX LV 0]

Cur LV

Open LV

Max PV

Cur PV

Act PV

VG Size

PE Size

Total PE

Alloc PE / Size
Free PE / Size
VG UUID

--- Logical volume ---

LV Path
LV Name
VG Name
LV UUID
LV Write Access

LV Creation host, time

LV Status
LV Size
Current LE
Segments
Allocation

Read ahead sectors

--- Logical volume ---

LV Path
LV Name
VG Name
LV UUID
LV Write Access

LV Creation host, time

LV Status
LV Size
Current LE
Segments
Allocation

Read ahead sectors

CHAPTER 6. VOLUME MANAGERS

2

(0]

(0]

2

2

15.99 GiB
4.00 MiB
4094

1792 / 7.00 GiB
2302 / 8.99 GiB
YwWkOA-olba-mHSs-0d7G-Mir2-YPWP-axHIPa

/dev/LSTO/lvolo

lvoloe

LSTO
9BOZVH-aAic-FzvR-mZjL-tS55-Sk5n-13M6F4
read/write

opensuse, 2020-10-27 18:14:19 +1000
NOT available

6.00 GiB

1536

2

inherit

auto

/dev/LSTO/lvoll

lvoll

LSTO
VCNWgW-z9mn-Ui00-H190-6nXj-i32t-CITWIg
read/write

opensuse, 2020-10-27 18:15:30 +1000
NOT available

1.00 GiB

256

1

inherit

auto

--- Physical volumes ---

PV Name

/dev/sdb

6.8. LVM CORRUPTION SCENARIO 99

PV UUID 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW
PV Status allocatable
Total PE / Free PE 2047 / 255

PV Name /dev/sdc
PV UUID TelV4F-geOv-viVQ-6owe-0OFrT-0hbJ-f5YFmO
PV Status allocatable

Total PE / Free PE 2047 / 2047

Archiving volume group "LSTO" metadata (seqgno 7).
Archiving volume group "LSTO" metadata (segno 8).
Creating volume group backup "/etc/lvm/backup/LSTO" (seqgno 8).

From the above there are two things that you should take note off. The “WARNING” message
of the missing “used flag” disappears after the vgrestore command and LVM should have
created a new backup file and a archive copy in the respective /etc/lvm/[archive/backup]
locations. Furthermore you see that the logical volumes are still not usable as the “LV Status”
is flagged as being not available.

6.8.4 Reactivate the VG

Remember that we deactivated the volumegoup before we started the recovery so we now
need to activate it again. To do so use the vgchange command again.

opensuse:/etc/lvm/backup # vgchange --activate y LSTO
2 logical volume(s) in volume group "LSTO" now active

And were back in business.

opensuse: /etc/lvm/backup # vgdisplay LSTO -v
--- Volume group ---

VG Name LSTO
System ID

Format Tvm2
Metadata Areas 2
Metadata Sequence No 8

VG Access
VG Status
MAX LV
Cur LV
Open LV
Max PV
Cur PV
Act PV
VG Size

read/write
resizable

NN O N O

15.99 GiB

100

PE

Size

Total PE
Alloc PE / Size

Free

VG

PE / Size
UUID

--- Logical volume ---

LV
Lv
VG
Lv
LV
LV
LV

Path

Name

Name

UUID

Write Access
Creation host, time
Status

open

LV

Size

Current LE
Segments
Allocation

Read ahead sectors

- currently set to

Block device

--- Logical volume ---

LV
Lv
VG
LV
Lv
LV
Lv

Path

Name

Name

UuUID

Write Access
Creation host, time
Status

open

LV

Size

Current LE
Segments
Allocation

Read ahead sectors

- currently set to

Block device

CHAPTER 6. VOLUME MANAGERS

4,00 MiB

4094

1792 / 7.00 GiB

2302 / 8.99 GiB
YwWkOA-o0lba-mHSs-0d7G-Mir2-YPWP-axHIPa

/dev/LSTO/lvolo

lvole

LSTO
9BOZVH-aAic-FzvR-mZjL-tS55-Sk5n-13M6F4
read/write
opensuse, 2020-10-27 18:14:19 +1000
available

0

6.00 GiB

1536

2

inherit

auto

1024

254:0

/dev/LSTO/1lvoll

lvoll

LSTO
VCNWgW-z9mn-Uioo-H190-6nXj-i32t-CITWIg
read/write
opensuse, 2020-10-27 18:15:30 +1000
available

0

1.00 GiB

256

1

inherit

auto

1024

254:1

--- Physical volumes ---

PV

Name

/dev/sdb

6.9. META-DATA 101

PV UUID 2Z1ix1-VkoX-HhWx-dELn-bC1X-u6MQ-JTc8CW
PV Status allocatable
Total PE / Free PE 2047 / 255

PV Name /dev/sdc
PV UUID TelV4F-geOv-viVQ-6owe-0OFrT-0hbJ-f5YFmO
PV Status allocatable

Total PE / Free PE 2047 / 2047

6.9 Meta-data

The internal operations and maintenance task of LVM handles a lot of meta-data and is
paramount for proper operations of LVM. Especially when it comes to advanced features
like thin-provisioning, CoW (Copy-on-Write), snap-shots etc. The allocation of the meta
data is by default on the first data disk of the VG. Separate metadata disks can be assigned
when the LV is created and there may be good reasons for this. You may need to ensure
that the metadata is located on a more protected volume than the data-disks in case these
are simple linear or striped LV’s without further protection. The below shows such a setup
where the meta-data of thin-pool tp1 only sits on the sdd drive. Losing that sdd drive will
have consequences in the sense the LV is basically no longer able to reference any of its LE’s.

LST1-V1L3 ext4 cb4fe624-bded-4730-b6cd-a8ef1558cab5s
6.2G 55% /mnt/V1L3

-LST1-tpl-tpool
|-LST1-tpl_tmeta

| |-sdd LVM2_member vzihdl-vrUN-5fkp-BoxZ-4Aia-0JiU-toOWCC
|-LST1-tpl_tdata
-s _member vzihdl-vrUN-5ftkp-BoxZ-4A1a-0Ji1U-to
dd LVM2 b ihd UN-5fkp-BoxZ-4Aia-03iU-toOWCC
| -sde LVM2_member sjcBwL-1YBO-8BGz-Pkx9-jjsF-xnOp-FmVxMu

6.10 Performance problems

Even though I mentioned in the introduction that performance was not an important point of
attention at this stage I want to touch on it over here slightly. Depending on the provisioned
hardware and configuration setup, it is very easy to make mistakes that will lead to significant
performance problems. As an example the disks I've used in the scenario are all located on
the same physical disk in a Virtual Machine. A similar problem can easily be recreated when
two or more partitions on the same disks are used for PV’s and subsequently aggregated in
a single VG or being used in different VG’s but the logical volume that is carved out of the
VG’s is set to be a mirror. When data growth requires more space you’ll see that more PV’s
will be added to the volumegroup and logical volumes will be extended.

102 CHAPTER 6. VOLUME MANAGERS

As per your documentation and skills as a sysadmin you may be 100% across optimal
configurations and settings but don’t be surprised that configurations such as below may
sometimes land on your desk.

WG

o
2t
C0f
e

Figure 6.1: Incorrect LVM layout

You’'ll see that two disks have actual partitions on them and these are set to be in VG1
whereas two other disks are allocated in VG2. Out of these there are three logical volumes
created with each different storage characteristics. Lvol0 is a RAID1 volume with two mirror
copies, Lvoll is a RAID5 and Lvol2 is also a mirrored volume with two copies. Technically
there is no-one preventing you from doing this. From a performance perspective this is
creating nightmares and different workload profiles will have a severe adverse impact on all
applications that rely on this.

What needs to be done is first of all ensure that workload profiles based on application
behaviour is clear. Then the hardware needs to be lined up to support these workloads
subsequently followed by an optimal configuration in LVM. Rule of thumb is that you will
ALWAYS have a disadvantage compared to dedicated storage hardware when it comes to
striping and mirroring. Multiple decades of ASIC and FPGA design have ensured that
dealing with a multitude of workload profiles, caching methodologies and firmware optimi-
sations will very likely out-perform your LVM setup. Using LVM to provide a wide striping
or mirroring option is not likely to improve performance as your CPU’s have better things
to do than to keep track of IO handling. That being said, if your options are limited either
technically or financially LVM may provide you some great options.

From and administrative point-of-view LVM provides a vast toolkit of options moving data
around. If you're planning for a tech-refresh where you bought a new set of storage arrays
it is a breeze to migrate these over with LVM.

6.10. PERFORMANCE PROBLEMS 103

6.10.1 Monitoring performance

LVM2 does not provide a dedicated tool to monitor performance characteristics. The level at
which LVM operates, device mapper, can be monitored by the dmstats tool. I would highly
advise to get familiar with this tool as it allows to hone in on very specific area of the device-
mapper, and therefore LVM, structures. Normal tools like iostats may not clearly indicate
the association between physical and logical devices. The dmstats tool provides configuration
options to correlate different aspects of the storage structure and device allocation. It even
can provide performance characteristics for individual files. This may become very useful
when reports and stats need to be analysed when databases or virtual machine images are
located on a device-mapper backed volume. This will provide a clearer overview of what is
happening in case you run into performance issues. There are some pre-requisites such as
the file-system needs to support the FIEMAP ioctl. That will return the physical extents
location of the file on that filesystem and thus can then be mapped into a dmstats region.

104 CHAPTER 6. VOLUME MANAGERS

Chapter 7

RAID

RAID stands for Redundant Array of Independent Disks. Colloquially also referred as
Redundant Array of Inexpensive Disks. Basically what is does it distributing chunks of
data over two or more disks to either have a full copy or a striped set with parity to be
able to overcome one or more physical disk failures. Raid is well known and documented
however its application use case is somewhat outdated. The main reason I say this is that
the recovery-time of failed physical disks has grown significantly over the last decade or so
mainly because the capacity of the physical disks has grown to multiple terabytes. Any
failure of one disk will require a read action on the surviving members of the raid group,
an XOR parity calculation on each data block (or stripe), and a write action to the spare
disk. All this in addition to the existing workload that was already in place before a disk
failed. I'm not saying that RAID is bad however it should not be used as a single source of
redundancy when you have very business critical systems.

Other mechanisms that cater for a more distributed way of placing data on storage devices
should be investigated. As usual this depends on your use case and the capabilities of your
application.

7.1 Terminology

When it comes to RAID some things need to be understood first. You will often see the
words stripe, stripe unit, stripe width, chunk, strip and a few more. Basically what do
these mean? In order to distribute a certain set of data, it will need to be split up in sections
where each section is written to a different disk. The sections themselves are called a chunks,
strides or stripe units and the amount of data it holds is called chunk size, stride size,
stripe size, stripe depth or stripe length.

The collection of one set of chunks belonging to the same group is called a strip. The amount

105

106 CHAPTER 7. RAID

of chunks that need to be created should be based on the underlying hardware configuration.
A raid6 set of 10 data disks and two parity disks has a stripe width of 10 as you do not
count the parity disks.

As you’ve seen in the File System chapter this is important to know the underlying infrastruc-
ture in order to be able to create volumes that are able to utilize the hardware capabilities
to the maximum.

7.2 MD

Linux has a software based raid-capability called mMp. (Which stands for Multiple Device
driver). It’s a kernel based driver which lets you configure certain personalities like RAID1,
RAID10, RAID4 and RAID5. RAID1 basically standing for disk mirroring, RAID4 for distributed
data with dedicated parity and RAIDS5 for distributed data with distributed parity 1(I won’t
go into the technical details on RAID algorithms).

A RAIDO option is also provided which allows you to create a single spanned volume without
any redundancy. This is only advisable in a RAID10 (striped RAID1) setup as the chances
of losing data are growing exponentially with every disk you add to a RAIDO set.

As T mention in the previous chapter the md driver is also used by LVM so you will see some
similarities here.

Be aware that the md driver, although being a low-level kernel mode driver, can have a
significant performance impact on IO behaviour. In case of RAID3 and RAID5 data needs
to be split into chunks, parity needs to be calculated and all segments then are written
to the disks. The same is true when the data needs to be read. A RAID3 or RAID5 set
contains at least 3 disks which means that the data that needs to be read incur a read IO
to at least these members as well as an 10O to the disk where the parity chunk is located.
In SCSI based systems a lot can be gained with queuing mechanisms etc but be aware that
all these calculations are done by the CPU of the host. If very large RAID sets containing
many disks or many raid-sets are handled by the host this will for sure have a negative effect
on OS and application performance. A RAID1 set has the benefit of improving the 10 read
capabilities by a factor of the number of mirror-members. Each disk can serve the same
data so the md driver can request data from multiple disks based on certain algorithms like
outstanding 10’s, requested size etc. (The statement is not 100% true as there are other
factors involved but as a rough guideline it will suffice). The data that is written is alway
duplicated so from a capacity and cost perspective it is the least efficient. RAID1 does not
incur the raid-calculation penalty that RAID3 and RAIDS5 have however each write IO from
the application will need to be written to all members of the mirrorset.

It is recommended to have a dedicated RAID controller or an external RAID array to
handle the redundancy and IO requests. These are far better equipped to manage a high 10
workload whilst offloading the RAID calculations to dedicated ASIC’s (Application Specific

7.2. MD 107

Integrated Chips) therefore freeing up cycles of the host CPU. The benefit of these controllers
is also that command-destaging is possible meaning that the host OS is not tasked of keeping
track of outstanding 10’s to individual drives. The read or write command is basically sent
to the raid controller with the expectation that the controller takes care of the rest and only
the data and subsequent status message is returned the host. Most modern RAID controllers
have drivers with extensive management capabilities so even from an OS perspective you
may be able to manage the RAID configuration via the CLI or some sort of web interface.
You get what you pay for so properly investigate what you need/want out of a controller.

That being said there is a very good reason to use a software raid solution. If you work from
home as I do and have a limited budget to buy hardware it makes perfectly sense to just get
a set of relatively cheap hard-disks and put these in a raidset. In case one of them observes
a failure you still have the other one to work of. In case you have no local data and save
your work on Github (or any of the cloud providers) for backup purposes you may not need
it.

An example of a software raid setting:

opensuse:~ # mdadm --detail /dev/mdl
/dev/md1:
Version : 1.2
Creation Time : Tue Jun 30 17:45:22 2020
Raid Level : raidl
Array Size : 8379392 (7.99 GiB 8.58 GB)
Used Dev Size : 8379392 (7.99 GiB 8.58 GB)
Raid Devices : 2
Total Devices : 3
Persistence : Superblock is persistent

Update Time : Tue Aug 4 13:40:53 2020
State : clean
Active Devices : 2
Working Devices : 3
Failed Devices : 0
Spare Devices : 1

Consistency Policy : resync
Name : opensuse:mdl (local to host opensuse)
UUID : 8alc4a76:97b69b4a:51bb6931:5¢c3d70c7

Events : 26

Number Major Minor RaidDevice State
0 8 32 0 active sync /dev/sdc

108 CHAPTER 7. RAID

1 8 48 1 active sync /dev/sdd

2 8 64 - spare /dev/sde

As shown in the above example the md driver creates a logical device called md1l and pl is
its first partition on that virtual drive. The set consists of two active volumes (/dev/sdd
and /dev/sdc) and one spare (/dev/sde). The spare will be automatically activated as soon
as one of the current data volumes becomes unavailable for whatever reason. It is always a
good idea to have at least one spare.

It is important to understand the use and selection of the RAID algorithm as well as the
consistency policy.

7.3 Consistency policy

The consistency policy can determine how a raidset is rebuild in case of a failure. The policy
is assigned during creation of the raidset with the “—consistency-policy="" parameter.
This is especially important in large (as in hundreds of gigabytes) raidsets. A policy of
resync for example will totally re-synchronise the entire volume. You can imagine that if
you have a 10 terabyte volume this may take a while. Not only is the rebuild process very
long leaving you in a vulnerable position if an additional drive in that set fails. A journal
approach may in this situation be of most benefit as the data only needs to be re-applied. A
bitmap is a bit of an intermediate solution where only the stripes (parts of the data) need to

be read from the “correct” disk and re-written to the disk(s) that are now in recovery mode.

e resync - Full resync is performed and all redundancy is regenerated when the array is
started after unclean shutdown.

e bitmap - Resync assisted by a write-intent bitmap. Implicitly selected when using
—bitmap.

e journal - For RAID levels 4/5/6, journal device is used to log transactions and replay
after unclean shutdown. Implicitly selected when using —write-journal.

e ppl - For RAIDS5 only, Partial Parity Log is used to close the write hole and eliminate
resync. PPL is stored in the metadata region of RAID member drives, no additional
journal drive is needed.

Changing the consistency policy is only available in so called “Grow mode” and even that
is somewhat restricted. Please refer to the up-to-date documentation at any given point in
time as this may change.

7.4 Failures

7 So what is then being flagged as a failure? 7 you’d ask. The first one is very obvious

and that is basically a full hardware failure. A hardware failure can also be two-fold either

7.5. DATA VALIDATION 109

being the drive itself is defective or in the way the firmware on the disk-drive determines
that there are so many bad-sectors on that drives it will flag itself as faulty. The first one
renders the disk totally unusable and the second one allows a raid-algorithm to still use the
disk for read/recovery purposes to verify and copy the data to a spare disk.

The second failure is any sort of write failure. If a write failure occurs on a device the
md driver will immediately evict the drive and, if one is configured, access the spare to be
included in the raid-set and start the recovery process. If no spare drive is configured or the
spare drive is not a valid one for recovery purposes the raid set will be in a degraded state.
Another failure is inherent to RAID and that is that an any given point in time two or more
pieces of data (whether real data or the parity) need to be physically written to disk. This
is in almost all cases an a-synchronous process where there is a slight delay between when
the first data is written and the second (or last) is completed. If at any stage a system
failure (power, kernel panic, hardware) occurs the raidset is in an inconsistent state and is
flagged as failed. When the system restarts and the MD driver checks the individual disks
it determines the raidset is in a dirty state. Be aware that the moment a raidset is made
available to the OS it always sits in a dirty state. Only a proper shutdown of the system
will mark the raidset clean and no action is done when the system is started.

7.5 Data validation

If the raidset contains a large amount of data it is important to have the ability to validate
if all data is still physically on disk as it was written in the past. Unlike filesystems, such
as BTRFS and ZFS, there is no automatic validation or checksumming done. This may at
some stage lead to a phenomenon called bitrot. Due to the changing characteristics of the
physical substances on disk a bit may flip from 1 to 0 or vice versa. This is not new and with
the advance in chemical engineering as well as recovery firmware in the drives themselves it
is far less frequent than it did in the past but not impossible. The way a MD raidset can be
checked (or repaired) is by writing “check” or “repair” to the “sync_ action” file in the md
sysfs entry.

opensuse:~ # echo check > /sys/block/md127/md/sync_action
opensuse:~ # cat /sys/block/md127/md/sync_action

check

opensuse:~ # mdadm --detail /dev/md/md1

/dev/md/md1:

Version : 1.2
Creation Time : Tue Jun 30 17:45:22 2020
Raid Level : raidl
Array Size : 8379392 (7.99 GiB 8.58 GB)
Used Dev Size : 8379392 (7.99 GiB 8.58 GB)
Raid Devices : 2
Total Devices : 3

110

Persistence

Update Time :
State :

Active Devices :
Working Devices : 3
HINO]
1

Failed Devices

Spare Devices :

Consistency Policy :

Check Status :

Name :
UuUID :
Events :
Number Major
[0] 8
1 8
2 8

: Superblock 1is persistent

Tue Jun 30 17:47:29 2020

clean, checking <<<<<<<<<<<
2

resync

2% complete <<<<<<<LKLLLKL

opensuse:mdl (local to host opensuse)
8alc4a76:97b69b4a:51bb6931:5c3d70c7
17

Minor RaidDevice State
32 0 active sync /dev/sdc
48 1 active sync /dev/sdd
64 - spare /dev/sde

CHAPTER 7. RAID

The result may sometimes come back as a false positive mainly on RAID1 or RAID10 sets.
This can also be attributed to the fact that the write to one disk has not been completed yet
whilst the read from the check reads the stripe from the other. This is most often seen with
swap spaces being located on those raidsets. With normal data partitions is is less likely to

occur.

The check and repair options are often summarised as scrubbing. This basically means that
in a RAID1 or RAIDI10 set the invalid data is overwritten by the valid data of any of the
other disks on that set. On RAID5/6 new parity blocks will be written where applicable.

Validation of blocks being out of sync can be seen when looking at the mismatch_cnt file
in the /sys/block/<device>/md/ folder. Simulating an error by overwriting large sections of
one of the physical devices shows that during a check or repair the count increases.

opensuse:/sys/block/md127/md # echo check > sync_action
opensuse:/sys/block/md127/md # cat mismatch_cnt

81568

7.6. RECOVERY 111

7.6 Recovery

If the MD driver determines a dirty state the driver will start the recovery of the raidset
based on the before-mentioned consistency policy. If a spare drive is configured it will be
made an active member of the raidset and the existing data of the remaining members
will be rebuild. The newer kernels have a MD driver that has an inbuilt load-algorithm
and will dynamically adjust rebuild I0’s in order to not impact active, application driven,
10’s. That also means that the recovery time of the raid-set is proportionally depending on
the host/application 1O activity. It is therefore almost impossible to determine how long a
rebuild is going to take. This is not necessarily limited to the Linux md driver but goes for
all raid based systems. Yes even large scale raid-arrays.

That being said there are a few knobs and switches you can use to improve rebuild times or
adjust parameters to even slow down the rebuild process in order to minimise application
performance impact. As there is a very fine line between what is acceptable by the appli-
cation to still be able to run properly and business requirements regarding redundancy of
data.

7.6.1 Adjusting raid synchronisation

If out-of-sync issues are observed and the consistency policy is set to resync you may want
to adjust the resync speed as this can significantly hamper your infrastructure if you have
build raid-sets from externally provisioned devices. The way to do this is by setting the
sync_speed_max value to a number of KIBI/s (that is kiloBITS per second). The val-
ues can be set globally in /proc/sys/dev/raid/speed_limit_{min,max} or per raidset in
/sys/block/<raiddev>/sync_speed_{min,max}. Be aware that if you set this too low and
the write workload to the device is higher than the sync_speed_max the resynchronisation
process will not catch up during that period and an even greater performance impact will
be observed.

e During synchronisation the speed will be shown.

opensuse:/sys/block/md127/md # echo repair > sync_action
opensuse: /sys/block/md127/md # cat sync_speed

12394

opensuse: /sys/block/md127/md # cat sync_min

0]

opensuse: /sys/block/md127/md # cat sync_max

max

e The global settings for the md driver.

opensuse:~ # cat /proc/sys/dev/raid/speed_1limit_max
200000

112 CHAPTER 7. RAID

opensuse:~ # cat /proc/sys/dev/raid/speed_limit_min
1000

The above can be set permanently via sysctl with the appropriate values.

opensuse:~ # sysctl -a | grep dev.raid
dev.raid.speed_limit_max = 15000
dev.raid.speed_limit_min = 1000

opensuse:~ # sysctl -w dev.raid.speed_limit_max=20000
dev.raid.speed_limit_max = 20000

Be aware these are “targeted” values. It will do it’s best to achieve them but the process is
depending on existing workloads to the array.

7.7 Correcting failed raidsets

The fact of life is that hardware is subject to failures. Whether this being manufacturing
issues or just simple wear & tear, sooner or later it will fail. Having a replacement available
is therefore important. The md driver supports hot-adding devices to an existing raidset. It
is recommended to have one or more spare drives available depending on the number and
size of your raid-sets.

The below raid-set does not have a “hot-spare” available.

opensuse:~ # mdadm --detail /dev/md/raid5
/dev/md/raid5:
Version : 1.2
Creation Time : Tue Nov 10 15:35:01 2020
Raid Level : raid5
Array Size : 1619200 (1581.25 MiB 1658.06 MB)
Used Dev Size : 809600 (790.63 MiB 829.03 MB)
Raid Devices : 3
Total Devices : 3
Persistence : Superblock 1is persistent

Update Time : Tue Nov 10 16:50:11 2020
State : clean
Active Devices : 3
Working Devices : 3
Failed Devices : 0
Spare Devices : 0

Layout : left-symmetric

7.7. CORRECTING FAILED RAIDSETS 113

Chunk Size : 64K
Consistency Policy : resync
Name : opensuse:raid5 (local to host opensuse)
UUID : a33c76be:fd84996d:8756f7a8:bd7b602f

Events : 56

Number Major Minor RaidDevice State

0 8 16 0 active sync /dev/sdb
1 8 32 1 active sync /dev/sdc
2 8 48 2 active sync /dev/sdd

To add one use the mdadm tool.

opensuse:~ # mdadm --manage /dev/md/raid5 --add-spare /dev/sde
mdadm: added /dev/sde
opensuse:~ # mdadm --detail /dev/md/raid5
/dev/md/raid5:
Version : 1.2
Creation Time : Tue Nov 10 15:35:01 2020
Raid Level : raid5
Array Size : 1619200 (1581.25 MiB 1658.06 MB)
Used Dev Size : 809600 (790.63 MiB 829.03 MB)
Raid Devices : 3
Total Devices : 4
Persistence : Superblock is persistent

Update Time : Tue Nov 10 17:30:56 2020
State : clean
Active Devices : 3
Working Devices : 4
Failed Devices : 0
Spare Devices 1

Layout : left-symmetric
Chunk Size : 64K

Consistency Policy : resync
Name : opensuse:raid5 (local to host opensuse)

UUID : a33c76be:fd84996d:8756f7a8:bd7b602f
Events : 57

114 CHAPTER 7. RAID

Number Major Minor RaidDevice State

0 8 16 0 active sync /dev/sdb
1 8 32 1 active sync /dev/sdc
2 8 48 2 active sync /dev/sdd
3 8 64 - spare /dev/sde

When one of the other devices observes a failure the hot-spare will immediately take its
place and the resynchronisation is executed immediately.

When the drive /dev/sdd fails you’ll see the hot-spare moving in immediately.

opensuse:/sys/block/md127/md/dev-sdd # mdadm --detail /dev/md/raid5
/dev/md/raid5:
Version : 1.2
Creation Time : Tue Nov 10 15:35:01 2020
Raid Level : raid5
Array Size : 1619200 (1581.25 MiB 1658.06 MB)
Used Dev Size : 809600 (790.63 MiB 829.03 MB)
Raid Devices : 3
Total Devices : 4
Persistence : Superblock 1is persistent

Update Time : Tue Nov 10 17:55:08 2020
State : clean, degraded, recovering
Active Devices : 2
Working Devices : 3
Failed Devices : 1
Spare Devices 1

Layout : left-symmetric
Chunk Size : 64K

Consistency Policy : resync
Rebuild Status : 13% complete
Name : opensuse:raid5 (local to host opensuse)
UUID : a33c76be:fd84996d:8756f7a8:bd7b602f

Events : 61

Number Major Minor RaidDevice State
0 8 16 0 active sync /dev/sdb

7.7. CORRECTING FAILED RAIDSETS 115

8 32 1 active sync /dev/sdc
8 64 2 spare rebuilding /dev/sde
2 8 48 - faulty /dev/sdd

When the raid-set does not have a hot-spare it will change into a degraded state. This not
only results in lack of redundancy but will also incur a significant performance impact.

opensuse:~ # mdadm --detail /dev/md/raid5
/dev/md/raid5:
Version : 1.2
Creation Time : Tue Nov 10 17:56:52 2020
Raid Level : raid5
Array Size : 1619200 (1581.25 MiB 1658.06 MB)
Used Dev Size : 809600 (790.63 MiB 829.03 MB)
Raid Devices : 3
Total Devices : 3
Persistence : Superblock is persistent

Update Time : Tue Nov 10 17:58:13 2020
State : clean, degraded
Active Devices : 2
Working Devices 2
Failed Devices : 1
Spare Devices 0

Layout : left-symmetric
Chunk Size : 64K

Consistency Policy : resync
Name : opensuse:raid5 (local to host opensuse)
UUID : 5f1912f0:81a9%9a6dc:5f108b58:bfad5982

Events : 61

Number Major Minor RaidDevice State

0 8 16 0 active sync /dev/sdb
1 8 32 1 active sync /dev/sdc
- 0] [0] 2 removed

2 8 48 - faulty /dev/sdd

There is no such thing as a global spare in the md context. This mean you cannot have one
spare device for multiple raid-sets. A workaround may be to periodically poll the state of

116 CHAPTER 7. RAID

the raid-set and depending on that add a device as spare.

In the above example when the /dev/sde drive gets added to the raid-set it immediately
starts rebuilding.

opensuse:~ # mdadm --manage /dev/md/raid5 --add /dev/sde
mdadm: added /dev/sde
opensuse:~ # mdadm --detail /dev/md/raid5

/dev/md/raid5:
Version
Creation Time
Raid Level
Array Size
Used Dev Size
Raid Devices
Total Devices
Persistence

Update Time
State

Active Devices
Working Devices
Failed Devices
Spare Devices

Layout
Chunk Size

Consistency Policy

Rebuild Status

Name :
UuID :
Events
Number Major
0 8
1 8
3 8
2 8

1.2

: Tue Nov 10 17:56:52 2020

raid5s

1619200 (1581.25 MiB 1658.06 MB)
809600 (790.63 MiB 829.03 MB)

3

;4

Superblock 1is persistent

: Tue Nov 10 18:06:45 2020

clean, degraded,
2

recovering
3

1

1

left-symmetric

64K

resync

% complete

opensuse:raid5 (local to host opensuse)
5f1912f0:81a9a6dc:5f108b58:bfad5982

64
Minor RaidDevice State
16 0 active sync /dev/sdb
32 1 active sync /dev/sdc
64 2 spare rebuilding /dev/sde
48 - faulty /dev/sdd

7.8. DMRAID 117

7.8 DMRAID

As an alternative to MD there is an alternative called DMRAID. As the name indicates this
is part of the Device Mapper architecture and as such creates a device in the /dev directory

with a dm-x where x is a sequence number.

To be honest this implementation is almost not used (at least I haven’t seen it often).

118 CHAPTER 7. RAID

Chapter 8

Block devices

A block device is basically the lowest level of a contiguous range of addressable space pre-
sented out of a physical device. Everything that has been mentioned in the previous chapters
sits on top of these block devices to enable all sorts of functionality. A block device is not
necessarily tied to a physical device as a single entity as it may also be a SCSI Logical Unit
or NVMe ANA that is presented out of an array or other sort of controller. It may also be
presented over a network like for example a iSCSI device.

The characteristics of individual devices may differ very much. The capabilities that can
be provided by the device is communicated via so called inquiry commands. The responses
that come back from the device enables the OS layer to use certain features. An example is
clustering where multiple hosts may access the same device and certain locking mechanisms
like reserves may need to be provided by the disk.

As you may know everything in Linux is represented as a file. Whether it is a overview of
memory usage (Try cat /proc/meminfo) CPU (cat /proc/cpuinfo) or a peripheral like a
diskdrive.

In earlier chapters you have seen me referring to addressable units like /dev/sda or /dev/sdc.
The use of these addressable units in examples for this book is no problem. It basically
is a virtual machine encapsulated in VirtualBox (or ESX or KVM, doesn’t matter) which
doesn’t change so every time I reboot the entire, virtual, hardware stack will remain the
same. It is important to understand that in an environment where hardware representation
changes (like for instance in SAN’s) these addressable units may change the name and thus
may at some stage point to a different device.

It is therefore important that if you have management applications that depend on certain
characteristics or functions of a device that these are not pointing to that local name but to
the actual hardware path or even better the UUID that gets presented out of that hardware

119

120 CHAPTER 8. BLOCK DEVICES

device.

8.1 Device naming

For storage there are basically two identifiers that are most interesting from a device naming
perspective. The identifiers that are tied to the physical device and the identifiers tied to a
logical entity, such as a file-system, residing on that device.

Device identifiers are the WWID, partition GUUID and serial number. The file system
identifiers are the UUID and the file-system label. Device identifiers do not change when
they are re-created. A disk device presented out of a SAN over the same path will still retain
the same device WWID. If you however re-write a file-system on that device a new UUID
will be created and you would need to update your fstab to have it automatically mounted.

As an example a /dev/sdc disk is represented by a device presented via a system path and
the type/model of that device determines how udev is handling the naming convention. If
something changes in the device path or the order how it is discovered, that same physical
device might be named /dev/sdx. There is no way to tell just based on the /dev/sd entry
which physical device it actually is referring to.

If you have disks presented out of a san this will incur a significant problem when applications
use the device based on the /dev/sdxname. For example lets say your backup application
utilises a tape device via /dev/sta, which is located on the same site as the server, and
/dev/stb locate on a remote site and after a reboot the discovery order changes resulting in
the device naming to be flipped you may have two problems. Either you backup application
is not able to correctly mount the tape or all you backup and restore operations will all of a
sudden traverse the inter switch links (ISL’s) between the two sites. When tape-libraries are
involved it becomes even more cumbersome as the backup application is not able to instruct
the library to move the correct tapes around to and from the drives. (Yes, I've been there
and it resulted in the backup application vendor to withdraw their tool). Takeaway is to
ALWAYS use UUID’s or unique entities of a device that do not change everywhere where
it is important.

The disk devices that are subject to rules by udev comes from the inventory in sysfs. These
are then outlined by udev according to a few characteristics and udev rules and subsequently
listed in /dev/disk under various characteristics.

As an example:

[root@opensuse ~]# 11 /dev/disk/
total 0
drwxr-xr-x. root root 2300 Dec 29 16:38 by-id

root root 60 Dec 29 16:38 by-label
root root 60 Dec 29 16:38 by-partlabel

root root 140 Dec 29 16:38 by-partuuid

drwxr-xr-x.
drwxr-xr-x.

N N NN

drwxr-xr-x.

8.1.

DEVICE NAMING

drwxr-xr-x. 2 root root 2580 Dec 29 16:45 by-path
drwxr-xr-x. 2 root root 280 Dec 29 16:38 by-uuid

The sysfs entries look like this

opensuse:~ # tree /sys/block/

/sys/block/
|- dm-0 ->
|- dm-1 ->
|- dm-2 ->
|- dm-3 ->
|- dm-4 ->

sda
sdb
sdc
sdd
sde
sro

nvme®Onl ->

./devices/virtual/block/dm-0
./devices/virtual/block/dm-1
./devices/virtual/block/dm-2
./devices/virtual/block/dm-3
./devices/virtual/block/dm-4
../devices/pcif000:00/0000:00:0e
nvmeOn2 -> ../devices/pcif000:00/0000:00:0e
nvmeOn3 -> ../devices/pcif000:00/0000:00:0e
nvme®n4 -> ../devices/pcif000:00/0000:00:0e
./devices/pciQo00:
./devices/pci0000:
./devices/pci0000:
./devices/pciQo00:
./devices/pci0o00:
./devices/pciQo00:

As you can see this shows the

For example a udevadm info output of the nvmeon1 device shows:

00/0000:
00/0000:
00/0000:
00/0000:
00/0000:
00/0000:

00:
00:
00:
00:
00:
00:

14.
14.
14.
14.
14.
o1.

0/host2/target2:
0/host2/target2:
0/host2/target2:
0/host2/target2:
0/host2/target2:

0:

0

0:
0:
0:

.0/nvme/nvme®/nvmednl
.0/nvme/nvmed/nvmedn2
.0/nvme/nvmed/nvmedn3
.0/nvme/nvme0O/nvmedn4
0/2:
:1/2:
2/2:
3/2:
4/2:

0:

w N B o

© © © o

:0/block/sda
:0/block/sdb
:0/block/sdc
:0/block/sdd
N

0/block/sde

121

1/ata2/hostl/targetl:0:0/1:0:0:0/block/sr0O

paths different devices take in the subsystem which is very
handy for troubleshooting especially when larger storage subsystems are attached. Based
on information out of the various device drivers udev is pulling this together and creates the
usable device pointers in /dev.

opensuse:~ # udevadm info /dev/nvme®nl

0

m mm mmmimow unw nu O rmr 2 T

/devices/pci0000:00/0000:00:0e.0/nvme/nvmed/nvmednl
nvmeOnl

disk/by-id/lvm-pv-uuid-np7uD7-Krzd-YHD4-qG2D-xrOX-g¥Yms-t3tXG1l
disk/by-id/nvme-ORCL-VBOX-NVME-VER12_VB1234-56789
disk/by-path/pci-0000:00:0e.0-nvme-1
disk/by-id/nvme-eui.5abb44353d4b7a4a9b248357h2fa67f5
DEVPATH=/devices/pcif000:00/0000:00:0e.0/nvme/nvmed/nvmednl
DEVNAME=/dev/nvme®nl
DEVTYPE=d1isk

MAJOR=259

MINOR=0

SUBSYSTEM=block
USEC_INITIALIZED=15309236

122 CHAPTER 8. BLOCK DEVICES

ID_WWN=eui.5abb44353d4b7a4a9b248357b2fa67f5
MPATH_SBIN_PATH=/sbin

DM_MULTIPATH_DEVICE_PATH=0

ID_SERIAL_SHORT=VB1234-56789
ID_MODEL=0ORCL-VBOX-NVME-VER12

ID_REVISION=1.0
ID_SERIAL=0ORCL-VBOX-NVME-VER12_VB1234-56789
ID_PATH=pci-0000:00:0e.0-nvme-1
ID_PATH_TAG=pci-0000_00_0e_0-nvme-1
ID_FS_UUID=np7uD7-Krzd-YHD4-qG2D-xr0X-g¥Yms-t3tXG1l
ID_FS_UUID_ENC=np7uD7-Krzd-YHD4-qG2D-xr0X-gY¥ms-t3tXG1l
ID_FS_VERSION=LVM2 001

ID_FS_TYPE=LVM2_member

ID_FS_USAGE=raid

COMPAT_SYMLINK_GENERATION=2

SYSTEMD_READY=1

SYSTEMD_ALIAS=/dev/block/259:0
SYSTEMD_WANTS=1vm2-pvscan@259:0.service
DEVLINKS=/dev/disk/by-id/lvm-pv-uuid-np7uD7-Krzd-YHD4-qG2D-xr0X-gY¥ms-t3tXG1l \
/dev/d1sk/by id/nvme-ORCL-VBOX-NVME-VER12_VB1234-56789 \
/dev/disk/by-path/pci-0000:00:0e.0-nvme-1 \
/dev/disk/by-id/nvme-eui.5abb44353d4b7a4a9b248357b2fa67f5
E: TAGS=:systemd:

mmmmmmmmmmmmmmmmmmm

From a troubleshooting perspective there is not very much you can do on this level. The main
issues are most often with discovery and presentation. These problems should be investigated
in udev, the presentation layer like for example fibre-channel or iSCSI or even the lower level
firmware and drivers for the hardware attached to the devices or infrastructure.

When it comes to identifying issues the tools in the various Linux packages can provide
a treasure trove of information. In order to use these verify if the sg3-utils and nvmecli
packages are installed. Most, if not all distributions have these in their repositories.

8.2 Identifying device characteristics

When a storage controller presents a disk to the system various triggers kick off to identify
the disk and make an inventory of its characteristics. Depending on the device type it may
use SCSI, nvme or other inquiry commands.

8.2.1 SCSI

Lets start with a SCSI device. (We'll come back to the protocol later on.) The command
is actually named inquiry and what it does initially is obtaining a list of LUNS (i.e. the

8.2. IDENTIFYING DEVICE CHARACTERISTICS 123

addressable devices) supported, so called, VPD’s which stands for vital Product Data. The
VPD’s are presented in pages where each page has an ID and a predefined list of which
information it should provide. All devices that claim to adhere to the SCSI standard should
respond with at least two pages 0x00 and 0x83. The first one is the device identification
page and the 0x83 page is a list of all other VPD pages the device supports. Subsequent
inquiry commands with these VPD page requests can then be sent to the device to obtain
more information.

The sg-utils [23] package contain a substantial library of tools that use the SCSI command
set to perform a myriad of functions on a large as variety of equipment.

Be aware that all these tools operate on a very low level and can/will bypass
restrictive measures that are put in place by any higher level mechanism. In
other words it can/will destroy your data without asking for permission or con-
firmation.

The sg_inqg tool provides the following on a standard disk that is presented out of Virtual
Box

opensuse:~ # sg_inq /dev/sdc

standard INQUIRY:
PQual=0 Device_type=0 RMB=0 LU_CONG=0 version=0x05 [SPC-3]
[AERC=0] [TrmTsk=0] NormACA=0 HiSUP=0 Resp_data_format=0
SCCS=0 ACC=0 TPGS=0 3PC=0 Protect=0 [BQue=0]
EncServ=0 MultiP=0 [MChngr=0] [ACKREQQ=0] Addrl6=0
[RelAdr=0] WBusl1l6=1 Sync=0 [Linked=0] [TranDis=0] CmdQue=1

length=36 (0x24) Peripheral device type: disk

Vendor identification: VBOX

Product identification: HARDDISK

Product revision level: 1.0

The VPD pages that are supported on a virtual disk are negligible as the underlying hardware
is not directly exposed and only very basic functionality is therefore provided. All protocol
related support is obfuscated by the virtualisation stack and is handled on that level.

opensuse:~ # sg_vpd /dev/sdc
Supported VPD pages VPD page:
Device +identification [di]

When executing this on physical devices it becomes much more interesting.

[server % ~] sudo sg_ing /dev/sdc

standard INQUIRY:
PQual=0 Device_type=0 RMB=0 LU_CONG=0 version=0x05 [SPC-3]
[AERC=0] [TrmTsk=0] NormACA=0 HiSUP=0 Resp_data_format=2
SCCS=0 ACC=0 TPGS=0 3PC=0 Protect=0 [BQue=0]

124 CHAPTER 8. BLOCK DEVICES

EncServ=0 MultiP=0 [MChngr=0] [ACKREQQ=0] Addr1l6=0
[RelAdr=0] WBus16=0 Sync=0 [Linked=0] [TranDis=0] CmdQue=1
[SPI: Clocking=0x0 QAS=0 IUS=0]
length=96 (0x60) Peripheral device type: disk

Vendor -qidentification: ATA

Product identification: ST2000DLOO3-9VT1l

Product revision level: CC32

Unit serial number: 5YDOSELS5

The supported VPD pages:

[server % ~] sudo sg_vpd /dev/sdc
Supported VPD pages VPD page:

Supported VPD pages [sv]

Unit serial number [sn]

Device 1ddentification [di]

ATA information (SAT) [ai]

Block limits (SBC) [b1l]

Block device characterdistics (SBC) [bdc]

Logical block provisioning (SBC) [lbpv]

Each of these can subsequently be queried individually.

[server % ~] sudo sg_vpd -p sn /dev/sdc
Unit serial number VPD page:
Unit serial number: 5YDOSELS5

[server % ~] sudo sg_vpd -p di /dev/sdc
Device Identification VPD page:
Addressed logical unit:
designator type: vendor specific [0x0], code set: ASCII
vendor specific: 5YDOSELS5
designator type: T10 vendor identification, code set: ASCII
vendor id: ATA

vendor specific: ST2000DLO0O3-9VT166 5YDOSELS5
designator type: NAA, code set: Binary
0x5000c5002f0289a9

[server % ~] sudo sg_vpd -p ai /dev/sdc
ATA dinformation VPD page:

SAT Vendor 1identification: linux

SAT Product -didentification: libata

SAT Product revision level: 3.00

Device signature indicates SATA transport

8.2. IDENTIFYING DEVICE CHARACTERISTICS

Command code: Oxec

125

ATA command IDENTIFY DEVICE response summary:

model: ST2000DLOO3-9VT166
serial number: 5YDOSELS5

firmware revision: CC32

[server % ~] sudo sg_vpd -p bl /dev/sdc
Block limits VPD page (SBC):

Write same non-zero (WSNZ): ©

Maximum compare and write length: 0 blocks [Command not implemented]

Optimal transfer
Maximum
Optimal

Maximum

transfer
transfer
prefetch
Maximum unmap LBA count: 0@ [Unmap command
Maximum
Optimal
Unmap granularity alignment valid: false
Unmap granularity alignment: 0 [invalid]

length granularity: 1 blocks
length: 0 blocks [not reported]
length: 0 blocks [not reported]
transfer length: 0 blocks [ignored]

not implemented]

unmap block descriptor count: © [Unmap command not implemented]
unmap granularity: 0 blocks [not reported]

Maximum write same length: 0 blocks [not reported]

Maximum atomic transfer length: 0 blocks

[not reported]

Atomic alignment: 0 [unaligned atomic writes permitted]

Atomic transfer length granularity: 0 [no

granularity requirement

Maximum atomic transfer length with atomic boundary: © blocks [not reported]

Maximum atomic boundary size: 0 blocks [can only write atomic 1 block]

[server % ~] sudo sg_vpd -p bdc /dev/sdc

Nominal rotation rate: 5900 rpm
Product type: Not specified
WABEREQ=0

WACEREQ=0

Nominal form factor not reported
ZONED=0

RBWZ=0

BOCS=0

FUAB=0

VBULS=0

DEPOPULATION_TIME=0 (seconds)

[server % ~] sudo sg_vpd -p lbpv /dev/sdc
Logical block provisioning VPD page (SBC):

Block device characteristics VPD page (SBC):

126

Unmap command supported (LBPU): 0@

CHAPTER 8. BLOCK DEVICES

Write same (16) with unmap bit supported (LBPWS): 1
Write same (10) with unmap bit supported (LBPWS10): ©
Logical block provisioning read zeros (LBPRZ): 0

Anchored LBAs supported (ANC_SUP): 0

Threshold exponent: 0 [threshold sets not supported]

Descriptor present (DP): ©
Minimum percentage: 0 [not reported]

Provisioning type: 0 (not known or fully provisioned)

Threshold percentage: 0 [percentages not supported]

[server % ~]

If you looked closely you will have seen a wwn in the device identification page. In this
case for device /dev/sdc/ it is 0x5600c5002f0289a9. That number is than used to uniquely
identify the disk and is then used to build the stack. When looking at the /dev/disk/by-1id
directory you will see the same wwn returning

[server % ~] 11 /dev/disk/by-id

<snip>

Trwxrwxrwx 1 root root

<snip>

9 Apr 15 17:14 scsi-35000c5002f0289a9 -> ../../sdc <<<<<<K

There are however more identifiers under which this disk is now known to the system and
various tools and applications can use this accordingly.

[server %
Trwxrwxrwx
Trwxrwx rwx
Trwxrwxrwx
Trwxrwxrwx
Trwxrwxrwx
Trwxrwxrwx

1
1
1
1
1
1

] 1
root
root
root
root
root
root

/dev/disk/by-id | grep

root
root
root
root
root
root

9

© 0 OV v o

Apr
Apr
Apr
Apr
Apr
Apr

8.2.1.1 Device capabilities

15
15
15
15
15
15

17:
17:
17:
17:
17:
17:

25
25
25
25
25
25

sdc

ata-ST2000DLOO3-9VT166_5YDOSEL5 ->
scsi-0ATA_ST2000DLOO3-9VT1_5YDOSEL5 ->

../../sdc

../../sdc

scsi-1ATA_ST2000DLO0O3-9VT166_5YDOSELS -> ../../sdc

scsi-35000c5002f0289a9 ->
scsi-SATA_ST2000DLOO3-9VT1_5YDOSEL5 ->
wwn-0x5000c5002f0289a9 ->

./../sdc

../../sdc>

./../sdc

Let’s have a look at some device capabilities that are presented out of the inquiry response.

As we saw earlier the response retrieved via the sg_inq tool is interpreted and then displayed:

standard INQUIRY:
PQual=0 Device_type=0 RMB=0

[AERC=0]

[TrmTsk=0]

SCCS=0 ACC=0 TPGS=0 3PC=0
EncServ=0 MultiP=0
[RelAdr=0]

[SPC-3]"

LU_CONG=0 version=0x05
NormACA=0 HiSUP=0 Resp_data_format=2
Protect=0 [BQue=0]
[MChngr=0] [ACKREQQ=0] Addr16=0

WBus16=0 Sync=0

[Linked=0]

[TranDis=0]

CmdQue=1

8.2. IDENTIFYING DEVICE CHARACTERISTICS 127

[SPI: Clocking=0x0 QAS=0 IUS=0]
length=96 (0x60) Peripheral device type: disk

Vendor didentification: ATA

Product identification: ST2000DLOO3-9VT1l
Product revision level: CC32

Unit serial number: 5YDOSELS5

When looking somewhat deeper and get the underlying hex values we can see the same
information but are now able to associate this with the values as outlined by the T10 SCSI
standard. (More on that later)

[server % ~

00
10
20
30
40
50

00
53
43
00
00
00

00
54
43
00
00
00

] sudo sg_ing -H /dev/sdc

05 02 5b 60 00 02 41 54 41 20 20 20 20 20 oo [...ATA

32 30 30 30 44 4c 30 30 33 2d 39 56 54 31 ST2000DLOO3-9VT1
33 32 00 00 0O GO OO0 OO0 OO0 OO0 OO0 00 00 00 CC32.iiiiiinnnnn
00 00 0O OO0 0O GO 00 00 00 60 03 20 03 G0
00 00 0O OO0 0O GO 00 OO0 OO0 00 00 00 00 00 ... iiiiiiennn
00 00 00 OO0 GO0 OO 00 00 00 00 00 00 00 B0 iiiiirenrnns

As you now have the absolute values you can associate these with the defined fields out of
the T10 SCSI SPC documentation.

128 CHAPTER 8. BLOCK DEVICES

Table 81 — Standard INQUIRY data format

Bit
Byte 7 6 5 4 3 2 1 0
0 PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE
1 AvB | Resenved
2 VERSION
3 Obsolete] Obsolete | NORMACA HiSur RESPONSE DATA FORMAT
4 ADDITIONAL LENGTH (n-4)
5 5CCS ACC TPGS 3rC Reserved PROTECT
6 BQuUE ENCSERV Vs MuLTIP MCHNGR | Obsolete | Obsolete ADDR162
7 Obsolete | Obsolete | wsus162 sYNC? LINKED Obsolete CMDQUE Vs
8 (MSB)
T10 VENDOR IDENTIFICATION —
15 (LSB)
16 (MSB)
PRODUCT IDENTIFICATION E—
31 (LSB)
32 (MSB)
PRODUCT REVISIOM LEVEL E—
35 (LSB)
36 »
Vendor specific
55
56 Reserved CLOCKING? ‘ ans? | us?
57 Reserved
58 (MSB)
VERSION DESCRIPTOR 1 —
59 (LSB)
72 (MSB)
VERSION DESCRIPTOR 8 e —
73 (LSB)
74
Reserved
95

Figure 8.1: SCSI SPC-3 Inquiry response

The standard requires at least a response of the first 36 bytes. Byte 4 will indicate how
many additional bytes are appended to it from byte 4 onwards.

Be aware that standards are under constant development and fields may become obsolete
or may be replaced with other meanings. It is therefore important that not only the version
field is taken into account but also the driver and firmware versions on the respective hosts
are up to date in order to be able to correctly use that device.

A few fields I do want you to take notice off.

8.2. IDENTIFYING DEVICE CHARACTERISTICS 129

e Byte 0

— The first three bits are most often all 0’s.

— The device type in bits 0 to 4 depict what kind of device it is. Disk, Tape
drive, tape library, printer etc... and also determine which peripheral command
set should be used.

e Byte 1

— The RMB bit stands for removable medium bit which, in basically all enterprise
storage devices, is set to 0. In most cases when this is set to 1 all caching
algorithms to and from this device are going to be disabled.

e Byte 2

— This is one of the most important ones as this one basically enforced which version
of the peripheral command set can be used from the host to the device and
vice versa. This is very important as many functions like for example locking
and reservation commands are very different between versions and many newer
features depend on it. At the time of this writing it should always be set to
0x05 or higher (for disk devices) as that depicts the SPC-3, 4 and 5 command set
support respectively.

e Byte 4

— In our example this value was 0x5b (91 bytes).

e Bytes 5 6 and 7 are the ones that basically the on and off switches for the various
device specific features.

— SCCS - this bit indicates if an embedded storage controller component is available
and supported. This allows applications to directly execute commands against
the controller to do all sorts of functions like provisioning, replication etc.

— TPGS - Target Port Group Support is used for multipathing access with different
access characteristics. You may have come across the term ALUA (A-synchronous
Logical Unit Access) which is using these two bits. We’'ll dedicate a separate
chapter on multipathing.

— 3PC - The 3PC bit informs the block layer that 3rd Party Copy commands
are supported. This allows applications to send commands to the storage copy
manager and offload data movement activities to that controller.

— The Protect bit is used for the T10 data integrity function which we also touch
on later.

— The BQue and CmdQue bits are mutually exclusive and indicate if a Full or Basic
taskmanagement commandset can be used.

— The EncServ bit is sometimes used in storage arrays and tape libraries to indicate
support for direct environmental diagnostics capabilities.

Depending on the issues you observe in your storage environment you may be able to tie
certain characteristics to the information you obtained via one of the above methods. If for
example you run into a problem with certain clustering solutions you may want to check if
the correct SCSI version is presented out of a storage array. Very often the functions and
features that are required are determined by certain configuration settings in the arrays or

130 CHAPTER 8. BLOCK DEVICES

controllers.

8.3 Caching

Depending on the implementation the way and level of caching can be done on many levels.
The main decision point will always be where to use caching and to what extend caching is
beneficial to the application response time. If caching is set too aggressive on, lets say the
scheduler level, it may be negatively impacting caching algorithms on storage arrays.

As an example lets take a relative write intensive sequential workload. Storage array read-
ahead caching algorithms look at the ratio where and how these write requests come in an
may start pre-staging subsequent data in their caches. If one of the layers on the host system
is also trying to do the same thing and balance out read and write requests, or write requests
to different sectors on disk, this may interfere with the handling of cached data on the array.
This may caused the cache-hitrate on the array to decline resulting in transactional delays
to the application.

In order to see how well a host caching vs an array caching algorithm works you would
need to obtain the jostat output and observe the await, r_wait and/or w_wait values as
that would tell you the response time including the queuing delay. Compare these numbers
against the cache hit and miss rate on the array. Experiment with different host settings
against a workload profile that is representative for the application. Be aware that on an
external storage array there are really dozens of knobs that can be flipped or tuned and
that these systems most often have to serve a fairly diverse set of hosts. What might look
excellent one days may show up a dreadful the other due to a change in access characteristics
from other hosts or applications.

As I said in the beginning the tuning and optimisation of an IO subsystem from host to disk
is somewhat beyond the scope of this book.

Chapter 9

Schedulers

As mentioned recent kernels provide only multi-queue schedulers. This is especially impor-
tant since the rise of NVMe and NVMEoF (NVMe over Fabrics). Hardware has developed
significantly over the last decade where spinning platers of magnetic material with an actu-
ator head hovering over it is replaced by non-volatile silicon operating at lightning speeds
and thus are not restricted by mechanical delays.

In order to facilitate this the older schedulers who where primarily optimized for single queue
operations are now replaced so that a very large number of IO commands can be accepted by
the software queues and be optimized to be send as fast as possible to the various hardware
dispatch queues. The internal heuristics of each of these can be referred to below.

The main difference between the non-mq and mq schedulers is two-fold. First the mq
schedulers have a far wider range of dispatch options and they are not as strictly bound to
locality of the data on disk. The non-mq schedulers tried franticly to prevent movement of
the disk heads by gathering 10 requests and rearrange them in certain order so that these
requests could be serviced by the disk or controller in the most optimal way. As that is
no longer required due to the direct access to an individual area without any mechanical
delay, the mq schedulers do not need a large list of so called tunables to be able to optimize
10’s. That is not to say they cannot optimize IO request. Especially when it comes to
different workload characteristics a scheduler like BFQ can be fairly beneficial. It needs to
be said though that all schedulers do incur a latency penalty although in most cases this is
negligible.

9.1 Non-MQ

deadline, noop, cfq are (or were) the available schedulers in older kernels. As mentioned
these are no longer supported and should not be used.

131

132 CHAPTER 9. SCHEDULERS

9.2 MQ

The current multi-queue schedulers are predominantly the BFQ [24], Kyber [25] and the
MQ-Deadline[26] scheduler.

As for troubleshooting the schedulers this is most often based on a trial and error basis as well
as adjusting scheduler parameters, i.e. tunables, if required. Some schedulers use cgroups
functionality to be able to adjust IO behaviour. Some distros use systemd in conjunction
with cgroups to modify the schedulers. Refer to the documentation of you distribution how
this is achieved.

An example on how to dynamically change the scheduler is shown below. At first you need
to know which one is actually compiled into the kernel. A simple cat on the scheduler file
of each device will show what is possible and which one is currently activated.

The one on the sdc drive is [bfq] at the moment.

[server % ~] cat /sys/class/block/sdc/queue/scheduler
mg-deadline kyber [bfq] none

On the nvme drive there is no scheduler active/

[server % ~] cat /sys/class/block/nvmednl/queue/scheduler
[none] mqg-deadline kyber bfqg

To dynamically change this a simple echo command will do the trick:

[root@server ~]# echo kyber > /sys/class/block/nvme®nl/queue/scheduler

[root@server ~]# cat /sys/class/block/nvme@Onl/queue/scheduler
mqg-deadline [kyber] bfq none

In order to quickly and automatically select the scheduler of your choice a simple way is to
use udev and adjust these values

As an example add the below in a file called 66-diskscheduler.conf and save this in the
/etc/udev/rules.d directory. (Be aware the rules should be on one line. The | is there
otherwise it would not fit on the page)

set kyber scheduler for non-rotating disks
ACTION=="add|change", KERNEL=="sd[a-z]", ATTR{queue/rotational}=="0", \
ATTR{queue/scheduler}="kyber"

set bfgq scheduler for rotating disks
ACTION=="add|change", KERNEL=="sd[a-z]", ATTR{queue/rotational}=="1", \
ATTR{queue/scheduler}="bfq"

Basically what udev does is looking for the sd devices and if the attribute rotational is set
to 1 it modifies the scheduler to bfq and if it is set to 0 it will adjust the scheduler to kyber.

9.3. SELECTION 133

[root@server ~]# udevadm info -a /dev/sdc

looking at device '/devices/pcif0000:00/0000:00:17.0/ata4/host3/ \
target3:0:0/3:0:0:0/block/sdc':

KERNEL=="sdc"
SUBSYSTEM=="block"
DRIVER==""
ATTR{alignment_offset}=="0"
ATTR{capability}=="50"

<snip>
ATTR{queue/read_ahead_kb}=="128"
**ATTR{queue/rotational}=="1"xx <<<KKLLKLLLLKLKKKK
ATTR{queue/rq_affinity}=="1"
**ATTR{queue/scheduler}=="mg-deadline kyber [bfg] none"x* <<<<<<<<K
ATTR{queue/stable_writes}=="0"
ATTR{queue/wbt_lat_usec}=="75000"

<snip>

9.3 Selection

So which scheduler should I use? In general the BFQ scheduler with the default options
set are good for most general purpose applications. As with most processes in the Linux
kernel there are a fair few knobs and switches with the bfqg scheduler but you should really
investigate and test your setup before implementing these changes into production systems.
As the name (or acronym) implies the bfq scheduler acts as a fair queuing dispatcher.
Each process requesting access to a devices is assigned a weight and a queue. That queue
is budgeted to access the device at some stage depending on the configured tunables. By
incrementing and decrementing the budget there will be a very well balanced IO profile
achieved across all processes doing I10. The bfq scheduler tunables can be adjusted on a per
device basis via the switches in the /sys/block/<device>/queue/iosched/ directory or based
on a cgroup configuration. For the latter you need to ensure this is enabled in the kernel via
the BFQ_GROUP_IOSCHED flag.

Symbol: BFQ_GROUP_IOSCHED [=y]
Type : bool
Defined at block/Kconfig.iosched:31
Prompt: BFQ hierarchical scheduling support
Depends on: BLOCK [=y] && IOSCHED_BFQ [=y] && BLK_CGROUP [=y]
Location:
-> I0 Schedulers
(2) -> BFQ I/0 scheduler (IOSCHED_BFQ [=y])
Selects: BLK_CGROUP_RWSTAT [=y]

134 CHAPTER 9. SCHEDULERS

By default the bfq scheduler is more favourable to interactive and “real-time” applications.
If your system is having issues on such a mixed workload you may want to investigate this.
There is no way of telling what is right or wrong here upfront.

The kyber scheduler is simpler as it is a relatively straightforward one and it primarily
tries to cater to get as close as possible to the read_lat_nsec and write_lat_nsec tunables
irrespective of workload characteristics. This may be useful when a very pre-deterministic
workload is offered from the application.

Obviously the choice is yours. Using individual devices can provide a more granular control
over each disk whereas using cgroups gives a more manageable structure per process.

9.4 Tuning

The above is more related to generic systems administration and basically shows the quick
and simple way to select and configure the appropriate scheduler. It will then need to be
determined if and how additional tuning may be needed to optimize the respective scheduler
via one or more tunables that may be available for the scheduler.

So when do you actually need to change these knobs? In general you don’t need to at all.
The defaults are pretty good for most workloads but some optimizations may be helpful in
some cornercases.

The kyber scheduler has only two knobs to try an modify IO behaviour

[root@server iosched]# for i in x; do echo -n "$i :"; cat $i;done
read_lat_nsec :2000000
write_lat_nsec :10000000

The bfq scheduler has a few more:

[root@server:/sys/block/sdd/queue/iosched]$ for i in *; do echo -n "$i :"; cat $i;done
back_seek_max :16384
back_seek_penalty :2
fifo_expire_async :250
fifo_expire_sync :125
low_latency :1
max_budget :0
slice_idle :8
slice_idle_us :8000
strict_guarantees :0
timeout_sync :125

If your workload is primarly server related you may wish to disable the low_latency mode
as that would prioritise interactive applications and realtime applications. If you want to
fully control the bandwidth and distribution of the workload you would need to set this to

9.4. TUNING 135

0. The back_seek_max and back_seek_penalty are primarily useful for rotational disk drives.
It calculates, based on the diskdrive geometry, what is the optimum number of kilobytes
to seek backwards in order to determine whether or not a drive head is close enough
to the location of the current request for it to flag it as a next request. This behavior is
also sometimes called read ahead requests. It may need some testing based on your
application and drive layout to find its optimum setting.

Be aware though that disks presented out of storage arrays may show up as rotational but
these have their own algorithms to optimise workloads so fiddling with these parameters on
those kind of disks is very likely to be futile.

The fifo_expire_xxx settings provide a way to prioritise synchronous v.s. a-synchronous
workloads. This may be useful in both local and SAN-attached storage as many storage
arrays have special algorithms that can detect this kind of workload differentiation and
therefore also optimise its own internals to cater for this distinctive pattern.

136 CHAPTER 9. SCHEDULERS

Chapter 10

Protocols

In the storage-world there used to be a plethora of protocols which all regulated the com-
munication between a storage device and a host. Only 2 of them have basically “survived”
and one has been recently, in the sense of the last decade, introduced.

In the mainframe “big boys” league it is still a very much Ficon (ie SBCCS or Single Byte
Command Code Set over Fibre Channel) and SCSI in the open systems world. NVMe is the
latest addition that more or less takes care of the inherent limitations SCSI brings with it,
and is very much optimized for dealing with very fast Solid State disk drives.

This is one of the larger and complex chapters as it also incorporates a lot of issues that are
related to transport protocols like TCP/IP and Fibre Channel. Especially in environments
where hosts obtain their disks from external systems, you often see issues which are in many
cases very hard to diagnose. As it also has a lot of “horizontal” and “vertical” touch points
you’ll see that many sections show a various degree of issues which intertwine with each
other. This makes is somewhat appear strange but when you look at it from a high level it
all makes sense. It is imperative that when you attach a host to external storage you also
have a relatively good understanding of what is involved from that side so you can work
with your storage administrators in case issues arise.

10.1 Channels

As for the channel protocols on a Linux subsystem we more or less only have to look at
SCSI and NVMe. The NVMe [27] part is a bit of a grey area as it crossed boundaries
with memory, PCI, transport networks and interacts with the access characteristics of the
individual device.

137

138 CHAPTER 10. PROTOCOLS

10.2 SCSI

SCSI could have a chapter on it’s own. Let me rephrase that, it could have a book on
its own when it comes to troubleshooting. The architecture is vast and is outlined in the,
so called, SAM '. The acronym SCSI stands for Small Computer Systems Interface which
already shows you the actual heritage it has. It was initially designed as a hardware and
communications standard to be able to connect devices like printers, modems, keyboards
etc. over a single bus to a PC. The fact that these days SCSI is still around and serving
massive storage environments is really a testament to the original designers of the protocol
who had the vision of creating a flexible and scalable method of device communications.

Figure 10.1: SCSI Architecture Model

The SAM model as shown has more protocols than depicted here however from a Linux
troubleshooting perspective these are the most relevant ones.

When it comes to the protocol itself there is not really much you can do with regards to
actually turn on knobs and move sliders. A few exceptions may be for example tuning
queue-depth and supportability options. The protocol itself is pretty well fleshed out and is
very stable.

The first thing is that the scsi driver itself is statically compiled in the kernel via the sg
(SCSI generic) driver. It’s parameters are :

e scatter elem szscatter gather element size (default: max(SG_SCATTER SZ,
PAGE_SIZE)) (int)

o def reserved size:size of buffer reserved for each fd (int)

e allow_dio:allow direct I/O (default: 0 (disallow)) (int)

I haven’t come across major issues that would justify modifying any of these. In some corner
cases where applications have control of the IO stack when it comes to caching, queueing
etc. you may see that the allow_dio parameter is set to 1 but these are very rare.

In the “Block devices” chapter we’ve already seen the 1sblk output and how the local devices
can provide a plethora of information. The swiss-army knife on Linux when it comes to SCSI

1SCSI Architecture Model

10.2. SCSI 139

is the 1sscsi command utility which comes most often installed by default on both Redhat
and SUSE. If not a sudo dnf install lsscsi or via one of your favourite package managers
would to the trick.

So how does SCSI operate in general? SCSI works with so called Initiators and Targets.
These are connected to a scsi bus and the initiator has the control over that bus. There
can only be one active initiator on a bus. Anything that gets send to a device is done via
a write command and anything that needs to be retrieved from a device is done via a read
command from the initiator to the target. The targets themselves have no control over the
bus. (There are a few exceptions but these cannot be controlled from a generic SCSI layer
and depends on the device type and capabilities)

The read and write commands are not only used for storing and retrieving data but also for
low level device communication. There are for example write commands that send instruc-
tions to a tape library to load a particular tape in a particular tape drive. Read commands
are also used to obtain information from a device like for instance a serial number or any
other characteristics. Depending on the amount of information required in the instruction
set the read and write commands can be of different sizes. These are defined as READ(10),
READ(12), READ(16), READ(32) and the same for write commands.

Whatever information is required from a device in order for it to be able to function will be
determined via inquiry commands. The first inquiry command is more related to making
an inventory of attached devices. This then allows the SCSI generic driver to build a “device
tree” after which more targeted inventory commands provide a supported options list what
the device actually is and what capabilities it can provide to the operating system. From
there on the respective device drivers are loaded (if not already statically compiled in the
kernel) and additional parameters can be set and used in order to actually use that specific
device. The specifics of each device is obviously tied to the hardware capabilities but also
what the driver allows you to do. If you have a shiny new raid-controller which has been on
the shelf in the store for over a year you can rest assure that the driver comes shipped with
the card in the box is already outdated and new or updated functions/features may already
be available in newer releases.

The inquiry commands do request so called VPD’s 2 of which one is mandatory and every
SCSI device should return the data and that is a list of which other VPD’s are supported.
Based on that one or more subsequent requests will be made with additional VPD pages.

[root@server:~]S$ sg_vpd -p sv /dev/sde
Supported VPD pages VPD page:
Supported VPD pages [sv]
Unit serial number [sn]
Device identification [di]
ATA information (SAT) [ai]

2Vital Product Data

140 CHAPTER 10. PROTOCOLS

Block limits (SBC) [b1l]
Block device characteristics (SBC) [bdc]
Logical block provisioning (SBC) [1lbpv]

From there on the supported pages can be queried.

[root@server:~]$ sg_vpd -p di /dev/sde
Device Identification VPD page:
Addressed logical unit:
designator type: vendor specific [0x0], code set: ASCII
vendor specific: Z4Z8TFRT
designator type: T10 vendor identification, code set: ASCII
vendor id: ATA

vendor specific: ST2000DMOO6-2DM164 ZA4Z8TFRT
designator type: NAA, code set: Binary
0x5000c500a30b35d1

The info that is retrieved via these inquiry commands on VPD pages are defined by the
T10 standards body. There are however provisions that allow vendors to add functionality
based on their own requirements. The information that is retrieved there is often in some
binary or hex blob which does not make much sense if you don’t know how to decode this.
Many array vendors use these fields for functions and features that are proprietary to their
solutions like, for example, remote replication or interaction with management agents that
can be installed on hosts.

Next to the READ, WRITE and Inquiry commands there is a hole plethora of commands that
handle the entire operation of the initiator and target management facilities. This can extend
to upgrading firmware, doing inline copies of data between luns without host involvement,
formatting of drives, getting status information on various levels etc. etc.

The command flow is explained a little later in this chapter in the Fibre Channel section.

So how does this help me? you can ask. The dinquiry information that is being returned
from the devices helps in identifying if you have the correct device in case you need to
troubleshoot any issues. As I mentioned in the block devices chapter, you cannot rely on
the logical device name that Linux gives to the device as that may change in various ways.
It would be very detrimental to your system if you start troubleshooting the /dev/sdgg/
disk which you think comes out of raid-array A where the actual disk is represented out of
raid-array B. That is just an example and most of the time you're pretty sure where disks
come from however when architectures become more complex and large SAN’s are used in
combination with a variety of Linux options, you're better be safe than sorry.

When it comes to terminology you will often see the acronym HBTL or HCTL which stands for
Host, BUS/Channel, Target, LUN. The host in this case is not the server but the controller that
is interacting with the operating system. The BUS is more or less synonymous to a channel.
On this channel you can have one or more Targets such as array ports, tape libraries and

10.2. SCSI 141

printers. Each target can present one or more LUNS ®. A LUN can be any sort of device,
physical disks, logical disks presented out of arrays, tape library robotics and tape drives,
you name it.

The majority of error logging facilities will very often show this addressing schema. The
below snippet shows an example.

/var/log/messages-20220619.gz:Jun 12 23:11:09 monster kernel: [48480.070957] sd 3:0:0:0: \
[sdc] tag#23 FAILED Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK cmd_age=117s
/var/log/messages-20220619.gz:Jun 12 23:11:09 monster kernel: [48480.070959] sd 3:0:0:0: \

[sdc] tag#23 CDB: Write(10) 2a 00 72 54 18 10 00 00 08 00

The part after sd showing 3:0:0:0 is the representation of that addressing schema. If you
know this you can easily trace that back to the actual device.

$ lsscsi -L

<snip>

[3:0:0:0] disk ATA ST2000DLOO3-9VT1 CC32 /dev/sdc
device_blocked=0
jocounterbits=32
jodone_cnt=0x2897
joerr_cnt=0x476
jorequest_cnt=0x28f6
queue_depth=32
queue_type=simple
scsi_level=6
state=running
timeout=30

<snip>

Keen readers would have noticed the above is not actually a SCSI drive but an ATA one.
Linux uses the libata [28] library to tunnel or translate ATA commands over a SCSI
command structure. This way the command set of SCSI’s SAT # standard can be used to
address ATA disk drives.

I would urge you to explore the 1sscsi command in-depth as it provides very useful infor-
mation for quick analysis of device characteristics and device paths which improves accuracy
and speed in diagnosing issues.

10.2.1 Logging

The Linux kernel SCSI subsystem does provide an option to increase the verbosity of the
logging facility.

3Logical Unit Numbers
4SCSI ATA Translation

142 CHAPTER 10. PROTOCOLS

A Be aware that increasing the logging verbosity may incur a significant performance
penalty and may even cause the system to come to a grinding halt. Do this only in cir-
cumstance when you suspect a problem within the IO stack and other means have been
exhausted.

The logging verbosity may be set dynamically by echoing a value in /proc/sys/scsi/logging_level
or statically via the sysctl -a dev.scsi_logging_level=xxxxxxcommand. Be aware that

the latter will also be applied when starting up the system so you may see an additional
delay there.

The facility provides a few trace-points, for a lack of a better word.
The source code shows a good explanation on how this is build up:
/*

* This defines the scsi logging feature. It is a means by which the user can
* select how much information they get about various goings on, and it can be

*

really useful for fault tracing. The logging word is divided into 10 3-bit
bitfields, each of which describes a loglevel. The division of things is
somewhat arbitrary, and the division of the word could be changed +if it

* % %

were really needed for any reason. The numbers below are the only place
* where these are specified. For a first go-around, 3 bits is more than

* enough, since this gives 8 levels of logging (really 7, since 0 1is always
* off). Cutting to 2 bits might be wise at some point.

x/

#define SCSI_LOG_ERROR_SHIFT 0
#define SCSI_LOG_TIMEOUT_SHIFT 3
#define SCSI_LOG_SCAN_SHIFT 6
#define SCSI_LOG_MLQUEUE_SHIFT 9

#define SCSI_LOG_MLCOMPLETE_SHIFT 12
#define SCSI_LOG_LLQUEUE_SHIFT 15
#define SCSI_LOG_LLCOMPLETE_SHIFT 18
#define SCSI_LOG_HLQUEUE_SHIFT 21
#define SCSI_LOG_HLCOMPLETE_SHIFT 24
#define SCSI_LOG_IOCTL_SHIFT 27

#define SCSI_LOG_ERROR_BITS
#define SCSI_LOG_TIMEOUT_BITS
#define SCSI_LOG_SCAN_BITS
#define SCSI_LOG_MLQUEUE_BITS
#define SCSI_LOG_MLCOMPLETE_BITS
#define SCSI_LOG_LLQUEUE_BITS

w w w w w w

10.2. SCSI 143

#define SCSI_LOG_LLCOMPLETE_BITS
#define SCSI_LOG_HLQUEUE_BITS
#define SCSI_LOG_HLCOMPLETE_BITS
#define SCSI_LOG_IOCTL_BITS

w w w w

So each of the keyword above can be set to a value from 0 to 7. If for example you need
to increase verbosity on the ERROR, TIMEOUT and IOCTL bits with respective values
of 2, 4 and 5 you would set the value to 500000042. The command then to enter is echo
402653201 > /proc/sys/dev/scsi/logging_level

Shouldn’t this be 50000000422%7)...

The value is specified as an octal number so 50000000042 to octal is 402653201. It’s a bit
cumbersome to do this manually so the good people of IBM have written a script called
scsi_logging_level and is part of the sg3_utils package. Install that and you’ll be able to
use a simpler way of just specifying the values you want.

sserver:~ # scsi_logging_level -h
Usage: scsi_logging_level [OPTIONS]

Create, get or set scsi logging level.

Options:
-h, --help print this help
-v, --version print version information
-s, —--set create and set logging level as specified on
command line
-g, —-get get current logging level and display it
-c, —--create create logging level as specified on command line
-a, —--all specify value for all SCSI_LOG fields
-E, -—error specify SCSI_LOG_ERROR
-T, --timeout specify SCSI_LOG_TIMEOUT
-S, --scan specify SCSI_LOG_SCAN

-M, --midlevel specify SCSI_LOG_MLQUEUE and SCSI_LOG_MLCOMPLETE
--mlqueue specify SCSI_LOG_MLQUEUE
--mlcomplete specify SCSI_LOG_MLCOMPLETE

-L, --lowlevel specify SCSI_LOG_LLQUEUE and SCSI_LOG_LLCOMPLETE
--1lqueue specify SCSI_LOG_LLQUEUE
--1lcomplete specify SCSI_LOG_LLCOMPLETE

-H, --highlevel specify SCSI_LOG_HLQUEUE and SCSI_LOG_HLCOMPLETE
--hlqueue specify SCSI_LOG_HLQUEUE
--hlcomplete specify SCSI_LOG_HLCOMPLETE

-I, --joctl specify SCSI_LOG_IOCTL

144 CHAPTER 10. PROTOCOLS

Exactly one of the options "-c", "-g" and "-s" has to be specified.
Valid values for SCSI_LOG fields are integers from 0 to 7.

What you actually need to enter here when it comes to which values on which parameters
will be mentioned by your support vendor. When it comes to diagnosing IO errors you’ll
most often start of with an increase of logging on the SCSI_LOG_ERROR and SCSI_LOG_TIMEOUT.
This will tell your support vendor where to dive in deeper. If the suspicion is to be on
the device layer from a protocol perspective the scSI_rLoG_1ocTL will likely provide more
insight in the command and response sequences. When it comes to diagnosing timeouts the
queueing mechanisms are of interest.

A small example of a logging entry when sending an inquiry command to a device shows
this.

Jun 27 08:44:58 localhost kernel: sd 5:0:0:0: [sde] sd_ioctl: disk=sde, cmd=0x2285
Jun 27 08:44:58 localhost kernel: sd 5:0:0:0: [sde] sd_ioctl: disk=sde, cmd=0x2285
Jun 27 08:44:58 localhost kernel: sd 5:0:0:0: [sde] sd_ioctl: disk=sde, cmd=0x2285
Jun 27 08:44:58 localhost kernel: sd 5:0:0:0: [sde] sd_ioctl: disk=sde, cmd=0x2285

10.2.2 Tracing

One of the tracing options is utilising the kernels BPF ° [29] instrumentation to obtain
detailed information of basically every kernel function available. Based on this functionality
a fair few tools have been developed to aid in using tracing storage related information.
The second one is by using the ftrace 5 kernel instrumentation and is exposed via the
/sys/kernel/debug pseudo filesystem. The tool to use that is the trace-cmd utility by Steven
Rodstedt who is the developer of the ftrace kernel part as well as this tool. Be aware this is
worth a book on its own and would be significant detour from the purpose of this book and
therefore I won’t be diving further into this. If you want to know more about it please refer
to the ftrace kernel documentation [30]

10.2.2.1 Blktrace

Blktrace uses the ftrace kernel function tracer by instrumenting the b1k tracer and basically
does the hard work in ftrace for you. The blktrace package comes with a few tools. The
primary one is obviously blktrace which is capturing the IO commands going to a device
and the responses returned. The output is stored in binary format so you would need to use
the blkparse tool to interpret these.

An example:

5Berkley Packet Filter
SFunction Tracer

10.2. SCSI 145

sserver:~ # blktrace -d /dev/sdd -o - | blkparse -in -
8,48 3 1 0.000000000 2887 D R 36 [sg_inq]
8,48 3 2 0.000091843 0 C R [0]
8,48 3 3 0.000165292 2887 D R 252 [sg_inq]
8,48 3 4 0.000166053 0 C R [0]
8,48 (0] 1 37.487601624 2889 D R 252 [sg_vpd]
8,48 (0] 2 37.487756454 0 C R [0]
8,48 2 1 49.721431588 2890 D R 252 [sg_vpd]
8,48 2 2 49.721564509 0o C R [0]

As you can see you can manipulate the output of blktrace and pipe this directly to blk-
parse. The above shows a simple output of the major:minor, the cpu which handled the
10,sequence id, time since blktrace started, SCSI opcode, trace action, RWBS field indicating
Read/Write/Discard or either a B (barrier) or S (synchronous operation)

These output can be adjusted to what you need to see. See the man page for further
information.

A further utility that comes with blktrace is btt. This little tool is most useful for statistical
analysis of the 10 operations. It is very helpful to see which process is issuing IO0’s when
multiple applications are using the system. You can then use the btt tool to extract 10’s
from just that application. If you use the -B parameter of btt 3 separate files will be created
that also gives you the option to either use it in a spreadsheet or use the accompanied
bno_plot utility to provide a graph.

btt Generated Block Accesses
'btt_plot.4.dat_8,48_c.dat'

800
700 +
500
500 +

Blocks pEra0 - N
300 N .
200 T !
100 |

Figure 10.2: bno plot output

146 CHAPTER 10. PROTOCOLS

10.2.2.2 BCC

BCC [31] is not really a single tool but more a collection of scripts and utilities that instru-
ments a BPF filter on a variety of kernel trace-points. It contains a fair few nifty things like
biosnoop, biotop, bitesize and a whole lot more.

A few examples:

biolatency shows the distribution of I0’s subject to various latencies. It does not show why
this happens but gives an indication of latency the IO’s observe. Various parameters adjust
the behaviour and output such as -Q which would allow queue time to be included.

sserver:~ # /[usr/share/bcc/tools/biolatency
Tracing block device I/0... Hit Ctrl-C to end.

AC
usecs ¢ count distribution
0 > 1 0 | |
2 ->3 0 | |
4 -> 7 : 0 |
8 -> 15 0 |
16 -> 31 7 | x*x
32 -> 63 14 | %k ke k ok
64 -> 127 70 |*********************************
128 -> 255 . 84 | 3k k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ko kok ok kR k ok ok |
256 -> 511 . 54 | %k ok ok ok ok k ok ok ok kK ok ok ok ok K Kk ok ok K X
512 -> 1023 5 | %%
1024 -> 2047 1 |
2048 -> 4095 10 | |
4096 -> 8191 9 | x %% x

sserver:~ #

A second example is bitehist which provides a histogram of the IO size distribution per
process.

sserver:~ # /usr/share/bcc/tools/bitesize
Tracing block I/0... Hit Ctrl-C to end.
AC

Process Name = kworker/0:1H

Kbytes : count distribution
0 > 1 : 0 |
2 -> 3 10 | |
4 -> 7 : 1 |**|

Process Name = kworker/0:2
Kbytes : count distribution

10.2. SCSI 147

0 > 1 : 3 *********‘k‘k‘k********‘k**‘k‘k‘k*******‘k******|

Process Name = jbd2/sda2-8

Kbytes : count distribution
0 > 1 : 0 | |
2 -> 3 0 | |
4 > 7 10 | |
8 -> 15 1 I**|

There are a lot more of these nifty tools and my advice is to learn and test with them, so
you can apply this in various troubleshooting scenarios.

You might wonder why I've put these paragraphs in the Protocols/SCSI chapter. It is true
that most of these tools can be used in various locations of the IO stack and I maybe
highlighting some functions of these tools in the relevant chapters in the future. The SCSI
and NVMe layer is more or less the cross-section between hardware and software and can
provide detailed information on IO’s requests that get submitted as well as the response
codes coming from the devices. It has a very good logging and tracing facility and most
tools can hook into this layer for all sorts of information.

Although the above mentioned tools seem to be focussed on performance diagnostics, you
have to be aware that problems can arise from performance issues as well as the other way
around where either configuration and design mistakes as well as infrastructure problems
can cause these performance degradation. One of the more classic examples is when the
transport layer is set up to carry data subject to very different IO profiles. If an application
has data sets that create very large 10’s on a set of disks and very small IO’s on a different
set of disks, but are still served out of the same array port(s) and HBA’s or network cards,
you can imagine that at some stage this will clash. If a port out of a SCSI array has a
target queue depth of 128 commands and 120 are already occupied by very large write 10’s
it will take time for these to get de-staged to either cache or disks. All the time the same
server, and even others if linked to that same port, are restricted in the amount of data
they can send. Very often you will then see a response code like “queue full”. It is therefore
imperative that the IO profiles of the applications are known and the design of the system
and infrastructure is aligned to these characteristics and able to cater for these differences.

If you use the above tools properly you can determine the cause of the errors and follow the
link either upstream to other parts of the IO stack in the server itself or to parts that start
touching the infrastructure such as network cards, fibre channel host bus adapters etc.

10.2.3 DIF-DIX

One of the main issues that have plagued system administrators and application users is data
corruption. Not much is needed for one or more bits to get flipped between the application
and the physical storage medium. Although many checks and verification options have been
put in place on almost every level of the IO stack there never has been a real end-to-end

148 CHAPTER 10. PROTOCOLS

solution. Oracle came pretty close with HARD but that did not store the checksums on disk
so there was only a one-way verification on writes.

To be able to detect discrepancies in both read and write direction a so call DIF 7 field is
added for each of the IO’s aligned on a 512 byte boundary. Be aware that diskdrives where
always aligned on 512 byte sector sizes. Array vendors however have started using 520 byte
sector sizes internally to cater for internal data integrity checks.

So what does this entail. Basically what happens is that an 8-byte field is added to each
512-byte chunk of data for which the operating system is creating the 10. This field has a
2-byte Guard tag ,which is a CRC value of the 512-byte data field, a 2-byte APP tag, which
can be used by the operating system for whatever use it deems useful and a 4 byte REF field
which represents the lower 32-bits of the sector on disk. Depending on the support of the
HBA, drivers and storage array the entire path from the HBA to the disk can then verify if
that data field is actually correct and no bits have flipped anywhere along the line. As the
verification field is stored with the data itself means that any future validation can be done
in various ways.

Although many of the layers of the IO stack have measures in place to check on the validity
of the data it handles it has never been really end-to-end. For example the transport layers
themselves have a CRC or some other kind of checksum, this is however stripped from the
frame/packet upon arrival at the destination and thus has no longevity for future checks.
Filesystems like BTRF'S have internal checksumming and will correct blocks that show errors.

Having the integrity check incorporated along the actual data means that checks can always
be performed at any given point in time.

Support for the DIF field needs to be enabled on a few places.

e HBA (or network card in case of iSCSI)
e Array target port
e Disk (LUN)

On a Broadcom/Emulex HBA it can be enabled via the 1pfc_enable_bg module parameter
and ql2xenabledif for Marvell/Qlogic adapters. Secondly the target ports on the array also
need to be aware that the DIF field needs to be enabled as any read command that is sent
from the HBA is followed by the array sending that data. If the array does not support
the DIF method or it is not enabled it will not add that 8-byte field. Lastly, and this
really depends on the array vendor, model and firmware version, the disks presented out of
the array need to be formatted with DIF enabled as well as it would need to cater for the
additional 8-bytes on each sector. Even if the array already natively formats the disks with
a 520 byte sector size it would still need to change the method from any internal proprietary
way to the SCSI T10 DIF standard. Again verify with your array vendor what is required
on that side.

"Data Integrity Field AKA T10 PI (Protection Information)

10.2. SCSI 149

DIF/DIX 10
Applicatic perating

check and fllesystem check check
Byte Stream
Oper tem aligns
o flesystem sector iz

512 byte sector

>

512 byte secto
Frame CRC protected

512 byte sector

520 byte sector
d

DIX
Adds B-byte PI field

DIF

DIF tag added Either adds the B-byte Pl field or

by contaller adopts the DIX Pl information
>

DIX/DIF

Figure 10.3: DIF/DIX IO

If everything is configured properly you should see something like this from the 1sscsi -p
-P output

lsscsi —-p —-P —-x —s #######H#H##AHHHHHHHARAH

[11:0:0:0x0000] disk HITACHI OPEN-V \
8801 /dev/sdc DIF/Typel T10-DIF-TYPE1-CRC dixl1 10.7GB
[11:0:0:0x0001] disk HITACHI OPEN-V \

8801 /dev/sdd DIF/Typel T10-DIF-TYPE1-CRC dixl 10.7GB

The T10 ® has no saying in how operating systems should handle OS to controller commu-
nications. That is all handled via standards outside of its scope. The SCSI standard does
define how IO commands can and should be executed in order to get things done on the
end device. It takes the IO request from the OS and creates a so called CDB ?. That CDB
contains the instruction set so the remote device knows what to do.

Depending on the support of the remote device it determines if a CDB ' should contain a
RDPROTECT or WRPROTECT field populated with the type of information it requires
as per SCSI standard. That instruction is then sent on to the IO controller with a further
instruction of what type of 10 to perform.

The mode of supported operations is defined as follows.

8SCSI standards committee
9Command Descriptor Block
0 Command Descriptor Block

150 CHAPTER 10. PROTOCOLS
Table 10.1: T10 PI Protection Modes

Mode Description

T10 Type 0 Normal, unprotected I/0O.

T10 Type 1 Protection supported between controller
and a storage device formatted with T10
Type 1 protection information.

T10 Type 2 Protection supported between controller
and a storage device formatted with T10
Type 2 protection information.

T10 Type 3 Protection supported between controller
and a storage device formatted with T10
Type 3 protection information.

DIX Type 0 Protection DMA enabled between OS and
controller. Storage device is not formatted
with protection information.

DIX Type 1 Protection DMA enabled between OS and
controller. Storage device is formatted with
T10 Type 1.

DIX Type 2 Protection DMA enabled between OS and
controller. Storage device is formatted with
T10 Type 2.

DIX Type 3 Protection DMA enabled between OS and

controller. Storage device is formatted with
T10 Type 3.

10.2. SCSI 151

DIF/DIX 10

READ
<
READ_INSERT
3
READ_STHRIP
<
READ_PASS
<
WRITE 10
WRITE
p
WRITE_STRIF
WRITE_INSERT
>
WRITE_PASS
>

Figure 10.4: DIF/DIX IO Type

e T10 Types 1-3 indicate that the controller implements the READ STRIP and
WRITE INSERT operations.

e DIX Type 0 indicates that the controller implements the READ INSERT and
WRITE _STRIP operations.

e DIX Types 1-3 indicate that the controller implements the READ PASS and
WRITE PASS operations.

As you can see in fig. 10.4 the interaction between the various layers is determined based on
what is supported from an application layer to the actual drive. Refer to the documentation
of what is supported on each of the layers of the 10 stack.

When either of the supported modes (DIX and/or DIF) is enabled and the verification check
fails the operating system return a SCSI error with a status check condition.

152 CHAPTER 10. PROTOCOLS

Table 10.2: T10 Block Guard ASC/ASCQ status codes.

ASC/ASCQ code Description

10h/00h id crc or ecc error

10h/01h logical block guard check failed

10h/02h logical block application tag check failed

10h/03h logical block reference tag check failed

10h/04h logical block protection error on recover buffered data
10h/05h logical block protection method error

These error codes will be logged in the various logging facilities you have configured.

10.3 NVDMe

With the advance of Solid State Drives in the early 2010’s, the inherent limitations of the
SCSI protocol became more and more apparent. As I mentioned before SCSI was designed
and developed over a period of over 30 years so there is a lot of fat (i.e. overhead) which is not
needed for device communication to store and retrieve data. It’s single queuing mechanism
has never been a problem when it needed to server mechanical disk drives (HDD’s) as the
delay imposed by these drives could never result in an actual bottleneck in the host’s 10
stack. SSD’s on the other hand have no such thing as mechanical delay and 10 commands are
instantly served by the electronics based devices which behave more like memory. NVMe
grew out of the PCI Express world and was build from the ground up to utilise the the
characteristics from SSD in the most optimal way.

If you want to know more about NVMe from a protocol perspective I would advise to visit
the NVMe [27] website. There you will find many resources including presentations, video’s
as well as the full specification.

For communicating with NVMe devices on a Linux platform we use the nvme cli command.
Unless NVMe devices are not directly attached to the host system the main cause for errors
will almost always be hardware related. NVMe has two methods of communication, either
memory of message methods are used. Devices that are directly attached to the host system
PCI bus use a memory based method and devices that are mapped through an transport
controller, for example an NIC card in case of TCP transport a FC Host Bus Adapter in
case of NVNe over Fabrics. A third option is when controllers can use either such as RDMA
controllers. From an administrative standpoint you only need to know the namespace you're
dealing with as the nvme cli command will just talk to the NVMe driver who will abstract
these commands for you and utilise the underlying communications method. It is however
important you know the layout of your system. A host can have multiple NVMe controllers
who can each server a large number of namespaces.

10.3. NVME 153

There are a number of nvme cli command parameters that can help you out here. If you see
IO errors in the Linux message log it will always be accompanied with the disk itself in the
same way this happens for SCSI based devices.

The first thing you want to know is the actual state of the device itself and if any hardware
issues are seen. The nvme smart-log command helps you out here.

[root@server:~]$ sudo nvme smart-log /dev/nvmednl
Smart Log for NVME device:nvme®nl namespace-id:ffffffff

critical_warning 0

temperature : 36 C
available_spare : 100%
available_spare_threshold : 10%
percentage_used T 0%
endurance group critical warning summary: 0
data_units_read : 1,158,911
data_units_written : 3,365,890
host_read_commands t 22,702,286
host_write_commands : 29,609,766
controller_busy_time : 198
power_cycles : 300
power_on_hours . 97
unsafe_shutdowns . 8
media_errors : 0
num_err_log_entries : 193
Warning Temperature Time : 0

Critical Composite Temperature Time : 0
Temperature Sensor 1 : 36 C
Temperature Sensor 2 : 39 C

Thermal Management T1 Trans Count : 0
Thermal Management T2 Trans Count : 0
Thermal Management T1 Total Time : ©
Thermal Management T2 Total Time : 0

In the above output you see that there are no media errors or any other significant issues
that require attention. The num_error_log_entries field does show there are 193 entries so
lets have a look at that.

[root@server:~]$ nvme error-log /dev/nvme0®
Error Log Entries for device:nvme® entries:64

error_count : 195

154 CHAPTER 10. PROTOCOLS

sqid : 0

cmdid @ Ox2

status_field : 0x4212(INVALID_LOG_PAGE: The log page indicated 1is invalid. \
This error condition is also returned if a reserved log page is requested)

parm_err_loc : 0x28

lba : 0

nsid : Oxffffffff

vs : 0

trtype : The transport type is not indicated or the error is not transport related.
cs : 0

trtype_spec_info: 0

error_count : 0

sqid : 0

cmdid : 0@

status_field : O(SUCCESS: The command completed successfully)
parm_err_loc : 0

lba : 0

nsid : 0

vs : 0

trtype : The transport type is not indicated or the error is not transport related.
cs 0

trtype_spec_info: 0

In the disk that I have here there is space for 64 entries in the error log. As it is a circular
log the oldest will be overwritten by new entries. The messages are somewhat cryptic and
you would need to refer back to the NVMe specification to find out what these mean and
refer to. As you can see even though the terminology says error log it does not alway have
to refer to actual media errors. It also logs entries as a result of non-supported commands
being send to the controller or device.

Another thing to note here is that the messages are not time stamped so it is often very
difficult to correlate events in the linux messages log to an entry in the device error log.

The last part I want to highlight here related to NVMe is support for certain functions
and feature you may need. An example is end-to-end data integrity verification which you
may have come across from the SCSI world. To check if this feature is supported on your
hardware you use the nvme get-feature /dev/nvme@ -n 1 -f 0x16 -s 0 -H command. There

10.4. TRANSPORT 155

are numerous features you can query by changing the hex number after the -f parameter
however the actual reporting depends if your hardware supports the feature or not.

An example of a useful command is determining the number of IO submission and completion
queues.

root@server ~: nvme get-feature /dev/nvmeOnl -n 1 -f 0x7 -H
get-feature:0x7 (Number of Queues), Current value:0x1feOlf

Number of IO Completion Queues Allocated (NCQA): 32

Number of IO Submission Queues Allocated (NSQA): 32

Be aware that vendors add more and more functionality in their hardware not only with
newer generation systems but also firmware. Look at the release notes of the firmware the
vendor publishes and determine if this is useful. (Don’t determine the usefulness on this
though. In many cases significant improvements are made overall)

10.4 Transport

The transport protocol is separated from the command and control layer as it used to be
when devices where more directly attached to the host system itself. For obvious reasons
this did not scale well and storage became more network oriented. This allowed for more
flexibility, as well as performance improvements, as dedicated storage controllers could now
be used to offload commands without the host IO needed to be tasked with handling storage
maintenance tasks. In the earlier days when an application needed to write a block of data
the OS not only needed to setup the stage for the data to be sent to the device but also
had to arrange communication with the device firmware to actually have the correct setup
of the physical spindles like driving the actuators and waiting for completion etc. Each of
these causes the host processor to stop serving applications as it needs to act on the various
interrupts which obviously incurred a performance impact. On high end systems attached
to SAN environments or hardware raid controllers that is not something you need to worry
anymore.

The abstraction of the device communication protocol and transport protocol did however
increase the complexity significantly. Instead of simply opening up a server and check the
internal controller and disks you now had to look at an infrastructure that provided that
functionality.

Providing storage facilities over a network was not new. SUN [32] Microsystems already pro-
vided us with NFS [33] (Network File System) and Microsoft gave us SMB (Server Message
Block) and each of which have developed through various iterations over the years.

These systems did however not provide block level storage in the sense that applications
could store data directly. There always was a network software abstraction layer in between.

156 CHAPTER 10. PROTOCOLS

10.4.1 iSCSI

iSCSI is a command and control abstraction layer that provides block level addressable
storage space. The underlying transport is TCP/IP. From a design perspective TCP /IP has
a lossy networked state of mind. Inherently this means that there is a lot of background code
that takes care of transmission control, retransmission, slow-starts, bandwidth correction via
adjusting TCP window sizes etc. If a network is well designed and the proper measures are
in place so that the iSCSI traffic is not interrupted or subject to bandwidth restrictions
potentially due to shared links it may be a very good solution for many environments.

The OpeniSCSI [34] implementation, most often used in Linux distributions, contains a GPL
licensed kernel part, which takes care of all the effective data transfer, and a userland part
that handles the entire control plane from configuration to discovery and mapping etc.

Below is a small diagram of a network setup I use to demonstrate and highlight issues that
can occur in an iSCSI environment. The diagram already outlines the concept of access path
separation for both the iscsi initiator to target traffic as well as client to host traffic to the
iscsi iniator.

iSCSI example network

tlientl
10.10.10.0/24

storagel

10.10.11.0/24 *}
storage? *)

10.10.12.0/24

Figure 10.5: Sample iSCSI network

The diagram should be interpreted as having three physically separate networks. It would
not make much sense if these would represent one physical link carved up in a few vlan’s

10.4. TRANSPORT 157

traversing the corresponding IP subnets. Although a few things can be accomplished that
way like QoS [35] it will not prevent any redundancy if any physical issues would occur on
the link.

By having an air-gap between these networks you ensure at least two things:

1. Client traffic does not interfere with initiator to target traffic.
e This ensures a much better control over network flow characteristics.
2. Redundant access paths from the initiator to the target are safeguarded.
e If any thing would happen on a network layer in one network the initiator would
still have access to the target via the other network.

The same concepts are also applied on FibreChannel networks as you will see below and in
the MPIO chapter.

What this does not guarantee is a slow-drain propagation of one network onto another. What
I mean by that is when problems occur on one network this will have an impact in the 10
behaviour on the host. This can, and often will, result in the fact that commands executed
on the other network may need to wait for earlier commands to be completed. This may not
be driven by the IO stack itself but most applications want their IO’s completed sequentially
in order to safeguard consistency and integrity.

So even when there is an air-gap in between networks or fabrics, a host or target observing
issues in one network may often be propagating actual IO delay onto another. We will see
in the Fibre Channel section how this can be alleviated by some new technology that has
made its way into the FC standards.

The iSCSI protocol is not born out of the INCITS T10 committee but adheres to those
various standards such as SBC ', SPC 2 etc. These standards are all defined in the SCSI
Architecture [36] model. iSCSI is based on RFC 7134 [37] and is very well documented. I
will not outline the protocols in-depth here as the RFC is very clear.

Most, if not all, Linux distributions provide the option to install the iSCSI initiator, target
or both. The target provides the source disks that will be exposed to the clients. This
already means that there are a few thing that need to be setup properly.

e The disks that will be exposed to the clients. These can be sourced via various methods.
— A local disk in the host system itself.
— A file
— A ram disk
— A passthrough device
— Even a disk provisioned out of a SAN.
e Client access
— Network interfaces
— TCP port usage

HSCSI Block Commands
128CSI Primary Commands

158 CHAPTER 10. PROTOCOLS

— Access Control
— Authentication
— Mapping
e Function control and protocol support
— ALUA
— Persistent Reservation

10.4.1.1 targetcli

The targetcli utility is a wrapper tool to dynamically configure the target. It is not installed
by default so a dnf install targetcli will get that sorted. On SUSE systems you can use
yast or zypper to achieve the same.

opensuse:~ # targetcli

targetcli shell version 2.1.53

Copyright 2011-2013 by Datera, Inc and others.
For help on commands, type 'help'.

/> 1s

o []
[o Rl o F= Lol 23 f oY o' =1 [...]
| 0= block vttt e e e [Storage Objects: 1]
| | o- ddiskc ..iiiiiiiiiiiiiii [/dev/sdc (8.0GiB) write-thru activated]
| | oL 1 T [ALUA Groups: 1]
| | o- default_tg pt_gpovvvvviinnnnnn. [ALUA state: Active/optimized]
T R e T = e [Storage Objects: 0]
| 0= PSCST vt e e e e e [Storage Objects: 0]
| 0= ramdisk ..o e e e e [Storage Objects: 0]
Lo T =T =T T [Targets: 2]
| o- ign.2003-01.0rg.linux-iscsi.opensuse.x8664:sn.4bcc3c8887b4 [TPGs: 1]
|] 00 Pl i e e e [no-gen-acls, no-auth]

|] Lo Tt T = [ACLs: 0]
| | Lo T U o 1 [LUNs: 1]
| | | o= Tun® ...ovvviinnnt [block/idiskc (/dev/sdc) (default_tg_pt_gp)]
| | 0= POrtalsS vttt i i e i e e e e [Portals: 1]
|| 0= 10.10.12.223260 & uuuuuunnttntt e [OK]
| o- i1gn.2003-01.0rg.linux-iscsi.opensuse.x8664:sn.cfb18c8076f7 [TPGs: 1]
| Lo T of o =38 [no-gen-acls, no-auth]
| o T T = [ACLs: 0]
| T T VT o = [LUNs: 1]
| [o= Tun® ...vvvviinnn [block/idiskc (/dev/sdc) (default_tg_pt_gp)]
| 0= POFrtaAlS vtiiiiiii ittt ettt e [Portals: 1]
| 0— 10.10.11.2:3260 . tivittitntnenrosoeoeeeenensasaeseseenensnsans [OK]

10.4. TRANSPORT 159

Lo T Yo o o - T ol 2PN [Targets: 0]
Lo T V2 1o X3 ol [Targets: 0]
O~ XEN=PVSCST ttvte st tnnneesosnnssssesnsssssosnsssssonnssssssnnns [Targets: 0]

/>igqn.2003-01.0rg.linux-iscsi.opensuse.x8664:sn.cfb18c8076f7

10.4.1.2 iSCSI naming

In the output above you see a fairly long string starting with ign which stands for iscsI
Qualified Name [38]. The RFC mentions three naming options but the ign is most often
used.

It consists of three or four parts.

The string ign. To ensure no ambiguity with other names.

A date mark representing the year and month the naming authority owned the domain
name.

The domain name in reverse notation.

And optionally a semicolon followed by a string which may contain some device iden-
tifier or other info the administrator deems required/useful.

In the example above you can see the server has one disk configured to be exposed.
(/dev/sdc as idiskc). In the iscsi section two targets have been defined, ign.2003-
0l.org.linux-iscsi.opensuse.x8664:sn.4bcc3c8887b4 and ign.2003-01.org.linux—
iscsi.opensuse.x8664:sn.cfb18c8076f7. KEach of them have a target port group with
the ACL’s, luns, IP addresses and tcp ports set.

In this scenario every iscsi client can connect to these targets and that idiskc lun will
be presented. That is obviously not what you want. In order to prevent cross mapping
between clients and as such risking all sorts of nastiness resulting in 10 errors, filesystem
and data-corruption, we need to configure an ACL on each target port-group.

/iscsi/ign.20...7b4/tpgl/acls> create ign.2021-04.com.example:01:3855b8fbccl5
Created Node ACL for ign.2021-04.com.example:01:3855b8fbccl5

Created mapped LUN 0.

/iscsi/ign.20...6f7/tpgl/acls> 1s /

Lo T []
[0 R o = Yot L3 o o X ol =¥ N [1
| 0= BloCK tii i i e e [Storage Objects: 1]
| | o= ddiskc vovuiiiiiiiiiiiiiiii [/dev/sdc (8.0GiB) write-thru activated]
| o Tt 1 LU= [ALUA Groups: 1]
|| o- default_tg_pt_gp ..vvvvivvinnennnn. [ALUA state: Active/optimized]
| 0= FileTo vttt i i i e e e [Storage Objects: 0]
| 0= PSCST ittt e e e e [Storage Objects: 0]
| 0= ramdisk ..viiiiiiii i i e i e e [Storage Objects: 0]
Lo T 5 of =T [Targets: 2]

| o- ign.2003-01.0org.linux-iscsi.opensuse.x8664:sn.4bcc3c8887b4 ... [TPGs: 1]

160 CHAPTER 10. PROTOCOLS

N R of oY -5 [no-gen-acls, no-auth]
|] 0= ACLS it i e e e e e e e e e [ACLs: 1]
|] | o- ign.2021-04.com.example:01:3855b8fbccls [Mapped LUNs: 1]
| | | o- mapped_Tundciviiriiinnnrreennnns [lun® block/idiskc (rw)]
| | Lo T U o 1= [LUNs: 1]
| | | o= lun® ..ovvvviinnn, [block/idiskc (/dev/sdc) (default_tg_pt_gp)]
| | 0= POrtals vttt i i i e i e e e e [Portals: 1]
[0= 10.10.12.223260 &t e [OK]
| o- i1gn.2003-01.0rg.linux-iscsi.opensuse.x8664:sn.cfb18c8076f7 ... [TPGs: 1]
| Lo R o o =3 [no-gen-acls, no-auth]
| o T T = [ACLs: 1]
| | o- ign.2021-04.com.example:01:3855b8fbccl5 [Mapped LUNs: 1]
| | o- mapped_lundciiiirrirnnnnneannnns [lun® block/idiskc (rw)]
| o T N o = [LUNs: 1]
| | o= lun® ...ovviiinnn, [block/idiskc (/dev/sdc) (default_tg_pt_gp)]
| 0= POrtals ittt i i e e [Portals: 1]
| 0— 10.10.11.2:3260 i iiitiiitintnetneeneeneentesesscntcntenenasas [OK]
[R WY o] o Y- Y ol - [Targets: 0]
o el VA Vo 13 [Targets: 0]
O~ XN PVSCST sttt ittt ittt eeeeeeeeeeeennnnnnnnnnnnnnnns [Targets: 0]

/iscsi/ign.20...6f7/tpgl/acls>

The ign now showing under the acls is the one that is inialised on the client pseudo-randomly.
As you can seen the idiskc disk is automatically mapped. That is also a setting you need
to change as it will lead to issues with subsequent mappings of client to the same portal.

The initiator is merely doing a discovery and when the target allows the access the disks
will be provisioned. There is not very much you can do or see from a client side apart from
providing the correct information and starting the iSCSI session to the target.

When the discovery and assignments have been correctly done you can verify with the dmesg
output what its outcome is.

<snip>

[17.844939] Loading iSCSI transport class v2.0-870.

[17.870745] -dscsi: registered transport (tcp)

[17.873625] scsi host3: iSCSI Initiator over TCP/IP

[17.880274] scsi 3:0:0:0: Direct-Access LIO-ORG +diskc 4.0

[17.881945] scsi 3:0:0:0: alua: supports 1implicit and explicit TPGS

[17.881948] scsi 3:0:0:0: alua: device naa.60014056a02beea37514b0084cffc3ab....
[17.882073] scsi 3:0:0:0: Attached scsi generic sg2 type 0

[17.887962] sd 3:0:0:0: [sdb] 16777216 512-byte logical blocks: (8.59 GB/8.00 GiB)
[17.888344] sd 3:0:0:0: [sdb] Write Protect is off

[17.888345] sd 3:0:0:0: [sdb] Mode Sense: 43 00 00 08

10.4. TRANSPORT 161

17.889222] sd 3:0:0:0: [sdb] Write cache: disabled, read cache: enabled.....
17.890177] sd 3:0:0:0: [sdb] Optimal transfer size 4194304 bytes

17.903755] sd 3:0:0:0: alua: transition timeout set to 60 seconds

17.903781] sd 3:0:0:0: alua: port group 00 state A non-preferred supports TOLUSNA

17.928820] sd 3:0:0:0: [sdb] Attached SCSI disk
18.028060] device-mapper: multipath service-time: version 0.3.0 loaded

[

[

[

[

[

[

[

<snip>

[1674.876348] scsi host4: iSCSI Initiator over TCP/IP

[1674.881094] scsi 4:0:0:0: Direct-Access LIO-ORG +diskc 4.0

[1674.882787] scsi 4:0:0:0: alua: supports implicit and explicit TPGS

[1674.882791] scsi 4:0:0:0: alua: device naa.60014056a02beea37514b0084cffc3ab.....

[1674.883427] sd 4:0:0:0: Attached scsi generic sg3 type 0

[1674.887534] sd 4:0:0:0: [sdc] 16777216 512-byte logical blocks: (8.59 GB/8.00 GiB)
[1674.891235] sd 4:0:0:0: [sdc] Write Protect 1is off

[1674.891238] sd 4:0:0:0: [sdc] Mode Sense: 43 00 00 08

[1674.892463] sd 4:0:0:0: [sdc] Write cache: disabled, read cache: enabled.....

[1674.895859] sd 4:0:0:0: [sdc] Optimal transfer size 4194304 bytes

[1674.910145] sd 4:0:0:0: alua: port group 00 state A non-preferred supports TOLUSNA
[1674.983364] sd 4:0:0:0: [sdc] Attached SCSI disk

[1675.073917] sd 3:0:0:0: alua: port group 00 state A non-preferred supports TOLUSNA

<snip>

10.4.1.3 Problem determination

As mentioned before the majority of O issues in most storage environments is coming from
the transport layer as that is the most error-prone. In case of iSCSI this is TCP/IP. Let
me rephrase that, TCP/IP is not error-prone, the underlying infrastructure as well as many
network designs are simply not suitable to carry a storage based protocol. iSCSI is not alone
in this. We’ll touch on this later with Fibre Channel over IP (FCIP)

So in order to troubleshoot an iSCSI based storage path we need to determine where the issue
is actually originating. One of the most common issues is that you simply are not able to
see the provisioned disk. To start here first check and double check the target configuration.
Are all disks mapped, are the target port groups set up correctly, are the access control lists
not prohibiting the iSCSI initiator from actually accessing the target, is the iSCSI service
actually running.

By default some distributions do require to manually enable the iSCSI service. An easy
check:

opensuse:~ # systemctl status discsi

® iscsi.service - Login and scanning of iSCSI devices

18.115586] sd 3:0:0:0: alua: port group 00 state A non-preferred supports TOLUSNA

162 CHAPTER 10. PROTOCOLS

Loaded: loaded (/usr/lib/systemd/system/iscsi.service; enabled; vendor preset: enabled)
Active: active (exited) since Fri 2022-03-18 10:58:18 AEST; 1h 29min ago
Docs: man:iscsiadm(8)
man:iscsid(8)
Process: 1237 ExecStart=/usr/sbin/iscsiadm -m node --loginall=automatic \
-W (code=exited, status=21)
Process: 1238 ExecStart=/usr/sbin/iscsiadm -m node --loginall=onboot \
-W (code=exited, status=21)
Process: 1239 ExecStart=/usr/sbin/iscsiadm -m fw -1 -W (code=exited, status=21)
Main PID: 1239 (code=exited, status=21)
CPU: 7ms

Mar 18 10:58:18 opensuse systemd[1]: Starting Login and scanning of iSCSI devices...

Mar 18 10:58:18 opensuse +iscsiadm[1237]: 1discsiadm: No records found

Mar 18 10:58:18 opensuse iscsiadm[1238]: 1discsiadm: No records found

Mar 18 10:58:18 opensuse tiscsiadm[1239]: qdiscsiadm: Could not get list of targets from \
firmware. (err 21)

Mar 18 10:58:18 opensuse systemd[1]: Finished Login and scanning of iSCSI devices.

As you've seen in the example above there were two portals created by the targetcli tool.
Each portal is listening on its own socket. A simple netstat will show this as follows:

opensuse:~ # netstat -altwn
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp (0] 0 10.10.11.2:3260 0.0.0.0:% LISTEN
tcp 0] 0 10.10.12.2:3260 0.0.0.0:% LISTEN

The next thing to verify is if your firewall settings are correct and do not prevent valid
iSCSI clients to access the above mentioned ports. As various distros use different firewall
solutions I will refer to the documentation for those solutions.

Proceeding with checks is to see if there are any other low layer network issues that may
prohibit a proper connection to the network interface of the target. The easiest way is a
simple ping to the IP address but that does not guarantee everything. It is fairly common
to have ICMP request blocked on a L2 or L3 network layer as it sometimes is perceived as
a security issue.

A fairly quick way to establish if connection to the target over TCP port 3260 is possible is
to use telnet although this is mostly no longer installed on Linux distributions.

Tinux:~ # telnet 10.10.11.2 3260
Trying 10.10.11.2...

Connected to 10.10.11.2.

Escape character is 'A]'.

10.4. TRANSPORT 163

"

Just the Connected to line shows that communications from the initiator to the target
is possible from a network perspective. Other option may be to use a portscanner like nmap.

Tinux:~ # nmap -p 3260 10.10.11.2

Starting Nmap 7.91 (https://nmap.org) at 2021-06-01 16:53 AEST
Nmap scan report for 10.10.11.2

Host s up (0.00030s latency).

PORT STATE SERVICE
3260/tcp open dscsi
MAC Address: 0A:00:27:00:00:03 (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 1.23 seconds

As network layer connectivity has now been established and we know the iscsi target is
listening the initiator should now be able to connect and the provisioned disk should show
up on the client.

I mention before that when a lun was created it would be automatically mapped to the
respective portals. That would cause an immediate access to initiators which you don’t
want. In order to prevent that turn this off in the targetcli tool.

/>
/> set global auto_add_mapped_luns=false
Parameter auto_add_mapped_luns is now 'false'.

/> get global auto_add_mapped_luns
auto_add_mapped_luns=false

/> saveconfig
Configuration saved to /etc/target/saveconfig.json

From a client perspective there are two ways to connect to the iSCSI target.

e The first one is to directly do a discovery towards the target and
e secondly use a iSNS server.

If you have a fairly dynamic iSCSI environment where initiators, targets, portals and disks
are being added and removed on a regular basis, a iSNS [39] server comes in very useful.
Without going into to too much details the iSNS service provides a central repository for
discovery and management purposes for both iSCSI and iFCP. An iSNS service can take
a lot of the hassle out of managing iSCSI registrations and state changes. A conceptual
discovery dialog how an iSNS server acts between client and server is shown below.

164

As the initial iSCSI configuration is

iISCSI interaction

Register client

Matify client of change

Query iSNS

Respond with appropriate target list

CHAPTER 10. PROTOCOLS

Register Larget

Login to targets and do inguiry

>

Respond with LUN assets plus attributes

Start data transfer

Figure 10.6: iSCSI iSNS Interaction

on the initiator side.

Tinux:~ # 11

brw-rw---- 1
brw-rw---- 1
brw-rw---- 1
brw-rw---- 1
brw-rw---- 1

Hmm, that’s weird.

/dev/sdx*

root disk 8, 0 Jun
root disk 8, 1 Jun
root disk 8, 2 Jun
root disk 8, 16 Jun
root disk 8, 32 Jun

new popping up.

set now we should be able to see the disk showing up

N NN NN

14:
14:
14:
14:
14:

19
19
19
19
54

/dev/sda
/dev/sdal
/dev/sda2
/dev/sdb
/dev/sdc

There is only one disk provisioned out of the iSCSI target but I see two

Well, remember that we have presented the same disk on the target side via two portals.
The initiator is therefore presenting not two disks but merily the access paths to that disk
and these are then sequentially presented to the block layer and hence you will see two disks.

When looking a bit more closely and when we start querying the disks to obtain their
characteristics you will see that the client knows its the same disk

Tinux:~ # lsblk

NAME
sda

F—sdal

L sda2
sdb

L 360014056a02beea37514b0084cffc3ab

MAJ:MIN RM
8:0 (0]
8:1 (0]
8:2 (0]
8:16 (0]

254:0 0

SIZE RO
8G 0
8M 0
8G 0
8G 0
8G 0

TYPE MOUNTPOINT
disk

part

part /

disk

mpath

10.4. TRANSPORT 165

sdc 8:32 0 8G 0 disk
I—360014G)56a02beea3>7514bG)G)84C1:1‘:C3ab 254:0 0] 8G 0 mpath

The type of the disk and the same UUID already provides a hint here.

As T indicated earlier the iSCSI protocol relies heavily on the network layer. When the
administrative configuration options as described above appear to be OK the lower layers
in the OSI stack should be investigated.

The easiest way to start is to look at the underlying design of the network infrastructure
itself. The main objective here is to review the location of the initiator and targets and the
planned flow of the data over the network. The communication of the iSNS server and the
clients and target is more of a control plane and as such not really reliant on performance.
That being said, delays in registration and notification can have a negative impact on path
failover mechanisms and as such can cause additional delays in IO path failover and failback
scenarios.

10.4.1.4 Network Considerations
As for the data flow between the initiator and target there are a few rules of thumb:

e Keep the hop count as small as possible.

— That means that traversing physical and logical hops should be reduced to an
absolute minimum.

— Keeping them in the same physical switch in the same VLAN should be a design
principal and not an afterthought in troubleshooting scenarios.

e Do not share links with other applications.

— As sharing links will often cause forms of congestion there is a high potential of
packets being dropped which have to be re-sent by the initiator or target and this
will have a significant impact on performance and stability of the applications.

— The control of shared links is very susceptible to the behaviour of other applica-
tions. If databases start doing warehousing jobs you can imagine that bandwidth
will be fairly limited for other applications.

e If there is no option of isolating iSCSI datapaths with other traffic then the iSCSI
traffic should be prioritised over other applications.

— Quality of Service algorithms like L2QOS or DSCP should assist in this.

Remember that channel based protocols have been designed from the ground up to use a very
reliable links between initiator and target. This started back in the 1960-ties and 1970-ties
and that philosophy has not changed.

The lowest level where troubleshooting is useful is on the ethernet layer. Ensure you get
cooperation of your network team and have them involved from the start. From a Linux
side you are often depending on the NIC and the drivers that come with it.

A few things to look at on the ethernet side:

166 CHAPTER 10. PROTOCOLS

e NIC speed settings. (Duhbh..., although you don’t want to know how many cases I
handled where this was set incorrectly)

e Duplex setting. (Yeah yeah. sigh.)

e Basically the above should not be touched and should be left to auto-negotiation.
There are more link checks done and features enabled such as pause frames, DCE etc
on 1G/10G and above. From a performance perspective anything less than 10G should
not even be considered.

e Jumbo frames!!!! Yes 4 exclamation marks. The use of jumbo frames will significantly
improve high throughput workloads. It also results in much less interrupts being fired
at the CPU’s and a much more efficient handling from NIC to memory is possible. Re-
assembly of frames into larger 10 requests from the initiator or target is also reduced.
Work with your network team to have this configured correctly.

e Ethtool is your friend. It’s the swiss army knife for NIC configuration settings. Check
the NIC user guide if ethtool is supported as some vendors use their own proprietary
tools. Learn to use ethtool!! Not just executing the command but also how to interpret
the output as well as setting the correct parameters. As mentioned these are most often
tied to the NIC driver.

e Know your hardware! Setting the correct options will make a world of difference.

— Proper settings related to send and receive buffers, interrupt pinning, ntuple
settins, SRIOV etc need to be properly set in order to pull the maximum out of
the hardware.

The first thing to know it to verify the network card you're dealing with and its capabilies.
In the below example you see two dual port Intel XGBE nics

[admin@server ~]$ lspci | grep net

01:00.0 Ethernet controller: Intel Corporation Ethernet Controller \
10-Gigabit X540-AT2 (rev 01)

01:00.1 Ethernet controller: Intel Corporation Ethernet Controller \
10-Gigabit X540-AT2 (rev 01)

04:00.0 Ethernet controller: Intel Corporation Ethernet Controller \
10-Gigabit X540-AT2 (rev 01)

04:00.1 Ethernet controller: Intel Corporation Ethernet Controller \
10-Gigabit X540-AT2 (rev 01)

The driver version shows a few options that can be used for this particular card.

[admin@server ~]$ modinfo ixgbe

filename: /1lib/modules/4.18.0-240.22.1.e18_3.x86_64/kernel/drivers/net/ \
ethernet/intel/ixgbe/ixgbe.ko.xz

version: 5.1.0-k-rh8.2.0

license: GPL v2

description: Intel(R) 10 Gigabit PCI Express Network Driver

author: Intel Corporation, <linux.nics@intel.com>

10.4. TRANSPORT 167

rhelversion: 8.3

srcversion: 525452BB6E4B60467875FAD

<snip>

parm: max_vfs:Maximum number of virtual functions to allocate \
per physical function - default is zero and maximum value 1is 63. (Deprecated) (uint)

parm: allow_unsupported_sfp:Allow unsupported and untested SFP+ modules on \
82599-based adapters (uint)

parm: debug:Debug level (0=none,...,16=all) (int)

The ethtool -k <nic> shows the current features that these cards and drivers expose. Be
aware that your card may show different options with different values. Anything you can
use as an offload option by the NIC may be beneficial. Be aware I say “may be” as in some
cases there can be some drawback especially when troubleshooting issues where underlying
NIC driver issues may hide things that could be of significance.

[admin@server ~]$ ethtool -k enol

Features for enol:

rx-checksumming: on

tx-checksumming: on
tx-checksum-ipv4: off [fixed]
tx-checksum-ip-generic: on
tx-checksum-ipv6: off [fixed]
tx-checksum-fcoe-crc: off [fixed]
tx-checksum-sctp: on

scatter-gather: on
tx-scatter-gather: on
tx-scatter-gather-fraglist: off [fixed]

tcp-segmentation-offload: on
tx-tcp-segmentation: on
tx-tcp-ecn-segmentation: off [fixed]
tx-tcp-mangleid-segmentation: off
tx-tcp6-segmentation: on

generic-segmentation-offload: on

generic-receive-offload: on

large-receive-offload: off

rx-vlan-offload: on

tx-vlan-offload: on

ntuple-filters: off

receive-hashing: on

highdma: on [fixed]

rx-vlan-filter: on

vlan-challenged: off [fixed]

tx-lockless: off [fixed]

168 CHAPTER 10.

netns-local: off [fixed]
tx-gso-robust: off [fixed]
tx-fcoe-segmentation: off [fixed]
tx-gre-segmentation: on
tx-gre-csum-segmentation: on
tx—ipxip4-segmentation: on
tx-ipxip6-segmentation: on
tx-udp_tnl-segmentation: on
tx-udp_tnl-csum-segmentation: on
tx-gso-partial: on
tx-sctp-segmentation: off [fixed]
tx-esp-segmentation: on
tx-udp-segmentation: on
tls-hw-rx-offload: off [fixed]
fcoe-mtu: off [fixed]
tx-nocache-copy: off

loopback: off [fixed]

rx-fcs: off [fixed]

rx-all: off
tx-vlan-stag-hw-insert: off [fixed]
rx-vlan-stag-hw-parse: off [fixed]
rx-vlan-stag-filter: off [fixed]
12-fwd-offload: off
hw-tc-offload: off
esp-hw-offload: on
esp-tx-csum-hw-offload: on
rx-udp_tunnel-port-offload: on
tls-hw-tx-offload: off [fixed]
rx-gro-hw: off [fixed]
tls-hw-record: off [fixed]

PROTOCOLS

Pausing frames may help in situations where the amount of incoming or outgoing traffic is
potentially causing buffering issues in the NIC. The NIC may instruct the network switch
to hold off on sending frames. Especially in storage related traffic like iSCSI or even NFS
this may be very beneficial. Both the driver as well as the network switches need to support

it. When using FCoE it is even a requirement.

[admin@server ~]$ ethtool -a enol
Pause parameters for enol:
Autonegotiate: on

RX: off

TX: off

Ring buffers are used in many different kinds of data transfer devices and are used for storing

10.4. TRANSPORT 169

incoming and outgoing frames until they can get offloaded by either the network switch or
Operating System. The ring buffers are mostly a single memory area on the card split into
two sections, one for the rx side and one for the tx side. Ethtool provides the option to
adjust the percentage of what each holds. This allows for assigning the correct value for a
particular workload type. Some testing may needs to be done to get to the correct balance.

[admin@server ~]$ ethtool -g enol
Ring parameters for enol:
Pre-set maximums:

RX: 4096

RX Mini: 0

RX Jumbo: 0

TX: 4096

Current hardware settings:
RX: 512

RX Mini: 0

RX Jumbo: 0

TX: 512

Interrupt rate limiting is another balancing act as CPU utilisation is directly tied to this. If
your iSCSI server is mainly serving workload with a small IO size and requires “snappyness”
in response times the better option is to try and use a high interrupt rate. Obviously your
CPU will be more busy so if the server has other application requirements it may be best
to leave this as the default for general workload setting.

The interrupt settings can be adjusted per queue with the ethtool -C command parameter.
Be very careful with this as mistakes or incorrect configuration will often lead to a detrimental
outcome. From a troubleshooting perspective this may, or better “will” result in elongated
diagnostic times and hence delay a solution.

The above settings are mostly fairly common in current network cards. Some advanced
features that could be relatively rare or only availble on high end cards are thing like
iWarp/RDMA or Data Direct I0.

Check with your vendors administration guides and release notes what each of these mean
and what they do. Some of them may use different terminology or do not provide the more
advanced features you require. As with many things you basically get what you pay for.

Stats, counters, values The ethtool -S <NIC> shows the output of various counters. In
troubleshooting scenarios you’re most often after the error counters. The values presented
are summarised in totals as well as per queue in both rx as tx direction.

[admin@server ~]$ ethtool -S enol
NIC statistics:
rx_packets: 2700659

170 CHAPTER 10. PROTOCOLS

tx_packets: 27272
rx_bytes: 346241480
tx_bytes: 3078465
rx_pkts_nic: 2700688
tx_pkts_nic: 27272
rx_bytes_nic: 357047545
tx_bytes_nic: 3194663
<snip>

A quick look at errors using grep is quickly done.

[admin@server ~]$ ethtool -S enol | grep -i -E "drop|error|eno|fail"
rx_errors: 0
tx_errors: 0
rx_dropped: 63202
tx_dropped: 0
rx_over_errors: 0
rx_crc_errors: 0
rx_frame_errors: 0
rx_fifo_errors: 0
rx_missed_errors: 0
tx_aborted_errors: 0
tx_carrier_errors: 0
tx_fifo_errors: 0
tx_heartbeat_errors: 0
rx_length_errors: 0
rx_long_length_errors: 0
rx_short_length_errors: 0
rx_csum_offload_errors: 2
alloc_rx_page_failed: 0
alloc_rx_buff_failed: 0

Just looking at these values do not provide you with much usefull detail. It is merely a
snapshot of the current state but does not show the increments over time. It is therefore
not a good indicator to diagnose an issue that has happened yesterday. If a storage problem
is currently ongoing you would need to collect the output on a continuous basis and either
differentiate them or put them into a graph. From there you can identify when these errors
occur and correlate them to specific issues.

If you make use of some advanced features like Intels ntuples you can assing specific work-
loads (in the sense of IP source and TCP port) to specific queues which each can be pinned
to a specific interupts and therefore CPU/core. These counters will then be specific to
that/those queue(s).

When it comes to the Intel 10G networks cards one of the best writups I've seen is from Joe

10.4. TRANSPORT 171

Damato over at PackageCloud in collaboration with some awesome folks at Private Internet
Access who published a very detailed set of pages on the Linux network stack and how to
make correct decisions on which properties. See the references here [40] [41] [42] [43] [44]
[45]

Another juggernaut in the networking space is Broadcom. They have a vast array of NICs
spanning from 1Gb/s to 200 Gb/s. Talk about speed. phew... Unfortunatly I did not have
one of their adapters so could not provide further insight at this stage.

Regarding the advanced features that some NICs provide I would not use them from the get-
go. Mainly because you need very tight control on all the settings and as soon as they are set
they don’t really adapt well to changing conditions from an OS or application perspective.
If you run into a different workload profile the configuration you've spend days or weeks to
figure out may turn out to become a major bottleneck.

Dealing with the hardware-side of the fence is one of the most complex issues and may very
often not result in the outcome required when external factors change. A change in network
behaviour may be detrimental to the performance and stability of the iSCSI setup. If a good
configuration is found you should also be aware that these are often aligned to the workload
that the application throws at it. If the application changes the tuning excersize of the 10
and networking stack may need to be reviewed.

10.4.2 TCP/IP

iSCSI runs on TCP simply because it needs a reliable transport mechanism. Depending on
the capabilies of the iSCSI server you may need to adjust network traffic profiles on each of
the iSCSI initiators.

The assumption is that the iSCSI server is a dedicated system and does not serve another
purpose. You then have to determine what the capabilities of that system are relating to
cpu, memory but most important of all obtain a baseline on IO possibilities. Test that local
server in various IO scenarios as when multiple initiators are connected to this iSCSI server
the chances of a mixed workload are very high.

The other part is network throughput. If you have a network interface capable of doing 40G
line-rate but your backend disk configuration is not able to sustain that, you will see that,
depending on the rate of incomming data with a heavy write workload, a lot of packet drop
will occur. This is not only detrimental for performance but also puts the stability of the
system at risk and may cause data corruption. There is no way on the server side where
you can change or adjust that. Lowering the line-rate of the network interface or adding an
ingress queuing discipline on the server side will not resolve that simply because the amount
of incoming data cannot be controlled. The only way to do that is to take the baseline
numbers from the IO tests you have done, verify if the network stack is capable of handling
that and adjust the iSCSI initators accordingly so that the sum of the imposed workload by
those initiators does not exceed the capabilities of the server.

With a primarily read based workload the mode is obviously reversed and you may need to

172 CHAPTER 10. PROTOCOLS

setup network queing disciplines on the server on a per initiator basis.

Whenever you run into IO issues in an iSCSI environment the main cause is often related
to the design of the network in relation to the requested or offered workload. In storage
environments this becomes even more troubleshome as the IO stack is basically expecting
a reliable communications path between the initiator and targets. Although TCP itself
is a reliable protocol it does not guarantee an error-free transport. Its smarts are very
much in the detection and subsequent actions such as re-transmissions and slow-start (AIMD)
algorithms. This does not align well with channel protocols and thus a well thought out
design and configuration from the start is paramount to such an environment.

Another part of configuration is related to the way TCP is configured on the respective
interfaces. Things like TCP windows sizes, selective acknowledgement, congestion control
etc all have an influence on the performance and behaviour of traffic.

I mentioned the ethtool command before where you can have a look at the counters of the
ethernet interface and the ip -s addr or ip -s link gives you the counters on a the IP layer
of the network stack.

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qgdisc pfifo_fast state UP group \
default glen 1000
link/ether 08:00:27:f6:fe:dl brd ff:ff:ff:ff:ff:ff
inet 10.10.11.3/24 brd 10.10.11.255 scope global noprefixroute enp0s3
valid_1ft forever preferred_lft forever
inet6 fe80::e64a:ce43:a75b:27a/64 scope link noprefixroute
valid_1ft forever preferred_1ft forever
RX: bytes packets errors dropped missed mcast

9440 49 (0] 0 0 43
TX: bytes packets errors dropped carrier collsns
16540 167 0 0 0 [0]

Any value other than @ on the errors, dropped and missed column should be further inves-
tigated. If they keep increasing over a short period of time you will see IO errors occuring
if the upper layer iSCSI stack is not able to correct the IO by retransmitting the request in
time.

Tools like bmon give you a more dynamic overview of this. If you want to monitor for a
longer period of time you may want to use tools like Zabbix or Nagios which also allows for
network profiling and therefor can help out with adjusting configuration settings on a iSCSI
level as well. T will not go into details on this as this is way outside the scope of the book.

10.5 Fibre Channel

Although technically a transport protocol, I want to give Fibre Channel a dedicated section
as it has been the main transport layer of storage infrastructures for over two decades and

10.5. FIBRE CHANNEL 173

still is. It is the choice for large scale storage deployments in most, if not all, Fortune 500
companies for mission critical workloads and performance requirements. I'm going to spend
some emphasis on this topic mainly because I've seen, over the course of my career, there
is a lot of misconception on how the various bits of the FC protocol work and how they
interact with the operating system.

Its first iteration was a so called Arbitrated Loop implementation. If you ever heard of
Token Ring in a network topology then you're not far off. It allowed for a shared bus to be
created in a loop topology. The AL implementaion is obsolete an no longer implemented in
products.

Fibre Channel (FC hereafter) has a history of almost 4 decades and from its inception was
designed with storage in mind. This means that it catered to be a very high speed flat
network where all traffic flow decisions are made in hardware. As with most stacks, FC is
build on various layers which each operate independant but link the layer above and below
it.

Fibre Channel layers

Upper level protocols

7

Protocol Mappings - FC4

/

Figure 10.7: Fibre Channel layers

FC is agnostic of channel based protocols which means that the behaviour of the transport
layer is adapting to the behaviour of the channel. As an example in the way SCSI works is
that it operates asychronously:

174 CHAPTER 10.

SCSI read and write flow

1 B

Initiator Target

e —

write
Xfer_rdy
data
data
data

status

e

read
data
data
data
data

status

Figure 10.8: SCSI Read and Write Flow

The way FC communicates is aligned to these flow characteristics.

FC flow™ on SCSI write command

Start Exchange - Start sequece - Transfer Intiative - End Sequence

Start Sequence - Xfer_rdy - Transfer Initiative - End Sequence

data - Start Sequence

data
>

data - Transfer Initiative - End Sequence

Start Sequence - Status - End Sequence - End Exchange

Figure 10.9: FC Flow on SCSI

PROTOCOLS

10.5. FIBRE CHANNEL 175

The above also tells you that a SCSI IO is roughly mapped into a, so called, exchange,
each change in direction of flow starts a new sequence by informing the remote side that
the initiative of the flow is transferred to that remote side. Therefore a new sequence gets
started. Any subseqent frame going from the same originator will keep the same sequence id.
Each sequence has one or more frames either containing commands, data or status messages.

10.5.1 Flow Control

With TCP operating on a sliding window based on a negotiated TCP window sizse for flow
control, FC uses buffer to buffer credits. The way this works is that upon link initialisation
the two ports on either side of the physical link give each other a fixed amount of credits
basically saying “You can send me this amount of frames before you need to halt and wait
for me to replenish your used credits. The replenishement of these credits is done with so
called R_RDY signals.

FC flow control

I give you B credits,

I give you 16 credits
frame 16-1=15
frame 15-1=14
frame 14-1=13
R_RDY 13+1=14
frame 14-1=13
A_ROY 13+1=14
R_RDY 14+1=15

-
R_RDY 15+1=16
frame 8-1=7

etc
-

Figure 10.10: FC flow control

The way this works is shown in figure fig. 10.10 on a very high level.

Obviously when the F-port sends frames to the N-port the counters and R_DY primitives

176 CHAPTER 10. PROTOCOLS

run the opposite way. This behaviour ensures that no frames will be sent from one side to
the other without having the assurance the remote side is not able to receive the data. This
will result in a reliable dataflow where the sender is ensured that any frame it sends will be
delivered.

If life was that good I would not be having a job. :-)

There are a few potential issues with buffer to buffer flow conrtol. The first is when something
happens with the R_RDY primitive signal. If that gets lost or corrupted in any way, the
side which sent the frame is then not able to replenish the amount of credits. You will then
run into scenarios where at some stage the sending side wil not have any credits left and
therefore is not allowed to send any frames. That will obviously result in a stalled condition
which may have other consequenses as this state will then propagate back into the fabric.

Below is such a representation of a fabric where one link between a host and a switch is
observing issues and is no longer able to recieve frames.

10.5.2 Fabrics

Figure 10.11 shows a high level representation of a small two single switch fabrics.

10.5. FIBRE CHANNEL 177

Fabric topology example

Host
Device
dz i
T
7K
=
— i
g 5
HBA 1 HBA 2
p P Port 1
A [
IS L
I |
\
1
1
III
Fabric 1 | Fabric 2

¥
Switch 1

A 4 4

| / I.f
f

] \ Array | /

|| \

5,
| Controller ‘J.\
¥ ~

Figure 10.11: Fabric Topology example

Lets assume that controller 1 port 1 needs to send frames to the host. As the HBA port of
that host is no longer able to receive those frames the buffers of the switch will fill up and
the credit shortage of the switch port will then propagate back to the array port preventing
it from sending any frames. Mind the any term here. The above image shows only one host
but you can imagine that when more hosts are mapped to the same array port these will
also be impacted as the flow control methodology is on a per link basis.

There are a fair few mechanisms implemented over the years which allow for recovery of such
situations. The two that will first show up is the Link Reset (LR) protcol and the second

178 CHAPTER 10. PROTOCOLS

is the BB Credit Recovery mechanism. The LR is the simplest one where on side of the
link that is stuck with 0 credits for over a pre-defined period of time will send a link reset
primitive notification basically telling the remote side to forget all frames and actual credits
and start again with the values that where negotiated during link initialisation. The BB
Credit Recovery mechanism uses a counter based table between frames sent and R RDY
received. Some modulo calculations whill then ensure that discrepancies can be corrected.
More recent developments have resulted in the so called FPIN [46] (Fabric Performance Impact
Notification) addition in the FC standards. This allows end devices to become more aware of
issues in the fabric and adjust their workload profile and path selection accordingly. At the
time of this writing most HBA and switch vendors support this already but many storage
vendors have yet to implent this functionality. From a Linux side there are developments
ongoing to have one or more parts of the FPIN signals recognised and automatically change
10 workflow and path selection based on those changed characteristics. [47]

10.5.3 HBAs

One of the most important pieces in relation to the level of neglect is the HBA. The HBA
is almost always overlooked when OS maintenance is planned and executed. It is often
seen as a dumb piece of hardware which requires no attention. The opposite is actually the
case. The level of firmware and driver enhancements and bugfixes is actually astounding.
The configurable options that you actually need to look at is significant. The firmware
is mainly responsible for the hardware internals as well as interaction between the card,
system hardware and on/offloading of data and FC commands onto the wire. The driver is
responsible for interaction with the OS stack as well as the command control between the
OS and the external storage systems. Outdated firmware and drivers are a major issue and
given the fact that the majority of them are badly maintained they are very often a cause
of problems. This is not only true for Linux but is tied to all operating systems which allow
for loosly coupled software.

The HBA information exposes itself mainly via locations in sysfs.

e /sys/class/fc_host
e /sys/class/scsi__host
e /sys/class/nvme* (In case NVMe over Fabrics is used)

The first one has mainly information on the low level fibrechannel information like the FCID,
fabric name, WWN, supported speeds etc. whereas the scsi_host directory provides more
info on how the OS can interact with the HBA.

I mentioned earlier in this chapter that errors on a physical layer will cause havoc somewhere
in the fabric or network and may have serious consequenses in any part of the fabric if these
issues have a severe impact on flow control. On the TCP/IP side you would normally look
on the ethernet and TCP side with the ethtool and/or any of the IP bases diagnostics tools.

On the FC HBA side you need to look at the files located in the statistics directory of the

10.5. FIBRE CHANNEL 179

/sys/class/fc_host/<hostid>/ location.

[root@centos8 storagel# 1ls /sys/class/fc_host/hostll/statistics/

dumped_frames fcp_frame_alloc_failures fcp_packet_alloc_failures
1link_failure_count reset_statistics error_frames
fcp_input_megabytes fc_seq_not_found lip_count

rx_frames fc_no_free_exch fcp_input_requests
fc_xid_busy loss_of_signal_count rx_words
fc_no_free_exch_xid fcp_output_megabytes fc_xid_not_found
loss_of_sync_count seconds_since_last_reset fc_non_bls_resp
fcp_output_requests invalid_crc_count nos_count

tx_frames fcp_control_requests fcp_packet_aborts

invalid_tx_word_count prim_seq_protocol_err_count tx_words
[root@centos8 storage]#

Three files in here are particularly interesting.

e reset statistics
e seconds_since last reset
e error_frames

Al the stats you see here are snapshots in time and show a static value representing the state
of that counter at that point in time. This means that unless the seconds_since_last_reset
is not recent (as in minutes or a few hours) you will not be able to say if these errors occured
two minutes ago, yesterday, last week or last month. Most counters are also stored in a 32-
bit register in the hardware which means that if the counter reaches 4294967296 the register
will flip back to 0 just for that counter and you have no way of correlating these individual
values which makes troubleshooting efforts on this layer useless.

The first thing you would need to do is create a new baseline on the host as well as the
switch where this host is connected to by issuing the command that would reset those as
follows.

echo 1 > /sys/class/fc_host/x/statistics/reset_statistics

On the switch you would either do a statsclear (for a Brocade switch) or a clear counters
interface all (on a Cisco).

Ensure that all counters that represent a physical link issue are checked and that the cause
of them are fixed. Be aware that errors in frames, like crc, do not neccesarily indicate a
physical link issue as that error might already have been inflickted somewhere upstream.

So now and then you may run into an issue which cannot be explained properly by just
looking at the standard events that show up in “/var/log/messages®.

Issues such as

180 CHAPTER 10. PROTOCOLS

Oct 7 18:24:20 centos8 kernel: 1lpfc 0000:81:00.0: 0:1305 Link Down Event \
xc received Data: xc x20 x800110 x0 x0

Oct 7 18:24:24 centos8 kernel: rport-11:0-4: blocked FC remote port time out: \
removing target and saving binding

Oct 7 18:24:24 centos8 kernel: 1lpfc 0000:81:00.0: 0:(0):0203 Devloss timeout \
on WWPN 50:04:0e:60:07:a3:70:00 NPort x0lee40 Data: x0 x8 x2

are fairly common and the above simply shows a Link Down event. These are the most easy
to troubleshoot when your remote switchlog tells you:

18:26:59.565715 SCN Port Offline;rsn=0x10004,g=0x12 A2,P0 A2,PO 93 NA
18:26:59.565721 *Removing all nodes from port A2,P0 A2,PO® 93 NA
18:28:07.998318 SCN LR_PORT(0) ;g=0x12 A2,P0 A2,PO 93 NA
18:28:08.006029 SCN Port Online; g=0x12,isolated=0 A2,P0 A2,P1 93 NA
18:28:08.007307 Port Elp engaged A2,P1 A2,P0 93 NA

18:28:08.007331 *Removing all nodes from port A2,P0 A2,PO 93 NA
18:28:08.007594 SCN Port F_PORT A2,P1 A2,PO 93 NA

18:28:08.099107 SCN LR_PORT(0) ;g=0x12 LR_IN A2,PO A2,PO 93 NA
18:28:20.669283 SCN Port Offline;rsn=0x10004,g=0x14 A2,P0 A2,P0 93 NA
18:28:20.669288 *Removing all nodes from port A2,P0@ A2,PO 93 NA

as a result of

Wed Oct 7 18:28:07 2020 admin, FID 128, 10.10.10.10, portenable 4/29
Wed Oct 7 18:28:20 2020 admin, FID 128, 10.10.10.10, portdisable 4/29

Diagnostics becomes more problematic when it is just the events that show the links bounce
but show no further information. Obtaining extended information from the HBA drivers
may then be very helpful.

10.5.3.1 Update Drivers and Firmware

As you know I'm very picky when it comes to maintenance. If I see cases where System
and/or Storage administrators have basically been slacking for a long time the chances are
very high that I will tell you that and commence diagnosing issues as soon as these things
are all up to date. You wouldn’t believe the sheer amount of issues that have been resolved
in firmware and drivers over any given time-period.

That being said going to the Linux side of the Emulex (or Broadcom) drivers for the
LP31000/LP32000 cards which are very popular in many form-factors.

The driver will show as an Ipfc module and is by default compiled into a ramfs image when
installed. This will allow the card to be used in a boot-from-san variation if needed. The
module will load as such and register with the scsi-subsystem

root@centos[~]$ 1lsmod
<snip>

10.5. FIBRE CHANNEL 181

1pfc 978944 81

nvmet_fc 32768 1 1pfc

nvme_fc 45056 1 1pfc
scsi_transport_fc 69632 1 1pfc
<snip>

With the more recent versions of the driver it will also provide an NVMe oF initiator and
target so that NVM equipment can be utilized when attached to a FC fabric.

10.5.3.2 Log Verbosity

Loggin with an Emulex card can be done on the driver level as well as the HBA firmware.
Unless you get some instructions to do so leave the firmware logging as is. Mainly because
changing these parameters will require a reload of the driver that basically instructs the
firmware logging facility to capture data in some host memory region. Obviously that will
involve some engineering efforts to diagnose anyway so that will not be very helpful to
yourself or your OEM support-organisation unless it needs escalating to Broadcom/Emulex.

Changing the logging verbosity of the driver itself is much easier but may also incur some
performance impact so don’t just flick on the “OxFFFFFFFF debug” button. The driver
logging facility is a bitmap value based on the below table:

Table 10.3: Emulex logging configuration options

LOG Message Verbose Mask Definition ~ Verbose Bit Verbose Description
LOG_ELS 0x00000001 ELS events
LOG_DISCOVERY 0x00000002 Link discovery events
LOG_MBOX 0x00000004 Mailbox events
LOG_INIT 0x00000008 Initialization events
LOG_LINK EVENT 0x00000010 Link events
LOG 1P 0x00000020 IP traffic history
LOG_FCP 0x00000040 FCP traffic history
LOG_NODE 0x00000080 Node table events
LOG_TEMP 0x00000100 Temperature sensor events
LOG_BG 0x00000200 BlockGuard events
LOG_MISC 0x00000400 Miscellaneous events
LOG_SLI 0x00000800 SLI events
LOG_FCP_ ERROR 0x00001000 Log errors, not underruns
LOG_LIBDFC 0x00002000 Libdfc events
LOG_VPORT 0x00004000 NPIV events
LOG_SECURITY 0x00008000 Security events
LOG_EVENT 0x00010000 CT,TEMP,DUMP, logging
LOG_FIP 0x00020000 FIP events

182 CHAPTER 10. PROTOCOLS

LOG Message Verbose Mask Definition = Verbose Bit Verbose Description
LOG_FCP_ UNDER 0x00040000 FCP underruns errors
LOG_SCSI_CMD 0x00080000 ALL SCSI commands
LOG_ NVME 0x00100000 NVME general events
LOG_NVME_ DISC 0x00200000 NVME discovery/connect events
LOG_NVME ABTS 0x00400000 NVME ABTS events
LOG_NVME IOERR 0x00800000 NVME I/0 Error events
LOG_EDIF 0x01000000 External DIF events
LOG_AUTH 0x02000000 Authentication events

A If you don’t know what these mean, or have no clue on how to interpret the output, it’s
not much use changing these values and you should be asking guidance from your support
provider. The output will only confuse you and if you don’t know what the commands and
responses should be, it’s only a bunch of hex values.

The values as displayed above can be summed depending on which verbose logging needs to
be enabled. For instance if your OEM asks you for Link events, ELS and Initialiation events
you may get asked to enable verbose logging with either the “hbacmd” or via “sysfs”. The
value of the parameter will than be “0x19”

The above are for Broadcom/Emulex adapters only and the options of the logging function-
ality are tied to the driver and hardware capabilities. These therefor may evolve over time
and as such may not be 100% accurate at the time of publishing. I’ve incorporated them
so you know the option is there and you can utilise this functionality. The admin manuals
that accompany the drivers will have the latest instructions.

hbacmd or sysfs If you have hbacmd installed any change done in the logging preferences
also automatically kicks of dracut and builds a new boot image. The command has a few
additional parameters

hbacmd setdriverparam 10:00:00:90:fa:c7:cd:f9 G P log-verbose 0x135661

The first three a fairly obvious. Command setting driver parameters for PWWN 10:xxxxxx.
The G stands for Global basically meaning it is valid for all adapters and the P stands
for Permant. That ensures the parameter that follows is also applied after reboots. The
log-verbose parameter is basically the configuration what we’re adjusting. The 0x135661 is
a combination of values obtained via the table above.

The value can also dynamically be applied via sysfs in the “/sys/class/scsi_host /host<x>”
(where <x> is the adapter ID) directory. The LPFC driver will create the system file as
appropriate in that folder and one of which is indeed the “Ipfc_log verbose” file. The
0x<123456> value can be echoed to that file and the driver will dynamically pick this up.

10.5. FIBRE CHANNEL

[root@centos8 hostll]# cat lpfc_log_verbose

0Ox0

183

[root@centos8 hostll]# echo 0x135661 > lpfc_log_verbose

The change is immediate logged

Oct 8 17:03:15 centos8 kernel: 1lpfc 0000:81:00.0: 0:(0):3053 1pfc_log_verbose \
changed from 0 (x0) to 1267297 (x135661)

When you change all of them with

[root@centos8
[root@centos8
[root@centos8
[root@centos8

scsi_host]#
scsi_host]#
scsi_host]#
scsi_host]#

echo 0x135661
echo 0x135661

echo 0x135661

> hostll/1lpfc_log_verbose
> hostl2/1lpfc_log_verbose
echo 0x135661 > hostl3/1lpfc_log_verbose
> hostl4/1pfc_log_verbose

The messagelog will show something similar like this

Oct 8 17:28:28
changed from
Oct 8 17:28:50
changed from
Oct 8 17:28:58
changed from
Oct 8 17:29:04
changed from

centos8 kernel: 1lpfc 0000:81:00.0: 0:(0):3053 1lpfc_log_verbose \
-1 (xffffffff) to 1267297 (x135661)

centos8
1267297
centos8
1267297
centos8
1267297

kernel: 1pfc
(x135661) to
kernel: 1pfc
(x135661) to
kernel: 1pfc
(x135661) to

0000:81:

1267297

0000:83:

1267297

0000:83:

1267297

00.1: 1:(0):3053 1lpfc_log_verbose \
(x135661)
00.0: 2:(0):3053 1pfc_log_verbose \
(x135661)
00.1: 3:(0):3053 1lpfc_log_verbose \
(x135661)

The interesting past is that the PCI system paths to the adapter entries are used here. This
is reflected in the “0000:81:00.0:”, 0000:83:00:0:” etc entries.

Remember that in normal circumstances you would not need to change these values. The
basics are logged anyway and only in specific circumstances you would need to adjust that.
Also be aware that using a debug value of OXFFFFFFFF can incur a significant performance
overhead on busy systems as a lot needs to be logged.

Another thing that I get often queried about is which HBA port belongs to which SCSI

number.

Identifcation of the respective HBA’s can be done by looking at the adapter entries in the
eventlog as mentioned above. In this case the 81 and 83 values are a reflection of the PCI
id and the 00.0 and 00.1 are the individual ports on those adapters.

81:00.0 Fibre
81:00.1 Fibre
83:00.0 Fibre
83:00.1 Fibre

Channel:
Channel:
Channel:
Channel:

Emulex Corporation
Emulex Corporation
Emulex Corporation
Emulex Corporation

LPe31000/LPe32000 ...
LPe31000/LPe32000 ...
LPe31000/LPe32000 ...
LPe31000/LPe320600 ...

184 CHAPTER 10. PROTOCOLS

You can see these entries coming back in the /sys/class/fc_host directory where logical links
to the PCI devices are created

Trwxrwxrwx. 1 root root O Sep 4 15:08 hostll -> ../../devices/pci0000:80 \
/0000:80:03.0/0000:81:00.0/hostll/fc_host/hostll

Trwxrwxrwx. 1 root root O Sep 4 15:08 hostl2 -> ../../devices/pci0000:80 \
/0000:80:03.0/0000:81:00.1/host12/fc_host/hostl2

Trwxrwxrwx. 1 root root O Sep 4 15:08 hostl3 -> ../../devices/pci0000:80 \
/0000:80:03.2/0000:83:00.0/host13/fc_host/host13

Trwxrwxrwx. 1 root root © Sep 4 15:08 hostl4 -> ../../devices/pcif000:80\
/0000:80:03.2/0000:83:00.1/hostl4/fc_host/hostl4

As soon as you know this you can associate the respective WWN of the adapter to the one
you see on the switch:

[root@centos8 ~]# cat /sys/class/fc_host/hostll/port_name
0x10000090fac7cde8

switchl:FID128:admin> switchshow
switchName: switchl

switchType: 165.0

<snip>

Index Slot Port Address Media Speed State Proto

66 4 2 0lef40 id N8 Online FC F-Port 50:04:0d:20:10:17:b5:b8
<snip>
93 4 29 010000 id 16G Online FC F-Port 10:00:00:90:fa:c7:cd:e8

The above shows you when you see errors happening as part of a SAN attached disk where
to look and how to associate the Emulex adapters to the respective WWN’s on your SAN.

From there on you can also identify which disks are presented to that adapter. As you’ve
seen above the PCI subsystem creates a host interface per FC port. In my case these are
host11 to host14.

A simple way to check is to just do an “Is” on /sys/class/scsi_disk/device/block tree.

[root@centos8 scsi_disk]# 1ls x/device/block/
<snip>

'11:0:0:0/device/block/':
sdm

<snip>

10.5. FIBRE CHANNEL 185

'11:0:0:8/device/block/':
sdu

As you can see the 11:xxxxx entries will list the respetive “/dev/sd*” entries that is being
used for mounting volumes, MPIO listings etc.

10.5.3.3 Emulex/Broadcom

Emulex was one of the earliest vendors of HBA’s and are now part of Broadcom. Together
with Qlogic they are one of the mainstream vendors in this area. Emulex delivers the drivers
and firmware in two packages. The firmware is loaded statically which means you have to
upgrade this manually. The versions are linked to eachother and allthough they allow for
some minor version discrepancy it is always adviseable to have the firmware and driver
versions aligned. This prevents some weird behaviour where the driver may expect a certain
state or result of a system call which the firmware is not able to deliver. Other issues are
mainly related to bugs and how the HBA’s interact with the physical side of the system as
well as datahandling between various parts of the stack it controls like DMA requests etc.
The moral of this is mainly KEEP YOUR FIRMWARE AND DRIVERS UP TO
DATE !!!.

As the SCSI subsystem and the FC stack have each their own timing settings it is beneficial
to pay attention to how these interact and depend on eachother.

The way the HBA interacts with the OS is mainly configured via the module parameters
that can either be changed dynamically or statically which, in some occasions, require a host
reboot. Consult the documentation for the most up-to-date options and parameters.

@ The below driver parameters are extremely important as these tie in directly with
how various actions in the device mapper multipath daemon are triggered. More on that in
the MPIO chapter.

Ipfc_nodev_tmo parm: Ipfc nodev_tmo:Seconds driver will hold I/O waiting for a device
to come back (int) (This one is mutually exclusive with the Ipfs devloss tmo, deprecated
in later versions)

Ipfc_devloss _tmo parm: Ipfc_devloss tmo:Seconds driver will hold I/O waiting for a device
to come back (int)

Ipfc_poll parm: Ipfc_ poll:FCP ring polling mode control: 0 - none, 1 - poll with interrupts
enabled 3 - poll and disable FCP ring interrupts (int)

Ipfc_poll _tmo parm: Ipfc_poll tmo:Milliseconds driver will wait between polling FCP ring
(uint)

186 CHAPTER 10. PROTOCOLS

Ipfc_task mgmt tmo parm: Ipfc task mgmt tmo:Maximum time to wait for task man-
agement commands to complete (uint)

10.5.4 Port up sequence

To understand what happens when an HBA logs into a fabric you need to know the order
of events and the expected communications between the HBA, switch and array.

Below a simplified overview.

Port up sequence
i

1: Speed Negotiatior
2: Connect speed
3: FLOGI

4: Accept

7: PLOGI

8: Accept
9:GID

10: FCID List

11: PLOGI

12: Accept

13: PRU

14: Accept

15: Report Luns

16: LUN List

17: Inquiry

18: Acc

Figure 10.12: Port Up Sequence

Be aware that behind the scenes in the fabris a lot of other communication is taking place
to inform other switches of various changes etc.

Let’s go thru the steps.

1. After the HBA turns the laser on it will need to determine the speed on which it can
communicate
2. The highest speed is negotiated and the state is set

10.5.

S

10.

11.
12.

13.

14.
15.

16.
17.

18.

FIBRE CHANNEL 187

The HBA sends a FL0GI (Fabric Login) to announce itself to the fabric, obtain a FCID
(Fabric address) from the F-port controller and sends the service parameters which it
supports

The F-port controller will send the FCID back and will either acknowldge the service
parameters or make some adjustments based on what it supports

The switch will send an RScN (Registered State Change Notification) to the array to
inform that port something has changed in the fabric. (It is then up to the array if it
acts upon that)

The HBA will send a 6ID (Get ID) to the fabric nameserver to obtain a list of FCID’s
it can talk to

Followed by a pLOGI (Port Login) to the fabric name server along with some service
parameters

The nameserver will send an ACK back to confirm these service parameter

The HBA will also send a GID to the nameserver obtain a list of N-ports it can talk to
(if properly zoned)

The nameserver will send back the list of zonemembers to which the HBA is allowed
to talk to.

The HBA then logs in into the array FC port to exchange detail on the FC side
Which the array either accepts or denies. (if an array port is not configured to allow
a loging frome that particular HBA the login will be denied)

If the login is accepted there needs to be a session on the FcP (Fibre Channel
SCSI/NVMe) layer established which is done with a PRLI (Process Login)

The array will send an ACK back so that the protocol parameters on that layer is agreed
The HBA driver and the Linux IO stack have now created the base configuration for
the target side and a Report LUNS is sent to the array

The array will then send a list of LUNS back to the host

Each lun will then recieve an Inquiry from the host in order to retrieve things like size,
vendor, model, type and supported options

The array will send that information and the host 10 stack can then register these
devices so they can be used

Now you would say, based on the above, that this is rather simple. Bear in mind though
that this representation is an extremely simplified view and that many other commands
and parameters go back and forth. You can imagine that when a shared-nothing cluster
is connected to the same port using the same LUN’s, the array would need to know that
and be configured in such a way that access registrations and de-registrations (via so called
reserves) are needed so that one host does not overwrite data from another host. There are
many more knobs and sliders in that infrastructure that can cause an issue.

10.5.5 Switches

Speaking of FibreChannel there is really no way to ignore the switch-side in order to trou-
bleshoot link related issues. I've written hundreds of articles on my blog over the years to

188 CHAPTER 10. PROTOCOLS

inform storage administrators many of the nuts and bolts of FibreChannel environments.
You can find them over at my blog [48].

If hosts are connected to a FC switch the first thing to look at is to see if there are any
physical issues on a link. There is no way to circumvent a physical link problem on any
other layer. It would be a bit like trying to use a different set of tyres on a sportscat when
the road goes from a smooth bitumen surface to a dirt track riddled with pot holes.

Physical link issues are most often caused by one of the following factors:

e Connectors or patchcords not properly seated

e Connectors are dirty. (Even the slightest specle of dust or debree can cause light signal
distortion)

e Cables are broken. (This may cause a dB loss resulting in the amount of light on the
receiver side to drop below the receiver sensitivity threshold)

e Incorrect cabling. Mix of various OM type [49] cables causing signal degradation or
loss due to refraction and dispersion issues

e SFP’s are broken. Either the TX laser is no longer able to send light or has degraded
so that there is not enough light seen on the remote site

e SFP’s are not supported for the length and speed of the connection. You need to refer
to the guidelines of the manufacturer what speeds are supported on which cable and
SFP type. Very often the length of the cable leans against the boundaries of what is
possible. That leads to signal issues causing link instability and frame corruption.

10.5.5.1 Link Errors

As you’ve seen on the HBA side the error counters can be easily retrieved via the /sysfs
interface. You have to be aware though that link errors are unidirectional. This means that
counter values you see in these files are errors that have been identified on the receiving side
(ie these are incomming errors). It doesn’t say that the remote side is free of issues which
may still impact the bi-directional traffic sequences.

10.5. FIBRE CHANNEL 189

Host SFP Switch S5FP
N-port F-port
I
.{—

Figure 10.13: SFP Directional Errors

Figure 10.13 shows the physical diagram of the actual link. The arrows show the direction
of the data. The red line depicts an issue either on the connector, cable, patch-panel etc.
The errors will therefore show up on the switch side and not on any of the counters of the
HBA.

This does not mean the host will not observer errors but these are then a conseqeunce of
the physical link issue. You may for example see that the switch at some stage will reset a
link because it ran out of buffer credits. That will obviously be seen on the host side.

So in order to see if any errors are seen on that switchport you would need to check there.
As an example:

portshow 64
portDisableReason: None

<snip>

Interrupts: 25 Link_failure: 2 Frjt:
Unknown: 0 Loss_of_sync: 0 Fbsy:
L1i: 25 Loss_of_sig: 2

Proc_rqrd: 109 Protocol_err: O

Timed_out: 0 Invalid_word: 0

Tx_unavail: 0 Invalid_crc: 0

Delim_err: 0 Address_err: 0

Lr_in: 3 Ols_1in: 2

Lr_out: 2 Ols_out: 3

190 CHAPTER 10. PROTOCOLS
porterrshow:

frames enc crc crc too too bad enc disc \

link loss loss frjt fbsy c3timeout pcs uncor

tx rx in err g_eof shrt long eof out c3 \
fail sync sig tx rx err err
64: 2.5¢g 2.2g (0] 0] (0] 0] 0] (0] 0] 22 \
2 (0] 2 0] 0] 0 0 0 0

For link state counters this is the most useful command in the switch however there is a
perception that this command provides a “silver” bullet to solve port and link issues but that

is not the case. Basically it provides a snapshot of the content of the LES

B 13 of a port at

that particular point in time. It does not tell us when these counters have accumulated and
over which time frame. So in order to create a sensible picture of the statuses of the ports
we need a baseline. This baseline can be created to reset all counters and start from zero.
To do this issue the “statsclear” command on the cli.

There are 7 columns you should pay attention to from a physical perspective.

1. enc_in — Encoding errors inside frames. These are errors that happen on the FC1

with encoding 8 to 10 bits and back or, with 10G or higher, from 64 bits to 66 and
back. Since these happen on the bits that are part of a data/command frame, these
are counted in this column.

crc_err — An enc_in error might lead to a CRC error however this column shows
frames that have been market as invalid frames because of this crc-error earlier in
the datapath. According to FC specifications it is up to the implementation of the
programmer if he wants to discard the frame right away or mark it as invalid and
send it to the destination anyway. There are pro’s and con’s on both scenarios. So
basically if you see crc__err in this column it means the port has received a frame with
an incorrect crc but this occurred further upstream.

crc_g eof — This column is the same as crc_err however the incoming frames are
NOT marked as invalid. If you see these most often the enc in counter increases as
well but not necessarily. If the enc_in and/or enc_out column increases as well there
is a physical link issue which could be resolved by cleaning connectors, replacing a
cable or (in rare cases) replacing the SFP and/or HBA. If the enc_in and enc_out
columns do NOT increase there is an issue between the SERDES chip and the SFP
which causes the CRC to mismatch the frame. This could be most likely a firmware
issue that controls the interaction between those two. Check with your vendor if this
is the case and if updated firmware fixes this problem.

enc_out — Similar to enc_in this is the same encoding error however this error was
outside normal frame boundaries i.e. no host 10 frame was impacted. This may seem

13Link Error Status Block

10.5. FIBRE CHANNEL 191

harmless however be aware that a lot of primitive signals and sequences travel in be-
tween normal data frame which are paramount for fibre-channel operations. Especially
primitives which regulate credit flow. (R_RDY and VC_RDY) and signal clock syn-
chronization are important. If this column increases on any port you'll likely run into
performance problems sooner or later or you will see a problem with link stability and
sync-errors (see below).

5. Link Fail — This means a port has received a NOS (Not Operational) primitive from
the remote side and it needs to change the port operational state to LF1 (Link Fail
1) after which the recovery sequence needs to commence. (See the FC-FS standards
specification for that)

6. Loss_Sync — Loss of synchronization. The transmitter and receiver side of the link
maintain a clock synchronization based on primitive signals which start with a certain
bit pattern (K28.5). If the receiver is not able to sync its baud-rate to the rate where it
can distinguish between these primitives it will lose sync and hence it cannot determine
when a data frame starts.

7. Loss_ Sig — Loss of Signal. This column shows a drop of light i.e. no light (or insufficient
RX power) is observed for over 100ms after which the port will go into a non-active
state. This counter increases often when the link-loss budget is overdrawn. If, for
instance, a TX side sends out light with -4db and the receiver lower sensitivity threshold
is -12 db. If the quality of the cable deteriorates the signal to a value lower than that
threshold, you will see the port bounce very often and this counter increases. Another
culprit is often unclean connectors, patch-panels and badly made fibre splices. These
ports should be shut down immediately and the cabling plant be checked. Replacing
cables and/or bypassing patch-panels is often a quick way to find out where the problem
is.

8. The other columns are more related to protocol issues and/or performance problems
which could be the result of a physical problem but not an underlying cause. In short
look at these 7 columns mentioned above and check if no port increases a value.

When you start troubleshooting troubleshooting issues you see on the host, and it has been
determined that the cause is most likely external, you need to check in with your storage
administrators and have them verify the data path between the server and the host. As
any physical problem in the infrastructure is relatively easy to find and would need to be
resolved first before proceeding on any other avenue, the link errors as I mentioned before
should be checked on each switch that is in that data path. The actual process may get more
complicated when the issue remains after any physical issue is resolved but that is really for
the storage admins to find and fix.

I've received quite a few question what this CRC and CRC_G__EOF actually is. Normally
when a FC port creates a framestructure it has a SOF (Start of Frame), a frame header,
the data, a CRC checksum and an EOF (End of Frame). That EoF is tagged with a few

192 CHAPTER 10. PROTOCOLS

possible options. When the frame shows no problems it is tagged with a n so in a trace it
would show up a EoFN. As switches do not use a store and forward method of frames but
use cut-trough switching, meaning parts of the frame may have already been forwarded to
any next potentional hop, there is no way for a port to retrieve or call back the frame when
it has determined something is wrong with that frame. The only way it can inform the next
port in the data patch is by invalidating the frame by changing the EoFN tag to a EoFi where
the i stands for “Invalid”. If this happens anywhere in the fabric it is easy to trace this back
as the counters in the switches will tell you where the frame was observed of having a CRC
error but was not invalidated yet.

CRC with or without Good EOF

on the incoming port
of Switch 2

Frame is OK
Mo CRC or CRC,G_EOF shown

Frame is corrupt.
Both CRC and
CRC_G_EOF are flagged

Frame is corrupt.
Only CRC is seep on Switch 4
CRC_G_EOF is not
as EOFiis flagged on Switch3

Figure 10.14: CRC Errors

As shown in fig. 10.14 the moment a frame gets corrupted between switch 2 and 3. THe
counters on the ingress port of switch 2 will show no increments, the counter on the ingress
port of switch 3 will show a CRC error as well as a CRC_G_EOF as the frame has not been
invalidated yet. The ingress port of Switch 3 will change the EoF tag from EoFN to EoFI
thereby marking the frame as being invalid. Switch 4 will show only a CRC error and will
not increment the CRC_G_EOF counter as is it not having a good N tag.

If any issues are seen on a physival level you should start correcting them ASAP. There is
simply no shortcut or workaround if these physical issues occur. The way to do that is as
follows:

1. Start by cleaning the connectors and reseating cables if cable testing equipment is not
available. This often clears up minor bit errors.

10.5.

6.

FIBRE CHANNEL 193

If patch-panels are used, re-route cables to other ports on the panels to see if that
resolves the issue.

Connect to a different port on the switch, clear port statistics, and monitor the
porterrshow output to see if the problem follows the move.

Replace cable(s).

Replace SFP on the sending side, e.g. this will be either an HBA port or a port on a
storage channel host adapter.

Replace SFP on the switch side if the problem does not follow the move.

Do them in the order as above as that has proven to be the most effective way.

Even though the above information is obtained from Broadcom hardware, a similar kind
of information can be obtained from a Cisco switch albeit the terminology is somewhat
different.

194 CHAPTER 10. PROTOCOLS

Chapter 11

MPIO - MultiPath 10

In environments where 10 requests are being sent over a networked transport protocol you
most often seen that disks presented out of a storage array are accessed via multiple paths.
We’ve seen this in the FC topology example in fig. 10.11 as well as the iSCSI network fig. 10.5.

As I wrote in one of my articles [2] MPIO is not a IO failsafe mechanism. This means that
in case of 10 errors, this layer will not be retransmitting I0’s when frames are dropped or
other, protocol based, errors may occur like SCSI status messages being corrupted or simply
time out. That is the responsibility of the transport protocol (SCSI, NMMe etc..).

The MPIO layer is designed to be a path manager where it creates virtual devices when
it detects if two or more disks are actually the same. There are basically two methods it
can use for this. One is the WWID and the second a manually created alias based on that
WwID.

Example:

[root@server ~] multipath -11
mpathr (360060e8007c370000030c37000000705) dm-17 HITACHI,OPEN-V
size=10G features='0' hwhandler='0' wp=rw
‘—+- policy='service-time 0' prio=1 status=active
|- 13:0:3:5 sdah 66:16 active ready running
‘- 14:0:0:5 sdag 66:0 active ready running

In the above example the devices “sdah” and “sdag” are actually the same device presented
via FibreChannel out of the same array over different paths. The MPIO software aggregates
these in the “mpathr” device which can be addressed in the same way as a normal sdx disk.

MPIO also monitors the state of accessibility over the paths to each of the physical disks.
Depending on the configuration it can do a read on a sector, a TUR (Test Unit Ready) to

195

196 CHAPTER 11. MPIO - MULTIPATH IO

that LUN or via a some other ways. The state can be seen in the last three output fields of
the physical device “active ready running”’ or via “multipathd 1list paths”.

[root@server queue]~ multipathd list paths

hcil dev dev_t pri dm_st chk_st dev_st next_check
13:0:3:0 sdw 65:96 1 active ready running XXXXXX.... 13/20
14:0:0:0 sdx 65:112 1 active ready running XXXXXX.... 12/20
14:0:0:2 sdaa 65:160 1 active ready running XXXXXXX... 14/20
14:0:0:1 sdy 65:128 1 active ready running XXXXXXX... 15/20

11.1 ALUA

ALUA stands for A-synchronous Logical Unit Access. Ok, what does that mean?? you’d
say. As were in the MPIO chapter you can imaging that access to disks presented out of
storage arrays is one of the most important parameters. Without access you're pretty much
lost. Depending on the infrastructure and storage array capabilities you’ll most likely have
more than one access path to the particular volume located in that array.

When access characteristics are 100% the same over all the paths to that disk you will not
see a need for ALUA. When referring to fig. 10.11 you can see that the array consists of
two separate controllers. Each controller will serve a volume exclusively and present this
out of one or more of its front-end ports. For redundancy purposes it will also present the
volume out of the other controller. This is known as an Active/Passive setup. During the
discovery phase the host will detect the two access paths and determine this is actually
the same volume. It now needs to determine which access path it actually needs to use.
The reason is that the controller actively servicing the volume should support the full SCSI
command set (as far as the supported functioned and features allow) to service it. The access
path on the passive controller still needs to support the command and task management
functions however the internal array service capabilities may not be optimal and could incur
a performance penalty.

By looking at the standard inquiry response it will see that the volume has a few bits set in
the TpPGs ! field.

These can be as follows:

!Target Port Groups

11.1. ALUA

197

Table 11.1: TPGS response field.

Code

Description

00b

01b

10b

11b

The logical unit does not support
asymmetric logical unit access or supports a
form of asymmetric access that is vendor
specific. Neither the REPORT TARGET
GROUPS command nor the SET TARGET
PORT GROUPS command is supported.
The logical unit supports only implicit
asymmetric logical unit access. The logical
unit is capable of changing target port
asyminetric access states without a SET
TARGET PORT GROUPS command. The
REPORT TARGET PORT GROUPS
command is supported and the SET
TARGET PORT GROUPS command is not
supported.

The logical unit supports only explicit
asymmetric logical unit access. The logical
unit only changes target port asymmetric
access states as requested with the SET
TARGET PORT GROUPS command.
Both the REPORT TARGET PORT
GROUPS command and the SET TARGET
PORT GROUPS command are supported.
The logical unit supports both explicit and
implicit asymmetric logical unit access.
Both the REPORT TARGET PORT
GROUPS command and the SET TARGET
PORT GROUPS commands are supported.

Based on this it can make an inquiry around the way which path should be used by requesting
the remote controller via the REPORT TARGET PORT GROUPS command. Based on how the array is
configured it can receive one or more TPG descriptor lists each containing the characteristics
of that TPG for that associated volume. A descriptor showing which volume presented out
of which ports have a preferred access and thus the host can use that information to use
the most optimal path to the volume. Unless some special configuration is in place you will
most often see either the active/optimized or the active/non-optimized being returned. As
I mentioned before this does depend on the target configuration.

If this field is set to any non-0 value the initiator requests the array for the access charac-

198 CHAPTER 11. MPIO - MULTIPATH IO

teristics via the REPORT TARGET PORT GROUP command which should return any of
the following states

active/optimized
active/non-optimized
standby

unavailable

logical block dependent

It goes a bit too far to explain these in detail in this book as the SCSI Primary Commands
standards (See the T10 website [50]) has a very detailed chapter specifically dedicated to
this functionality.

In the exampled below you see that the volume that is presented out of a iSCSI target has
two paths with the same access characteristics and are therefore place into the same policy
group even though the priority handler is set to 1 alua.

sclient:~ # multipath -11
36001405705f3340f4124399b75f0ef3d dm-0 LIO-ORG,idiskc
size=8.0G features='l queue_if_no_path' hwhandler='1l alua' wp=rw
"—+- policy='service-time 0' prio=50 status=active
|- 3:0:0:0 sdb 8:16 active ready running
"~ 4:0:0:0 sdc 8:32 active ready running

In short ALUA allows for a host to array discovery and management mechanism to try and
use best path. The definition of the best path is however up to interpretation as that also
depends on how the rest of the array is configured as well as the state of the infrastruc-
ture on that path. It is up to the systems administrator, in cooperation with the storage
administrator, to design and configure the best possible setup.

11.2 NVDMe

As of around mid-2022 a few patches have been submitted to exclude some vendors NVMe
storage arrays from the the device-mapper multipath daemon. The reason is that the NVMe
code in the Linux kernel supports native MPIO functionality. That functionality was already
part of the specification since version 1.1 dating back to 2011. It is enabled by default in
the kernel but can be turned off via the nvme-core module parameter.

11.2. NVME 199

nvne suppors
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submemus ----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <7> for Help, </> for Search. Legend: [*] built-in []
excluded <M> module < > module capable

<M> NVM Express block device

* NVMe multipath support

[*] NVMe hardware monitoring

<M> NVM Express over Fabrics RDMA host driver
<M> NVM Express over Fabrics FC host driver
<M> NVM Express over Fabrics TCP host driver

<M> NVMe Target support

[*] NVMe Target Passthrough support

<M> NVMe loopback device support

<M> NVMe over Fabrics RDMA target support

<M> NVMe over Fabrics FC target driver

<M> NVMe over Fabrics FC Transport Loopback Test driver
<M> NVMe over Fabrics TCP target support

Figure 11.1: NVMe kernel multipath support

The only two options that pertain MPIO for NVMe devices are

[root@server 5.17.9-200.fc35.x86_64]# modinfo nvme-core
filename: /1lib/modules/5.17.9-200.fc35.x86_64/kernel/drivers\
/nvme/host/nvme-core.ko.xz

version: 1.0

license: GPL

rhelversion: 9.99

<snip>

parm: multipath:turn on native support for multiple \
controllers per subsystem (bool)

parm: jopolicy:Default multipath I/0 policy; 'numa' (default)\

or 'round-robin'

I do have some doubts over using the native NVMe multipathing option over the device
mapper one. This is mainly because when the transport layer is either tcp or fibre-channel,
the behaviour in error conditions does not have the extended functionality that the DM-
Multipath solution has. Especially when it comes to intermittent packet or frame drop or
losing and regaining connections to remote ports, this may become seriously cumbersome.
When taking into account that each NVMe namespace can contain up to 64000 commands,
the host and application may have some serious recovery work cut out for them.

What ALUA does for SCSI devices, ANA support is the NVMe equivalent. It stands for A-
synchronous Namespace Access. Even though the implementation is somewhat different than
ALUA, the methodology is basically the same. A set of inquiries and responses determine
the support and access paths to the volumes which in turn determine the multipathing
software to configure the respective policies.

200 CHAPTER 11. MPIO - MULTIPATH IO

Be aware that the terminology and naming conventions change when native multipathing
is enabled on NVMe devices and references to controllers and subsystems show the same
values however they have a different meaning.

For example the below is an output of a nvme-cli 1ist command where native NVMe
multipathing is not enabled. The representation of the /dev/nvmexny output has the x as
the controller and the Y as the namespace.

Node SN Model Namespace Usage Format FW Rev
/dev/nvmednl 0O0OOOOOEOOOOOOOO Linux 1 160.82 GB / 160.82 GB 512 B + 0 B 4.4.131-
/dev/nvmelnl 0000000000000 Linux 1 160.82 GB / 160.82 GB 512 B + 0 B 4.4.131-

When however native multipathing is enabled you’ll see that the output only shows

Node SN Model Namespace Usage Format FW Rev
/dev/nvmednl 0OEEEOOOOOOOOOOO Linux 1 160.82 GB / 160.82 GB 512 B + 0 B 4.4.131-

The X no longer represents the controller but now links to the NVMe subsystem. The native
multipath logic has aggregated the paths from each of the controllers to that subsystem and
namespace. Something to be aware off. The Linux DM multipath driver does have support
for native NVMe in the sense that it can query and present the configuration information
of the subsystem and namespaces. It does not have the ability to actively interact with the
native NVMe multipath module.

11.3 Multipath.conf overrides

When devices presented out of different arrays or from different vendors, they may require
one or more settings to be adjusted. Many vendors already contribute to the multipath
device-mapper source code and set some default generic settings which should allow for a
relatively easy detection, configuration and operation. There are however many occasions
where you do need to adjust settings based on application behaviour. This most often has
a dependency on timing and IO failure tolerance of the application. That is something that
needs to be tested before taking an application into production.

The settings are configured in the /etc/multipath.conf file and additional files can be in-
cluded when placed in the /etc/multipath/conf.d directory.

An example is shown below. I've highlighted a few settings that are especially important
when configuring the timers for path failures. These settings are primarily for Hitachi based
arrays but may be applicable to others as well.

[root@server ~]# cat /etc/multipath/conf.d/adjustments.conf
defaults {

polling_interval 5
max_polling_interval 15

11.3. MULTIPATH.CONF OVERRIDES 201

path_checker tur

failback manual
marginal_pathgroups yes
fast_do_fail_tmo 3

dev_loss_tmo 3600

detect_checker no

detect_prio yes

prio path_latency

prio_args "io_num=50 base_num=5"
verbosity 2

}
devices {
device {

vendor " (HITACHI|HP)"

product "AOPEN-"

path_grouping_policy "multibus"

path_selector "service-time 0"

no_path_retry fail
One of the four parameters of supporting path check based on accounting IO error
such as intermittent error. When a # path failed event occurs twice in
marginal_path_double_failed_time seconds due to an IO error and all the
other three parameters are set, multipathd will fail the path and enqueue
this path into a queue of which members are sent a couple # of continuous
direct reading asynchronous IOs at a fixed sample rate of 10HZ to start IO
error accounting process.

marginal_path_double_failed_time 10

One of the four parameters of supporting path check based on accounting IO error
such as intermittent error. If it is set to a value no less than 120, when a

path fail event occurs twice in marginal_path_double_failed_time second due to

an IO error, multipathd will fail the path and enqueue this path into a

queue of which members are sent a couple of continuous direct reading
asynchronous IOs at a fixed sample rate of 10HZ to start the IO accounting
process for the path will last for marginal_path_err_sample_time. If the

rate of I0 error on a particular path is greater than the
marginal_path_err_rate_threshold, then the path will not reinstate for
marginal_path_err_recheck_gap_time seconds un-less there is only one active
path. After marginal_path_err_recheck_gap_time expires, the path will be requeued

H O W W O O O O I I I

for rechecking. If checking result is good enough, the path will be reinstated.
marginal_path_err_sample_time 30

202 CHAPTER 11. MPIO - MULTIPATH IO

The error rate threshold as a permillage (1/1000). One of the four parameters
of supporting path check based on accounting IO error such as
intermittent error. Refer to marginal_path_err_sample_time. If the rate

of IO errors on a particular path is greater than this parameter, then the
path will not reinstate for marginal_path_err_recheck_gap_time seconds unless

B

there is only one active path.
marginal_path_err_rate_threshold 5

One of the four parameters of supporting path check based on accounting

I0 error such as intermittent error. Refer to marginal_path_err_sample_time.
If this parameter is set to a positive value, the failed path of which the IO
error rate 1is larger than marginal_path_err_rate_threshold will be kept in
failed state for marginal_path_err_recheck_gap_time seconds. When
marginal_path_err_recheck_gap_time seconds expires, the path will be

re-qeued for checking. If checking result is good enough, the path will

be reinstated, or else it will keep failed.

O ¥ O M W W

marginal_path_err_recheck_gap_time 120
}
}

multipaths {

As an example a Hitachi GAD Volume uses ALUA as path priority selector.
This should normally be picked up by the "detect_prio yes" value

in the defaults section. If that does not work there may be something wrong
in the array settings. To force the path selector "alua" to be used for

the dm-entries you know are GAD volumes you can use the below. As there

are no special identifiers the WWID need to be used. Check with

"lsblk -o NAME,VENDOR,TYPE,MODEL,WWN,UUID" to get the WWID of the volume
and use that as "wwid" didentifier. Be aware the multipaths section does

#H O B H K H O H I

not allow regular expressions!
multipath {

wwid 310060e8007c370000030c37000000708
prio alua

prio_args alua

}
3

blacklist {

Blacklist devices not capable of multipathing.

This includes most internal disks and disks served by single raid-controllers
protocol "scsi:unspec"

11.4. IO ERRORS 203

protocol "scsi:ata"
protocol "undef"

}

Be aware that many vendors may use some form or proprietary method for any of the
multipath settings. You should always follow that guidance in order nor to be surprised if
things may not work as expected. Some areas where this may particularly be of interest is
any form of access to some sort of storage clustering mechanism where you may see two luns
presented out of two different arrays separated over mid to long distance.

11.4 10O errors

As mentioned the multipath device mapper daemon will only act on event where the trans-
port layer (SCSI in most cases) logs an event that access to a device has disappeared. This
is shown in the flowchart in fig. 11.2. When a path is in the active state the multipathd
daemon on the host will not interfere or keep track of 10 errors. It does however have the
ability to periodically check if access to a disk via a path is still there. It does that via the
polling_interval setting which is then gradually reduced up to the max_polling_interval
setting. The reason you need to enable this is mainly if paths are used in a non-active-active
fashion.

What I mean by that is when a SAN or other network topology is used and devices are set
to be accessed in some sort of failover mode, there will not be any 10’s issued to any of the
passive paths. As errors will only be detected when 10’s fail you may run into a situation
where a passive path fails but this is not seen by the protocol layer and will therefore not
be propagated to the multipath layer. In case an active path fails, for whatever reason, it
may not be able to fail over to any of the “surviving” paths as these are now deemed failed
as well.

The polling mechanism ensures that all paths are periodically checked via the defined
path_checker setting.

11.5 Path failure

So what makes a path become unavailable then you might ask? There are a few answers here.

e On a network based infrastructure the iSCSI daemon on the server side has deregistered
a disk from a target group and has either notified the clients directly or in-directly (via
iSNS) that the disk is no longer presented via that target group.

e A TCP session for an iSCSI connection has closed or is in a FIN _WAIT state.

e On a FC based infrastructure the array has unmapped a disk from one of the port
where it was presenting the disk out of. It may either send a RscN 2 directly to the

2Registered State Change Notification

204 CHAPTER 11. MPIO - MULTIPATH IO

nodes that are mapped to that port or may notify the fabric of a change who will then
send an RSCN

e A physical link that carried one of the paths either failed or went offline. This will
then cause the fabric to send an RSCN resulting in the disk to become unmapped.

e A WWN is deregistered from a fabric nameserver resulting in the device becoming
unknown in the fabric.

11.6 Path integrity

Fail back of failed paths should normally be done after a manual verification as, especially
with older versions of the kernel and the multipath daemon, there are limited provisions to
really check on the stability and integrity of that path. If a disk is presented out of a network
or fibre-channel based infrastructure and that is observing intermittent IO errors there is
not much that can be done from an MPIO layer or any other part of the host OS except not
using that path at all. Automatically failing back to a path that has observed issues is not
likely becoming healthy just because a few “test I0’s” were successful. Some of these issue
are very hard to diagnose especially if the entire path itself does not show any symptoms of
physical link issues but are more related to packet/frame timeouts which could be a result
of congestion and/or delays. It is still worthwhile to not automatically reinstate a path and
try to find the bottleneck in this case.

11.7. ERROR FLOW CHART 205

11.7 Error flow chart

Error flow chart

Narmal operation

Figure 11.2: MPIO error flow chart

Figure 11.2 shows on a high level how the multipath daemon roughly acts on events. Be
aware that this flowchart is depending on the settings in the multipath.conf or any of the
configurations set in the kernel.

206 CHAPTER 11. MPIO - MULTIPATH IO

Chapter 12

Vendor support

In a fair few occasions the troubleshooting efforts you've done may not have resulted in the
restoration of the services required and involvement of the support vendor is required. Now,
be aware that the support organisation of the respective vendor does not know your environ-
ment and does not know your actual problem. Logging a ticket which says My filesystem
does not mount, please let me know how to resolve this does not really indicate what the
problems is and the description is merely a symptom caused by another problem. There is a
expectation from any vendor that the system administrator has done a reasonable amount
of troubleshooting themselves before lodging a ticket.

12.1 Safeguarding system state

If you've ever watched a CSI ! series, you know that forensic investigators do not want anyone
contaminating the scene of the incident as it may result in findings to become inconclusive.
The same is true for systems analysis required from your support vendor. If a problem is
observed which you think would need the help of your support vendor, ensure that a support
bundle has been created before you start your own troubleshooting efforts. Skipping this
may result in log files wrapping, process no longer showing the state they are in when the
problem was observed, kernel modules loaded (or not loaded) with the parameters being
active, the actual state of any of the device(s) in play etc.

All of the above may change if certain actions are done on a system and most of them
will change for sure when a system reboots. In order to prevent this from happening en-
sure that a system support bundle is created. If the problem cannot be resolved by your
own troubleshooting effort and a ticket needs to be opened with your support vendor, you
immediately have this information at hand.

1Crime Scene Investigation

207

208 CHAPTER 12. VENDOR SUPPORT

On RHEL use sos report with or without the various parameters you need (see the —help
output) and on SLES use the supportconfig tool (there is also a YAST GUI extension) to
collect the system information needed to diagnose the issue in the state when the problem
was observed.

[root@rhel-84-1 ~]# sos rep
sosreport (version 4.2)

This command will collect diagnostic and configuration information from
this Red Hat Enterprise Linux system and installed applications.

An archive containing the collected information will be generated in
/var/tmp/sos.wcOduw5c and may be provided to a Red Hat support
representative.

Any information provided to Red Hat will be treated in accordance with
the published support policies at:

Distribution Website : https://www.redhat.com/
Commercial Support ¢ https://www.access.redhat.com/

The generated archive may contain data considered sensitive and its
content should be reviewed by the originating organization before being
passed to any third party.

No changes will be made to system configuration.

Press ENTER to continue, or CTRL-C to quit.

<snip>

[plugin:wireless] skipped command 'diwlist scanning': \
required kmods missing: cfg80211.

Running plugins. Please wait

Finishing plugins [Running: subscription_manager]
Finished running plugins
Creating compressed archive...

Your sosreport has been generated and saved in:
/var/tmp/sosreport-rhel-84-1-2022-07-07-kwfydmy.tar.xz

Size 24.82M1iB
Owner root

12.1. SAFEGUARDING SYSTEM STATE 209

sha256 6c593dff1a6797dd4b41b751f3fd62b0558c234cbeee5c3bd8940735d9cdbage

Please send this file to your support representative.

And the output from SUSE:

Support Utilities - Supportconfig
Script Version: 3.1.11-29.1
Library Version: 3.1.11-29.2
Script Date: 2022 02 02

Detailed system information and logs are collected and organized 1in a

manner that helps reduce service request resolution times. Private system
information can be disclosed when using this tool. If this 1is a concern,
please prune private data from the log files. Several startup options

are available to exclude more sensitive information. Supportconfig data is
used only for diagnostic purposes and is considered confidential information.
See http://www.suse.com/company/policies/privacy/

Gathering system information

Data Directory: /var/log/scc_sserver_220708_1033
Basic Server Health Check... Done
RPM Database... Done
<snip>

Local/Warn Logs... Done

Creating Tar Ball

==[DONE]===
Log file tar ball: /var/log/scc_sserver_220708_1033.txz
Log file size: 2.1M

Log file md5sum: c9d655f947a712bb9cl1fc5019e531da8-f

Keep a detailed track record with timelines and commands issued as well as any other findings
you may have encountered during your troubleshooting efforts. This will allow support to
build a picture of your environment and will help expedite the path to a resolution.

210 CHAPTER 12. VENDOR SUPPORT

12.2 Opening tickets

There needs to be a detailed description of the issue

e Description
— Provide a detailed description.
— What did you observe.
What were the commands you executed when the issue surfaced.
— Has anything changed on the system itself (patched deployed, selinux policies
updated etc...)
— Has anything changed in the environment? (Network, SAN, Firmware
updates.......)
Have other systems observe issues as well? (Often when certain external changes
are done, it may have an impact on other parts of the infrastructure)
e Time notation

— When did it start (show detailed timelines and mention the actual time on the
system as well as timezone offsets if applicable)

— It does not help when the time mentions something like yesterday afternoon as
that may not be reflecting the time the support people look at your case plus
the yesterday is only valid for one day and your afternoon is likely not their
afternoon.

— Use date and time stamps like 01-Ju1-2022 11:45:00 GMT or, even better, use the
timestamp format that your system is using (see the output of the timedatectl
command)

— If multiple systems are involved also ensure that, if there are any, time/date
differences are shown and these are mentioned when the ticket is opened.

e Place in the infrastructure

— Ensure that an up-to-date diagram is available which shows the direct connec-
tivity to switches and their upstream/downstream configuration. Outdated dia-
grams are not useful and will only lead to more confusion and therefore adding
to the delay in resolving the problem.

— Check if addresses (MAC, IP, WWNN/WWPN, FCID’s) are correctly shown and
align with the actual state of the current configuration of the infrastructure.

The above list is non-exhaustive and also depends on the actual issue at hand. Different
vendors may require different information requirements and the level of support is often tied
to the entitlements as outlined in the contracts you have with them.

For the latest information and requirements visit the RedHat and SUSE support pages.|51]
[52]. Depending on the hardware and overall infrastructure configuration you also may want
to involve other teams of your organisation as most often these issues could become complex
and a multi-disciplinary approach may be required.

12.2. OPENING TICKETS 211

SUSE also has a very handy tool called SCA ? which parses the output of the supportconfig
and presents this in HTML format with a detailed level of information around issues seen
on the system. Problems that are known by SUSE very often have a knowledge base article
attached. This tool can also be set up in your local environment on a dedicated server so
supportconfig collections can be regularly checked against known issues. The SCA tool and
the accompanied patterns for the latest SLES releases are regularly updated in the standard
SUSE repositories so updating it should be a breeze.

root@sserver:~>scatool -s -o

HHHH B RS RREHR R R R H HR HH H R HRR
SCA Tool v1.5.1-1

HiH#H SRS R R R R R R R R R R R R R R R

Running Supportconfig On: sserver

Gathering Supportconfig: [==]
Processing Directory: /var/log/scc_sserver_220909_102119/

Total Patterns Available: 0

Pattern Definition Filter: local

Total Patterns to Apply: 0

Analyzing Supportconfig: [==]
Applicable Patterns: 0

Pattern Execution Errors: 0

SCA Report File: ./scc_sserver_220909_102119_report.html

root@sserver:~>

2Supportconfig Analysis

212

Supportconfig Analysis Report

CHAPTER 12.

VENDOR SUPPORT

Server Information

Analysis Date:

20220912 14:4519

Supportconfig Run Date: 2022-09-12 14:45:28

Supportconfig File:

Server Name:
Distribution:
Hypervisor:

Kernel Version:

scc_localhost_220912_144519

localhost Hardware:
SUSE Linux Enterprise Server 15 SP4 (x86_64) Service Pack:
Sun VirtualBox (hardware platform) Identity:

51421150400 22-default

VirtualBax
2

Virtual Machine (hardware platform)

Supportconfig Version: 3.1.11-29.1

Conditions Evaluated as Critical

Category Message Solutions
Basic
= 2 Gritcal Basic Health Message(s)
TOTAL 2 Grtical Condtions Found
Conditions Evaluated as Warning
[Category Message ‘Solutions |
Conditions Evaluated as Recommended
Category Message Solutions.
SIE T Recommended SLE Wessags(s]
TOTAL 1 Recommended Condition Found
Conditions Evaluated as Success
Category Message Solutions

Basc
Healih

7 Suceess Basic Health Message(s)

TOTAL

7 Success Conditions Found

Client: scatool v1.5.0-0.devb.8 (Report Benerated by

SCA Tool)

Patterns Evaluated: 54, Appliable to Server 10

Figure 12.1: SCA Reporting Tool

Example of the SCA reporting tool

SUSE Technical Support

A somewhat different overview can be obtained from RedHat with the difference being that
a RHEL system needs to be licensed and under an active maintenance contract. The RedHat
portal can then give you an overview of the various packages that are installed and which
system health advisories are applicable. It does not provide a troubleshooting analysis in
the sense it that it does not diagnose sosreports. I'm not aware of any public available
option from RedHat that would provide the same/similar functionality that SUSE has with
the SCA reporting tool.

12.3. CROSS VENDOR SUPPORT 213

Overview Subscriptions ~ Systems Cloud Access Subscription Allocations ~ Contracts Errata Manage =

rhel-84-1

@ Virtual System, Last checkedin July 14, 20221316

Detalls Subscriptions Errata Enabled Modules Installed Packages System Facts
Basic Information Registration History
Name rhel-84-1 ! Created August 05, 2021 01:14
Type Virtual System Created By
D Last Checked In July 14, 2022 1316

Subscriptions
Software Updates

Subscription Management @ Properly Subscribed
Alinetalled products are coverad by U Security Advisories 24
attached subscriptions. Updates can 0 critical o]
be received through June 11, 2023 O mportant 5
04:00.
Moderate 3
Subscriptions Attached 1
OLow 1
Auto-Attach .
Enabled ¥ Bug Fix Advisories 32
Operating System Release Nat Set £ Product Enhancement Advisories. 8
Preference
Identity Certificate
System Purpose G
Serial Number
System Purpose Status @ Matched
Create Date 2022-06-16
Service Level Agreement (SLA Self-support -
9 &L Self-Suppor Expire Date 2023-06-16
Usage Type Development,Test -
Role Red Hat Enterprise Linux Server ¥

Figure 12.2: Redhat Portal System overview

12.2.1 Severity and Criticality

Make a proper assessment of both and simply be honest with your vendors. If the scale of
a issue is large you may flag this as a high severity problem but if this happens in a part
of you infrastructure primarily erected for testing purposes the business criticality may not
be far reaching. Ensure that if both these characteristics are flagged as business critical and
you require the problem to be worked on around the clock by your respective vendor(s), it is
expected that personnel of the teams involved from your organisation are also available 24x7,
in case information is needed or solution proposals need to be implemented. The severity
and criticality works both ways.

12.3 Cross Vendor support

In almost all occasions when it pertains storage related cases you’ll see that two or more
vendors are involved. Server hardware, host operating system, ethernet and /or fibre-channel
switches, storage array vendors and maybe even a few more when other tools or appliances
are in use. Many of them are member of TSANet ® [53] which is a non-profit organisation

3Technical Support Alliance

214 CHAPTER 12. VENDOR SUPPORT

that provides vendors with a platform on how to engage each other in case of a mutual
customer issue. Please mind the word mutual as you as a customer would need to have
support contracts in place with every vendor involved. Secondly you would also need to
lodge a ticket with each of them and provide these vendors with the ticket numbers so they
can cross-reference them. This allows the respective support organisations to discuss the
issue at hand and come up with a solution as quickly as possible.

Be aware that TSANet is a vendor organisation and not something you as a customer or
interested party can join. It could however show you which of your vendors are a member.
Inform you support person that tickets have been opened with these other vendors and they
can be contacted via the TSANet pathways.

To you the reader

I would like to thank you for purchasing this book and I hope it will help you in your tasks
as a Linux administrator dealing with storage related problems. If you would like to see any
topic in the book in more detail, please let me know as well. I will do my best to make it as
valuable as possible for you.

As I mentioned in the introduction this book is a start to try and aid Linux administrators
to troubleshoot storage related issues. As the Linux ecosystem is vast and it’s varieties of
storage related implementations differs between each distribution this book will need to be
regarded as a guideline and not the all-encompassing goto publication for everything related
to storage related issues.

The book will be a living thing and T’ll try and do my best to keep it up to date and as
accurate as possible. The plan is to release an updated version every 9 to 12 months. Any
more would not be very useful as the storage industry is in general relatively conservative
and new developments take a fair time to make it upstream in the kernel and subsequently
in the various distributions.

That being said there may be occasions in the book that may be out of date at a certain time
or are incorrect. I’ve done my best to deep-dive as much as possible in the various topics
but there may be occasions some things could have been interpreted incorrectly or have a
different meaning resulting in incorrect statements. If you see any irregularities please do
not hesitate to contact me. I'm a very approachable fella and would like to help out by
keeping this book as good as it gets. Your help will be much appreciated.

Kind regards,
Erwin

http://erwinvanlonden.net y @elonden m https://www.linkedin.com/in/evanlonden

215

https://erwinvanlonden.net
https://www.linkedin.com/in/evanlonden

216 CHAPTER 12. VENDOR SUPPORT

References

(1]
2]

5]
[6]
17l

19]

[10]
[11]

[12]

[13]

Thomas-Krenn.AG, “Home.” [Online]. Available: https://www.thomas-krenn.com/
en/index.html

E. van Londen, “The great misunderstanding of MPIO,” 01-Oct-2012. [Online]. Avail-
able: https://erwinvanlonden.net/2012/10/the-great-misunderstanding-of-mpio/
“Oracle Database Documentation.” [Online]. Available: https://docs.oracle.com/en
/database/oracle/oracle-database/index.html

VanMSFT, “Overview of SQL Server on Linux - SQL Server.” [Online]. Available:
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview

“Choosing the Right Storage Engine.” [Online|. Available: https://mariadb.com/kb
/en/choosing-the-right-storage-engine /

“MySQL :: MySQL 8.0 Reference Manual :: 16 Alternative Storage Engines.” [Online].
Available: https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
“Overview of the Linux Virtual File System — The Linux Kernel documentation.”
[Online]. Available: https://www.kernel.org/doc/html/latest/filesystems/vfs.html
“Byte,” Wikipedia. 12-Apr-2022 [Ounline]. Available: https://en.wikipedia.org/w/ind
ex.php?title=Byte&oldid=1082283626

“International System of Units,” Wikipedia. 28-Apr-2022 [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=International System of Units&oldid=108
5103501

NYLUG Presents: Ted Ts’o on the Ext} Filesystem (Jan 10, 2013) (HD). [Online].
Available: https://www.youtube.com/watch?v=2mYDFr5T4tY

“Silicon Graphics,” Wikipedia. 02-Jan-2022 [Online|. Available: https://en.wikipedia
.org/w/index.php?title=Silicon Graphics&oldid=1063320268

“XFS FAQ - xfs.org.” [Online]. Available: https://xfs.org/index.php/XFS FAQ#Q:
_How_to_calculate the correct sunit.2Cswidth values for optimal perform
ance

C. Dunlop, “Highly reflinked and fragmented considered harmful?” [Online|. Avail-
able: https://lore.kernel.org/linux-xfs/20220509024659. GA62606@onthe.net.au,/

217

https://www.thomas-krenn.com/en/index.html
https://www.thomas-krenn.com/en/index.html
https://erwinvanlonden.net/2012/10/the-great-misunderstanding-of-mpio/
https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview
https://mariadb.com/kb/en/choosing-the-right-storage-engine/
https://mariadb.com/kb/en/choosing-the-right-storage-engine/
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://en.wikipedia.org/w/index.php?title=Byte&oldid=1082283626
https://en.wikipedia.org/w/index.php?title=Byte&oldid=1082283626
https://en.wikipedia.org/w/index.php?title=International_System_of_Units&oldid=1085103501
https://en.wikipedia.org/w/index.php?title=International_System_of_Units&oldid=1085103501
https://en.wikipedia.org/w/index.php?title=International_System_of_Units&oldid=1085103501
https://www.youtube.com/watch?v=2mYDFr5T4tY
https://en.wikipedia.org/w/index.php?title=Silicon_Graphics&oldid=1063320268
https://en.wikipedia.org/w/index.php?title=Silicon_Graphics&oldid=1063320268
https://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
https://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
https://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
https://lore.kernel.org/linux-xfs/20220509024659.GA62606@onthe.net.au/

218

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

CHAPTER 12. VENDOR SUPPORT

“Status - btrfs Wiki.” [Online]. Available: https://btrfs.wiki.kernel.org/index.php/St
atus

“Dm-crypt — The Linux Kernel documentation.” [Online]. Available: https://www.
kernel.org/doc/html/latest /admin-guide/device-mapper /dm-crypt.html

“Linux Unified Key Setup,” Wikipedia. 16-Jun-2022 [Online]. Available: https://en
.wikipedia.org/w/index.php?title=Linux_Unified Key Setup&oldid=1093468632
“Home - Wiki - cryptsetup / cryptsetup - GitLab.” [Online|. Available: https://gitl
ab.com/cryptsetup/cryptsetup/- /wikis /home

“GUID Partition Table,” Wikipedia. 07-Jun-2022 [Online]. Available: https://en.wik
ipedia.org/w/index.php?title=GUID _Partition Table&oldid=1091965474

“Roderick W. Smith.” [Online]. Available: https://www.rodsbooks.com/

“Endianness,” Wikipedia. 16-Aug-2022 [Online|. Available: https://en.wikipedia.org
/w/index.php?title=Endianness&oldid=1104776037

“Specifications | Unified Extensible Firmware Interface Forum.” [Online|. Available:
https://uefi.org/specifications

“Cache-policies.rst « device-mapper « admin-guide « Documentation - Kker-
nel/git /torvalds/linux.git - Linux kernel source tree.” [Online|. Available: https:
//git.kernel.org/pub/scm/linux/kernel/git /torvalds/linux.git /tree /Documentation/
admin-guide/device-mapper/cache-policies.rst

“The Sg3 _utils package.” [Online]. Available: http://sg.danny.cz/sg/sg3 utils.html

“BFQ IO scheduler.” [Online]. Available: https://www.kernel.org/doc/Documentati
on/block/bfg-iosched.txt

“Kyber 10 scheduler.” [Online]. Available: https://www.kernel.org/doc/Documenta
tion/block /kyber-iosched.txt

“Deadline 10 scheduler.” [Online|. Available: https://www.kernel.org/doc/Documen
tation/block/deadline-iosched.txt

J. Hands, “Home.” [Online|. Available: https://nvmexpress.org/

“libATA Developer’s Guide.” [Ounline]. Available: https://www.kernel.org/doc/htm
ldocs/libata/index.html

“BPF Documentation — The Linux Kernel documentation.” [Online]. Available:
https://www.kernel.org/doc/html/latest /bpf/index.html

“Ftrace - Function Tracer — The Linux Kernel documentation.” [Online]. Available:
https://docs.kernel.org/trace/ftrace.html

BPF Compiler Collection (BCC). 10 Visor Project, 2022 [Online]. Available: https:
//github.com /iovisor/bee

https://btrfs.wiki.kernel.org/index.php/Status
https://btrfs.wiki.kernel.org/index.php/Status
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-crypt.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-crypt.html
https://en.wikipedia.org/w/index.php?title=Linux_Unified_Key_Setup&oldid=1093468632
https://en.wikipedia.org/w/index.php?title=Linux_Unified_Key_Setup&oldid=1093468632
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/home
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/home
https://en.wikipedia.org/w/index.php?title=GUID_Partition_Table&oldid=1091965474
https://en.wikipedia.org/w/index.php?title=GUID_Partition_Table&oldid=1091965474
https://www.rodsbooks.com/
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=1104776037
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=1104776037
https://uefi.org/specifications
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/admin-guide/device-mapper/cache-policies.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/admin-guide/device-mapper/cache-policies.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/admin-guide/device-mapper/cache-policies.rst
http://sg.danny.cz/sg/sg3_utils.html
https://www.kernel.org/doc/Documentation/block/bfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/bfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/kyber-iosched.txt
https://www.kernel.org/doc/Documentation/block/kyber-iosched.txt
https://www.kernel.org/doc/Documentation/block/deadline-iosched.txt
https://www.kernel.org/doc/Documentation/block/deadline-iosched.txt
https://nvmexpress.org/
https://www.kernel.org/doc/htmldocs/libata/index.html
https://www.kernel.org/doc/htmldocs/libata/index.html
https://www.kernel.org/doc/html/latest/bpf/index.html
https://docs.kernel.org/trace/ftrace.html
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc

12.3. CROSS VENDOR SUPPORT 219

32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

42|

[43]

[44]

[45]

[46]

“Sun Microsystems,” Wikipedia. 22-Apr-2021 [Online]. Available: https://en.wikiped
ia.org/w/index.php?title=Sun_Microsystemsé&oldid=1019261568

“Network File System,” Wikipedia. 17-Mar-2021 [Online]. Available: https://en.wik
ipedia.org/w/index.php?title=Network File System&oldid=1012708858
Open-iscsi/open-iscsi. Open-iSCSI, 2021 [Online]. Available: https://github.com/o
pen-iscsi/open-iscsi

“P802.1DC — Quality of Service Provision by Network Systems |.” [Online|. Available:
https://1.ieee802.0org/tsn/802-1dc/

“SCSI Architecture.” [Online|. Available: https://www.t10.org/scsi-3.htm

M. Chadalapaka, J. Satran, D. Black, and K. Meth, “Internet Small Computer System
Interface (iISCSI) Protocol (Consolidated).” [Online]. Available: https://tools.ietf.o
rg/html/rfc7143

M. Chadalapaka, J. Satran, D. Black, and K. Meth, “Iscsinaming.” [Online|. Avail-
able: https://datatracker.ietf.org/doc/html/rfc71434#section-4.2.7.4

“Rfc4171.” [Online]. Available: https://datatracker.ietf.org/doc/html/rfc4171

J. Damato, “Monitoring and Tuning the Linux Networking Stack: Receiving Data,”
22-Jun-2016. [Online|. Available: https://blog.packagecloud.io/eng/2016,/06,/22/mo
nitoring-tuning-linux-networking-stack-receiving-data/

“Linux networking stack from the ground up, part 1,” 22-Jan-2016. [Online|. Available:
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-
ground-up-part-1/

“Linux networking stack from the ground up, part 2,” 23-Jan-2016. [Online|. Available:
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-
ground-up-part-2/

“Linux networking stack from the ground up, part 3,” 28-Jan-2016. [Online|. Available:
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-
ground-up-part-3/

“Linux networking stack from the ground up, part 4,” 30-Jan-2016. [Online]. Available:
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-
ground-up-part-4/

“Linux networking stack from the ground up, part 5,” 03-Feb-2016. [Online]. Available:
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-
ground-up-part-4-2/

E. van Londen, “FPIN - The Holy Grail of SAN Stability,” 22-Feb-2021. [Online].
Available: https://erwinvanlonden.net/2021/02/{pin-the-holy-grail-of-san-stability /

https://en.wikipedia.org/w/index.php?title=Sun_Microsystems&oldid=1019261568
https://en.wikipedia.org/w/index.php?title=Sun_Microsystems&oldid=1019261568
https://en.wikipedia.org/w/index.php?title=Network_File_System&oldid=1012708858
https://en.wikipedia.org/w/index.php?title=Network_File_System&oldid=1012708858
https://github.com/open-iscsi/open-iscsi
https://github.com/open-iscsi/open-iscsi
https://1.ieee802.org/tsn/802-1dc/
https://www.t10.org/scsi-3.htm
https://tools.ietf.org/html/rfc7143
https://tools.ietf.org/html/rfc7143
https://datatracker.ietf.org/doc/html/rfc7143#section-4.2.7.4
https://datatracker.ietf.org/doc/html/rfc4171
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-1/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-1/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-2/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-2/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-3/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-3/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-4/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-4/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-4-2/
https://www.privateinternetaccess.com/blog/linux-networking-stack-from-the-ground-up-part-4-2/
https://erwinvanlonden.net/2021/02/fpin-the-holy-grail-of-san-stability/

220

[47]

48]
[49]
[50]
[51]
[52]

[53]

CHAPTER 12. VENDOR SUPPORT

“[Dm-devel] dm-multipath - IO queue dispatch based on FPIN Congestion/Latency
notifications.” [Online|. Available: https://www.mail-archive.com/dm-devel%40re
dhat.com/msg20575.html

“Storage & Beyond.” [Online|. Available: https://erwinvanlonden.net/

“Multi-mode optical fiber,” Wikipedia. 06-Nov-2021 [Online]. Available: https://en.w
ikipedia.org/w/index.php?title=Multi-mode optical fiber&oldid=1053891338

“T10 Technical Committee.” [Online]. Available: https://www.t10.org/index.html

“How to engage with Red Hat support.” [Online]. Available: https://access.redhat.
com/start /how-to-engage-red-hat-support

“Technical Support Guide | SUSE.” [Online|. Available: https://www.suse.com/sup
port/handbook/

“TSANet.” [Online]. Available: https://tsanet.org/

https://www.mail-archive.com/dm-devel%40redhat.com/msg20575.html
https://www.mail-archive.com/dm-devel%40redhat.com/msg20575.html
https://erwinvanlonden.net/
https://en.wikipedia.org/w/index.php?title=Multi-mode_optical_fiber&oldid=1053891338
https://en.wikipedia.org/w/index.php?title=Multi-mode_optical_fiber&oldid=1053891338
https://www.t10.org/index.html
https://access.redhat.com/start/how-to-engage-red-hat-support
https://access.redhat.com/start/how-to-engage-red-hat-support
https://www.suse.com/support/handbook/
https://www.suse.com/support/handbook/
https://tsanet.org/

	Introduction
	How the book is written
	Thank you
	Limits
	Prerequisites

	Linux Troubleshooting
	TL;DR
	Performance
	The IO stack
	Applications
	Filesystem
	Encryption
	Partitions and Volume Managers
	RAID
	Block devices
	MultiPath IO
	Schedulers
	Storage Protocols
	Channel
	Transport

	Storage

	Applications
	Type
	Databases
	Oracle
	Sybase (SAP ASE)
	Microsoft SQL server
	MySQL
	Reliability and Redundancy

	Cluster systems
	Operating System clusters

	Filesystems
	VFS
	Disk capacity
	Layout
	Mount options
	Selecting and creating a filesystem
	EXT4
	XFS
	BTRFS

	Encryption
	Using dm-crypt, cryptsetup and LUKS
	Backup and recovery

	Partitioning
	Partitions
	MBR
	GPT
	Creating partitions
	Investigating GPT partitions

	Partition corruption
	Recovering partition information
	Full example GPT restoration

	Volume Managers
	LVM
	What can go wrong
	PV - Physical Volumes
	VG - Volume Groups
	LV - Logical Volumes
	Thin Volumes
	Pool threshold condition reached
	File removal

	Cache volumes
	dm-writecache
	dm-cache
	Benefits of caching
	Drawbacks of caching and caching errors

	LVM corruption scenario
	Damaged PV metadata
	Recover the PV
	Recover the VG
	Reactivate the VG

	Meta-data
	Performance problems
	Monitoring performance

	RAID
	Terminology
	MD
	Consistency policy
	Failures
	Data validation
	Recovery
	Adjusting raid synchronisation

	Correcting failed raidsets
	DMRAID

	Block devices
	Device naming
	Identifying device characteristics
	SCSI

	Caching

	Schedulers
	Non-MQ
	MQ
	Selection
	Tuning

	Protocols
	Channels
	SCSI
	Logging
	Tracing
	DIF-DIX

	NVMe
	Transport
	iSCSI
	TCP/IP

	Fibre Channel
	Flow Control
	Fabrics
	HBAs
	Port up sequence
	Switches

	MPIO - MultiPath IO
	ALUA
	NVMe
	Multipath.conf overrides
	IO errors
	Path failure
	Path integrity
	Error flow chart

	Vendor support
	Safeguarding system state
	Opening tickets
	Severity and Criticality

	Cross Vendor support

	To you the reader
	References

